

CONTENTS IN DETAIL

1. TITLE PAGE
2. COPYRIGHT
3. DEDICATION
4. ABOUT THE AUTHOR AND TECHNICAL REVIEWER
5. ACKNOWLEDGMENTS
6. INTRODUCTION
7. Who This Book Is For
8. Why Write a C Compiler?
9. Compilation from 10,000 Feet

10. What You’ll Build
11. How to Use This Book
12. The Test Suite
13. Extra Credit Features
14. Some Advice on Choosing an Implementation Language
15. System Requirements
16. Installing GCC and GDB on Linux
17. Installing the Command Line Developer Tools on macOS
18. Running on Apple Silicon
19. Validating Your Setup
20. Additional Resources
21. Let’s Go!
22. PART I: THE BASICS
23. 1

A MINIMAL COMPILER
24. The Four Compiler Passes
25. Hello, Assembly!
26. The Compiler Driver
27. The Lexer
28. The Parser
29. An Example Abstract Syntax Tree
30. The AST Definition
31. The Formal Grammar
32. Recursive Descent Parsing
33. Assembly Generation
34. Code Emission
35. Summary
36. Additional Resources
37. 2

UNARY OPERATORS
38. Negation and Bitwise Complement in Assembly
39. The Stack
40. The Lexer

41. The Parser
42. TACKY: A New Intermediate Representation
43. Defining TACKY
44. Generating TACKY
45. Generating Names for Temporary Variables
46. Updating the Compiler Driver
47. Assembly Generation
48. Converting TACKY to Assembly
49. Replacing Pseudoregisters
50. Fixing Up Instructions
51. Code Emission
52. Summary
53. Additional Resources
54. 3

BINARY OPERATORS
55. The Lexer
56. The Parser
57. The Trouble with Recursive Descent Parsing
58. The Adequate Solution: Refactoring the Grammar
59. The Better Solution: Precedence Climbing
60. Precedence Climbing in Action
61. TACKY Generation
62. Assembly Generation
63. Doing Arithmetic in Assembly
64. Converting Binary Operations to Assembly
65. Replacing Pseudoregisters
66. Fixing Up the idiv, add, sub, and imul Instructions
67. Code Emission
68. Extra Credit: Bitwise Operators
69. Summary
70. Additional Resources
71. 4

LOGICAL AND RELATIONAL OPERATORS
72. Short-Circuiting Operators
73. The Lexer
74. The Parser
75. TACKY Generation
76. Adding Jumps, Copies, and Comparisons to the TACKY IR
77. Converting Short-Circuiting Operators to TACKY
78. Generating Labels
79. Comparisons and Jumps in Assembly
80. Comparisons and Status Flags
81. Conditional Set Instructions
82. Jump Instructions
83. Assembly Generation

84. Replacing Pseudoregisters
85. Fixing Up the cmp Instruction
86. Code Emission
87. Summary
88. Additional Resources
89. 5

LOCAL VARIABLES
90. Variables, Declarations, and Assignment
91. The Lexer
92. The Parser
93. The Updated AST and Grammar
94. An Improved Precedence Climbing Algorithm
95. Semantic Analysis
96. Variable Resolution
97. The --validate Option
98. TACKY Generation
99. Variable and Assignment Expressions

100. Declarations, Statements, and Function Bodies
101. Functions with No return Statement
102. Extra Credit: Compound Assignment, Increment, and Decrement
103. Summary
104. 6

IF STATEMENTS AND CONDITIONAL EXPRESSIONS
105. The Lexer
106. The Parser
107. Parsing if Statements
108. Parsing Conditional Expressions
109. Variable Resolution
110. TACKY Generation
111. Converting if Statements to TACKY
112. Converting Conditional Expressions to TACKY
113. Extra Credit: Labeled Statements and goto
114. Summary
115. 7

COMPOUND STATEMENTS
116. The Scoop on Scopes
117. The Parser
118. Variable Resolution
119. Resolving Variables in Multiple Scopes
120. Updating the Variable Resolution Pseudocode
121. TACKY Generation
122. Summary
123. 8

LOOPS
124. Loops and How to Escape Them

125. The Lexer
126. The Parser
127. Semantic Analysis
128. Extending Variable Resolution
129. Loop Labeling
130. Implementing Loop Labeling
131. TACKY Generation
132. break and continue Statements
133. do Loops
134. while Loops
135. for Loops
136. Extra Credit: switch Statements
137. Summary
138. 9

FUNCTIONS
139. Declaring, Defining, and Calling Functions
140. Declarations and Definitions
141. Function Calls
142. Identifier Linkage
143. Compiling Libraries
144. The Lexer
145. The Parser
146. Semantic Analysis
147. Extending Identifier Resolution
148. Writing the Type Checker
149. TACKY Generation
150. Assembly Generation
151. Understanding Calling Conventions
152. Calling Functions with the System V ABI
153. Converting Function Calls and Definitions to Assembly
154. Replacing Pseudoregisters
155. Allocating Stack Space During Instruction Fix-Up
156. Code Emission
157. Calling Library Functions
158. Summary
159. 10

FILE SCOPE VARIABLE DECLARATIONS AND STORAGE-CLASS SPECIFIERS
160. All About Declarations
161. Scope
162. Linkage
163. Storage Duration
164. Definitions vs. Declarations
165. Error Cases
166. Linkage and Storage Duration in Assembly
167. The Lexer

168. The Parser
169. Parsing Type and Storage-Class Specifiers
170. Distinguishing Between Function and Variable Declarations
171. Semantic Analysis
172. Identifier Resolution: Resolving External Variables
173. Type Checking: Tracking Static Functions and Variables
174. TACKY Generation
175. Assembly Generation
176. Generating Assembly for Variable Definitions
177. Replacing Pseudoregisters According to Their Storage Duration
178. Fixing Up Instructions
179. Code Emission
180. Summary
181. PART II: TYPES BEYOND INT
182. 11

LONG INTEGERS
183. Long Integers in Assembly
184. Type Conversions
185. Static Long Variables
186. The Lexer
187. The Parser
188. Semantic Analysis
189. Adding Type Information to the AST
190. Type Checking Expressions
191. Type Checking return Statements
192. Type Checking Declarations and Updating the Symbol Table
193. TACKY Generation
194. Tracking the Types of Temporary Variables
195. Generating Extra Return Instructions
196. Assembly Generation
197. Tracking Assembly Types in the Backend Symbol Table
198. Replacing Longword and Quadword Pseudoregisters
199. Fixing Up Instructions
200. Code Emission
201. Summary
202. 12

UNSIGNED INTEGERS
203. Type Conversions, Again
204. Converting Between Signed and Unsigned Types of the Same Size
205. Converting unsigned int to a Larger Type
206. Converting signed int to a Larger Type
207. Converting from Larger to Smaller Types
208. The Lexer
209. The Parser
210. The Type Checker

211. TACKY Generation
212. Unsigned Integer Operations in Assembly
213. Unsigned Comparisons
214. Unsigned Division
215. Zero Extension
216. Assembly Generation
217. Replacing Pseudoregisters
218. Fixing Up the Div and MovZeroExtend Instructions
219. Code Emission
220. Summary
221. 13

FLOATING-POINT NUMBERS
222. IEEE 754, What Is It Good For?
223. The IEEE 754 Double-Precision Format
224. Rounding Behavior
225. Rounding Modes
226. Rounding Constants
227. Rounding Type Conversions
228. Rounding Arithmetic Operations
229. Linking Shared Libraries
230. The Lexer
231. Recognizing Floating-Point Constant Tokens
232. Matching the End of a Constant
233. The Parser
234. The Type Checker
235. TACKY Generation
236. Floating-Point Operations in Assembly
237. Working with SSE Instructions
238. Using Floating-Point Values in the System V Calling Convention
239. Doing Arithmetic with SSE Instructions
240. Comparing Floating-Point Numbers
241. Converting Between Floating-Point and Integer Types
242. Assembly Generation
243. Floating-Point Constants
244. Unary Instructions, Binary Instructions, and Conditional Jumps
245. Type Conversions
246. Function Calls
247. Return Instructions
248. The Complete Conversion from TACKY to Assembly
249. Pseudoregister Replacement
250. Instruction Fix-Up
251. Code Emission
252. Formatting Floating-Point Numbers
253. Labeling Floating-Point Constants
254. Storing Constants in the Read-Only Data Section

255. Initializing Static Variables to 0.0 or –0.0
256. Putting It All Together
257. Extra Credit: NaN
258. Summary
259. Additional Resources
260. 14

POINTERS
261. Objects and Values
262. Operations on Pointers
263. Address and Dereference Operations
264. Null Pointers and Type Conversions
265. Pointer Comparisons
266. & Operations on Dereferenced Pointers
267. The Lexer
268. The Parser
269. Parsing Declarations
270. Parsing Type Names
271. Putting It All Together
272. Semantic Analysis
273. Type Checking Pointer Expressions
274. Tracking Static Pointer Initializers in the Symbol Table
275. TACKY Generation
276. Pointer Operations in TACKY
277. A Strategy for TACKY Conversion
278. Assembly Generation
279. Replacing Pseudoregisters with Memory Operands
280. Fixing Up the lea and push Instructions
281. Code Emission
282. Summary
283. 15

ARRAYS AND POINTER ARITHMETIC
284. Arrays and Pointer Arithmetic
285. Array Declarations and Initializers
286. Memory Layout of Arrays
287. Array-to-Pointer Decay
288. Pointer Arithmetic to Access Array Elements
289. Even More Pointer Arithmetic
290. Array Types in Function Declarations
291. Things We Aren’t Implementing
292. The Lexer
293. The Parser
294. Parsing Array Declarators
295. Parsing Abstract Array Declarators
296. Parsing Compound Initializers
297. Parsing Subscript Expressions

298. The Type Checker
299. Converting Arrays to Pointers
300. Validating Lvalues
301. Type Checking Pointer Arithmetic
302. Type Checking Subscript Expressions
303. Type Checking Cast Expressions
304. Type Checking Function Declarations
305. Type Checking Compound Initializers
306. Initializing Static Arrays
307. Initializing Scalar Variables with ZeroInit
308. TACKY Generation
309. Pointer Arithmetic
310. Subscripting
311. Compound Initializers
312. Tentative Array Definitions
313. Assembly Generation
314. Converting TACKY to Assembly
315. Replacing PseudoMem Operands
316. Fixing Up Instructions
317. Code Emission
318. Summary
319. 16

CHARACTERS AND STRINGS
320. Character Traits
321. String Literals
322. Working with Strings in Assembly
323. The Lexer
324. The Parser
325. Parsing Type Specifiers
326. Parsing Character Constants
327. Parsing String Literals
328. Putting It All Together
329. The Type Checker
330. Characters
331. String Literals in Expressions
332. String Literals Initializing Non-static Variables
333. String Literals Initializing Static Variables
334. TACKY Generation
335. String Literals as Array Initializers
336. String Literals in Expressions
337. Top-Level Constants in TACKY
338. Assembly Generation
339. Operations on Characters
340. Top-Level Constants
341. The Complete Conversion from TACKY to Assembly

342. Pseudo-Operand Replacement
343. Instruction Fix-Up
344. Code Emission
345. Hello Again, World!
346. Summary
347. 17

SUPPORTING DYNAMIC MEMORY ALLOCATION
348. The void Type
349. Memory Management with void *
350. Complete and Incomplete Types
351. The sizeof Operator
352. The Lexer
353. The Parser
354. The Type Checker
355. Conversions to and from void *
356. Functions with void Return Types
357. Scalar and Non-scalar Types
358. Restrictions on Incomplete Types
359. Extra Restrictions on void
360. Conditional Expressions with void Operands
361. Existing Validation for Arithmetic Expressions and Comparisons
362. sizeof Expressions
363. TACKY Generation
364. Functions with void Return Types
365. Casts to void
366. Conditional Expressions with void Operands
367. sizeof Expressions
368. The Latest and Greatest TACKY IR
369. Assembly Generation
370. Summary
371. 18

STRUCTURES
372. Declaring Structure Types
373. Structure Member Declarations
374. Tag and Member Namespaces
375. Structure Type Declarations We Aren’t Implementing
376. Operating on Structures
377. Structure Layout in Memory
378. The Lexer
379. The Parser
380. Semantic Analysis
381. Resolving Structure Tags
382. Type Checking Structures
383. TACKY Generation
384. Implementing the Member Access Operators

385. Converting Compound Initializers to TACKY
386. Structures in the System V Calling Convention
387. Classifying Structures
388. Passing Parameters of Structure Type
389. Returning Structures
390. Assembly Generation
391. Extending the Assembly AST
392. Copying Structures
393. Using Structures in Function Calls
394. Putting It All Together
395. Replacing Pseudo-operands
396. Code Emission
397. Extra Credit: Unions
398. Summary
399. Additional Resources
400. PART III: OPTIMIZATIONS
401. 19

OPTIMIZING TACKY PROGRAMS
402. Safety and Observable Behavior
403. Four TACKY Optimizations
404. Constant Folding
405. Unreachable Code Elimination
406. Copy Propagation
407. Dead Store Elimination
408. With Our Powers Combined …
409. Testing the Optimization Passes
410. Wiring Up the Optimization Stage
411. Constant Folding
412. Constant Folding for Part I TACKY Programs
413. Supporting Part II TACKY Programs
414. Control-Flow Graphs
415. Defining the Control-Flow Graph
416. Creating Basic Blocks
417. Adding Edges to the Control-Flow Graph
418. Converting a Control-Flow Graph to a List of Instructions
419. Making Your Control-Flow Graph Code Reusable
420. Unreachable Code Elimination
421. Eliminating Unreachable Blocks
422. Removing Useless Jumps
423. Removing Useless Labels
424. Removing Empty Blocks
425. A Little Bit About Data-Flow Analysis
426. Copy Propagation
427. Reaching Copies Analysis
428. Rewriting TACKY Instructions

429. Supporting Part II TACKY Programs
430. Dead Store Elimination
431. Liveness Analysis
432. Removing Dead Stores
433. Supporting Part II TACKY Programs
434. Summary
435. Additional Resources
436. 20

REGISTER ALLOCATION
437. Register Allocation in Action
438. Take One: Put Everything on the Stack
439. Take Two: Register Allocation
440. Take Three: Register Allocation with Coalescing
441. Updating the Compiler Pipeline
442. Extending the Assembly AST
443. Converting TACKY to Assembly
444. Register Allocation by Graph Coloring
445. Detecting Interference
446. Spilling Registers
447. The Basic Register Allocator
448. Handling Multiple Types During Register Allocation
449. Defining the Interference Graph
450. Building the Interference Graph
451. Calculating Spill Costs
452. Coloring the Interference Graph
453. Building the Register Map and Rewriting the Function Body
454. Instruction Fix-Up with Callee-Saved Registers
455. Code Emission
456. Register Coalescing
457. Updating the Interference Graph
458. Conservative Coalescing
459. Implementing Register Coalescing
460. Summary
461. Additional Resources
462. NEXT STEPS
463. Add Some Missing Features
464. Handle Undefined Behavior Safely
465. Write More TACKY Optimizations
466. Support Another Target Architecture
467. Contribute to an Open Source Programming Language Project
468. That’s a Wrap!
469. A

DEBUGGING ASSEMBLY CODE WITH GDB OR LLDB
470. The Program
471. Debugging with GDB

472. Configuring the GDB UI
473. Starting and Stopping the Program
474. Printing Expressions
475. Examining Memory
476. Setting Conditional Breakpoints
477. Getting Help
478. Debugging with LLDB
479. Starting and Stopping the Program
480. Displaying Assembly Code
481. Printing Expressions
482. Examining Memory
483. Setting Conditional Breakpoints
484. Getting Help
485. B

ASSEMBLY GENERATION AND CODE EMISSION TABLES
486. Part I
487. Converting TACKY to Assembly
488. Code Emission
489. Part II
490. Converting TACKY to Assembly
491. Code Emission
492. Part III
493. REFERENCES
494. INDEX

WRITING A C COMPILER

Build a Real Programming Language from Scratch

by Nora Sandler

San Francisco

WRITING A C COMPILER. Copyright © 2024 by Nora Sandler.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0042-6 (print)
ISBN-13: 978-1-7185-0043-3 (ebook)

Published by No Starch Press , Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Sydney Cromwell
Developmental Editors: Alex Freed and Eva Morrow
Cover Illustrator: James L. Barry

Interior Design: Octopod Studios
Technical Reviewer: Stephen Kell
Copyeditor: Rachel Head
Proofreader: Audrey Doyle
Indexer: BIM Creatives, LLC

Figure 13-1, courtesy of Codekaizen via Wikimedia Commons, has been reproduced under CC BY-SA 4.0,
https://creativecommons.org/licenses/by-sa/4.0. The original image has been converted to grayscale, and fonts
have been modified.

Library of Congress Control Number: 2023058768

For customer service inquiries, please contact info@nostarch.com. For information on distribution, bulk sales,
corporate sales, or translations: sales@nostarch.com. For permission to translate this work: rights@nostarch.com.
To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product
and company names mentioned herein may be the trademarks of their respective owners. Rather than use a
trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

®

http://www.nostarch.com/
mailto:info@nostarch.com
https://creativecommons.org/licenses/by-sa/4.0
mailto:info@nostarch.com
mailto:sales@nostarch.com
mailto:rights@nostarch.com
mailto:counterfeit@nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

To Brian

About the Author

Nora Sandler is a software engineer based in Seattle. She holds a BS in computer science from the University of
Chicago, where she researched the implementation of parallel programming languages. After several years as a
penetration tester, she found her way back to compilers. Most recently, she worked on domain-specific languages
at an endpoint security company. You can read her blog about pranks, compilers, and other computer science
topics at https://norasandler.com.

About the Technical Reviewer

Stephen Kell is a researcher, educator, and consultant on the design and implementation of programming
languages and systems. He has taught compilers and C programming in various settings over the past 12 years,
served on an ISO study group on the evolution of the C language specification, and published numerous research
papers on the specification, design, and implementation of C and its linking and debugging tools. These continue
to be a focus of the research that he leads as an academic at King’s College London.

https://norasandler.com/

ACKNOWLEDGMENTS

I was attending the Recurse Center in fall 2017 when I started on the series of blog posts that eventually turned
into this book. I’m immensely grateful to the Recurse Center for giving me the time and space to follow my own
curiosity, in a community of kind, brilliant people, without the pressure to produce anything. Without them, I
would never have attempted this project.

I’m also grateful to everyone in the Recurse Center community whose advice, encouragement, and pair
programming sessions shaped those initial blog posts. I’d particularly like to thank Julian Squires for pointing me
toward Abdulaziz Ghuloum’s “An Incremental Approach to Compiler Construction,” the article that served as the
starting point for this project. I’d also like to thank Raph Levien for teaching me about the precedence climbing
method for expression parsing.

Thanks to Stephen Kell, this book’s technical reviewer, whose thoughtful comments made the book clearer and
more accurate. I’m particularly indebted to Stephen for undertaking the monumental task of reviewing the
accompanying test suite and reference implementation. Alex Freed, who first reached out to me about writing a
book, provided invaluable editorial guidance and encouragement, and Jill Franklin and Eva Morrow shepherded the
book through the final stages of editing. James L. Barry provided the fabulous cover art. Thanks also to Sydney
Cromwell for overseeing the production process, Rachel Head for copyediting, and the entire team at No Starch
Press for their hard work making this book a reality.

Thanks to all the readers who emailed me and filed GitHub issues about earlier versions of this project, including
the original blog posts and Early Access version. Their suggestions made the book better, and their enthusiasm for
compilers reminded me why I was writing it.

Thank you to my friend Haney Maxwell for his thorough, insightful feedback on Chapter 13.

Last but never least, thanks to my partner, Brian, whose sound advice and ear for language I often relied on, who
gamely agreed to “read this one paragraph and tell me whether it makes sense” whenever I asked, and who has
always supported and believed in me.

INTRODUCTION

When we talk about how programming languages work, we tend to borrow metaphors from
fantasy novels: compilers are magic, and the people who work on them are wizards.
Dragons may be involved somehow. But in the day-to-day lives of most programmers,
compilers behave less like magical artifacts and more like those universal translator
earpieces from science fiction. They aren’t flashy or dramatic; they don’t demand a lot of
attention. They just hum along in the background, translating a language you speak (or
type) fluently into the alien language of machines.

For some reason, sci-fi characters rarely seem to wonder how their translators work. But
once you’ve been coding for a while, it’s hard not to feel curious about what your compiler

is doing. A few years ago, this curiosity got the better of me, so I decided to learn more about compilers by
writing one of my own. It was important to me to write a compiler for a real programming language, one that I’d
used myself. And I wanted my compiler to generate assembly code that I could run without an emulator or virtual
machine. But when I looked around, I found that most guides to compiler construction used toy languages that
ran on idealized processors. Some of these guides were excellent, but they weren’t quite what I was looking for.

I finally got unstuck when a friend pointed me toward a short paper titled “An Incremental Approach to Compiler
Construction” by Abdulaziz Ghuloum (http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf). It explained how to
compile Scheme to x86 assembly, starting with the simplest possible programs and adding one new language
construct at a time. I didn’t particularly want to write a compiler for Scheme, so I adapted the paper to a language
I was more interested in: C. As I kept working on the project, I switched from x86 to its modern counterpart, x64
assembly. I also built out support for a larger subset of C and added a few optimization passes. By this point, I
had gone way beyond Ghuloum’s original scheme (pun intended, sorry), but his basic strategy held up remarkably
well: focusing on one small piece of the language at a time made it easy to stay on track and see that I was
making progress. In this book, you’ll tackle the same project. Along the way, you’ll gain a deeper understanding of
the code you write and the system it runs on.

http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf

Who This Book Is For

I wrote this book for programmers who are curious about how compilers work. Many books about compiler
construction are written as textbooks for college or graduate-level classes, but this one is meant to be accessible
to someone exploring the topic on their own. You won’t need any prior knowledge of compilers, interpreters, or
assembly code to complete this project. A basic understanding of computer architecture is helpful, but not
essential; I’ll discuss important concepts as they come up and occasionally point you to outside resources with
more background information. That said, this is not a book for novice programmers. You should be comfortable
writing substantive programs on your own, and you should be familiar with binary numbers, regular expressions,
and basic data structures like graphs and trees. You’ll need to know C well enough to read and understand small C
programs, but you don’t need to be an expert C programmer. We’ll explore the ins and outs of the language as we
go.

Although this book is geared toward newcomers to the subject, it will also be worthwhile for people who have
some experience with compilers already. Maybe you implemented a toy language for a college class or personal
project, and now you’d like to work on something more realistic. Or maybe you’ve worked on interpreters in the
past, and you want to try your hand at compiling programs down to machine code. If you’re in this category, this
book will cover some material you already know, but it will provide plenty of new challenges too. At the very least,
I promise you’ll learn a few things about C.

Why Write a C Compiler?

I assume you’re already sold on the idea of writing a compiler—you did pick up this book, after all. I want to talk a
little bit about why we’re writing a compiler for C in particular. The short answer is that C is a (relatively) simple
language, but not a toy language. At its core, C is simple enough to implement even if you’ve never written a
compiler before. But it’s also a particularly clear example of how programming languages are shaped by the
systems they run on and the people who use them. Some aspects of C vary based on what hardware you’re
targeting; others vary between operating systems; still others are left unspecified to give compiler writers more
flexibility. Some bits of the language are historical artifacts that have stuck around to support legacy code, while
others are more recent attempts to make C safer and more reliable.

These messy parts of C are worth tackling for a couple of reasons. First, you’ll develop a solid mental model of
how your compiler fits in with all the other pieces of your system. Second, you’ll get a sense of the different
perspectives that different groups of people bring to the language, from the specification authors trying to stamp
out ambiguity and inconsistency, to compiler implementers looking for performance improvements, to ordinary
programmers who just want their code to work.

I hope this project will make you think about all programming languages differently: not as fixed sets of rules
enshrined in language standards, but as ongoing negotiations between the people who design, implement, and
use them. Once you start looking at programming languages this way, they become richer, more interesting, and
less frustrating to work with.

Compilation from 10,000 Feet

Before we go any further, let’s take a high-level look at how source code turns into an executable and where the
compiler fits into the process. We’ll clear up some terminology and review a tiny bit of computer architecture while
we’re at it. A compiler is a program that translates code from one programming language to another. It’s just one
part (though often the most complex part) of the whole system that’s responsible for getting your code up and
running. We’re going to build a compiler that translates C programs into assembly code, a textual representation
of the instructions we want the processor to run.

Different processors understand different instructions; we’ll focus on the x64 instruction set, also called x86-64 or
AMD64. This is what most people’s computers run. (The other instruction set you’re likely to encounter is ARM.
Most smartphones and tablets have ARM processors, and they’re starting to show up in laptops too.)

The processor doesn’t understand text, so it can’t run our assembly code as is. We need to convert it into object
code, or binary instructions that the processor can decode and execute. For example, the assembly instruction ret

corresponds to the byte 0xc3. The assembler handles this conversion, taking in assembly programs and spitting

out object files. Finally, the linker combines all the object files we need to include in our final program, resolves
any references to variables or functions from other files, and adds some information about how to actually start up
the program. The end result is an executable that we can run. This is a wildly oversimplified view of what
happens, but it’s good enough to get us started.

Aside from the compiler, assembler, and linker, compiling a C program requires yet another tool: the preprocessor,
which runs right before the compiler. The preprocessor strips out comments, executes preprocessor directives like
#include, and expands macros to produce preprocessed code that’s ready to be compiled. The whole process

looks something like Figure 1.

Figure 1: Transforming a source file into an executable Description

When you compile a program with a command like gcc or clang, you’re actually invoking the compiler driver, a

small wrapper that’s responsible for calling the preprocessor, compiler, assembler, and linker in turn. You’ll write
your own compiler and compiler driver, but you won’t write your own preprocessor, assembler, or linker. Instead,
you’ll use the versions of these tools already installed on your system.

What You’ll Build

Over the course of this book, you’ll build a compiler for a large subset of C. You can write your compiler in any
programming language you like; I’ll present key parts of the implementation in pseudocode. The book is organized
into three parts. In Part I, The Basics, you’ll implement the core features of C: expressions, variables, control-flow
statements, and function calls.

Chapter 1: A Minimal Compiler In this chapter, you’ll build a working compiler that can handle the simplest
possible C programs, which just return integer constants. You’ll learn about the different stages of compilation,
how to represent a C program internally as an abstract syntax tree, and how to read simple assembly programs.

Chapter 2: Unary Operators Next, you’ll start to expand your compiler by implementing two unary operators:
negation and bitwise complement. This chapter introduces TACKY, a new intermediate representation that bridges
the gap between the abstract syntax tree and assembly code. It also explains how to perform negation and
bitwise complement in assembly, and how assembly programs store values in a region of memory called the stack.

Chapter 3: Binary Operators In this chapter, you’ll implement the binary operators that perform basic
arithmetic, like addition and subtraction. You’ll use a technique called precedence climbing to parse arithmetic
expressions with the correct associativity and precedence, and you’ll learn how to do arithmetic in assembly.

Chapter 4: Logical and Relational Operators Here, you’ll add support for the logical AND, OR, and NOT
operators and relational operators like >, ==, and !=. This chapter introduces several new kinds of assembly

instructions, including conditional instructions and jumps.

Chapter 5: Local Variables Next, you’ll extend your compiler to support local variable declarations, uses, and
assignments. You’ll add a new compiler stage to perform semantic analysis in this chapter. This stage detects
programming errors like using an undeclared variable.

Chapter 6: if Statements and Conditional Expressions In this chapter, you’ll add support for if

statements, your compiler’s first control-flow structure, as well as conditional expressions of the form a ? b : c.

Using TACKY as an intermediate representation will pay off here; you can implement both language constructs
with existing TACKY instructions, so you won’t need to touch later compiler stages.

Chapter 7: Compound Statements Here, you’ll add support for compound statements, which group together
statements and declarations and control the scope of identifiers. You’ll take a close look at C’s scoping rules and
learn how to apply those rules during semantic analysis.

Chapter 8: Loops This chapter covers while, do, and for loops, as well as break and continue statements.

You’ll write a new semantic analysis pass to associate break and continue statements with their enclosing loops.

Chapter 9: Functions In this chapter, you’ll implement function calls and declarations of functions other than
main. You’ll have two major tasks here: writing a type checker to detect semantic errors like calling functions with

the wrong number of arguments, and generating assembly code. You’ll learn all the ins and outs of the calling
conventions for Unix-like systems, which dictate how function calls work in assembly. By meticulously following
these conventions, you’ll be able to compile code that calls external libraries.

Chapter 10: File Scope Variable Declarations and Storage-Class Specifiers Next, you’ll add support for
file scope variable declarations and the extern and static specifiers. This chapter discusses several properties of

C identifiers, including linkage and storage duration. It walks through how to determine an identifier’s linkage and
storage duration in the semantic analysis stage and covers how those properties impact the assembly you
ultimately generate. It also introduces a new region of memory, the data section, and describes how to define and
operate on values stored there.

In Part II, Types Beyond int, you’ll implement additional types. This is where we’ll take the most in-depth look at
the messy, confusing, and surprising bits of C.

Chapter 11: Long Integers In this chapter, you’ll implement the long type and lay the groundwork to add

more types in later chapters. You’ll learn how to infer the type of every expression during type checking and how
to operate on values of different sizes in assembly.

Chapter 12: Unsigned Integers Here, you’ll implement the unsigned integer types. This chapter dives into
the C standard’s rules on integer type conversions and covers a few new assembly instructions that perform
unsigned integer operations.

Chapter 13: Floating-Point Numbers Next, you’ll add the floating-point double type. This chapter describes

the binary representation of floating-point numbers and the perils of floating-point rounding error. It introduces a
new set of assembly instructions for performing floating-point operations and explains the calling conventions for
passing floating-point arguments and return values.

Chapter 14: Pointers In this chapter, you’ll implement pointer types and the address and pointer dereference
operators. You’ll validate pointer operations in the type checker and add explicit memory access instructions to the
TACKY intermediate representation.

Chapter 15: Arrays and Pointer Arithmetic This chapter picks up where Chapter 14 left off by adding
support for array types and several related language features: the subscript operator, pointer arithmetic, and
compound initializers. It digs into the relationship between arrays and pointers and lays out how the type checker
should analyze these types.

Chapter 16: Characters and Strings This chapter covers the character types, character constants, and string
literals. You’ll learn about the different ways C programs use string literals, and you’ll add new TACKY and

assembly constructs to represent string constants. At the end of the chapter, you’ll compile a couple of example
programs that perform input/output (I/O) operations.

Chapter 17: Supporting Dynamic Memory Allocation In this chapter, you’ll implement the void type and

sizeof operator, which will allow you to compile programs that call malloc and the other memory management

functions. The biggest challenge here is handling void in the type checker. Because void is a type with no values,

the type checker will treat it very differently from the other types you’ve implemented so far.

Chapter 18: Structures Structures, along with the . and -> member access operators, are the last language

features you’ll add in this book. To implement them, you’ll need all the skills you learned in earlier chapters. In the
semantic analysis stage, you’ll resolve structure tags according to C’s scoping rules and analyze structure type
declarations to determine how they’re laid out in memory. When you generate TACKY, you’ll translate member
access operators into sequences of simple memory access instructions. And when you generate assembly, you’ll
follow the calling conventions for passing structures as arguments and return values.

In Part III, Optimizations, you won’t add any new language features. Instead, you’ll implement several classic
compiler optimizations to generate more efficient assembly code. Part III is quite different from Parts I and II
because these optimizations aren’t specific to C; they work just as well for programs written in any language.

Chapter 19: Optimizing TACKY Programs In this chapter, you’ll add an optimization stage targeting TACKY
programs. This stage will include four different optimizations: constant folding, unreachable code elimination, dead
store elimination, and copy propagation. These four optimizations work together, making each one more effective
than it would be by itself. This chapter introduces several tools for understanding a program’s behavior, including
control-flow graphs and data-flow analysis. You’ll use these tools to discover ways to optimize programs without
changing their behavior.

Chapter 20: Register Allocation To cap off this project, you’ll write a register allocator, which figures out how
to store values in the assembly program in registers instead of memory. You’ll use graph coloring to find a valid
mapping from values to registers. Once the initial version of your register allocator is working, you’ll use another
technique, register coalescing, to make it even more effective and remove some unnecessary assembly
instructions.

Next Steps We’ll wrap up with a few suggestions about how to keep learning and building out your compiler on
your own.

Parts II and III both build on Part I, but they’re independent of each other. You can complete either of them, both,
or neither. The appendixes include some helpful information you can refer to along the way.

Appendix A: Debugging Assembly Code with GDB or LLDB This appendix walks you through how to use
GDB, the GNU debugger, and LLDB, the LLVM debugger, to debug assembly programs. When your compiler
produces buggy assembly, these tools will help you figure out what’s going on.

Appendix B: Assembly Generation and Code Emission Tables The tables in this appendix summarize how
to convert each TACKY construct to assembly, and how to print each assembly construct during code emission. All
of the chapters where we update these passes include similar tables showing what changed in that chapter; this
appendix brings it all together.

Finally, a disclaimer: this book covers a lot of ground, but it doesn’t cover everything. There are some really
important parts of C that we won’t implement: function pointers, variable-length argument lists, typedef, and

type qualifiers like const, to name just a few. Instead of cramming in as many features as possible, we’ll dive

deep on the features we do implement so that you really understand how and why they work. That way, you’ll
learn all the skills and concepts you need to keep building on your own.

How to Use This Book

Each chapter is a detailed guide to implementing a particular feature. At the beginning of a chapter, I’ll discuss the
feature you’re about to build and any important concepts you’ll need to understand to get started. Then, we’ll
walk through how to update each stage of the compiler to support this new feature. I’ll include pseudocode for
any steps that are particularly tricky or important. Don’t feel like you need to follow the pseudocode exactly; it’s
there to clarify what you want to accomplish, not to prescribe all the details of how you go about it.

Each chapter builds on the one before it, so you’ll need to complete them in order, except that you can skip to Part
III without completing Part II first.

The Test Suite

Every chapter includes a few checkpoints where you can stop and test your compiler with this book’s test suite,
which is available at https://github.com/nlsandler/writing-a-c-compiler-tests. For each chapter, the test suite
includes a set of invalid test programs that your compiler should reject with an error message and a set of valid
test programs that it should compile successfully. Use the provided test_compiler script to run the tests.

Extra Credit Features

Some chapters mention additional language features that you can implement on your own; I call these “extra
credit” features. An extra credit feature is related to the main feature covered in the chapter. You can implement it
using techniques you’ve already learned, but you’ll have to figure out the details for yourself. You might need to
look at the assembly output for a few test programs to figure out how to handle them. You’ll also need to consult
outside references, like the C standard and the documentation for the x64 instruction set (you’ll find links to these
and other resources in “Additional Resources” on page xxxvi). The extra credit features are totally optional; try out
the ones that seem interesting and skip the ones that don’t.

Tests for these features are included in the test suite but aren’t run by default. You can run them by passing the
appropriate command line options to test_compiler.

https://github.com/nlsandler/writing-a-c-compiler-tests

Some Advice on Choosing an Implementation Language

While it’s possible to write a compiler in any programming language, some languages are better suited to the task
than others. We’ll be creating a compiler for C, but I don’t recommend writing it in C. Although C has its strengths
as a programming language, this project doesn’t play to any of them. You’re better off choosing a language with
easier memory management and a more extensive standard library.

You should also consider using a language with pattern matching. You can think of this as a kind of souped-up
switch statement that lets you define different cases for values that have different structures and include

different data. (Note that this is distinct from regular expression matching, which also gets called “pattern
matching” occasionally.) Our very first snippet of pseudocode shows pattern matching in action:

greet(someone):
 match someone with
 | ImportantPerson(title, last_name) ->
 say("Good day to you, {title} {last_name}!")
 | Friend(first_name) -> say("Hello, {first_name}!")
 | Stranger -> say("Howdy, stranger!")
 | Animal(name, species) ->
 say("Hi, {name}! Who's a good {species}? It's you!")

This turns out to be extremely useful for analyzing and transforming programs, which generally contain several
types of expressions, statements, and so on, like this:

do_something(expr):
 match expr with
 | Constant(int) -> do_something_for_int(int)
 | BinaryExpr(op, left, right) ->
 do_something(left)
 do_something(right)
 // handle more kinds of expressions

The pseudocode in this book uses pattern matching all over the place, so you’ll have an easier time following
along if you use a language that supports it.

For a long time, pattern matching was the province of functional languages like ML and Haskell. (It’s no
coincidence that these languages are very popular in programming language academia.) More recently, just about
everyone else has noticed that pattern matching is great, and it’s making its way into more mainstream
languages. Rust and Swift both support pattern matching, Python added it in version 3.10, and Java has been
gradually building out support for it since version 16. Before you start writing a compiler in your favorite language,
do a little research to find out what sort of support it has for pattern matching. Depending on what you find, you
might decide to use the latest and greatest version of the language, use a pattern matching library (C++, for
example, has several), or use your second-favorite language instead. Or you might decide to ignore my advice;
pattern matching is helpful, but you can get by without it.

System Requirements

To complete this project, you’ll need a macOS or Linux system with an x64 processor (or a Mac with an Apple
Silicon processor, which can emulate x64 without too much fuss). If you’re on a Windows machine, you’ll need to
set up a Linux environment using Windows Subsystem for Linux (WSL). You can find setup instructions for WSL at
https://docs.microsoft.com/en-us/windows/wsl/install.

This project has two dependencies. To run test_compiler, you’ll need Python 3.8 or later. You may have a recent
version of Python installed already; if not, you can download it from https://www.python.org/downloads or install
it with your system’s package manager. (See this book’s web page at https://norasandler.com/book/#setup for
more detailed installation instructions.) To check that you have a suitable version of Python installed, run:

$ python3 --version

You’ll also need a real C compiler (or, strictly speaking, a real C compiler driver) to invoke the preprocessor,
assembler, and linker. The test script depends on the compiler driver as well. If you’re on Linux, use GCC as the
compiler driver. If you’re on macOS, use the version of Clang included in Xcode. (The test script uses the gcc

command to invoke the compiler driver; Xcode’s Clang gets installed under both the name clang and the alias

gcc.) It’s a good idea to install a debugger that can step through assembly code too, to help you debug the code

that your compiler produces. I recommend debugging with GDB on Linux and LLDB on macOS.

Installing GCC and GDB on Linux

If you’re running Linux, you should use GCC as the compiler driver and GDB as the debugger. To check whether
they’re already installed, run:

$ gcc -v
$ gdb -v

If either of these commands is missing, you can install them with your system’s package manager. For example, to
install both tools on Ubuntu, run:

$ sudo apt-get install gcc gdb

Installing the Command Line Developer Tools on macOS

The simplest option on macOS is to install the Xcode command line developer tools, which include the Clang
compiler and LLDB debugger. To check whether they’re already installed, run:

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.python.org/downloads
https://norasandler.com/book/#setup

$ clang -v

If the tools aren’t installed already, you’ll be prompted to install them when you try to run this command.

The examples in this book were compiled with GCC, so if you compile them with Clang, the resulting assembly will
sometimes look a little different. These differences won’t impact your ability to complete the project.

Running on Apple Silicon

If your computer has an Apple Silicon processor (Apple’s ARM chip), you’ll need to use Rosetta 2 to run the
programs you compile. The easiest solution is to run everything—including your compiler and the test script—as
x64 binaries under Rosetta 2. To open an x64 shell, run:

$ arch -x86_64 zsh

You can run your compiler, Clang, the compiled programs, and test_compiler in this shell, and everything should
work fine. Just make sure to build your compiler itself to run on x64 and not ARM.

If the arch command doesn’t work, Rosetta 2 may not be installed yet. To install it, run:

$ softwareupdate --install-rosetta --agree-to-license

Validating Your Setup

The test script includes a --check-setup option that you can use to make sure your system is set up correctly.

Run these commands to download the test suite and validate your setup:

$ git clone https://github.com/nlsandler/writing-a-c-compiler-tests.git
$ cd writing-a-c-compiler-tests
$./test_compiler --check-setup
All system requirements met!

If the test script doesn’t report any issues, you’re ready to get started!

Additional Resources

You can find errata, updates, links, and other resources on this book’s web page at https://norasandler.com/book
/. If you run into any problems with the project or the test script, check this page first. New versions of GCC, the

https://norasandler.com/book/

Xcode command line tools, and the other tools this project depends on are released periodically; the book’s web
page includes any updates to the project that are needed to work with the latest versions of these tools.

If you get stuck and want to see a complete, working implementation of the project, refer to this book’s reference
implementation: NQCC2, the not-quite-C compiler, available at https://github.com/nlsandler/nqcc2. It’s written in
OCaml, but it has lots of comments to help you understand it if you’re not an OCaml programmer.

Finally, here are a few external resources that you might find helpful. These will be especially useful if you decide
to implement any of the extra credit features or otherwise build out your compiler beyond what’s covered in this
book:

The C standard specifies how C programs are supposed to behave. We’ll use C17 (ISO/IEC 9899:2018),
which was the latest version of the standard at the time this book was being written. You can buy a copy from
the International Standards Institute (ISO) at https://www.iso.org/standard/74528.html. Alternatively, if the
idea of paying $200 for a PDF doesn’t appeal to you, you can use a similar draft version of the standard,
which is freely available at https://www.open-std.org/JTC1/SC22/WG14/www/docs/n2310.pdf. This is an early
draft of C23—the next version of the standard after C17—with diff marks indicating what’s changed. It’s not
the official ISO standard, so I wouldn’t recommend using it to build a production C compiler, but it’s close
enough for this project.
The System V Application Binary Interface (ABI) defines a set of conventions that executables follow on
Unix-like operating systems. This will be important starting in Chapter 9, when we implement function calls.
You can find the latest version of the System V ABI for x64 systems at https://gitlab.com/x86-psABIs/x86-64-
ABI.
The Intel 64 Software Developer’s Manual (https://www.intel.com/content/www/us/en/developer
/articles/technical/intel-sdm.html) is Intel’s official documentation for the x64 instruction set. We care about
Volume 2, the instruction set reference. There’s also an unofficial version at https://www.felixcloutier.com/x86
/, which is easier to browse.
Compiler Explorer (https://godbolt.org) is an extremely nifty website where you can see how a variety of
widely used compilers translate your code to assembly. It makes it easy to compare the output of different
compilers and see the impact of various optimization levels and compiler flags.

NOTE

C23 is set to be published in 2024, superseding C17. For our purposes, the differences between C17 and C23
aren’t significant. We won’t implement the new language features introduced in C23, but we aren’t implementing
all of C17, either. The subset of C we do implement looks pretty much the same in both versions of the standard.
If you’re curious about what’s different in C23, you can find a free, nearly final draft at https://open-std.org/JTC1
/SC22/WG14/www/docs/n3096.pdf and an informal list of changes at https://en.cppreference.com/w/c/23.

Let’s Go!

We’ve covered all the preliminaries and we’re ready to get started. In Chapter 1, we’ll compile our first C program.

https://github.com/nlsandler/nqcc2
https://www.iso.org/standard/74528.html
https://www.open-std.org/JTC1/SC22/WG14/www/docs/n2310.pdf
https://gitlab.com/x86-psABIs/x86-64-ABI
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.felixcloutier.com/x86/
https://godbolt.org/
https://open-std.org/JTC1/SC22/WG14/www/docs/n3096.pdf
https://en.cppreference.com/w/c/23

PART I

THE BASICS

Description

1

A MINIMAL COMPILER

In this chapter, you’ll write a minimal compiler that can handle only the simplest C
programs. You’ll learn how to read a simple assembly program, and you’ll implement four
basic compiler passes that you’ll build on throughout the rest of the book. Let’s start by
looking at these compiler passes.

The Four Compiler Passes

The compiler you write in this chapter will process source code in four stages:

1. The lexer breaks up the source code into a list of tokens. Tokens are the smallest syntactic units of a
program; they include delimiters, arithmetic symbols, keywords, and identifiers. If a program is like a book,
tokens are like individual words.

2. The parser converts the list of tokens into an abstract syntax tree (AST), which represents the program in a
form we can easily traverse and analyze.

3. The assembly generation pass converts the AST into assembly. At this stage, we still represent the assembly
instructions in a data structure that the compiler can understand, not as text.

4. The code emission pass writes the assembly code to a file so the assembler and linker can turn it into an
executable.

This is a typical way of structuring a compiler, although the exact stages and intermediate representations vary.
It’s also overkill for this chapter—you could compile the programs you’ll handle here in just one pass—but setting
up this structure now makes it easier to expand your compiler in future chapters. As you implement more
language features, you’ll extend these compiler stages and add a few new ones. Each chapter starts with a
current diagram of the compiler’s architecture, including the stages you’ve already implemented and any you need
to add. This chapter’s diagram shows the four stages you’re about to implement. In the diagrams for later
chapters, new stages will be bolded.

Before you start coding, let’s take a quick look at how to compile C to assembly with the C compiler already
installed on your system, and how to read assembly programs.

Hello, Assembly!

The simplest C program looks like Listing 1-1.

int main(void) {
 return 2;
}

Listing 1-1: A simple program that returns the number 2

This program consists of a single function, main, containing a single return statement, which returns an integer

(in this case, 2). Save this program as return_2.c, then use the gcc command to translate it into assembly:

$ gcc -S -O -fno-asynchronous-unwind-tables -fcf-protection=none return_2.c

If you’re using macOS, this command may invoke Clang instead of GCC, but the command line options have the
same effect. These options produce fairly readable assembly:

-S Don’t run the assembler or linker. This makes the compiler emit assembly instead of a binary file.

-O Optimize the code. This eliminates some instructions we aren’t concerned with right now.

-fno-asynchronous-unwind-tables Don’t generate the unwind table, which is used for debugging. We don’t

need it.

-fcf-protection=none Disable control-flow protection, a security feature that adds extra instructions we

aren’t concerned with. Control-flow protection might already be disabled by default on your system, in which case
this option won’t do anything. Skip this option if you’re using an old version of GCC or Clang that doesn’t support
it.

The result, stored in return_2.s, should look similar to Listing 1-2.

 .globl main
main:
 movl $2, %eax
 ret

Listing 1-2: The program from Listing 1-1 translated into assembly

Your .s file might contain a few other lines, but you can safely ignore them for now. The four lines in Listing 1-2
are a complete assembly program. Assembly programs have several kinds of statements. The first line, .globl

main, is an assembler directive, a statement that provides directions for the assembler. Assembler directives

always start with a period. Here, main is a symbol, a name for a memory address. Symbols appear in assembly

instructions as well as assembler directives; for example, the instruction jmp main jumps to whatever address the

main symbol refers to.

The .globl main directive tells the assembler that main is a global symbol. By default, you can use a symbol

only in the same assembly file (and therefore the same object file) where it’s defined. But because main is global,

other object files can refer to it too. The assembler records this fact in a section of the object file called the symbol
table, which the linker uses when it links object files together. The symbol table contains information about all the
symbols in an object file or executable.

On the second line, we use main as a label for the code that follows it. Labels consist of a string or number

followed by a colon. A label marks the location that a symbol refers to. This particular label defines main as the

address of the movl instruction on the following line. The assembler doesn’t know this instruction’s final memory

address, but it knows what section of the object file it’s in, as well as its offset from the start of that section. (An
object file is made up of several sections that hold various kinds of data; there are separate sections for machine
instructions, global variables, debug information, and so on. Different sections are loaded into different parts of
the program’s address space at runtime.) The address of main will be in the text section, which contains machine

instructions. Because main refers to the very first machine instruction in this assembly file, its offset within the

text section is 0. The assembler records this offset in the symbol table.

The movl instruction on the next line is a machine instruction, which appears in the final executable. The movl

instruction in Listing 1-2 moves the value 2 into a register, which is a very small and fast storage slot that has its

own name and sits right on the CPU. Here, we move 2 into the register named EAX, which can hold 32 bits.

According to our platform’s calling convention, return values are passed to the caller in EAX (or RAX, the 64-bit
equivalent, depending on the return value’s type). Since the caller also knows about this convention, it can retrieve
the return value from EAX after the function returns. The l suffix in movl indicates that the operands to this

instruction are longwords, or 32-bit integers (in x64 assembly, unlike most modern implementations of C, long
means 32 bits). A movq instruction operates on quadwords, or 64-bit integers. I’ll just write mov when I want to

refer to this instruction without specifying its size.

Finally, we have another machine instruction, ret, which returns control to the caller. You might see retq here

instead of ret, since this instruction implicitly operates on a 64-bit return address. I’m skipping a lot of details,

including what calling conventions are, who decides on them, and how ret knows where the caller is. I’ll revisit

these when we add function calls in Chapter 9.

NOTE

All the assembly listings in this book use AT&T syntax. Elsewhere, you might see x64 assembly written in Intel
syntax. They’re two different notations for the same language; the biggest difference is that they put instruction
operands in different orders.

At this point, it’s fair to ask who the caller is, since main is the only function in this program. You might also

wonder why we need the .globl main directive, since there don’t seem to be any other object files that could

contain references to main. The answer is that the linker adds a bit of wrapper code called crt0 to handle setup

before main runs and teardown after it exits. (The crt stands for C Runtime.) This wrapper code does the

following:

1. Makes a function call to main. This is why main needs to be globally visible; if it isn’t, crt0 can’t call it.

2. Retrieves the return value from main.

3. Invokes the exit system call, passing it the return value from main. Then, exit handles whatever work

needs to happen inside the operating system to terminate the process and turn the return value into an exit
code.

The bottom line is that you don’t need to worry about process startup or teardown; you can treat main like a

normal function.

The linker also associates each entry in the symbol table with a memory address through a process called symbol
resolution. It then performs relocation, updating every place that uses a symbol to use the corresponding address
instead. (Actually, the linking process is a lot more complicated than this! If you’d like to learn more, see
“Additional Resources” on page 21.)

To verify that the assembly in return_2.s works, assemble and link it, run it, and check the exit code with the $?

shell operator:

$ gcc return_2.s -o return_2
$./return_2
$ echo $?
2

Note that you can pass an assembly file to the gcc command just like a regular source file. It assumes any input

files with a .s extension contain assembly, so it assembles and links those files without trying to compile them first.

The Compiler Driver

As you learned in the Introduction, a compiler isn’t very useful on its own. You also need a compiler driver that
calls the preprocessor, compiler, assembler, and linker. So, you’ll write a compiler driver before starting on the
compiler itself. It should convert a source file to an executable in three steps:

1. Run this command to preprocess the source file:

gcc -E -P INPUT_FILE -o PREPROCESSED_FILE

This command preprocesses INPUT_FILE and then writes the result to PREPROCESSED_FILE. The -E option tells

GCC to run only the preprocessor, not the later steps of the compilation process. By default, the preprocessor
emits linemarkers indicating the original source file, and the starting line number within that source file, for each
part of the preprocessed output. (A preprocessed file might include code from multiple source files because of
#include directives.) The -P option tells the preprocessor not to emit linemarkers; our lexer and parser won’t be

able to process them. By convention, PREPROCESSED_FILE should have a .i file extension.

2. Compile the preprocessed source file and output an assembly file with a .s extension. You’ll have to stub out
this step, since you haven’t written your compiler yet. Delete the preprocessed file when you’re done with it.

3. Assemble and link the assembly file to produce an executable, using this command:

gcc ASSEMBLY_FILE -o OUTPUT_FILE

Delete the assembly file when you’re done with it.

Your compiler driver must have a specific command line interface so this book’s test script, test_compiler, can run
it. It must be a command line program that accepts a path to a C source file as its only argument. If this
command succeeds, it must produce an executable in the same directory as the input file, with the same name
(minus the file extension). In other words, if you run ./YOUR_COMPILER /path/to/program.c, it should

produce an executable at /path/to/program and terminate with an exit code of 0. If your compiler fails, the
compiler driver should return a nonzero exit code and shouldn’t write any assembly or executable files; that’s how
test_compiler verifies that your compiler catches errors in invalid programs. Finally, your compiler driver should
support the following options, which test_compiler uses to test intermediate stages:

--lex Directs it to run the lexer, but stop before parsing

--parse Directs it to run the lexer and parser, but stop before assembly generation

--codegen Directs it to perform lexing, parsing, and assembly generation, but stop before code emission

None of these options should produce any output files, and all should terminate with an exit code of 0 if they don’t
hit any errors. You might also want to add a -S option that directs your compiler to emit an assembly file, but not

assemble or link it. You’ll need this option to run the tests in Part III; it isn’t required for Parts I and II, but it’s
useful for debugging.

Once you’ve written the compiler driver, you’re ready to start working on the actual compiler. You need to
implement the four compiler passes listed at the beginning of the chapter: the lexer, which produces a list of

tokens; the parser, which turns those tokens into an abstract syntax tree; the assembly generation pass, which
converts the abstract syntax tree into assembly; and the code emission pass, which writes that assembly to a file.
Let’s start with the lexer.

The Lexer

The lexer should read in a source file and produce a list of tokens. Before you can start writing the lexer, you need
to know what tokens you might encounter. Here are all the tokens in Listing 1-1:

int A keyword

main An identifier, whose value is “main”

(An open parenthesis

void A keyword

) A close parenthesis

{ An open brace

return A keyword

2 A constant, whose value is “2”

; A semicolon

} A close brace

I’ve used two lexer-specific terms here. An identifier is an ASCII letter or underscore followed by a mix of letters,
underscores, and digits. Identifiers are case sensitive. An integer constant consists of one or more digits. (We’ll
add character and floating-point constants in Part II. We won’t implement hexadecimal or octal integer constants
in this book.)

Note that the identifier and constant in this list of tokens have values, but the other types of tokens don’t. There
are many possible identifiers (for example, foo, variable1, and my_cool_function), so each identifier token

produced by the lexer must retain its specific name. Likewise, each constant token needs to hold an integer value.
By contrast, there’s only one possible return keyword, so a return keyword token doesn’t need to store any

extra information. Even though main is the only identifier right now, you should build the lexer to support arbitrary

identifiers later on. Also note that there are no whitespace tokens. If we were compiling a language like Python,
where whitespace is significant, we’d need to include whitespace tokens.

You can recognize each token type with a regular expression, or regex. Table 1-1 gives the corresponding regular
expression for each token in Perl Compatible Regular Expressions (PCRE) syntax.

Table 1-1: Tokens and Their Regular Expressions

Token Regular expression

Identifier [a-zA-Z_]\w*\b

Constant [0-9]+\b

int keyword int\b

void keyword void\b

return keyword return\b

Open parenthesis \(

Close parenthesis \)

Open brace {

Close brace }

Semicolon ;

The process of tokenizing a program looks roughly like Listing 1-3.

while input isn't empty:
 if input starts with whitespace:
 trim whitespace from start of input
 else:
 find longest match at start of input for any regex in Table 1-1
 if no match is found, raise an error
 convert matching substring into a token
 remove matching substring from start of input

Listing 1-3: Converting a string to a sequence of tokens

Note that identifiers, keywords, and constants must end at word boundaries, indicated by \b. For example, the

first three digits of 123;bar match the regular expression for a constant, and you should convert them into the

constant 123. This is because ; isn’t in the \w character class, so the boundary between 3 and ; is a word

boundary. However, the first three digits of 123bar don’t match the regular expression for a constant, because

those digits are followed by more characters in the \w character class instead of a word boundary. If your lexer

sees a string like 123bar, it should raise an error, as the start of the string doesn’t match the regular expression

for any token.

Now you’re ready to write your lexer. Here are a few tips to keep in mind:

Treat keywords like other identifiers.

The regex for identifiers also matches keywords. Don’t try to simultaneously find the end of the next token and
figure out whether it’s a keyword. First, find the end of the token. Then, if it looks like an identifier, check whether
it matches any keywords.

Don’t split on whitespace.

It isn’t a good idea to start by splitting the string on whitespace, since whitespace isn’t the only boundary between
tokens. For example, main(void) has four tokens and no whitespace.

You only need to support ASCII characters.

The test programs for this book contain only ASCII characters. The C standard provides a mechanism called
universal character names to include non-ASCII characters in identifiers, but we won’t implement them. Many C
implementations let you use Unicode characters directly, but you don’t need to support that either.

Once you’ve written your lexer, the next step is testing it.

TEST THE LEXER

You’ll test your lexer against all the programs in tests/chapter_1. The programs in tests/chapter_1/invalid_lex
contain invalid tokens, so they should cause the lexer to fail with an appropriate error message. The programs in
tests/chapter_1/invalid_parse and tests/chapter_1/valid contain only valid tokens, so the lexer should process
them successfully. Use the following command to test that your lexer fails on the programs in
tests/chapter_1/invalid_lex and succeeds on everything else:

$./test_compiler /path/to/your_compiler --chapter 1 --stage lex

This command tests whether the lexer succeeds or fails, but it doesn’t look at what tokens the lexer produces.
Consider writing your own tests to validate that it produces the correct list of tokens for valid programs and emits
an appropriate error message for invalid ones.

The Parser

Now that you have a list of tokens, you’ll figure out how those tokens are grouped together into language
constructs. In most programming languages, including C, this grouping is hierarchical: each language construct in
the program is composed of several simpler constructs. Individual tokens represent the most basic constructs, like
variables, constants, and arithmetic operators. Tree data structures are a natural way to express this hierarchical
relationship. As I mentioned at the start of this chapter, the parser will accept the list of tokens produced by the
lexer and generate a tree representation called an abstract syntax tree. After the parser has created the AST, the
assembly generation stage will traverse it to figure out what assembly code to emit.

There are two approaches to writing a parser: you can write it by hand, or you can use a parser generator like
Bison or ANTLR to produce your parsing code automatically. Using a parser generator is less work, but this book
uses a handwritten parser. There are a few reasons for this. Most importantly, handwriting a parser provides you
with a solid understanding of how your parser works. It’s easy to use a parser generator without fully
understanding the code it produces. Many parser generators also have a steep learning curve, and you’re better
off learning general techniques like recursive descent parsing before you spend time mastering specific tools.

Handwritten parsers also have some practical advantages over those produced by parser generators: they can be
faster and easier to debug, they’re more flexible, and they provide better support for error handling. In fact, both
GCC and Clang use handwritten parsers, which shows that writing a parser by hand isn’t just an academic
exercise.

That said, if you’d rather use a parser generator, that’s fine too. It all depends on what you’re hoping to get out of
this book. Note, however, that I won’t talk about how to use those tools, so you’ll have to figure that out on your
own. If you go that route, make sure to research what parsing libraries are available in your implementation
language of choice.

Whichever option you choose, you’ll need to design the abstract syntax tree your parser should produce. Let’s
start by taking a look at an example of an AST.

An Example Abstract Syntax Tree

Consider the if statement in Listing 1-4.

if (a < b) {
 return 2 + 2;
}

Listing 1-4: A simple if statement

The root node of the corresponding AST represents the whole if statement. This node has two children:

1. The condition, a < b

2. The statement body, return 2 + 2;

Each of these constructs can be broken down further. For example, the condition is a binary operation with three
children:

1. The left operand, variable a

2. The operator, <

3. The right operand, variable b

Figure 1-1 shows the whole AST for this code snippet, with an If AST node representing the root of the if

statement, a Binary node representing the condition, and so on.

Figure 1-1: An AST for a simple if statement Description

The AST in Figure 1-1 contains the same information as Listing 1-4: it shows what actions the program will take,
and in what order. But unlike Listing 1-4, this AST presents that information in a way your compiler can easily
work with. In later stages, the compiler will traverse the tree, performing a different action at each type of node it
encounters. Your compiler will use this general strategy to accomplish a bunch of different tasks, from resolving
variable names to generating assembly.

Now let’s look at the AST for the C program from Listing 1-1. Figure 1-2 shows this much simpler AST.

Figure 1-2: The AST for Listing 1-1 Description

Next, you’ll define the necessary data structures to construct ASTs like Figure 1-2 in code.

The AST Definition

This book gives AST descriptions in a language designed for specifying ASTs, the Zephyr Abstract Syntax
Description Language (ASDL). I’m using ASDL here as convenient, programming language–neutral notation. You
won’t use ASDL directly in your compiler; instead, you’ll define equivalent data structures in your chosen
implementation language. The next few paragraphs include a very brief overview of ASDL. You can find a link to
the original paper, which describes the whole language, in “Additional Resources” on page 21.

Listing 1-5 has the ASDL definition for the tiny subset of C you’ll implement in this chapter (programs like Listing
1-1).

program = Program(function_definition)
function_definition = Function(identifier name, statement body)
statement = Return(exp)
exp = Constant(int)

Listing 1-5: The abstract syntax tree definition for this chapter

Each line in Listing 1-5 describes how to build one type of AST node. Note that every AST node in Figure 1-2 has a
corresponding definition in ASDL. The root of this AST is the program node. At the moment, this node can have

exactly one child, of type function_definition. A function definition has two children: a function name, of type

identifier, and a function body, of type statement. Right now, a function consists of a single statement and

has no arguments. Later, you’ll add support for function arguments and more complex function bodies. Note that
name and body in this definition are field names, human-friendly labels that don’t change the structure of the AST.

Field names are optional in ASDL. When a field name is present, it comes immediately after the field type, like in
identifier name.

In ASDL, identifier is a built-in type that represents function and variable names; they’re basically strings, but

we want to distinguish them from string literals like "Hello, World!" because they appear in different parts of

an AST. Since identifier is a built-in type, it has no children. The other child of the function_definition

node is statement. Right now, the only kind of statement is a return statement. This statement has one child:

its return value, of type exp, short for expression. The only exp at the moment is a constant integer; int is

another built-in ASDL type, so the AST is finished.

Of course, return statements aren’t the only statements in C, and constants aren’t the only expressions. In later

chapters, we’ll add new constructors to represent the other kinds of statements and expressions. For example,
we’ll add an If constructor to statement to represent if statements:

statement = Return(exp) | If(exp condition, statement then, statement? else)

The statement? type indicates an optional statement, since if statements don’t always have an else clause.

The | symbol separates constructors. Here, it tells us that a statement can be either a return statement,

defined by the Return constructor, or an if statement, defined by the If constructor.

Now it’s your turn to implement the AST definition in Listing 1-5 in whatever language you’re using to write your
compiler. The standard way to represent ASTs varies between programming languages. If you’re implementing
your compiler in a functional language like F#, ML, or Haskell, you can define the AST using algebraic data types.
Enums in Rust are basically algebraic data types, so they can also represent ASTs. If you’re using an object-
oriented language like Java, you can define an abstract class for each type of node, then define classes that
extend or inherit from those abstract classes for each constructor. For example, you might define an Exp abstract

class and Constant and BinaryExp classes that extend it.

If you’re still not sure how to write an AST definition, check out “Additional Resources” on page 21.

The Formal Grammar

An AST has all the information you’ll need in later stages of the compiler. It does not, however, tell you exactly
what tokens make up each language construct. For example, nothing in the AST description in Listing 1-5 says
that a return statement must end with a semicolon or that a function body needs to be enclosed in braces. (This

is why it’s called an abstract syntax tree—by contrast, a concrete syntax tree includes every token from the
original input.) Once you have an AST, those specific details are irrelevant, so it’s convenient to leave them out.
When you’re parsing a sequence of tokens to construct your AST, though, those details matter a lot because they
indicate where each language construct begins and ends.

So, in addition to an AST description, you need a set of rules defining how to build a language construct from a list
of tokens. This ruleset is called a formal grammar, and it corresponds closely to the AST description. Listing 1-6
defines the formal grammar for C programs like Listing 1-1.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" <statement> "}"
<statement> ::= "return" <exp> ";"
<exp> ::= <int>
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 1-6: The formal grammar for this chapter

The grammar in Listing 1-6 is in extended Backus-Naur form (EBNF) notation. Each line of this grammar is a
production rule that defines how a language construct can be formed from a sequence of other language
constructs and tokens. Every symbol that appears on the left-hand side of a production rule (like <function>) is

a non-terminal symbol. Individual tokens, like keywords, identifiers, and punctuation, are terminal symbols. All
non-terminal symbols are wrapped in angle brackets, and specific tokens (like ;) are wrapped in quotation marks.

The <identifier> and <int> symbols represent individual identifier and constant tokens, respectively. Since

these tokens aren’t fixed strings like the other terminal symbols, we describe each of them using a special
sequence: a plain English description of the symbol, wrapped in question marks.

Listing 1-6 looks a lot like the AST definition in Listing 1-5. In fact, it has the same structure; every AST node in
Listing 1-5 corresponds to a non-terminal symbol in Listing 1-6. The only difference is that Listing 1-6 specifies
exactly which tokens we’ll find at each node of the tree, which helps us figure out when we need to start
processing a new node at the next level down in the AST, and when we’ve finished processing a node and can go
back up to its parent on the level above.

Just as later chapters will introduce multiple constructors for some AST nodes, they’ll also introduce multiple
production rules for the corresponding symbols. For example, here’s how you’ll add a production rule for
<statement> to support if statements:

<statement> ::= "return" <exp> ";" | "if" "(" <exp> ")" <statement> ["else" <statement>]

Note that square brackets in EBNF indicate that something is optional, just like question marks in ASDL.

You’ll refer to this formal grammar while writing the parser, but you won’t explicitly define these grammar rules
anywhere in your compiler.

Recursive Descent Parsing

Now that you have an AST definition and a formal grammar, let’s talk about how to actually write the parser. We’ll
use a straightforward technique called recursive descent parsing, which uses a different function to parse each
non-terminal symbol and return the corresponding AST node. For example, when the parser expects to encounter
the <statement> symbol defined in Listing 1-6, it calls a function to parse that symbol and return the statement

AST node from Listing 1-5. The main parsing function parses the <program> symbol, which corresponds to the

entire program. With each function call to handle a new symbol, the parser descends to a lower level in the tree.
That’s where the descent in recursive descent comes from. (It’s called recursive descent because the grammar
rules are often recursive, in which case the functions to process them are too. For example, the operand of an
expression could be another expression; we’ll see an example of this in the next chapter.)

Let’s walk through one of these parsing functions. The pseudocode in Listing 1-7 demonstrates how to parse a
<statement> symbol.

parse_statement(tokens):
 expect("return", tokens)
 return_val = parse_exp(tokens)
 expect(";", tokens)
 return Return(return_val)

expect(expected, tokens):
 actual = take_token(tokens)
 if actual != expected:
 fail("Syntax error")

Listing 1-7: Parsing a statement

We call the parse_statement function when we expect the list of remaining tokens to start with a <statement>.

According to Listing 1-6, a <statement> consists of three symbols: the return keyword, an <exp> symbol, and a

; token. First, we call a helper function, expect, to verify that the first token really is a return keyword. If it is,

expect discards it so we can move on to the next token. If it isn’t, we report a syntax error in the program. Next,

we need to turn the <exp> symbol into an exp AST node. Since this is a different non-terminal symbol, it should

be handled by a separate function, parse_exp, which I haven’t defined here. We call parse_exp to get the AST

node representing the return value; then we call expect again to verify that this expression is followed by the last

token, a semicolon. Finally, we construct the Return AST node and return it.

Note that parse_statement removes all the tokens that made up the statement from the tokens list. After

parse_statement returns, its caller keeps processing the remaining tokens in tokens. If there are any tokens

left after parsing the entire program, that’s a syntax error.

Right now, each symbol in the formal grammar has only one production rule. In later chapters, when some
symbols have multiple production rules, the parser will need to figure out which production rule to use. It will do
this by looking at the first few tokens in the list without removing them. Recursive descent parsers that look ahead
a few tokens to figure out which production rule to use are called predictive parsers. The alternative to predictive
parsing is recursive descent with backtracking, which involves trying each production rule in turn until you find one
that works.

Now you can write your own recursive descent parser. Remember that you’ll need to write one function to parse
each non-terminal symbol in Listing 1-6. Here are a few tips to make it easier:

Write a pretty-printer.

A pretty-printer is a function that prints out your AST in a human-readable way. This will make debugging your
parser a lot easier. A pretty-printed AST for the program in Listing 1-1 might look like this:

Program(
 Function(
 name="main",
 body=Return(
 Constant(2)
)
)
)

Give informative error messages.

This will also help you debug your parser, and it will make your compiler more user-friendly too. An error message
like Expected ";" but found "return" is a lot more helpful than Fail.

TEST THE PARSER

Your parser should fail on the programs in tests/chapter_1/invalid_parse and succeed on the programs in
tests/chapter_1/valid. To test the parser, run:

$./test_compiler /path/to/your_compiler --chapter 1 --stage parse

This command tests only whether the parser succeeds or fails, so you may want to write your own tests to
confirm that it produces the correct AST for valid programs and emits an appropriate error for invalid ones.

Assembly Generation

The assembly generation stage should convert the AST into x64 assembly, traversing the AST in roughly the order
the program executes to produce the appropriate assembly instructions for each node. First, define an appropriate
data structure to represent the assembly program, just like you defined a data structure to represent the AST
when you wrote the parser. You’re adding yet another data structure, instead of writing assembly to a file right
away, so that you can modify the assembly code after you’ve generated it. You won’t need to rewrite any
assembly in this chapter, but in later chapters you will.

I’ll use ASDL again to describe the structure we’ll use to represent assembly. Listing 1-8 has the definition.

program = Program(function_definition)
function_definition = Function(identifier name, instruction* instructions)
instruction = Mov(operand src, operand dst) | Ret
operand = Imm(int) | Register

Listing 1-8: The ASDL definition of an assembly program

This looks a lot like the AST definition from the last section! In fact, this is an AST definition, but for assembly
programs, not C programs. Every node corresponds to a construct in assembly, like a single instruction, rather
than a construct in C, like a statement. I’ll refer to the data structure defined in Listing 1-8 as the assembly AST to
distinguish it from the AST defined in Listing 1-5.

Let’s walk through Listing 1-8. The program type represents a whole assembly program, which consists of a single

function_definition. A function _definition has two fields: the function name and a list of instructions.

The * in instruction* indicates that this field is a list. The instruction type has two constructors to represent

the two instructions that can appear in our assembly programs: mov and ret. The mov instruction has two

operands: it copies the first operand, the source, to the second operand, the destination. The ret instruction

doesn’t have any operands. The operand type defines the two possible operands to an instruction: a register and

an immediate value, or constant. For now, you don’t need to specify which register to operate on, because your
generated code will use only EAX. You’ll refer to other registers in later chapters. This stage has a similar structure
to the parser: you need a function to handle each type of AST node, which calls other functions to handle that
node’s children. Table 1-2 describes the assembly you should generate for each AST node.

Table 1-2: Converting AST Nodes to Assembly

AST node Assembly construct

Program(function_definition) Program(function_definition)

Function(name, body) Function(name, instructions)

Return(exp) Mov(exp, Register) Ret

Constant(int) Imm(int)

This translation is pretty straightforward, but there are a couple of things to note. The first is that a single
statement results in multiple assembly instructions. The second is that this translation works only if an expression
can be represented as a single assembly operand. This is true right now because the only expression is a constant
integer, but it won’t be once we add unary operators in the next chapter. At that point, your compiler will need to
generate multiple instructions to calculate an expression and then figure out where that expression is stored in
order to copy it into EAX.

TEST THE ASSEMBLY GENERATION STAGE

To test the assembly generation stage, run:

$./test_compiler /path/to/your_compiler --chapter 1 --stage codegen

This command tests that the assembly generation stage can handle every valid program without crashing. It also
tests that your compiler rejects each invalid program, although you already confirmed that when you tested the
lexer and parser.

Code Emission

Now that your compiler can generate assembly instructions, the last step is writing those instructions to a file. This
file will look a lot like the assembly program in Listing 1-2, but a couple of details vary by platform. First, if you’re
on macOS, you should always add an underscore in front of the function name. For example, emit the label for the
main function as _main. (Don’t add this underscore on Linux.)

Second, if you’re on Linux, you’ll need to add this line to the end of the file:

 .section .note.GNU-stack,"",@progbits

This line enables an important security hardening measure: it indicates that your code doesn’t need an executable
stack. A region of memory is executable if the processor is permitted to execute machine instructions stored there.
The stack, which you’ll learn more about in the next chapter, is a memory region that holds local variables and
temporary values. It does not, under normal circumstances, hold machine instructions. Making the stack non-
executable is a basic defense against certain security exploits, but this defense can’t be enabled for every
program, because a few programs that use certain nonstandard language extensions actually need an executable
stack. Including this line in an assembly file signals that it does not require an executable stack, which allows this
security measure to be enabled. None of the code we generate in this book will require an executable stack, so
we’ll always emit this line. (For more about executable stacks, see “Additional Resources” on page 21.)

The code emission stage should traverse the assembly AST and print each construct it encounters, much like the
assembly generation stage traverses the AST from Listing 1-5. Because the assembly AST corresponds so closely
to the final assembly program, the code emission stage will be very simple, even as you add more functionality to
the compiler in later chapters.

Tables 1-3, 1-4, and 1-5 illustrate how to print each assembly construct.

Table 1-3: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(function_definition) Print out the function definition.
On Linux, add at end of file:

 .section .note.GNU-stack,"",@progbits

Function(name, instructions)

 .globl <name>
<name>:

Assembly top-level construct Output

 <instructions>

Table 1-4: Formatting Assembly Instructions

Assembly instruction Output

Mov(src, dst) movl <src>, <dst>

Ret ret

Table 1-5: Formatting Assembly Operands

Assembly operand Output

Register %eax

Imm(int) $<int>

Make sure to include line breaks between instructions. You should also emit readable, well-formatted assembly
code because you’ll spend a lot of time reading this assembly while you debug your compiler. You can make your
assembly more readable by indenting every line except for labels, like in Listing 1-2. Consider including comments
in your assembly programs too. A # symbol in assembly comments out the rest of the line, similar to // in C.

Once you’ve implemented the code emission stage, you’ll be able to compile simple programs like Listing 1-1 into
working executables.

TEST THE WHOLE COMPILER

To test your whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 1

This compiles each program in tests/chapter_1/valid, runs the resulting executable, and verifies that it produces
the right exit code. It also validates that your compiler rejects each invalid test program, as it did for earlier
stages.

Summary

In this chapter, you wrote a compiler that transforms a complete C program into an executable that runs on your
computer. You learned how to interpret a program written in x64 assembly, a formal grammar in extended Backus-
Naur form, and an AST definition in ASDL. The skills and concepts you learned in this chapter—and the four
compiler stages you implemented—are the foundation for everything you’ll do in the rest of the book.

In the next chapter, you’ll add support for unary operators to your compiler. Along the way, you’ll learn how
assembly programs manage the stack, and you’ll implement a new intermediate representation of the programs
you compile to make them easier to analyze, transform, and optimize.

Additional Resources

To learn more about a few of the concepts introduced in this chapter, check out the following resources.

Linkers

“Beginner’s Guide to Linkers” by David Drysdale is a good starting point (https://www.lurklurk.org/linkers
/linkers.html).
Ian Lance Taylor’s 20-part essay on linkers goes into a lot more depth. The first post is at https://www.airs
.com/blog/archives/38, and there’s a table of contents at https://lwn.net/Articles/276782/.
“Position Independent Code (PIC) in Shared Libraries,” a blog post by Eli Bendersky, provides an overview of
how compilers, linkers, and assemblers work together to produce position-independent code, focusing on 32-
bit machines (https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries).
“Position Independent Code (PIC) in Shared Libraries on x64,” also by Eli Bendersky, builds on the previous
article, focusing on 64-bit systems (https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-
in-shared-libraries-on-x64).

AST definitions

“Abstract Syntax Tree Implementation Idioms” by Joel Jones provides a good overview of how to implement
ASTs in various programming languages (https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs
.pdf).
“The Zephyr Abstract Syntax Description Language” by Daniel Wang, Andrew Appel, Jeff Korn, and
Christopher Serra is the original paper on ASDL. It includes examples of AST definitions in a few different
languages (https://www.cs.princeton.edu/~appel/papers/asdl97.pdf).

https://www.lurklurk.org/linkers/linkers.html
https://www.airs.com/blog/archives/38
https://lwn.net/Articles/276782/
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://www.cs.princeton.edu/~appel/papers/asdl97.pdf

Executable stacks

“Executable Stack,” a blog post by Ian Lance Taylor, discusses which programs need executable stacks and
describes how Linux systems figure out whether a program’s stack should be executable (https://www.airs
.com/blog/archives/518).

https://www.airs.com/blog/archives/518

Description

2

UNARY OPERATORS

C has several unary operators, which operate on a single value. In this chapter, you’ll
extend your compiler to handle two unary operators: negation and bitwise complement.
You’ll transform complex, nested unary expressions into simple operations that can be
expressed in assembly. Instead of performing this transformation in a single compiler pass,
you’ll introduce a new intermediate representation between the AST produced by the
parser and the assembly AST produced by the assembly generation pass. You’ll also break
up assembly generation into several smaller passes. The new passes are bolded in the
diagram at the start of this chapter.

To get started, let’s look at a C program using the new unary operators and the
corresponding assembly we’ll generate.

Negation and Bitwise Complement in Assembly

In this chapter, you’ll learn to compile programs like Listing 2-1.

int main(void) {
 return ~(-2);
}

Listing 2-1: A C program with negation and bitwise complement

This program contains a nested expression using both new unary operators. The first operator, negation (-),

negates an integer—no surprise there. The bitwise complement (~) operator flips every bit in an integer, which has

the effect of negating the integer and then subtracting one. (It has this effect because computers use a system
called two’s complement to represent signed integers. If you’re not familiar with two’s complement, see “Additional
Resources” on page 45 for links to a few explanations of how it works.)

Your compiler will convert Listing 2-1 to the assembly code in Listing 2-2.

 .globl main
main:
 pushq  %rbp
 movq %rsp, %rbp
 subq $8, %rsp
 ❶ movl $2, ❷ -4(%rbp)
 ❸ negl -4(%rbp)
 ❹ movl -4(%rbp), %r10d
 ❺ movl %r10d, -8(%rbp)
 ❻ notl -8(%rbp)
 ❼ movl -8(%rbp), %eax
 movq %rbp, %rsp
 popq %rbp
 ret

Listing 2-2: The assembly code for Listing 2-1

The first three instructions after main form the function prologue, which sets up the current stack frame; I’ll cover

them in the next section, when I talk about the stack in detail. After the function prologue, we calculate the
intermediate result, –2, and then the final result, 1, storing each of them at a unique memory address. This isn’t
very efficient, since we waste a lot of instructions copying values from one address to another. The optimizations
we’ll implement in Part III will clean up most of these unnecessary copies.

The first mov instruction ❶ stores 2 at an address in memory. The operand -4(%rbp) ❷ means “the value stored

in the RBP register, minus four.” The value in RBP is a memory address on the stack (more on this shortly), so
-4(%rbp) refers to another memory address 4 bytes lower. Next, we negate the value at this address with the

neg instruction ❸, so -4(%rbp) contains the value -2. (Just like mov, neg has an l suffix to indicate that it’s

operating on a 32-bit value.)

We then handle the outer bitwise complement expression. We start by copying the source value, stored in
-4(%rbp), to the destination address at -8(%rbp). We can’t do this in a single instruction, because mov can’t

have memory addresses as both its source and destination operands. At least one operand to mov needs to be a

register or an immediate value. We get around this by copying -2 from memory into a scratch register, R10D ❹,

and from there to the destination memory address ❺. Then, we take the bitwise complement of -2 with the not

instruction ❻, so memory address -8(%rbp) now contains the value we want to return: ~(-2), which evaluates

to 1. To return this value, we move it into EAX ❼. The final three instructions are the function epilogue, which
tears down the stack frame and returns from the function.

NOTE

If you compile Listing 2-1 to assembly using GCC, Clang, or any other production C compiler, it won’t look anything
like Listing 2-2. That’s because those compilers evaluate constant expressions at compile time, even when you’ve
disabled optimizations! I’m guessing they behave this way because some constant expressions, like static variable

initializers, must be evaluated at compile time, and evaluating all constant expressions at compile time is simpler
than evaluating only some.

The Stack

There are still two unanswered questions about Listing 2-2: what the function prologue and epilogue do, and why
we refer to stack addresses relative to a value in the RBP register. To answer these questions, we need to talk
about the segment of program memory called the stack. The RSP register, also called the stack pointer, always
holds the address of the top of the stack. (RSP points to the last used stack slot, rather than the first free one.) As
with any stack data structure, you can push values onto the stack and pop values off it; the push and pop

assembly instructions do exactly that.

The stack grows toward lower memory addresses. When you push something onto the stack, you decrement RSP.
That means the “top of the stack”—the address stored in RSP—is the lowest address on the stack. The stack
diagrams in this book are oriented with lower memory addresses at the top, so the top of the stack is at the top of
the diagram. Think of the memory addresses in these diagrams like line numbers in a code listing. The top of a
code listing is line 1, and line numbers increase as you go down; similarly, the addresses in these diagrams
increase as you go down the page or screen. Note that most stack diagrams in other books and articles use the
opposite orientation: they put the top of the stack at the bottom of the diagram, so lower memory addresses
appear lower on the page. I find that layout really confusing, but if you prefer it, just turn your book upside down.

An instruction like push $3 does two things:

1. Writes the value being pushed (in this example, 3) to the next empty spot on the stack. The push and pop

instructions adjust the stack pointer in 8-byte increments, and the top value on the stack is currently at the
address stored in RSP, so the next empty spot is RSP – 8.

2. Decrements RSP by 8 bytes. The new address in RSP is now the top of the stack, and the value at that
address is 3.

Figure 2-1 illustrates the effect of a push instruction on the stack and RSP register.

Figure 2-1: The effect of push $3 on memory and RSP Description

The pop instruction performs the opposite operation. For example, pop %rax copies the value at the top of the

stack into the RAX register, then adds 8 bytes to RSP.

Since the push instruction decrements the stack pointer by 8 bytes, it has to push an 8-byte value. Likewise, the

pop instruction always pops an 8-byte value off the stack. Values of type int—like the return value in Listing 2-1

—are only 4 bytes. You can’t push only 4 bytes onto the stack, but you can use movl to copy a 4-byte value into

stack space you’ve already allocated. A couple of instructions do this in Listing 2-2, including movl $2,

-4(%rbp). (On 32-bit systems, the reverse is true; you can push and pop 4-byte values but not 8-byte values. On

both kinds of systems, it’s also possible, though very unusual, to push and pop 2-byte values using the pushw and

popw instructions; the w suffix, for word, indicates that the instruction takes a 2-byte operand. We won’t use

pushw, popw, or any other 2-byte instructions in this book.) Memory addresses on x64 systems are 8 bytes, so

you can use push and pop to put them on and take them off the stack. This will come in handy in a moment.

The stack isn’t just an undifferentiated chunk of memory; it’s divided into sections called stack frames. Whenever
a function is called, it allocates some memory at the top of the stack by decreasing the stack pointer. This memory
is the function’s stack frame, where it stores local variables and temporary values. Just before the function returns,
it deallocates its stack frame, restoring the stack pointer to its previous value. By convention, the RBP register
points to the base of the current stack frame; for this reason, it’s sometimes called the base pointer. We refer to
data in the current stack frame relative to the address stored in RBP. This means we don’t need absolute
addresses, which we can’t know in advance. Since the stack grows toward lower memory addresses, every
address in the current stack frame is lower than the address stored in RBP; this is why the addresses of local
variables, like -4(%rbp), all have negative offsets from RBP. In later chapters, we’ll also refer to data in the

caller’s stack frame, like function parameters, relative to RBP. (It’s possible to refer to local variables and
parameters relative to RSP instead, and not bother with RBP at all; most production compilers do this as an
optimization.)

Now that you understand how the stack works, let’s look at the function prologue and epilogue in more detail. The
function prologue sets up the stack frame in three instructions:

1. pushq %rbp saves the current value of RBP, the address of the base of the caller’s stack frame, onto the

stack. We’ll need this value when we restore the caller’s stack frame later. This value will be at the bottom of
the new stack frame established by the next instruction.

2. movq %rsp, %rbp makes the top of the stack the base of the new stack frame. At this point, the top and

bottom of the current stack frame are the same. The current stack frame holds exactly one value, which both
RSP and RBP point to: the base of the caller’s stack frame, which we saved in the previous instruction.

3. subq $n, %rsp decrements the stack pointer by n bytes. The stack frame now has n bytes available to store

local and temporary variables.

Figure 2-2 shows how each instruction in the function prologue affects the stack. In this figure, the subq

instruction allocates 24 bytes, enough space for six 4-byte integers.

Figure 2-2: The state of the stack at each point in the function prologue Description

The function epilogue restores the caller’s stack frame by setting RSP and RBP back to the same values they had
before the function prologue. This requires two instructions:

1. movq %rbp, %rsp puts us back where we were after the second instruction of the function prologue: both

RSP and RBP point to the bottom of the current stack frame, which holds the caller’s value for RBP.
2. popq %rbp reverses the first instruction of the function prologue and restores the caller’s values for the RSP

and RBP registers. It restores RBP because the value at the top of the stack was the base address of the
caller’s stack frame that we saved at the start of the prologue. It restores RSP by removing the last value in
this stack frame from the stack, leaving RSP pointing to the top of the caller’s stack frame.

Figure 2-3 shows the effect of each instruction in the function epilogue.

Figure 2-3: The state of the stack at each point in the function epilogue Description

Now that we know what output our compiler should produce, let’s keep coding. We’ll start by extending the lexer
and parser.

The Lexer

In this chapter, you’ll extend the lexer to recognize three new tokens:

~ A tilde, the bitwise complement operator

- A hyphen, the negation operator

-- Two hyphens, the decrement operator

While you won’t implement the decrement operator in this chapter, you still need to add a token for it. Otherwise,
your compiler will accept programs it should reject, like the one in Listing 2-3.

int main(void) {
 return --2;
}

Listing 2-3: An invalid C program using the decrement operator

This shouldn’t compile, because you can’t decrement a constant. But if your compiler doesn’t know that -- is a

distinct token, it will think Listing 2-3 is equivalent to Listing 2-4, which is a perfectly valid program.

int main(void) {
 return -(-2);
}

Listing 2-4: A valid C program with two negation operators in a row

Your compiler should reject language features you haven’t implemented; it shouldn’t compile them incorrectly.
That’s why your lexer needs to know that -- is a single token, not just two negation operators in a row. (On the

other hand, the lexer should lex ~~ as two bitwise complement operators in a row. Expressions like ~~2 are valid.)

You can process the new tokens the same way you handled punctuation like ; and (in Chapter 1. First, you need

to define a regular expression for each new token. The regular expressions here are the strings ~, -, and --.

Next, have your lexer check the input against these new regexes, as well as the regexes from the previous
chapter, every time it tries to produce a token. When the start of the input stream matches more than one
possible token, choose the longest one. For example, if your input stream starts with --, parse it as a decrement

operator rather than two negation operators.

TEST THE LEXER

To test your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 2 --stage lex

This command will validate that your compiler can successfully lex all the test cases for this chapter, including the
valid test programs in tests/chapter_2/valid and the invalid test programs in tests/chapter_2/invalid_parse. It will
also run the lexing test cases from Chapter 1, to make sure your lexer can still handle them.

The Parser

To parse the new operators in this chapter, we first need to extend the AST and formal grammar we defined in
Chapter 1. Let’s look at the AST first. Since unary operations are expressions, we represent them with a new
constructor for the exp AST node. Listing 2-5 shows the updated AST definition, with new parts bolded.

program = Program(function_definition)
function_definition = Function(identifier name, statement body)
statement = Return(exp)
exp = Constant(int) | Unary(unary_operator, exp)
unary_operator = Complement | Negate

Listing 2-5: The abstract syntax tree with unary operations

The updated rule for exp indicates that an expression can be either a constant integer or a unary operation. A

unary operation consists of one of the two unary operators, Complement or Negate, applied to an inner

expression. Notice that the definition of exp is recursive: the Unary constructor for an exp node contains another

exp node. This lets us construct arbitrarily deeply nested expressions, like -(~(-~-(-4))).

We also need to make the corresponding changes to the grammar, shown in Listing 2-6.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" <statement> "}"
<statement> ::= "return" <exp> ";"
<exp> ::= <int> | <unop> <exp> | "(" <exp> ")"
<unop> ::= "-" | "~"
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 2-6: The formal grammar with unary operations

Listing 2-6 includes a new production rule for unary expressions and a <unop> symbol to represent the two unary

operators. These changes correspond to the additions to the AST in Listing 2-5. We’ve also added a third
production rule for the exp symbol, which describes a parenthesized expression. It doesn’t have a corresponding

constructor in the AST because the rest of the compiler doesn’t need to distinguish between an expression
wrapped in parentheses and the same expression without parentheses. The expressions 1, (1), and ((((1))))

are all represented by the same AST node: Constant(1).

The decrement operator (--) doesn’t show up anywhere in this grammar, so your parser should fail if it

encounters a -- token.

To update the parsing stage, modify your compiler’s AST data structure to match Listing 2-5. Then, update your
recursive descent parsing code to reflect the changes in Listing 2-6. Parsing an expression gets a bit more
complicated in this chapter because you need to figure out which of the three different production rules for the
<exp> symbol to apply. The pseudocode in Listing 2-7 demonstrates how to parse an expression.

parse_exp(tokens):
 next_token = peek(tokens)
 ❶ if next_token is an int:
 --snip--
 ❷ else if next_token is "~" or "-":
 operator = parse_unop(tokens)
 inner_exp = parse_exp(tokens)
 ❸ return Unary(operator, inner_exp)
 ❹ else if next_token == "(":
 take_token(tokens)
 inner_exp = parse_exp(tokens)
 expect(")", tokens)
 ❺ return inner_exp
 ❻ else:
 fail("Malformed expression")

Listing 2-7: Parsing an expression

First, we look at the next token in the input to figure out which production rule to apply. We call peek to look at

this token without removing it from the input stream. Once we know which production rule to use, we’ll want to
process the whole input, including that first token, using that rule. So, we don’t want to consume this token from
the input just yet.

If the expression we’re about to parse is valid, next_token should be an integer, a unary operator, or an open

parenthesis. If it’s an integer ❶, we parse it the same way as in the previous chapter. If it’s a unary operator ❷,
we apply the second production rule for <exp> from Listing 2-6 to construct a unary expression. This rule is

<unop> <exp>, so we parse the unary operator and then the inner expression. The <unop> symbol is a single

token, next_token, which we’ve already inspected. In Listing 2-7, we handle <unop> in a separate function

(parse_unop, whose definition I’ve omitted). In practice, you probably don’t need a separate function to parse

one token. Either way, we end up with an AST node representing the appropriate unary operator. The next symbol
in the production rule is <exp>, which we parse with a recursive call to parse_exp. (This is the recursive part of

“recursive descent.”) This call should return an exp AST node representing the operand of the unary expression.

Now we have AST nodes for both the operator and the operand, so we return the AST node for the whole unary
expression ❸.

If next_token is an open parenthesis ❹, we apply the third production rule for <exp>, which is "(" <exp> ")" .

We remove the open parenthesis from the input stream, then call parse_exp recursively to handle the expression

that follows. Next, we call expect to remove the closing parenthesis or throw a syntax error if it’s missing. Since

the AST doesn’t need to indicate that there were parentheses, we return the inner expression as is ❺.

Finally, if next_token isn’t an integer, a unary operator, or an open parenthesis ❻, the expression is malformed,

so we throw a syntax error.

TEST THE PARSER

To test your parser against the test cases from this chapter and the last chapter, run:

$./test_compiler /path/to/your_compiler --chapter 2 --stage parse

Your parser should be able to handle every valid test case in tests/chapter_2/valid, and it should raise an error on
every invalid test case in tests/chapter_2/invalid_parse. It should also continue to handle valid and invalid test
cases from the last chapter correctly.

TACKY: A New Intermediate Representation

Converting the AST to assembly isn’t as straightforward as it was in the last chapter. C expressions can have
nested subexpressions, and assembly instructions can’t. A single expression like -(~2) needs to be broken up into

two assembly instructions: one to apply the inner bitwise complement operation and another to apply the outer
negation operation.

We’ll bridge the gap between C and assembly using a new intermediate representation (IR), three-address code
(TAC). In TAC, the operands of each instruction are constants or variables, not nested expressions. It’s called
three-address code because most instructions use at most three values: two source operands and a destination.
(The instructions in this chapter use only one or two values; we’ll introduce instructions that use three values
when we implement binary operators in Chapter 3.) To rewrite nested expressions in TAC, we often need to
introduce new temporary variables. For example, Listing 2-8 shows the three-address code for return 1 + 2 *

3;.

tmp0 = 2 * 3
tmp1 = 1 + tmp0
return tmp1

Listing 2-8: The three-address code for return 1 + 2 * 3;

There are two main reasons to use three-address code instead of converting an AST directly to assembly. First, it
lets us handle major structural transformations—like removing nested expressions—separately from the details of
assembly language, like figuring out which operands are valid for which instructions. This means we can write
several smaller, simpler compiler passes, instead of having one huge, complicated assembly generation pass.
Second, three-address code is well suited to several optimizations we’ll implement in Part III. It has a simple,

uniform structure, which makes it easy to answer questions like “Is the result of this expression ever used?” or
“Will this variable always have the same value?” The answers to those questions determine what optimizations are
safe to perform.

MULTIPLE LANGUAGES, MULTIPLE TARGETS

Intermediate representations like three-address code are useful for another reason, although it isn’t relevant to
this project. An IR can provide a common target for multiple source languages and a common starting point for
assembly generation for multiple target architectures. The LLVM compiler framework (https://llvm.org) is a great
example of this: it supports several frontends and backends using a single intermediate representation. If you
want to compile a new programming language, you can just compile it to the LLVM IR, and LLVM will take care of
optimizing that IR and producing machine code for different CPU architectures. Or, if you want to run software on
some exotic new CPU architecture, you can just write a backend that converts the LLVM IR into machine code for
that architecture. Then, you’ll be able to take any language with an LLVM frontend and compile it for that
architecture.

Most compilers use some form of three-address code internally, but the details vary. I’ve decided to name the
intermediate representation in this book TACKY. (Naming your intermediate representations is, in my opinion, one
of the best parts of compiler design.) I made up TACKY for this book, but it’s similar to three-address code in other
compilers.

Defining TACKY

We’ll define TACKY in ASDL, like our other intermediate representations. The definition of TACKY in Listing 2-9
looks similar to the AST definition from Listing 2-5, but there are a few important differences.

program = Program(function_definition)
function_definition = Function(identifier, ❶ instruction* body)
instruction = Return(val) | Unary(unary_operator, val src, val dst)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate

Listing 2-9: The TACKY intermediate representation

In TACKY, a function body consists of a list of instructions ❶ rather than a single statement. In this respect, it’s
similar to the assembly AST we defined in the previous chapter. For now, TACKY has two instructions: Return and

Unary. Return returns a value; Unary performs some unary operation on src, the source value for the

expression, and stores the result in dst, the destination. Both instructions operate on vals, which can be either

constant integers (Constant) or temporary variables (Var). The TACKY we generate must meet one requirement

https://llvm.org/

that isn’t explicit in Listing 2-9: the dst of a unary operation must be a temporary Var, not a Constant. Trying to

assign a value to a constant wouldn’t make sense.

Now that you’ve seen the ASDL definition of TACKY, you’ll need to implement this definition in your own compiler,
much like the definitions of the AST and assembly AST. Once you have your TACKY data structure, you’re ready to
write the IR generation stage, which converts the AST to TACKY.

Generating TACKY

Your TACKY generation pass should traverse an AST in the form defined in Listing 2-5 and return a TACKY AST in
the form defined in Listing 2-9. The tricky part is turning an exp node into a list of instructions; once you have

that figured out, handling the other AST nodes is easy. Table 2-1 lists a few examples of ASTs and the resulting
TACKY.

Table 2-1: TACKY Representations of Unary Expressions

AST TACKY

Return(Constant(3)) Return(Constant(3))

Return(Unary(Complement, Constant(2))) Unary(Complement, Constant(2),

Var("tmp.0"))

Return(Var("tmp.0"))

Return(Unary(Negate,
 Unary(Complement,

 Unary(Negate, Constant(8)))))

Unary(Negate, Constant(8),

Var("tmp.0")) Unary(Complement,

Var("tmp.0"), Var("tmp.1"))

Unary(Negate, Var("tmp.1"),

Var("tmp.2"))

Return(Var("tmp.2"))

In these examples, we convert each unary operation into a Unary TACKY instruction, starting with the innermost

expression and working our way out. We store the result of each Unary instruction in a temporary variable, which

we then use in the outer expression or return statement. Listing 2-10 describes how to convert an exp AST node

to TACKY.

emit_tacky(e, instructions):
 match e with
 ❶ | Constant(c) ->
 return ❷ Constant(c)
 | Unary(op, inner) ->
 src = emit_tacky(inner, instructions)

 dst_name = make_temporary()
 dst = Var(dst_name)
 tacky_op = convert_unop(op)
 instructions.append(Unary(tacky_op, src, dst))
 return dst

Listing 2-10: Converting an expression into a list of TACKY instructions

This pseudocode emits the instructions needed to calculate an expression by appending them to the
instructions argument. It also returns a TACKY val that represents the result of the expression, which we’ll

use when translating the outer expression or statement.

The match statement in Listing 2-10 checks which type of expression we’re translating, then runs the clause to

handle that expression. If the expression is a constant, we return the equivalent TACKY Constant without

generating any new instructions. Note that this code includes two different Constant constructs; the one we

match on is a node in the original AST ❶, while the one we return is a node in the TACKY AST ❷. The same is true
for the two Unary constructs that appear in the following clause.

If e is a unary expression, we construct TACKY values for the source and destination. First, we call emit_tacky

recursively on the source expression to get the corresponding TACKY value. This also generates the TACKY
instructions to calculate that value. Then, we create a new temporary variable for the destination. The
make_temporary helper function generates a unique name for this variable. We use another helper function,

convert_unop, to convert the unary operator to its TACKY equivalent. Once we have our source, destination, and

unary operator, we construct the Unary TACKY instruction and append it to the instructions list. Finally, we

return dst as the result of the whole expression.

Keep in mind that emit_tacky processes an expression, not a return statement. You need a separate function

(which I won’t provide pseudocode for) to convert a return statement to TACKY. This function should call

emit_tacky to process the statement’s return value, then emit a TACKY Return instruction.

Generating Names for Temporary Variables

It’s clear that every temporary variable needs a distinct name. In later chapters, we’ll also need to guarantee that
these autogenerated names won’t conflict with user-defined names for functions and global variables, or with
autogenerated names from different functions. These identifiers must all be unique because we’ll store all of them
—autogenerated names and user-defined function and variable names—in the same table.

One simple solution is to maintain a global integer counter; to generate a unique name, increment the counter
and use its new value as the name of the temporary variable. This name won’t conflict with other temporary
names because the counter produces a new value each time we increment it. It won’t conflict with user-defined
identifiers because integers aren’t valid identifiers in C. In Table 2-1, I used a variation on this approach,
concatenating a descriptive string, a period, and the value of the global counter to produce unique identifiers like

tmp.0. These won’t conflict with user-defined identifiers because C identifiers can’t contain periods. With this

naming scheme, you can encode useful information in autogenerated names, like the name of the function where
they’re used. (It’s less useful if you name every variable tmp, like I’ve done here.)

Updating the Compiler Driver

To test out the TACKY generator, you need to add a new --tacky command line option to run your compiler

through the TACKY generation stage, stopping before assembly generation. Like the existing --lex, --parse, and

--codegen options, this new option shouldn’t produce any output.

TEST THE TACKY GENERATION STAGE

The TACKY generation stage should handle every valid test case from this chapter and the previous one without
throwing an error. To test this stage, the test script will run the whole compiler through TACKY generation and
check whether it succeeds or fails. You can run those tests with:

$./test_compiler /path/to/your_compiler --chapter 2 --stage tacky

This stage shouldn’t encounter any invalid test cases, because the lexer and parser should catch them first.

Assembly Generation

TACKY is closer to assembly, but it still doesn’t specify exactly which assembly instructions we need. The next step
is converting the program from TACKY into the assembly AST we defined in the last chapter. We’ll do this in three
small compiler passes. First, we’ll produce an assembly AST, but still refer to temporary variables directly. Next,
we’ll replace those variables with concrete addresses on the stack. That step will result in some invalid instructions
because many x64 assembly instructions can’t use memory addresses for both operands. So, in the last compiler
pass, we’ll rewrite the assembly AST to fix any invalid instructions.

Converting TACKY to Assembly

We’ll start by extending the assembly AST we defined in the last chapter. We need some new constructs to
represent the neg and not instructions from Listing 2-2. We also need to decide how to represent the function

prologue and epilogue in the assembly AST.

There are a few different ways to handle the prologue and epilogue. We could add the push, pop, and sub

instructions to the assembly AST. We could add high-level instructions that correspond to the entire prologue and
epilogue, instead of maintaining a one-to-one correspondence between assembly AST constructs and assembly
instructions. Or we could leave out the function prologue and epilogue entirely and add them during code

emission. I’ll use a combination of the first and last options. This chapter’s assembly AST, shown in Listing 2-11,
includes a construct corresponding to the sub instruction (the third instruction in the function prologue). This

construct specifies how many bytes we need to subtract from the stack pointer. The assembly AST doesn’t include
the other instructions from the prologue and epilogue; these instructions are always the same, so we can add
them during code emission. That said, the other approaches to representing the function prologue and epilogue
will also work, so choose whichever you like best.

We’ll also introduce pseudoregisters to represent temporary variables. We use pseudoregisters as operands in
assembly instructions, like real registers; the only difference is that we have an unlimited supply of them. Because
they aren’t real registers, they can’t appear in the final assembly program; they’ll need to be replaced by real
registers or memory addresses in a later compiler pass. For now, we’ll assign every pseudoregister to a distinct
address in memory. In Part III, we’ll write a register allocator, which assigns as many pseudoregisters as possible
to hardware registers instead of memory addresses.

Listing 2-11 shows the updated assembly AST, with the new parts bolded.

program = Program(function_definition)
function_definition = Function(identifier name, instruction* instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | AllocateStack(int)
 | Ret
unary_operator = Neg | Not
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int)
reg = AX | R10

Listing 2-11: The assembly AST with unary operators

The instruction node has a couple of new constructors to represent our new assembly instructions. The Unary

constructor represents a single not or neg instruction. It takes one operand that’s used as both source and

destination. The AllocateStack constructor represents the third instruction in the function prologue, subq $n,

%rsp. Its one child, an integer, indicates the number of bytes we subtract from RSP.

We also have several new instruction operands. The Reg constructor represents a hardware register. It can specify

either hardware register we’ve seen so far: EAX or R10D. The Pseudo operand lets us use an arbitrary identifier as

a pseudoregister. We use this to refer to the temporary variables we produced while generating TACKY. Ultimately,
we need to replace every pseudoregister with a location on the stack; we represent those with the Stack

operand, which indicates the stack address at the given offset from RBP. For example, we’d represent the operand
-4(%rbp) with the assembly AST node Stack(-4).

NOTE

Every hardware register has several aliases, depending on how many bytes of the register you need. EAX refers to
the lower 32 bits of the 64-bit RAX register, and R10D refers to the lower 32 bits of the 64-bit R10 register. The
names AL and R10B refer to the lower 8 bits of RAX and R10, respectively. Register names in the assembly AST
are size agnostic, so AX in Listing 2-11 can refer to the register alias RAX, EAX, or AL, depending on context. (The
name AX normally refers to the lower 16 bytes of RAX, but we won’t use 16-byte register aliases in this book.)

Now we can write a straightforward conversion from TACKY to assembly, shown in Tables 2-2 through 2-5. As
Table 2-2 illustrates, we convert TACKY Program and Function nodes to the corresponding assembly constructs.

Table 2-2: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(function_definition) Program(function_definition)

Function(name, instructions) Function(name, instructions)

We’ll convert each TACKY instruction to a sequence of assembly instructions, as shown in Table 2-3. Since our new
assembly instructions use the same operand for the source and destination, we copy the source value into the
destination before issuing a unary neg or not instruction.

Table 2-3: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Mov(val, Reg(AX)) Ret

Unary(unary_operator, src, dst) Mov(src, dst) Unary(unary_operator, dst)

Table 2-4 shows the corresponding assembly unary_operator for each TACKY unary_operator, and Table 2-5

shows the conversion from TACKY operands to assembly operands.

Table 2-4: Converting TACKY Arithmetic Operators to Assembly

TACKY operator Assembly operator

Complement Not

Negate Neg

Table 2-5: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(int) Imm(int)

Var(identifier) Pseudo(identifier)

Note that we’re not using the AllocateStack instruction yet; we’ll add it in the very last pass before code

emission, once we know how many bytes we need to allocate. We’re also not using any Stack operands; we’ll

replace every Pseudo operand with a Stack operand in the next compiler pass. And we’re not using the R10D

register; we’ll introduce it when we rewrite invalid instructions.

Replacing Pseudoregisters

Next, we write a compiler pass to replace each Pseudo operand with a Stack operand, leaving the rest of the

assembly AST unchanged. In Listing 2-2, we used two stack locations: -4(%rbp) and -8(%rbp). This pass follows

the same pattern: we replace the first temporary variable we see with Stack(-4), the next with Stack(-8), and

so on. We subtract four for each new variable, since every temporary variable is a 4-byte integer. You’ll need to
maintain a map from identifiers to offsets as you go so you can replace each pseudoregister with the same
address on the stack every time it appears. For example, if you process the instructions

Mov(Imm(2), Pseudo("a"))
Unary(Neg, Pseudo("a"))

you should replace Pseudo("a") with the same Stack operand in both instructions.

This compiler pass should also return the stack offset of the final temporary variable, because that tells us how
many bytes to allocate on the stack in the next pass.

Fixing Up Instructions

Now we need to traverse the assembly AST one more time and make two small fixes. First, we’ll insert the
AllocateStack instruction at the very beginning of the instruction list in the function_definition. The

integer argument to AllocateStack should be the stack offset of the last temporary variable we allocated in the

previous compiler pass. That way, we’ll allocate enough space on the stack to accommodate every address we
use. For example, if we replace three temporary variables, replacing the last one with -12(%rbp), we’ll insert

AllocateStack(12) at the front of the instruction list.

The second fix is rewriting invalid Mov instructions. When we replaced pseudoregisters with stack addresses, we

may have ended up with Mov instructions where both the source and destination are Stack operands. This

happens when the unary expression in your program has at least one level of nesting. But mov, like many other

instructions, can’t have memory addresses as both the source and the destination. If you try to assemble a
program with an instruction like movl -4(%rbp), -8(%rbp), the assembler will reject it. When you encounter an

invalid mov instruction, rewrite it to first copy from the source address into R10D and then copy from R10D to the

destination. For example, the instruction

movl -4(%rbp), -8(%rbp)

becomes:

movl -4(%rbp), %r10d
movl %r10d, -8(%rbp)

I’ve chosen R10D as a scratch register because it doesn’t serve any other special purpose. Some registers are
required by particular instructions; for example, the idiv instruction, which performs division, requires the

dividend to be stored in EAX. Other registers are used to pass arguments during function calls. Using any of these
registers for scratch at this stage could cause conflicts. For example, you might copy a function argument into the
correct register, but then accidentally overwrite it while using that register to transfer a different value between
memory addresses. Because R10D doesn’t have any special purpose, we don’t have to worry about these
conflicts.

TEST THE ASSEMBLY GENERATION STAGE

Once you’ve implemented all the passes in the assembly generation stage, use the --codegen option to test them

out:

$./test_compiler /path/to/your_compiler --chapter 2 --stage codegen

You may also want to write your own unit tests for the individual assembly generation passes.

Code Emission

Finally, we’ll extend the code emission stage to handle our new constructs and print out the function prologue and
epilogue. Tables 2-6 through 2-9 show how to print out each assembly construct. New constructs and changes to
the way we emit existing constructs are bolded.

Table 2-6 shows how to include the prologue when you emit an assembly Function.

Table 2-6: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(function_definition)

Print out the function definition. On Linux, add at end of file:
 .section .note.GNU-stack,"",@progbits

Function(name, instructions)

 .globl <name>
<name>:
 pushq %rbp

 movq {@}%rsp, %rbp
 <instructions>

Table 2-7 shows how to include the function epilogue just before the Ret instruction and how to emit the new

Unary and AllocateStack instructions.

Table 2-7: Formatting Assembly Instructions

Assembly instruction Output

Mov(src, dst)

movl <src>, <dst>

Ret

movq %rbp, %rsp

popq %rbp
ret

Unary(unary_operator, operand)

<unary_operator> <operand>

Assembly instruction Output

AllocateStack(int)

subq $<int>, %rsp

As this table illustrates, you should emit AllocateStack as a subq instruction. Emit Unary as a negl or notl

instruction, according to its unary_operator argument. Table 2-8 shows which unary_operator corresponds to

each of these instructions.

Table 2-8: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg negl

Not notl

Finally, Table 2-9 shows how to print out the new Reg and Stack operands.

Table 2-9: Formatting Assembly Operands

Assembly operand Output

Reg(AX) %eax

Reg(R10) %r10d

Stack(int) <int>(%rbp)

Imm(int) $<int>

Because RBP and RSP contain memory addresses, which are 8 bytes, we always operate on them using quadword
instructions, which have a q suffix. The movl instruction in Table 2-7 and the movq instruction in the prologue and

epilogue are identical apart from the size of their operands.

TEST THE WHOLE COMPILER

Once you’ve updated the code emission stage, your compiler should produce correct assembly for all the test
cases in this chapter and the previous one. To test it out, run:

$./test_compiler /path/to/your_compiler --chapter 2

This compiles the valid examples, runs them, and verifies the return code. It also runs the invalid examples, but
you’ve already confirmed that the parser rejects them.

Summary

In this chapter, you extended your compiler to implement negation and bitwise complement. You also
implemented a new intermediate representation, wrote two new compiler passes that transform assembly code,
and learned how stack frames are structured. Next, you’ll implement binary operations like addition and
subtraction. The changes to the backend in the next chapter are pretty simple; the tricky part is getting the parser
to respect operator precedence and associativity.

Additional Resources

This chapter touched on two’s complement, which is how all modern computers represent signed integers. Two’s
complement will show up throughout this book, so it’s worth taking the time to understand it. Here are a couple of
overviews of how it works:

“Two’s Complement” by Thomas Finley covers how and why two’s complement representations work (https://
www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html).
Chapter 2 of The Elements of Computing Systems by Noam Nisan and Shimon Schocken (MIT Press, 2005)
covers similar material from a more hardware-focused perspective. This is the companion book for the Nand
to Tetris project. This chapter is freely available at https://www.nand2tetris.org/course; click the book icon
under “Project 2: Boolean Arithmetic.”

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.nand2tetris.org/course

Description

3

BINARY OPERATORS

In this chapter, you’ll implement five new operators: addition, subtraction, multiplication,
division, and the remainder operator. These are all binary operators, which take two
operands. This chapter won’t require any new compiler stages; you’ll just extend each of
the stages you’ve already written. In the parsing stage, you’ll see why recursive descent
parsing doesn’t work well for binary expressions. Instead, you’ll use a different technique,
precedence climbing, which will be easier to build on in later chapters. Precedence climbing
is the last major parsing technique you’ll need. Once it’s in place, you’ll be able to add new
syntax with relatively little effort for the rest of the book. In the assembly generation stage,
you’ll introduce several assembly instructions that perform binary operations. As usual, we’ll
start with the lexer.

The Lexer

The lexer needs to recognize four new tokens:

+ A plus sign, the operator for addition

* An asterisk, the operator for multiplication

/ A forward slash, the division operator

% A percent sign, the remainder operator

This list doesn’t include the - token, because you added it in the last chapter. The lexing stage doesn’t distinguish

between negation and subtraction; it should produce the same token either way.

You should lex these tokens in the same way as the single-character tokens in the previous chapters.

TEST THE LEXER

To test your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 3 --stage lex

Your compiler should successfully lex all the test cases in this chapter. As always, this command will also run the
tests from the previous chapters.

The Parser

Now you’re going to add another kind of expression to the AST: binary operations. Listing 3-1 shows the updated
AST definition.

program = Program(function_definition)
function_definition = Function(identifier name, statement body)
statement = Return(exp)
exp = Constant(int)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
unary_operator = Complement | Negate
binary_operator = Add | Subtract | Multiply | Divide | Remainder

Listing 3-1: The abstract syntax tree with binary operations

Note that the parser, unlike the lexer, distinguishes between negation and subtraction. A - token is parsed as

either Negate or Subtract, depending on where it appears in an expression.

Also note that the structure of the AST determines the order of evaluation of nested expressions. Let’s look at a
couple of examples to see how the AST’s structure controls the order of operations. The AST in Figure 3-1
represents the expression 1 + (2 * 3), which evaluates to 7.

Figure 3-1: The AST for 1 + (2 * 3) Description

The + operation has two operands: 1 and (2 * 3). To evaluate this expression, you calculate 2 * 3 first, then

add 1 to the result. The AST in Figure 3-2, on the other hand, represents the expression (1 + 2) * 3, which

evaluates to 9.

Figure 3-2: The AST for (1 + 2) * 3 Description

In this case, you evaluate 1 + 2 first, then multiply by 3. As a general rule, before evaluating an AST node you

need to evaluate both of its children. This pattern, where you process a node’s children before the node itself, is
called postorder traversal. Note that any tree data structure can be traversed in postorder, not just ASTs.

Your compiler traverses the AST to generate code, not to evaluate expressions, but the idea is the same. When
you convert the AST for a binary expression to TACKY, you first generate instructions to calculate both operands,
then generate instructions for the operation itself. (You also used postorder traversal to process unary operations
in Chapter 2.)

It’s crucial for your parser to group nested expressions correctly. If you try to parse 1 + (2 * 3) but end up with

the AST from Figure 3-2, you’ll ultimately compile the program incorrectly.

The examples we just looked at used parentheses to explicitly group nested expressions. Some expressions, like 1

+ 2 * 3, don’t parenthesize every nested expression. In those cases, we group expressions based on the

precedence and associativity of the operators. Operators with higher precedence are evaluated first; since * has

higher precedence than +, you’d parse 1 + 2 * 3 as 1 + (2 * 3). Associativity tells you how to handle operators

at the same precedence level. If an operation is left-associative, you apply the operator on the left first, and if it’s
right-associative, you apply the operator on the right first. For example, since addition and subtraction are left-
associative, 1 + 2 - 3 would be parsed as (1 + 2) - 3. All the new operators in this chapter are left-associative,

and there are two precedence levels: *, /, and % have higher precedence, while + and - have lower precedence.

The Trouble with Recursive Descent Parsing

It’s surprisingly tricky to write a recursive descent parser that correctly handles operator precedence and
associativity. To see why, let’s try adding a production rule for binary expressions to the formal grammar. This new
rule is bolded in the definition of <exp> in Listing 3-2.

<exp> ::= <int> | <unop> <exp> | "(" <exp> ")" | <exp> <binop> <exp>

Listing 3-2: A simple grammar rule that doesn’t work for recursive descent parsers

A binary expression consists of an expression, then a binary operator, then another expression, so <exp>

<binop> <exp> is the obvious way to define it in the formal grammar. But there are a couple of reasons a

recursive descent parser can’t use this production rule.

First, Listing 3-2 is ambiguous: it allows you to parse certain inputs in more than one way. For example, according
to this grammar, Figures 3-1 and 3-2 are equally valid parses of 1 + 2 * 3. We need to know the relative

precedence of + and * to decide which parse to use, but the grammar doesn’t capture that information.

Second, the new production rule is left-recursive: the leftmost symbol in this production rule for <exp> is, itself,

<exp>. You can’t apply a left-recursive rule in a recursive descent parser; if you try, you end up with unbounded

recursion. Imagine trying to implement this production rule in parse_exp. The first symbol in this rule is <exp>,

so parse_exp would have to process that symbol by calling itself recursively. But parse_exp wouldn’t consume

any tokens before the recursive call. It would call itself with exactly the same input, so it would never terminate.

We can solve these problems in a couple of ways. If we want a pure recursive descent parser, we can refactor the
grammar to remove the ambiguity and left recursion. Since that approach has some drawbacks, we’ll use
precedence climbing, an alternative to recursive descent parsing. However, it’s helpful to take a look at the pure
recursive descent solution first.

The Adequate Solution: Refactoring the Grammar

If we refactor the grammar, we’ll end up with one grammar rule for each precedence level, like in Listing 3-3.

<exp> ::= <term> {("+" | "-") <term>}
<term> ::= <factor> {("*" | "/" | "%") <factor>}
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"

Listing 3-3: A recursive descent–friendly grammar for binary operations

Using the grammar in Listing 3-3, there’s only one way to parse 1 + 2 * 3, and there’s no left recursion. The

braces indicate repetition, so a single <exp>, for example, can contain any number of <term>s. It might be a

<term>, or <term> + <term>, or <term> - <term> + <term>, and so on. The parser then groups that long

string of terms into a left-associative tree to construct an exp AST node. (Note that we can’t use a rule like <exp>

::= <term> "+" <exp> because it results in a right-associative tree. The grammar in Listing 3-3, on the other

hand, doesn’t specify the associativity, which allows the parser to build either a left-associative or a right-
associative tree.)

This approach works, but it gets increasingly unwieldy as you add more precedence levels. We have three
precedence levels now, if you count <factor>; we’ll add four more when we introduce logical and relational

operators in Chapter 4. If we went with this approach, we’d need to add a new symbol to the grammar—and a
corresponding function to our parser—for each precedence level we add. That’s a lot of boilerplate, since the
functions to parse the expressions at different precedence levels would be almost identical.

The Better Solution: Precedence Climbing

Precedence climbing is a simpler way to parse binary expressions. It can handle production rules like <exp>

<binop> <exp> while respecting the precedence of each binary operator. In precedence climbing, every operator

has a numeric precedence level, and parse_exp takes a minimum precedence level as an argument. This lets you

specify the appropriate precedence level for whatever subexpression you’re parsing. For example, suppose you
just saw a + token, and now you want to parse what comes next as the right-hand side of an addition expression:

you’d specify that it should include only operations that have higher precedence than +. This solution makes it

easy to add new operators; you have to assign each new operator a numeric precedence level, but you don’t need
to make any other changes to your parsing code.

Mixing Precedence Climbing with Recursive Descent

We can use precedence climbing to parse binary expressions and still use recursive descent to parse other
language constructs. Remember that a recursive descent parser uses a different function to parse each symbol.
That makes it easy to parse different symbols with different techniques: we use precedence climbing in the
parse_exp function and recursive descent in the functions that parse all the other symbols. The parse_exp

function will remove tokens from the input stream and return an AST node, just like the recursive descent–based
parsing functions, but it will use a different strategy to get that result.

Since we already use recursive descent to parse unary and parenthesized expressions, let’s represent those with a
separate symbol from binary operations. Listing 3-4 shows the resulting grammar, with changes from Chapter 2

bolded.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" <statement> "}"
<statement> ::= "return" <exp> ";"
<exp> ::= <factor> | <exp> <binop> <exp>
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~"
<binop> ::= "-" | "+" | "*" | "/" | "%"
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 3-4: The final grammar to handle binary operations

The symbol we called <exp> in Listing 2-6 is now called <factor>; it represents a constant, a unary expression,

or a parenthesized expression. (We’ll keep the name factor from Listing 3-3 because this symbol can appear as a
factor in a multiplication expression.) We parse a <factor> with the usual recursive descent approach. It has

almost exactly the same definition that <exp> did in Chapter 2, except that we now allow binary expressions as

well as factors inside parentheses. This means (1 + 2) is a factor, because "(" <exp> ")" is a production rule

for <factor>. However, -1 + 2 is not, because <unop> <exp> is not a production rule for <factor>. An <exp> is

either a binary operation, defined in the obvious way, or a factor. Because the rules for <exp> and <factor> refer

to each other, the functions to parse those symbols are mutually recursive. Those functions both yield exp AST

nodes; <factor> and <exp> are distinct symbols in the grammar, but not different types in the AST.

The pseudocode to parse factors is shown in Listing 3-5.

parse_factor(tokens):
 next_token = peek(tokens)
 if next_token is an int:
 --snip--
 else if next_token is "~" or "-":
 operator = parse_unop(tokens)
 ❶ inner_exp = parse_factor(tokens)
 return Unary(operator, inner_exp)
else if next_token == "(":
 take_token(tokens)
 ❷ inner_exp = parse_exp(tokens)
 expect(")", tokens)
 return inner_exp
 else:
 fail("Malformed factor")

Listing 3-5: Parsing a factor

This looks a lot like the previous chapter’s expression parsing code (shown in Listing 2-7). The only difference is
that we call parse_factor where we expect a <factor> ❶ and parse_exp where we expect an <exp> ❷;

before, we called parse_exp in both places.

Making Operators Left-Associative

Next, let’s write the new version of parse_exp. We’ll start with a simple version of the function that handles only

the + and - operators, which are at the same precedence level. This simplified parse_exp needs to group

expressions in a left-associative way, but it doesn’t need to handle multiple precedence levels yet.

In this simple case, we’ll encounter inputs like factor1 + factor2 - factor3 + factor4. These should always

be parsed in a left-associative way to produce expressions like ((factor1 + factor2) - factor3) + factor4.

As a result, the right operand of every expression, including subexpressions, will be a single factor. For example,
the right operand of (factor1 + factor2) is factor2, and the right operand of ((factor1 + factor2) -

factor3) is factor3.

Since the right operand of an expression is always a single factor, we can parse these expressions with the
pseudocode in Listing 3-6.

parse_exp(tokens):
 ❶ left = parse_factor(tokens)
 next_token = peek(tokens)
 ❷ while next_token is "+" or "-":
 operator = parse_binop(tokens)
 ❸ right = parse_factor(tokens)
 ❹ left = Binary(operator, left, right)
 next_token = peek(tokens)
 return left

Listing 3-6: Parsing left-associative expressions without considering precedence level

We start by parsing a single factor ❶, which is either the whole expression or the left operand of a larger
expression. Next, we check whether the following token is a binary operator ❷. If it is, we consume it from the
input and convert it to a binary_operator AST node. Then, we construct a binary expression ❹ where the left

operand is everything we’ve parsed so far and the right operand is the next factor, which we get by calling
parse_factor ❸. We repeat this process until we see a token other than + or - after a factor; this means there

are no binary expressions left to construct, so we’re done.

Dealing with Precedence

Now let’s extend Listing 3-6 to handle *, /, and %. These operators are also left-associative, but they’re at a higher

precedence level than + and -.

Once we add these operators, the right operand of every expression can be either a single factor or a
subexpression involving only the new higher-precedence operators. For example, 1 + 2 * 3 + 4 would be parsed

as (1 + (2 * 3)) + 4. The right operand of the whole expression is a single factor, 4. The right operand of the

inner subexpression, 1 + (2 * 3), is a product, 2 * 3.

In other words, if the outermost expression is a + or - operation, its right operand contains only factors and *, /,

and % operations. But if the outermost expression is itself a *, /, or % operation, its right operand must be single

factor.

To generalize: when we parse an expression of the form e1 <op> e2, all the operators in e2 should have higher

precedence than <op>. We can achieve this by tweaking the code from Listing 3-6, which gives us Listing 3-7.

parse_exp(tokens, min_prec):
 left = parse_factor(tokens)
 next_token = peek(tokens)
 while next_token is a binary operator and precedence(next_token) >= min_prec:
 operator = parse_binop(tokens)
 right = parse_exp(tokens, precedence(next_token) + 1)
 left = Binary(operator, left, right)
 next_token = peek(tokens)
 return left

Listing 3-7: Parsing left-associative expressions with precedence climbing

This pseudocode is our entire precedence climbing algorithm. The min_prec argument lets us state that all

operators in the subexpression we’re currently parsing need to exceed some precedence level. For example, we
could include only operators that have higher precedence than +. We enforce this by comparing the precedence of

the current operator to min_prec at each iteration of the while loop; we exclude the operator and anything that

follows it from the current expression if its precedence is too low. Then, when we parse the right-hand side of an
operation, we set the minimum precedence higher than the precedence of the current operator. This guarantees
that higher-precedence operators will be evaluated first. Since operators at the same precedence level as the
current operator won’t be included in the right-hand expression, the resulting AST will be left-associative.

When you call parse_exp from any other function (including from parse _factor, to handle parenthesized

expressions), start with a minimum precedence of zero so the result includes operators at every precedence level.

The code in Listing 3-7 requires us to assign every binary operator a precedence value. Table 3-1 shows the values
I’ve assigned.

Table 3-1: Precedence Values of Binary Operators

Operator Precedence

* 50

/ 50

% 50

+ 45

- 45

The exact precedence values don’t matter, as long as higher-precedence operators have higher values. The
numbers in Table 3-1 give us plenty of room to add lower-precedence operators later on.

Precedence Climbing in Action

Let’s walk through an example where we parse the following expression:

1 * 2 - 3 * (4 + 5)

The following code snippets trace the execution of the precedence climbing code from Listing 3-7 as it parses this
expression. We start by calling parse _exp on the whole expression with 0 as the minimum precedence

argument:

parse_exp("1 * 2 - 3 * (4 + 5)", 0):

Next, inside parse_exp, we parse the first factor:

 left = parse_factor("1 * 2 - 3 * (4 + 5)")
 = Constant(1)
 next_token = "*"

This first call to parse_factor parses the token 1, returning Constant(1). Next, we peek at the token that

follows, *. This token is a binary operator with a precedence greater than zero, so we enter the while loop.

The first iteration of the loop looks like this:

 // loop iteration #1
 operator = parse_binop("* 2 - 3 * (4 + 5)")
 = Multiply
 right = parse_exp("2 - 3 * (4 + 5)", 51)
 left = parse_factor("2 - 3 * (4 + 5)")
 = Constant(2)
 next_token = "-"
 // precedence(next_token) < 51
 = Constant(2)
 left = Binary(Multiply, Constant(1), Constant(2))
 next_token = "-"

Inside the loop, parse_binop consumes next_token from the input and converts it to an AST node, Multiply,

which leaves 2 - 3 * (4 + 5). Next, we call parse_exp recursively to get the right-hand side of this product.

Since the precedence of * is 50, the second argument to parse_exp is 51. In the recursive call, we again get the

next factor (2) and the token that follows it (-). The - token is a binary operator, but its precedence is only 45; it

doesn’t meet the minimum precedence of 51, so we don’t enter the while loop. Instead, we return

Constant(2).

Back in the outer call to parse_exp, we construct a Binary AST node for 1 * 2 from the values we’ve parsed so

far. Then, we check the next token to see whether we have more subexpressions to process. The next token is -;

we peeked at it, but didn’t remove it from the input, inside the recursive call to parse_exp. Because - is a binary

operator, and it exceeds our minimum precedence of zero, we jump back to the beginning of the while loop to

parse the next subexpression:

 // loop iteration #2
 operator = parse_binop("- 3 * (4 + 5)")
 = Subtract
 right = parse_exp("3 * (4 + 5)", 46)
 left = parse_factor("3 * (4 + 5)")
 = Constant(3)
 next_token = "*"
 // loop iteration #1
 operator = parse_binop("* (4 + 5)")
 = Multiply
 right = parse_exp("(4 + 5)", 51)
 left = parse_factor("(4 + 5)")
 parse_exp("4 + 5)", 0)
 --snip--
 = Binary(Add, Constant(4), Constant(5))
 = Binary(Add, Constant(4), Constant(5))
 left = Binary(
 Multiply,
 Constant(3),
 Binary(Add, Constant(4), Constant(5))
)
 = Binary(

 Multiply,
 Constant(3),
 Binary(Add, Constant(4), Constant(5))
)
 left = Binary(
 Subtract,
 Binary(Multiply, Constant(1), Constant(2)),
 Binary(
 Multiply,
 Constant(3),
 Binary(Add, Constant(4), Constant(5))
)
)

The second time through the loop, we consume - from the input and make a recursive call to parse_exp. This

time, because the precedence of - is 45, the second argument to parse_exp is 46.

Following our usual routine, we get the next factor (3) and the next token (*). Since the precedence of * exceeds

the minimum precedence, we need to parse another subexpression. We consume *, leaving (4 + 5), then make

yet another recursive call to parse_exp.

In this call to parse_exp, we start by calling parse_factor as usual. This call consumes the rest of our input

and returns the AST node for 4 + 5. To handle that parenthesized expression, parse_factor needs to recursively

call parse_exp with the minimum precedence reset to 0, but we won’t step through that here. At this point, there

are no tokens left in our expression. Let’s assume this is a valid C program and the next token is a semicolon (;).

Since the next token isn’t a binary operator, we exit the loop and return the expression we got from
parse_factor.

At the next level up, we construct the AST node for 3 * (4 + 5) from the subexpressions we’ve processed in this

call. Once again, we peek at the next token, see that it isn’t a binary operator, and return.

Finally, back in the original call to parse_exp, we construct the final expression from the left operand that we

constructed in the first loop iteration (1 * 2), the current value of operator (-), and the right operand that was

just returned from the recursive call (3 * (4 + 5)). For the last time, we check the next token, see that it isn’t a

binary operator, and return.

Now that you’ve seen how to parse binary expressions with precedence climbing, you’re ready to extend your
parser. Remember to use precedence climbing to parse binary expressions and recursive descent to parse all the
other symbols in the grammar, including factors.

TEST THE PARSER

The parser should successfully parse every valid test case in tests/chapter_3/valid and raise an error on every
invalid test case in tests/chapter_3/invalid _parse. To test your parser against the test cases from this chapter and
the ones before it, run:

$./test_compiler /path/to/your_compiler --chapter 3 --stage parse

Remember that the test suite checks only whether your compiler parses a program successfully or throws an
error; it doesn’t check that it produced the correct AST. Consider writing unit tests to validate the output of your
parser; in this chapter, it’s especially easy to write a parser that appears to succeed but generates the wrong AST.

TACKY Generation

Next, let’s update the stage that converts the AST to TACKY. We’ll start by adding binary operations to TACKY.
Listing 3-8 defines the updated TACKY IR, with this chapter’s additions bolded.

program = Program(function_definition)
function_definition = Function(identifier, instruction* body)
instruction = Return(val)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate
binary_operator = Add | Subtract | Multiply | Divide | Remainder

Listing 3-8: Adding binary operations to TACKY

We’ve added the Binary instruction to represent binary operations, and we’ve defined all the possible operators.

Like unary operations, binary operations in TACKY operate on constants and variables, not nested subexpressions.
As Listing 3-9 illustrates, we can turn a binary expression into a sequence of TACKY instructions in basically the
same way we handled unary expressions.

emit_tacky(e, instructions):
 match e with
 | --snip--
 | Binary(op, e1, e2) ->
 v1 = emit_tacky(e1, instructions)
 v2 = emit_tacky(e2, instructions)
 dst_name = make_temporary()
 dst = Var(dst_name)
 tacky_op = convert_binop(op)
 instructions.append(Binary(tacky_op, v1, v2, dst))
 return dst

Listing 3-9: Converting a binary expression to TACKY

We emit the TACKY instructions to evaluate each operand, then emit the Binary instruction that uses those

source values. The only difference from how we handled unary expressions is that we’re processing two operands
instead of one.

Before we move on to assembly generation, I want to make a slightly tangential point. The TACKY we emit in
Listing 3-9 evaluates a binary expression’s first operand before the second, but it’s just as correct to evaluate the
second operand before the first. According to the C standard, subexpressions of the same operation are usually
unsequenced; that is, they can be evaluated in any order. If two subexpressions would be unsequenced, but either
or both of them is a function call, they’re indeterminately sequenced, meaning that either one can execute first,
but they can’t interleave. In many cases, unsequenced and indeterminately sequenced evaluations can lead to
unpredictable results. Consider the following program, which includes two indeterminately sequenced calls to
printf:

#include <stdio.h>

int main(void) {
 return printf("Hello, ") + printf("World!");
}

You could compile this program with a C standard–compliant compiler, run it, and get either of these outputs:

Hello, World!
World!Hello,

There are a few exceptions where we must evaluate the first operand first: the logical && and || operators, which

we’ll cover in Chapter 4; the conditional ?: operator, which we’ll cover in Chapter 6; and the comma operator,

which we won’t implement. For a more in-depth discussion of the order in which expressions are evaluated, see
the “Order of Evaluation” page on cppreference.com, the C/C++ reference wiki (https://en.cppreference.com/w/c
/language/eval_order). If you’re curious about where all this is laid out in the C standard itself, see section 5.1.2.3
(which covers the general rules for evaluation order and defines the terms unsequenced and indeterminately
sequenced) and section 6.5, paragraphs 1–3 (which address the evaluation order for expression operands in
particular).

Unsequenced operations are one example of a broader pattern: there are a lot of circumstances where the C
standard doesn’t specify exactly how programs should behave. We’ll see more examples of this throughout the
book. By leaving some details about program behavior unspecified, the C standard puts a lot of power in the
hands of compiler writers, allowing them to write sophisticated compiler optimizations. But there’s an obvious
trade-off: it’s easy for programmers to write code that might not behave the way they expect.

TEST THE TACKY GENERATION STAGE

https://en.cppreference.com/w/c/language/eval_order

Test the TACKY generator with this command:

$./test_compiler /path/to/your_compiler --chapter 3 --stage tacky

This stage should be able to process every valid test case we’ve seen so far.

Assembly Generation

The next step is converting TACKY into assembly. We’ll need several new assembly instructions to handle addition,
subtraction, multiplication, division, and the remainder operation. Let’s talk through how to use these instructions;
then we’ll make the necessary updates to each pass in the assembly generation stage.

Doing Arithmetic in Assembly

The instructions for addition, subtraction, and multiplication all take the form op src, dst, where:

op is an instruction.

src is an immediate value, register, or memory address.

dst is a register or memory address.

Each of these instructions applies op to dst and src, storing the result in dst. The instructions for addition,

subtraction, and multiplication are add, sub, and imul, respectively. As usual, these instructions take an l suffix if

their operands are 32 bits and a q suffix if their operands are 64 bits. Table 3-2 shows an example of each

instruction.

Table 3-2: Assembly Instructions for Addition, Subtraction, and Multiplication

Instruction Meaning

addl $2, %eax eax = eax + 2

subl $2, %eax eax = eax - 2

imull {@}$2, %eax eax = eax * 2

Note that dst is the first operand in the corresponding mathematical expression, so subl a, b computes b - a,

not a - b.

These instructions are pretty easy to use and understand. If we lived in a perfect world, we could perform division
in exactly the same way. But we don’t, so we’re stuck with the idiv instruction.

We use idiv to implement the division and remainder operations. Even though you need two numbers to perform

division, it takes a single operand: the divisor. (In a / b, a is the dividend and b is the divisor.) This operand can’t

be an immediate value. In its 32-bit form, idiv gets the other value it needs, the dividend, from the EDX and EAX

registers, which it treats as a single 64-bit value. It gets the most significant 32 bits from EDX and the least
significant 32 bits from EAX. Unlike the other arithmetic instructions, idiv produces two results: the quotient and

the remainder. It stores the quotient in EAX and the remainder in EDX. (The 64-bit version of idiv, written as

idivq, uses RDX and RAX as the dividend instead of EDX and EAX.)

To calculate a / b with idiv, we need to take a—which will be either a 32-bit immediate value or a 32-bit value

stored in memory—and turn it into a 64-bit value spanning both EDX and EAX. Whenever we need to convert a
signed integer to a wider format, we use an operation called sign extension. This operation fills the upper 32 bits
of the new 64-bit value with the sign bit of the original 32-bit value.

Sign extending a positive number just pads the upper 32 bits (4 bytes) with zeros. Sign extending the binary
representation of 3, for example, turns

00000000000000000000000000000011

into:

0011

Both representations have the value 3; the second one just has more leading zeros. To sign extend a negative
number, we fill the upper 4 bytes with ones. This transforms the binary representation of –3, for example, from

11111111111111111111111111111101

into:

1101

Thanks to the magic of two’s complement, the value of both of these binary numbers is –3. (If you’re not clear on
how this works, check out Chapter 2’s “Additional Resources” section on page 45.)

The cdq instruction does exactly what we want: it sign extends the value from EAX into EDX. If the number in

EAX is positive, this instruction sets EDX to all zeros. If EAX is negative, it sets EDX to all ones. Putting it all

together, as an example, the following assembly computes both 9 / 2 and 9 % 2:

movl $2, -4(%rbp)
movl $9, %eax
cdq
idivl -4(%rbp)

This stores the result of 9 / 2, the quotient, in EAX. It stores the result of 9 % 2, the remainder, in EDX.

We’ve covered all the new instructions we’ll need in this chapter: add, sub, imul, idiv, and cdq. Next, we’ll add

these instructions to the assembly AST and update the conversion from TACKY to assembly.

Converting Binary Operations to Assembly

Listing 3-10 defines the updated assembly AST, with this chapter’s additions bolded.

program = Program(function_definition)
function_definition = Function(identifier name, instruction* instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | Binary(binary_operator, operand, operand)
 | Idiv(operand)
 | Cdq
 | AllocateStack(int)
 | Ret
unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int)
reg = AX | DX | R10 | R11

Listing 3-10: The assembly AST with binary operators

Since the addition, subtraction, and multiplication instructions take the same form, we’ll represent all of them
using the Binary constructor for the instruction node. We’ll also add constructors for the new idiv and cdq

instructions. Finally, we’ll add the EDX and R11 registers to the AST definition; we need EDX for division and R11
for the instruction fix-up pass.

Now we need to convert the new binary operations from TACKY to assembly. For addition, subtraction, and
multiplication, we convert a single TACKY instruction into two assembly instructions. That is, we convert

Binary(op, src1, src2, dst)

to:

Mov(src1, dst)
Binary(op, src2, dst)

Division is a little more complicated; we move the first operand into EAX, sign extend it with cdq, issue the idiv

instruction, and then move the result from EAX to the destination. So, we convert

Binary(Divide, src1, src2, dst)

to:

Mov(src1, Reg(AX))
Cdq
Idiv(src2)
Mov(Reg(AX), dst)

The remainder operation looks exactly the same, except that we ultimately want to retrieve the remainder from
EDX instead of retrieving the quotient from EAX. We therefore convert

Binary(Remainder, src1, src2, dst)

to:

Mov(src1, Reg(AX))
Cdq
Idiv(src2)
Mov(Reg(DX), dst)

The idiv instruction can’t operate on immediate values, so the assembly instructions for division and remainder

won’t be valid if src2 is a constant. That’s okay; we’ll fix this problem during the instruction fix-up pass. Tables 3-

3 through 3-6 summarize the conversion from TACKY to assembly, with new and changed constructs bolded.

Table 3-3: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(function_definition) Program(function_definition)

TACKY top-level construct Assembly top-level construct

Function(name, instructions) Function(name, instructions)

Table 3-4: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Mov(val, Reg(AX))

Ret

Unary(unary_operator, src, dst) Mov(src, dst)

Unary(unary_operator, dst)

Binary(Divide, src1, src2, dst) Mov(src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(AX), dst)

Binary(Remainder, src1, src2, dst) Mov(src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(DX), dst)

Binary(binary_operator, src1, src2, dst) Mov(src1, dst)

Binary(binary_operator, src2, dst)

Table 3-5: Converting TACKY Arithmetic Operators to Assembly

TACKY operator Assembly operator

Complement Not

Negate Neg

Add Add

Subtract Sub

Multiply Mult

Table 3-6: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(int) Imm(int)

Var(identifier) Pseudo(identifier)

Note that Table 3-4 includes three rows for the Binary TACKY instruction: one for division, one for the remainder

operation, and one for everything else.

Replacing Pseudoregisters

Update this pass to replace pseudoregisters in the new Binary and Idiv instructions. You should treat them like

the existing Mov and Unary instructions. When you see a pseudoregister in a Mov, Unary, Binary, or Idiv

instruction, replace it with the corresponding stack address. If the pseudoregister hasn’t been assigned to a stack
address yet, assign it to the next available 4-byte address.

Fixing Up the idiv, add, sub, and imul Instructions

In the last compiler pass before emitting the final program, we rewrite any invalid instructions that we produced in
earlier stages. We need to add a few more rewrite rules here. First, we need to fix idiv instructions that take

constant operands. Whenever idiv needs to operate on a constant, we copy that constant into our scratch

register first. For instance, we rewrite

idivl $3

as:

movl $3, %r10d
idivl %r10d

The add and sub instructions, like mov, can’t use memory addresses as both the source and destination operands.

We rewrite them in the same way as mov, so that

addl -4(%rbp), -8(%rbp)

becomes:

movl -4(%rbp), %r10d
addl %r10d, -8(%rbp)

The imul instruction can’t use a memory address as its destination, regardless of its source operand. To fix an

instruction’s destination operand, we use the R11 register instead of R10. So, to fix imul, we load the destination

into R11, multiply it by the source operand, and then store the result back to the destination address. In other
words, the instruction

imull $3, -4(%rbp)

becomes:

movl -4(%rbp), %r11d
imull $3, %r11d
movl %r11d, -4(%rbp)

Using different registers to fix source and destination operands will become helpful in Part II, when we’ll
sometimes rewrite the source and destination of the same instruction. We’ll need two registers so that the fix-up
instructions for the different operands don’t clobber each other.

Once you’ve updated the assembly generation, pseudoregister replacement, and instruction fix-up compiler
passes, your compiler should be able to generate complete, correct assembly programs that perform basic
arithmetic. All that’s left is emitting those assembly programs in the right format.

TEST THE ASSEMBLY GENERATION STAGE

To test the assembly generation stage, run:

$./test_compiler /path/to/your_compiler --chapter 3 --stage codegen

Code Emission

The last step is extending the code emission stage to handle our new assembly instructions. Tables 3-7 through 3-
10 show how to print out each construct, with new constructs bolded.

Table 3-7: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(function_definition)

Print out the function definition.
On Linux, add at end of file:
 .section .note.GNU-stack,"",@progbits

Function(name, instructions)

 .globl <name>
<name>:

 pushq %rbp

 movq %rsp, %rbp
 <instructions>

Table 3-8: Formatting Assembly Instructions

Assembly instruction Output

Mov(src, dst)

movl <src>, <dst>

Ret

movq %rbp, %rsp

popq %rbp

ret

Unary(unary_operator, operand)

<unary_operator> <operand>

Assembly instruction Output

Binary(binary_operator, src, dst)

<binary_operator> <src>, <dst>

Idiv(operand)

idivl <operand>

Cdq

cdq

AllocateStack(int)

subq $<int>, %rsp

Table 3-9: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg negl

Not notl

Add addl

Sub subl

Mult imull

Table 3-10: Formatting Assembly Operands

Assembly operand Output

Reg(AX) %eax

Reg(DX) %edx

Reg(R10) %r10d

Reg(R11) %r11d

Stack(int) <int>(%rbp)

Imm(int) $<int>

The new instructions operate on 32-bit values, so they get l suffixes (except cdq, which doesn’t follow the usual

naming conventions). Note that the subl instruction we use to subtract integers and the subq instruction we use

to allocate space on the stack are 32-bit and 64-bit versions of the same instruction.

TEST THE WHOLE COMPILER

To check that you’re compiling every test program correctly, run:

$./test_compiler /path/to/your_compiler --chapter 3

Once all your tests pass, you can either move on to the next chapter or add a few more binary operators for extra
credit.

Extra Credit: Bitwise Operators

Now that you’ve learned how to compile binary operators, you can implement the bitwise binary operators on your
own. These include bitwise AND (&), OR (|), XOR (^), left shift (<<), and right shift (>>). Your compiler can

handle these much like the operators you just added. You’ll need to look up the relative precedence of these
operators, and you’ll need to check the documentation for the x64 instruction set to see how to use the relevant
assembly instructions.

Bitwise operations are optional; later test cases don’t rely on them. If you do implement bitwise operations, use
the --bitwise flag to include the test cases for this feature:

$./test_compiler /path/to/your_compiler --chapter 3 --bitwise

Include this flag when you run the test script in later chapters too, to include any test cases for those chapters
that use bitwise operators.

Summary

In this chapter, you implemented several binary arithmetic operations in your compiler. You used a new technique,
precedence climbing, to parse expressions that recursive descent parsers don’t handle well. In the next chapter,
you’ll implement even more unary and binary operations: the logical operators !, &&, and ||, and relational

operators like ==, <, and >. Some of these operators don’t correspond closely to assembly instructions, so we’ll

break them down into lower-level instructions in TACKY. We’ll also introduce conditional assembly instructions,
which will be particularly important when we implement control-flow statements like if statements and loops later

on.

Additional Resources

These blog posts helped me understand precedence climbing and how it relates to similar algorithms that solve
the same problem; you might find them helpful too:

“Parsing Expressions by Precedence Climbing” by Eli Bendersky is a solid overview of the precedence climbing
algorithm (https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing). The
precedence climbing code in Listing 3-7 is loosely adapted from this blog post; it also inspired the
presentation of the example in “Precedence Climbing in Action” on page 55.
“Some Problems of Recursive Descent Parsers,” also by Eli Bendersky, talks about how to handle binary
expressions with a pure recursive descent parser (https://eli.thegreenplace.net/2009/03/14/some-problems-of
-recursive-descent-parsers).
Andy Chu has written two useful blog posts on precedence climbing. The first, “Pratt Parsing and Precedence
Climbing Are the Same Algorithm,” explores the fundamental similarities between precedence climbing and
the Pratt Parsing algorithm (https://www.oilshell.org/blog/2016/11/01.html). The second, “Precedence
Climbing Is Widely Used,” discusses their differences (https://www.oilshell.org/blog/2017/03/30.html). These
posts clarify some of the confusing terminology around different parsing algorithms.

https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing
https://eli.thegreenplace.net/2009/03/14/some-problems-of-recursive-descent-parsers
https://www.oilshell.org/blog/2016/11/01.html
https://www.oilshell.org/blog/2017/03/30.html

Description

4

LOGICAL AND RELATIONAL OPERATORS

Now that you know how to compile binary operators, you’re going to add a whole mess of
them (plus one more unary operator). In this chapter, you’ll add three logical operators:
NOT (!), AND (&&), and OR (||). You’ll also add the relational operators: <, >, ==, and so

on. Each of these operators tests some condition, resulting in a value of 1 if that condition
is true and 0 if it’s false.

The && and || operators differ from the binary operators we’ve seen so far because they

short-circuit: if you know the result after the first operand, you don’t evaluate the second
operand. To support short-circuiting logic, we’ll add new instructions to TACKY that let us
skip over blocks of code. We’ll also introduce several new instructions in the assembly

generation pass, including conditional assembly instructions that let us take specific actions only if some condition
is met.

Let’s start with a brief discussion of short-circuiting operators before moving on to the compiler passes.

Short-Circuiting Operators

The C standard guarantees that && and || short-circuit when you don’t need the second operand. For example,

consider the expression (1 - 1) && foo(). Because the first operand’s value is 0, the whole expression will

evaluate to 0 regardless of what foo returns, so we won’t call foo at all. Likewise, if the first operand of || is

nonzero, we don’t evaluate the second operand.

This isn’t just a performance optimization; the second operand might not change the result of the expression, but
evaluating it can have visible side effects. For example, the foo function might perform I/O or update global

variables. If your compiler doesn’t implement && and || as short- circuiting operators, some compiled programs

will behave incorrectly. (The standard defines this behavior in section 6.5.13, paragraph 4, for the && operator and

in section 6.5.14, paragraph 4, for the || operator.)

Now that we’ve clarified how these operators work, you’re ready to continue coding.

The Lexer

In this chapter, you’ll add nine new tokens:

! An exclamation point, the logical NOT operator

&& Two ampersands, the logical AND operator

|| Two vertical bars, the logical OR operator

== Two equal signs, the “equal to” operator

!= An exclamation point followed by an equal sign, the “not equal to” operator

< The “less than” operator

> The “greater than” operator

<= The “less than or equal to” operator

>= The “greater than or equal to” operator

Your lexer should handle these the same way as the other operators you’ve added so far. Remember that the lexer
should always choose the longest possible match for the next token. For example, if your input is <=something,

the next token the lexer emits should be <=, not <.

TEST THE LEXER

Test the lexer with the usual command:

$./test_compiler /path/to/your_compiler --chapter 4 --stage lex

None of this chapter’s test programs contain invalid tokens, so your lexer should process all of them without
throwing an error.

The Parser

Next, we’ll add the new operations to the AST definition. Listing 4-1 shows the updated definition, with these
additions bolded.

program = Program(function_definition)
function_definition = Function(identifier name, statement body)
statement = Return(exp)
exp = Constant(int)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 4-1: The abstract syntax tree with comparison and logical operators

We also need to make the corresponding changes to the grammar, as shown in Listing 4-2.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" <statement> "}"
<statement> ::= "return" <exp> ";"
<exp> ::= <factor> | <exp> <binop> <exp>
<factor> ::= <int> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 4-2: The grammar with comparison and logical operators

In Listings 4-1 and 4-2, we’ve added some new operators, but we haven’t made any other changes. Now we’re
ready to update the parsing code. First, update parse_factor to handle the new ! operator. It should parse !

the same way it parses the unary ~ and - operators.

Next, update parse_exp to handle the new binary operators. In Chapter 3, we associated every binary operator

with a numeric precedence value. Now we’ll give the new operators precedence values. These operators have
lower precedence than the ones from Chapter 3, and they’re all left-associative. Among the new operators, <, <=,

>, and >= have the highest precedence, followed by the equality operators, == and !=. The && operator has lower

precedence than the equality operators, and || has the lowest precedence of all. The precedence values I’ve

chosen are listed in Table 4-1, with new operators bolded.

Table 4-1: Precedence Values of Old and New Binary Operators

Operator Precedence

* 50

/ 50

% 50

+ 45

- 45

< 35

<= 35

> 35

>= 35

== 30

!= 30

&& 10

|| 5

These values are spaced far enough apart to leave room for the optional bitwise operators from Chapter 3. There’s
also room at the bottom of the scale for the = and ?: operators we’ll add in the next two chapters. You don’t need

to use the exact values in this table as long as all operators have the correct precedence relative to each other.

You’ll also need to extend the code that converts tokens into unary _operator and binary_operator AST

nodes. For example, the function that converts a + token into an Add node should also convert a == token into an

Equal node. (The pseudocode in the last two chapters called separate functions, parse_unop and parse_binop,

to handle these conversions.)

Once you’ve updated your parser’s table of precedence values, parse _binop, and parse_unop, you’re done!

The precedence climbing algorithm we implemented in the last chapter can handle the new operators without
further changes.

TEST THE PARSER

The parser should successfully parse every valid test case in tests/chapter_4/valid and raise an error on every
invalid test case in tests/chapter_4/invalid _parse. To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 4 --stage parse

TACKY Generation

Now that the lexer and parser are working properly, we can venture into less familiar territory: handling the new
operators in TACKY. You can convert relational operators to TACKY in the same way as the binary operators you’ve
already implemented. For example, given the expression e1 < e2, the resulting TACKY looks something like

Listing 4-3.

<instructions for e1>

v1 = <result of e1>
<instructions for e2>

v2 = <result of e2>
Binary(LessThan, v1, v2, result)

Listing 4-3: Implementing the < operator in TACKY

You can’t generate the && and || operators this way, though, because they short-circuit. The code in Listing 4-3

always evaluates both e1 and e2, but we need to generate code that sometimes skips e2. To support short-

circuiting operators, we’ll add an unconditional jump instruction, which lets us jump to a different point in the
program. We’ll also add two conditional jump instructions, which jump only when a particular condition is met.

Adding Jumps, Copies, and Comparisons to the TACKY IR

Listing 4-4 shows the latest TACKY IR, including the new jump instructions.

program = Program(function_definition)
function_definition = Function(identifier, instruction* body)
instruction = Return(val)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
val = Constant(int) | Var(identifier)

unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 4-4: Adding comparisons, jumps, and labels to TACKY

The Jump instruction works just like goto in C: it makes the program jump to the point labeled with some

identifier, target. The Label instruction associates an identifier with a location in the program. The snippet of

TACKY in Listing 4-5 shows how Jump and Label instructions work together.

Unary(Negate, Constant(1), Var("tmp"))
Jump("there")

❶ Unary(Negate, Constant(2), Var("tmp"))
Label("there")
Return(Var("tmp"))

Listing 4-5: A snippet of TACKY with a Jump instruction

This program stores -1 in tmp, then executes the Jump instruction, which jumps to the Label instruction. Next, it

executes the Return instruction, which returns -1. The second Unary instruction ❶ won’t execute at all, because

we jumped over it.

The first conditional jump in the TACKY IR, JumpIfZero, jumps to the instruction indicated by target if the value

of condition is 0. If condition is anything other than 0, we don’t jump to target; instead, we execute the

next instruction as usual. The second conditional jump, JumpIfNotZero, does the opposite: we jump to target

only if condition isn’t 0. We don’t really need both of these instructions, since any behavior you can express with

one can be expressed with the other plus a Not instruction. But adding both lets us generate simpler TACKY for

the && and || operations, which will ultimately translate into simpler, shorter assembly.

The other new instruction is Copy. Since && and || ultimately return 1 or 0, we use this instruction to copy 1 or 0

into the temporary variable that holds the result of the expression.

Besides these five additional instructions, the latest TACKY IR includes the new relational and logical binary
operators and the unary Not operator.

Converting Short-Circuiting Operators to TACKY

Let’s use the new TACKY instructions to implement the && and || operators. The TACKY for the expression e1 &&

e2 should look like Listing 4-6.

<instructions for e1>

v1 = <result of e1>
JumpIfZero(v1, false_label)
<instructions for e2>

v2 = <result of e2>
JumpIfZero(v2, false_label)
result = 1
Jump(end)
Label(false_label)
result = 0
Label(end)

Listing 4-6: Implementing the && operator in TACKY

We start by evaluating e1. If it’s 0, we short-circuit and set result to 0, without evaluating e2. We accomplish

this with the JumpIfZero instruction; if v1 is 0, we jump straight to false_label, then set result to 0 with the

Copy instruction. (I’ve written this out as result = 0 instead of Copy(0, result) to make it more readable. I’ll

take similar liberties with TACKY notation in later chapters.) If v1 isn’t 0, we still need to evaluate e2. We handle

the case where v2 is 0 exactly like the case where v1 is 0, by jumping to false_label with JumpIfZero. We

reach the Copy instruction, result = 1, only if we didn’t take either conditional jump. That means both e1 and e2

are nonzero, so we set result to 1. Then, we jump over result = 0 to the end label to avoid overwriting

result.

I’ll leave it to you to translate the || operation to TACKY on your own. The resulting TACKY will look similar to

Listing 4-6, but it will use the JumpIfNotZero instruction instead of JumpIfZero. That leaves ! and all the

relational operations; you can convert them to TACKY in the same way as the unary and binary operations you
added in the previous chapters.

Generating Labels

Labels, like temporary variables, must be globally unique: an instruction like Jump("foo") is useless if the label

foo shows up in multiple places. You can make sure they’re unique by incorporating a global counter into labels,

like you did with variable names in Chapter 2.

Unlike temporary variables, labels will appear in the final assembly program, so they must be identifiers that the
assembler considers syntactically valid. They should contain only letters, digits, periods, and underscores. Choose
descriptive labels to make your assembly programs easier to read and debug. For example, you could use the
string and_falseN as false_label in Listing 4-6, where N is the current value of a global counter.

Although labels must not conflict with each other, it’s okay for them to conflict with temporary variable names. It’s
also okay if the labels you generate here conflict with user-defined function names, even though both
autogenerated labels and function names become labels in the final assembly program. We’ll mangle our
autogenerated labels during code emission so they don’t conflict with user-defined identifiers.

TEST THE TACKY GENERATION STAGE

To test out TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 4 --stage tacky

Comparisons and Jumps in Assembly

Before starting on the assembly generation pass, let’s talk through the new assembly instructions we’ll need. First,
we’ll discuss the cmp instruction, which compares two values, and the conditional set instructions, which set a byte

to 1 or 0 based on the result of a comparison. We’ll use these to implement relational operators like <. Next, we’ll

talk about conditional and unconditional jump instructions.

Comparisons and Status Flags

The “condition” that all conditional instructions depend on is the state of the RFLAGS register. Unlike EAX, RSP,
and the other registers we’ve seen so far, we usually can’t directly set RFLAGS. Instead, the CPU updates RFLAGS
automatically every time it issues an instruction. As the name suggests, each bit in this register is a flag that
reports some fact about the last instruction or the status of the CPU. Different instructions update different flags:
the add, sub, and cmp instructions update all the flags we’ll talk about in this section, and the mov instruction

doesn’t update any of them. We can ignore the effects of other instructions for now. Whenever I refer to the “last
instruction” or “last result” while discussing RFLAGS, I mean the last instruction that affects the particular flag I’m
talking about.

Right now, we care about three of these flags:

Zero flag (ZF)

ZF is set to 1 if the result of the last instruction was 0. It’s set to 0 if the result of the last instruction was nonzero.

Sign flag (SF)

SF is set to 1 if the most significant bit of the last result was 1. It’s set to 0 if the most significant bit of that result
was 0. Remember that in two’s complement, the most significant bit of a negative number is always 1, and the
most significant bit of a positive number is always 0. Therefore, the sign flag tells us whether the result of the last
instruction was positive or negative. (If the last result should be interpreted as an unsigned integer, it can’t be
negative, so the sign flag is meaningless.)

Overflow flag (OF)

OF is set to 1 if the last instruction resulted in a signed integer overflow, and 0 otherwise. An integer overflow
occurs when the result of a signed integer operation can’t be represented in the number of bits available. A
positive result overflows when it’s larger than the maximum value the type can hold. Suppose we’re operating on
4-bit integers. The largest signed number we can represent is 7, or 0111 in binary. If we add one to it with the

add instruction, the result is 1000. If we interpret this as an unsigned integer, its value is 8, but its value is –8 if

we interpret it as a two’s complement signed integer. The result of the computation should be positive, but since it
overflowed, it appears negative. This computation sets the overflow flag to 1.

We also encounter integer overflow in the opposite situation: when the result should be negative, but it’s below
the smallest possible value. For example, in ordinary math, –8 – 1 = –9. But if we use the sub instruction to

subtract one from the 4-bit two’s complement representation of –8, which is 1000, we end up with 0111, or 7.

The overflow flag is set to 1 in this case too.

An unsigned result can also be too large or small for its type to represent, but I won’t refer to this as integer
overflow in this book. Instead, I say the result wrapped around, which is more consistent with the terminology for
unsigned operations in the C standard and in most discussions of x64 assembly. I draw this distinction because
unsigned wraparound follows different rules from signed integer overflow in the C standard, and the CPU detects
it differently. You’ll learn how to handle unsigned wraparound in Part II. Like SF, OF is meaningless if the result is
unsigned.

Tables 4-2 and 4-3 summarize the cases where each kind of integer overflow is possible. Table 4-2 describes the
results of addition.

Table 4-2: Integer Overflow and Underflow from Addition

a + b b > 0 b < 0

a > 0 Overflow from positive to negative Neither

a < 0 Neither Overflow from negative to positive

Table 4-3 describes the results of subtraction; it’s just Table 4-2 with the columns swapped, since a - b and a +

(- b) are equivalent.

Table 4-3: Integer Overflow and Underflow from Subtraction

a - b b > 0 b < 0

a > 0 Neither Overflow from positive to negative

a < 0 Overflow from negative to positive Neither

The instruction cmp b, a computes a - b, exactly like the sub instruction, and has the same impact on RFLAGS,

but it discards the result instead of storing it in a. This is more convenient when you want to subtract two

numbers only in order to compare them and don’t want to overwrite a.

Let’s figure out the values of ZF and SF after the instruction cmp b, a:

If a == b, then a - b is 0, so ZF is 1 and SF is 0.

If a > b, then a - b is a positive number, so both SF and ZF are 0.

If a < b, then a - b is a negative number, so SF is 1 and ZF is 0.

By issuing a cmp instruction and then checking ZF and SF, you can handle every comparison we’re implementing in

this chapter. But wait! That’s not quite true, because a - b could overflow, which would flip SF. Let’s consider how

that impacts each case:

If a == b, then a - b can’t overflow because it’s 0.

If a > b, then a - b could overflow when a is positive and b is negative. The correct result in this case is

positive, but if it overflows, the result will be negative. In that case, SF will be 1, and OF will be too.
If a < b, then a - b could overflow when a is negative and b is positive. In this case, the correct result is

negative, but the actual result will be positive. That means SF will be 0, but OF will be 1.

Table 4-4 gives the values of these flags in every case we’ve considered.

Table 4-4: Impact of cmp Instruction on Status Flags

ZF OF SF

a == b 1 0 0

a > b, no overflow 0 0 0

a > b, overflow 0 1 1

a < b, no overflow 0 0 1

a < b, overflow 0 1 0

You can tell whether a or b is larger by checking whether SF and OF are the same. If they are, we know that a ≥

b. Either both are 0, because we got a positive (or 0) result with no overflow, or both are 1, because we got a

large positive result that overflowed until it became negative. If SF and OF are different, we know that a < b.

Either we got a negative result with no overflow, or we got a negative result that overflowed and became positive.

UNDEFINED BEHAVIOR ALERT!

If the add and sub instructions can overflow, why didn’t we account for that in Chapter 3? We didn’t need to

because integer overflow in C is undefined behavior, where the standard doesn’t tell you what should happen.
Compilers are permitted to handle undefined behavior however they want—or not handle it at all.

When an expression in C overflows, for example, the result usually wraps around like the examples we saw earlier.
However, it’s equally acceptable for the program to generate a result at random, raise a signal, or erase your hard
drive. That last option may sound unlikely, but production compilers really do handle undefined behavior in
surprising (and arguably undesirable) ways. Take the following program:

#include <stdio.h>

int main(void) {
 for (int i = 2147483646; i > 0; i = i + 1)
 printf("The number is %d\n", i);
 return 0;
}

The largest value an int can hold is 2,147,483,647, so the expression i + 1 overflows the second time we execute

it. When the add assembly instruction overflows, it produces a negative result, so we might expect this loop to

execute twice, then stop because the condition i > 0 no longer holds. That’s exactly what happens if you compile

this program without optimizations, at least with the versions of Clang and GCC that I tried:

$ clang overflow.c
$./a.out
The number is 2147483646
The number is 2147483647

But if you enable optimizations, the behavior might change completely:

$ clang -O overflow.c
$./a.out
The number is 2147483646
The number is 2147483647
The number is -2147483648
The number is -2147483647
The number is -2147483646
The number is -2147483645
--snip--

What happened? The compiler tried to optimize the program by removing conditional checks that always succeed.
The initial value of i is positive, and it’s updated only in the expression i = i + 1, so the compiler concluded that

the condition i > 0 is always true. That’s correct, as long as i doesn’t overflow. It’s incorrect if i does overflow,

of course, but that’s undefined behavior, so the compiler didn’t have to account for it. It therefore removed the
condition entirely, resulting in a loop that never terminates.

I used Clang for this example because GCC produced completely different, even less intuitive behavior. You may
well see different results if you compile this program on your own machine. Try it out with a few different
optimization levels, and see what happens.

Note that setting the overflow flag in assembly doesn’t necessarily indicate overflow in the source program. For
example, when we implement an expression like a < 10 with cmp, that cmp instruction may set the overflow flag.

But the result of a < 10 is either 0 or 1—both of which are in the range of int—so the expression itself does not

overflow. This expression won’t produce undefined behavior, regardless of how we implement it in assembly.

C has a bunch of different kinds of undefined behavior; integer overflow is just one example. It’s a particularly
ugly example, though, because it’s difficult to avoid and can have dire consequences, including security
vulnerabilities. To address this long-standing problem, the next version of the C standard, C23, adds a few
standard library functions that perform checked integer operations. If you use the new ckd_add, ckd_sub, and

ckd_mul functions instead of the +, -, and * operators, you’ll get an informative return code instead of undefined

behavior when the result is out of bounds. To learn more about these new library functions, see Jens Gustedt’s
blog post titled “Checked Integer Arithmetic in the Prospect of C23” (https://gustedt.wordpress.com/2022/12/18
/checked-integer-arithmetic-in-the-prospect-of-c23/).

Undefined behavior is different from unspecified behavior. If some aspect of a program’s behavior is unspecified,
there are several possible ways it could behave, but it can’t behave totally unpredictably. For example, in Chapter
3, we learned that the operands in a binary expression are unsequenced (or indeterminately sequenced, if either
is a function call), so their evaluation order is unspecified. This doesn’t mean the expression’s behavior is
undefined. When we evaluate the expression printf("Hello, ") + printf("World!"), the program can print

either "Hello, " or "World!" first, but it can’t go off and do something else entirely. Unsequenced operations

can produce undefined behavior under certain circumstances—say, if you perform two unsequenced updates to
the same variable—but performing unsequenced or indeterminately sequenced operations is not an undefined
behavior in and of itself.

Unspecified behavior is a normal part of any C program. It’s a problem only if your program relies on a particular
behavior that the standard doesn’t specify, like in the Hello, World! example. Undefined behavior, on the other

hand, is always a problem; if it occurs anywhere in your program, you can’t count on any part of the program to
work correctly.

To learn more about undefined behavior, and the trail of chaos and destruction it leaves in its wake, see
“Additional Resources” on page 91.

https://gustedt.wordpress.com/2022/12/18/checked-integer-arithmetic-in-the-prospect-of-c23/

Now that you understand how to set ZF, OF, and SF, let’s take a look at a few instructions that depend on those
flags.

Conditional Set Instructions

To implement a relational operator, we first set some flags using the cmp instruction, then set the result of the

expression based on those flags. We perform that second step with a conditional set instruction. Each conditional
set instruction takes a single register or memory address as an operand, which it sets to 0 or 1 based on the state
of RFLAGS. The conditional set instructions are all identical, except that they test for different conditions. Table 4-5
lists the conditional set instructions we need in this chapter.

Table 4-5: Conditional Set Instructions

Instruction Meaning Flags

sete Set byte if a == b ZF set

setne Set byte if a != b ZF not set

setg Set byte if a > b ZF not set and SF == OF

setge Set byte if a ≥ b SF == OF

setl Set byte if a < b SF != OF

setle Set byte if a ≤ b ZF set or SF != OF

Unlike the other instructions we’ve seen so far, conditional set instructions take only 1-byte operands. For
example, sete %eax is not a valid instruction, because EAX is a 4-byte register. The instruction sete %al,

however, is valid; this sets the AL register, the least significant byte of EAX. To conditionally set the whole EAX
register to 0 or 1, you need to zero out EAX before you set AL, because the conditional set instruction won’t clear
its upper bytes. For example, if EAX is

11111111111111111111111111111011

and you run

movl $2, %edx
cmpl $1, %edx
sete %al

then the new value in EAX is

11111111111111111111111100000000

which is, of course, not 0. The sete instruction zeroed out the last byte of EAX, but not the rest of it.

If its operand is a memory address, a conditional set instruction will update the single byte at that address. Note
that a memory address can be a 1-byte, 4-byte, or 8-byte operand, depending on context. In sete -4(%rbp),

the operand -4(%rbp) indicates a single byte of memory at RBP – 4; in addl $1, -4(%rbp), it indicates the 4

bytes of memory starting at RBP – 4.

Jump Instructions

The jmp assembly instruction takes a label as an argument and performs an unconditional jump to that label.

Jump assembly instructions manipulate another special-purpose register, RIP, which always holds the address of
the next instruction to execute (IP stands for instruction pointer). To execute a sequence of instructions, the CPU
carries out the fetch-execute cycle:

1. Fetch an instruction from the memory address in RIP and store it in a special-purpose instruction register.
(This register doesn’t have a name because you can’t refer to it in assembly.)

2. Increment RIP to point to the next instruction. Instructions in x64 aren’t all the same length, so the CPU has
to check the length of the instruction it just fetched and increment RIP by that many bytes.

3. Run the instruction in the instruction register.
4. Repeat.

Normally, following these steps executes instructions in the order they appear in memory. But jmp puts a new

value in RIP, which changes what instruction the CPU executes next. The assembler and linker convert the label in
a jump instruction into a relative offset that tells you how much to increment or decrement RIP. Consider the
snippet of assembly in Listing 4-7.

 addl $1, %eax
 jmp foo
 movl $0, %eax
foo:
 ret

Listing 4-7: A snippet of assembly code with a jmp instruction

The machine instruction for movl $0, %eax is 5 bytes long. To jump over it and execute the ret instruction

instead, jmp needs to increment RIP by an extra 5 bytes. The assembler and linker therefore convert jmp foo

into the machine instruction for jmp 5. Then, when the CPU executes this instruction, it:

1. Fetches the instruction jmp 5 and stores it in the instruction register.

2. Increments RIP to point to the next instruction, movl $0, %eax.

3. Executes jmp 5. This adds 5 bytes to RIP so that it points to ret.

4. Fetches the instruction RIP points to, ret, and continues the fetch- execute cycle from there.

Note that labels aren’t instructions: the CPU doesn’t execute them, and they don’t appear in the text section of the
final executable (the section that contains machine instructions).

A conditional jump takes a label as an argument but jumps to that label only if the condition holds. Conditional
jumps look a lot like conditional set instructions; they depend on the same conditions, using the same flags in
RFLAGS. For example, the assembly in Listing 4-8 returns 3 if the EAX and EDX registers are equal, and 0

otherwise.

 cmpl %eax, %edx
 je return3
 movl $0, %eax
 ret
return3:
 movl $3, %eax
 ret

Listing 4-8: A snippet of assembly code with a conditional jump

If the values in EAX and EDX are equal, cmpl sets ZF to 1, so je jumps to return3. Then, the two instructions

following return3 execute, so the function returns 3. If EAX and EDX aren’t equal, je doesn’t perform the jump,

so the function returns 0. Similarly, jne jumps only if ZF is 0. There are also jump instructions that check other

conditions, but we don’t need them in this chapter.

Assembly Generation

Now that you understand the new assembly instructions you’ll need, let’s extend the assembly AST and update
each assembly generation pass. Listing 4-9 defines the latest assembly AST, with additions bolded.

program = Program(function_definition)
function_definition = Function(identifier name, instruction* instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | Binary(binary_operator, operand, operand)
 | Cmp(operand, operand)
 | Idiv(operand)
 | Cdq
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)

 | Label(identifier)
 | AllocateStack(int)
 | Ret
unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int)
cond_code = E | NE | G | GE | L | LE
reg = AX | DX | R10 | R11

Listing 4-9: The assembly AST with comparisons and conditional instructions

Since all conditional jump instructions have the same form, we represent them with a single JmpCC instruction and

distinguish between them using different condition codes. We do the same with conditional set instructions. We
also treat labels like instructions at this stage, even though Label isn’t really an instruction since labels aren’t

executed by the CPU.

To implement the TACKY JumpIfZero and JumpIfNotZero instructions, we use the new JmpCC assembly

instruction. We convert

JumpIfZero(val, target)

to:

Cmp(Imm(0), val)
JmpCC(E, target)

We implement JumpIfNotZero the same way, but with NE instead of E as the condition code.

Similarly, we implement all the relational operators using conditional set instructions. For example, the TACKY
instruction

Binary(GreaterThan, src1, src2, dst)

becomes:

Cmp(src2, src1)
Mov(Imm(0), dst)
SetCC(G, dst)

For all the other relational operators, replace G with the appropriate condition code. Remember to zero out the

destination before the conditional set instruction, since it sets only the lowest byte. It’s safe to perform a mov right

after the cmp instruction because mov doesn’t change RFLAGS. One potential wrinkle is that SetCC needs a 1-byte

operand, but dst is 4 bytes; luckily, we can account for this in the code emission pass. If dst is a location in

memory, SetCC sets the first byte at that location, which is the behavior we want. (Because x64 processors are

little-endian, the first byte is the least significant, so setting that byte to 1 sets the whole 32-bit value to 1.) If dst

is a register, we’ll use the corresponding 1-byte register name when we emit SetCC during code emission.

Registers in the assembly AST are size agnostic, so for now we represent dst the same way whether we’re using

it as a 4-byte or 1-byte operand.

Because !x is equivalent to x == 0, we also implement the unary ! operator with a conditional set instruction. We

convert the TACKY instruction

Unary(Not, src, dst)

into:

Cmp(Imm(0), src)
Mov(Imm(0), dst)
SetCC(E, dst)

The remaining TACKY instructions—Jump, Label, and Copy—are easy. A TACKY Jump becomes an assembly Jmp,

Label becomes Label, and Copy becomes Mov. Tables 4-6 and 4-7 summarize how to convert each new TACKY

construct to assembly. Note that these tables include only new constructs, unlike the equivalent tables in Chapters
2 and 3.

Table 4-6 shows how to convert the new Copy, Label, and conditional and unconditional jump instructions to

assembly, as well as Unary instructions with the new Not operator and Binary instructions with the new

relational operators.

Table 4-6: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Unary(Not, src, dst) Cmp(Imm(0), src)

Mov(Imm(0), dst)

SetCC(E, dst)

Binary(relational_operator, src1, src2, dst) Cmp(src2, src1)

Mov(Imm(0), dst)

TACKY instruction Assembly instructions

SetCC(relational_operator, dst)

Jump(target) Jmp(target)

JumpIfZero(condition, target) Cmp(Imm(0), condition)

JmpCC(E, target)

JumpIfNotZero(condition, target) Cmp(Imm(0), condition)

JmpCC(NE, target)

Copy(src, dst) Mov(src, dst)

Label(identifier) Label(identifier)

Table 4-7 gives the corresponding condition code for each relational operator in TACKY.

Table 4-7: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

Equal E

NotEqual NE

LessThan L

LessOrEqual LE

GreaterThan G

GreaterOrEqual GE

From now on, the tables describing each chapter’s conversion from TACKY to assembly will show only what’s
changed from the chapter before. Appendix B includes two sets of tables giving the complete conversion from
TACKY to assembly: one shows the conversion at the end of Part I, and the other shows the conversion at the end
of Part II.

Replacing Pseudoregisters

Update this pass to replace any pseudoregisters used by the new Cmp and SetCC instructions with stack

addresses, just like you did for all the other instructions.

Fixing Up the cmp Instruction

The cmp instruction, much like mov, add, and sub, can’t use memory addresses for both operands. We rewrite it in

the usual way, turning

cmpl -4(%rbp), -8(%rbp)

into:

movl -4(%rbp), %r10d
cmpl %r10d, -8(%rbp)

The second operand of a cmp instruction can’t be a constant. This sort of makes sense if you remember that cmp

follows the same form as sub; the second operand of a sub, add, or imul instruction can’t be a constant either,

since that operand holds the result. Even though cmp doesn’t produce a result, the same rules apply. We rewrite

cmpl %eax, $5

as:

movl $5, %r11d
cmpl %eax, %r11d

Following the convention from the previous chapter, we use R10 to fix a cmp instruction’s first operand and R11 to

fix its second operand.

TEST THE ASSEMBLY GENERATION STAGE

To test the assembly generation stage, run:

$./test_compiler /path/to/your_compiler --chapter 4 --stage codegen

Code Emission

We’ve generated a valid assembly program, and we’re ready to emit it. Code emission is slightly more complicated
in this chapter, for two reasons. First, we’re dealing with both 1-byte and 4-byte registers. We’ll print out a
different name for a register depending on whether it appears in a conditional set instruction, which takes 1-byte
operands, or any of the other instructions we’ve encountered so far, which take 4-byte operands.

The second issue is emitting labels. Some assembly labels are autogenerated by the compiler, while others—
function names—are user-defined identifiers. Right now, the only function name is main, but eventually we’ll

compile programs with arbitrary function names. Because labels must be unique, autogenerated labels must not
conflict with any function names that could appear in a program.

We’ll avoid conflicts by adding a special local label prefix to our autogenerated labels. The local label prefix is .L

on Linux and L on macOS. On Linux, these labels won’t conflict with user-defined identifiers because identifiers in

C can’t contain periods. On macOS, they won’t conflict because we prefix all user-defined names with underscores
(so that main becomes _main, for example).

Local labels are handy for another reason: they won’t confuse GDB or LLDB when you need to debug this code.
The assembler puts most labels in the object file’s symbol table, but it leaves out any that start with the local label
prefix. If your autogenerated labels were in the symbol table, GDB and LLDB would mistake them for function
names, which would cause problems when you tried to disassemble a function or view a stack trace.

Aside from those two issues, code emission is pretty straightforward. Tables 4-8 through 4-10 summarize the
changes to this pass. From this point forward, the code emission tables will show only what’s changed from the
previous chapter, much like the tables describing the conversion from TACKY to assembly. See Appendix B for a
complete overview of the code emission pass; it includes three sets of tables showing how this pass will look at
the end of Part I, Part II, and Part III.

Table 4-8 shows how to print out this chapter’s new assembly instructions. It uses the .L prefix for local labels; if

you’re on macOS, use an L prefix without a period instead.

Table 4-8: Formatting Assembly Instructions

Assembly instruction Output

Cmp(operand, operand)

cmpl <operand>, <operand>

Jmp(label)

jmp .L<label>

Assembly instruction Output

JmpCC(cond_code, label)

j<cond_code> .L<label>

SetCC(cond_code, operand)

set<cond_code> <operand>

Label(label)

.L<label>:

The cmp instruction gets an l suffix to indicate that it operates on 4-byte values. Conditional set instructions don’t

take a suffix to indicate the operand size, because they support only 1-byte operands. Jumps and labels also don’t
use operand size suffixes, since they don’t take operands. However, conditional jump and set instructions do need
suffixes to indicate what condition they test. Table 4-9 gives the corresponding suffix for each condition code.

Table 4-9: Instruction Suffixes for Condition Codes

Condition code Instruction suffix

E e

NE ne

L l

LE le

G g

GE ge

Finally, Table 4-10 gives the 1-byte and 4-byte aliases for each register. The 4-byte aliases are the same as in the
previous chapter; the new 1-byte aliases are bolded.

Table 4-10: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 4-byte %eax

1-byte %al

Reg(DX) 4-byte %edx

1-byte %dl

Reg(R10) 4-byte %r10d

1-byte %r10b

Reg(R11) 4-byte %r11d

1-byte %r11b

Emit the 1-byte names for registers when they appear in SetCC and the 4-byte names anywhere else.

TEST THE WHOLE COMPILER

To check that you’re compiling every test program correctly, run:

$./test_compiler /path/to/your_compiler --chapter 4

Once all the tests pass, you’re ready to move on to the next chapter.

Summary

Your compiler can now handle relational and logical operators. In this chapter, you added conditional jumps to
TACKY to support short-circuiting operators, and you learned about several new assembly instructions. You also
learned how the CPU keeps track of the current instruction and records the results of comparisons. The new
TACKY and assembly instructions you introduced in this chapter will eventually help you implement complex
control structures like if statements and loops. But first, you’ll implement one of the most essential features of C:

variables!

Additional Resources

For more in-depth discussions of undefined behavior, see these blog posts:

“A Guide to Undefined Behavior in C and C++, Part 1” by John Regehr is a good overview of what undefined
behavior means in the C standard and how it impacts compiler design (https://blog.regehr.org/archives/213).
“With Undefined Behavior, Anything Is Possible” by Raph Levien explores some sources of undefined behavior
in C and the history of how it got into the standard to begin with (https://raphlinus.github.io/programming
/rust/2018/08/17/undefined-behavior.html).

https://blog.regehr.org/archives/213
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

Description

5

LOCAL VARIABLES

Up to this point, you’ve been able to compile only programs that return constant
expressions. In this chapter, you’ll implement local variables, which will let you compile far
more interesting programs. Your compiler will need to support a more expressive grammar
so it can parse C programs that declare, assign values to, and refer to variables. It will also
need to contend with the ways that variables can be declared and used incorrectly. To catch
these potential errors, you’ll add a semantic analysis stage, which is bolded in the diagram
at the beginning of this chapter. This stage validates that variables are not declared
multiple times in the same scope or used before they’re declared. It also assigns each
variable a unique identifier that allows you to safely refer to it in TACKY.

Luckily, the TACKY and assembly IRs in your compiler already support variables, since they use temporary
variables to store intermediate results. That means you won’t have to change anything in your compiler after
TACKY generation. Before jumping into the compiler passes, let’s define the language features we need to
support.

Variables, Declarations, and Assignment

For variables to be even remotely useful, we’ll need to implement a few new language features. First of all, we
need to support variable declarations. Every local variable in C must be declared before it can be used. A variable
declaration consists of the variable’s type, its name, and an optional expression, called an initializer, that specifies
its initial value. Here’s a declaration with an initializer:

int a = 2 * 3;

Here’s a declaration without one:

int b;

Second, we must support using a variable’s value in an expression, like b + 1. Just like an integer constant, a

variable is a complete expression on its own but can also appear in more complex logical and arithmetic

expressions.

Finally, we need to support variable assignment. In C, you update a variable using the assignment operator (=).

Variable assignment in C is an expression, like addition, subtraction, and so forth. This means it evaluates to some
result, which you can use in a return statement or as part of a larger expression. The result of an assignment

expression is the updated value of the destination variable. For example, the expression 2 * (a = 5) evaluates to

10. First, you assign the value 5 to the variable a, then you multiply the new value of a by 2. Because assignment

is an expression, you can perform multiple assignments at once in an expression like a = b = c. Unlike other binary

operations we’ve seen so far, assignment is right-associative, so a = b = c is equivalent to a = (b = c). To evaluate

this expression, you first perform the assignment b = c. Then, you assign the result of that expression, which is

the new value of b, to a.

Variable assignment is the first expression we’ve encountered that has a side effect. That means it doesn’t just
reduce to a value; it also has some impact on the execution environment. In 2 * (a = 5), the subexpression a =

5 has a value (5), and it also has a side effect (updating a). Most of the time, we care only about the side effect of

a variable assignment, not the resulting value.

An action counts as a side effect only if it’s visible outside of the language construct in question. For example,
updating a local variable is a side effect of an assignment expression because the variable’s new value is visible
outside of that expression. But it’s not a side effect of the function that contains the assignment expression,
because the effect isn’t visible outside of that function. Updating a global variable, on the other hand, would be a
side effect of the expression and the function.

Since we’re implementing expressions with side effects, it also makes sense to add support for expression
statements, which evaluate an expression but don’t use the result. Statements that assign to variables, like

foo = 3 * 3;

are expression statements. This expression has the side effect of assigning the value 9 to foo. The result of the

whole expression is also the value 9, but this result isn’t used anywhere; only the side effect of updating foo

affects the program.

You can also have expression statements with no side effect at all:

1 + a * 2;

You don’t typically see expression statements without side effects, because they’re completely useless, but they’re
perfectly valid.

Any expression can appear on the right side of the = operator, but only some expressions can appear on the left

side. It makes sense to assign values to variables, array elements, and struct members:

x = 3;
array[2] = 100;
my_struct.member = x * 2;

But it doesn’t make sense to assign values to constants or the results of logical or arithmetic expressions:

4 = 5;
foo && bar = 6;
a - 5 = b;

Expressions that can appear on the left side of an assignment are called lvalues. In this chapter, the only lvalues
we’ll handle are variables. You’ll learn about more complex lvalues in Part II.

UNDEFINED BEHAVIOR ALERT!

Local variables introduce new opportunities for undefined behavior, which you learned about in Chapter 4. For
example, with a few exceptions, using the value of an uninitialized variable leads to undefined behavior. Consider
the following function:

int foo(void) {
 int a;
 return a;
}

It’s possible that this function will allocate stack space for a without initializing it, then return whatever value

happens to already be in that uninitialized memory. In this case, although the return value of foo will be

unpredictable, the rest of the program will behave reasonably. But because foo’s behavior is undefined, it’s also

possible that it will do something completely different; calling foo could crash the program or even make other

functions misbehave later on.

Let’s look at a subtler example with two unsequenced variable assignments:

int main(void) {
 int a;
 (a = 4) + (a = 5);
 return a;
}

Remember that the operands of a binary operator like + are unsequenced; they can be evaluated in any order. It

might look like this program has two possible behaviors: it could return either 4 or 5. But performing multiple

unsequenced assignments to the same variable is undefined behavior, so there are no restrictions on how this
program might behave. In practice, it probably will return 4 or 5, but that isn’t guaranteed.

Similarly, the behavior is undefined if you use a variable’s value and assign to it in unsequenced expressions, like
so:

int main(void) {
 int a = 0;
 return (a = 1) + a;
}

These examples aren’t an exhaustive overview of every possible undefined behavior involving local variables, but
they illustrate how problems that appear to affect one small part of a program can make the entire program’s
behavior undefined.

Now that you understand the language features you’re going to add in this chapter, let’s extend the compiler.

The Lexer

You’ll add one new token in this chapter:

= An equal sign, the assignment operator

You don’t need a new token to represent variable names. The lexer already recognizes identifiers, like the function
name main, and variable names are just identifiers. We won’t distinguish between function names and variable

names until the parsing stage.

TEST THE LEXER

To test the lexer, run:

$./test_compiler /path/to/your_compiler --chapter 5 --stage lex

Your lexer should succeed on all of this chapter’s test cases.

The Parser

As usual, we’ll update the AST and grammar to support this chapter’s new language constructs. We’ll also update
our precedence climbing code to correctly parse assignment expressions.

The Updated AST and Grammar

Let’s start by extending our AST definition to support using, declaring, and assigning to variables. To support using
variables in expressions, we’ll add a Var constructor for the exp AST node. Since variable assignment is also an

expression, we’ll add an Assignment constructor for exp too. Listing 5-1 shows the updated definition of exp.

exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)

Listing 5-1: The definition for the exp AST node, including Var and Assignment

A Var node holds the variable name. An Assignment consists of two parts: the lvalue being updated and the

expression we’re assigning to that lvalue. When we parse the program, we’ll allow any expression on the left-hand
side of an assignment. In the semantic analysis stage, we’ll make sure that expression is a valid lvalue. We
validate lvalues during semantic analysis, rather than during parsing, because we’ll need to support more complex
lvalues in later chapters.

Next, we’ll extend the statement AST node to support expression statements. We’ll add a new Expression

constructor, which takes a single exp node as an argument. We’ll also add a Null constructor to represent null

statements, which are expression statements without the expression:

statement = Return(exp) | Expression(exp) | Null

A null statement has no content; it’s just a semicolon. It’s a placeholder for when the grammar requires a
statement, but you don’t want that statement to do anything. Listing 5-2, which is taken from section 6.8.3,
paragraph 5, of the C standard, illustrates why you might need a null statement.

char *s;
/* ... */
while (❶ *s++ != '\0')
 ❷ ;

Listing 5-2: An example of a null statement from the C standard

In this example, the while loop finds the end of a null-terminated string by iterating over each character until it

reaches the null byte. The loop body doesn’t need to do anything, because all the work happens in the controlling
expression ❶, but omitting the loop body completely would be syntactically invalid. Instead, you can use a null
statement ❷. Null statements don’t really have anything to do with local variables, but we’ll implement them here
because they’re technically a kind of expression statement. (They’re also easy to implement.)

We’ll need an AST node to represent variable declarations too:

declaration = Declaration(identifier name, exp? init)

A declaration consists of a name and an optional initializer. (The question mark in exp? means that field is

optional.) We’ll include type information for declarations in Part II, but we don’t need it yet because int is the

only possible type.

Declarations are a separate AST node, not another kind of statement, because declarations aren’t statements!

Conceptually, the difference is that statements are executed when the program runs, whereas declarations simply
tell the compiler that some identifier exists and can be used later. This distinction will become obvious during
TACKY generation: we’ll handle declarations with initializers like normal variable assignments, but declarations
without initializers will just disappear.

The more concrete difference, from the parser’s perspective, is that there are parts of a program where a
statement can appear but a declaration can’t. For example, the body of an if statement is always another

statement:

if (a == 2)
 return 4;

It can’t be a declaration, because declarations aren’t statements. So, this is invalid:

if (a == 2)
 int x = 0;

It might be surprising to hear that an if body is a single statement, since an if body often appears to be a list of

statements and declarations, like this:

if (a == 2) {
 int x = 0;
 return x;
}

But a list of statements and declarations wrapped in braces is actually a single statement, called a compound
statement. We’ll implement compound statements in Chapter 7; for now, the key point is that we need to
distinguish between statements and declarations in the AST.

Finally, we need to change how we define a function body so that we can parse functions that contain multiple
declarations and statements, like Listing 5-3.

int main(void) {
 int a;
 a = 2;
 return a * 2;
}

Listing 5-3: A program with a declaration and multiple statements

Up until this point, we’ve defined a function body as a single statement:

function_definition = Function(identifier name, statement body)

Now, though, we need to define it as a list of statements and declarations, which are collectively called block
items. We’ll add a new AST node to represent block items:

block_item = S(statement) | D(declaration)

Then we can represent a function body as a list of block items:

function_definition = Function(identifier name, block_item* body)

The asterisk here indicates that body is a list. Putting it all together, Listing 5-4 shows the new AST definition, with

this chapter’s additions bolded.

program = Program(function_definition)
function_definition = Function(identifier name, block_item* body)
block_item = S(statement) | D(declaration)
declaration = Declaration(identifier name, exp? init)
statement = Return(exp) | Expression(exp) | Null
exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)

unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 5-4: The abstract syntax tree with variables, assignment expressions, and expression statements

Listing 5-5 shows the updated grammar.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<declaration> ::= "int" <identifier> ["=" <exp>] ";"
<statement> ::= "return" <exp> ";" | <exp> ";" | ";"
<exp> ::= <factor> | <exp> <binop> <exp>
<factor> ::= <int> | <identifier> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 5-5: The grammar with variables, assignment expressions, and expression statements

Listing 5-5 introduces a couple of new bits of EBNF notation. Wrapping a sequence of symbols in braces indicates
that it can be repeated zero or more times, so {<block-item>} indicates a list of <block-item> symbols. Note

the difference between unquoted braces, which indicate repetition, and quoted braces, which indicate literal {and}

tokens. In the rule for <function>, the expression "{" {<block-item>} "}" indicates a {token, then a list of

<block-item> symbols, then a} token. The pseudocode in Listing 5-6 shows how to parse the list of block items

in a function definition.

parse_function_definition(tokens):
 // parse everything up through the open brace as before...
 --snip--
 function_body = []
 while peek(tokens) != "}":
 next_block_item = parse_block_item(tokens)
 function_body.append(next_block_item)
 take_token(tokens)
 return Function(name, function_body)

Listing 5-6: Parsing a list of block items

You keep parsing block items until you see a close brace, which indicates the end of the function body. You can
then remove that brace from the input stream and finish processing the function definition.

Just as braces indicate repetition in EBNF notation, wrapping a sequence of symbols in square brackets indicates
that it’s optional. We represent the optional initializer in declarations with the expression ["=" <exp>]. To handle

this optional construct, your declaration parsing code should check whether the identifier in the grammar rule is
followed by an = token, which means the initializer is present, or a ; token, which means the initializer is absent.

While parsing <block-item>, you need a way to tell whether the current block item is a statement or a

declaration. To do this, peek at the first token; if it’s the int keyword, it’s a declaration, and otherwise it’s a

statement.

Listing 5-5 also includes a new production rule for the <factor> symbol, corresponding to the new Var

constructor, and a new binary operator, =, to represent variable assignment. Even though we won’t represent

variable assignment with the Binary AST node, it looks just like any other binary operator in the grammar. This

lets us parse variable assignments with the precedence climbing algorithm we’ve already implemented, although it
will require a few tweaks.

An Improved Precedence Climbing Algorithm

There’s just one problem with using our current precedence climbing code to parse assignment expressions: the =

operator is right-associative, but our code can handle only left-associative operators. To remind ourselves why,
let’s look at the precedence climbing pseudocode again. We saw the full version of this algorithm in Listing 3-7; it’s
reproduced here as Listing 5-7.

parse_exp(tokens, min_prec):
 left = parse_factor(tokens)
 next_token = peek(tokens)
 while next_token is a binary operator and precedence(next_token) >= min_prec:
 operator = parse_binop(tokens)
 right = parse_exp(tokens, ❶ precedence(next_token) + 1)
 left = Binary(operator, left, right)
 next_token = peek(tokens)
 return left

Listing 5-7: Parsing left-associative operators with precedence climbing

When we make recursive calls to parse_exp, we set the minimum precedence higher than the precedence of the

current operator ❶. So, if next_token is + and tokens is b + 4, a recursive call to parse_exp will return only b,

because + won’t meet the minimum precedence. That’s how we get left-associative expressions like (left + b) +

4.

If next_token is right-associative, however, we shouldn’t stop if we hit that same token in the recursive call to

parse_exp; we should include it in the right-hand expression. To do that, we need to set the minimum

precedence on the right-hand side equal to the precedence of the current token. In other words, when handling a
right-associative token like =, the recursive call should be:

right = parse_exp(tokens, precedence(next_token))

Suppose you’re parsing a = b = c. You’ll parse the left-hand side into the factor a, then call parse_exp recursively

to handle b = c. If the minimum precedence in this recursive call were precedence("=") + 1, it would parse only

the next factor, b. But if the minimum precedence is precedence("="), it will parse the entire assignment,

returning b = c as the right-hand side of the expression. The final result will be a = (b = c), which is exactly what

we want.

The only other difference between parsing variable assignment and other binary expressions is that we need to
construct an Assignment AST node instead of a Binary node. Listing 5-8 gives the updated pseudocode for

precedence climbing with these adjustments.

parse_exp(tokens, min_prec):
 left = parse_factor(tokens)
 next_token = peek(tokens)
 while next_token is a binary operator and precedence(next_token) >= min_prec:
 if next_token is "=":
 take_token(tokens) // remove "=" from list of tokens
 right = parse_exp(tokens, precedence(next_token))
 left = Assignment(left, right)
 else:
 operator = parse_binop(tokens)
 right = parse_exp(tokens, precedence(next_token) + 1)
 left = Binary(operator, left, right)
 next_token = peek(tokens)
 return left

Listing 5-8: The extended precedence climbing algorithm

Finally, we need to add = to our precedence table. Table 5-1 lists the precedence values I’m using for all the binary

operators, with the new operator bolded. It has lower precedence than any other operator we’ve implemented so
far.

Table 5-1: Precedence Values of Binary Operators

Operator Precedence

* 50

/ 50

% 50

+ 45

- 45

< 35

<= 35

> 35

>= 35

== 30

!= 30

&& 10

|| 5

= 1

At this point, you know how to build a valid AST for every program you’ll encounter in this chapter; you’re ready to
update the parser and test it out.

TEST THE PARSER

To test this chapter’s changes to the parser, run:

$./test_compiler /path/to/your_compiler --chapter 5 --stage parse

The parser should successfully parse every test case in tests/chapter_5/valid and
tests/chapter_5/invalid_semantics. It should raise an error for every test case in tests/chapter_5/invalid_parse.

Semantic Analysis

Up to this point, the only errors we’ve had to worry about were syntax errors. If we could parse a program, we
knew the remaining compiler passes would succeed. Now, a program can be syntactically correct but semantically
invalid; in other words, it might just not make sense. For example, a program could assign a value to an
expression that isn’t assignable:

2 = a * 3; // ERROR: can't assign a value to a constant

Or it could declare the same variable twice in the same scope:

int a = 3;
int a; // ERROR: a has already been declared!

Or it could try to use a variable before it’s been declared:

int main(void) {
 a = 4; // ERROR: a has not been declared yet!
 return a;
}

All of these examples use valid syntax, but you should get an error if you try to compile them. The semantic
analysis stage detects this kind of error. This stage will eventually include several different passes that validate
different aspects of the program. In this chapter, we’ll add our first semantic analysis pass, variable resolution.

The variable resolution pass will track which variables are in scope throughout the program and resolve each
reference to a variable by finding the corresponding declaration. It will report an error if a program declares the
same variable more than once or uses a variable that hasn’t been declared. It will also rename each local variable
with a globally unique identifier. For example, it might convert the program

int main(void) {
 int a = 4;
 int b = a + 1;
 a = b - 5;

 return a + b;
}

into something like this:

int main(void) {
 int a0 = 4;
 int b1 = a0 + 1;
 a0 = b1 - 5;
 return a0 + b1;
}

(Of course, this pass actually transforms ASTs rather than source files, but I’m presenting these examples as C
source code to make them more readable.)

This transformation may not seem too helpful—the variable names a and b were already unique—but it will be

essential once we introduce multiple variable scopes, because different variables in different scopes can have the
same name. For example, we might transform the program

int main(void) {
 int a = 2;
 if (a < 5) {
 int a = 7;
 return a;
 }
 return a;
}

into:

int main(void) {
 int a0 = 2;
 if (a0 < 5) {
 int a1 = 7;
 return a1;
 }
 return a0;
}

This makes it clear that a0 and a1 are two different variables, which will simplify later compiler stages.

Variable Resolution

Now we’ll write the variable resolution pass. During this pass, we’ll construct a map from the user-defined variable
names to the unique names we’ll use in later stages. We’ll process block items in order, checking for errors and
replacing variable names as we go. When we encounter a variable declaration, we’ll add a new entry mapping that
variable name to a unique name that we generate. Then, when we see an expression that uses a variable, we’ll
replace the variable name with the corresponding unique name from the map. The pseudocode in Listing 5-9
demonstrates how to resolve a variable declaration.

resolve_declaration(Declaration(name, init), variable_map):
 ❶ if name is in variable_map:
 fail("Duplicate variable declaration!")
 unique_name = make_temporary()
 ❷ variable_map.add(name, unique_name)
 ❸ if init is not null:
 init = resolve_exp(init, variable_map)
 ❹ return Declaration(unique_name, init)

Listing 5-9: Resolving a variable declaration

First, we check whether the variable being declared is already present in the variable map ❶. If it is, that means it
was declared earlier in the function, so this is a duplicate declaration. In that case, we throw an error. Next, we
associate the user-defined variable name with a unique autogenerated name in the variable map ❷.

After we update the variable map, we process the declaration initializer, if there is one ❸. The call to
resolve_exp returns a new copy of the initializer with any variables renamed, throwing an error if the initializer

uses an undeclared variable. Finally, we return a copy of the Declaration node ❹ that uses the new

autogenerated name instead of the old user-defined one, along with the new initializer we got from resolve_exp.

The identifiers you generate in resolve_declaration must not conflict with the names of temporary TACKY

variables. If you’re using a global counter to generate unique identifiers, use the same counter across both the
semantic analysis and TACKY generation stages.

These identifiers must not conflict with the names of functions or global variables, either. (In Chapter 10, you’ll see
that global variables keep their original names, like functions, instead of being renamed, like local variables.) You
can rely on the usual trick of generating identifiers that wouldn’t be syntactically valid in C. I recommend including
a variable’s original name in its autogenerated name to help with debugging; for example, you might rename a to

a.0 and b to b.1.

NOTE

You might have noticed that the examples in the previous section used autogenerated identifiers that are
syntactically valid in C, like a0 and b1, because those examples were presented as C source code. The naming
scheme in those examples wouldn’t work in practice, because the renamed variables could conflict with function
names and with each other. For example, two local variables named a and a1 could both be renamed a12.

USING VARIABLES IN THEIR OWN INITIALIZERS

Because Listing 5-9 updates the variable map before processing the initializer, it will happily process an initializer
that uses the same variable it initializes. Take this example:

int foo = foo + 1;

When we process the initializer, foo + 1, the variable foo is already in the map, so the variable resolution pass

won’t complain. This is consistent with the C standard; a variable really is in scope in its own initializer. Still, this
declaration isn’t exactly legal. It will result in undefined behavior, because foo is uninitialized when it’s used in foo

+ 1. (Remember that compilers don’t need to detect undefined behavior, so it’s okay not to report an error here.)

In other cases, using a variable in its own initializer makes sense. For example, in

unsigned int foo = sizeof foo;

we’re still using foo before initializing it, but we consider only foo’s size, not its value. Annex J of the C standard

says we get undefined behavior when “an lvalue … is used in a context that requires the value of the designated
object, but the object is uninitialized” (emphasis added). Since sizeof doesn’t require foo’s value, there’s no

undefined behavior in this declaration.

To resolve a return statement or expression statement, we just process the inner expression, as Listing 5-10

illustrates.

resolve_statement(statement, variable_map):
 match statement with
 | Return(e) -> return Return(resolve_exp(e, variable_map))
 | Expression(e) -> return Expression(resolve_exp(e, variable_map))
 | Null -> return Null

Listing 5-10: Resolving a statement

When we resolve an expression, we check that all the variable uses and assignments in that expression are valid.
Listing 5-11 shows how to do that.

resolve_exp(e, variable_map):
 match e with
 | Assignment(left, right) ->
 if left is not a Var node:
 fail("Invalid lvalue!")
 return Assignment(❶ resolve_exp(left, variable_map), ❷ resolve_exp(right, variabl
 | Var(v) ->
 if v is in variable_map:
 return Var(❸ variable_map.get(v))
 else:
 fail("Undeclared variable!")
 | --snip--

Listing 5-11: Resolving an expression

When we encounter an Assignment expression, we check that the left side is a valid lvalue; for now, that means

it must be a Var. We then recursively resolve the left ❶ and right ❷ subexpressions. When we encounter a Var,

we replace the variable name with the unique identifier from the variable map ❸. If it’s not in the variable map,
that means it hasn’t been declared yet, so we throw an error. Since we process both sides of an assignment
recursively with resolve_exp, the Var case in resolve_exp handles variables on the left side of assignment

expressions too.

To handle other kinds of expressions, we process any subexpressions recursively with resolve_exp. Ultimately,

the variable resolution pass should return a complete AST that uses autogenerated instead of user-defined
variable names.

THE TROUBLE WITH TYPEDEF

The way we’ve structured our compiler has one major limitation: we first parse the entire program, and then
resolve variables. This approach works well for the subset of C we’ll implement in this book, but to implement the
whole language, you need to resolve identifiers while you parse the program. In particular, our approach can’t
handle typedef, which lets you declare names for arbitrary types:

typedef int foo;

The problem is that some statements can be parsed one way if an identifier like foo refers to a type and another

way if it refers to a function or variable. Here’s a simple illustration:

return (foo) * x;

If foo is the name of a type, this statement dereferences x, casts the result to type foo, and then returns it. But

if foo is a variable, this statement instead multiplies foo by x and returns the result. To make matters worse, type

names follow the same scoping rules as variable names. So, just as the same identifier might refer to two different
variables at different points in a program, it might refer to a variable at one point and a type at a different point.
To figure out whether a given identifier refers to a type or a variable, you need to resolve identifiers as you parse
the program. Since the correct way to parse a C construct might depend on other parts of the program you’ve
already parsed, we say that C has a context-sensitive grammar. (By contrast, a language has a context-free
grammar if you can apply every production rule in isolation, without worrying about anything that came before it.)

Production C compilers generally deal with typedef by maintaining a symbol table (similar to our variable map)

while they parse the program. Some of them feed the information from the symbol table back into the lexer, which
then interprets type names as a different kind of token from other identifiers; this approach is called the lexer
hack. Others use the same token type for all identifiers and do all the work of distinguishing between type names
and other identifiers in the parser. If you want to implement typedef on your own, I recommend the latter

approach.

Here’s a quick sketch of how you could adapt our implementation to support typedef. First, you’ll need to move

all the variable resolution logic into the parser. You should pass around a variable map as you parse the program.
Your parser should add declarations to the map and rename variables as it goes. It should also validate that
variables are declared before they’re used, that there are no conflicting declarations, and so on. Once you’re ready
to add typedef, you can track type names in this map too, recording whether each entry in the map refers to a

type or some other entity. You might want to convert type names to unique IDs during parsing, and then replace
these names with the corresponding types in a separate pass. Alternatively, you could replace type names with the
corresponding types right away as you parse the program. Either way, your parser will have enough information to
distinguish types from other identifiers. The other semantic analysis passes that we’ll add in later chapters should
remain separate from the parser.

If you decide to implement typedef yourself, I recommend reading Eli Bendersky’s blog post “The Context

Sensitivity of C’s Grammar, Revisited,” which walks through some particularly ugly edge cases that you’ll need to
handle (https://eli.thegreenplace.net/2011/05/02/the-context-sensitivity-of-cs-grammar-revisited).

The --validate Option

To test out the new compiler pass, you’ll need to add a --validate command line option to your compiler driver.

This option should run your compiler through the semantic analysis stage, stopping before TACKY generation. In
later chapters, after you’ve updated the semantic analysis stage to include multiple passes, this option should
direct your compiler to run all of them.

https://eli.thegreenplace.net/2011/05/02/the-context-sensitivity-of-cs-grammar-revisited

Like the existing options to run the compiler up to a specific stage, this new option shouldn’t produce any output
files. As usual, it should return an exit code of 0 if compilation succeeds and a nonzero exit code if it fails.

TEST THE VARIABLE RESOLUTION PASS

To test out this pass, run:

$./test_compiler /path/to/your_compiler --chapter 5 --stage validate

This pass should reject every test case in tests/chapter_5/invalid_semantics and accept every test case in
tests/chapter_5/valid. You may also want to write your own unit tests for this pass to verify that it updates
variable names correctly.

TACKY Generation

We don’t need to modify the TACKY IR at all in this chapter. We can already refer to variables with the TACKY Var

constructor and assign values to them with the Copy instruction. The TACKY IR doesn’t include variable

declarations, because it doesn’t need them. We got all the information we needed out of variable declarations
during semantic analysis, and now we can discard them.

Although TACKY itself doesn’t need to change, the TACKY generation pass does: we need to extend this pass to
handle the latest additions to the AST. First, we’ll deal with the two new kinds of expressions we added in this
chapter. Next, we’ll handle the other additions to the AST, including expression statements and declarations.

Variable and Assignment Expressions

We’ll convert each Var in the AST to a Var in TACKY, keeping the same identifier. Because we autogenerated the

identifier, we can guarantee that it won’t conflict with any other identifiers in the TACKY program. To handle an
Assignment AST node, we’ll emit the instructions to evaluate the right-hand side, then emit a Copy instruction to

copy the result to the left-hand side. Listing 5-12 shows how to handle both expressions.

emit_tacky(e, instructions):
 match e with
 | --snip--
 | Var(v) -> return Var(v)
 | Assignment(Var(v), rhs) ->
 result = emit_tacky(rhs, instructions)
 instructions.append(Copy(result, Var(v)))
 return Var(v)

Listing 5-12: Converting variable and assignment expressions to TACKY

This is an inefficient way to handle variable assignments; we’ll often end up evaluating the right-hand side, storing
the result in a temporary variable, and then copying it into variable v, instead of storing the result directly in v and

avoiding the temporary variable entirely. The optimizations we implement in Part III will remove some of these
superfluous copies.

Declarations, Statements, and Function Bodies

Now we’ll handle declarations. As I mentioned earlier, we can discard variable declarations at this stage; in TACKY,
you don’t need to declare variables before using them. But we do need to emit TACKY to initialize variables. If a
declaration includes an initializer, we’ll handle it like a normal variable assignment. If a declaration doesn’t have an
initializer, we won’t emit any TACKY at all.

We also need to handle expression statements and null statements. To convert an expression statement to TACKY,
we’ll just process the inner expression. This will return a new temporary variable that holds the result of the
expression, but we won’t use that variable again during TACKY generation. We won’t emit any TACKY instructions
for a null statement.

Finally, we’ll deal with the fact that a function contains multiple block items instead of a single statement. We’ll
process the block items in the function body in order, emitting TACKY for each one. Suppose we’re compiling the C
function in Listing 5-13.

int main(void) {
 int b;
 int a = 10 + 1;
 b = a * 2;
 return b;
}

Listing 5-13: A C function with variable declarations and an assignment expression

Let’s assume that we renamed a and b to a.1 and b.0 during variable resolution, and that we use the naming

scheme tmp.n for all temporary variables, where n is the value of a global counter. Then, we’ll generate the

TACKY instructions shown in Listing 5-14 for the function body. (This listing, like Listing 4-6 in the previous
chapter, uses the notation dst = src for Copy instructions, instead of Copy(src, dst). Similarly, it uses notation

like dst = src1 + src2 for Binary instructions, instead of Binary(Add, src1, src2, dst).)

tmp.2 = 10 + 1
a.1 = tmp.2
tmp.3 = a.1 * 2

b.0 = tmp.3
Return(b.0)

Listing 5-14: Implementing Listing 5-13 in TACKY

We won’t generate any TACKY for the declaration of b in Listing 5-13, because it doesn’t include an initializer. We’ll

convert the declaration of a into the first two instructions of Listing 5-14, which calculate 10 + 1 and copy the

result to a. We’ll convert the expression statement b = a * 2; to the next two instructions, and we’ll convert the

return statement to the final Return instruction.

At this point, you know how to convert the whole AST to TACKY. But we’re not quite done; we have one last edge
case to consider.

Functions with No return Statement

Since our AST now supports more than one kind of statement, we might encounter functions without return

statements, like Listing 5-15.

int main(void) {
 int a = 4;
 a = 0;
}

Listing 5-15: A main function with no return statement

What happens if you call this function? The C standard gives one answer for main and a different answer for any

other function. (I’m ignoring functions with return type void, which don’t return a value, because we haven’t

implemented them yet.) Section 5.1.2.2.3 says that “reaching the} that terminates the main function returns a

value of 0,” so the code in Listing 5-15 is equivalent to Listing 5-16.

int main(void) {
 int a = 4;
 a = 0;
 return 0;
}

Listing 5-16: A main function that returns 0

The situation is more complicated for other functions. According to section 6.9.1, paragraph 12, “Unless otherwise
specified, if the} that terminates a function is reached, and the value of the function call is used by the caller, the

behavior is undefined.” This implicitly covers two possible cases. In the first case, shown in Listing 5-17, the caller
tries to use the function’s return value.

#include <stdio.h>

int foo(void) {
 printf("I'm living on the edge, baby!");
 // no return statement
}

int main(void) {
 return foo(); // try to use return value from foo
}

Listing 5-17: Trying to use a function’s return value when it didn’t return anything

This results in undefined behavior, which means all bets are off; the standard makes no guarantees about what
will happen. In the second case, shown in Listing 5-18, we call the function but don’t use its return value.

#include <stdio.h>

int foo(void) {
 printf("I'm living on the edge, baby!");
 // no return statement
}

int main(void) {
 foo();
 return 0;
}

Listing 5-18: Calling a function without using its return value

There’s no undefined behavior in this program; it’s guaranteed to print I'm living on the edge, baby! and

then exit with a status code of 0. When we compile a function like foo, we don’t know whether any of its callers

use its return value, so we have to assume it’s part of a program like Listing 5-18. In particular, we need to restore
the caller’s stack frame and return control to the caller at the end of foo. Because we aren’t returning any

particular value, we can set EAX to whatever we like, or not set it at all.

The easiest way to handle both cases is to add one extra TACKY instruction, Return(Constant(0)), to the end

of every function body. This gives us the correct behavior for main and for programs like Listing 5-18. If a function

already ends with a return statement, this extra instruction will never run, so it won’t change the program’s

behavior. In Part III, you’ll learn how to eliminate this extra Return instruction when it’s not needed.

Once you’ve extended the TACKY generation stage, you’re ready to test the whole compiler! Because we didn’t
change the TACKY IR, we don’t need to change the assembly generation or code emission stages, either.

TEST THE WHOLE COMPILER

To test out your compiler, run:

$./test_compiler /path/to/your_compiler --chapter 5

Once these tests pass, you can either implement a couple of related extra credit features or go straight to the next
chapter.

Extra Credit: Compound Assignment, Increment, and Decrement

Now that your compiler supports the simple assignment operator, =, you have the option of implementing several

compound assignment operators: +=, -=, *=, /=, and %=. If you added the bitwise binary operators in Chapter 3,

you should add the corresponding compound assignment operators here as well: &=, |=, ^=, <<=, and >>=.

You can also add the increment and decrement operators, ++ and --. Each of these operators can be used in two

distinct ways: as a prefix operator in an expression like ++a, or as a postfix operator in an expression like a++.

When you use ++ or -- as a prefix operator, it increments or decrements its operand and evaluates to its new

value. A postfix ++ or -- operator also increments or decrements its operand, but it evaluates to the operand’s

original value. As with the other language constructs in this chapter, you can implement the compound
assignment, increment, and decrement operators without changing any part of your compiler after TACKY
generation.

To include test cases for the increment and decrement operators, use the --increment flag when you run the

test suite. To include the test cases for compound assignment, use the --compound flag. The test script will run

the test cases for bitwise compound assignment operators, like |=, only if you use both the --compound and --

bitwise flags.

You can test all the extra credit features at once using the --extra-credit flag. The command

$./test_compiler /path/to/your_compiler --chapter 5 --extra-credit

is equivalent to:

$./test_compiler /path/to/your_compiler --chapter 5 --bitwise --compound --increment

When we introduce more extra credit features in later chapters, the --extra-credit flag will cover those too.

Summary

This chapter was a milestone in a few ways: you added a new kind of statement, and you implemented your first
language construct that has a side effect. You also implemented a semantic analysis stage to catch new kinds of
errors in the programs you compile. In later chapters, you’ll keep expanding the semantic analysis stage to detect
more errors and gather additional information that you’ll need later in compilation. Next, you’ll implement your
first control-flow constructs: if statements and conditional expressions.

Description

6

IF STATEMENTS AND CONDITIONAL EXPRESSIONS

In the last chapter, you learned how to compile programs that execute a list of statements.
But most C programs have a more complicated execution path; they often need to decide
what statements to execute at runtime based on the current state of the program. The
order in which a program executes statements is its control flow, and the language
constructs that let you change a program’s control flow are called control structures.

In this chapter, you’ll implement your first control structure: if statements. You’ll also

implement conditional expressions. Like if statements, conditional expressions let you

control what code to run. For example, the conditional expression (a == 0) ? 3 : 4

evaluates to 3 if a is equal to 0 and 4 otherwise. We laid a lot of the groundwork for if

statements and conditional expressions when we implemented the short-circuiting && and || operators in Chapter

4. We already have TACKY constructs that let us conditionally run or skip over code, so we don’t need to change
any stages after TACKY generation. Let’s get started!

The Lexer

You’ll add four tokens in this chapter:

if A keyword indicating the start of an if statement

else A keyword indicating the start of the else clause in an if statement

? A question mark, the delimiter between the first and second operands in a conditional expression

: A colon, the delimiter between the second and third operands in a conditional expression

Once your lexer supports these four tokens, you can test it out.

TEST THE LEXER

To test your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 6 --stage lex

It should be able to process every test case in this chapter without errors.

The Parser

Now we’ll update the parser to support if statements and conditional expressions. Because these are two distinct

language constructs, we’ll handle them one at a time, beginning with if statements.

Parsing if Statements

We’ll start by extending the statement AST node to support if statements. Listing 6-1 gives the updated

definition of this node.

statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Null

Listing 6-1: The definition for the statement AST node, including if statements

The new If constructor takes three arguments. The condition expression, sometimes called the controlling

expression, determines whether the body of the statement is executed. The then statement is the first clause of

the if statement, which executes when the result of condition is nonzero. The second clause, the else

statement, is optional. If it’s present, it executes when the result of condition is 0.

As I mentioned in the previous chapter, each clause in an if statement is itself a single statement. Although it

may look like multiple statements, the body of an if statement like the one in Listing 6-2 is really a single

compound statement.

if (a == 3) {
 a = a + 1;
 int b = a * 4;
 return a && b;
}

Listing 6-2: An if statement whose body is a compound statement

We haven’t implemented compound statements yet, so at this point we can’t compile code like Listing 6-2. Listing
6-3 gives an example of an if statement that we can compile.

if (a == 3)
 return a;
else
 b = 8;

Listing 6-3: An if statement that doesn’t contain any compound statements

We can also compile if statements nested inside other if statements, like Listing 6-4.

if (a)
 if (a > 10)
 return a;
 else
 return 10 - a;

Listing 6-4: An if statement nested inside another if statement

Note that the AST definition in Listing 6-1 doesn’t have an else if construct, because an if statement can have

at most one else clause. An else if clause is really just an else clause that contains another if statement.

Take Listing 6-5 as an example.

if (a > 100)
 return 0;
else if (a > 50)
 return 1;
else
 return 2;

Listing 6-5: An if statement nested inside an else clause

Let’s reformat this in a way that better reflects how it will be parsed:

if (a > 100)
 return 0;
else
 if (a > 50)
 return 1;
 else
 return 2;

The AST for Listing 6-5 will look like this:

If(
 condition=Binary(GreaterThan, Var("a"), Constant(100)),
 then=Return(Constant(0)),
 else=If(
 condition=Binary(GreaterThan, Var("a"), Constant(50)),
 then=Return(Constant(1)),
 else=Return(Constant(2))
)
)

Listing 6-6 shows the changes to the grammar, which exactly mirror the changes to the AST.

<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | ";"

Listing 6-6: The grammar rules for statements, including if statements

We can handle this new production rule with straightforward recursive descent parsing. Interestingly, this rule is
ambiguous, but that ambiguity won’t pose any problems for our parser. Let’s take another look at Listing 6-4:

if (a)
 if (a > 10)
 return a;
 else
 return 10 - a;

There are two ways to parse this listing that both follow our new grammar rule: we could group the else clause

with either the first or the second if statement. In other words, we could parse this listing like this:

if (a) {
 if (a > 10)
 return a;
 else
 return 10 - a;
}

Or we could parse it like this:

if (a) {
 if (a > 10)
 return a;
}
else
 return 10 - a;

The C standard clarifies that the first of these alternatives is correct; an else clause should always be grouped

with the closest if statement. However, the grammar by itself doesn’t tell us which of these options to choose.

This quirk of the grammar is called the dangling else ambiguity, and it can cause problems for parser generators
that automatically convert formal grammars into parsing code.

Luckily, the dangling else ambiguity isn’t an issue for handwritten recursive descent parsers like ours. Whenever
we parse an if statement, we’ll look for an else keyword right after the statement body; if we find one, we’ll go

ahead and parse the else clause. In cases like Listing 6-4, this means that we’ll end up parsing the else clause

as part of the inner if statement, which is the correct behavior.

Go ahead and implement this production rule now; then, we’ll move on to conditional expressions.

Parsing Conditional Expressions

The conditional : ? operator is a ternary operator, which takes three operands. In Listing 6-7, we add this

operator to the exp AST node.

exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)

Listing 6-7: The definition for the exp AST node, including conditional expressions

In Listing 6-8, we add it to the <exp> grammar rule.

<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>

Listing 6-8: The grammar rule for expressions, including conditional expressions

Now we need to figure out its precedence and associativity. It’s not immediately obvious how precedence and
associativity work for a ternary expression. The trick is to think of it as a binary expression where the operator in

the middle is "?" <exp> ":". The “operator” is easy to parse because it’s delimited by ? and : tokens; it just

happens to include an entire subexpression. (You should think of it this way only during parsing, not during later
stages. We can parse this like a binary expression, but we’ll evaluate it completely differently!) This lets us define
the conditional operator’s precedence relative to other binary operators: it has higher precedence than assignment
and lower precedence than everything else. For example, the expression

a = 1 ? 2 : 3

is parsed as

a = (1 ? 2 : 3)

but

a || b ? 2 : 3

is parsed as:

(a || b) ? 2 : 3

The same logic applies for the third operand. We parse

1 ? 2 : 3 || 4

as

1 ? 2 : (3 || 4)

but we parse

1 ? 2 : a = 5

as:

(1 ? 2 : a) = 5

The semantic analysis pass will reject this last expression, since 1 ? 2 : a isn’t a valid lvalue. However, any

expression can appear between the ? and : tokens, even an assignment expression. Those tokens act like

parentheses, delimiting where an expression starts and ends. So, the conditional expression

x ? x = 1 : 2

is equivalent to:

x ? (x = 1) : 2

The same logic applies when you nest one conditional expression inside another, meaning

a ? b ? 1 : 2 : 3

is parsed as:

a ? (b ? 1 : 2) : 3

Next, let’s look at associativity. The conditional operator is right-associative, so

a ? 1 : b ? 2 : 3

is parsed as:

a ? 1 : (b ? 2 : 3)

Since conditional expressions can be parsed like weird binary expressions, we can (almost) handle them with our
existing precedence climbing code. First, we’ll add ? to our precedence table; Table 6-1 lists all our precedence

values.

Table 6-1: Precedence Values of Binary and Ternary Operators

Operator Precedence

* 50

Operator Precedence

/ 50

% 50

+ 45

- 45

< 35

<= 35

> 35

>= 35

== 30

!= 30

&& 10

|| 5

? 3

= 1

We look at only the first token of the ? <exp> : “operator” during precedence climbing, so ? goes in the table

but : doesn’t.

Next, we’ll update our precedence climbing code again. In the previous chapter, we handled assignment as a
special case so we could use the Assignment AST node for it. Now we’ll treat conditional expressions as a special

case too. Listing 6-9 shows the updated precedence climbing pseudocode. Changes from the previous version of
this algorithm, in Listing 5-8, are bolded.

parse_exp(tokens, min_prec):
 left = parse_factor(tokens)
 next_token = peek(tokens)
 while next_token is a binary operator and precedence(next_token) >= min_prec:

 if next_token is "=":
 take_token(tokens) // remove "=" from list of tokens
 right = parse_exp(tokens, precedence(next_token))
 left = Assignment(left, right)
 else if next_token is "?":
 middle = parse_conditional_middle(tokens)
 right = parse_exp(tokens, precedence(next_token))
 left = Conditional(left, middle, right)
 else:
 operator = parse_binop(tokens)
 right = parse_exp(tokens, precedence(next_token) + 1)
 left = Binary(operator, left, right)
 next_token = peek(tokens)
 return left

Listing 6-9: Precedence climbing with support for conditional expressions

The parse_conditional_middle function, which I haven’t included code for here, should just consume the ?

token, then parse an expression (with the minimum precedence reset to 0), then consume the : token. Next, we

parse the third operand the same way we parse the right-hand side of any other expression: by calling parse_exp

recursively. Since the conditional operator is right-associative, like assignment, we set the minimum precedence on
the recursive call to precedence(next_token), not precedence(next_token) + 1. Finally, we construct a

Conditional AST node from our three operands.

Listing 6-10 gives the complete AST definition, with the changes to support if statements and conditional

expressions bolded. These are the same changes we introduced earlier in this section; I’ve pulled them all
together here for easier reference.

program = Program(function_definition)
function_definition = Function(identifier name, block_item* body)
block_item = S(statement) | D(declaration)
declaration = Declaration(identifier name, exp? init)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Null
exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or

 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 6-10: The abstract syntax tree with conditional expressions and if statements

Listing 6-11 shows the corresponding changes to the grammar.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<declaration> ::= "int" <identifier> ["=" <exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <int> | <identifier> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 6-11: The grammar with conditional expressions and if statements

Once you’ve implemented these changes, you’re ready to test your parser.

TEST THE PARSER

Your parser should succeed on every test case in tests/chapter_6/valid and tests/chapter_6/invalid_semantics and
fail on the test cases in tests/chapter_6/invalid_parse. To test the parser, run:

$./test_compiler /path/to/your_compiler --chapter 6 --stage parse

You may want to write additional tests to verify that your parser handles conditional expressions correctly.

Variable Resolution

The changes to this pass are minor. You’ll extend resolve_statement and resolve_exp to handle the new

constructs we added in this chapter, traversing their substatements and subexpressions. That will update variable

names in if statements and conditional expressions in exactly the same way as variables that appear in other

constructs.

TEST THE VARIABLE RESOLUTION PASS

To test the variable resolution pass, run:

$./test_compiler /path/to/your_compiler --chapter 6 --stage validate

This pass should succeed on every test case in tests/chapter_6/valid and fail on every test case in
tests/chapter_6/invalid_semantics.

TACKY Generation

We can implement if statements and conditional expressions with our existing TACKY instructions. We’ll use the

same basic approach here as for the short-circuiting && and || operators in Chapter 4: first we’ll evaluate the

controlling expression, then we’ll use conditional jumps to go to the appropriate clause of the statement or
expression. Let’s implement if statements first.

Converting if Statements to TACKY

A statement of the form if (<condition>) then <statement> should translate to the TACKY in Listing 6-12.

<instructions for condition>

c = <result of condition>
JumpIfZero(c, end)
<instructions for statement>

Label(end)

Listing 6-12: The TACKY for an if statement

That’s it! First, we evaluate the controlling expression, <condition>. If the result is 0, we jump to the end of the

whole if statement. Otherwise, we execute the instructions for <statement>. If the statement also has an else

clause, the resulting TACKY is only a tiny bit more complicated. The statement if (<condition>) then

<statement1> else <statement2> translates to the TACKY in Listing 6-13.

<instructions for condition>

c = <result of condition>
JumpIfZero(c, else_label)

<instructions for statement1>

Jump(end)
Label(else_label)
<instructions for statement2>

Label(end)

Listing 6-13: The TACKY for an if statement with an else clause

Just like in Listing 6-12, we evaluate the controlling expression, then perform a conditional jump if the result is 0.
But instead of jumping to the end of the if statement, in this case we jump to else_label, then execute

<statement2>. If the controlling expression evaluates to a nonzero value, we execute <statement1>, then jump

to the end of the entire statement. We can handle conditional expressions in a similar way; we’ll look at those
next.

Converting Conditional Expressions to TACKY

For conditional expressions, like short-circuiting expressions, the C standard provides guarantees about which
subexpressions are executed and when. To evaluate the expression <condition> ? <clause1> : <clause2>,

you have to evaluate <condition> first, then evaluate either <clause1> or <clause2>, depending on the result

of <condition>. You can’t, for example, evaluate both clauses, then evaluate <condition> to decide which

result to use, since that might produce unexpected side effects. The upshot is that we’ll handle conditional
expressions very similarly to if statements. The only difference is that an expression, unlike a statement,

produces a result that we need to store in the right destination. The expression <condition> ? <e1> : <e2> will

produce the TACKY in Listing 6-14.

<instructions for condition>

c = <result of condition>
JumpIfZero(c, e2_label)
<instructions to calculate e1>

v1 = <result of e1>
result = v1
Jump(end)
Label(e2_label)
<instructions to calculate e2>

v2 = <result of e2>
result = v2
Label(end)

Listing 6-14: The TACKY for a conditional expression

This looks almost exactly like the TACKY in Listing 6-13. The only difference is that we end each clause by copying
the result into the temporary result variable.

As usual, all the labels and temporary variable names you generate while handling if statements and conditional

expressions should be unique. Once your TACKY generation stage is working, you’ll be able to compile this
chapter’s test cases.

TEST THE WHOLE COMPILER

You’re now ready to test out your whole compiler. To compile and execute this chapter’s test cases, run:

$./test_compiler /path/to/your_compiler --chapter 6

Extra Credit: Labeled Statements and goto

Now that you have some practice adding new kinds of statements, you have the option to implement goto, the

statement everyone loves to hate. You’ll also need to add support for labeled statements so that goto has

somewhere to go to. You can implement these two statements without changing anything after the TACKY
generation stage; however, you’ll need to detect a few new error cases, like using the same label for two labeled
statements in the same function. I recommend writing a new semantic analysis pass to catch these errors, rather
than trying to catch them in the variable resolution stage.

To test out this feature, run the test script with the --goto flag:

$./test_compiler /path/to/your_compiler --chapter 6 --goto

If you’ve implemented the extra credit features in the previous chapters as well, you can test all of them at once
by using the --extra-credit flag instead.

Summary

You’ve just implemented your first control structures! All your work in the early chapters is starting to pay off. The
basic TACKY instructions you added to support && and || let you easily implement the more complex features in

this chapter. You also built on the parsing techniques you learned earlier, extending your precedence climbing code
to handle ternary operators. But the sorts of if statements you can compile are still very limited; you can’t

declare variables or execute longer blocks of code in an if statement body. In the next chapter, you’ll remove

those limitations by adding support for compound statements. The most exciting changes will be in the semantic
analysis stage, where you’ll learn how to deal with nested scopes.

Description

7

COMPOUND STATEMENTS

In this chapter, you’ll implement compound statements. Compound statements serve two
important purposes. As you saw in the two previous chapters, they group together other
statements and declarations into a single unit that can appear in a larger construct, like an
if statement. More interestingly, they also delineate the different scopes within a function.

A variable’s scope is the part of the program where that variable can be used; when you
declare a variable inside a compound statement, its scope extends only to the end of that
statement.

We’ll spend a little time in this chapter extending the parser so we can group block items
together, but our main task will be extending the variable resolution pass to keep track of

each variable’s scope. We’ll barely change the TACKY generation stage, and we won’t touch the lexer or the
assembly generation stage at all. Before starting on the parser, I’ll give a quick overview of how scoping works in
C and define some terms that I’ll use later in the chapter.

The Scoop on Scopes

A language construct that can contain declarations, and that determines the scope of those declarations, is called
a block. Compound statements and function bodies are both blocks. So are loops, which we’ll implement in
Chapter 8. (Technically, if statements are too, but that doesn’t matter for our implementation.) A local variable’s

scope begins at the point where that variable is declared. That means a variable’s scope can begin in the middle of
a block. Its scope extends until the end of the block in which it was declared. For example, in the program

int main(void) {
 int a ❶ = 5;
 return a;

❷}

the variable a’s scope begins right before its initializer ❶, and extends until the very end of the function ❷.

A compound statement can appear either on its own or inside another statement. In Listing 7-1, we use a
compound statement as the body of an if statement.

int main(void) {
 if (1) {
 int a ❶ = 2;
 return a + 1;
 ❷}
 return 0;
}

Listing 7-1: Using a compound statement as an if statement body

In this example, the variable a’s scope runs from ❶ to the end of the compound statement ❷.

When you enter a new block, you can still use variables from the outer scope, as this code fragment illustrates:

int a = 2;
{
 int b = a + 2;
}

Although a is declared in the outer scope, we can refer to it when we initialize b in the inner scope. We therefore

initialize b to 4. But let’s see what happens in Listing 7-2, where we declare another variable named a inside the

inner block.

❶ int a = 2;
{
 ❷ int a = 3;
 int b = a + 2;
}

Listing 7-2: Declaring two variables with the same name but different scopes

This time, when we initialize b, two different variables named a are in scope: the one declared in the outer scope

❶ and the one declared in the inner scope ❷. In cases like this, we always use the variable declared in the
innermost scope. As a result, we initialize b to 5. Even though the outer a is still in scope, we can’t access it; it’s

hidden (or shadowed) by the inner one.

Being hidden is different from being out of scope, because a hidden variable can become visible again later in the
program. Listing 7-3, which is almost identical to Listing 7-2, illustrates this distinction.

❶ int a = 2;
{
 ❷ int a = 3;

 int b = a + 2;
}

❸ return a;

Listing 7-3: A hidden variable becoming visible again

As we saw in the previous example, the first declaration of a ❶ is hidden by the second declaration ❷. But the

return statement ❸ comes after the end of the compound statement. At that point, the second a is no longer in

scope, so the first one is visible again. We’ll therefore use the first a in the return statement, returning 2.

What if we switched the order of the two statements in the inner block in Listing 7-2? Then we’d have:

int a = 2;
{
 int b = a + 2;
 int a = 3;
}

Now when we declare b, the inner a isn’t in scope yet, so it doesn’t hide the outer a. The expression a + 2 will

refer to the first declaration of a, so we’ll initialize b to 4.

You can have many layers of nested scopes, as Listing 7-4 demonstrates.

int main(void) {
 ❶ int x = 1;
 {
 ❷ int x = 2;
 if (x > 1) {
 ❸ x = 3;
 ❹ int x = 4;
 }
 ❺ return x;
 }
 ❻ return x;
}

Listing 7-4: Multiple nested scopes

In this listing, we declare three variables named x with three different scopes. We declare the first x at ❶ and the

second at ❷. We assign the value 3 to the second x at ❸ and return it at ❺, so the whole program returns 3. The

third variable named x, declared at ❹, is never used. We never reach the final return statement at ❻, but if we

did, it would return 1, the value of the very first variable named x that was declared back at ❶.

We need to handle two error cases related to variable scope. (We covered both of these briefly in Chapter 5, but
detecting them is a bit more complicated in programs with multiple scopes.) First, it’s illegal to use a variable
name if no variable with that name is in scope. Listing 7-5 illustrates this error.

int main(void) {
 {
 int x ❶ = 4;
 ❷}
 return ❸ x;
 int x ❹ = 3;

❺}

Listing 7-5: Using an undeclared variable

In this listing, we declare two different variables named x. The scope of the first declaration starts at ❶ and ends

at ❷. The scope of the second declaration starts at ❹ and extends to the end of the function ❺. Neither of these
declarations is in scope at ❸. It’s an error to use the variable name x at that point, because that name doesn’t

refer to anything.

Second, you can’t have multiple declarations of the same variable name with the same scope. We say that two
variables have the same scope if their scopes end at exactly the same point; that is, if they’re declared in the
same block. For example, this code fragment is invalid:

int a = 3;
{
 int b = a;
 int b = 1;
}

The second declaration of b is illegal because it has the same scope as the first declaration.

Now that you understand the scoping rules you need to implement, let’s start on the parser.

The Parser

A list of statements and declarations wrapped in braces can be either a function body or a compound statement.
Let’s define a block AST node to represent both constructs:

block = Block(block_item*)

Note that this AST node doesn’t represent if statements and won’t represent loops once we implement them in

Chapter 8, even though they’re technically also blocks.

Next, we’ll extend the statement node to represent compound statements:

statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Null

And we’ll change the function_definition node to use block too:

function_definition = Function(identifier name, block body)

Listing 7-6 gives the new AST definition with these changes bolded.

program = Program(function_definition)
function_definition = Function(identifier name, block body)
block_item = S(statement) | D(declaration)
block = Block(block_item*)
declaration = Declaration(identifier name, exp? init)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Null
exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 7-6: The abstract syntax tree with compound statements

Listing 7-7 shows the corresponding changes to the grammar.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" <block>

<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<declaration> ::= "int" <identifier> ["=" <exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <int> | <identifier> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 7-7: The grammar with compound statements

Remember that the "{" and "}" in the definition of <block> are literal braces, and {and} indicate repetition. You

can parse the updated grammar using the recursive descent techniques you’re already familiar with. When you’re
parsing a <statement> symbol, a {token will tell you that you’ve hit a compound statement, just like the if

keyword signals the beginning of an if statement and return signals the start of a return statement.

TEST THE PARSER

To test the parser, run:

$./test_compiler /path/to/your_compiler --chapter 7 --stage parse

Your parser should successfully parse every test program in tests/chapter_7/valid and
tests/chapter_7/invalid_semantics, and it should reject every test program in tests/chapter_7/invalid_parse.

Variable Resolution

Now we’ll update the variable resolution pass to follow the scoping rules we talked about at the start of the
chapter. Any local variables that share the same name in the original program will receive different names during
this pass. In later passes, we won’t have to think about scopes at all; because every variable will have a unique
name, we can convert each variable in the AST to a TACKY variable, then a pseudoregister, and finally a memory
address, exactly as we’ve done in earlier chapters, without worrying about which object each name refers to.

Resolving Variables in Multiple Scopes

As an example, let’s take another look at the program from Listing 7-4:

int main(void) {
 int x = 1;
 {
 int x = 2;
 if (x > 1) {
 x = 3;
 int x = 4;
 }
 return x;
 }
 return x;
}

Listing 7-8 shows how this program looks after variable resolution.

int main(void) {
 int x0 = 1;
 {
 int x1 = 2;
 if (x1 > 1) {
 x1 = 3;
 int x2 = 4;
 }
 return x1;
 }
 return x0;
}

Listing 7-8: The program from Listing 7-4 after variable resolution

Now every variable has a different name. These new names make explicit which variable we’re using at every
point. For example, it’s now clear that the variable declared at the start of the function (which we’ve renamed to
x0) is used only once, at the very end.

Our basic approach to variable resolution is the same as in earlier chapters. We’ll traverse the AST, maintaining a
map from user-defined names to generated names as we go. But now our new scoping rules will dictate how we
update this map. Table 7-1 shows how the variable map will look at each point in Listing 7-4.

Table 7-1: The Variable Map Throughout Listing 7-4

int main(void) { (empty map)

 int x = 1;
 {

x → x0

 int x = 2;
 if (x > 1) {

 x = 3;

x → x1

 int x = 4;
 }

x → x2

 return x;

 }

x → x1

 return x;
}

x → x0

The state of the variable map changes in two cases. First, when a new variable is declared, we add it to the map,
overwriting any existing variable with the same name. Second, when we exit a block, we revert to the same
variable map we had before entering that block.

The first case is already familiar: whenever we encounter a variable declaration, we’ll add a map entry. To handle
the second case, we’ll make a copy of the variable map whenever we enter a new block. As we process that block,
we’ll add new entries to that copy of the map, leaving the variable map for the outer scope unchanged.

Now that you have a basic idea of how this pass will work, let’s walk through the pseudocode.

Updating the Variable Resolution Pseudocode

First, let’s process declarations. In earlier chapters, the compiler would fail if it ever saw two declarations of the
same variable name:

resolve_declaration(Declaration(name, init), variable_map):
 if name is in variable_map:
 fail("Duplicate variable declaration!")
 --snip--

But now things are a little more complicated. It’s legal to reuse the same variable name in multiple declarations.
However, it’s illegal to declare the same variable name more than once in the same block. To enforce this rule,
we’ll track two facts about each entry in the variable map: its new autogenerated name and whether it was
declared in the current block. Listing 7-9 gives the updated pseudocode to handle a declaration. Changes from the
previous version of this pseudocode, in Listing 5-9, are bolded.

resolve_declaration(Declaration(name, init), variable_map):
 if name is in variable_map and variable_map.get(name).from_current_block:
 fail("Duplicate variable declaration!")
 unique_name = make_temporary()
 variable_map.add(name, MapEntry(new_name=unique_name, from_current_block=True))
 if init is not null:
 init = resolve_exp(init, variable_map)
 return Declaration(unique_name, init)

Listing 7-9: Resolving a variable declaration

Next, we need a function that can process block items in order (I’ll call this resolve_block in later pseudocode

listings). You’ve already written this code to process function bodies; now you just need to refactor it so you can
reuse it to process compound statements too. Remember that changes you make while processing one block item
(specifically, a declaration) must be visible when you process later block items.

We’ll also update resolve_statement to handle compound statements. Listing 7-10 gives the updated

pseudocode for resolve_statement, with changes from the previous version in Listing 5-10 bolded. The

important detail here is that we’ll pass a copy of the variable map when we traverse the compound statement, so
any declarations we process inside the compound statement won’t be visible outside of it.

resolve_statement(statement, variable_map):
 match statement with
 | Return(e) -> return Return(resolve_exp(e, variable_map))
 | Expression(e) -> return Expression(resolve_exp(e, variable_map))

 | Compound(block) ->
 new_variable_map = copy_variable_map(variable_map)
 return Compound(resolve_block(block, new_variable_map))
 | --snip--

Listing 7-10: Resolving compound statements

Finally, we’ll implement copy_variable_map. This should create a copy of the variable map with the

from_current_block flag set to False for every entry. That way, we won’t throw an error when we process

declarations in the inner scope that hide declarations from the outer scope.

Once you’ve made those changes, your variable resolution pass will be able to handle nested scopes!

TEST THE VARIABLE RESOLUTION PASS

The variable resolution pass should accept every test case in tests/chapter_7/valid and reject every test case in
tests/chapter_7/invalid_semantics. To test it out, run:

$./test_compiler /path/to/your_compiler --chapter 7 --stage validate

You might also want to write your own tests to make sure variables are renamed consistently.

TACKY Generation

The last step is extending the TACKY generation stage to handle compound statements. It’s pretty
straightforward: to convert a compound statement to TACKY, just convert each block item inside it to TACKY.
Basically, you should handle compound statements exactly like you’re already handling function bodies. You don’t
need to touch later compiler stages at all; once you have TACKY generation working, you’re done with the
chapter!

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 7

Summary

In this chapter, you implemented a new kind of statement by extending just a few stages in your compiler. You
wrote a more sophisticated variable resolution pass that correctly resolves variables in multiple scopes,
dramatically expanding the set of programs you can compile. Next, you’ll implement loops, break statements, and

continue statements. The work you did in this chapter will be especially important when you add support for for

loops, since a single for loop contains two distinct scopes.

Description

8

LOOPS

In this chapter, you’ll add all things loop-related. That includes for, while, and do loops,

plus break and continue statements to skip over parts of a loop. These are the last

statements you’ll implement in this book. Once you finish this chapter, if you’ve
implemented all the extra credit features, your compiler will be able to handle every kind of
C statement.

But you have work to do first! You’ll update the lexer and parser to support all five new
statements. Then, you’ll add a new semantic analysis pass, which we’ll call loop labeling.
This new pass, which is bolded in the diagram at the start of the chapter, will annotate the
AST to associate every break or continue statement with the loop that contains it. Finally,

you’ll translate every new statement into a sequence of TACKY instructions. You can implement all the new
statements using the TACKY instructions you’ve already defined, so you won’t change any stages after TACKY
generation.

The new statements in this chapter introduce a few edge cases and errors we’ll need to handle. We’ll briefly
discuss each of these statements before we start on the lexer.

Loops and How to Escape Them

Let’s first look at the three kinds of loop statements, then consider the break and continue statements. Listing

8-1 shows an example of a while loop.

while (❶ a > 0)
 a = a / 2;

Listing 8-1: A while loop

First, we evaluate the statement’s controlling expression ❶. If it’s 0 (that is, false), the loop ends and we move on
to the next statement. If it’s nonzero, we execute the while loop body, then go back to the controlling expression,

rinse, and repeat.

A do loop, like the one in Listing 8-2, is almost exactly the same.

do
 a = a + 1;
while (a < 100);

Listing 8-2: A do loop

The only difference is that we execute the loop body first, then check the controlling expression. That means the
loop body will be executed at least once. Like an if statement body, a loop body is a single statement, which can

be a compound statement that contains declarations. Any variables you declare in the loop body will not be in
scope in the controlling expression. For example, Listing 8-3 is invalid.

do {
 int a = a + 1;
} while (a < 100);

Listing 8-3: A do loop where the controlling expression uses an out-of-scope variable

Things start to get more complicated with for loops. These come in two different flavors. In the first, shown in

Listing 8-4, the loop header consists of three expressions.

int a;
for (❶ a = 0; ❷ a < 5; ❸ a = a + 1)
 b = b * 2;

Listing 8-4: A for loop where the initial clause is an expression

The initial expression ❶ is evaluated once before the first loop iteration. Then, on each iteration, we:

1. Evaluate the controlling expression ❷. If it’s false, the loop terminates. Otherwise, we …
2. Execute the statement body.
3. Evaluate the final expression ❸.

You can omit any or all of the expressions in the loop header. If you omit the initial expression or the final
expression, nothing happens when that clause would normally be evaluated. If you omit the controlling
expression, the loop behaves as though its controlling expression is always true (that is, nonzero). That means it
will never terminate, unless it contains a break, goto, or return statement that transfers control out of the loop

body.

Listing 8-5 shows the second kind of for loop, in which the initial clause is a declaration rather than an

expression.

for (int a = 0; a < 5; a = a + 1)
 b = b * 2;

Listing 8-5: A for loop with a declaration in the initial clause

The for loop header introduces a new scope, so you can write code like Listing 8-6.

int a = 5;
for (int a = 0; a < 5; a = a + 1)
 b = b + a;

Listing 8-6: Declaring two variables with the same name before a for loop and in the loop header

In this listing, the variable a declared in the header hides the variable a declared on the previous line. And since a

compound statement always introduces a new scope, including when it appears as a loop body, Listing 8-7 is also
valid.

❶ int a = 5;
for (❷ int a = 0; a < 5; a = a + 1) {
 ❸ int a = 1;
 b = b + a;
}

Listing 8-7: Declaring three variables with the same name before a for loop, in the loop header, and in the loop
body

In Listing 8-7, there are three distinct variables named a: one declared before the start of the loop ❶, one

declared in the loop header ❷, and one declared in the loop body ❸.

Although the expressions in a for loop header are optional, the loop body is required. (It’s required for do and

while loops too.) A loop body can, however, be a null statement, like in Listing 8-8.

while ((a = a + 1) < 10)
 ;

Listing 8-8: Using a null statement as a loop body

The lone ; here is a null statement. Even though this statement doesn’t do anything, we need to include it so the

parser can figure out where the loop ends. As we saw when we implemented them in Chapter 5, null statements
aren’t a loop-specific construct; you can use them anywhere you can use any other kind of statement. In practice,
though, they mostly appear in loop bodies because they’re rarely useful anywhere else.

Now let’s talk about break and continue statements. Both can appear only inside loops. (Actually, that’s not

entirely true; a break statement can also appear inside a switch statement, which you can implement as an

extra credit feature in this chapter.) A break statement, like the one in Listing 8-9, jumps to the point just after

the end of the loop.

while (1) {
 a = a - 1;
 if (a < 0)
 break;
}
return a;

Listing 8-9: A break statement

When we hit this break statement, we’ll jump to the return statement after the while loop.

A break statement terminates only the innermost loop. For example, consider the code snippet in Listing 8-10.

while (b > 0) {
 do {
 a = a - 1;
 if (a < 0)
 break;
 } while (1);
 b = b * a;
}
return b;

Listing 8-10: Using a break statement to break out of the inner of two nested loops

When we reach the break statement in this listing, we’ll break out of the inner loop, but not the outer loop, so

we’ll jump to b = b * a;. Throughout this chapter, I’ll call the innermost loop that contains a break or continue

statement its enclosing loop. (Calling this the “smallest enclosing loop” would be more in line with the terminology
in the C standard, but that’s a bit of a mouthful.)

A continue statement jumps to the point just after the last statement in the body of the enclosing loop. Consider

the example in Listing 8-11.

while (a > 0) {
 a = a * b;
 if (b > 0)
 continue;
 b = b + 1;
 return b;

❶}

Listing 8-11: A continue statement

When we reach the continue statement, we skip over all the statements that follow it and jump to the end of the

loop body ❶. From there, the while loop executes as usual, which means it jumps back to the controlling

expression. A continue statement in a for loop, like the one in Listing 8-12, works the same way.

for (int i = 0; i < 5; ❶ i = i + 1) {
 a = a * i;
 if (b > 0)
 continue;
 b = b + 1;

❷}

Listing 8-12: A continue statement inside a for loop

In this listing, we still jump from the continue statement to the end of the loop body ❷. Then, we jump to the

final expression ❶, as usual.

If a break or continue statement appears outside of a loop, like in Listing 8-13, compilation should fail.

int main(void) {
 break;
}

Listing 8-13: An invalid break statement

It’s perfectly fine, however, for one of these statements to appear nested deep inside a loop, like the break

statement in Listing 8-14.

while (1) {
 if (a > 4) {
 b = b * 2;
 return a + b;
 } else {

 int c = a ? b : 5;
 {
 int d = c;
 break;
 }
 }
 return 0;
}
return 1;

Listing 8-14: A break statement appearing a few layers deep inside a loop

This break statement jumps to return 1; because that’s the point right after the end of the loop.

It’s legal to have multiple break and continue statements in one loop, like in Listing 8-15.

for (int i = 0; i < 10; i = i + 1) {
 if (i % 2 == 0)
 continue;
 if (x > y)
 continue;
 break;
}

Listing 8-15: Multiple break and continue statements inside a loop

Now that we’ve covered the key things you need to know about the statements we’ll add in this chapter, we can
get started on implementing them. The first step, as usual, is updating the lexer.

The Lexer

You’ll add five keywords in this chapter:

do

while

for

break

continue

You won’t need any other new tokens.

TEST THE LEXER

To test out your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 8 --stage lex

Lexing should succeed for every test case in this chapter.

The Parser

Next, we’ll update the AST. We’ll add five new statements:

statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null

The break and continue statements are as simple as it gets. The while and do statements are also relatively

simple; both have a body and a controlling expression. The for statement is the most complex: it includes an

initial clause, an optional controlling expression, an optional final expression, and a body. The initial clause can be
a declaration, an expression, or nothing, so we need a new AST node to describe it:

for_init = InitDecl(declaration) | InitExp(exp?)

Putting it all together gives us the latest AST definition, shown in Listing 8-16.

program = Program(function_definition)
function_definition = Function(identifier name, block body)
block_item = S(statement) | D(declaration)
block = Block(block_item*)
declaration = Declaration(identifier name, exp? init)
for_init = InitDecl(declaration) | InitExp(exp?)

statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 8-16: The abstract syntax tree with loops and break and continue statements

Updating the AST in this chapter involves one complication. The loop labeling pass will annotate every break,

continue, and loop statement in the program with a label (we’ll use these labels to associate each break and

continue statement with its enclosing loop). That means you’ll need some way to attach these labels to the new

statements in the AST. There are a few different options. One is to include a label argument for each new

constructor, like this:

statement = --snip--
 | Break(identifier label)
 | Continue(identifier label)
 | While(exp condition, statement body, identifier label)
 | DoWhile(statement body, exp condition, identifier label)
 | For(for_init init, exp? condition, exp? post, statement body, identifier label

If you go with this option, you may need to use dummy labels during parsing, then replace them with real labels
in the loop labeling pass. Another option is to define two AST data structures: one without annotations to use
before loop labeling and one with annotations to use afterward. The right approach depends on what language
you’re writing your compiler in (and on your personal taste).

After updating the AST, we’ll make the corresponding changes to the grammar, as shown in Listing 8-17.

<program> ::= <function>
<function> ::= "int" <identifier> "(" "void" ")" <block>
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<declaration> ::= "int" <identifier> ["=" <exp>] ";"
<for-init> ::= <declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <int> | <identifier> | <unop> <factor> | "(" <exp> ")"
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 8-17: The grammar with loops and break and continue statements

I recommend writing a helper function to parse optional expressions. You can use this helper function to parse the
two optional expressions in a for loop header, plus expression statements and null statements. The helper

function should let you specify which token marks the end of the optional expression; most of the optional
expressions in the grammar are followed by a semicolon, but the third clause in a for loop header is followed by a

closing parenthesis.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 8 --stage parse

Your parser should successfully parse every test program in tests/chapter_8/valid and
tests/chapter_8/invalid_semantics, and it should raise an error for every test program in
tests/chapter_8/invalid_parse.

Semantic Analysis

The semantic analysis stage of your compiler currently performs one task: it resolves variable names. In this
chapter, it will take on a completely new task: loop labeling. The loop labeling pass associates each break and

continue statement with its enclosing loop. More concretely, this pass assigns every loop statement a unique ID

and annotates each break and continue statement with the ID of its enclosing loop. If it finds a break or

continue statement outside of a loop, it will throw an error. During TACKY generation, we’ll use these

annotations to convert each break and continue statement into a jump to the correct spot relative to its

enclosing loop.

We’ll resolve variable names and label loops in two separate passes, traversing the whole program each time. Let’s
start by extending the variable resolution pass to handle this chapter’s new statements; then we’ll implement the
loop labeling pass.

Extending Variable Resolution

You’ll need to extend resolve_statement to traverse the five new statements you added in this chapter. You’ll

treat while and do loops just like if statements, processing every substatement and subexpression recursively.

Resolving break and continue statements is even simpler; since they don’t have any substatements or

subexpressions, you don’t have to do anything.

Resolving a for loop is a tiny bit more complicated because the loop header introduces a new variable scope.

Listing 8-18 demonstrates how to handle for loops in resolve_statement.

resolve_statement(statement, variable_map):
 match statement with
 | --snip--
 | For(init, condition, post, body) ->
 new_variable_map = copy_variable_map(variable_map)
 init = resolve_for_init(init, new_variable_map)
 condition = resolve_optional_exp(condition, new_variable_map)
 post = resolve_optional_exp(post, new_variable_map)
 body = resolve_statement(body, new_variable_map)
 return For(init, condition, post, body)

Listing 8-18: Resolving a for loop

We start by making a new copy of the variable map, just like we do at the beginning of a compound statement.
Copying the map ensures that a variable declared in the loop header won’t be visible outside of the loop and that
it won’t trigger a compiler error if it hides a variable from the outer scope.

Next, we process the initial clause with resolve_for_init, which we’ll look at in a moment. We then traverse

the for loop’s controlling expression, final expression, and body, all using the new variable map. I won’t provide

pseudocode for resolve_optional_exp, which handles the optional controlling expression and final expression;

it just calls resolve_exp if the expression is present and does nothing if it’s absent.

Listing 8-19 shows the pseudocode for resolve_for_init.

resolve_for_init(init, variable_map):
 match init with
 | InitExp(e) -> return InitExp(resolve_optional_exp(e, variable_map))
 | InitDecl(d) -> return InitDecl(resolve_declaration(d, variable_map))

Listing 8-19: Resolving the initial clause of a for loop

We resolve an expression or declaration in the initial clause exactly the same way we would resolve it if it
appeared elsewhere in the program. If the clause is a declaration, calling resolve_declaration will add the

newly declared variable to the variable map so it’s visible throughout the rest of the loop.

Loop Labeling

After resolving variables, we’ll traverse the program again, labeling each loop, break, and continue statement

with an ID. Whenever we encounter a loop statement, we’ll generate a unique ID for it. Then, when we traverse
the loop body, we’ll attach that same ID to any break and continue statements we encounter. Let’s look at a few

examples. In the next three listings, the markers ❶ and ❷ represent IDs attached to the AST. Although the loop
labeling pass annotates the AST rather than source files, these listings are presented as source code for the sake
of readability.

Listing 8-20 illustrates how we’ll annotate a code fragment that contains two loops in succession.

❶ while (1) {
 a = a - 1;
 if (a < 0)
 ❶ break;
}

❷ for (int b = 0; b < 100; b = b + 1) {
 if (b % 2 == 0)
 ❷ continue;
 a = a * b;
}
return a;

Listing 8-20: Annotating break and continue statements and their enclosing loops

Each of the two loops in this listing gets its own ID. We annotate the while loop with ID ❶ and the for loop with

ID ❷. Each break or continue statement is annotated with the ID of its enclosing loop, so we annotate the

break statement with ID ❶ and the continue statement with ID ❷.

If several break or continue statements are in the same enclosing loop, they’re all annotated with the same ID,

as Listing 8-21 demonstrates.

❶ for (int i = 0; i < 10; i = i + 1) {
 if (i % 2 == 0)
 ❶ continue;
 if (x > y)
 ❶ continue;
 ❶ break;
}

Listing 8-21: Annotating multiple break and continue statements in the same loop

Since the for loop labeled ❶ is the enclosing loop of the two continue statements and the break statement, we

annotate all three of those statements with ID ❶.

If a break or continue statement appears inside nested loops, we annotate it with the ID of its enclosing loop,

which is the innermost loop. Listing 8-22 illustrates how to annotate nested loops.

❶ while (a > 0) {
 ❷ for (int i = 0; i < 10; i = i + 1) {
 if (i % 2 == 0)
 ❷ continue;
 a = a / 2;
 }
 if (a == b)
 ❶ break;
}

Listing 8-22: Annotating nested loops

The outer while loop and inner for loop are labeled ❶ and ❷, respectively. Since the continue statement

appears in the inner loop, we annotate it with ID ❷. The break statement is in the outer loop, so we annotate it

with ID ❶.

Implementing Loop Labeling

To implement this compiler pass, we pass the current loop ID along as an argument when we traverse the AST,
much like we pass the variable map as an argument to resolve_statement, resolve_exp, and so on during the

variable resolution pass. When we’re outside of a loop, the current ID is null, or None, or whatever your

implementation language uses to indicate an absent value. When we hit a loop statement, we generate a new ID
and annotate the statement with it. We then pass it along as the current ID when we traverse the loop body.
When we hit a break or continue statement, we annotate it with the ID that was passed to us. The pseudocode

in Listing 8-23 illustrates how to annotate statements with loop IDs.

label_statement(statement, current_label):
 match statement with
 | Break ->
 if current_label is null:
 fail("break statement outside of loop")
 return ❶ annotate(Break, current_label)
 | Continue ->
 if current_label is null:
 fail("continue statement outside of loop")
 return ❷ annotate(Continue, current_label)
 | While(condition, body) ->
 new_label = ❸ make_label()
 labeled_body = label_statement(body, new_label)
 labeled_statement = While(condition, labeled_body)
 return ❹ annotate(labeled_statement, new_label)
 | --snip--

Listing 8-23: The loop annotation algorithm

The make_label helper function ❸ generates unique loop IDs; you can use the same helper function here that

you use to generate unique labels in TACKY. The annotate helper function takes a statement AST node and a

label and returns a copy of that AST node annotated with that label. Here, we use it to annotate the Break ❶,

Continue ❷, and While ❹ statements. I haven’t provided the definition of annotate because it will depend on

how exactly you represent loop annotations in your AST. I’ve also omitted the pseudocode to handle DoWhile,

For, and all the statements we added in earlier chapters. You can process DoWhile and For essentially the same

way as While. To process any other kind of statement, call label_statement recursively for every substatement,

passing along the same value of current_label.

Once you’ve updated the loop labeling pass, you’re ready to test out the whole semantic analysis stage.

TEST THE SEMANTIC ANALYSIS STAGE

Your semantic analysis stage should successfully process every test case in tests/chapter_8/valid and fail on every
test case in tests/chapter_8/invalid _semantics. The invalid test cases include some programs that we should
reject during variable resolution and others that we should reject during loop labeling, because they use break

and continue statements outside of loops. To test the semantic analysis stage, run:

$./test_compiler /path/to/your_compiler --chapter 8 --stage validate

You might also want to write your own tests to verify that loops and break and continue statements are labeled

correctly.

TACKY Generation

Next, we’ll convert each new statement to TACKY. We won’t change the TACKY IR in this chapter, because we can
implement these statements with our existing TACKY instructions.

break and continue Statements

A break statement unconditionally jumps to some other point in the program, so we implement it with a single

Jump instruction. The same is true for continue statements. The only question is where to jump to. The loop

annotations we added in the last section help us answer that question.

Whenever we convert a loop statement to TACKY, we’ll emit a Label right after the instructions for the loop body.

Any continue statement in that loop can be implemented as a jump to that label, which I’ll call the continue

label. We’ll emit another Label as the final instruction for the whole loop; I’ll call this the break label.

We’ll derive these labels from the IDs we added during the loop annotation pass. For example, if a loop is labeled
loop0, its break and continue labels might be break_loop0 and continue_loop0. Using this example naming

scheme, we’d convert a Break AST node annotated with ID loop0 to the following TACKY instruction:

Jump("break_loop0")

We’d convert a Continue node with the same annotation to:

Jump("continue_loop0")

You don’t need to use this particular naming scheme (although your naming scheme must guarantee that these
labels won’t conflict with any other labels in the TACKY program). The important point is that you can derive the

same label when you convert a break or continue statement to TACKY as when you convert its enclosing loop to

TACKY, because that statement and its enclosing loop are annotated with the same ID.

do Loops

We can execute the statement do <body> while (<condition>); in three steps. First, we execute the loop

body. Then, we evaluate the condition and compare the result to zero. Finally, if the result was not zero, we jump
back to the beginning of the loop. Listing 8-24 demonstrates how to implement these steps in TACKY.

Label(start)
<instructions for body>

<instructions for condition>

v = <result of condition>
JumpIfNotZero(v, start)

Listing 8-24: The TACKY instructions for a do loop

We also need break and continue labels. The continue label goes between the body and the condition, and the
break label goes at the very end, after JumpIfNotZero. Adding both of these labels gives us the complete TACKY

for a do loop, as shown in Listing 8-25.

Label(start)
<instructions for body>

Label(continue_label)
<instructions for condition>

v = <result of condition>
JumpIfNotZero(v, start)
Label(break_label)

Listing 8-25: The TACKY instructions for a do loop, with break and continue labels

Now any continue statements in the loop body will jump to the continue label, and any break statements will

jump to the break label. These labels are necessary only if a break or continue statement shows up somewhere

in the loop body—otherwise, they won’t be used—but to keep things simple, we’ll always emit them. That way, we
don’t need to figure out whether a loop contains break or continue statements.

while Loops

We’ll handle while loops similarly to do loops, but in this case we’ll execute the condition before the loop body,

then use JumpIfZero to exit the loop if the condition is false. We can convert the statement while

(<condition>) <body> to the TACKY in Listing 8-26.

Label(start)
<instructions for condition>

v = <result of condition>
JumpIfZero(v, end)
<instructions for body>

❶ Jump(start)
Label(end)

Listing 8-26: The TACKY instructions for a while loop

Now let’s figure out where to put the break and continue labels. This time, we don’t need extra Label

instructions; we can reuse the Label instructions that are already present in Listing 8-26. We’ll put the break label

in the Label instruction at the end of this listing. It will be the target for both the JumpIfZero instruction and

any break statements in the loop body.

Likewise, we’ll put the continue label in the Label instruction at the start of this listing. This has the same effect

as putting the continue label just after the end of the loop body ❶, because the instruction after the loop body is
an unconditional jump that immediately takes us back to the start of the loop. Having continue statements jump

directly to the start of the loop lets them bypass that Jump instruction, which makes them a little bit more

efficient.

Listing 8-27 shows where to use the break and continue labels when we convert while loops to TACKY.

Label(continue_label)
<instructions for condition>

v = <result of condition>
JumpIfZero(v, break_label)
<instructions for body>

Jump(continue_label)
Label(break_label)

Listing 8-27: The TACKY instructions for a while loop, with break and continue labels

This TACKY is identical to Listing 8-26, except that it uses continue_label and break_label instead of start

and end.

for Loops

Our final task is to convert for loops to TACKY. We’ll convert the statement for (<init> ; <condition> ;

<post>) <body> into the TACKY in Listing 8-28, which includes the break and continue labels.

<instructions for init>

Label(start)
<instructions for condition>

v = <result of condition>
JumpIfZero(v, break_label)
<instructions for body>

Label(continue_label)
<instructions for post>

Jump(start)
Label(break_label)

Listing 8-28: The TACKY instructions for a for loop

First, we execute <init>. Then, we execute the controlling expression, <condition>, and check whether the

result is zero. If it is, we jump to Label(break _label) at the very end, without executing the loop body or the

final expression. Otherwise, we execute the loop body followed by the final expression, <post>, then jump back

to Label(start) and start another loop iteration. We won’t execute <init> again, since Label(start) comes

after <init>. Note that the continue label appears at the end of the loop body, just before <post>, and the break

label appears at the very end of the loop, where it does double duty as the target of the JumpIfZero instruction

and any break statements.

Next, let’s break down how to handle each of the three clauses in the loop header. The first clause can be an
expression, a declaration, or nothing. If it’s a declaration or expression, we’ll handle it the same way as a
declaration or expression outside of a for loop. If it’s absent, we won’t emit any instructions.

The second clause is the controlling expression. If this expression is present, we’ll convert it to TACKY exactly like
the controlling expressions in while and do loops. If it’s absent, the C standard says that this expression is

“replaced by a nonzero constant” (section 6.8.5.3, paragraph 2). We could just use a nonzero constant in the
conditional jump:

JumpIfZero(Const(1), break_label)

But this instruction doesn’t do anything; Const(1) will never equal zero, so we’ll never jump. Instead, we’ll leave

out the JumpIfZero instruction entirely, since that’s a more efficient way to produce the same behavior.

Finally, we need to handle the third clause, <post>. If it’s present, we’ll convert it to TACKY; if it’s absent, we

won’t emit any instructions.

TEST THE WHOLE COMPILER

Now you’re ready to test out your whole compiler. To compile and execute this chapter’s test cases, run:

$./test_compiler /path/to/your_compiler --chapter 8

Extra Credit: switch Statements

You have the option of implementing switch, case, and default statements in this chapter. To support these

statements, you’ll need to make significant changes to the semantic analysis stage. First, you’ll need to change
the loop annotation pass, because break statements can break out of switch statements as well as loops. You

can’t, however, use a continue statement inside a switch statement, so this pass will need to treat continue

statements differently from break statements.

You’ll need additional analysis, probably in a separate compiler pass, to collect the cases that appear inside each
switch statement. To generate the TACKY for a switch statement, you’ll need a list of all the cases in that

statement. However, that information isn’t immediately available in the AST. The cases in a switch statement may

be nested several layers deep, or the switch statement body may not include any cases at all. You’ll need to

attach that information to the AST in a more usable form.

Use the --switch flag to enable the tests for switch statements:

$./test_compiler /path/to/your_compiler --chapter 8 --switch

Or enable every extra credit test with the --extra-credit flag, as usual.

Summary

In this chapter, you implemented your last set of control-flow statements. You added support for three different
loop statements, plus break and continue statements. You implemented a new semantic analysis pass to

associate break and continue statements with their enclosing loops, and you saw how to convert each of these

complex structures into a list of TACKY instructions.

Although we’re done with control-flow statements, you’ll add support for one more control-flow expression in the
next chapter: function calls. You’ll learn about the calling conventions that dictate how function calls work in
assembly and write a simple type checker. Best of all, you’ll end the chapter by compiling “Hello, World!”

Description

9

FUNCTIONS

Functions—chunks of code that can be defined in one place and invoked somewhere else—
are a fundamental concept in every mainstream programming language. They’re so
fundamental, in fact, that there are dedicated processor instructions just for making
function calls. In this chapter, you’ll implement function calls and definitions according to
the standard calling convention for Unix-like systems, which defines exactly how function
calls should work at the assembly level. Calling conventions make it possible for binaries
that were compiled separately (and might even have been written in different source
languages) to interoperate. By following your system’s calling convention, you’ll be able to
compile programs that call functions in external libraries, including the standard library. The
programs you compile will finally be able to perform I/O operations! Programs built by

other compilers will also be able to use libraries built by your compiler.

We’ll spend most of this chapter on semantic analysis and assembly code generation. In the semantic analysis
stage, we’ll add a new type checking pass, which is bolded in the diagram at the start of this chapter. This pass is
pretty bare-bones for now, but we’ll build on it as we add new types throughout Part II. In the assembly
generation stage, we’ll dig into our system’s calling convention, which tells us how to set up stack frames, pass
arguments and return values, and transfer control from one function to another.

To get started, let’s define exactly what features we’re about to implement.

Declaring, Defining, and Calling Functions

In this chapter, you’ll implement function calls, function declarations, and function definitions. A function
declaration tells you a function’s name and type. The declaration brings the function name into scope so it can be
called later. A function definition is a declaration that includes a function body. (All function definitions are
declarations, but not all declarations are definitions.) Your compiler already has some support for function
definitions, since it can compile main. Now you’ll generalize it to compile other functions.

Declarations and Definitions

A function declaration, like the one in Listing 9-1, must include the function’s return type, its name, and a type and
name for each parameter.

int foo(int param1, int param2, int param3);

Listing 9-1: A function declaration

For now, a function’s return type and parameter types all have to be int. As we’ve already seen, if a function has

no parameters, its parameter list is just the void keyword:

int foo(void);

A function definition looks just like the function declaration from Listing 9-1, plus a body. Listing 9-2 shows an
example of a function definition.

int foo(int param1, int param2, int param3) {
 return param1 + param2 + param3;
}

Listing 9-2: A function definition

You can declare the same function as many times as you like, but all the declarations must be compatible: the
return type, parameter types, and number of parameters must be the same. The parameter names can vary
between declarations, because only the parameter names in the function definition are used. Listing 9-3, for
example, is perfectly valid.

int foo(int x, int y, int z);

int main(void) {
 return foo(1, 2, 3);
}

int foo(int param1, int param2, int param3);

 int foo(int a, int b, int c) {
 return a + b + c;
}

Listing 9-3: Declaring a function multiple times with different parameter names

While it’s legal to declare a function multiple times, you cannot define a function more than once; if you did, when
the function was called, there would be no way to tell which definition to execute.

You can declare functions in two places: at the top level and inside the body of other functions. Listing 9-4
includes both kinds of declarations.

int foo(int a, int b);

int main(void) {
 int foo(int a, int b);
 return foo(1, 2);
}

Listing 9-4: Nested and top-level function declarations

You can’t define a function in the body of another function, however. The C standard supports function definitions
only at the top level, so it doesn’t allow programs like Listing 9-5.

int main(void) {
 int foo(int a, int b) {return a + b;};
 return foo(1, 2);
}

Listing 9-5: A nested function definition (not supported)

Some compilers support nested function definitions as a language extension and will compile Listing 9-5 just fine.
We won’t implement this language extension; we’re sticking with features that are in the C standard.

SOME THINGS WE’RE NOT IMPLEMENTING

C provides a handful of slightly different ways to declare functions. To simplify things, we won't support all of
them; we'll only handle declarations in the form given in Listing 9-1. For instance, we won't support old-style
function definitions, which look like this:

int foo(param1, param2, param3)
int param1, param2, param3;
{
 return param1 + param2 + param3;
}

In C17, the reference version of the C standard used in this book, old-style function definitions are an obsolescent
feature. The C standard designates a feature obsolescent if it might be removed in the future and shouldn’t be
used in new code. The next version of the standard, C23, does, in fact, remove this feature from the language.

We’ll also reject function declarations without parameter lists, like this one:

int foo();

According to the C17 standard, a function declaration without a parameter list or function body provides no
information about that function’s parameters. In other words, this declaration indicates that some function foo is

in scope and returns an integer, but it doesn’t tell us how many parameters it has.

Empty parameter lists are also obsolescent in C17. In C23, they’re permitted, but their meaning has changed:
instead of declaring a function without specifying its parameters, an empty parameter list declares a function with
no parameters. In other words, the declarations int foo(); and int foo(void); are equivalent in C23.

In function declarations that aren't definitions, the C standard lets you specify just the parameters’ types and omit
their names, but we'll require a name for every parameter. Omitting the identifiers from a parameter list is not an
obsolescent feature; we just aren’t bothering with it.

We’re also omitting a few more significant features, including functions with variable numbers of arguments and
function specifiers like inline or _Noreturn. Finally, we won’t implement function pointers, which are variables

that hold the addresses of functions. If you want to implement function pointers on your own, I recommend
waiting until we add arrays in Chapter 15. C’s type system handles expressions of array type and function type in
surprisingly similar ways: in most contexts, expressions of array type are implicitly converted to pointers, and
expressions of function type are implicitly converted to function pointers.

Function Calls

A function call consists of a function name followed by a sequence of comma-separated arguments, wrapped in
parentheses:

foo(1, 2, 3);

While the identifiers in a function declaration are called function parameters, the expressions passed into a
function call are called function arguments. For example, in Listing 9-6, a, b, and c are parameters of foo, while a

+ b and 2 * c are arguments to bar.

int foo(int a, int b, int c) {
 return bar(a + b, 2 * c);
}

Listing 9-6: Function parameters and arguments

As Listing 9-7 illustrates, a function must be declared, but not necessarily defined, before it can be called.

int foo(int arg1, int arg2, int arg3);

int main(void) {
 return foo(1, 2, 3);
}

Listing 9-7: Declaring and then calling a function

The definition of foo may appear later in the same file, or it may appear in a separate library. It’s up to the linker,

not your compiler, to find the definition of every function your program calls. If it can’t find the definition, linking
will fail.

It’s illegal to call a function before it’s declared, so Listing 9-8 is invalid.

int main(void) {
 return foo(1, 2, 3);
}

int foo(int arg1, int arg2, int arg3);

Listing 9-8: Calling a function before it’s declared

In practice, many compilers warn about programs that call undeclared functions, but don’t reject them. Our
implementation is stricter and rejects programs like Listing 9-8 during semantic analysis.

It’s also illegal to call a function with the wrong number of arguments, or to call a variable as a function. (Function
pointers would be an exception to this second point if we were implementing them.)

Identifier Linkage

Function and variable names are both identifiers. They exist in the same namespace and follow the same scoping
rules. Function names, like variable names, can be shadowed by other declarations in inner scopes. Consider
Listing 9-9, where the variable name foo shadows the function name foo.

int foo(int a, int b);

int main(void) {
 int foo = 3;
 return foo;
}

Listing 9-9: A variable name shadowing a function name

This program compiles without error and returns 3. Function names can also shadow variable names, as Listing 9-

10 demonstrates.

int main(void) {
 int a = 3;
 if (a > 0) {
 int a(void);
 return a();
 }
 return 0;
}

Listing 9-10: A function name shadowing a variable name

Here, the function name a shadows the variable name a; this program compiles without error too, as long as the

function a is defined somewhere else.

In other ways, however, function declarations are resolved very differently from the local variable declarations
we’ve seen so far. Every local variable declaration refers to a different variable, even if some of those variables
have the same name (we make this explicit when we give a unique name to each variable in the variable
resolution pass). But multiple function declarations with the same name all refer to the same function. Consider
Listing 9-11, which includes three function declarations that use the name incr.

int two(void) {
 int incr(int i);
 return incr(1);
}

int incr(int i);

int main(void) {
 return two() + incr(3);
}

int incr(int i) {
 return i + 1;
}

Listing 9-11: Multiple function declarations that refer to a single definition

Each of these declarations ultimately refers to the same function definition. This listing doesn’t contain
declarations of three different functions called incr; it contains three declarations of the same function.

In the C standard, a declaration’s linkage determines how it relates to other declarations of the same identifier.
There are a few different kinds of linkage. According to section 6.2.2, paragraph 2, of the C standard, “each
declaration of a particular identifier with external linkage denotes the same object or function.” In Listing 9-11,
every declaration of incr has external linkage, so these declarations all refer to the same function definition.

Declarations with external linkage can refer to the same object or function even if they appear in different
translation units. (A translation unit is just a preprocessed source file.)

Consider a program made up of two different files. In one file, shown in Listing 9-12, we define a function.

int library_fun(int a, int b) {
 return a + b;
}

Listing 9-12: Defining a library function in one file

In the other file, which is shown in Listing 9-13, we declare and use that function.

int library_fun(int a, int b);

int main(void) {
 return library_fun(1, 2);
}

Listing 9-13: Declaring and calling the library function in a different file

Even though library_fun is declared in two different files, the linker will recognize that both of these

declarations refer to the same thing: the definition of library_fun in Listing 9-12. It will then update every use

of library_fun in the binary code for Listing 9-13 to point to the definition in Listing 9-12.

In this chapter, all function identifiers have external linkage. Local variables, on the other hand, have no linkage.
Section 6.2.2, paragraph 2, of the C standard says that “each declaration of an identifier with no linkage denotes a
unique entity.” A local variable can’t refer to the same object as another local variable, and it can’t refer to the
same thing as an identifier with external linkage, like a function name.

NOTE

It may look like an identifier’s linkage depends only on whether it’s a function or a variable, but in the next chapter
you’ll see that this isn’t the case. We’ll implement global variable declarations with external linkage, and we’ll
implement function and variable declarations with a third kind of linkage, internal linkage. Declarations with
internal linkage can be linked to other declarations in the same translation unit, but not in other translation units.

Since all declarations of a given function name must refer to the same function definition, they must be
compatible even if they appear in different scopes. Listing 9-14 contains two incompatible function declarations.

int main(void) {
 int f(int x);
 int ret = f(1);
 if (ret) {
 int f(int a, int b);
 return f(0, 1);
 }
 return 0;
}

Listing 9-14: Conflicting function declarations

The two declarations of f should refer to the same function, since they both have external linkage. But no function

definition could satisfy both declarations, since the numbers of parameters differ. Because the two declarations
conflict, this code won’t compile.

IDENTIFIER LINKAGE AT LINK TIME

Linkage is easier to understand if you know how the linker handles each kind of identifier. Identifiers with external
linkage become global symbols in the final assembly program. We’ve already encountered global symbols, which
we declare with the .globl directive:

 .globl main
main:

Because main is global, the linker can resolve references to it that appear in other object files. It’s normal to

define a global symbol in one object file and use it in other object files, but if a global symbol is defined in two
different object files, linking will fail.

An identifier with internal linkage appears in the assembly program as a local symbol. A local symbol is declared
the same way as a global symbol, but without the .globl directive:

local:

The linker will resolve any references to local symbols in the same object file, but it won’t resolve references to
them in other object files. If two object files both contain local symbols named foo, for instance, the linker will

assume they refer to two different objects.

If an identifier has no linkage, the linker isn’t aware of it, because it doesn’t correspond to a symbol in the
assembly program. It just corresponds to a stack address at some offset from RBP.

Now that we’ve covered some background information on functions, we can get to work on the compiler. But we
won’t start with the lexer right away. First, we need to update the compiler driver.

Compiling Libraries

In previous chapters, we could compile only stand-alone executables. Every source file we compiled defined a
main function, which was the program’s entry point. Now that we can handle other functions, we should also be

able to compile libraries, which don’t have an entry point. When your compiler translates source code into
assembly, it doesn’t care whether it’s processing a library or an executable. Your compiler driver, however, does
care, because the linker expects a complete program to include main. If you try to compile a source file with no

main function using your current compiler driver, you’ll get a linker error, which might look something like this:

/usr/bin/ld: . . ./x86_64-linux-gnu/Scrt1.o: in function `_start':
(.text+0x24): undefined reference to `main'
collect2: error: ld returned 1 exit status

This error means the linker is trying and failing to link your code against crt0, the wrapper code that invokes

main.

The gcc command accepts a -c command line flag that tells it not to invoke the linker; when this flag is present,

it generates an object file instead of an executable. To work with the test suite, your compiler driver should
recognize the -c flag as well. When it’s passed this flag, the compiler driver should first convert the source

program to assembly as usual, then run the following command to convert the assembly program into an object
file:

gcc -c ASSEMBLY_FILE -o OUTPUT_FILE

The output filename should be the original filename with a .o suffix. In other words, ./YOUR_COMPILER -c

/path/to/program.c should produce an object file at /path/to/program.o.

NOTE

If you wanted to compile and distribute a real library, you wouldn’t just produce an object file; you’d create a
shared library (a .so file on Linux or a .dylib file on macOS). If you like, you can add another option to your
compiler driver to produce shared libraries; your driver can convert an assembly program into a shared library

instead of an object file by invoking GCC or Clang with the appropriate flags. But there’s a major limitation on your
compiler’s ability to produce shared libraries, particularly on Linux; we’ll talk more about this in Chapter 10.

At this point, you might also want to extend your compiler driver to accept multiple input source files. The test
suite doesn’t require this feature, but you’ll need it if you want to compile multifile programs. To handle multiple
source files, your compiler driver should convert each one to assembly separately, then use the gcc command to

assemble them and link them together.

The Lexer

You’ll add one token in this chapter:

, A comma

Lists of function parameters or arguments are comma-separated.

TEST THE LEXER

To test out your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 9 --stage lex

Your lexer should successfully process all of this chapter’s test programs.

The Parser

We need to extend the AST in a couple of spots to support function calls, declarations, and definitions. Let’s start
with function calls, which are a kind of expression:

exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)

The AST node for a function call includes the function name and a list of arguments. Each argument is an
expression.

Next, we’ll refactor the declaration node so that it can represent either function or variable declarations:

declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init)

We’ve renamed the function_definition node to function_declaration. (We’ll walk through the other

changes to this node in a moment.) The variable_declaration node includes the same information that

declaration did in earlier chapters: a variable name and an optional initializer. But it looks a little different from

the other AST nodes we’ve seen so far; it doesn’t include a named constructor like FunDecl or VarDecl. When a

node in ASDL has multiple constructors—like the declaration node and most of the other AST nodes do—each

constructor needs a distinct name so we can tell them apart. But since the variable_declaration node has

only one constructor, we aren’t required to name that constructor. In ASDL jargon, a node definition with exactly
one unnamed constructor is a product type. The other nodes we’ve used up until now are sum types, because
they all have named constructors. Product types are just a syntactic convenience so that we aren’t forced to use
clunky, redundant constructor names.

Now let’s update function_declaration. Here’s the existing function _definition node:

function_definition = Function(identifier name, block body)

We need to make a few changes here. First, as I already noted, we’ll rename it to the more accurate
function_declaration. We’ll also add function parameters, and we’ll make the function body optional so this

node can represent both function declarations and function definitions. Lastly, for consistency with
variable_declaration, we’ll remove the Function constructor name to turn this into a product type. Our

revised AST node for representing function declarations and definitions is:

function_declaration = (identifier name, identifier* params, block? body)

Finally, we need to change the top-level definition of a program. Now, instead of a single main function, a

program is a list of function definitions and declarations:

program = Program(function_declaration*)

Listing 9-15 shows the complete updated AST.

program = Program(function_declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init)
function_declaration = (identifier name, identifier* params, block? body)
block_item = S(statement) | D(declaration)

block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 9-15: The abstract syntax tree with function calls, declarations, and definitions

A declaration can appear as a block item, but only a variable_declaration can appear in a for loop

header. Note that this AST can represent nested function definitions, like the one in Listing 9-5, even though we
don’t support them. We’ll check for nested function definitions during the semantic analysis stage and throw an
error if we encounter any.

Listing 9-16 shows the updated grammar.

<program> ::= {<function-declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= "int" <identifier> ["=" <exp>] ";"
<function-declaration> ::= "int" <identifier> "(" <param-list> ")" (<block> | ";")
<param-list> ::= "void" | "int" <identifier> {"," "int" <identifier>}
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>

 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <int> | <identifier> | <unop> <factor> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 9-16: The grammar with function calls, declarations, and definitions

The <param-list> and <argument-list> symbols in Listing 9-16 don’t have equivalent nodes in the AST. I’ve

factored them out of the production rules for function declarations and function calls, respectively, to make those
rules a bit more readable. A <param-list> consists of just the void keyword if a function has no parameters;

otherwise, it consists of a comma-separated list of parameters, each with a type and name. An <argument-list>

consists of a comma-separated list of expressions. Note that <param-list> is required in a function declaration,

but <argument-list> is optional in a function call. Parsing a comma-separated list of arguments or parameters is

similar to parsing a list of block items; just consume the , tokens between list elements, and stop when you see

a) token.

Function calls have higher precedence than any binary or ternary operator, so you should handle them when
parsing the <factor> symbol. If a <factor> starts with an identifier, look ahead one token to figure out whether

the expression is a variable or a function call. If the next token is (, you can assume it’s a function call. Similarly,

you’ll need to check for a (token to distinguish between function and variable declarations.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 9 --stage parse

Your parser should raise an error for every test program in tests/chapter_9/invalid_parse and successfully parse all
other test cases.

Semantic Analysis

During the variable resolution pass, we give every local variable a new, unique name. However, we shouldn’t
rename entities with external linkage. Two declarations of local variables named var refer to distinct memory

addresses, so we assign them distinct names. But two declarations of a function named fun refer to the same

code, so those declarations should keep the same name throughout compilation. Furthermore, an object with
external linkage must retain the name from the original source code because the linker will rely on that name
during symbol resolution. The linker won’t be able to link an object file that calls fun to the object file that defines

fun unless the name fun was preserved when each of those object files was compiled.

We’ll therefore need to update the variable resolution pass to rename identifiers with no linkage but leave
identifiers with external linkage unchanged. (Since this pass will handle functions as well as variables, I’ll call it
identifier resolution instead of variable resolution from now on.) We’ll check for all the usual error conditions, like
duplicate declarations and undeclared identifiers; we’ll also validate that there are no nested function definitions.
The logic to catch duplicate declarations will change slightly, since it’s legal to declare a name with external linkage
more than once in the same scope. For instance, Listing 9-17 is perfectly valid.

int main(void) {
 int foo(void);
 int foo(void);
 return foo();
}

Listing 9-17: Multiple function declarations in the same scope

Because both declarations of foo have external linkage, they refer to the same function, so they don’t conflict.

Duplicate declarations of an identifier conflict only when they refer to different entities; when you use that
identifier later in the same scope, there’s no way to tell which entity it should refer to.

We also have a few other error cases to check for. We must validate that every declaration of a function has the
same number of parameters and that no function is defined more than once. Also, we must validate that variables
aren’t used as functions and that functions are called with the right number of arguments. These errors aren’t that
similar to the error cases we already check for, because they’re not really about what identifiers are in scope.
They’re type errors, which occur when different declarations of an object have conflicting types or when an object
is used in a way its type doesn’t support.

We’ll define a separate type checking pass to catch these errors. This pass will also build up a symbol table to
store the type of every identifier in the program, along with a few other properties of identifiers that we need to
track. We’ll refer back to the symbol table in later compiler stages. (This is different from the symbol table in an
object file, which the linker uses during symbol resolution. The symbol table we build in the type checker is
internal to the compiler.)

At the end of this chapter, the semantic analysis stage will consist of three passes: identifier resolution, type
checking, and loop labeling. The loop labeling pass can happen at any point relative to the other two passes.

Extending Identifier Resolution

Let’s update the identifier resolution pass to handle function calls, function declarations, and function definitions.
We’ll need to track one new piece of information for each entry in the identifier map: whether it has external
linkage. As you build up your identifier map, don’t assume that functions always have external linkage and
variables never do. That assumption holds right now, but it won’t in the next chapter.

We’ll also update a couple of names in our pseudocode: we’ll change variable_map to identifier_map, and

we’ll rename the from_current_block field in the identifier map to from_current_scope, since function

declarations can appear outside of blocks, at the top level.

Function Calls

A function name, like a variable name, needs to be present in the identifier map before you can use it. Listing 9-18
demonstrates how resolve_exp should handle function calls.

resolve_exp(e, identifier_map):
 match e with
 | --snip--
 | FunctionCall(fun_name, args) ->
 if fun_name is in identifier_map:
 new_fun_name = identifier_map.get(fun_name).new_name
 new_args = []
 for arg in args:
 new_args.append(resolve_exp(arg, identifier_map))
 return FunctionCall(new_fun_name, new_args)
 else:
 fail("Undeclared function!")

Listing 9-18: Resolving function calls

First, we look up the function name in the identifier map to confirm that it’s in scope at this point in the program.
Then, we replace this name with the new name from the identifier map. In a valid program, this new name will be
the same as the original name, since we don’t rename identifiers with external linkage. But we also need to
consider invalid programs. Maybe fun_name is actually the name of a local variable instead of a function; in that

case, trying to call it like a function is a type error. Resolving fun _name here will allow us to catch this type error

during type checking. We’ll also wait until the type checking pass to make sure this function call has the right
number of arguments.

After we replace the function’s name, we recursively call resolve_exp on each function argument, just like we

recursively resolve each subexpression in unary, binary, and ternary expressions.

Function Declarations

Now let’s consider function declarations. We can handle a function declaration in almost exactly the same way
whether it appears in a block or at the top level. First, we add the function name to the current scope. Then, we
process its parameters, adding them to a new inner scope. Finally, if there’s a function body, we process that too.
Listing 9-19 illustrates how to resolve function declarations.

resolve_function_declaration(decl, identifier_map):
 if decl.name is in identifier_map:
 prev_entry = identifier_map.get(decl.name)
 ❶ if prev_entry.from_current_scope and (not prev_entry.has_linkage):
 fail("Duplicate declaration")

 ❷ identifier_map.add(decl.name, MapEntry(
 new_name=decl.name, from_current_scope=True, has_linkage=True
))

 ❸ inner_map = copy_identifier_map(identifier_map)
 new_params = []
 for param in decl.params:
 new_params.append(resolve_param(param, inner_map))

 new_body = null
 if decl.body is not null:
 new_body = resolve_block(decl.body, inner_map)
 return (decl.name, new_params, new_body)

Listing 9-19: Resolving function declarations

Before we update the identifier map, we need to make sure that we’re not illegally redeclaring an identifier ❶. If
the identifier isn’t already in scope, there’s no conflict. If the identifier was declared in an outer scope, that’s also
fine; the new declaration shadows the existing one. So far, this is exactly the same as how we handle variable
declarations. However, we also need to consider linkage. Multiple declarations of an identifier with external linkage
can appear in the same scope. We already know the new declaration has external linkage because it’s a function
declaration, so it’s legal as long as the old declaration has external linkage too. But if the old declaration has no
linkage (because it declares a local variable), we’ll throw an error. The has_linkage attribute in the identifier map

tells us whether an identifier has external linkage. (In the next chapter, it will track whether the identifier has any
linkage at all, either internal or external.)

If there’s no conflicting declaration, we add this name to identifier_map ❷. We don’t generate new names for

functions; the new_name attribute for this map entry should just be the original name. Because this declaration

has external linkage, the has_linkage attribute should be True.

Next, we resolve the parameter names. The list of function parameters in a declaration starts a new scope, so we
make a copy of the identifier map to keep track of them ❸. Parameter names can shadow names from the outer

scope, but two parameters in the same function declaration can’t share a name. So, this is legal:

int a;
int foo(int a);

But this is not:

int foo(int a, int a);

I’ve left out the pseudocode for resolve_param, but it should be the same as your existing code to resolve

variable declarations: it should make sure the parameter name isn’t already declared in the current scope,
generate a unique name for it, add it to the identifier map, and return the new name. You may want to write one
helper function to resolve both parameters and local variable declarations, since the logic is the same in both
cases.

We resolve the function’s parameters for two reasons. First, we need to validate that there are no duplicate
parameter names. Second, we need to make sure the parameters are in scope when we process the function
body. When we process a function declaration with no body, the second point doesn’t matter; we could get away
with checking for duplicate parameters without renaming them or updating the inner scope. However, I think it’s
easiest to process function declarations in a uniform way whether they have a body or not.

The last step in Listing 9-19 is processing the function body, if there is one. We handle this with resolve_block,

as usual; we just need to make sure to pass in inner_map so the function parameters will be in scope. The

function name itself is also in scope because we added it to the outer map before making a copy; we’ll therefore
be able to handle functions that call themselves recursively.

The function parameters and function body are in the same scope, so you should pass in inner_map, and not a

copy of it, when you process the function body. This, for example, is illegal:

int foo(int a) {
 int a = 3;
 return a;
}

The variable declaration int a = 3; is an illegal duplicate declaration because it’s in the same scope as parameter

a.

At this point, we can return the updated function_declaration node. While the function name itself hasn’t

changed, the list of parameters and any variables declared in the function body have been renamed in this new
node.

Local Declarations

You can process local variable declarations exactly the same way as in previous chapters; just be sure to record in
the identifier map that these declarations do not have linkage. To process a local function declaration, first check if
it has a body. If it does, throw an error; otherwise, call resolve _function_declaration, which we defined in

Listing 9-19.

Top-Level Processing

Finally, we need to put all this together to process a list of function declarations. Just process them in order,
building up the identifier map as you go. Each function name you add will remain in scope as you process later
function declarations. The parameter names and local variables in a function won’t be visible in later functions,
because they were added to an inner scope.

TEST THE IDENTIFIER RESOLUTION PASS

At this point, you’ll want to test that the identifier resolution pass handles every valid program without error and
catches undeclared identifiers and duplicate declarations. This pass should successfully process every test case in
tests/chapter_9/valid and tests/chapter_9/invalid_types and reject every test case in
tests/chapter_9/invalid_declarations. Run these tests with:

$./test_compiler /path/to/your_compiler --chapter 9 --stage validate

The test script will report some test failures, because your compiler won’t detect errors for the test cases in
tests/chapter_9/invalid_types. Those tests will pass once you implement the type checking pass in the next
section.

Writing the Type Checker

Our remaining validation is all type checking. Every identifier, whether it’s a function or a variable, has a type.
Variables can have types like int, long, and double, but at this point in our project the type of every variable is

int. A function’s type depends on its return type and the types of its parameters. For example, a function can

have a type like “function that takes three int parameters and returns an int.” Right now, we support only

functions that take int parameters and return int results, so only the number of parameters varies.

The type checking pass validates that all declarations and uses of an identifier have compatible types. For
example, if you declare that x is a variable, you can’t call it like a function:

int x = 3;
return x();

You can’t declare a function in multiple places with different types:

int foo(int a, int b);
int foo(int a);

You can’t call a function with the wrong number of parameters:

int foo(int a, int b);

int main(void) {
 return foo(1);
}

And you can’t define the same function more than once:

int foo(void) {
 return 1;
}

int foo(void) {
 return 2;
}

This last error isn’t a type error per se, but it’s easiest to check here.

To type check the program, we’ll record the type of every identifier in the symbol table. We’ll also record whether
each function we encounter is defined or just declared; that is, whether it has a body. The symbol table will be our
central source of information about every identifier in the program. In this chapter, we’ll primarily use the symbol
table to catch type errors. We’ll add more information to this table, and find more uses for it, in future chapters.

To build a symbol table, we need a way to represent types in the compiler, just like we need a way to represent
ASTs. Right now, your type definition should look something like this:

type = Int | FunType(int param_count)

Every variable has type int, and the only information we need about a function’s type is how many parameters it

has. We’ll add more types in Part II.

We’ll build the symbol table by traversing the program in the usual fashion. When we encounter a function or
variable declaration, we’ll record its type in the symbol table. The type checker doesn’t transform the AST like the
identifier resolution pass does, so the individual type checking methods won’t return transformed AST nodes;
they’ll just add symbol table entries and report errors. (The type checker will transform the AST in Part II.)

Listing 9-20 shows how to type check a variable declaration.

typecheck_variable_declaration(decl, symbols):
 symbols.add(decl.name, Int)
 if decl.init is not null:
 typecheck_exp(decl.init, symbols)

Listing 9-20: Type checking variable declarations

Every variable has a unique name by this point, so we know that this declaration won’t conflict with any existing
entry in the symbol table. We just add it to the symbol table and then type check its initializer, if it has one.
Functions are a little trickier. Because you can declare a function more than once, it might already have an entry in
the symbol table. So, before adding a function to the symbol table, you need to validate it against what’s already
there. Listing 9-21 gives the pseudocode to type check a function declaration.

typecheck_function_declaration(decl, symbols):
 fun_type = FunType(length(decl.params))
 has_body = decl.body is not null
 already_defined = False

 if decl.name is in symbols:
 old_decl = symbols.get(decl.name)
 ❶ if old_decl.type != fun_type:
 fail("Incompatible function declarations")
 already_defined = old_decl.defined
 ❷ if already_defined and has_body:
 fail("Function is defined more than once")

 ❸ symbols.add(decl.name, fun_type, defined=(already_defined or has_body))

 ❹ if has_body:
 for param in decl.params:
 symbols.add(param, Int)
 typecheck_block(decl.body)

Listing 9-21: Type checking function declarations

We first check that the function hasn’t already been declared with a different type ❶. Then, we make sure we’re
not redefining a function that was already defined ❷. The defined attribute in a function’s symbol table entry

tracks whether we’ve already type checked a definition of that function. (The symbol table entries for variables
don’t need this attribute.)

After validation, we add the function to the symbol table ❸. This will overwrite the existing symbol table entry, if
there is one. That’s okay, because the type won’t change. We just need to take the old entry into account when
setting the defined attribute. If the function was already defined, or if the current declaration has a body, we’ll

set defined to True. Finally, if the current declaration has a body ❹, we’ll add each of the function’s parameters

to the symbol table, then type check the function body.

Keep in mind that the symbol table includes every declaration we’ve type checked so far, even if it’s not in scope.
Consider this example:

int main(void) {
 ❶ int foo(int a);
 return foo(1);
}

❷ int foo(int a, int b);

The nested function declaration ❶ is not in scope when the function is declared again ❷. Nonetheless, declaration
❶ will be in the symbol table when we type check declaration ❷. So, we’ll detect that these two declarations
conflict and throw an error.

We’ll validate uses of identifiers as well as declarations. An identifier can be used as a variable in a Var AST node

or as a function name in a FunctionCall AST node. In both cases, you should validate that the identifier has the

expected type. Listing 9-22 demonstrates how to type check both kinds of expressions.

typecheck_exp(e, symbols):
 match e with
 | FunctionCall(f, args) ->
 f_type = symbols.get(f).type
 ❶ if f_type == Int:
 fail("Variable used as function name")
 ❷ if f_type.param_count != length(args):
 fail("Function called with the wrong number of arguments")
 ❸ for arg in args:
 typecheck_exp(arg, symbols)
 | Var(v) ->
 ❹ if symbols.get(v).type != Int:
 fail("Function name used as variable")
 | --snip--

Listing 9-22: Type checking expressions

When an identifier is called as a function, you need to validate that it was declared as a function, not an int ❶.

You also need to validate that it’s called with the correct number of arguments ❷, then recursively type check
each of its arguments ❸. When an identifier is used as a variable, you need to validate that it was declared as a
variable and not a function ❹.

Remember that your symbol table will need to be accessible in later compiler passes. I recommend making the
symbol table a global variable (or a singleton, depending on your implementation language) so that it’s easy to
access from anywhere in the compiler. In our type checking pseudocode, the symbol table is an explicit argument
to the typecheck_* functions instead of a global variable, for the sake of clarity. But in a real implementation,

I’ve found that using a global variable is less cumbersome.

TEST THE TYPE CHECKER

You can test the whole semantic analysis stage, including type checking, in the usual fashion:

$./test_compiler /path/to/your_compiler --chapter 9 --stage validate

Type checking should succeed for all the test programs in tests/chapter_9/valid and fail for all the test programs in
tests/chapter_9/invalid_types.

TACKY Generation

Now that we’re sure the input program is valid, let’s convert it to TACKY. We’ll need to make a few changes to the
TACKY IR. First, we need a new TACKY instruction to represent function calls. Second, we need to include
parameters in TACKY function definitions. Finally, we’ll define a whole TACKY program as a list of functions instead
of a single function. Listing 9-23 shows the updated definition of the TACKY IR.

program = Program(function_definition*)
function_definition = Function(identifier, identifier* params, instruction* body)
instruction = Return(val)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate | Not

binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 9-23: Adding function calls to TACKY

These changes correspond closely to the changes to the AST in Listing 9-15. The TACKY IR requires fewer
changes than the AST, however, because we don’t represent function declarations in TACKY. Like variable
declarations without initializers, function declarations without bodies are discarded during IR generation. Only
function definitions are converted to TACKY.

The new FunCall instruction requires a function name, a list of arguments, and a destination for the return value.

Just like the operands of other TACKY instructions, function arguments must be constants or variables, not
expressions.

To convert an entire program to TACKY, process the top-level function declarations one at a time, converting each
function definition to a TACKY function_definition and discarding any declaration without a body. To convert

a function call to TACKY, generate the instructions to evaluate each argument and construct a list of the resulting
TACKY values. The TACKY for the function call fun(e1, e2, …) will look like Listing 9-24.

<instructions for e1>

v1 = <result of e1>
<instructions for e2>

v2 = <result of e2>
--snip--

result = FunCall(fun, [v1, v2, . . .])

Listing 9-24: Converting a function call to TACKY

This is the same approach we use to handle other expressions with nested subexpressions, like unary and binary
operations. Now we’re just generalizing it to an arbitrary number of nested expressions, since a function can have
an arbitrary number of arguments.

Remember to add a Return(0) instruction to the end of every function body, to make sure it returns to the caller

even if some execution paths are missing a return statement. Next, we’ll tackle the trickiest part of this chapter:

implementing function calls in assembly.

TEST THE TACKY GENERATION STAGE

To make sure that TACKY generation succeeds for all valid programs, run:

$./test_compiler /path/to/your_compiler --chapter 9 --stage tacky

Assembly Generation

We’re going to make two big changes to the TACKY-to-assembly conversion pass in this chapter: putting function
parameters on the stack so they can be accessed in the function body and converting the new FunCall

instruction to assembly. We’ll also make a couple of smaller changes to the pseudoregister replacement and
instruction fix-up passes. But before we make these changes, we need to understand the calling convention we’re
going to use.

Understanding Calling Conventions

A calling convention is a contract between the caller and callee about how a function will be called. It answers
questions like:

How are arguments passed to the callee? Are they passed in registers or on the stack?
How is a function’s return value passed back to the caller?
Is the callee or caller responsible for removing arguments from the stack at the end of a function?
Which registers is the callee allowed to overwrite, and which does it need to preserve?

A shared calling convention allows the caller and callee to work together. The caller knows where to put
arguments, and the callee knows where to look for them. The callee knows where to store a return value, and the
caller knows where to find it after the callee returns. The callee and caller both know which registers they need to
save to ensure that the callee won’t clobber any values the caller will use after the function call. This ensures that
both functions can access the information they need.

A calling convention is part of a larger specification, called the application binary interface (ABI), that makes it
possible to link object files that were built by different compilers. As long as the object files all share the same
ABI, they’ll be able to interoperate. In addition to calling conventions, the ABI specifies how different C types are
represented in memory, which will be important in Part II. Most of the other details that make up the ABI—like
executable file formats—are handled by the assembler, linker, and operating system, so we don’t need to worry
about them.

If your compiler adheres to the calling conventions on your platform, you can compile programs that depend on
the standard library and any other libraries you might want to use. You’ll be able to compile programs that make
system calls and perform I/O operations. You still can’t compile the standard library itself—it relies on all sorts of
language features that we haven’t implemented—but since it’s already compiled and lives on your system, you can
link to it.

Every Unix-like system uses the standard calling convention defined in the System V ABI. (This ABI takes its name
from Unix System V, an early commercial version of Unix.) Since we’re targeting macOS and Linux, we’ll use the

System V calling convention. There are different versions of the System V ABI for different processor
architectures; we’ll use the version for x64 processors. Windows has its own ABI, which we won’t worry about. If
you’re doing this project on Windows Subsystem for Linux, you’ll still be able to use the System V calling
convention. Next, we’ll look at how this calling convention works.

Calling Functions with the System V ABI

In the previous section, I listed a few questions that a calling convention must answer. Let’s see how the System V
calling convention answers these questions, and the other requirements it imposes:

Argument passing

The first six integer arguments to a function are passed in the EDI, ESI, EDX, ECX, R8D, and R9D registers, in that
order (64-bit integers are passed using these registers’ 64-bit names instead: RDI, RSI, RDX, RCX, R8, and R9).
Any remaining arguments are pushed onto the stack in reverse order. For example, to implement the function call
foo(a, b, c, d, e, f, g, h), you first copy variable a into EDI, then copy b into ESI, and so on, up to f.

Then, you push h, the last argument, onto the stack. Finally, you push g onto the stack.

Return values

As we know, a function’s return value is passed in EAX (or RAX if you’re returning a 64-bit integer). The return
value must be in EAX when the ret instruction is executed.

Argument cleanup

After the callee returns, the caller removes any arguments from the stack. The callee does not clean up
arguments.

Caller-saved and callee-saved registers

If a register is caller-saved, the callee is allowed to overwrite it. The caller must therefore save the register’s value
to the stack before issuing the call instruction if it will need it later. It can then pop that value off the stack after

the function returns. (If the value in a register won’t be used after the function call, the caller doesn’t need to
save it.) If a register is callee-saved, it must have the same contents when a function returns as it did at the start
of the function. If the callee needs to use the register, it typically pushes the register’s value onto the stack during
the function prologue, then pops it back off the stack during the function epilogue. Registers RAX, R10, R11, and
all the parameter passing registers are caller-saved; the remaining registers are callee-saved.

Stack alignment

The System V ABI requires the stack to be 16-byte aligned. In other words, the address stored in RSP, the stack
pointer, must be divisible by 16 when we issue a call instruction. The ABI imposes this requirement because

some instructions require 16-byte-aligned operands. It’s easier to maintain the correct alignment of these
operands if the stack is 16-byte aligned to begin with.

You can find the full System V x64 ABI at https://gitlab.com/x86-psABIs/x86-64-ABI. However, looking at an
example might be more useful than reading the spec. Consider Listing 9-25.

int fun(int a, int b, int c, int d, int e, int f, int g, int h) {
 return a + h;
}

int caller(int arg) {
 return arg + fun(1, 2, 3, 4, 5, 6, 7, 8);
}

Listing 9-25: A C program that includes a function call

Listing 9-26 gives the assembly code for fun. It’s more optimized than what your compiler will produce, in order

to illustrate the System V calling convention more clearly.

 .globl fun
fun:
 pushq %rbp
 movq %rsp, %rbp
 # copy first argument into EAX
 movl %edi, %eax
 # add last argument to EAX
 addl 24(%rbp), %eax
 # epilogue
 movq %rbp, %rsp
 popq %rbp
 ret

Listing 9-26: The assembly code for fun in Listing 9-25

Listing 9-27 gives the assembly code to call fun from caller.

 # save RDI before function call
 pushq %rdi
 # fix stack alignment
 subq $8, %rsp
 # pass first six arguments in registers
 movl $1, %edi
 movl $2, %esi
 movl $3, %edx
 movl $4, %ecx

https://gitlab.com/x86-psABIs/x86-64-ABI

 movl $5, %r8d
 movl $6, %r9d
 # pass last two arguments on the stack
 pushq $8
 pushq $7
 # transfer control to fun
 call fun
 # restore the stack and RDI
 addq $24, %rsp
 popq %rdi

Listing 9-27: The assembly code to call fun in Listing 9-25

Let’s walk through this function call and see how the program state changes at each step. In the following
diagrams, the left column shows the contents of the stack and general-purpose registers, and the right column
shows the contents of RIP, which always holds the address of the next instruction to execute. (Note that the
instruction addresses in these diagrams aren’t realistic. These addresses suggest that every instruction is 1 byte
long, but instruction length varies, and it’s usually more than a single byte!)

Figure 9-1 shows the initial state of the program before the call to fun.

Figure 9-1: The initial state of the program in Listing 9-25 Description

In Figure 9-1, RSP and RBP point to the same address. There are no local variables in caller, so we don’t need

to allocate any stack space. The registers in this diagram all hold 64-bit values, but we’ll usually use 32-bit register
names, like EDI, ESI, and EDX, because all our function arguments and return values are 32-bit integers. However,
we’ll use 64-bit register names when saving to and restoring from the stack, because push and pop require 64-bit

operands.

The one argument to caller, arg, is passed in RDI. Let’s say the value of arg is 15. To call fun, we need to pass

all eight arguments according to the System V calling convention. The first six arguments will be passed in
registers, and the last two will be passed on the stack. But copying the first argument into RDI will clobber arg,

which we’ll need again after the function call. So, the very first step, before passing any arguments, is to save arg

onto the stack:

 # save RDI before function call
 pushq %rdi

Next, we adjust RSP so it will be 16-byte aligned when we issue the call instruction. We need to work backward

from the number of arguments and saved registers we put on the stack. Before the start of the function call, we
can assume that the stack pointer is a multiple of 16. (To guarantee this, we’ll allocate stack space in multiples of
16 bytes in the function prologue.) We’ll then push some registers and function arguments onto the stack; each of
these will be 8 bytes. If the total number of registers and arguments pushed onto the stack is even, the stack will
be 16-byte aligned after we’ve added all of them. If the number of registers and arguments on the stack is odd,
we need to subtract 8 bytes from the stack pointer to get the right alignment.

In this example, we push one register, RDI. We’ll also need to push two arguments onto the stack, g and h. In

total, we’ll push three values, totaling 24 bytes, onto the stack before issuing the call instruction. Therefore, we

need to adjust the stack by another 8 bytes after saving RDI:

 # fix stack alignment
 subq $8, %rsp

Now we’re ready to set up the arguments to fun. We start with the first six arguments, which will be passed in

registers. Because the arguments are all 32-bit integers, we’ll use 32-bit register names here:

 # pass first six arguments in registers
 movl $1, %edi
 movl $2, %esi
 movl $3, %edx
 movl $4, %ecx
 movl $5, %r8d
 movl $6, %r9d

Next, we push the remaining two arguments onto the stack, in reverse order:

 # pass last two arguments on the stack
 pushq $8
 pushq $7

Each of these instructions will push a 64-bit constant onto the stack, because the push instruction can push only

64-bit values. Figure 9-2 shows the state of the program after we save RDI, adjust the stack, and set up the
function arguments.

Figure 9-2: The state of the program just before the call instruction Description

You can tell that the stack is indeed 16-byte aligned because the stack pointer is divisible by 16 (or 0x10 in

hexadecimal). Once our arguments are set up, we call fun with the call assembly instruction:

 # transfer control to fun
 call fun

The call instruction does two things. First, it pushes the address of the instruction that immediately follows it,

the return address, onto the stack. Then, it transfers control to the instruction labeled fun by copying that

instruction’s address into RIP. Figure 9-3 shows the state of the program just after the call instruction.

Figure 9-3: The state of the program just after the call instruction Description

The function prologue, which we’re already familiar with, sets up the stack frame for fun, which puts the program

in the state shown in Figure 9-4.

Figure 9-4: The state of the program after the function prologue for fun Description

In this diagram, the portion of the stack with a white background is fun’s stack frame. The portion with a light

gray background is caller’s stack frame. In fun, we need to calculate a + h. This requires us to access one

parameter that was passed in a register (a) and one that was passed on the stack (h). The next instruction in fun

copies the value of a into EAX:

 # copy first argument into EAX
 movl %edi, %eax

Next, we want to add h, which was passed on the stack, to the value in EAX. Stack arguments, just like local

variables, can be addressed relative to RBP. We know that RBP points to the stack slot that contains the base
address of the caller’s stack frame. The stack slot just below that, at 8(%rbp), contains the return address in the

caller. The value below that, at 16(%rbp), will be the first stack argument, g. (Remember that we pushed stack

arguments in reverse order. That means g, the first stack argument, was pushed onto the stack last and is now

closest to the current stack frame.) The next argument, h, will be 8 bytes below that, at 24(%rbp), and we can

access it accordingly:

 # add last argument to EAX
 addl 24(%rbp), %eax

We pushed a 64-bit constant, 8, onto the stack, but addl needs a 32-bit operand. It will therefore interpret the 4

bytes starting at 24(%rbp) as a 32-bit integer, effectively dropping the upper 32 bits. Since those bits are just

leading zeros, the resulting value will still be 8. That is, even though each argument pushed onto the stack must

be 64 bits, we can still interpret them as 32-bit integers in the callee.

VARIADIC FUNCTIONS

Pushing the last argument onto the stack first makes it easier to support variadic functions, or functions with a
varying number of arguments. The most obvious example is printf, where the number of arguments depends on

the format string you pass in. Because we push arguments onto the stack from right to left, the seventh argument
(the first stack argument) will always be at 16(%rbp), no matter how many arguments we pass. This means a

variadic function can easily iterate over its arguments without knowing the total number of arguments in advance:
it can just increase the offset from RBP to get the next argument. If we pushed arguments in order, the more
arguments we passed, the larger the offset would be from RBP to the first argument on the stack. A variadic
function would need to figure out the total number of arguments it had received (by, for example, inspecting the
format string in the first argument to printf) and recalculate the address of each argument from there.

At this point, we have the correct return value in EAX. We’re ready for the function epilogue:

 # epilogue
 movq %rbp, %rsp
 popq %rbp

Note that the movq instruction is unnecessary in this particular program. Usually, this instruction deallocates the

current stack frame, putting the old value of RBP back at the top of the stack. But we didn’t allocate any stack
space for fun, so RSP and RBP already have the same value.

The epilogue puts the stack back the way it was before the prologue. Figure 9-5 shows how things will look at this
point.

Figure 9-5: The state of the program just before returning to the caller Description

We return to the caller with the ret instruction, which pops the return address off the stack and transfers control

to that address. Figure 9-6 shows the state of the program after we return to the caller.

Figure 9-6: The state of the program just after returning to the caller Description

At this point, the stack is in exactly the same state as it was just before the call instruction. The last step is to

clean up the padding and stack arguments and restore arg to RDI:

 # restore the stack and RDI
 addq $24, %rsp
 popq %rdi

Now the stack is back the way it was before the function call, and RDI has been restored to its original state. The
RAX register contains the return value, which we can use later in the function body. Because the other registers
were uninitialized before the call to fun, we don’t need to clean them up now. Figure 9-7 shows the state of the

program once we’ve finished cleaning up after the function call.

Figure 9-7: The state of the program after the function call has been completed Description

At this point, you should have a clear understanding of how to call functions and access function parameters in
assembly. We’re ready to update the assembly generation stage.

Converting Function Calls and Definitions to Assembly

We’re going to extend our assembly AST now, for the first time since Chapter 4. Listing 9-28 defines the new AST,
with changes bolded.

program = Program(function_definition*)
function_definition = Function(identifier name, instruction* instructions)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | Binary(binary_operator, operand, operand)
 | Cmp(operand, operand)
 | Idiv(operand)
 | Cdq
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | AllocateStack(int)
 | DeallocateStack(int)
 | Push(operand)
 | Call(identifier)
 | Ret

unary_operator = Neg | Not
binary_operator = Add | Sub | Mult

operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int)
cond_code = E | NE | G | GE | L | LE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11

Listing 9-28: The assembly AST with support for function calls

First, we change the top-level definition of Program to support multiple function definitions. We also introduce

three new instructions. To adjust the stack alignment before a function call, we can use the AllocateStack

instruction we already have, which will eventually be emitted as a subq instruction. To remove arguments and

padding after a function call, we add a corresponding DeallocateStack instruction, which will be emitted as

addq. We also need the Push instruction to push arguments onto the stack. We’ve already used push in the

function prologue, but in such a limited way that we could add it mechanically during code emission. Now that
we’re going to be using it more extensively, we need to add it to the assembly AST. And, of course, we need the
Call instruction to actually call functions. Lastly, we need a few new registers for argument passing: CX, DI, SI,

R8, and R9. Arguments are also passed in the DX register, which is already in our AST. Like in previous chapters,

the AST doesn’t distinguish between the different aliases for each register: DI, for example, will be emitted as

%rdi, %edi, or %dil, depending on whether we want to use the whole register, its lower 4 bytes, or its lowest

byte.

With these additions to the assembly AST in place, we can update the TACKY-to-assembly conversion. Remember
that we made three changes to the TACKY IR: we defined a program as a list of functions instead of a single
function, added parameters to each function definition, and added a FunCall instruction. Accounting for the first

change is straightforward: we convert a list of functions in TACKY to a list of functions in assembly. Next, we’ll
make function parameters accessible in assembly. Then, we’ll see how to convert the new FunCall instruction to

assembly.

Accessing Function Parameters in Assembly

At the start of a function, each parameter is stored in the register or stack location dictated by our calling
convention. We could access function parameters in assembly code by referring directly to those locations. The
assembly code for fun in Listing 9-26 took this approach; when we needed to add parameters a and h, we

referred to their calling convention–defined locations, %edi and 24(%rbp). This works, but it has a few

disadvantages. It requires us to push parameter passing registers onto the stack just before function calls and pop
them off again afterward, like we had to push and pop RDI before and after the call to fun in Listing 9-27. It also

leads to conflicts with other instructions that use parameter passing registers. For example, idiv writes to the

EDX register, potentially clobbering the function parameter stored there. Finally, it makes the pseudoregister
allocation phase more complex, because parameters must be handled differently from local variables.

We’ll take a different approach that bypasses these problems: at the start of each function body, we’ll copy each
parameter from its calling convention–defined register or memory address into a slot in the current function’s
stack frame. Let’s look at a simple example. Listing 9-29 defines a function with one parameter.

int simple(int param) {
 return param;
}

Listing 9-29: A function with a single parameter

When we generate the assembly for this function, we’ll include an extra Mov instruction at the start of the function

body:

Mov(Reg(DI), Pseudo("param"))

This instruction copies the function’s first parameter into the param pseudoregister. Keep in mind that any uses of

Var("param") in TACKY will be translated to uses of Pseudo("param") in assembly.

The generated assembly for the whole function will look like this:

Mov(Reg(DI), Pseudo("param"))
Mov(Pseudo("param"), Reg(AX))
Ret

(Really, param would be renamed during identifier resolution, and we would emit an extra Return(0) instruction

during TACKY generation, but neither of these details matter for this example.)

We’ll replace pseudoregisters with stack locations in the usual fashion. Since param is our only pseudoregister,

we’ll assign it to Stack(-4). We’ll ultimately emit the assembly program shown in Listing 9-30.

 .globl simple
simple:
 pushq %rbp
 movq %rsp, %rbp
 subq $16, %rsp
 movl %edi, -4(%rbp)
 movl -4(%rbp), %eax
 movq %rbp, %rsp
 popq %rbp
 ret

Listing 9-30: The assembly program for Listing 9-29

Copying parameters onto the stack keeps code generation simple. We won’t need to save caller-saved registers
before function calls or restore them afterward, because we use these registers only in very transient ways. When

we pass function parameters in registers, we save them to the stack immediately, instead of leaving them in those
registers long term. Aside from function parameters, the only values we store in caller-saved registers are return
values, the results of idiv instructions, and values that are temporarily copied into R10D or R11D during the

instruction rewriting stage. Just like parameters, these values are either used or copied to the stack right away.
The upshot is that the values in caller-saved registers will never need to persist across function calls; that’s why
we don’t need to save or restore them. (Meanwhile, the callee doesn’t need to save or restore most callee-saved
registers because we don’t use them at all. The sole exceptions are the RBP and RSP registers, which we save and
restore in the function prologue and epilogue.)

Along the same lines, we don’t have to worry about the idiv instruction clobbering the parameter in EDX. We

don’t need any extra logic to handle function parameters during pseudoregister allocation, either: we can assign
them to stack locations just like local variables.

On the other hand, copying parameters to the stack is inefficient. First of all, we’re generating extra mov

instructions. Second, we’re forcing the program to access memory, which is usually slower than registers, every
time it reads or writes a parameter. Luckily, we’ll be able to get rid of most of these extra instructions and memory
accesses when we implement register allocation in Part III.

When you generate these parameter-copying instructions, start by moving the first parameter from Reg(DI) into

a pseudoregister, the second from Reg(SI), and so on, up to the sixth parameter (or until you run out of

parameters, if the function has fewer than six). Then, copy the seventh parameter from Stack(16), the eighth

from Stack(24), and so on until you’ve handled every parameter. As we saw earlier, the top of the caller’s stack

frame, 8(%rbp), is the return address, and the seventh parameter—the first parameter passed on the stack—is

always just below it, at 16(%rbp). From there, the offset increases by 8 bytes for each additional parameter,

because the caller pushes them onto the stack as 8-byte values (even though the callee interprets them as 4-byte
values).

Implementing FunCall

Earlier, we stepped through the assembly code for a function call. Now let’s look at how to generate this assembly
code. Listing 9-31 gives the pseudocode to convert a FunCall TACKY instruction to assembly.

convert_function_call(FunCall(fun_name, args, dst)):
 arg_registers = [DI, SI, DX, CX, R8, R9]

 // adjust stack alignment
 register_args, stack_args = first 6 args, remaining args
 if length(stack_args) is odd:
 stack_padding = 8
 else:
 stack_padding = 0

 if stack_padding != 0:
 emit(AllocateStack(stack_padding))

 // pass args in registers
 reg_index = 0
 for tacky_arg in register_args:
 r = arg_registers[reg_index]
 assembly_arg = convert_val(tacky_arg)
 emit(Mov(assembly_arg, Reg(r)))
 reg_index += 1

 // pass args on stack
 for tacky_arg in reverse(stack_args):
 assembly_arg = convert_val(tacky_arg)
 if assembly_arg is a Reg or Imm operand:
 ❶ emit(Push(assembly_arg))
 else:
 ❷ emit(Mov(assembly_arg, Reg(AX)))
 emit(Push(Reg(AX)))

 // emit call instruction
 emit(Call(fun_name))

 // adjust stack pointer
 bytes_to_remove = 8 * length(stack_args) + stack_padding
 if bytes_to_remove != 0:
 emit(DeallocateStack(bytes_to_remove))

 // retrieve return value
 assembly_dst = convert_val(dst)
 emit(Mov(Reg(AX), assembly_dst))

Listing 9-31: Emitting assembly for a function call

The first step is to make sure the stack is properly aligned. We must do this before passing arguments on the
stack; if we add extra padding between the arguments and the callee’s stack frame, the callee won’t be able to
find them. When we walked through the function call in Listing 9-27, we saw that if we pushed an even number of
arguments and caller-saved registers to the stack, it would still be 16-byte aligned afterward—no padding
required. If we pushed an odd number, we’d need to subtract another 8 bytes from the stack pointer to maintain
the correct alignment. Now, thanks to the parameter-copying trick from the previous section, we need to consider
only arguments that are pushed onto the stack, not caller-saved registers. So, we just check how many arguments
we’ll push onto the stack, then emit an AllocateStack instruction if that number is odd.

Next, we pass the function arguments. As we process each argument, we convert it from a TACKY value to an
assembly operand with the convert_val helper function. (I’ve omitted the pseudocode for convert_val, since

you already know how to perform this conversion.) The first six arguments are copied into the appropriate
registers. A function may, of course, have fewer than six arguments; in that case, we copy every argument into a
register.

If the function has more than six arguments, the remainder must be passed on the stack. We push the last
argument, then the second-to-last, and so on, up through the seventh argument. Keep in mind that our
arguments are 4-byte integers, but we need to push 8 bytes onto the stack for each of them (because the ABI
requires it, and because pushq takes only 8-byte operands). However, the callee will use only the lower 4 bytes of

each argument. If an argument is a Reg or Imm operand, we pass it with a single Push instruction ❶. If it’s in

memory, we first copy the argument into AX, then push that ❷. Using an immediate value in an instruction like

pushq $7 pushes the 8-byte representation of that value. Pushing a Reg operand pushes the entire 8-byte

register, whose lower 4 bytes we can access with the corresponding 4-byte alias. (The code emission pass will use
4-byte register aliases like %eax in most instructions, including movl, and 8-byte aliases like %rax in pushq

instructions.)

If we used a 4-byte memory operand directly in an instruction like pushq -4(%rbp), we’d push the 4 bytes of our

operand followed by 4 bytes of whatever happened to follow it in memory. This would usually be fine, if a bit
kludgy. But if the 4 bytes that followed our operand weren’t readable memory, trying to access those bytes would
trigger a segmentation fault and crash the program. This issue won’t come up when we push an operand from the
stack; the bytes right after it will hold either some other temporary value from the current function or the saved
base address of the caller’s stack frame. But it could come up when we push static variables, which we’ll
implement in Chapter 10. A static variable might appear at the very end of a valid memory region; in this case, the
memory addresses just past that variable could be invalid. (You can read more about this edge case in Randall
Hyde’s The Art of 64-Bit Assembly, Volume 1 [No Starch Press, 2021]; see section 5.5.3.3, “Passing Parameters on
the Stack.”) Copying the operand from memory into a register before we push it avoids this problem. Note that AX

is the only register we can use to help push memory operands onto the stack, because we have to preserve the
callee-saved registers, we’ve already put arguments in the parameter passing registers, and we’ve reserved R10
and R11 for the instruction fix-up phase.

Once every argument is in place, we issue the call instruction to transfer control to the callee. After the call

returns, we no longer need the arguments that were passed on the stack, and we certainly don’t need the
padding. We add the total size of those arguments and the padding to the stack pointer with the
DeallocateStack instruction. After deallocating this space, the stack pointer will be back where it was before we

started preparing for the function call.

Finally, we retrieve the function’s return value. This value will be in EAX, and we copy it to its destination with a
mov instruction.

Tables 9-1 and 9-2 summarize this chapter’s changes to the conversion from TACKY to assembly. New constructs
and changes to existing constructs are bolded.

Table 9-1: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(function_definitions) Program(function_definitions)

TACKY top-level construct Assembly top-level construct

Function(name, params,

instructions)
Function(name,
 [Mov(Reg(DI), param1),

 Mov(Reg(SI), param2),
 <copy next four parameters from registers
 Mov(Stack(16), param7),

 Mov(Stack(24), param8),

 <copy remaining parameters from stack>] +
 instructions)

Table 9-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

FunCall(fun_name, args, dst)

<fix stack alignment>

<set up arguments>
Call(fun_name)
<deallocate arguments/padding>
Mov(Reg(AX), dst)

The assembly for a function call is too complex to fully specify in a table, so the conversion for FunCall in Table

9-2 is more of a rough outline.

Replacing Pseudoregisters

Next, we’ll update the pseudoregister replacement pass. Most of the logic here won’t change: we’ll replace
pseudoregisters in each function definition exactly the same way as in past chapters. As we saw earlier,
pseudoregisters that represent function parameters don’t require any special handling. They’ll get assigned
locations on the stack, just like local variables.

However, we do need to make a couple of updates. First, we’ll extend this pass to replace pseudoregisters in the
new Push instruction. (We don’t directly push pseudoregisters now, but we will in Part II.) Second, we’ll change

how we track the stack space needed by each function. Previously, this whole pass returned a single number
because the program contained a single function. Now we need to return a stack size for each function we

process. You could record each function’s stack size in the symbol table, or annotate each function with its stack
size in the assembly AST.

Note that parameters count toward a function’s stack size, whether they were passed on the stack or in registers,
since we copy them into the function’s stack frame.

Allocating Stack Space During Instruction Fix-Up

We need to make one small adjustment to the instruction fix-up pass: we’ll change how we add AllocateStack

to each function definition. First, we’ll look up the stack space needed by each function wherever we recorded it
during pseudoregister replacement. Next, we’ll round that stack size up to the next multiple of 16. Rounding up
the size of the stack frame makes it easier to maintain the correct stack alignment during function calls.

TEST ASSEMBLY GENERATION

To test that your compiler can generate assembly programs without throwing an error, run:

$./test_compiler /path/to/your_compiler --chapter 9 --stage codegen

Of course, you won’t be able to test that you’re producing correct assembly until you’ve updated the next (and
last) stage of the compiler.

Code Emission

Now we need to make sure the code emission stage can handle all our new instructions and operands. Most of
this is pretty straightforward, but there are a few platform-specific details to consider. As we’ve already seen,
function names are prefixed with an underscore on macOS, but not on Linux. This applies in call instructions too,

so on macOS you’ll emit

 call _foo

and on Linux you’ll emit:

 call foo

On Linux, you’ll also call functions in external libraries differently from functions defined in the same file. If foo

isn’t defined in the current translation unit, you’ll emit:

 call foo@PLT

PLT stands for procedure linkage table, a section in ELF executables. (ELF, short for Executable and Linkable
Format, is the standard file format for object files and executables on Linux and most other Unix-like systems;
macOS uses a different file format called Mach-O.) Programs use the PLT to call functions in shared libraries.
We’ve already learned that the linker combines object files and resolves symbols to concrete locations in memory
in order to produce an executable. On modern systems, these locations are typically encoded as offsets from the
current instruction rather than absolute memory addresses. When we define and use a symbol in the same
executable, the linker can figure out the symbol’s relative offset from the instruction that uses it and resolve the
reference.

Shared libraries are a different story. When a program uses a shared library, the linker doesn’t copy the whole
library into the executable. Instead, the library is loaded into memory separately at runtime. The linker doesn’t
know exactly where this library will live in memory, so it can’t resolve the names of shared library functions.
Another piece of software, called the dynamic linker, must resolve these names at runtime. The dynamic linker
can resolve symbols in a few different ways, but the most common approach is lazy binding. Using lazy binding,
we don’t figure out a function’s address until the program tries to call that function. That’s where the PLT comes
in. The operand foo@PLT doesn’t refer to the function foo. It refers to a tiny bit of code in the PLT that

determines the address of foo if we don’t already know it, and then calls foo. The linker is responsible for

generating this code, which is called a PLT entry.

If foo isn’t defined in the current translation unit, it might be defined in a shared library or in another object file

that the linker will include in the final executable. In the latter case, we don’t need the PLT: the linker will be able
to figure out the address of foo (or, more precisely, its offset from the call instruction that refers to it). The code

emission pass can’t tell these two cases apart, so it should include the @PLT suffix either way; there’s no harm in

including this suffix when we don’t need it.

NOTE

For a more in-depth explanation of how the PLT works and why we need it, see the two blog posts on position-
independent code listed in Chapter 1’s “Additional Resources” on page 21.

On Linux, to check whether a function was defined in the current translation unit—and therefore whether it
requires the @PLT modifier—you’ll need to look it up in the symbol table. On macOS, which handles lazy binding

slightly differently, you don’t need the @PLT modifier at all.

Tables 9-3 through 9-5 show the changes to the code emission pass for this chapter, with new constructs and
updates to existing constructs bolded.

Table 9-3: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(function_definitions)

Print out each function definition.
On Linux, add at end of file:
 .section .note.GNU-stack,"",@progbits

Table 9-4: Formatting Assembly Instructions

Assembly instruction Output

DeallocateStack(int)

addq $<int>, %rsp

Push(operand)

pushq <operand>

Call(label)

call <label>

or
call <label>@PLT

Table 9-5: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 8-byte %rax

4-byte %eax

1-byte %al

Assembly operand Output

Reg(DX) 8-byte %rdx

4-byte %edx

1-byte %dl

Reg(CX) 8-byte %rcx

4-byte %ecx

1-byte %cl

Reg(DI) 8-byte %rdi

4-byte %edi

1-byte %dil

Reg(SI) 8-byte %rsi

4-byte %esi

1-byte %sil

Reg(R8) 8-byte %r8

4-byte %r8d

1-byte %r8b

Reg(R9) 8-byte %r9

4-byte %r9d

1-byte %r9b

Reg(R10) 8-byte %r10

4-byte %r10d

Assembly operand Output

1-byte %r10b

Reg(R11) 8-byte %r11

4-byte %r11d

1-byte %r11b

We now have 8-byte, 4-byte, and 1-byte names for every register. We’ll use 8-byte register names in push

instructions, 1-byte names in conditional set instructions, and 4-byte names everywhere else.

Calling Library Functions

Once you’ve updated the backend of your compiler, you’ll be able to compile programs that call standard library
functions. You won’t be able to use #include directives, because any standard library header file will use

language features your compiler doesn’t support. Instead, you’ll need to explicitly declare any library functions you
want to use.

There aren’t many library functions we can call at this point. Because the only type we’ve implemented is int, we

can’t call functions that use any non-int type as either a return type or a parameter type. But we can call

putchar, which takes an int argument and prints the corresponding ASCII character to stdout. This is enough

for us to compile Listing 9-32, which is a slightly unorthodox implementation of “Hello, World!”

int putchar(int c);

int main(void) {
 putchar(72);
 putchar(101);
 putchar(108);
 putchar(108);
 putchar(111);
 putchar(44);
 putchar(32);
 putchar(87);
 putchar(111);
 putchar(114);
 putchar(108);
 putchar(100);
 putchar(33);
 putchar(10);
}

Listing 9-32: Hello, World!

Try compiling Listing 9-32 with your compiler and running it. If you’ve implemented everything correctly, it will
write to stdout:

$./hello_world
Hello, World!

This is a big milestone! Take a moment to bask in your sense of accomplishment before running the remaining
test cases.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 9

There are a couple of new kinds of tests in this chapter. Some of the test programs use putchar to write to

stdout. The test script will validate anything written to stdout as well as the return code. Other test programs for
this chapter contain multiple source files. The tests/chapter_9/valid/libraries directory

contains several pairs of libraries and clients. Each library, <LIB>.c, contains one or more function definitions. The
corresponding client program, <LIB>_client.c, calls those library functions. For each client and library, the test
script runs two separate tests. First, it compiles the client with your compiler and the library with the production
compiler installed on your system (GCC or Clang). Then, it compiles the client with the system’s compiler and the
library with your compiler. In both cases, it then links the client and library together, runs the resulting executable,
and checks that it produces the expected behavior. This validates that your compiler adheres to the System V
calling convention on both the caller and callee sides.

I recommend debugging any test failures in several stages. First, get the test cases without function arguments to
pass. Then, to make sure you’re accessing function parameters correctly, work on the test cases for library
functions in tests/chapter_9/valid/libraries that don’t call any functions themselves. Since the clients are compiled
by the system compiler, you can test out the function definitions separately from the corresponding function calls.
Once those tests pass, work on the tests of function calls with fewer than six arguments. Finally, debug any failing
tests of function calls with more than six arguments.

Summary

Function calls are the most powerful, and most complicated, feature we’ve seen so far. To implement them, you
expanded the semantic analysis stage to understand different kinds of identifiers and learned the ins and outs of
the System V calling convention. All that work paid off: you can finally compile programs that interact with the
outside world!

You’ve also laid the groundwork for other language features. You’ll expand on the idea of identifier linkage and
build on the latest changes to the identifier resolution pass when you implement file scope variables and storage-
class specifiers in the next chapter (the last chapter of Part I!). And you’ll continue to extend the type checker as
you add more types throughout Part II.

Description

10

FILE SCOPE VARIABLE DECLARATIONS AND STORAGE-
CLASS SPECIFIERS

We’ll wrap up Part I by implementing a few important features related to function and
variable declarations. We’ll add support for variable declarations at file scope—that is, at
the top level of a source file—and introduce the static and extern keywords. These

keywords are storage-class specifiers that control a declaration’s linkage and the storage
duration of the declared object (how long that object exists in memory).

We’ll spend most of this chapter on the semantic analysis stage, determining the linkage
and storage duration of every declaration. We’ll also need a few new assembly directives to
define and initialize different kinds of variables, but the changes to the compiler backend
will be relatively simple. Let’s start by reviewing what the C standard has to say about

declarations and storage-class specifiers. I recommend reading the following section even if you already know C
pretty well. This part of the language looks very different to a compiler developer than it does to a C programmer,
largely because your compiler needs to support behavior that no sensible C programmer would use.

All About Declarations

Every declaration in a source file has several properties we need to track, each of which we’ll examine in this
section. These include the declaration’s scope, its linkage, and whether it’s a definition as well as a declaration.
(Its type is also important, but we won’t have anything new to say about that in this chapter.) We also need to
track the storage duration of every variable in the program.

The rules for determining these properties are baroque. They depend on whether an identifier refers to a function
or variable, whether it’s declared at file scope or at block scope (inside a function body), and which storage-class
specifier is applied to it. The static specifier has two distinct meanings, which apply in different contexts. The

extern specifier has multiple, seemingly unrelated effects; these also depend on context. (The other storage-

class specifiers—auto, register, _Thread_local, and typedef—serve a hodgepodge of different purposes that

I won’t get into here. We won’t be implementing those.) Basically, this part of the C standard is a mess, but we’ll
do our best to wade through it.

The terminology around declarations in C can be inconsistent, so I’ll spell out how I’m using a few terms before
we get started:

A file or source file is a preprocessed source file, referred to in the C standard (and the previous chapter) as a
“translation unit.”
A static variable is a variable with static storage duration (discussed in “Storage Duration” on page 212), not
just a variable declared with the static storage-class specifier. All variables with the static specifier are

static variables, but not all static variables are declared with that specifier.
An automatic variable is a variable with automatic storage duration (also discussed in “Storage Duration”), as
opposed to static storage duration. All the variables we encountered in earlier chapters were automatic
variables.
An external variable is any variable with internal or external linkage, not just a variable declared with the
extern storage-class specifier. As we’ll see, all external variables are also static variables, but not all static

variables are external.

Scope

Functions and variables follow the same scoping rules. Variables can be declared at either file scope or block
scope, just like functions. File scope variables, like functions and block scope variables, must be declared before
they can be used and may be shadowed by later block scope identifiers. Since you already know the rules for
determining an identifier’s scope, there’s not much more to say here.

Linkage

Up to this point, function declarations have always had external linkage: every declaration of a particular function
name referred to the same function definition. The local variable declarations we’ve seen so far had no linkage:
different declarations of the same variable name always referred to different objects. By default, variable
declarations at file scope have external linkage, just like function declarations. Whenever there are multiple file
scope declarations of the same identifier, the compiler needs to either reconcile them, so they can all refer to the
same thing, or throw an error.

Using the static specifier, we can also declare functions and variables with internal linkage. Internal linkage

works like external linkage, except that declarations with internal linkage never refer to entities in other files. To
illustrate the difference, let’s consider a program made up of two source files. Listing 10-1 shows the first file.

❶ int foo(void) {
 return 1;
}

❷ int bar(void) {
 return 2;
}

Listing 10-1: A source file defining two functions with external linkage

Listing 10-2 shows the second file.

❸ int foo(void);
❹ static int bar(void);

int main(void) {
 return foo() + bar();
}

❺ static int bar(void) {
 return 4;
}

Listing 10-2: A source file declaring one function with internal linkage (bar) and two functions with external
linkage (foo and main)

In Listing 10-1, we define two functions with external linkage: foo ❶ and bar ❷. Listing 10-2 also includes

declarations of identifiers foo ❸ and bar ❹❺. First, let’s figure out what foo means in Listing 10-2. Because the

declaration at ❸ does not include the static specifier, it has external linkage. Therefore, declarations ❶ and ❸

refer to the same function, which is defined at ❶.

Next, let’s consider bar. Because the declaration at ❹ includes the static specifier, it has internal linkage. That

means it doesn’t refer to the definition at ❷. Instead, it declares a brand-new function. The definition of this
function appears later, at ❺. Since declarations ❹ and ❺ both have internal linkage and appear in the same file,
they refer to the same function. Therefore, main will use the definition of bar at ❺ to compute 1 + 4 and return

5.

Note that identifiers with internal linkage don’t shadow identifiers with external linkage, or vice versa. The
declaration of bar in Listing 10-2 doesn’t shadow the definition at ❷ in Listing 10-1; rather, that definition was

never visible in Listing 10-2 to begin with, because no declaration in Listing 10-2 refers to it. If an identifier is
declared with both internal and external linkage in the same file, the behavior is undefined, and most compilers
will throw an error.

Section 6.2.2 of the C standard lays out the rules for determining identifier linkage, which I’ll summarize here. A
declaration’s linkage depends on two things: what storage-class specifier it includes, if any, and whether it’s
declared at block or file scope. Function declarations with no storage-class specifier are always handled as though
they include an extern specifier, which we’ll discuss momentarily. If variable declarations with no storage-class

specifier appear at block scope, they have no linkage. If they appear at file scope, they have external linkage.

At file scope, the static specifier indicates that a function or variable has internal linkage. At block scope, the

static specifier controls storage duration, not linkage. Variables declared with this specifier at block scope have

no linkage, just like variables declared with no specifier. It’s illegal to declare static functions at block scope,

because functions don’t have storage duration.

The extern specifier is more complicated. If an identifier is declared with extern at a point where a prior

declaration of that identifier is visible, and the prior declaration has internal or external linkage, the new
declaration will have the same linkage as the previous one. If no prior declaration is visible, or the prior
declaration had no linkage, an extern declaration will have external linkage.

In Listing 10-3, we use extern to declare an identifier that’s already visible.

static int a;
extern int a;

Listing 10-3: Declaring an identifier with extern when a prior declaration is visible

The first declaration of a has internal linkage because of the static keyword. Because the second declaration is

declared with the extern keyword at a point where the first declaration is visible, it will have internal linkage too.

In Listing 10-4, on the other hand, we use extern at a point where no prior declaration is visible.

int main(void) {
 extern int a;
 return a;
}

int a = 5;

Listing 10-4: Using extern to declare a variable with external linkage at block scope

The declaration of a inside main and the definition of a later in the file both have external linkage, so they refer to

the same object. Therefore, main will return 5.

You can use extern to bring a variable with external linkage back into scope if it’s shadowed by a local variable.

Listing 10-5 shows how this works.

int a = 4;
int main(void) {
 int a = 3;
 {
 ❶ extern int a;
 return a;

 }
}

Listing 10-5: Using extern to bring a shadowed variable with external linkage back into scope

When we declare a with the extern specifier in main ❶, no prior declaration with internal or external linkage is

visible. (The initial file scope declaration of a has external linkage, but it’s hidden by the second declaration at

block scope. The block scope declaration is visible, but it has no linkage.) Therefore, this extern declaration has

external linkage. Since the earlier file scope declaration of a also has external linkage, both declarations refer to

the same variable. We then use this variable in the return statement on the next line. As a result, main returns

4.

Earlier, I mentioned that function declarations without a storage-class specifier are always handled as though they
include the extern specifier. Consider how this rule impacts the linkage of the function definition in Listing 10-6.

static int my_fun(void);
int my_fun(void) {
 return 0;
}

Listing 10-6: A function declaration with the static specifier, followed by a definition of that function with no
storage-class specifier

As we saw in Listing 10-3, a declaration with the extern specifier takes on the same linkage as the previous

declaration of that identifier, if one is visible. Since we treat the definition of my_fun as if it had the extern

specifier, it will take on the same linkage as the declaration on the previous line; that is, internal linkage. This rule
implies that including extern on function declarations is always redundant (with the exception of inline functions,

which we won’t implement).

Next, we’ll consider a concept that’s new to this chapter: storage duration.

Storage Duration

Storage duration is a property of variables; functions don’t have storage duration. Section 6.2.4, paragraphs 1–2,
of the C standard provides the following description: “An object has a storage duration that determines its
lifetime.… The lifetime of an object is the portion of program execution during which storage is guaranteed to be
reserved for it. An object exists, has a constant address, and retains its last-stored value throughout its lifetime.”
In other words, during an object’s lifetime, you can work with it in the usual fashion: you can write to it, read from
it, and get back the last value you wrote. The object won’t be deallocated or reinitialized during that time.

In this chapter, we’ll consider two kinds of storage duration: automatic and static. All the variables we saw in
earlier chapters had automatic storage duration. The lifetime of a variable with automatic storage duration starts

when you enter the block where it’s declared and ends when you exit that block. This means you can’t, for
example, use an automatic variable to track how many times a function has been called. To understand why, take
a look at Listing 10-7, which tries to do exactly that.

#include <stdio.h>

int recursive_call(int count_was_initialized) {
 int count;
 if(!count_was_initialized) {
 count = 0;
 count_was_initialized = 1;
 }
 count = count + 1;
 printf("This function has been called %d times\n", count);
 if (count < 20) {
 recursive_call(count_was_initialized);
 }
 return 0;
}

Listing 10-7: An incorrect attempt to share an automatic variable’s value among multiple function calls

The recursive_call function in Listing 10-7 tries to initialize a local variable, count, the first time it’s called,

then increment it on every subsequent invocation. This won’t work, because count has automatic storage

duration; every invocation of recursive_call will allocate a new, uninitialized copy of count, which is then

deallocated when that invocation returns.

If a variable has static storage duration, on the other hand, its lifetime lasts for the entire duration of the program.
Variables with static storage duration are initialized once, before the program starts, and their lifetime ends when
the program exits.

The rules for determining storage duration are simple: all variables declared at file scope have static storage
duration, as do all variables declared at block scope with the static or extern keyword. All variables declared at

block scope without a storage-class specifier have automatic storage duration. The standard also defines allocated
storage duration, which we’ll discuss when we add support for malloc in Part II, and thread storage duration,

which we won’t implement in this book.

We can use a static counter to fix Listing 10-7. Listing 10-8 shows the correct implementation of
recursive_call.

#include <stdio.h>

int recursive_call(void) {
 ❶ static int count = 0;
 count = count + 1;

 printf("This function has been called %d times\n", count);
 if (count < 20) {
 recursive_call();
 }
 return 0;
}

Listing 10-8: Correctly sharing a static variable’s value among multiple function calls

Now, because count is declared with the static keyword ❶, it has static storage duration. We’ll allocate count

and initialize it to 0 just once, before the program starts. Then, we’ll increment that same count variable on each

invocation of recursive_call.

We don’t initialize count again when we reach its declaration inside recursive_call. The declaration marks the

point in the program where the variable is brought into scope, not the point during execution when it’s initialized.
It’s important to understand that a static variable’s scope and its lifetime are unrelated. In Chapter 7, I described a
variable’s scope as the part of the program where it can be used. Now we need to refine that definition and
specify that it’s the part of the program’s source code where the variable can be used. A variable’s lifetime, on the
other hand, is the part of program execution when the variable has an address and a value. For automatic
variables, scope and lifetime are so closely linked that this distinction is almost irrelevant: the variable’s lifetime
begins when you start executing the block where it’s in scope and ends when you finish executing that block. But
a static variable’s lifetime is independent of its scope. In Listing 10-8, for example, the lifetime of count lasts for

the whole duration of the program, but its scope extends only from the point where it’s declared in recursive

_call until the end of the function.

Because static variables are initialized before startup, their initializers must be constant. Listing 10-9 shows two file
scope declarations, one of which has an invalid initializer.

int first_var = 3;
int second_var = first_var + 1;

Listing 10-9: File scope variable declarations with valid and invalid initializers

Both first_var and second_var have static storage duration because they’re declared at file scope. The

initializer for first_var is valid because it’s a constant. However, the initializer for second_var is invalid because

you can’t compute expressions like first_var + 1 before the program starts.

NOTE

The C standard permits static variables to be initialized with constant expressions, like 1 + 1, because those can
be computed at compile time. To make our lives a little easier, our compiler will support only constant values in

initializers, not constant expressions.

Definitions vs. Declarations

In the previous chapter, we had to distinguish between function definitions and function declarations. In this
chapter, we’ll extend that distinction to variables. If a variable is defined, our assembly program will need to
allocate storage for it and possibly initialize it. If it’s declared but not defined, we won’t allocate storage for it; we’ll
rely on the linker to find the definition in another object file. Like a function, a variable can be declared many
times but defined only once.

It’s easy to recognize function definitions, because they have bodies. Figuring out what counts as a variable
definition is a little trickier. Let’s walk through the rules so you know which variable declarations are also
definitions and which ones aren’t. We’ll also discuss how (and when) to initialize variables that are defined without
explicit initializers.

First, every variable declaration with an initializer is a definition. This is unsurprising, since you can’t initialize a
variable if you haven’t allocated storage for it. Second, every variable declaration without linkage is a definition. A
variable declaration that didn’t have linkage and wasn’t a definition would be completely useless: a variable with
no linkage can’t be declared more than once, so you’d have no way to define the variable elsewhere in the
program.

How we initialize a variable without linkage depends on its storage duration. Recall that local variables in previous
chapters were allocated space on the stack, but not necessarily initialized. Local static variables, as we’ll see in a
moment, are allocated space in a different memory segment, and they’re always initialized. If no explicit initializer
is provided, they’re initialized to zero.

If a variable declaration has the extern specifier and no initializer, it’s not a definition. Note that extern variable

declarations at block scope can’t have initializers. Therefore, they are never definitions. (This is analogous to the
fact that you can declare functions at block scope, but not define them.) We can use the extern specifier to

declare variables that are defined elsewhere in the same file, like in Listing 10-10.

extern int three;

int main(void) {
 return three;
}

int three = 3;

Listing 10-10: Declaring an external variable at the start of a file and defining it at the end

The declaration at the beginning of the listing brings three into scope, and the definition at the end of the listing

determines its initial value, 3. The extern specifier also lets us declare variables that are defined in other files,

like in Listing 10-11.

extern int external_var;

int main(void) {
 return 1 + external_var;
}

Listing 10-11: Declaring a variable without defining it

Because external_var isn’t defined in this file, the compiler won’t allocate or initialize it. The linker will either

find its definition in another file or throw an error.

A variable declaration with internal or external linkage, no extern specifier, and no initializer is a tentative
definition. Listing 10-12 shows an example.

int x;

int main(void) {
 return x;
}

Listing 10-12: A tentative definition

The only definition of x in this file is the tentative definition on the first line. If a variable is tentatively defined,

we’ll initialize it to zero. Therefore, the first line of Listing 10-12 is treated exactly like the following non-tentative
definition:

int x = 0;

If a file contains both a tentative definition and an explicitly initialized definition of the same variable, like in Listing
10-13, the explicit definition takes precedence.

int x;

int main(void) {
 return x;
}

int x = 3;

Listing 10-13: A tentative definition followed by an explicit definition

This listing starts with a tentative definition of x and ends with a non-tentative definition. The non-tentative

definition takes precedence, so x is initialized to 3. The first line is treated like a declaration, exactly as it would be

if it included the extern specifier.

Although it’s illegal to define a variable more than once, having multiple tentative definitions of a variable is
perfectly fine. Consider the file scope declarations in Listing 10-14.

int a;
int a;
extern int a;
int a;

Listing 10-14: Three tentative definitions and a declaration

Here, we have three tentative definitions of a and one declaration of a that isn’t a definition due to its extern

specifier. Because there are no non-tentative definitions of a, it will be initialized to zero. Listing 10-14 therefore

will be compiled as though it contained the following line:

int a = 0;

Tables 10-1 and 10-2 summarize how an identifier’s linkage, storage duration, and status as a definition are
determined. The leftmost columns, Scope and Specifier, refer to a declaration’s syntax; we’ll know a declaration’s
scope and storage-class specifier after parsing. The remaining columns are properties that we’ll need to determine
during the semantic analysis stage based on the declaration’s syntax.

Table 10-1 covers variable declarations.

Table 10-1: Properties of Variable Declarations

Scope Specifier Linkage
Storage
duration

Definition?

With
initializer

Without
initializer

File
scope

None External Static Yes Tentative

static Internal Static Yes Tentative

extern Matches prior visible
declaration; external by

Static Yes No

Scope Specifier Linkage
Storage
duration

Definition?

With
initializer

Without
initializer

default

Block
scope

None None Automatic Yes Yes (defined but
uninitialized)

static None Static Yes Yes (initialized to
zero)

extern Matches prior visible
declaration; external by
default

Static Invalid No

Table 10-2 covers function declarations.

Table 10-2: Properties of Function Declarations

Scope Specifier Linkage

Definition?

With
body

Without
body

File scope None or
extern

Matches prior visible declaration; external
by default

Yes No

static Internal Yes No

Block
scope

None or
extern

Matches prior visible declaration; external
by default

Invalid No

static Invalid Invalid Invalid

Note that the parameters in a function definition have automatic storage duration and no linkage, much like block
scope variables with no storage-class specifier.

At this point, you understand the most important properties of declarations. You know how to determine a
declaration’s linkage, its storage duration, and whether it defines an entity as well as declaring it. You also

understand how these properties affect what you can do with an identifier. Next, let’s talk about what can go
wrong.

Error Cases

We’ll need to detect a whole slew of error cases in this chapter. Some of these error cases will be familiar from
earlier chapters, although the details will change to account for our new language constructs. Other error cases
we’ll handle are brand-new.

Conflicting Declarations

There are a bunch of ways that declarations can conflict. Our compiler already detects some of them. For
example, it detects the error when two declarations of an identifier appear in the same local scope and at least
one of them has no linkage. This is an error because you can’t resolve later uses of that identifier to a single
entity.

As I mentioned earlier, it’s also an error to declare the same identifier with both internal and external linkage. This
is an issue even if the two declarations are in completely different parts of the source file. For example, Listing 10-
15 includes conflicting declarations.

int main(void) {
 extern int foo;
 return foo;
}

static int foo = 3;

Listing 10-15: Variable declarations with conflicting linkage

At the point where foo is declared in main, no other declaration is visible. (When a variable becomes visible

depends on where it’s declared in the source code of the program, not when it’s initialized during program
execution.) Based on the rules we discussed earlier, this means that foo has external linkage. Later in the listing,

however, foo is declared at file scope with internal linkage. You can’t define the same object with both internal

and external linkage, so this is illegal.

UNDEFINED BEHAVIOR ALERT!

Declaring an identifier with both internal and external linkage results in undefined behavior. Compilers aren’t
technically required to throw an error when declarations have conflicting linkage, but they almost always do.
Interestingly, the following program features an edge case where GCC throws an error but Clang doesn’t:

static int foo = 0;

int main(void) {
 int foo = 1;
 {
 extern int foo;
 return foo;
 }
}

I couldn’t figure out why GCC was rejecting this program, until I found a nice explanation by Joseph Myers in the
GCC bug tracker (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90472#c3). The defining feature of this edge
case is the block scope extern declaration of a variable that’s already in scope, but shadowed. The first

declaration of foo has internal linkage. The extern declaration in main should have external linkage, because it

occurs when the first declaration isn’t visible. That would result in a conflict with the first declaration. GCC reports
this conflict and fails. However, Clang gives the extern declaration internal linkage and carries on without

complaint, as though the first declaration were visible. We’ll handle this edge case the way Clang does and not
throw an error.

Finally, two declarations of the same entity conflict if they have different types. Declaring an external variable and
a function with the same name is illegal. Again, this is the case even in programs like Listing 10-16, where the
conflicting declarations are in completely different parts of the program.

int foo = 3;

int main(void) {
 int foo(void);
 return foo();
}

Listing 10-16: Declarations with conflicting types

Because both declarations of foo have external linkage, they should refer to the same entity, but that’s impossible

since one is a function declaration and one is a variable declaration. This program is therefore invalid.

Multiple Definitions

We’ve already seen that it’s illegal to define a function multiple times in the same program. Having multiple
definitions of an external variable is illegal too. If an external variable is defined multiple times in the same file,
your compiler should produce an error. If a function or variable is defined in more than one file, your compiler
can’t catch the error, but the linker will.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90472#c3

UNDEFINED BEHAVIOR ALERT!

A tentative definition is tentative only within the file where it’s declared. It still conflicts with definitions of the
same variable in other files. Let’s look at a program that includes two source files. Here’s the first file:

int var = 4;

And here’s the second:

int var;
int main(void) {
 return var;
}

This program’s behavior is undefined because var is defined more than once. The first file explicitly defines and

initializes var. The second file includes one tentative definition of var, which should be treated like a definition

because var isn’t defined elsewhere in the file.

We normally get an error at link time if a variable is defined in two different files. But, given the right compiler
options, both Clang and GCC will compile this program without errors or warnings. They can avoid errors at link
time thanks to common symbols, which are essentially tentative definitions at the binary level. A common symbol
tells the linker to allocate space for and initialize a symbol, unless that symbol is defined in another object file.

Our implementation doesn’t use common symbols, so it can’t compile this program.

No Definitions

This kind of error applies to both functions and variables. If you use an identifier that’s declared but never defined,
you’ll get an error at link time, when the linker tries to find the definition and fails. Because this is a link-time error,
your compiler doesn’t need to detect it.

Invalid Initializers

As we’ve already seen, the initializer for a static variable must be a constant. An extern declaration at block

scope can’t have any initializer, not even a constant one.

Restrictions on Storage-Class Specifiers

You can’t apply the extern or static specifier to function parameters or variables declared in for loop headers.

You also can’t apply static to function declarations at block scope. (You can apply extern to them, but it

doesn’t do anything.)

Linkage and Storage Duration in Assembly

As we extend each stage of the compiler—especially the semantic analysis stage—it will be helpful to understand
how the concepts we covered in the previous section translate into assembly. I’ll discuss linkage first, then storage
duration. Linkage is pretty straightforward: if an identifier has external linkage, we’ll emit a .globl directive for

the corresponding assembly label. If an identifier doesn’t have external linkage, we won’t emit a .globl directive.

The .globl directive applies the same way to both function and variable names.

Now let’s talk storage duration. The variables we dealt with in earlier chapters, which had automatic storage
duration, all lived on the stack. Static variables live in a different part of memory, the data section. (Some static
variables live in the closely related BSS section, which I’ll discuss in a moment.) Like the stack, the data section is
a region in memory that the program can read from and write to.

However, while the stack is divided into frames, which are managed by a well-established calling convention, the
data section is one big chunk of memory that exists regardless of what function you’re in. This makes the data
section the ideal place to store variables with static storage duration: objects in the data section won’t be
deallocated or overwritten when we call and return from functions. We don’t have dedicated registers like RSP or
RBP that point to particular spots in the data section, and we don’t need them; as you’ll see in a moment, we can
refer to variables in this section by name instead.

By default, the assembler writes to the text section, which is the region of memory that holds machine
instructions. The .data directive tells the assembler to start writing to the data section instead. Listing 10-17

initializes a variable in the data section.

 .data
 .align 4
var:
 .long 3

Listing 10-17: Initializing a variable in the data section

The first line of Listing 10-17 indicates that we’re writing to the data section. The .align directive on the next

line determines the alignment of the next value we write; a 4-byte alignment means that this value’s address in
bytes must be divisible by 4. The meaning of the .align directive varies by platform. On Linux, .align n

produces an n-byte alignment. On macOS, .align n produces a 2 -byte alignment. That means .align 4 results

in the next value being 4-byte aligned on Linux and 16-byte aligned on macOS.

n

The third line is a label; you can label locations in the data section just like locations in the text section. Finally, the
last line writes the 32-bit integer 3 to the current section; this is the data section because of the earlier .data

directive. Since long means 32 bits in x64 assembly, the .long directive always writes a 32-bit integer. (Recall that

the l suffix on instructions with 32-bit operands, like movl, stands for long.)

Like any other label, the var label is internal to this object file by default. We could include the .globl directive

to make it visible in other object files too:

 .globl var

I mentioned earlier that some static variables are stored in the BSS section. (For obscure historical reasons, BSS
stands for Block Started by Symbol.) This section works almost exactly like the data section, except that it holds
only variables that are initialized to zero. This is a trick to save space on disk; an executable or object file needs to
record only the size of the BSS section, not its contents, because its contents are all zeros.

Listing 10-18 initializes a variable in the BSS section.

 .bss
 .align 4
var:
 .zero 4

Listing 10-18: Initializing a variable in the BSS section

This code differs from Listing 10-17 in two ways. First, we use the .bss directive to write to the BSS section

instead of the data section. Second, we use the .zero n directive to write n bytes of zeros. For example, .zero 4

initializes a 4-byte integer to zero. We use the .align directive, declare a label, and include or omit the .globl

directive in exactly the same way whether we’re dealing with the data or BSS section.

If a variable is declared, but not defined, in the file you’re compiling, you won’t write anything to the data or BSS
section.

Finally, let’s see how to refer to labels from the data section in assembly instructions. This line writes the
immediate value 4 to the memory address labeled var:

movl $4, var(%rip)

Operands like var(%rip) use RIP-relative addressing, which refers to memory addresses relative to the

instruction pointer. We obviously can’t refer to symbols in the data section relative to RBP and RSP, the way we
refer to stack variables. We also can’t replace them with absolute addresses at link time, because we’re compiling

position-independent code, which can be loaded into any spot in program memory. Instead, we use the RIP
register, which holds the address of the current instruction in the program’s text section, to calculate the address
of a variable like var in the program’s data section.

The details of RIP-relative addressing are involved, so I won’t go into them here. Instead, I’ll once again
recommend Eli Bendersky’s excellent blog posts on position-independent code, which I provided links to in
Chapter 1’s “Additional Resources” on page 21.

THE GLOBAL OFFSET TABLE

There are actually two ways to find a static variable’s address in position-independent code. The first is RIP-
relative addressing. The second involves looking up the address in the global offset table (GOT). Programs
typically use the GOT to access variables in dynamically linked libraries because these variables’ addresses may be
too far from the current instruction pointer for RIP-relative addressing to represent. Our implementation won’t use
the GOT, since it’s more complicated than RIP-relative addressing. On macOS, this means you won’t be able to
compile code that accesses global variables defined in the standard library or other dynamically linked libraries. On
Linux, the impact is somewhat different: you can still compile executables that access global variables defined in
dynamically linked libraries, but you can’t compile dynamically linked libraries that use global variables, even if the
variables are defined in the same library you’re trying to compile. (This is the limitation on our ability to produce
shared libraries that I mentioned in the previous chapter.) To understand why things work this way on Linux, you’ll
need to get deep into the inner workings of the linker and loader. For more details, see MaskRay’s blog post “Copy
Relocations, Canonical PLT Entries and Protected Visibility” (https://maskray.me/blog/2021-01-09-copy-relocations
-canonical-plt-entries-and-protected).

If you want to extend your compiler to use the GOT, I recommend waiting until we implement pointers in Chapter
14 so that you have a solid grasp of how to work with memory addresses in assembly.

Now that you understand how storage duration, linkage, and variable initialization work in both C and assembly,
you’re ready to extend your compiler.

The Lexer

You’ll add two new keywords in this chapter:

static

extern

TEST THE LEXER

https://maskray.me/blog/2021-01-09-copy-relocations-canonical-plt-entries-and-protected

To test out your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 10 --stage lex

Your compiler should successfully lex every test program in this chapter.

The Parser

In this chapter, we’re going to make two changes to the AST: we’ll add variable declarations as a top-level
construct, and we’ll add optional storage-class specifiers to both function and variable declarations. Listing 10-19
shows the updated AST definition.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init, storage_class?)
function_declaration = (identifier name, identifier* params,
 block? body, storage_class?)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(int)
 | Var(identifier)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

Listing 10-19: The abstract syntax tree with file scope variables and storage-class specifiers

We’ve already defined a declaration AST node that includes both function and variable declarations. Now that

we support file scope variable declarations, we’ll use declaration nodes at the top level.

Listing 10-20 shows the corresponding changes to the grammar.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <identifier> ["=" <exp>] ";"
<function-declaration> ::= {<specifier>}+ <identifier> "(" <param-list> ")" (<block> | ";"
<param-list> ::= "void" | "int" <identifier> {"," "int" <identifier>}
<specifier> ::= "int" | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <int> | <identifier> | <unop> <factor> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<identifier> ::= ? An identifier token ?
<int> ::= ? A constant token ?

Listing 10-20: The grammar with file scope variables and storage-class specifiers

We define a <program> as a list of <declaration> symbols, just like we did in Listing 10-19. We also introduce a

new <specifier> symbol, which represents both type and storage-class specifiers, and we require every

declaration to start with a list of specifiers. We’ve added a new bit of EBNF notation here: wrapping something in
braces followed by a + symbol indicates that it must be repeated at least once. Therefore, {<specifier>}+

represents a non-empty list of specifiers. Note that the <param-list> rule hasn’t changed; we still expect each

parameter to be declared with a single int keyword, not a list of specifiers. If the parser encounters a static or

extern parameter, it should throw an error.

Parsing Type and Storage-Class Specifiers

We lump type and storage-class specifiers into a single symbol because they can appear in any order in a
declaration. In other words, the declaration

static int a = 3;

is equivalent to:

int static a = 3;

Things will get even more complicated when we add more type specifiers in Part II. A declaration might include
multiple type specifiers (like long and unsigned), which can appear in any order relative to storage-class

specifiers and each other.

To construct the AST, the parser needs to consume the list of specifiers at the start of a declaration, then convert
them into exactly one type and at most one storage-class specifier. The pseudocode in Listing 10-21 outlines how
to process the specifier list.

parse_type_and_storage_class(specifier_list):
 types = []
 storage_classes = []
 ❶ for specifier in specifier_list:
 if specifier is "int":
 types.append(specifier)
 else:
 storage_classes.append(specifier)

 if length(types) != 1:
 fail("Invalid type specifier")
 if length(storage_classes) > 1:
 fail("Invalid storage class")

 ❷ type = Int

 if length(storage_classes) == 1:
 ❸ storage_class = parse_storage_class(storage_classes[0])
 else:
 storage_class = null

 return (type, storage_class)

Listing 10-21: Determining a declaration’s type and storage class

We start by partitioning our list into type specifiers and storage-class specifiers ❶. Then, we validate each list. The
list of type specifiers must have exactly one value. The list of storage-class specifiers could be empty, or it could
contain exactly one value. Finally, we return our results. At the moment, Int is the only possible type ❷. If the

storage-class specifier list isn’t empty, we’ll convert its one element to the corresponding storage_class AST

node ❸. (I’ve omitted the pseudocode for parse_storage_class, since there’s not much to it.) If the storage-

class specifier list is empty, the declaration doesn’t have a storage class.

Listing 10-21 is a bit more complicated than we need right now, but it will be easy to extend as we add more type
specifiers in later chapters.

Distinguishing Between Function and Variable Declarations

Our one remaining challenge is that we can’t distinguish between <function -declaration> and <variable-

declaration> symbols without parsing the whole list of type and storage-class specifiers. Once we support more

complex declarations in later chapters, these two symbols will have even more parsing logic in common. This
means that it isn’t practical to write separate functions to parse these two grammar symbols; instead, you should
write a single function to parse both and return a declaration AST node. The one spot where you can have one

kind of declaration but not the other is the initial clause of a for loop. To handle this case, just parse the whole

declaration, then fail if it turns out to be a function declaration.

Now you have everything you need to extend the parser.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 10 --stage parse

Your compiler should raise an error for every test program in tests/chapter _10/invalid_parse and successfully
parse all the programs in tests/chapter_10/invalid_declarations, tests/chapter_10/invalid_types, and
tests/chapter_10/valid.

There are several error cases in tests/chapter_10/invalid_types that would be just as easy to catch in the parser.
These include storage-class specifiers on variable declarations in for loop headers, static specifiers on block

scope function declarations, and block scope extern variables with initializers. You can have the parser catch

these errors instead of catching them in the semantic analysis stage if you like. Just be aware that if you do this,
the tests for those error cases will fail when you run the command to test the parser.

Semantic Analysis

Next, we need to extend the identifier resolution and type checking passes. In the identifier resolution pass, we’ll
handle top-level variable declarations and check for duplicate declarations in the same scope. In the type checking
pass, we’ll add storage class and linkage information to the symbol table because we’ll need that information
when we generate assembly. We’ll also deal with our remaining error cases in the type checker.

Identifier Resolution: Resolving External Variables

Like functions, external variables aren’t renamed during the identifier resolution pass. Our identifier map will track
whether each identifier has linkage (either internal or external) or not. We don’t need to distinguish between
internal and external linkage until the type checking pass.

We’ll need separate code to process block scope and file scope variable declarations, since different rules for
determining linkage apply at these different scopes. Listing 10-22 demonstrates how to resolve variable
declarations at file scope.

resolve_file_scope_variable_declaration(decl, identifier_map):
 identifier_map.add(decl.name, MapEntry(new_name=decl.name,
 from_current_scope=True,
 has_linkage=True))
 return decl

Listing 10-22: Resolving file scope variable declarations

As you’ll see shortly, this is much simpler than the code to handle block scope variable declarations. We don’t need
to generate a unique name, since external variables retain their original names throughout this stage. We don’t
need to worry about previous declarations of this variable; any previous declarations must also have internal or
external linkage, so they’ll refer to the same object and have the same entry in the identifier map. (File scope
declarations can conflict in other ways, but we’ll deal with those conflicts in the type checker.) We can handle
declarations uniformly whether they’re static or not. Since we don’t need to distinguish internal from external

linkage, we’ll keep using the Boolean has_linkage attribute from the previous chapter. This attribute is always

True for file scope identifiers. We also don’t need to recursively process the initializer, because it should be a

constant and therefore shouldn’t contain any variables we need to rename. If the initializer isn’t a constant, we’ll
catch that during type checking.

Now let’s consider variables at block scope. If a variable is declared with the extern keyword, we record that it

has linkage in the identifier map and retain its original name. Otherwise, we handle it just like we’ve handled local
variables in the past. If an identifier is declared both with and without linkage in the same scope, we can’t
maintain a consistent identifier map, so we throw an error. Listing 10-23 shows how to do this in pseudocode.

resolve_local_variable_declaration(decl, identifier_map):
 if decl.name is in identifier_map:

 prev_entry = identifier_map.get(decl.name)
 ❶ if prev_entry.from_current_scope:
 if not (prev_entry.has_linkage and decl.storage_class == Extern):
 fail("Conflicting local declarations")

 if decl.storage_class == Extern:
 ❷ identifier_map.add(decl.name, MapEntry(new_name=decl.name,
 from_current_scope=True,
 has_linkage=True))
 return decl
 else:
 unique_name = make_temporary()
 ❸ identifier_map.add(decl.name, MapEntry(new_name=unique_name,
 from_current_scope=True,
 has_linkage=False))
 --snip--

Listing 10-23: Resolving block scope variable declarations

First, we check for conflicting declarations ❶. If this identifier has already been declared in the current scope, we
check the previous declaration’s linkage. If it has linkage and the current declaration does too (as indicated by the
extern keyword), they both refer to the same object. In that case, the declarations are consistent, at least for the

purposes of identifier resolution. If either or both of the identifiers have no linkage, they refer to two different
objects, so we throw an error.

Assuming there’s no conflict, we update the identifier map. If this declaration has linkage, it retains its current
name ❷; otherwise, we rename it ❸. Note that variables without linkage are handled identically here whether
they’re static or not. Also note that we don’t need to recursively process the initializers of extern variables,

because they shouldn’t have initializers at all. (I’ve snipped out the code to resolve the initializers of variables
without linkage, because it’s unchanged from earlier chapters.)

You don’t need to change how this pass processes function declarations, with one small exception: you should
throw an error if a block scope function declaration includes the static specifier. It’s easy to do this during

identifier resolution, in the same spot where you validate that block scope function declarations don’t have bodies.
However, throwing this error in the type checker, or even the parser, works just as well.

Type Checking: Tracking Static Functions and Variables

Next, we’ll update the symbol table and handle the remaining error cases. We’ll add several new pieces of
information to the symbol table. First, we’ll record each variable’s storage duration. Second, we’ll record the initial
values of variables with static storage duration. Finally, we’ll record whether functions and variables with static
storage duration are globally visible. Each of these pieces of information will impact the assembly we generate
later.

Most of the logic we’re adding to the type checker isn’t type checking per se, since an identifier’s storage class and
linkage are separate from its type. But the type checker is a natural place for this logic because we’ll track each
identifier’s type, linkage, and storage class together in the symbol table.

Identifier Attributes in the Symbol Table

We need to track different information in the symbol table for each kind of identifier: functions, variables with
static storage duration, and variables with automatic storage duration. Listing 10-24 gives one way to represent all
this information.

identifier_attrs = FunAttr(bool defined, bool global)
 | StaticAttr(initial_value init, bool global)
 | LocalAttr

initial_value = Tentative | Initial(int) | NoInitializer

Listing 10-24: The symbol table attributes for different kinds of identifiers

StaticAttr represents the attributes we need to track for variables with static storage duration. The

initial_value type lets us distinguish between variable definitions with an initializer, tentative definitions with

no initializer, and extern variable declarations. FunAttr represents functions, and LocalAttr represents function

parameters and variables with automatic storage duration. Each symbol table entry should include both a type (as
defined in the previous chapter) and identifier_attrs.

Now that we can represent the information we need in the symbol table, let’s look at the three kinds of
declarations we need to type check: function declarations, file scope variable declarations, and block scope
variable declarations.

Function Declarations

Most of the logic here will stay the same. We’ll check that the current declaration is the same type as any prior
declarations and that the function isn’t defined more than once. The only difference is that we’ll also record
whether the function is globally visible. The pseudocode in Listing 10-25 captures how we’ll type check function
declarations, with changes from Listing 9-21 bolded and some unchanged code omitted. (I’ve also made some
changes to the code to accommodate changes to our symbol table representation, even though the logic is
essentially the same. These are not bolded.)

typecheck_function_declaration(decl, symbols):
 fun_type = FunType(length(decl.params))
 has_body = decl.body is not null
 already_defined = False
 ❶ global = decl.storage_class != Static

 ❷ if decl.name is in symbols:
 old_decl = symbols.get(decl.name)
 if old_decl.type != fun_type:
 fail("Incompatible function declarations")
 already_defined = old_decl.attrs.defined
 if already_defined and has_body:
 fail("Function is defined more than once")

 if old_decl.attrs.global and decl.storage_class == Static:
 fail("Static function declaration follows non-static")
 ❸ global = old_decl.attrs.global

 attrs = FunAttr(defined=(already_defined or has_body), global=global)
 symbols.add(decl.name, fun_type, attrs=attrs)
 --snip--

Listing 10-25: Type checking function declarations

First, we look at the function’s storage class ❶. If it’s static, the function won’t be globally visible, because its

linkage is internal. If it’s extern (or absent entirely, which amounts to the same thing), we tentatively say the

function is globally visible, because its linkage is external. However, this can change depending on what other
declarations are in scope.

Next, we look at those other declarations, if there are any ❷. We check for type mismatches and duplicate
definitions, just like in the previous chapter. Then, we consider linkage. If the current declaration includes an
explicit or implied extern keyword, we’ll retain the previous declaration’s linkage (and thus its global attribute).

If both the current and past declarations have internal linkage, there’s no conflict. Either way, the linkage from the
previous declaration remains unchanged ❸. But if the function was previously declared with external linkage and is
now declared with the static keyword, the declarations conflict, so we throw an error.

I’ve snipped out the rest of this function because it’s the same as in the previous chapter.

File Scope Variable Declarations

When we encounter a variable declaration at file scope, we need to determine the variable’s initial value and
whether it’s globally visible. These properties depend on both the current declaration and any previous
declarations of the same variable. Listing 10-26 shows how to type check a file scope variable declaration.

typecheck_file_scope_variable_declaration(decl, symbols):
 if decl.init is constant integer i: ❶
 initial_value = Initial(i)
 else if decl.init is null: ❷
 if decl.storage_class == Extern:
 initial_value = NoInitializer

 else:
 initial_value = Tentative
 else: ❸
 fail("Non-constant initializer!")

 global = (decl.storage_class != Static) ❹

 if decl.name is in symbols: ❺
 old_decl = symbols.get(decl.name)
 if old_decl.type != Int:
 fail("Function redeclared as variable")
 if decl.storage_class == Extern:
 global = old_decl.attrs.global
 else if old_decl.attrs.global != global:
 fail("Conflicting variable linkage")

 if old_decl.attrs.init is a constant:
 if initial_value is a constant:
 fail("Conflicting file scope variable definitions") ❻
 else:
 initial_value = old_decl.attrs.init
 else if initial_value is not a constant and old_decl.attrs.init == Tentative:
 initial_value = Tentative

 attrs = StaticAttr(init=initial_value, global=global)
 symbols.add(decl.name, Int, attrs=attrs) ❼

Listing 10-26: Type checking file scope variable declarations

First, we determine the variable’s initial value. This depends on the declaration’s initializer and its storage-class
specifier. If the initializer is a constant, we’ll use it ❶. If it’s absent ❷, we’ll record that this variable is either
tentatively defined or not defined at all, depending on whether this is an extern declaration. If the initializer is

any expression other than a constant, we’ll throw an error ❸.

Next, we determine whether the variable is globally visible ❹. We tentatively say it’s visible unless the storage-
class specifier is static.

Then, if we recorded prior declarations of this identifier in the symbol table, we factor those in too ❺. We validate
that the prior declaration has type Int, not a function type, and then we try to reconcile the global attribute with

the previous declaration. If this is an extern declaration, we just adopt the prior declaration’s global attribute.

Otherwise, we throw an error if the new and old global attributes disagree.

Accounting for the previous declaration’s initializer is more complicated. If either this declaration or the prior one
has an explicit initializer, we’ll use that. Otherwise, if either the new declaration or the prior one was a tentative
definition, we’ll use a Tentative initializer. If we haven’t seen any explicit or tentative definitions so far, we’ll stick

with NoInitializer. If the new and old declarations both have explicit initializers, we’ll throw an error ❻.

Finally, we add (or update) this variable’s entry in the symbol table ❼.

Block Scope Variable Declarations

We’ll use the pseudocode in Listing 10-27 to type check variable declarations at block scope.

typecheck_local_variable_declaration(decl, symbols):
 if decl.storage_class == Extern:
 if decl.init is not null: ❶
 fail("Initializer on local extern variable declaration")
 if decl.name is in symbols:
 old_decl = symbols.get(decl.name)
 if old_decl.type != Int: ❷
 fail("Function redeclared as variable")
 else:
 symbols.add(decl.name, Int, attrs=StaticAttr(init=NoInitializer, global=True))

 else if decl.storage_class == Static:
 if decl.init is constant integer i: ❹
 initial_value = Initial(i)
 else if decl.init is null: ❺
 initial_value = Initial(0)
 else:
 fail("Non-constant initializer on local static variable")
 symbols.add(decl.name, Int, attrs=StaticAttr(init=initial_value, global=False)) ❻

 else:
 symbols.add(decl.name, Int, attrs=LocalAttr) ❼
 if decl.init is not null:
 typecheck_exp(decl.init, symbols)

Listing 10-27: Type checking block scope variable declarations

To handle an extern variable, we first make sure it doesn’t have an initializer ❶ and it wasn’t previously declared

as a function ❷. Then, if this variable wasn’t declared earlier, we record in the symbol table that it’s globally visible
and not initialized ❸. If it was already declared, we do nothing: a local extern declaration will never change the

initial value or linkage we’ve already recorded.

A static local variable has no linkage, so we don’t need to consider earlier declarations. We just check the
variable’s initializer: if it’s a constant, we use it ❹; if it’s absent, we initialize the variable to zero ❺; and if it’s not a
constant, we throw an error. Then, we add the variable to the symbol table, recording that it is not globally visible
❻.

We’ll include the LocalAttr attribute in the symbol table entries for automatic variables ❼. Aside from this detail,

we type check these variables the same way we did in the previous chapter.

When you process a declaration in a for loop header, validate that it doesn’t include a storage-class specifier

before you call the code in Listing 10-27. (Alternatively, you can handle this error case during the identifier
resolution pass, or even during parsing.)

That’s it for the type checking pass! It took a lot of work to implement the C standard’s byzantine rules around
definitions, declarations, linkage, and storage duration. Luckily, now that the symbol table has all the information
we need, the rest of the chapter should be pretty easy.

TEST THE SEMANTIC ANALYSIS STAGE

To test the semantic analysis stage, run:

$./test_compiler /path/to/your_compiler --chapter 10 --stage validate

The identifier resolution pass should reject the programs in tests/chapter_10/invalid_declarations and the type
checker should reject the programs in tests/chapter_10/invalid_types, although some error cases could reasonably
be caught in either pass. Both passes should handle the test cases in tests/chapter_10/valid without error.

TACKY Generation

We need to make two additions to the TACKY IR. First, we’ll add a new global field to function definitions, which

corresponds to the .globl directive in the final assembly output:

Function(identifier, bool global, identifier* params, instruction* body)

Second, we’ll add a top-level construct to represent static variables:

StaticVariable(identifier, bool global, int init)

We’ll use this construct to represent both external and local static variables. We’ll ultimately translate each
StaticVariable construct into a set of assembly directives to initialize an object in the data or BSS section.

Listing 10-28 presents the whole TACKY IR, with changes from the previous chapter bolded.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, int init)
instruction = Return(val)
 | Unary(unary_operator, val src, val dst)

 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(int) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 10-28: Adding static variables and the global attribute to TACKY

We’ve renamed the function_definition node to top_level, since it doesn’t just represent functions

anymore. Note that when we translate a program into TACKY, we move local static variable definitions to the top
level; they become StaticVariable constructs, not instructions in a function body.

When we traverse the AST and convert it to TACKY, we’ll set the new global attribute on each top-level

Function. We can look up this attribute in the symbol table. We won’t generate any TACKY for file scope variable

declarations or for local variable declarations with static or extern specifiers. Instead, after we’ve traversed the

AST, we’ll perform an additional step where we examine every entry in the symbol table and generate
StaticVariable constructs for some of these entries. Our final TACKY program will include both function

definitions converted from the original AST and variable definitions generated from the symbol table.

Listing 10-29 demonstrates how to convert symbol table entries into TACKY variable definitions.

convert_symbols_to_tacky(symbols):
 tacky_defs = []
 for (name, entry) in symbols:
 match entry.attrs with
 | StaticAttr(init, global) ->
 match init with
 | Initial(i) -> tacky_defs.append(StaticVariable(name, global, i))
 | Tentative -> tacky_defs.append(StaticVariable(name, global, 0))
 | NoInitializer -> continue
 | _ -> continue
 return tacky_defs

Listing 10-29: Converting symbol table entries to TACKY

We look at each symbol table entry to determine whether it should be converted into a StaticVariable. If it

doesn’t have a StaticAttr attribute, we skip over it because it’s not a static variable. If its initial value is

NoInitializer, we skip over it because it’s not defined in this translation unit. Any symbol we don’t skip over is

converted into a TACKY StaticVariable and added to the TACKY program. Static variables with tentative

definitions get initialized to zero.

Right now, it doesn’t matter whether we process the AST or the symbol table first. Starting in Chapter 16, it will
be important that we process the AST first and the symbol table second. In that chapter, we’ll add new static
objects to the symbol table as we convert the AST to TACKY; then, when we traverse the symbol table, we’ll
convert those new entries to TACKY constructs.

TEST THE TACKY GENERATION STAGE

To test TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 10 --stage tacky

Assembly Generation

We’ll make a few small changes to the assembly AST in this chapter. These changes are bolded in Listing 10-30.

program = Program(top_level*)
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int init)
instruction = Mov(operand src, operand dst)
 | Unary(unary_operator, operand)
 | Binary(binary_operator, operand, operand)
 | Cmp(operand, operand)
 | Idiv(operand)
 | Cdq
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | AllocateStack(int)
 | DeallocateStack(int)
 | Push(operand)
 | Call(identifier)
 | Ret

unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int) | Data(identifier)
cond_code = E | NE | G | GE | L | LE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11

Listing 10-30: The assembly AST with static variables

Just like in TACKY, we rename function_definition to top_level and add a top-level StaticVariable that

indicates each static variable’s name, its initial value, and whether it’s globally visible. We also add a global

attribute to function definitions. Finally, we add a new assembly operand, Data, for RIP-relative accesses to the

data and BSS sections. We’ll replace pseudoregisters with Data operands as needed during the pseudoregister

replacement pass.

Generating Assembly for Variable Definitions

Converting our new TACKY constructs to assembly is simple, since we’re just passing a few fields from TACKY to
the equivalent assembly constructs. Table 10-3 summarizes the latest updates to this conversion, with new
constructs and changes to existing constructs bolded. Appendix B includes the complete TACKY-to-assembly
conversion pass for this chapter, which is also the final version of this pass for Part I.

Table 10-3: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(top_level_defs) Program(top_level_defs)

Function(name, global,

params, instructions)
Function(name, global,
 [Mov(Reg(DI), param1),

 Mov(Reg(SI), param2),
 <copy next four parameters from registers>,
 Mov(Stack(16), param7),

 Mov(Stack(24), param8),

 <copy remaining parameters from stack>] +
 instructions)

StaticVariable(name,

global, init)

StaticVariable(name, global, init)

The way we convert all the other TACKY constructs to assembly won’t change. In particular, we’ll convert every
TACKY Var operand to an assembly Pseudo operand, regardless of whether it has static or automatic storage

duration. This means the name Pseudo doesn’t quite fit anymore; the term pseudoregister usually refers to

operands that could theoretically live in registers, which static variables cannot. We won’t bother to rename this
operand, but you should bear in mind that we’re using the term pseudoregister in a slightly unusual way.

Replacing Pseudoregisters According to Their Storage Duration

Next, we’ll adjust how we replace pseudoregisters with concrete locations. In previous chapters, every
pseudoregister was assigned a spot on the stack. This time, not every variable belongs on the stack; some of
them are stored in the data or BSS section. We’ll check the symbol table to tell which are which. Recall that we
build a map from pseudoregisters to concrete addresses throughout the pseudoregister replacement pass. When
we encounter a pseudoregister that isn’t in this map, we look it up in the symbol table. If we find that it has static
storage duration, we’ll map it to a Data operand by the same name. Otherwise, we’ll assign it a new slot on the

stack, as usual. (If it’s not in the symbol table, that means it’s a TACKY temporary, so it has automatic storage
duration.) For example, if foo is a static variable, the assembly instruction

Mov(Imm(0), Pseudo("foo"))

should be rewritten as:

Mov(Imm(0), Data("foo"))

Because static variables don’t live on the stack, they don’t count toward the total stack size we need to track for
each function.

Fixing Up Instructions

You’ve already written several rewrite rules that apply if one or both operands are memory addresses. Keep in
mind that Data operands are memory addresses too! For example, if you encounter the instruction

Mov(Data("x"), Stack(-4))

you should apply the usual rewrite rule for a Mov instruction where the source and destination are both in

memory. The rewritten assembly will be:

Mov(Data("x"), Reg(R10))
Mov(Reg(R10), Stack(-4))

Otherwise, this pass won’t change.

TEST THE ASSEMBLY GENERATION STAGE

To test that your compiler can generate assembly programs without throwing an error, run:

$./test_compiler /path/to/your_compiler --chapter 10 --stage codegen

Code Emission

To wrap up this chapter, you’ll extend the code emission pass to handle the changes in Listing 10-30. You should
include or omit the .globl directive for functions based on the global attribute in the assembly AST. You should

also include a .text directive at the start of each function definition. This directive tells the assembler to write to

the text section; you need to include it now that you also write to the data and BSS sections.

Emit Data operands using RIP-relative addressing. For example, Data("foo") will be foo(%rip) on Linux or

_foo(%rip) on macOS. Emit each StaticVariable as a list of assembly directives. On Linux, if you have a

StaticVariable(name, global, init), where global is true and init is nonzero, you should emit the

assembly in Listing 10-31.

 .globl <name>
 .data
 .align 4
<name>:
 .long <init>

Listing 10-31: The assembly for a global, nonzero static variable

If global is true and init is zero, you should emit the assembly in Listing 10-32.

 .globl <name>
 .bss
 .align 4
<name>:
 .zero 4

Listing 10-32: The assembly for a global static variable, initialized to zero

If global is false, emit Listing 10-31 or 10-32 without the .globl directive.

On macOS, you’ll emit nearly the same assembly for a StaticVariable, with a couple of minor differences. First,

symbols should start with an underscore, as usual. Second, you should use the .balign directive instead of

.align. I noted earlier that the .align directive’s behavior is platform-specific, so .align 4 will produce 16-

byte-aligned values on macOS. The .balign directive works just like .align, except that its behavior is

consistent across platforms: .balign n always aligns a value to n bytes instead of 2 bytes. (On Linux, .balign

and .align are interchangeable, so it’s fine to use either one.)

Tables 10-4 and 10-5 summarize the latest updates to the code emission pass, with new constructs and changes
to existing constructs bolded. Appendix B includes the complete code emission pass for this chapter (which is also
the complete code emission pass for Part I).

Table 10-4: Formatting Top-Level Assembly Constructs

Assembly top-level
construct

Output

Program(top_levels)

Print out each top-level construct.
On Linux, add at end of file:
 .section .note.GNU-stack,"",@progbits

Function(name, global, instructions)

 <global-directive>
 .text
<name>:

 pushq %rbp

 movq %rsp, %rbp
 <instructions>

n

Assembly top-level
construct

Output

StaticVariable(name,

global, init)

Initialized to
zero

 <global-directive>
 .bss
 <alignment-directive>

<name>:

 .zero 4

Initialized to
nonzero
value

 <global-directive>
 .data
 <alignment-directive>
<name>:

 .long <init>

Global directive

If global is true:
.globl <identifier>
Otherwise, omit this directive.

Alignment directive Linux only .align 4

macOS or
Linux

.balign 4

Table 10-5: Formatting Assembly Operands

Assembly operand Output

Data(identifier) <identifier>(%rip)

Once you’ve updated the code emission pass, you’re ready to test your compiler.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 10

Just like in Chapter 9, the test cases for this chapter include several programs with both library and client source
files. We use multifile tests to check that we’re tracking the linkage of identifiers correctly; for example, one file
should be able to define and use a variable with internal linkage even if a different file in the same program
defines a variable with the same name with external linkage.

Summary

You’ve just completed Part I of the book! Your compiler can handle identifiers with all kinds of linkage and with
both static and automatic storage duration. You’ve also learned how to write assembly programs that define and
use values in the data and BSS sections of an object file.

You’ve now implemented all the basic mechanics of C, from local and file scope variables to control-flow
statements to function calls. You’ve also taken the first steps toward a type system by distinguishing between
function types and int. In Part II, you’ll implement more types, including signed and unsigned integers of various

sizes, floating-point numbers, pointers, arrays, and structures. Or, if you want, you can skip straight to Part III,
where you’ll implement several classic compiler optimizations. The work you’ve done so far is a solid foundation
for whichever part you decide to work on next.

PART II

TYPES BEYOND INT

Description

11

LONG INTEGERS

In this chapter, you’ll add a new type: long. This is a signed integer type, just like int; the

only difference between the two types is the range of values they hold. You’ll also add an
explicit cast operation, which converts a value to a different type.

Because long is so similar to the int type we already support, we won’t need to add many

new assembly or TACKY instructions or implement complicated type casting logic. Instead,
we’ll focus on laying the groundwork we’ll need for the rest of Part II. We’ll track the types
of constants and variables, attach type information to the AST, identify implicit casts and
make them explicit, and determine the operand sizes for assembly instructions. We’ll need
to make at least a small change to every stage of the compiler except for loop labeling.

Before we get started, let’s see what operations on longs look like in assembly.

Long Integers in Assembly

The C standard doesn’t specify the sizes of integer types, but the System V x64 ABI says that an int is 4 bytes

and a long is 8. To wildly oversimplify things, C expressions with long operands are ultimately translated into

assembly instructions on quadwords (8-byte operands). For example, the following assembly instructions operate
on quadwords to calculate 2 + 2 and produce a quadword result:

movq $2, %rax
addq $2, %rax

This looks almost identical to the equivalent code using longwords, which are 4 bytes:

movl $2, %eax
addl $2, %eax

The only differences are the suffix on the mov and add instructions and whether we use the whole RAX register or

just EAX, its lower 4 bytes.

NOTE

The terms word, longword, and quadword date back to the era of 16-bit processors, when an int was 2 bytes and
a long was 4 bytes. To make matters worse, 4-byte values are often called doublewords instead of longwords. I
use the term longword to mirror AT&T assembly syntax, but Intel’s documentation uses doubleword.

Most quadword instructions accept only 8-byte operands and produce 8-byte results, just as most longword
instructions accept only 4-byte operands and produce 4-byte results. Expressions in C, on the other hand, often
use several operand types at once or assign a value of one type to an object of a different type. During
compilation, we’ll decompose these expressions into simple instructions that either take operands of a single type
and produce results of the same type or explicitly perform type conversions. Luckily, the C standard tells us exactly
where these type conversions occur.

Type Conversions

Section 6.3.1.3, paragraph 1, of the C standard defines how to convert between integer types: “If the value can
be represented by the new type, it is unchanged.” In other words, if some expression evaluates to, say, 3, and
then you cast it to a different integer type, the result of that cast expression should still be 3.

Because long is larger than int, we can safely cast any int to a long without changing its value. We’re using a

two’s complement representation of signed integers, so we’ll cast from int to long using sign extension, which

you learned about in Chapter 3. Specifically, we’ll use the movsx (or “move with sign extension”) assembly

instruction. This instruction moves a 4-byte source into an 8-byte destination, sign extending the value into the
destination’s upper 4 bytes.

Converting a long to an int is trickier because it may be too large or too small to represent as an int. Paragraph

3 of section 6.3.1.3 goes on to tell us that when “the new type is signed and the value cannot be represented in
it[,] either the result is implementation-defined or an implementation-defined signal is raised.” In other words, it’s
up to us to decide what to do. Our implementation will handle this conversion in the same way as GCC, as
specified in its documentation: “For conversion to a type of width N, the value is reduced modulo 2^N to be within
range of the type; no signal is raised” (https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html).

Reducing a value modulo 2 means adding or subtracting a multiple of 2 to bring it into the range of int.

Here’s a quick example. The largest value you can represent as an int is 2 – 1, or 2,147,483,647. Suppose you

need to convert the next largest integer value (2 , or 2,147,483,648) from a long to an int. Subtracting 2

from this value gives you –2 , or –2,147,483,648, which is the smallest value that int can represent.

In practice, we’ll convert a long to an int by dropping its upper 4 bytes. If a long can be represented as an int,

dropping those bytes won’t change its value. For example, here’s the 8-byte binary representation of –3:

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111101

32 32

31

31 32

31

https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html

And here’s the 4-byte representation of the same value:

 11111111 11111111 11111111 11111101

If a long can’t be represented as an int, dropping its upper 4 bytes has the effect of reducing its value modulo

2 . To return to our earlier example, the long 2,147,483,648 has the following binary representation:

00000000 00000000 00000000 00000000 10000000 00000000 00000000 00000000

After we convert it to an int, the result, with the value –2,147,483,648, has the following binary representation:

 10000000 00000000 00000000 00000000

To drop a long’s upper bytes, we just copy its lower bytes with a movl instruction. For example, the following

instruction truncates a value stored in RCX:

movl %ecx, %eax

When we store a value in a register’s lower 4 bytes, the register’s upper 4 bytes will be zeroed out.

IMPLEMENTATION-DEFINED BEHAVIOR ALERT!

We’ve run into undefined behavior several times already, but overflow when we convert from long to int is the

first implementation-defined behavior we’ve encountered. Language implementations are supposed to handle
implementation-defined behavior in a reliable, documented way. Often, when a behavior is implementation-
defined, the standard presents several options for the implementation to choose from. In this case, signed integer
overflow can produce an integer result, like it does in our implementation, or it can raise a signal, but it can’t crash
your program, print obscenities to your terminal, or do something else that’s obviously incorrect.

Static Long Variables

Variables with static storage duration are defined in assembly in basically the same way regardless of their type,
but there are a few small differences between static quadwords and longwords. Consider the following file scope
variable declaration:

static long var = 100;

32

We’ll convert this declaration to the assembly in Listing 11-1.

 .data
 .align 8
var:
 .quad 100

Listing 11-1: Initializing an 8-byte value in the data section

This differs from the assembly we generate for a static int in two ways: the alignment is 8 instead of 4, and we

use the .quad directive to initialize an 8-byte value instead of using .long to initialize 4 bytes.

The System V x64 ABI specifies that long and int are 8-byte and 4-byte aligned, respectively. The C standard

leaves their alignment, like their size, unspecified.

Now that we have some idea of what assembly we want to generate, let’s get to work on the compiler!

The Lexer

You’ll add the following two tokens in this chapter:

long A keyword.

Long integer constants These differ from our current integer constants because they have an l or L suffix.

A long constant token matches the regex [0-9]+[lL]\b.

TEST THE LEXER

To test out your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 11 --stage lex

The lexer should fail on the test cases in tests/chapter_11/invalid_lex, which include constant tokens with invalid
suffixes. It should successfully process all the other test cases in tests/chapter_11.

The Parser

We’ll add long constants, cast expressions, and type information to the AST in this chapter. Listing 11-2 shows the
updated AST definition.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init,
 ❶ type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 ❷ type fun_type, storage_class?)

❸ type = Int | Long | FunType(type* params, type ret)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | Var(identifier)
 ❹ | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual

❺ const = ConstInt(int) | ConstLong(int)

Listing 11-2: The abstract syntax tree with long constants, type information, and cast expressions

The type AST node can represent int, long, and function types ❸. Rather than defining a brand-new data

structure here, we can extend the type structure we started using in symbol table entries in Chapter 9. From now

on, we’ll use that data structure in both the symbol table and the AST.

In Chapter 9, we defined type like this:

type = Int | FunType(int param_count)

In Listing 11-2, we modify this definition by adding Long and tracking additional information about function types,

including the return type and the list of parameter types. We didn’t need that information before, because the type
of every parameter and the return type had to be int. Note that our new, recursive definition of type can

represent some invalid types, like functions that return functions, but the parser will never produce those invalid
types.

Once we’ve updated how we represent type, we attach type information to variable ❶ and function declarations

❷. We don’t add type information to params in function declarations because the function’s type already includes

the types of its parameters. We also extend the exp AST node to represent cast expressions ❹ and define a new

const AST node with distinct constructors for long and int constants ❺. We’ll need to distinguish between

different types of constants during type checking.

If your implementation language has signed 64-bit and 32-bit integer types and supports conversions between
those types with the same semantics as conversions between long and int in our implementation of C, I

recommend using those types to represent ConstLong and ConstInt in the AST. (Most languages provide fixed-

width integer types with these semantics, either by default or through a library.) This will make it easier to cast
static initializers to the correct type at compile time; it will also simplify constant folding, an optimization we’ll
implement in Part III. If your implementation language doesn’t have integer types with the right semantics, you
should at least make sure the ConstLong node uses an integer type that can represent all long values.

After updating the AST, we’ll make the corresponding changes to the grammar, shown in Listing 11-3.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <identifier> ["=" <exp>] ";"
<function-declaration> ::= {<specifier>}+ <identifier> "(" <param-list> ")" (<block> | ";"
<param-list> ::= "void"
 | {<type-specifier>}+ <identifier> {"," {<type-specifier>}+ <identifier>}
<type-specifier> ::= "int" | "long"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"

<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <const> | <identifier>
 | "(" {<type-specifier>}+ ")" <factor>
 | <unop> <factor> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long>
<identifier> ::= ? An identifier token ?
<int> ::= ? An int token ?
<long> ::= ? An int or long token ?

Listing 11-3: The grammar with long constants, the long type specifier, and cast expressions

We need to handle two slightly tricky details here. First, whenever we parse a list of type specifiers, we need to
convert them into a single type AST node. A long integer can be declared with the long specifier or with both

long and int, in either order. Listing 11-4 illustrates how to turn a list of type specifiers into a type.

parse_type(specifier_list):
 if specifier_list == ["int"]:
 return Int
 if (specifier_list == ["int", "long"]
 or specifier_list == ["long", "int"]
 or specifier_list == ["long"]):
 return Long
 fail("Invalid type specifier")

Listing 11-4: Determining a type from a list of type specifiers

This works for types with no storage class, which we’ll find in parameter lists or cast expressions. For function and
variable declarations, we’ll build on the specifier parsing code from Listing 10-21. Listing 11-5 reproduces that
code, with changes bolded.

parse_type_and_storage_class(specifier_list):
 types = []
 storage_classes = []
 for specifier in specifier_list:
 if specifier is "int" or "long":
 types.append(specifier)
 else:
 storage_classes.append(specifier)

 type = parse_type(types)

 if length(storage_classes) > 1:
 fail("Invalid storage class")
 if length(storage_classes) == 1:
 storage_class = parse_storage_class(storage_classes[0])
 else:
 storage_class = null

 return (type, storage_class)

Listing 11-5: Determining type and storage class from a list of specifiers

We still separate type specifiers from storage class specifiers and determine storage class just like we did in Listing
10-21, but we’ve made a few small changes here. First, we recognize long as a type specifier. Second, we no

longer expect the list of type specifiers to have exactly one element (this change isn’t bolded because we just
deleted some existing code). Third, rather than always setting type to Int, we use the new parse_type function

to determine the type.

The second tricky detail is parsing constant tokens. Listing 11-6 shows how to convert these into const AST

nodes.

parse_constant(token):
 v = integer value of token
 if v > 2^63 - 1:
 fail("Constant is too large to represent as an int or long")

 if token is an int token and v <= 2^31 - 1:
 return ConstInt(v)

 return ConstLong(v)

Listing 11-6: Converting a constant token to an AST node

We parse an integer constant token (without an l or L suffix) into a ConstInt node unless its value is outside the

range of the int type. Similarly, we parse a long constant token (with an l or L suffix) into a ConstLong node

unless its value is outside the range of long. If an integer constant token is outside the range of int but in the

range of long, we parse it to a ConstLong node. If an integer or long constant token is too large for long to

represent, we throw an error.

An int is 32 bits, so it can hold any value between –2 and 2 – 1, inclusive. By the same logic, a long can

hold any value between –2 and 2 – 1. Your parser should check each constant token against the maximum
value of the corresponding type. It doesn’t need to check against the minimum value, because these tokens can’t
represent negative numbers; the negative sign is a separate token.

31 31

63 63

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 11 --stage parse

It should fail on all the test cases in the tests/chapter_11/invalid_parse directory, which contains test programs
with missing and invalid type specifiers. None of the test cases include constants that are too large to fit into a
long, since they may still be valid in a C implementation that supports larger integer types. Your parser should be

able to handle every test case in tests/chapter_11/invalid_types and tests/chapter_11/valid.

Semantic Analysis

Next, we’ll extend the compiler passes that perform semantic analysis. We’ll make one tiny mechanical change to
identifier resolution: we’ll extend resolve_exp to traverse cast expressions the same way it traverses other kinds

of expressions. I won’t always explicitly mention this sort of modification in later chapters; from now on, whenever
we add a new expression that contains subexpressions, go ahead and extend the identifier resolution pass to
traverse it. Once we’ve made this change, we can turn to the more interesting problem of extending the type
checker.

Just as every object in a C program has a type, the result of every expression has a type too. For example,
performing any binary arithmetic operation on two int operands results in an int, performing the same operation

on two long operands results in a long, and calling a function with a particular return type produces a result of

that type.

During the type checking pass, we’ll annotate every expression in the AST with the type of its result. We’ll use this
type information to determine the types of the temporary variables we generate in TACKY to hold intermediate
results. That, in turn, will tell us the appropriate operand sizes for assembly instructions and the amount of stack
space we need to allocate for each temporary variable.

While we’re annotating expressions with type information, we’ll also identify any implicit type conversions in the
program and make them explicit by inserting Cast expressions in the AST. Then, we can easily generate the

correct type casting instructions during TACKY generation.

Adding Type Information to the AST

Before we update the type checker, we need a way to attach type information to exp AST nodes. The obvious

solution, shown in Listing 11-7, is to mechanically add a type field to every exp constructor.

exp = Constant(const, type)
 | Var(identifier, type)
 | Cast(type target_type, exp, type)
 | Unary(unary_operator, exp, type)
 | Binary(binary_operator, exp, exp, type)
 | Assignment(exp, exp, type)
 | Conditional(exp condition, exp, exp, type)
 | FunctionCall(identifier, exp* args, type)

Listing 11-7: Adding type information to exp nodes

This is easy enough if you’re using an object-oriented implementation language and you have a common base
class for every exp. You can just add a type field to the base class, as shown in Listing 11-8.

class BaseExp {
 --snip--
 type expType;
}

Listing 11-8: Adding a type to the base class for exp nodes

If, on the other hand, you’ve implemented your AST using algebraic data types, this approach is deeply annoying.
Not only will you have to update every single exp constructor, but you’ll also have to pattern match on every

constructor whenever you want to get an expression’s type. A slightly less tedious approach, shown in Listing 11-
9, is to define mutually recursive exp and typed_exp AST nodes.

typed_exp = TypedExp(type, exp)
exp = Constant(const)
 | Var(identifier)
 | Cast(type target_type, typed_exp)
 | Unary(unary_operator, typed_exp)
 | Binary(binary_operator, typed_exp, typed_exp)
 | Assignment(typed_exp, typed_exp)
 | Conditional(typed_exp condition, typed_exp, typed_exp)
 | FunctionCall(identifier, typed_exp* args)

Listing 11-9: Another way to add type information to exp nodes

Whichever option you choose, you’ll need to either define two separate AST data structures—one with type
information and one without—or initialize every exp with a null or dummy type when you build the AST in the

parser. There’s no one right answer here; it depends on your implementation language and personal taste. Rather
than imposing a specific approach, the pseudocode in the rest of the book will use two functions to handle type

information in the AST: set_type(e, t) returns a copy of e annotated with type t, and get_type(e) returns

the type annotation from e.

THE AST TYPING PROBLEM

The challenge of defining an AST that you can easily annotate with type information, without resorting to hacks or
producing a lot of boilerplate, is sometimes called the AST typing problem. It’s a problem because nobody has a
great solution to it (the options I’ve presented here, for example, have obvious drawbacks). The AST typing
problem generally comes up when you’re writing a compiler in functional languages like ML or Haskell. Compiler
authors have proposed a wide range of solutions in these languages, some of them quite elaborate. If you’d like to
learn about a few different approaches, “The AST Typing Problem” by Edward Yang is a good overview (http://
blog.ezyang.com/2013/05/the-ast-typing-problem/).

Type Checking Expressions

Once we’ve extended our AST definition, we’ll rewrite typecheck_exp, which we defined in Chapter 9, to return a

new annotated copy of each exp AST node it processes.

Listing 11-10 shows how to type check a variable.

typecheck_exp(e, symbols):
 match e with
 | Var(v) ->
 v_type = symbols.get(v).type
 if v_type is a function type:
 fail("Function name used as variable")
 return set_type(e, v_type)

Listing 11-10: Type checking a variable

First, we look up the variable’s type in the symbol table. Then, we validate that we’re not using a function name as
a variable, just like we did in earlier chapters. Finally, we annotate the expression with the variable’s type and
return it.

Listing 11-11 shows how to type check a constant. This is easy, since different types of constants have different
constructors in the AST.

 | Constant(c) ->
 match c with

http://blog.ezyang.com/2013/05/the-ast-typing-problem/

 | ConstInt(i) -> return set_type(e, Int)
 | ConstLong(l) -> return set_type(e, Long)

Listing 11-11: Type checking a constant

For the remaining expressions, we’ll need to traverse any subexpressions and annotate them too. The result of a
cast expression has whatever type we cast it to. We type check these in Listing 11-12.

 | Cast(t, inner) ->
 typed_inner = typecheck_exp(inner, symbols)
 cast_exp = Cast(t, typed_inner)
 return set_type(cast_exp, t)

Listing 11-12: Type checking a cast expression

The results of expressions that evaluate to 1 or 0 to indicate true or false, including comparisons and logical
operations like !, have type int. The results of arithmetic and bitwise expressions have the same type as their

operands. This is straightforward for unary expressions, which we type check in Listing 11-13.

 | Unary(op, inner) ->
 typed_inner = typecheck_exp(inner, symbols)
 unary_exp = Unary(op, typed_inner)
 match op with
 | Not -> return set_type(unary_exp, Int)
 | _ -> return set_type(unary_exp, get_type(typed_inner))

Listing 11-13: Type checking a unary expression

Binary expressions are more complicated because the two operands may have different types. This doesn’t matter
for logical && and || operations, which can evaluate the truth value of each operand in turn. It does matter for

comparisons and arithmetic operations, which need to use both operands at once. The C standard defines a set of
rules, called the usual arithmetic conversions, for implicitly converting both operands of an arithmetic expression
to the same type, called its common type or common real type.

Given the types of two operands, Listing 11-14 shows how to find their common real type. For now this is simple,
since there are only two possible types.

get_common_type(type1, type2):
 if type1 == type2:
 return type1
 else:
 return Long

Listing 11-14: Finding the common real type

If the two types are already the same, no conversion is necessary. If they’re different, we convert the smaller type
(which must be Int) to the larger type (which must be Long), so the common type is Long. Once we add more

types, finding the common type won’t be quite this straightforward.

Once we know the common type that both operands will be converted to, we can use the convert_to helper

function, shown in Listing 11-15, to make those type conversions explicit.

convert_to(e, t):
 if get_type(e) == t:
 return e
 cast_exp = Cast(t, e)
 return set_type(cast_exp, t)

Listing 11-15: Making an implicit type conversion explicit

If an expression already has the correct result type, convert_to returns it unchanged. Otherwise, it wraps the

expression in a Cast AST node, then annotates the result with the correct type.

With both of these helper functions in place, we can type check binary expressions. Listing 11-16 shows the
relevant clause of typecheck_exp.

 | Binary(op, e1, e2) ->
 ❶ typed_e1 = typecheck_exp(e1, symbols)
 typed_e2 = typecheck_exp(e2, symbols)
 if op is And or Or:
 binary_exp = Binary(op, typed_e1, typed_e2)
 return set_type(binary_exp, Int)
 ❷ t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 common_type = get_common_type(t1, t2)
 converted_e1 = convert_to(typed_e1, common_type)
 converted_e2 = convert_to(typed_e2, common_type)
 binary_exp = Binary(op, converted_e1, converted_e2)
 ❸ if op is Add, Subtract, Multiply, Divide, or Remainder:
 return set_type(binary_exp, common_type)
 else:
 return set_type(binary_exp, Int)

Listing 11-16: Type checking a binary expression

We start by type checking both operands ❶. If the operator is And or Or, we don’t perform any type conversions.

Otherwise, we perform the usual arithmetic conversions ❷. We first get the common type, then convert both

operands to that type. (In practice, at least one operand will have the correct type already, so convert_to will

return it unchanged.) Next, we construct our new Binary AST node using these converted operands. Finally, we

annotate the new AST node with the correct result type ❸. If this is an arithmetic operation, the result will have
the same type as its operands, which is the common type we found earlier. Otherwise, it’s a comparison that
results in an integer representation of true or false, so the result type is Int.

In assignment expressions, we convert the value being assigned to the type of the object it’s assigned to. Listing
11-17 gives the pseudocode for this case.

 | Assignment(left, right) ->
 typed_left = typecheck_exp(left, symbols)
 typed_right = typecheck_exp(right, symbols)
 left_type = get_type(typed_left)
 converted_right = convert_to(typed_right, left_type)
 assign_exp = Assignment(typed_left, converted_right)
 return set_type(assign_exp, left_type)

Listing 11-17: Type checking an assignment expression

Remember that the result of an assignment expression is the value of the left-hand side after assignment;
unsurprisingly, the result has the type of the left-hand side as well.

Conditional expressions work a lot like binary arithmetic expressions: we find the common type of both branches,
convert both branches to that common type, and annotate the result with that type. We’ll type check the
controlling condition, but we don’t need to convert it to anything. I won’t give you the pseudocode for this case.

Last but not least, Listing 11-18 shows how to type check function calls.

 | FunctionCall(f, args) ->
 f_type = symbols.get(f).type
 match f_type with
 | FunType(param_types, ret_type) ->
 if length(param_types) != length(args):
 fail("Function called with the wrong number of arguments")
 converted_args = []
 ❶ for (arg, param_type) in zip(args, param_types):
 typed_arg = typecheck_exp(arg, symbols)
 converted_args.append(convert_to(typed_arg, param_type))
 call_exp = FunctionCall(f, converted_args)
 ❷ return set_type(call_exp, ret_type)
 | _ -> fail("Variable used as function name")

Listing 11-18: Type checking a function call

We start by looking up the function type in the symbol table. Just like in previous chapters, we need to make sure
that the identifier we’re trying to call is actually a function and that we’re passing it the right number of
arguments. Then, we iterate over the function’s arguments and parameters together ❶. We type check each
argument, then convert it to the corresponding parameter type. Finally, we annotate the whole expression with
the function’s return type ❷.

Type Checking return Statements

When a function returns a value, it’s implicitly converted to the function’s return type. The type checker needs to
make this implicit conversion explicit. To type check a return statement, we look up the enclosing function’s

return type and convert the return value to that type. This requires us to keep track of the name, or at least the
return type, of whatever function we’re currently type checking. I’ll omit the pseudocode to type check return

statements, since it’s straightforward.

Type Checking Declarations and Updating the Symbol Table

Next, we’ll update how we type check function and variable declarations and what information we store in the
symbol table. First, we’ll need to record the correct type for each entry in the symbol table; we can’t just assume
that every variable, parameter, and return value is an int. Second, whenever we check for conflicting

declarations, we’ll need to validate that the current and previous declarations have the same type. It’s not enough
to check whether a variable was previously declared as a function or a function was previously declared with a
different number of parameters; the types must be identical. For example, if a variable is declared as an int and

then redeclared as a long, the type checker should throw an error. Third, when we type check an automatic

variable, we’ll need to convert its initializer to the type of the variable, much like we convert the right-hand side of
an assignment expression to the type of the left-hand side.

Finally, we’ll change how we represent static initializers in the symbol table. A static initializer, like a constant
expression, can now be either an int or a long. Listing 11-19 gives the updated definition for static initializers.

initial_value = Tentative | Initial(static_init) | NoInitializer
static_init = IntInit(int) | LongInit(int)

Listing 11-19: Static initializers in the symbol table

This definition of static_init may seem redundant, since it’s basically identical to the const AST node defined

in Listing 11-2, but they’ll diverge in later chapters. As with the ConstInt and ConstLong AST nodes, you should

carefully choose what integer types in your implementation language you use to represent both initializers. It’s
particularly important to make sure that LongInit can accommodate any signed 64-bit integer.

You may need to perform type conversions when converting expressions to static initializers. For example,
suppose a program contains the following declaration:

static int i = 100L;

The constant 100L will be parsed as a ConstLong in our AST. Since it’s being assigned to a static int, we’ll need

to cast it from a long to an int at compile time and store it as an IntInit(100) in the symbol table. This sort of

conversion is especially tricky when a variable with type int is initialized with a long constant that’s too large to

be represented in 32 bits, as in this declaration:

static int i = 2147483650L;

According to the implementation-defined behavior we specified earlier, we need to subtract 2 from this value
until it’s small enough to fit in an int. That results in –2,147,483,646, so the initial value we record in the symbol

table should be IntInit(-2147483646). Ideally, you can use signed integer types that already have the right

semantics for type conversions so you won’t have to mess with the binary representations of these constants
yourself.

Here are a couple of tips to help you handle static initializers:

Make your constant type conversion code reusable.

The type checker isn’t the only place where you’ll convert constants to a different type. In Part III, you’ll
implement constant folding in TACKY. The constant folding pass will evaluate constant expressions, including type
conversions. You may want to structure your type conversion code as a separate module that you can reuse for
constant folding later.

Don’t call typecheck_exp on static initializers.

Convert each static initializer directly to a static_init, without calling typecheck_exp first. This will simplify

things in later chapters, when typecheck_exp will transform expressions in more complex ways.

TEST THE TYPE CHECKER

To test the type checking pass, run:

$./test_compiler /path/to/your_compiler --chapter 11 --stage validate

Your compiler should fail on the test cases in tests/chapter_11/invalid _types. It should succeed on every test case
in tests/chapter_11/valid.

32

TACKY Generation

We’ll make a few changes to the TACKY AST in this chapter. First, we’ll add a type to each top-level
StaticVariable and represent each static variable’s initial value with our newly defined static_init construct:

StaticVariable(identifier, bool global, type t, static_init init)

We’ll also reuse the const construct from the AST in Listing 11-2 to represent constants:

val = Constant(const) | Var(identifier)

Finally, we’ll introduce a couple of new instructions to convert values between types:

SignExtend(val src, val dst)
Truncate(val src, val dst)

The SignExtend and Truncate instructions convert from int to long and long to int, respectively. Listing 11-

20 gives the complete updated TACKY IR. This listing uses type, static_init, and const without defining

them, since we’ve defined these three constructs already.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init init)
instruction = Return(val)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 11-20: Adding support for long integers to TACKY

We’ll handle the changes to StaticVariable by looking up type and initializer information in the symbol table

during TACKY generation. If a static variable has a tentative definition in the symbol table, we’ll initialize it to
IntInit(0) or LongInit(0), depending on its type.

Handling constants is even easier; the logic is essentially unchanged from earlier chapters. We’ll convert a
Constant AST node directly to a TACKY Constant, since they both use the same definition of const.

Recall that when we convert a logical && or || expression to TACKY, we explicitly assign 1 or 0 to the variable that

holds the result of the expression. Since these logical expressions both have type int, we represent their results

as ConstInt(1) and ConstInt(0).

Listing 11-21 shows how to convert cast expressions to TACKY. We’ll use the type information we added in the
previous pass to determine what type we’re casting from.

emit_tacky(e, instructions, symbols):
 match e with
 | --snip--
 | Cast(t, inner) ->
 result = emit_tacky(inner, instructions, symbols)
 if t == get_type(inner):
 ❶ return result
 dst_name = make_temporary()
 symbols.add(dst_name, t, attrs=LocalAttr)
 dst = Var(dst_name)
 if t == Long:
 ❷ instructions.append(SignExtend(result, dst))
 else:
 ❸ instructions.append(Truncate(result, dst))
 return dst

Listing 11-21: Converting a cast expression to TACKY

If the inner expression already has the type we want to cast it to, the cast has no effect; we emit TACKY to
evaluate the inner expression but don’t do anything else ❶. Otherwise, we emit either a SignExtend instruction

to cast an int to a long ❷ or a Truncate instruction to cast a long to an int ❸.

Tracking the Types of Temporary Variables

When we create the temporary variable dst in Listing 11-21, we add it to the symbol table with the appropriate

type. We need to do this for every temporary variable we create so that we can look up their types during
assembly generation. The assembly generation stage will use this type information in two ways: to determine the
operand size of each assembly instruction and to figure out how much stack space to allocate for each variable.

Every temporary variable we add holds the result of an expression, so we can determine its type by checking the
expression’s type annotation. Let’s take another look at Listing 3-9, which demonstrated how to convert a binary
arithmetic expression to TACKY. Listing 11-22 demonstrates the same conversion, with changes from Listing 3-9
bolded.

emit_tacky(e, instructions, symbols):
 match e with
 | --snip--
 | Binary(op, e1, e2) ->
 v1 = emit_tacky(e1, instructions, symbols)
 v2 = emit_tacky(e2, instructions, symbols)
 dst_name = make_temporary()
 symbols.add(dst_name, get_type(e), attrs=LocalAttr)
 dst = Var(dst_name)
 tacky_op = convert_binop(op)
 instructions.append(Binary(tacky_op, v1, v2, dst))
 return dst
 | --snip--

Listing 11-22: Tracking temporary variable types when converting a binary expression to TACKY

The main change here is adding dst to the symbol table. Since dst holds the result of expression e, we look up

e’s type annotation to figure out dst’s type. Like every temporary variable, dst is a local, automatic variable, so

we’ll give it the LocalAttr attribute in the symbol table.

Let’s refactor this into a helper function, shown in Listing 11-23.

make_tacky_variable(var_type, symbols):
 var_name = make_temporary()
 symbols.add(var_name, var_type, attrs=LocalAttr)
 return Var(var_name)

Listing 11-23: A helper function for generating TACKY variables

From now on, we’ll use make_tacky_variable whenever we generate a new temporary variable in TACKY.

Generating Extra Return Instructions

In Chapter 5, I mentioned that we add an extra Return instruction to the end of each TACKY function, in case not

every execution path in the original C function reaches a return statement. This extra instruction can always

return ConstInt(0), even when the function’s return type isn’t int. When we return from main, this is the

correct return type. When we return from any other function that’s missing an explicit return statement, the

return value is undefined. We still need to return control to the caller, but we aren’t obligated to return any
particular value, so it doesn’t matter if we get the type wrong.

TEST THE TACKY GENERATION STAGE

To test TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 11 --stage tacky

Assembly Generation

We’ll make several changes to the assembly AST in this chapter. Listing 11-24 gives the complete definition, with
changes bolded.

program = Program(top_level*)
assembly_type = Longword | Quadword
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)
 | Ret

unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int) | Data(identifier)
cond_code = E | NE | G | GE | L | LE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP

Listing 11-24: The assembly AST with support for quadword operands and 8-byte static variables

The biggest change is tagging most instructions with the type of their operands. That allows us to choose the
correct suffix for each instruction during assembly emission. We’ll also add a type to Cdq, since the 32-bit version

of Cdq extends EAX into EDX and the 64-bit version extends RAX into RDX. There are just three instructions that

take an operand but don’t need a type: SetCC, which takes only byte-size operands; Push, which always pushes

quadwords; and the new Movsx instruction, which we’ll cover in a moment.

Instead of reusing the source-level type we defined earlier, we’ll define a new assembly_type construct. This will

simplify working with assembly types as we introduce more C types in later chapters. For example, we’ll add
unsigned integers in Chapter 12, but assembly doesn’t distinguish between signed and unsigned integers.

During assembly generation, we’ll figure out each instruction’s type based on the type of its operands. For
example, we’ll convert the TACKY instruction

Binary(Add, Constant(ConstInt(3)), Var("src"), Var("dst"))

to these assembly instructions:

Mov(Longword, Imm(3), Pseudo("dst"))
Binary(Add, Longword, Pseudo("src"), Pseudo("dst"))

Since the first operand is a ConstInt, we know that the resulting mov and add instructions should use longword

operands. We can assume that the second operand and the destination have the same type as the first operand,
since we inserted the appropriate type conversion instructions during TACKY generation. If an operand is a
variable instead of a constant, we’ll look up its type in the symbol table.

We’ll also figure out how to pass stack arguments based on their type. Listing 11-25 reproduces the relevant part
of convert_function_call, which we defined back in Listing 9-31, with this change bolded.

convert_function_call(FunCall(fun_name, args, dst)):
 --snip--
 // pass args on stack
 for tacky_arg in reverse(stack_args):
 assembly_arg = convert_val(tacky_arg)
 if assembly_arg is a Reg or Imm operand or has type Quadword:
 emit(Push(assembly_arg))
 else:
 emit(Mov(Longword, assembly_arg, Reg(AX)))
 emit(Push(Reg(AX)))
 --snip--

Listing 11-25: Passing quadwords on the stack in convert_function_call

In Chapter 9, we learned that we could run into trouble if we used an 8-byte pushq instruction to push a 4-byte

operand from memory onto the stack. To work around this issue, we emit two instructions to push a 4-byte
Pseudo onto the stack: we copy it into EAX, then push RAX. An 8-byte Pseudo doesn’t require this workaround;

we pass it on the stack with a single Push instruction, the same way we pass an immediate value.

To handle conversions from int to long, we’ll use the sign extension instruction, movsx. At the moment, this

instruction doesn’t need type information, since its source must be an int and its destination must be a long.

We’ll convert

SignExtend(src, dst)

to:

Movsx(src, dst)

To truncate a value, we just move its lowest 4 bytes into the destination using a 4-byte movl instruction. We’ll

convert

Truncate(src, dst)

to:

Mov(Longword, src, dst)

We’ve also tweaked the StaticVariable construct:

StaticVariable(identifier name, bool global, int alignment, static_init init)

We hold onto the static_init construct from TACKY, so we know whether to initialize 4 or 8 bytes for each

static variable. We add an alignment field too, since we’ll need to specify each static variable’s alignment in

assembly.

Finally, we’ve removed the DeallocateStack and AllocateStack instructions from the assembly AST. These

instructions were just placeholders for quadword addition and subtraction, which we can now represent with
ordinary addq and subq instructions. Since DeallocateStack and AllocateStack represented adding to and

subtracting from RSP, we’ve also added the RSP register to the assembly AST so we can use it in normal
instructions. In earlier chapters, we maintained the stack alignment before function calls with the instruction:

AllocateStack(bytes)

Now we’ll use this instruction instead:

Binary(Sub, Quadword, Imm(bytes), Reg(SP))

Similarly, instead of

DeallocateStack(bytes)

we’ll use

Binary(Add, Quadword, Imm(bytes), Reg(SP))

to restore the stack pointer after function calls.

Tables 11-1 through 11-4 summarize this chapter’s updates to the conversion from TACKY to assembly. New
constructs and changes to the conversions for existing constructs are bolded.

Table 11-1: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Function(name, global,

params, instructions)
Function(name, global,

 [Mov(<param1 type>, Reg(DI), param1),

 Mov(<param2 type>, Reg(SI), param2),
 <copy next four parameters from registers>,
 Mov(<param7 type>, Stack(16), param7),

 Mov(<param8 type>, Stack(24), param8),

 <copy remaining parameters from stack>] +
 instructions)

StaticVariable(name,

global, t, init)

StaticVariable(name, global, <alignment of t>, init)

Table 11-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Mov(<val type>, val, Reg(AX))

Ret

Unary(Not, src, dst) Cmp(<src type>, Imm(0), src)

Mov(<dst type>, Imm(0), dst)

SetCC(E, dst)

Unary(unary_operator, src, dst) Mov(<src type>, src, dst)

Unary(unary_operator, <src type>, dst)

Binary(Divide, src1, src2, dst) Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

Idiv(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

Binary(Remainder, src1, src2, dst) Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

Idiv(<src1 type>, src2)

Mov(<src1 type>, Reg(DX), dst)

Binary(arithmetic_operator, src1, src2,

dst)

Mov(<src1 type>, src1, dst)

Binary(arithmetic_operator, <src1 type>,

src2, dst)

Binary(relational_operator, src1, src2,

dst)

Cmp(<src1 type>, src2, src1)

Mov(<dst type>, Imm(0), dst)

SetCC(relational_operator, dst)

JumpIfZero(condition, target) Cmp(<condition type>, Imm(0), condition)

JmpCC(E, target)

JumpIfNotZero(condition, target) Cmp(<condition type>, Imm(0), condition)

JmpCC(NE, target)

Copy(src, dst) Mov(<src type>, src, dst)

FunCall(fun_name, args, dst) <fix stack alignment>

<set up arguments>

TACKY instruction Assembly instructions

Call(fun_name)

<deallocate arguments/padding>

Mov(<dst type>, Reg(AX), dst)

SignExtend(src, dst) Movsx(src, dst)

Truncate(src, dst) Mov(Longword, src, dst)

Table 11-3: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(ConstInt(int)) Imm(int)

Constant(ConstLong(int)) Imm(int)

Table 11-4: Converting Types to Assembly

Source type Assembly type Alignment

Int Longword 4

Long Quadword 8

In Table 11-3, we convert both types of TACKY constants to Imm operands. In assembly, there’s no distinction

between 4-byte and 8-byte immediate values. The assembler infers how large an immediate value should be
based on the operand size of the instruction where it appears.

Table 11-4 gives the conversion from source-level to assembly types, as well as each type’s alignment. Note that
this conversion fits into the whole compiler pass a bit differently than the conversions in Tables 11-1 through 11-3,
because when we traverse a TACKY program, we won’t encounter type AST nodes that we can convert directly to

assembly_type nodes in the assembly program. As we’ve seen, we typically need to infer a TACKY instruction’s

operand type before we can convert it to an assembly type. The one TACKY construct with an explicit type is
StaticVariable, but we don’t need to convert this type to an assembly type; we only need to calculate its

alignment. We’ll use the conversion shown in Table 11-4 again in the next step of this compiler pass, where we’ll
construct a new symbol table to track assembly types.

Tracking Assembly Types in the Backend Symbol Table

After converting the TACKY program to assembly, we’ll convert the symbol table to a form that’s better suited to
the remaining compiler passes. This new symbol table will store variables’ assembly types, rather than their source
types. It will also store a handful of other properties that we’ll need to look up in the pseudoregister replacement,
instruction fix-up, and code emission passes. I’ll call this new symbol table the backend symbol table. I’ll call the
existing one either the frontend symbol table or just the symbol table.

The backend symbol table maps each identifier to an asm_symtab_entry construct, defined in Listing 11-26.

asm_symtab_entry = ObjEntry(assembly_type, bool is_static)
 | FunEntry(bool defined)

Listing 11-26: The definition of an entry in the backend symbol table

We’ll use ObjEntry to represent variables (and, in later chapters, constants). We’ll track each object’s assembly

type and whether it has static storage duration. FunEntry represents functions. We don’t need to track the types

of functions—which is just as well, since assembly_type can’t represent function types—but we do track whether

they’re defined in the current translation unit. If you’re tracking each function’s stack frame size in the symbol
table, add an extra stack_frame_size field to the FunEntry constructor. I recommend making the backend

symbol table a global variable or singleton, just like the existing frontend symbol table.

At the very end of the TACKY-to-assembly conversion pass, you should iterate over the frontend symbol table and
convert each entry to an entry in the backend symbol table. This process is simple enough that I won’t provide the
pseudocode for it. You’ll also need to update any spots in the pseudoregister replacement, instruction fix-up, and
code emission passes that refer to the frontend symbol table and have them use the backend symbol table
instead.

Replacing Longword and Quadword Pseudoregisters

The pseudoregister replacement pass requires a couple of changes. First, we’ll extend it to replace pseudoregisters
in the new movsx instruction. Second, whenever we assign a stack address to a pseudoregister, we’ll look up the

pseudoregister’s type in the backend symbol table to determine how much space to allocate. If it’s a Quadword,

we’ll allocate 8 bytes; if it’s a Longword, we’ll allocate 4 bytes, as before. Finally, we’ll make sure that the address

of each Quadword pseudoregister is 8-byte aligned on the stack. Consider the following fragment of assembly:

Mov(Longword, Imm(0), Pseudo("foo"))
Mov(Quadword, Imm(1), Pseudo("bar"))

Suppose we look up the type of foo in the backend symbol table and see that it’s 4 bytes. We’ll assign it to

-4(%rbp), as usual. Next, we’ll look up bar and see that it’s 8 bytes. We could assign it to -12(%rbp), which is 8

bytes below foo. But then bar would be misaligned, since its address wouldn’t be a multiple of 8 bytes.

(Remember that the address in RBP is always 16-byte aligned.) To maintain the correct alignment, we’ll round
down to the next multiple of 8 and store bar at -16(%rbp) instead. Alignment requirements are part of the

System V ABI; if you ignore them, your code may not interact correctly with code in other translation units.

Fixing Up Instructions

We’ll make several updates to the instruction fix-up pass in this chapter. First, we need to specify operand sizes for
all the instructions in our existing rewrite rules. These should always have the same operand size as the original
instruction being rewritten.

Next, we’ll rewrite the movsx instruction. It can’t use a memory address as a destination or an immediate value as

a source. If both operands to movsx are invalid, we’ll need to use both R10 and R11 to fix them. For example,

we’ll rewrite

Movsx(Imm(10), Stack(-16))

to:

Mov(Longword, Imm(10), Reg(R10))
Movsx(Reg(R10), Reg(R11))
Mov(Quadword, Reg(R11), Stack(-16))

It’s important to use the right operand size for each mov instruction in this rewrite rule. Since the source operand

of movsx is 4 bytes, we specify a longword operand size when moving that operand into a register. Since the

result of movsx is 8 bytes, we specify a quadword operand size when we move the result to its final memory

location.

The quadword versions of our three binary arithmetic instructions (addq, imulq, and subq) can’t handle

immediate values that don’t fit into an int, and neither can cmpq or pushq. If the source of any of these

instructions is a constant outside the range of int, we’ll need to copy it into R10 before we can use it.

The movq instruction can move these very large immediate values into registers, but not directly into memory, so

Mov(Quadword, Imm(4294967295), Stack(-16))

should be rewritten as:

Mov(Quadword, Imm(4294967295), Reg(R10))

Mov(Quadword, Reg(R10), Stack(-16))

NOTE

The assembler permits an immediate value in addq, imulq, subq, cmpq, or pushq only if it can be represented as a
signed 32-bit integer. That’s because these instructions all sign extend their immediate operands from 32 to 64
bits. If an immediate value can be represented in 32 bits only as an unsigned integer—which implies that its upper
bit is set—sign extending it will change its value. For more details, see this Stack Overflow question: https://
stackoverflow.com/questions/64289590/integer-overflow-in-gas.

We’ll also fix how we allocate stack space at the start of each function. Instead of adding
AllocateStack(bytes) to each function to allocate space on the stack, we’ll add the following instruction, which

does the same thing:

Binary(Sub, Quadword, Imm(bytes), Reg(SP))

We’ll add one last rewrite rule to placate the assembler, although it isn’t strictly necessary. Remember that we
convert the Truncate TACKY instruction to a 4-byte movl, which means we can generate movl instructions that

move 8-byte immediate values to 4-byte destinations:

Mov(Longword, Imm(4294967299), Reg(R10))

Since movl can’t use 8-byte immediate values, the assembler automatically truncates these values to 32 bits.

When it processes the instruction movl $4294967299, %r10d, for example, it will convert the immediate value

4294967299 to 3. The GNU assembler issues a warning when it performs this conversion, although the LLVM

assembler doesn’t. To avoid these warnings, we’ll truncate 8-byte immediate values in movl instructions ourselves.

That means we’ll rewrite the previous instruction as:

Mov(Longword, Imm(3), Reg(R10))

Assembler warnings aside, your assembly programs will still work even if you don’t include this rewrite rule.

TEST THE ASSEMBLY GENERATION STAGE

To test that your compiler can generate assembly programs without throwing an error, run:

https://stackoverflow.com/questions/64289590/integer-overflow-in-gas

$./test_compiler /path/to/your_compiler --chapter 11 --stage codegen

Code Emission

Our final task is to extend the code emission stage. We’ll add the appropriate suffix to every instruction, emit the
correct alignment and initial value for static variables, and handle the new Movsx instruction. Whenever an

instruction uses a register, we’ll emit the appropriate register name for that instruction’s operand size.

Instructions with 4-byte operands have an l suffix, for longword, and instructions with 8-byte operands have a q

suffix, for quadword, with one exception: the 8-byte version of cdq has a completely different mnemonic, cqo.

The Movsx instruction takes suffixes for both its source and destination operand sizes. For example, movslq sign

extends a longword to a quadword. For now, we’ll always emit this instruction with an lq suffix; we’ll need more

suffixes as we add more assembly types in later chapters. (You may also see this instruction written as movsx

when it’s possible for the assembler to infer the size of both operands. For example, the assembler will accept the
instruction movsx %r10d, %r11, since it can infer the source and destination sizes from the register names.)

Tables 11-5 through 11-10 summarize this chapter’s updates to the code emission pass. New constructs and
changes to existing constructs are bolded.

Table 11-5: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

StaticVariable(name, global,

alignment, init)

Initialized to zero

 <global-directive>
 .bss
 <alignment-directive>

<name>:
 <init>

Initialized to
nonzero value

 <global-directive>
 .data
 <alignment-directive>

<name>:
 <init>

Assembly top-level construct Output

Alignment directive Linux only .align <alignment>

macOS or Linux .balign <alignment>

Table 11-6: Formatting Static Initializers

Static initializer Output

IntInit(0) .zero 4

IntInit(i) .long <i>

LongInit(0) .zero 8

LongInit(i) .quad <i>

Table 11-7: Formatting Assembly Instructions

Assembly instruction Output

Mov(t, src, dst)

mov<t> <src>, <dst>

Movsx(src, dst)

movslq <src>, <dst>

Unary(unary_operator, t, operand)

<unary_operator><t> <operand>

Assembly instruction Output

Binary(binary_operator, t, src, dst)

<binary_operator><t> <src>, <dst>

Idiv(t, operand)

idiv<t> <operand>

Cdq(Longword)

cdq

Cdq(Quadword)

cqo

Cmp(t, operand, operand)

cmp<t> <operand>, <operand>

Table 11-8: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg neg

Not not

Add add

Sub sub

Mult imul

Table 11-9: Instruction Suffixes for Assembly Types

Assembly type Instruction suffix

Longword l

Quadword q

Table 11-10: Formatting Assembly Operands

Assembly operand Output

Reg(SP) %rsp

Table 11-6 shows how to print out the static_init constructs representing static variable initializers. Table 11-8

shows the mapping from unary and binary operators to instruction names without suffixes; the suffix now
depends on the instruction’s type (as shown in Table 11-9). Aside from the suffix, these instruction names are the
same as in earlier chapters.

Once you’ve updated the code emission stage, you’re ready to test out your compiler.

TEST THE WHOLE COMPILER

To test the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 11

The test programs in tests/chapter_11/valid/long_expressions validate that the expressions we implemented in
earlier chapters, like addition, subtraction, and comparisons, work correctly with long operands. The programs in

tests/chapter_11/valid/explicit_casts test explicit casts between int and long, and the programs in

tests/chapter_11/valid/implicit_casts test that we perform the correct implicit type conversions to evaluate
expressions involving both types. Finally, the test cases in tests/chapter_11/valid/libraries validate that compiled
code dealing with long integers conforms to the System V ABI.

Summary

Your compiler has a type system now! In this chapter, you annotated the AST with type information, used the
symbol table to track type information through multiple compiler stages, and added support for multiple operand
sizes during assembly generation. Long integers aren’t the flashiest language feature, so it might feel like you’ve
done a lot of work and don’t have much to show for it. But the infrastructure you created in this chapter is the
basis for everything you’ll do in the rest of Part II. In the next chapter, you’ll build on that work by implementing
unsigned integers.

Description

12

UNSIGNED INTEGERS

In this chapter, you’ll implement the unsigned counterparts to our two signed integer types:
unsigned int and unsigned long. You’ll extend the usual arithmetic conversions to

handle unsigned integers and implement casts between signed and unsigned types. On the
backend, you’ll use a few new assembly instructions to do unsigned integer arithmetic.

In Chapter 11, we focused on inferring and tracking type information in general; now we’ll
be able to build on that work to add new types with relatively little effort. Before we modify
the compiler, let’s start with a quick overview of conversions between signed and unsigned
types.

Type Conversions, Again

Every integer type conversion has two aspects we need to consider: how the integer’s value changes and how its
binary representation changes. We saw this in the conversions between int and long in the previous chapter.

Sign extension changes a signed integer’s representation from 32 to 64 bits without changing its value. Truncating
a long to an int also changes its representation, and it changes its value too if the original value can’t fit in the

new type.

With that distinction in mind, I’ll break our type conversions down into four cases. In each case, I’ll describe how
the integer’s representation will change. Then, I’ll explain how that corresponds with the rules in the C standard
about how its value should change.

Converting Between Signed and Unsigned Types of the Same Size

The first case is when we convert between signed and unsigned types of the same size: that is, between int and

unsigned int or between long and unsigned long. These conversions don’t change the binary representation

of the integer. The only thing that changes is whether we use two’s complement to interpret its value. Let’s
consider the effect of that change in interpretation.

If a signed integer is positive, its upper bit will be 0, so interpreting it as an unsigned integer won’t change its
value. The reverse is also true: if an unsigned integer is smaller than the maximum value the signed type can

represent, its upper bit must be 0. Therefore, if we reinterpret it using two’s complement, its value won’t change.
As you learned in the previous chapter, when we convert an integer to a new type, the standard requires us to
preserve its value if we can. We’re satisfying that requirement here.

That leaves integers whose upper bit is 1. When we reinterpret a signed negative integer as unsigned, we change
the upper bit’s value from negative to positive. If the upper bit is 1, this has the effect of adding 2 to the value,
where N is the number of bits in the type. This is exactly the behavior the standard requires; section 6.3.1.3,
paragraph 2, states that if the value can’t be represented by the new type and the new type is unsigned, “the
value is converted by repeatedly adding or subtracting one more than the maximum value that can be represented
in the new type until the value is in the range of the new type.”

Conversely, converting an unsigned type with a leading 1 to the corresponding signed type will subtract 2 from
its value. This matches the implementation-defined behavior we chose in the last chapter for conversions to
signed integers, following GCC: “The value is reduced modulo 2^N to be within range of the type.”

Converting unsigned int to a Larger Type

The second case is when we convert unsigned int to a larger type, either long or unsigned long. To handle

this case, we’ll zero extend the integer by filling the upper bits of the new representation with zeros. This
conversion always preserves the original value, since we’re just adding leading zeros to a positive number.

Converting signed int to a Larger Type

The third case is when we convert a signed int to a long or unsigned long. We already convert int to long

using sign extension. We’ll convert int to unsigned long the same way. If an int is positive, sign extension will

just add leading zeros, which preserves its value whether you interpret the result as signed or unsigned. If the
value is negative, sign extending and then interpreting the result as an unsigned long will add 2 to its value,

as the standard requires.

Converting from Larger to Smaller Types

In the final case, we convert a larger type (long or unsigned long) to a smaller one (int or unsigned int).

We always handle this case by truncating the value. This has the effect of adding or subtracting 2 until the value
is in the range of the new type—or, equivalently, reducing the value modulo 2 —which is the behavior we want. I
won’t walk you through why truncating the integer produces the correct value in every case; you can work
through some examples on your own, or just take my word for it.

Now that you know what to expect from type conversions, let’s get to work on the compiler.

The Lexer

You’ll add four new tokens in this chapter:

N

N

64

32

32

signed  A keyword used to specify a signed integer type.

unsigned A keyword used to specify an unsigned integer type.

Unsigned integer constants  Integer constants with a u or U suffix. An unsigned constant token matches the

regex [0-9]+[uU]\b.

Unsigned long integer constants Integer constants with a case- insensitive ul or lu suffix. An unsigned long

constant token matches the regex [0-9]+([lL][uU]|[uU][lL])\b.

Update your lexer to support these tokens, then test it out.

TEST THE LEXER

To test your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 12 --stage lex

The lexer should fail on the test cases in tests/chapter_12/invalid_lex, which include invalid constant tokens. It
should successfully process the test cases in all the other subdirectories of tests/chapter_12.

The Parser

Next, we’ll update the AST to support the two new unsigned types and their corresponding constants. These
updates are bolded in Listing 12-1.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init,
 type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 type fun_type, storage_class?)
type = Int | Long | UInt | ULong | FunType(type* params, type ret)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)

 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int) | ConstUInt(int) | ConstULong(int)

Listing 12-1: The abstract syntax tree with unsigned types and unsigned constants

Just like when you added ConstLong in the previous chapter, you need to make sure ConstUInt can represent

the full range of unsigned int and ConstULong can represent the full range of unsigned long. If your

implementation language has unsigned 32-bit and 64-bit integer types, use them here.

Listing 12-2 shows the updated grammar, with the changes bolded.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <identifier> ["=" <exp>] ";"
<function-declaration> ::= {<specifier>}+ <identifier> "(" <param-list> ")" (<block> | ";"
<param-list> ::= "void"
 | {<type-specifier>}+ <identifier> {"," {<type-specifier>}+ <identifier>}
<type-specifier> ::= "int" | "long" | "unsigned" | "signed"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>

 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <const> | <identifier>
 | "(" {<type-specifier>}+ ")" <factor>
 | <unop> <factor> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong>
<identifier> ::= ? An identifier token ?
<int> ::= ? An int token ?
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?

Listing 12-2: The grammar with the signed and unsigned type specifiers and unsigned constants

Parsing type specifiers is more complicated than in the previous chapter because there are so many different ways
to refer to the same type. For example, these are all valid ways to specify the long type:

long

long int

signed long

signed long int

The order of type specifiers doesn’t matter, so long signed, long int signed, and so on all specify the same

type. The pseudocode in Listing 12-3 provides one way to impose order on this chaos.

parse_type(specifier_list):
 if (specifier_list is empty
 or specifier_list contains the same specifier twice
 or specifier_list contains both "signed" and "unsigned"):
 fail("Invalid type specifier")
 if specifier_list contains "unsigned" and "long":
 return ULong
 if specifier_list contains "unsigned":
 return UInt
 if specifier_list contains "long":

 return Long
 return Int

Listing 12-3: Determining a type from a list of type specifiers

We start by checking for error cases. You need at least one specifier to indicate a type, and you can’t include the
same specifier twice. You can’t specify a type as int long int, for example. (The long long type specifier

would complicate this validation check, but we’re not implementing it.) You also can’t include the signed and

unsigned specifiers in the same type specification, since they contradict each other.

Once we know our input specifies a valid type, we check for the unsigned and long specifiers. If both are

present, the type is unsigned long. Otherwise, if unsigned is present, the type is unsigned int; if long is

present, the type is long; if neither is present, the type is int. Basically, int is the default type, and the

unsigned and long specifiers can indicate a type other than the default. Section 6.7.2, paragraph 2, of the C

standard enumerates all the ways you can specify each type.

We also need to deal with constant tokens. In the previous chapter, Listing 11-6 demonstrated how to parse
signed constant tokens. I won’t include the corresponding pseudocode for unsigned constant tokens here, but the
logic is the same. We parse an unsigned integer constant token as ConstUInt if it’s within the range of values an

unsigned int can hold; that is, between 0 and 2 – 1, inclusive. Otherwise, we parse it as a ConstULong.

An unsigned long constant token will always be parsed to a ConstULong. If either kind of unsigned constant token

isn’t in the range for unsigned long (between 0 and 2 – 1), we’ll throw an error. If you’re curious, section

6.4.4.1 of the C standard has the full rules for determining the types of integer constants.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 12 --stage parse

It should fail on all the test cases in tests/chapter_12/invalid_parse and succeed on all the test cases in
tests/chapter_12/invalid_types and tests/chapter_12/valid.

The Type Checker

We don’t need to change the loop labeling or identifier resolution passes in this chapter. We just need to handle
unsigned integers in the type checker.

32

64

First, we’ll update our implementation of the usual arithmetic conversions, which implicitly convert the operands in
a binary expression to a common type. Let’s walk through the usual arithmetic conversion rules for integer types,
which are defined in section 6.3.1.8, paragraph 1, of the C standard. The first rule is pretty self-explanatory:

If both operands have the same type, then no further conversion is needed.

The second one is a little harder to follow:

Otherwise, if both operands have signed integer types or both have unsigned integer types, the operand
with the type of the lesser integer conversion rank is converted to the type of the operand with greater
rank.

This just means “if both integers have the same signedness, convert the smaller type to the bigger one.” We
already do this when we implicitly convert values from int to long. Section 6.3.1.1, paragraph 1, specifies the

integer conversion rank of every integer type, which provides a relative order on their sizes without nailing down
those sizes exactly. Of the types we have so far, long and unsigned long have the highest rank, then int and

unsigned int. The signed and unsigned versions of the same type always have the same rank. Because of their

relative conversion ranks, long is guaranteed to be at least as large as int but not necessarily larger. (In fact, the

two types are the same size on most 32-bit systems.) Regardless of their exact sizes, the common type of long

and int is long, and the common type of unsigned long and unsigned int is unsigned long. No big

surprises here.

The third rule talks about cases with one signed operand and one unsigned operand:

Otherwise, if the operand that has unsigned integer type has rank greater or equal to the rank of the
type of the other operand, then the operand with signed integer type is converted to the type of the
operand with unsigned integer type.

So, if the two types are the same size, or if the unsigned type is bigger, we go with the unsigned type. For
example, the common type of int and unsigned int is unsigned int, and the common type of int and

unsigned long is unsigned long. That leaves the case where the signed type is bigger, which is covered by the

fourth rule:

Otherwise, if the type of the operand with signed integer type can represent all of the values of the type
of the operand with unsigned integer type, then the operand with unsigned integer type is converted to
the type of the operand with signed integer type.

Under the System V x64 ABI, a long can represent every value of type unsigned int, so the common type of

unsigned int and long is long. This isn’t true in implementations where long and int are the same size. In

these implementations, long has a higher rank than int but can’t represent every value of type unsigned int.

The fifth and final rule covers these implementations. Even though this rule doesn’t apply to us, I’ll include it for
the sake of completeness:

Otherwise, both operands are converted to the unsigned integer type corresponding to the type of the
operand with signed integer type.

So, on systems where long and int are the same size, the common type of long and unsigned int is

unsigned long.

This all boils down to three rules for finding the common type, which Listing 12-4 describes in pseudocode.

get_common_type(type1, type2):
 ❶ if type1 == type2:
 return type1
 ❷ if size(type1) == size(type2):
 if type1 is signed:
 return type2
 else:
 return type1
 ❸ if size(type1) > size(type2):
 return type1
 else:
 return type2

Listing 12-4: Finding the common type of two integers

First, if the types are the same, pick either one ❶. Otherwise, if they’re the same size, choose the unsigned one
❷. If they’re not the same size, choose the bigger one ❸. Apart from the usual arithmetic conversions, we’ll make
one tiny update to the logic for type checking expressions: we’ll annotate unsigned constants with the correct
type, in the same way that we already annotate signed constants.

Next, let’s look at how we record the initial values of static variables in the symbol table. We’ll add two new kinds
of static initializers, just like we added two new kinds of constants:

static_init = IntInit(int) | LongInit(int) | UIntInit(int) | ULongInit(int)

We need to convert each initializer to the type of the variable it’s initializing, according to the type conversion rules
presented at the beginning of this chapter. Consider the following declaration:

static unsigned int u = 4294967299L;

The value 4,294,967,299 is outside the range of unsigned int. When adding u to the symbol table, we’ll convert

this value to an unsigned int by subtracting 2 from it. (In practice, you can probably just use the equivalent

integer type conversion in your implementation language.) The resulting initializer will be UIntInit(3).

32

Along the same lines, this declaration initializes an int with a value outside of its range:

static int i = 4294967246u;

Once we reduce this value modulo 2 , the resulting initializer will be IntInit(-50).

It isn’t strictly necessary to have different static initializers for signed and unsigned variables. Instead, you could
use IntInit to represent both int and unsigned int initializers and use LongInit to represent both long and

unsigned long initializers. Ultimately, the assembler will write out the same bytes for an initializer whether you

represent it as a signed or unsigned value: the directives .long -50 and .long 4294967246 mean exactly the

same thing. Having separate UIntInit and ULongInit initializers just makes our type conversions easier to keep

track of.

TEST THE TYPE CHECKER

To test the type checking pass, run:

$./test_compiler /path/to/your_compiler --chapter 12 --stage validate

Your type checker should fail on the test cases in tests/chapter_12/invalid _types. These tests include declarations
with conflicting types. The type checker should succeed on every test case in tests/chapter_12/valid.

TACKY Generation

We’ll make one addition to TACKY in this chapter: a ZeroExtend instruction. Listing 12-5 defines the whole TACKY

IR.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init init)
instruction = Return(val)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)

32

 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 12-5: Adding the ZeroExtend instruction to TACKY

Now we have to generate the right TACKY for cast expressions that convert to and from unsigned types. At the
beginning of this chapter, we discussed how converting an integer to a new type affected its binary representation
in four different cases. Listing 12-6 demonstrates what TACKY instructions to emit in each of those cases.

emit_tacky(e, instructions, symbols):
 match e with
 | --snip--
 | Cast(t, inner) ->
 result = emit_tacky(inner, instructions, symbols)
 inner_type = get_type(inner)
 if t == inner_type:
 return result
 dst = make_tacky_variable(t, symbols)
 ❶ if size(t) == size(inner_type):
 instructions.append(Copy(result, dst))
 ❷ else if size(t) < size(inner_type):
 instructions.append(Truncate(result, dst))
 ❸ else if inner_type is signed:
 instructions.append(SignExtend(result, dst))
 ❹ else:
 instructions.append(ZeroExtend(result, dst))
 return dst

Listing 12-6: Converting a cast expression to TACKY

As in the previous chapter, the cast expression does nothing if the inner expression already has the correct type.
Otherwise, we check if the original type and the target type are the same size ❶. If they are, we don’t need to
extend, truncate, or otherwise change the inner value, because its representation in assembly won’t change. We
just copy it into a temporary variable with the correct type. The Copy instruction here may seem redundant, but

we need it to help us track type information during assembly generation. We’ll generate different assembly for
certain TACKY instructions depending on whether their operands are signed or unsigned. If we don’t store the
result of each expression in a variable of the correct type, we’ll generate incorrect assembly.

Next, we check whether the target type is smaller than the original type ❷. In that case, we’ll issue a Truncate

instruction. If that check also fails, this cast expression converts a smaller type to a larger one. We issue a
SignExtend instruction if the original type is signed ❸ and a ZeroExtend instruction if it’s unsigned ❹.

Once your compiler generates the correct TACKY for unsigned constants and cast expressions, you can test it out.

TEST THE TACKY GENERATION STAGE

To test TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 12 --stage tacky

Unsigned Integer Operations in Assembly

In most cases, we can use exactly the same assembly instructions to operate on signed and unsigned values.
However, there are two cases where we handle unsigned values differently: comparisons and division. We’ll need
to translate the new ZeroExtend instruction to assembly too. Before we update the assembly generation stage,

let’s look at how unsigned comparisons, unsigned division, and zero extension work in assembly.

Unsigned Comparisons

In Chapter 4, you learned how to compare two integers: issue a cmp instruction to set the RFLAGS register, then

issue a conditional instruction whose behavior depends on the state of that register. We’ll use the same approach
to compare unsigned integers, but we need different condition codes that rely on different flags.

Several instructions that perform arithmetic, including add, sub, and cmp, don’t distinguish between signed and

unsigned values. Listing 12-7 demonstrates how a single operation can implement both signed and unsigned
addition.

 1000
+ 0010

 1010

Listing 12-7: Adding binary integers

If we interpret the operands and the result as unsigned 4-bit integers, Listing 12-7 calculates 8 + 2 = 10. If we
interpret them as signed 4-bit integers, it calculates −8 + 2 = −6. As long as we interpret both operands and the
result consistently, we get the right answer either way. You can think of the results of add, sub, and most other

arithmetic assembly instructions as sequences of bits with two possible values, one signed and one unsigned.

After the processor executes one of these instructions, some flags in RFLAGS tell us about the signed value of the
result, others tell us about its unsigned value, and still others apply to both values. (Some flags have nothing to do

with the results of these instructions, but we don’t care about them.) We discussed three flags in Chapter 4: ZF,
the zero flag; SF, the sign flag; and OF, the overflow flag. ZF applies whether we interpret the result as signed or
unsigned, since zero is represented the same way in either case. The SF and OF flags, however, give us
meaningful information only about the result’s signed value.

SF, for example, indicates that the result is negative. In Chapter 4, we used this flag to conclude that a - b was

negative. In that case, assuming there was no overflow, we knew that a was less than b. That won’t work for

unsigned values, which are positive by definition. Consider Listing 12-8, which uses unsigned 4-bit integers to
calculate 15 – 3.

 1111
- 0011

 1100

Listing 12-8: Subtracting binary integers

Since 15 is greater than 3, the result of this operation is a positive number, 12. The fact that the result has a
leading 1 doesn’t tell us anything about which operand is larger. Similarly, OF tells us that the signed value of
some instruction’s result wrapped around from positive to negative, or vice versa, which doesn’t tell us anything
useful about its unsigned value.

To compare unsigned integers, we’ll use CF, the carry flag. This flag indicates that the unsigned value of a result
wrapped around because the correct value was less than zero or greater than the maximum value the type could
hold. For example, suppose we want to compute 15 + 1 with unsigned 4-bit integers. The 4-bit unsigned
representation of 15 is 1111; when we increment it, it wraps around to 0000. This computation will set the carry

flag to 1. The carry flag will also be set if we try to calculate 0 – 1 and the result wraps around in the other
direction to 1111, or 15. If a < b, the result of a - b will always wrap around and set the carry flag. If a > b,

the result will always be representable as an unsigned integer, so it won’t have to wrap around. Let’s walk through
how cmp b, a will impact CF and ZF when we interpret a and b as unsigned integers:

If a == b, then a - b will be 0, so ZF will be 1 and CF will be 0.

If a > b, then a - b will be a positive number. It will be greater than 0 but less than or equal to a, so it

won’t wrap around. ZF and CF will both be 0.
If a < b, then a - b will be negative, so it will have to wrap around. ZF will be 0 and CF will be 1.

Note that ZF and CF are mutually exclusive; one operation will never set both of them. All the condition codes we
need in this chapter depend on one or both of these flags. Table 12-1 lists these condition codes.

Table 12-1: Condition Codes for Unsigned Comparisons

Condition code Meaning Flags

E a == b ZF set

NE a != b ZF not set

A a > b CF not set and ZF not set

AE a >= b CF not set

B a < b CF set

BE a <= b CF set or ZF set

We use the existing E and NE condition codes to test for equality and inequality, but we’ll use new codes to

determine which of two operands is larger. The A and B in the new codes are mnemonics for “above” and “below.”

The new condition codes can appear in conditional jump and set instructions, just like the old ones. Listing 12-9
demonstrates how to set EAX to 1 if the unsigned value in EDX is greater than 10.

cmpl $10, %edx
movl $0, %eax
seta %al

Listing 12-9: Performing an unsigned comparison in assembly

This follows exactly the same pattern as signed comparisons: we issue the cmp instruction, then zero out the

destination, and finally issue a set instruction with a suffix for the appropriate condition code.

UNSIGNED WRAPAROUND VS. SIGNED OVERFLOW

You learned in Chapter 4 that when the result of an operation on signed integers overflows, the behavior is
undefined. This isn’t true for unsigned integers. Section 6.2.5, paragraph 9, of the C standard specifies how to
deal with an unsigned integer operation when the result doesn’t fit in the result type: “A computation involving
unsigned operands can never overflow, because a result that cannot be represented by the resulting unsigned
integer type is reduced modulo the number that is one greater than the largest value that can be represented by
the resulting type.”

It’s no coincidence that this is exactly the same behavior that the standard requires when we convert a value to an
unsigned type. It’s also the same implementation-defined behavior we chose for conversions to signed types. In
all three cases, we get this behavior by truncating the result to the appropriate width.

The assembly instructions we’re using to perform arithmetic already handle unsigned wraparound correctly, so we
don’t need to do anything special to account for it here. We will need to account for it, however, when we
implement constant folding in Part III.

Unsigned Division

For most arithmetic operations, the same instruction can operate correctly on both signed and unsigned integers.
But for division, this doesn’t work. Suppose we want to calculate 1000 / 0010. If we interpret these values as

signed 4-bit integers, this is −8 / 2 and the result is −4, represented as 1100. If they’re unsigned 4-bit integers,

this is 8 / 2 and the result is 4, or 0100. There’s no way a single instruction can produce the correct result in both

cases.

So, we’ll need a new instruction, div, to perform unsigned division. This instruction works just like idiv. It takes

one operand, which is its divisor. Its dividend is the value stored in EDX and EAX, or RDX and RAX if we’re working
with quadwords. It stores the quotient in EAX or RAX, and it stores the remainder in EDX or RDX.

Since the dividend is unsigned, we zero extend it from EAX into EDX (or from RAX into RDX) instead of sign
extending it. We accomplish this by zeroing out RDX instead of emitting a cdq instruction.

Zero Extension

The last operation we need to implement is zero extension. We can zero extend a longword to a quadword by
moving it into a register; this zeroes out the register’s upper 4 bytes. Then, if we need to store the value in
memory, we can move the whole 8-byte value to its final destination. The following code zero extends the value at
-4(%rbp) and then saves the result to -16(%rbp):

movl -4(%rbp), %eax
movq %rax, -16(%rbp)

We use the 4-byte movl instruction to copy the value into the register and the 8-byte movq instruction to copy it

back out. If the final destination of the zero extension operation is a register instead of a location in memory, we
need only the first 4-byte movl instruction.

There’s also a separate movz instruction, which zero extends source values that are smaller than 4 bytes. We don’t

need this instruction yet, but we’ll use it when we implement character types in Chapter 16.

Assembly Generation

Now that you know how to work with unsigned integers in assembly, you’re ready to extend the assembly
generation stage. Listing 12-10 defines the latest assembly AST, with this chapter’s additions bolded.

program = Program(top_level*)
assembly_type = Longword | Quadword
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(operand src, operand dst)
 | MovZeroExtend(operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)
 | Ret

unary_operator = Neg | Not
binary_operator = Add | Sub | Mult
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int) | Data(identifier)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP

Listing 12-10: The assembly AST with unsigned operations

We’ve added the new condition codes and unsigned div instruction we discussed in the previous section. We’ve

also added a MovZeroExtend instruction to handle zero extension. For now, this instruction is only a placeholder.

During the instruction fix-up pass, we’ll replace it with either one or two mov instructions, depending on whether

its destination is in memory or a register. (At the moment, the destination will always be in memory, so we’ll
always need two mov instructions; this will change once we implement register allocation in Part III.) When we

add character types, MovZeroExtend will also represent the real movz instruction to zero extend 1-byte values.

Let’s recap the changes we’ll need to make to the assembly generation pass. First, when we convert source-level
types to assembly types, we lose the distinction between signed and unsigned integers. Both long and unsigned

long values in TACKY become quadwords in assembly, and int and unsigned int values become longwords.

When we convert a comparison instruction from TACKY to assembly, we start by looking up the type of either
operand (both operands are guaranteed to have the same type). We then choose the appropriate condition code,
depending on whether that type is signed. For example, to handle

Binary(LessThan, Var("src1"), Var("src2"), Var("dst"))

we start by looking up the type of either src1 or src2 in the symbol table. Let’s say the type is UInt. In this

case, we’ll generate the following assembly instructions:

Cmp(Longword, Pseudo("src2"), Pseudo("src1"))
Mov(Longword, Imm(0), Pseudo("dst"))
SetCC(B, Pseudo("dst"))

These are exactly the same instructions we’d generate for a signed comparison, except that we use the B

condition code instead of L.

To handle a TACKY Divide or Remainder operation, we copy the first operand into EAX, as before. Then, if the

operands are signed, we sign extend EAX into EDX and issue an idiv instruction. If they’re unsigned, we zero out

EDX and issue a div instruction. (Naturally, we’ll use RAX and RDX instead of EAX and EDX if the operands are

quadwords.) For example, we’ll translate

Binary(Remainder, ConstULong(100), Var("x"), Var("dst"))

into:

Mov(Quadword, Imm(100), Reg(AX))
Mov(Quadword, Imm(0), Reg(DX))
Div(Quadword, Pseudo("x"))
Mov(Quadword, Reg(DX), Pseudo("dst"))

Finally, we’ll convert each ZeroExtend TACKY instruction into a MovZeroExtend assembly instruction.

Tables 12-2 through 12-5 summarize the latest updates to the conversion from TACKY to assembly. New
constructs and changes to the way we convert existing constructs are bolded.

Table 12-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Binary(Divide, src1, src2, dst) Signed

Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

Idiv(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

Unsigned

Mov(<src1 type>, src1, Reg(AX))

Mov(<src1 type>, Imm(0), Reg(DX))

Div(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

Binary(Remainder, src1, src2, dst) Signed

Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

Idiv(<src1 type>, src2)

Mov(<src1 type>, Reg(DX), dst)

Unsigned

Mov(<src1 type>, src1, Reg(AX))

Mov(<src1 type>, Imm(0), Reg(DX))

Div(<src1 type>, src2)

Mov(<src1 type>, Reg(DX), dst)

ZeroExtend(src, dst) MovZeroExtend(src, dst)

Table 12-3: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

LessThan Signed L

Unsigned B

TACKY comparison Assembly condition code

LessOrEqual Signed LE

Unsigned BE

GreaterThan Signed G

Unsigned A

GreaterOrEqual Signed GE

Unsigned AE

Table 12-4: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(ConstUInt(int)) Imm(int)

Constant(ConstULong(int)) Imm(int)

Table 12-5: Converting Types to Assembly

Source type Assembly type Alignment

UInt Longword 4

ULong Quadword 8

Next, we’ll update the pseudoregister replacement and instruction fix-up passes.

Replacing Pseudoregisters

We’ll extend this pass to handle the new Div and MovZeroExtend instructions. Otherwise, there’s nothing to

change here. This pass looks at each operand’s assembly type rather than its source-level type, so it doesn’t
distinguish between signed and unsigned operands.

Fixing Up the Div and MovZeroExtend Instructions

Next, we’ll rewrite both Div and MovZeroExtend. Like Idiv, the new Div instruction can’t use a constant

operand. We’ll rewrite it the same way as Idiv, copying its operand into R10 if we need to.

We’ll replace MovZeroExtend with one or two mov instructions. If its destination is a register, we’ll issue a single

movl instruction. For example, we’ll rewrite

MovZeroExtend(Stack(-16), Reg(AX))

as:

Mov(Longword, Stack(-16), Reg(AX))

If its destination is in memory, we’ll use a movl instruction to zero extend into R11, then move it from there to the

destination. So, we’ll rewrite

MovZeroExtend(Imm(100), Stack(-16))

as:

Mov(Longword, Imm(100), Reg(R11))
Mov(Quadword, Reg(R11), Stack(-16))

We won’t make any other changes to this pass.

TEST THE ASSEMBLY GENERATION STAGE

To test the assembly generation stage, run:

$./test_compiler /path/to/your_compiler --chapter 12 --stage codegen

Code Emission

We’ll make a few changes to the code emission stage in this chapter. First, we’ll add the div instruction and the

new condition codes. We’ll also add our two new static initializers, UIntInit and ULongInit, which we’ll emit

exactly like their signed counterparts, IntInit and LongInit. Tables 12-6 through 12-8 demonstrate how to

emit these new constructs.

Table 12-6: Formatting Static Initializers

Static initializer Output

UIntInit(0) .zero 4

UIntInit(i) .long <i>

ULongInit(0) .zero 8

ULongInit(i) .quad <i>

Table 12-7: Formatting Assembly Instructions

Assembly instruction Output

Div(t, operand)

div<t> <operand>

Table 12-8: Instruction Suffixes for Condition Codes

Condition code Instruction suffix

A a

AE ae

B b

BE be

I haven’t bolded the new constructs and changes in these tables like I normally do, because all of these assembly
constructs are new.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 12

The programs in tests/chapter_12/valid/type_specifiers test that your compiler correctly determines a function or
variable’s type based on a list of type specifiers. The programs in tests/chapter_12/valid/unsigned_expressions
test that you’ve correctly implemented arithmetic operations on unsigned values, including unsigned comparisons
and division. The programs in tests/chapter_12/valid/explicit_casts test that you’ve implemented explicit
conversions to and from unsigned types correctly, and the programs in tests/chapter_12/valid/implicit_casts test
that you add implicit type conversions in the right places. The programs in tests/chapter_12/valid/libraries test
that compiled code dealing with unsigned integers conforms to the System V ABI.

Summary

In this chapter, you built on the foundations you laid in Chapter 11 to implement two unsigned integer types. You
waded through the C standard’s rules for type conversions and explored how those conversions impact both an
integer’s representation and its value. In the type checker, you learned how signed and unsigned integers are
converted to a common type. During assembly generation, you implemented zero extension and unsigned division
and comparisons.

In Chapter 13, you’ll add a floating-point type, double. Floating-point numbers are processed very differently

from integers in hardware; they even get their own set of registers! As you’ll see, those hardware differences
impact everything from type conversions to function calling conventions.

Description

13

FLOATING-POINT NUMBERS

Your compiler now supports four different integer types, but it still doesn’t support non-
integral values. It also doesn’t support values outside the range of long and unsigned

long. In this chapter, you’ll address these shortcomings by implementing the double type.

This type uses a floating-point binary representation, which is totally different from the
signed and unsigned integer representations we’ve seen so far. The C standard also defines
two other floating-point types, float and long double, but we won’t implement those in

this book.

We’ll have two major tasks in this chapter. The first task is figuring out exactly what
behavior we’re trying to implement. We can’t just check the C standard, because many

aspects of floating-point behavior are implementation-defined. Instead, we’ll consult yet another standard, IEEE
754, to fill in most of the details that the C standard doesn’t specify. Our second major task is generating assembly
code; we’ll need a whole new set of specialized assembly instructions and registers to operate on floating-point
numbers.

We’ll start with a quick look at the IEEE 754 standard, which defines the binary format of double and some other

aspects of floating-point behavior. Then, we’ll consider all the ways that rounding error can creep into floating-
point operations and decide how our implementation will handle them. We won’t cover every aspect of floating-
point arithmetic, but you can find links to the standard itself and more comprehensive explanations of IEEE 754,
rounding error, and other aspects of floating-point behavior in “Additional Resources” on page 343.

IEEE 754, What Is It Good For?

The IEEE 754 standard specifies several floating-point formats and how to work with them. It defines a set of
floating-point operations, including basic arithmetic operations, conversions, and comparisons. It also defines
several rounding modes, which control how the results of these operations are rounded, and various floating-point
exceptions, like overflow and division by zero. The standard can be used as a specification for any system that
implements floating-point arithmetic, whether that system is a processor or a high-level programming language.
In processors, the required operations are typically implemented as machine instructions. In most programming
languages, including C, some IEEE 754 operations are implemented as primitive operators like + and -, while

others are implemented as standard library functions.

Virtually all modern programming languages represent floating-point numbers in IEEE 754 format (because they
run on hardware using that format), but they have varying degrees of support for other aspects of the standard.
For example, not all programming languages let you detect floating-point exceptions or use nondefault rounding
modes.

In theory, you could implement C without using IEEE 754 at all; the C standard doesn’t dictate how to represent
double and other floating-point types. However, the standard is designed to be compatible with IEEE 754. Annex

F, an optional section of the C standard, specifies how to fully support IEEE 754 and explicitly binds C types,
operations, and macros to their IEEE 754 equivalents. (Note that the standard refers to “IEC 60559,” which is just
another name for IEEE 754.)

While the C standard doesn’t specify how to represent floating-point types, the System V x64 ABI does.
Implementations that follow this ABI, including ours, must represent these types in IEEE 754 format. However, the
ABI doesn’t deal with the other aspects of IEEE 754.

Most C implementations provide command line options to control exactly how strictly they conform to IEEE 754.
Our compiler won’t provide these options; instead, it will roughly match the default behavior of Clang and GCC.
This means we’ll implement mathematical floating-point operations according to IEEE 754, and we’ll correctly
handle most special values, but we’ll ignore floating-point exceptions and nondefault rounding modes.

In the next couple of sections, I’ll discuss the parts of IEEE 754 that you’ll need to know about as you work on
your compiler. I won’t discuss operations that are implemented in the underlying hardware (like addition and
subtraction) or in the C standard library (like square root and remainder). You don’t need to know the details of
how those are specified, since they’re handled for you. But you do need to know a bit about the binary format of
IEEE 754 numbers, so we’ll start with that.

The IEEE 754 Double-Precision Format

The System V x64 ABI tells us to represent double using the IEEE 754 double-precision format, which is 64 bits

wide. Figure 13-1 illustrates this format. (This figure is reproduced with slight modifications from https://en
.wikipedia.org/wiki/Double-precision_floating-point_format.)

Figure 13-1: The IEEE 754 double-precision floating-point format Description

The double-precision floating-point format has three fields: the sign bit, the exponent field, and the fraction field.
These fields encode three values: the sign s, the exponent e, and the significand f, respectively. (Sometimes f is

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

called the mantissa instead of the significand.) A number in this format has the value (–1) × f × 2 , except for a
few special cases that we’ll discuss shortly.

The significand f is a binary fraction, which is analogous to a decimal number. In decimal numbers, the digits to
the left of the decimal point (the integer part) represent nonnegative powers of 10, and the digits to the right (the
fractional part) represent negative powers of 10: 1/10, 1/100, and so on. Similarly, each bit in the integer part of a
binary fraction represents a nonnegative power of 2, like 1, 2, 4, or 8, and each bit in the fractional part
represents a negative power of 2, like 1/2, 1/4, or 1/8.

The integer part of f is always 1; the 52 bits of the fraction field encode only the fractional part. This means that
the value of f is always greater than or equal to 1 and less than 2. For example, the fraction field

1000

indicates that the fractional part of f is 0.1, so the overall value of f is the binary fraction 1.1, which is 1.5 in
decimal notation. The implied leading 1 lets the 52-bit fraction field represent binary fractions up to 53 bits long.

The value of e is between –1,022 and 1,023. The exponent field uses a biased encoding: we interpret the 11 bits
in this field as an unsigned integer and then subtract 1,023 to get the value of e. For example, suppose this field
has the following bits:

00000000010

Interpreted as an ordinary unsigned integer, these bits represent the number 2. The value of the exponent e is
therefore 2 – 1,023, or –1,021. Setting the exponent field to all 1s or all 0s indicates one of the special values we’ll
discuss in a moment.

Since f is always positive, the whole floating-point number will be negative if the sign bit is 1 and positive if it’s 0.
Essentially, floating point lets us express numbers in scientific notation, but with powers of 2 instead of powers of
10.

The IEEE 754 standard also defines a few special values that are interpreted differently than ordinary floating-
point numbers:

Zero and negative zero

If a floating-point number is all zeros, its value is 0.0. If it’s all zeros except for its sign bit, its value is -0.0. This

value compares equal to 0.0 but follows the usual rules for determining the sign of arithmetic results. For

example, -1.0 * 0.0 and 1.0 * -0.0 both evaluate to -0.0.

Subnormal numbers

s e

As we just saw, most floating-point numbers have a significand between 1 and 2. We say that these numbers are
normalized. The smallest magnitude a normalized double can represent is 1 × 2 , since the minimum

exponent is –1,022. In a subnormal number, the significand is smaller than 1, which lets us represent values that
are even closer to zero. An all-zero exponent field indicates that a number is subnormal, so its exponent is –1,022
and the integer part of its significand is 0 instead of 1. Subnormal numbers are much slower to work with in
hardware than normalized numbers, so some C implementations let users disable them and round any subnormal
results to zero.

Infinity

At the opposite end of the spectrum, the largest magnitude a normalized double can represent is the largest

possible value of the significand (just shy of 2) multiplied by 2 . Anything larger gets rounded to infinity. The
result of dividing a nonzero number by zero is also infinity. The IEEE standard defines both positive and negative
infinity; for example, the expression -1.0 / 0.0 evaluates to negative infinity. A number whose exponent is all 1s

and whose fraction field is all 0s represents infinity. The sign bit indicates whether it’s negative or positive infinity.

NaN

NaN is short for not-a-number. A few operations, including 0.0 / 0.0, produce NaN. The IEEE 754 standard

defines both signaling NaNs, which raise an exception if you try to use them, and quiet NaNs, which don’t. A
number whose exponent is all 1s and whose fraction field is nonzero represents NaN.

We’ll support all of these values except for NaN. Quiet NaNs are an extra credit feature because handling them
correctly in comparisons requires a bit of extra work. We can support negative zero, subnormal numbers, and
infinity with no extra work on our part; the processor will deal with them for us.

Aside from the double-precision format, IEEE 754 defines a few other floating-point formats that we won’t use,
including single precision, which corresponds to float, and double extended precision, which usually corresponds

to long double. These formats include the same three fields as double precision, use the same formula to

determine a floating-point number’s value, and have the same special values; they just have different widths.

Rounding Behavior

You can’t represent every real number exactly as a double. There are infinitely many real numbers, and a double

has only 64 bits. We’re not particularly interested in all the real numbers; we care only about the numbers that
show up in C programs. Unfortunately, a double can’t represent most of those exactly either, so we’ll need to

round them. Let’s start by examining how IEEE 754 tells us to round real numbers to double. Then, we’ll look at

the three cases where we can encounter rounding error: when converting constants from decimal to binary
floating point, performing type conversions, and performing arithmetic operations.

–1,022

1,023

Rounding Modes

IEEE 754 defines several different rounding modes, including rounding to nearest, rounding toward zero, rounding
toward positive infinity, and rounding toward negative infinity. Modern processors support all four of these
rounding modes and provide instructions to let programs change the current rounding mode. We’ll support only
the default IEEE rounding mode, round-to-nearest, ties-to-even rounding. As the name suggests, in this mode the
real value of a result is always rounded to the nearest representable double. “Ties-to-even” means that if a result

is exactly between two representable values, it’s rounded to the one whose least significant bit is 0. We’ll use this
rounding mode when converting constants to floating point, when converting from integer types to double, and in

arithmetic operations.

Rounding Constants

C programmers generally write double constants in decimal. At compile time, we’ll convert constants from this

decimal representation to a double-precision floating-point representation. This conversion is inexact, since most
decimal constants can’t be represented exactly in binary floating point. For example, you can’t represent the
decimal number 0.1 in binary floating point, because each bit in a binary fraction represents a power of 2, but you
can’t add up powers of 2 and get 0.1. If the source code of a C program includes the constant 0.1, the compiler

will round this constant to the value in Listing 13-1, which is the nearest value we can represent as a double.

0.1000000000000000055511151231257827021181583404541015625

Listing 13-1: The closest double to 0.1, in decimal notation

Unlike 0.1, this value can be represented exactly as a 53-bit binary fraction multiplied by a power of 2, as shown
in Listing 13-2.

1.100110011001100110011001100110011001100110011001101 * 2^-4

Listing 13-2: The closest double to 0.1, represented as a binary fraction

Representing 0.1 as a double is analogous to trying to write 1/3 in decimal notation; since you can’t break it

down into powers of 10, you can’t write it out exactly using any number of decimal places. Instead, you have to
round 1/3 to the nearest value you can represent in the space available. For example, a calculator that can display
up to four digits would display 1/3 as .3333.

NOTE

IEEE 754 defines several decimal floating-point formats, which can represent decimal constants without this sort
of rounding error. These formats encode numbers as decimal significands multiplied by powers of 10. C23 includes

new decimal floating-point types that correspond to these formats.

Rounding Type Conversions

We may also need to round when we convert an integer to a double. This issue arises because of the spacing

between values that double can represent. The gap between representable values grows larger as the magnitude

of the values themselves increases. At a certain point, the gap becomes larger than 1, which means you can’t
represent all integers in that range. To illustrate this problem, let’s imagine a decimal format with three digits of
precision. This format can represent any integer smaller than 1,000; for example, we can write 992 and 993 as
9.92 × 10 and 9.93 × 10 . But it can’t represent every integer larger than 1,000. We can represent 1,000 exactly
as 1.00 × 10 , but the next representable value is 1.01 × 10 , or 1,010; there’s a gap of 10. The gap increases to
100 once we hit 10,000, and continues to grow at larger magnitudes. We’ll encounter precisely the same issue
when converting from long or unsigned long to double. A double has 53 bits of precision, since the

significand is a 53-bit binary fraction. A long or unsigned long, however, has 64 bits of precision. Suppose we

need to convert 9223372036854775803 from a long to a double. The binary representation of this long is:

11011

That’s 63 bits, so it won’t fit in the significand of a double! We’ll need to round it to the nearest double, which is

9223372036854775808.0, or 1 × 2 .

Rounding Arithmetic Operations

Finally, we may need to round the results of basic floating-point operations like addition, subtraction, and
multiplication. Once again, this is due to the gaps between representable values. For example, let’s try computing
993 + 45 in the three-digit decimal format from the previous section. The correct result, 1,038, can’t be
represented in only three digits; we’ll need to round it to 1.04 × 10 . Division can also produce values that aren’t
representable at any precision, just like the result of 1 / 3 isn’t representable in any number of decimal digits.
Thankfully, we can basically ignore this category of rounding error; the assembly instructions for floating-point
arithmetic will round correctly without any extra effort on our part.

Now that you understand the basics of the IEEE 754 format and the rounding behavior you need to implement,
you’re ready to get to work on the compiler. We’ll start with a change to the compiler driver.

Linking Shared Libraries

This chapter’s test suite uses functions from <math.h>, the standard math library. We’ll add a new command line

option to the compiler driver that lets us link in shared libraries like <math.h>. This option takes the form -

l<lib>, where <lib> is the name of a library. You should pass this option through to the gcc command to

assemble and link the program, placing it after the names of any input assembly files in that command. For
example, if your compiler is invoked with the command

2 2

3 3

63

3

./YOUR_COMPILER /path/to/program.c -lm

it should assemble and link the program with the command:

gcc /path/to/program.s -o /path/to/program -lm

If you’re on macOS, you don’t need to add this new option, because the standard math library is linked in by
default. You may want to add it anyway, though, since being able to link in shared libraries is generally useful.

The Lexer

You’ll introduce two new tokens in this chapter:

double A keyword

Floating-point constants Constants that use scientific notation or contain a decimal point

You’ll also change how the lexer recognizes the end of a constant token; this will affect both the new floating-
point constants and the integer constants you already support.

Let’s start by walking through the format of floating-point constants. Then, we’ll see how to recognize the end of a
constant. Finally, we’ll define the new regular expressions for each constant token.

Recognizing Floating-Point Constant Tokens

Numerals with decimal points, like 1.5 and .72, are valid tokens that represent floating-point numbers. We’ll call

a sequence of digits that includes a decimal point a fractional constant. A fractional constant may include a
decimal point with no digits after it. For example, 1. is a valid fractional constant with the same value as 1.0.

A floating-point constant can also be written in scientific notation. A token that uses scientific notation consists of:

A significand, which may be an integer or fractional constant
An uppercase or lowercase E

An exponent, which is an integer with an optional leading + or - sign

100E10, .05e-2, and 5.E+3 are all valid floating-point constants. These constants are all in decimal, and their

exponents are powers of 10. For example, 5.E+3 is 5 × 10 , or 5,000. The C standard also defines hexadecimal

floating-point constants, but we won’t implement them. There’s no constant for infinity. The <math.h> header

defines an INFINITY macro, which is supposed to translate to the constant for positive infinity, but our compiler

3

can’t include this header, since it uses float, struct, and other language features we don’t support. Therefore,

we won’t support this macro (or any other macros defined in <math.h>, for that matter).

It’s a bit tricky to write a regex that will match every floating-point constant, so let’s break it down into steps. The
regex in Listing 13-3 matches a fractional constant.

[0-9]*\.[0-9]+|[0-9]+\.

Listing 13-3: The regex for a fractional constant

The first part of this regex, [0-9]*\.[0-9]+, matches any constant with digits after the decimal point, like .03

or 3.14. The part after the | matches constants like 3. with nothing after the decimal point. Listing 13-4 defines

a similar regex to match the significand of a constant in scientific notation.

[0-9]*\.[0-9]+|[0-9]+\.?

Listing 13-4: The regex for the significand of a constant in scientific notation

The only difference from Listing 13-3 is that the trailing decimal point in the second clause is optional, so it
matches both integers and fractional constants with trailing decimal points.

We’ll use the regex in Listing 13-5 to match the exponent part of a floating-point constant.

[Ee][+-]?[0-9]+

Listing 13-5: The regex for the exponent of a constant in scientific notation

This regex includes the case-insensitive E that marks the start of the exponent, an optional sign, and the integer

value of the exponent. To match any floating-point constant, we’ll assemble one giant regex of the form <Listing
13-4> <Listing 13-5> | <Listing 13-3>, which gives us Listing 13-6.

([0-9]*\.[0-9]+|[0-9]+\.?)[Ee][+-]?[0-9]+|[0-9]*\.[0-9]+|[0-9]+\.

Listing 13-6: The regex to match every part of a floating-point constant

In other words, a floating-point constant is either a significand followed by an exponent, or a fractional constant.
Listing 13-6 isn’t quite complete, though: we need one more component to match the boundary between the end
of this token and the start of the next one.

Matching the End of a Constant

Until now, we’ve required constants to end at word boundaries. Given the string 123foo, for example, we

wouldn’t accept the substring 123 as a constant. Now we’ll add another requirement: a constant token can’t be

immediately followed by a period. This means, for example, that the lexer will recognize the start of the string
123L; as a long integer constant token, 123L, but it will reject the string 123L.bar; as malformed. Along the

same lines, the lexer will accept the string 1.0+x but reject 1.0.+x, and it will accept 1.} but reject 1..}. Note

that the last character in a floating-point constant like 1. can be a period, but the first character after the constant

cannot.

NOTE

If you’re curious about where in the C standard this requirement comes from, see the definition of preprocessing
numbers in section 6.4.8, the list of translation phases in section 5.1.1.2, and the discussion of tokens and
preprocessing tokens in section 6.4, paragraph 3. These sections describe a multiphase process for dividing a
source file into preprocessing tokens and then converting them into tokens. We don’t follow this process, but we
define each token in a way that produces the same results for the subset of C that we support.

To enforce this new requirement, we’ll end the regular expression for each constant token with the [^\w.]

character class instead of the special word boundary character \b. The [^\w.] character class matches any single

character except for a word character (a letter, digit, or underscore) or a period. This single non-word, non-period
character marks the end of the constant but isn’t part of the constant itself, so we’ll define a capture group within
each regex to match the actual constant.

For example, our old regular expression for a signed integer constant was [0-9]+\b. Our new regular expression

is ([0-9]+)[\w.]. This regex matches the entire string 100;, including the ; at the end. The capture group

([0-9]+) matches just the constant 100, not the final ; character. Whenever your lexer recognizes a constant, it

should consume only the constant itself from the input, not the character that immediately follows it.

In Listing 13-7, we finally define the whole regular expression to recognize a floating-point constant.

(([0-9]*\.[0-9]+|[0-9]+\.?)[Ee][+-]?[0-9]+|[0-9]*\.[0-9]+|[0-9]+\.)[^\w.]

Listing 13-7: The complete regex to recognize a floating-point constant

This is just the regular expression we defined in Listing 13-6, wrapped in parentheses to form a capture group and
followed by the [^\w.] character class.

Table 13-1 defines the new regular expressions for all of our constant tokens.

Table 13-1: Regular Expressions for Constant Tokens

Token Regular expression

Signed integer constant ([0-9]+)[^\w.]

Unsigned integer constant ([0-9]+[uU])[^\w.]

Signed long integer
constant

([0-9]+[lL])[^\w.]

Unsigned long integer
constant

([0-9]+([lL][uU]|[uU][lL]))[^\w.]

Floating-point constant (([0-9]*\.[0-9]+|[0-9]+\.?)[Ee][+-]?[0-9]+|[0-9]*\.[0-9]+|[0-

9]+\.)[^\w.]

Go ahead and add the new floating-point constant token and update how you recognize the constant tokens from
earlier chapters. Don’t forget to add the double keyword too!

TEST THE LEXER

To test out your lexer, run:

$./test_compiler /path/to/your_compiler --chapter 13 --stage lex

Your lexer should fail on the test programs in tests/chapter_13/invalid_lex, which include malformed floating-point
and integer constants. It should successfully process all the other test programs for this chapter.

The Parser

The changes to the parser are pretty limited. Listing 13-8 gives the updated AST, which includes the double type

and floating-point constants.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init,
 type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,

 type fun_type, storage_class?)
type = Int | Long | UInt | ULong | Double | FunType(type* params, type ret)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int)
 | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double)

Listing 13-8: The abstract syntax tree with the double type and floating-point constants

Your AST should represent double constants using the double-precision floating-point format, since that’s how

they’ll be represented at runtime. You’ll need to look up which type in your implementation language uses this
format. If you use a representation with less precision than double, you might not be able to represent the

closest double to every constant in the source code, so you’ll end up with incorrectly rounded constants in the

compiled program.

Surprisingly, storing constants with more precision than double can also cause problems. Storing a floating-point

number in a higher-precision format and then rounding to a lower-precision format can produce a different result
than rounding exactly once. This phenomenon is called double rounding error. (The word double here refers to
rounding twice, not to the double type.) We’ll explore double rounding error in more depth during assembly

generation.

After updating the AST, we’ll make the corresponding changes to the grammar. Listing 13-9 shows the complete
grammar with these changes bolded.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <identifier> ["=" <exp>] ";"
<function-declaration> ::= {<specifier>}+ <identifier> "(" <param-list> ")" (<block> | ";"
<param-list> ::= "void"
 | {<type-specifier>}+ <identifier> {"," {<type-specifier>}+ <identifier>}
<type-specifier> ::= "int" | "long" | "unsigned" | "signed" | "double"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <const> | <identifier>
 | "(" {<type-specifier>}+ ")" <factor>
 | <unop> <factor> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<unop> ::= "-" | "~" | "!"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong> | <double>
<identifier> ::= ? An identifier token ?
<int> ::= ? An int token ?
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?
<double> ::= ? A floating-point constant token ?

Listing 13-9: The grammar with the double type specifier and floating-point constants

In the last two chapters, we had to deal with the many different ways to specify integer types. Luckily, there’s only
one way to specify the double type: with the double keyword. Listing 13-10 demonstrates how to handle double

when we process a list of type specifiers.

parse_type(specifier_list):
 if specifier_list == ["double"]:
 return Double
 if specifier_list contains "double":
 fail("Can't combine 'double' with other type specifiers")
 --snip--

Listing 13-10: Determining a type from a list of type specifiers

Either double should be the only specifier in the list, or it shouldn’t appear at all; it can’t be combined with long,

unsigned, or any other type specifier we’ve introduced so far. (It can, however, appear alongside storage-class

specifiers like static and extern.)

Next, we’ll convert floating-point constant tokens to constants in the AST. We saw earlier that most decimal
constants can’t be represented exactly in binary floating point, so we’ll need to round them. According to the C
standard, the rounding direction here is implementation-defined and doesn’t necessarily need to match the
runtime rounding mode. We’ll use round-to-nearest mode here, like we do everywhere else. Your implementation
language’s built-in string-to-floating point conversion utilities should handle this correctly.

When we parse integer constants, we need to ensure that they’re within the range the type can hold. Floating-
point constants, however, can’t go out of range. Since double supports positive and negative infinity, its range

includes all real numbers. So, our parser shouldn’t run into any errors when parsing double constants.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 13 --stage parse

The Type Checker

We’ll make a handful of changes to account for double in the type checker. First, we’ll make sure to annotate

double constants with the correct type. Then, we’ll update how we find the common real type of two values. The

rule here is simple: if either value is a double, the common real type is double. Listing 13-11 shows how to

update the get_common_type helper function to handle double.

get_common_type(type1, type2):
 if type1 == type2:
 return type1

 if type1 == Double or type2 == Double:
 return Double
 --snip--

Listing 13-11: Finding the common real type of two values

We also need to detect a couple of new type errors. The bitwise complement operator, ~, and the remainder

operator, %, accept only integer operands. We’ll validate that both of these operators are used correctly in

typecheck_exp. Listing 13-12 demonstrates how to type check the ~ operator.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Unary(Complement, inner) ->
 typed_inner = typecheck_exp(inner, symbols)
 ❶ if get_type(typed_inner) == Double:
 fail("Can't take the bitwise complement of a double")
 unary_exp = Unary(Complement, typed_inner)
 return set_type(unary_exp, get_type(typed_inner))

Listing 13-12: Type checking a bitwise complement expression

First, we type check the operand. Then, we validate that the operand is an integer ❶. Finally, we annotate the
expression with the type of its result. Only the validation step differs from earlier chapters. We can handle the %

operator in a similar way.

To wrap up the changes to the type checker, we’ll deal with static variables of type double. We’ll add a new kind

of initializer for these variables:

static_init = IntInit(int) | LongInit(int) | UIntInit(int) | ULongInit(int)
 | DoubleInit(double)

As usual, we’ll convert each initializer to the type of the variable it initializes, using the same rules that we’d apply
at runtime. The C standard requires us to truncate toward zero when we convert from double to an integer type.

For example, we would convert 2.8 to 2. If the truncated value is out of range of the resulting integer type, the

result is undefined, so you can handle it however you like. The cleanest option here is to just throw an error.

When we convert an integer to a double, we’ll preserve its value if it can be represented exactly. Otherwise, we’ll

round to the nearest representable value. You should be able to use your implementation language’s built-in type
conversion utilities to cast from double to integer types and vice versa.

TEST THE TYPE CHECKER

To test your type checker, run:

$./test_compiler /path/to/your_compiler --chapter 13 --stage validate

The type checker should succeed on every valid test case and fail on the tests in tests/chapter_13/invalid_types,
which exercise the new type errors in this chapter.

TACKY Generation

In TACKY, we’ll add a few new instructions to handle conversions between double and integer types. Listing 13-

13 gives the updated TACKY IR.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init init)
instruction = Return(val)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | DoubleToInt(val src, val dst)
 | DoubleToUInt(val src, val dst)
 | IntToDouble(val src, val dst)
 | UIntToDouble(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 13-13: Adding conversions between double and the integer types to TACKY

Listing 13-13 introduces four new instructions to convert between double and the signed and unsigned integer

types: DoubleToInt, DoubleToUInt, IntToDouble, and UIntToDouble. We don’t have different instructions for

integer operands of different sizes; for example, DoubleToInt can cast to either int or long.

To update the TACKY generation pass, just emit the appropriate cast instruction when you encounter a cast to or
from double.

TEST THE TACKY GENERATION STAGE

To test TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 13 --stage tacky

Floating-Point Operations in Assembly

Before we get to work on the assembly generation pass, we need to understand how to work with floating-point
numbers in assembly. Because floating-point numbers use a completely different binary representation from
signed and unsigned integers, we can’t operate on them with our existing arithmetic instructions. Instead, we’ll
use a set of specialized instructions called the Streaming SIMD Extension (SSE) instructions. This instruction set
includes operations on both floating-point values and integers. It gets its name because it includes single-
instruction, multiple data (SIMD) instructions, which perform the same operation on a vector of several values
simultaneously (or two vectors of values, in the case of binary operations). For example, a SIMD addition
instruction whose operands were the two-element vectors [1.0, 2.0] and [4.0, 6.0] would add their

corresponding elements together to produce the vector [5.0, 8.0].

The term SSE is a bit misleading because only some SSE instructions perform SIMD operations on vectors. Others
operate on single values. When we talk about SSE instructions, we refer to vectors as packed operands and single
values as scalar operands. SSE instructions that use these different types of operands are called packed and scalar
instructions, respectively. Our implementation will primarily use scalar instructions, although we will need one
packed instruction.

The SSE instructions were first introduced as an extension to the x86 instruction set; they weren’t available on
every x86 processor. Over time, new groups of SSE instructions were added, creatively named SSE2, SSE3, and
SSE4. The SSE and SSE2 instructions were eventually incorporated into the core x64 instruction set, so they’re
available on every x64 processor. The first generation of floating-point SSE instructions support only single-
precision operands, which correspond to the float type in C. SSE2 added support for double-precision operands.

Since we’re working with double-precision operands, we’ll use only SSE2 instructions in this chapter.

NOTE

The x64 and x86 instruction sets include an older set of floating-point instructions that were first introduced with
the Intel 8087 floating-point unit (FPU), a separate processor that handled floating-point math. These are called
x87 or FPU instructions (sometimes simply referred to as floating-point instructions). Be aware that some

resources on floating-point assembly—particularly older ones—discuss only x87 instructions and don’t mention
SSE.

Just like the general-purpose instructions we’re already familiar with, SSE instructions take suffixes that describe
their operands. Instructions that operate on scalar double-precision values use the sd suffix. Instructions that take

packed double-precision values use the pd suffix. Scalar and packed single-precision instructions use the ss and

ps suffixes, respectively. The next few sections introduce the SSE instructions we’ll need in this chapter.

Working with SSE Instructions

There are two major differences between SSE instructions and the assembly instructions you learned about in
earlier chapters. The first difference is that SSE instructions use a separate set of registers, called the XMM
registers. There are 16 XMM registers: XMM0, XMM1, and so on, up to XMM15. Each XMM register is 128 bits
wide, but we’ll use only their lower 64 bits. From now on, I’ll refer to all the non-XMM registers we know and love
—like RAX, RSP, and so on—as general-purpose registers. SSE instructions can’t use general-purpose registers,
and non-SSE instructions can’t use XMM registers. Both SSE and non-SSE instructions can refer to values in
memory.

The second difference is that SSE instructions can’t use immediate operands. If we need to use a constant in an
SSE instruction, we’ll define that constant in read-only memory. Then, the constant can be accessed with RIP-
relative addressing, just like a static variable. Listing 13-14, which computes 1.0 + 1.0 in assembly, illustrates

how to use XMM registers and floating-point constants.

 .section .rodata
 .align 8
.L_one:
 .double 1.0
 .text
one_plus_one:
 movsd .L_one(%rip), %xmm0
 addsd .L_one(%rip), %xmm0
 --snip--

Listing 13-14: Computing 1.0 + 1.0 in assembly

At the start of the listing, we define the constant 1.0. We can define and initialize this constant in almost exactly

the same way as a static variable. The key difference is that we don’t store this value in the data or BSS section;
instead, we use the .section .rodata directive to put it in the read-only data section. As the name suggests,

the program can read data from this section at runtime, but it can’t write to it.

The .section directive can be used to write to any section. We use it here because we don’t have a dedicated

directive to write to the read-only data section the way we have dedicated .text, .bss, and .data directives. In

the object file format used on macOS, there are several read-only data sections; we’ll use the .literal8 directive

to write to the section that holds 8-byte constants.

We use a new directive, .double, to initialize the memory address labeled .L_one to the floating-point value 1.0.

The .L prefix on .L_one makes it a local label. As you learned back in Chapter 4, local labels are omitted from the

symbol table in the object file. Compilers typically use local labels for floating-point constants.

Now that we’ve defined the data we need, let’s look at the start of the assembly function one_plus_one. The first

instruction, movsd .L_one(%rip), %xmm0, copies the constant 1.0 from memory into the XMM0 register. The

movsd instruction, like mov, copies data from one location to another. We’ll use movsd to copy values between

XMM registers or between an XMM register and memory.

Finally, we use the addsd instruction to perform floating-point addition. This instruction adds the constant at

.L_one to the value in XMM0 and stores the result in XMM0. The source of addsd can be an XMM register or a

memory address, and the destination must be an XMM register.

Now that you have a high-level understanding of how to use SSE instructions, let’s dig into some specifics. First,
we’ll explore how the System V calling convention handles floating-point function arguments and return values.
Then, we’ll cover how individual floating-point operations, like arithmetic, comparisons, and type conversions, are
implemented in assembly. At that point, you’ll finally be ready to add floating-point support to the backend of your
compiler.

Using Floating-Point Values in the System V Calling Convention

In Chapter 9, you learned that a function’s first six arguments are passed in general-purpose registers and its
return value is passed in the EAX register (or RAX, depending on its size). The System V calling convention
handles floating-point values a bit differently: they’re passed and returned in XMM registers instead of general-
purpose registers.

A function’s first eight floating-point arguments are passed in registers XMM0 through XMM7. Any remaining
floating-point arguments are pushed onto the stack in reverse order, just like integer arguments are. Floating-point
return values are passed in XMM0 instead of RAX. Consider the function in Listing 13-15, which takes two double

arguments, adds them together, and returns the result.

double add_double(double a, double b) {
 return a + b;
}

Listing 13-15: Adding two double arguments

We could compile this function to the assembly in Listing 13-16.

 .text
 .globl add_double
add_double:
 addsd %xmm1, %xmm0
 ret

Listing 13-16: add_double in assembly

According to the System V calling convention, arguments a and b will be passed in registers XMM0 and XMM1,

respectively. The instruction addsd %xmm1, %xmm0 will therefore add b to a, storing the result in XMM0. Since

double values are returned in XMM0, the function’s return value is already in the right place after that addsd

instruction. At that point, the function can return immediately. This code is more optimized than what your
compiler will produce—it doesn’t include the function prologue and epilogue, for example—but it illustrates how to
pass and return floating-point values in assembly.

When a function contains a mix of double and integer arguments, it can be tricky to push the right arguments

onto the stack in the right order. First, we need to assign parameters to registers, working from the start of the
parameter list. Then, we push any remaining unassigned parameters of any type onto the stack, starting from the
back of the parameter list. Let’s work through a few examples, starting with Listing 13-17.

long pass_parameters_1(int i1, double d1, int i2, unsigned long i3,
 double d2, double d3, long i4, int i5);

Listing 13-17: A function declaration with integer and double parameters

This example is simple because we can pass every parameter in a register. Figure 13-2 illustrates the state of each
register just before invoking pass_parameters_1 with a call instruction.

Figure 13-2: Passing parameters from Listing 13-17 Description

Listing 13-18 shows a slightly more complicated example, where some integer parameters are passed on the
stack.

double pass_parameters_2(double d1, long i1, long i2, double d2, int i3,
 long i4, long i5, double d3, long i6, long i7,

 int i8, double d4);

Listing 13-18: A function declaration with even more parameters

We’ll pass every double argument to this function in a register, but the last two integer arguments, i7 and i8,

will be passed on the stack. Figure 13-3 illustrates where each parameter will wind up.

Figure 13-3: Passing parameters from Listing 13-18 Description

After we’ve assigned parameters to all the available registers, only i7 and i8 are left. Because we push stack

arguments in reverse order, we push i8 first, then i7, which puts i7 at the top of the stack.

Finally, let’s consider the function declared in Listing 13-19. When we call this function, we’ll need to pass both
double and integer parameters on the stack.

int pass_parameters_3(double d1, double d2, int i1, double d3, double d4,
 double d5, double d6, unsigned int i2, long i3,
 double d7, double d8, unsigned long i4, double d9,
 int i5, double d10, int i6, int i7, double d11,
 int i8, int i9);

Listing 13-19: A function declaration with way too many parameters

We’ll pass the first six integer parameters, i1 through i6, and the first eight double parameters, d1 through d8,

in registers. Listing 13-20 reproduces Listing 13-19, with parameters that will be passed on the stack bolded.

int pass_parameters_3(double d1, double d2, int i1, double d3, double d4,
 double d5, double d6, unsigned int i2, long i3,
 double d7, double d8, unsigned long i4, double d9,
 int i5, double d10, int i6, int i7, double d11,
 int i8, int i9);

Listing 13-20: The declaration of pass_parameters_3, with parameters passed on the stack bolded

Going in reverse order, we’ll push i9, then i8, d11, i7, d10, and d9. Figure 13-4 illustrates where we’ll put each

parameter.

Figure 13-4: Passing parameters from Listing 13-19 Description

Now that we understand how our calling convention handles floating-point values, let’s look at basic arithmetic
and comparisons.

Doing Arithmetic with SSE Instructions

We need to support five arithmetic operations on floating-point numbers: addition, subtraction, multiplication,
division, and negation. We’ve already seen an example of addition with the addsd instruction. There are

equivalent SSE instructions for the other binary operations: subsd for subtraction, mulsd for multiplication, and

divsd for division. All four of these SSE instructions follow the same pattern as the integer add, sub, and imul

instructions: take a source and destination operand, use them in a binary operation, and store the result in the
destination. These four floating-point instructions all require an XMM register or memory address as a source and
an XMM register as a destination. Floating-point division follows the same pattern as the other arithmetic
instructions; it doesn’t require special handling like integer division does.

There’s no floating-point negation instruction. To negate a floating-point value, we’ll XOR it with -0.0, which has

its sign bit set but is otherwise all zeros. This has the effect of flipping the value’s sign bit, which negates it. This
operation correctly negates normal numbers, subnormal numbers, positive and negative zero, and positive and
negative infinity.

The only complication is that there’s no xorsd instruction to XOR two doubles. Instead, we’ll use the xorpd

instruction, which XORs two packed vectors of two doubles each. Each operand to xorpd is 16 bytes wide; the

lower 8 bytes hold the first element of the vector and the upper 8 bytes hold the second. We’ll use the lower 8
bytes of each operand and ignore the upper bytes. Like addsd and the other arithmetic floating-point instructions,

xorpd takes an XMM register or memory address as a source operand and an XMM register as a destination.

Unlike those other instructions, xorpd only accepts memory addresses that are 16-byte aligned; using a

misaligned source operand causes a runtime exception.

Suppose we want to negate the double at -8(%rbp), then store the result in -16(%rbp). First, we define the

constant -0.0:

 .section .rodata
 .align 16
.L_negative.zero:
 .double -0.0

We use the .align 16 directive to ensure that this constant is 16-byte aligned. Next, we XOR it with our source

value:

 movsd -8(%rbp), %xmm0
 xorpd .L_negative.zero(%rip), %xmm0
 movsd %xmm0, -16(%rbp)

The first movsd instruction moves the source value into the lower 8 bytes of XMM0, zeroing out the upper 8 bytes.

The xorpd instruction XORs the lower 8 bytes of XMM0 with the 8-byte value at .L_negative.zero, which is

-0.0. It simultaneously XORs the upper 8 bytes of XMM0 with 8 bytes of whatever happens to immediately follow

-0.0 in memory. After this instruction, the lower bytes of XMM0 hold our negated value, and the upper 8 bytes

hold junk. The final movsd instruction copies the lower bytes of XMM0 to their final destination at -16(%rbp).

We’ll also use xorpd to zero out registers. Because the result of XORing any number with itself is 0, an instruction

like xorpd %xmm0, %xmm0 is the easiest way to zero out a floating-point register.

NOTE

The XOR trick works for general-purpose registers too; for example, xorq %rax, %rax will zero out RAX. In fact,
most compilers zero out both floating-point and general-purpose registers this way because it’s slightly faster than
using a mov instruction. Since we’re prioritizing clarity and simplicity over performance, we use mov instead of xor
to zero out general-purpose registers. But for XMM registers, zeroing with xor is the simpler option.

Comparing Floating-Point Numbers

We’ll compare floating-point values using the comisd instruction, which works similarly to cmp. Executing comisd

b, a sets ZF to 1 if the values are equal and 0 otherwise. It sets CF to 1 if a is less than b and 0 otherwise. These

are the same flags that characterize the result of an unsigned comparison. Unlike cmp, the comisd instruction

always sets SF and OF to 0. We’ll therefore use the same condition codes for floating-point comparisons that we
use for unsigned comparisons: A, AE, B, and BE.

The comisd instruction handles subnormal numbers, infinity, and negative zero correctly without any special effort

on our part. It treats 0.0 and -0.0 as equal, like the IEEE 754 standard requires. Handling NaN, which is an extra

credit feature in this chapter, does require special effort. When either operand is NaN, comisd reports an

unordered result, which we can’t detect with the condition codes we’ve learned about so far. For more details, see
“Extra Credit: NaN” on page 342.

Converting Between Floating-Point and Integer Types

In Listing 13-13, we defined TACKY instructions for four different type conversions: IntToDouble, DoubleToInt,

UIntToDouble, and DoubleToUInt. The SSE instruction set includes conversions to and from signed integer

types, so implementing IntToDouble and DoubleToInt is easy. It doesn’t include conversions to and from

unsigned integer types, so implementing UIntToDouble and DoubleToUInt takes a little ingenuity. There’s more

than one way to implement these trickier conversions; we’ll implement them roughly the same way that GCC does.

Let’s walk through these four conversions one at a time.

Converting a double to a Signed Integer

The cvttsd2si instruction converts a double to a signed integer. It truncates its source operand toward zero,

which is what the C standard requires for conversions from double to integer types. This instruction takes a suffix

that indicates the size of the result: cvttsd2sil converts the source value to a 32-bit integer, and cvttsd2siq

converts it to a 64-bit integer.

Since double can represent a much wider range of values than either int or long, the source of cvttsd2si

might be outside the range of the destination type. In that case, the instruction results in the special indefinite
integer value, which is the minimum integer the destination type supports. It also sets a status flag indicating that
the operation was invalid. Converting a double to an integer type is undefined behavior when it’s outside the

range of that type, so we’re free to handle this case however we want. We’ll just use the indefinite integer as the
result of the conversion and ignore the status flag.

A more user-friendly compiler might check the status flag and raise a runtime error when a conversion is out of
range, instead of silently returning a bogus result. It might do the same for the conversions from double to the

unsigned integer types, which we’ll consider next. Our approach makes it easy for C programmers to shoot
themselves in the foot, but at least we’re in good company: by default, GCC and Clang handle out-of-range
conversions the same way we do.

Converting a double to an Unsigned Integer

It’s not always possible to convert a double to an unsigned integer with the cvttsd2si instruction. We’ll run into

trouble when the double is in the range of an unsigned integer type but outside the range of the corresponding

signed type. Consider the following C cast expression:

(unsigned int) 4294967290.0

This should evaluate to 4294967290, which is a perfectly valid unsigned int. But if we try to convert

4294967290.0 with the cvttsd2sil instruction, it will produce the indefinite integer instead of the right answer,

because that value is outside the range of signed int. There’s no SSE instruction to convert a double to an

unsigned integer, either. We’ll need to be a bit clever to work around these limitations.

NOTE

A newer instruction set extension called AVX does include conversions from double to unsigned integer types, but
not all x64 processors support this extension.

To convert a double to an unsigned int, we’ll first convert it to a signed long and then truncate the result.

For example, to convert a double in XMM0 to an unsigned int and then store it on the stack, we can use the

assembly in Listing 13-21.

cvttsd2siq %xmm0, %rax
movl %eax, -4(%rbp)

Listing 13-21: Converting a double to an unsigned int in assembly

Any value in the range of unsigned int is also in the range of signed long, so cvttsd2siq will handle it

correctly. If the value is outside the range of unsigned int, the behavior is undefined, so we don’t care what the

result will be.

Converting from double to unsigned long is trickier. First, we’ll check whether the double we want to convert

is in the range of signed long. If it is, we can convert it with the cvttsd2siq instruction. If it’s not, we’ll

subtract the value of LONG_MAX + 1 from our double to get a result in the range of signed long. We’ll convert

that result to an integer with the cvttsd2siq instruction, then add LONG_MAX + 1 again after the conversion.

Listing 13-22 demonstrates how we might convert a double stored in XMM0 to an unsigned long in RAX.

 .section .rodata
 .align 8
.L_upper_bound:
 ❶ .double 9223372036854775808.0
 .text
 --snip--
 ❷ comisd .L_upper_bound(%rip), %xmm0
 jae .L_out_of_range
 ❸ cvttsd2siq %xmm0, %rax
 jmp .L_end
.L_out_of_range:
 movsd %xmm0, %xmm1
 ❹ subsd .L_upper_bound(%rip), %xmm1
 cvttsd2siq %xmm1, %rax
 movq $9223372036854775808, %rdx
 addq %rdx, %rax
.L_end:

Listing 13-22: Converting a double to an unsigned long in assembly

We define a constant double with a value of LONG_MAX + 1, or 2 ❶. To perform the conversion, we first check

whether the value in XMM0 is below this constant ❷. If it is, we can convert it to an integer with a cvttsd2siq

instruction ❸, then jump over the instructions for the other case.

If XMM0 is greater than the .L_upper_bound constant, it’s too large for cvttsd2siq to convert. To handle this

case, we jump to the .L_out_of_range label. We first copy the source value into XMM1 to avoid overwriting the

original value, then subtract .L_upper_bound from it ❹. If the original value was within the range of unsigned

long, the new value will be within the range of long. Therefore, we can convert XMM1 to a signed long with

the cvttsd2siq instruction. (If the original value wasn’t within the range of unsigned long, the behavior is

undefined according to the C standard and cvttsd2siq will result in the indefinite integer.) At this point, the

value in RAX is exactly 2 (or 9,223,372,036,854,775,808) less than the correct answer, so we add
9223372036854775808 to get the final result.

Listing 13-22 includes a decimal value, .L_upper_bound, which the assembler will convert to a double-precision

floating-point number. It also includes floating-point subtraction. We know that both of these operations can
potentially introduce rounding error. Could this rounding error lead to an incorrect result?

63

63

Luckily for us, it won’t. We can prove that Listing 13-22 won’t require any rounding at all. First of all,
9223372036854775808.0 can be represented exactly as a double, where the significand is 1 and the exponent

is 63. (That’s why we use this constant instead of LONG_MAX, which double cannot represent exactly.) A double

can also represent the exact result of subsd .L_upper_bound(%rip), %xmm0 in every case we care about.

Specifically, we care about the cases where the source value is greater than or equal to
9223372036854775808.0, which is 2 , but not greater than ULONG_MAX, which is 2 – 1. That means we can

write this value as 1.x × 2 , for some sequence of bits x. Because a double has 53 bits of precision, x can’t be

more than 52 bits long. When we subtract 1 × 2 from the source value, the result will be exactly x × 2 , which
requires at most 52 bits of precision to represent exactly. (This is a special case of the Sterbenz lemma, in case
you want to look it up.)

Therefore, this subtraction will give us an exact result, and adding 9223372036854775808 to that result after

converting it to an integer will give us an exact final answer.

Converting a Signed Integer to a double

The cvtsi2sd instruction converts a signed integer to a double. You write it with an l or q suffix, depending on

whether the source operand is a 32-bit or 64-bit integer. If the result can’t be represented exactly as a double, it

will be rounded according to the CPU’s current rounding mode, which we can assume is round-to-nearest.

Converting an Unsigned Integer to a double

The cvtsi2sd instruction interprets its source operand as a two’s complement value, meaning any value with its

upper bit set gets converted to a negative double. Unfortunately, there’s no unsigned equivalent to cvtsi2sd

that we can use instead. We’re back in a similar situation to the previous section on unsigned integers, so we’ll
rely on similar techniques.

To convert an unsigned int to a double, we can zero extend it to a long and then convert it to a double with

cvtsi2sdq. Listing 13-23 illustrates how we can use this approach to convert the unsigned integer 4294967290

to a double.

movl $4294967290, %eax
cvtsi2sdq %rax, %xmm0

Listing 13-23: Converting an unsigned int to a double in assembly

Recall that a movl instruction moves a value into a register’s lower 32 bits and zeroes out its upper 32 bits. The

first instruction in this listing effectively moves and zero extends 4294967290 into the RAX register. This zero-

extended number has the same value whether we interpret it as signed or unsigned, so the cvtsi2sdq instruction

will convert it correctly, storing the floating-point value 4294967290.0 in XMM0.

63 64

63

63 62

That leaves the conversion from unsigned long to double. To handle this case, we’ll first check whether the

value is in the range that signed long can represent. If it is, we can use cvtsi2sdq directly. Otherwise, we’ll

halve the source value to bring it into the range of signed long, convert it with cvtsi2sdq, and then double the

result of the conversion. A naive attempt to perform this conversion in assembly might look like Listing 13-24.

 ❶ cmpq $0, -8(%rbp)
 jl .L_out_of_range
 ❷ cvtsi2sdq -8(%rbp), %xmm0
 jmp .L_end
.L_out_of_range:
 movq -8(%rbp), %rax
 ❸ shrq %rax
 cvtsi2sdq %rax, %xmm0
 addsd %xmm0, %xmm0
.L_end:

Listing 13-24: Incorrectly converting an unsigned long to a double in assembly

We first check whether the source value, at -8(%rbp), is out of bounds by performing a signed comparison to

zero ❶. If the signed value is greater than or equal to zero, we can use cvtsi2sdq directly ❷ and then jump over

the instructions for the out-of-range case.

Otherwise, we jump to the .L_out_of_range label. We copy the source value into RAX, then halve it by shifting

it 1 bit to the right with the unary shrq instruction ❸. (The mnemonic shr is short for shift right.) Next, we use

cvtsi2sdq to convert the halved value to the nearest representable double. Finally, we add the result to itself,

producing the double representation of the original value (or at least the closest value that double can represent

exactly).

But there’s a problem with this code: the result won’t always be correctly rounded. When we halve an integer with
shrq, we round down; halving 9, for example, gives us 4 as the result. If this rounded-down integer happens to

be at the exact midpoint between two consecutive values that double can represent, cvtsi2sdq might round

down again, even though the original integer was closer to the double above it than the one below it. We’ve hit a

double rounding error!

Let’s work through a concrete example. (To make this example more readable, I’ll bold the digits that differ
between large numbers that are near each other.) We’ll convert 9223372036854776833 to a double according to

Listing 13-24. The closest double values to our source operand are 9223372036854775808.0, which is 1,025

less than the source value, and 9223372036854777856.0, which is 1,023 more than it. We should convert the

source value to the higher double, since it’s closer.

Halving the source value with shrq gives us 4611686018427388416. This integer is exactly at the midpoint

between two adjacent double values: 4611686018427387904.0 and 4611686018427388928.0.

Written out as a binary fraction, the lower value is

1.00 * 2^62

and the higher one is:

1.0001 * 2^62

This notation shows us the significands of both values, written out with the full available precision. Since we round
ties to even, we pick the value with a 0 in the least significant bit of the significand. In this particular example,
that means rounding down, so cvtsi2sd produces the lower double, 4611686018427387904.0. We then add

that to itself, which gives us a final answer of 9223372036854775808.0. Instead of getting the double just

above our initial value, which was the correctly rounded result, we got the double just below it. Figure 13-5

illustrates how double rounding here leads to an incorrect result. (To reduce the size of the figure, we only show
the first and last few digits of each number.)

Figure 13-5: A double rounding error when converting from an unsigned long to a double Description

The dotted arrow shows the correct rounding of 9223372036854776833 / 2 to the nearest double. The two

solid lines demonstrate the actual result of double rounding.

To avoid this error, we need to make sure that when we halve the initial value, we don’t round the result to a
midpoint between two values that double can represent. We’ll do this with a technique called rounding to odd.

When we halve the source value, we won’t truncate it toward zero. Instead, we’ll round to the nearest odd
number. Using this rounding rule, we’ll round 9 / 2 up to 5 instead of down to 4. Similarly, we’ll round 7 / 2

down to 3, and we’ll round 9223372036854776833 / 2 up to 4611686018427388417. If the result of dividing by

2 is already an integer, we don’t need to round; for example, 16 / 2 will still be 8. (Only the result of shrq needs

to be rounded to odd; cvtsi2sdq will still round to nearest.)

Rounding to odd works in this situation because the midpoints we want to avoid are always even integers. The
gaps between binary floating-point numbers are always powers of 2, and they get bigger at larger magnitudes.
Remember that we halve an integer for this conversion only if it’s too big to fit in a long. The halved value will

therefore be between (LONG_MAX + 1) / 2 and ULONG_MAX / 2. In that range, the gap between representable

double values is 1,024, so every midpoint is a multiple of 512, which is even.

Figure 13-6 illustrates a few different cases of rounding to odd in action.

Figure 13-6: Using rounding to odd to avoid a double rounding error Description

In the first case, rounding to odd prevents us from rounding to a midpoint and then down to an incorrect result.
In the remaining cases, it doesn’t change the final result; whether we round these cases to odd or toward zero on
the first rounding, we’ll get the same answer as if we’d rounded only once using round-to-nearest, ties-to-even
mode. Sometimes rounding to odd is necessary to get the right answer, and sometimes it has no impact, but it
never gives us the wrong answer.

Now that we understand why rounding to odd works, let’s figure out how to implement it in assembly. Listing 13-
25 demonstrates how to halve the value stored in RAX and round the result to odd.

movq %rax, %rdx
shrq %rdx
andq $1, %rax
orq %rax, %rdx

Listing 13-25: Rounding to odd after halving an integer with shrq

This listing includes two new instructions: and and or. If you did the extra credit section in Chapter 3, you’re

already familiar with them. These instructions perform bitwise AND and OR operations, respectively; they’re used
exactly like our other instructions that perform binary operations on integers, including add and sub.

Let’s figure out why this code works. First, we copy the value we want to halve into RDX and halve it with shrq.

Next, we take the bitwise AND of 1 and the original value in RAX; this produces 1 if the original value was odd and

0 if it was even.

Now we need to decide what to do about the halved value in RDX. At this point, one of three things is true:

1. The original value was even, so RDX contains the exact result of halving that value. Therefore, we don’t need
to round it.

2. The original value was odd, and the result of shrq is also odd. For example, if the original value was 3,

halving it with shrq will produce 1. In this case, the result is already rounded to odd and doesn’t need to

change.

3. The original value was odd, and the result of shrq is even. For example, if the original value was 5, halving it

with shrq will produce 2. In this case, the result is not rounded to odd, and we need to increment it.

In each of these three cases, the final instruction, orq %rax, %rdx, has the desired effect. In the first case, it

does nothing because RAX is 0, thanks to the prior and instruction. In the second case, it does nothing because

the least significant bit of RDX is already 1. In the third case, it flips the least significant bit of RDX from 0 to 1 and
makes the value odd.

Putting it all together, Listing 13-26 shows the complete assembly to convert an unsigned long to a correctly

rounded double.

 cmpq $0, -8(%rbp)
 jl .L_out_of_range
 cvtsi2sdq -8(%rbp), %xmm0
 jmp .L_end
.L_out_of_range:
 movq -8(%rbp), %rax
 movq %rax, %rdx
 shrq %rdx
 andq $1, %rax
 orq %rax, %rdx
 cvtsi2sdq %rdx, %xmm0
 addsd %xmm0, %xmm0
.L_end:

Listing 13-26: Correctly converting an unsigned long to a double in assembly

This code is identical to the original conversion in Listing 13-24, except for the bolded changes: we round the
result of shrq to odd and use the rounded value in RDX as the source of the cvtsi2sdq instruction.

We’ve now discussed how to implement every floating-point operation we need; we’re ready to update the
assembly generation pass!

Assembly Generation

As usual, our first task is to update the assembly AST. We’ll add a new Double assembly type:

assembly_type = Longword | Quadword | Double

We’ll also add a new top-level construct to represent floating-point constants:

StaticConstant(identifier name, int alignment, static_init init)

This construct is almost identical to StaticVariable. The one difference is that we can omit the global

attribute, since we’ll never define global constants. For now, we’ll define only floating-point constants; in later
chapters, we’ll use this construct to define constants of other types as well.

Next, we’ll add two new instructions, Cvtsi2sd and Cvttsd2si:

instruction = --snip--
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)

Each of these takes an assembly_type parameter to specify whether it operates on Longword or Quadword

integers.

We’ll reuse the existing Cmp and Binary instructions to represent floating-point comparisons with comisd and

arithmetic with addsd, subsd, and so on. We’ll add a new DivDouble binary operator to represent floating-point

division. (Recall that the assembly AST doesn’t include a binary operator for integer division because div and

idiv don’t follow the same pattern as the other arithmetic instructions.) We’ll also add the Xor binary operator we

need to negate floating-point values, as well as the bitwise And and Or operators we need to convert an

unsigned long to a double:

binary_operator = --snip-- | DivDouble | And | Or | Xor

We need the unary Shr operator for that type conversion too:

unary_operator = --snip-- | Shr

Finally, we’ll add the XMM registers. We’ll need XMM0 through XMM7 for parameter passing, plus a couple more
scratch registers for instruction rewrites. You can use any registers apart from XMM0 through XMM7 for scratch;
I’ll use XMM14 and XMM15. You can either add all 16 registers to the AST or just add the ones we need right now:

reg = --snip-- | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7 | XMM14 | XMM15

Listing 13-27 gives the entire assembly AST, with changes bolded.

program = Program(top_level*)
assembly_type = Longword | Quadword | Double

top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init init)
 | StaticConstant(identifier name, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(operand src, operand dst)
 | MovZeroExtend(operand src, operand dst)
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)
 | Ret

unary_operator = Neg | Not | Shr
binary_operator = Add | Sub | Mult | DivDouble | And | Or | Xor
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Stack(int) | Data(identifier)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP
 | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7 | XMM14 | XMM15

Listing 13-27: The assembly AST with floating-point constants, instructions, and registers

We already understand how to perform floating-point operations in assembly, but there are a few implementation
details we still need to discuss. We’ll deal with constants first.

Floating-Point Constants

In previous chapters, we converted integer constants in TACKY to Imm operands in assembly. This approach won’t

work for floating-point constants. Instead, when we encounter a double constant in TACKY, we’ll generate a new

top-level StaticConstant construct with a unique identifier. To use that constant in an instruction, we refer to it

with a Data operand, just like a static variable. For example, suppose we need to convert the following TACKY

instruction to assembly:

Copy(Constant(ConstDouble(1.0)), Var("x"))

First, we’ll generate a unique label, const_label, that won’t conflict with any of the names in the symbol table or

any of the internal labels we use as jump targets. Then, we’ll define a new top-level constant like this:

StaticConstant(const_label, 8, DoubleInit(1.0))

This top-level constant must be 8-byte aligned to conform to the System V ABI. After defining this constant, we’ll
emit the following assembly instruction:

Mov(Double, Data(const_label), Pseudo("x"))

Keep track of every StaticConstant you define throughout the entire assembly generation pass. Then, at the

end of this pass, add these constants to your list of top-level constructs.

Aside from constant handling, this example demonstrates a few things about assembly generation that won’t
change. First, we’ll still convert the TACKY Copy instruction to a Mov instruction in assembly, whether we’re

copying an integer or a double. Second, TACKY variables are still converted to Pseudo operands, regardless of

their type.

There are a couple of optional tweaks you can make here to bring your top-level constants more in line with what
a production compiler would generate:

Avoiding duplicate constants

Don’t generate multiple equivalent StaticConstant constructs. Instead, whenever you see a double constant in

TACKY, check whether you’ve already generated a StaticConstant with the same value and alignment. If you

have, refer to that constant in your assembly code instead of generating a new one. Just keep in mind that 0.0

and -0.0 are distinct constants that require separate StaticConstant constructs, even though they compare

equal in most languages.

Using local labels for top-level constants

Compilers typically use local labels starting with L (on macOS) or .L (on Linux) for floating-point constants, so

they don’t show up as symbols in the final executable. (Recall that we already use local labels for jump targets.) If
you want to follow this naming convention, don’t add the local label prefix just yet; wait until the code emission
pass. For now, add top-level constants to the backend symbol table and use a new attribute to distinguish them
from variables. Listing 13-28 shows how to update the original backend symbol table entry from Listing 11-26 to
include this attribute.

asm_symtab_entry = ObjEntry(assembly_type, bool is_static, bool is_constant)

 | FunEntry(bool defined)

Listing 13-28: Definition of an entry in the backend symbol table, including the is_constant attribute

During code emission, we’ll use this new attribute to figure out which operands should get a local label prefix. The
is_static attribute should also be true for constants, since we store them in the read-only data section and

access them with RIP-relative addressing. We’re waiting until code emission to add local labels instead of
generating them right off the bat because it will be easier to extend this approach when we add more kinds of
top-level constants in Chapter 16.

Feel free to make both of these tweaks, skip both of them, or make one but not the other.

Unary Instructions, Binary Instructions, and Conditional Jumps

We’ll convert floating-point addition, subtraction, and multiplication instructions from TACKY to assembly just like
their integer equivalents. Floating-point division will follow the same pattern as these other instructions, even
though integer division doesn’t. Consider the following TACKY instruction:

Binary(Divide, Var("src1"), Var("src2"), Var("dst"))

If the type of its operands is double, we’ll generate the following assembly:

Mov(Double, Pseudo("src1"), Pseudo("dst"))
Binary(DivDouble, Double, Pseudo("src2"), Pseudo("dst"))

We’ll also translate floating-point negation differently from its integer counterpart. To negate a double, we’ll XOR

it with -0.0. For example, to translate the TACKY instruction

Unary(Negate, Var("src"), Var("dst"))

we’ll start by defining a new 16-byte-aligned constant:

StaticConstant(const, 16, DoubleInit(-0.0))

Then we’ll generate the following assembly instructions:

Mov(Double, Pseudo("src"), Pseudo("dst"))

Binary(Xor, Double, Data(const), Pseudo("dst"))

We need to align -0.0 to 16 bytes so that we can use it in the xorpd instruction. This is the only time we align a

double to 16 bytes instead of 8. We don’t need to worry about the alignment of dst; xorpd’s destination must be

a register, and we’ll take care of that requirement during instruction fix-up.

Next, let’s talk about how to handle our relational binary operators: Equal, LessThan, and so on. Because

comisd sets the CF and ZF flags, we’ll handle floating-point comparisons just like unsigned integer comparisons.

Here’s an example:

Binary(LessThan, Var("x"), Var("y"), Var("dst"))

If x and y are floating-point values, we’ll produce the following assembly:

Cmp(Double, Pseudo("y"), Pseudo("x"))
Mov(Longword, Imm(0), Pseudo("dst"))
SetCC(B, Pseudo("dst"))

We’ll take a similar approach to the three TACKY instructions that compare a value to zero: JumpIfZero,

JumpIfNotZero, and the unary Not operation. We’ll convert

JumpIfZero(Var("x"), "label")

to the following assembly:

Binary(Xor, Double, Reg(XMM0), Reg(XMM0))
Cmp(Double, Pseudo("x"), Reg(XMM0))
JmpCC(E, "label")

Note that we need to zero out an XMM register with xorpd in order to perform the comparison. You don’t need to

use XMM0 here, but you shouldn’t use the scratch registers you’ve chosen for the rewrite pass. It’s easier to avoid
conflicting uses of registers if you strictly separate which registers you introduce in each backend pass.

Type Conversions

Since we’ve already covered the assembly for each of our type conversions, I won’t present it again here, but I
will flag a couple of details we haven’t discussed yet. First, you’ll need to choose which hard registers to use in
these conversions. All four conversions between double and the unsigned integer types use XMM registers,

general-purpose registers, or both. For example, Listing 13-26 uses RAX and RDX to halve an integer and then

round to odd. You don’t need to stick with the same registers we used when we walked through these conversions
earlier; just avoid the callee-saved registers (RBX, R12, R13, R14, and R15) and the registers you use in the
rewrite pass (R10 and R11, plus your two scratch XMM registers; mine are XMM14 and XMM15).

Second, when you process a conversion from unsigned int to double, be sure to generate a MovZeroExtend

instruction to explicitly zero extend the source value, rather than a Mov instruction. This will become important

when we implement register allocation in Part III. We’ll use a technique called register coalescing to delete
redundant mov instructions as we allocate registers; using MovZeroExtend instead of Mov here signals that you’re

using this instruction to zero out bytes and not just to move values around, so it shouldn’t be deleted.

Concretely, if x is an unsigned int, you’ll translate the TACKY instruction

UIntToDouble(Var("x"), Var("y"))

into this assembly:

MovZeroExtend(Pseudo("x"), Reg(AX))
Cvtsi2sd(Quadword, Reg(AX), Pseudo("y"))

You can use a register other than RAX here, as long as it meets the requirements we just discussed.

Function Calls

The tricky part of handling floating-point values in function calls is figuring out where each argument is passed.
We’ll use this information in two places. First, we’ll need it to pass arguments correctly when we translate the
TACKY FunCall instruction. Second, we’ll use it to set up parameters at the beginning of each function body. We’ll

write a helper function, classify_parameters, to handle the bookkeeping we need in both of these places.

Given a list of TACKY values, this helper function will convert each one to an assembly operand and determine its
assembly type. It will also partition the list in three: one list of operands passed in general-purpose registers, one
list of operands passed in XMM registers, and one list of operands passed on the stack. Listing 13-29 gives the
pseudocode for classify_parameters.

classify_parameters(values):
 int_reg_args = []
 double_reg_args = []
 stack_args = []

 for v in values:
 operand = convert_val(v)
 t = assembly_type_of(v)
 ❶ typed_operand = (t, operand)
 if t == Double:

 ❷ if length(double_reg_args) < 8:
 ❸ double_reg_args.append(operand)
 else:
 stack_args.append(typed_operand)
 else:
 if length(int_reg_args) < 6:
 ❹ int_reg_args.append(typed_operand)
 else:
 stack_args.append(typed_operand)

 return (int_reg_args, double_reg_args, stack_args)

Listing 13-29: Classifying function arguments or parameters

To process each parameter, we first convert it from a TACKY value to an assembly operand and convert its type to
the corresponding assembly type. (I won’t give you the pseudocode for assembly_type_of, which just finds the

type of a TACKY value and converts it to assembly.) We package these up into a pair, typed_operand ❶. The

elements of int_reg_args and stack_args will all be pairs in this form. The elements of double_reg_args will

be plain assembly operands; since they’re all doubles, it would be redundant to specify each one’s type explicitly.

Next, we figure out which list to add the operand to. We’ll see if we can pass it in an available register for its type.
For example, if its type is Double, we check whether double_reg_args already contains eight values ❷. If it

does, registers XMM0 through XMM7 are already taken. If it doesn’t, there’s at least one XMM register still
available.

If we can pass the operand in an XMM register, we’ll add operand to double_arg_regs ❸. If we can pass it in a

general-purpose register, we’ll add typed_operand to int_arg_regs ❹. If there are no registers of the correct

type available, we’ll add typed_operand to stack_args. Once we’ve processed every value, we return all three

lists.

As we build up these three lists, we preserve the order in which the values appear. In particular, we add values to
stack_args in the same order they appear in the original list of values, not in reverse. That means the first value

in stack_args will be pushed last and will appear at the top of the stack. From the callee’s perspective, the first

value will be stored at 16(%rbp), the second value at 24(%rbp), and so on.

Recall that at the start of a function body, we copy any parameters from their initial locations into pseudoregisters.
Listing 13-30 demonstrates how to use classify_parameters to perform this setup.

set_up_parameters(parameters):

 // classify them
 int_reg_params, double_reg_params, stack_params = classify_parameters(parameters)

 // copy parameters from general-purpose registers

 int_regs = [DI, SI, DX, CX, R8, R9]
 reg_index = 0
 for (param_type, param) in int_reg_params:
 r = int_regs[reg_index]
 emit(Mov(param_type, Reg(r), param))
 reg_index += 1

 // copy parameters from XMM registers
 double_regs = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]
 reg_index = 0
 for param in double_reg_params:
 r = double_regs[reg_index]
 emit(Mov(Double, Reg(r), param))
 reg_index += 1

 // copy parameters from the stack
 offset = 16
 for (param_type, param) in stack_params:
 emit(Mov(param_type, Stack(offset), param))
 offset += 8

Listing 13-30: Setting up parameters in function bodies

In this listing, set_up_parameters takes a list of a TACKY Vars representing a function’s parameter list. We

process this list with classify_parameters, then handle the three resulting lists of assembly operands. To

process parameters passed in general-purpose registers, we copy the value in EDI (or RDI, depending on the
type) to the pseudoregister for the first parameter, copy the value in ESI to the second parameter, and so on. We
handle parameters passed in XMM registers the same way. Finally, we handle parameters passed on the stack: we
copy the value at Stack(16) to the first pseudoregister in stack_params, then increase the stack offset by 8 for

each subsequent parameter until we’ve processed the whole list.

We’ll also use classify_parameters to implement the TACKY FunCall instruction. Let’s revisit the pseudocode

to convert FunCall to assembly, which we first introduced in Listing 9-31 and updated in Listing 11-25. Listing 13-

31 presents this pseudocode again, with the new logic to process floating-point arguments and return values
bolded. (I haven’t bolded minor changes like renaming arg_registers to int_registers.)

convert_function_call(FunCall(fun_name, args, dst)):
 int_registers = [DI, SI, DX, CX, R8, R9]
 double_registers = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]

 // classify arguments
 int_args, double_args, stack_args = classify_parameters(args)

 // adjust stack alignment
 if length(stack_args) is odd:
 stack_padding = 8

 else:
 stack_padding = 0

 if stack_padding != 0:
 emit(Binary(Sub, Quadword, Imm(stack_padding), Reg(SP)))

 // pass args in registers
 reg_index = 0
 for (assembly_type, assembly_arg) in int_args:
 r = int_registers[reg_index]
 emit(Mov(assembly_type, assembly_arg, Reg(r)))
 reg_index += 1

 reg_index = 0
 for assembly_arg in double_args:
 r = double_registers[reg_index]
 emit(Mov(Double, assembly_arg, Reg(r)))
 reg_index += 1

 // pass args on stack
 for (assembly_type, assembly_arg) in reverse(stack_args):
 if (assembly_arg is a Reg or Imm operand
 or assembly_type == Quadword
 or assembly_type == Double):
 emit(Push(assembly_arg))
 else:
 emit(Mov(assembly_type, assembly_arg, Reg(AX)))
 emit(Push(Reg(AX)))

 // emit call instruction
 emit(Call(fun_name))

 // adjust stack pointer
 bytes_to_remove = 8 * length(stack_args) + stack_padding
 if bytes_to_remove != 0:
 emit(Binary(Add, Quadword, Imm(bytes_to_remove), Reg(SP)))

 // retrieve return value
 assembly_dst = convert_val(dst)
 return_type = assembly_type_of(dst)
 if return_type == Double:
 emit(Mov(Double, Reg(XMM0), assembly_dst))
 else:
 emit(Mov(return_type, Reg(AX), assembly_dst))

Listing 13-31: Supporting double in function calls

Let’s walk through the changes in this listing. To start, we need to categorize our arguments with
classify_parameters. The arguments in int_args are passed in general-purpose registers the same way as

before (possibly with a few tweaks, not bolded here, to account for the fact that we’re iterating over typed
assembly operands rather than TACKY values). We add a new step to copy each argument in double_args into

the corresponding XMM register.

Next, we update how we pass arguments on the stack. We make two tiny changes from Listing 11-25, where we
last looked at this step. First, Pseudo operands of Double type, like operands of Quadword type, are pushed

directly onto the stack without copying them into a register first, since they’re the correct operand size for the
Push instruction. Second, in cases where we move an operand into the AX register before we push it onto the

stack, we no longer hardcode Longword as the type of the Mov instruction; instead, we use the operand type we

determined in classify_parameters. This future-proofs our code against later chapters, where we’ll add more

assembly types.

Finally, we update how we retrieve the function’s return value. If the return value is a double, we’ll copy it from

XMM0 to the destination. Otherwise, we’ll copy it from EAX (or RAX), as usual. We don’t need to change how we
adjust the stack alignment before a function call, issue the call instruction itself, or clean up arguments

afterward.

Return Instructions

Last but not least, we’ll change how we translate the TACKY Return instruction. For example, given the TACKY

instruction

Return(Var("x"))

we’ll look up the type of x in the backend symbol table. If it’s an integer, we can handle it as before. If it’s a

double, we’ll copy it into XMM0 and then return:

Mov(Double, Pseudo("x"), Reg(XMM0))
Ret

And with that, we’ve covered every update to the assembly genera- tion pass.

The Complete Conversion from TACKY to Assembly

Tables 13-2 through 13-7 summarize this chapter’s changes to the conversion from TACKY to assembly. As usual,
new constructs and changes to the conversions for existing constructs are bolded. The <R> and <X> placeholders

in Table 13-3 indicate arbitrary general-purpose and XMM registers, respectively.

Table 13-2: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(top_level_defs)

Program(top_level_defs + <all StaticConstant con
 floating-point constants>)

Function(name, global, params,

 instructions)

Function(name, global,

 [Mov(<first int param type>, Reg(DI), <
 Mov(<second int param type>, Reg(SI),
 <second int param>),
 <copy next four integer parameters fro

 Mov(Double, Reg(XMM0), <first double p

 Mov(Double, Reg(XMM1), <second double
 <copy next six double parameters from

 Mov(<first stack param type>, Stack(16

 <first stack param>),

 Mov(<second stack param type>, Stack(2

 <second stack param>),

 <copy remaining parameters from stack>

 instructions)

Table 13-3: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Integer

Mov(<val type>, val, Reg(AX))

Ret

double

Mov(Double, val, Reg(XMM0))

Ret

TACKY instruction Assembly instructions

Unary(Not, src, dst) Integer

Cmp(<src type>, Imm(0), src)

Mov(<dst type>, Imm(0), dst)

SetCC(E, dst)

double

Binary(Xor, Double, Reg(<X>), Reg(<X>))

Cmp(Double, src, Reg(<X>))

Mov(<dst type>, Imm(0), dst)

SetCC(E, dst)

Unary(Negate, src, dst)

(double negation)
Mov(Double, src, dst)

Binary(Xor, Double, Data(<negative-zero>), dst)

And add a top-level constant:
StaticConstant(<negative-zero>, 16,

 DoubleInit(-0.0))

Binary(Divide, src1,

src2, dst) (integer

division)

Signed

Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

Idiv(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

Unsigned

Mov(<src1 type>, src1, Reg(AX))

Mov(<src1 type>, Imm(0), Reg(DX))

Div(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

TACKY instruction Assembly instructions

JumpIfZero(condition,

target)

Integer

Cmp(<condition type>, Imm(0), condition)

JmpCC(E, target)

double

Binary(Xor, Double, Reg(<X>), Reg(<X>))

Cmp(Double, condition, Reg(<X>))

JmpCC(E, target)

JumpIfNotZero(condition,

target)

Integer

Cmp(<condition type>, Imm(0), condition)

JmpCC(NE, target)

double

Binary(Xor, Double, Reg(<X>), Reg(<X>))

Cmp(Double, condition, Reg(<X>))

JmpCC(NE, target)

FunCall(fun_name, args,

dst)
<fix stack alignment>
<move arguments to general-purpose registers>

<move arguments to XMM registers>

<push arguments onto the stack>
Call(fun_name)
<deallocate arguments/padding>

Mov(<dst type>, <dst register>, dst)

IntToDouble(src, dst)

Cvtsi2sd(<src type>, src, dst)

TACKY instruction Assembly instructions

DoubleToInt(src, dst)

Cvttsd2si(<dst type>, src, dst)

UIntToDouble(src, dst) unsigned

int
MovZeroExtend(src, Reg(<R>))

Cvtsi2sd(Quadword, Reg(<R>), dst)

unsigned

long
Cmp(Quadword, Imm(0), src)

JmpCC(L, <label1>)
Cvtsi2sd(Quadword, src, dst) Jmp(<label2>)

Label(<label1>)

Mov(Quadword, src, Reg(<R1>))

Mov(Quadword, Reg(<R1>), Reg(<R2>))

Unary(Shr, Quadword, Reg(<R2>))

Binary(And, Quadword, Imm(1), Reg(<R1>))

Binary(Or, Quadword, Reg(<R1>), Reg(<R2>))

Cvtsi2sd(Quadword, Reg(<R2>), dst)

Binary(Add, Double, dst, dst)

Label(<label2>)

TACKY instruction Assembly instructions

DoubleToUInt(src, dst) unsigned

int
Cvttsd2si(Quadword, src, Reg(<R>))

Mov(Longword, Reg(<R>), dst)

unsigned

long
Cmp(Double, Data(<upper-bound>), src)

JmpCC(AE, <label1>)
Cvttsd2si(Quadword, src, dst)

Jmp(<label2>)

Label(<label1>)

Mov(Double, src, Reg(<X>))

Binary(Sub, Double, Data(<upper-bound>),
 Reg(<X>))
Cvttsd2si(Quadword, Reg(<X>), dst)

Mov(Quadword, Imm(9223372036854775808), Reg(<R>)

Binary(Add, Quadword, Reg(<R>), dst)

Label(<label2>)

And add a top-level constant:
StaticConstant(<upper-bound>, 8,

 DoubleInit(9223372036854775808.0

Table 13-4: Converting TACKY Arithmetic Operators to Assembly

TACKY operator Assembly operator

Divide DivDouble

(double division)

Table 13-5: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

LessThan Signed L

TACKY comparison Assembly condition code

Unsigned or double B

LessOrEqual Signed LE

Unsigned or double BE

GreaterThan Signed G

Unsigned or double A

GreaterOrEqual Signed GE

Unsigned or double AE

Table 13-6: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(ConstDouble(double))

Data(<ident>)
And add top-level constant:
StaticConstant(<ident>, 8, DoubleInit(double))

Table 13-7: Converting Types to Assembly

Source type Assembly type Alignment

Double Double 8

As the row for the top-level Program construct in Table 13-2 indicates, you’ll need to add every StaticConstant

you define in this pass to the list of top-level definitions. From this point on, updating the rest of the backend is
relatively smooth sailing.

Pseudoregister Replacement

You should allocate 8 bytes on the stack for each double pseudoregister and make sure it’s 8-byte aligned. If the

backend symbol table indicates that a double has static storage duration, you should replace any references to it

with Data operands, like you do for other static variables. In short, this pass can treat Double and Quadword

pseudoregisters identically, since they have the same size and alignment.

As usual, you should also extend this pass to handle the new assembly instructions in this chapter.

Instruction Fix-Up

Next, we’ll rewrite invalid SSE instructions. We’ll also need to rewrite the new bitwise instructions that operate on
integers. Let’s handle the SSE instructions first. You should dedicate one XMM register to fixing instructions’ source
operands and one to fixing destinations. I’ll use XMM14 for the former and XMM15 for the latter.

The destination of cvttsd2si must be a register. For example, we’ll rewrite

Cvttsd2si(Quadword, Stack(-8), Stack(-16))

as:

Cvttsd2si(Quadword, Stack(-8), Reg(R11))
Mov(Quadword, Reg(R11), Stack(-16))

The cvtsi2sd instruction has two constraints: the source can’t be a constant, and the destination must be a

register. We’ll therefore rewrite

Cvtsi2sd(Longword, Imm(10), Stack(-8))

as:

Mov(Longword, Imm(10), Reg(R10))
Cvtsi2sd(Longword, Reg(R10), Reg(XMM15))
Mov(Double, Reg(XMM15), Stack(-8))

The comisd instruction has different constraints from cmp. Its second operand, in the “destination” position, must

be a register. So, we’ll rewrite

Cmp(Double, Stack(-8), Stack(-16))

as:

Mov(Double, Stack(-16), Reg(XMM15))
Cmp(Double, Stack(-8), Reg(XMM15))

The destination of an addsd, subsd, mulsd, divsd, or xorpd instruction must be a register as well, so we’ll

rewrite all of these instructions accordingly. The xorpd instruction also requires either a register or a 16-byte-

aligned memory address as its source operand, but we don’t need a rewrite rule for this since all the xorpd

instructions we generate already satisfy this requirement.

We’ll use the same rewrite rule for movsd that we introduced for the general-purpose mov instruction in Chapter 2,

because it’s subject to the same constraint: its operands can’t both be in memory. (The one difference, of course,
is that we’ll use an XMM register instead of R10 as the scratch register.)

That leaves the new bitwise instructions. We won’t need to rewrite shr. The and and or instructions are subject

to the same constraints as integer add and sub: the operands can’t both be memory addresses, and they can’t

take immediate source operands outside the range of int.

There’s one other constraint that we’ll ignore for now: the push instruction can’t push an XMM register. We’ll wait

until the next chapter to add the rewrite rule for invalid push instructions because it will use a new kind of

assembly operand that we haven’t added yet. We won’t actually need this rewrite rule until we implement register
allocation in Part III; until then, we’ll push only immediate values and memory operands (and the RBP register in
the function prologue).

TEST THE ASSEMBLY GENERATION STAGE

Your compiler should now generate complete, valid assembly programs for each of this chapter’s test cases. To
test it out, run:

$./test_compiler /path/to/your_compiler --chapter 13 --stage codegen

Code Emission

As always, the last step is printing out the newest additions to the assembly AST. The most fiddly bit of this pass is
emitting floating-point constants and static variables. Let’s walk through how to format floating-point numbers in

assembly, how to label floating-point constants, and how to store floating-point constants and variables in the
correct section.

Formatting Floating-Point Numbers

There are a few different ways to format floating-point numbers in assembly. One option is to print these numbers
as hexadecimal floating-point constants, where the significand is a hexadecimal number and the exponent is a
power of 2. This notation can represent a double exactly, without any rounding. The significand of a hexadecimal

floating-point constant has an 0x prefix, and the exponent has a p or P prefix. For example, 20.0 in hexadecimal

floating point is 0x2.8p+3. The hexadecimal number 0x2.8 is 2.5 in decimal, and 2.5 × 2 = 20. We can use this

notation in a .double directive, like so:

.L_twenty:
 .double 0x2.8p+3

When you emit a double in this notation, you’ll need up to 14 hexadecimal digits to represent it exactly.

Unfortunately, not every assembler understands this format. The LLVM assembler, which is the default assembler
on macOS, does; GAS, the GNU assembler, doesn’t.

If your assembler doesn’t support hexadecimal floating-point constants, you can emit a quadword with the same
binary representation as the required double. Printing out 20.0 with this approach results in:

.L_twenty:
 .quad 4626322717216342016

This isn’t the most readable assembly, but it works perfectly well as long as your implementation language
provides a way for you to get at the binary representation of a floating-point number. Your last option is to use
decimal floating-point constants, which we used in earlier assembly examples:

.L_twenty:
 .double 20.0

Decimal can be less compact than hexadecimal floating point. For example, consider 0x1.999999999999ap-4,

the closest double to the decimal number 0.1. The exact decimal representation of this value is:

1.000000000000000055511151231257827021181583404541015625e-1

You don’t need to emit this entire value; 17 digits is always enough to guarantee a round-trip conversion back to
the original double. In other words, you can print out a 17-digit decimal approximation of

0x1.999999999999ap-4, like this:

3

1.0000000000000001e-1

This isn’t exactly the right value, but it’s close enough that when the assembler converts it back to a double you’ll

get the original value of 0x1.999999999999ap-4.

Labeling Floating-Point Constants

If you’re using local labels for top-level constants, you should include the local label prefix (L on macOS, .L on

Linux) any time you emit these constants’ identifiers. You’ll need to check the backend symbol table to distinguish
between Data operands that represent static variables and those that represent constants. If an object’s

is_constant attribute is true, it takes a local label prefix; otherwise, it’s a variable, so it doesn’t.

If you’re not using local labels, you’ll need to emit all Data operands uniformly. On macOS, that means prefixing

the labels for both constants and static variables with an underscore.

Storing Constants in the Read-Only Data Section

The name of the section that holds constants is platform-specific. On Linux, you should specify this section with
the .section .rodata directive. On macOS, 8-byte-aligned and 16-byte-aligned constants are stored in different

sections. If a constant is 8-byte aligned, use the .literal8 directive to store it in the correct section. For our one

16-byte-aligned constant (-0.0, which we use to implement negation), use the .literal16 directive.

The macOS linker expects 16-byte-aligned constants to be 16 bytes long, but -0.0 is only 8 bytes. Emit a .quad

0 directive right after the directive for -0.0 to bring the total size of the section holding this constant up to 16

bytes and satisfy the linker’s requirements.

Initializing Static Variables to 0.0 or –0.0

We won’t store static variables of type double in the BSS section or initialize them with the .zero directive, even

if they’re initialized to zero. This sidesteps any potential confusion about whether a double is really initialized to

0.0 or -0.0. (These two values usually compare equal, but we can’t store -0.0 in the BSS section or initialize it

with the .zero directive because its binary representation isn’t all zeros.)

Putting It All Together

Aside from floating-point constants and static variables, the code emission stage needs to handle the new XMM
registers, the new instructions, and the sd suffix on the floating-point versions of existing instructions. These

changes are extensive, but they don’t require much discussion. Tables 13-8 through 13-13 summarize this
chapter’s updates to the code emission pass. New constructs and changes to the way we emit existing constructs
are bolded.

Table 13-8: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

StaticVariable(name, global,

 alignment, init)

Integer initialized to zero

 <

 .b
 <a
<name>

 <i

Integer with nonzero initializer, or any double

 <

 .da

 <a

<name>

 <i

Assembly top-level construct Output

StaticConstant(name, alignment,

 init)

Linux

 .s

 <a
<name>

 <i

macOS (8-byte-aligned constants) .l

 .b

<name>

 <i

macOS (16-byte-aligned constants) .l

 .b

<name>

 <i

 .q

Table 13-9: Formatting Static Initializers

Static initializer Output

DoubleInit(d) .double <d> or .quad <d-interpreted-as-long>

Table 13-10: Formatting Assembly Instructions

Assembly instruction Output

Cvtsi2sd(t, src, dst)

cvtsi2sd<t> <src>, <dst>

Assembly instruction Output

Cvttsd2si(t, src, dst)

cvttsd2si<t> <src>, <dst>

Binary(Xor, Double, src, dst)

xorpd <src>, <dst>

Binary(Mult, Double, src, dst)

mulsd <src>, <dst>

Cmp(Double, operand, operand)

comisd <operand>, <operand>

Table 13-11: Instruction Names for Assembly Operators

Assembly operator Instruction name

Shr shr

DivDouble div

And and

Or or

Table 13-12: Instruction Suffixes for Assembly Types

Assembly type Instruction suffix

Double sd

Table 13-13: Formatting Assembly Operands

Assembly operand Output

Reg(XMM0) %xmm0

Reg(XMM1) %xmm1

Reg(XMM2) %xmm2

Reg(XMM3) %xmm3

Reg(XMM4) %xmm4

Reg(XMM5) %xmm5

Reg(XMM6) %xmm6

Reg(XMM7) %xmm7

Reg(XMM14) %xmm14

Reg(XMM15) %xmm15

Note that Table 13-8 doesn’t include local label prefixes on constants, although you have the option to include
them, as we’ve discussed. Also note that the xorpd, comisd, and mulsd instructions in Table 13-10 require

special handling. As a packed instruction, xorpd doesn’t use the standard sd suffix, and the comisd and mulsd

instructions have different names than their integer counterparts.

Once you’ve worked through all these changes, you’re ready to test the whole compiler.

TEST THE WHOLE COMPILER

To test out your whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 13

This chapter’s test suite includes several test cases with separate library and client source files, to exercise our
support for the System V calling convention. Other tests in this chapter use subnormal numbers, infinity, and
negative zero. Several tests call mathematical functions that are declared in the standard library’s <math.h>

header. These test programs explicitly declare any library functions they need rather than including the whole
<math.h> header.

Many of this chapter’s test programs do something you don’t often see in real-life C programs: they compare
floating-point values for equality. This is usually a bad idea because rounding error can make equivalent
calculations produce slightly different results, but this chapter’s tests take rounding error into account; they either
use constants that can be exactly represented in floating point or check whether the result of some computation
equals the expected correctly rounded result.

Extra Credit: NaN

You can add support for quiet NaNs as an extra credit feature. Arithmetic operations should just work, without any
extra effort on your part, because the SSE instructions will propagate NaNs appropriately. You don’t need to
handle type conversions, either, since conversions from NaN to integers are undefined. The only operations you
need to worry about are comparisons.

When you compare any value to NaN, the result is unordered. If x is NaN, then x > y, x < y, and x == y are all

false. NaN even compares unequal to itself. The comisd instruction indicates an unordered result by setting three

flags to 1: ZF, CF, and PF, the parity flag. Just as there are condition codes that rely on ZF, CF, and the other status
flags we’ve already encountered, the P condition code relies on the parity flag. For example, the jp instruction will

jump only if PF is 1. You’ll need to use this condition code to properly account for NaN in floating-point
comparisons.

Use the --nan flag to include test cases with NaN when you run the test suite:

$./test_compiler /path/to/your_compiler --chapter 13 --nan

Or use the --extra-credit flag to enable all extra credit tests, as usual.

Summary

Your compiler now supports floating-point numbers! In this chapter, you learned how to define floating-point
constants in assembly, how to use SSE instructions, and how to pass floating-point arguments according to the
System V calling convention. You also dealt with rounding error throughout the compiler, from the parser all the
way through code emission. Above all, you’ve seen how difficult floating-point arithmetic is to get right. Many
programmers know, in a general way, that floating-point arithmetic can be imprecise; writing a compiler forces you
to understand exactly how it can go awry. In the next chapter, you’ll add a very different type: pointers. You’ll deal
with tricky parsing issues, expand the type checker, and add a few extremely useful constructs to the TACKY and
assembly ASTs.

Additional Resources

These are the resources I relied on while writing this chapter, roughly organized by the section where they’re most
relevant. I’ve also included a couple of online floating-point visualization tools that I found particularly helpful.

IEEE 754

The IEEE 754 standard is available for purchase on the IEEE website for $100 (https://ieeexplore.ieee.org
/document/8766229). But you can probably get any answers you need from the following resources, which
are free:

The “Double-Precision Floating-Point Format” article on Wikipedia gives a thorough description of the
binary encoding of IEEE 754 double-precision values (https://en.wikipedia.org/wiki/Double-precision
_floating-point_format).
“What Every Computer Scientist Should Know About Floating-Point Arithmetic” by David Goldberg is one
of the best-known introductions to floating-point math, if not the most readable (https://docs.oracle.com
/cd/E19957-01/806-3568/ncg_goldberg.html). I found the discussion of the IEEE 754 format in the
section “The IEEE Standard” especially useful. The article also covers some important topics that I’ve
glossed over completely, like exceptions and error handling.
The Floating-Point Guide, a website created by Michael Borgwardt, covers the basics of working with
IEEE 754 floating-point numbers in an approachable way (https://floating-point-gui.de). Start here if the
other two articles are too dense.

To learn more about support for the IEEE 754 standard in GCC and Clang, see the following resources:
“Semantics of Floating Point Math in GCC” on the GCC wiki summarizes the state of floating-point support
in GCC, describes the default floating-point behavior, and discusses some of the challenges of fully
conforming to IEEE 754 (https://gcc.gnu.org/wiki/FloatingPointMath).
The section “Controlling Floating-Point Behavior” in the Clang Compiler User’s Manual discusses IEEE 754
compliance in Clang (https://clang.llvm.org/docs/UsersManual.html#controlling-floating-point-behavior).

Reference for “Rounding Behavior” on page 299

“The Spacing of Binary Floating-Point Numbers,” a blog post by Rick Regan, discusses the gaps between
consecutive floating-point numbers (https://www.exploringbinary.com/the-spacing-of-binary-floating-point-
numbers/). I found that focusing on the gaps in the number line was the key to understanding floating-point
rounding error. After I read this blog post, other discussions of this topic suddenly made a lot more sense.

References for “Floating-Point Operations in Assembly” on page 310

For details about the System V calling convention, see the System V x64 ABI (https://gitlab.com/x86-psABIs
/x86-64-ABI).
For details about individual SSE instructions, including how they deal with overflow and rounding, see the
Intel 64 Software Developer’s Manual (https://www.intel.com/content/www/us/en/developer/articles/technical
/intel-sdm.html).
“Sometimes Floating Point Math Is Perfect,” a blog post by Bruce Dawson, gives an overview of cases where
floating-point calculations don’t produce rounding error (https://randomascii.wordpress.com/2017/06/19

https://ieeexplore.ieee.org/document/8766229
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://floating-point-gui.de/
https://gcc.gnu.org/wiki/FloatingPointMath
https://clang.llvm.org/docs/UsersManual.html#controlling-floating-point-behavior
https://www.exploringbinary.com/the-spacing-of-binary-floating-point-numbers/
https://gitlab.com/x86-psABIs/x86-64-ABI
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://randomascii.wordpress.com/2017/06/19/sometimes-floating-point-math-is-perfect/

/sometimes-floating-point-math-is-perfect/). It helped me think through why our assembly to convert from
double to unsigned long won’t have rounding error.

Pascal Cuoq has written an excellent answer to a Stack Overflow question about the assembly-level
conversion from unsigned long to double (https://stackoverflow.com/a/26799227). This is the best

explanation of this conversion I’ve been able to find.
“GCC Avoids Double Rounding Errors with Round-to-Odd,” another post by Rick Regan, provides more
background information on double rounding error (https://www.exploringbinary.com/gcc-avoids-double-
rounding-errors-with-round-to-odd/).

References for “Code Emission” on page 338

I drew on two of Rick Regan’s blog posts on Exploring Binary to handle floating-point constants during code
emission:

“Hexadecimal Floating-Point Constants” talks about representing floating-point numbers in hexadecimal to
avoid rounding error (https://www.exploringbinary.com/hexadecimal-floating-point-constants/).
“Number of Digits Required for Round-Trip Conversions” explains why 17 decimal digits is enough to represent
a floating-point constant (https://www.exploringbinary.com/number-of-digits-required-for-round-trip-
conversions/).

Floating-point visualization tools

These tools let you experiment with the IEEE 754 representations of decimal numbers:

The Decimal to Floating-Point Converter, created by Rick Regan, lets you convert a decimal number to the
nearest representable double and display it in a wide range of formats, including raw binary, hexadecimal

floating point, and binary scientific notation (https://www.exploringbinary.com/floating-point-converter/).
Float Exposed, created by Bartosz Ciechanowski, lets you view and edit the sign, exponent, and significand
fields within a double as well as its raw binary representation (https://float.exposed).

https://randomascii.wordpress.com/2017/06/19/sometimes-floating-point-math-is-perfect/
https://stackoverflow.com/a/26799227
https://www.exploringbinary.com/gcc-avoids-double-rounding-errors-with-round-to-odd/
https://www.exploringbinary.com/hexadecimal-floating-point-constants/
https://www.exploringbinary.com/number-of-digits-required-for-round-trip-conversions/
https://www.exploringbinary.com/floating-point-converter/
https://float.exposed/

Description

14

POINTERS

So far, you’ve implemented only arithmetic types. These types have a lot in common; they
all support the same basic mathematical operations, and you can always implicitly convert
from one type to another. In the rest of Part II, we’ll add several non-arithmetic types, like
pointers, arrays, and structures. These types are quite different both from the arithmetic
types and from each other. They don’t support ordinary arithmetic. Instead, each type
supports its own distinct set of operations.

In this chapter, you’ll implement pointer types, which represent memory addresses. You’ll
also add two new operators for working with pointers: the address operator, &, and the

dereference operator, *. You’ll learn how to parse complex type specifiers and how to

detect several new kinds of type errors. During TACKY and assembly generation, you’ll add a few new constructs
to read from and write to locations in memory. You’ll continue to build on these changes as you add more non-
arithmetic types in later chapters.

First, let’s discuss a few key concepts that I’ll refer to throughout this chapter: objects, values, and lvalue
conversion.

Objects and Values

Objects and values have come up in earlier chapters, but I never precisely defined either term or explained how
they differ from each other. You can think of a value as a sequence of bits with a type. For example, the bits

11111111111111111111111111111111

with the type int have the value -1. So far, we’ve encountered only integer and floating-point values.

An object is a location in memory that contains a value. Variables are the only objects we’ve seen so far. From the
programmer’s perspective, every object has a memory address, which is fixed throughout its lifetime, and a value,
which you can update using an assignment expression. (In practice, some objects may be stored in registers
rather than memory, and you can’t update every object’s value, but we can ignore those exceptions for now.)

In Chapter 5, I described an lvalue as an expression that can appear on the left side of an assignment expression.
Now we can use the more precise definition from section 6.3.2.1, paragraph 1, of the C standard: “An lvalue is an
expression … that potentially designates an object.” (Note that an lvalue is not a value, in spite of its name; it’s an
expression.) Evaluating a non-lvalue expression produces a value. Evaluating an lvalue, on the other hand,
“determin[es] the identity of the designated object,” according to section 5.1.2.3, paragraph 2, of the standard. If
an expression designates an object, you can assign to it. Otherwise, you can’t.

When you use an object in an expression like x + 1, you’re actually using its current value. But when you assign to

an object, you don’t care about its current value, which you’re just going to overwrite; you care about its location,
which you’re trying to write to. In other words, if x is a variable of type int, you sometimes treat it like a value of

type int and sometimes like a container where you can store a value of type int. The C standard refers to the

first case, where you use an object’s value in an expression, as lvalue conversion. This is a “conversion” in the
sense that you’re converting an lvalue, which designates an object, into an ordinary value. If an lvalue appears as
the left operand of an assignment expression or as the operand of the & operator, it doesn’t undergo lvalue

conversion. If it appears anywhere else in an expression, it does. For example, x is an lvalue in the expressions x

= 3 and y = &x, but it’s not an lvalue in the expressions foo(x), x == y, and a = x. In later chapters, we’ll

encounter other expressions that aren’t lvalue converted.

This terminology lets us talk about pointers without getting hopelessly confused. Now we can discuss precisely
what operations pointers support.

Operations on Pointers

In this section I’ll introduce the address operator, &, which gets a pointer to an object, and the dereference

operator, *, which you use to access an object through a pointer. I’ll also discuss casting and comparing pointers,

plus one special case involving the & operator. I won’t talk about pointer addition or subtraction yet; we’ll

implement those in the next chapter.

Address and Dereference Operations

To see how the & and * operations work, let’s walk through the program in Listing 14-1. We’ll pay special attention

to which expressions in this program designate objects and which ones result in values.

int main(void) {
 int x = 0;
 int *ptr = &x;
 *ptr = 4;
 return *ptr;
}

Listing 14-1: A simple program using & and * operations

We start by declaring a variable, x. Since x is an object, it has an address, although that address won’t be the

same every time you run the program. Let’s say that, during one run of Listing 14-1, x winds up at memory

address 0x7ffeee67b938. It also has a value, 0. Since the type of x is int, we’ll interpret its value as an int too.

Next, we declare the variable ptr, which is also an object. The type of ptr is int *, or “pointer to int,” which

represents the address of an object with type int. Like x, ptr has an address; let’s say it’s 0x7ffeee67b940. It

also has a value: the result of the expression &x. The & operator takes the address of its operand, which implies

that its operand must designate an object with an address. In other words, the operand must be an lvalue. The
result of the & operator, however, is not an object; it’s a value of pointer type.

In the expression &x, the operand is the lvalue x. Evaluating &x results in the value 0x7ffeee67b938, which is

the address of x. We assign this value to the variable ptr, just like we can assign any value to a variable with a

compatible type. To help us keep things straight, Figure 14-1 shows the contents of the stack at this point in the
program.

Figure 14-1: The addresses and initial values of the objects declared in Listing 14-1 Description

As this figure shows, 0x7ffeee67b938 is both the address of x and the value of ptr. I said earlier that a value is

a sequence of bits with a type; the type of the value 0x7ffeee67b938 is int * because it’s the address of an

object of type int.

On the next line of Listing 14-1, we have the assignment expression *ptr = 4, which consists of several

subexpressions. On the right, we have the constant 4; on the left, we have the variable ptr, itself part of the

dereference expression *ptr. The constant isn’t particularly interesting, but the other two subexpressions are.

The innermost of these expressions, ptr, designates an object of type int *. We don’t assign to it or take its

address; we just read its value. Therefore, we implicitly lvalue convert it, which results in a value of type int *,

0x7ffeee67b938. We use this value in a dereference expression, *ptr. A dereference expression is an lvalue, so

its result is an object. In this case, it’s the object at address 0x7ffeee67b938, since that’s the value being

dereferenced. Because we’re assigning to the object *ptr, rather than using its value, it doesn’t undergo lvalue

conversion. Figure 14-2 shows the contents of the stack after this statement.

Figure 14-2: The contents of the stack after assignment through a dereferenced pointer Description

We dereference ptr one more time in the final return statement. Once again, the result of *ptr is the object at

address 0x7ffeee67b938. This time, however, we aren’t assigning to this object or applying the & operator to it.

Therefore, we perform lvalue conversion, which results in the object’s current value, 4.

Now that you understand how * and & operate on objects and values, let’s talk about conversions to and from

pointer types.

Null Pointers and Type Conversions

An integer constant expression whose value is 0, called a null pointer constant, can be converted implicitly to any
pointer type. The result of this conversion is a null pointer:

int *null = 0;

Because a null pointer is not a valid memory address, the result of dereferencing it is undefined. In practice,
dereferencing a null pointer will likely crash your program. The C standard permits constant expressions like
(long) 0 and 10 - 10 as null pointer constants, but we’ll support only constant literals like 0 and 0ul. (This is

the same limitation we placed on static initializers in Chapter 10.)

With the exception of null pointer constants, it’s illegal to implicitly convert integers to pointers or vice versa.
Consider this code snippet:

int x = 0;
int *ptr = x;

Because x has type int, it’s illegal to assign it to ptr, which has type int *. For the same reason, it’s illegal to

assign a nonzero constant to a pointer:

int *ptr1 = 3;
int *ptr2 = 0x7ffeee67b938;

These declarations of ptr1 and ptr2 are both illegal because 3 and 0x7ffeee67b938 are integers, not pointers.

Note that the type of an expression has nothing to do with whether its value is a valid memory address. Even if
0x7ffeee67b938 happens to be a valid address, the constant expression 0x7ffeee67b938 is still a long rather

than a pointer.

It’s also illegal to implicitly convert from one pointer type to another (with the exception of conversions to and
from void *, which I’ll introduce in Chapter 17). For example, you can’t implicitly convert a double * to a long

*:

double *d = 0;
long *l = d;

GCC warns about the implicit conversions in the previous three code snippets, but it still compiles them. We’ll take
a stricter approach and treat these implicit conversions as errors.

On the other hand, explicit casts between pointer types, and between pointer and integer types, are legal. Listing
14-2 shows an example of an explicit cast from double * to unsigned long *.

double negative_zero = -0.0;
double *d = &negative_zero;

❶ unsigned long *l = (unsigned long *) d;

Listing 14-2: An explicit pointer type conversion

After the explicit cast and assignment ❶, d and l contain the same memory address, interpreted as two different

pointer types.

One important caveat is that dereferencing l after this cast would result in undefined behavior. With a few

exceptions, if we declare an object with some type (called its effective type) and then access it using an
expression of a different type, the result is undefined. In other words, casting from one pointer type to another is
always legal, but using the result of that cast expression may not be. In Listing 14-2, the effective type of
negative_zero is double, so we can’t access it with the expression *l, which has type unsigned long. The

complete set of rules about which types of expressions you can use to access an object—unofficially called the
strict aliasing rules—are spelled out in section 6.5, paragraphs 6–7, of the C standard. Luckily, since we don’t need
to detect undefined behavior or handle it gracefully, we can ignore these rules; our implementation will happily
compile programs that violate them.

Finally, you can explicitly cast between pointer types and integer types. When you cast a null pointer constant to a
pointer type, the result is a null pointer. When you cast any other integer to a pointer type, or any pointer to an
integer type, the result is implementation-defined. On an x64 system, memory addresses are unsigned 64-bit
integers, like 0x7ffeee67b938. Therefore, if you convert an unsigned long to a pointer (or vice versa), its

value won’t change. Casting any other integer type to or from a pointer type has the same effect as casting to or
from unsigned long. For example, if you cast a signed int or a long with value -1 to a pointer type, it will

result in the largest representable memory address, 0xffffffffffffffff. This address is unlikely to hold a valid

object, so dereferencing it will probably result in undefined behavior.

Casting a pointer type to a double or a double to a pointer type is illegal.

Pointer Comparisons

You can compare pointers of the same type with the == and != operators. Two non-null pointers compare equal if

they point to the same object (or just past the end of the same array, once we implement arrays). They compare
unequal otherwise. A pointer to a valid object always compares unequal to a null pointer, and two null pointers
always compare equal to each other. You can also use a pointer in any construct that compares an expression to
zero, including logical !, &&, and || expressions; the condition in a conditional expression; and the controlling

condition in an if statement or loop. In each of these cases, a null pointer counts as zero, and any non-null

pointer is nonzero.

You can also compare pointers using the other relational operators, like >, but we won’t support that yet. This sort

of pointer comparison is most useful when you’re working with pointers to array elements, so we’ll implement it
when we add arrays in the next chapter.

& Operations on Dereferenced Pointers

We saw earlier that the operand of the & operator must be an lvalue. Since a dereferenced pointer is an lvalue,

you can take its address with this operator, like we do in Listing 14-3.

int *ptr = &var;
int *ptr2 = &*ptr;

Listing 14-3: Taking the address of a dereferenced pointer

The expression &*ptr is valid, but it’s not very useful. The inner expression designates the object stored at some

address, and the outer expression takes the address of that object. You just end up with the value of ptr, which

is the address you dereferenced to begin with.

In fact, the C standard treats &*<exp> as a special case: section 6.5.3.2, paragraph 3, states that “neither [the *

operator] nor the & operator is evaluated and the result is as if both were omitted, except that the constraints on

the operators still apply and the result is not an lvalue.” In other words, the result of &*<exp> is always the value

of <exp>. Usually, like in Listing 14-3, it doesn’t matter whether we evaluate the * and & operators; we end up

with <exp> either way. The one exception is when <exp> is not a valid memory address, like in Listing 14-4.

int *null_ptr = 0;
int *ptr2 = &*null_ptr;

Listing 14-4: Taking the address of a dereferenced null pointer

Dereferencing null_ptr would usually cause a runtime error. However, since the & and * expressions in Listing

14-4 aren’t evaluated, this code is equivalent to:

int *null_ptr = 0;
int *ptr2 = null_ptr;

Therefore, Listing 14-4 runs without error; it initializes both null_ptr and ptr2 as null pointers.

Now that we’re experts on pointer semantics, let’s start on the lexer!

The Lexer

In this chapter, you’ll add a single token:

& An ampersand, the address operator

You already added the * token to support multiplication. If you implemented the bitwise operators for extra credit

in Chapter 3, you’ve already added the & token too, so you won’t need to modify the lexer at all.

TEST THE LEXER

To test out the lexer, run:

$./test_compiler /path/to/your_compiler --chapter 14 --stage lex

Your compiler should successfully lex every test case in this chapter.

The Parser

Next, we’ll add pointer types and the two new pointer operators to the AST. A pointer type is constructed
recursively from the type of the object it points to; int *, double *, and unsigned long * are all valid types.

You can also declare pointers to pointers, so int **, long ***, and so on are valid types as well. Therefore, the

AST defines pointer types recursively:

type = Int | Long | UInt | ULong | Double
 | FunType(type* params, type ret)
 | Pointer(type referenced)

In C, types that are built up from simpler types are called derived types. Pointer types and function types are both
derived types. The array and structure types we’ll implement in later chapters are derived types too. The type that
a pointer points to is its referenced type. For example, the referenced type of int * is int.

We’ll extend the exp AST node to represent the dereference and address operators:

exp = --snip--
 | Dereference(exp)
 | AddrOf(exp)

Syntactically, these are both unary operators, so you can extend unary _operator instead of exp if you want.

But I think it’s easier to make them distinct expressions because we’ll handle these quite differently from the other
unary operators during type checking and TACKY generation. Listing 14-5 shows the updated AST, with this
chapter’s additions bolded.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, exp? init, type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 type fun_type, storage_class?)
type = Int | Long | UInt | ULong | Double

 | FunType(type* params, type ret)
 | Pointer(type referenced)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
 | Dereference(exp)
 | AddrOf(exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int)
 | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double)

Listing 14-5: The abstract syntax tree with pointer types and the dereference and address operators

Next, we’ll update the grammar and figure out how to parse it. We can parse the * and & operators like any other

unary operator, so we add them to the <unop> grammar rule:

<unop> ::= "-" | "~" | "!" | "*" | "&"

Parsing pointer types in declarations and cast expressions is more challenging. We need an approach that we can
extend to handle derived types in general, not just pointers; otherwise, we’ll have to completely rewrite it to deal
with arrays in the next chapter. We’ll start by updating the parser to support derived types in declarations. Then,
we’ll handle derived types in cast expressions.

Parsing Declarations

A function or variable declaration consists of three parts: a list of specifiers, a declarator, and an optional initializer
or function body. You already know what initializers and function bodies look like, so I won’t talk about them here.
The specifiers are also familiar from earlier chapters: they include storage class specifiers like static, which

determine the identifier’s storage class and linkage, and type specifiers like int, which determine what I’ll call its

basic type. The basic type is either the type of the identifier or the starting point for deriving its type. (This
particular term doesn’t appear in the C standard, but it sometimes shows up in other discussions of C
declarations.) The declarator is everything else: it indicates the identifier being declared and the sequence of
derivations we’ll apply to the basic type. For example, var, *var, foo(int a), and foo[3] are all declarators.

The simplest declarator is an identifier:

int var;

Here, the basic type is int and the declarator is var, so it declares a variable named var with type int. This

declaration doesn’t include any type derivations.

To derive a new type, we nest a declarator like var inside another declarator:

int *(var);

Here, we have a pointer declarator, *(var), which contains the nested declarator var. A pointer declarator takes

some type t and derives the type “pointer to t,” so this declaration declares var with the type “pointer to int.”

Note that C’s syntax allows us to wrap any declarator in parentheses. I’ve wrapped var in parentheses to make

the nesting here explicit, but the declaration has the same meaning if we omit them:

int *var;

We use multiple layers of nested declarators to specify multiple type derivations; these are applied from the
outside in to determine the final type. The innermost declarator is always a plain identifier. Here’s an example with
three nested declarators:

int *(*(var));

The full declarator is *(*(var)), which contains *(var), which contains var. As in the previous example, the

parentheses in this declarator have no effect; I’ve just included them for clarity.

Let’s walk through the type derivations here. Working from the outside in, we start with the basic type, int. Next,

we see a pointer declarator, so we derive the type “pointer to int.” Then, we see another pointer declarator, so

we derive “pointer to pointer to int.” Finally, we encounter the identifier, which completes the declaration but

doesn’t add any type information. We end up with a variable var whose type is “pointer to pointer to int.”

The other two kinds of declarators are function declarators, which we already support, and array declarators,
which we’ll add in the next chapter. A function declarator takes a type t and derives the type “function returning t.”
Let’s break down a function declaration:

int foo(void);

The full declarator here is foo(void), which contains the nested declarator foo. Parenthesizing each declarator

gives us the following equivalent declaration:

int ((foo)(void));

We start with the basic type int. The outer declarator tells us to derive the type “function returning int,” and the

inner declarator indicates that we’re declaring the identifier foo. Of course, a function declarator also declares the

function’s parameters. Each parameter, much like a declaration, includes a basic type and a declarator:

int foo(int a, int *b);

As we already know, a parameter list of the form (void) is a special case: it declares that the function has no

parameters.

Finally, an array declarator starts with type t and derives the type “array of n elements of type t.” For example, the
following code includes the declarator arr[3], which has a nested declarator arr:

int arr[3];

This declares that arr is an array of three elements of type int.

More complicated declarations can include a mix of nested pointer, array, and function declarators. The function
and array declarators, which we indicate with postfix expressions, have higher precedence than the pointer
declarator, so

int *arr[3];

is equivalent to:

int *(arr[3]);

To interpret this declaration, we start with int, apply the outer pointer declarator to derive “pointer to int,” apply

the inner array declarator to derive “array of three pointers to int,” and end with the innermost declarator, arr.

To declare a pointer to an array instead, we override this precedence with parentheses:

int (*arr)[3];

Along the same lines, this declaration declares a pointer to a function with a single parameter:

int (*fptr)(int a);

Function pointers are legal in C, but we won’t implement them in this book. You can also nest declarators to
specify types that are straight-up illegal. For example, int foo(void)(void); declares a function that returns a

function that returns an int. This declaration is syntactically well formed but semantically invalid; a function can’t

return another function.

Now that you understand the basic syntax of declarators, we’re ready to write grammar rules for them. For the full
description of declarators, see section 6.7.6 of the C standard. I also recommend “Reading C Type Declarations” by
Steve Friedl, which describes their syntax in a more comprehensible way than the standard does (http://unixwiz
.net/techtips/reading-cdecl.html).

Since declarators have several precedence levels, we need several grammar rules to define their syntax. At the
highest precedence level, a <simple-declarator> is a single identifier or parenthesized declarator:

<simple-declarator> ::= <identifier> | "(" <declarator> ")"

At the next precedence level, we have what the C grammar calls direct declarators, including function and array
declarators. We support only function declarators in this chapter:

<direct-declarator> ::= <simple-declarator> [<param-list>]
<param-list> ::= "(" "void" ")" | "(" <param> {"," <param>} ")"
<param> ::= {<type-specifier>}+ <declarator>

In the definition of <direct-declarator>, a direct declarator may be either a simple declarator or a function

declarator, indicated by the presence of a parameter list. Notice that we’ve changed <param-list> a bit from

previous chapters, refactoring this symbol to include the parentheses around the parameter list and moving the

http://unixwiz.net/techtips/reading-cdecl.html

definition of a single parameter into a separate <param> symbol. Most importantly, the definition of <param> now

includes a declarator instead of a plain identifier. This lets us parse parameters with pointer types (and eventually
with array types as well). Finally, we’ll define a top-level <declarator> that includes pointer declarators:

<declarator> ::= "*" <declarator> | <direct-declarator>

Unfortunately, this grammar doesn’t really correspond with our AST definition. One minor problem is that it allows
us to specify types we don’t support, including function pointers, functions that return functions, and functions
that take other functions as arguments. A more serious problem is that in our grammar, type derivations are
applied from the outside in, but in the AST definition, they’re applied from the inside out. Let’s revisit a declaration
we looked at earlier:

int (*arr)[3];

We want to parse this declaration and construct the type “pointer to array of three elements of type int.” What

happens if we try to construct this type using recursive descent parsing? First, we’ll encounter the basic type, int.

Then, we’ll see an open parenthesis, which indicates the start of a direct declarator. Inside that direct declarator,
we’ll find a pointer declarator—and then we’ll be stuck. We should derive a pointer type, but a pointer to what?
The basic type we’ve seen so far is int, but “pointer to int” is incorrect. Because type derivations are applied

from the outside in, we ought to derive the array type first. But we can’t, because the parser has to consume the
inner, parenthesized declarator before it can reach the [3] that specifies the array type.

We get stuck here because the order in which we can recognize grammar symbols doesn’t match the order in
which we apply type derivations. When we parse a declaration, we can’t derive its type as we go. Instead, we’ll
first parse each declarator to a one-off representation that more closely mirrors the grammar, like the one in
Listing 14-6.

declarator = Ident(identifier)
 | PointerDeclarator(declarator)
 | FunDeclarator(param_info* params, declarator)
param_info = Param(type, declarator)

Listing 14-6: Representing the syntax of a declarator

We can produce a declarator construct with standard recursive descent parsing, following the grammar rules we

just introduced.

The next step is to traverse that declarator and derive all the information we’ll use to construct an AST node:

the declaration’s type, its identifier, and the identifiers of any parameters. At every layer, we’ll apply the
appropriate type derivation, then recursively handle the inner declarator. Listing 14-7 presents the pseudocode for
this step.

process_declarator(declarator, base_type):
 match declarator with
 | Ident(name) -> return (name, base_type, []) ❶
 | PointerDeclarator(d) -> ❷
 derived_type = Pointer(base_type)
 return process_declarator(d, derived_type)
 | FunDeclarator(params, d) -> ❸
 match d with
 | Ident(name) -> ❹
 param_names = []
 param_types = []
 for Param(p_base_type, p_declarator) in params: ❺
 param_name, param_t, _ = process_declarator(p_declarator, p_base_type)
 if param_t is a function type:
 fail("Function pointers in parameters aren't supported")
 param_names.append(param_name)
 param_types.append(param_t)

 derived_type = FunType(param_types, base_type)
 return (name, derived_type, param_names)
 | _ -> fail("Can't apply additional type derivations to a function type")

Listing 14-7: Deriving type and identifier information from a declarator

The process_declarator function takes two arguments. The first is the declarator itself. The second,

base_type, is the type we’ve derived so far. Initially, this will be the basic type indicated by the list of specifiers at

the start of the declaration. For example, if we were processing the declaration double **fun(int x), we’d

start with a base_type of double. The result of process_declarator will be a tuple of three values: the

declaration’s identifier, its derived type, and the names of any parameters. If the declaration declares a variable, or
if it declares a function with no parameters, the list of parameter names will be empty. Using these three values,
we’ll be able to construct a declaration AST node.

Let’s walk through how to extract these values from a declarator construct. In the simplest case, the declarator

is an identifier ❶. We don’t need to apply any type derivations or introduce any parameters, so we return the
identifier, the unchanged base_type, and an empty list of parameter names. For example, while processing the

declaration int x;, we’d immediately reach this case and return ("x", Int, []).

In the second case, we handle pointer declarators ❷. In this case, we derive a pointer type from base_type. We

then call process_declarator recursively on the type we just derived and the inner declarator that still needs to

be processed.

In the last case, we handle function declarators ❸. This case is a little different because the inner declarator must
be a plain identifier. If it’s another function declarator, we’ll end up with a function that returns a function, which
isn’t legal. If it’s a pointer declarator, we’ll end up with a function pointer, which we aren’t implementing.
Therefore, we validate that the inner declarator is a plain identifier instead of parsing it recursively ❹.

Assuming the inner declarator is valid, the next step is figuring out the function type and parameter names. We’ll
iterate over the parameters in the declarator, recursively calling process_declarator to get the type and name

of each one ❺. While we’re at it, we’ll validate that none of these function parameters are functions themselves.
(The C standard actually lets you declare parameters with function type, but it requires the compiler to implicitly
adjust them to function pointer type. Since we don’t support function pointers, we’ll reject them.) Once we’ve
handled every parameter, we construct the whole function type and return all the relevant information about this
declaration.

Listing 14-8 shows how to put all the pieces together to parse an entire declaration.

parse_declaration(tokens):
 specifiers = parse_specifier_list(tokens)
 base_type, storage_class = parse_type_and_storage_class(specifiers)
 declarator = parse_declarator(tokens)
 name, decl_type, params = process_declarator(declarator, base_type)
 if decl_type is a function type:
 <construct function_declaration>

 else:
 <construct variable_declaration>

Listing 14-8: Parsing an entire declaration

We first determine the declaration’s base type in the usual way: we consume a list of specifiers from tokens, then

convert those specifiers to a type and storage class. Next, we parse the declarator, and then we call process

_declarator to determine its complete type and name. Finally, we examine the resulting type to determine

whether it’s a function or variable declaration and parse the rest of the declaration accordingly.

Parsing Type Names

Pointer types can also appear in cast expressions:

int *result_of_cast = (int *) exp;

But you can’t use a declarator in a cast expression, because a declarator must contain an identifier. C syntax
solves this problem with abstract declarators, which are declarators without identifiers. We’ll add abstract pointer
declarators now and abstract array declarators in the next chapter. (We won’t need abstract function declarators,
because they’re used only to specify function pointers.)

An abstract declarator might be a sequence of one or more * tokens, indicating a sequence of pointer type

derivations:

(int ***) exp;

Abstract declarators can be parenthesized, like their non-abstract counterparts:

(int (*)) exp;

And an outer abstract declarator can contain an inner parenthesized one:

(int *(*)) exp;

The parentheses are pointless at the moment. They’ll be more useful when we add arrays in the next chapter. For
example, the expression

(int *[3]) exp;

casts exp to an array of three pointers to int because the abstract array declarator [3] is parsed with higher

precedence. This cast expression is illegal because you can’t cast expressions to array type. On the other hand,
this expression is fine:

(int (*)[3]) exp;

This casts exp to a pointer to an array of three int elements; the parenthesized pointer declarator has higher

precedence, so the array declarator is applied to int first.

We define abstract declarators using two grammar rules:

<abstract-declarator> ::= "*" [<abstract-declarator>]
 | <direct-abstract-declarator>
<direct-abstract-declarator> ::= "(" <abstract-declarator> ")"

An <abstract-declarator>, like a regular <declarator>, consists of either a pointer declarator or a direct

declarator. The key difference between the two is that in an abstract pointer declarator, the inner declarator is
optional. In other words, * by itself is a valid abstract declarator but not a valid regular declarator.

A <direct-abstract-declarator> is an <abstract-declarator> wrapped in parentheses. In the next

chapter, this symbol will cover abstract array declarators too. We’ll parse abstract declarators to a one-off
abstract_declarator structure, like we did with normal declarators. Listing 14-9 defines this structure.

abstract_declarator = AbstractPointer(abstract_declarator)
 | AbstractBase

Listing 14-9: Representing the syntax of an abstract declarator

AbstractBase represents the base case, where a * token isn’t followed by an inner declarator. For example, we’d

parse the abstract declarator *(*) to AbstractPointer(AbstractPointer(AbstractBase)). At the moment,

abstract _declarator just tells us how many layers of pointer indirection we found (two, in this example). This

is a fairly elaborate way to convey a single number, but it lays the groundwork for array declarators in the next
chapter.

The type name in a cast expression is a sequence of type specifiers followed by an optional abstract declarator, all
wrapped in parentheses:

<factor> ::= --snip--
 | "(" {<type-specifier>}+ [<abstract-declarator>] ")" <factor>
 | --snip--

To handle cast expressions, you’ll need a process_abstract_declarator function, similar to

process_declarator from Listing 14-7, to convert a basic type and an abstract_declarator into a derived

type. This function will be simpler than process_declarator; it won’t deal with function declarators and it will

return only a type, not an identifier or a list of parameters.

Putting It All Together

We’ve covered every change we’ll make to the parser. Listing 14-10 shows the full grammar, with this chapter’s
changes bolded.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <declarator> ["=" <exp>] ";"
<function-declaration> ::= {<specifier>}+ <declarator> (<block> | ";")
<declarator> ::= "*" <declarator> | <direct-declarator>
<direct-declarator> ::= <simple-declarator> [<param-list>]
<param-list> ::= "(" "void" ")" | "(" <param> {"," <param>} ")"
<param> ::= {<type-specifier>}+ <declarator>
<simple-declarator> ::= <identifier> | "(" <declarator> ")"
<type-specifier> ::= "int" | "long" | "unsigned" | "signed" | "double"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"

 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <factor> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<factor> ::= <const> | <identifier>
 | "(" {<type-specifier>}+ [<abstract-declarator>] ")" <factor>
 | <unop> <factor> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<abstract-declarator> ::= "*" [<abstract-declarator>]
 | <direct-abstract-declarator>
<direct-abstract-declarator> ::= "(" <abstract-declarator> ")"
<unop> ::= "-" | "~" | "!" | "*" | "&"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong> | <double>
<identifier> ::= ? An identifier token ?
<int> ::= ? An int token ?
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?
<double> ::= ? A floating-point constant token ?

Listing 14-10: The grammar with pointer types and the dereference and address operators

We’ve made three major changes to the grammar. First, we’re using the <declarator> symbol instead of simple

identifiers in function, variable, and parameter declarations. Second, we use the corresponding <abstract -

declarator> symbol to specify pointer types in cast expressions. Third, we’ve added the new unary & and *

operators.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 14 --stage parse

The tests in tests/chapter_14/invalid_parse validate that your compiler rejects malformed declarators and abstract
declarators. They don’t test whether your compiler rejects function pointers. If you want to be really ambitious
and implement function pointers on your own, you can still use these tests.

Semantic Analysis

On to semantic analysis! We’ll extend the type checker to validate expressions that involve pointers and infer the
types of these expressions. The identifier resolution pass will change a little bit too; we’ll move one piece of
validation from this pass into the type checker.

We need to detect three kinds of type errors:

1. Applying an operator to a type it doesn’t support. For example, you can’t multiply or divide pointers, and you
can’t dereference arithmetic values.

2. Operating on values of two incompatible types. This includes errors like trying to compare a pointer to a
double. We run into this kind of error because C generally doesn’t allow implicit conversions to and from

pointer types, the way it does for arithmetic types.
3. Not using an lvalue where one is required. We already require the left side of an assignment expression to be

an lvalue. Now we’ll require the operand of an AddrOf expression to be an lvalue too. We’ll also expand our

definition of lvalue to include dereferenced pointers as well as variables.

This third kind of error is the one we currently handle during identifier resolution. Remove this validation from the
identifier resolution pass now; you’ll add it to the type checker in a moment. (While you’re at it, make sure the
identifier resolution pass traverses the new Dereference and AddrOf expressions.) Next, we’ll update the logic to

type check expressions.

Type Checking Pointer Expressions

We need to tweak how we type check almost every expression we support. Let’s start with the new Dereference

and AddrOf expressions. Then, we’ll update the type checking logic for our existing constructs.

Dereference and AddrOf Expressions

A Dereference expression must take an operand of pointer type. It produces a result with its operand’s

referenced type (the type it points to). Listing 14-11 demonstrates how to type check a Dereference expression

and annotate it with the correct result type.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Dereference(inner) ->
 typed_inner = typecheck_exp(inner, symbols)

 match get_type(typed_inner) with
 | Pointer(referenced_t) ->
 deref_exp = Dereference(typed_inner)
 return set_type(deref_exp, referenced_t)
 | _ -> fail("Cannot dereference non-pointer")

Listing 14-11: Type checking a Dereference expression

We start by type checking the expression’s operand, as usual. Then, we look up the operand’s type. If it’s a
pointer to some type, referenced_t, we set referenced_t as the result type of the whole expression.

Otherwise, we throw an error.

To type check an AddrOf expression, we first check that its operand is an lvalue (that is, a Var or Dereference

expression). Then, we record its result type, which is a pointer to the type of its operand. Listing 14-12
demonstrates how to type check AddrOf.

 | AddrOf(inner) ->
 if inner is an lvalue:
 typed_inner = typecheck_exp(inner, symbols)
 referenced_t = get_type(typed_inner)
 addr_exp = AddrOf(typed_inner)
 return set_type(addr_exp, Pointer(referenced_t))
 else:
 fail("Can't take the address of a non-lvalue!")

Listing 14-12: Type checking an AddrOf expression

Next, we’ll type check pointer comparisons with Equal and NotEqual. (We’ll deal with other pointer comparisons

using GreaterThan, LessThan, and the other relational operators in Chapter 15.) We’ll also handle conditional

expressions, which follow similar typing rules.

Comparisons and Conditional Expressions

As you learned in earlier chapters, both operands in a comparison must have the same type, or at least be
implicitly converted to the same type. However, we can’t perform implicit conversions to or from pointer types.
Therefore, if either operand to an Equal or NotEqual operation is a pointer, we require the types of both

operands to be the same. At the moment, null pointer constants are the one exception to this rule; they’re the
only expressions that we can implicitly convert to a pointer type. (Once we implement void, we’ll also permit

implicit conversions between void * and other pointer types.)

For example, this code snippet compares a pointer to a null pointer constant:

double *d = get_pointer();
return d == 0;

When we type check d == 0 in this example, we implicitly cast 0 to a null pointer with type double *. Listing 14-

13 defines a helper function to identify null pointer constants.

is_null_pointer_constant(e):
 match e with
 | Constant(c) ->
 match c with
 | ConstInt(0) -> return True
 | ConstUInt(0) -> return True
 | ConstLong(0) -> return True
 | ConstULong(0) -> return True
 | _ -> return False
 | _ -> return False

Listing 14-13: Checking whether an expression is a null pointer constant

This function captures our three requirements for an expression to count as a null pointer constant: it must be a
constant literal, it must be an integer, and its value must be 0. (Remember that we’re defining null pointer
constants more narrowly than the C standard does; the standard permits more complex constant expressions as
well as constant literals.)

Listing 14-14 defines another helper function to determine whether two expressions, at least one of which results
in a pointer, have compatible types.

get_common_pointer_type(e1, e2):
 e1_t = get_type(e1)
 e2_t = get_type(e2)
 if e1_t == e2_t:
 return e1_t
 else if is_null_pointer_constant(e1):
 return e2_t
 else if is_null_pointer_constant(e2):
 return e1_t
 else:
 fail("Expressions have incompatible types")

Listing 14-14: Getting the common type of two expressions, where at least one has pointer type

When an expression that operates on pointers expects both its operands to have the same type,
get_common_pointer_type will determine what that type should be. If its arguments have different types and

neither of them is a null pointer constant, they’re incompatible, so we throw an error.

Now that we’ve defined get_common_pointer_type, we’re finally ready to type check Equal and NotEqual

expressions. Listing 14-15 demonstrates how to type check an Equal expression; we’ll handle NotEqual the same

way.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Binary(Equal, e1, e2) ->
 typed_e1 = typecheck_exp(e1, symbols)
 typed_e2 = typecheck_exp(e2, symbols)
 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 if t1 or t2 is a pointer type:
 ❶ common_type = get_common_pointer_type(typed_e1, typed_e2)
 else:
 ❷ common_type = get_common_type(t1, t2)
 converted_e1 = convert_to(typed_e1, common_type)
 converted_e2 = convert_to(typed_e2, common_type)
 equality_exp = Binary(Equal, converted_e1, converted_e2)
 return set_type(equality_exp, Int)

Listing 14-15: Type checking an Equal expression

This follows the usual pattern for type checking comparisons: we type check both operands, find their common
type, convert them both to that type, and then set the type of the result to Int. The key change from earlier

chapters is how we find the common type. If either operand is a pointer, we use the helper function that we just
defined ❶. Otherwise, we’ll stick with get_common_type ❷.

When we convert two operands to a common pointer type, we’ll see one of three possible outcomes:

1. Both operands already have the same type, so neither convert_to call has any effect.

2. One operand is a null pointer constant, which we implicitly convert to the other operand’s type.
3. The operands have incompatible types, so get_common_pointer_type throws an error.

We’ll use similar logic to type check conditional expressions. The second and third operands in the expression
<cond> ? <clause1> : <clause2> are subject to the same type constraints as the operands in an Equal or

NotEqual expression. If either one is a pointer, we’ll validate both operands and find their common type using

get_common_pointer_type, then convert them to that type. The <cond> expression can be either a pointer or

an arithmetic value, since we can compare it to zero either way.

Assignment and Conversion as if by Assignment

Next, we’ll handle assignment expressions. We first validate that the left-hand side of an assignment expression is
an lvalue. Then, we convert the value on the right side of the expression to the type of the object on the left, or

fail if the conversion is illegal. What the C standard calls type conversion “as if by assignment” turns up in a few
places, not just in assignment expressions, so we’ll write yet another helper function to handle it. Listing 14-16
defines this helper function.

convert_by_assignment(e, target_type):
 if get_type(e) == target_type:
 return e
 if get_type(e) is arithmetic and target_type is arithmetic:
 return convert_to(e, target_type)
 if is_null_pointer_constant(e) and target_type is a pointer type:
 return convert_to(e, target_type)
 else:
 fail("Cannot convert type for assignment")

Listing 14-16: Converting an expression to a target type as if by assignment

The rules here are unsurprising: we can assign a value to an object of the same type, we can implicitly convert
any arithmetic type to any other arithmetic type, and we can implicitly convert a null pointer constant to any
pointer type. Otherwise, we’ll raise an error.

We’ll use this helper function to convert the right side of assignment expressions and in a few other spots too. To
type check a function call, we’ll use convert_by_assignment to convert each argument to the type of the

corresponding parameter. We’ll also use it to convert variable initializers to the correct type and to detect
initializers with invalid types, like the following:

int *d = 2.0;

Finally, we’ll use convert_by_assignment to convert the value in a return statement to the function’s return

type and detect functions that return the wrong type, like Listing 14-17.

int *bad_pointer(void) {
 return 2.0;
}

Listing 14-17: A function that returns a value with an incompatible type

Later, when we implement void, we’ll extend both get_common_pointer_type and convert_by_assignment

to accept implicit conversions to and from void *.

Other Expressions

We still need to deal with cast expressions, unary operators, and binary operators besides Equal and NotEqual.

Let’s start with casts. As you learned earlier, it’s illegal to cast a pointer to a double or a double to a pointer. If

your type checker encounters this kind of cast, it should throw an error. Otherwise, it can handle casts to and from
pointer types exactly like any other cast expression.

Next, we’ll handle unary operators. Applying the Negate or Complement operator to a pointer is illegal, since

negating or taking the bitwise complement of a memory address won’t produce a meaningful result. Applying the
Not operator to a pointer is fine, since it makes sense to compare a memory address to zero.

Binary operators deal with pointers in several different ways. First, we have the Boolean And and Or operators.

The type checking logic for these operators won’t change. Like Not, they both accept pointers. Since they don’t

convert their operands to a common type, they can operate on any combination of pointer and arithmetic
operands.

The arithmetic Multiply, Divide, and Remainder operators, on the other hand, don’t accept pointers. Applying

any of these to an operand of pointer type should produce an error. Pointer addition and subtraction are legal, as
are pointer comparisons with GreaterThan, LessThan, GreaterOrEqual, and LessOrEqual, but we won’t

implement them until the next chapter. They won’t come up in this chapter’s tests. For now, your compiler can
either assume it will never see these expressions or explicitly reject them.

Tracking Static Pointer Initializers in the Symbol Table

Now let’s talk about static initializers. Static variables of pointer type, like non-static variables, can be initialized to
null pointers:

static int *ptr = 0;

We therefore need a way to represent a null pointer as a static_init in the symbol table. Rather than defining

a dedicated construct for null pointers, we’ll use the ULongInit(0) initializer, since pointers are unsigned 64-bit

integers.

It’s also legal to initialize static variables of pointer type with the address of other static variables:

static int a;
static int *a_ptr = &a;

However, our implementation won’t support this sort of static initializer; we’ve already decided that constant
literals are the only static initializers we’ll accept.

TEST THE TYPE CHECKER

To test your type checker, run:

$./test_compiler /path/to/your_compiler --chapter 14 --stage validate

The tests in tests/chapter_14/invalid_types cover all the type errors we discussed in this section, including invalid
implicit type conversions, explicit casts between pointer types and double, using pointers in arithmetic operations

that don’t support them, dereferencing things that aren’t pointers, and taking the address of or assigning to things
that aren’t lvalues. They don’t cover the operations that we’re going to implement in the next chapter, like pointer
addition, subtraction, and the remaining relational operators.

TACKY Generation

We’ll introduce three new TACKY instructions that operate on pointers in this chapter. The first, GetAddress,

corresponds to the AddrOf operator in the AST:

GetAddress(val src, val dst)

This instruction copies the address of src—which must be a variable, not a constant—into dst. We’ll also add two

instructions to dereference pointers:

Load(val src_ptr, val dst)
Store(val src, val dst_ptr)

The Load instruction takes a memory address, src_ptr, as its source operand. It retrieves the current value at

that memory address and copies it to dst. The Store instruction takes a memory address, dst_ptr, as its

destination operand and writes the value of src to that address. Listing 14-18 defines the complete TACKY IR,

with the three new instructions bolded.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init init)
instruction = Return(val)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | DoubleToInt(val src, val dst)
 | DoubleToUInt(val src, val dst)
 | IntToDouble(val src, val dst)

 | UIntToDouble(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | GetAddress(val src, val dst)
 | Load(val src_ptr, val dst)
 | Store(val src, val dst_ptr)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 14-18: Adding pointer operations to TACKY

It’s tricky to convert Dereference and AddrOf to TACKY, because these conversions depend on context. A

Dereference expression can be used in one of three ways: you can lvalue convert it, assign to it, or take its

address. We’ll produce different TACKY instructions in each of these three cases. Similarly, we’ll process AddrOf

one way if its operand is a variable and a different way if its operand is a dereferenced pointer. First, let’s see what
instructions we should generate in each case. Then, I’ll present a strategy for TACKY conversion that minimizes
the number of special cases we need to handle.

Pointer Operations in TACKY

To dereference a pointer and then lvalue convert the result, we’ll use the Load instruction. In this case, we can

translate the expression *<exp> to Listing 14-19.

<instructions for exp>

ptr = <result of exp>
result = Load(ptr)

Listing 14-19: The TACKY implementation of a pointer dereference that undergoes lvalue conversion

We’ll use Store when we want to assign to a dereferenced pointer instead of lvalue converting it. We’ll translate

an assignment expression of the form *<left> = <right> to Listing 14-20.

<instructions for left>

ptr = <result of left>
<instructions for right>

result = <result of right>
Store(result, ptr)

Listing 14-20: The TACKY implementation of a pointer dereference on the left-hand side of an assignment
expression

We first calculate ptr, which is the address of some object, and result, which is the value we want to assign to

that object. Then, we use Store to perform the assignment. Note that the single Store instruction here

implements both the deference and assignment operations from the original expression.

Finally, let’s consider the AddrOf expression. If its operand is a variable, we’ll get a pointer to it with GetAddress.

Therefore, we’ll translate &var to:

result = GetAddress(var)

But if the operand is a dereferenced pointer, neither the outer AddrOf nor the inner Dereference expression is

evaluated. When we see an expression of the form &*<exp>, we’ll translate only the inner <exp> to TACKY.

A Strategy for TACKY Conversion

To manage all these different cases, we’ll use two different functions to convert expressions to TACKY. The first is
our existing emit_tacky function. This function will no longer return a TACKY operand. Instead, it will return a

new construct, exp_result, which represents an expression result that hasn’t been lvalue converted. The second

function, emit_tacky_and_convert, will call emit_tacky, lvalue convert the result (if it’s an lvalue rather than a

constant), and return it as a TACKY operand. In most contexts, we’ll process expressions with
emit_tacky_and_convert. But to process expressions that shouldn’t be lvalue converted—like the left-hand side

of assignment expressions—we’ll call emit_tacky directly.

First, let’s define exp_result:

exp_result = PlainOperand(val) | DereferencedPointer(val)

A DereferencedPointer represents the object designated by a dereferenced pointer, as the name suggests. It

takes a single argument: a TACKY operand of pointer type. A PlainOperand represents an ordinary constant or

variable. Its argument is a TACKY operand of any type. The exp_result construct isn’t a TACKY operand itself, so

it doesn’t appear in TACKY instructions. It just helps us process AddrOf and assignment expressions, which

operate on objects instead of values. For each of these expressions, we’ll generate different instructions
depending on whether its operand is a dereferenced pointer or a normal variable. In later chapters, we’ll add more
operators that dereference pointers, like array subscripting and the -> operator to access structure members. At

that point, the DereferencedPointer constructor will be especially useful because it will let us represent the

results of all of these different operators in a uniform way.

Now let’s update emit_tacky. We’ll make a couple of changes throughout this function. First, wherever we

currently call emit_tacky recursively on a subexpression—except on the left-hand side of an assignment

expression— we’ll instead call emit_tacky_and_convert. This function will convert the subexpression to TACKY

and then lvalue convert the result. Second, wherever we currently return a TACKY operand, we’ll wrap that
operand in a PlainOperand constructor. Listing 14-21 shows how to handle unary expressions, with this chapter’s

changes bolded.

emit_tacky(e, instructions, symbols):
 match e with
 | --snip--
 | Unary(op, inner) ->
 src = emit_tacky_and_convert(inner, instructions, symbols)
 dst = make_tacky_variable(get_type(e), symbols)
 tacky_op = convert_unop(op)
 instructions.append(Unary(tacky_op, src, dst))
 return PlainOperand(dst)

Listing 14-21: Translating a unary expression to TACKY

We’ll make the same changes for every kind of expression that emit_tacky currently handles.

Next, let’s deal with Dereference expressions. Listing 14-22 demonstrates how to handle these in emit_tacky.

 | Dereference(inner) ->
 result = emit_tacky_and_convert(inner, instructions, symbols)
 return DereferencedPointer(result)

Listing 14-22: Translating a Dereference expression to TACKY

To process this expression, we first process and lvalue convert its operand. This produces a TACKY operand of
pointer type, result. Then, we return a DereferencedPointer to represent the object result points to.

After emit_tacky returns an exp_result, we either assign to it, get its address, or lvalue convert it. Listing 14-

23 illustrates how to handle assignment.

 | Assignment(left, right) ->
 ❶ lval = emit_tacky(left, instructions, symbols)
 ❷ rval = emit_tacky_and_convert(right, instructions, symbols)
 match lval with

 | PlainOperand(obj) ->
 ❸ instructions.append(Copy(rval, obj))
 return lval
 | DereferencedPointer(ptr) ->
 ❹ instructions.append(Store(rval, ptr))
 return PlainOperand(rval)

Listing 14-23: Translating an assignment expression to TACKY

We don’t lvalue convert the left side of the assignment expression ❶, but we do lvalue convert the right side ❷. If
the left side is a PlainOperand, we issue a Copy instruction, like in earlier chapters ❸. If it’s a

DereferencedPointer, we issue a Store instruction to write to the location that the inner pointer indicates ❹.

Note that even when we assign through a pointer, we return a PlainOperand as the result. That’s because the

result of an assignment expression is the value stored in the object on the left-hand side, not the object itself.

We use a similar pattern to process AddrOf. Listing 14-24 gives the pseudocode.

 | AddrOf(inner) ->
 ❶ v = emit_tacky(inner, instructions, symbols)
 match v with
 | PlainOperand(obj) ->
 dst = make_tacky_variable(get_type(e), symbols)
 ❷ instructions.append(GetAddress(obj, dst))
 return PlainOperand(dst)
 | DereferencedPointer(ptr) ->
 ❸ return PlainOperand(ptr)

Listing 14-24: Translating an AddrOf expression to TACKY

We process the expression’s operand without lvalue converting it ❶, then pattern match on the result to decide
how to proceed. If it’s a normal value, we emit a GetAddress instruction ❷. If it’s a dereferenced pointer, we drop

the dereference and return the pointer ❸.

Finally, in Listing 14-25, we define emit_tacky_and_convert, which performs lvalue conversions.

emit_tacky_and_convert(e, instructions, symbols):
 result = emit_tacky(e, instructions, symbols)
 match result with
 | PlainOperand(val) -> return val
 | DereferencedPointer(ptr) ->
 dst = make_tacky_variable(get_type(e), symbols)
 instructions.append(Load(ptr, dst))
 return dst

Listing 14-25: Translating an expression to TACKY and performing lvalue conversion

To lvalue convert a dereferenced pointer, we’ll retrieve its value with a Load instruction. Other operands can be

returned as is, without emitting any extra instructions. A full expression, which isn’t part of another expression,
always undergoes lvalue conversion. That means you should use emit_tacky_and _convert, not emit_tacky,

to process a full expression and get its result. For example, you’ll use emit_tacky_and_convert to process the

controlling expressions in loops and if statements.

The results of some full expressions—specifically, expression statements and the first and third clauses in for loop

headers—are not used. As an optimization, you can process these expressions with emit_tacky, which saves you

an unnecessary Load instruction.

To wrap up this section, we’ll implement casts to and from pointer types. For the purposes of casting, we treat
pointer types exactly like unsigned long. For example, we cast from int to any pointer type with a SignExtend

instruction and from a pointer type to int with Truncate. The TACKY implementations of other expressions, like

logical operations and comparisons, won’t change.

TEST THE TACKY GENERATION STAGE

To test out TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 14 --stage tacky

Assembly Generation

In the previous section, we added Load and Store instructions that allow us to read from and write to memory.

This means that TACKY has finally caught up with assembly, which we’ve been using to read from and write to
memory since Chapter 2. The operand -4(%rbp), for example, identifies a location in memory, which we can read

or write with a mov instruction.

There’s nothing special about RBP, though; we can access memory through an address stored in any register.
Here’s how to read the value from an address stored in the RAX register and copy it into RCX:

movq (%rax), %rcx

Note that (%rax) is equivalent to 0(%rax).

The assembly AST will change slightly to handle operands like (%rax). First, we’ll add the RBP register to the AST:

reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP | BP | --snip--

Then, we’ll replace the Stack operand, which lets us access memory at some offset from the address in RBP, with

a more generic Memory operand, which can use a base address stored in any register:

 operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Memory(reg, int) | Data(identifier)

This makes converting a Load or Store instruction to assembly very simple. We’ll translate

Load(ptr, dst)

to:

Mov(Quadword, ptr, Reg(AX))
Mov(<dst type>, Memory(AX, 0), dst)

In the first instruction, we move the memory address ptr to a register. In the second instruction, we move the

value stored at that address, which we access with a Memory operand, to the destination. In this example, we

copy ptr into RAX, but any general-purpose register will do (aside from R10, R11, or a callee-saved register).

Along the same lines, we’ll translate

Store(src, ptr)

to:

Mov(Quadword, ptr, Reg(AX))
Mov(<src type>, src, Memory(AX, 0))

Note that when we copy a pointer into a register, we use the Quadword operand type, since pointers are 8 bytes.

But when we copy a value to or from the memory location that a pointer indicates, the value’s type determines the
type of the mov instruction.

We’ll implement GetAddress using a new assembly instruction: lea, which is short for load effective address. The

instruction lea src, dst copies the address of its source (which must be a memory operand) to its destination.

For example, lea (%rbp), %rax is equivalent to mov %rbp, %rax. You can also use lea to get RIP-relative

addresses, so

lea x(%rip), %rax

stores the address of the symbol x in the RAX register.

With this new instruction, converting GetAddress to assembly is straightforward. We’ll translate

GetAddress(src, dst)

to:

Lea(src, dst)

As I mentioned earlier, src here must be a memory operand, not a constant or register, for obvious reasons. At

the moment, we’re guaranteed to satisfy this constraint; we map every pseudoregister to a memory address, and
the type checker catches any attempts to take the address of a constant. But in Part III, when we implement
register allocation, we’ll store some variables in registers instead of in memory. At that point, it will take some
extra work to make sure that lea never tries to load the address of a register.

Listing 14-26 defines the whole assembly AST, including the new Memory operand, BP register, and Lea

instruction.

program = Program(top_level*)
assembly_type = Longword | Quadword | Double
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init init)
 | StaticConstant(identifier name, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(operand src, operand dst)
 | MovZeroExtend(operand src, operand dst)
 | Lea(operand src, operand dst)
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)

 | Ret

unary_operator = Neg | Not | Shr
binary_operator = Add | Sub | Mult | DivDouble | And | Or | Xor
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Memory(reg, int) | Data(identifier)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP | BP
 | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7 | XMM14 | XMM15

Listing 14-26: The assembly AST with the Memory operand, BP register, and Lea instruction

When we translate other TACKY instructions to assembly, we’ll treat pointer types exactly like unsigned long.

We’ll convert pointer types to the Quadword assembly type, compare pointers with the cmp instruction, pass

return values of pointer type in the RAX register, and pass parameters of pointer type in the same general-purpose
registers as integer parameters.

We’ll also make one entirely mechanical change: everywhere we previously used an operand of the form
Stack(<i>), we’ll use Memory(BP, <i>) instead. Tables 14-1 through 14-3 summarize this chapter’s updates to

the conversion from TACKY to assembly; as usual, new constructs and changes to the conversions for existing
constructs are bolded.

Table 14-1: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Function(name, global, params,

 instructions)

Function(name, global,
 [Mov(<first int param type>, Reg(DI)
 <first int param>),
 Mov(<second int param type>, Reg(SI

 <second int param>),

 <copy next four integer parameters

 Mov(Double, Reg(XMM0), <first doubl

 Mov(Double, Reg(XMM1), <second doub

 <copy next six double parameters f

 Mov(<first stack param type>,

 Memory(BP, 16)
, <first stack param>)
, Mov(<second stack param type>,

 Memory(BP, 24),
 <second stack param>),

TACKY top-level construct Assembly top-level construct

 <copy remaining parameters from st

 instructions)

Table 14-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Load(ptr, dst)

Mov(Quadword, ptr, Reg(<R>))
Mov(<dst type>, Memory(<R>, 0), dst)

Store(src, ptr)

Mov(Quadword, ptr, Reg(<R>))
Mov(<src type>, src, Memory(<R>, 0))

GetAddress(src, dst)

Lea(src, dst)

Table 14-3: Converting Types to Assembly

Source type Assembly type Alignment

Pointer(referenced_t) Quadword 8

Next, we’ll update the pseudoregister replacement and instruction fix-up passes.

Replacing Pseudoregisters with Memory Operands

We’ll use the new Memory operand instead of the old Stack operand throughout this pass. We’ll also extend this

pass to replace pseudoregisters in the lea instruction. We won’t make any other changes. When we converted

TACKY pointer variables to pseudoregisters, we assigned them the Quadword assembly type; now we’ll allocate

stack space for them like any other Quadword.

Fixing Up the lea and push Instructions

The destination of the lea instruction must be a register; we’ll rewrite it in the usual fashion. We’ll also add a new

rewrite rule for push instructions. As I mentioned in the previous chapter, it’s illegal to push an XMM register, so

we’ll rewrite an instruction like

pushq %xmm0

as:

subq $8, %rsp
movsd %xmm0, (%rsp)

A push instruction decrements the stack pointer by 8 bytes, then moves its operand to the top of the stack. When

we can’t use push, we’ll perform the same operation in two instructions: sub followed by mov. The (%rsp)

operand designates the memory location at the top of the stack.

Because we don’t generate any push instructions that operate on XMM registers, this rewrite rule isn’t strictly

necessary yet. It will become necessary once we implement register allocation in Part III; then, values that we
currently store in memory might be assigned to XMM registers instead.

TEST THE ASSEMBLY GENERATION STAGE

To test that your compiler can generate assembly programs without throwing an error, run:

$./test_compiler /path/to/your_compiler --chapter 14 --stage codegen

Code Emission

Our final task will be to update the code emission stage to handle the new Lea instruction, Memory operand, and

BP register. Tables 14-4 and 14-5 summarize how to print out these new constructs. (I haven’t bolded new

constructs and changes in these tables, because all three of these constructs are entirely new.)

Table 14-4: Formatting Assembly Instructions

Assembly instruction Output

Lea(src, dst)

leaq <src>, <dst>

Table 14-5: Formatting Assembly Operands

Assembly operand Output

Reg(BP) %rbp

Memory(reg, int) <int>(<reg>)

We’ll always use the 8-byte aliases for the base register in a Memory operand and the destination register in an

Lea instruction, because memory addresses are 8-byte integers.

When the offset in a Memory operand is zero, you can either print it or omit it; (%rax) and 0(%rax) are equally

valid.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 14

Summary

In this chapter, you added support for pointers to your compiler. You learned how to parse complex declarators
into derived types and how to type check operations on pointers. During TACKY generation, you established a
uniform way to process pointer dereference expressions, regardless of how they’re used. On the backend, you
took the existing Stack operand that accessed memory relative to the address in RBP and tweaked it to work with

addresses stored in any register.

In the next chapter, you’ll implement arrays, your first non-scalar type. You’ll also implement array subscripting
and pointer arithmetic and explore the ways in which they’re equivalent. Because pointers and arrays are so
closely related, the concepts, techniques, and instructions introduced in this chapter will be crucial in the next
chapter too.

Description

15

ARRAYS AND POINTER ARITHMETIC

In this chapter, you’ll implement array types. You’ll also add the main language features
that programmers use to work with arrays: compound initializers, subscript operators, and
pointer arithmetic. Arrays and pointers are distinct but closely related types. Many
expressions of array type are implicitly converted to pointers, and many pointer operations,
like subscripting, are meant to operate on pointers to array elements. So, to support arrays,
you’ll build on the support for pointers that you added in the previous chapter.

The type checker plays an especially critical role here. It will handle the implicit conversions
from arrays to pointers and annotate the AST with the type information you’ll rely on to
perform pointer arithmetic. Once the type checker has done all the hard work, it will be

relatively easy to break down subscript operators and compound initializers into simple pointer operations during
TACKY generation. You won’t add any new assembly instructions in this chapter, but you’ll introduce new operands
to represent objects in memory and elements within those objects.

As usual, we’ll start with an overview of the language constructs we’re going to add. We’ll pay special attention to
the relationship between pointers and arrays and how this relationship plays out in pointer arithmetic and
subscript expressions. This is a particularly confusing aspect of C, and it’s key to everything we’ll do in this
chapter.

Arrays and Pointer Arithmetic

Let’s define a few terms up front. In the last chapter, we divided every object type we knew about into two
categories: arithmetic types and non-arithmetic types. Now we’ll introduce another distinction. A scalar type
represents a single value. The pointer and arithmetic types we’ve already implemented are all scalar types. An
aggregate type represents a collection of values. Arrays are aggregate types; so are structures, which we’ll
implement in Chapter 18. All the values in an array have the same type, which is the array’s element type.

Array Declarations and Initializers

When we declare an array, we specify its element type and how many elements it contains. For example, we could
declare an array of three int objects:

int int_array[3];

Or we could declare an array of five pointers to double:

double *(ptr_array[5]);

(Remember that we interpret a declaration by starting with the basic type—double, in this case—and then

applying type derivations from the outside in.)

Both of these examples use scalar element types, but we can use aggregate element types too. The following
example declares an array of three elements, where each element is itself an array of two long objects:

long nested_array[3][2];

Arrays of arrays like this one are called multidimensional arrays. Note that we still apply type derivations from the
outside in to determine this array’s type. We start with the base type long, apply the derivation specified by [2]

to get the type “array of two long objects,” and then apply the derivation specified by [3] to get the type “array

of three arrays of two long objects.”

You can initialize an array with a compound initializer, which specifies an initial value for each element:

int int_array[3] = {1, foo(), a * 4};

And you can initialize a multidimensional array with nested compound initializers:

long nested_array[3][2] = {{a, a + 1}, {3l, -4}, {foo(), 6}};

Here, the three nested compound initializers initialize the three elements of the outer array. Each of those three
elements is, itself, an array of two long objects. The nested initializer for each of these elements specifies two

arithmetic values (which can be implicitly converted to long).

You can also leave an array uninitialized. If it has automatic storage duration, its initial value will be undefined. If
it has static storage duration, it will be initialized to all zeros. In other words, we treat uninitialized arrays exactly
like uninitialized scalar objects.

Memory Layout of Arrays

At this point, it’s helpful to talk a bit about the memory layout of flat and multidimensional arrays. If you declare
an array of n objects, those n objects will be laid out sequentially in memory. Consider the array in Listing 15-1,
which has a scalar element type.

int six_ints[6] = {1, 2, 3, 4, 5, 6};

Listing 15-1: An array of scalar values

Figure 15-1 shows what six_ints might look like in memory right after it’s initialized (the memory addresses in

this figure are just for illustration; they wouldn’t be valid on a real system).

Figure 15-1: The layout of six_ints in memory Description

Compare this declaration to Listing 15-2, which declares a multidimensional array with the same number and type
of scalar elements as six_ints.

int three_arrays[3][2] = {{1, 2}, {3, 4}, {5, 6}};

Listing 15-2: An array of nested arrays

The memory that holds three_arrays will also look like Figure 15-1. In memory, there’s no indication of where

one element ends and another begins, so the two arrays are indistinguishable. Although the nested structure of
three_arrays doesn’t impact its layout in memory, it does impact how you access individual array elements, as

we’ll see shortly.

Array-to-Pointer Decay

Once we’ve defined and initialized an array, what can we do with it? Not a lot, as it turns out. In fact, there are
only two valid operations on objects of array type. First, we can get an array’s size with the sizeof operator,

which we’ll implement in Chapter 17. Second, we can get its address with the & operator:

int my_array[3] = {1, 2, 3};
int (*my_pointer)[3] = &my_array;

That’s it! There are no other valid operations on arrays. That probably sounds ridiculous, since C programs read
and write array elements all the time. What’s going on here? The C standard (section 6.3.2.1, paragraph 3)
provides the solution to this puzzle: “Except when it is the operand of the sizeof operator, or the unary &

operator … an expression that has type ‘array of type’ is converted to an expression with type ‘pointer to type’ that
points to the initial element of the array object and is not an lvalue.”

This implicit conversion from arrays to pointers is called array-to-pointer decay. (I’ll sometimes say that an array
decays to a pointer, and sometimes that it’s implicitly converted to a pointer. They both mean the same thing.)
While we can’t do much with arrays, we can perform all sorts of useful operations on pointers. We’ve already
implemented some of these operations, and we’ll add a few more in this chapter.

The code snippet in Listing 15-3 shows an example of array decay.

int my_array[3] = {1, 2, 3};
int *my_pointer = ❶ my_array;
return ❷ *my_pointer;

Listing 15-3: Implicitly converting an array to a pointer

Let’s say my_array starts at address 0x10. When my_array appears on the right side of the assignment

expression in this listing, it will be implicitly converted to a pointer whose type is int * and whose value is 0x10

❶. We can then assign this pointer’s value to my_pointer. When we dereference my_pointer, the result is the

int object stored in the first 4 bytes of my_array ❷. Therefore, we’ll return this object’s current value, 1. Note

that the address 0x10 can be interpreted in a couple of different ways, depending on its type. As an int *, it

points to the array’s initial element, which we can read or write through a pointer dereference operation. The
expression &my_array has the same value, 0x10, but it points to the whole array and its type is int (*)[3].

It’s especially important to keep track of a pointer’s type when working with multidimensional arrays. Consider
Listing 15-4, which tries to assign to two array elements.

int nested_array[2][2] = {{1, 2}, {3, 4}};
**nested_array = 10;
*nested_array = 0;

Listing 15-4: Legal and illegal assignments to array elements

The first assignment expression, which assigns to **nested_array, is valid. First, we implicitly convert the

variable nested_array to a pointer to the array’s initial element. That element has type int[2], so the type of

the pointer is int(*)[2]. The first dereference operation on this pointer results in an array object with type

int[2]. We implicitly convert this array to a pointer with type int *. The second pointer dereference therefore

produces an int object, which we can assign to. The assignment expression overwrites that object’s current

value, 1, with a new value, 10. The int(*)[2] and int * pointers in this expression both point to the start of

nested_array; only their types differ.

The next assignment expression, which assigns to *nested_array, is illegal. It starts out as before: we implicitly

convert nested_array to a pointer of type int(*)[2], dereference it, and implicitly convert the result to a

pointer of type int *. We then try to assign directly to this pointer, but the C standard states that the result of

this implicit conversion “is not an lvalue,” so we can’t assign to it. It’s not clear what this assignment would do
even if it were permitted; it would be like assigning to the result of an & operation.

Now we know how to access an array’s initial element in any dimension. We can even read and write to the initial
scalar object in an array. However, we usually want to access an array’s other elements too. For that, we’ll need
pointer arithmetic.

Pointer Arithmetic to Access Array Elements

Once we have a pointer to an array’s initial element, we’ll use pointer addition to produce pointers to its other
elements. Let’s work through the example in Listing 15-5.

int array[3] = {1, 2, 3};
int *ptr = array + 1;

Listing 15-5: Accessing later array elements with pointer arithmetic

We’ll use 0x10 again as the array’s starting address. In the expression array + 1, the variable array decays to a

pointer to the initial array element, as usual. When we add 1 to this pointer, the result is a pointer to the next int

element in the array. Since each int is 4 bytes, we need to multiply 1 by a scale of 4 to calculate how many bytes

to add to array’s address. The resulting pointer’s value is 0x14. If we dereferenced this pointer, we would get the

int object at address 0x14, whose current value is 2. Array elements are zero indexed, so we say the initial

element of array is at index 0 and the next element is at index 1.

More generally, when we add an integer n to a pointer, the result is a pointer to another array element at the
position n elements further along in the array. Similarly, we can move backward in an array by subtracting an
integer (or adding a negative integer). If the result would be outside the bounds of the array in either direction,
the behavior is undefined.

NOTE

If x is an n-element array, x + n points one past the end of x. This pointer is a special case. It’s not considered out
of bounds, and you can use it in pointer arithmetic. For example, you can compare it to other pointers to elements
in the same array. (When you’re looping through array elements, this is a useful way to test whether you’ve
reached the end.) But dereferencing it is undefined behavior, because it doesn’t point to an element of the array.

When we perform pointer arithmetic, the nested structure of the array we point into matters, because it dictates
what counts as a single element. Let’s look at Listing 15-6 to see how this plays out for the two arrays we defined
in Listings 15-1 and 15-2, which had identical contents in memory.

int six_ints[6] = {1, 2, 3, 4, 5, 6};
int three_arrays[3][2] = {{1, 2}, {3, 4}, {5, 6}};

❶ int *int_ptr = six_ints + 1;
❷ int (*array_ptr)[2] = three_arrays + 1;

Listing 15-6: Pointer arithmetic with flat and nested arrays

The result of the expression six_ints + 1 is a pointer to the element at index 1 in six_ints ❶. This element is

an int with the value 2. Similarly, when we compute three_arrays + 1, we get a pointer to the array element at

index 1 in three_arrays ❷. In this case, however, this element is itself an array of two int objects, whose

current values are 3 and 4. Although six_ints and three_arrays may have identical contents in memory,

performing the same operation on both of them produces very different results.

So how can we access the scalar objects in three_arrays? For example, how could we read the last int in this

array, whose value is 6? First, we’ll get a pointer to the last element in three_arrays:

int (*outer_ptr)[2] = three_arrays + 2;

This points to the entire two-element array {5, 6}. We’ll dereference it to get a pointer to a single scalar element

in this array instead:

int *inner_ptr = *outer_ptr;

This dereference expression results in an array of type int[2], which decays to a pointer with type int *. Now

inner_ptr points to the first int in this nested array, whose value is 5. We’ll increment it to point to the next

int, whose value is 6:

inner_ptr = inner_ptr + 1;

At that point, we can access its value with a normal pointer dereference:

int result = *inner_ptr;

We can consolidate these statements into the single expression in Listing 15-7.

int result = *(*(three_arrays + 2) + 1);

Listing 15-7: Accessing the last int in three_arrays

Through repeated pointer addition, dereferencing, and implicit conversions from arrays to pointers, we can access
any element in a multidimensional array. This is, obviously, a huge pain. The subscript operator, [], provides more

convenient syntax to accomplish the same thing. The expression a[i] is equivalent to *(a + i), so we can

rewrite Listing 15-7 as Listing 15-8.

int result = three_arrays[2][1];

Listing 15-8: A more convenient way to access the last int in three_arrays

The last point I want to emphasize is that subscripting and pointer arithmetic apply to all pointers, not just
pointers that decayed from arrays. If a pointed-to object isn’t in an array, we’ll treat it like the sole element in a
one-element array. For example, Listing 15-9 is perfectly valid.

int a = 5;
int *ptr = &a;
return ptr[0] == 5;

Listing 15-9: Subscripting a pointer to a scalar object

When we add 0 to ptr and dereference the result, we get back the object a. Therefore, the expression ptr[0]

== 5 evaluates to 1 (that is, true).

Even More Pointer Arithmetic

We’ll support two other operations on pointers. The first is subtraction; Listing 15-10 gives an example.

int arr[3] = {1, 2, 3};
int *ptr = arr + 2;
return ptr - arr;

Listing 15-10: Subtracting two pointers

When we subtract pointers to two elements in the same array, the result is the difference between their indices. In
this example, unsurprisingly, we return 2.

We can also compare pointers to array elements, like in Listing 15-11.

int arr[3] = {1, 2, 3};
int *ptr = arr + 2;
return ptr > arr;

Listing 15-11: Comparing pointers

The pointer to the element with the higher array index compares greater than the one with the lower index. In
this example, ptr points to the element at index 2 and arr decays to a pointer to the element at index 0, so the

comparison ptr > arr evaluates to 1. If two pointers don’t point into the same array, the result of subtracting or

comparing them is undefined.

Array Types in Function Declarations

It’s illegal for a function to return an array, like in the following declaration:

int foo(void)[3];

A function can’t take arrays as parameters, either. Weirdly enough, the C standard lets you declare a function with
array parameters, but it requires the compiler to adjust your function signature to take pointers instead. For
example, the declaration

int foo(int array_of_three_elements[3]);

will be turned into:

int foo(int *array_of_three_elements);

We’ll adjust parameters with array types to have the corresponding pointer types in the type checker.

“IT’S FOR HISTORICAL REASONS”

It doesn’t make sense that you can declare function parameters of array type, only to have the compiler treat
them like pointers. When I learned about this behavior, it struck me as confusing and useless. Whenever I run into
a feature of C that doesn’t make sense, I assume it’s for historical reasons. In this case, that turns out to be true!
Dennis Ritchie talks about this in his paper “The Development of the C Language” (ACM, 1993). In a parameter
declaration like int a[], he notes, the array declarator [] is “a living fossil.… The notation survived in part for

the sake of compatibility, in part under the rationalization that it would allow programmers to communicate to

their readers an intent to pass [a function] a pointer generated from an array, rather than a reference to a single
integer. Unfortunately, it serves as much to confuse the learner as to alert the reader.”

The paper goes into more detail about how C’s pointer and array semantics have changed over time; you can read
it at https://www.bell-labs.com/usr/dmr/www/chist.html.

Things We Aren’t Implementing

The features we won’t support are significant enough that I’ll mention them explicitly. We won’t implement
variable-length arrays, whose length is determined at runtime, like this one:

int variable_length_array[x];

We’ll permit only constants as the dimensions in array declarations. We also won’t permit declarations of
incomplete array types:

int array[];

C requires you to specify an array’s dimensions when you define it, but not when you declare it. However, we’ll
require array dimensions in declarations as well as definitions.

We won’t implement compound literals, which let you construct array objects (and other aggregate objects)
outside of initializers:

int *p = (int []){2, 4};

Finally, we won’t fully support C’s semantics for initializing aggregate objects. Compound initializers are a bit of a
free-for-all; you can omit braces, wrap scalar values in braces, or initialize some elements but not others. This
makes it tricky to figure out which expression is supposed to initialize which element. We’ll take a much stricter
approach. First of all, we’ll require braces around the initializers for each nested array. In other words, we’ll accept
the declaration

int arr[2][2] = {{1, 2}, {3, 4}};

but we’ll reject the following equivalent declaration, even though the C standard permits it:

int arr[2][2] = {1, 2, 3, 4};

https://www.bell-labs.com/usr/dmr/www/chist.html

We’ll also reject braces around scalar initializers, like in the following example:

int i = {3};

And we won’t support designators, which let you initialize elements out of order:

int arr[3] = {0, [2] = 1};

However, we will allow compound initializers that don’t initialize every array element, like the following:

int arr[3] = {1, 2};

In this case, we’ll pad out any remaining elements with zeros; that’s the behavior the C standard requires. Now
that we’ve clarified exactly what we will and won’t build, we can move on to the lexer.

The Lexer

You’ll add two tokens in this chapter:

[ An open square bracket

] A close square bracket

After adding these tokens, you can test out your lexer.

TEST THE LEXER

To test the lexer, run:

$./test_compiler /path/to/your_compiler --chapter 15 --stage lex

Lexing should succeed for every test case in this chapter.

The Parser

Next, we’ll add array types, subscript expressions, and compound initializers to the AST. An array’s type indicates
the number of elements in the array and the type of those elements:

type = --snip-- | Array(type element, int size)

We can nest Array constructors to specify a multidimensional array. For example, we’ll represent the type of the

declaration

int x[3][4];

as Array(Array(Int, 4), 3). Since we won’t support variable-length arrays, every array type must have a

constant size.

A subscript expression contains two subexpressions, a pointer and an index:

exp = --snip--
 | Subscript(exp, exp)

Surprisingly, the order in which these two subexpressions appear doesn’t matter; the expressions x[1] and 1[x]

are equivalent.

Finally, we’ll add an initializer construct to support both scalar and compound variable initializers:

initializer = SingleInit(exp) | CompoundInit(initializer*)

We’ll use CompoundInit to initialize arrays and SingleInit to initialize scalar objects, including individual array

elements. We’ll use a nested CompoundInit construct for each row in a multidimensional array. Listing 15-12

shows how to represent the initializer {{1, 2}, {3, 4}, {5, 6}}.

CompoundInit([
 CompoundInit([SingleInit(Constant(ConstInt(1))),
 SingleInit(Constant(ConstInt(2)))]),
 CompoundInit([SingleInit(Constant(ConstInt(3))),
 SingleInit(Constant(ConstInt(4)))]),
 CompoundInit([SingleInit(Constant(ConstInt(5))),
 SingleInit(Constant(ConstInt(6)))])
])

Listing 15-12: Representing the initializer for three_arrays, from Listing 15-2, as an AST node

The type checker will annotate initializers with their types, just like it does for exp nodes. However you support

type annotations on exp nodes, you should do the same thing for initializer.

Listing 15-13 gives the complete AST definition, with this chapter’s additions bolded.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, initializer? init,
 type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 type fun_type, storage_class?)
initializer = SingleInit(exp) | CompoundInit(initializer*)
type = Int | Long | UInt | ULong | Double
 | FunType(type* params, type ret)
 | Pointer(type referenced)
 | Array(type element, int size)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
 | Dereference(exp)
 | AddrOf(exp)
 | Subscript(exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int)

 | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double)

Listing 15-13: The abstract syntax tree with array types, compound initializers, and subscript expressions

Let’s walk through how to parse each of these additions to the AST.

Parsing Array Declarators

You learned how to parse pointer and function declarators in the previous chapter; now we’ll extend that code to
handle array declarators too. Listing 15-14 shows how to extend the declarator construct that we defined in

Listing 14-6.

declarator = Ident(identifier)
 | PointerDeclarator(declarator)
 | ArrayDeclarator(declarator, int size)
 | FunDeclarator(param_info* params, declarator)

Listing 15-14: Representing array declarators

Next, we’ll add array declarators to the grammar. Since they have higher precedence than pointer declarators,
they belong in the <direct-declarator> grammar rule:

<direct-declarator> ::= <simple-declarator> [<declarator-suffix>]
<declarator-suffix> ::= <param-list> | {"[" <const> "]"}+

A direct declarator is a simple declarator with an optional suffix: either a parenthesized list of function parameters
or a sequence of constant array dimensions of the form [const]. Each ArrayDeclarator specifies just one

array dimension, so we’ll parse a <declarator-suffix> with multiple dimensions to a sequence of multiple

nested ArrayDeclarator nodes. For example, we’d parse the declarator array[1][2] to:

ArrayDeclarator(ArrayDeclarator(Ident("array"), 1), 2)

The grammar rule for <declarator-suffix> permits floating-point constants as array dimensions, but the C

standard requires array dimensions to be integers. When you parse a <declarator-suffix>, you should reject

floating-pointing constants and accept constants of any integer type. The C standard also requires array
dimensions to be greater than zero, but Clang and GCC support zero-length arrays as a language extension. It’s
up to you whether to accept zero-length arrays or reject them; the test suite doesn’t cover this case.

Finally, we’ll update process_declarator, which converts a declarator construct into an AST node. Listing 15-

15 illustrates how to handle array declarators in process_declarator.

process_declarator(declarator, base_type):
 match declarator with
 | --snip--
 | ArrayDeclarator(inner, size) ->
 derived_type = Array(base_type, size)
 return process_declarator(inner, derived_type)

Listing 15-15: Applying array type derivations

This listing follows the same pattern we introduced to derive pointer types in Chapter 14.

Parsing Abstract Array Declarators

Next, let’s deal with abstract declarators, which specify types without declaring identifiers. We’ll parse abstract
array declarators according to the grammar rule in Listing 15-16.

<direct-abstract-declarator> ::= "(" <abstract-declarator> ")" {"[" <const> "]"}
 | {"[" <const> "]"}+

Listing 15-16: The grammar rule for abstract array declarators

A direct abstract declarator is either a parenthesized declarator, optionally followed by a sequence of array
dimensions, or just a sequence of array dimensions. (Remember that {} in EBNF syntax indicates zero or more

repetitions, while {}+ indicates one or more repetitions.) We’ll take the same steps here that we took to support

normal declarators. Listing 15-17 shows how to extend the abstract_declarator construct.

abstract_declarator = AbstractPointer(abstract_declarator)
 | AbstractArray(abstract_declarator, int size)
 | AbstractBase

Listing 15-17: Representing abstract array declarators

After updating abstract_declarator, we’ll change our parsing code to handle the grammar rule in Listing 15-

16. (This code should accept integer constants as array dimensions and reject floating-point constants, just like
the code to parse ordinary declarators.) Finally, we’ll update process_abstract _declarator.

Parsing Compound Initializers

Now let’s define the grammar rule for initializers:

<initializer> ::= <exp> | "{" <initializer> {"," <initializer>} [","] "}"

This rule is straightforward: an initializer is either an expression or a brace-enclosed list of one or more nested
initializers. Note that there can be a trailing comma after the last element in an initializer list: {1, 2, 3} and {1,

2, 3,} are both valid compound initializers.

Parsing Subscript Expressions

The last new language feature we need to parse is the subscript operator. Subscripting is a postfix operator, which
follows the expression it modifies. Postfix operators have higher precedence than prefix operators like &, -, or ~.

We’ll break up the <factor> grammar rule to reflect this difference in precedence. At the highest precedence

level, we’ll have constants, variables, parenthesized expressions, and function calls:

<primary-exp> ::= <const> | <identifier> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"

Then, we’ll define a postfix expression as a primary expression, optionally followed by a sequence of subscript
operators:

<postfix-exp> ::= <primary-exp> {"[" <exp> "]"}

Each subscript operator is an expression enclosed in square brackets. Finally, we’ll define unary expressions, which
include both prefix and cast operators:

<unary-exp> ::= <unop> <unary-exp>
 | "(" {<type-specifier>}+ [<abstract-declarator>] ")" <unary-exp>
 | <postfix-exp>

Listing 15-18 shows the complete grammar, with this chapter’s changes bolded.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <declarator> ["=" <initializer>] ";"
<function-declaration> ::= {<specifier>}+ <declarator> (<block> | ";")
<declarator> ::= "*" <declarator> | <direct-declarator>
<direct-declarator> ::= <simple-declarator> [<declarator-suffix>]

<declarator-suffix> ::= <param-list> | {"[" <const> "]"}+
<param-list> ::= "(" "void" ")" | "(" <param> {"," <param>} ")"
<param> ::= {<type-specifier>}+ <declarator>
<simple-declarator> ::= <identifier> | "(" <declarator> ")"
<type-specifier> ::= "int" | "long" | "unsigned" | "signed" | "double"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<initializer> ::= <exp> | "{" <initializer> {"," <initializer>} [","] "}"
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <unary-exp> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<unary-exp> ::= <unop> <unary-exp>
 | "(" {<type-specifier>}+ [<abstract-declarator>] ")" <unary-exp>
 | <postfix-exp>
<postfix-exp> ::= <primary-exp> {"[" <exp> "]"}
<primary-exp> ::= <const> | <identifier> | "(" <exp> ")"
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<abstract-declarator> ::= "*" [<abstract-declarator>]
 | <direct-abstract-declarator>
<direct-abstract-declarator> ::= "(" <abstract-declarator> ")" {"[" <const> "]"}
 | {"[" <const> "]"}+
<unop> ::= "-" | "~" | "!" | "*" | "&"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong> | <double>
<identifier> ::= ? An identifier token ?
<int> ::= ? An int token ?
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?
<double> ::= ? A floating-point constant token ?

Listing 15-18: The grammar with array types, compound initializers, and subscript expressions

Once you’ve updated your parser to account for all of the changes in Listing 15-18, you’re ready to test it out.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 15 --stage parse

The parser should fail on every test case in tests/chapter_15/invalid_parse, which includes programs with
malformed declarators, initializers, and subscript expressions. It should handle every test case in
tests/chapter_15/invalid_types and tests/chapter_15/valid without error.

The Type Checker

The type checker will do most of the heavy lifting in this chapter. It will add type information to subscript and
pointer arithmetic expressions; validate the dimensions of compound initializers; and detect type errors, like
casting an expression to an array type. It will also handle implicit conversions from array to pointer types. Just as
we insert Cast expressions into the AST to make implicit type conversions explicit, we’ll insert AddrOf expressions

to make conversions from arrays to pointers explicit.

Converting Arrays to Pointers

We’ll convert any array type expression to a pointer, unless it’s already the operand of an AddrOf expression. This

might sound familiar from the previous chapter, where we lvalue converted the result of every expression, except
when we took its address or assigned to it. In Chapter 14, we introduced a new emit_tacky_and_convert

helper function to manage lvalue conversions; now we’ll use a similar design pattern in a different compiler pass.
We’ll define a new typecheck_and_convert function, shown in Listing 15-19.

typecheck_and_convert(e, symbols):
 typed_e = typecheck_exp(e, symbols)
 match get_type(typed_e) with
 | Array(elem_t, size) ->
 addr_exp = AddrOf(typed_e)
 return set_type(addr_exp, Pointer(elem_t))
 | _ -> return typed_e

Listing 15-19: Implicitly converting an array to a pointer

If an expression has array type, we insert an AddrOf operation to get its address. We then record its result type,

which is a pointer to the array’s element type. This is a different result type than we’d get from an explicit &

operator, which always produces a pointer to the type of its operand. Take the following declaration:

int arr[3];

The expression &arr has type int (*)[3]. The expression arr, on the other hand, has type int *. In the type

checked AST, we’re using AddrOf to represent two ways of taking an object’s address, which yield different result

types: through an implicit conversion or an explicit & operator.

Once we’ve introduced typecheck_and_convert, we’ll use it in place of typecheck_exp to check both

subexpressions and full expressions. The one exception is type checking the operand of AddrOf. This operand

should not be converted from an array to a pointer, so we’ll continue to process it by calling typecheck_exp

directly.

Validating Lvalues

We’ll change a couple of details about how we validate lvalues. First, we should recognize Subscript expressions

as lvalues, in addition to Var and Dereference.

Second, we need to reject assignment expressions that try to assign to arrays. Once an array decays to a pointer,
it’s no longer an lvalue and can’t be assigned to. To catch these invalid assignment expressions, we’ll process the
left operand with typecheck_and_convert before we check whether it’s an lvalue. Listing 15-20 shows the latest

logic to type check assignment expressions.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Assignment(left, right) ->
 typed_left = typecheck_and_convert(left, symbols)
 if typed_left is not an lvalue:
 fail("Tried to assign to non-lvalue")
 typed_right = typecheck_and_convert(right, symbols)
 --snip--

Listing 15-20: Type checking assignment expressions

If the left operand is an array, typecheck_and_convert will wrap it in an AddrOf operation. Then, since AddrOf

isn’t an lvalue, the type checker will throw an error.

Type Checking Pointer Arithmetic

Next, we’ll extend addition, subtraction, and the relational operators to work with pointers. Adding any integer
type to a pointer is valid. Listing 15-21 demonstrates how to type check addition.

 | Binary(Add, e1, e2) ->
 typed_e1 = typecheck_and_convert(e1, symbols)
 typed_e2 = typecheck_and_convert(e2, symbols)

 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 if t1 and t2 are arithmetic:
 --snip--

 else if t1 is a pointer type and t2 is an integer type:
 ❶ converted_e2 = convert_to(typed_e2, Long)
 add_exp = Binary(Add, typed_e1, converted_e2)
 ❷ return set_type(add_exp, t1)
 ❸ else if t2 is a pointer type and t1 is an integer type:
 --snip--

 else:
 fail("Invalid operands for addition")

Listing 15-21: Type checking pointer addition

To type check addition involving a pointer and an integer, we first convert the integer operand to a long ❶. This

will simplify later compiler passes, when pointer indices will need to be 8 bytes wide so that we can add them to
8-byte memory addresses. This conversion doesn’t come from the C standard; we’re just adding it for our own
convenience. But it also doesn’t violate the standard; converting a valid array index to long won’t change its

value, so the result of the whole expression is the same either way. (If an integer is too big to represent as a
long, we can safely assume that it’s not a valid array index, since no hardware supports arrays with anywhere

close to 2 elements.)

The result of pointer addition has the same type as the pointer operand ❷. We use the same logic whether the
first or second operand is the pointer, so I’ve omitted the pseudocode for the latter case ❸. Finally, in any case
other than adding a pointer to an integer or adding two arithmetic operands, we throw an error.

Subtracting an integer from a pointer works the same way: we convert the integer operand to a long and

annotate the result with the same type as the pointer operand. The only difference is that operand order matters.
You can subtract an integer from a pointer, but you can’t subtract a pointer from an integer.

When we subtract one pointer from another, both operands must have the same type, and the result has an
implementation-defined signed integer type. We’ll use long as the result type here, which is the norm on 64-bit

systems. This type is supposed to be aliased as ptrdiff_t in the <stddef.h> header, to help users write more

portable code. Since we don’t support typedef and therefore can’t compile <stddef.h>, we’ll ignore this

requirement.

Listing 15-22 demonstrates how to type check both cases of pointer subtraction.

 | Binary(Subtract, e1, e2) ->
 typed_e1 = typecheck_and_convert(e1, symbols)
 typed_e2 = typecheck_and_convert(e2, symbols)
 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 if t1 and t2 are arithmetic:

63

 --snip--

 ❶ else if t1 is a pointer type and t2 is an integer type:
 converted_e2 = convert_to(typed_e2, Long)
 sub_exp = Binary(Subtract, typed_e1, converted_e2)
 return set_type(sub_exp, t1)
 ❷ else if t1 is a pointer type and t1 == t2:
 sub_exp = Binary(Subtract, typed_e1, typed_e2)
 return set_type(sub_exp, Long)
 else:
 fail("Invalid operands for subtraction")

Listing 15-22: Type checking pointer subtraction

If an expression subtracts an integer from a pointer, we handle it just like pointer addition ❶. If it subtracts two
pointers of the same type, we record long as the result type ❷. In any other case—if an expression subtracts two

pointers of different types, subtracts a double from a pointer, or subtracts a pointer from an arithmetic value—

we’ll throw an error.

Finally, let’s deal with the <, <=, >, and >= operators. Each of these accepts two pointer operands of the same

type and returns an int. These are pretty simple to type check, so I won’t provide pseudocode for this case.

Note that none of these operators accept null pointer constants; they compare pointers to elements in the same
array, but a null pointer, by definition, doesn’t point to an array element. By the same logic, you can’t subtract a
pointer from a null pointer constant. If x is a pointer, the expressions x == 0 and x != 0 are legal, but 0 - x, 0 <

x, and x >= 0 are not. (Clang and GCC are more permissive than the standard here; as a language extension,

they both let you use null pointer constants with any relational operator. With this extension, any non-null pointer
will compare greater than the null pointer constant.)

Type Checking Subscript Expressions

One operand of a subscript expression must be a pointer, and the other must be an integer. The pointer’s
referenced type is the result type. Remember that these two operands can appear in either order; we can’t
assume that the pointer will be the first operand. Listing 15-23 shows how to type check subscript expressions.

 | Subscript(e1, e2) ->
 typed_e1 = typecheck_and_convert(e1, symbols)
 typed_e2 = typecheck_and_convert(e2, symbols)
 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 ❶ if t1 is a pointer type and t2 is an integer type:
 ptr_type = t1
 ❷ typed_e2 = convert_to(typed_e2, Long)
 else if t1 is an integer type and t2 is a pointer type:
 ptr_type = t2
 typed_e1 = convert_to(typed_e1, Long)

 else:
 fail("Subscript must have integer and pointer operands")
 subscript_exp = Subscript(typed_e1, typed_e2)
 ❸ return set_type(subscript_exp, ptr_type.referenced)

Listing 15-23: Type checking a subscript expression

First, we validate that one operand is a pointer and the other is an integer ❶. We then convert the integer
operand to a long ❷. Finally, we annotate the whole expression with the pointer’s referenced type ❸.

Type Checking Cast Expressions

This one is easy: you can’t cast an expression to an array type. For example, the expression

(int[3]) foo;

is invalid and should produce a type error.

Type Checking Function Declarations

When we process a function declaration, we consider both its return type and its parameter types. If a function
returns an array type, we throw an error. If any of its parameters has an array type, we adjust it to a pointer type
instead. Listing 15-24 describes how to validate and implicitly adjust a function type.

typecheck_function_declaration(decl, symbols):
 if decl.fun_type.ret is an array type:
 fail("A function cannot return an array!")
 adjusted_params = []
 for t in decl.fun_type.params:
 match t with
 | Array(elem_t, size) ->
 adjusted_type = Pointer(elem_t)
 adjusted_params.append(adjusted_type)
 | _ -> adjusted_params.append(t)
 decl.fun_type.params = adjusted_params
 --snip--

Listing 15-24: Adjusting array types in function declarations

You should add this logic to the very beginning of typecheck_function _declaration, in order to adjust a

function’s parameter types before you check whether it conflicts with prior definitions of the same identifier. You
should also ensure that both the symbol table and the AST node itself use the adjusted parameter types.

Type Checking Compound Initializers

We need to annotate each initializer with its type and emit an error if an initializer is incompatible with the type of
the object it’s supposed to initialize. To type check a compound initializer, we first validate that the object it
initializes is an array. Then, we recursively type check each nested initializer, validating that it’s compatible with the
array’s element type. Listing 15-25 illustrates this approach.

typecheck_init(target_type, init, symbols):
 match target_type, init with
 | _, SingleInit(e) -> ❶
 typechecked_exp = typecheck_and_convert(e, symbols)
 cast_exp = convert_by_assignment(typechecked_exp, target_type)
 return set_type(SingleInit(cast_exp), target_type)
 | Array(elem_t, size), CompoundInit(init_list) -> ❷
 if length(init_list) > size:
 fail("wrong number of values in initializer") ❸
 typechecked_list = []
 for init_elem in init_list:
 typechecked_elem = typecheck_init(elem_t, init_elem, symbols) ❹
 typechecked_list.append(typechecked_elem)
 while length(typechecked_list) < size:
 typechecked_list.append(zero_initializer(elem_t)) ❺
 return set_type(CompoundInit(typechecked_list), target_type) ❻
 | _ -> fail("can't initialize a scalar object with a compound initializer") ❼

Listing 15-25: Type checking initializers

In the base case, an initializer is a single expression ❶. We’ll type check this expression, then call
convert_by_assignment, which we defined in Chapter 14, to convert it to the target type. If it’s not compatible

with the target type, convert_by_assignment will throw an error (this includes cases where the target type is

an array type).

In the recursive case, we’ll initialize an array using a compound initializer ❷. Each item in the list will initialize one
element in the array. First, we’ll check that the list doesn’t contain too many elements ❸. Then, we’ll type check
each list item recursively, using the array’s element type as the target type ❹. If the initializer list contains too few
elements, we’ll pad it with zeros ❺. We’ll use the zero_initializer helper function, which I haven’t provided

pseudocode for, to produce zero-valued initializers that we can add to the initializer list. Given a scalar type,
zero_initializer should return a SingleInit of that type with the value 0. Given an array type, it should

return a CompoundInit whose scalar elements (which may be nested several layers deep) have the value 0. For

example, calling zero_initializer on the type UInt should return

SingleInit(Constant(ConstUInt(0)))

and calling it on the type Array(Array(Int, 2), 2) should return:

CompoundInit([
 CompoundInit([SingleInit(Constant(ConstInt(0))),
 SingleInit(Constant(ConstInt(0)))]),
 CompoundInit([SingleInit(Constant(ConstInt(0))),
 SingleInit(Constant(ConstInt(0)))])
])

Once we’ve finished building the type checked list of initializers, we’ll package it into a CompoundInit, which we’ll

annotate with the target type ❻. If the initializer isn’t a single expression and the target type isn’t an array type,
we’re trying to initialize a scalar object with a compound initializer, so we’ll throw an error ❼.

Initializing Static Arrays

As with other static variables, we’ll store the initial values of static arrays in the symbol table. We’ll need to update
the data structures we use to represent these initial values. We’ll represent the initializer for every object as a list
of scalar values:

initial_value = Tentative | Initial(static_init* init_list) | NoInitializer

For scalar objects, init_list will have only one element. The declaration

static int a = 3;

will have this initializer:

Initial([IntInit(3)])

For multidimensional arrays, we’ll flatten out any nested structures. Therefore, the declaration

static int nested[3][2] = {{1, 2}, {3, 4}, {5, 6}};

will have this initializer:

Initial([IntInit(1),
 IntInit(2),
 IntInit(3),
 IntInit(4),
 IntInit(5),
 IntInit(6)])

Next, we’ll add a static_init constructor to represent zeroed-out objects of any size:

static_init = IntInit(int) | LongInit(int) | UIntInit(int) | ULongInit(int)
 | DoubleInit(double) | ZeroInit(int bytes)

The bytes argument to ZeroInit specifies how many bytes to initialize to zero. If a static array is only partially

initialized, we’ll use ZeroInit to pad out any uninitialized elements. For example, the declaration

static int nested[3][2] = {{100}, {200, 300}};

will have this initializer:

Initial([IntInit(100),
 ZeroInit(4),
 IntInit(200),
 IntInit(300),
 ZeroInit(8)])

The second element of this initializer list, ZeroInit(4), initializes the int at nested[0][1]; the last element,

ZeroInit(8), initializes both elements of the nested array nested[2].

Once you’ve updated the initial_value and static_init data structures, write a function to convert a

compound initializer to a static_init list. You’ll need to validate that initializers for static arrays have the correct

size and structure, just like initializers for non-static arrays; you should reject initializers with too many elements,
scalar initializers for arrays, and compound initializers for scalar objects. I won’t provide pseudocode for this
transformation, since it’s similar to the way we type check non-static initializers in Listing 15-25.

Initializing Scalar Variables with ZeroInit

You can also use ZeroInit to initialize scalar variables to zero. For instance, given the declaration

static long x = 0;

you could use this initializer:

Initial([ZeroInit(8)])

Using ZeroInit here is optional, but it makes code emission simpler because you can easily tell which initializers

belong in .data and which belong in .bss. Just be careful about using ZeroInit to initialize doubles; use it only

if you’re sure the double’s initial value is 0.0 and not -0.0.

TEST THE TYPE CHECKER

To test the type checker, run:

$./test_compiler /path/to/your_compiler --chapter 15 --stage validate

Your compiler should successfully type check every test case in tests/chapter_15/valid, and it should fail on every
test case in tests/chapter_15/invalid_types. The invalid test cases cover all the type errors your compiler should
detect, including invalid pointer arithmetic and comparisons, invalid subscript expressions, casts to array type, and
attempts to return or assign to expressions of array type. They also cover a wide range of invalid initializers.

TACKY Generation

To accommodate pointer arithmetic and compound initializers, we’ll make a few changes to the TACKY IR. First,
since we changed how we represent initializers in the symbol table, we’ll make the corresponding change in
TACKY:

top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init* init_list)

We’ll also introduce a new instruction to support pointer arithmetic:

AddPtr(val ptr, val index, int scale, val dst)

We’ll use this instruction to add or subtract an integer from a pointer, but not to subtract one pointer from another.
The scale operand is the size, in bytes, of each element in the array that ptr points into. For example, if ptr is

an int *, the scale operand will be 4, since an int is 4 bytes. If ptr is an int (*)[3], a pointer to an array of

three int objects, then scale will be 12. The index operand tells us how many elements forward or back to

move from the base pointer. At runtime, the program will multiply index by scale to determine how many bytes

to add to the base pointer. It would be possible to implement pointer arithmetic using the existing TACKY
instructions for multiplication and addition. However, introducing a specialized AddPtr instruction here will help us

take advantage of the x64 architecture’s built-in support for pointer arithmetic.

We’ll introduce one more instruction to support compound initializers:

CopyToOffset(val src, identifier dst, int offset)

In this instruction, src is a scalar value, dst is the name of some variable of aggregate type, and offset

specifies the number of bytes between the start of dst and the position we should copy src to. It’s important to

note that dst designates an array, not a pointer to an array element. In other words, CopyToOffset doesn’t use

the value of dst; it uses dst to identify an object with a fixed location in memory. Because this instruction

operates directly on arrays, rather than pointers, it’s useful for array initialization but not for subscripting. In
Chapter 18, we’ll use it to initialize and update structures too.

Listing 15-26 shows the updated TACKY IR, with this chapter’s changes bolded.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init* init_list)
instruction = Return(val)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | DoubleToInt(val src, val dst)
 | DoubleToUInt(val src, val dst)
 | IntToDouble(val src, val dst)
 | UIntToDouble(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | GetAddress(val src, val dst)
 | Load(val src_ptr, val dst)
 | Store(val src, val dst_ptr)
 | AddPtr(val ptr, val index, int scale, val dst)
 | CopyToOffset(val src, identifier dst, int offset)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 15-26: Adding support for arrays to the TACKY IR

With these additions, we can implement every new operator and construct in this chapter. Let’s handle each of
them in turn.

Pointer Arithmetic

We’ll implement the pointer arithmetic expression <ptr> + <int> with an AddPtr instruction, as Listing 15-27

demonstrates.

<instructions for ptr>

p = <result of ptr>
<instructions for int>

i = <result of int>
result = AddPtr(p, i, <size of referenced type of ptr>)

Listing 15-27: Adding an integer to a pointer in TACKY

There are a couple of things to note about this listing. First, the pointer is always the first operand to the AddPtr

instruction and the integer is always the second, regardless of which was the first operand in the original
expression. Second, you need to calculate the size of the pointer’s referenced type at compile time, since the
scale operand is a constant rather than a TACKY value.

The TACKY to subtract an integer from a pointer is almost identical; we just negate the index before we include it
in AddPtr. We’ll convert <ptr> - <int> to the TACKY in Listing 15-28.

<instructions for ptr>

p = <result of ptr>
<instructions for int>

i = <result of int>
j = Unary(Negate, i)
result = AddPtr(p, j, <size of referenced type of ptr>)

Listing 15-28: Subtracting an integer from a pointer in TACKY

Subtracting one pointer from another works a bit differently. First, we calculate the difference in bytes, using an
ordinary Subtract instruction. Then, we divide this result by the number of bytes in one array element, to

calculate the difference between the two pointers in terms of array indices. In other words, we’ll convert <ptr1> -

<ptr2> to the TACKY in Listing 15-29.

<instructions for ptr1>

p1 = <result of ptr1>
<instructions for ptr2>

p2 = <result of ptr2>
diff = Binary(Subtract, p1, p2)
result = Binary(Divide, diff, <size of referenced type of ptr1>)

Listing 15-29: Subtracting two pointers in TACKY

We’ll calculate the size of the referenced type at compile time. You can use the type of either operand here, since
the type checker already validated that they both have the same type.

We’ll compare pointers exactly like arithmetic values, using the LessThan, LessOrEqual, GreaterThan, and

GreaterOrEqual operators.

Subscripting

According to the C standard, the subscript expression <ptr>[<int>] is equivalent to *(<ptr> + <int>). So, to

implement a subscript expression, we’ll generate the TACKY for pointer addition from Listing 15-27 but return a
DereferencedPointer(result) to the caller instead of a PlainOperand(result). Generating the right TACKY

here is simple, but understanding why it works, especially for multidimensional arrays, is a little trickier. To explore
this further, let’s work through the example in Listing 15-30.

int arr[3][4];
--snip--

return arr[i][j];

Listing 15-30: Returning the result of a subscript operator

Listing 15-31 shows the TACKY implementation of the return statement in this example.

❶ tmp0 = GetAddress(arr)
tmp1 = AddPtr(tmp0, i, 16)
tmp2 = AddPtr(tmp1, j, 4)

❷ tmp3 = Load(tmp2)
Return(tmp3)

Listing 15-31: Implementing Listing 15-30 in TACKY

First, we issue a GetAddress instruction to get a pointer to the first element in arr. Then, we issue two AddPtr

instructions to calculate a pointer to the array element at arr[i][j]. Finally, we use a Load instruction to read

that array element’s current value into a temporary variable, which we return. Listing 15-31 is efficient, without
any superfluous instructions. We saw earlier that array subscripting requires us to repeatedly get the addresses of
array elements, perform pointer arithmetic, and dereference the result. But in this listing, we get an array’s
address only once, at the beginning ❶, and we use a Load instruction to dereference a pointer only once, at the

end ❷. How does our strategy for TACKY generation produce this result?

Listing 15-32 gives the AST for the return statement in Listing 15-30. Let’s figure out how each subexpression in

this AST is converted to TACKY.

❶ Return(
 ❷ Subscript(
 ❸ AddrOf(
 ❹ Subscript(
 ❺ AddrOf(Var("arr")),
 Var("i")
)
),
 Var("j")
)
)

Listing 15-32: The AST for Listing 15-30

The AST includes the two AddrOf expressions we inserted during type checking. The inner one ❺ gets the

address of arr, and the outer one ❸ gets the address of arr[i]. Of course, arr, i, and j would have been

renamed during identifier resolution, but we’ll ignore that detail in this example (and in the later examples in this
chapter).

As always, we convert this AST to TACKY in postorder, processing each expression’s operands before we process
the expression itself. The first non-leaf AST node we process is the inner AddrOf expression, which takes the

address of arr ❺. We convert it to a GetAddress instruction:

tmp0 = GetAddress(arr)

Next, to implement the inner Subscript expression ❹, we emit an AddPtr instruction:

tmp1 = AddPtr(tmp0, i, 16)

The scale here is 16 because tmp0 points to a four-int array. The second part of a subscript operation is

dereferencing the result, so we’ll return DereferencedPointer(tmp1) to the caller.

In the caller, we process the outer AddrOf expression ❸. When we take the address of a dereferenced pointer, the

operations cancel out. Therefore, we return PlainOperand(tmp1) as the result of this expression, without

emitting any further instructions.

Now we process the outer Subscript expression ❷. Once again, we emit an AddPtr instruction:

tmp2 = AddPtr(tmp1, j, 4)

We then return DereferencedPointer(tmp2) to the caller. Because this Subscript expression appears in a

Return statement ❶, not an AddrOf or assignment expression, we lvalue convert this result. That means we emit

a Load instruction:

tmp3 = Load(tmp2)

Now tmp3 contains the lvalue-converted result of the whole expression, so we return it:

Return(tmp3)

As this example illustrates, when we index into a multidimensional array the dereference operations and implicit
address loads cancel each other out, without producing any extra instructions. Therefore, any subscript and
dereference operators work out to pure pointer arithmetic in TACKY, without any Load or Store instructions, until

we reach a scalar array element.

Compound Initializers

To process a compound initializer, we evaluate each scalar expression in the initializer and copy it to the
appropriate location in memory with a CopyToOffset instruction. For example, we’ll convert the initializer

long arr[3] = {1l, 2l, 3l};

to the following sequence of instructions:

CopyToOffset(1l, "arr", 0)
CopyToOffset(2l, "arr", 8)
CopyToOffset(3l, "arr", 16)

Since a long is 8 bytes, the offset increases by eight with each element. Even when we process a nested

initializer, we only need to copy the scalar values at the leaves to the correct memory locations. For example, we’ll
convert

long nested[2][3] = {{1l, 2l, 3l}, {4l, 5l, 6l}};

to:

CopyToOffset(1l, "nested", 0)
CopyToOffset(2l, "nested", 8)
CopyToOffset(3l, "nested", 16)
CopyToOffset(4l, "nested", 24)
CopyToOffset(5l, "nested", 32)
CopyToOffset(6l, "nested", 40)

This conversion is pretty straightforward, so I’ll omit the pseudocode for it. I will note, however, that you should
use the type information the type checker added to each compound initializer to calculate the offset of each
element.

Tentative Array Definitions

Recall that when we convert symbol table entries to StaticVariable constructs, we initialize tentatively defined

variables to zero. That goes for tentatively defined arrays too. You should use the new initializer we added in the
previous section, ZeroInit(n), to initialize an n-byte array to zero.

You can also use ZeroInit to initialize tentatively defined scalar variables. For consistency, you should only use

ZeroInit here if you’re using it to initialize explicitly defined scalar variables to zero in the type checker.

TEST THE TACKY GENERATION STAGE

To test out TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 15 --stage tacky

Assembly Generation

We won’t introduce any new assembly instructions in this chapter. We will, however, introduce a new memory
addressing mode, sometimes called indexed addressing. Right now, we can specify a memory operand with a base
address in a register and a constant offset, like 4(%rax). Using indexed addressing, we can store the base

address in one register and an index in another. We can also specify a scale, which must be one of the constants
1, 2, 4, or 8. Here’s an example of indexed addressing in action:

movl $5, (%rax, %rbx, 4)

To find the destination address of this movl instruction, the CPU will calculate RAX + RBX × 4. Then, it will store

the 4-byte constant 5 at this address. This addressing mode is convenient for array accesses. If RAX holds the

address of an array of int objects and RBX holds an index i into that array, the operand (%rax, %rbx, 4)

specifies the element at index i.

USING INDEXED ADDRESSING FOR GENERAL-PURPOSE ARITHMETIC

Although indexed addressing was designed for pointer arithmetic, it’s an efficient way to add and multiply ordinary
integers too. For example, the instruction

lea (%rax, %rbx, 2), %rax

produces the same result as these instructions:

imulq $2, %rbx
addq %rbx, %rax

Our compiler uses indexed addressing only for pointer operations, but other compilers frequently use it for
general-purpose integer arithmetic as well.

We’ll add a new operand to support indexed addressing:

Indexed(reg base, reg index, int scale)

We’ll also make a few other changes to the assembly AST to help with bookkeeping in later backend passes. For
starters, we’ll add another operand to represent aggregate objects that haven’t been assigned a fixed address yet:

PseudoMem(identifier, int)

The PseudoMem operand serves a similar purpose to the existing Pseudo operand; it lets us represent variables in

assembly before we’ve allocated registers or memory locations for them. The difference is that PseudoMem

represents aggregate objects, which we’ll always store in memory (even once we implement register allocation in
Part III). Pseudo, on the other hand, represents scalar objects that could potentially be stored in registers. The

PseudoMem operand also lets us specify a byte offset into the object in question. Note that the identifier in this

operand designates an aggregate object, not a pointer to an aggregate object.

Next, we’ll add a new assembly type to represent arrays. In assembly, we’ll treat an array like an undifferentiated
chunk of memory. We no longer need to track how many objects will be stored in that chunk of memory or what

those objects’ types will be. We do, however, care about its alignment and how much space it takes up, so we can
allocate stack space for it. Therefore, we’ll convert array types to a new ByteArray type:

assembly_type = Longword | Quadword | Double | ByteArray(int size, int alignment)

Finally, we’ll adjust how we represent static variables. As in earlier compiler passes, we’ll initialize a static variable
with a list of static_init values, instead of just one:

StaticVariable(identifier name, bool global, int alignment, static_init* init_list)

Listing 15-33 highlights all the changes to the assembly AST in this chapter.

program = Program(top_level*)
assembly_type = Longword | Quadword | Double | ByteArray(int size, int alignment)
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init* init_
 | StaticConstant(identifier name, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(operand src, operand dst)
 | MovZeroExtend(operand src, operand dst)
 | Lea(operand src, operand dst)
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)
 | Ret
unary_operator = Neg | Not | Shr
binary_operator = Add | Sub | Mult | DivDouble | And | Or | Xor
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Memory(reg, int) | Data(identifier)
 | PseudoMem(identifier, int) | Indexed(reg base, reg index, int scale)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP | BP
 | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7 | XMM14 | XMM15

Listing 15-33: The assembly AST with support for aggregate objects and indexed addressing

Once we’ve updated the assembly AST, we’ll update the conversion from TACKY to assembly.

Converting TACKY to Assembly

First, we’ll deal with TACKY variables of array type. To distinguish these from scalar values, we’ll convert them to
PseudoMem operands, instead of Pseudo operands. For example, if arr is an array, we’ll convert

GetAddress(Var("arr"), Var("dst"))

to:

Lea(PseudoMem("arr", 0), Pseudo("dst"))

Whenever we convert an aggregate TACKY Var to assembly, we’ll use an offset of zero, in order to designate the

whole object.

Next, let’s deal with the new CopyToOffset and AddPtr instructions. We’ll use a PseudoMem operand with the

appropriate offset to represent the destination of a CopyToOffset instruction. Therefore, we’ll convert

CopyToOffset(src, dst, offset)

to:

Mov(<src type>, src, PseudoMem(dst, offset))

We’ll implement AddPtr with an Lea instruction using the new Indexed operand. The details will vary depending

on the scale and index. First, let’s consider the case where the scale is 1, 2, 4, or 8. We’ll convert

AddPtr(ptr, index, scale, dst)

to Listing 15-34.

Mov(Quadword, ptr, Reg(AX))
Mov(Quadword, index, Reg(DX))
Lea(Indexed(AX, DX, scale), dst)

Listing 15-34: Implementing AddPtr in assembly

First, we copy ptr and index into registers; I’ve used RAX and RDX here, but anything other than the callee-

saved registers or our scratch registers will do. Then, we emit an Lea instruction to compute ptr + index *

scale and store the result in dst.

The scale of AddPtr may not be one of the four values that Indexed supports, especially if we’re indexing into a

multidimensional array instead of an array of scalar objects. In that case, we’ll use a separate instruction to
multiply the scale by the index, as Listing 15-35 illustrates.

Mov(Quadword, ptr, Reg(AX))
Mov(Quadword, index, Reg(DX))
Binary(Mult, Quadword, Imm(scale), Reg(DX))
Lea(Indexed(AX, DX, 1), dst)

Listing 15-35: Implementing AddPtr in assembly with a nonstandard scale

If the index operand is a constant, we can save an instruction by computing index * scale at compile time.

Then, we’ll generate just the two instructions in Listing 15-36.

Mov(Quadword, ptr, Reg(AX))
Lea(Memory(AX, index * scale), dst)

Listing 15-36: Implementing AddPtr with a constant index

Next, we’ll deal with pointer comparisons. We’ll implement these exactly like unsigned integer comparisons, using
the unsigned condition codes: A, AE, B, and BE.

Finally, let’s talk about the alignment requirements for arrays. There are a couple of cases where we need to
calculate an array’s alignment: when we convert a StaticVariable of array type from TACKY to assembly (a

StaticVariable in assembly includes an alignment field), and when we convert a frontend symbol table entry

of array type to the corresponding entry in the backend symbol table. The assembly type of each array in the
backend symbol table will be a ByteArray with the appropriate size and alignment. The size will be the size of the

array’s element type in bytes, multiplied by the number of elements. The rules for calculating alignment are a bit
less obvious.

If an array is smaller than 16 bytes, it has the same alignment as its scalar elements. For example, an array with
type int[2] and an array with type int[2][1] both have an alignment of 4. If an array-type variable is 16 bytes

or larger, its alignment is always 16, no matter what type its elements are. This requirement makes it possible to
use SSE instructions to operate on multiple array elements at once. We don’t use SSE instructions this way, but we
need to maintain ABI compatibility with other object files that might.

Note that this alignment requirement applies only to variables, not to nested arrays. For example, if we declare
the variable

int nested[3][5];

then nested needs to start at a 16-byte-aligned address because its total size is 60 bytes. But its first and second

elements start at 20 and 40 bytes, respectively, from the start of nested, so they aren’t 16-byte aligned, even

though each of these elements is also larger than 16 bytes.

Tables 15-1 through 15-5 summarize this chapter’s updates to this compiler pass; as usual, new constructs and
changes to the conversions for existing constructs are bolded.

Table 15-1: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

StaticVariable(name, global, t, init_list) StaticVariable(name, global, <alignmen

 init_list)

Table 15-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

AddPtr(ptr, index,
 scale, dst)

Constant index

Mov(Quadword, pt
Lea(Memory(<R>, i

Variable index and scale of 1, 2, 4, or 8 Mov(Quadword, pt
Mov(Quadword, in
Lea(Indexed(<R1>,

Variable index and other scale Mov(Quadword, pt
Mov(Quadword, in
Binary(Mult, Quadw
Lea(Indexed(<R1>,

CopyToOffset(src, dst, offset) Mov(<src type>, s

Table 15-3: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

LessThan Signed L

Unsigned, pointer, or double B

LessOrEqual Signed LE

Unsigned, pointer, or double BE

TACKY comparison Assembly condition code

GreaterThan Signed G

Unsigned, pointer, or double A

GreaterOrEqual Signed GE

Unsigned, pointer, or double AE

Table 15-4: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Var(identifier) Scalar value Pseudo(identifier)

Aggregate value PseudoMem(identifier, 0)

Table 15-5: Converting Types to Assembly

Source type Assembly type Alignment

Array(element,
size)

Variables
that are 16
bytes or
larger

ByteArray(<size of element> * size, 16)

16

Everything
else

ByteArray(<size of element> * size,
 <alignment of element>)

Same
alignment
as element

Next, we’ll replace PseudoMem operands with concrete addresses.

Replacing PseudoMem Operands

We can’t call this pass “pseudoregister replacement” anymore, because we’re replacing aggregate values too. Just
like we’ll allocate 4 bytes of stack space for a Longword and 8 bytes for a Quadword, we’ll allocate size bytes for

an object with type ByteArray(size, alignment). As usual, we’ll round down the array’s address to the

appropriate alignment.

Once an array has been assigned a memory address, we’ll replace any PseudoMem operands that refer to it. A

PseudoMem operand includes an offset from the start of the array, and the array’s concrete address includes an

offset from the address in RBP. We’ll add these two offsets to construct a new concrete memory address. For
example, suppose we encounter the following instruction:

Mov(Longword, Imm(3), PseudoMem("arr", 4))

Let’s say that we previously assigned arr the stack address -12(%rbp). We compute –12 + 4 to determine that

our new, concrete operand is -8(%rbp). We then rewrite the instruction accordingly:

Mov(Longword, Imm(3), Memory(BP, -8))

To access an array with static storage duration, we use the existing Data operand. If arr is a static array, we

convert

PseudoMem("arr", 0)

to:

Data("arr")

If we encountered PseudoMem("arr", n) for any nonzero n, we’d be in trouble, because the Data operand

doesn’t include an offset. Luckily, this situation won’t come up. At the moment, we use PseudoMem operands with

nonzero offsets only to initialize arrays with automatic storage duration, not to access arrays with static storage
duration.

RIP-relative addressing does support constant offsets—for example, foo+4(%rip) represents the address 4 bytes

past the symbol foo—but we can’t represent these offsets in the assembly AST yet. We’ll add them in Chapter 18

to support operations on structures.

Fixing Up Instructions

We didn’t introduce any new instructions, so we don’t need any new instruction fix-up rules. This pass must
recognize that the new Indexed operand specifies a memory address and therefore can’t be used where a

register or immediate value is required. Otherwise, we don’t need to change anything.

TEST THE ASSEMBLY GENERATION STAGE

To test that your compiler can generate assembly programs without throwing an error, run:

$./test_compiler /path/to/your_compiler --chapter 15 --stage codegen

Code Emission

We’ll make four small additions to this stage. First, we’ll emit the new Indexed operand. Second, we’ll emit the

static ZeroInit initializer as a .zero assembly directive. For example, we’ll emit ZeroInit(32) as:

 .zero 32

Third, if a variable’s only initializer is ZeroInit, we’ll write it to the BSS section instead of the data section.

And finally, when we define a static variable, we’ll emit each item in the associated initializer list. The file scope
declaration

int arr[4] = {1, 2, 3};

will ultimately be translated to the assembly in Listing 15-37.

 .globl arr
 .data
 .align 16
arr:
 .long 1
 .long 2
 .long 3
 .zero 4

Listing 15-37: Initializing a static array in assembly

Note that we initialize the last element of this array to zero because it wasn’t initialized explicitly.

Tables 15-6 through 15-8 summarize these additions to the code emission stage, with new constructs and changes
to the way we emit existing constructs bolded.

Table 15-6: Formatting Top-Level Assembly Constructs

Assembly top-level construct

StaticVariable(name, global,

 alignment,

 init_list)

Integer initialized to zero, or any variable initialized only w

All other variables

Table 15-7: Formatting Static Initializers

Static initializer Output

ZeroInit(n) .zero <n>

Table 15-8: Formatting Assembly Operands

Assembly operand Output

Indexed(reg1, reg2, int)

(<reg1>, <reg2>, <int>)

After making these changes, you can test out your compiler.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 15

Summary

You’ve just implemented your first aggregate type! In this chapter, you learned how to parse array declarators and
compound initializers. In the type checker, you made implicit conversions from arrays to pointers explicit and
analyzed the types of pointer arithmetic expressions. During TACKY generation, you relied on those conversions
and that type information to handle operations on pointers cleanly, regardless of whether they point to arrays or
scalar values. And on the backend, you added new, more flexible ways to address values in memory.

In the next chapter, you’ll implement three more integer types: char, signed char, and unsigned char. You’ll

also implement string literals, which can be either array initializers or char arrays that decay to pointers,

depending on context. Because you’ve already implemented integer types, pointers, and arrays, a lot of the
groundwork for the work you’ll do there is already in place.

Description

16

CHARACTERS AND STRINGS

In this chapter, you’ll implement three new integer types: char, signed char, and

unsigned char. These are the character types, which have a size of 1 byte. Because your

compiler already supports signed and unsigned integers in multiple sizes, you can add
these new types with minimal effort. You’ll also add support for string literals and character
constants. String literals play a weird role in C: sometimes they behave like compound
initializers, and at other times they represent constant char arrays. To support the latter

case, you’ll store constant strings alongside variables in the symbol table, and you’ll
introduce static constants as a top-level construct in TACKY.

At the end of the chapter, we’ll compile “Hello, World!” In Chapter 9, we compiled a version
of this program that printed one character at a time. This time, we’ll compile a more reasonable version that prints
out an entire string. Before we get started, I’ll give you a bit of background information: I’ll first touch on a few
notable differences between the character types and the other integers, then describe how strings work in C and
assembly.

Character Traits

The most surprising thing about the character types is that there are three of them. There’s no distinction between
int and signed int or between long and signed long, but the specifiers char and signed char refer to two

distinct types. Whether “plain” char is signed or unsigned is implementation-defined. We’ll follow the System V

ABI, which specifies that char is signed.

Even though char and signed char will behave identically in our implementation, the fact that they’re different

types has real consequences. For instance, Listing 16-1 is illegal because it declares the same global variable as
both a char and a signed char.

char c;
signed char c;

Listing 16-1: Conflicting file scope variable declarations with different character types

Declaring a global variable as both an int and a signed int, on the other hand, is perfectly legal, since both

declarations specify the same type.

The character types also follow slightly different type conversion rules than the other integer types. When a
character is used in a unary +, -, or ~ operation; a bitwise binary operation; or the usual arithmetic conversions,

it’s first converted to an int. These conversions are called the integer promotions. (If int can’t fit every value of

a particular character type, the character is converted to unsigned int instead. In our implementation, int can

hold every value of every character type, so this is a moot point. Of course, we can also ignore the typing rules for
operations we haven’t implemented, like unary + and the bitwise binary operations; I’m mentioning them here

only for the sake of completeness.)

There’s one more noteworthy difference between characters and other integers: in C17, there are no scalar
constants of character type. Tokens like 'a' all have type int, despite being called “character constants.” There

are constants with wide character types like char16_t, char32_t, and wchar_t, which are intended to represent

multibyte characters, but we won’t implement them.

NOTE

C23 introduces u8 character constants with type unsigned char. These represent 1-byte UTF-8 characters.

String Literals

Throughout this chapter, I’ll distinguish between string literals and strings. A string literal is an expression that
appears in the source code, like "abc". A string is an object that lives in memory—specifically, a null-terminated

char array. Some strings can’t be modified at runtime; I’ll call these constant strings, although this isn’t a

standard term.

You can use a string literal in two distinct ways. First, it can initialize an array of any character type:

signed char array[4] = "abc";

We’ll include a terminating null byte if there’s space and omit it if there isn’t. This coincides with our usual rules for
array initialization: if the initializer is shorter than the target object, we pad out the remainder with zeros.
Therefore, the previous declaration is equivalent to:

signed char array[4] = {'a', 'b', 'c', 0};

In Listing 16-2, on the other hand, we leave out the null byte in array1 because the array isn’t large enough to

include it. Therefore, array1 and array2 have identical contents.

char array1[3] = "abc";
char array2[3] = {'a', 'b', 'c'};

Listing 16-2: Using a string literal as an array initializer without the null byte

When a string literal appears anywhere other than as an array initializer, it designates a constant string. In this
context, string literals act a lot like other expressions of array type. They decay to pointers like other array
expressions, so you can subscript them or assign them to char * objects. The following declaration initializes the

variable str_ptr with the address of the first character in the constant string "abc":

char *str_ptr = "abc";

String literals are also lvalues, so they support the & operator. Here, we use this operator to take the address of

the constant string "abc", then assign it to array_ptr:

char (*array_ptr)[4] = &"abc";

The only difference from the previous example is that the string literal doesn’t undergo array decay. We end up
with a pointer to the whole string, with type char (*)[4], instead of a pointer to its first element, with type

char *. In both examples, we treat "abc" like any other expression of array type.

Unlike other arrays, constant strings are, well, constant. Attempting to modify them, as in Listing 16-3, produces
undefined behavior.

char *ptr = "abc";
ptr[0] = 'x';

Listing 16-3: Illegally modifying a constant string

Although this code compiles, it will probably throw a runtime error, because most C implementations—including
ours—store constant strings in read-only memory. (The const qualifier, which we won’t implement, informs the

compiler that an object cannot be modified. If Listing 16-3 were part of a real C program, it would be a good idea
to add a const qualifier to ptr.)

Let’s look at one more example, shown in Listing 16-4, to clarify the difference between string literals that
designate constant strings and string literals that initialize arrays.

char arr[3] = "abc";
arr[0] = 'x';

Listing 16-4: Legally modifying an array initialized from a string literal

Unlike Listing 16-3, this code is perfectly legal. In Listing 16-3, ptr points to the start of the constant string

"abc". In Listing 16-4, on the other hand, we use each character of the string literal "abc" to initialize one

element of arr, which is an ordinary, non-constant char array.

Both cases are easier to understand once we see how they translate to assembly.

Working with Strings in Assembly

We’ll use two different assembly directives to initialize strings in assembly. The .ascii and .asciz directives

both tell the assembler to write an ASCII string to the object file, much like .quad tells it to write a quadword.

The difference is that .asciz will include a terminating null byte and .ascii won’t. The three declarations

static char null_terminated[4] = "abc";
static char not_null_terminated[3] = "abc";
static char extra_padding[5] = "abc";

correspond to the assembly in Listing 16-5.

 .data
null_terminated:
 .asciz "abc"
not_null_terminated:
 .ascii "abc"
extra_padding:
 .asciz "abc"
 .zero 1

Listing 16-5: Initializing three static char arrays from string literals in assembly

Because null_terminated is long enough to accommodate a null byte, we initialize it with the .asciz directive.

We use .ascii to initialize not_null _terminated so we don’t go past the bounds of the array. Since

extra_padding needs two zero bytes to reach the correct length, we write a null-terminated string, then write an

extra zero byte with the .zero directive. Note that none of these variables needs an .align directive. The

character types are all 1-byte aligned, so arrays of characters are too. (Array variables containing 16 or more
characters are the exception; they’re 16-byte aligned, like all array variables that are 16 bytes or larger.)

The .ascii and .asciz directives initialize objects with static storage duration. Next, let’s consider Listing 16-6,

which initializes a non-static array.

int main(void) {
 char letters[6] = "abcde";
 return 0;
}

Listing 16-6: Using a string literal to initialize a non-static array

Listing 16-7 illustrates one way to initialize letters in assembly, by copying "abcde" onto the stack one byte at

a time.

movb $97, -8(%rbp)
movb $98, -7(%rbp)
movb $99, -6(%rbp)
movb $100, -5(%rbp)
movb $101, -4(%rbp)
movb $0, -3(%rbp)

Listing 16-7: Initializing a non-static char array in assembly

The characters 'a', 'b', 'c', 'd', and 'e' have ASCII values 97, 98, 99, 100, and 101, respectively. Assuming

letters starts at stack address -8(%rbp), the instructions in Listing 16-7 copy each character to the appropriate

location in the array. The b suffix in each movb instruction indicates that it operates on a single byte.

Listing 16-8 demonstrates a more efficient approach. We initialize the first 4 bytes of this string with a single movl

instruction, then use movb instructions to initialize the remaining 2 bytes.

movl $1684234849, -8(%rbp)
movb $101, -4(%rbp)
movb $0, -3(%rbp)

Listing 16-8: A more efficient way to initialize a non-static char array in assembly

We get 1684234849 when we interpret the first 4 bytes of our string as an integer. (I’ll discuss how we get this

integer in more detail later in the chapter.) This listing has the same effect as Listing 16-7, but it saves us a few
instructions.

Next, let’s look at constant strings. We write these to read-only sections of the object file, just like floating-point
constants. On Linux, we store constant strings in .rodata; on macOS, we store them in the .cstring section.

Consider the code fragment in Listing 16-9, which returns a pointer to the start of a constant string.

return "A profound statement.";

Listing 16-9: Returning a pointer to the start of a string

We’ll generate a unique label for this string, then define it in the appropriate section. Listing 16-10 gives the
resulting assembly.

 .section .rodata
.Lstring.0:
 .asciz "A profound statement."

Listing 16-10: Defining a constant string in assembly

Constant strings are always null-terminated, since they don’t need to fit into any particular array dimensions. Once
we’ve defined a constant string, we can access it with RIP-relative addressing, like any other static object. In this
particular example, we want to return the string’s address, so we’ll load it into RAX with this instruction:

leaq .Lstring.0(%rip), %rax

Finally, let’s see how to initialize a static pointer with a string literal, like in Listing 16-11.

static char *ptr = "A profound statement.";

Listing 16-11: Initializing a static char * from a string literal

We’ll define the string the same way as in Listing 16-10. However, we can’t load it into ptr with an lea

instruction. Because ptr is static, it must be initialized before the program starts. Luckily, the .quad directive

accepts labels as well as constants. Listing 16-12 illustrates how to initialize ptr with this directive.

 .data
 .align 8
ptr:
 .quad .Lstring.0

Listing 16-12: Initializing a static variable with the address of a static constant

The directive .quad .Lstring.0 tells the assembler and linker to write the address of .Lstring.0.

As a side note, it’s possible to initialize any static pointer this way, not just pointers to strings. While our
implementation doesn’t accept expressions like &x as static initializers, a more complete compiler might translate

static int x = 10;
static int *ptr = &x;

into:

 .data
 .align 4
x:
 .long 10
 .align 8
ptr:
 .quad x

At this point, you know enough about how to use strings in C and assembly to get started. The first step is to
extend the lexer to recognize string literals and character constants.

The Lexer

You’ll add three new tokens in this chapter:

char A keyword, used to specify character types

Character constants Individual characters, like 'a' and '\n'

String literals Sequences of characters, like "Hello, World!"

A character constant consists of one character (like a) or escape sequence (like \n) wrapped in single quotes.

Section 6.4.4.4 of the C standard defines a set of escape sequences to represent special characters. Table 16-1
lists these escape sequences and their ASCII codes.

Table 16-1: Escape Sequences for Special Characters

Escape sequence Description ASCII code

\' Single quote 39

\" Double quote 34

\? Question mark 63

\\ Backslash 92

Escape sequence Description ASCII code

\a Audible alert 7

\b Backspace 8

\f Form feed 12

\n New line 10

\r Carriage return 13

\t Horizontal tab 9

\v Vertical tab 11

The new line, single quote ('), and backslash (\) characters can’t appear on their own as character constants and

must be escaped. Any other character can be used directly as a character constant as long as it’s in the source
character set, the complete set of characters that can appear in a source file.

The source character set is implementation-defined, but it has to include at least the basic source character set,
which is specified in section 5.2.1 of the C standard. In our implementation, the source character set includes all
the printable ASCII characters, plus the required control characters: the new line, horizontal tab, vertical tab, and
form feed. You don’t need to explicitly reject characters outside of this set; you can simply assume that they never
show up in source files.

Some of the characters in Table 16-1, like the audible alert (\a) and backspace (\b), aren’t in our source character

set, so they can be represented only by escape characters. Other characters, including the double quote ("),

question mark (?), form feed, and horizontal and vertical tabs, are in the source character set; they can be

escaped in character constants, but they don’t have to be. For example, the character constants '?' and '\?' are

equivalent; they both represent the question mark character. The new line, single quote, and backslash are all in
the source character set but still need to be escaped.

We can recognize character constants with the truly egregious regular expression in Listing 16-13.

'([^'\\\n]|\\['"?\\abfnrtv])'

Listing 16-13: The regular expression to recognize a character constant

Let’s break this down. The first alternative in the parenthesized expression, the character class [^'\\\n],

matches any single character except for a single quote, backslash, or new line. We have to escape the backslash,

because it’s a control character in PCRE regexes as well as in C string literals. Similarly, we use the escape
sequence \n in this regex to match a literal new line character. The second alternative, \\['"?\\abfnrtv],

matches an escape sequence. The first \\ matches a single backslash, and the character class that follows

includes every character that can follow the backslash in an escape sequence. The whole thing must start and end
with single quotes.

A string literal consists of a possibly empty sequence of characters and escape sequences, wrapped in double
quotes. A single quote can appear on its own in a string literal, but a double quote must be escaped. Listing 16-14
shows the regular expression to recognize a string literal.

"([^"\\\n]|\\['"\\?abfnrtv])*"

Listing 16-14: The regular expression to recognize a string literal

Here, [^"\\\n] matches any single character except a double quote, backslash, or new line. Like in Listing 16-13,

the second alternative matches every escape sequence. We apply the * quantifier to the whole parenthesized

expression because it can repeat zero or more times, and we delimit it all with double quotes.

After lexing a string literal or character token, you need to unescape it. In other words, you need to convert every
escape sequence in that token to the corresponding ASCII character. You can do that either now or in the parser.

The standard defines a few other types of string literals and character constants that we won’t implement. In
particular, we won’t support hexadecimal escape sequences like \xff, octal escape sequences like \012, or

multicharacter constants like 'ab'. We also won’t support any of the types or constants used for non-ASCII

encodings, like wide character types, wide string literals, or UTF-8 string literals.

TEST THE LEXER

To test out the lexer, run:

$./test_compiler /path/to/your_compiler --chapter 16 --stage lex

Your lexer should reject every test case in tests/chapter_16/invalid_lex. These tests include invalid escape
sequences, unescaped special characters, and unterminated character constants and string literals. The lexer
should successfully process all the other test cases for this chapter.

The Parser

We’ll extend the AST definition in three ways. First, we’ll add char, signed char, and unsigned char types.

Second, we’ll add a new kind of expression to represent string literals. Third, we’ll extend the const AST node to

represent constants with character types:

const = ConstInt(int) | ConstLong(int) | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double) | ConstChar(int) | ConstUChar(int)

These new constant constructors are a little unusual because they don’t correspond to constant literals that
actually appear in C programs. Character constants like 'a' have type int, so the parser will convert them to

ConstInt nodes; it won’t use the new ConstChar and ConstUChar constructors at all. But we’ll need these

constructors later, when we pad out partially initialized character arrays during type checking and when we
initialize character arrays in TACKY.

Listing 16-15 gives the complete AST definition, with this chapter’s changes bolded.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, initializer? init,
 type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 type fun_type, storage_class?)
initializer = SingleInit(exp) | CompoundInit(initializer*)
type = Char | SChar | UChar | Int | Long | UInt | ULong | Double
 | FunType(type* params, type ret)
 | Pointer(type referenced)
 | Array(type element, int size)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | String(string)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)

 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
 | Dereference(exp)
 | AddrOf(exp)
 | Subscript(exp, exp)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int) | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double) | ConstChar(int) | ConstUChar(int)

Listing 16-15: The abstract syntax tree with character types, character constants, and string literals

It’s tempting to extend const, rather than exp, to include string literals, but string literals are distinct enough

from other kinds of constants that it’s easiest to define them separately. For example, the type checker will need
to handle them differently than other constants when it processes initializers.

Parsing Type Specifiers

We’ll need to extend parse_type, which converts a list of type specifiers into a type AST node, to handle

character types. I won’t provide the pseudocode for this, because the logic is pretty simple. If char appears in a

declaration by itself, it specifies the plain char type. If it appears with the unsigned keyword, it specifies the

unsigned char type. If it appears with the signed keyword, it specifies the signed char type. As usual, the

order of type specifiers doesn’t matter. It’s illegal for char to appear in a declaration with any other type specifier.

Parsing Character Constants

The parser should convert each character constant token to a ConstInt with the appropriate ASCII value. It

should convert the token 'a' to ConstInt(97), '\n' to ConstInt(10), and so on.

Parsing String Literals

The parser should unescape string literals if the lexer hasn’t done that already. Each character in the string literal,
including characters represented by escape sequences in the original source code, must be represented as a single
byte internally. Otherwise, we’ll calculate inaccurate string lengths in the type checker and initialize arrays with
incorrect values at runtime.

Adjacent string literal tokens should be concatenated into a single String AST node. For example, the parser

should convert the statement

return "foo" "bar";

to the AST node Return(String("foobar")).

Putting It All Together

Listing 16-16 defines the complete grammar, with this chapter’s changes bolded.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <declarator> ["=" <initializer>] ";"
<function-declaration> ::= {<specifier>}+ <declarator> (<block> | ";")
<declarator> ::= "*" <declarator> | <direct-declarator>
<direct-declarator> ::= <simple-declarator> [<declarator-suffix>]
<declarator-suffix> ::= <param-list> | {"[" <const> "]"}+
<param-list> ::= "(" "void" ")" | "(" <param> {"," <param>} ")"
<param> ::= {<type-specifier>}+ <declarator>
<simple-declarator> ::= <identifier> | "(" <declarator> ")"
<type-specifier> ::= "int" | "long" | "unsigned" | "signed" | "double" | ❶ "char"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<initializer> ::= <exp> | "{" <initializer> {"," <initializer>} [","] "}"
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" <exp> ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <unary-exp> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<unary-exp> ::= <unop> <unary-exp>
 | "(" {<type-specifier>}+ [<abstract-declarator>] ")" <unary-exp>
 | <postfix-exp>
<postfix-exp> ::= <primary-exp> {"[" <exp> "]"}
<primary-exp> ::= <const> | <identifier> | "(" <exp> ")" | ❷ {<string>}+
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<abstract-declarator> ::= "*" [<abstract-declarator>]
 | <direct-abstract-declarator>
<direct-abstract-declarator> ::= "(" <abstract-declarator> ")" {"[" <const> "]"}
 | {"[" <const> "]"}+
<unop> ::= "-" | "~" | "!" | "*" | "&"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"

 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong> | <double> | ❸ <char>
<identifier> ::= ? An identifier token ?
<string> ::= ? A string token ? ❹
<int> ::= ? An int token ?
<char> ::= ? A char token ? ❺
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?
<double> ::= ? A floating-point constant token ?

Listing 16-16: The grammar with character types, character constants, and string literals

The bolded additions to the grammar correspond to the three changes to the parser we just discussed. The
grammar now includes a "char" type specifier ❶ and <string> ❹ and <char> tokens ❺. We recognize a

sequence of one or more string literals as a primary expression ❷ and a character token as a constant ❸.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 16 --stage parse

The Type Checker

For the most part, the type checker can treat characters like the other integer types. They follow the same typing
rules and support the same operations. The integer promotions are the one exception to this pattern, so we’ll
implement them in this section. We’ll also introduce static initializers for the character types.

String literals are more challenging to type check, particularly when they appear in initializers. We’ll need to track
whether each string should be used directly or converted to a pointer and which strings should be terminated with
null bytes. We’ll add a few new constructs to the symbol table to represent each of these cases.

Characters

We’ll promote character types to int as part of the usual arithmetic conversions. Listing 16-17 shows how to

perform this promotion in get_common_type.

get_common_type(type1, type2):
 if type1 is a character type:

 type1 = Int
 if type2 is a character type:
 type2 = Int
 --snip--

Listing 16-17: Applying the integer promotions during the usual arithmetic conversions

After promoting the types of both operands, we’ll find their common type as usual. We’ll also promote the
operands of the unary - and ~ operations. Listing 16-18 demonstrates how to promote a negated operand.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Unary(Negate, inner) ->
 typed_inner = typecheck_and_convert(inner, symbols)
 inner_t = get_type(typed_inner)
 if inner_t is a pointer type:
 fail("Can't negate a pointer")
 ❶ if inner_t is a character type:
 typed_inner = convert_to(typed_inner, Int)
 unary_exp = Unary(Negate, typed_inner)
 ❷ return set_type(unary_exp, get_type(typed_inner))

Listing 16-18: Applying the integer promotions to a negation expression

First, we make sure the operand isn’t a pointer (we introduced this validation in Chapter 14). Then, we apply the
integer promotions. We check whether the operand is one of the character types ❶; if it is, we convert it to Int

and then negate the promoted value. The result of the expression has the same type as its promoted operand ❷.
We’ll handle ~ the same way, so I won’t provide the pseudocode for that here.

We’ll always recognize characters as integer types during type checking. For example, we’ll accept characters as
operands in ~ and % expressions and as indices in pointer arithmetic. Because all integer types are also arithmetic

types, we’ll permit implicit conversions between the character types and any other arithmetic type in
convert_by_assignment.

We’ll add two static initializers for the character types. Listing 16-19 gives the updated definition of static_init.

static_init = IntInit(int) | LongInit(int) | UIntInit(int) | ULongInit(int)
 | CharInit(int) | UCharInit(int)
 | DoubleInit(double) | ZeroInit(int bytes)

Listing 16-19: Adding the static initializers for character types

Since signed char and plain char are both signed types, we’ll use CharInit to initialize both of them. We’ll

convert each initializer to the type it initializes according to the type conversion rules we covered in Chapters 11
and 12. For example, if an unsigned char is initialized with a value greater than 255, we’ll reduce its value

modulo 256.

Finally, we’ll make one small, straightforward update to the way we type check compound initializers for non-static
arrays. (We’ll handle string literals that initialize arrays as a separate case in the next section.) In the previous
chapter, we dealt with partly initialized arrays by padding out the remaining elements with zeros. I suggested
writing a zero_initializer helper function to generate these zeroed-out initializers. Now we can extend that

function to emit ConstChar and ConstUChar to zero out elements of character type.

String Literals in Expressions

When we encounter a string literal in an expression, rather than in an array initializer, we’ll annotate it as a char

array of the appropriate size. Listing 16-20 shows how to handle string literals in typecheck_exp.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | String(s) -> return set_type(e, Array(Char, length(s) + 1))

Listing 16-20: Type checking a string literal

Note that the array size accounts for a terminating null byte. The type checker already handles implicit conversions
from arrays to pointers in typecheck_and_convert. Now typecheck_and_convert will convert string literals to

pointers too, since they also have array type.

Next, we’ll update the type checker to recognize String expressions as lvalues, along with variables, subscript

operators, and dereference expressions. This allows programs to take their address with the & operator.

That takes care of string literals in ordinary expressions; now we’ll type check string literals in initializers.

String Literals Initializing Non-static Variables

Usually, we type check SingleInit constructs with typecheck_and_convert, which converts values of array

type to pointers. This approach correctly handles string literals that initialize pointers. But when a string literal is
used to initialize an array, we’ll type check it differently. Listing 16-21 shows how to handle this case.

typecheck_init(target_type, init, symbols):
 match target_type, init with
 | Array(elem_t, size), SingleInit(String(s)) ->
 ❶ if elem_t is not a character type:

 fail("Can't initialize a non-character type with a string literal")
 ❷ if length(s) > size:
 fail("Too many characters in string literal")
 ❸ return set_type(init, target_type)
 | --snip--

Listing 16-21: Type checking a string literal that initializes an array

First, we make sure the target type is an array of characters, since string literals can’t initialize arrays of any other
type ❶. Then, we validate that the string isn’t too long to initialize the array ❷. Finally, we annotate the initializer
with the target type ❸. We’ll use this annotation later to figure out how many null bytes to append to the string.

String Literals Initializing Static Variables

Our final task is to process string literals that initialize static variables. We’ll need to represent two new kinds of
initial values in the symbol table: ASCII strings (which correspond to the .ascii and .asciz directives) and the

addresses of static objects (which correspond to directives like .quad .Lstring.0). We’ll update static_init

once again to include both kinds of initializers. Listing 16-22 gives the new definition with these two additions
bolded.

static_init = IntInit(int) | LongInit(int)
 | UIntInit(int) | ULongInit(int)
 | CharInit(int) | UCharInit(int)
 | DoubleInit(double) | ZeroInit(int bytes)
 | StringInit(string, bool null_terminated)
 | PointerInit(string name)

Listing 16-22: Adding the static initializers for strings and pointers

StringInit defines an ASCII string initializer. We’ll use it to initialize both constant strings and character arrays.

The null_terminated argument specifies whether to include a null byte at the end; we’ll use this argument to

choose between the .ascii and .asciz directives during code emission. PointerInit initializes a pointer with

the address of another static object.

We’ll also start tracking constant strings in the symbol table. Listing 16-23 gives the updated definition of
identifier_attrs, which includes constants.

identifier_attrs = FunAttr(bool defined, bool global)
 | StaticAttr(initial_value init, bool global)
 | ConstantAttr(static_init init)
 | LocalAttr

Listing 16-23: Tracking constants in the symbol table

Unlike a variable, which may be uninitialized, tentatively initialized, or initialized with a list of values, a constant is
initialized with a single value. It also doesn’t need a global flag, since we’ll never define a global constant.

Now that we’ve extended static_init and identifier_attrs, let’s discuss how to process string initializers for

both character arrays and char pointers.

Initializing a Static Array with a String Literal

If a string literal initializes a static array, we first validate the array’s type: we make sure that the array elements
have character type and that the array is long enough to contain the string. (This is the same validation we
performed for non-static arrays back in Listing 16-21.) We then convert the string literal to a StringInit

initializer, setting the null_terminated flag if the array has enough space for the terminating null byte. We add

ZeroInit to the initializer list if we need to pad it out with additional null bytes. For example, we’ll convert the

declaration

static char letters[10] = "abc";

to the symbol table entry in Listing 16-24.

name="letters"
type=Array(Char, 10)
attrs=StaticAttr(init=Initial([StringInit("abc", True), ZeroInit(6)]),
 global=False)

Listing 16-24: The symbol table entry for an array initialized from a string literal

This entry initializes letters with the null-terminated string "abc", followed by 6 bytes of zeros.

Initializing a Static Pointer with a String Literal

If a string literal initializes a static variable of type char *, we create two entries in the symbol table. The first

defines the string itself, and the second defines the variable that points to that string. Let’s look at an example:

static char *message = "Hello!";

First, we generate an identifier for the constant string "Hello!"; let’s say this identifier is "string.0". Then, we

add the entry shown in Listing 16-25 to the symbol table.

name="string.0"
type=Array(Char, 7)
attrs=ConstantAttr(StringInit("Hello!", True))

Listing 16-25: Defining a constant string in the symbol table

This identifier must be globally unique and must be a syntactically valid label in assembly. In other words, it
should follow the same constraints as the identifiers we generate for floating-point constants. Because Listing 16-
25 defines a constant string, we use the new ConstantAttr construct, and we’ll initialize it with the null-

terminated string "Hello!".

Then, when we add message itself to the symbol table, we initialize it with a pointer to the symbol we just added.

Listing 16-26 shows the symbol table entry for message.

name="message"
type=Pointer(Char)
attrs=StaticAttr(init=Initial([PointerInit("string.0")]), global=False)

Listing 16-26: Defining a static pointer to a string in the symbol table

If a string literal initializes a pointer to a type other than char, we throw an error. (Note that typecheck_init

already catches this error in the non-static case.) Even using a string literal to initialize a signed char * or

unsigned char * is illegal. This is in keeping with the ordinary rules for type conversions: string literals have

type char *, and we can’t implicitly convert from one pointer type to another. By contrast, a string literal can

initialize an array of any character type because it’s legal to implicitly convert each individual character from one
character type to another.

At this point, we have symbol table entries for all the strings that appear in static initializers. During TACKY
generation, we’ll add all the other constant strings in the program to the symbol table too.

TEST THE TYPE CHECKER

To test the type checker, run:

$./test_compiler /path/to/your_compiler --chapter 16 --stage validate

Type checking should fail for all the test cases in tests/chapter_16/invalid _types. These tests include string literals
that initialize arrays of non-character type, assignments to string literals, and implicit conversions between pointers

to different character types. Your type checker should successfully process all the test cases in
tests/chapter_16/valid.

TACKY Generation

When we convert a program to TACKY, we can treat characters exactly like all the other integers. In particular,
we’ll implement casts to and from character types with the existing type conversion instructions. For example,
we’ll implement casts from double to unsigned char with the DoubleToUInt instruction, and we’ll implement

casts from char to int with SignExtend. Processing string literals, however, requires a bit more work.

String Literals as Array Initializers

In the type checker, we dealt with string literals that initialized static arrays. Now we’ll do the same for arrays with
automatic storage duration.

As we saw earlier in the chapter, there are two options here. The simpler option is to initialize these arrays one
character at a time. The more efficient option is to initialize entire 4- or 8-byte chunks at once. Either way, we’ll
copy the string into the array with a sequence of CopyToOffset instructions.

Let’s walk through both options. We’ll use the initializer from Listing 16-6, reproduced here, as a running example:

int main(void) {
 char letters[6] = "abcde";
 return 0;
}

When we first looked at this example, we learned that the ASCII values of 'a', 'b', 'c', 'd', and 'e' are 97,

98, 99, 100, and 101. Using the simple one-byte-at-a-time approach, we’ll initialize letters with the TACKY

instructions in Listing 16-27.

CopyToOffset(Constant(ConstChar(97)), "letters", 0)
CopyToOffset(Constant(ConstChar(98)), "letters", 1)
CopyToOffset(Constant(ConstChar(99)), "letters", 2)
CopyToOffset(Constant(ConstChar(100)), "letters", 3)
CopyToOffset(Constant(ConstChar(101)), "letters", 4)
CopyToOffset(Constant(ConstChar(0)), "letters", 5)

Listing 16-27: Initializing a non-static array in TACKY, one byte at a time

Using the more efficient approach, we’ll initialize letters with a single 4-byte integer, followed by 2 individual

bytes:

CopyToOffset(Constant(ConstInt(1684234849)), "letters", 0)
CopyToOffset(Constant(ConstChar(101)), "letters", 4)
CopyToOffset(Constant(ConstChar(0)), "letters", 5)

To come up with the integer 1684234849, we take the 4 bytes 97, 98, 99, and 100 and interpret them as a single

little-endian integer. In hexadecimal, these bytes are 0x61, 0x62, 0x63, and 0x64. The first byte in little-endian

integers is least significant, so interpreting this byte sequence as an integer gives us 0x64636261, or 1684234849

in decimal. Whatever language you’re implementing your compiler in, it likely has utility functions to manipulate
byte buffers and interpret them as integers, so you won’t need to implement this fiddly logic yourself.

To initialize eight characters at once, we’ll use a ConstLong instead of a ConstInt. We need to be careful not to

overrun the bounds of the array we’re initializing; in this example, it would be incorrect to initialize letters with

two 4-byte integers, because it would clobber neighboring values.

It’s up to you which of these approaches to use; they’re both equally correct. In either case, make sure to initialize
the correct number of null bytes at the end of the string. In the type checker, you annotated every initializer,
including string literals, with type information. Now you’ll use that type information to figure out how many null
bytes to include. If a string literal is longer than the array it initializes, copy in only as many characters as the
array can hold. In other words, leave off the null byte. If the string literal is too short, copy zeros into the rest of
the array.

String Literals in Expressions

When we encounter a string literal outside of an array initializer, we’ll add it to the symbol table as a constant
string. Then, we’ll use its identifier as a TACKY Var. Let’s revisit Listing 16-9, which returns a pointer to the first

character in a string:

return "A profound statement.";

The parser and type checker transform this into the following AST node:

Return(AddrOf(String("A profound statement.")))

To convert this AST node to TACKY, we first define "A profound statement." in the symbol table:

name="string.1"
type=Array(Char, 22)
attrs=ConstantAttr(StringInit("A profound statement.", True))

This entry is no different from the constant strings we defined in the type checker. It has a globally unique,
automatically generated label. It’s a char array that’s just large enough to contain the whole string, including the

terminating null byte. It’s initialized with the new ConstantAttr construct because we’ll ultimately store it in

read-only memory.

Now we can refer to the identifier we just defined—string.1, in this example—to load the string’s address:

GetAddress(Var("string.1"), Var("tmp2"))
Return(Var("tmp2"))

In short, we use string.1 like any other symbol of array type.

Top-Level Constants in TACKY

We need to account for all these new constant strings when we convert entries in the symbol table to top-level
TACKY definitions. The assembly AST already has a top-level constant construct. Now we’ll add the corresponding
construct to TACKY:

top_level = --snip-- | StaticConstant(identifier, type t, static_init init)

When we’re generating top-level TACKY definitions from the symbol table, we’ll generate a StaticConstant for

every constant in the symbol table, just like we generate a StaticVariable for each static variable. Make sure to

convert function definitions to TACKY before traversing the symbol table; otherwise, you’ll miss the constant
strings that get added to the symbol table during this pass.

Listing 16-28 summarizes the TACKY IR, with this chapter’s addition bolded.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init* init_list)
 | StaticConstant(identifier, type t, static_init init)
instruction = Return(val)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | DoubleToInt(val src, val dst)
 | DoubleToUInt(val src, val dst)
 | IntToDouble(val src, val dst)
 | UIntToDouble(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | GetAddress(val src, val dst)

 | Load(val src_ptr, val dst)
 | Store(val src, val dst_ptr)
 | AddPtr(val ptr, val index, int scale, val dst)
 | CopyToOffset(val src, identifier dst, int offset)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 16-28: Adding static constants to the TACKY IR

At this point, your TACKY generation pass should be good to go: it can handle individual characters, string literals
that are implicitly converted to pointers, and string literals that initialize arrays.

TEST THE TACKY GENERATION STAGE

To test out TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 16 --stage tacky

Assembly Generation

We won’t do anything too fancy in this stage. First, we’ll convert operations on individual characters to assembly.
This will require a few changes to the assembly AST. Then, we’ll handle TACKY StaticConstant constructs and

add constant strings to the backend symbol table.

Operations on Characters

Most instructions support 1-byte operands as well as longwords and quadwords. A b suffix, like in the instructions

movb and andb, indicates that an instruction operates on a single byte. We’ll introduce a new Byte assembly type

to represent this new operand size:

assembly_type = Byte | --snip--

We’ll convert the char, signed char, and unsigned char types to Byte. The general-purpose registers have 1-

byte aliases too; for example, %al is the 1-byte alias for RAX. Luckily, our code emission pass already supports

these aliases.

Aside from adding the Byte type, we’ll need to convert to and from character types correctly. You can zero extend

a 1-byte value to a wider type with the movz instruction. This instruction takes a two-letter suffix, indicating the

types of the source and destination. The movzbl instruction extends a byte to a longword, and movzbq extends a

byte to a quadword. (You can also use movzwl or movzwq to extend a 2-byte word to a larger type, but we don’t

use 2-byte operands.) We’ll represent movz with the existing MovZeroExtend instruction in the assembly AST, but

we’ll add the types of both operands:

MovZeroExtend(assembly_type src_type, assembly_type dst_type, operand src, operand dst)

If src_type is Byte, we’ll ultimately emit a movz instruction with the correct suffix. If src_type is Longword,

we’ll rewrite this to an ordinary mov instruction during the fix-up pass, just like in earlier chapters.

To sign extend a byte to a larger type, we’ll use the existing Movsx instruction. This instruction also takes a suffix

to specify the types of both the source and the destination: movsbl extends a byte to a longword, movsbq

extends a byte to a quadword, and movslq extends a longword into a quadword. We’ll add type information to

this instruction in the assembly AST too:

Movsx(assembly_type src_type, assembly_type dst_type, operand src, operand dst)

You can truncate a larger integer to a single byte with a movb instruction, just like you can truncate a quadword to

a longword with movl. Note that when you copy a value to a register with the movb instruction, the register’s

upper bytes aren’t zeroed out. This isn’t a problem; whether we’re operating on a single byte or a longword, we
use only the part of the register that holds the value itself, and we ignore the register’s upper bytes.

CLANG GOES ROGUE

There is one case where the contents of a register’s upper bytes might matter: when you’re calling a function that
was compiled with Clang. If a function argument is narrower than 4 bytes, Clang always has the caller sign extend
or zero extend it to 4 bytes. Then, in the callee, it assumes the argument has been extended to 4 bytes already.

This assumption violates the System V ABI, which doesn’t require callers to extend narrow function arguments.
Take the following C code:

int accept_int(int i);

int accept_char(char c) {
 return accept_int(c);
}

When a function calls accept_char, it passes the parameter c in the least significant byte of EDI, which has the

alias %dil. Then, when accept_char calls accept_int, it passes the 4-byte representation of c’s value in EDI. If

we’re strictly following the ABI, we assume that the 3 highest bytes of EDI are garbage at the start of
accept_char, so we explicitly sign extend c before passing it to accept_int:

movsbl %dil, %edi
call accept_int

But Clang doesn’t strictly follow the ABI: when optimizations are enabled, it leaves out the movsbl instruction.

This means that if accept_char’s caller didn’t already sign extend c, we might get the wrong result! This isn’t

just a hypothetical concern: ICC, Intel’s legacy C compiler, doesn’t extend narrow arguments, so it’s not ABI-
compatible with Clang. (Intel’s newer C compiler, which is built on Clang and LLVM, doesn’t have this problem.)

GCC takes the most conservative approach: it has callers extend narrow arguments but doesn’t assume they’ve
been extended in the callee. It therefore interoperates correctly with both ICC and Clang.

In Clang’s defense, the ABI isn’t very explicit on this point. Ideally, the maintainers of the System V ABI would
either specifically permit what Clang is doing or specifically forbid it.

So where does that leave us? We’ll follow ICC and not bother to extend narrow arguments. But if you want to
make your compiler more robust, you can take GCC’s approach: when you generate assembly code to call a
function, zero extend any unsigned char arguments and sign extend any char or signed char arguments.

I learned about this ugly corner case from Peter Cordes’s excellent answer on Stack Overflow (https://
stackoverflow.com/a/36760539). His answer was written in 2016; as of spring 2024, neither the ABI nor Clang’s
behavior has changed.

Finally, let’s consider how to convert between double and the character types. There’s no assembly instruction to

convert double directly to a 1-byte integer or vice versa. Instead, we’ll convert to or from int as an intermediate

step. To convert a double to any character type, we’ll first convert it to an int and then truncate it, as Listing 16-

29 demonstrates.

Cvttsd2si(Longword, src, Reg(AX))
Mov(Byte, Reg(AX), dst)

https://stackoverflow.com/a/36760539

Listing 16-29: Converting a double to a character type

Listing 16-30 gives the assembly to convert an unsigned char to a double. We’ll zero extend it to an int, then

convert the result to a double.

MovZeroExtend(Byte, Longword, src, Reg(AX))
Cvtsi2sd(Longword, Reg(AX), dst)

Listing 16-30: Converting an unsigned char to a double

And to convert either signed character type to a double, we’ll sign extend it to an int first, as Listing 16-31

demonstrates.

Movsx(Byte, Longword, src, Reg(AX))
Cvtsi2sd(Longword, Reg(AX), dst)

Listing 16-31: Converting a char or signed char to a double

Next, we’ll deal with our second task: converting top-level constants from TACKY to assembly.

Top-Level Constants

Processing a TACKY StaticConstant is extremely simple: we just convert it to an assembly StaticConstant.

You’ll also need to convert each constant string in the symbol table to an equivalent entry in the backend symbol
table, like you do for variables. When you add a constant string to the backend symbol table, set its is_static

attribute to True. If your backend symbol table includes an is_constant attribute, set this to True as well.

(Remember that is_constant was an optional addition in Chapter 13; it tells us when to use local labels during

code emission.)

The Complete Conversion from TACKY to Assembly

Listing 16-32 shows this chapter’s additions to the assembly AST.

program = Program(top_level*)
assembly_type = Byte | Longword | Quadword | Double | ByteArray(int size, int alignment)
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init* init_
 | StaticConstant(identifier name, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(assembly_type src_type, assembly_type dst_type, operand src, operand d
 | MovZeroExtend(assembly_type src_type, assembly_type dst_type, operand src,

 operand dst)
 | Lea(operand src, operand dst)
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)
 | Ret
unary_operator = Neg | Not | Shr
binary_operator = Add | Sub | Mult | DivDouble | And | Or | Xor
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Memory(reg, int) | Data(identifier)
 | PseudoMem(identifier, int) | Indexed(reg base, reg index, int scale)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP | BP
 | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7 | XMM14 | XMM15

Listing 16-32: The assembly AST with byte operands

Tables 16-2 through 16-5 summarize the latest updates to the conversion from TACKY to assembly, with new
constructs and changes to the conversions for existing constructs bolded.

Table 16-2: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

StaticConstant(name, t, init) StaticConstant(name, <alignment of t>, init)

Table 16-3: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

ZeroExtend(src, dst) MovZeroExtend(<src type>, <dst type>, src,

dst)

SignExtend(src, dst) Movsx(<src type>, <dst type>, src, dst)

TACKY instruction Assembly instructions

Truncate(src, dst) Mov(<dst type>, src, dst)

IntToDouble(src,

dst)

char or signed
char

Movsx(Byte, Longword, src, Reg(<R>))

Cvtsi2sd(Longword, Reg(<R>), dst)

int or long Cvtsi2sd(<src type>, src, dst)

DoubleToInt(src,

dst)

char or signed
char

Cvttsd2si(Longword, src, Reg(<R>))

Mov(Byte, Reg(<R>), dst)

int or long Cvttsd2si(<dst type>, src, dst)

UIntToDouble(src,

dst)

unsigned char MovZeroExtend(Byte, Longword, src, Reg(<R>))

Cvtsi2sd(Longword, Reg(<R>), dst)

unsigned int MovZeroExtend(Longword, Quadword, src,

Reg(<R>))

Cvtsi2sd(Quadword, Reg(<R>), dst)

unsigned long Cmp(Quadword, Imm(0), src)

JmpCC(L, <label1>)

Cvtsi2sd(Quadword, src, dst)

Jmp(<label2>)

Label(<label1>)

Mov(Quadword, src, Reg(<R1>))

Mov(Quadword, Reg(<R1>), Reg(<R2>))

Unary(Shr, Quadword, Reg(<R2>))

Binary(And, Quadword, Imm(1), Reg(<R1>))

Binary(Or, Quadword, Reg(<R1>), Reg(<R2>))

Cvtsi2sd(Quadword, Reg(<R2>), dst)

Binary(Add, Double, dst, dst)

Label(<label2>)

DoubleToUInt(src,

dst)

unsigned char Cvttsd2si(Longword, src, Reg(<R>))

Mov(Byte, Reg(<R>), dst)

unsigned int Cvttsd2si(Quadword, src, Reg(<R>))

Mov(Longword, Reg(<R>), dst)

TACKY instruction Assembly instructions

unsigned long Cmp(Double, Data(<upper-bound>), src)

JmpCC(AE, <label1>)

Cvttsd2si(Quadword, src, dst)

Jmp(<label2>)

Label(<label1>)

Mov(Double, src, Reg(<X>))

Binary(Sub, Double, Data(<upper-bound>),

Reg(<X>))

Cvttsd2si(Quadword, Reg(<X>), dst)

Mov(Quadword, Imm(9223372036854775808),

Reg(<R>))

Binary(Add, Quadword, Reg(<R>), dst)

Label(<label2>)

And add a top-level constant:
StaticConstant(<upper-bound>, 8,

DoubleInit(9223372036854775808.0))

Table 16-4: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(ConstChar(int)) Imm(int)

Constant(ConstUChar(int)) Imm(int)

Table 16-5: Converting Types to Assembly

Source type Assembly type Alignment

Char Byte 1

SChar Byte 1

UChar Byte 1

Next, let’s move on to pseudo-operand replacement and instruction fix-up. The updates to both of these passes
are pretty straightforward.

Pseudo-Operand Replacement

We’ll allocate 1 byte on the stack for each Byte object. We don’t need to worry about rounding these down to the

right alignment, because they’re all 1-byte aligned.

This pass shouldn’t require any dedicated logic to deal with constant strings. We’ve already recorded that they
have static storage duration in the backend symbol table. Now we’ll access them with Data operands like any

other static object.

Instruction Fix-Up

The destination of a movz instruction must be a register, and its source must not be an immediate value. If the

size of the source operand of a MovZeroExtend instruction is 1 byte and its source or destination is invalid, we

rewrite it according to the usual pattern. For instance, we rewrite

movzbl $10, -4(%rbp)

as:

movb $10, %r10b
movzbl %r10b, %r11d
movl %r11d, -4(%rbp)

If its source operand is a longword, we replace it with one or more mov instructions, like in earlier chapters.

If the source of a movb instruction is an immediate value that can’t fit in a single byte, we’ll reduce it modulo 256.

For example, we’ll rewrite

movb $258, %al

as:

movb $2, %al

This is the same pattern we introduced in Chapter 11 to handle movl instructions whose source operands are 8-

byte immediate values.

TEST THE ASSEMBLY GENERATION STAGE

To test that your compiler can generate assembly programs without throwing an error, run:

$./test_compiler /path/to/your_compiler --chapter 16 --stage codegen

Code Emission

The code emission stage needs to support string constants, pointer initializers, and a handful of other changes.
We’ll emit each StringInit as either an .ascii or an .asciz directive, depending on whether it should include

a null byte. Double quotes, backslashes, and new lines in ASCII strings must be escaped. To escape these
characters, you can use either the \", \\, and \n escape sequences or three-digit octal escape sequences that

specify their ASCII values. For example, the ASCII code for the backslash character is 92, or 134 in octal, so you

could represent it with the escape sequence \134. You can escape other special characters too, but you don’t

need to. Some escape sequences, like \a, are valid in C but not assembly, so octal escape sequences are the

safest way to escape arbitrary characters.

We’ll emit each PointerInit as a .quad directive, followed by the label we want to point to. We’ll convert

CharInit and UCharInit to the .byte directive, which works exactly like .long and .quad. When you emit a 1-

byte-aligned object, you can either include the .align directive or omit it. Every object is at least 1-byte aligned

by definition, so specifying a 1-byte alignment has no effect.

On Linux, string constants will live in the .rodata section along with floating-point constants. On macOS, they’ll

live in the .cstring section. If you use local labels (which begin with a .L or L prefix) for floating-point

constants, you should use them for string constants too. The logic to add this prefix to Data operands won’t

change; we’ll still look up each Data operand in the backend symbol table and add this prefix if its is_constant

attribute is true.

The movz and movsx instructions should include suffixes to indicate both the source and destination types. Other

instructions should include a b suffix when they operate on bytes. Tables 16-6 through 16-9 summarize the latest

updates to the code emission pass; new constructs and changes to the way we emit existing constructs are
bolded.

Table 16-6: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

StaticConstant(name,

alignment, init)

Linux

 .section .rodata
 <alignment-directive>
<name>:

 <init>

macOS (8-byte-aligned
numeric constants)

 .literal8
 .balign 8
 <name>:

 <init>

macOS (16-byte-aligned
numeric constants)

 .literal16
 .balign 16
 <name>:

 <init>
 .quad 0

macOS (string
constants)

 .cstring

 <name>:

 <init>

Table 16-7: Formatting Static Initializers

Static initializer Output

CharInit(0) .zero 1

CharInit(i) .byte <i>

Static initializer Output

UCharInit(0) .zero 1

UCharInit(i) .byte <i>

StringInit(s, True) .asciz "<s>"

StringInit(s, False) .ascii "<s>"

PointerInit(label) .quad <label>

Table 16-8: Formatting Assembly Instructions

Assembly instruction Output

Movsx(src_t, dst_t, src, dst)

movs<src_t><dst_t> <src>, <dst>

MovZeroExtend(src_t, dst_t, src, dst)

movz<src_t><dst_t> <src>, <dst>

Table 16-9: Instruction Suffixes for Assembly Types

Assembly type Instruction suffix

Byte b

Your compiler now supports strings and characters! You still need to run this chapter’s tests to make sure you’ve
implemented these features correctly, but first, we’ll try out a couple of examples.

Hello Again, World!

Back in Chapter 9, we printed “Hello, World!” one character at a time. Now we can write a more traditional “Hello,
World!” program using the puts standard library function, which has the following signature:

int puts(const char *s);

Since we don’t support const, we’ll declare puts without it. Listing 16-33 shows our new “Hello, World!” program.

int puts(char *c);
int main(void) {
 puts("Hello, World!");
 return 0;
}

Listing 16-33: Printing out a string with puts

This code is not entirely legal, since the declaration of puts isn’t compatible with the definition in the standard

library. However, the program should work correctly in spite of this minor bit of rule breaking. Compile it, then run
it to print a message to stdout:

$./hello_world
Hello, World!

If you want to get really wild, you can even compile Listing 16-34, which reads from stdin.

int getchar(void);
int puts(char *c);
char *strncat(char *s1, char *s2, unsigned long n);
char *strcat(char *s1, char *s2);
unsigned long strlen(char *s);

❶ static char name[30];
❷ static char message[40] = "Hello, ";

int main(void) {
 puts("Please enter your name: ");

 int idx = 0;
 while (idx < 29) {
 int c = getchar();

 // treat EOF, null byte, or line break as end of input
 if (c <= 0 || c == '\n') {
 break;
 }

 name[idx] = c;
 idx = idx + 1;
 }

 ❸ name[idx] = 0; // add terminating null byte to name

 // append name to message, leaving space for null byte
 // and exclamation point
 strncat(message, name, 40 - strlen(message) - 2);

 // append exclamation point
 strcat(message, "!");
 puts(message);
 return 0;
}

Listing 16-34: Reading from stdin

Much like Listing 16-33 declares puts without the const qualifier, this program declares several library functions

without their usual qualifiers, including const and restrict. We use getchar to read from stdin one character

at a time, since our compiler can’t easily handle most other ways to read from stdin using C standard library
functions.

Listing 16-34 declares two static arrays: name and message. Because name is static but has no explicit initializer, it

will be initialized with all zeros ❶. The beginning of message is initialized with the string "Hello, ", and the

remainder is filled with null bytes ❷. This program calls puts to emit a prompt, then calls getchar in a loop to

read the user’s response into the name array, one character at a time. We exit the loop when getchar returns a

negative number (which indicates end-of-file or an error), a null byte, or a new line character, or after we’ve read
in 29 characters, whichever comes first. (We check whether the result is negative, instead of comparing it to the
EOF macro like a normal C program would, because we can’t include <stdio.h>, where EOF is defined.) Reading

in at most 29 characters leaves room for a terminating null byte, which we add to name after exiting the loop ❸.

The call to strncat appends the user’s name to message, and the subsequent call to strcat appends an

exclamation point. Finally, the second call to puts writes the whole message to stdout. Your compiler should be

able to handle this listing; go ahead and give it a try! I’ll use the program to say hello to my dog, Arlo. (I promised
him I’d mention him in this book at least once.)

$./hello_name
Please enter your name:
Arlo
Hello, Arlo!

If this program works correctly, you’re ready to run the full test suite.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 16

The test programs in tests/chapter_16/valid/char_constants exercise your compiler’s support for character
constant tokens. The programs in tests/chapter_16/valid/chars test its support for values of scalar character type,
and the programs in tests/chapter_16/valid/strings_as_initializers and tests/chapter_16/valid/strings_as_lvalues
test its support for string literals. As usual, the tests in tests/chapter_16/valid/libraries validate that your compiler
handles strings and characters according to the System V ABI.

Summary

Your compiler can now process programs that work with text. In this chapter, you learned how to lex string literals
and character constants, and you extended the type checker to distinguish between constant strings and string
literals that initialize arrays. You also introduced new ways to define constants in the symbol table and the TACKY
IR. In the next chapter, you’ll introduce two features that make it easier to dynamically allocate memory: the
sizeof operator and the void type.

Description

17

SUPPORTING DYNAMIC MEMORY ALLOCATION

Over the course of Part II, you’ve compiled programs that call an increasingly wide range of
standard library functions. At the end of Part I, your compiler supported only functions with
parameters and return values of type int, like putchar. Now you can compile programs

that call floating-point math functions like fmax and string processing functions like puts.

In this chapter, you’ll implement the remaining features you need to call a particularly
important part of the standard library: the memory management functions. These include
malloc, calloc, and aligned_alloc, which allocate memory dynamically; free, which

deallocates dynamically allocated memory; and realloc, which deallocates one block of

memory and reallocates another with the same contents.

To compile programs that declare and call these functions, you’ll need to implement the void type. Up until now,

we’ve used the void keyword only to specify an empty parameter list; now we’ll treat it as a proper type specifier.

In C, void * represents the address of a chunk of memory with no particular type; the standard library functions

that allocate memory all return this type. The void type on its own is also useful. For instance, you can use it to

declare functions that don’t return a value, like free. In addition to void, we’ll implement the sizeof operator,

which gets the size of a type or object. C programs often use sizeof to figure out how many bytes of memory to

allocate.

This chapter’s not-so-secret agenda is to get you ready to implement structure types in Chapter 18. Real-life C
programs frequently store structures in dynamically allocated memory, and so do many of that chapter’s tests. The
changes we make to the type checker will also come in handy in Chapter 18 because some of the typing rules that
apply to void will apply to structure types too.

The void Type

The C standard (section 6.2.5, paragraph 19) gives the following rather mysterious definition of void: “The void

type comprises an empty set of values; it is an incomplete object type that cannot be completed.” We’ll talk more
about what “incomplete object type” means in a moment. For now, the main idea is that void is a type with no

values. You can’t do a whole lot with this type, but it does have a few uses.

You can give a function a void return type if it doesn’t return anything. To leave a function with a void return

type, you can use a return statement with no expression, like in Listing 17-1.

void return_nothing(void) {
 return;
}

Listing 17-1: A function with a void return type

As Listing 17-2 demonstrates, you can also leave out the return statement entirely. In that case, the function will

return once you reach the end of the function body.

void perform_side_effect(void) {
 extern int some_variable;
 some_variable = 100;
}

Listing 17-2: A void function with no return statement

A void expression is an expression whose type is void; it has no value, but you can evaluate it for its side effects.

There are three ways to produce a void expression. First, you can call a void function. Second, you can evaluate a

conditional expression whose branches are both void:

flag ? perform_side_effect() : return_nothing();

Third, you can cast a value to void:

(void) (1 + 1);

Here, the cast to void has no effect on program execution; its only purpose is to tell the compiler, and human

readers, that the value of the expression should be discarded. This is a common way to silence compiler warnings
about unused values.

If you’re particularly zealous about following C’s typing rules, you might also cast to void in code like that in

Listing 17-3 to get the types of two conditional branches to agree.

int i = 0;
flag ? perform_side_effect() : (void) (i = 3);

Listing 17-3: A conditional expression with type void

If we left out the cast to void in this conditional expression, one branch would have type void and the other

would have type int. This would be illegal, although most compilers won’t complain about it unless you use the -

pedantic flag to enable extra warnings. Our compiler will reject conditional expressions with one void branch,

because it’s pedantic all the time.

There are four places where you can use a void expression. First, it can appear as a clause in a conditional
expression, as in Listing 17-3. Second, you can use it as a stand-alone expression:

perform_side_effect();

Third, it can appear as the first or third clause of a for loop header, like in Listing 17-4.

for (perform_side_effect(); i < 10; perform_side_effect())
 --snip--

Listing 17-4: Using void expressions in a for loop header

And fourth, you can cast a void expression to void:

(void) perform_side_effect();

That last one isn’t particularly useful, but it is legal.

As you already know, you can also use the void keyword to specify an empty parameter list in a function

declaration. This is a special case, since it doesn’t actually specify an expression, object, or return value with type
void. Even once we extend the compiler to fully support the void type, we’ll handle this particular case exactly

the same way as before.

Memory Management with void *

Now let’s look at how the memory management functions use void * to represent allocated memory. The

malloc function has the following signature:

void *malloc(size_t size);

The size argument specifies the number of bytes to allocate. Its type, size_t, is an implementation-defined

unsigned integer type. Under the System V x64 ABI, size_t is an alias for unsigned long. Because we don’t

support type aliases, our test programs and examples use this declaration instead:

void *malloc(unsigned long size);

The malloc function allocates a chunk of memory and returns its address. Since malloc doesn’t know what type

of object will be stored in this chunk of memory, it would be misleading to return a pointer to int, char, or any of

the other types we’ve seen so far. Instead, it returns void *. You can’t read or write memory through a void *

pointer, though. So, before you can access the memory that you allocated with malloc, you need to specify what

type of object it should contain by converting its address from void * to a different pointer type.

You can convert other pointer types to and from void * without an explicit cast. For example, you might use

malloc to allocate an array of 100 int elements:

int *many_ints = malloc(100 * sizeof (int));

When you assign the result of malloc to many_ints, it’s implicitly converted from void * to int *. Then, you

can subscript many_ints like any other pointer into an int array:

many_ints[10] = 10;

The free function accepts a void * argument that designates the chunk of memory to deallocate:

void free(void *ptr);

This pointer must be the same value that was returned earlier by malloc or one of the other memory allocation

functions. Here’s how you’d use free to deallocate the memory that many_ints points to:

free(many_ints);

This function call implicitly converts the value of many_ints from int * back to void *, resulting in the same

pointer that malloc returned in the first place.

The calloc and aligned_alloc functions provide slightly different ways to allocate memory; like malloc, they

return pointers to the allocated space with type void *. The realloc function accepts a size and a void *

pointer to previously allocated storage that should now be freed, and it returns a void * pointer to a newly

allocated block of storage with the new size and the original contents. For our purposes, the details of these
functions aren’t important; the key idea is that they all use void * pointers to identify the blocks of memory they

allocate and deallocate.

These blocks of memory are objects that we can read and write, much like variables, but their lifetimes are
managed differently. As we know, variables have either automatic storage duration (their lifetime lasts through the
execution of a single block) or static storage duration (their lifetime lasts for the whole program). A block of
allocated memory has allocated storage duration: its lifetime starts when it’s allocated and ends when it’s
deallocated.

The compiler has to keep track of all the variables with static or automatic storage duration, record details about
their size and lifetime in the symbol table, and reserve space for them in the data section or on the stack. But the
compiler doesn’t need to know anything about objects with allocated storage duration, because the programmer
and the memory management library are responsible for keeping track of them.

Complete and Incomplete Types

An object type is complete if we know its size and incomplete if we don’t. The void type is the first incomplete

type we’ve seen. We don’t know its size because it doesn’t have a size. In the next chapter, we’ll encounter
incomplete structure types, whose size and members aren’t visible to the compiler. Incomplete structure types can
be completed later in the program if the compiler learns more about them. The void type, on the other hand,

can’t be completed.

The C standard states that “an incomplete type can only be used when the size of an object of that type is not
needed” (section 6.7.2.3, footnote 132). For example, you can’t define a variable with an incomplete type,
because you don’t know how much space to allocate for it. And you can’t assign to an object with an incomplete
type or use its value, since you would need to know how many bytes to read or write. With a few exceptions,
other incomplete types are subject to the same restrictions as void, and the type checker will handle them the

same way.

All pointers are complete types, even if the types they point to are incomplete; we know that the size of a pointer
is always 8 bytes. That’s why you can declare variables and parameters of type void *, return void * values

from functions, convert them to other pointer types, and so on. As you’ll see in the next chapter, you can use
pointers to incomplete structure types in the same way.

The sizeof Operator

The sizeof operator accepts either an expression or the name of a type. When it takes a type name, it returns

the size of that type in bytes. When it takes an expression, it returns the size of the expression’s type. Listing 17-5
illustrates both cases.

sizeof (long);
sizeof 10.0;

Listing 17-5: The two uses of sizeof

Both of these sizeof expressions evaluate to 8 because the long and double types are both 8 bytes. Note that

type names in sizeof expressions must be parenthesized, but expressions don’t need to be.

When you use an array in a sizeof expression, it doesn’t decay to a pointer. Consider the sizeof expression in

Listing 17-6.

int array[3];
return sizeof array;

Listing 17-6: Getting the size of an array

This code returns 12, which is the size of a three-int array, rather than 8, the size of a pointer.

You can always determine an expression’s type—and therefore its size—without evaluating it. In fact, the C
standard requires that we don’t evaluate the operand of a sizeof expression. Instead, we infer the operand’s

type and evaluate sizeof at compile time. This implies that a sizeof expression won’t produce side effects. For

example, the statement

return sizeof puts("Shouting into the void");

won’t call puts. It will just return 4 because the puts function’s return type is int.

You can also apply sizeof to expressions that would typically produce runtime errors, as Listing 17-7

demonstrates.

double *null_ptr = 0;
return sizeof *null_ptr;

Listing 17-7: Getting the size of an expression without evaluating it

Normally, dereferencing null_ptr would lead to undefined behavior. But this example is well defined, because it

will never evaluate *null_ptr. Instead, it will return 8, because the compiler can determine that the type of

*null_ptr is double.

Variable-length arrays are the one exception to this rule. The size of a variable-length array isn’t known at compile
time, so it has to be evaluated at runtime. Because we don’t support variable-length arrays, we can ignore this
case.

Now that we know how C programs use void, void *, and sizeof, let’s work on the compiler. As usual, we’ll

start by updating the lexer.

The Lexer

You’ll add one new keyword in this chapter:

sizeof

You don’t need to add the void keyword; the lexer already recognizes it.

TEST THE LEXER

To test the lexer, run:

$./test_compiler /path/to/your_compiler --chapter 17 --stage lex

It should process all of this chapter’s tests without error.

The Parser

Listing 17-8 shows this chapter’s changes to the AST.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
variable_declaration = (identifier name, initializer? init,
 type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 type fun_type, storage_class?)
initializer = SingleInit(exp) | CompoundInit(initializer*)
type = Char | SChar | UChar | Int | Long | UInt | ULong | Double | Void
 | FunType(type* params, type ret)
 | Pointer(type referenced)
 | Array(type element, int size)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)

block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp?)
 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | String(string)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
 | Dereference(exp)
 | AddrOf(exp)
 | Subscript(exp, exp)
 | SizeOf(exp)
 | SizeOfT(type)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int) | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double) | ConstChar(int) | ConstUChar(int)

Listing 17-8: The abstract syntax tree with void, sizeof, and return statements with no return value

We’ve made four small changes here. First, we added a void type. Second, the expression in the Return

statement is now optional so that it can represent return statements with and without return values. Finally,

there are two new expressions to represent the two ways you can use the sizeof operator.

Next, we’ll make the corresponding changes to the grammar. The one wrinkle here is that we can’t apply sizeof

to a cast expression unless that expression is parenthesized. For example, this is a syntax error:

sizeof (int) a;

Wrapping the cast expression in parentheses fixes the error:

sizeof ((int) a);

This restriction makes it easier for the parser to distinguish between sizeof operations on type names and on

expressions. To capture this restriction in the grammar, we need to break out cast expressions into a separate
symbol from other unary expressions.

Let’s start by refactoring type names into a symbol that we can use in both cast and sizeof expressions:

<type-name> ::= {<type-specifier>}+ [<abstract-declarator>]

Next, we’ll define the new <cast-exp> symbol, which includes one rule for cast expressions and another for all

the other unary expressions:

<cast-exp> ::= "(" <type-name> ")" <cast-exp>
 | <unary-exp>

We’ll then update <unary-exp> to include every unary expression except for casts:

<unary-exp> ::= <unop> ❶ <cast-exp>
 | "sizeof" ❷ <unary-exp>
 | "sizeof" "(" <type-name> ")"
 | <postfix-exp>

The rule for unary operations like -, ~, !, and & allows cast expressions as operands ❶, while the rule for sizeof

doesn’t ❷.

Finally, we’ll use the new <cast-exp> symbol, instead of the more restrictive <unary-exp>, to represent a single

term in a binary or ternary expression:

<exp> ::= <cast-exp> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>

Listing 17-9 gives the complete grammar for this chapter.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration>
<variable-declaration> ::= {<specifier>}+ <declarator> ["=" <initializer>] ";"
<function-declaration> ::= {<specifier>}+ <declarator> (<block> | ";")
<declarator> ::= "*" <declarator> | <direct-declarator>
<direct-declarator> ::= <simple-declarator> [<declarator-suffix>]

<declarator-suffix> ::= <param-list> | {"[" <const> "]"}+
<param-list> ::= "(" "void" ")" | "(" <param> {"," <param>} ")"
<param> ::= {<type-specifier>}+ <declarator>
<simple-declarator> ::= <identifier> | "(" <declarator> ")"
<type-specifier> ::= "int" | "long" | "unsigned" | "signed" | "double" | "char" | "void"
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<initializer> ::= <exp> | "{" <initializer> {"," <initializer>} [","] "}"
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" [<exp>] ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <cast-exp> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<cast-exp> ::= "(" <type-name> ")" <cast-exp>
 | <unary-exp>
<unary-exp> ::= <unop> <cast-exp>
 | "sizeof" <unary-exp>
 | "sizeof" "(" <type-name> ")"
 | <postfix-exp>
<type-name> ::= {<type-specifier>}+ [<abstract-declarator>]
<postfix-exp> ::= <primary-exp> {"[" <exp> "]"}
<primary-exp> ::= <const> | <identifier> | "(" <exp> ")" | {<string>}+
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<abstract-declarator> ::= "*" [<abstract-declarator>]
 | <direct-abstract-declarator>
<direct-abstract-declarator> ::= "(" <abstract-declarator> ")" {"[" <const> "]"}
 | {"[" <const> "]"}+
<unop> ::= "-" | "~" | "!" | "*" | "&"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong> | <double> | <char>
<identifier> ::= ? An identifier token ?
<string> ::= ? A string token ?
<int> ::= ? An int token ?
<char> ::= ? A char token ?
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?
<double> ::= ? A floating-point constant token ?

Listing 17-9: The grammar with void, sizeof, and optional return values

The parse_type helper function, which converts a list of type specifiers into a type AST node, should reject any

declarations where the void specifier appears alongside other type specifiers, like long or unsigned. Otherwise,

the parser should treat void like any other type. The void type can be modified by pointer, array, and function

declarators; pointers to void and functions returning void are both perfectly legal, while other ways of using

void are syntactically valid but semantically illegal. For example, it’s a semantic error to declare an array of void

elements, define a void variable, or declare a function with void parameters. The parser won’t catch these

semantic errors, but the type checker will.

You may need to change your parsing logic for <param-list>, even though the grammar rule itself hasn’t

changed. If the opening (is followed by a void keyword, you’ll need to look ahead one more token. If the next

token is), the parameter list is empty. Otherwise, the list is not empty, and the void keyword is the start of a

parameter declaration.

Note that when a void keyword indicates an empty parameter list, we do not translate it to a Void type in the

AST. For example, given the function declaration

int main(void);

the resulting AST node will have this type:

FunType(params=[], ret=Int)

The params list is empty, just like in prior chapters; it doesn’t contain Void.

TEST THE PARSER

To test the parser, run:

$./test_compiler /path/to/your_compiler --chapter 17 --stage parse

Your compiler should successfully parse the programs in tests/chapter_17/invalid_types and
tests/chapter_17/valid. It should reject the programs in tests/chapter_17/invalid_parse, which include invalid type
specifiers and malformed sizeof expressions.

The Type Checker

Now let’s figure out how to type check void, void *, and sizeof. We’ll begin with implicit conversions between

void * and the other pointer types. These are permitted in a few cases, even though most implicit conversions

between pointer types are not. Next, we’ll detect all of the new and exciting type errors that void can trigger.

We’ll handle the sizeof operator last.

Conversions to and from void *

Implicit conversions between void * and the other pointer types are legal in three cases. First, you can compare

a value of type void * with another pointer type using == or !=:

int *a;
void *b;
--snip--

return a == b;

Second, in a conditional expression of the form <cond> ? <clause1> : <clause2>, one clause can have type

void * and the other clause can have another pointer type:

int *a;
void *b;
--snip--

return flag ? a : b;

In both of these cases, the non-void pointer is converted to void *.

Third, you can implicitly convert to and from void * during assignment. You can assign a value with any pointer

type to an object of type void *:

int *a = 0;
void *b = a;

And along the same lines, you can assign a value with type void * to an object with another pointer type.

This last case doesn’t just include simple assignment; it covers all the conversions “as if by assignment” that we
talked about in Chapter 14. For example, it’s legal to pass void * arguments to a function that expects

parameters of some other pointer type:

int use_int_pointer(int *a);
void *ptr = 0;
use_int_pointer(ptr);

Not coincidentally, these are the same three cases where you can implicitly convert a null pointer constant to some
other pointer type. To support implicit conversions to and from void *, we’ll extend two helper functions we

defined back in Chapter 14: get_common_pointer_type and convert_by_assignment.

Let’s revisit Listing 14-14, which defined get_common_pointer_type. It’s reproduced here as Listing 17-10, with

this chapter’s changes bolded.

get_common_pointer_type(e1, e2):
 e1_t = get_type(e1)
 e2_t = get_type(e2)
 if e1_t == e2_t:
 return e1_t
 else if is_null_pointer_constant(e1):
 return e2_t
 else if is_null_pointer_constant(e2):
 return e1_t
 else if e1_t == Pointer(Void) and e2_t is a pointer type:
 return Pointer(Void)
 else if e2_t == Pointer(Void) and e1_t is a pointer type:
 return Pointer(Void)
 else:
 fail("Expressions have incompatible types")

Listing 17-10: Getting the common type of two expressions, where at least one has pointer type

The bolded code permits implicit conversions between void * and other pointer types but not between void *

and arithmetic types, array types, or void. Next, we’ll take another look at Listing 14-16, reproduced here as

Listing 17-11, with changes bolded.

convert_by_assignment(e, target_type):
 if get_type(e) == target_type:
 return e
 if get_type(e) is arithmetic and target_type is arithmetic:
 return convert_to(e, target_type)
 if is_null_pointer_constant(e) and target_type is a pointer type:
 return convert_to(e, target_type)
 if target_type == Pointer(Void) and get_type(e) is a pointer type:
 return convert_to(e, target_type)
 if target_type is a pointer type and get_type(e) == Pointer(Void):
 return convert_to(e, target_type)

 else:
 fail("Cannot convert type for assignment")

Listing 17-11: Converting an expression to a target type as if by assignment

The bolded additions permit us to convert void * to other pointer types, and vice versa, during assignment. Note

that nothing in this listing would prevent us from assigning a void expression to a void target type. However, we’ll

introduce other restrictions on void elsewhere in the type checker that will ensure that we never call

convert_by_assignment with a target type of void. For instance, we’ll never try to convert a function argument

to void, because we’ll reject function declarations with void parameters.

Functions with void Return Types

Next, we’ll type check return statements with and without expressions. Which return statement you should use

depends on the function’s return type. A function with a void return type must not return an expression. A

function with any other return type must include an expression when it returns. Therefore, these two function
definitions are legal:

int return_int(void) {
 return 1;
}

void return_void(void) {
 return;
}

And these are both illegal:

int return_int(void) {
 return;
}

void return_void(void) {
 return 1;
}

You can’t even return a void expression from a function with a void return type, which makes the following

example illegal too:

void return_void(void) {
 return (void) 1;

}

Both GCC and Clang accept this program, but they’ll warn if you include the -pedantic flag. You can handle this

edge case however you like; the test suite doesn’t cover it.

I’ll skip the pseudocode for this section, since it’s a pretty straightforward extension to our existing logic to type
check return statements.

Scalar and Non-scalar Types

Several C constructs require scalar expressions, including the operands of the &&, ||, and ! expressions; the first

operand of a conditional expression; and the controlling conditions in loops and if statements. The common

thread is that all of these language constructs compare the value of the expression to zero. Comparing a pointer
or arithmetic value to zero makes sense; comparing a non-scalar value to zero does not.

In earlier chapters, there was no way to write a program that violated these type constraints. Arrays were our only
non-scalar type, and they decay to pointers wherever scalar expressions are required. But once we throw void

into the mix, we need to enforce these constraints explicitly. (Although void isn’t an aggregate type, it isn’t scalar,

either. A scalar expression has a single value, but a void expression has no value.) Listing 17-12 defines a tiny
helper function to tell us whether a type is scalar.

is_scalar(t):
 match t with
 | Void -> return False
 | Array(elem_t, size) -> return False
 | FunType(param_ts, ret_t) -> return False
 | _ -> return True

Listing 17-12: Checking whether a type is scalar

We can use this helper function to validate controlling conditions and logical operands. For example, Listing 17-13
illustrates how to validate the operand of a logical ! expression.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Unary(Not, inner) ->
 typed_inner = typecheck_and_convert(inner, symbols)
 if not is_scalar(get_type(typed_inner)):
 fail("Logical operators only apply to scalar expressions")
 --snip--

Listing 17-13: Validating that a logical operand is scalar

Cast expressions are a bit different. Except for casts between double and pointers, which we already prohibit, you

can cast a scalar expression to any scalar type. You can also cast any type to void. Listing 17-14 shows how to

type check cast expressions.

 | Cast(t, inner) ->
 typed_inner = typecheck_and_convert(inner, symbols)
 --snip--

 ❶ if t == Void:
 return set_type(Cast(t, typed_inner), Void)
 ❷ if not is_scalar(t):
 fail("Can only cast to scalar type or void")
 ❸ if not is_scalar(get_type(typed_inner)):
 fail("Cannot cast non-scalar expression to scalar type")
 else:
 return set_type(Cast(t, typed_inner), t)

Listing 17-14: Type checking cast expressions

First, we explicitly reject casts between double and pointers. That check is snipped out of Listing 17-14, since it’s

the same as in previous chapters. Then, we check whether the target type is void ❶. If it is, we record that the

type of the whole expression is void. Otherwise, we validate that both the target type ❷ and the inner expression

❸ are scalar. This rejects casts from void to any non-void type. It also forbids casts to array and function types,

which we already know are illegal.

The type checking logic in Listings 17-13 and 17-14 will also apply to structures, which we’ll implement in the next
chapter. Structures are aggregate types, but they don’t decay to pointers like arrays do. We’ll therefore need to
validate that programs don’t use structures where scalar types are required.

Restrictions on Incomplete Types

A program will run into type errors if it uses an incomplete type where a complete type is required. For now, we’ll
require complete types in three cases. First, you can’t add, subtract, or subscript pointers to incomplete types,
since you can’t determine the sizes of the array elements they point to. Second, you can’t apply sizeof to an

incomplete type, since its size is unknown. Third, whenever you specify an array type, its element type must be
complete.

NOTE

As a language extension, Clang and GCC permit pointer arithmetic with void pointers and sizeof operations on
void. These expressions are implemented as if the size of void were 1.

Listing 17-15 defines a couple of helper functions to support this validation.

is_complete(t):
 return t != Void
is_pointer_to_complete(t):
 match t with
 | Pointer(t) -> return is_complete(t)
 | _ -> return False

Listing 17-15: Checking for incomplete types and pointers to incomplete types

We’ll use is_complete whenever we need to check for a complete type. We’ll use is_pointer_to_complete

when we need to check for a pointer to a complete type—specifically, when we type check pointer addition,
subtraction, and subscripting. For example, Listing 17-16 demonstrates how to type check pointer addition. It
reproduces Listing 15-21, with this chapter’s changes bolded and some unchanged code omitted.

 | Binary(Add, e1, e2) ->
 typed_e1 = typecheck_and_convert(e1, symbols)
 typed_e2 = typecheck_and_convert(e2, symbols)
 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 if t1 and t2 are arithmetic:
 --snip--

 else if is_pointer_to_complete(t1) and t2 is an integer type:
 --snip--

 else if is_pointer_to_complete(t2) and t1 is an integer type:
 --snip--

 else:
 fail("Invalid operands for addition")

Listing 17-16: Type checking pointer addition, with extra validation that the pointer’s referenced type is complete

In the next chapter, we’ll extend is_complete to distinguish between complete and incomplete structure types

too.

We won’t worry about sizeof just yet; we’ll type check it a little later, in “sizeof Expressions” on page 477. That

means we just have to handle our third case, by making sure that every array element type is complete. This
applies to arrays nested in larger types too. The following declaration, for example, is invalid:

void (*ptr_to_void_array)[3];

Even though every pointer is a complete type, it’s illegal to declare a pointer to an array of void elements. In

Listing 17-17, we define one more helper function to catch these invalid type specifiers.

validate_type_specifier(t):
 match t with
 | Array(elem_t, size) ->
 ❶ if not is_complete(elem_t):
 fail("Illegal array of incomplete type")
 validate_type_specifier(elem_t)
 | Pointer(referenced_t) -> ❷ validate_type_specifier(referenced_t)
 | FunType(param_ts, ret_t) ->
 for param_t in param_ts:
 validate_type_specifier(param_t)
 validate_type_specifier(ret_t)
 ❸ | _ -> return

Listing 17-17: Validating type specifiers

When we see an array type, we’ll make sure that its element type is complete ❶ and then validate that element
type recursively. This ensures that we’ll reject nested arrays of void elements, arrays of pointers to arrays of void

elements, and so on. To handle another derived type, we’ll recursively validate any types it refers to ❷. Non-
derived types, including void itself, are all valid ❸. We’ll call validate_type_specifier to validate type

specifiers everywhere they appear: in variable declarations, function declarations, sizeof expressions, and cast

expressions.

We’ll introduce more restrictions on incomplete types in the next chapter. For example, it’s illegal to use
incomplete types besides void in the branches of conditional expressions. It’s also illegal to assign to an lvalue

with an incomplete type, but we can ignore this rule for now because there are no void lvalues, thanks to the

rules we’ll implement next.

Extra Restrictions on void

On top of the restrictions on all incomplete types that we just implemented, we’ll enforce two extra restrictions on
void in particular: you can’t declare void variables or parameters, and you can’t dereference pointers to void.

(Both of these uses of void are legal gray areas; see the box “When void Is Valid: An Excessively Detailed

Discussion” for the gory details.)

These restrictions on void don’t apply to other incomplete types. In the next chapter, you’ll see that you can

declare—but not define—a variable with an incomplete structure type. You can then define the variable at a
different point in the program, once the type is completed. Similarly, you can declare a function that uses an
incomplete structure type as a parameter or return type, as long as you complete the type before you call or
define that function. Finally, it’s legal to dereference a pointer to an incomplete structure type, although this isn’t
terribly useful; the only thing you’re allowed to do with the result of the dereference is take its address, which just
gives back the pointer you started with.

WHEN VOID IS VALID: AN EXCESSIVELY DETAILED DISCUSSION

Very few C programmers need to declare void variables or dereference void * expressions. Nonetheless, it’s

worth digging into exactly what the C standard has to say about these niche cases and how a few widely used
compilers handle them. This corner of the language turns out to be particularly confusing and ill defined, which
makes it a fun illustration of just how difficult language standards are to write and implement.

For starters, the C standard allows you to declare an extern void variable, but it doesn’t allow you to use that

variable. Assigning to it or using its value is, unsurprisingly, undefined behavior. This is true for variables with
other incomplete types as well. The one thing you can do with most variables with incomplete types is take their
address:

extern struct s my_incomplete_var;
struct s *ptr = &my_incomplete_var;

As Stephen Kell, this book’s technical reviewer, pointed out to me, you might want to take the address of void

variables too. For example, if you’re writing a program that examines the layout of memory, such as a debugger,
you might need to refer to arbitrary memory locations without a specific type. Most Unix-like systems define
special symbols for exactly this purpose: etext, edata, and end, whose addresses mark the ends of the text,

data, and BSS segments, respectively. Programs that need to access these symbols normally declare them as char

or some other arbitrary type, like this:

extern char etext;
void *text_segment = &etext;

It would arguably make more sense to declare them as void variables, since they don’t really designate objects

with values. But if you did that, it would be illegal to take their address, because void variables aren’t lvalues.

Section 6.3.2.1, paragraph 1, of the C standard states that “an lvalue is an expression (with an object type other
than void) that potentially designates an object.” And section 6.5.3.2, paragraph 1, lays out the constraints on the

& operator: “The operand of the unary & operator shall be either a function designator, the result of a [] or unary

* operator, or an lvalue that designates an object [that satisfies a couple of other constraints].”

Because a void variable isn’t any of these things, we can’t take its address, which means we can’t do anything

with it. In practice, both Clang and GCC let you declare and take the address of void variables, although they’ll

warn you that your code doesn’t strictly conform to the standard. The Microsoft Visual Studio compiler (MSVC) is
much less permissive; it won’t let you declare void variables at all.

You can declare function parameters with incomplete types, and there’s no indication in the standard that void

parameters would be an exception, so this appears to be legal:

void my_sketchy_function(void a, void b);

But GCC warns about functions with void parameters, while Clang and MSVC reject them outright. There are at

least two good reasons to reject these parameters: there’s no conceivable use for them, and they potentially
conflict with the special case of a single void parameter that specifies an empty parameter list. The fact that the

standard doesn’t just prohibit void parameters aside from that special case seems like an oversight.

Finally, let’s try to figure out what happens when you dereference a void * value and discard the result:

void *void_ptr = malloc(4);
(void) *void_ptr;

GCC warns about this, and as of version 16.0.0, Clang does as well. MSVC, still the most cantankerous of the
bunch, considers it an error. The standard itself is no help at all. Section 6.5.3.2 says that the operand of the
pointer dereference operator must be a pointer, but it doesn’t place any restrictions on what type it can point to. It
goes on to say: “If the operand … points to an object, the result is an lvalue designating the object. If the operand
has type ‘pointer to type’, the result has type ‘type’. If an invalid value has been assigned to the pointer, the
behavior of the unary * operator is undefined.”

You can’t really argue that a pointer to void is an “invalid value.” As we’ve seen, well-formed programs use

pointers to void all the time. The next question is whether a pointer to void can point to an object; if so, it

sounds like dereferencing it should give us an lvalue. Other parts of the standard suggest that it can indeed point
to an object. For example, the first paragraph of section 7.22.3, which introduces malloc and the other memory

management functions, states that “the lifetime of an allocated object extends from the allocation until the
deallocation. Each such allocation shall yield a pointer to an object disjoint from any other object.”

This all suggests that void_ptr is a valid pointer to an object, so *void_ptr should return an lvalue with type

void—except that void expressions can’t be lvalues. It’s a paradox! According to Aaron Ballman (who’s on the C

standards committee), this means that dereferencing a pointer to void and discarding the result is undefined

behavior by omission (https://github.com/llvm/llvm-project/issues/53631#issuecomment-1253653888). It would
be nice for the C standard to actually spell this out, but I guess the standards committee has higher priorities.

We’re fudging one corner case here. Strictly speaking, it’s legal to take the address of any dereferenced pointer,
whether it’s a pointer to a complete type, an incomplete structure type, or void. As we saw back in Chapter 14,

taking the address of a dereferenced pointer is a special case; the two operations cancel each other out and the
result is well defined, even if the dereference expression by itself would be undefined. That means this code
fragment is legal:

void *void_ptr = malloc(4);
void *another_ptr = &*void_ptr;

https://github.com/llvm/llvm-project/issues/53631#issuecomment-1253653888

Our compiler will reject all dereference operations on void * operands, even in this edge case. But we’re not

alone here: GCC issues a warning about this code fragment and MSVC rejects it entirely. (Of course, you can
handle this edge case correctly if you want; our test suite doesn’t cover it.)

Conditional Expressions with void Operands

We’ll explicitly allow void operands in conditional expressions, as Listing 17-18 illustrates.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Conditional(condition, e1, e2) ->
 typed_cond = typecheck_and_convert(condition, symbols)
 typed_e1 = typecheck_and_convert(e1, symbols)
 typed_e2 = typecheck_and_convert(e2, symbols)
 ❶ if not is_scalar(get_type(typed_cond)):
 fail("Condition in conditional operator must be scalar")
 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 if t1 == Void and t2 == Void:
 ❷ result_type = Void
 else if t1 and t2 are arithmetic types:
 result_type = get_common_type(t1, t2)
 else if t1 or t2 is a pointer type:
 result_type = get_common_pointer_type(typed_e1, typed_e2)
 else:
 fail("Cannot convert branches of conditional to a common type")
 --snip--

Listing 17-18: Type checking a conditional expression

To type check a conditional expression, we first validate that its controlling condition is scalar ❶. Then, we
consider the types of both clauses. If they’re both void, the result is void too ❷. Otherwise, we find the result

type as before: by applying the usual arithmetic conversions if both operands are arithmetic or finding their
common pointer type if either is a pointer. If none of these cases applies—for example, because one operand is
void and the other is a pointer or arithmetic value—we throw an error.

Existing Validation for Arithmetic Expressions and Comparisons

Next, we’ll make sure that our existing logic to type check arithmetic operations and comparisons works even with
void in the mix. Earlier, we could assume that every expression had either arithmetic or pointer type. Now we

can’t rely on that assumption. For example, let’s revisit Listing 14-15, which demonstrated how to type check
Equal expressions. Listing 17-19 reproduces that code with the extra validation logic that we need to add.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | Binary(Equal, e1, e2) ->
 typed_e1 = typecheck_and_convert(e1, symbols)
 typed_e2 = typecheck_and_convert(e2, symbols)
 t1 = get_type(typed_e1)
 t2 = get_type(typed_e2)
 if t1 or t2 is a pointer type:
 common_type = get_common_pointer_type(typed_e1, typed_e2)
 else if t1 and t2 are arithmetic types:
 common_type = get_common_type(t1, t2)
 else:
 fail("Invalid operands to equality expression")
 --snip--

Listing 17-19: Type checking an Equal expression, with extra validation

NOTE

If you compare this code to Listing 14-15, you’ll notice that we’ve replaced the recursive calls to typecheck_exp
with typecheck_and_convert. We made that change back in Chapter 15, so it’s not bolded here.

In Chapter 14, if neither t1 nor t2 was a pointer type, we knew they were both arithmetic types, so we could go

ahead and perform the usual arithmetic conversions. Now we’ll explicitly check that they’re either pointer or
arithmetic types; if they’re anything else, we’ll fail.

More broadly, we should type check each expression’s operands by accepting valid types instead of rejecting
invalid ones. For example, we should validate that the operands to Multiply and Divide are arithmetic values,

instead of making sure they aren’t pointers. Take a moment to look over your type checking logic for all the
relational and arithmetic operations, tightening up any validation that’s too permissive.

sizeof Expressions

A sizeof expression has type size_t; in our implementation, that’s just unsigned long. To type check sizeof,

we first validate its operand and then record unsigned long as the result type, as Listing 17-20 demonstrates.

typecheck_exp(e, symbols):
 match e with
 | --snip--
 | SizeOfT(t) ->
 ❶ validate_type_specifier(t)
 ❷ if not is_complete(t):
 fail("Can't get the size of an incomplete type")

 return set_type(e, ULong)
 | SizeOf(inner) ->
 ❸ typed_inner = typecheck_exp(inner, symbols)
 ❹ if not is_complete(get_type(typed_inner)):
 fail("Can't get the size of an incomplete type")
 return set_type(SizeOf(typed_inner), ULong)

Listing 17-20: Type checking sizeof

If sizeof operates on a type, we enforce two rules about incomplete types that we discussed in “Restrictions on

Incomplete Types” on page 471: you can never specify an array with an incomplete element type ❶, and you can’t
apply sizeof to an incomplete type ❷. (You can’t apply sizeof to a function type either, but we already catch

that error in the parser.)

If the operand is an expression, we first infer that expression’s type ❸. To avoid converting arrays to pointers, we
use typecheck_exp instead of typecheck_and_convert. Once we’ve determined the expression’s type, we

make sure that type is complete ❹.

TEST THE TYPE CHECKER

To test out the type checker, run:

$./test_compiler /path/to/your_compiler --chapter 17 --stage validate

The invalid test cases for this stage are broken up into several subdirectories. The tests in
tests/chapter_17/invalid_types/pointer_conversions cover invalid conversions to and from void *. The tests in

tests/chapter_17/invalid_types/scalar_expressions use non-scalar expressions where scalar expressions are
required, and the tests in tests/chapter_17/invalid_types/incomplete_types use incomplete types where complete
types are required. The tests in tests/chapter_17/invalid_types/void cover other invalid uses of void (like

returning a value from a function with a void return type or comparing two void expressions). Finally,

tests/chapter_17/valid contains valid programs, which your type checker should process successfully.

TACKY Generation

Next, we’ll convert sizeof and void expressions to TACKY. We’ll need to update the Return and FunCall

instructions to account for functions with a void return type. We’ll also process casts and conditional expressions

of type void slightly differently from their non-void counterparts; in particular, we won’t create any void

temporary variables. We’ll evaluate sizeof expressions during this pass as well, replacing them with integer

constants. We won’t need to change anything to support pointers to void.

Functions with void Return Types

We’ll make two changes to the TACKY IR so that we can call and return from functions with a void return type.

First, we’ll make the destination of the FunCall instruction optional:

FunCall(identifier fun_name, val* args, val? dst)

For calls to void functions, we’ll leave dst empty. For calls to any other function, dst will be the temporary

variable that holds the return value, like it is now. We’ll make a similar change to the Return instruction:

Return(val?)

Then, we’ll translate each return statement with no expression to a TACKY Return instruction without a value.

A void function might not use an explicit return statement; in this case, it returns once control reaches the end

of the function. We already handle this case correctly by adding a Return instruction to the end of every TACKY

function.

Casts to void

Listing 17-21 shows how to handle a cast to void: just process the inner expression without emitting any other

instructions.

emit_tacky(e, instructions, symbols):
 match e with
 | --snip--
 | Cast(Void, inner) ->
 emit_tacky_and_convert(inner, instructions, symbols)
 return PlainOperand(Var("DUMMY"))

Listing 17-21: Converting a cast to void to TACKY

You can return whatever operand you want here; the caller won’t use it.

Conditional Expressions with void Operands

Listing 17-22 demonstrates how we currently convert conditional expressions to TACKY.

 | Conditional(condition, e1, e2) ->
 --snip--

 cond = emit_tacky_and_convert(condition, instructions, symbols)
 instructions.append(JumpIfZero(cond, e2_label))
 dst = make_tacky_variable(get_type(e), symbols)
 v1 = emit_tacky_and_convert(e1, instructions, symbols)
 instructions.append_all(
 ❶ [Copy(v1, dst),
 Jump(end),
 Label(e2_label)])
 v2 = emit_tacky_and_convert(e2, instructions, symbols)
 instructions.append_all(
 ❷ [Copy(v2, dst),
 Label(end)])
 return PlainOperand(dst)

Listing 17-22: Converting a non-void conditional expression to TACKY

If e1 and e2 are void expressions, the Copy instructions ❶❷ are problematic. We shouldn’t create a dst

temporary variable with type void, and we definitely shouldn’t copy anything into it. To handle void expressions in

conditionals, we’ll stick with the basic approach from Listing 17-22, but without generating dst or emitting either

Copy instruction. Listing 17-23 shows the updated pseudocode to handle void conditional expressions.

 | Conditional(condition, e1, e2) ->
 --snip--

 cond = emit_tacky_and_convert(condition, instructions, symbols)
 instructions.append(JumpIfZero(cond, e2_label))
 if get_type(e) == Void:
 emit_tacky_and_convert(e1, instructions, symbols)
 instructions.append_all(
 [Jump(end),
 Label(e2_label)])
 emit_tacky_and_convert(e2, instructions, symbols)
 instructions.append(Label(end))
 ❶ return PlainOperand(Var("DUMMY"))
 else:
 --snip--

Listing 17-23: Converting a conditional expression with a void result to TACKY

Since we don’t create the temporary variable dst, we need to return some other operand to the caller. We can

return a dummy value ❶ because we know the caller won’t use it. To handle non-void expressions, we’ll generate
the same instructions as before, so I’ve omitted the pseudocode for that case.

sizeof Expressions

We’ll evaluate sizeof expressions during TACKY generation and represent the results as unsigned long

constants, as Listing 17-24 illustrates.

 | SizeOf(inner) ->
 t = get_type(inner)
 result = size(t)
 return PlainOperand(Constant(ConstULong(result)))
 | SizeOfT(t) ->
 result = size(t)
 return PlainOperand(Constant(ConstULong(result)))

Listing 17-24: Evaluating sizeof during TACKY generation

Since we don’t convert the operand of sizeof to TACKY, it won’t be evaluated at runtime.

The Latest and Greatest TACKY IR

Listing 17-25 defines the current TACKY IR, with this chapter’s two changes bolded.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init* init_list)
 | StaticConstant(identifier, type t, static_init init)
instruction = Return(val?)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | DoubleToInt(val src, val dst)
 | DoubleToUInt(val src, val dst)
 | IntToDouble(val src, val dst)
 | UIntToDouble(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | GetAddress(val src, val dst)
 | Load(val src_ptr, val dst)
 | Store(val src, val dst_ptr)
 | AddPtr(val ptr, val index, int scale, val dst)
 | CopyToOffset(val src, identifier dst, int offset)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val? dst)
val = Constant(const) | Var(identifier)

unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 17-25: Adding support for functions with void return types to the TACKY IR

Most of the changes in this section—to support void casts, void conditional expressions, and sizeof—didn’t

impact the TACKY IR. We’ll process the two instructions that did change in the next section.

TEST THE TACKY GENERATION STAGE

To test out TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 17 --stage tacky

Assembly Generation

To finish off the chapter, we’ll generate assembly for Return instructions with no value and FunCall instructions

with no destination. We can handle both instructions with minor changes to the assembly generation pass.

Normally, an instruction of the form Return(val) is converted to the following assembly:

Mov(<val type>, val, <dst register>)
Ret

If the return value is absent, we’ll skip the Mov instruction and just generate the Ret instruction. Along the same

lines, Listing 17-26 summarizes how we usually convert a FunCall instruction to assembly.

<fix stack alignment>

<move arguments to general-purpose registers>

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)
<deallocate arguments/padding>

❶ Mov(<dst type>, <dst register>, dst)

Listing 17-26: Converting FunCall to assembly when the function returns a value

If dst is absent, we won’t generate the final Mov instruction ❶, but everything else will remain the same. Table

17-1 summarizes the latest updates to the conversion from TACKY to assembly, with these two small changes
bolded.

Table 17-1: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Integer Mov(<val type>, val, Reg(AX))

Ret

double Mov(Double, val, Reg(XMM0))

Ret

void Ret

FunCall(fun_name, args,

 dst)

dst is

present
<fix stack alignment>

<move arguments to general-purpose registers>

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)

<deallocate arguments/padding>

Mov(<dst type>, <dst register>, dst)

dst is

absent
<fix stack alignment>

<move arguments to general-purpose registers>

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)

<deallocate arguments/padding>

Because the assembly AST didn’t change, we won’t touch the rest of the backend.

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 17

The test programs in tests/chapter_17/valid/void_pointer perform various operations on void * values, including

assignments, comparisons, type conversions, and calls to all the memory management functions we discussed at
the beginning of the chapter. The tests in tests/chapter_17/valid/void exercise your compiler’s support for void
expressions, including function calls, casts, and conditional expressions. The tests in tests/chapter_17/valid/sizeof
validate that your compiler can handle both forms of sizeof, that the operand to sizeof isn’t evaluated at

runtime, and that your compiler correctly calculates the size of a wide range of types. Finally, the tests in
tests/chapter_17/valid/libraries validate that when you compile code that uses void and pointers to void, it will

interoperate correctly with code compiled by your system’s C compiler.

Summary

In this chapter, you implemented the void type and the sizeof operator. You learned about the difference

between complete and incomplete types and the ways that C programs can use void expressions. Then, you
extended the type checker to detect invalid uses of incomplete and non-scalar types, modified the TACKY
generation stage to evaluate sizeof operators without evaluating their operands, and tweaked the backend to

support functions that don’t return a value. Next, we’ll finish up Part II by adding structure types. Structures are
the very last language feature you’ll implement in the book, and perhaps the most challenging. Luckily, you’re well
prepared to take on this challenge, thanks to the skills you learned and the groundwork you laid in previous
chapters.

Description

18

STRUCTURES

In this chapter, you’ll add one final language feature: structures. You’ll also implement the
. and -> operators to access structure members. In a fitting end to Part II, you’ll draw on

many of the skills, concepts, and techniques you learned in earlier chapters. In the
identifier resolution stage, you’ll resolve structure tags along with function and variable
identifiers. In the type checker, you’ll record structure definitions in a type table, much like
you already record function and variable declarations in the symbol table. During TACKY
generation, you’ll build on the strategy you used in Chapter 14 to handle operations on
dereferenced pointers and other objects. And on the backend, you’ll implement the part of
the System V calling convention that specifies how to pass structures as function
parameters and return values. Since unions are a close cousin to structures, you might

want to implement those too. We won’t cover them in detail, but you can add them as an extra credit feature.

Declaring Structure Types

You have to declare a structure type before you can use it. There are two kinds of structure type declarations. The
first, shown in Listing 18-1, specifies the structure’s members.

struct complete_struct {
 long member1;
 double member2;
};

Listing 18-1: A complete structure type declaration

This listing declares a complete structure type with two members: a long and a double. The identifier

complete_struct is this type’s tag, which we can use to specify the type later in the program. A complete

structure type must have at least one member, so it’s illegal to declare a structure type with an empty member
list:

struct empty {};

The second kind of structure type declaration, shown in Listing 18-2, specifies a structure’s tag but not its
members.

struct incomplete_struct;

Listing 18-2: An incomplete structure type declaration

Listing 18-2 declares an incomplete structure type. As you learned in the previous chapter, you can use incomplete
types only in certain limited circumstances. For example, you can’t define a variable of type struct

incomplete_struct, but you can define a pointer to a struct incomplete_struct. (That’s because we know

how much memory a pointer requires, but not how much memory this structure requires.) We’ll say that a
structure declaration with no member list declares a type, while a structure declaration with a member list both
declares and defines a type. This differs from the terminology you’ll see in the C standard and elsewhere; in
particular, when people talk about “type definitions,” they usually mean aliases introduced with the typedef

keyword.

Structure tags are visible only in the scope in which they’re declared, just like function and variable names. If a
structure tag is declared at file scope, it’s visible from the point where it’s declared until the end of the file. If it’s
declared at block scope, it’s visible until the end of the block. If two structure type declarations with the same tag
appear in the same scope, they always declare the same type; if they appear in different scopes, they declare
distinct types. (Type declarations don’t have linkage, so you can’t apply the static or extern keywords to them.)

You can declare the same structure type multiple times, but you can’t define it more than once.

A structure type is complete once its definition is in scope, as Listing 18-3 illustrates.

❶ struct s;

struct s *ptr = 0;

struct s {
 int a;
 int b;
}; ❷

❸ struct s x = {0,0};

Listing 18-3: Declaring an incomplete type and then completing it

Between ❶ and ❷, struct s is an incomplete type. It wouldn’t be legal to define a variable with type struct s

between these two points in the program, but it’s legal to define ptr, which is a pointer to struct s. After the

end of the type declaration that specifies its member list ❷, struct s is a complete type, so it’s legal to define a

variable with that type ❸.

When the same structure tag is declared in two different scopes, one can shadow the other, as Listing 18-4
illustrates.

#include <stdio.h>

❶ struct s {
 int a;
};

int main(void) {
 printf("Outer struct size: %lu\n", ❷ sizeof (struct s));

 ❸ struct s {
 long l;
 };

 printf("Inner struct size: %lu\n", ❹ sizeof (struct s));
 return 0;
}

Listing 18-4: One structure type shadowing another

First, we define a struct s type at file scope ❶. Its size is 4 bytes because it contains a single int. The first

sizeof expression in main refers to this type ❷. Then, we define another struct s type at block scope ❸,

shadowing the first type. This type contains a single long, so its size is 8 bytes. The two definitions of struct s

don’t conflict, because they appear in different scopes. In the second sizeof expression ❹, the specifier struct

s refers to the 8-byte structure type defined in the inner scope. Running this program gives the following output:

$./listing_18_4
Outer struct size: 4
Inner struct size: 8

Even when a structure’s tag is shadowed, its members are still visible. Consider Listing 18-5.

int main(void) {

 ❶ struct shadow {
 int x;
 };
 struct shadow outer;
 outer.x = 2;
 {
 ❷ struct shadow {
 int y;
 };

 struct shadow inner;
 inner.y = 3;
 ❸ return outer.x + inner.y;
 }
}

Listing 18-5: Using a variable with a shadowed structure type

In this listing, we first declare a structure type, struct shadow ❶. Then, we define a variable, outer, with that

type. In the inner scope, we declare another structure type with the same tag ❷, which shadows the outer
declaration. We then declare a variable with this new type, inner. In the return statement, we can still access

the members of both variables ❸. Even in the inner scope, the compiler knows about the original struct shadow

type, and it still knows that outer belongs to that type; we just can’t specify that type with the shadow tag.

To keep all our structure types straight, we’ll treat structure tags a lot like variable names: in the identifier
resolution pass, we’ll replace each user-defined tag with a unique identifier.

Structure Member Declarations

The members of a structure can have any complete type, including primitive types like int and derived types like

arrays, pointers, or other structures. It’s illegal to declare a structure member with an incomplete type, however,
because that makes it impossible to determine the size of the whole structure. This implies, as section 6.7.2.1,
paragraph 3, of the C standard puts it, that “a structure shall not contain an instance of itself.” That is, a struct

s can’t contain a member of type struct s. On the other hand, a structure can contain a pointer to itself

because pointer types are always complete. The canonical example, shown in Listing 18-6, is a node in a linked
list, which holds a value and a pointer to the next list entry.

struct linked_list_node ❶ {
 int val;
 struct linked_list_node *next;
}; ❷

Listing 18-6: A structure type definition that contains a pointer to itself

After ❶, struct linked_list_node is visible as an incomplete type, so we can declare the member next as a

pointer to this type. After ❷, the type is complete.

It’s also illegal to declare functions as structure members. A structure can hold function pointers—which are
complete types, just like any other pointer—but we don’t support function pointers, so that doesn’t matter to us.

Tag and Member Namespaces

Structure tags are in a different namespace from functions and variables. This means the same identifier can be
used as both a tag and a function or variable name, and neither identifier will shadow or conflict with the other.
It’s perfectly legal, for example, to declare the type struct s and a variable s in the same scope. It’s possible to

maintain these separate namespaces because the struct keyword tells the compiler that a particular identifier is

a structure tag.

Similarly, each structure member list is its own namespace. A structure member can share a name with any
function, variable, or structure type, including the structure type that contains it, like in the following example:

struct s {
 int s;
};

It’s also legal for members in different structures to have the same name:

struct s1 {
 int x;
};

struct s2 {
 int x;
};

When the identifier x appears in an expression, like var->x, the compiler can figure out from context whether it

refers to the member in s1, the member in s2, or a function or variable. Unsurprisingly, it’s illegal for two

members of the same structure to share a name.

Structure Type Declarations We Aren’t Implementing

C syntax doesn’t distinguish between structure type specifiers and type declarations, so you can simultaneously
declare a new structure type and use that structure type in some larger construct. In Listing 18-7, for example, a
single declaration defines a new structure type, struct s, and a variable x of type struct s.

struct s {
 int member;
} x;

Listing 18-7: Defining and specifying a structure type in the same declaration

To simplify parsing and semantic analysis, we’ll require every declaration to declare exactly one function, variable,
or type. We won’t support declarations like Listing 18-7 that declare a new type and some other entity at the same
time. This goes for incomplete types as well. The C standard lets you implicitly declare an incomplete structure
type, just by specifying it:

struct s *f(void);

Even if struct s hasn’t yet been declared, this declaration is legal: it simultaneously declares struct s as an

incomplete type and declares a function that returns a pointer to struct s. However, our implementation won’t

permit this. Instead, we’ll require a separate declaration of struct s first:

struct s;
struct s *f(void);

Requiring types to be declared before they’re used also implies that you can’t nest one structure declaration inside
another, like in Listing 18-8.

struct outer {
 struct inner {
 int a;
 long l;
 } i;
 double d;
};

Listing 18-8: Declaring an inner structure type and declaring member i with that type in the same declaration

We’ll impose a few other restrictions too. We’ll reject structure declarations without tags and structure members
without names, even though the C standard permits them. We also won’t support bit-field members, which make
it possible to address individual bits within a structure.

Operating on Structures

You can access the members of a structure with the . operator:

struct s var;
--snip--

long l = var.member1;

If you have a pointer to a structure, you can access the structure’s members with the -> operator. Continuing with

the same example:

struct s *ptr = &var;
long l2 = ptr->member1;

You can apply the . and -> operators only to complete structure types. You can’t access the members of an

incomplete structure type, since those members haven’t been defined yet.

Structures are aggregate types, like arrays. But structures don’t decay to pointers like arrays do, so you can use
them in several ways that you can’t use arrays. For example, you can pass them as function arguments and return
values. You can also assign to them, like in Listing 18-9.

struct s foo;
struct s bar;
--snip--

foo = bar;

Listing 18-9: Assigning to a structure

You can assign to individual members of a structure too, as long as they’re lvalues. A structure member specified
with the -> operator is always an lvalue:

ptr->member2 = 2.0;

Recall that all dereferenced pointers are lvalues. The -> operator produces a dereferenced pointer, much like the *

and [] operators do, so the same rules apply.

If a structure is an lvalue, any members you access with the . operator are lvalues too. If a structure isn’t an

lvalue, neither are its members. Therefore, this assignment expression is legal:

var.member2 = 2.0;

But, because the result of a function call isn’t an lvalue, this is illegal:

return_struct().member2 = 2.0;

Structures can appear in a few other expressions, pretty much where you’d expect. They can appear in the
branches of conditional expressions, as long as both branches have the same structure type. You can get their size

with sizeof and cast them to void, but you can’t otherwise cast to or from structure types. And if a structure or

structure member is an lvalue, you can take its address.

There are two ways to initialize a structure. You can initialize it with an expression of the same structure type:

struct s return_struct(void);
struct s var = return_struct();

Or, you can use a compound initializer to initialize each member individually, like in Listing 18-10.

struct example {
 int member1;
 double member2;
 char array[3];
};

struct example var = {1, 2.0, ❶ {'a', 'b', 'c'}};

Listing 18-10: Initializing a structure with a compound initializer

A compound initializer initializes a structure’s members in order. The initializer in Listing 18-10 initializes member1

with the value 1 and member2 with 2.0. The inner compound initializer initializes the three array elements in

array_member ❶. Note that compound initializers for arrays and structures have identical syntax. (The syntax for

designated initializers, which initialize specific subobjects in an aggregate object, is different for array elements
and structure members, but we won’t implement designated initializers.) By nesting compound initializers, you can
initialize arrays of structures, structures that contain other structures, and so on.

Structure Layout in Memory

At this point, we have a pretty good sense of how structure types work in source code. Now let’s look at how
they’re laid out in memory at runtime. This is specified partly by the C standard and partly by the System V ABI.
It’s important to lay out structures exactly as the ABI specifies so that the code we compile can interoperate with
other code that uses structures.

A structure’s members appear in the same order in memory as in the original structure declaration. The first
member must have the same address as the structure as a whole; you can always convert a pointer to a structure
into a pointer to its first member, and vice versa. Each subsequent member will be stored at the earliest free
address with the correct alignment. Let’s use the struct example type from Listing 18-10 as an example. Listing

18-11 reproduces the definition of struct example.

struct example {
 int member1;

 double member2;
 char array[3];
};

Listing 18-11: A structure type with several members with different alignments

The first member must start at the very beginning of the structure. Because member1 is an int, it occupies the

structure’s first 4 bytes. Bytes in a structure are typically zero-indexed, so we’ll say that member1 occupies bytes 0

through 3. The next unused space is therefore at byte 4. But member2 is a double, which is 8-byte aligned; its

starting address must be a multiple of 8. Therefore, member2 will be stored in bytes 8 through 15. We say that

member2 has an offset of 8 bytes from the start of the structure. Between member1 and member2, in bytes 4

through 7, we have 4 bytes of padding.

The last member, array, takes up 3 bytes and has an alignment of 1 byte. Since we don’t need any padding to

align it correctly, we’ll store it right after member2, in bytes 16 through 18.

We’ll also need padding at the end of the structure, after array. According to the System V ABI, the size of a type

must be a multiple of its alignment. The ABI also states that a structure takes on the same alignment as its most
strictly aligned member. The most strictly aligned member of struct example is the double, member2.

Therefore, the whole structure must be 8-byte aligned, and its size must be a multiple of 8. The three members of
struct example and the padding between them occupy 19 bytes. We’ll add 5 bytes of padding to the end of the

structure, bringing its total size to 24 bytes. Figure 18-1 illustrates the layout of the whole structure.

Figure 18-1: The structure layout in memory Description

The padding between members guarantees that each member will end up at a correctly aligned memory address.
If the starting address of the entire structure is a multiple of 8 and the offset of member2 from the start is also a

multiple of 8, we know that member2’s runtime memory address will be a multiple of 8 too. The padding at the

end of the structure guarantees that each element in an array of structures will have the correct alignment; if the
initial element in an array of struct example objects is 8-byte aligned and its total size is 24 bytes, each

subsequent element will be 8-byte aligned as well.

Now that you understand how to work with structures in C and how they’re laid out in memory, let’s get to work
on implementing them.

The Lexer

You’ll add three new tokens in this chapter:

struct A keyword indicating a structure type specifier

. A period, the structure member access operator

-> An arrow, the operator to access a structure member through a pointer

Keep in mind that a period can be either a structure member access operator or part of a floating-point constant.
We’ll recognize a period as a . token only if it’s followed by a non-digit character. If a period is followed by a digit,

either it’s the start of a floating-point constant or it’s invalid. For example, if the lexer sees the input .100u, it

should try to parse this as a constant. It will then raise an error, since this doesn’t match the regular expression
for any kind of constant. It should not lex this as a . token followed by the constant 100u.

TEST THE LEXER

To test out the lexer, run:

$./test_compiler /path/to/your_compiler --chapter 18 --stage lex

The lexer should reject the test programs in tests/chapter_18/invalid_lex; these include . characters that are

followed by digits but aren’t part of valid floating-point constants. The lexer should accept all the other test
programs in this chapter.

The Parser

We’ll add several new constructs to the AST in this chapter: structure declarations, structure type specifiers, and
the two new structure operators. Listing 18-12 gives the AST definition for structure declarations.

struct_declaration = (identifier tag, member_declaration* members)
member_declaration = (identifier member_name, type member_type)

Listing 18-12: Representing structure declarations in the AST

A struct_declaration consists of a tag and a list of members. To represent an incomplete structure type

declaration, we’ll leave the member list empty. (Remember that a complete structure type must have at least one
member.) We’ll represent each member with a member_declaration, which includes a member name and a type.

Next, we’ll extend the declaration AST node to support structure type declarations as well as function and

variable declarations:

declaration = --snip-- | StructDecl(struct_declaration)

We’ll also extend the type AST node to include structure type specifiers like struct s:

type = --snip-- | Structure(identifier tag)

Finally, we’ll add two new expressions: the . and -> operators, sometimes called the structure member operator
and structure pointer operator, respectively. We’ll use the more concise names Dot and Arrow:

exp = --snip--
 | Dot(exp structure, identifier member)
 | Arrow(exp pointer, identifier member)

Each of these operators takes an expression as its first operand and the name of a structure member as its second
operand. Listing 18-13 defines the complete AST, with this chapter’s changes bolded.

program = Program(declaration*)
declaration = FunDecl(function_declaration) | VarDecl(variable_declaration)
 | StructDecl(struct_declaration)
variable_declaration = (identifier name, initializer? init,
 type var_type, storage_class?)
function_declaration = (identifier name, identifier* params, block? body,
 type fun_type, storage_class?)
struct_declaration = (identifier tag, member_declaration* members)
member_declaration = (identifier member_name, type member_type)
initializer = SingleInit(exp) | CompoundInit(initializer*)
type = Char | SChar | UChar | Int | Long | UInt | ULong | Double | Void
 | FunType(type* params, type ret)
 | Pointer(type referenced)
 | Array(type element, int size)
 | Structure(identifier tag)
storage_class = Static | Extern
block_item = S(statement) | D(declaration)
block = Block(block_item*)
for_init = InitDecl(variable_declaration) | InitExp(exp?)
statement = Return(exp?)

 | Expression(exp)
 | If(exp condition, statement then, statement? else)
 | Compound(block)
 | Break
 | Continue
 | While(exp condition, statement body)
 | DoWhile(statement body, exp condition)
 | For(for_init init, exp? condition, exp? post, statement body)
 | Null
exp = Constant(const)
 | String(string)
 | Var(identifier)
 | Cast(type target_type, exp)
 | Unary(unary_operator, exp)
 | Binary(binary_operator, exp, exp)
 | Assignment(exp, exp)
 | Conditional(exp condition, exp, exp)
 | FunctionCall(identifier, exp* args)
 | Dereference(exp)
 | AddrOf(exp)
 | Subscript(exp, exp)
 | SizeOf(exp)
 | SizeOfT(type)
 | Dot(exp structure, identifier member)
 | Arrow(exp pointer, identifier member)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | And | Or
 | Equal | NotEqual | LessThan | LessOrEqual
 | GreaterThan | GreaterOrEqual
const = ConstInt(int) | ConstLong(int) | ConstUInt(int) | ConstULong(int)
 | ConstDouble(double) | ConstChar(int) | ConstUChar(int)

Listing 18-13: The abstract syntax tree with structure types and the . and -> operators

Listing 18-14 shows the corresponding changes to the grammar.

<program> ::= {<declaration>}
<declaration> ::= <variable-declaration> | <function-declaration> | <struct-declaration>
<variable-declaration> ::= {<specifier>}+ <declarator> ["=" <initializer>] ";"
<function-declaration> ::= {<specifier>}+ <declarator> (<block> | ";")
<struct-declaration> ::= "struct" <identifier> ❶ ["{" {<member-declaration>}+ "}"] ";"
<member-declaration> ::= {<type-specifier>}+ <declarator> ";"
<declarator> ::= "*" <declarator> | <direct-declarator>
<direct-declarator> ::= <simple-declarator> [<declarator-suffix>]
<declarator-suffix> ::= <param-list> | {"[" <const> "]"}+
<param-list> ::= "(" "void" ")" | "(" <param> {"," <param>} ")"
<param> ::= {<type-specifier>}+ <declarator>
<simple-declarator> ::= <identifier> | "(" <declarator> ")"
<type-specifier> ::= "int" | "long" | "unsigned" | "signed" | "double" | "char" | "void"

 | "struct" <identifier>
<specifier> ::= <type-specifier> | "static" | "extern"
<block> ::= "{" {<block-item>} "}"
<block-item> ::= <statement> | <declaration>
<initializer> ::= <exp> | "{" <initializer> {"," <initializer>} [","] "}"
<for-init> ::= <variable-declaration> | [<exp>] ";"
<statement> ::= "return" [<exp>] ";"
 | <exp> ";"
 | "if" "(" <exp> ")" <statement> ["else" <statement>]
 | <block>
 | "break" ";"
 | "continue" ";"
 | "while" "(" <exp> ")" <statement>
 | "do" <statement> "while" "(" <exp> ")" ";"
 | "for" "(" <for-init> [<exp>] ";" [<exp>] ")" <statement>
 | ";"
<exp> ::= <cast-exp> | <exp> <binop> <exp> | <exp> "?" <exp> ":" <exp>
<cast-exp> ::= "(" <type-name> ")" <cast-exp>
 | <unary-exp>
<unary-exp> ::= <unop> <cast-exp>
 | "sizeof" <unary-exp>
 | "sizeof" "(" <type-name> ")"
 | <postfix-exp>
<type-name> ::= {<type-specifier>}+ [<abstract-declarator>]
<postfix-exp> ::= <primary-exp> {<postfix-op>}
<postfix-op> ::= "[" <exp> "]"
 | "." <identifier>
 | "->" <identifier>
<primary-exp> ::= <const> | <identifier> | "(" <exp> ")" | {<string>}+
 | <identifier> "(" [<argument-list>] ")"
<argument-list> ::= <exp> {"," <exp>}
<abstract-declarator> ::= "*" [<abstract-declarator>]
 | <direct-abstract-declarator>
<direct-abstract-declarator> ::= "(" <abstract-declarator> ")" {"[" <const> "]"}
 | {"[" <const> "]"}+
<unop> ::= "-" | "~" | "!" | "*" | "&"
<binop> ::= "-" | "+" | "*" | "/" | "%" | "&&" | "||"
 | "==" | "!=" | "<" | "<=" | ">" | ">=" | "="
<const> ::= <int> | <long> | <uint> | <ulong> | <double> | <char>
<identifier> ::= ? An identifier token ?
<string> ::= ? A string token ?
<int> ::= ? An int token ?
<char> ::= ? A char token ?
<long> ::= ? An int or long token ?
<uint> ::= ? An unsigned int token ?
<ulong> ::= ? An unsigned int or unsigned long token ?
<double> ::= ? A floating-point constant token ?

Listing 18-14: The grammar with structure types and the . and -> operators

A <struct-declaration> may include a brace-enclosed list of structure members ❶. This member list is

optional, but if the braces are present they must contain at least one member.

A structure member declaration has the same form as a variable declaration; it includes a list of type specifiers
and a declarator and ends with a semicolon. Unlike a variable declaration, however, a structure member can’t have
an initializer or a storage class. We’ll impose one syntactic requirement that isn’t reflected in the grammar: the
parser should reject function declarators in structure member declarations, even though the <member -

declaration> grammar rule allows them. For example, the parser should reject this declaration:

struct contains_function {
 int foo(void);
};

A structure type specifier consists of two tokens: the struct keyword and an identifier token, which specifies the

structure tag. This specifier can’t be combined with other type specifiers, but it can be modified by a pointer, array,
or function declarator.

The new . and -> operators are postfix operators, like the subscript operator we added in Chapter 15. All three

postfix operators have higher precedence than any prefix operator. The new <postfix-op> symbol includes all

three operators, which ensures that they’re all parsed with the correct precedence.

TEST THE PARSER

To test your parser, run:

$./test_compiler /path/to/your_compiler --chapter 18 --stage parse

Semantic Analysis

We haven’t made any substantive changes to the identifier resolution pass in a while. Now we’ll have it resolve
structure tags along with function and variable names. This pass will assign every structure type a unique ID,
replacing its original user-defined tag. It will also throw an error if a program tries to specify a structure type
before declaring it.

In the type checker, we’ll introduce a new table to track structure definitions. We’ll refer to these definitions when
we type check initializers, member access operators, and other operations on structures. We’ll also use them to
generate TACKY and assembly in later stages.

Resolving Structure Tags

Let’s walk through how to handle structure tags during identifier resolution. We’ll rename these tags in basically
the same way that we rename local variables. We’ll maintain a map from user-defined tags to unique identifiers.
When we find a declaration of a new structure type, we’ll generate a new identifier and add it to the map. And
when we encounter a structure type specifier, we’ll replace it with the corresponding unique identifier from the
map. Because structure tags exist in a separate namespace from functions and variables, we’ll track them in a
separate map.

Defining the Structure Tag Map

In our existing identifier map, we track three pieces of information about each user-defined function or variable
name: the unique identifier we’ll replace it with, whether it has linkage, and whether it was defined in the current
scope. In the structure tag map, we’ll track each tag’s unique identifier and whether it was defined in the current
scope, but we won’t track linkage, because that concept doesn’t apply to types. Go ahead and define this data
structure. Then, we’ll look at how to resolve tags in type specifiers and declarations.

Resolving Type Specifiers

Listing 18-15 illustrates how to resolve a type specifier.

resolve_type(type_specifier, structure_map):
 match type_specifier with
 | Structure(tag) ->
 if tag is in structure_map:
 unique_tag = structure_map.get(tag).new_tag
 ❶ return Structure(unique_tag)
 else:
 ❷ fail("Specified an undeclared structure type")
 | Pointer(referenced_t) ->
 resolved_t = resolve_type(referenced_t, structure_map)
 return Pointer(resolved_t)
 | Array(elem_t, size) ->
 --snip--
 | FunType(param_ts, ret_t) ->
 --snip--
 | t -> return t

Listing 18-15: Replacing structure tags in a type specifier

The resolve_type function accepts a type specifier and returns a copy of that specifier in which any structure

tags have been replaced with unique IDs. When resolve_type encounters a structure type, it replaces the tag

with the corresponding identifier from structure_map ❶. If the tag isn’t in structure _map, the structure

hasn’t been declared yet, so it throws an error ❷. To resolve a derived type, like Pointer, we resolve its

constituent types recursively. I’ve omitted the pseudocode for Array and FunType, which we’ll handle the same

way as Pointer. We return any other type unchanged. We’ll process every type specifier in the AST with

resolve_type, including specifiers in function and variable declarations, cast and sizeof expressions, and

structure member declarations.

Resolving Structure Type Declarations

Next, let’s look at the pseudocode in Listing 18-16, which illustrates how to resolve a structure type declaration.

resolve_structure_declaration(decl, structure_map):
 prev_entry = structure_map.get(decl.tag) ❶
 if (prev_entry is null) or (not prev_entry.from_current_scope):
 unique_tag = make_temporary()
 structure_map.add(decl.tag, MapEntry(new_tag=unique_tag, from_current_scope=True))
 else:
 unique_tag = prev_entry.new_tag ❸
 processed_members = []
 for member in decl.members:
 processed_type = resolve_type(member.member_type, structure_map) ❹
 processed_member = (member_name=member.member_name, member_type=processed_type)
 processed_members.append(processed_member)
 resolved_decl = (tag=unique_tag, members=processed_members)
 return resolved_decl ❺

Listing 18-16: Adding structure type declarations to the structure tag map

First, we look up the declaration’s tag in the structure tag map ❶. If this tag hasn’t been declared yet, or if it was
declared in an outer scope, this declaration introduces a new type. We therefore generate a new identifier and add
it to the structure tag map ❷. If the structure’s tag was already declared in the current scope, the current
declaration just redeclares the same type. In this case, we don’t generate a new unique ID; instead, we use the
one that’s already in the map ❸.

At this point, the structure tag map is up to date. Now we transform the structure type declaration itself. If this
declaration specifies the structure’s members, we resolve its member types by calling resolve_type on each of

them ❹. We replace the declaration’s user-defined tag with unique_tag, the ID that we generated or looked up

earlier in the function. Finally, we return the transformed declaration ❺.

Note that we add the new tag to structure_map before processing any structure members. This lets us accept

self-referential structures, like the linked list node from Listing 18-6:

struct linked_list_node {
 int val;

 struct linked_list_node *next;
};

Also note that we don’t generate unique names for structure members. Variables and functions need unique
identifiers because they’re all stored in a single symbol table, and structure tags need to be unique because
they’re all stored in a single type table, but structure members won’t all be stored in one table. Instead, we’ll
maintain a separate member list for each structure type, so members in different structures with the same name
won’t conflict with each other.

We’ll make two more updates to the identifier resolution pass. First, at the start of each new scope, we’ll make a
copy of the structure tag map with each entry’s from_current_scope attribute set to False, just like we do for

the identifier map. The second change is purely mechanical: we’ll extend resolve_exp to process the new Dot

and Arrow expressions the same way it processes all the other kinds of expressions. I’ll skip the pseudocode for

these changes, since they’re both straightforward.

Type Checking Structures

Much like the type checker records information about every function and variable in the symbol table, it will also
record information about every complete structure type in the type table. Let’s start by defining the type table;
then, we’ll look at how to convert structure type declarations to type table entries. Finally, we’ll use the
information in the type table to type check declarations, expressions, and initializers.

Defining the Type Table

The type table maps the structure tags we generated in the previous stage to struct_entry constructs. Listing

18-17 defines struct_entry.

struct_entry = StructEntry(int alignment, int size, member_entry* members)
member_entry = MemberEntry(identifier member_name, type member_type, int offset)

Listing 18-17: An entry in the type table

A struct_entry describes a structure type’s alignment, size, and members. We describe each member with a

member_entry construct, which specifies the member’s name, its type, and its offset in bytes from the start of the

structure. A struct_entry should support two different ways of accessing members: looking up specific members

by name and getting the whole list of members in order. You might want to represent members as an ordered

dictionary if your implementation language supports it.

Like the symbol table, the type table should be a global variable or singleton that you can easily access from any
stage of the compiler. (We’ll pass it explicitly in this section’s pseudocode for the sake of clarity.)

Next, we’ll see how to add structure definitions to the type table as we traverse the AST.

Populating the Type Table

When the type checker encounters a definition of a complete structure type, it should validate the definition, then
convert it into a struct_entry and add it to the type table. The type checker can ignore any structure type

declaration without a member list; a declaration with no member list either declares an incomplete type or
redeclares a type that was already defined.

To validate a structure type definition, we’ll start by checking whether this structure is in the type table already. If
it is, that means there’s another definition of the same tag in the same scope, so we’ll throw an error. Then, we’ll
make sure that no members of the structure share the same name, that no member has an incomplete type, and
that no member type specifies an array with an incomplete element type. (Remember that arrays of incomplete
type are illegal everywhere, not just in structure definitions.) You might also want to validate that no structure
members have function type, but it isn’t strictly necessary since we already validated that during parsing.

After validating that a structure type satisfies all these requirements, we’ll calculate each member’s offset and the
whole structure’s size and alignment. Earlier in the chapter, we saw how to perform these calculations and walked
through an example. Now let’s look at Listing 18-18, which demonstrates the whole process in pseudocode.

typecheck_struct_declaration(struct_decl, type_table):
 ❶ if struct_decl.members is empty:
 return
 ❷ validate_struct_definition(struct_decl, type_table)

 // define a member_entry for each member
 ❸ member_entries = []
 struct_size = 0
 struct_alignment = 1
 for member in struct_decl.members:
 member_alignment = alignment(member.member_type, type_table)
 ❹ member_offset = round_up(struct_size, member_alignment)
 ❺ m = MemberEntry(member.member_name, member.member_type,
 member_offset)
 member_entries.append(m)
 struct_alignment = max(struct_alignment, member_alignment)
 struct_size = member_offset + size(member.member_type, type_table)

 // define a struct_entry for the whole structure
 ❻ struct_size = round_up(struct_size, struct_alignment)
 struct_def = StructEntry(struct_alignment, struct_size, member_entries)
 ❼ type_table.add(struct_decl.tag, struct_def)

Listing 18-18: Calculating a structure definition

We start by checking whether this declaration includes a member list ❶. If it doesn’t, we return immediately,
without making any changes to the type table. If it does have a member list, we validate that it meets the
requirements described earlier in this section ❷. I won’t give you the pseudocode for
validate_struct_definition, since it isn’t too complicated.

Then, we get to the interesting part: figuring out each member’s layout in memory. Here, we’ll define a
member_entry for each structure member ❸. As we go, we’ll maintain a running total of the structure’s size in

bytes, struct_size. We’ll also track the strictest member alignment we’ve seen so far as struct_alignment.

To calculate a structure member’s offset, we take the next available offset, which is given by struct_size, and

round it up to that member’s alignment ❹. (We’ll walk through how to look up each type’s size and alignment in a
moment.) We construct its member_entry ❺, then update struct_alignment and struct_size.

Once we’ve processed every member, we calculate the structure’s total size by rounding struct_size up to the

nearest multiple of its alignment ❻. This rounded-up size will account for any padding at the end of the structure.
Finally, we add the whole struct_entry to the type table ❼.

Handling Structures in Helper Functions

We’ve centralized a lot of type checking logic into a handful of helper functions, including is_scalar and

is_complete. You’ve probably also written a few helper functions to look up each type’s size, alignment, and

other properties, although I haven’t provided pseudocode for those yet. Now we’ll extend these helpers to handle
structure types too.

We defined is_scalar back in Listing 17-12. Listing 18-19 gives the updated definition, with this chapter’s

addition bolded.

is_scalar(t):
 match t with
 | Void -> return False
 | Array(elem_t, size) -> return False
 | FunType(param_ts, ret_t) -> return False
 | Structure(tag) -> return False
 | _ -> return True

Listing 18-19: Checking whether a type is scalar

Structure types aren’t scalar, so this is pretty simple. I’m guessing you’ve written similar helper functions to test
whether a type is arithmetic, whether it’s an integer type, and so on. These will require similarly straightforward
updates, which we won’t get into here.

Updating is_complete is slightly more involved; we’ll need to consult the type table. Listing 18-20 gives the new

definition of this function.

is_complete(t, type_table):
 match t with
 | Void -> return False
 | Structure(tag) ->
 if tag is in type_table:
 return True
 else:
 return False
 | _ -> return True

Listing 18-20: Checking whether a type is complete

If a structure type is in the type table, it’s complete; if not, it’s incomplete. As we saw earlier, a structure type may
be incomplete at one point in the program but complete later on. During type checking, the type table tells us
whether the structure type is complete at the current point in the AST. Consider the code fragment in Listing 18-
21.

❶ struct s;
❷ struct t {

 struct s member;
};

❸ struct s {
 int a;
 int b;
};

Listing 18-21: Declaring a variable with an incomplete structure type

Because the first declaration of struct s ❶ doesn’t specify any members, we won’t add it to the type table.

Then, when we validate the definition of struct t ❷, we’ll look up struct s in the type table. (Strictly speaking,

we’ll look up the unique identifier that replaced s during the identifier resolution stage.) When we don’t find it,

we’ll correctly conclude that struct s is incomplete and throw an error. If the declaration of struct t appeared

after the definition of struct s ❸, we’d add struct s to the type table before processing struct t, so we

wouldn’t throw an error.

We also need helper functions to find a type’s size and alignment. Listing 18-22 shows the pseudocode for the
alignment function.

alignment(t, type_table):
 match t with

 | Structure(tag) ->
 struct_def = type_table.get(tag)
 return struct_def.alignment
 | Array(elem_t, size) ->
 return alignment(elem_t, type_table)
 | --snip--

Listing 18-22: Calculating a type’s alignment

To find a structure’s alignment, we’ll look it up in the type table. To find an array’s alignment, we’ll recursively
calculate the alignment of its element type. We’ll hardcode the alignments of other types, which are dictated by
the ABI. I won’t provide pseudocode for size, which will look similar to alignment.

NOTE

We learned earlier that if a variable of array type is 16 bytes or larger, it must be 16-byte aligned. Listing 18-22
doesn’t reflect this requirement because it calculates the alignment of types, not variables. You’ll probably want to
write a different helper function to calculate the alignment of variables, if you haven’t already.

The other helper functions we defined in earlier chapters should handle structures correctly without any changes.
Consider convert_by_assignment, which we use to type check assignment expressions and other places where

we convert a value to a specific type “as if by assignment.” Listing 18-23 reproduces the latest version of this code
from Listing 17-11.

convert_by_assignment(e, target_type):
 if get_type(e) == target_type:
 return e
 if get_type(e) is arithmetic and target_type is arithmetic:
 return convert_to(e, target_type)
 if is_null_pointer_constant(e) and target_type is a pointer type:
 return convert_to(e, target_type)
 if target_type == Pointer(Void) and get_type(e) is a pointer type:
 return convert_to(e, target_type)
 if target_type is a pointer type and get_type(e) == Pointer(Void):
 return convert_to(e, target_type)
 else:
 fail("Cannot convert type for assignment")

Listing 18-23: Converting an expression to a target type

If we pass convert_by_assignment an expression that already has the correct structure type, it will return the

expression unchanged. In any other case with a source or target structure type, it will fail. That’s the correct
behavior, since there’s no way to convert to or from a structure type.

Handling Incomplete Structure Types

We need to enforce several restrictions on incomplete structure types. First, we’ll validate the use of these types in
declarations; then, we’ll validate their use in expressions.

It’s legal to declare, but not define, a function with parameters or a return value of incomplete structure type.
(Remember that a function definition is a function declaration with a body.) If struct s is an incomplete type, the

type checker should accept this declaration:

void take_a_struct(struct s incomplete);

But it should reject this definition:

void take_a_struct(struct s incomplete) {
 return;
}

Similarly, we’ll accept declarations of variables with incomplete structure type but reject any definitions of these
variables, including tentative definitions. (This is more restrictive than the C standard, which permits tentative
definitions of variables with incomplete types in certain limited circumstances.) Concretely, we’ll accept a variable
declaration with an incomplete structure type only if it has the extern storage class and no initializer.

That takes care of declarations; now let’s consider expressions. There’s exactly one way to use a variable with
incomplete type in an expression. You can take its address, as the following example demonstrates:

extern struct s my_incomplete_struct;
struct s *ptr = &my_incomplete_struct;

You can then use ptr like any other pointer to an incomplete type.

Similarly, it’s legal (if not especially useful) to dereference a pointer to an incomplete structure and then take its
address, resulting in the pointer you started with:

struct s *another_ptr = &*ptr;

Any other use of an expression with an incomplete structure type is invalid. You can’t even cast it to void or use it

as an expression statement, so the type checker should reject both of the following statements:

(void) my_incomplete_struct;

*ptr;

We’ll extend typecheck_and_convert to catch these invalid expressions. Listing 18-24 gives the updated

definition of this function, with changes from the original definition in Listing 15-19 bolded.

typecheck_and_convert(e, symbols, type_table):
 typed_e = typecheck_exp(e, symbols, type_table)
 match get_type(typed_e) with
 | Array(elem_t, size) ->
 --snip--

 | Structure(tag) ->
 if tag is not in type_table:
 fail("Invalid use of incomplete structure type")
 return typed_e
 | _ -> return typed_e

Listing 18-24: Rejecting incomplete structure types in typecheck_and_convert

Remember that typecheck_and_convert processes every expression in the AST except for static initializers

(which must be constants) and the operands of the SizeOf and AddrOf expressions (which don’t undergo array

decay). This makes typecheck_and_convert the most convenient place to put the new validation, even though

it has nothing to do with the function’s original purpose, which is to implicitly convert arrays to pointers. With this
new validation in place, we’ll handle incomplete types correctly in every kind of expression: we’ll permit
incomplete structure types in AddrOf expressions, our existing validation will reject all incomplete types (including

void) in SizeOf expressions, and typecheck_and_convert will reject incomplete structure types everywhere

else. Note that typecheck_and_convert still accepts void expressions, which are legal in several places where

expressions with incomplete structure types are not.

We’ve already implemented all the other validation we need for incomplete types. For example, we already require
the pointer operands in pointer arithmetic expressions to point to complete types, and we already require the
element types in array type specifiers to be complete.

Type Checking the Member Access Operators

Next, let’s type check the . and -> operators. In both cases, we’ll validate the expression, figure out the member

type, and record that as the type of the whole expression. Listing 18-25 demonstrates how to type check a .

operator.

typecheck_exp(e, symbols, type_table):
 match e with
 | --snip--
 | Dot(structure, member) ->
 typed_structure = typecheck_and_convert(structure, symbols, type_table)

 ❶ match get_type(typed_structure) with
 | Structure(tag) ->
 ❷ struct_def = type_table.get(tag)
 ❸ member_def = <find member in struct_def.members>
 if member_def is not found:
 fail("Structure has no member with this name")
 member_exp = Dot(typed_structure, member)
 ❹ return set_type(member_exp, member_def.member_type)
 | _ -> fail("Tried to get member of non-structure")
 | Arrow(pointer, member) ->
 --snip--

Listing 18-25: Type checking the . operator

We start by type checking the first operand, structure, with a call to typecheck_and_convert (which throws

an error if structure has an incomplete type). Then, we validate that structure really is a structure ❶. If it is,

we look up its type in the type table ❷, then look up member in the resulting type table entry ❸. Finally, we

annotate the expression with the member type ❹. If structure isn’t a structure or doesn’t have a member with

this name, we throw an error.

I won’t provide pseudocode for type checking the -> operator, since it’s nearly identical; the only difference is that

we validate that the first operand is a pointer to a structure, rather than a structure itself.

Validating Lvalues

An -> expression is always an lvalue. To determine whether a . expression is an lvalue, the type checker must

recursively check whether its first operand is an lvalue. For example, the type checker should reject the expression
f().member = 3. Because f() isn’t an lvalue, f().member isn’t either.

This means we might encounter arrays that aren’t lvalues! It’s a type error to explicitly take the address of such an
array, like in Listing 18-26.

struct s {
 int arr[3];
};

struct s f(void);

int main(void) {
 int *pointer_to_array[3] = &(f().arr);
 --snip--

}

Listing 18-26: Illegally taking the address of a non-lvalue

However, these arrays still decay to pointers, so their addresses are still loaded implicitly. The program in Listing
18-27, for example, is entirely legal.

struct s {
 int arr[3];
};

struct s f(void);

int main(void) {
 return f().arr[0];
}

Listing 18-27: Implicitly converting a non-lvalue array to a pointer

When we type check this program, we’ll insert AddrOf to take the address of f().arr, just like when we type

check any other expression of array type.

THE CURIOUS CASE OF TEMPORARY LIFETIMES

There’s something wonky happening here. The expression f().arr isn’t an lvalue, but in order to have an

address that we can load, it has to designate an object. Section 6.2.4, paragraph 8, of the C standard resolves this
dilemma: “A non-lvalue expression with structure or union type, where the structure or union contains a member
with array type … refers to an object with automatic storage duration and temporary lifetime.… Its lifetime ends
when the evaluation of the containing full expression ends. Any attempt to modify an object with temporary
lifetime results in undefined behavior.”

An object with temporary lifetime is similar to the temporary variables we create during TACKY generation. The
compiler allocates it to hold the result of an expression, and it’s never used again after that expression is
evaluated. The key difference is that it’s possible to get a pointer to an object with temporary lifetime in the
source program. This makes it easy to inadvertently use that object after the end of its lifetime. Consider this
example, which you might expect to be equivalent to the return statement in Listing 18-27:

int *arr_pointer = f().arr;
return arr_pointer[0];

The lifetime of the structure returned by f() ends once we finish evaluating the expression f().arr. This means

that arr_ptr points to an object whose lifetime has ended, so subscripting it is undefined behavior.

Type Checking Structures in Conditional Expressions

The type checker should accept conditional expressions where both branches have the same structure type. It
should reject conditional expressions where only one branch has a structure type or where the branches have two
different structure types. To determine whether two structure types are identical, compare their tags, not their
contents.

Type Checking Structure Initializers

Finally, we’ll deal with structure initializers. As you learned earlier in this chapter, you can initialize a structure
either with a single expression of that structure type or with a compound initializer. The first case shouldn’t require
any changes to the type checker.

To handle compound initializers, we’ll type check each item in the initializer list against the corresponding member
type, as Listing 18-28 demonstrates.

typecheck_init(target_type, init, symbols, type_table):
 match target_type, init with
 | Structure(tag), CompoundInit(init_list) ->
 struct_def = type_table.get(tag) ❶
 if length(init_list) > length(struct_def.members): ❷
 fail("Too many elements in structure initializer")
 i = 0
 typechecked_list = []
 for init_elem in init_list: ❸
 t = struct_def.members[i].member_type
 typechecked_elem = typecheck_init(t, init_elem, symbols, type_table)
 typechecked_list.append(typechecked_elem)
 i += 1
 while i < length(struct_def.members): ❹
 t = struct_def.members[i].member_type
 typechecked_list.append(zero_initializer(t))
 i += 1
 return set_type(CompoundInit(typechecked_list), target_type)
 | --snip--

Listing 18-28: Type checking compound initializers for structures

We’ll start by looking up the structure in the type table ❶. We should have already validated that target_type is

complete before calling typecheck _init, so at this point it’s safe to assume that the structure has been

defined. Next, we’ll make sure the initializer list isn’t too long ❷. Just like when we process array initializers, we’ll
reject an initializer list with too many elements but accept one with too few elements to initialize the whole object.

After performing this check, we’ll iterate through the initializer list ❸. To type check each initializer, we’ll look up
the corresponding member type in the structure’s member list, then call typecheck_init recursively to make

sure the initializer is compatible with that type. Finally, we’ll pad out any uninitialized structure members with
zeros ❹.

Once you’ve updated typecheck_init, you’ll need to extend zero_initializer to handle structure types. To

initialize a structure to zero, zero_initializer should call itself recursively for each member type and return the

results in a compound initializer.

Initializing Static Structures

If a structure has static storage duration, we’ll store its initial value as a static_init list in the symbol table, just

like we do for arrays. The key difference is that we’ll initialize any padding in the structure too. Let’s return to the
example from Listing 18-10:

struct example {
 int member1;
 double member2;
 char array[3];
};

struct example var = {1, 2.0, {'a', 'b', 'c'}};

We figured out that this structure included 4 bytes of padding between member1 and member2 and 5 bytes of

padding after array. If var is a static variable, we’ll use the construct in Listing 18-29 to represent its initial

value.

Initial([IntInit(1),
 ❶ ZeroInit(4),
 DoubleInit(2.0),
 CharInit(97),
 CharInit(98),
 CharInit(99),
 ❷ ZeroInit(5)])

Listing 18-29: Representing the initializer from Listing 18-10 as a static_init list

We initialize padding with the ZeroInit construct ❶❷ because the C standard requires the padding in static

structures to be initialized to zero. Listing 18-30 demonstrates how to generate static initializer lists like the one in
Listing 18-29.

create_static_init_list(init_type, initializer, type_table):
 match init_type, initializer with
 | Structure(tag), CompoundInit(init_list) ->
 ❶ struct_def = type_table.get(tag)

 if length(init_list) > length(struct_def.members):
 fail("Too many elements in structure initializer")
 current_offset = 0
 static_inits = []
 i = 0
 for init_elem in init_list:
 member = struct_def.members[i]
 if member.offset != current_offset:
 ❷ static_inits.append(ZeroInit(member.offset - current_offset))
 ❸ more_static_inits = create_static_init_list(member.member_type,
 init_elem,
 type_table)
 static_inits.append_all(more_static_inits)
 current_offset = member.offset + size(member.member_type,
 type_table)
 i += 1
 if struct_def.size != current_offset:
 ❹ static_inits.append(ZeroInit(struct_def.size - current_offset))
 return static_inits
 | Structure(tag), SingleInit(e) ->
 ❺ fail("Cannot initialize static structure with scalar expression")
 | --snip--

Listing 18-30: Generating a static initializer for a structure

To process a compound initializer for a static structure, we first look up the structure in the type table ❶. We make
sure the initializer list isn’t too long, just like we did for non-static initializers in typecheck_init. Then, we iterate

over the initializer list, looking up the corresponding member definition for each element in the structure’s member
list. As we go, we update the current_offset variable to track how many bytes we’ve initialized so far.

Each time we process the initializer for a structure member, we first check whether we’ve initialized enough bytes
to bring us up to the expected offset. If we haven’t, we add the necessary padding with a ZeroInit initializer ❷.

We then create the initializer list for the structure member itself with a recursive call to
create_static_init_list ❸. Next, we update current _offset based on the offset and size of the member

we just initialized.

Once we’ve initialized every structure member, we add another ZeroInit, if necessary, to pad out the structure to

the correct size ❹. This last ZeroInit zeroes out any structure members that weren’t explicitly initialized as well

as any trailing padding after the last member.

Because there are no constants of structure type, initializing a static structure with a SingleInit expression is a

type error ❺.

TEST THE SEMANTIC ANALYSIS STAGE

To test out the changes to identifier resolution and type checking, run:

$./test_compiler /path/to/your_compiler --chapter 18 --stage validate

You’ll find the invalid test cases for this stage in tests/chapter_18/invalid _struct_tags and
tests/chapter_18/invalid_types. The programs in tests/chapter _18/invalid_struct_tags refer to undeclared
structure tags, so your compiler should reject them during identifier resolution. (Since the C standard doesn’t
require you to declare structure tags before using them, a fully conforming compiler will reject these programs for
different reasons, usually because they refer to incomplete types when complete types are required.)

The programs in tests/chapter_18/invalid_types cover all sorts of type errors, like conflicting definitions of the
same structure, structure declarations with incomplete member types, and member access operations that refer to
nonexistent members. Several of these programs are designed to test out

identifier resolution, even though they cause type errors. Here’s an example of this sort of test case:

struct s;
struct s *ptr1 = 0;
int main(void) {
 struct s;
 struct s *ptr2 = 0;
 return ptr1 == ptr2;
}

Your compiler should reject this program during type checking because it compares pointers to two distinct types.
But in order for the type checker to recognize that ptr1 and ptr2 point to distinct types, the identifier resolution

pass needs to generate different IDs for the two declarations of struct s.

TACKY Generation

In this section, we’ll introduce one last TACKY instruction:

CopyFromOffset(identifier src, int offset, val dst)

This instruction mirrors the CopyToOffset instruction we added back in Chapter 15. The src identifier in

CopyFromOffset is the name of an aggregate variable, offset is the byte offset of a subobject within that

variable, and dst is the variable we’ll copy that subobject to. Listing 18-31 defines the complete TACKY IR,

including the new CopyFromOffset instruction.

program = Program(top_level*)
top_level = Function(identifier, bool global, identifier* params, instruction* body)
 | StaticVariable(identifier, bool global, type t, static_init* init_list)
 | StaticConstant(identifier, type t, static_init init)
instruction = Return(val?)
 | SignExtend(val src, val dst)
 | Truncate(val src, val dst)
 | ZeroExtend(val src, val dst)
 | DoubleToInt(val src, val dst)
 | DoubleToUInt(val src, val dst)
 | IntToDouble(val src, val dst)
 | UIntToDouble(val src, val dst)
 | Unary(unary_operator, val src, val dst)
 | Binary(binary_operator, val src1, val src2, val dst)
 | Copy(val src, val dst)
 | GetAddress(val src, val dst)
 | Load(val src_ptr, val dst)
 | Store(val src, val dst_ptr)
 | AddPtr(val ptr, val index, int scale, val dst)
 | CopyToOffset(val src, identifier dst, int offset)
 | CopyFromOffset(identifier src, int offset, val dst)
 | Jump(identifier target)
 | JumpIfZero(val condition, identifier target)
 | JumpIfNotZero(val condition, identifier target)
 | Label(identifier)
 | FunCall(identifier fun_name, val* args, val? dst)
val = Constant(const) | Var(identifier)
unary_operator = Complement | Negate | Not
binary_operator = Add | Subtract | Multiply | Divide | Remainder | Equal | NotEqual
 | LessThan | LessOrEqual | GreaterThan | GreaterOrEqual

Listing 18-31: Adding CopyFromOffset to the TACKY IR

Not only can you access subobjects in a structure with the CopyToOffset and CopyFromOffset instructions, but

you can also copy entire structures from one location to another using Copy, Load, and Store or pass them

between functions with Return and FunCall, just like scalar variables. We’ll represent variables of structure type

as ordinary TACKY Vars.

Next, we’ll convert the member access operators to TACKY. Then, we’ll process compound structure initializers. We
won’t change how we process most constructs that can use structures, like function calls, return statements, and

conditional expressions. We also won’t need to do anything with the new top-level StructDecl construct; we’ll

discard structure declarations at this stage, just like we discard function declarations without bodies and variable
declarations without initializers.

Implementing the Member Access Operators

In earlier chapters, you learned that you can use an object in one of three ways: you can lvalue convert it, assign
to it, or take its address. Now there’s a fourth option: if the object is a structure, you can access one of its
members. And because that structure member is itself an object, you can lvalue convert it, assign to it, take its
address, or access one of its members. Let’s look at the TACKY we should generate in each of these cases. Then,
building on the approach we used to handle dereferenced pointers in Chapter 14, we’ll introduce a new kind of
exp_result to designate structure members.

Accessing Structure Members in TACKY

To implement any sort of operation on a structure member, we’ll start by looking up the member’s offset in the
type table. First, let’s consider cases where the structure itself is a TACKY variable, rather than a dereferenced
pointer or a subobject in some larger structure. To lvalue convert a structure member, we’ll use the
CopyFromOffset instruction. We’ll translate <struct>.<member> to:

<instructions for struct>

s = <result of struct>
result = CopyFromOffset(s, <member offset>)

We’ll assign to structure members with CopyToOffset, converting <struct>.<member> = <right> to:

<instructions for struct>

dst = <result of struct>
<instructions for right>

src = <result of right>
CopyToOffset(src, dst, <member offset>)

To get a structure member’s address, we’ll first load the address of the object that contains it, then add the
member’s offset. We’ll convert &<struct>.<member> to:

<instructions for struct>

s = <result of struct>
result = GetAddress(s)
result = AddPtr(ptr=result, index=<member offset>, scale=1)

To process a sequence of nested member accesses, we’ll add all their offsets together and then issue an
instruction depending on how the final member in the sequence is used. Consider the structure declarations in
Listing 18-32.

struct inner {
 char c;

 int i;
};

struct outer {
 int member1;
 struct inner member2;
};

Listing 18-32: Declaring a structure that contains a nested structure

If my_struct is a struct outer and we need to lvalue convert my_struct .member2.i, we’ll emit:

result = CopyFromOffset("my_struct", 8)

Because member2 has an offset of 4 bytes in struct outer and i has an offset of 4 bytes in struct inner, the

object designated by my_struct.member2.i has a total offset of 8 bytes from the start of my_struct.

Finally, let’s consider how to access structure members through dereferenced pointers. The most idiomatic way to
do this is with an arrow operator, of the form <exp>-><member>. This is equivalent to the expression (*<exp>).

<member>. To implement either of these expressions, you’ll add the member offset to the pointer and then

dereference the result. As with any dereferenced pointer, whether you issue a Load or Store instruction or simply

use the pointer’s value will depend on how it’s used. Suppose inner_struct_pointer has type struct inner

*. We’ll convert the expression

inner_struct_pointer->i = 1

to:

ptr = AddPtr(ptr=inner_struct_pointer, index=4, scale=1)
Store(1, ptr)

We can implement the equivalent expression

(*inner_struct_pointer).i = 1

with exactly the same instructions. Now that we know what instructions we’d like to generate, we’ll update the
TACKY generation pass accordingly.

Designating Structure Members with SubObject

Let’s extend the exp_result construct to designate a member of an aggregate object. Listing 18-33 gives the

updated definition of exp_result.

exp_result = PlainOperand(val)
 | DereferencedPointer(val)
 | SubObject(identifier base, int offset)

Listing 18-33: Extending exp_result to represent subobjects

The base argument to SubObject is an aggregate object, not a pointer. The second argument, offset, is a byte

offset into that object. The object that SubObject designates might be scalar, or it might be an aggregate itself.

In Listing 18-34, we use this construct to represent the result of a Dot operator.

emit_tacky(e, instructions, symbols, type_table):
 match e with
 | --snip--
 | Dot(structure, member) ->
 struct_def = <look up structure's type in the type table>
 member_offset = <look up member offset in struct_def>
 inner_object = emit_tacky(structure, instructions, symbols, type_table)
 match inner_object with
 | PlainOperand(Var(v)) -> return SubObject(v, member_offset) ❶
 | SubObject(base, offset) -> return SubObject(base, offset + member_offset) ❷
 | DereferencedPointer(ptr) -> ❸
 dst_ptr = make_tacky_variable(Pointer(get_type(e)), symbols)
 instr = AddPtr(ptr=ptr, index=Constant(ConstLong(member_offset)),
 scale=1, dst=dst_ptr)
 instructions.append(instr)
 return DereferencedPointer(dst_ptr)

Listing 18-34: Converting the Dot operator to TACKY

First, we look up member’s offset in the structure. Then, we process this expression’s first operand without lvalue

converting it. The resulting object is either a plain TACKY variable, a subobject of a TACKY variable, or a
dereferenced pointer. (We know the result isn’t a constant because TACKY doesn’t have constants of structure
type.)

If inner_object is just a variable, we return a SubObject designating the object at member_offset within that

variable ❶. If inner_object is itself a subobject in some larger variable, we add its offset to member_offset ❷.

This takes care of nested member operators, like the expression my_struct .member2.i that we considered

earlier in this section.

Finally, if the inner structure is a dereferenced pointer, we access the structure member with pointer arithmetic ❸.
Since DereferencedPointer(ptr) designates the whole structure, ptr must point to the start of the structure.

We add member_offset to ptr to get a pointer to the specified structure member. Then, we dereference this

pointer to designate the structure member itself.

Processing SubObject

Next, we’ll process SubObject constructs in lvalue conversions, assignment expressions, and AddrOf expressions.

To lvalue convert a SubObject, we copy it into a new variable with the CopyFromOffset instruction, as Listing

18-35 demonstrates.

emit_tacky_and_convert(e, instructions, symbols, type_table):
 result = emit_tacky(e, instructions, symbols, type_table)
 match result with
 | SubObject(base, offset) ->
 dst = make_tacky_variable(get_type(e), symbols)
 instructions.append(CopyFromOffset(base, offset, dst))
 return dst
 | --snip--

Listing 18-35: Lvalue converting a SubObject

Conversely, when a SubObject appears on the left-hand side of an assignment expression, we write to it with a

CopyToOffset instruction, as Listing 18-36 demonstrates.

emit_tacky(e, instructions, symbols, type_table):
 match e with
 | --snip--
 | Assignment(left, right) ->
 lval = emit_tacky(left, instructions, symbols, type_table)
 rval = emit_tacky_and_convert(right, instructions, symbols, type_table)
 match lval with
 | SubObject(base, offset) ->
 instructions.append(CopyToOffset(rval, base, offset))
 return PlainOperand(rval)
 | --snip--

Listing 18-36: Assigning to a SubObject

Finally, Listing 18-37 shows how to calculate the address of a SubObject. We load the address of the base object,

then add the offset.

 | AddrOf(inner) ->
 v = emit_tacky(inner, instructions, symbols, type_table)
 match v with
 | SubObject(base, offset) ->
 dst = make_tacky_variable(get_type(e), symbols)
 instructions.append(GetAddress(Var(base), dst))
 instructions.append(AddPtr(ptr=dst,
 index=Constant(ConstLong(offset)),
 ❶ scale=1,
 dst=dst))
 return PlainOperand(dst)
 | --snip--

Listing 18-37: Taking the address of a SubObject

We reuse the same temporary variable, dst, to point to both the base of the structure and its member. We could

also generate two different temporary variables, but we don’t need to. Because the offset in a SubObject

construct is in bytes, the scale of this AddPtr instruction is 1 ❶.

Implementing the Arrow Operator

Now that we’ve implemented Dot, we can easily implement Arrow too. To calculate ptr->member, we’ll first

evaluate and lvalue convert ptr. Then, we’ll use AddPtr to add the offset of member. This will give us a pointer to

the designated structure member. Finally, we’ll dereference this pointer with a DereferencedPointer construct.

I’ll omit the pseudocode for this; you’ve already seen how to convert (*ptr).member to TACKY, and converting

ptr->member to TACKY is very similar.

We don’t need any extra logic to handle the result of an Arrow expression. This expression will always produce a

DereferencedPointer construct, which we already know how to handle.

Omitting Useless AddPtr Instructions

The first member in a structure always has an offset of zero. As an optional optimization, you can skip the AddPtr

instruction when calculating this member’s address. This affects Listings 18-34 and 18-37, as well as the
implementation of Arrow, which I didn’t give the pseudocode for. In all three cases, you don’t need to generate an

AddPtr instruction if member_offset is 0.

Converting Compound Initializers to TACKY

To finish up this section, we’ll convert compound structure initializers to TACKY. The basic approach is the same as
in previous chapters: we’ll evaluate each expression in the initializer list in turn, copying the result of each one to
the correct offset in the destination with a CopyToOffset instruction. But now we’ll need to check the type table

to find the correct offset for each expression. We’ll also need to calculate the offsets of subobjects deep within
nested structures, arrays of structures, structures that contain arrays, and so on.

Listing 18-38 demonstrates how to track these offsets and emit CopyToOffset instructions as we traverse a

compound initializer for a structure or array.

compound_initializer_to_tacky(var_name, offset, init, instructions, symbols, type_table):
 match init, get_type(init) with
 | SingleInit(String(s)), Array(elem_t, size) -> --snip--
 | SingleInit(e), t ->
 v = emit_tacky_and_convert(e, instructions, symbols, type_table)
 instructions.append(CopyToOffset(v, var_name, offset)) ❶
 | CompoundInit(init_list), Structure(tag) ->
 members = type_table.get(tag).members
 for mem_init, member in zip(init_list, members):
 mem_offset = offset + member.offset ❷
 compound_initializer_to_tacky(var_name, mem_offset, mem_init, instructions,
 symbols, type_table)
 | CompoundInit(init_list), Array(elem_t, size) ->
 --snip--

Listing 18-38: Converting a compound initializer to TACKY

The parameters of compound_initializer_to_tacky include var_name (the name of the array or structure

variable being initialized), offset (the byte offset of the current subobject within that variable), and init (the

initializer itself). In the top-level call to initialize an entire variable, the offset argument will be 0.

In the base case, we initialize a subobject with the value of a single expression. This expression may be a string
literal that initializes an array; I’ve omitted the pseudocode for this case, which we covered back in Chapter 16.
Otherwise, we evaluate the expression and copy the result into place with a CopyToOffset instruction ❶. Even if

the result has structure type, we can copy it to its destination with a single instruction.

When we encounter a compound initializer for a structure, we look up the structure’s member list in the type
table. We calculate the offset of each item in the initializer list by adding the corresponding member offset to the
starting offset argument ❷. Then, we process the item recursively. I won’t talk through the case of a compound

initializer for an array, since you already know how to handle that.

Our implementation deviates slightly from the C standard here. Under certain circumstances, the standard requires
padding to be initialized to zero; Listing 18-38 doesn’t initialize structure padding, and none of our tests check the
value of padding in non-static structures.

ALL ABOUT PADDING

The C standard tries to ensure that padding is initialized in a consistent, predictable way. Unfortunately, it doesn’t
really succeed, so it’s easy to accidentally leave padding uninitialized. This is a potential security risk because
uninitialized padding might leak sensitive data that was previously stored at that spot in memory. The 2012 blog
post “C11 Defects: Initialization of Padding” by Jens Gustedt provides a good overview of this confusing corner of
the standard (https://gustedt.wordpress.com/2012/10/24/c11-defects-initialization-of-padding/).

Luckily, the situation gets somewhat better in C23. This revision introduces an empty initializer of the form {} that

initializes a whole union or aggregate object to zero, including any padding. This doesn’t completely address the
inconsistencies that Gustedt highlighted, but it makes life easier for every C programmer who just needs to zero
out a structure. For a delightful introduction to this feature (and a bunch of other changes in C23), see JeanHeyd
Meneide’s blog post “Ever Closer—C23 Draws Nearer” (https://thephd.dev/ever-closer-c23-improvements).

At this point, you know how to convert both member access operators and compound structure initializers to
TACKY. Once you’ve implemented these conversions, you can test out this compiler pass.

TEST THE TACKY GENERATION STAGE

To test out TACKY generation, run:

$./test_compiler /path/to/your_compiler --chapter 18 --stage tacky

Structures in the System V Calling Convention

The trickiest part of assembly generation in this chapter is dealing with function calls. As always, we need to pass
parameters and return values according to the System V x64 calling convention. The rules for passing and
returning structures are particularly gnarly, so we’ll take a look at them before we make any changes to the
backend.

Classifying Structures

In the System V x64 ABI, every parameter and return value has a class, which dictates how it’s transferred during
function calls. We’ve already encountered two of the classes defined in the ABI, although I didn’t use the term
class to describe them. Values with integer, character, and pointer types all belong to the INTEGER class; they’re
transferred in general-purpose registers. Values with type double all belong to the SSE class; they’re transferred

in XMM registers.

In this chapter we’ll encounter a third class, MEMORY, for large values that must be transferred in memory. We’ve
passed function arguments in memory before, but passing return values in memory is a new concept; we’ll see

https://gustedt.wordpress.com/2012/10/24/c11-defects-initialization-of-padding/
https://thephd.dev/ever-closer-c23-improvements

exactly how that works in a moment.

The ABI presents a somewhat complicated algorithm for classifying structures and unions. We can use a simplified
version of this algorithm because there are a bunch of types that we don’t handle, like float and unions. We’ll

walk through the simplified rules for classifying structures in this section. For the complete algorithm, see the
documentation listed in “Additional Resources” on page 553.

Splitting a Structure into Eightbytes

We’ll assign a separate class to each 8-byte chunk of a structure. The ABI calls these chunks eightbytes. If the
structure’s size isn’t exactly divisible by 8, the last eightbyte may be shorter than 8 bytes (which makes the term a
little misleading). Consider Listing 18-39, which declares a 12-byte structure.

struct twelve_bytes {
 int i;
 char arr[8];
};

Listing 18-39: A structure with two eightbytes

The first eightbyte of this structure contains i and the first four elements of arr. The second eightbyte is 4 bytes

long and contains the last four elements of arr. Figure 18-2 shows this structure’s layout in memory.

Figure 18-2: The layout of struct twelve_bytes in memory Description

Figure 18-2 illustrates that a nested array like arr can span multiple eightbytes. A nested structure can too.

Consider the structure declaration in Listing 18-40.

struct inner {
 int i;
 char ch2;
};

struct nested_ints {
 char ch1;

 struct inner nested;
};

Listing 18-40: A structure type containing a nested structure that spans two eightbytes

Figure 18-3 shows how a struct nested_ints will be laid out in memory.

Figure 18-3: The layout of struct nested_ints in memory Description

The first eightbyte of this structure holds two scalar values: ch1 and the nested member nested.i. The second

eightbyte holds nested.ch2. When we classify a structure, we care about what scalar values each eightbyte

contains, but we don’t care how those values are grouped into nested structures or arrays. As far as our
classification algorithm is concerned, struct nested _ints is equivalent to the struct flattened_ints type

defined in Listing 18-41.

struct flattened_ints {
 char c;
 int i;
 char a;
};

Listing 18-41: A structure with the same layout as struct nested_ints in memory

This structure looks identical to struct nested_ints in memory: its first eightbyte holds a char and an int,

and its second eightbyte holds another char.

Classifying Eightbytes

If a structure is larger than 16 bytes—in other words, if it consists of three or more eightbytes—we’ll assign every
eightbyte to the MEMORY class. For example, struct large consists of four eightbytes, which are all classified

as MEMORY:

struct large {
 int i;
 double d;
 char arr[10];
};

If a structure is 16 bytes or smaller, we’ll assign each eightbyte to either the INTEGER or the SSE class, according
to its contents. An eightbyte belongs to the SSE class if it contains a double and the INTEGER class if it contains

anything else. For example, both eightbytes of struct twelve_bytes, from Listing 18-39, belong to the

INTEGER class. We’ll assign both eightbytes of struct nested_ints from Listing 18-40 and both eightbytes of

struct flattened_ints from Listing 18-41 to the INTEGER class too, since none of them hold a double.

Listing 18-42 defines a few more structure types. Let’s classify each of them.

struct two_ints {
 int i;
 int i2;
};

struct nested_double {
 double array[1];
};

struct two_eightbytes {
 double d;
 char c;
};

Listing 18-42: More structure types

A struct two_ints consists of a single eightbyte, which belongs to the INTEGER class. A struct

nested_double consists of a single eightbyte in the SSE class. A struct two_eightbytes consists of two

eightbytes: the first is in the SSE class because it contains a double, and the second is in the INTEGER class

because it contains a char.

Passing Parameters of Structure Type

Once we’ve classified a structure, we can figure out how to pass it as a parameter. If a structure consists of one or
two eightbytes, we’ll pass each eightbyte of the structure in the next available register for its class. If a structure
consists of a single eightbyte in the INTEGER class, we’ll pass it in the next general-purpose parameter passing
register. If it consists of a single eightbyte in the SSE class, we’ll pass it in the next available parameter passing
XMM register. If it consists of one INTEGER eightbyte and one SSE eightbyte, we’ll pass the first eightbyte in a

general-purpose register and the next eightbyte in an XMM register, and so forth. If there aren’t enough registers
available to pass the entire structure, we’ll push the whole thing onto the stack.

Let’s look at a few examples. First, in Listing 18-43, we reproduce the struct two_eightbytes type that we

defined in Listing 18-42 and declare a function that takes a parameter with that type.

struct two_eightbytes {
 double d;
 char c;
};

void pass_struct(struct two_eightbytes param);

Listing 18-43: A function declaration with a struct two_eightbytes parameter

Suppose x is a variable of type struct two_eightbytes, which is stored on the stack at address -16(%rbp).

We might convert the function call pass _struct(x) to the assembly in Listing 18-44.

movsd -16(%rbp), %xmm0
movq -8(%rbp), %rdi
call pass_struct

Listing 18-44: Passing a structure parameter in two registers

Because the first eightbyte of this structure belongs to the SSE class, we pass it in the first parameter passing
XMM register, XMM0. The second eightbyte of the structure belongs to the INTEGER class, so we pass it in the
first general-purpose parameter passing register, RDI.

Next, let’s look at Listing 18-45. This listing declares a function with a structure parameter that we’ll need to push
onto the stack.

struct two_longs {
 long a;
 long b;
};

void a_bunch_of_arguments(int i0, int i1, int i2, int i3, int i4,
 struct two_longs param, int i5);

Listing 18-45: A function declaration with a structure parameter that must be passed in memory

When we call a_bunch_of_arguments, we’ll pass parameters i0 through i4 in registers EDI, ESI, EDX, ECX, and

R8D. This doesn’t leave enough registers open to pass the param parameter; both eightbytes belong to the

INTEGER class, but only one general-purpose parameter passing register, R9, is available. Therefore, we’ll push
the whole structure onto the stack. Then, since R9D is still open, we’ll use it to transfer i5. If arg is a struct

two_longs with static storage duration, we could convert the function call

a_bunch_of_arguments(0, 1, 2, 3, 4, arg, 5);

to the assembly in Listing 18-46.

movl $0, %edi
movl $1, %esi
movl $2, %edx
movl $3, %ecx
movl $4, %r8d
movl $5, %r9d

❶ pushq arg+8(%rip)
pushq arg(%rip)
call a_bunch_of_arguments

Listing 18-46: Passing a structure on the stack

Because arg lives in the data section, we access it with RIP-relative addressing. We’re using a bit of new assembly

syntax here: arg+8(%rip) indicates the address 8 bytes after the label arg. Our first push instruction will

therefore push the second eightbyte of the structure, which contains member b, onto the stack ❶. This preserves

the structure’s layout in memory, as Figure 18-4 demonstrates.

Figure 18-4: Pushing a structure onto the stack Description

The two pushq instructions in Listing 18-46 push a copy of arg onto the stack with the correct layout. After the

callee sets up its stack frame, it can access arg at 16(%rbp), which is where we always expect to find a function’s

first stack parameter.

If a structure belongs to the MEMORY class, we’ll always push it onto the stack. Consider the structure type
declaration and function declaration in Listing 18-47.

struct pass_in_memory {
 double w;
 double x;
 int y;
 long z;
};

void accept_struct(struct pass_in_memory arg);

Listing 18-47: A function declaration with a structure parameter that belongs to the MEMORY class

Listing 18-48 demonstrates how to pass a structure stored at -32(%rbp) as an argument to accept_struct.

pushq -8(%rbp)
pushq -16(%rbp)
pushq -24(%rbp)
pushq -32 (%rbp)
call accept_struct

Listing 18-48: Passing a structure that belongs to the MEMORY class on the stack

In this case, like in Listing 18-46, we maintain the structure’s layout in memory by pushing it onto the stack from
back to front.

Returning Structures

If a structure fits into a single register, returning it is straightforward. We’ll return structures that belong to the
INTEGER class in RAX and structures that belong to the SSE class in XMM0. If a structure is between 8 and 16
bytes, we’ll return it in two registers. To accommodate these structures, we’ll designate two more registers to
transfer return values: RDX and XMM1. We’ll transfer each eightbyte of a structure in the next available return
register of the appropriate class. For example, if the first part of a structure belongs to the SSE class and the
second part belongs to the INTEGER class, we’ll transfer the first part in XMM0 and the second part in RAX. If
both parts belong to the SSE class, we’ll transfer the structure in XMM0 and XMM1; if both parts belong to the
INTEGER class, we’ll transfer it in RAX and RDX.

Things get even hairier if a structure is in the MEMORY class. In that case, the caller allocates space for the return
value and passes the address of that space to the callee in the RDI register, as if it were the first integer
parameter. This means the actual first integer parameter must be passed in RSI, the second in RDX, and so on. To
return a value, the callee copies it into the space pointed to by RDI and copies the pointer itself into RAX. Let’s
look at the example in Listing 18-49.

struct large_struct {
 long array[3];
};

struct large_struct return_a_struct(long i) {
 struct large_struct callee_result = {{0, 1, i}};
 return callee_result;
}

int main(void) {
 ❶ struct large_struct caller_result = return_a_struct(10);
 --snip--

}

Listing 18-49: Calling function that returns a structure in memory

Because struct large_struct is 24 bytes, we’ll return the result of the return_a_struct function in memory.

In main, we call return_a_struct and assign the result to caller_result ❶. Assuming main has reserved

stack space for caller_result at -24(%rbp), Listing 18-50 shows how to implement this function call.

leaq -24(%rbp), %rdi
movq $10, %rsi
call return_a_struct

Listing 18-50: Calling return_a_struct in assembly

First, we pass the address of caller_result, which will hold the result of return_a_struct, in RDI. We then

pass the argument 10 in the next available parameter passing register, RSI. Finally, we issue a call instruction.

Figure 18-5 illustrates the program’s state just before the call instruction.

Figure 18-5: The state of the stack and registers before calling return_a_struct Description

RSP and RBP point to the top and bottom of the current stack frame, as usual. RDI points to caller_result,

which hasn’t been initialized yet. RSI holds the first argument to return_a_struct, 10.

Note that Listing 18-50 doesn’t allocate additional stack space to hold the result of return_a_struct; it just

loads the address of the caller_result variable. That’s typically fine, with one caveat: according to the ABI, the

memory that will hold the return value “must not overlap any data visible to the callee through other names than
this argument.” For example, if you needed to implement the function call var = foo(1, 2, &var), it would

violate the ABI to pass the address of var in RDI as the storage for the return value and in RCX as an ordinary

argument. Instead, you’d need to allocate additional stack space to hold the result of foo and copy the result to

var after the function returned. We don’t need to worry about this case, since we generate a new variable to hold

the result of each function call during TACKY generation.

Now let’s look at Listing 18-51, which implements return_a_struct in assembly.

return_a_struct:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movq $0, -24(%rbp)
 movq $1, -16(%rbp)
 movq %rsi, -8(%rbp)
 ❶ movq -24(%rbp), %r10
 movq %r10, (%rdi)
 movq -16(%rbp), %r10
 movq %r10, 8(%rdi)
 movq -8(%rbp), %r10
 movq %r10, 16(%rdi)
 ❷ movq %rdi, %rax
 --snip--

Listing 18-51: Returning a structure in memory

At the start of the function, we set up the stack frame, allocate stack space for the local callee_result variable

at -24(%rbp), and then initialize it. The assembly code to return result starts at ❶. First, we copy result into

the memory location that RDI points to, 8 bytes at a time; we’ll copy the first 8 bytes to (%rdi), the next 8 bytes

to 8(%rdi), and the last 8 bytes to 16(%rdi). Then, we copy the pointer to the return value from RDI into RAX

❷. Finally, we execute the function epilogue, which is omitted from this listing. Figure 18-6 illustrates the state of
the program just before the function epilogue.

Figure 18-6: The state of the stack and registers just before returning from return_a_struct Description

The caller_result variable in the caller’s stack frame now holds the function’s return value, and RAX holds the

address of caller_result. In this example, the RDI register holds that address too, but this isn’t required by the

ABI.

We’ve covered everything we need to know about the calling convention for structures. Now we’re ready to work
on the assembly generation pass!

Assembly Generation

This pass will change in a couple of ways. First, we’ll need to generate assembly to copy entire structures from
one location to another. The Copy, Load, Store, and CopyToOffset instructions can all transfer both scalar and

aggregate values. So can the new CopyFromOffset instruction, which we’ll need to implement. Second, we’ll

implement the System V calling convention that we just learned about.

We’ll start by making a few small changes to the assembly AST.

Extending the Assembly AST

In Listing 18-46, we used the operand arg+8(%rip) to access data at a constant offset from a RIP-relative label.

We’ll often need these sorts of operands to access members of structures with static storage duration. The
assembly AST can already specify constant offsets from most memory addresses, but not from RIP-relative
addresses. We’ll remove this limitation by adding an offset to the Data operand:

operand = --snip-- | Data(identifier, int)

We’ll also introduce two new assembly instructions. First, we’ll add the left-shift instruction, shl. This instruction

takes an immediate value as its source operand and a memory address or register as its destination. It shifts its
destination left by the number of bits specified by its source. For example, the instruction

shlq $8, %rax

shifts the value in RAX 1 byte to the left, setting its lowest byte to 0. If the value in RAX were 0x8 before this

instruction, it would be 0x800 afterward. The shl instruction will help us copy irregularly sized structures into

registers in order to pass them as arguments and return values. Because we can’t directly access every individual
byte within a register, we’ll use shl to shift each byte into place.

Second, we’ll add the two-operand form of the logical right-shift instruction, shr. (We added the one-operand

form, which shifts its operand 1 bit to the right, back in Chapter 13.) Similar to shl, it shifts its destination right by

the number of bits its source specifies. It will serve a similar purpose to shl, helping us transfer irregularly sized

structures out of registers and into memory.

NOTE

The shl instruction also has a one-operand form, which we won’t use; it’s the counterpart to the one-operand form
of shr that we’re already familiar with. Both instructions have yet another form we won’t use, which uses the CL
register as the source operand.

We’ll extend binary_operator to represent shl and shr:

binary_operator = --snip-- | Shl | ShrTwoOp

The new binary shr instruction gets the rather clunky name ShrTwoOp to distinguish it from the existing unary

Shr instruction in the assembly AST.

Listing 18-52 defines the updated assembly AST, with these changes bolded.

program = Program(top_level*)
assembly_type = Byte | Longword | Quadword | Double | ByteArray(int size, int alignment)
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init* init_
 | StaticConstant(identifier name, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(assembly_type src_type, assembly_type dst_type, operand src, operand d
 | MovZeroExtend(assembly_type src_type, assembly_type dst_type,
 operand src, operand dst)
 | Lea(operand src, operand dst)
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)
 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Call(identifier)
 | Ret
unary_operator = Neg | Not | Shr
binary_operator = Add | Sub | Mult | DivDouble | And | Or | Xor | Shl | ShrTwoOp

operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Memory(reg, int) | Data(identifier, i
 | PseudoMem(identifier, int) | Indexed(reg base, reg index, int scale)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | SP | BP
 | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7 | XMM14 | XMM15

Listing 18-52: The assembly AST with offsets on static operands and bit shift instructions

Converting types and TACKY operands to assembly is pretty simple. Structure types, like array types, are
converted to the ByteArray assembly type. To convert a structure type to assembly, you’ll need to look up its size

and alignment in the type table. We’ll convert TACKY variables of structure type to PseudoMem assembly operands,

just like we do with arrays. We’ll always store arrays and structures in memory rather than registers, even once
we implement register allocation in Part III.

Some of the TACKY variables you encounter may have incomplete structure types. (Remember that it’s legal to
declare an extern variable with an incomplete type and take its address, but it’s illegal to define it or use it in any

other way.) Convert these variables to PseudoMem operands, like other variables of structure type. You can give

these variables a dummy assembly type when you add them to the backend symbol table; that dummy type will
never be used.

Next, let’s handle the Copy, Load, Store, CopyToOffset, and CopyFromOffset instructions. Then, we’ll deal

with function calls.

Copying Structures

To copy a structure to a new location, you don’t need to consider its members’ types or offsets; you just need to
copy the right number of bytes. To minimize the number of mov instructions required, copy 8 bytes at a time until

there are fewer than 8 bytes left to move. Then, copy 4 bytes at a time. Finally, when there are fewer than 4
bytes left to move, copy 1 byte at a time. (There’s also a 2-byte mov instruction in x64 assembly, but our assembly

AST doesn’t support it.) For example, if a and b are 20-byte structures, you should translate

Copy(Var("a"), Var("b"))

to the assembly in Listing 18-53.

Mov(Quadword, PseudoMem("a", 0), PseudoMem("b", 0))
Mov(Quadword, PseudoMem("a", 8), PseudoMem("b", 8))
Mov(Longword, PseudoMem("a", 16), PseudoMem("b", 16))

Listing 18-53: Implementing Copy for non-scalar values

The first Mov instruction copies the first 8 bytes of a to b; the second instruction copies the next 8 bytes of a to

the corresponding offset in b, and the final instruction copies the remaining 4 bytes. These Mov instructions are

invalid, since their source and destination operands are both in memory, but they’ll be rewritten in the instruction
fix-up pass.

You can use the same approach to translate the Load and Store instructions. For example, if y is a 6-byte

structure, you’ll translate

Load(Var("ptr"), Var("y"))

to Listing 18-54.

Mov(Quadword, Pseudo("ptr"), Reg(AX))
Mov(Longword, Memory(AX, 0), PseudoMem("y", 0))
Mov(Byte, Memory(AX, 4), PseudoMem("y", 4))
Mov(Byte, Memory(AX, 5), PseudoMem("y", 5))

Listing 18-54: Implementing Load for non-scalar values

The first instruction copies the pointer into the RAX register. Each subsequent Mov instruction copies a chunk of

data stored at some offset from the address in RAX to the corresponding offset in y.

You can also implement CopyToOffset for non-scalar values with a sequence of Mov instructions; the only

difference is that you’ll add the specified offset to each instruction’s destination. To give another example with the
6-byte structure y, you’ll translate

CopyToOffset(src=Var("y"), dst="z", offset=8)

to Listing 18-55.

Mov(Longword, PseudoMem("y", 0), PseudoMem("z", 8))
Mov(Byte, PseudoMem("y", 4), PseudoMem("z", 12))
Mov(Byte, PseudoMem("y", 5), PseudoMem("z", 13))

Listing 18-55: Implementing CopyToOffset for non-scalar values

Finally, you’ll need to implement the new CopyFromOffset instruction. Like the other TACKY instructions that

copy data, it accepts both scalar and non-scalar operands. I won’t talk through this instruction in detail; you
should handle it basically the same way as CopyToOffset.

I recommend writing a helper function, which I’ll call copy_bytes, that generates assembly instructions to copy

an arbitrary number of bytes from one Memory or PseudoMem operand to another. You can use this helper function

to implement all five of the TACKY copying instructions. It will come in handy again when you need to pass
structures in memory as arguments and return values.

Once you’ve implemented CopyFromOffset and extended the other copy instructions to support non-scalar

values, you’re ready to move on to function calls.

Using Structures in Function Calls

Since the rules for passing and returning structures are complex, let’s talk about our overall strategy before diving
into the pseudocode. First, we’ll write a function to classify each eightbyte of a structure type. Then, we’ll extend
the classify_parameters helper function, which we introduced back in Chapter 13 to help with parameter

passing on both the caller and callee sides. Remember that this function returns three lists: operands passed in
general-purpose registers, operands passed in XMM registers, and operands passed on the stack. Once we update
this function, these lists may include both scalar values and eightbytes of structure values.

Next, we’ll introduce another helper function, classify_return_value, to split up return values in a similar way.

It will return a list of operands returned in general-purpose registers, a list of operands returned in XMM registers,
and a Boolean flag that indicates whether the return value is passed in memory. This flag will be True only when

both lists are empty.

When classify_return_value processes a scalar value, it will return one empty list, one list with a single

element, and a False flag. When it processes a structure, it might produce a more interesting result. Its main

purpose is to massage both scalar and structure return values into the same shape, so we can process them in a
uniform way.

Once these helpers are in place, we’ll update how we convert the FunCall TACKY instruction to assembly. For the

most part, we can pass parameters the same way as in earlier chapters. We’ll copy each operand we get from
classify_parameters into the appropriate register or push it onto the stack, without worrying about whether

it’s a scalar value or part of a structure. Only a few details will change. First, we’ll account for the fact that RDI
may not be available if it holds the address of the space reserved for the return value. We’ll also need to pass
irregularly sized eightbytes that can’t be transferred with a single mov instruction. We’ll write a new helper function

to move these eightbytes into registers.

Retrieving the function’s return value will require larger changes. We’ll use classify_return_value to learn

where we can find each part of the return value, then copy each part from the appropriate register or memory
address to its final destination. This will require yet another helper function to copy irregularly sized eightbytes out
of registers.

Finally, we’ll tackle things on the callee side. Here, like on the caller side, the way we process parameters will
change only slightly, but the way we handle return values will change quite a bit. We’ll use

classify_return_value again to figure out where to put each part of the return value.

Classifying Structure Types

We’ll start with a helper function to classify structure types. We’ll use the class construct defined in Listing 18-56

to represent the three classes we discussed earlier.

class = MEMORY | SSE | INTEGER

Listing 18-56: The class construct

The classification function will return a list of class elements, one for each eightbyte of the structure being

classified. To classify a structure, we’ll first consider its size and then look at the types of its members. Listing 18-
57 gives the pseudocode for this process.

classify_structure(StructEntry(alignment, size, members)):
 if size > 16:
 result = []
 while size > 0:
 result.append(MEMORY)
 size -= 8
 return result
 ❶ scalar_types = <flatten out list of member types>
 ❷ if size > 8:
 if first and last type in scalar_types are Double:
 return [SSE, SSE]
 if first type in scalar_types is Double:
 return [SSE, INTEGER]
 if last type in scalar_types is Double:
 return [INTEGER, SSE]
 return [INTEGER, INTEGER]
 else if first type in scalar_types is Double:
 ❸ return [SSE]
 else:
 ❹ return [INTEGER]

Listing 18-57: Classifying structure types

The classify_structure function takes a structure definition from the type table. If the structure is larger than

16 bytes, it must be passed in memory, so we return a list of enough MEMORY elements to cover the whole
structure. For example, if the structure’s size is 17 bytes, classify _structure should return [MEMORY,

MEMORY, MEMORY].

Otherwise, the structure’s classification depends on its member types. We construct a list of every scalar type the
structure contains, including the types of nested values ❶. Suppose a structure contains two members: an int *

and a char[3]. The resulting scalar_types list will be [Pointer(Int), Char, Char, Char].

If a structure is between 8 and 16 bytes, we return a list of two classes ❷. Because a double has a size and

alignment of 8 bytes, any double that appears in a structure of this size must completely occupy either the first or

second eightbyte. Taking advantage of this fact, we examine only the first and last elements of scalar_type. If

the first element is Double, the first eightbyte must be in the SSE class; otherwise, it must be in the INTEGER

class. Likewise, the second eightbyte is in the SSE class only if the last element of scalar_type is Double.

Finally, we classify structures that are 8 bytes or smaller. A structure of this size belongs to the SSE class if the first
(and only) scalar type it contains is Double ❸. Otherwise, it belongs to the INTEGER class ❹.

If you want, you can improve on the code in Listing 18-57 by caching the results. You’ll need to maintain a
mapping from structure tags to their classifications. The first time you classify a particular structure type, add the
result to this mapping. Then, if you need to classify that structure type again, you can just retrieve the result
instead of recomputing it.

Classifying Parameters

Next, we’ll extend the classify_parameters function. This function partitions a list of parameters or arguments

in three, based on whether each one is passed in a general-purpose register, in an XMM register, or on the stack.
Now, when it processes a value of structure type, it will split up the value into eightbytes and add each one to the
correct list. Listing 18-58 reproduces the definition of classify_parameters from Listing 13-29, with changes

bolded.

classify_parameters(values, return_in_memory):
 int_reg_args = []
 double_reg_args = []
 stack_args = []

 if return_in_memory:
 int_regs_available = 5
 else:
 int_regs_available = 6

 for v in values:
 operand = convert_val(v)
 t = assembly_type_of(v)
 typed_operand = (t, operand)

 if t == Double:
 --snip--
 else if t is scalar:
 if length(int_reg_args) < int_regs_available:

 int_reg_args.append(typed_operand)
 else:
 stack_args.append(typed_operand)

 else:
 // v is a structure
 // partition it into eightbytes by class
 classes = classify_structure(<struct definition for v>) ❶
 use_stack = True
 struct_size = t.size
 if classes[0] != MEMORY: ❷

 // make tentative assignments to registers
 tentative_ints = []
 tentative_doubles = []
 offset = 0
 for class in classes:
 operand = PseudoMem(<name of v>, offset) ❸
 if class == SSE:
 tentative_doubles.append(operand)
 else:
 eightbyte_type = get_eightbyte_type(offset, struct_size) ❹
 tentative_ints.append((eightbyte_type, operand))
 offset += 8

 // finalize them if there are enough free registers
 if ((length(tentative_doubles) + length(double_reg_args)) <= 8 and
 (length(tentative_ints) + length(int_reg_args)) <= int_regs_available)
 double_reg_args.append_all(tentative_doubles)
 int_reg_args.append_all(tentative_ints)
 use_stack = False

 if use_stack:
 // add each eightbyte of the structure to stack_args
 offset = 0
 for class in classes:
 operand = PseudoMem(<name of v>, offset)
 eightbyte_type = get_eightbyte_type(offset, struct_size)
 stack_args.append((eightbyte_type, operand)) ❻
 offset += 8

 return (int_reg_args, double_reg_args, stack_args)

Listing 18-58: Extending classify_parameters to support structures

The first change to this function is the new Boolean return_in_memory parameter. As the name suggests, this

indicates whether the function’s return value is passed in memory. If it is, that memory address will be passed in
the RDI register, leaving one fewer general-purpose register available for other parameters. We’ll set
int_regs_available accordingly. Then, when we process parameters of integer or pointer type, we’ll use int

_regs_available, instead of the constant 6, as the number of usable general-purpose registers. (We’ll process

parameters of double type exactly the same way we did in Chapter 13, so I’ve snipped out that bit of the listing.)

Now we’ve reached the interesting part: processing parameters of structure type. We’ll start with a call to
classify_structure ❶. Then, we’ll check whether the first eightbyte of the structure is in the MEMORY class ❷.

If it is, the rest of the structure must be too. If not, we’ll try to assign each eightbyte to a register. We’ll convert
each eightbyte to a PseudoMem operand ❸, then add it to one of two lists, tentative_doubles or

tentative_ints, based on its class. We know that v is a variable, rather than a constant, because there are no

aggregate constants in TACKY; the name of that variable will be the base of the PseudoMem operand.

When we add an eightbyte to tentative_ints, we need to figure out what assembly type to associate it with.

Most eightbytes are exactly 8 bytes long, so we associate them with the Quadword type. But the final eightbyte in

a structure might be shorter. We’ll find each eightbyte’s assembly type using the get_eightbyte_type helper

function ❹, which we’ll walk through in a moment. This function takes two arguments: the eightbyte’s offset and
the total size of the structure. It will use these to figure out the eightbyte’s size, which dictates its assembly type.

Once we’ve partitioned the whole structure into two tentative lists, we check that we have enough free registers
to accommodate both of them ❺. If we do, we append both lists to their non-tentative equivalents. If we don’t
have enough registers available, or if the structure belongs to the MEMORY class, we add each eightbyte to
stack_args instead ❻. We use get_eightbyte _type to determine the type of each eightbyte we pass on the

stack.

Now let’s walk through get_eightbyte_type, defined in Listing 18-59.

get_eightbyte_type(offset, struct_size):
 ❶ bytes_from_end = struct_size - offset
 if bytes_from_end >= 8:
 return Quadword
 if bytes_from_end == 4:
 return Longword
 if bytes_from_end == 1:
 return Byte
 ❷ return ByteArray(bytes_from_end, 8)

Listing 18-59: Associating an eightbyte with an assembly_type

The goal here is to figure out what operand size to use when moving this eightbyte into a register or onto the
stack. First, we calculate the number of bytes between the start of this eightbyte and the end of the whole
structure ❶. If there are more than 8 bytes left in the structure, this isn’t the last eightbyte, so we use the
Quadword type. If this eightbyte is exactly 8 bytes, 4 bytes, or 1 byte long, we use the Quadword, Longword, or

Byte type, respectively.

Otherwise, the eightbyte’s size is irregular; it’s not a valid operand size for assembly instructions. In this case, we
use the ByteArray type to record the eightbyte’s exact size in bytes ❷. (The alignment in this ByteArray is a

dummy value; we won’t need it later.) We can’t safely transfer an irregularly sized eightbyte with a single Mov

instruction. As you learned in Chapter 9, reading past the end of a value in memory—by pushing a 4-byte value
with an 8-byte pushq instruction, for example—could trigger a memory access violation. By the same logic, it’s not

safe to transfer a 5-, 6-, or 7-byte operand with an 8-byte movq instruction or a 3-byte operand with a 4-byte

movl instruction. We’ll look at how to transfer irregularly sized eightbytes in a moment.

Note that get_eightbyte_type doesn’t consider the eightbyte’s class; it will return Quadword for any full-length

eightbyte, even if it belongs to the SSE class. This is correct because we use get_eightbyte_type only to find

the types of values we’re going to transfer in general-purpose registers or on the stack. When we push 8 bytes of
a structure onto the stack, we don’t care whether those bytes contain a floating-point value or an integer.

Classifying Return Values

Next, we’ll write a similar helper function to classify return values. This function is simpler than
classify_parameters. We have one value to deal with, instead of a whole list, so we don’t need to worry about

running out of registers. We also don’t need to split up the value into eightbytes if it will be returned in memory,
like we did in classify_parameters. Listing 18-60 shows the pseudocode for the classify_return_value

helper function.

classify_return_value(retval):

 t = assembly_type_of(retval)

 if t == Double:
 operand = convert_val(retval)
 ❶ return ([], [operand], False)
 else if t is scalar:
 typed_operand = (t, convert_val(retval))
 ❷ return ([typed_operand], [], False)
 else:
 classes = classify_structure(<struct definition for retval>)
 struct_size = t.size
 if classes[0] == MEMORY:
 // the whole structure is returned in memory,
 // not in registers
 ❸ return ([], [], True)
 else:
 // the structure is returned in registers;
 // partition it into eightbytes by class
 int_retvals = []
 double_retvals = []
 offset = 0
 for class in classes:
 operand = PseudoMem(<name of retval>, offset)

 ❹ match class with
 | SSE ->
 double_retvals.append(operand)
 | INTEGER ->
 eightbyte_type = get_eightbyte_type(offset, struct_size)
 int_retvals.append((eightbyte_type, operand))
 | MEMORY -> fail("Internal error")
 offset += 8
 return (int_retvals, double_retvals, False)

Listing 18-60: Classifying return values

If the return value is a double, the first of our two lists, which contains operands returned in general-purpose

registers, will be empty. The second list, which holds operands returned in XMM registers, will contain the return
value. The flag signaling that the value is returned in memory will be False ❶. If the return value is some other

scalar type, we’ll add it to the list of operands returned in general-purpose registers, along with its type. The list of
operands in XMM registers will be empty, and the flag will still be False ❷.

Otherwise, the return value must be a structure. We’ll look up its classes with classify_structure, then check

whether it belongs to the MEMORY class. If it does, we’ll return two empty lists, which indicate that nothing will be
returned in registers, and a True flag, which indicates that the return value will be passed in memory ❸.

If the structure isn’t in the MEMORY class, it will be returned in registers. We’ll convert each eightbyte to a
PseudoMem operand and add it to either double_retvals or int_retvals, according to its class ❹. Here, as in

classify _parameters, we’ll use get_eightbyte_type to find the assembly type of each operand in

int_retvals. Finally, we’ll return both lists, along with a False flag.

Implementing FunCall

Next, let’s update how we implement function calls in assembly. Listing 18-61 reproduces the definition of
convert_function_call from Listing 13-31, with changes bolded and some unchanged code omitted.

convert_function_call(FunCall(fun_name, args, dst)):
 int_registers = [DI, SI, DX, CX, R8, R9]
 double_registers = [XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]

 return_in_memory = False
 int_dests = []
 double_dests = []
 reg_index = 0

 // classify return value
 if dst is not null:
 int_dests, double_dests, return_in_memory = classify_return_value(dst) ❶

 if return_in_memory:
 dst_operand = convert_val(dst)
 emit(Lea(dst_operand, Reg(DI))) ❷
 reg_index = 1

 // classify arguments
 int_args, double_args, stack_args = classify_parameters(args, return_in_memory)

 --snip--

 // pass args in registers
 for (assembly_type, assembly_arg) in int_args:
 r = int_registers[reg_index]
 if assembly_type is ByteArray(size, alignment):
 copy_bytes_to_reg(assembly_arg, r, size) ❸
 else:
 emit(Mov(assembly_type, assembly_arg, Reg(r)))
 reg_index += 1

 --snip--

 // pass args on stack
 for (assembly_type, assembly_arg) in reverse(stack_args):
 if assembly_type is ByteArray(size, alignment):
 emit(Binary(Sub, Quadword, Imm(8), Reg(SP))) ❹
 copy_bytes(from=assembly_arg, to=Memory(SP, 0), count=size)
 else if (assembly_arg is a Reg or Imm operand
 or assembly_type == Quadword
 or assembly_type == Double):
 emit(Push(assembly_arg))
 else:
 emit(Mov(assembly_type, assembly_arg, Reg(AX)))
 emit(Push(Reg(AX)))

 --snip--

 // retrieve return value
 if (dst is not null) and (not return_in_memory):
 int_return_registers = [AX, DX]
 double_return_registers = [XMM0, XMM1]

 // retrieve values returned in general-purpose registers
 reg_index = 0
 for (t, op) in int_dests:
 r = int_return_registers[reg_index]
 if t is ByteArray(size, alignment):
 copy_bytes_from_reg(r, op, size) ❺
 else:
 emit(Mov(t, Reg(r), op)) ❻
 reg_index += 1

 // retrieve values returned in XMM registers
 reg_index = 0
 for op in double_dests:
 r = double_return_registers[reg_index]
 emit(Mov(Double, Reg(r), op)) ❼
 reg_index += 1

Listing 18-61: Supporting structures in function calls

We start by calling classify_return_value (unless the function call doesn’t have a return value because its

return type is void) ❶. If we find that the return value will be passed in memory, we convert dst into an

assembly operand, then emit an instruction to load its address into RDI ❷. We also increment reg_index so that

we’ll pass the first integer argument in RSI instead of RDI.

Next, we call classify_parameters, passing it the new return_in_memory flag. Then, we adjust the stack

pointer (I’ve omitted this step because it’s the same as in earlier chapters).

We then pass arguments in the general-purpose registers. If an argument has the ByteArray type, its size isn’t

exactly 1, 4, or 8 bytes, so transferring it into the register will take multiple instructions. We emit those
instructions with the copy_bytes_to_reg helper function ❸, which we’ll look at in a moment. If an argument has

any other type, we transfer it with a single Mov instruction, as in earlier chapters. The way we pass arguments in

XMM registers won’t change, so I’ve snipped out that step.

The next step is passing arguments on the stack. The way we pass operands with type Byte, Longword,

Quadword, or Double won’t change. To pass an irregular operand with a ByteArray type, we first need to

subtract 8 bytes from RSP to allocate the stack slot for that operand ❹. (Remember that the ABI reserves an
entire 8-byte stack slot for each eightbyte of a structure parameter, even if the actual eightbyte is smaller than
that.) To copy the operand into that stack slot, we use the copy_bytes helper function we’ve already written.

Suppose x is a global variable and its size is 3 bytes. We’ll issue these instructions to pass it as an argument on

the stack:

subq $8, %rsp
movb x(%rip), (%rsp)
movb x+1(%rip), 1(%rsp)
movb x+2(%rip), 2(%rsp)

These movb instructions are invalid, since both operands are in memory; we’ll rewrite them in the instruction fix-

up pass.

Next, we issue the call instruction and restore the stack pointer to its original location. I’ve snipped out these

steps because they’re unchanged from earlier chapters.

Finally, we copy the return value to the destination. If the return value is transferred in memory, we don’t do
anything; the callee already copied it for us. Otherwise, we iterate over the two lists of destination operands
returned by classify_return_value—first int_dests, then double_dests—and retrieve each operand from

the corresponding register. To retrieve an irregularly sized eightbyte from a general-purpose register, we use the
copy_bytes_from_reg helper function ❺, which we’ll define in a moment. This is the counterpart to

copy_bytes_to_reg, which we used to pass parameters. We emit a single Mov instruction to retrieve a Byte,

Longword, or Quadword value from a general-purpose register ❻ or to retrieve a Double value from an XMM

register ❼.

The code to copy the return value to dst works whether dst is a structure or a scalar object. If it’s a structure,

each item in int_dests and double _dests is an eightbyte of dst, which we’ll populate from the corresponding

return register. If dst is scalar, either int_dests or double_dests will have exactly one element, and the other

list will be empty. In that case, this code will emit a single Mov instruction to transfer the return value from RAX or

XMM0 to its destination.

Transferring Irregular Structures in Registers

We still need to implement copy_bytes_to_reg and copy_bytes_from_reg, which copy irregularly sized

eightbytes to and from general-purpose registers. This is trickier than copying between two locations in memory,
like we do in copy_bytes, because we can’t directly access every individual byte in a general-purpose register. We

can access a general-purpose register’s lowest byte with the appropriate 1-byte alias, like AL or DIL, but we can’t
access its other bytes individually. (Each register’s second-lowest byte also has its own alias—for instance, AH is
the second-lowest byte of RAX—but our assembly AST doesn’t support these aliases. Even if it did, we still couldn’t
access the other 6 bytes.)

We’ll use our new bit-shifting instructions to work around this limitation. Let’s revisit the 3-byte global variable x

from our last example. If we need to copy x into RDI, we’ll issue the following instructions:

movb x+2(%rip), %dil
shlq $8, %rdi
movb x+1(%rip), %dil
shlq $8, %rdi
movb x(%rip), %dil

We start by copying the last byte of x into the lowest byte of RDI, whose alias is DIL. Then, we issue a shl

instruction to shift RDI 1 byte to the left. This moves the byte we just copied into the second-lowest byte of RDI
and zeroes out DIL. Next, we copy the middle byte of x into DIL and issue another shl instruction. At this point,

the last 2 bytes of x are in the correct place in the register, so we just move the first byte of x into DIL, and we’re

done. Figure 18-7 shows the contents of RDI (in hexadecimal) after each instruction, if x contains the bytes 0x1,

0x2, and 0x3, and RDI’s initial value is 0.

Figure 18-7: Transferring a structure into a register a byte at a time Description

Don’t let the byte ordering here throw you off: because our system is little-endian, the least significant (rightmost)
byte in RDI corresponds to the lowest memory address when we copy the value from RDI into memory, or vice
versa. This means—somewhat counterintuitively—that shifting a value to the left moves each byte to a location
that corresponds to a higher memory address. If, after copying this structure into RDI, we issue the instruction

movl %edi, -4(%rbp)

then the contents of memory will look like Figure 18-8.

Figure 18-8: The contents of memory after copying a structure from a register Description

Now the structure is laid out in memory in the correct order. (This movl instruction also writes 1 byte of memory

past the end of the structure, which is fine if you aren’t using that byte for anything else. We’ll transfer irregularly
sized structures in and out of registers 1 byte at a time, but code in other translation units that we interact with
may transfer them in 4- and 8-byte chunks when it’s safe to do so.)

That’s the basic idea of copy_bytes_to_reg; now let’s implement it. Listing 18-62 gives the pseudocode.

copy_bytes_to_reg(src_op, dst_reg, byte_count):
 offset = byte_count - 1
 while offset >= 0:
 src_byte = add_offset(src_op, offset)
 emit(Mov(Byte, src_byte, Reg(dst_reg)))
 if offset > 0:
 emit(Binary(Shl, Quadword, Imm(8), Reg(dst_reg)))
 offset -= 1

Listing 18-62: Generating instructions to copy bytes from memory into a register

This function copies byte_count bytes from src_op into dst_reg. Because src_op is part of a structure, we can

assume it’s a memory operand that accepts an offset, like PseudoMem or Memory. We iterate over the bytes of

src_op in reverse order: we start at its final byte, with offset byte_count - 1, and end at byte zero. We use a

simple helper function, add_offset, to construct the assembly operand for each byte. I won’t give you the

pseudocode for this function, since it just adds the specified offset to src_op. For example, if src _op is

PseudoMem("x", 2), add_offset(src_op, 3) should return PseudoMem("x", 5).

Once we have the assembly operand for the current byte, we emit a Mov instruction to copy that byte into the

destination register. Next, on all but the last loop iteration, we emit a Shl instruction to shift the whole register

left by 8 bits. We then decrement the offset and move on to the next byte.

To copy bytes out of a register, we do the whole thing in reverse. Here’s how we would copy 3 bytes from RDI
onto the stack at -4(%rbp):

movb %dil, -4(%rbp)
shrq $8, %rdi
movb %dil, -3(%rbp)
shrq $8, %rdi
movb %dil, -2(%rbp)

First, we copy the lowest byte of RDI into memory. Then, we shift RDI 1 byte to the right, so DIL now contains
the second-lowest byte of the structure. We repeat this process until we’ve transferred every byte. Listing 18-63
gives the pseudocode to generate these instructions.

copy_bytes_from_reg(src_reg, dst_op, byte_count):
 offset = 0
 while offset < byte_count:
 dst_byte = add_offset(dst_op, offset)
 emit(Mov(Byte, Reg(src_reg), dst_byte))
 if offset < byte_count - 1:
 emit(Binary(ShrTwoOp, Quadword, Imm(8), Reg(src_reg)))
 offset += 1

Listing 18-63: Generating instructions to copy bytes from a register into memory

As in Listing 18-62, we can assume that dst_op is a memory operand with an offset. We iterate through the bytes

of dst_op in order, starting with byte zero. On each iteration, we copy the lowest byte of src_reg into the

current byte of dst_op. Then, on all but the last iteration, we shift src_reg 8 bits to the right.

With these two helper functions, we’ve finished our implementation of function calls. Next, we’ll handle the callee
side.

Setting Up Function Parameters

At the start of a function, we copy every parameter into that function’s stack frame. Now we’ll copy parameters of
structure type too. The main wrinkle is that RDI might hold a pointer to the return value’s destination, instead of

an ordinary parameter. Let’s revisit set_up_parameters, from Listing 13-30, and see what’s changed. Listing 18-

64 gives the new definition of set_up _parameters, with this chapter’s changes bolded.

set_up_parameters(parameters, return_in_memory):

 // classify them
 int_reg_params, double_reg_params, stack_params = classify_parameters(parameters,
 return_in_memory

 // copy parameters from general-purpose registers
 int_regs = [DI, SI, DX, CX, R8, R9]
 reg_index = 0

 if return_in_memory:
 emit(Mov(Quadword, Reg(DI), Memory(BP, -8)))
 reg_index = 1

 for (param_type, param) in int_reg_params:
 r = int_regs[reg_index]
 if param_type is ByteArray(size, alignment):
 copy_bytes_from_reg(r, param, size)
 else:
 emit(Mov(param_type, Reg(r), param))
 reg_index += 1

 --snip--

 // copy parameters from the stack
 offset = 16
 for (param_type, param) in stack_params:
 if param_type is ByteArray(size, alignment):
 copy_bytes(from=Memory(BP, offset), to=param, count=size)
 else:
 emit(Mov(param_type, Memory(BP, offset), param))
 offset += 8

Listing 18-64: Copying function parameters to the stack

We’ve added a return_in_memory flag, which we’ll pass through to classify _parameters. This flag also

dictates how we’ll handle the value in RDI. If RDI points to the return value’s destination, we’ll copy it to the first
open slot on the stack, -8(%rbp); we’ll retrieve it from this slot when we need to return a value. (In the next

section, we’ll update the pseudo-operand replacement pass so it doesn’t clobber this pointer by assigning a local
variable to the same spot.) In this case, we’ll also increment reg_index, just like we did when we passed

arguments in Listing 18-61, so that we’ll look for ordinary parameters starting in RSI instead of RDI.

To copy irregularly sized operands out of registers, we’ll use the copy _bytes_from_reg helper function from

Listing 18-63. To copy irregularly sized operands that were passed on the stack, we’ll use the copy_bytes helper

function. If an operand has type Byte, Longword, Quadword, or Double, we’ll copy it into place with a single Mov

instruction, regardless of whether it represents a scalar value or a chunk of a structure.

Implementing Return

Listing 18-65 illustrates how to convert the Return instruction to assembly.

convert_return_instruction(Return(retval)):
 if retval is null:
 emit(Ret)
 return

 int_retvals, double_retvals, return_in_memory = classify_return_value(retval)

 if return_in_memory:
 emit(Mov(Quadword, Memory(BP, -8), Reg(AX))) ❶
 return_storage = Memory(AX, 0)
 ret_operand = convert_val(retval)
 t = assembly_type_of(retval)
 copy_bytes(from=ret_operand, to=return_storage, count=t.size) ❷
 else:
 int_return_registers = [AX, DX]
 double_return_registers = [XMM0, XMM1]

 reg_index = 0
 for (t, op) in int_retvals: ❸
 r = int_return_registers[reg_index]
 if t is ByteArray(size, alignment):
 copy_bytes_to_reg(op, r, size)
 else:
 emit(Mov(t, op, Reg(r)))
 reg_index += 1

 reg_index = 0
 for op in double_retvals: ❹
 r = double_return_registers[reg_index]
 emit(Mov(Double, op, Reg(r)))
 reg_index += 1

 emit(Ret)

Listing 18-65: Implementing the Return instruction

Assuming the function returns a value, rather than void, we start by classifying that value. Then, we check

whether we need to return it in memory or in registers. To return it in memory, we first retrieve the pointer to the

destination from -8(%rbp). We copy that pointer into RAX, as the System V calling convention requires ❶. Then,

we copy the return value into the block of memory that RAX points to. We perform this copy using the copy

_bytes helper function ❷.

If the return value is passed in one or more registers, we iterate through the operands in int_retvals, copying

each one into the corresponding general-purpose register ❸. We then iterate through double_retvals, copying

these values into XMM0 and XMM1 ❹. Once we’ve copied every part of the return value to the correct location, we
emit a Ret instruction.

Tracking Which Functions Pass Return Values in Memory

Finally, we’ll extend the backend symbol table to track which functions return values in memory. Listing 18-66
shows how to update our definition of a backend symbol table entry.

asm_symtab_entry = ObjEntry(assembly_type, bool is_static, bool is_constant)
 | FunEntry(bool defined, bool return_on_stack)

Listing 18-66: The updated definition of an entry in the backend symbol table

As you’d expect, we’ll set return_on_stack to True if a function passes its return value on the stack and False

if it passes its return value in registers or returns void. The pseudo-operand replacement pass will use this flag to

figure out if the quadword starting at -8(%rbp) is available or if it holds the pointer to the memory where the

return value will be passed. If a function has an incomplete return type other than void (which can happen if it’s

declared but never defined or called), the return_on_stack flag will never be used, so we can just set it to

False.

Putting It All Together

We’ve now covered all the pieces of assembly generation! Tables 18-1 through 18-4 summarize the latest updates
to the conversion from TACKY to assembly; as usual, new constructs and changes to the conversions for existing
constructs are bolded. Appendix B includes the complete conversion from TACKY to assembly for this chapter,
since this is the final chapter in Part II.

Table 18-1: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Function(name,

 global,

Return
value
in
registers

Function(name, global,

 [<copy Reg(DI) into first int param/eightby

TACKY top-level construct Assembly top-level construct

 params,

 instructions)

or no
return
value

 <copy Reg(SI) into second int param/eightb
 <copy next four int params/eightbytes from
 Mov(Double,

 Reg(XMM0),

 <first double param/eightbyte>),
 Mov(Double,

 Reg(XMM1),

 <second double param/eightbyte>),
 <copy next six double params/eightbytes fr
 <copy Memory(BP, 16) into first stack para
 <copy Memory(BP, 24) into second stack par
 <copy remaining params/eightbytes from sta
 instructions)

Return
value
on
stack

Function(name, global,

 [Mov(Quadword,

 Reg(DI),

 Memory(BP, -8)),

 <copy Reg(SI) into first int param/eightbyt
 <copy Reg(DX) into second int param/eightby

 <copy next three int params/eightbytes from
 Mov(Double,

 Reg(XMM0),

 <first double param/eightbyte>),
 Mov(Double,

 Reg(XMM1),

 <second double param/eightbyte>),
 <copy next six double params/eightbytes fro
 <copy Memory(BP, 16) into first stack param
 <copy Memory(BP, 24) into second stack para
 <copy remaining params/eightbytes from stack
 instructions)

Table 18-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Return on
stack

Mov(Quadword, Memory(BP, -8), Reg(AX))

Mov(Quadword,

 <first eightbyte of return value>,

 Memory(AX, 0))

Mov(Quadword,

 <second eightbyte of return value>
 Memory(AX, 8))

<copy rest of return value>

Ret

Return in
registers

<move integer parts of return value in

<move double parts of return value int

Ret

No return value

Ret

Unary(Negate, src, dst)

(double negation)
Mov(Double, src, dst)

Binary(Xor, Double, Data(<negative-zer

And add a top-level constant:
StaticConstant(<negative-zero>, 16,

 DoubleInit(-0.0))

TACKY instruction Assembly instructions

Copy(src, dst)

Scalar

Mov(<src type>, src, dst)

Structure

Mov(<first chunk type>,

 PseudoMem(src, 0),

 PseudoMem(dst, 0))

Mov(<next chunk type>,

 PseudoMem(src, <first chunk size>)
 PseudoMem(dst, <first chunk size>)
<copy remaining chunks>

Load(ptr, dst)

Scalar

Mov(Quadword, ptr, Reg(<R>))

Mov(<dst type>, Memory(<R>, 0), dst)

Structure

Mov(Quadword, ptr, Reg(<R>))

Mov(<first chunk type>,

 Memory(<R>, 0),

 PseudoMem(dst, 0))

Mov(<next chunk type>,

 Memory(<R>, <first chunk size>),
 PseudoMem(dst, <first chunk size>)
<copy remaining chunks>

TACKY instruction Assembly instructions

Store(src, ptr)

Scalar

Mov(Quadword, ptr, Reg(<R>))

Mov(<src type>, src, Memory(<R>, 0))

Structure

Mov(Quadword, ptr, Reg(<R>))

Mov(<first chunk type>,

 PseudoMem(src, 0),

 Memory(<R>, 0))

Mov(<next chunk type>,

 PseudoMem(src, <first chunk size>)
 Memory(<R>, <first chunk size>))
<copy remaining chunks>

CopyToOffset(src, dst,

 offset)

src is
scalar

Mov(<src type>, src, PseudoMem(dst, of

src is a

structure
Mov(<first chunk type>,

 PseudoMem(src, 0),

 PseudoMem(dst, offset))

Mov(<next chunk type>,

 PseudoMem(src, <first chunk size>)
 PseudoMem(dst, offset + <first chu
<copy remaining chunks>

TACKY instruction Assembly instructions

CopyFromOffset(src,

 offset,

 dst)

dst is scalar

Mov(<dst type>, PseudoMem(src, offset)

dst is a

structure
Mov(<first chunk type>,

 PseudoMem(src, offset),

 PseudoMem(dst, 0))

Mov(<next chunk type>,

 PseudoMem(src, offset + <first chu
 PseudoMem(dst, <first chunk size>)
<copy remaining chunks>

FunCall(fun_name,

 args, dst)

dst

will be

returned

in

memory

Lea(dst, Reg(DI))

<fix stack alignment>

<move arguments to general-purpose reg

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)

<deallocate arguments/padding>

dst

will be

returned

in

registers

<fix stack alignment>

<move arguments to general-purpose reg

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)

<deallocate arguments/padding>

<move integer parts of return value fr

<move double parts of return value from

dst is

absent
<fix stack alignment>

<move arguments to general-purpose reg

<move arguments to XMM registers>

<push arguments onto the stack>

TACKY instruction Assembly instructions

Call(fun_name)

<deallocate arguments/padding>

DoubleToUInt(src, dst) unsigned

char

Cvttsd2si(Longword, src, Reg(<R>))

Mov(Byte, Reg(<R>), dst)

unsigned

int

Cvttsd2si(Quadword, src, Reg(<R>))

Mov(Longword, Reg(<R>), dst)

unsigned

long

Cmp(Double, Data(<upper-bound>, 0), sr

JmpCC(AE, <label1>)
Cvttsd2si(Quadword, src, dst)

Jmp(<label2>)

Label(<label1>)

Mov(Double, src, Reg(<X>))

Binary(Sub, Double, Data(<upper-bound>

Cvttsd2si(Quadword, Reg(<X>), dst)

Mov(Quadword, Imm(9223372036854775808)

Binary(Add, Quadword, Reg(<R>), dst)

Label(<label2>)

And add a top-level constant:
StaticConstant(<upper-bound>, 8,

DoubleInit(9223372036854775808.0))

Table 18-3: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(ConstDouble(double)) Data(<ident>, 0)

And add a top-level constant:

TACKY operand Assembly operand

StaticConstant(<ident>, 8,

 DoubleInit(double))

Table 18-4: Converting Types to Assembly

Source type Assembly type Alignment

Structure(tag)

ByteArray(<size from type table>,

 <alignment from type table>)

Alignment from type table

Note that we now include offsets on every Data operand we generate. The only Data operands at this point

represent floating-point constants; these include the constants we use in the conversions for floating-point Negate

and DoubleToUInt in Table 18-2 and ordinary floating-point TACKY constants in Table 18-3. These operands all

have an offset of zero.

Replacing Pseudo-operands

We’ll make two small changes to this pass. First, we’ll supply offsets for Data operands. For example, if v is a

static variable, we’ll convert

PseudoMem("v", 0)

to

Data("v", 0)

and

PseudoMem("v", 10)

to:

Data("v", 10)

Second, we need to avoid clobbering the return value pointer in -8(%rbp). Before we start allocating stack space,

we’ll check the backend symbol table to see whether the function’s return value will be passed in memory. If it
will, we’ll reserve the quadword starting at -8(%rbp) for the return value pointer and allocate space for

pseudoregisters only at addresses lower than -8(%rbp). For example, if the first pseudoregister we encounter is a

Longword, we’ll map it to -12(%rbp).

The instruction fix-up pass won’t change in this chapter. The shl and shr instructions we emit during code

generation are already valid and don’t need to be fixed up, since the destination operand is always a register and
the source operand is always the immediate value 8.

TEST THE ASSEMBLY GENERATION STAGE

To test that your compiler can generate assembly programs without throwing an error, run:

$./test_compiler /path/to/your_compiler --chapter 18 --stage codegen

Code Emission

The code emission pass requires two small changes. First, we’ll include the offsets on Data operands. For

example, we’ll emit Data("x", 4) as:

x+4(%rip)

If the offset is zero, you can either include it or omit it.

Second, we’ll emit the new Shl and ShrTwoOp assembly instructions as shl and shr, respectively. These take the

usual operand size suffixes.

Tables 18-5 and 18-6 show these changes to the code emission pass. Appendix B includes the complete code
emission pass for this chapter, since this is the final chapter of Part II.

Table 18-5: Instruction Names for Assembly Operators

Assembly operator Instruction name

Shl shl

ShrTwoOp shr

Table 18-6: Formatting Assembly Operands

Assembly operand Output

Data(identifier, int) <identifier>+<int>(%rip)

And with that, you’re done with the chapter; your compiler now supports structures!

TEST THE WHOLE COMPILER

To test out the whole compiler, run:

$./test_compiler /path/to/your_compiler --chapter 18

I recommend debugging the valid test cases for this chapter in several stages. Start with the tests in
tests/chapter_18/valid/no_structure_parameters. These test programs don’t include any parameters or return
values of structure type, but they exercise all the other functionality you added in this chapter. They declare
structures, assign to them, and access structure members using the . and -> operators. These tests also pass and

return pointers to structures.

The last tests you should debug in the no_structure_parameters directory are the multifile tests in
tests/chapter_18/valid/no_structure_parameters/libraries. These tests pass pointers to structures between
functions in different compilation units; they also define structures and arrays of structures as global variables.
They test that each structure’s size, alignment, and layout in memory match the System V ABI, but they don’t test
the changes to the calling convention.

The tests in tests/chapter_18/valid/parameters include parameters, but not return values, of structure type. This
directory also includes multifile tests (in tests/chapter_18/valid/parameters/libraries), to make sure your compiler
passes parameters according to the System V ABI. The tests in tests/chapter_18/valid/params_and_returns,

including the multifile tests in tests/chapter_18/valid/params _and_returns/libraries, include functions with both
parameters and return values of structure type.

Extra Credit: Unions

Structure and union types have a lot in common. Their type declarations share the same syntax and declare tags
in the same namespace. They follow the same typing rules and support the same operations, including the -> and

. operators. The difference is that the members of a structure are laid out sequentially in memory, whereas the

members of a union all start at the same address, such that writing to one overwrites the others. From the
compiler’s perspective, a union is basically a structure where every member’s offset is zero. This makes it relatively
straightforward to extend the work you did in this chapter to support unions too. Still, this is a bigger challenge
than previous extra credit features. It’s an opportunity to add a new language feature on your own.

If you implement union types, there are a few points you should keep in mind. First, remember that we restricted
where structures can be declared to make compilation easier. The test cases for unions also follow the same
restrictions; that means you don’t need to support anonymous union declarations or union declarations that are
part of declarations of some other type or variable.

In the type checker, you’ll add union definitions to the type table. Structure and union tags share a namespace, so
defining a structure and a union type with the same tag in the same scope is an error. You’ll need to track each
union’s size and alignment (you can look up how to calculate these in the System V ABI). You’ll also need to type
check compound initializers for unions. A union initializer should have a single element, which initializes the union’s
first member. (C provides syntax to specify which union member to initialize, but you don’t have to implement it.)

On the backend, the System V calling convention treats unions similarly to structures; a union will be passed in
memory, in two registers, or in one register, depending on its size and the types of its members. For all the gory
details, see the links in “Additional Resources.” Good luck!

You can use the --union flag to test your compiler’s support for union types:

$./test_compiler /path/to/your_compiler --chapter 18 --union

Or, you can use the --extra-credit flag to test every extra credit feature.

Summary

You’ve finished Part II! In this chapter, you learned how to analyze structure type declarations, manipulate
aggregate objects in TACKY, and transfer structures according to the System V calling convention. Your compiler
now supports every language feature this book covers, including most of the statements, expressions, and types
in the C language. You can officially tell people that you’ve written a C compiler.

If you want, you can stop here. Or, you can move on to Part III, where you’ll implement several compiler
optimizations to generate more efficient assembly code. In Chapter 19, you’ll optimize TACKY programs by
eliminating useless instructions and evaluating constant expressions at compile time. In Chapter 20, you’ll write a
register allocator, which maps pseudoregisters to hardware registers instead of locations on the stack. These
optimizations aren’t specific to C or x64 assembly; you’ll find them in compilers with lots of different source and
target languages.

Additional Resources

If you want to learn about the complete System V x64 calling convention, including all the rules for passing
structures and unions, you have a couple of options:

The official System V x86-64 ABI is available at https://gitlab.com/x86-psABIs/x86-64-ABI. (I’ve linked to this
a couple of times already.) Section 3.2.3 discusses parameter passing.
Agner Fog has written a helpful manual describing the calling conventions of different C++ compilers (https://
www.agner.org/optimize/calling_conventions.pdf). Tables 6 and 7, in Section 7.1, cover how structures are
passed and returned. The document covers C++, so parts of it aren’t relevant, but the description of how to
pass plain structures and unions applies to C as well as C++.

I found Fog’s summary of calling conventions easier to follow than the official ABI. If you decide to implement
unions for extra credit, you’ll probably need to refer to both documents.

https://gitlab.com/x86-psABIs/x86-64-ABI
https://www.agner.org/optimize/calling_conventions.pdf

PART III

OPTIMIZATIONS

Description

19

OPTIMIZING TACKY PROGRAMS

In the first two parts of this book, you wrote a compiler that supported much of the C
language. You made sure that the executable programs you produced were correct— in
other words, that their behavior conformed to the C standard—but you didn’t worry about
their performance. You didn’t try to make them run faster, take up less storage space, or
consume less memory. In Part III, you’ll focus on optimizing these programs—that is,
making them smaller and faster without changing their behavior.

Some compiler optimizations are machine-independent. This means they aren’t affected by
the details of the target architecture, like the number of available registers or constraints
on specific assembly instructions. A compiler typically performs these optimizations on an

intermediate representation like TACKY before converting it to assembly. Machine-dependent optimizations, on the
other hand, need to take the target architecture into account, so these are usually performed later, after the
program has been converted to assembly. This chapter covers four widely used machine-independent
optimizations: constant folding, unreachable code elimination, copy propagation, and dead store elimination. You’ll
add a new optimization stage, bolded in the diagram at the start of the chapter, to apply these four optimizations
to TACKY programs. The next chapter covers register allocation, a machine-dependent optimization.

You don’t need to complete Part II before you start on Part III. For each optimization, we’ll start with an
implementation that doesn’t account for the language features from Part II. Then, if necessary, we’ll extend it to
support those features; you’ll skip this step if you didn’t do Part II. We’ll need this extra step for every
optimization except unreachable code elimination, which isn’t affected by the features from Part II.

These two chapters include just a few of the optimizations you’d find in a production compiler, but the basic
concepts we’ll cover apply to lots of other optimizations too. Before we get started, let’s consider a question that’s
fundamental to every compiler optimization: How do we know our optimized code is correct?

Safety and Observable Behavior

First and foremost, compiler optimizations must be safe, meaning they cannot change the program’s semantics. (It
doesn’t matter how speedy your program is if it doesn’t behave correctly!) In particular, an optimization must not
change the program’s observable behavior, which is the behavior visible to its execution environment. Returning
an exit status, printing a message to stdout, and writing to a file are all examples of observable behavior. Most of

the actions that a program takes—like calculating values, updating local variables, and transferring control from
one statement to another—are not visible to the execution environment, so they affect the program’s observable
behavior only indirectly. This gives us lots of flexibility to transform the program. We can reorder, replace, and
even delete code as long as the observable behavior doesn’t change.

Let’s look at how GCC optimizes a simple C program. Listing 19-1 initializes three variables with the values 1, 2,

and 3, then adds them up and returns the result.

int main(void) {
 int x = 1;
 int y = 2;
 int z = 3;
 return x + y + z;
}

Listing 19-1: A C program that adds three variables

This program will have the same observable behavior every time it runs: it will terminate with an exit status of 6.

You can run the following command to compile the program without optimizations:

$ gcc -S -fno-asynchronous-unwind-tables -fcf-protection=none listing_19_1.c

This will produce the assembly in Listing 19-2, or something similar.

 .text
 .globl main
main:
 pushq %rbp
 movq %rsp, %rbp
 movl $1, -4(%rbp)
 movl $2, -8(%rbp)
 movl $3, -12(%rbp)
 movl -4(%rbp), %edx
 movl -8(%rbp), %eax
 addl %eax, %edx
 movl -12(%rbp), %eax
 addl %edx, %eax
 popq %rbp
 ret

Listing 19-2: The unoptimized assembly for Listing 19-1

This assembly program faithfully implements Listing 19-1’s source code: it initializes three locations on the stack
with the values 1, 2, and 3; adds them up; and then returns the result in EAX. Now let’s compile the same source

code with the -O switch to enable optimizations:

$ gcc -S -O -fno-asynchronous-unwind-tables -fcf-protection=none listing_19_1.c

This will generate the assembly in Listing 19-3.

 .text
 .globl main
main:
 movl $6, %eax
 ret

Listing 19-3: The optimized assembly for Listing 19-1

Instead of initializing three variables and then adding them up, this assembly program just returns the constant 6.

Listings 19-2 and 19-3 look quite different, but they both produce the right observable behavior.

OBSERVABLE BEHAVIOR FOR PEDANTS

You can find a more formal definition of observable behavior in section 5.1.2.3, paragraph 6, of the C standard.
This section lists three kinds of observable behaviors: operations on files, operations on interactive devices, and
access to volatile objects. C programs can operate on files and interactive devices using the I/O functions in the
standard library. An interactive device is typically a terminal or something similar, although the exact meaning is
implementation-defined. The basic idea is that output to files can be buffered, but output to interactive devices
needs to be delivered right away. The optimizations we implement in this chapter will preserve all function calls,
including calls to standard library functions that operate on files and interactive devices.

A volatile object is an object that interacts with the execution environment in ways that the compiler can’t
understand. For example, it might be read by a signal handler or used to communicate with a hardware device
through memory-mapped I/O. You declare a volatile object with the volatile type qualifier. We didn’t implement

this qualifier, so we don’t need to worry about volatile accesses.

The C standard’s definition of observable behavior isn’t meant to be exhaustive; individual implementations can,
and generally do, provide stronger guarantees about program behavior. So it’s understandable that this definition
leaves out a lot of behaviors that you might expect to be observable, like launching a new process and other non-
I/O system calls. More surprisingly, it leaves out some behaviors that are implied to be observable by other parts
of the standard itself. For example, a program’s exit status isn’t an observable behavior under this definition, but
section 5.1.2.2.3 states that the exit status should be “returned to the host environment.” Maybe there’s a good
reason for this omission, but it seems like a problem with the standard to me.

In practice, no C compiler performs optimizations that might change a program’s exit status. Our compiler is no
exception; its optimizations will preserve the return value of every function call, including the exit status returned
by main.

Four TACKY Optimizations

This section introduces the optimizations we’ll implement in this chapter: constant folding, unreachable code
elimination, copy propagation, and dead store elimination. These optimizations aim to speed up our code and
reduce the amount of space it takes up. Individually, some of them further one or both of these goals, while
others aren’t particularly helpful on their own. The real payoff comes from the way they work together, because
running any one of them creates new opportunities to apply the other three. We’ll look at these four optimizations
in turn, then discuss how each one makes the others more effective.

Before we jump in, be aware that I’ll use minimal notation in most of this chapter’s TACKY listings. I’ll write copies
as x = y instead of Copy(Var("x"), Var("y")), as I’ve occasionally done in earlier chapters, and I’ll take

similar shortcuts with other instructions. For example, I’ll write binary operations as x = a + b instead of

Binary(Add, Var("a"), Var("b"), Var("x")) and labels as Target: instead of Label(Target). This

notation lets us focus on the high-level logic of our TACKY programs, not the details of each TACKY instruction.

Constant Folding

The constant folding pass evaluates constant expressions at compile time. For example, constant folding will
replace the Binary TACKY instruction

a = 6 / 2

with a Copy instruction:

a = 3

Constant folding can also turn conditional jumps into unconditional jumps or eliminate them entirely. It will
transform

JumpIfZero(0, Target)

into

Jump(Target)

because the program will always make this jump. It will also delete the instruction

JumpIfZero(1, Target)

because the program will never make this jump. (Deleting useless jumps is often considered a type of dead code
elimination rather than constant folding, but we’re transforming conditional jumps in this pass anyway, so we
might as well delete the useless ones too.)

Constant folding helps with both speed and code size. A single arithmetic operation or comparison might require
several assembly instructions. Some of those instructions, like idiv, are quite slow. Constant folding ultimately

replaces that assembly code with a single mov instruction.

Unreachable Code Elimination

Unreachable code elimination removes instructions that we know will never run. Consider the fragment of TACKY
in Listing 19-4.

x = 5
Jump(Target)
x = my_function()
Target:
Return(x)

Listing 19-4: A fragment of TACKY with an unreachable instruction

Since we’ll always jump over the call to my_function, we can get rid of it:

x = 5
Jump(Target)
Target:
Return(x)

Now the Jump instruction is useless, since it jumps to the instruction that we’d execute next anyway. We’ll remove

this instruction too:

x = 5
Target:
Return(x)

Finally, we can also eliminate the Target label, assuming no other instruction jumps to it:

x = 5
Return(x)

Strictly speaking, the Jump and Label instructions we just removed aren’t unreachable code; a running program

will reach both of them, though they won’t have any effect. But removing unreachable code often makes jumps
and labels useless, so this pass is a logical place to remove them.

Eliminating unreachable code clearly reduces code size. It’s also pretty clear that removing useless jumps saves
time; even a useless instruction takes some amount of time to execute. It turns out that removing truly
unreachable instructions, like the FunCall in Listing 19-4, can speed up the program too, by reducing memory

pressure and freeing up space in the processor’s instruction cache.

Removing unused labels, on the other hand, won’t impact speed or code size, since labels don’t become machine
instructions in the final executable. We’ll remove these labels anyway because it makes our TACKY programs a bit
easier to read and debug and requires very little extra work.

This pass is especially handy for cleaning up the extra Return instruction we add to the end of every TACKY

function. Recall that we add this instruction as a backstop in case the source code is missing a return statement.

When we convert a program to TACKY, we can’t tell whether this extra Return is necessary, so we end up adding

it to functions that don’t need it. The unreachable code elimination pass removes all the Return instructions that

we added unnecessarily, while retaining any that we actually need. This is one example of a broader principle:
generating inefficient code and optimizing it later is often easier than generating efficient code to begin with.

Copy Propagation

When a program includes the Copy instruction dst = src, the copy propagation pass tries to replace dst with

src in later instructions. Take the following snippet of TACKY:

x = 3
Return(x)

We can replace x with its current value, 3, in the Return instruction:

x = 3
Return(3)

Replacing a variable with a constant is a special case of copy propagation called constant propagation. In other
cases, we’ll replace one variable with another. For instance, we can rewrite

x = y
Return(x)

as:

x = y
Return(y)

Sometimes, figuring out whether it’s safe to perform copy propagation can be tricky. Take the following example:

x = 4
JumpIfZero(flag, Target)
x = 3
Target:
Return(x)

Depending on which path we take, x’s value will be either 3 or 4 when we reach the Return instruction. Since we

don’t know which path we’ll take to that instruction, we can’t safely replace x with either value. To handle cases

like this one, we’ll need to analyze every possible path to the instruction we’d like to rewrite. We’ll use a technique
called data-flow analysis to look at all the paths through a function and find the places where we can perform
copy propagation safely. Data-flow analysis isn’t just useful for copy propagation; it’s used in lots of different
compiler optimizations, including dead store elimination, which we’ll discuss next.

Some of the copies we analyze will involve variables with static storage duration, which can be accessed by
multiple functions (or just multiple invocations of the same function, in the case of local static variables). We won’t
always be able to tell exactly when these variables are updated, so our data-flow analysis will need to treat them a
bit differently than variables with automatic storage duration. If you completed Part II, you’ll need to account for
similar uncertainty around variables whose address is taken with the & operator, since they can be updated

through pointers.

Copy propagation isn’t useful by itself, but it makes our other optimizations more effective. When we propagate
constants, we create new opportunities for constant folding. And we’ll sometimes replace every use of a Copy

instruction’s destination with its source, which makes the Copy itself useless. We’ll remove these useless

instructions in our last optimization pass: dead store elimination.

Dead Store Elimination

When an instruction updates a variable’s value but we never use that new value, the instruction is called a dead
store. (The term store here refers to any instruction that stores a value in a variable, not the TACKY Store

instruction we introduced in Part II.) Because dead stores don’t impact a program’s observable behavior, it’s safe
to remove them. Let’s look at a simple example:

x = 10
Return(y)

Assuming x has automatic storage duration, the instruction x = 10 is a dead store. We don’t use x between this

instruction and the end of the function, which is also the end of x’s lifetime.

Here’s another kind of dead store:

x = a + b
x = 2
Return(x)

In this example, we’ll never use the result of a + b, because we’ll overwrite it first; this means x = a + b is a

dead store. The dead store elimination pass will identify such useless instructions and remove them. The challenge
is proving that an instruction really is a dead store; to do this, we’ll need to analyze every path through the
function and make sure that the value it assigns to its destination is never used. Once again, we’ll use data-flow
analysis to figure out when we can apply this optimization safely.

Like copy propagation, dead store elimination gets more complicated when you factor in objects that can be
accessed by multiple functions or through pointers. For instance, if x is a global variable, the instruction x = 10 in

our first example is not a dead store; x might be used after the function returns. Our data-flow analysis will have

to take this possibility into account.

WHEN OPTIMIZATIONS ATTACK!

Dead store elimination is safe in the sense that it won’t change a program’s observable behavior. But in another,
more intuitive sense, it’s unsafe: it can make a program less secure. A conscientious, security-minded programmer
will overwrite sensitive data as soon as they’re done processing it. The longer a secret lives in memory, the greater
the risk that an attacker will be able to read it, perhaps by exploiting another vulnerability in the program or even
dumping the entire system’s memory. Unfortunately, operations that clear sensitive data are often dead stores.
Dead store elimination tends to, well, eliminate them. Consider this code fragment that tries to zero out an
encryption key:

char *encryption_key = malloc(encryption_key_size);
// initialize encryption_key and use it to encrypt some things
--snip--
memset(encryption_key, 0, encryption_key_size);
free(encryption_key);
return 0;

Normally, calling memset would zero out the buffer that encryption_key points to, preventing the data in that

buffer from being leaked later on. But the compiler might optimize away the call to memset because it’s technically

a dead store; it just updates a buffer that we’ll never use again. Our implementation of dead store elimination
wouldn’t remove memset from this example, because it never optimizes away function calls, but GCC and Clang

actually do eliminate memset in code like this. You can compile a toy example to see for yourself.

C programs can avoid this problem by clearing memory with a dedicated library function that the compiler knows
not to optimize away. There are several platform-specific functions that serve this purpose, like
SecureZeroMemory on Windows and explicit_bzero on many Linux distributions. The memset_s function to

write to memory securely was added to the C standard library back in the C11 revision of the standard, but it’s
part of an optional annex that was never widely implemented. C23 introduces a similar function that isn’t optional,
memset_explicit, so C programmers finally have a standard, portable way to clear sensitive data from memory.

Functions like memset_explicit solve the immediate problem with dead stores. But they don’t address the more

fundamental issue: the concept of observable behavior doesn’t cover every kind of behavior that programmers
care about. The C standard guarantees that your code will behave the way you intended it to when everything
goes right—when your code has no undefined behavior, the libraries it relies on have no undefined behavior, and
nobody tampers with the underlying system—but it provides no guarantees about what happens when things go
wrong. Without those guarantees, it’s difficult, and sometimes impossible, to write secure code. (If you’d like to
learn more about the security impact of compiler optimizations, see “Additional Resources” on page 610 for links
to a couple of relevant papers.)

We won’t worry about the security impact of the optimizations we implement here. If you’re using the compiler
you wrote for this book to compile security-critical software, dead store elimination is the least of your problems.

With Our Powers Combined …

Now let’s look at how the four optimizations we’ll implement in this chapter work together. We’ll use the TACKY
program in Listing 19-5 as a running example.

my_function(flag):
 x = 4
 y = 4 - x
 JumpIfZero(y, Target)
 x = 3
 Target:
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = x + 5
 Return(z)

Listing 19-5: An unoptimized TACKY program

Using all four optimizations, we can reduce this function to a single Return instruction. I’ll display the results of

each round of optimization, highlighting any changed instructions. Because each optimization can create more
opportunities to apply the other three, we’ll need to run most of them several times to fully optimize this function.
For now, we’ll decide which optimization to run at each step in an ad hoc way, by looking at the code and seeing
which one will be most useful. We’ll use a more systematic approach when we actually implement our optimization
pipeline.

Let’s start with a copy propagation pass, substituting 4 for x in y = 4 - x:

my_function(flag):
 x = 4
 y = 4 - 4
 JumpIfZero(y, Target)
 x = 3
 Target:
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = x + 5
 Return(z)

We can’t replace the second use of x, in z = x + 5, because x has more than one possible value at that point: it

might be 3 or 4, depending on whether we take the conditional jump. Next, we’ll apply constant folding to

evaluate y = 4 - 4:

my_function(flag):
 x = 4
 y = 0
 JumpIfZero(y, Target)
 x = 3
 Target:
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = x + 5
 Return(z)

By replacing a binary operation with a Copy instruction, we’ve created another opportunity for copy propagation.

We can replace y with its value, 0, in the JumpIfZero instruction:

my_function(flag):
 x = 4

 y = 0
 JumpIfZero(0, Target)
 x = 3
 Target:
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = x + 5
 Return(z)

Now that JumpIfZero depends on a constant condition, we can run constant folding again to turn it into an

unconditional Jump:

my_function(flag):
 x = 4
 y = 0
 Jump(Target)
 x = 3
 Target:
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = x + 5
 Return(z)

This change makes x = 3 unreachable, so we’ll run unreachable code elimination to delete it. This pass will also

remove the Jump instruction and Target label, which have no effect once we’ve removed x = 3:

my_function(flag):
 x = 4
 y = 0
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = x + 5
 Return(z)

We couldn’t rewrite z = x + 5 earlier, because x had two different values on the different paths to that

instruction. We just solved that problem by eliminating the path through x = 3. Now we can run copy

propagation again:

my_function(flag):
 x = 4
 y = 0
 JumpIfNotZero(flag, End)

 z = 10
 End:
 z = 4 + 5
 Return(z)

Then we’ll run another round of constant folding:

my_function(flag):
 x = 4
 y = 0
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = 9
 Return(z)

And we’ll run copy propagation one last time:

my_function(flag):
 x = 4
 y = 0
 JumpIfNotZero(flag, End)
 z = 10
 End:
 z = 9
 Return(9)

We’ve managed to calculate this function’s return value at compile time, eliminating every use of x, y, and z in the

process. Now we’ll run dead store elimination to clean up the instructions that assign to these three variables:

my_function(flag):
 JumpIfNotZero(flag, End)
 End:
 Return(9)

Finally, we’ll run unreachable code elimination to remove the JumpIfNot Zero instruction and the End label.

These are both redundant, since we just eliminated the one instruction that JumpIfNotZero jumps over. This last

round of optimization will reduce our function to a single instruction:

my_function(flag):
 Return(9)

This example highlighted some of the ways our optimizations work together. Copy propagation may replace
variables with constants, creating new opportunities for constant folding; constant folding rewrites arithmetic
operations as Copy instructions, creating new opportunities for copy propagation. Constant folding can replace

conditional jumps with unconditional ones, making some instructions unreachable; eliminating unreachable code
simplifies the program’s control flow, which promotes copy propagation. Copy propagation may make Copy

instructions redundant, which lets us remove them during dead store elimination. And dead store elimination can
potentially remove every instruction between a jump and the label it jumps to, which makes the jump, and
possibly the label, candidates for unreachable code elimination.

Now we know what each optimization does and how they all work together. Next, we’ll add a few new command
line options that will allow us to test them out.

Testing the Optimization Passes

This chapter’s tests work differently than the tests in earlier chapters. We need to verify that our optimizations
don’t change the program’s observable behavior but do simplify constant expressions and remove useless code.
Our current strategy—compiling C programs, running them, and making sure they behave correctly—satisfies the
first requirement but not the second. Just running a program can’t tell you whether the optimization phase did
anything. To address the second point, the test script will inspect your compiler’s assembly output for each test
program. To address the first point, it will also run each test program and verify its behavior, like in earlier
chapters.

To support this chapter’s tests, you’ll need to add a few command line options to your compiler:

-S Directs your compiler to emit an assembly file, but not assemble or link it. Running ./YOUR_COMPILER -S

/path/to/program.c should write an assembly file to /path/to/program.s. (I suggested adding this option to

help with debugging back in Chapter 1; you’ll need to add it now if you haven’t already.)

--fold-constants Enables constant folding.

--propagate-copies Enables copy propagation.

--eliminate-unreachable-code Enables unreachable code elimination.

--eliminate-dead-stores Enables dead store elimination.

--optimize Enables all four optimizations.

The options to enable optimizations should be passed to the optimization stage, which we’ll implement next. It
should be possible to enable more than one individual optimization; for example, ./YOUR_COMPILER --fold-

constants --propagate-copies should enable both constant folding and copy propagation, but not the other

two optimizations.

If your compiler doesn’t generate assembly exactly the way I’ve laid out in this book, the test script should still be
able to validate your assembly output for this chapter’s tests, but there are a couple of caveats to keep in mind.
First, the test script understands only AT&T assembly syntax, which is the syntax we’ve been using throughout the
book. Second, the script doesn’t recognize every single assembly instruction; it only knows about the instructions
we’ve used in this book and a handful of others that are particularly common in real-world assembly code. If you
emit instructions that the test script doesn’t understand, some tests may fail.

Next, we’ll wire up the new optimization stage, which will control when we call each individual optimization.

Wiring Up the Optimization Stage

The optimization stage will run right after we convert the program to TACKY. This stage will optimize each TACKY
function independently, without any knowledge of the other functions defined in the program. For example, it
won’t try to evaluate function calls during the constant folding pass or remove them during dead store elimination.
(We can’t remove function calls during dead store elimination because we don’t know whether they have side
effects. We can remove them during unreachable code elimination, though—if a function call will never execute, it
doesn’t matter what side effects the function has.) Optimizations like these, which transform one function at a
time, are called intraprocedural optimizations. Most production compilers also perform interprocedural
optimizations, which transform whole translation units instead of individual functions.

Each individual optimization will take the body of a TACKY function as input and return a semantically equivalent
function body as output. In the constant folding pass, we’ll represent the function body as a list of TACKY
instructions, like we normally do. But in the other three optimization passes, we’ll represent each function as a
control-flow graph. This is an intermediate representation that explicitly models the different execution paths
through a piece of code. We’ll talk more about how to construct control-flow graphs and why they’re useful later in
the chapter.

The optimization stage will process each function by running through all of the enabled optimizations over and
over. It will stop once it reaches a fixed point, where running them again doesn’t change the function further.
Listing 19-6 illustrates this optimization pipeline.

optimize(function_body, enabled_optimizations):
 if function_body is empty:
 return function_body

 while True:
 if enabled_optimizations contains "CONSTANT_FOLDING":
 ❶ post_constant_folding = constant_folding(function_body)
 else:
 post_constant_folding = function_body

 ❷ cfg = make_control_flow_graph(post_constant_folding)

 if enabled_optimizations contains "UNREACHABLE_CODE_ELIM":
 cfg = unreachable_code_elimination(cfg)

 if enabled_optimizations contains "COPY_PROP":
 cfg = copy_propagation(cfg)

 if enabled_optimizations contains "DEAD_STORE_ELIM":
 cfg = dead_store_elimination(cfg)

 ❸ optimized_function_body = cfg_to_instructions(cfg)

 ❹ if (optimized_function_body == function_body
 or optimized_function_body is empty):
 return optimized_function_body

 function_body = optimized_function_body

Listing 19-6: The TACKY optimization pipeline

In this listing, function_body is the list of instructions in the body of a TACKY function and

enabled_optimizations is a list of strings representing the optimizations that we enabled on the command line.

(This would be a pretty kludgy way to store command line options in a real program; feel free to represent these
options differently in your own code.) If function_body is empty, we’ll just return it, since there’s nothing to

optimize. Otherwise, we’ll perform constant folding if it’s enabled ❶.

Next, we’ll convert the function body from a list of instructions into a control-flow graph ❷. We’ll apply all the
other enabled optimizations to this representation. Then, we’ll convert the optimized control-flow graph back to a
list of instructions ❸, which we’ll compare to the original list ❹. If it’s different, and if we haven’t optimized away
the entire function, we’ll go through the loop again to take advantage of any new optimization opportunities. If it’s
the same, we can’t optimize it any further, so we’re done.

HOW DO WE KNOW LISTING 19-6 WILL TERMINATE?

At first glance, it looks like the optimize function in Listing 19-6 might get caught in an infinite loop. The TACKY

function we’re optimizing could keep changing on every iteration, without ever converging on a final result. But if
we think about these optimizations more carefully, we can convince ourselves that the optimization pipeline must
terminate.

First, both dead store elimination and unreachable code elimination remove instructions, and none of our
optimizations ever add new instructions. These two optimizations can’t keep changing a function forever, because
we’ll eventually run out of instructions. To be more precise, if our TACKY function initially has n instructions, we’ll
see at most n loop iterations where either of these optimizations changes anything.

Similarly, constant folding replaces several kinds of TACKY instructions (including Unary, Binary, type

conversions, and conditional jumps) with other kinds of TACKY instructions (specifically Copy and the

unconditional Jump instruction). None of our other optimizations will introduce the kinds of instructions that

constant folding replaces. The constant folding pass can change a function only so many times before we’ve
eliminated every instruction it could potentially rewrite.

That leaves copy propagation. We’ve already put an upper bound on how many times each of the other
optimizations can change a function, so optimize will terminate unless copy propagation by itself can get stuck in

an infinite loop, changing the function every time we apply it. To see why this is impossible, let’s think about how
many times copy propagation could rewrite a single instruction, i. We’ll assume this instruction has one operand,
but it’s easy to extend this logic to instructions with multiple operands. If there are no Copy instructions on the

shortest path to i, we know that i will never be rewritten. (Keep in mind that we can propagate a Copy instruction

only if it appears on every path to i.) Now imagine there’s exactly one Copy on the path to i. In that case, we’ll be

able to rewrite i at most once. We might propagate the value from that Copy instruction to i, but we won’t be able

to rewrite it again after that. Now let’s generalize this: if there are n Copy instructions on the shortest path to i,

we’ll rewrite i at most n times. Whenever we rewrite i, we replace its operand with another operand that was
defined earlier on the shortest path to i (or with a constant). If we rewrite i multiple times, each rewrite must
propagate a Copy instruction from earlier in the program than the one before, until there are no copies left to

propagate.

It’s helpful to look at an example:

w = foo()
x = w
y = x
Return(y)

Initially, this code snippet returns y, which is defined by y = x. After one round of copy propagation, we’ll rewrite

the final instruction as Return(x). Of course, x is defined before y, in the instruction x = w. The next round of

copy propagation will replace x with w, which is defined even earlier, in the instruction w = foo(). The key point

here is that we’ll never replace one operand with another that’s defined later on the path to the instruction that
we’re rewriting, so we can replace each operand only a finite number of times. Therefore, the optimize function

has to terminate.

Using the optimization pipeline in Listing 19-6, we’ll never miss an optimization opportunity. Whenever one
optimization changes the program, we’ll rerun the other three to take advantage of those changes. This is feasible
because we’re implementing only four optimizations, and all of our test programs are small enough to optimize
pretty quickly. Production compilers, which implement dozens of optimizations and compile much larger programs,
don’t take this approach; if they did, compilation would take way too long. Instead, they apply a fixed sequence of
optimizations just once, running each individual optimization in the place where it’s likely to have the biggest
impact. As a result, they can end up missing optimization opportunities. (Finding the best order to run
optimizations for any given program is an open research question called the phase ordering problem.)

Go ahead and add the optimization pipeline to your compiler. For now, define each individual optimization as a
stub that takes a list of instructions and returns them unchanged. You can stub out the conversions to and from
control-flow graphs the same way. Write this plumbing code now so that you can test the individual optimization
passes as you implement them.

Once everything is wired up, you can start on your first optimization: constant folding!

Constant Folding

Constant folding is the simplest optimization in this chapter. This pass iterates through all the instructions in a
TACKY function and evaluates any instructions with constant source operands. First, we’ll talk briefly about how to
add constant folding to the version of the compiler you implemented in Part I. Then, we’ll discuss how to handle
the types and TACKY instructions you added in Part II. If you haven’t worked through Part II yet, feel free to skip
the latter discussion.

Constant Folding for Part I TACKY Programs

The constant folding pass should evaluate four of the TACKY instructions from Part I: Unary, Binary,

JumpIfZero, and JumpIfNotZero. When you find a Unary instruction with a constant source operand, or a

Binary instruction with two constant source operands, replace it with a Copy. For example, you should replace

Binary(binary_operator=Add, src1=Constant(1), src2=Constant(2), dst=Var("b"))

with:

Copy(src=Constant(3), dst=Var("b"))

Your constant folding pass could run into two kinds of invalid expressions: division by zero and operations that
result in integer overflow. These are both undefined behaviors, so it doesn’t matter how you evaluate them.
However, your compiler can’t just fail if it encounters one of these invalid expressions, because the program’s
behavior is undefined only if it actually reaches the invalid expression at runtime. For example, if a program
includes division by zero in a branch that’s never taken, you should still be able to compile it.

You should also evaluate JumpIfZero and JumpIfNotZero instructions with constant conditions. If the condition

is met, replace the instruction with an unconditional Jump. If the condition isn’t met, remove the instruction from

the program. That’s all there is to it! If you completed only Part I, you can skip to the test suite once you’ve
implemented constant folding for these four instructions. If you completed Part II, there are a few more
instructions you’ll need to handle.

Supporting Part II TACKY Programs

When we added the new arithmetic types in Part II, we also added type conversion instructions: Truncate,

SignExtend, ZeroExtend, DoubleToInt, DoubleToUInt, IntToDouble, and UIntToDouble. The constant

folding pass should evaluate all of these instructions when their source operands are constants.

The Copy instruction can perform type conversions too; we use it to convert between signed and unsigned

integers of the same size. When a Copy instruction copies an unsigned constant to a signed variable, or vice

versa, this pass should convert the constant to the correct type. For example, if a is a signed char, you should

replace

Copy(src=Constant(ConstUChar(255)), dst=Var("a"))

with:

Copy(src=Constant(ConstChar(-1)), dst=Var("a"))

Be careful to perform every type conversion with exactly the same semantics that the program would use at
runtime. For example, when you convert a double to an integer type, truncate its value toward zero; when you

convert an integer to a double, round to the nearest representable value. The good news is that you already

know how to perform all of these type conversions at compile time, since you had to convert static initializers to
the correct type throughout Part II. Ideally, you’ll be able to reuse the code you’ve already written to perform
these type conversions.

You’ll also need to adhere to C semantics when you evaluate unsigned arithmetic operations. In particular, you
should ensure that unsigned arithmetic wraps around, like it would at runtime. How you accomplish this will
depend entirely on what language you’re writing your compiler in. Some languages support wraparound unsigned
arithmetic as part of their standard library. In Rust, for example, methods like wrapping_add and wrapping_sub

provide the same semantics as unsigned arithmetic in C. In other languages, you might use a third-party library
for unsigned arithmetic. For example, Python doesn’t provide unsigned integer types, but the NumPy library does.
If you don’t want to use an external library, or you can’t find a suitable one, it isn’t terribly difficult to implement
wraparound unsigned arithmetic yourself.

Finally, when you evaluate floating-point operations, you’ll need to use round-to-nearest, ties-to-even rounding
and handle negative zero and infinity correctly. If you added support for NaN for extra credit in Chapter 13, you’ll
need to evaluate operations on NaN correctly too. This shouldn’t require any special effort on your part—the vast
majority of programming languages use IEEE 754 semantics—but there’s a small chance that your implementation
language handles negative zero, NaN, or infinity differently than C. Start with a simple implementation of constant
folding that doesn’t try to address these edge cases; you can rely on the test suite to catch any problems. If you
run into any cases that your implementation language doesn’t evaluate correctly, you have two options: either find
a third-party library to handle them for you or evaluate them yourself as a special case.

TEST THE CONSTANT FOLDING PASS

If you completed Part I but not Part II, use the following command to test your constant folding implementation:

$./test_compiler /path/to/your_compiler --chapter 19 --fold-constants
--int-only

This will run the tests in tests/chapter_19/constant_folding/int_only, which use only language features from Part I.
It will also compile all the test programs from Part I with constant folding enabled. It won’t inspect the assembly
output for these earlier test programs, but it will run them to confirm that they still behave correctly.

If you completed Parts I and II, run the same command without the --int-only option:

$./test_compiler /path/to/your_compiler --chapter 19 --fold-constants

This command runs both the Part I–specific tests in tests/chapter_19/constant_folding/int_only and the tests in
tests/chapter_19/constant_folding/all_types, which cover constant folding with types besides int. It will also run

all the tests from Parts I and II with constant folding enabled. As usual, you can include the appropriate flags to
verify that your constant folding pass correctly handles extra credit features like NaN and bitwise operations.

Until you implement copy propagation, your compiler won’t be able to fully evaluate nested source-level
expressions that involve more than one operation, like -1 * 2, because it can’t propagate the result from one

operation to the next. This means the test suite can’t exercise certain cases yet, including constant folding with
negative numbers or constants of character type. The tests for the whole pipeline, which you’ll run at the end of
the chapter, will cover these cases. In the meantime, you might want to write your own unit tests to fill in those
gaps.

Control-Flow Graphs

For the rest of the chapter, we’ll represent TACKY functions as control-flow graphs. A graph representation is a
good fit for our remaining optimizations, which have to account for the different paths we might take through a
function. The nodes in the control-flow graph represent sequences of straight-line code called basic blocks, except
for two special nodes that represent the function’s entry and exit points. Each node has outgoing edges to the
nodes that could execute immediately after it.

As an example, let’s look at the control-flow graph for Listing 19-7.

processing_loop():
 LoopStart:
 input = get_input()

 JumpIfNotZero(input, ProcessIt)
 Return(-1)
 ProcessIt:
 done = process_input(input)
 JumpIfNotZero(done, LoopStart)
 Return(0)

Listing 19-7: A TACKY function with multiple execution paths

This function executes a loop that repeatedly retrieves a value by calling get_input, then processes that value by

calling process_input. If get_input ever returns 0, this function immediately returns -1. If process_input

ever returns 0, the function immediately returns 0. Figure 19-1 shows the corresponding control-flow graph.

Figure 19-1: The control-flow graph for Listing 19-7 Description

There’s a single outgoing edge from the special ENTRY node to block B0, since we’ll always execute B0 at the start

of the function. (ENTRY will have exactly one outgoing edge in every control-flow graph, since C functions have

only one entry point.) After we execute B0, there are two possibilities: we can execute the next block in the

program, B1, or we can jump to block B2. Therefore, B0 has outgoing edges to both of those blocks. By the same

logic, B2 has outgoing edges to both B0 and B3. A Return instruction exits the function, so B1 and B3 each have a

single outgoing edge to EXIT.

Defining the Control-Flow Graph

Now that you know what a control-flow graph looks like, let’s look at how to construct one. First, we’ll define the
graph data structure. Listing 19-8 sketches out one possible representation.

node_id = ENTRY | EXIT | BlockId(int num)
node = BasicBlock(node_id id, instruction* instructions,
 node_id* predecessors, node_id* successors)
 | EntryNode(node_id* successors)
 | ExitNode(node_id* predecessors)
graph = Graph(node* nodes)

Listing 19-8: One way to represent the control-flow graph

Every node in the graph has a unique node_id, which identifies it as ENTRY, EXIT, or a numbered basic block.

We’ll assign numeric IDs to basic blocks according to their order in the original TACKY function. Each basic block
holds a list of TACKY instructions, a list of successors (the blocks that could execute right after it), and another list
of predecessors (the blocks that could execute right before it). The entry and exit nodes don’t hold any
instructions. ENTRY, as the very first point in the function, has successors but no predecessors. EXIT, on the other

hand, has predecessors but no successors.

You’ll need a way to associate both basic blocks and individual instructions with extra information so that you can
track the results of data-flow analysis in the copy propagation and dead store elimination passes. The definition in
Listing 19-8 doesn’t include a way to track this information. You could either attach it directly to the graph or store
it in a separate data structure. The pseudocode throughout this chapter will use annotate _instruction and

get_instruction_annotation to save and look up information about individual instructions. It will use

annotate_block and get_block _annotation to save and look up information about basic blocks by block ID.

NOTE

Your graph data structure might look quite different from Listing 19-8. For instance, you might want to represent
the graph as a map from node_id to node, instead of a list of nodes, or track the entry and exit nodes separately
from the nodes that represent basic blocks. You can define your control-flow graph in whatever way makes sense
to you and suits your implementation language, as long as it includes all the information you’ll need.

Creating Basic Blocks

Next, let’s see how to partition the body of a TACKY function into basic blocks. You can’t have any jumps into or
out of the middle of a basic block. The only way to execute a basic block is to start at its first instruction and
continue all the way to the end. This implies that Label can appear only as the first instruction in a block, and a

Return or jump instruction can appear only as the last instruction. Listing 19-9 demonstrates how to split a list of

instructions into basic blocks along these boundaries.

partition_into_basic_blocks(instructions):
 finished_blocks = []
 current_block = []
 for instruction in instructions:
 ❶ if instruction is Label:
 if current_block is not empty:
 finished_blocks.append(current_block)
 current_block = [instruction]

 ❷ else if instruction is Jump, JumpIfZero, JumpIfNotZero, or Return:
 current_block.append(instruction)
 finished_blocks.append(current_block)
 current_block = []

 else:
 ❸ current_block.append(instruction)

 if current_block is not empty:
 finished_blocks.append(current_block)

 return finished_blocks

Listing 19-9: Partitioning a list of instructions into basic blocks

When we encounter a Label instruction, we start a new basic block beginning with that Label ❶. When we

encounter a Return instruction or a conditional or unconditional jump, we add it to the current block, then start a

new empty block ❷. When we encounter any other instruction, we add it to the current block without starting a
new block ❸.

Listing 19-9 just partitions a function body into a list of lists of instructions. The next step (which I won’t provide
pseudocode for) is to convert these lists of instructions into BasicBlock nodes with increasing block IDs. We’ll

then add these nodes to the graph, along with the entry and exit nodes.

Adding Edges to the Control-Flow Graph

After adding every node to the graph, we’ll add edges from each node to its successors, as Listing 19-10
demonstrates.

add_all_edges(❶ graph):

 ❷ add_edge(ENTRY, BlockId(0))

 for node in graph.nodes:
 if node is EntryNode or ExitNode:
 continue

 if node.id == max_block_id(graph.nodes):
 next_id = EXIT
 else:
 ❸ next_id = BlockId(node.id.num + 1)

 instr = get_last(node.instructions)
 match instr with
 | Return(maybe_val) -> add_edge(node.id, EXIT)
 | Jump(target) ->
 target_id = get_block_by_label(target)
 add_edge(node.id, target_id)
 | JumpIfZero(condition, target) ->
 target_id = get_block_by_label(target)
 ❹ add_edge(node.id, target_id)
 ❺ add_edge(node.id, next_id)
 | JumpIfNotZero(condition, target) ->
 // same as JumpIfZero
 --snip--

 | _ -> add_edge(node.id, next_id)

Listing 19-10: Adding edges to the control-flow graph

The graph argument to add_all_edges ❶ is our unfinished control-flow graph, which has nodes but no edges.

We’ll begin by adding an edge from ENTRY to the first basic block ❷. (We can assume that the function contains at

least one basic block, since we don’t optimize empty functions.) Throughout this listing, we’ll use the add_edge

function, which takes two node IDs, to add edges to the graph. Keep in mind that whenever we add an edge from
node1 to node2, we must update both the successors of node1 and the predecessors of node2. I’ve omitted the

pseudocode for add_edge, since it will depend on how you’ve defined your control-flow graph.

Next, we’ll add outgoing edges from the nodes that correspond to basic blocks. To process one of these nodes,
we’ll first determine which other node will follow it by default if we don’t jump or return at the end of the block. If
we’re processing the very last block, the next node will be EXIT. Otherwise, it will just be whatever basic block

comes next in the original TACKY function ❸.

We’ll figure out what edges to add by inspecting the last instruction in the current basic block. If it’s a Return

instruction, we’ll add one outgoing edge to EXIT. If it’s an unconditional Jump, we’ll add an edge to the block that

begins with the corresponding Label. We use the get_block_by_label helper function, which I won’t show the

pseudocode for, to look up which block begins with a particular label. I recommend building a map from labels to
block IDs ahead of time so that this function can just perform a map lookup.

If a block ends with a conditional jump, we’ll add two outgoing edges. The first edge, which represents taking the
jump, will go to the block that starts with the corresponding Label ❹. The other edge, which represents not

taking the jump ❺, will go to the default next node, identified by next_id. If a block ends with any other

instruction, we’ll add a single outgoing edge to the default next node.

Converting a Control-Flow Graph to a List of Instructions

At this point, you should have working code to convert a TACKY function into a control-flow graph. You’ll also need
code to go in the other direction and convert a control-flow graph back to a list of instructions. This operation is
much simpler: just sort all the basic blocks by ID, then concatenate all their instructions.

Making Your Control-Flow Graph Code Reusable

In the next chapter, we’ll build control-flow graphs of assembly programs. We’ll use the same algorithm to
construct these graphs, but we’ll look for different individual control-flow instructions. For instance, jmp, ret, and

conditional jump instructions like jne and je all signal the end of a basic block in assembly.

Once you have working code to construct control-flow graphs, you might want to refactor it so you can use it for
assembly programs too. This is completely optional, but it will save you some effort in the next chapter.

First, you’ll need to generalize the graph data type so that a block can contain either TACKY or assembly

instructions. Next, you’ll need to generalize the logic to analyze specific instructions in Listings 19-9 and 19-10. For
instance, you could define a one-off data type to represent both assembly and TACKY instructions, which captures
just the information you need to build the control-flow graph:

generic_instruction = Return
 | Jump
 | ConditionalJump(identifier label)
 | Label(identifier)
 | Other

Instead of inspecting individual TACKY instructions to determine where a basic block ends or what its successors
are, you can convert each instruction to a generic_instruction and inspect that. Then, when you need to build

control-flow graphs for assembly programs, you’ll use a different helper function to convert an assembly
instruction to a generic_instruction but leave everything else the same.

That wraps up our discussion of control-flow graphs. We’re now ready to move on to our second optimization
pass: unreachable code elimination.

Unreachable Code Elimination

We’ll split up this pass into three steps, first removing basic blocks that will never execute, then useless jumps,
and finally useless labels. The last two steps might leave us with empty blocks that don’t contain any instructions.
Optionally, we can clean up after this optimization by removing these empty blocks from the control-flow graph.

Eliminating Unreachable Blocks

To find every block that might possibly execute, we’ll traverse the control-flow graph starting at ENTRY. We’ll visit

ENTRY’s successor, then all of that node’s successors, and so on, until we run out of nodes to explore. If this

traversal never reaches a particular basic block, we’ll know that block is safe to remove. Let’s try out this approach
on the example from Listing 19-4, which we looked at when we first introduced unreachable code elimination:

x = 5
Jump(Target)
x = my_function()
Target:
Return(x)

We determined earlier that x = my_function() is unreachable. Assuming this listing is the entire body of a

TACKY function, it will have the control-flow graph shown in Figure 19-2.

Figure 19-2: The control-flow graph for Listing 19-4 Description

Note that there’s no path from ENTRY to B1. If we traverse this graph starting at ENTRY, we’ll visit B0, B2, and

EXIT. Along the way, we’ll keep track of which nodes we’ve visited so far. Once we’re done, we’ll see that we

never visited B1, so we’ll remove it. I won’t provide the pseudocode for exploring the graph, since it’s just an

ordinary breadth- or depth-first graph traversal.

When you remove a node from the graph, remember to remove its outgoing edges too. For example, when we
remove B1 from the graph in Figure 19-2, we should also remove it from B2’s list of predecessors.

Removing Useless Jumps

Next, we’ll remove any useless jump instructions. Remember that by default, if a block doesn’t end with a jump or
Return instruction, control falls through to the next block from the original program order. We can delete a jump

instruction if it targets this default next block.

We’ll look at each basic block that ends with a conditional or unconditional jump and figure out which block would
follow it by default if the jump weren’t taken. If this default next block is its only successor, the jump instruction is
redundant. Listing 19-11 demonstrates this approach.

remove_redundant_jumps(graph):
 ❶ sorted_blocks = sort_basic_blocks(graph)
 i = 0
 ❷ while i < length(sorted_blocks) - 1:
 block = sorted_blocks[i]
 if block.instructions ends with Jump, JumpIfZero, or JumpIfNotZero:
 keep_jump = False
 default_succ = sorted_blocks[i + 1]
 for succ_id in block.successors:
 if succ_id != default_succ.id:
 keep_jump = True
 break
 if not keep_jump:
 ❸ remove_last(block.instructions)
 i += 1

Listing 19-11: Removing redundant jumps

First, we’ll sort the basic blocks by their position in the original TACKY function ❶; this is one reason we numbered
the blocks when we first constructed the graph. Next, we’ll iterate over this sorted list of basic blocks (except the
last one, since a jump at the very end of the function is never redundant) ❷. If a block ends with a jump, we’ll
search for a successor other than the next block in the list. If we find one, we’ll keep the jump instruction.
Otherwise, we’ll remove it ❸.

Note that the next block in the list won’t necessarily have the next consecutive numerical ID, since we may have
deleted blocks earlier. Block 2, for example, might be followed by block 4. That’s why we can’t just increment a
block’s ID number to find its default successor.

Removing Useless Labels

Removing useless labels is similar to removing useless jumps. After sorting basic blocks by numeric ID, we can
delete the Label instruction at the start of a block if we’ll enter it only by falling through from the previous block,

rather than jumping to it explicitly. More concretely, we can delete the Label at the start of sorted_blocks[i] if

its only predecessor is sorted_blocks[i - 1]. We can also delete the Label at the start of

sorted_blocks[0] if its only predecessor is ENTRY. This transformation is safe because we just deleted

redundant jump instructions; we know that sorted_blocks[i - 1] won’t end with an explicit jump to

sorted_blocks[i]. I won’t provide pseudocode for this step, since it would look basically the same as Listing

19-11.

Removing Empty Blocks

Eliminating unreachable jumps and labels might result in blocks with no instructions. If you want, you can remove
them; this will shrink the graph and might speed up later optimization passes a bit. When you remove a block,
make sure to update the edges in the control-flow graph accordingly. For example, if the graph has edges from B0
to B1 and B1 to B2, and you delete B1, you’ll need to add an edge from B0 to B2.

TEST THE UNREACHABLE CODE ELIMINATION PASS

If you completed only Part I, test this optimization pass with the following command:

$./test_compiler /path/to/your_compiler --chapter 19 --eliminate-unreachable-code
--int-only

This will run the tests in tests/chapter_19/unreachable_code_elimination. Some of these tests rely on the constant
folding pass you implemented earlier in the chapter. None of them use the features we added in Part II, because
those features don’t interact with this optimization. This command will also rerun the tests from Part I with both
constant folding and unreachable code elimination enabled. To rerun the tests from Part II as well, omit the --

int-only option:

$./test_compiler /path/to/your_compiler --chapter 19 --eliminate-unreachable-code

A Little Bit About Data-Flow Analysis

This section will give a quick overview of data-flow analysis, which we’ll rely on in the next two optimization
passes. You’ll learn what it is, when it’s useful, and what features all data-flow analyses have in common. This isn’t
intended to be a complete explanation of data-flow analysis; my goal here is just to introduce a few key ideas and
describe how they fit together, to make the specific analyses in later sections easier to follow.

Data-flow analysis answers questions about how values are defined and used throughout a function. Different
data-flow analyses answer different questions. In the copy propagation pass, for example, we’ll implement
reaching copies analysis. This answers the question: Given some instruction i in a TACKY function, and two
operands u and v that appear in that function, can we guarantee that u and v are equal at the point just before i

executes?

We can divide all data-flow analyses into two broad categories: forward and backward analyses. In a forward
analysis, information travels forward through the control-flow graph. Reaching copies analysis is a forward
analysis. When we see a Copy instruction x = y, that tells us that x and y might have the same value later in the

same basic block or in one of that block’s successors. In a backward analysis, the reverse is true. In the dead
store elimination pass, we’ll implement a backward analysis called liveness analysis. This analysis tells us whether
a variable’s current value will ever be used. If we see an instruction that uses x, that tells us that x may be live

earlier in the same basic block or in one of that block’s predecessors.

Each data-flow analysis has its own transfer function and meet operator. The transfer function calculates the
analysis results within a single basic block. This function analyzes how individual instructions impact the results,
but it doesn’t need to deal with multiple execution paths. The meet operator combines information from multiple
paths to calculate how each basic block is impacted by its neighbors. We’ll use an iterative algorithm to drive the
entire analysis. This algorithm calls the transfer function and meet operator on each basic block and keeps track of
which blocks still need to be analyzed. It’s iterative because we may need to visit some blocks multiple times as
we propagate information along different execution paths. This algorithm will traverse the control-flow graph,
analyzing each basic block it visits, until it reaches a fixed point where the analysis results no longer change. At
that point, we’ll know that every possible execution path is accounted for. The iterative algorithm isn’t the only
way to solve data-flow analysis problems, but it’s the only one we’ll discuss in this book.

While different analyses use different transfer functions and meet operators, they all use essentially the same
iterative algorithm. Forward and backward analyses use different versions of this algorithm because they
propagate data in opposite directions. We’ll implement both versions in the next two sections.

Copy Propagation

If the instruction x = y appears in a function, we can sometimes replace x with y later in that function. Let’s call

the instruction where we’d like to perform this substitution i. The substitution is safe when two conditions are met.
First, x = y must appear on every path from the program’s entry point to i. Consider the control-flow graph in

Figure 19-3, which doesn’t meet this condition.

Figure 19-3: A control-flow graph for a function where we cannot perform copy propagation Description

In this control-flow graph, there are two paths from the start of the function to Return(x). Because only one of

these paths passes through x = 2, it isn’t safe to substitute 2 for x in this Return instruction. In Figure 19-4, on

the other hand, every path to Return(x) passes through x = 2.

Figure 19-4: A control-flow graph for a function where we can perform copy propagation Description

No matter which path we take through Figure 19-4, we’ll execute x = 2 before we reach the Return instruction,

so we can safely rewrite that instruction as Return(2).

Figure 19-5 shows another, slightly trickier example.

Figure 19-5: Another control-flow graph where copy propagation is safe Description

Once again, there are two different paths to Return(x). Both paths pass through x = y, but they pass through

different instances of this instruction that appear in different blocks. In B1, y’s value is 20; in B2, it’s 100. But in

either case, x and y will have the same value when we reach the Return instruction. That means it’s still safe to

rewrite Return(x) as Return(y).

Before we rewrite instruction i, there’s a second condition that each path to i must satisfy: between the instruction
x = y and i, neither x nor y can be updated again. Consider this fragment of TACKY:

x = 10
x = foo()
Return(x)

We can’t replace x with 10 in Return(x), because x’s value is no longer 10 at that point. Updating the variable

that appeared on the right-hand side of a Copy instruction causes the same problem:

x = y
y = 0
Return(x)

Right before y = 0, we know that x and y have the same value. But after that instruction, their values will be

different, so we can’t rewrite Return(x). When a Copy instruction’s source or destination is updated, we say the

copy is killed. Once a copy is killed, we can’t propagate it to later points in the program.

It’s possible for x = y to appear multiple times on some path to i. It’s unsafe to propagate it only if it’s killed after

the last time it appears. In the following example, it’s safe to rewrite Return(x) as Return(2):

x = 2
x = foo()
x = 2
Return(x)

If there are multiple paths to i, the Copy instruction we’re interested in must not be killed on any of them. Take a

look at Figure 19-6, where x = y is killed on one path but not another.

Figure 19-6: A control-flow graph where a reaching copy is killed along one path Description

If we jump over B1, x and y will have the same value when we reach the Return instruction in B2. But if we take

the path through B1, their values will be different. Because we don’t know ahead of time which path the program

will take, we can’t rewrite Return(x).

Let’s consider one final edge case. Suppose that x = y is followed by y = x, with no intervening kills:

x = y
--snip--

y = x
z = x + y

Normally, updating y would kill the earlier Copy instruction. But after y = x, x and y still have the same value.

There are multiple correct ways to handle this case. One option is to say that y = x kills x = y, so only y = x

reaches z = x + y. In that case, we’d rewrite the final instruction as z = x + x. This might let us remove y =

x later, during dead store elimination, depending on where else y is used. Another option is to simply ignore y =

x during our analysis, on the grounds that it has no effect; it just assigns y the same value it already had. Then,

when we’re rewriting instructions, we can go ahead and eliminate y = x and rewrite the last instruction as z = y

+ y. A third option is to propagate both copies in the final instruction, substituting x for y and y for x. This

substitution is safe but not particularly helpful, since it won’t help us get rid of either Copy instruction. We’ll go

with the second option and eliminate the redundant Copy.

If a Copy instruction appears on every path to instruction i, and it isn’t killed on any of those paths, we say that it

reaches instruction i. At the start of the copy propagation pass, we’ll perform reaching copies analysis to
determine which copies reach each instruction in the TACKY function. Then, we’ll use the results of this analysis to
identify instructions that we can rewrite safely.

We’ll implement this whole optimization for the subset of TACKY we defined in Part I, then extend it to handle the
new language features from Part II.

Reaching Copies Analysis

To implement reaching copies analysis, we’ll define each of the elements of data-flow analysis that we discussed
earlier: the transfer function, meet operator, and iterative algorithm. The transfer function and meet operator we’ll
discuss in this section are specific to reaching copies analysis, while the iterative algorithm applies to every
forward data-flow analysis.

The Transfer Function

The transfer function takes all the Copy instructions that reach the beginning of a basic block and calculates which

copies reach each individual instruction within the block. It also calculates which copies reach the end of the block,
just after the final instruction. The rules here are pretty simple. First, if i is a Copy instruction, it reaches the

instruction that comes right after it. Second, if some Copy instruction reaches i, it also reaches the instruction

right after i, unless i kills it. Let’s work through an example. Suppose a basic block contains the instructions in
Listing 19-12.

x = a
y = 10
x = y * 3
Return(x)

Listing 19-12: A basic block

Let’s assume that one Copy instruction, a = y, reaches the start of this basic block. This Copy will reach the first

instruction, x = a. Once we encounter x = a, we add it to the current set of reaching copies, so both a = y and

x = a reach the next instruction, y = 10. Because this next instruction updates y, it kills a = y. We therefore

remove a = y from the set of reaching copies, but we add y = 10. Finally, x = y * 3 kills x = a. We don’t add

x = y * 3 as a reaching copy because it’s not a Copy instruction. The final Return instruction doesn’t add or

remove any reaching copies. Table 19-1 lists which copies reach each instruction in this basic block.

Table 19-1: Copies Reaching Each Instruction in Listing 19-12

Instruction Reaching copies

x = a {a = y}

y = 10 {a = y, x = a}

x = y * 3 {x = a, y = 10}

Return(x) {y = 10}

End of block {y = 10}

Things get a little trickier when we consider variables with static storage duration. As Listing 19-13 demonstrates,
these variables can be updated in other functions.

int static_var = 0;

int update_var(void) {
 static_var = 4;
 return 0;
}

int main(void) {

 static_var = 5;
 ❶ update_var();
 return static_var;
}

Listing 19-13: A C program where multiple functions access the same variable with static storage duration

Our reaching copies analysis should recognize that the call to update _var in main kills static_var = 5 ❶.

Otherwise, it will incorrectly rewrite main to return the constant 5. At first glance, it might look like this problem

applies only to file scope variables, but as Listing 19-14 illustrates, it impacts static local variables too.

int indirect_update(void);

int f(int new_total) {
 static int total = 0;
 total = new_total;
 if (total > 100)
 return 0;
 total = 10;
 ❶ indirect_update();
 return total;
}

int indirect_update(void) {
 f(101);
 return 0;
}

Listing 19-14: A C program where a function call indirectly updates a static local variable

When we analyze f, we’ll need to know that the call to indirect_update at ❶ can update total. Otherwise,

we’ll incorrectly rewrite f to return 10.

There are a couple of ways to solve this problem. One option is to figure out which function calls will update which
static variables. This would make reaching copies analysis an interprocedural analysis, which gathers information
about multiple functions. This approach gets complicated very quickly. Our other option is to assume that every
function call updates every static variable. We’ll go with this option because it’s much simpler. Whenever we
encounter a function call, we’ll kill any copies to or from static variables. This approach is conservative; it
guarantees that we’ll never perform an unsafe optimization, but it may lead us to kill some reaching copies
unnecessarily and miss some safe optimizations. In contrast, using interprocedural analysis would be a more
aggressive approach because it would miss fewer optimizations. More aggressive optimization techniques aren’t
always better; they often come at the cost of increased complexity and longer compilation times.

Listing 19-15 gives the pseudocode for the transfer function.

transfer(block, initial_reaching_copies):
 current_reaching_copies = initial_reaching_copies

 for instruction in block.instructions:
 ❶ annotate_instruction(instruction, current_reaching_copies)
 match instruction with
 | Copy(src, dst) ->
 ❷ if Copy(dst, src) is in current_reaching_copies:
 continue

 ❸ for copy in current_reaching_copies:
 if copy.src == dst or copy.dst == dst:
 current_reaching_copies.remove(copy)

 ❹ current_reaching_copies.add(instruction)
 | FunCall(fun_name, args, dst) ->
 for copy in current_reaching_copies:
 ❺ if (copy.src is static
 or copy.dst is static
 or copy.src == dst
 or copy.dst == dst):
 current_reaching_copies.remove(copy)
 | Unary(operator, src, dst) ->
 ❻ for copy in current_reaching_copies:
 if copy.src == dst or copy.dst == dst:
 current_reaching_copies.remove(copy)
 | Binary(operator, src1, src2, dst) ->
 // same as Unary
 --snip--

 | _ -> continue

 ❼ annotate_block(block.id, current_reaching_copies)

Listing 19-15: The transfer function for reaching copies analysis

To process an instruction, we’ll first record the set of copies that reach the point just before that instruction
executes ❶. (We’ll refer to this information later when we actually rewrite the instruction.) Then, we’ll inspect the
instruction itself to calculate which copies reach the point just after it. In the special case where x = y reaches y

= x, we won’t add or remove any reaching copies ❷. As we saw earlier, y = x will have no effect, since x and y

already have the same value. Otherwise, we’ll handle the Copy instruction x = y by killing any copies to or from x

❸, then adding x = y to the set of reaching copies ❹.

When we encounter a FunCall instruction, we’ll kill any copies to or from variables with static storage duration

along with any copies to or from dst, the variable that will hold the result of the function call ❺. The two other

instructions from Part I that update variables are Unary and Binary. To handle either of these, we’ll kill any

copies to or from its destination ❻. The remaining TACKY instructions from Part I, like Jump, Return, and Label,

don’t add or kill any reaching copies. After processing every instruction, we’ll record which copies reach the very
end of the block ❼.

The Meet Operator

Next, we’ll implement the meet operator, which propagates information about reaching copies from one block to
another. This operator calculates the set of initial reaching copies that we’ll pass to the transfer function. Recall
that a copy reaches some point in the program only if it appears, and isn’t killed, on every path to that point.
Therefore, a copy reaches the beginning of a block only if it reaches the end of all of that block’s predecessors. In
other words, we’ll just take the set intersection of the results from every predecessor. Listing 19-16 gives the
pseudocode for the meet operator.

meet(block, all_copies):

 ❶ incoming_copies = all_copies
 for pred_id in block.predecessors:
 match pred_id with
 ❷ | ENTRY -> return {}
 | BlockId(id) ->
 ❸ pred_out_copies = get_block_annotation(pred_id)
 incoming_copies = intersection(incoming_copies, pred_out_copies)
 | EXIT -> fail("Malformed control-flow graph")

 return incoming_copies

Listing 19-16: The meet operator for reaching copies analysis

The meet operator takes two arguments. The first is the block whose incoming copies we want to calculate. The
second, all_copies, is the set of all Copy instructions that appear in the function. We initialize the set of

incoming copies to this value ❶, because it’s the identity element for set intersection. That is, given any set of
reaching copies, S, the intersection of S with all_copies is just S.

Next, we iterate over the block’s predecessors, which might include other basic blocks, the ENTRY node, or both.

No copies reach the very start of a function, so if we find ENTRY in the list of predecessors we just return the

empty set ❷. (The intersection of the empty set and anything else is still the empty set, so there’s no need to look
at the block’s other predecessors.) Otherwise, we look up the set of copies that reach the end of each predecessor
❸, which we recorded at the end of Listing 19-15, and take the intersection of incoming_copies with each of

these sets.

We have one edge case to consider. If unreachable code elimination is disabled, the block we’re analyzing might
not have any predecessors. Calling meet on a block with no predecessors will return all_copies, so we assume

that every possible Copy instruction reaches the start of the block. We don’t care how this ultimately impacts the

block itself, which will never execute anyway. We do care how this impacts the block’s successors, which might be

reachable. For instance, if a reachable block A and unreachable block B both jump to block C, then block C is

reachable.

Luckily, our analysis is still safe. The intersection of the real results from A and the junk results from B will always

be a subset of the copies that actually reach C from A; this is a conservative approximation of the results we’d get

if we enabled unreachable code elimination and deleted B entirely.

The Iterative Algorithm

We can analyze a basic block with the meet operator and transfer function once we know the results from the
blocks that preceded it. Now we’ll tie everything together and analyze the entire function. There’s just one
problem: control-flow graphs can have loops! We can’t analyze a block until we’ve analyzed all of its predecessors,
which requires us to analyze all of their predecessors, and so on. Once we hit a loop, it seems like we’re stuck; we
can’t analyze any of the blocks in the loop, because each block directly or indirectly precedes itself.

To get unstuck, we need some way to analyze a block even if we don’t have complete results from all of its
predecessors. The solution is to maintain a provisional result for every block; if we need to analyze a block before
some of its predecessors, we can use those predecessors’ provisional results. At first, before we’ve explored any
paths to a block, its provisional result includes every Copy instruction in the function. Then, with each new path to

the block (or rather, the end of the block) that we explore, we eliminate any copies that don’t appear, or are killed,
along that path. This means a block’s provisional result always tells us which reaching copies appear (and aren’t
killed) on every path to the end of that block that we’ve explored so far. Once we’ve explored every possible path,
we’ll have the block’s final result.

That’s the basic idea; now let’s put it into practice. First, we’ll annotate each basic block with the set of all Copy

instructions in the function. As we learned earlier, this set is the identity element for our meet operator. Initializing
every block with the identity element ensures that blocks we haven’t yet analyzed don’t change the result of the
meet operator. Let’s try out this approach on the control-flow graph in Figure 19-7.

Figure 19-7: A control-flow graph with a loop Description

This control-flow graph contains two Copy instructions: y = 3 and y = 4. We’ll initially annotate each block with

the set containing both copies. Then, we’ll analyze the blocks in order. We can calculate the final results for B0 in

just one pass because its only predecessor is ENTRY. Figure 19-8 illustrates the annotations on each block after

we’ve processed B0.

Figure 19-8: The provisional results of reaching copies analysis for Figure 19-7, after processing B0 Description

At this point, the annotation on B0 is correct: only y = 3 reaches the end of that block. The other two blocks are

still annotated with every copy. Next, we’ll apply the meet operator to see which copies reach the start of B1. This

block has two predecessors: B0 and itself. We’ll therefore take the intersection of {y = 3} and {y = 3, y = 4},

which is {y = 3}. This is the same result we’d get if B0 were B1’s only predecessor. That’s exactly the behavior we

want: because we haven’t analyzed B1 yet, it shouldn’t contribute to the result of the meet operator. Once we

apply the transfer function to B1, we’ll recognize that only y = 4 reaches the end of the block. We’ll then have all

the information we need to process B2 too. Figure 19-9 shows the annotations on each block after we’ve analyzed

B1 and B2.

Figure 19-9: The provisional results of reaching copies analysis after analyzing each basic block once Description

Each block now has the correct set of reaching copies. But we don’t yet have the right answer for each individual
instruction in B1. (Figures 19-8 and 19-9 don’t show the annotations on individual instructions.) When we last

analyzed B1, we assumed that y = 3 reached the start of the block, which would imply that it also reaches x =

process(y). Now that we have more accurate information, we need to analyze B1 again. This time, the meet

operator will take the intersection of {y = 3} and {y = 4}, which is the empty set. We’ll pass this result to the

transfer function to recalculate the results for individual instructions in B1. This time around, we’ll correctly

conclude that no Copy instructions reach x = process(y) (or any point in the block before y = 4, for that

matter).

Now that we’ve seen the iterative algorithm in action, let’s implement it. Listing 19-17 gives the pseudocode for
this algorithm.

find_reaching_copies(graph):

 all_copies = find_all_copy_instructions(graph)
 worklist = []

 for node in graph.nodes:
 if node is EntryNode or ExitNode:
 continue
 ❶ worklist.append(node)
 annotate_block(node.id, all_copies)

 while worklist is not empty:
 ❷ block = take_first(worklist)
 old_annotation = get_block_annotation(block.id)
 incoming_copies = meet(block, all_copies)
 transfer(block, incoming_copies)
 ❸ if old_annotation != get_block_annotation(block.id):
 for successor_id in block.successors:
 match successor_id with
 | EXIT -> continue
 | ENTRY -> fail("Malformed control-flow graph")
 | BlockId(id) ->
 successor = get_block_by_id(successor_id)
 if successor is not in worklist:
 worklist.append(successor)

Listing 19-17: The iterative algorithm for reaching copies analysis

We’ll maintain a worklist of basic blocks we need to process, including blocks that we need to revisit after
updating one of their predecessors. In the initial setup for this algorithm, we’ll add each basic block to the worklist
❶, since we need to analyze every block at least once. We’ll also initialize each block with the set of all Copy

instructions that appear in the function.

Next, we enter our main processing loop, where we’ll remove a block from the front of the worklist ❷, then
analyze it using the meet operator and transfer function. If this analysis changes the block’s outgoing reaching
copies, we’ll add all of its successors to the worklist so we can reanalyze them using those new results ❸. If a
successor is already in the worklist, we don’t need to add it again. We’ll repeat this process until the worklist is
empty.

GETTING MORE BANG FOR YOUR BLOCK

It’s possible to improve on the code in Listing 19-17: when you initialize the worklist, you could add blocks in
reverse postorder. To sort the nodes of a graph in postorder, you perform a depth-first search, adding each node
to the sorted list after you return from traversing its successors. To sort them in reverse postorder, you take the
list of nodes sorted in postorder and reverse it. In a reverse postorder traversal, you generally don’t visit a block
until you’ve visited all of its predecessors. (If you’re traversing a graph with a loop, of course, you’ll hit a few
exceptions to this general rule.) This helps you gather as much information as possible about a block’s
predecessors before you try to analyze it, which minimizes how many times you need to revisit each block. If you
don’t add blocks to the worklist in this order, the algorithm will still be correct; it will just take longer. “Additional
Resources” on page 610 lists a couple of references with more details about how to sort a graph in postorder or
reverse postorder.

Listing 19-17 works for any forward data-flow analysis. Only the transfer function, the meet operator, and the
identity element used to initialize each basic block will vary.

Rewriting TACKY Instructions

After running reaching copies analysis, we’ll look for opportunities to rewrite, or even remove, each instruction in
the TACKY function. To rewrite an instruction, we’ll check whether the copies that reach it define any of its
operands. If they do, we’ll replace those operands with their values. If we encounter a Copy instruction of the

form x = y and its reaching copies include x = y or y = x, we’ll remove it instead of trying to rewrite it; the

instruction has no effect if x and y already have the same value. Listing 19-18 demonstrates how to process each

instruction.

replace_operand(op, reaching_copies):
 if op is a constant:
 return op

 for copy in reaching_copies:
 if copy.dst == op:
 return copy.src
 return op

rewrite_instruction(instr):
 ❶ reaching_copies = get_instruction_annotation(instr)

 match instr with
 | Copy(src, dst) ->
 for copy in reaching_copies:
 ❷ if (copy == instr) or (copy.src == dst and copy.dst == src):
 return null
 ❸ new_src = replace_operand(src, reaching_copies)
 return Copy(new_src, dst)
 | Unary(operator, src, dst) ->
 new_src = replace_operand(src, reaching_copies)
 return Unary(operator, new_src, dst)
 | Binary(operator, src1, src2, dst) ->
 new_src1 = replace_operand(src1, reaching_copies)
 new_src2 = replace_operand(src2, reaching_copies)
 return Binary(operator, new_src1, new_src2, dst)
 | --snip--

Listing 19-18: Rewriting an instruction based on the results of reaching copies analysis

Given the set of copies that reach the current instruction, replace_operand replaces a single TACKY operand

with its value. If the operand is a constant or we can’t find a reaching copy that assigns to it, we just return the
original value.

In rewrite_instruction, we start by looking up the set of copies that reach the current instruction, instr ❶.

If instr is a Copy instruction, we’ll search this set, which we call reaching_copies, for a copy from its source

to its destination or vice versa ❷. If we find one, instr’s operands already have the same value, so we can delete

it. (Listing 19-18 returns null to indicate that we should delete the instruction; your code might indicate this

differently.) Otherwise, we try to replace the instruction’s source operand using replace _operand ❸. We’ll

attempt to replace the source operands of other TACKY instructions in the same way. Listing 19-18 demonstrates
how to rewrite the source operands in Unary and Binary; I’ve omitted the remaining TACKY instructions from

Part I because the logic is the same.

At this point, you have a complete copy propagation pass that performs reaching copies analysis and uses the
results to optimize a TACKY function. If you skipped Part II, you can move on to this section’s test suite. But if you
completed Part II, you still have some work to do.

Supporting Part II TACKY Programs

To make copy propagation work with the TACKY code we generate in Part II, we need to solve a couple of
problems. The first problem is that we sometimes use Copy instructions to perform type conversions. We don’t

want to propagate copies between signed and unsigned types, because we sometimes generate different
assembly code for operations on signed and unsigned values. If we replace a signed value with an unsigned one in
a comparison, for example, we’ll end up generating the wrong condition code for that comparison. Our reaching
copies analysis will treat any Copy between signed and unsigned operands like a type conversion instruction

instead of a normal copy operation. We won’t add it as a reaching copy in the transfer function, and we won’t
include it in the set of initial reaching copies at the start of the iterative algorithm.

NOTE

Another solution would be to introduce separate signed and unsigned TACKY operators for comparisons,
remainder operations, and division, so we wouldn’t have to check the types of operands to distinguish between
these cases during code generation. The LLVM IR uses this approach.

The second problem is that variables can be updated through pointers. These updates are difficult to analyze. If
we see the instruction Store(v, ptr), we don’t know which object ptr points to, so we don’t know which

copies to kill. This is similar to the issue we ran into with static variables, which could be updated in other
functions. To solve this problem, we’ll find all the variables that could be accessed through pointers (these are
called aliased variables). We’ll assume that every Store instruction updates every one of these variables. We’ll

assume that function calls update these variables too, since we can declare a variable in one function and then
update it through a pointer in a different function. Let’s use this approach to analyze Listing 19-19.

function_with_pointers():
 x = 1
 y = 2
 z = 3
 ptr1 = GetAddress(x)
 Store(10, ptr1)
 ptr2 = GetAddress(y)
 z = x + y
 Return(z)

Listing 19-19: A TACKY function that updates variables through pointers

First, we’ll identify the aliased variables in function_with_pointers. Both x and y are aliased because they’re

both used in GetAddress instructions. (Let’s assume that none of the variables in this listing are static, so we

don’t have to worry about whether other functions take their address.) Next, we’ll run reaching copies analysis.
Since this whole function body is one basic block, we can just apply the transfer function to the entire thing. We’ll
add x = 1, y = 2, and z = 3 to the set of reaching copies, as usual. Then, when we reach the Store

instruction, we’ll kill the copies to our two aliased variables, x and y. Table 19-2 describes which copies will reach

each instruction in this function.

Table 19-2: Copies Reaching Each Instruction in Listing 19-19

Instruction Reaching copies

x = 1 {}

y = 2 {x = 1}

z = 3 {x = 1, y = 2}

ptr1 = GetAddress(x) {x = 1, y = 2, z = 3}

Store(10, ptr1) {x = 1, y = 2, z = 3}

ptr2 = GetAddress(y) {z = 3}

z = x + y {z = 3}

Return(z) {}

End of block {}

We correctly recognize that the Store instruction might overwrite x, which means that we can’t replace x with 1

in z = x + y. We also assume that the Store instruction might overwrite y because our analysis isn’t smart

enough to realize that ptr1 couldn’t possibly point to y. Therefore, we won’t replace y with 2 in z = x + y, even

though it would be safe to do so. Once again, we’re making a conservative assumption; we’ll miss some safe
optimizations, but we’ll never apply any that are unsafe.

Implementing Address-Taken Analysis

The approach we just used to identify aliased variables is called address-taken analysis. To perform this analysis,
we’ll inspect each instruction in a TACKY function and identify every variable that either has static storage duration
or has its address taken by a GetAddress instruction. (We’ll assume that all static variables are aliased, because

their addresses might be taken in other functions.) We’ll rerun this analysis on every iteration through the
optimization pipeline because the results can change if we optimize away any GetAddress instructions. Listing 19-

20 demonstrates how it fits into the overall optimization pipeline we defined in Listing 19-6.

optimize(function_body, enabled_optimizations):
 --snip--

 while True:
 aliased_vars = address_taken_analysis(function_body)
 --snip--

 if enabled_optimizations contains "COPY_PROP":
 cfg = copy_propagation(cfg, aliased_vars)
 if enabled_optimizations contains "DEAD_STORE_ELIM":
 cfg = dead_store_elimination(cfg, aliased_vars)
 --snip--

Listing 19-20: Adding address-taken analysis to the TACKY optimization pipeline

Address-taken analysis is just one kind of alias analysis, also known as pointer analysis, which tries to determine
whether two pointers or variables can refer to the same object. Most pointer analysis algorithms are more
powerful than address-taken analysis. For example, they could figure out that ptr1 will never point to y in Listing

19-19.

Updating the Transfer Function

Next, we’ll extend the transfer function to support the new types and instructions we added in Part II.

Listing 19-21 illustrates our new and improved transfer function. It reproduces Listing 19-15, with the changes to
support additional types bolded.

transfer(block, initial_reaching_copies, aliased_vars):
 current_reaching_copies = initial_reaching_copies

 for instruction in block.instructions:
 annotate_instruction(instruction, current_reaching_copies)
 match instruction with
 | Copy(src, dst) ->
 --snip--
 if (get_type(src) == get_type(dst)) or (signedness(src) == signedness(dst)):
 current_reaching_copies.add(instruction)
 | FunCall(fun_name, args, dst) ->
 for copy in current_reaching_copies:
 if (copy.src is in aliased_vars
 or copy.dst is in aliased_vars
 or (dst is not null and (copy.src == dst or copy.dst == dst))):
 current_reaching_copies.remove(copy)
 | Store(src, dst_ptr) ->
 for copy in current_reaching_copies:
 if (copy.src is in aliased_vars) or (copy.dst is in aliased_vars):
 current_reaching_copies.remove(copy)
 | Unary(operator, src, dst) or any other instruction with dst field ->
 --snip--
 | _ -> continue

 annotate_block(block.id, current_reaching_copies)

Listing 19-21: The transfer function for reaching copies analysis, with support for features from Part II

We’ve already touched on most of the changes in this listing. Before we add a Copy instruction to

current_reaching_copies, we’ll make sure that its source and destination have the same type, or at least

types with the same signedness. The signedness helper function should count char as a signed type and all

pointer types as unsigned types, so we can propagate copies between char and signed char, between different

pointer types, and between pointers and unsigned long. (The concept of signedness doesn’t apply to double or

non-scalar types. That’s fine, because we don’t use Copy instructions to convert to or from these types. If a Copy

uses a double or non-scalar operand, both operands will have the same type, so we won’t need to check their

signedness.)

When we encounter a function call or Store instruction, we’ll kill any copies to or from aliased variables. We’ll also

account for the fact that a function call may not have a destination operand. Note that we don’t kill the Store

instruction’s dst_ptr operand. Store doesn’t change the value of the destination pointer itself, just the value of

the object it points to. Finally, when we encounter any of the other instructions we added in Part II—including
type conversions, CopyToOffset, and CopyFromOffset—we’ll kill any copies to or from its destination. We won’t

track copies to or from individual subobjects within structures or arrays, so CopyToOffset and CopyFromOffset

will kill reaching copies without generating any new ones.

Updating rewrite_instruction

We’ll rewrite most of the new TACKY instructions from Part II in the same way as the instructions from Part I,
replacing any source operands that are defined by reaching copies. The one exception is GetAddress, which we’ll

never rewrite. It wouldn’t make sense to apply copy propagation to GetAddress, because it uses its source

operand’s address rather than its value.

TEST THE COPY PROPAGATION PASS

If you completed only Part I, run the following command to test your implementation of copy propagation:

$./test_compiler /path/to/your_compiler --chapter 19 --propagate-copies
--int-only

If you completed Parts I and II, run:

$./test_compiler /path/to/your_compiler --chapter 19 --propagate-copies

Dead Store Elimination

Our last optimization is dead store elimination. We’ll use liveness analysis, a backward data-flow analysis, to
calculate which variables are live at every point in the function we’re optimizing. Then, we’ll use the results of this
analysis to identify dead stores and eliminate them.

A variable is live at a particular point if its value at that point might be read later in the program. Otherwise, it’s
dead. To be more precise, a variable x is live at any given point p when two conditions are met. First, there must

be at least one path from p to some later instruction that uses x. We say that x is generated by any instruction

that uses it. Second, x must not be updated on the path from p to that later instruction. We say that x is killed by

any instruction that updates it, just like a reaching copy is killed when either of its operands is updated. (You’ll see
the terms generate and kill in discussions of most data-flow analyses, not just the two in this chapter.) Consider
the control-flow graph in Figure 19-10.

Figure 19-10: A control-flow graph in which x is live just after it’s defined Description

There are two paths from x = 10 to EXIT. On the path through B1, x is never used. On the path through B2, x is

used in a Return instruction. We know that x is live at the point after x = 10 because it’s generated on one of

these paths. By the same logic, x is also live at the end of B0, at the beginning of B2, and just before the Return

instruction in B2. On the other hand, x is dead at the end of B2 and at every point in B1, since there are no paths

from those points to an instruction that uses x. Note that x is also dead at the very beginning of B0, since we

don’t use its (uninitialized) value before we assign it a new value in x = 10.

Now let’s look at the control-flow graph in Figure 19-11.

Figure 19-11: A control-flow graph with a dead store to x Description

Again, we have two paths from x = 10 to EXIT. Both paths pass through Return instructions that use x, but on

both paths x is killed between x = 10 and the Return instruction that generates it. This means that x is dead

right after x = 10. It’s alive at just two points in this control-flow graph: right after x = f() in B1 and right after

x = g() in B2.

An instruction is a dead store if it assigns to a dead variable and has no other side effects. Therefore, x = 10 is a

dead store in Figure 19-11 but not in Figure 19-10. Note that we care whether the variable is dead just after the
instruction, not before it. In the code fragment

x = x + 1
Return(0)

x is live just before x = x + 1 but dead after it. The fact that x is dead just after we update it means that this

instruction is a dead store, so we can eliminate it.

Liveness Analysis

Like every data-flow analysis, liveness analysis requires a transfer function, a meet operator, and an iterative
algorithm. Because this is a backward-flow problem, the transfer function will start at the end of a basic block and
work its way to the beginning, instead of working from start to finish like we did in reaching copies analysis.
Similarly, the meet operator will gather information from a block’s successors, not its predecessors. We’ll also use
a slightly different iterative algorithm to send data backward through the control-flow graph. Let’s take a closer
look at each of these pieces.

The Transfer Function

The transfer function takes the set of variables that are live at the end of a basic block and figures out which
variables are live just before each instruction. As we saw in Figures 19-10 and 19-11, an instruction generates any
variables that it reads and kills any variables that it updates. For example, to calculate the live variables before the
instruction x = y * z, we would take the set of variables that are live right after the instruction, add y and z,

and remove x. If an instruction reads and writes the same variable, it generates the variable instead of killing it.

For example, x = x + 1 generates x.

Let’s apply the transfer function to the basic block in Listing 19-22.

x = 4
x = x + 1
y = 3 * x
Return(y)

Listing 19-22: A basic block

The transfer function will start at the bottom of this basic block and work its way up. Let’s assume that there are
no live variables at the end of the block, after the Return instruction. (This assumption might not hold if the

function deals with static variables, but we’ll worry about that later.) When we process the Return instruction,

we’ll add y to the set of live variables. Then, y = 3 * x will kill y and generate x. The next instruction, x = x +

1, generates x. This has no effect because x is already live. Finally, x = 4 will kill x, leaving no live variables at

the start of the basic block. Table 19-3 summarizes which variables are live just after each instruction in Listing 19-
22.

Table 19-3: The Live Variables After Each Instruction in Listing 19-22

Instruction Live variables

Beginning of block {}

x = 4 {x}

x = x + 1 {x}

y = 3 * x {y}

Return(y) {}

Static variables complicate things, much like they did during reaching copies analysis. We don’t know how other
functions will interact with any static variables that we encounter; they could read them, update them, or both.
We’ll assume that every function reads every static variable. This assumption is conservative, since it prevents us
from eliminating earlier writes to those variables. Listing 19-23 gives the pseudocode for the transfer function.

transfer(block, end_live_variables, all_static_variables):
 ❶ current_live_variables = end_live_variables

 ❷ for instruction in reverse(block.instructions):
 ❸ annotate_instruction(instruction, current_live_variables)

 match instruction with
 | Binary(operator, src1, src2, dst) ->
 current_live_variables.remove(dst)
 if src1 is a variable:
 current_live_variables.add(src1)
 if src2 is a variable:
 current_live_variables.add(src2)
 | JumpIfZero(condition, target) ->
 if condition is a variable:
 current_live_variables.add(condition)
 | --snip--
 | FunCall(fun_name, args, dst) ->
 current_live_variables.remove(dst)
 for arg in args:
 if arg is a variable:
 current_live_variables.add(arg)
 ❹ current_live_variables.add_all(all_static_variables)

 ❺ annotate_block(block.id, current_live_variables)

Listing 19-23: The transfer function for liveness analysis

We’ll start with the set of variables that are live at the end of the block ❶, then process the list of instructions in
reverse ❷. We annotate each instruction with the set of variables that are live just after it executes ❸; we’ll use
this annotation later to figure out whether the instruction is a dead store. Then, we calculate which variables are
live just before the instruction. We’ll kill its destination if it has one, then add every variable that it reads. Listing
19-23 includes the pseudocode to handle the Binary instruction, which updates one operand and reads two

others, and the JumpIfZero instruction, which reads an operand but doesn’t update anything. It omits the

pseudocode to handle most of the other instructions, since they follow the same pattern. FunCall is the one

special case; we’ll kill its destination and add its arguments, as usual, but we’ll add every static variable too ❹.
Finally, we’ll annotate the whole block with the variables that are live before the first instruction ❺. The meet
operator will use this information later.

There are a couple of ways to calculate all_static_variables. One option is to scan this TACKY function and

look for static variables before you start the dead store elimination pass. Another option is to scan the whole
symbol table for static variables, without worrying about which variables show up in which functions. There’s no
harm in adding superfluous static variables here, since they won’t change which instructions we eventually
eliminate.

The Meet Operator

The meet operator calculates which variables are live at the end of a basic block. To find the live variables at the
end of some block B, we’ll look at all of its successors. If a variable is live at the start of at least one successor, it

must also be live at the end of B, because there’s at least one path from the end of B through that successor to an

instruction that generates that variable. Basically, we’ll take the set union of all the live variables at the start of all
the block’s successors.

We’ll assume that every static variable is live at the EXIT node. Other functions, or other invocations of the

current function, might read those variables. Variables with automatic storage duration are all dead at EXIT, since

they’re not accessible after we leave the function. The pseudocode in Listing 19-24 defines the meet operator.

meet(block, all_static_variables):
 live_vars = {}
 for succ_id in block.successors:
 match succ_id with
 | EXIT -> live_vars.add_all(all_static_variables)
 | ENTRY -> fail("Malformed control-flow graph")
 | BlockId(id) ->
 succ_live_vars = get_block_annotation(succ_id)
 live_vars.add_all(succ_live_vars)

 return live_vars

Listing 19-24: The meet operator for liveness analysis

In reaching copies analysis, we were looking for copies that appeared on every path to a point, so we used set
intersection as our meet operator. In liveness analysis, we want to know if a variable is used on any path from a
point, so we use set union instead. This is unrelated to the fact that one analysis is forward and the other is
backward. Some forward analyses use set union because they care whether at least one path to a point has some
property. Some backward analyses use set intersection because they care whether every path from a point has
some property. Other, more complex analyses don’t use set union or intersection, and instead use different meet
operators entirely.

The Iterative Algorithm

Finally, we’ll implement the iterative algorithm for liveness analysis. This differs from the iterative algorithm in
Listing 19-17 in a couple of ways. First, when the annotation on a block changes, we’ll add its predecessors, rather
than its successors, to the worklist. Second, we’ll use a different initial block annotation. Recall that each block’s
initial annotation should be the identity element for the meet operator. Since our meet operator is set union, the
initial annotation is the empty set. As we analyze more paths from a block to later points in the program, we’ll add
more live variables to this set.

I won’t provide the pseudocode for the backward iterative algorithm, since it’s so similar to the forward algorithm
we’ve already defined. But I will give you a couple of tips about how to implement it. First, you may want to
initialize the worklist in postorder. (Recall that you sort the nodes of a graph in postorder by performing a depth-
first traversal and visiting each node after you’ve visited its successors.) This makes the backward algorithm
terminate faster, just like initializing the worklist in reverse postorder helps the forward algorithm terminate faster.
This ordering means that whenever possible, you’ll visit each block only after you’ve visited all of its successors.

My second tip is to make your backward iterative algorithm reusable. In the next chapter, we’ll implement liveness
analysis again, this time for assembly programs. The details of the meet operator and transfer function will
change, but the iterative algorithm won’t. Try to structure your code so that you’ll be able to reuse the same
iterative algorithm with a different meet operator and transfer function; then, you’ll be able to use it to analyze
assembly programs in the next chapter.

Removing Dead Stores

After we run liveness analysis, we’ll find any dead stores in the TACKY function and remove them. An instruction is
a dead store if its destination is dead as soon as we execute it, like in the following example:

x = 1
x = 2

Liveness analysis will tell us that x is dead right after x = 1, making that instruction safe to delete. We’ll never

delete function calls, even when they update dead variables, because they may have other side effects. We also
won’t delete instructions without destinations, like Jump and Label. Listing 19-25 demonstrates how to identify a

dead store.

is_dead_store(instr):
 if instr is FunCall:
 return False

 if instr has a dst field:
 live_variables = get_instruction_annotation(instr)
 if instr.dst is not in live_variables:
 return True

 return False

Listing 19-25: Identifying a dead store

If you completed only Part I, you’ve learned everything you need to know about dead store elimination! You can
skip straight to the test suite. Otherwise, read on to learn how to handle the types and instructions we added in
Part II.

Supporting Part II TACKY Programs

To update the transfer function, we’ll need to think through which live variables each new instruction might
generate or kill. The type conversion instructions, like Truncate and SignExtend, are straightforward. Each one

generates its source operand and kills its destination, much like the Copy and Unary instructions we already

handle. AddPtr also follows the usual pattern: it generates both source operands and kills its destination.

The operations on pointers and aggregate types are trickier. Pointers cause essentially the same problem they did
in reaching copies analysis: when we read or write through a pointer, we can’t tell which underlying object is being
accessed. When in doubt, we should err on the conservative side and assume that a variable is live. Therefore,
reading through a pointer should generate every aliased variable, but writing through a pointer shouldn’t kill any
of them. We’ll take a similar approach to aggregate variables: reading part of an aggregate variable will generate
it, but updating part of it won’t kill it. I won’t provide updated pseudocode for the transfer function; now that
we’ve covered the key points, I’ll let you work through the remaining details on your own. The meet operator
won’t change; in particular, static variables are still live at EXIT, but other aliased variables aren’t, because their

lifetimes end when the function returns.

Finally, let’s update the last step in this optimization, where we use the results of liveness analysis to find dead
stores and eliminate them. We’ll never eliminate a Store instruction, since we don’t know whether its destination

is dead. Even if every single variable in the current function is dead, a Store might still have a visible side effect.

For instance, it could update an object defined in a different function, like in the following example:

update_through_pointer(param):
 Store(10, param)
 Return(0)

After the Store instruction, there are no live variables in update_through _pointer. But that instruction clearly

isn’t a dead store; it updates an object that our analysis didn’t track but that will likely be read later in the
program.

The usual logic for spotting dead stores applies to all the other instructions from Part II, including Load,

GetAddress, CopyToOffset, and CopyFromOffset.

TEST THE WHOLE OPTIMIZATION PIPELINE

Now that you’ve implemented the whole optimization pipeline, you can test it out. You might want to start by
testing just the dead store elimination pass. If you completed only Part I, you can do that with the following
command:

$./test_compiler /path/to/your_compiler --chapter 19 --eliminate-dead-stores
--int-only

If you completed Parts I and II, run:

$./test_compiler /path/to/your_compiler --chapter 19 --eliminate-dead-stores

The --eliminate-dead-stores option will run the dead store elimination–specific tests in

tests/chapter_19/dead_store_elimination. It will also run the tests from earlier chapters with all four optimizations
enabled.

To test the whole optimization pipeline, run

$./test_compiler /path/to/your_compiler --chapter 19 --int-only

or:

$./test_compiler /path/to/your_compiler --chapter 19

This command will run all the tests of individual optimizations and all the tests from previous chapters with all four
optimizations enabled (as usual, the --int-only option excludes any tests that rely on language features from

Part II). It will also run the tests in tests/chapter_19/whole_pipeline, which focus on how the different
optimizations work together. These tests validate that each optimization takes advantage of any optimization
opportunities that the others create.

Summary

In this chapter, you implemented four important compiler optimizations: constant folding, unreachable code
elimination, copy propagation, and dead store elimination. You learned how these optimizations work together to
transform the TACKY representation of a program, resulting in smaller, faster, simpler assembly code than your
compiler produced before. You also learned how to construct a control-flow graph and perform data-flow analysis.
These techniques are fundamental to many different optimizations, not just the ones we covered in this chapter. If
you ever want to implement more TACKY optimizations on your own, you’ll be well prepared.

In the next chapter, you’ll write a register allocator. You’ll use a graph coloring algorithm to map pseudoregisters
to hardware registers, and you’ll learn how to spill a register when graph coloring fails and you run out of
registers. You’ll also use a technique called register coalescing to clean up many of the unnecessary mov

instructions in your assembly code. By the end of the chapter, your assembly programs still won’t look quite like
what a production compiler would generate, but they’ll be a lot closer.

Additional Resources

This section lists the resources I referred to while writing this chapter, organized by topic.

Security implications of compiler optimizations

“Dead Store Elimination (Still) Considered Harmful” by Zhaomo Yang et al. surveys the different ways
programmers try to avoid unwanted dead store elimination and the limits of each approach (https://www
.usenix.org/system/files/conference/usenixsecurity17/sec17-yang.pdf).
“The Correctness-Security Gap in Compiler Optimization” by Vijay D’Silva, Mathias Payer, and Dawn Song
looks at the security impact of a few different compiler optimizations and formalizes some of the security
properties that optimizations should preserve (https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber
=7163211).

Data-flow analysis

Chapter 9 of Compilers: Principles, Techniques, and Tools, 2nd edition, by Alfred V. Aho et al. (Addison-
Wesley, 2006) defines data-flow analysis more rigorously than I did here. It also proves that the iterative
algorithm is correct and terminates in a reasonable amount of time and discusses the use of reverse
postorder traversal (which it calls depth-first ordering) in this algorithm.
Paul Hilfinger’s lecture slides from CS164 at UC Berkeley give an example-heavy overview of the same
material (https://inst.eecs.berkeley.edu/~cs164/sp11/lectures/lecture37-2x2.pdf). I found the explanation of

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-yang.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163211
https://inst.eecs.berkeley.edu/~cs164/sp11/lectures/lecture37-2x2.pdf

liveness analysis in these slides particularly helpful.
Eli Bendersky’s blog post “Directed Graph Traversal, Orderings and Applications to Data-Flow Analysis”
describes how to sort graphs in postorder and reverse postorder to speed up data-flow analysis (https://eli
.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis).

Copy propagation

Every discussion of reaching copies analysis seems to formulate it slightly differently. The version in this
chapter draws on Jeffrey Ullman’s lecture notes on Compilers: Principles, Techniques, and Tools (http://infolab
.stanford.edu/~ullman/dragon/slides3.pdf and http://infolab.stanford.edu/~ullman/dragon/slides4.pdf).
I’ve borrowed the idea of deleting redundant copies from LLVM’s low-level copy propagation pass (https://llvm
.org/doxygen/MachineCopyPropagation_8cpp_source.html).

Alias analysis

You can find a quick overview of alias analysis algorithms in Phillip Gibbons’s lecture slides from his Carnegie
Mellon course on compiler optimizations (https://www.cs.cmu.edu/afs/cs/academic/class/15745-s16/www
/lectures/L16-Pointer-Analysis.pdf).

https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis
http://infolab.stanford.edu/~ullman/dragon/slides3.pdf
http://infolab.stanford.edu/~ullman/dragon/slides4.pdf
https://llvm.org/doxygen/MachineCopyPropagation_8cpp_source.html
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s16/www/lectures/L16-Pointer-Analysis.pdf

Description

20

REGISTER ALLOCATION

Up until now, you’ve allocated space for every pseudoregister on the stack. This strategy is
simple but painfully inefficient. Because instructions can’t always operate on values in
memory directly, you sometimes need to generate extra instructions to copy values
between these stack locations and registers. Even worse, the assembly code you generate
has to access memory constantly, even though registers are faster. Now you’ll solve those
problems. You’ll finish up your compiler by adding a register allocation pass, bolded in the
diagram at the start of the chapter, to assign pseudoregisters to hard registers instead of
locations in memory. You’ll use graph coloring, a classic register allocation technique, to
come up with this assignment.

Once the initial version of the register allocator is up and running, you’ll give it one more job: to clean up some of
the unnecessary mov instructions produced during assembly generation. The final version of your allocator will

perform register coalescing before assigning pseudoregisters to hard registers. The register coalescing step will
look for mov instructions whose source and destination can be merged, or coalesced, into a single operand, which

allows you to delete the instruction.

Register allocation has a little bit of everything: high-level theory, low-level details, brand-new concepts, and
familiar techniques from earlier chapters. And the payoff is very satisfying: at the end of the chapter, you’ll be
generating dramatically more efficient code. I think it’s a good note to end the book on.

To get started, let’s look at an example that illustrates why register allocation is such a powerful optimization.

Register Allocation in Action

Consider the tiny C function in Listing 20-1.

int f(int x, int y) {
 return 10 - (3 * y + x);
}

Listing 20-1: A tiny C function

First, our compiler will turn this into the tiny TACKY function in Listing 20-2.

f(x, y):
 tmp0 = 3 * y
 tmp1 = tmp0 + x
 tmp2 = 10 - tmp1
 Return(tmp2)

Listing 20-2: The TACKY code for Listing 20-1

This listing gives the definition of f after the optimization stage. (In particular, we’ve optimized out the extra

Return(0) that we add to the end of each TACKY function as a backstop for missing return statements.)

Next, we’ll convert Listing 20-2 to the assembly code in Listing 20-3.

f:
 ❶ movl %edi, %x
 movl %esi, %y
 ❷ movl $3, %tmp0
 imull %y, %tmp0
 movl %tmp0, %tmp1
 addl %x, %tmp1
 movl $10, %tmp2
 subl %tmp1, %tmp2
 ❸ movl %tmp2, %eax
 ret

Listing 20-3: The assembly code for Listing 20-2

We set up the function’s parameters ❶, then we calculate tmp0, tmp1, and tmp2 ❷. Finally, we return tmp2 ❸.

The operands %x, %y, %tmp0, %tmp1, and %tmp2 in this listing refer to the corresponding pseudoregisters; I’ll use

this notation throughout the chapter.

Now we’ll walk through three approaches to replacing these pseudoregisters with real operands. First, we’ll
replace them with stack addresses, which is what our compiler does right now. On our next attempt, we’ll replace
them with hard registers, without performing register coalescing first; this is what the initial version of our register
allocator will do. The third time around, we’ll perform register coalescing before replacing the pseudoregisters with
hard registers. That’s how our finished allocator will handle this program. (A quick note on terminology:
throughout this chapter, I’ll use the word register to refer to pseudoregisters and hard registers collectively.)

Take One: Put Everything on the Stack

In its current form, our compiler will replace each pseudoregister with a stack slot according to Table 20-1.

Table 20-1: Replacing Pseudoregisters with Stack Addresses

Pseudoregister Real location

x -4(%rbp)

y -8(%rbp)

tmp0 -12(%rbp)

tmp1 -16(%rbp)

tmp2 -20(%rbp)

This will give us the assembly code in Listing 20-4.

f:
 movl %edi, -4(%rbp)
 movl %esi, -8(%rbp)
 movl $3, -12(%rbp)
 ❶ imull -8(%rbp), -12(%rbp)
 ❷ movl -12(%rbp), -16(%rbp)
 ❸ addl -4(%rbp), -16(%rbp)
 movl $10, -20(%rbp)
 ❹ subl -16(%rbp), -20(%rbp)
 movl -20(%rbp), %eax
 ret

Listing 20-4: Listing 20-3 after replacing pseudoregisters with stack addresses

Once we replace every pseudoregister with a memory address, instructions ❶, ❷, ❸, and ❹ are invalid, so the
instruction fix-up pass will need to repair them. It will insert an extra instruction before ❶ to load its destination
into a hard register, and it will add another to store the result back to -12(%rbp) afterward. It will also insert

instructions to load the source operands of ❷, ❸, and ❹ into hard registers. In the context of register allocation,
we say a pseudoregister is spilled to memory if we store its contents on the stack instead of in a hard register. The
extra instructions we insert to move spilled values between registers and memory are called spill code.

We’ll ultimately end up with the assembly code in Listing 20-5. I’ve bolded the spill code to make it easier to spot.
(I’ve also snipped out the instructions to set up and tear down the stack frame, which aren’t relevant here. These
are snipped out of assembly programs later in the chapter too.)

f:
 --snip--

 movl %edi, -4(%rbp)
 movl %esi, -8(%rbp)
 movl $3, -12(%rbp)
 movl -12(%rbp), %r11d
 imull -8(%rbp), %r11d
 movl %r11d, -12(%rbp)
 movl -12(%rbp), %r10d
 movl %r10d, -16(%rbp)
 movl -4(%rbp), %r10d
 addl %r10d, -16(%rbp)
 movl $10, -20(%rbp)
 movl -16(%rbp), %r10d
 subl %r10d, -20(%rbp)
 movl -20(%rbp), %eax
 --snip--

 ret

Listing 20-5: Listing 20-4 with spill code

This code is incredibly inefficient. Almost every instruction accesses memory, and we waste a huge amount of time
copying data from one place to another. To take one particularly egregious example, we store the result of 3 * y

in -12(%rbp), then immediately copy it into -16(%rbp)—which takes two mov instructions—and never use

-12(%rbp) again.

Take Two: Register Allocation

Let’s try a more reasonable strategy. This time, we’ll replace each pseudoregister with a hard register instead of a
stack address, as shown in Table 20-2.

Table 20-2: Replacing Pseudoregisters with Hard Registers

Pseudoregister Real location

x %edx

y %ecx

tmp0 %r8d

tmp1 %r9d

tmp2 %edi

We’ll replace x, y, tmp0, and tmp1 with registers that don’t appear at all in the original assembly program. We’ll

replace tmp2 with EDI, which is used in the original program. This is fine, since we use tmp2 only once we’re done

using EDI for anything else. Later in the chapter, we’ll see how to reason more systematically about which
mappings from pseudoregisters to hard registers are safe and which ones might cause conflicts.

There’s no spill code this time, so I won’t include separate listings from before and after the instruction fix-up
pass. Instead, we’ll skip right to the final assembly code, shown in Listing 20-6.

f:
 --snip--

 movl %edi, %edx
 movl %esi, %ecx
 movl $3, %r8d
 imull %ecx, %r8d
 movl %r8d, %r9d
 addl %edx, %r9d
 movl $10, %edi
 subl %r9d, %edi
 movl %edi, %eax
 --snip--

 ret

Listing 20-6: The final assembly code for Listing 20-3 after register allocation

This is a major improvement; we don’t access memory, and we have fewer instructions overall. If we wanted to,
we could even omit the instructions to set up and tear down the stack frame, since we never use the stack. But
we’re still moving data around more than we need to. For instance, we copy our function parameters from EDI
and ESI to new locations, instead of leaving them where they are. We also copy tmp0 (now in %r8d) to tmp1

(now in %r9d), when we could just as easily use tmp0 for two calculations in a row. This isn’t the register

allocator’s fault; it’s just that we generated inefficient TACKY and assembly code in earlier passes. But if we’re
thoughtful about how we allocate registers, we can clean up after those earlier passes. That’s why our register
allocator will include one more step: register coalescing.

Take Three: Register Allocation with Coalescing

Our last approach has two steps. First, we’ll coalesce registers: we’ll look at each mov instruction in the function

and decide whether its operands can be merged together. Then, we’ll replace any remaining pseudoregisters with
hard registers, like we did in our previous attempt.

Let’s take another look at the original assembly program from Listing 20-3. This program includes four mov

instructions whose source and destination are both registers, which are bolded here:

f:
 movl %edi, %x

 movl %esi, %y
 movl $3, %tmp0
 imull %y, %tmp0
 movl %tmp0, %tmp1
 addl %x, %tmp1
 movl $10, %tmp2
 subl %tmp1, %tmp2
 movl %tmp2, %eax
 ret

Sometimes, copying values from one register to another is genuinely necessary. For example, we might need to
copy x out of EDI if we were going to pass another function argument in EDI later. But in this case, it’s safe to

merge x into EDI, since we don’t need EDI for anything else after that first mov instruction. The same logic applies

to each of the other three mov instructions. We won’t need to store different values in the source and destination

operands at the same time, so it’s safe to merge them together. We’ll merge x into EDI, y into ESI, tmp1 into

tmp0, and tmp2 into EAX.

Table 20-3 summarizes which pairs of registers we’ll coalesce and shows which member of each pair will remain in
the program.

Table 20-3: Coalescing Registers

Coalesced pair Remaining register

%edi, %x %edi

%esi, %y %esi

%tmp0, %tmp1 %tmp0

%tmp2, %eax %eax

We’ll also delete all four mov instructions, since they no longer serve any purpose. Listing 20-7 gives the resulting

assembly code, with the updated operands bolded.

f:
 movl $3, %tmp0
 imull %esi, %tmp0
 addl %edi, %tmp0
 movl $10, %eax
 subl %tmp0, %eax
 ret

Listing 20-7: Listing 20-3 after register coalescing

This looks a lot more reasonable! We leave x and y in EDI and ESI, where they were passed to begin with, instead

of copying them to new locations. When we calculate the return value, we store the result in EAX right away,
instead of copying it into EAX after we’ve calculated it. And we no longer use two separate temporary registers to
calculate the intermediate and final results in 3 * y + x; we stick with tmp0 the whole time.

We’re not quite done; we still need to replace tmp0 with a hard register. Any register besides ESI, EDI, or EAX will

do—let’s go with ECX. Listing 20-8 shows the assembly code we’ll ultimately wind up with.

f:
 --snip--

 movl $3, %ecx
 imull %esi, %ecx
 addl %edi, %ecx
 movl $10, %eax
 subl %ecx, %eax
 --snip--

 ret

Listing 20-8: The final assembly code for Listing 20-3 after register allocation with coalescing

Register allocation without coalescing improved our code in two ways: it reduced the number of memory accesses
and the amount of spill code in our program. With register coalescing, we improve our code even further by
removing the many unnecessary mov instructions generated by earlier passes.

Now that we have a sense of what we want to accomplish, let’s look at how register allocation fits into the whole
compiler pipeline.

Updating the Compiler Pipeline

Register allocators work best when there are lots of hard registers available, so the very first thing we’ll do is add
every remaining hard register to the assembly AST, including the callee-saved registers that we’ve avoided so far.
We’ll also make one small change to the conversion from TACKY to assembly: during this pass, we’ll store extra
information in the backend symbol table about which hard registers each function uses to pass parameters and
return values.

Next, we’ll implement the register allocator itself. The register allocator will run just after we convert the program
from TACKY to assembly, before any of the other backend compiler passes. Much like the optimizations we
implemented in Chapter 19, this pass will process each assembly function independently.

Even after register allocation, there may still be some pseudoregisters left in the program. This could happen for a
couple of reasons. First, if a function uses lots of pseudoregisters at once, there might not be enough hard

registers to accommodate all of them. When that happens, we’ll have to spill some pseudoregisters to memory.
Our register allocator won’t replace spilled pseudoregisters; it will just leave them in the program for the next pass
to deal with. Second, some pseudoregisters represent variables with static storage duration. These must live in
memory instead of registers. If you completed Part II, you’ll encounter a few other objects that must live in
memory, including aliased variables, structures, and arrays. The register allocator won’t touch these either.

To deal with all these stragglers, we’ll run our old pseudo-operand replacement pass immediately after the register
allocator. We won’t make any changes to this pass. It will handle any pseudo-operands it finds exactly the same
way it did before; it will just find a lot fewer of them.

Next, we’ll update the instruction fix-up pass to take care of saving and restoring callee-saved registers. All our
existing rewrite rules—including the rules to generate spill code—will stay the same. Since we still replace some
pseudoregisters with locations in memory, we’ll still have to generate spill code some of the time.

Finally, we’ll extend the code emission stage to support the new hard registers we introduce in this chapter. You
might want to stub out the new register allocation stage at this point. Then, we’ll update the assembly AST one
last time.

Extending the Assembly AST

So far, the assembly AST has included only the registers that we used for a particular purpose, such as passing
parameters or rewriting instructions. It doesn’t include any of the callee-saved registers: RBX, R12, R13, R14, and
R15. Now we’ll add these five registers so the register allocator can use them. We’ll also add the pop instruction,

which we’ll use to restore callee-saved registers at the end of a function. If you completed Part II, you should also
add the remaining XMM registers, XMM8 through XMM13. These registers are not callee-saved.

Listing 20-9 shows the complete assembly AST that includes everything we covered in Parts I, II, and III, with this
chapter’s additions bolded.

program = Program(top_level*)
assembly_type = Byte | Longword | Quadword | Double | ByteArray(int size, int alignment)
top_level = Function(identifier name, bool global, instruction* instructions)
 | StaticVariable(identifier name, bool global, int alignment, static_init* init_
 | StaticConstant(identifier name, int alignment, static_init init)
instruction = Mov(assembly_type, operand src, operand dst)
 | Movsx(assembly_type src_type, assembly_type dst_type, operand src, operand d
 | MovZeroExtend(assembly_type src_type, assembly_type dst_type,
 operand src, operand dst)
 | Lea(operand src, operand dst)
 | Cvttsd2si(assembly_type dst_type, operand src, operand dst)
 | Cvtsi2sd(assembly_type src_type, operand src, operand dst)
 | Unary(unary_operator, assembly_type, operand)
 | Binary(binary_operator, assembly_type, operand, operand)
 | Cmp(assembly_type, operand, operand)
 | Idiv(assembly_type, operand)

 | Div(assembly_type, operand)
 | Cdq(assembly_type)
 | Jmp(identifier)
 | JmpCC(cond_code, identifier)
 | SetCC(cond_code, operand)
 | Label(identifier)
 | Push(operand)
 | Pop(reg)
 | Call(identifier)
 | Ret
unary_operator = Neg | Not | Shr
binary_operator = Add | Sub | Mult | DivDouble | And | Or | Xor | Shl | ShrTwoOp
operand = Imm(int) | Reg(reg) | Pseudo(identifier) | Memory(reg, int) | Data(identifier, i
 | PseudoMem(identifier, int) | Indexed(reg base, reg index, int scale)
cond_code = E | NE | G | GE | L | LE | A | AE | B | BE
reg = AX | BX | CX | DX | DI | SI | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | SP | BP
 | XMM0 | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
 | XMM8 | XMM9 | XMM10 | XMM11 | XMM12 | XMM13 | XMM14 | XMM15

Listing 20-9: The complete assembly AST with the pop instruction and additional registers

Note that pop accepts only registers, not other operands. Now that we’ve updated the AST, let’s move on to the

conversion from TACKY to assembly.

Converting TACKY to Assembly

We’ll make just one change to this pass. We aren’t changing what assembly we generate; we’re just recording
extra information in the backend symbol table. Specifically, we’ll record which registers are used to pass each
function’s parameters. As you’ll see in the next section, the register allocator needs this information to figure out
which hard registers and pseudoregisters conflict.

Suppose we have the following function declaration:

int foo(int i, int j);

We’ll record that foo’s parameters are passed in the first two parameter passing registers, RDI and RSI. We’ll

track this information even if foo is defined in a different translation unit, because we’ll need it to allocate

registers in functions that call foo.

If you completed Part II, you should also track which registers are used to pass each function’s return value. Given
the function declaration

double foo(int i, double d);

we’ll record that foo’s parameters are passed in RDI and XMM0 and that its return value is also passed in XMM0.

To figure out which registers a function uses to pass parameters and return values, we’ll use the same logic we
implemented in the classify_parameters and classify_return_value helper functions in Chapter 18. Note

that we might run into function declarations with incomplete return types or parameter types. It doesn’t matter
what information we record about these functions, since it would be illegal to either define or call them in the
current translation unit; we just need to handle them without crashing. It’s easiest to simply record that they don’t
pass any values in registers.

Next, we’ll build the register allocator itself.

Register Allocation by Graph Coloring

Our compiler will model register allocation as a graph coloring problem. Coloring a graph means assigning every
node a label (traditionally called a “color”) so that each node has a different color from all its neighbors. A graph is
k-colorable if you can color it with k or fewer colors. Figure 20-1 illustrates a 3-colored graph.

Figure 20-1: A 3-colored graph Description

Graph coloring is an important area of research in its own right; mathematicians have been investigating how to
color graphs since the 19th century! It’s relevant to register allocation because it captures two fundamental
constraints on how we can assign pseudoregisters to hard registers: we have a limited number of hard registers to
work with, and some registers will interfere with each other, meaning they can’t occupy the same physical
location. If two pseudoregisters interfere, we need to assign them to two different hard registers. A pseudoregister
might also interfere with a hard register, which means we can’t assign it to that hard register.

Graph coloring lets us express both kinds of interference and handle them in a uniform way. To turn register
allocation into a graph coloring problem, we’ll first build a register interference graph with nodes representing
pseudoregisters and hard registers and with edges between any registers that interfere. Then, we’ll color the
graph, using one color per hard register. Finally, we’ll assign each pseudoregister to a hard register according to its
color. Because each register gets a different color from all of its neighbors, we’ll never assign two pseudoregisters
that interfere to the same hard register or assign a pseudoregister to a hard register that it interferes with.

Let’s try out this technique on the assembly function in Listing 20-10.

divide_and_subtract:
 ❶ movl %edi, %a
 ❷ movl %esi, %b
 movl %a, %eax
 ❸ cdq
 idivl %b
 ❹ movl %eax, %tmp
 subl %b, %tmp
 movl %tmp, %eax
 ret

Listing 20-10: A small assembly function

This function takes two parameters, which it copies into the pseudoregisters a and b. It calculates a / b - b and

stores the result in tmp. Finally, it returns the value of tmp in EAX. We need to figure out which registers in this

function interfere so we can build the interference graph. To start off, it’s easy to see that a and b interfere. If we

map them to the same hard register, we’ll clobber a when we define b ❷. This is a problem because a is still live

at this point. You learned in Chapter 19 that a variable is live if its current value might be used later in the
program, and otherwise it’s dead. This definition applies to registers too. When a register is live, we need to
preserve its value, so we can’t store a different value in the same location. When it’s dead, we’re free to overwrite
its value with something else. This gives us an easy rule for detecting interference: two registers interfere if we
update one while the other is live.

This rule also tells us that b interferes with tmp, since b is live when we define tmp ❹. But a and tmp don’t

interfere; a is already dead by the time we define tmp, so it’s fine to map them to the same hard register.

Now let’s think through which hard registers interfere with pseudoregisters. ESI interferes with a because ESI is

live when we define a ❶. If we mapped a to ESI, we’d clobber the function’s second parameter before we had a

chance to copy it to b. EAX interferes with b because b is live when we copy a to EAX to prepare for division. The

last source of interference is less obvious. Remember that the cdq instruction sign extends the value from EAX

into EDX ❸. Because cdq implicitly updates EDX while b is live, it makes EDX interfere with b; if we mapped b to

EDX, this instruction would clobber it. (Similarly, the idiv instruction updates EAX and EDX implicitly, so it would

make both of these registers interfere with b if they didn’t already.)

Finally, the hard registers all interfere with each other. This is sort of tautological; they can’t occupy the same
physical location because they represent different physical locations to begin with. Still, we need to capture this in
the interference graph to make sure that each hard register gets its own color.

Now that we’ve figured out which registers interfere, we’ll construct the graph. To keep this graph relatively small
and readable, we’ll pretend that the only hard registers are EDI, ESI, EAX, and EDX. Our real register interference

graphs will include every hard register we can assign pseudoregisters to, even if the assembly program doesn’t
use them. However, they’ll exclude RSP, RBP, and the scratch registers that we use during instruction fix-up.

Figure 20-2 illustrates the interference graph for the function in Listing 20-10.

Figure 20-2: The register interference graph for divide_and_subtract Description

This graph encodes all the interferences we just identified: a interferes with ESI and b; b interferes with tmp, EAX,

and EDX as well as a; and all four hard registers interfere with each other.

Now we’ll try to k-color this graph, where k is the number of hard registers in the graph. In this small example, k
is 4. There are several possible 4-colorings of Figure 20-2. Figure 20-3 shows a few of them.

Figure 20-3: Three valid 4-colorings of the register interference graph for divide_and_subtract Description

Any one of these colorings—or any other 4-coloring we can come up with—will give us a valid register assignment.
Each register will receive a different color from any of its neighbors. And because the k hard registers all interfere
with each other, we’ll assign each color to exactly one hard register, which creates a 1:1 mapping from colors to
hard registers.

After we color the graph, we’ll replace each pseudoregister with the hard register that received the same color. If
we use the first coloring from Figure 20-3, we’ll replace a with EDX, b with EDI, and tmp with EAX, which gives us

the assembly code in Listing 20-11.

divide_and_subtract:
 movl %edi, %edx
 movl %esi, %edi
 movl %edx, %eax
 cdq
 idivl %edi
 movl %eax, %eax
 subl %edi, %eax
 movl %eax, %eax
 ret

Listing 20-11: Replacing registers in divide_and_subtract based on the first coloring in Figure 20-3

If you like, you can work through this listing and confirm that it produces the same result as the original code for
divide_and_subtract in Listing 20-10. You can also try this out with the other colorings in Figure 20-3.

Note that coloring the graph produces two different mappings: one from all registers to colors and one from colors
to hard registers. Conceptually, each color represents a hard register, but we don’t know which hard register until
after we’ve colored the graph. If instead we used the names of the hard registers themselves as colors, or
associated each hard register with a color ahead of time, then we would have to precolor each hard register with
the corresponding color before we tried to color the rest of the graph. Precoloring adds more constraints to the
graph coloring problem, which makes it harder to find a valid coloring. Some graph coloring implementations
require precolored nodes; luckily, ours isn’t one of them.

USING LIVE RANGES INSTEAD OF PSEUDOREGISTERS

Our register allocator will map pseudoregisters to hard registers. Most register allocators, however, solve a slightly
different problem: they map live ranges to hard registers. A live range is a region of the program in which a
particular pseudoregister is live. A single pseudoregister may have multiple live ranges (that is, it may be live in
several unconnected regions of a program). These live ranges can safely be assigned to different hard registers.
Here’s a simple, if unrealistic, example:

two_live_ranges:
 ❶ movl $1, %x

 addl %x, var(%rip)
 ❷ movl $2, %x
 movl %x, %eax
 ret

In this example, x has two live ranges. The first starts when we define x ❶ and ends after we add it to the static

variable var in the next instruction. The second starts when we redefine x ❷ and ends after we use it in the

instruction right after that. Let’s rewrite the program to refer to these live ranges explicitly:

two_live_ranges:
 movl $1, %x.1
 addl %x.1, var(%rip)
 movl $2, %x.2
 movl %x.2, %eax
 ret

Now it’s clear that we don’t need to assign x.1 and x.2 to the same hard register. A typical register allocator

starts by identifying the distinct live ranges for each pseudoregister and giving each one its own name, like we just
did for two_live_ranges. It then uses these live ranges, rather than pseudoregisters, as nodes in the

interference graph. This puts fewer constraints on where the allocator can place each live range, which makes it
easier to find a valid register assignment.

We’re building a simplified register allocator that doesn’t identify live ranges, so we’ll just use pseudoregisters from
the original assembly code as nodes in the interference graph. (Confusingly, identifying live ranges isn’t quite the
same as liveness analysis, which we discussed in Chapter 19. Our allocator will perform liveness analysis to learn
when each register is live, but identifying live ranges is a more involved process in which liveness analysis is just
the first step.)

If you want to build a more sophisticated register allocator that works with live ranges instead of pseudoregisters,
you’ll find a few useful references listed in “Additional Resources” on page 669.

Detecting Interference

Earlier, I said that two registers interfered if we updated one while the other was live. We used this rule to figure
out which registers interfered in divide _and_subtract; it helped us identify both interference between

pseudoregisters and interference between pseudoregisters and hard registers. But there are a couple of important
points about this rule that we still need to cover.

The first point is that two registers interfere only if one is live immediately after we update the other. Here’s a
short example:

movl 4(%rdi), %x
movl %x, %eax
ret

In this code snippet, RDI holds some memory address—presumably the address of a structure or array. The first
instruction in this snippet takes the value stored in memory at RDI + 4 and copies it into x. Before this instruction,

RDI is live; afterward, it’s dead. RDI and x don’t interfere. If we map x to RDI, the first mov instruction will

overwrite the address in RDI. But that’s okay, because we won’t use that address again.

The second point is that two registers interfere only if they have different values. Concretely, this means the
instruction mov src, dst won’t make src and dst interfere, even if src is still live afterward. In Listing 20-12,

for example, x and y don’t interfere.

movl $1, %y
movl %y, %x
addl %x, %ecx
addl %y, %eax

Listing 20-12: A snippet of assembly where the source operand of a mov instruction is still live after that
instruction

If we assign x and y to the same hard register, the second mov instruction won’t clobber x with a new value.

Instead, it will have no effect at all. When we perform register coalescing, we’ll even go out of our way to put x

and y in the same register so that we can delete this instruction entirely.

Two registers connected by a mov instruction could still interfere for other reasons, as Listing 20-13 demonstrates.

movl $1, %y
movl %y, %x
addl $1, %y
addl %x, %y

Listing 20-13: A snippet of assembly where a later instruction makes the operands of a mov instruction interfere

In this snippet, the second mov instruction doesn’t make x and y interfere, but the subsequent add instruction

does, because it updates y while x is live. In this case, putting x and y in the same register would be unsafe.

Spilling Registers

We can’t always k-color the interference graph. Consider the assembly function in Listing 20-14, which calculates
10 / arg1 + arg1 / arg2.

uncolorable:
 movl %edi, %arg1
 movl %esi, %arg2
 movl $10, %eax
 cdq
 idivl %arg1
 movl %eax, %tmp
 movl %arg1, %eax
 cdq
 idivl %arg2
 addl %tmp, %eax
 ret

Listing 20-14: Calculating 10 / arg1 + arg1 / arg2

For the purpose of this example, we’ll pretend that we have four hardware registers: ESI, EDI, EDX, and EAX.
Figure 20-4 shows the interference graph for the listing. I won’t walk you through how to construct the graph, but
you can verify it on your own if you like.

Figure 20-4: The interference graph for Listing 20-14 Description

It’s impossible to 4-color this graph. Note that EAX, EDX, arg1, arg2, and tmp all interfere with each other. That

means each of them must receive a different color than the other four, which would require five distinct colors.
We’ll solve this problem by spilling a register—in other words, removing it from the graph instead of coloring it.
Spilling any one of arg1, arg2, or tmp will make the graph colorable. If we spill tmp, for example, we can use the

coloring shown in Figure 20-5.

Figure 20-5: Coloring the interference graph after spilling tmp Description

Now we can replace the two pseudoregisters that we colored, but not tmp. Listing 20-15 gives the resulting

assembly code, with changes from Listing 20-14 bolded.

uncolorable:
 movl %edi, %edi
 movl %esi, %esi
 movl $10, %eax
 cdq
 idivl %edi
 movl %eax, %tmp
 movl %edi, %eax
 cdq
 idivl %esi
 addl %tmp, %eax
 ret

Listing 20-15: The uncolorable function after register allocation

Note that we’ve made the first two instructions in this listing redundant. We could optimize the code further by
deleting them, but we won’t worry about this optimization for now.

After the register allocator has assigned arg1 and arg2 to hard registers, the pseudo-operand replacement pass

will put tmp on the stack. Listing 20-16 gives the final assembly code for this function, with the changes from

Listing 20-15 bolded.

uncolorable:
 --snip--

 movl %edi, %edi
 movl %esi, %esi
 movl $10, %eax
 cdq
 idivl %edi
 movl %eax, -4(%rbp)
 movl %edi, %eax
 cdq
 idivl %esi
 addl -4(%rbp), %eax
 --snip--

 ret

Listing 20-16: The final assembly code for uncolorable

Spilling one pseudoregister made it possible to replace all the others with hard registers. But which registers we
decide to spill matters a lot! As a general rule, the more frequently a pseudoregister is accessed, the more it will
hurt performance to spill that pseudoregister. Our allocator will calculate a spill cost for each register in the
interference graph. This is an estimate of how much spilling that register will hurt performance. Then, when we
color the graph, we’ll use that information to minimize the overall performance impact of spills.

The Basic Register Allocator

Now that we have some idea of how our register allocator will work, let’s implement it! Listing 20-17 describes
how to allocate registers for a single function.

allocate_registers(instructions):
 interference_graph = build_graph(instructions)
 add_spill_costs(interference_graph, instructions)
 color_graph(interference_graph)
 register_map = create_register_map(interference_graph)
 transformed_instructions = replace_pseudoregs(instructions, register_map)
 return transformed_instructions

Listing 20-17: The top-level register allocation algorithm

We start by building the interference graph. Then, we calculate a spill cost for each register based on how
frequently it’s used and annotate the graph with that information. Next, we color the graph, annotating each node
with its color. If we can’t color every node, we’ll use the spill costs we calculated in the previous step to decide
what to spill. To spill a node, we’ll just leave it uncolored.

The last step is replacing all the pseudoregisters we colored. In create _register_map, we construct a map

from colored pseudoregisters to hard registers with the same color. Finally, we rewrite the body of the function,
replacing each pseudoregister with the corresponding hard register from the map.

Go ahead and stub out allocate_registers. Then, we’ll walk through how to implement each of these steps.

Handling Multiple Types During Register Allocation

If you completed Part II, then you’ll need to run the whole algorithm in Listing 20-17 twice: once to allocate
general-purpose registers and once to allocate XMM registers. On each run, you’ll include only registers of the
appropriate type in the interference graph. The new features we added in Part II will change a few other details
about how we build the interference graph too. We’ll take a closer look at these changes when we implement
build_graph.

The individual steps after building the interference graph—including calculating spill costs, coloring the graph, and
replacing pseudoregisters—look exactly the same whether we’re dealing with floating-point or general-purpose
registers. The other features we added in Part II won’t impact these steps either.

Defining the Interference Graph

To get started, we’ll define the data structure for the interference graph. Listing 20-18 presents one possible
representation.

node = Node(operand id, operand* neighbors, double spill_cost, int? color, bool pruned)
graph = Graph(node* nodes)

Listing 20-18: The definition of the register interference graph

Each node in the graph corresponds to a Pseudo or Register operand from the assembly AST. We’ll track each

node’s neighbors, spill cost, and color. We’ll represent colors with the integers 1 through k, where k is the number

of available hard registers. The color field is optional because we may not be able to color every node. We’ll use

the pruned flag when we color the graph; you can ignore it until then. When you create a new node, you should

initialize spill_cost to 0.0, color to null, and pruned to False.

This definition of node is a bit more permissive than it needs to be; the operand type includes constants and

memory locations, which we’ll never add to the interference graph. Alternatively, you could replace operand with

a dedicated node_id type that can represent only registers. I’m using a more permissive definition so that we

don’t have to constantly convert back and forth between operand and node_id throughout the allocator.

Building the Interference Graph

We’re finally ready to build the interference graph! First, we’ll walk through an implementation of build_graph

that supports the assembly AST from Part I. Then, we’ll discuss how to modify it to support the assembly AST
from Part II.

Since building this graph is a fairly involved process, we’ll break it down into several steps. Listing 20-19 illustrates
these steps in pseudocode.

build_graph(instructions):
 ❶ interference_graph = base_graph
 ❷ add_pseudoregisters(interference_graph, instructions)
 cfg = make_control_flow_graph(instructions)
 ❸ analyze_liveness(cfg)
 ❹ add_edges(cfg, interference_graph)
 return interference_graph

Listing 20-19: Building the interference graph

We’ll start with a graph that includes every hard register ❶. (As far as I know, there’s no standard term for this
graph, so I’ll call it the base graph.) Next, we’ll insert a node for each pseudoregister that appears in the function
❷. Finally, we’ll figure out which registers interfere with each other. Since this depends on which registers are live
at each point, we’ll need to run liveness analysis on our assembly code. Just like in Chapter 19, this analysis will
take a control-flow graph (which is different from the interference graph!) and annotate it with liveness

information ❸. Finally, we’ll use that information to figure out which edges to add to the interference graph ❹.
Let’s take a closer look at each of these steps.

The Base Graph

The base graph, shown in Figure 20-6, includes 12 registers: RAX, RBX, RCX, RDX, RDI, RSI, R8, R9, R12, R13,
R14, and R15.

Figure 20-6: The base register interference graph Description

We won’t include RSP or RBP in the graph because we’re already using them to manage the stack frame, and we
won’t include R10 or R11 because we’ll need them in the instruction fix-up pass. Since the hard registers all
interfere with each other, the base graph includes an edge between each pair of nodes. In graph theory jargon,
this makes the base graph a complete graph.

NOTE

Because the example programs in this chapter deal with 4-byte pseudoregisters, most of the diagrams of
interference graphs use 4-byte aliases for hard registers. I’ve used 8-byte aliases in Figure 20-6, since it
represents the base graph you’ll use for all programs rather than the interference graph for any specific program.
The interference graphs we actually construct will represent hard registers using reg assembly AST nodes, which
don’t specify a size.

Adding Pseudoregisters to the Graph

This bit is straightforward: we just loop over every operand in every instruction and decide whether to add it to
the graph. Every pseudoregister that appears in the assembly function should go in the graph, unless it has static
storage duration. I’ll skip the pseudocode for add_pseudoregisters because there’s not a lot to it.

Liveness Analysis

We already know how liveness analysis works, since we implemented it back in Chapter 19. Now we’ll need a new
implementation that analyzes assembly instead of TACKY and tracks registers instead of variables. Luckily, the
basic logic is the same. We can even reuse some of our existing code.

First, we’ll construct a control-flow graph. This works just like building a control-flow graph from a TACKY function;
only the specific instructions at the boundaries between basic blocks are different. Instead of looking for TACKY
control-flow instructions like Label, Return, Jump, JumpIfZero, and JumpIfNotZero, we’ll look for their

assembly equivalents: the assembly Label instruction, Ret, Jmp, and JmpCC. You’ve already written code to

convert TACKY into a control-flow graph; ideally, you’ll be able to refactor it to handle assembly too.

Next, we’ll look at the three components of liveness analysis itself: the iterative algorithm, the meet operator, and
the transfer function. The iterative algorithm is exactly the same as in Chapter 19, so you should be able to use
the implementation of this algorithm that you already wrote.

We’ll use set union as our meet operator, just like we did before. However, we’ll handle the EXIT node in the

control-flow graph differently. Our original meet operator assumed that static variables were live when a function
exited. Now we don’t care about static variables, because they’re not in the interference graph. Instead, we have
to worry about hard registers: specifically EAX, which holds the function’s return value. Listing 20-20 defines our
new meet operator, with the one change from the original meet operator defined in Listing 19-24 in bold.

meet(block):
 live_registers = {}
 for succ_id in block.successors:
 match succ_id with
 | EXIT -> live_registers.add(Reg(AX))
 | ENTRY -> fail("Malformed control-flow graph")
 | BlockId(id) ->

 succ_live_registers = get_block_annotation(succ_id)
 live_registers.add_all(succ_live_registers)

 return live_registers

Listing 20-20: The meet operator for liveness analysis of assembly code

We’re ignoring the fact that the callee-saved registers are also live at EXIT. We can get away with this because

the instruction fix-up pass will spill these registers if we end up using them; that is, it will save their values onto
the stack at the start of the function and restore them before we return. Assuming that these registers are dead at
EXIT makes it possible to actually use them. If we added them to the set of live registers here, we’d conclude that

they were live throughout the whole function and interfered with every single pseudoregister.

The transfer function is the one part of liveness analysis that differs significantly from the previous chapter. The
basic idea is the same: we add registers to the live set when they’re used and remove them when they’re
updated. But the specifics are different because we’re working with a different set of instructions than we were
before.

First, let’s write a helper function, find_used_and_updated, that tells us which operands each instruction uses

and updates. Both the transfer function and the add_edges function that we’ll implement next will use this helper

function. Listing 20-21 gives the pseudocode for find_used_and_updated.

find_used_and_updated(instruction):
 match instruction with
 | Mov(src, dst) -> ❶
 used = [src]
 updated = [dst]
 | Binary(op, src, dst) -> ❷
 used = [src, dst]
 updated = [dst]
 | Unary(op, dst) ->
 used = [dst]
 updated = [dst]
 | Cmp(v1, v2) ->
 used = [v1, v2]
 updated = []
 | SetCC(cond, dst) ->
 used = []
 updated = [dst]
 | Push(v) ->
 used = [v]
 updated = []
 | Idiv(divisor) ->
 used = [divisor, Reg(AX), Reg(DX)]
 updated = [Reg(AX), Reg(DX)]
 | Cdq ->
 used = [Reg(AX)]

 updated = [Reg(DX)]
 | Call(f) ->
 used = <look up parameter passing registers in the backend symbol table> ❸
 updated = [Reg(DI), Reg(SI), Reg(DX), Reg(CX), Reg(R8), Reg(R9), Reg(AX)]
 | _ ->
 used = []
 updated = []
 return (used, updated)

Listing 20-21: Identifying the operands used and updated by each instruction

Keep in mind that this listing covers only the assembly instructions from Part I. Mov is the most straightforward

case: it uses its source and updates its destination ❶. A binary instruction like add src, dst uses its source and

destination and updates its destination ❷. It’s also easy to see which operands the Unary, Cmp, SetCC, and Push

instructions read and update.

Some instructions use registers that they don’t mention explicitly. Idiv divides the value stored in the EAX and

EDX registers by its source operand, so it uses all three values. It stores its results in EAX and EDX, so it updates
those two registers. Cdq sign extends EAX into EDX, which means it uses EAX and updates EDX.

Call uses the registers that hold the callee’s parameters; we can look these up in the backend symbol table,

where we recorded them during the assembly generation pass ❸. It updates all the caller-saved registers—
whether we’re passing the callee’s parameters in them or not—since these may be clobbered by the callee. This
makes all the caller-saved registers interfere with any pseudoregisters that are live when we call this function, so
our graph coloring algorithm will assign these pseudoregisters to callee-saved registers instead.

If an instruction both uses and updates the same register—like a Binary instruction both uses and updates its

destination, for example—it’s important to include that register in both the used and updated lists. In the transfer

function, we’ll only care that the register is used, since that will make it live. But when we use this helper function
again in add_edges, we’ll only care that the register is updated, since that will make it interfere with any other

registers that are live at the same time.

Now we can write the transfer function, which is defined in Listing 20-22.

transfer(block, end_live_registers):
 current_live_registers = end_live_registers

 for instruction in reverse(block.instructions):
 ❶ annotate_instruction(instruction, current_live_registers)
 ❷ used, updated = find_used_and_updated(instruction)
 for v in updated:
 if v is a register:
 current_live_registers.remove(v)

 for v in used:
 if v is a register:
 current_live_registers.add(v)

 ❸ annotate_block(block.id, current_live_registers)

Listing 20-22: The transfer function for liveness analysis in assembly

Since this is a backward analysis, we analyze the assembly instructions in reverse order. To process an instruction,
we first record which registers are live immediately after it ❶. Then, we calculate which registers are live just
before it. We call the helper function we just wrote to figure out what operands it uses and updates ❷. We then
remove any registers it updates from the set of current live registers, and we add any registers it uses. (If an
instruction uses and updates the same register, we’ll remove that register from the set of live registers and then
immediately add it again.) Once we’ve processed every instruction, we record which registers are live at the start
of the block ❸.

We won’t track constants and memory operands, but our set of live registers might still include some operands
that we don’t care about (specifically, pseudoregisters with static storage duration). There’s no harm in including
them in our liveness results; we’ll just ignore them when we use those results in the next step.

Adding Edges

With liveness information in hand, we can finally figure out which edges to add to the graph. Listing 20-23 gives
the pseudocode for this step.

add_edges(liveness_cfg, interference_graph):
 for node in liveness_cfg.nodes:
 if node is EntryNode or ExitNode:
 continue

 for instr in node.instructions:
 used, updated = find_used_and_updated(instr)

 ❶ live_registers = get_instruction_annotation(instr)

 for l in live_registers:
 ❷ if (instr is Mov) and (l == instr.src):
 continue

 for u in updated:
 ❸ if (l and u are in interference_graph) and (l != u):
 add_edge(interference_graph, l, u)

Listing 20-23: Adding edges to the interference graph

We learned earlier that two registers interfere if one is updated while the other is live. Now we’ll look at each
instruction and figure out which interferences it creates. To process a single instruction, we’ll first call
find_used_and_updated to look up what operands it updates. (We’ll ignore the first list this function returns,

used, because don’t care what operands the instruction uses.) Next, we’ll look up which registers are live

immediately after the instruction ❶.

We then add an edge between each register in live_registers and each register in updated. The Mov

instruction is a special case. If the current instruction is a Mov, we’ll skip over its source as we iterate over the set

of live registers so that we don’t add an edge between its source and destination ❷.

Before we add an edge between two nodes, we’ll make sure that both nodes are already in the interference
graph. We’ll also make sure that they’re different, since we don’t want to add an edge from a node to itself ❸.

Handling Other Types While Constructing the Graph

Now we’ll deal with all the features we added in Part II. Since we allocate XMM and general-purpose registers
separately, we’ll build two interference graphs. We’ll start with a separate base graph for each register class. The
base graph for XMM registers should have 14 nodes; it will include XMM0 through XMM13, but not the scratch
registers XMM14 and XMM15. In add_pseudoregisters, we’ll check that a pseudoregister has the correct type

before adding it to the graph. When we allocate XMM registers, we’ll add only pseudoregisters of Double type to

the graph. When we allocate general-purpose registers, we’ll exclude Double pseudoregisters and include all the

other scalar types: Longword, Quadword, and Byte.

Floating-point registers aside, there are a few other details we need to change. We’ll exclude aliased
pseudoregisters from the graph, since they shouldn’t be assigned to registers. You can reuse the previous
chapter’s address-taken analysis here; just rerun the analysis immediately before converting the program from
TACKY to assembly. If a variable was aliased in the TACKY program, it will still be aliased in assembly.

Liveness analysis should reflect the new calling conventions we implemented in Part II. The meet function can’t

assume that EAX is live when the function exits; it should check the backend symbol table to learn which registers
the function uses to pass its return value. These registers will all be live at EXIT.

We’ll also update the find_used_and_updated helper function. First, this function needs to handle the Memory

and Indexed operands correctly. These operands designate locations in memory, but they use registers in their

address calculations. When we use one of these operands, we read any registers it refers to, even if we write to
the memory location it designates. For example, the instruction movl $1, 4(%rax) uses RAX instead of updating

it, and the instruction leaq (%rax, %rcx, 4), %rdi uses both RAX and RCX but updates RDI. Second,

find_used_and_updated must recognize that all the XMM registers are caller-saved and therefore updated by

Call instructions. Finally, this function will need to handle all the new assembly instructions we added in Part II,

but there’s nothing particularly tricky about them.

Calculating Spill Costs

After constructing the graph, we annotate each register with a spill cost. If we can’t color every node in the graph,
these costs will help us decide which node (or nodes) to spill. We’ll try to color the graph in a way that minimizes
the total cost of all spilled nodes.

Since we can’t spill hard registers, we assign each of them an infinite spill cost. To estimate the spill cost of each
pseudoregister, we just count up the number of times it appears in our assembly code. For example, if we
encounter the instruction movl $1, %x, we increase x’s spill cost by one. If we see the instruction addl %x, %x,

we increase x’s spill cost by two. The rationale here is that the more often a pseudoregister is used, the more

memory accesses and new instructions we’ll introduce if we spill it.

Frankly, this is a lousy way to calculate spill cost. It ignores the basic fact that some instructions are executed
more frequently than others. Clearly, using a pseudoregister inside a loop that executes a million times should
increase its spill cost a lot more than using it in an instruction that runs just once. It’s hard to predict exactly how
many times a particular instruction will execute, but one approach is to use loop nesting depth as a rough proxy
for execution frequency. When compilers that take this approach calculate spill costs, they give more weight to
instructions in more deeply nested loops.

Unfortunately, we have no idea where the loops in our program are. Discovering loops would require us to
implement a whole new type of analysis, and this chapter is long enough. I’ve included a couple of references
about identifying loops in “Additional Resources” on page 669 in case you want to implement this analysis on your
own.

Coloring the Interference Graph

It’s time to color the graph! Our goal is to minimize the total spill cost of the nodes we leave uncolored (ideally by
coloring every node so that the total spill cost is zero). But exact graph coloring algorithms, which find the best
possible coloring, are too slow to use in practice. Instead, we’ll use an approximate algorithm. This algorithm may
not find the best coloring, but it can usually find a pretty good one.

Our graph coloring algorithm is based on a simple observation: you can always color a node with fewer than k
neighbors, because there’s always at least one color that none of its neighbors uses. This observation is called the
degree < k rule. (The number of neighbors a node has is called its degree; we say that a node has significant
degree if it has k or more neighbors.) The degree < k rule gives us a way to break down the problem. First, we’ll
temporarily remove any node with fewer than k neighbors. This is called pruning the graph. Then, we’ll color the
rest of the graph somehow (we won’t worry about how to do this just yet). Finally, we’ll put back the nodes that
we pruned, one at a time. When we put back a node, we’ll assign it some color that doesn’t conflict with any
neighbors that we’ve already colored. There will always be at least one available color, since each node has fewer
than k neighbors.

Let’s try to 3-color the graph shown in Figure 20-7 using this approach and see how far we get.

Figure 20-7: A graph that hasn’t been colored yet Description

This graph has four nodes with fewer than three neighbors: B, C, F, and H. We’ll prune these nodes from the
graph and then figure out how to color the smaller graph. We’ll also define a stack to keep track of the pruned
nodes that we’ll eventually need to put back in the graph. Figure 20-8 shows the pruned graph and the stack.

Figure 20-8: The graph from Figure 20-7 with low-degree nodes removed Description

In this pruned graph, A and G both have fewer than three neighbors. That means we can apply the same trick to
prune the graph again! We’ll push A and G onto the top of the stack; later on, we’ll pop them off and color them
before we color B, C, F, and H. When we pop A and G off the stack and put them back in the graph, they’ll have
the same degree they do now, so we know we’ll be able to find a color for each of them.

Figure 20-9 shows how the graph and stack look after we prune A and G.

Figure 20-9: The graph from Figure 20-7 after two rounds of pruning Description

Our two remaining nodes each have fewer than three neighbors, so we could just color them. But we’ll take a
slightly different approach to accomplish the same thing: we’ll prune them from the graph, then put them back.
After we prune them, the graph is empty. Figure 20-10 shows how things look after we’ve pruned every node.

Figure 20-10: The graph from Figure 20-7 after pruning every node Description

Our original plan was to prune the graph, color the remaining nodes, then put back the nodes we had pruned.
Now that we’re done pruning, we don’t have to do anything for the second step: there are no nodes left to color!
We won’t get this lucky with every graph; sometimes we’ll end up with nodes we can’t prune. We’ll talk about how
to handle that situation in a moment. For now, let’s finish coloring this graph.

As the last step in our plan, we’ll take each of the nodes we pruned earlier, assign it a color, and put it back in the
graph. We’ll start with the last node we removed, which is at the top of the stack, then repeat this process until
the stack is empty. The sequence of diagrams in Figure 20-11 illustrates how we’ll rebuild the graph in this
example.

Figure 20-11: Adding nodes back to the graph and assigning colors Description

When we add E back to the graph, it has no neighbors, so we can assign it any color. Let’s color it white. Then,
when we add D, its only neighbor is E, so we can assign it either black or gray. When we add G, we find that it
has a white neighbor and a gray neighbor, so we must color it black. We continue until the stack is empty and
every node in the graph has been assigned a color.

Dealing with Spills

For many interference graphs, we can prune every node using the approach we took in the previous section. We
can color those graphs without any spills. But there are other graphs where we’ll get stuck: we’ll hit a point where
every node has k or more neighbors. Suppose we want to 3-color the graph shown in Figure 20-12.

Figure 20-12: A graph where every node has three or more neighbors Description

If we try to prune this graph, we’ll immediately get stuck: every node has at least three neighbors! To get
unstuck, we’ll choose a node to prune anyway. We’ll put this node on the stack, then continue with the algorithm

as usual. This node is a spill candidate because we might not be able to color it when we put it back in the graph.
If we’re lucky, its neighbors won’t use up every color, so we’ll be able to color it. If we’re unlucky, its neighbors will
use all k colors, so we’ll have to spill it.

We want to choose a spill candidate with a low spill cost. But we also want to choose a spill candidate with lots of
neighbors that haven’t been pruned yet, because pruning our spill candidate lowers its neighbors’ degrees and
helps us avoid spilling them later on. To balance these two priorities, we’ll choose the node with the smallest value
of spill cost / degree, where degree is the number of neighbors that haven’t been pruned yet.

Note that we’ll never choose a hard register as a spill candidate, because spill cost / degree for each of these
registers is always infinity. If there are any pseudoregisters left in the graph, we’ll always choose one of them as a
spill candidate instead of choosing a hard register. If there are no pseudoregisters left, the total number of
registers must be k or fewer, so we’ll be able to prune every register.

Some graphs have no valid k-colorings, which makes spilling unavoidable. For other graphs, a valid coloring exists,
but whether we find it is a matter of chance; it depends on the exact order in which we remove nodes from the
graph and how we happen to color them when we put them back.

To illustrate the element of chance in this approach, we’ll make a couple of attempts to color the graph in Figure
20-12. This graph is 3-colorable, but only one of our attempts will find a spill-free coloring. In both cases, we’ll
choose C as our spill candidate, then prune A and B, leaving D, E, and F. And in both cases, we’ll use the same
strategy to color nodes as we add them back into the graph: we’ll choose the first available color from the list
[white, gray, black]. The only difference will be the order in which we prune the remaining three nodes. In the
first case, we’ll prune D, then E, then F. Figure 20-13 shows what will happen when we try to add the nodes back
in.

Figure 20-13: A first attempt to color Figure 20-12 Description

When we reach C, we’ll see that its neighbors are already using all three colors, so we’ll be forced to spill it.

Now let’s repeat this process; on this attempt, we’ll prune F, then E, then D. Figure 20-14 shows what will happen
when we put the nodes back in the graph this time around.

Figure 20-14: A more successful attempt to color Figure 20-12 Description

This time, we assigned A and E the same color, which allowed us to assign C a color instead of spilling it. In a
small example like this one, it’s easy to see that assigning these nodes the same color is the better choice. But
there’s no general rule that lets us avoid unnecessary spills like the one in Figure 20-13; that’s what makes this

algorithm approximate. We could avoid unnecessary spills if we used an exact algorithm instead, but as I
mentioned earlier, exact algorithms are too expensive to be practical.

Implementing the Graph Coloring Algorithm

Now that we’ve worked through a few examples using this algorithm, let’s look at the pseudocode, which is shown
in Listing 20-24.

color_graph(g):
 remaining = <unpruned nodes in g>
 ❶ if remaining is empty:
 return

 // choose next node to prune
 chosen_node = null

 for node in remaining:
 degree = length(<unpruned neighbors of node>)
 if degree < k:
 ❷ chosen_node = node
 break

 if chosen_node is null:
 // choose a spill candidate
 best_spill_metric = infinity
 for node in remaining:
 degree = length(<unpruned neighbors of node>)
 spill_metric = node.spill_cost / degree
 if spill_metric < best_spill_metric:
 ❸ chosen_node = node
 best_spill_metric = spill_metric

 chosen_node.pruned = True

 // color the rest of the graph
 ❹ color_graph(g)

 // color this node
 colors = [1, 2, . . ., k]
 for neighbor_id in chosen_node.neighbors:
 neighbor = get_node_by_id(g, neighbor_id)
 if neighbor.color is not null:
 colors.remove(neighbor.color)

 ❺ if colors is not empty:
 if chosen_node is a callee-saved hard register:
 chosen_node.color = max(colors)
 else:
 chosen_node.color = min(colors)

 chosen_node.pruned = False

 return

Listing 20-24: The graph coloring algorithm

We’ll color the graph recursively. At each step, we’ll prune a node, then make a recursive call to color the rest of
the graph, then put the node back and assign it a color. In the base case, we’ve already pruned every node, so we
have nothing left to do ❶.

In the recursive case, we’ll start by choosing a node to prune, which this listing calls chosen_node. We’ll pick the

first node we find with fewer than k unpruned neighbors ❷. (If you’re allocating general-purpose registers, k is 12;
if you’re allocating XMM registers, it’s 14.) If that search comes up empty, we’ll pick the node with the minimum
value of spill cost / degree ❸. To prune a node, we’ll just set its pruned attribute to True. Then, we’ll call

color_graph recursively to color the remaining nodes in the graph ❹.

After we return from this recursive call, we’ll try to assign chosen_node a color. We’ll take the list of integers 1

through k, which represent every possible color, and remove any color that we’ve already assigned to one of

chosen _node’s neighbors. Some of chosen_node’s neighbors may not have a color, either because we spilled

them or because we pruned them before chosen _node and will therefore color them later. We can simply ignore

these nodes.

If there are any colors left in the list, we’ll assign one of them to chosen _node ❺. If there’s more than one color

available, the algorithm isn’t fussy about which one we choose. Although the color we choose here might impact
how many nodes we ultimately spill, the effect is unpredictable; there’s no color selection strategy that minimizes
spills across the board. So, we’ll choose a color with a different goal in mind: assigning pseudoregisters to caller-
saved rather than callee-saved hard registers. (We’d like to use as few callee-saved registers as possible, to avoid
the cost of saving and restoring them.) When chosen_node represents a callee-saved hard register, we’ll assign it

the available color with the highest number. Otherwise, we assign it the lowest-numbered available color. Using
this strategy, the coloring algorithm will tend to assign higher-numbered colors to callee-saved registers and
lower-numbered colors to caller-saved registers and pseudoregisters. A pseudoregister will end up with a higher-
numbered color only when there are no lower-numbered colors available (for example, because it conflicts with
every caller-saved register). Once we’ve picked a color, we set the pruned attribute back to False. This isn’t

strictly necessary, because we won’t use this attribute again, but it marks that we’ve put the node back in the
graph.

If there are no colors left in the list, we’ll have to spill chosen_node. Concretely, this just means we won’t assign

it a color. We also won’t update its pruned attribute, since we aren’t putting this node back in the graph. Note

that we don’t explicitly push nodes onto a stack or pop them off afterward. Our recursive algorithm naturally
colors nodes in the correct order, starting with the last node we pruned.

Building the Register Map and Rewriting the Function Body

Once we’ve colored the graph, the rest of the register allocator is pretty simple. We’ll build a map from
pseudoregisters to hard registers, which we’ll use to replace the pseudoregisters in our assembly code. As we
build this map, we’ll also keep track of which callee-saved registers we’ve allocated so that we can save and
restore them in the instruction fix-up pass. Listing 20-25 demonstrates how to construct the map.

create_register_map(colored_graph):

 // build map from colors to hard registers
 color_map = <empty map>
 for node in colored_graph.nodes:
 match node.id with
 | Reg(r) ->
 color_map.add(node.color, r)
 | Pseudo(p) -> continue

 // build map from pseudoregisters to hard registers
 register_map = <empty map>
 callee_saved_regs = {}
 for node in colored_graph.nodes:
 match node.id with
 | Pseudo(p) ->
 if node.color is not null:
 ❶ hardreg = color_map.get(node.color)
 register_map.add(p, hardreg)
 if hardreg is callee saved:
 ❷ callee_saved_regs.add(hardreg)
 | Reg(r) -> continue

 ❸ record_callee_saved_regs(<current function name>, callee_saved_regs)

 return register_map

Listing 20-25: Building a map from pseudoregisters to hard registers

First, we’ll iterate through the hard registers in the graph, building up a map from colors to hard registers.
Remember that we’ll have a 1:1 mapping between colors and hard registers because each of the k hard registers
must be assigned a different one of the k possible colors. Next, we’ll iterate through all the pseudoregisters. If a
pseudoregister was assigned a color, we’ll map it to the hard register with the same color, which we can find in
color_map ❶. If a pseudoregister wasn’t assigned a color, we won’t add it to the map.

As we build up register_map, we also track the set of callee-saved registers this function will use. Whenever we

add a mapping from a pseudoregister to a callee-saved hard register, we’ll add the hard register to this set ❷.
We’ll record each function’s callee_saved_regs set so that we can pass that information on to the instruction

fix-up phase ❸. (This listing doesn’t specify where to record that information; you can add it to the function

definition itself, the backend symbol table, or some other data structure, depending on what’s most convenient.)
We can skip this step when we allocate XMM registers, because none of the XMM registers are callee-saved.

Finally, we’ll rewrite the assembly code. We’ll replace each pseudoregister in each instruction with the
corresponding hard register from the register map. If a pseudoregister is missing from the map, we won’t replace
it. While we’re at it, we’ll remove any mov instruction whose source and destination ended up in the same hard

register. For instance, if we’ve mapped both tmp1 and tmp2 to EAX, we can rewrite

my_fun:
 movl %edi, %tmp1
 addl $5, %tmp1
 ❶ movl %tmp1, %tmp2
 ❷ movl %tmp2, %eax
 ret

as:

my_fun:
 movl %edi, %eax
 addl $5, %eax
 ret

Both ❶ and ❷ would be rewritten as movl %eax, %eax, which doesn’t do anything, so we can drop them both

from the final assembly program.

This bit of cleanup where we delete unnecessary mov instructions is related to register coalescing, which we’ll

implement later in this chapter. But there are some important differences. The register coalescing step will
deliberately merge together registers connected by a mov, like tmp1 and tmp2, then delete the mov instructions

between them. This whole process will happen before we color the rest of the graph. What we’re doing here is
much simpler; we’re not trying to merge registers, but if we happen to assign both operands of a mov instruction

the same color, we’ll take advantage of it.

Even once we implement register coalescing, this post-coloring cleanup will still be useful. As we’ll see, the
register coalescing pass isn’t perfect; sometimes it will miss a pair of registers that it would have been helpful to
coalesce. If we get lucky and assign that pair of registers the same color, this final step will still be able to delete
mov instructions between them.

At this point, we have a working register allocator! We just need to update the instruction fix-up and code
emission passes before we test it out.

Instruction Fix-Up with Callee-Saved Registers

If a function uses any callee-saved registers, we need to save their values at the start of the function and restore
them at the end. We’ll save them by pushing them onto the stack on top of the rest of the current stack frame.
For example, if a function needs 16 bytes of stack space for local variables and uses R12 and R13, we’ll insert the
following three instructions at the very beginning of the function body:

Binary(Sub, Quadword, Imm(16), Reg(SP))
Push(Reg(R12))
Push(Reg(R13))

The initial Sub instruction allocates the current stack frame, just like in earlier chapters. The new Push instructions

come immediately after it. (If you skipped Part II, the first instruction will be AllocateStack rather than Sub.)

Before we return, we’ll restore the values of these registers by popping them off the stack. That is, we’ll rewrite
each Ret instruction in this function as:

Pop(R13)
Pop(R12)
Ret

We can push callee-saved registers onto the stack in any order, but we’ll always need to pop them back off in the
reverse order so that each register ends up with its original value. Since we add the rest of the function epilogue
during code emission, we’ll end up deallocating the stack frame just after restoring the callee-saved registers:

popq %r13
popq %r12
movq %rbp, %rsp
popq %rbp
ret

We also need to ensure that the entire stack frame, including the values of any callee-saved registers that we save
to the stack, is 16-byte aligned. Suppose the pseudo-operand replacement pass has allocated 20 bytes of stack
space to store local variables in a particular function. We’d normally subtract 32 bytes from RSP to maintain the
proper stack alignment. But if the function uses a single callee-saved register, we should initially subtract 24 bytes
instead:

Binary(Sub, Quadword, Imm(24), Reg(SP))
Push(Reg(BX))

If we subtract 24 bytes from RSP explicitly and subtract another 8 bytes by pushing RBX, we still end up
subtracting a total of 32 bytes, so the stack will be properly aligned. Listing 20-26 demonstrates one way to
perform this tricky calculation.

calculate_stack_adjustment(bytes_for_locals, callee_saved_count):
 callee_saved_bytes = 8 * callee_saved_count
 total_stack_bytes = callee_saved_bytes + bytes_for_locals
 ❶ adjusted_stack_bytes = round_up(total_stack_bytes, 16)
 ❷ stack_adjustment = adjusted_stack_bytes - callee_saved_bytes
 return stack_adjustment

Listing 20-26: The stack space calculation that accounts for callee-saved registers

In this listing, bytes_for_locals is the number of bytes of stack space we allocated during pseudo-operand

replacement, and callee_saved_count is the number of callee-saved registers the function uses. We start by

calculating how many bytes the callee-saved values will occupy. Then, we add this to bytes_for_locals and

round up to the nearest multiple of 16 to get the total size of the stack frame ❶. Working backward from this
value, we subtract the number of bytes the callee-saved values will occupy to find the number of bytes we need to
explicitly subtract from RSP ❷.

Code Emission

Finally, we’ll update the code emission pass to handle the pop instruction and all the new registers we added in

this chapter. Like push, pop will always use the 8-byte names for registers. Tables 20-4 and 20-5 describe how to

print out these constructs. (I haven’t bolded new and changed constructs like I did in most code emission tables in
earlier chapters, because all of these constructs are new.) For a summary of the complete code emission pass at
the end of this chapter, see Appendix B, which includes two sets of code emission tables for Part III: one with the
features from Part II and one without them.

Table 20-4: Formatting Assembly Instructions

Assembly instruction Output

Pop(reg) popq <reg>

Table 20-5: Formatting Assembly Operands

Assembly operand Output

Reg(BX) 8-byte %rbx

4-byte %ebx

1-byte %bl

Reg(R12) 8-byte %r12

4-byte %r12d

1-byte %r12b

Reg(R13) 8-byte %r13

4-byte %r13d

1-byte %r13b

Reg(R14) 8-byte %r14

4-byte %r14d

1-byte %r14b

Reg(R15) 8-byte %r15

4-byte %r15d

1-byte %r15b

Reg(XMM8) %xmm8

Reg(XMM9) %xmm9

Reg(XMM10) %xmm10

Reg(XMM11) %xmm11

Assembly operand Output

Reg(XMM12) %xmm12

Reg(XMM13) %xmm13

Now you’re ready to try out your register allocator on some real programs!

TEST THE BASIC REGISTER ALLOCATOR

If you completed only Part I, test out your register allocator with the following command:

$./test_compiler /path/to/your_compiler --chapter 20 --no-coalescing
--int-only

This will run all the test programs in tests/chapter_20/int_only, all the tests from Part I, and all the Part I–specific
tests from Chapter 19. It will also inspect the assembly output for the test programs in
tests/chapter_20/int_only/no _coalescing to make sure that your compiler doesn’t spill registers unnecessarily.

If you completed Parts I and II, run the same command without the --int-only option:

$./test_compiler /path/to/your_compiler --chapter 20 --no-coalescing

There are a couple of things you should know about this chapter’s tests. First, many of them are designed to
produce specific interference graphs or use every hard register. If your compiler generates different assembly code
or includes extra optimizations beyond what this book covers, these tests may not cover the edge cases they’re
intended to target, so you should write your own unit tests too.

Second, if your code to recognize interference is buggy, the test suite might not catch those bugs until you
implement register coalescing. Several tests include pairs of registers that could be coalesced, except that they
interfere in some specific way. Once you’ve implemented coalescing, your allocator must recognize that they
interfere to avoid coalescing them. Without coalescing, the test suite can’t reliably detect this sort of bug; even if
your allocator doesn’t know that two registers interfere, it might still get lucky and assign them different colors. To
thoroughly test your register allocator before you move on to coalescing, you might want to write your own unit
tests for the code that builds the interference graph.

Third, the test commands in this chapter always compile test programs with the optimizations from Chapter 19
enabled. This doesn’t have any particular implications; it’s just something to be aware of while you’re debugging
your tests.

Register Coalescing

Our register allocator already works correctly. But as we saw in the example at the start of the chapter, it will
produce even more efficient code if we include a coalescing step. That early example also gave us a general sense
of how this process works: we look at each mov instruction that copies a value from one register to another and

decide whether to coalesce its source and destination. Once we’ve made these decisions, we rewrite the assembly
code, replacing the registers we coalesced and deleting any mov instructions that we no longer need.

To decide which registers to coalesce, we’ll consult the interference graph. We’ll coalesce a pair of registers when
two conditions are met. The first condition is obvious: the registers can’t interfere with each other. The example
from Listing 20-13, reproduced here, illustrates why this condition is necessary:

movl $1, %y
movl %y, %x
addl $1, %y
addl %x, %y

Since we update y while x is live, these two registers interfere. If we coalesced them, the first add instruction

would clobber x, and we’d end up calculating 2 + 2 instead of 1 + 2.

The second condition is subtler: we’ll coalesce a pair of registers only if that won’t force us to spill more registers.
To understand why coalescing can lead to spills, let’s look at Listing 20-27.

f:
 movl %edi, %arg
 movl %arg, %tmp
 addl $1, %tmp
 imull %arg, %tmp
 movl $10, %eax
 subl %tmp, %eax
 ret

Listing 20-27: An assembly function where coalescing would cause a spill

This assembly function calculates 10 - (arg + 1) * arg. For this example, we’ll pretend that EDI and EAX are

the only available hard registers, so k is 2. Figure 20-15 shows this listing’s interference graph, which is clearly 2-
colorable.

Figure 20-15: The interference graph for Listing 20-27 Description

The first mov instruction in Listing 20-27 looks like a possible candidate for coalescing. (The second instruction

isn’t, since arg and tmp interfere.) But if we try to coalesce arg into EDI, we’ll run into trouble. We’ll end up with

the assembly code in Listing 20-28.

f:
 movl %edi, %tmp
 addl $1, %tmp
 imull %edi, %tmp
 movl $10, %eax
 subl %tmp, %eax
 ret

Listing 20-28: Listing 20-27 after coalescing arg into EDI

Figure 20-16 shows the interference graph for this coalesced code.

Figure 20-16: The interference graph for Listing 20-28 Description

Now we can’t 2-color the graph anymore. Since tmp interferes with both hard registers, we’ll have to spill it.

Instead of improving performance, we’ve made it worse! The cost of spilling tmp to memory outweighs the benefit

of removing a single mov instruction. To avoid this situation, we’ll use a strategy called conservative coalescing:

we’ll coalesce two registers only when we can tell in advance that it won’t make the interference graph harder to
color. But before we dig into conservative coalescing, we need to learn how to keep the graph up to date.

Updating the Interference Graph

Whenever we decide to coalesce a pair of registers, we need to update the interference graph. Otherwise, we’ll
make later coalescing decisions based on bad information. There are two ways to perform this update. The first is
to rewrite the assembly code immediately and rebuild the graph from scratch. The problem with this approach is
that building the interference graph is slow. We might coalesce dozens or even hundreds of mov instructions in a

single function, but we can’t afford to rebuild the interference graph hundreds of times.

A much quicker approach is to merge the two nodes together in the existing interference graph, without referring
back to the assembly code. In Figure 20-17, we use this approach to coalesce the pseudoregister tmp2 into EAX.

Figure 20-17: Updating the interference graph to reflect coalescing decisions Description

We’ll assume that any register that originally interfered with tmp2 now interferes with EAX. To make the

interference graph reflect this change, we just add an edge from each of tmp2’s neighbors to EAX and then

remove tmp2.

But this way of updating the graph has a problem too: it’s not always accurate! It might include some extra edges
between registers that don’t really interfere. Listing 20-29 gives a slightly contrived example.

f:
 movl %edi, %tmp1
 movl %edi, %tmp2
 addl %tmp1, %tmp2
 movl %tmp2, %eax
 ret

Listing 20-29: A function that copies its first argument into two different pseudoregisters

Note that tmp1 and tmp2 interfere: the second mov instruction updates tmp2 while tmp1 is still live. Let’s try to

coalesce tmp1 into EDI and use our speedy, simple method to update the graph accordingly. Figure 20-18 shows

how the graph will change.

Figure 20-18: Updating the interference graph for Listing 20-29 Description

But when we actually replace tmp1 with EDI, we’ll find that the interference with tmp2 goes away! Listing 20-30

shows the updated assembly code.

f:
 movl %edi, %tmp2
 addl %edi, %tmp2
 movl %tmp2, %eax
 ret

Listing 20-30: Listing 20-29 after coalescing tmp1 into EDI

We learned earlier that the instruction mov src, dst will never make src and dst interfere. Initially, the

instruction movl %edi, %tmp2 caused an interference between tmp1 and tmp2. Now that we’ve merged tmp1

into EDI, it doesn’t cause an interference anymore.

Even though it isn’t completely accurate, our quick update method is still useful. It produces a conservative
approximation of the true interference graph; it has all the nodes and edges that should be in the graph, but it
might have a few extra edges too. If this graph tells us that two registers are safe to coalesce, we can be sure
they really are. But if we rely solely on this method, we’ll leave some coalescing opportunities on the table. If, for
instance, we only look at the graph in Figure 20-18, we won’t realize that we can coalesce tmp2 into EDI. Worse,

if we attempted to color this graph, we might end up spilling registers unnecessarily.

So, we’ll use both approaches to update the graph. Each time we decide to coalesce a pair of registers, we’ll
perform a quick update by merging their nodes together. Then, after we’ve looked at every mov instruction and

rewritten the assembly code, we’ll rebuild the graph from scratch. We’ll repeat this build-coalesce loop until we
can’t find any more registers to coalesce. Combining a speedy, approximate inner loop with a slow, precise outer
loop gives us the best of both worlds. We’ll catch every coalescing opportunity and send an accurate interference
graph on to the coloring stage, but we won’t waste time rebuilding the graph after every single coalescing
decision.

Conservative Coalescing

Now that we understand how coalescing changes the graph, we can reason about when it might lead to spills. The
basic issue is that when we coalesce two nodes, the merged node will have a higher degree than either of them,
which could make it more difficult to prune. It’s also likely to have a higher spill cost than either of the original
nodes, since it’s used more frequently.

We’ll use two conservative coalescing tests to ensure that a merged node doesn’t cause problems when we color
the graph. The Briggs test guarantees that we won’t spill the merged node. The George test guarantees that we
won’t spill any other nodes unless they were already potential spill candidates in the original graph. We’ll only
coalesce two pseudoregisters if they pass the Briggs test. We’ll coalesce a pseudoregister into a hard register if
the two registers pass either test; we can be more permissive in this case because we already know that the hard
register won’t spill. Both tests are named after the people who invented them; you can find links to the papers
that first proposed them in “Additional Resources” on page 669.

It’s worth clarifying exactly what the conservative coalescing tests guarantee, because it’s a little unintuitive. If you
could completely prune the original graph without ever having to choose a spill candidate, these tests guarantee
that the same will be true for the coalesced graph. In this case, we can say for sure that coalescing won’t cause
any spills.

But if you couldn’t totally prune the original graph, it’s harder to predict the impact of coalescing, because a lot of
what happens after you pick a spill candidate comes down to chance. We saw an example of this earlier in the
chapter, when we tried to color the graph in Figure 20-12; pruning nodes in a different order made the difference

between being able to color a spill candidate and actually spilling it. Coalescing registers can have similar ripple
effects. If we’re unlucky, these effects might lead to a spill that we otherwise would have avoided.

In other words, if coloring the original graph required us to choose a spill candidate, coloring the coalesced graph
might too—and at that point, it’s impossible to say with any certainty what’s going to happen. In this case, the
conservative coalescing tests still give us two valuable guarantees. First, the coalesced node itself won’t spill.
Second, at the point where we get stuck and have to choose our first spill candidate, every node’s degree will be
the same or lower than it would have been when we got stuck if we hadn’t performed coalescing. This means
that, on balance, we’re likely to successfully prune more nodes and spill fewer than we would have without
coalescing.

Now we’ll take a closer look at the Briggs and George tests. We’ll define both of them and walk through some
examples that demonstrate why they work.

The Briggs Test

Remember that a node has significant degree if it has k or more neighbors. The Briggs test allows us to merge
two nodes if the merged node will have fewer than k neighbors with significant degree. When we color the graph,
we’ll be able to prune every neighbor with insignificant degree. The merged node itself will then have insignificant
degree—it will have fewer than k neighbors left—so we’ll be able to prune that node too.

Let’s look at an example. Consider the interference graph in Figure 20-19.

Figure 20-19: An interference graph before coalescing Description

Our coloring algorithm can prune this entire graph without any difficulty. Now let’s apply the Briggs test to see if
we can coalesce x into y. Figure 20-20 shows how the graph will look once we merge these two nodes together.

Figure 20-20: The graph in Figure 20-19 after merging x into y Description

After coalescing, y will have four neighbors: a, z, ESI, and EDI. Only two of these nodes, ESI and EDI, have

significant degree. Since k is 3, this example passes the Briggs test. And in fact, we’ll be able to prune y after

we’ve pruned a and z, then finish pruning the rest of the graph like we did before.

Next, let’s look at a case that fails the Briggs test. The graph in Figure 20-21 is almost identical to the one in
Figure 20-19, except for an extra edge from a to EDI.

Figure 20-21: A variation on the graph in Figure 20-19 where x and y can no longer be coalesced Description

Even with this extra edge, our coloring algorithm can still prune the whole graph. But Figure 20-22 shows what
happens when we coalesce x into y this time around.

Figure 20-22: The graph in Figure 20-21 after merging x into y Description

Now y has three neighbors with significant degree: ESI, EDI, and a. This example fails the Briggs test, and y

really is impossible to prune. After we prune z and EAX we’ll get stuck, and we’ll be forced to choose y or a as a

spill candidate.

As these examples show us, the Briggs test stops us from transforming a colorable graph into an uncolorable one.
It also gives us another guarantee: we’ll never coalesce two nodes if the resulting node might spill. Take a look at
Figure 20-23.

Figure 20-23: An interference graph where we can’t coalesce tmp1 and tmp2 Description

Suppose we want to coalesce tmp2 into tmp1. This clearly won’t make the graph harder to color; it will have the

same effect on the interference graph as removing tmp2 entirely. But coalescing these nodes is a bad idea for

another reason. We won’t be able to color tmp1 whether we coalesce it with tmp2 or not, so coalescing will just

make things worse by increasing tmp1’s spill cost.

This example fails the Briggs test, since tmp1 will have three neighbors with significant degree after coalescing

(just like it did before coalescing). If we might not be able to color it, the Briggs test won’t let us coalesce it.

Finally, let’s tweak this example to illustrate one of the limits of the Briggs test. Imagine that we want to coalesce
tmp2 into EDI instead of tmp1. Like in our previous example, this won’t make the graph harder to color. And this

also fails the Briggs test, because EDI will have three neighbors with significant degree. But there’s one important

difference: as a hard register, EDI can’t spill. This means that there’s no downside to coalescing tmp2 into EDI; it

won’t force us to spill EDI, and it won’t make other nodes harder to color either. In cases like this, we’ll use the
George test to find coalescing opportunities that the Briggs test misses.

The George Test

When we coalesce a pseudoregister with a hard register, we know the coalesced register can’t spill. Instead, we’re
worried about a slightly different outcome: if the hard register becomes more difficult to prune, its neighbors could
become harder to prune too. Ultimately, this change could force us to spill nodes that we were able to color
before. In cases that involve a hard register, we’ll use both the Briggs test and the George test to identify as many
coalescing opportunities as possible. The Briggs test proves that we can prune the merged node, so it won’t
interfere with attempts to color other nodes. The George test proves that we won’t make the merged node’s
neighbors harder to prune (and therefore won’t make those nodes or the rest of the graph more difficult to color),
even if we can’t prune the merged node itself. We can coalesce a pair of nodes that passes either of these tests.

The George test says that you can coalesce a pseudoregister p into a hard register h if each of p’s neighbors
meets either of two conditions:

1. It has fewer than k neighbors.
2. It already interferes with h.

If a neighbor meets the first condition, we’ll definitely be able to prune it when we color the graph. If it meets the
second condition, it will have exactly the same neighbors as before (except for p) after coalescing, so we won’t
have made it any harder to prune; if anything, we might have made it easier.

Coalescing h and p won’t make any of h’s neighbors harder to prune, either. The only way it could do that would
be by preventing us from pruning h itself, but any new neighbors that h acquires through coalescing will have
insignificant degree, so they won’t affect our ability to prune it.

Let’s take another look at the graph from Figure 20-23 to see why this works:

Earlier, we decided that coalescing tmp2 into EDI was safe, because EDI couldn’t spill and this change wouldn’t

make any of the other nodes harder to color. But we also saw that this case failed the Briggs test, since EDI would
then have three neighbors with significant degree. Now we’ll try the George test instead. This test will pass, since
both neighbors of tmp2 already interfere with EDI. Our allocator will coalesce tmp2 into EDI, since it coalesces

moves that pass either of our two tests.

For our last example, let’s revisit the graph from Figure 20-15:

The last time we looked at this graph, we were considering whether to coalesce arg into EDI. Now we know that

we shouldn’t coalesce them, because this case doesn’t pass either of our two tests. It fails the Briggs test because
the coalesced node would have two neighbors with significant degree, tmp and EAX. It also fails the George test;

arg’s one neighbor, tmp, has significant degree and doesn’t interfere with EDI. The George test tells us that tmp

might become harder to color if we made this change; we’d be making it interfere with an additional register, and
we don’t know what impact that would have. In this small example, we can tell by looking at the graph that tmp

actually would be harder to color if we coalesced arg into EDI, since it would interfere with both hard registers.

There’s one ugly detail about the George test that I want to mention. Remember that we’re using a quick,
approximate method to update the graph after each coalescing decision. This approximate method might leave
edges in the graph between registers that do not, in fact, interfere. As a result, when applying the George test to
registers p and h, we might think that some neighbor n of p also interferes with h when it actually doesn’t. We
might then incorrectly conclude that p and h pass the George test and coalesce them.

That sounds pretty bad, but it only slightly weakens the guarantee that the George test provides. Earlier, I claimed
that the George test guarantees that we won’t make the merged node’s neighbors harder to prune. It actually
guarantees that we won’t make them harder to prune than they were before we started the current round of
coalescing—that is, the last time we rebuilt the interference graph from scratch.

This weaker guarantee still holds because our approximate graph will include an edge between n and h only if n
did interfere with h when we built the interference graph, but some earlier coalescing decision removed that
interference. Essentially, if an earlier coalescing decision made n or h easier to prune by removing the edge
between them, we might accidentally make them more difficult to prune again by putting that edge back.
However, we’ll never make things worse than they were before the current round of coalescing. (It’s also worth
keeping in mind that the purpose of the Briggs and George tests is to improve performance, not to guarantee
correctness; even a “bad” coalescing decision that fails both tests won’t change the program’s observable
behavior.)

THE LIMITS OF THE BRIGGS AND GEORGE TESTS

The Briggs and George tests share a basic limitation: they both guess whether a node can be pruned by
examining only the node and its neighbors, without considering its neighbors’ neighbors, and their neighbors, and
so on. That’s not always enough information to recognize that we’ll eventually be able to prune a node. The
following interference graph illustrates the problem: it fails the Briggs test even though coalescing would be safe.

Description

This graph is identical to the one in Figure 20-19, which we looked at when we discussed the Briggs test earlier,
except that we’ve given a some extra neighbors. These extra neighbors don’t impact our ability to color the graph,

since we can prune all of them right away. Now let’s try to coalesce x into y.

Description

It’s easy to see that this graph is still colorable. However, it fails the Briggs test because y now has three

neighbors with significant degree: ESI, EDI, and a. If the test went one step further, we would see that ESI, EDI,

and a themselves all have fewer than three neighbors with significant degree, so we’ll be able to prune all of them

—but it doesn’t. Instead, it stops after considering y’s immediate neighbors. The George test has exactly the same

issue: it gets tripped up by nodes that have lots of neighbors to start with but that would have fewer than k
neighbors after a few rounds of pruning.

The same paper that introduced the George test proposed an algorithm called iterated register coalescing to
overcome this limitation. The gist of this technique is that you can alternate between pruning the graph and
coalescing. After a round of pruning, the Briggs and George tests can often identify coalescing opportunities that
they couldn’t find before. For example, we could prune the nodes with insignificant degree from the first
interference graph in this box and then apply the Briggs test to coalesce x and y. Iterated register coalescing is

still a conservative approach, so it won’t find every single coalescing opportunity, but it will catch many
opportunities that our simpler strategy misses.

We’ve looked at both conservative coalescing tests, what guarantees they provide, and why they work. Now we
just have to implement them.

Implementing Register Coalescing

Our first task is to add the build-coalesce loop to the top-level register allocation algorithm. Listing 20-31 gives the
updated algorithm, with this addition bolded.

allocate_registers(instructions):
 while True:
 interference_graph = build_graph(instructions)
 coalesced_regs = coalesce(interference_graph, instructions)
 if nothing_was_coalesced(coalesced_regs):
 break
 instructions = rewrite_coalesced(instructions, coalesced_regs)
 add_spill_costs(interference_graph, instructions)
 color_graph(interference_graph)
 register_map = create_register_map(interference_graph)
 transformed_instructions = replace_pseudoregs(instructions, register_map)
 return transformed_instructions

Listing 20-31: Adding register coalescing to the top-level register allocation algorithm

Within this loop, we build the interference graph, then look for registers to coalesce. If we find any, we rewrite the
assembly code and start the whole process again. Otherwise, we exit the loop and run the rest of the allocator as
usual.

We record which registers we’ve coalesced together in coalesced_regs, which is a disjoint-set data structure.

Let’s write a simple implementation of this data structure; then we’ll define the coalesce and

rewrite_coalesced functions.

Disjoint Sets

As the name suggests, a disjoint-set data structure represents multiple disjoint sets of values. Each set is
identified by one representative member. Disjoint sets support two operations: union merges two sets, and find

looks up the representative member of a set. In our case, the values in each set are Reg and Pseudo operands.

Initially, each register is in a set by itself. As we coalesce registers, we’ll use the union operation to merge these

sets together. When we rewrite the assembly code, we’ll use find to replace each register with the representative

member of its set.

There are a few different ways to implement disjoint sets. We’ll use a simple implementation that’s easy to
understand. Listing 20-32 defines our implementation.

init_disjoint_sets():
 ❶ return <empty map>

union(x, y, reg_map):
 ❷ reg_map.add(x, y)

find(r, reg_map):
 ❸ if r is in reg_map:
 result = reg_map.get(r)
 ❹ return find(result, reg_map)
 return r

nothing_was_coalesced(reg_map):
 ❺ if reg_map is empty:
 return True
 return False

Listing 20-32: A basic implementation of disjoint sets

We use a map to track which sets have been merged together. At first, this map is empty ❶. To merge two sets
whose representative members are x and y, the union operation inserts a mapping from x to y ❷. This makes y

the representative member of the new set. When we coalesce a pseudoregister into a hard register, it’s important
to make the hard register the set’s representative member; we don’t want to replace hard registers with
pseudoregisters when we rewrite the code later on.

To look up the representative member of the set that contains the register r, the find operation first checks

whether r maps to some other register ❸. If it doesn’t, r itself is the representative member of its set, so we

return it. Otherwise, looking it up in the map will give us result, which is the register we merged r into

previously. We then call find recursively ❹, which leads us up the chain of mappings from r to its representative

member. For example, if we’ve merged a into b and then merged b into c, we’ll follow the mappings from a to b

to c to determine that c is the representative member for a.

The last operation we define in this listing is nothing_was_coalesced, which just checks whether the map is

empty ❺.

The coalesce Function

The coalesce function will look at each mov instruction in the assembly code, deciding which registers to

coalesce and keeping track of those decisions in the disjoint-set structure we just defined. Let’s walk through
Listing 20-33, which gives the pseudocode for this function.

coalesce(graph, instructions):
 coalesced_regs = init_disjoint_sets()

 for i in instructions:
 match i with
 | Mov(src, dst) ->
 ❶ src = find(src, coalesced_regs)
 dst = find(dst, coalesced_regs)

 ❷ if (src is in graph
 and dst is in graph
 and src != dst
 ❸ and (not are_neighbors(graph, src, dst))
 ❹ and conservative_coalesceable(graph, src, dst)):

 if src is a hard register:
 to_keep = src
 to_merge = dst
 else:
 to_keep = dst
 to_merge = src

 ❺ union(to_merge, to_keep, coalesced_regs)
 update_graph(graph, to_merge, to_keep)

 | _ -> continue

 return coalesced_regs

Listing 20-33: Deciding which registers to coalesce

We start by initializing a new disjoint-set structure, coalesced_regs, to track which registers we’ve coalesced.

Then, we iterate through the instruction list. When we hit a Mov instruction, we use find to look up its current

source and destination ❶, since we might have coalesced src and dst into other registers already. Note that

these operands might be constants or memory addresses instead of registers. This is fine; if there’s no mapping
for x in coalesced_regs, find(x, coalesced_regs) just returns x, regardless of whether x is a register or

some other kind of operand.

Next, we decide whether to coalesce the instruction’s source and destination ❷. First, we check whether they’re
both in the interference graph. (This stops us from trying to coalesce constants or memory operands.) We then
make sure they’re two different registers, since there’s no reason to coalesce a register with itself. If these checks
pass, we test the two conditions we learned about earlier: src and dst must not interfere ❸, and coalescing them

must not make the graph harder to color ❹. We check the second of these conditions with the
conservative_coalesceable function, which we’ll come back to in a moment.

If src and dst meet all these conditions, we’ll coalesce them! Now we have to figure out which one to keep in the

assembly code and which one to replace. If either operand is a hard register, we’ll keep that one and replace the
other one. If they’re both pseudoregisters, we’ll arbitrarily choose to keep dst. We call union to actually coalesce

these registers ❺, then we update the interference graph. Listing 20-34 defines the function that performs this
update.

update_graph(graph, x, y):

 node_to_remove = get_node_by_id(graph, x)
 for neighbor in node_to_remove.neighbors:
 add_edge(graph, y, neighbor)
 remove_edge(graph, x, neighbor)

 remove_node_by_id(graph, x)

Listing 20-34: Updating the interference graph

This function takes each of x’s neighbors, removes its edge to x, and adds an edge to y instead. Then, it removes

x from the graph.

The conservative_coalesceable Function

Now that the rest of coalesce is in place, let’s take a look at Listing 20-35, which defines the conservative

coalescing tests.

conservative_coalesceable(graph, src, dst):
 ❶ if briggs_test(graph, src, dst):
 return True
 ❷ if src is a hard register:
 return george_test(graph, src, dst)
 if dst is a hard register:
 return george_test(graph, dst, src)
 return False

briggs_test(graph, x, y):
 significant_neighbors = 0

 x_node = get_node_by_id(graph, x)
 y_node = get_node_by_id(graph, y)

 combined_neighbors = set(x_node.neighbors)
 combined_neighbors.add_all(y_node.neighbors)
 for n in combined_neighbors:
 neighbor_node = get_node_by_id(graph, n)
 ❸ degree = length(neighbor_node.neighbors)
 if are_neighbors(graph, n, x) and are_neighbors(graph, n, y):

 ❹ degree -= 1
 if degree >= k:
 significant_neighbors += 1

 ❺ return (significant_neighbors < k)

george_test(graph, hardreg, pseudoreg):
 pseudo_node = get_node_by_id(graph, pseudoreg)
 for n in pseudo_node.neighbors:
 ❻ if are_neighbors(graph, n, hardreg):
 continue

 neighbor_node = get_node_by_id(graph, n)
 ❼ if length(neighbor_node.neighbors) < k:
 continue

 return False
 return True

Listing 20-35: The conservative coalescing tests

In conservative_coalesceable, we try the Briggs test first ❶. Then, if the Briggs test fails and either src or

dst is a hard register, we try the George test ❷. When we use the George test, we’ll make sure to pass the hard

register as its first argument and the pseudoregister as its second, since it doesn’t treat these registers
interchangeably.

To apply the Briggs test, we first construct combined_neighbors, which is the set of nodes that interfere with

either x or y. We then iterate through this set, looking up each neighbor’s degree ❸. If a node interferes with both

of them, coalescing x and y would decrease its degree by one, so we adjust degree accordingly ❹. We’ll return

True if fewer than k of the nodes in combined_neighbors have significant degree ❺.

To apply the George test, we iterate through the pseudoregister’s neighbors, making sure each one either
interferes with the hard register ❻ or has insignificant degree ❼. If we find a neighbor that doesn’t satisfy either
condition, we’ll return False. If every neighbor meets both conditions, we’ll return True.

The rewrite_coalesced Function

We’ll wrap up by rewriting the assembly code. Listing 20-36 gives the pseudocode for this step.

rewrite_coalesced(instructions, coalesced_regs):
 new_instructions = []
 for i in instructions:
 match i with
 | Mov(src, dst) ->

 src = find(src, coalesced_regs)
 dst = find(dst, coalesced_regs)
 ❶ if src != dst:
 new_instructions.append(Mov(src, dst))
 | Binary(op, src, dst) ->
 src = find(src, coalesced_regs)
 dst = find(dst, coalesced_regs)
 new_instructions.append(Binary(op, src, dst))
 | --snip--

 return new_instructions

Listing 20-36: Rewriting instructions after deciding which registers to coalesce

We use the find operation to replace each operand in each instruction. (Here, like in coalesce, we rely on find

to handle non-registers correctly.) If a Mov instruction’s updated source and destination are the same, we’ll omit

the instruction from the rewritten code ❶. As a side benefit, this will also remove any Mov instructions that were

redundant before we coalesced registers.

And with that, you’ve finished your register allocator! We don’t need to change any other passes, so you can go
ahead and test it out.

TEST THE WHOLE COMPILER

If you completed only Part I, run:

$./test_compiler /path/to/your_compiler --chapter 20 --int-only

If you also completed Part II, run:

$./test_compiler /path/to/your_compiler --chapter 20

These commands run the same test programs as the earlier commands with the --no-coalescing option, and

they perform the same validation, except that they also validate the assembly output for the programs in
tests/chapter_20/int_only/with_coalescing and (for the second command)
tests/chapter_20/all_types/with_coalescing to make sure you’re coalescing registers properly.

Summary

In this chapter, you built a register allocator. You used everything you’d already learned about liveness analysis to
build an interference graph, and then you implemented a classic graph coloring algorithm to color it. You
introduced callee-saved registers and learned how to save and restore them. Then, you used register coalescing to
clean up the mess that earlier stages of the compiler left behind. You’ve written your last optimization and
completed the project!

Over the course of this book, you’ve built an impressive piece of software: an optimizing compiler for a substantial
chunk of the C language. You’ve covered a lot of ground, from the intricacies of the C standard to the gory details
of the System V calling convention to the fundamentals of data-flow analysis. But if you want to push your
compiler even further, you have plenty of options. I’ll close out this part of the book with a few ideas for what to
work on next.

Additional Resources

The register allocator you built in this chapter uses a simplified version of the classic Chaitin-Briggs algorithm. This
section tells you where to find the original papers about this algorithm, a couple of textbook chapters that present
them in a more approachable way, and some other useful references on more specific topics.

Key papers

“Register Allocation via Coloring,” a 1981 paper by Gregory Chaitin et al., described the original graph coloring
register allocator (https://doi.org/10.1016/0096-0551(81)90048-5). It introduced most of the fundamental
concepts in this chapter, including how to build and color an interference graph.
Chaitin published an updated description of the same allocator, “Register Allocation & Spilling via Graph
Coloring,” in 1982 (https://doi.org/10.1145/872726.806984).
“Improvements to Graph Coloring Register Allocation,” a 1994 paper by Preston Briggs, Keith Cooper, and
Linda Torczon, describes an improved version of Chaitin’s design (https://doi.org/10.1145/177492.177575).
The name Chaitin-Briggs refers to this improved algorithm. This paper presented the technique of putting spill
candidates on the stack and trying to color them later instead of spilling them immediately. (Briggs et al. call
this technique optimistic coloring.) It also introduced the Briggs test and the general concept of conservative
coalescing; Chaitin’s original design coalesced aggressively, even when it made the graph harder to color. This
paper described some techniques that we didn’t cover in this chapter, like rematerialization, as well.

Textbook chapters

Chapter 16 of Steven Muchnick’s Advanced Compiler Design and Implementation (Morgan Kaufmann, 1997)
presents a register allocator that uses an algorithm similar to Chaitin-Briggs. The most notable difference is
that it doesn’t use conservative coalescing; like Chaitin’s original allocator, it coalesces aggressively. I found
Muchnick’s explanations of how to include hard registers in the interference graph, how to detect interference,
and the overall structure of the allocator especially useful.

https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/872726.806984
https://doi.org/10.1145/177492.177575

Chapter 13 of Keith Cooper and Linda Torczon’s Engineering a Compiler, 2nd edition (Morgan Kaufmann,
2011), provides an excellent overview of a wide range of approaches to register allocation, including the
Chaitin-Briggs algorithm and several others that we didn’t discuss here. I’ve drawn on their definition of
interference and their discussion of how to update the interference graph while coalescing; they provide a
particularly helpful explanation of why both fast, imprecise updates and slow, complete updates are needed.
(You can also consult the third edition of this book, published in 2022.)

NOTE

These are both good resources if you want to implement the parts of Chaitin-Briggs that we skipped. The chapter
by Muchnick is particularly useful if you want to integrate spill code generation into your register allocator. Both
books discuss how to use live ranges (which Muchnick calls webs) instead of pseudoregisters as the nodes in your
interference graph, and both provide better spill cost metrics than the one we used.

Conservative coalescing

The George test comes from “Iterated Register Coalescing,” by Lal George and Andrew Appel (https://doi.org
/10.1145/229542.229546). The main point of the paper is that you can coalesce more registers if you
alternate between coalescing and pruning; the George test is presented as a minor implementation detail.
For an informal discussion of the George and Briggs tests with lots of examples, see the slides from Phillip
Gibbons’s course on compiler optimizations at Carnegie Mellon (https://www.cs.cmu.edu/afs/cs/academic
/class/15745-s19/www/lectures/L23-Register-Coalescing.pdf).
“Comparing Conservative Coalescing Criteria” by Max Hailperin rigorously defines what the Briggs and George
tests actually prove, which is something that the authors of the original papers never bothered to do (https://
doi.org/10.1145/1065887.1065894). My discussion of what these tests guarantee at the start of “Conservative
Coalescing” on page 656 relies heavily on Hailperin’s paper. Note that some of his claims don’t apply to our
graph coloring implementation because he uses precoloring and we don’t.

Identifying loops

To calculate more accurate spill costs, you need to detect the loops in your program. These resources talk about
how to identify loops:

Chapter 9, section 6, of Compilers: Principles, Techniques, and Tools, 2nd edition, by Alfred Aho et al.
(Addison-Wesley, 2006).
Phillip Gibbons’s lecture slides on induction variable optimizations, from his Carnegie Mellon compiler
optimizations course (https://www.cs.cmu.edu/afs/cs/academic/class/15745-s19/www/lectures/L8-Induction-
Variables.pdf). This is a great starting point, but the slides aren’t detailed enough to use as a stand-alone
guide to loop analysis. You might want to use them alongside the previous reference or another textbook.

https://doi.org/10.1145/229542.229546
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s19/www/lectures/L23-Register-Coalescing.pdf
https://doi.org/10.1145/1065887.1065894
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s19/www/lectures/L8-Induction-Variables.pdf

NEXT STEPS

The world of programming languages is wide, and there’s a lot more for you to explore.
Extending your compiler on your own is a great way to keep learning about the topics
you’re most interested in.

I’ll leave you with a few ideas to get you started.

Add Some Missing Features

The most obvious next step is to implement the major parts of C that this book didn’t cover.
If you already have a list of features you’re particularly excited to add, start with those. Then, if you want to keep
going, pick a real-world C program—think something small, not the Linux kernel—and build out your compiler until
it can compile that program successfully. You can choose another program and repeat this process until you’re
satisfied with how much of the language you’ve implemented. Make sure to add new language features one at a
time, testing each one thoroughly before moving on to the next one.

Handle Undefined Behavior Safely

We’ve seen that C compilers can deal with undefined behavior however they like. But just because you can do
something doesn’t mean you should. There are huge benefits to dealing with undefined behavior in a clean,
predictable way: it makes C programs more secure, easier to debug, and less terrifying in general. For example,
you could guarantee that signed integer overflow always wraps around (this is what the -fwrapv compiler option

does). Or you could have the program raise an error and exit when it encounters undefined behavior; Clang and
GCC both have a feature called UndefinedBehaviorSanitizer that supports this sort of error handling (https://clang
.llvm.org/docs/UndefinedBehaviorSanitizer.html).

Think about a few examples of undefined behavior that we discussed in this book. How do you think your compiler
should handle them? How would that impact any optimizations you’ve implemented? Some types of undefined
behavior are tricky to detect, but others aren’t too difficult to deal with; choose one that seems manageable and
see if you can handle it cleanly.

Write More TACKY Optimizations

Chapter 19 covered just a few of the IR optimizations you’d find in a production compiler. If you like, you can
implement more on your own. Do some research on common compiler optimizations and pick the ones that sound
most interesting. If you go this route, you may want to convert your TACKY code into static single assignment
(SSA) form, where every variable is defined exactly once. SSA form is widely used in real-world compilers,
including Clang and GCC, because it makes many optimizations easier to implement.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Support Another Target Architecture

Most production compilers have several different backends to support different target architectures.

You can use the same strategy, converting TACKY into different assembly code depending on which system you’re
targeting. If you use a Windows or ARM system and needed a virtualization or emulation layer to complete this
project, a new backend would let you compile code that runs natively on your machine.

If you add support for Windows, you’ll be able to reuse most of your existing code generation pass. Only the ABI
will be different. Adding an ARM backend is a more ambitious project; you’ll need to learn a completely new
instruction set.

Contribute to an Open Source Programming Language Project

Improving your own compiler is a great way to learn, but consider branching out and working on other projects
too. Many widely used compilers are open source and welcome new contributors. The same goes for a whole
range of related projects, like interpreters, linters, and static analysis tools. Pick one that you like, and find out
how to get involved. This is a great way to put your new skills to work and maybe even make your favorite
programming language a little faster, safer, more usable, or easier to learn.

That’s a Wrap!

I hope this book has laid the foundation for you to keep building compilers and programming languages. I also
hope it’s changed your perspective on the programming languages you use day to day. You’ll now be better able
to appreciate the care, effort, and ingenuity that went into creating those languages, and when things go wrong,
you won’t be afraid to dig into the language internals to figure out what’s really happening. Compilers will stop
seeming like magic and start to look like something much more interesting: ordinary software.

A
DEBUGGING ASSEMBLY CODE WITH GDB OR LLDB

At some point, your compiler is going to generate assembly code that doesn’t behave
correctly, and you’ll need to figure out why. When that happens, a command line debugger
is indispensable for understanding what’s going wrong. A debugger lets you pause a
running program, step through it one instruction at a time, and examine the program state
at different points. You can use either GDB (the GNU debugger) or LLDB (the debugger
from the LLVM Project) to debug the assembly code your compiler generates. I recommend
using GDB if you’re on Linux and LLDB if you’re on macOS (I think GDB has a slightly nicer
UI for working with assembly, but getting it to run on macOS can be a challenge).

This appendix is a brief guide to debugging assembly programs with GDB or LLDB. It
introduces the basics that you’ll need to know if you’ve never used a debugger before. It also covers the most
important commands and options that you’ll need to use to work with assembly code in particular, which may be
new to you even if you’re comfortable using these tools to debug source code. I’ve included separate walk-
throughs for the two debuggers; even though they have very similar functionality, the details of many commands
are different. Follow the walk-through for whichever debugger you’re using.

Before you get started, you should be familiar with the basics of assembly code covered in Chapters 1 and 2. A
few aspects of assembly from later chapters will also come up, but you can gloss over those if you haven’t gotten
to them yet.

The Program

We’ll use the assembly program in Listing A-1 as a running example.

 .data
 .align 4

❶ integer:
 .long 100
 .align 8

❷ dbl:
 .double 3.5
 .text
 .globl main

❸ main:
 pushq %rbp
 movq %rsp, %rbp
 subq $16, %rsp
 # call a function
 ❹ callq f
 ❺ # put some stuff in registers
 movl $0x87654321, %eax
 movsd dbl(%rip), %xmm0
 # put some stuff on the stack
 movl $0xdeadbeef, -4(%rbp)
 movl $0, -8(%rbp)
 movl $-1, -12(%rbp)
 movl $0xfeedface, -16(%rbp)
 ❻ # initialize loop counter
 movl $25, %ecx
.L_loop_start:
 # decrement counter
 subl $1, %ecx
 cmpl $0, %ecx
 # jump back to start of loop
 jne .L_loop_start
 # return 0
 movl $0, %eax
 movq %rbp, %rsp
 popq %rbp
 ret
 .text
 .globl f
f:
 movl $1, %eax
 ret
 .section .note.GNU-stack,"",@progbits

Listing A-1: A pointless assembly program

This program doesn’t do anything useful; it just gives us the opportunity to try out the most important features of
the debuggers. It includes a couple of static variables for us to inspect: integer ❶ and dbl ❷. In main ❸, it first

calls a very small function, f, so we can practice stepping into and out of function calls ❹, then moves some data

into registers and onto the stack so we can practice examining the state of the program ❺. It ends with a loop
that decrements ECX on every iteration, stopping once it reaches 0 ❻. We’ll use this loop to practice setting
conditional breakpoints.

Download this program from https://norasandler.com/book/#appendix-a, then save it as hello_debugger.s. There
are two different versions of this file for Linux and macOS, so make sure to pick the right one for your operating
system.

Once you’ve saved the file, assemble and link it and confirm that it runs:

https://norasandler.com/book/#appendix-a

$ gcc hello_debugger.s -o hello_debugger
$./hello_debugger

On macOS, include the -g option when you assemble and link the file:

$ gcc -g hello_debugger.s -o hello_debugger

The -g option generates extra debug information. Make sure to include it when assembling and linking your own

compiler’s assembly output for debugging too.

Now you can start the walk-through. If you’re using GDB, follow the walk-through in the next section. If you’re
using LLDB, skip to “Debugging with LLDB” on page 687.

Debugging with GDB

Run this command to start up GDB:

$ gdb hello_debugger
--snip--

(gdb)

This sets hello_debugger as the executable to debug but doesn’t actually execute it. Before we start running

this executable, let’s configure the UI to make working with assembly code easier.

Configuring the GDB UI

During a GDB session, you can open up different text windows that display different information about the running
program. For our purposes, the most important of these is the assembly window, which displays the assembly
code as we step through it. The register window is also useful; by default, it shows the current contents of every
general-purpose register.

The layout command controls which windows are visible. Let’s open up the assembly and register windows:

(gdb) layout asm
(gdb) layout reg

You should now see three windows in your terminal: the register window, the assembly window, and the
command window with the (gdb) prompt. It should look similar to Figure A-1.

Figure A-1: A GDB session with the assembly and register windows open Description

The register window won’t display any information until you start the program.

You can scroll in whichever window is currently in focus. Use the focus command to change the in-focus window:

(gdb) focus cmd
(gdb) focus asm
(gdb) focus regs

Starting and Stopping the Program

Next, we’ll set a breakpoint—a location where the debugger will pause the program—and run the program up to
that breakpoint. If we start the program without setting a breakpoint first, it will run all the way through without
stopping, which isn’t very useful.

The command break <function name> sets a breakpoint at the start of a function. Let’s set a breakpoint at the

entrance to main:

(gdb) break main
Breakpoint 1 at 0x112d

Now let’s start the program:

(gdb) run
Starting program: /home/ubuntu/hello_debugger

❶ Breakpoint 1, 0x000055555555512d in main ()

The output of this command tells us that the program has hit the breakpoint we just set ❶. Notice that the current
instruction is highlighted in the assembly window and the current values of the general-purpose registers are
displayed in the register window, as shown in Figure A-2.

Figure A-2: A GDB session when the program is stopped at a breakpoint Description

Once a program is paused, there are a few commands you can use to move it forward:

continue resumes the program and runs until we hit another breakpoint or exit.

finish resumes the program and pauses again when we return from the current function.

stepi executes the next instruction, then pauses. It steps into call instructions, pausing at the first instruction in

the callee. The command stepi <n> will execute n instructions.

nexti executes the next instruction, then pauses. It steps over call instructions, pausing at the next instruction

after call in the current function. The command nexti <n> will execute n instructions.

Most GDB instructions can be abbreviated to one or two letters: you can type c instead of continue, b instead of

break, si instead of stepi, and so on. Table A-1 on page 687 gives full and shortened versions of all the

commands we discuss.

WARNING

While the nexti and stepi commands step through assembly instructions, the next and step commands step
through lines in the original source file. Since we don’t have any information about the original source file,
entering one of these commands will run the program until the end of the current function. These commands are
abbreviated to n and s, respectively, so it’s easy to run them by accident when you meant to use nexti or stepi.

Let’s try out our new commands. First, we’ll execute two instructions, which should take us into the call to f:

(gdb) stepi 2
0x0000555555555176 in ❶ f ()

We can see from the command output ❶ and from the highlighted instruction in the assembly window that we’re
stopped in f instead of main. Next, we’ll return from f:

(gdb) finish
Run till exit from #0 0x0000555555555176 in f ()
0x0000555555555136 in main ()

We’re now back in main, at the instruction right after callq. Let’s continue:

(gdb) continue
Continuing.
[Inferior 1 (process 82326) exited normally]

Since we didn’t hit any more breakpoints, the program ran until it exited. To keep debugging it, we’ll have to
restart it:

(gdb) run
Starting program: /home/ubuntu/hello_debugger

Breakpoint 1, 0x000055555555512d in main ()

Now we’re paused at the start of main again. We’ll step forward two instructions one more time, but this time

we’ll use nexti to step over f instead of stepping into it:

(gdb) nexti 2
0x0000555555555136 in main ()

This puts us back at the instruction right after callq.

Setting Breakpoints by Address

In addition to setting breakpoints on functions, you can break on specific machine instructions. Let’s set a
breakpoint on the instruction movl 0xdeadbeef, -4(%rbp). First, we’ll find this instruction in the assembly

window. It should look something like this:

 ❶ 0x555555555143 ❷ <main+26> movl 0xdeadbeef, -4(%rbp)

The instruction’s address in memory is at the beginning of the line ❶, followed by the byte offset of that address
from the start of the function ❷. The exact address may be different on your machine, but the offset should be
the same. To set this breakpoint, you can type either

(gdb) break *main+26

or

(gdb) break *MEMORY_ADDRESS

where MEMORY_ADDRESS is the address you found in the assembly window. The * symbol tells GDB that we’re

specifying an exact address rather than a function name.

Managing Breakpoints

Let’s list all the breakpoints we’ve set:

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x000055555555512d <main+4>
 breakpoint already hit 1 time
2 breakpoint keep y 0x0000555555555143 <main+26>

Every breakpoint has a unique number, which you can refer to if you need to delete, disable, or modify it. Let’s
delete breakpoint 1:

(gdb) delete 1

Next, we’ll look at a couple of different ways to examine the program’s state.

Printing Expressions

You can print out expressions with the command print/<format> <expr>, where:

<format> is a one-letter format specifier. You can use most of the same format specifiers you’d use in printf: x

to display a value as a hexadecimal integer, d to display it as a signed integer, and so on.

<expr> is an arbitrary expression. This expression can refer to registers, memory addresses, and symbols in the

running program. It can also include C operations like arithmetic, pointer dereferencing, and cast expressions.

Let’s try some examples. Right now, the program should be paused at the instruction movl 0x87654321, %eax.

We’ll step through this instruction, then print out the value of EAX in a few different formats:

(gdb) stepi
--snip--

(gdb) print $eax
$1 = ❶ -2023406815
(gdb) print/x $eax
$2 = ❷ 0x87654321
(gdb) print/u $eax
$3 = ❸ 2271560481

By default, GDB formats the values in general-purpose registers as signed integers ❶. Here, we also display the
value in EAX in hexadecimal ❷ and as an unsigned integer ❸. The symbols $1, $2, and so on are convenience

variables, which GDB automatically generates to store the result of each expression.

You can find the full list of format specifiers in the documentation for the x command, which we’ll talk more about

in a moment:

(gdb) help x
--snip--

Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),
 t(binary), f(float), a(address), i(instruction), c(char), s(string)
 and z(hex, zero padded on the left).
--snip--

Chapter 13 introduces the XMM registers, which hold floating-point values. The next instruction in our program,
movsd dbl(%rip), %xmm0, copies the value 3.5 from the static dbl variable into XMM0.

Let’s step through this instruction, then inspect XMM0:

(gdb) stepi
--snip--

(gdb) print $xmm0
$4 = {v4_float = {0, 2.1875, 0, 0}, v2_double = {3.5, 0}, v16_int8 = {0, 0, 0, 0,
0, 0, 12, 64, 0, 0, 0, 0, 0, 0, 0, 0}, v8_int16 = {0, 0, 0, 16396, 0, 0, 0, 0},
v4_int32 = {0, 1074528256, 0, 0}, v2_int64 = {4615063718147915776, 0}, uint128 =
4615063718147915776}

GDB is showing us lots of different views of the same data: v4_float displays this register’s contents as an array

of four 32-bit floats, v2_double displays it as an array of 64-bit doubles, and so on. Since we’ll use XMM registers

only to store individual doubles, you can always examine them with a command like this:

(gdb) print $xmm0.v2_double[0]
$5 = 3.5

This prints out the value in the register’s lower 64 bits, interpreted as a double.

In addition to registers, we can print out the values of objects in the symbol table. Let’s inspect the two static
variables in this program, integer and dbl:

(gdb) print (long) integer
$6 = 100
(gdb) print (double) dbl
$7 = 3.5

Since GDB doesn’t have any information about these objects’ types, we have to cast them to the correct type
explicitly.

Let’s look at a few examples of more complex expressions. Aside from the fact that they refer directly to hardware
registers, these expressions all use ordinary C syntax.

We can perform basic arithmetic:

(gdb) print/x $eax + 0x10
$8 = 0x87654331

We can call functions that are defined in the current program or the standard library. Here, we call f, which

returns 1:

(gdb) print (int) f()
$9 = 1

We can also dereference pointers. Let’s execute the next instruction, movl 0xdeadbeef, -4(%rbp), then inspect

the value at -4(%rbp):

(gdb) stepi
--snip--

(gdb) print/x *(int *)($rbp - 4)
$10 = 0xdeadbeef

First, we calculate the memory address we want to inspect, $rbp - 4. Then, we cast this address to the correct

pointer type, (int *). Finally, we dereference it with the dereference operator, *. This produces an integer, which

we print out in hexadecimal with the /x specifier.

Next, we’ll look at a more flexible way to inspect values in memory.

Examining Memory

We can examine memory with the command x/<n><format><unit> <expr>, where:

<n> is the number of units of memory to display (given the unit size specified by <unit>).

<format> specifies how to format each unit. These are the same format specifiers we used in the print

command.

<unit> is a one-letter specifier for the size of a unit: b for a byte, h for a 2-byte halfword, w for a 4-byte word, or

g for an 8-byte “giant” word.

<expr> is an arbitrary expression that evaluates to some valid memory address. These are the same kinds of

expressions we can use in the print command.

Let’s use the x command to inspect the integer at -4(%rbp):

(gdb) x/1xw ($rbp - 4)
❶ 0x7fffffffe2ac: ❷ 0xdeadbeef

This command tells GDB to print out one 4-byte word in hexadecimal. The output includes both the memory
address ❶ and the value at that address ❷.

The next three instructions in Listing A-1 store three more integers on the stack:

 movl $0, -8(%rbp)
 movl $-1, -12(%rbp)
 movl $0xfeedface, -16(%rbp)

We’ll use the commands in Listing A-2 to step through these instructions, then print out the whole stack frame.

(gdb) stepi 3
(gdb) x/6xw $rsp
0x7fffffffe2a0: ❶ 0xfeedface 0xffffffff 0x00000000 ❷ 0xdeadbeef
0x7fffffffe2b0: ❸ 0x00000000 0x00000000

Listing A-2: Stepping forward three instructions, then printing out the current stack frame

The command x/6xw $rsp tells GDB to print out six 4-byte words, starting at the address in RSP. We print out six

words because the stack frame for this particular function is 24 bytes. At the start of main, we saved the old value

of RBP onto the stack. That’s 8 bytes. Then, we allocated another 16 bytes with the command subq $16, %rsp.

Keep in mind that RSP always holds the address of the top of the stack, which is the lowest stack address.

This command displays the four integers we saved to the stack, with 0xfeedface at the top ❶ and 0xdeadbeef

at the bottom ❷, followed by the old value of RBP ❸. On some systems, this value will be 0 because we’re in the
outermost stack frame; on others, it will be a valid memory address.

The saved value of RBP is at the bottom of the current stack frame. Right after it, on top of the caller’s stack
frame, we’ll find the caller’s return address—that is, the address we’ll jump to when we return from main. (We

covered this in detail when we implemented function calls in Chapter 9.) Let’s inspect this return address:

(gdb) x/4ag $rsp
0x7fffffffe2a0: 0xfffffffffeedface 0xdeadbeef00000000
0x7fffffffe2b0: 0x0 ❶ 0x7ffff7dee083 <__libc_start_main+243>

This command will print out four 8-byte “giant” words, starting with the value at the address in RSP. The a

specifier tells GDB to format these values as memory addresses; this means it will print each address in
hexadecimal and, if possible, print out its offset from the nearest symbol in the program. Because function and
static variable names are defined in the symbol table, GDB can display the relative offsets of assembly instructions
and static data. It won’t display relative offsets of stack addresses, heap addresses, or invalid addresses, because
they would be completely meaningless.

The first line of output includes the four integers we saved onto the stack, now displayed as two 8-byte values
instead of four 4-byte values. The null pointer 0x0 on the next line is the saved value of RBP. None of these three

8-byte values are valid addresses, so GDB can’t display their offsets from symbols. The next value on the stack is
the return address ❶. GDB tells us that this is the address of an instruction in _libc_start_main, the standard

library function responsible for calling main and cleaning up after it exits.

The a specifier makes it easy to spot return addresses and pointers to static variables. This is particularly useful if

your program’s stack frame is corrupted; finding each stack frame’s return address can help you get your bearings.

Setting Conditional Breakpoints

To wrap up this walk-through, we’ll look at how to set conditional breakpoints. The program will pause at a
conditional breakpoint only if the associated condition is true. This condition can be an arbitrary expression; GDB
will consider it false if it evaluates to 0 and true otherwise.

Let’s set a breakpoint on the jne instruction at the end of the last loop iteration in hello_debugger. First, we

need to find this instruction in the assembly window. It should be 65 bytes after the start of the function:

 0x55555555516a <main+65> jne 0x555555555164 <main+59>

We’ll set a conditional breakpoint to pause on this instruction if ECX is 0:

(gdb) break *main+65 if $ecx == 0

Since this loop repeats until ECX is 0, the condition $ecx == 0 will be true only on the last iteration. Let’s continue

until this breakpoint, then verify that the condition is true:

(gdb) c
Continuing.

Breakpoint 3, 0x000055555555516a in main ()
(gdb) print $ecx
$11 = 0

So far, so good. If you get a different value for ECX, check whether you set the breakpoint correctly:

(gdb) info break
--snip--

3 breakpoint keep y 0x000055555555516a ❶ <main+65>
 stop only if ❷ $ecx == 0

Make sure that your breakpoint is at the location main+65 ❶ and that it includes the condition $ecx == 0 ❷. If

your breakpoint looks different, you might have mistyped something; delete it and try again.

We should be on the last loop iteration, so let’s step forward one instruction and make sure that the jump isn’t
taken:

(gdb) stepi

Usually, jne will jump back to the start of the loop, but on the last iteration it moves forward to the next

instruction.

Getting Help

To learn about commands and options that we didn’t cover here, see the GDB documentation at https://
sourceware.org/gdb/current/onlinedocs/gdb/index.html. As you saw earlier, you can also type help at the prompt

to learn more about any GDB command. For example, to see the documentation for the run command, type:

(gdb) help run
Start debugged program.
You may specify arguments to give it.
--snip--

Table A-1 summarizes the commands and options we covered, including full and abbreviated forms for each
command (except x, which can’t be abbreviated any further). Both forms take the same arguments.

Table A-1: A Summary of GDB Commands

Command Description

run Start the program.

r

continue Resume the program.

c

finish Resume the program and continue until the current function exits.

fin

stepi [<n>] Execute one instruction (or n instructions), stepping into function calls.

si

nexti [<n>] Execute one instruction (or n instructions), stepping over function calls.

ni

https://sourceware.org/gdb/current/onlinedocs/gdb/index.html

Command Description

break <loc> [if <cond>] Set a breakpoint at <loc> (conditional on <cond>, if provided).

b

info break List all breakpoints. (Other info subcommands display other information.)

i b

delete [<id>] Delete all breakpoints (or the breakpoint specified by <id>).

d

print/<format> <expr> Evaluate <expr> and display the result according to format specifier

<format>.
p

x/<n><format><unit>

<addr>

Print out memory starting at <addr> in n chunks of size <unit>, formatted

according to <format>.

layout <window> Open <window>.

la

focus <window> Change focus to <window>.

fs

help <cmd> Display help text about <cmd>.

h

Now you’re ready to start debugging with GDB!

Debugging with LLDB

Run this command to start up LLDB:

$ lldb hello_debugger
(lldb) target create "hello_debugger"

Current executable set to 'hello_debugger' (x86_64).
(lldb)

This will set hello_debugger as the executable to debug but won’t execute it yet. If prompted, enter your

username and password to give LLDB permission to control hello_debugger.

Starting and Stopping the Program

Next, we’ll set a breakpoint—a location where the debugger will pause the program—and run the program up to
that breakpoint. If we start the program without setting a breakpoint first, it will run all the way through without
stopping, which isn’t very useful.

Let’s set a breakpoint at the entrance to main:

(lldb) break set -n main
Breakpoint 1: where = hello_debugger`main, address = 0x0000000100003f65

Note that main may be at a different memory address on your machine. The break set command creates a new

breakpoint; the -n option specifies the name of the function where we want to break. We’ll look at other ways to

set breakpoints in a moment.

Now let’s run the program:

(lldb) run
Process 6750 launched: '/Users/me/hello_debugger' (x86_64)
Process 6750 stopped
* thread #1, queue = 'com.apple.main-thread', ❶ stop reason = breakpoint 1.1
 frame #0: 0x0000000100003f65 hello_debugger`main

❷ hello_debugger`main:
❸ -> 0x100003f65 <+0>: pushq %rbp

 0x100003f66 <+1>: movq %rsp, %rbp
 0x100003f69 <+4>: subq $0x10, %rsp
 0x100003f6d <+8>: callq 0x100003fb2 ; f
Target 0: (hello_debugger) stopped.
(lldb)

The stop reason ❶ tells us that the program has hit the breakpoint we just set. LLDB also helpfully tells us that

we’re stopped in the main function in hello_debugger ❷ and prints out the next few assembly instructions ❸.

Once a program is paused, there are a few commands we can use to keep executing it:

continue resumes the program and runs until we hit another breakpoint or exit.

finish resumes the program and pauses again when we return from the current function.

stepi executes the next instruction, then pauses. It steps into call instructions, pausing at the first instruction in

the callee. The command stepi -c <n> steps through n instructions.

nexti executes the next instruction, then pauses. It steps over call instructions, pausing at the next instruction

after call in the current function. The command nexti -c <n> steps through n instructions.

Most LLDB commands have several aliases. For example, continue is a shortcut for process continue, and it

can be shortened even further to the one-letter command c. See Table A-2 on page 697 for full and abbreviated

versions of all the commands we cover.

Let’s try out these new commands. First, we’ll execute four instructions, which should take us into the call to f:

(lldb) stepi -c 4
--snip--

❶ hello_debugger`f:
-> 0x100003fb2 <+0>: movl $0x1, %eax
--snip--

We can see from the command output that we’re stopped in f instead of main ❶. Now we’ll return from f:

(lldb) finish
--snip--

hello_debugger`main:
-> 0x100003f72 <+13>: movl $0x87654321, %eax ; imm = 0x87654321
--snip--

This puts us back in main, at the instruction right after callq. Let’s continue:

(lldb) continue
Process 6750 resuming
Process 6750 exited with status = 0 (0x00000000)

Since we didn’t hit any more breakpoints, the program ran until it exited. To keep debugging it, we have to restart
it:

(lldb) run

Now we’re paused at the start of main again. Once again, we’ll move forward four instructions, but this time we’ll

use nexti to step over f instead of stepping into it:

(lldb) nexti -c 4
--snip--

hello_debugger`main:
-> 0x100003f72 <+13>: movl $0x87654321, %eax ; imm = 0x87654321
--snip--

This puts us back at the instruction right after callq.

Setting Breakpoints by Address

In addition to setting breakpoints on functions, you can break on specific machine instructions. Let’s set a
breakpoint on the instruction movl 0xdeadbeef, -4(%rbp). First, we need to find this instruction’s address.

Luckily, LLDB has already given us this information. The output from the last command should look something like
this:

hello_debugger`main:
-> 0x100003f72 <+13>: movl $0x87654321, %eax ; imm = 0x87654321
 0x100003f77 <+18>: movsd 0x181(%rip), %xmm0 ; dbl, xmm0 = mem[0],zero
 ❶ 0x100003f7f ❷ <+26>: movl $0xdeadbeef, -0x4(%rbp) ; imm = 0xDEADBEEF
 0x100003f86 <+33>: movl $0x0, -0x8(%rbp)

This shows the next few instructions, including the one we want to break on. We can see that instruction’s
memory address ❶ and the byte offset of that address from the start of the function ❷. The exact address may be
different on your machine, but the offset should be the same. To set this breakpoint, type

(lldb) break set -a MEMORY_ADDRESS

where MEMORY_ADDRESS is the instruction’s address on your machine. The -a option indicates that we’re

specifying an address rather than a function name. We can also use more complex expressions to specify
instruction addresses. Here’s another way to set a breakpoint on the same instruction:

(lldb) break set -a '(void()) main + 26'

First, we cast main to a function type so that LLDB can use it in address calculations. (It doesn’t matter which

function type we cast it to.) Then, we add a 26-byte offset to get the address of the movl instruction we want to

break on. Since this address expression includes spaces and special characters, we have to wrap the whole thing
in quotes.

In a minute, we’ll see how to disassemble the whole function and see every instruction’s address. First, let’s look
at a couple of other useful commands for managing breakpoints.

Managing Breakpoints

Let’s list all the breakpoints we’ve set:

(lldb) break list
Current breakpoints:
1: name = 'main', locations = 1, resolved = 1, hit count = 1
 1.1: where = hello_debugger`main, address = 0x0000000100003f65, resolved, hit count = 1

2: address = hello_debugger[0x0000000100003f7f], locations = 1, resolved = 1, hit count =
 2.1: where = hello_debugger`main + 26, address = 0x0000000100003f7f, resolved, hit count

3: address = hello_debugger[0x0000000100003f7f], locations = 1, resolved = 1, hit count =
 3.1: where = hello_debugger`main + 26, address = 0x0000000100003f7f, resolved, hit count

Every breakpoint has a unique number, which you can refer to if you need to delete, disable, or modify it. In the
last section, we set breakpoints 2 and 3 at the same location, main+26. Let’s delete one of them:

 (lldb) break delete 3

Next, we’ll look at how to display all the assembly instructions in a function, along with their addresses.

Displaying Assembly Code

The command disassemble -n <function name> tells LLDB to print out all the assembly instructions in a

function. Let’s try this out on main:

(lldb) disassemble -n main
hello_debugger`main:
 0x100003f65 <+0>: pushq %rbp
 0x100003f66 <+1>: movq %rsp, %rbp
 0x100003f69 <+4>: subq $0x10, %rsp
 0x100003f6d <+8>: callq 0x100003fb2 ; f
-> 0x100003f72 <+13>: movl $0x87654321, %eax ; imm = 0x87654321
 0x100003f77 <+18>: movsd 0x181(%rip), %xmm0 ; dbl, xmm0 = mem[0],zero
 0x100003f7f <+26>: movl $0xdeadbeef, -0x4(%rbp) ; imm = 0xDEADBEEF
 0x100003f86 <+33>: movl $0x0, -0x8(%rbp)
 0x100003f8d <+40>: movl $0xffffffff, -0xc(%rbp) ; imm = 0xFFFFFFFF
 0x100003f94 <+47>: movl $0xfeedface, -0x10(%rbp) ; imm = 0xFEEDFACE
 0x100003f9b <+54>: movl $0x19, %ecx

 0x100003fa0 <+59>: subl $0x1, %ecx
 0x100003fa3 <+62>: cmpl $0x0, %ecx
 0x100003fa6 <+65>: jne 0x100003fa0 ; <+59>
 0x100003fa8 <+67>: movl $0x0, %eax
 0x100003fad <+72>: movq %rbp, %rsp
 0x100003fb0 <+75>: popq %rbp
 0x100003fb1 <+76>: retq
(lldb)

The -> symbol points to the current instruction. We can also print out a fixed number of instructions, starting at a

specific address. Let’s disassemble five instructions, starting with the third instruction in main. In the disassembled

code shown here, this instruction’s address is 0x100003f69; it might have a different address on your machine.

The -s option specifies the address where LLDB should start disassembling, and -c specifies how many

instructions to display, so we’ll disassemble these five instructions with the following command:

(lldb) disassemble -s 0x100003f69 -c 5
hello_debug`main:
 0x100003f69 <+4>: subq $0x10, %rsp
 0x100003f6d <+8>: callq 0x100003fb2 ; f
-> 0x100003f72 <+13>: movl $0x87654321, %eax ; imm = 0x87654321
 0x100003f77 <+18>: movsd 0x181(%rip), %xmm0 ; dbl, xmm0 = mem[0],zero
 0x100003f7f <+26>: movl $0xdeadbeef, -0x4(%rbp) ; imm = 0xDEADBEEF

Finally, we can use the --pc option to start disassembling at the current instruction:

(lldb) disassemble --pc -c 3
-> 0x100003f72 <+13>: movl $0x87654321, %eax ; imm = 0x87654321
 0x100003f77 <+18>: movsd 0x181(%rip), %xmm0 ; dbl, xmm0 = mem[0],zero
 0x100003f7f <+26>: movl $0xdeadbeef, -0x4(%rbp) ; imm = 0xDEADBEEF

This command displays three instructions, starting with the current instruction. We can use the -c option when we

specify a starting address with -s or --pc but not when we disassemble a whole function with -n.

Printing Expressions

You can evaluate expressions with the command exp -f <format> -- <expr>, where:

<format> is a format specifier that tells LLDB how to display the result of the expression.

<expr> is an arbitrary expression. This expression can refer to registers, memory addresses, and symbols in the

running program. It can also include C operations like arithmetic, pointer dereferencing, and cast expressions.

Let’s try some examples. Right now, the program should be paused at the instruction movl 0x87654321, %eax.

We’ll step through this instruction, then print out the value of EAX in a few different formats:

(lldb) stepi
--snip--

hello_debugger`main:
-> 0x100003f77 <+18>: movsd 0x181(%rip), %xmm0 ; dbl, xmm0 = mem[0],zero
--snip--

(lldb) exp -- $eax
(unsigned int) $0 = ❶ 2271560481
(lldb) exp -f x -- $eax
(unsigned int) $1 = ❷ 0x87654321
(lldb) exp -f d -- $eax
(unsigned int) $2 = ❸ -2023406815

By default, LLDB formats the values in general-purpose registers as unsigned integers ❶. Here, we also display the
value of EAX in hexadecimal ❷ and as a signed integer ❸. (For a full list of formats, use the help format

command.) The symbols $0, $1, and so on are convenience variables, which LLDB automatically generates to

store the result of each expression.

Chapter 13 introduces the XMM registers, which hold floating-point values. The next instruction in our program,
movsd dbl(%rip), %xmm0, copies the value 3.5 from the static dbl variable into XMM0. Let’s step through this

instruction, then inspect XMM0. We’ll use the float64[] format, which displays the register’s contents as an

array of two doubles:

(lldb) stepi
--snip--

hello_debugger`main:
-> 0x100003f7f <+26>: movl $0xdeadbeef, -0x4(%rbp) ; imm = 0
--snip--

(lldb) exp -f float64[] -- $xmm0
(unsigned char __attribute__((ext_vector_type(16)))) $3 = (❶ 3.5, 0)

The first array element corresponds to the register’s lower 64 bits ❶, which we updated with the movsd

instruction. The second element corresponds to the register’s upper 64 bits, which we can ignore.

In addition to registers, we can print out the values of objects in the symbol table. Let’s inspect the two static
variables in this program, integer and dbl:

(lldb) exp -f d -- integer
(void *) $4 = 100
(lldb) exp -f f -- dbl
(void *) $5 = 3.5

Now let’s look at a few examples of more complex expressions. We can perform basic arithmetic:

(lldb) exp -f x -- $eax + 0x10
(unsigned int) $6 = 0x87654331

We can call functions from the current program or the standard library. Here we call f, which returns 1:

(lldb) exp -- (int) f()
(int) $7 = 1

We can also dereference pointers. Let’s execute the next instruction, movl 0xdeadbeef, -4(%rbp), then inspect

the value at -4(%rbp):

(lldb) stepi
--snip--

hello_debugger`main:
-> 0x100003f86 <+33>: movl $0x0, -0x8(%rbp)
--snip--

(lldb) exp -f x -- *(int *)($rbp - 4)
(int) $8 = 0xdeadbeef

First, we calculate the memory address we want to inspect, $rbp - 4. Then, we cast this address to the correct

pointer type, (int *). Finally, we dereference it with the dereference operator, *. This produces an integer, which

we print out in hexadecimal with the option -f x.

Next, we’ll look at a more flexible way to inspect values in memory.

Examining Memory

We can examine memory with the memory read command. Like exp, it takes an arbitrary expression, which must

evaluate to a valid memory address. This gives us another way to inspect the integer at -4(%rbp):

(lldb) memory read -f x -s 4 -c 1 '$rbp - 4'
0x3040bb93c: 0xdeadbeef

The -f x option says to print the output in hexadecimal; -s 4 says to interpret the contents of memory as a

sequence of 4-byte values; and -c 1 says to print just one of those values. In other words, this command prints

out the single 4-byte integer at $rbp - 4, formatted as hexadecimal. We have to wrap the expression $rbp - 4

in quotes because it contains spaces.

The next three instructions in Listing A-1 store three more integers on the stack:

 movl $0, -8(%rbp)
 movl $-1, -12(%rbp)
 movl $0xfeedface, -16(%rbp)

Let’s step through these instructions, then print out the whole stack frame. We’ll tell LLDB to print out six 4-byte
words, starting at the address in RSP. We’ll use the option -l 1 to print out each word on a separate line:

(lldb) stepi -c 3
--snip--

hello_debugger`main:
-> 0x100003f9b <+54>: movl $0x19, %ecx
--snip--

(lldb) memory read -f x -s 4 -c 6 -l 1 $rsp
0x3040bb930: ❶ 0xfeedface
0x3040bb934: 0xffffffff
0x3040bb938: 0x00000000
0x3040bb93c: 0xdeadbeef
0x3040bb940: ❷ 0x040bba50
0x3040bb944: 0x00000003

We print out six words because the stack is 24 bytes in this particular function. At the start of main, we saved the

old value of RBP onto the stack. That’s 8 bytes. Then, we allocated another 16 bytes with the command subq

$16, %rsp. Keep in mind that RSP always holds the address of the top of the stack, which is the lowest stack

address.

This command shows us the four integers we saved to the stack, with 0xfeedface at the top ❶ and the old value

of RBP at the bottom ❷. Since the value at ❷ is really an 8-byte address, we can read it more easily if we group
the stack into 8-byte values:

(lldb) memory read -f x -s 8 -c 3 -l 1 $rsp
0x3040bb930: 0xfffffffffeedface
0x3040bb938: 0xdeadbeef00000000
0x3040bb940: ❶ 0x00000003040bba50

Now it’s clear that the bottom 8 bytes on the stack hold a single memory address ❶.

Just below the saved value of RBP, on top of the caller’s stack frame, we’d expect to find the caller’s return
address—that is, the address we’ll jump to when we return from main. (We cover this in detail when we

implement function calls in Chapter 9.) Let’s inspect this address:

(lldb) memory read -f A -s 8 -c 4 -l 1 $rsp
0x3040bb930: 0xfffffffffeedface
0x3040bb938: 0xdeadbeef00000000
0x3040bb940: 0x00000003040bba50
0x3040bb948: ❶ 0x0000000200012310 dyld`start + 2432

This command is almost identical to the previous one, except that we use the option -c 4 to print out four values

instead of three and the option -f A to format each value as a memory address. The A format specifier tells LLDB

to print each address in hexadecimal and, if possible, print out its offset from the nearest symbol in the program.
Because function and static variable names are defined in the symbol table, LLDB can display the relative offsets
of assembly instructions and static data. It won’t display relative offsets of stack addresses, heap addresses, or
invalid addresses, because they would be completely meaningless.

The first three lines of output are the same as before. The first two values aren’t valid memory addresses and the
third is a stack address, so LLDB can’t display their offsets from symbols. The next value on the stack is the return
address ❶. The label dyld`start tells us this is the address of an instruction in the start function in the dyld

shared library. (The start function is responsible for calling main and cleaning up after it exits; dyld is the

dynamic linker.)

The -f A option makes it easy to spot return addresses and pointers to static variables. This is particularly useful

if your program’s stack frame is corrupted; finding each stack frame’s return address can help you get your
bearings.

Setting Conditional Breakpoints

To wrap up this walk-through, we’ll look at how to set conditional breakpoints. The program will pause at a
conditional breakpoint only if the associated condition is true. This condition can be an arbitrary expression; LLDB
will consider it false if it evaluates to 0 and true otherwise.

Let’s set a breakpoint on the jne instruction at the end of the last loop iteration in hello_debugger. First, we’ll

find this instruction’s address in the disassembled main function:

(lldb) disassemble -n main
hello_debugger`main:
 --snip--

 ❶ 0x100003fa6 <+65>: jne 0x100003fa0 ; <+59>
 --snip--

Here, the address of jne is 0x100003fa6 ❶. Now we’ll set a conditional breakpoint to pause on the jne

instruction if ECX is 0. We can use the -c option to specify a condition:

(lldb) break set -a MEMORY_ADDRESS -c '$ecx == 0'

Since this loop repeats until ECX is 0, the condition $ecx == 0 will be true only on the last iteration. Let’s continue

until the breakpoint, then verify that this condition is true:

(lldb) continue
--snip--

hello_debugger`main:
-> 0x100003fa6 <+65>: jne 0x100003fa0 ; <+59>
--snip--

(lldb) exp -- $ecx
(unsigned int) $9 = 0

If you get a different value for ECX, check whether you set the breakpoint correctly:

(lldb) break list
--snip--

4: address = hello_debugger[0x0000000100003fa6], locations = 1, resolved = 1, hit count =
Condition: $ecx == 0 ❶

 4.1: where = ❷ hello_debugger`main + 65, address = 0x0000000100003fa6, resolved, hit cou
 = 0

Make sure that your breakpoint includes the condition $ecx == 0 ❶ and that it’s at the location

hello_debugger`main + 65 ❷. If your breakpoint looks different, you might have mistyped something; delete it

and try again.

We should be on the last loop iteration, so let’s step forward one instruction and make sure that the jump isn’t
taken:

(lldb) stepi
--snip--

hello_debugger`main:
-> 0x100003fa8 <+67>: movl $0x0, %eax
--snip--

Usually, jne will jump back to the start of the loop, but on the last iteration it moves forward to the next

instruction.

Getting Help

To learn more about the commands and options we didn’t cover here, see the LLDB documentation at https://lldb
.llvm.org/index.html. You can also type help at the prompt to learn more about any LLDB command. For example,

to see the documentation for the run command, type:

(lldb) help run
 Launch the executable in the debugger
--snip--

Table A-2 summarizes the commands and options we covered. The version of each command that we used in the
walk-through is listed first, followed by a shorter abbreviation (except for exp, which isn’t normally shortened

further), then the full form when it differs from the one we used. All versions of each command take the same
arguments.

Table A-2: A Summary of LLDB Commands

Command Description

run Start the program.

r

process launch --

continue Resume the program.

c

process continue

finish Resume the program and continue until the current function exits.

fin

thread step-out

https://lldb.llvm.org/index.html

Command Description

stepi [-c <n>] Execute one instruction (or n instructions), stepping into function
calls.

si

thread step-inst

nexti [-c <n>] Execute one instruction (or n instructions), stepping over function
calls.

ni

thread step-inst-over

break set [-n <fun> | -a <addr>]

[-c <cond>]

Set a breakpoint at start of function <fun> or at address <addr>

(conditional on <cond>, if provided).

br s

breakpoint set

break list List all breakpoints.

br l

breakpoint list

break delete [<id>] Delete all breakpoints (or the breakpoint specified by <id>).

br del

breakpoint delete

exp -f <format> -- <expr> Evaluate <expr> and display the result in format <format>.

expression

memory read -f <format> -s

<size> -c <count> -l <num-per-

line> <addr>

Print out memory in <count> chunks of <size> bytes, starting at

address <addr>. Display <num -per-line> chunks on each line in

format <format>.

me read

Command Description

disassemble [-n <fun> | -s

<addr> -c <count> | --pc -c

<count>]

Disassemble all instructions in function <fun>, or <count>

instructions starting at address <addr>, or <count> instructions

starting at the current instruction.

di

help <cmd> Display help text about <cmd>.

h

Now you’re ready to start debugging with LLDB!

B
ASSEMBLY GENERATION AND CODE EMISSION

TABLES

In each chapter where we updated the conversion from TACKY to assembly or the code
emission pass, I included tables summarizing those passes. From Chapter 4 on, these
tables showed only the changes made in that chapter, not the entire pass. This appendix
presents the complete tables summarizing these passes at the end of Part I, Part II, and
Part III.

Part I

The first set of tables in this section illustrates how your compiler should convert every TACKY construct to
assembly at the end of Part I. The second set of tables illustrates how your compiler should emit every assembly
construct at the end of Part I.

Converting TACKY to Assembly

Tables B-1 through B-5 show the complete conversion from TACKY to assembly at the end of Part I.

Table B-1: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(top_level_defs) Program(top_level_defs)

Function(name, global, params,

 instructions)

Function(name, global,

 [Mov(Reg(DI), param1),

 Mov(Reg(SI), param2),

 <copy next four parameters from re

 Mov(Stack(16), param7),

 Mov(Stack(24), param8),
 <copy remaining parameters from st

 instructions)

StaticVariable(name, global, init) StaticVariable(name, global, init)

Table B-2: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Mov(val, Reg(AX))

TACKY instruction Assembly instructions

Ret

Unary(Not, src, dst) Cmp(Imm(0), src)

Mov(Imm(0), dst)

SetCC(E, dst)

Unary(unary_operator, src, dst) Mov(src, dst)

Unary(unary_operator, dst)

Binary(Divide, src1, src2, dst) Mov(src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(AX), dst)

Binary(Remainder, src1, src2, dst) Mov(src1, Reg(AX))

Cdq

Idiv(src2)

Mov(Reg(DX), dst)

Binary(arithmetic_operator, src1, src2, dst) Mov(src1, dst)

Binary(arithmetic_operator, src2, dst)

Binary(relational_operator, src1, src2, dst) Cmp(src2, src1)

Mov(Imm(0), dst)

SetCC(relational_operator, dst)

Jump(target) Jmp(target)

JumpIfZero(condition, target) Cmp(Imm(0), condition)

JmpCC(E, target)

JumpIfNotZero(condition, target) Cmp(Imm(0), condition)

JmpCC(NE, target)

Copy(src, dst) Mov(src, dst)

Label(identifier) Label(identifier)

FunCall(fun_name, args, dst) <fix stack alignment>

<set up arguments>

TACKY instruction Assembly instructions

Call(fun_name)

<deallocate arguments/padding>

Mov(Reg(AX), dst)

Table B-3: Converting TACKY Arithmetic Operators to Assembly

TACKY operator Assembly operator

Complement Not

Negate Neg

Add Add

Subtract Sub

Multiply Mult

Table B-4: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

Equal E

NotEqual NE

LessThan L

LessOrEqual LE

GreaterThan G

GreaterOrEqual GE

Table B-5: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(int) Imm(int)

Var(identifier) Pseudo(identifier)

Code Emission

Tables B-6 through B-10 show the complete code emission pass at the end of Part I.

Table B-6: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(top_levels) Print out each top-level construct. On Linu
 .section .note.GNU-stack,"",@

Function(name, global, instructions) <global-directive>

 .text

<name>:

 pushq %rbp

 movq %rsp, %rbp
 <instructions>

Assembly top-level construct Output

StaticVariable(name, global, init)

Initialized
to zero

 <global-directive>

 .bss

 <alignment-directive>

<name>:

 .zero 4

Initialized
to
nonzero
value

 <global-directive>

 .data

 <alignment-directive>

<name>:

 .long <init>

Global directive

If global is true:
.globl <identifier>

Otherwise, omit this directive.

Alignment directive Linux
only

.align 4

macOS
or Linux

.balign 4

Table B-7: Formatting Assembly Instructions

Assembly instruction Output

Mov(src, dst) movl <src>, <dst>

Assembly instruction Output

Ret movq %rbp, %rsp

popq %rbp

ret

Unary(unary_operator, operand) <unary_operator> <operand>

Binary(binary_operator, src, dst) <binary_operator> <src>, <dst>

Idiv(operand) idivl <operand>

Cdq cdq

AllocateStack(int) subq $<int>, %rsp

DeallocateStack(int) addq $<int>, %rsp

Push(operand) pushq <operand>

Assembly instruction Output

Call(label) call <label>
or
call <label>@PLT

Cmp(operand, operand) cmpl <operand>, <operand>

Jmp(label) jmp .L<label>

JmpCC(cond_code, label) j<cond_code> .L<label>

SetCC(cond_code, operand) set<cond_code> <operand>

Label(label) .L<label>:

Table B-8: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg negl

Not notl

Assembly operator Instruction name

Add addl

Sub subl

Mult imull

Table B-9: Instruction Suffixes for Condition Codes

Condition code Instruction suffix

E e

NE ne

L l

LE le

G g

GE ge

Table B-10: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 8-byte %rax

4-byte %eax

1-byte %al

Reg(DX) 8-byte %rdx

4-byte %edx

1-byte %dl

Assembly operand Output

Reg(CX) 8-byte %rcx

4-byte %ecx

1-byte %cl

Reg(DI) 8-byte %rdi

4-byte %edi

1-byte %dil

Reg(SI) 8-byte %rsi

4-byte %esi

1-byte %sil

Reg(R8) 8-byte %r8

4-byte %r8d

1-byte %r8b

Reg(R9) 8-byte %r9

4-byte %r9d

1-byte %r9b

Reg(R10) 8-byte %r10

4-byte %r10d

1-byte %r10b

Reg(R11) 8-byte %r11

4-byte %r11d

Assembly operand Output

1-byte %r11b

Stack(int) <int>(%rbp)

Imm(int) $<int>

Data(identifier) <identifier>(%rip)

Part II

The first set of tables in this section illustrates how your compiler should convert every TACKY construct to
assembly at the end of Part II. The second set of tables illustrates how your compiler should emit every assembly
construct at the end of Part II.

Converting TACKY to Assembly

Tables B-11 through B-16 show the complete conversion from TACKY to assembly at the end of Part II.

Table B-11: Converting Top-Level TACKY Constructs to Assembly

TACKY top-level construct Assembly top-level construct

Program(top_level_defs)

Program(top_level_defs + <all StaticConstant c
 floating-point constants>)

Function(name,

 global,

 params,

 instructions)

Return
value in
registers
or no
return
value

Function(name, global,

 [<copy Reg(DI) into first int param/eightbyt

 <copy Reg(SI) into second int param/eightby

 <copy next four int params/eightbytes from

 Mov(Double,

 Reg(XMM0),

 <first double param/eightbyte>),

 Mov(Double,

 Reg(XMM1),

 <second double param/eightbyte>),
 <copy next six double params/eightbytes fr
 <copy Memory(BP, 16) into first stack para
 <copy Memory(BP, 24) into second stack par
 <copy remaining params/eightbytes from sta
 instructions)

TACKY top-level construct Assembly top-level construct

Return
value on
stack

Function(name, global,

 [Mov(Quadword,

 Reg(DI),

 Memory(BP, -8)),

 <copy Reg(SI) into first int param/eightby
 <copy Reg(DX) into second int param/eightb
 <copy next three int params/eightbytes fro
 Mov(Double,

 Reg(XMM0),

 <first double param/eightbyte>),
 Mov(Double,

 Reg(XMM1),

 <second double param/eightbyte>),
 <copy next six double params/eightbytes fr
 <copy Memory(BP, 16) into first stack para
 <copy Memory(BP, 24) into second stack par

 <copy remaining params/eightbytes from sta
 instructions)

StaticVariable(name, global, t,

 init_list)

StaticVariable(name, global, <alignment of t>,

 init_list)

StaticConstant(name, t, init) StaticConstant(name, <alignment of t>, init)

Table B-12: Converting TACKY Instructions to Assembly

TACKY instruction Assembly instructions

Return(val) Return on
stack

Mov(Quadword, Memory(BP, -8), Reg(AX))

Mov(Quadword,

 <first eightbyte of return value>,
 Memory(AX, 0))

TACKY instruction Assembly instructions

 Mov(Quadword,

 <second eightbyte of return value>,
 Memory(AX, 8))

 <copy rest of return value>
 Ret

Return in
registers

<move integer parts of return value into R

<move double parts of return value into XM

Ret

No return
value

Ret

Unary(Not, src, dst) Integer

Cmp(<src type>, Imm(0), src)

Mov(<dst type>, Imm(0), dst)

SetCC(E, dst)

double

Binary(Xor, Double, Reg(<X>), Reg(<X>))

Cmp(Double, src, Reg(<X>))

Mov(<dst type>, Imm(0), dst)

SetCC(E, dst)

Unary(Negate, src, dst)

(double negation)
Mov(Double, src, dst)

Binary(Xor, Double, Data(<negative-zero>,

And add a top-level constant:
StaticConstant(<negative-zero>, 16,

 DoubleInit(-0.0))

TACKY instruction Assembly instructions

Unary(unary_operator, src, dst)

Mov(<src type>, src, dst)

Unary(unary_operator, <src type>, dst)

Binary(Divide, src1,

 src2, dst)

(integer division)

Signed

Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

Idiv(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

Unsigned

Mov(<src1 type>, src1, Reg(AX))

Mov(<src1 type>, Imm(0), Reg(DX))

Div(<src1 type>, src2)

Mov(<src1 type>, Reg(AX), dst)

Binary(Remainder, src1,

 src2, dst)

Signed

Mov(<src1 type>, src1, Reg(AX))

Cdq(<src1 type>)

div(<src1 type>, src2)

Mov(<src1 type>, Reg(DX), dst)

Unsigned

Mov(<src1 type>, src1, Reg(AX))

Mov(<src1 type>, Imm(0), Reg(DX))

Div(<src1 type>, src2)

Mov(<src1 type>, Reg(DX), dst)

Binary(arithmetic_operator, src1,

 src2, dst)

Mov(<src1 type>, src1, dst)

Binary(arithmetic_operator, <src1 type>, s

TACKY instruction Assembly instructions

Binary(relational_operator, src1,

 src2, dst)

Cmp(<src1 type>, src2, src1)

Mov(<dst type>, Imm(0), dst)

SetCC(relational_operator, dst)

Jump(target)

Jmp(target)

JumpIfZero(condition,

 target)

Integer

Cmp(<condition type>, Imm(0), condition)

JmpCC(E, target)

double

Binary(Xor, Double, Reg(<X>), Reg(<X>))

Cmp(Double, condition, Reg(<X>))

JmpCC(E, target)

JumpIfNotZero(condition,

 target)

Integer

Cmp(<condition type>, Imm(0), condition)

JmpCC(NE, target)

double

Binary(Xor, Double, Reg(<X>), Reg(<X>))

Cmp(Double, condition, Reg(<X>))

JmpCC(NE, target)

TACKY instruction Assembly instructions

Copy(src, dst) Scalar

Mov(<src type>, src, dst)

Structure

Mov(<first chunk type>,

 PseudoMem(src, 0),

 PseudoMem(dst, 0))

Mov(<next chunk type>,

 PseudoMem(src, <first chunk size>),

 PseudoMem(dst, <first chunk size>))

<copy remaining chunks>

Load(ptr, dst) Scalar

Mov(Quadword, ptr, Reg(<R>))

Mov(<dst type>, Memory(<R>, 0), dst)

Structure

Mov(Quadword, ptr, Reg(<R>))

Mov(<first chunk type>,

 Memory(<R>, 0),

 PseudoMem(dst, 0))

Mov(<next chunk type>,

 Memory(<R>, <first chunk size>),

 PseudoMem(dst, <first chunk size>))

<copy remaining chunks>

TACKY instruction Assembly instructions

Store(src, ptr) Scalar

Mov(Quadword, ptr, Reg(<R>))

Mov(<src type>, src, Memory(<R>, 0))

Structure

Mov(Quadword, ptr, Reg(<R>))

Mov(<first chunk type>,

 PseudoMem(src, 0),

 Memory(<R>, 0))

Mov(<next chunk type>,

 PseudoMem(src, <first chunk size>),

 Memory(<R>, <first chunk size>))
<copy remaining chunks>

GetAddress(src, dst)

Lea(src, dst)

AddPtr(ptr, index, scale,

 dst)

Constant
index

Mov(Quadword, ptr, Reg(<R>))

Lea(Memory(<R>, index * scale), dst)

Variable
index and
scale of
1, 2, 4, or
8

Mov(Quadword, ptr, Reg(<R1>))

Mov(Quadword, index, Reg(<R2>))

Lea(Indexed(<R1>, <R2>, scale), dst)

Variable
index and
other
scale

Mov(Quadword, ptr, Reg(<R1>))

Mov(Quadword, index, Reg(<R2>))

Binary(Mult, Quadword, Imm(scale), Reg(<R2

Lea(Indexed(<R1>, <R2>, 1), dst)

TACKY instruction Assembly instructions

CopyToOffset(src, dst,

 offset)

src is

scalar
Mov(<src type>, src, PseudoMem(dst, offset

src is a

structure
Mov(<first chunk type>,

 PseudoMem(src, 0),

 PseudoMem(dst, offset))

Mov(<next chunk type>,

 PseudoMem(src, <first chunk size>),

 PseudoMem(dst, offset + <first chunk
<copy remaining chunks>

CopyFromOffset(src,

 offset,

 dst)

dst is

scalar
Mov(<dst type>, PseudoMem(src, offset), ds

dst is a

structure
Mov(<first chunk type>,

 PseudoMem(src, offset),

 PseudoMem(dst, 0))

Mov(<next chunk type>,

 PseudoMem(src, offset + <first chunk

 PseudoMem(dst, <first chunk size>))
<copy remaining chunks>

Label(identifier)

Label(identifier)

FunCall(fun_name, args,

 dst)

dst will

be
returned
in
memory

Lea(dst, Reg(DI))

<fix stack alignment>

<move arguments to general-purpose registe

<move arguments to XMM registers>

<push arguments onto the stack>

TACKY instruction Assembly instructions

Call(fun_name)

<deallocate arguments/padding>

dst will

be
returned
in
registers

<fix stack alignment>

<move arguments to general-purpose registe

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)

<deallocate arguments/padding>

<move integer parts of return value from R

<move double parts of return value from XM

dst is

absent
<fix stack alignment>

<move arguments to general-purpose registe

<move arguments to XMM registers>

<push arguments onto the stack>

Call(fun_name)

<deallocate arguments/padding>

ZeroExtend(src, dst)

MovZeroExtend(<src type>, <dst type>, src,

SignExtend(src, dst)

Movsx(<src type>, <dst type>, src, dst)

Truncate(src, dst)

Mov(<dst type>, src, dst)

TACKY instruction Assembly instructions

IntToDouble(src, dst) char or

signed

char
Movsx(Byte, Longword, src, Reg(<R>))

Cvtsi2sd(Longword, Reg(<R>), dst)

int or

long
Cvtsi2sd(<src type>, src, dst)

DoubleToInt(src, dst) char or

signed

char
Cvttsd2si(Longword, src, Reg(<R>))

Mov(Byte, Reg(<R>), dst)

int or

long
Cvttsd2si(<dst type>, src, dst)

UIntToDouble(src, dst) unsigned

char
MovZeroExtend(Byte, Longword, src, Reg(<R>

Cvtsi2sd(Longword, Reg(<R>), dst)

unsigned

int
MovZeroExtend(Longword, Quadword, src, Reg

Cvtsi2sd(Quadword, Reg(<R>), dst)

unsigned

long
Cmp(Quadword, Imm(0), src)

JmpCC(L, <label1>)
Cvtsi2sd(Quadword, src, dst)

Jmp(<label2>)

Label(<label1>)

Mov(Quadword, src, Reg(<R1>))

Mov(Quadword, Reg(<R1>), Reg(<R2>))

Unary(Shr, Quadword, Reg(<R2>))

TACKY instruction Assembly instructions

Binary(And, Quadword, Imm(1), Reg(<R1>))

Binary(Or, Quadword, Reg(<R1>), Reg(<R2>))

Cvtsi2sd(Quadword, Reg(<R2>), dst)

Binary(Add, Double, dst, dst) Label(<label

DoubleToUInt(src, dst) unsigned

char
Cvttsd2si(Longword, src, Reg(<R>))

Mov(Byte, Reg(<R>), dst)

unsigned

int
Cvttsd2si(Quadword, src, Reg(<R>))

Mov(Longword, Reg(<R>), dst)

unsigned

long
Cmp(Double, Data(<upper-bound>, 0), src)

JmpCC(AE, <label1>)
Cvttsd2si(Quadword, src, dst)

Jmp(<label2>)

Label(<label1>)

Mov(Double, src, Reg(<X>))

Binary(Sub, Double, Data(<upper-bound>, 0)

Cvttsd2si(Quadword, Reg(<X>), dst)

Mov(Quadword, Imm(9223372036854775808), Re

Binary(Add, Quadword, Reg(<R>), dst)

Label(<label2>)

And add a top-level constant:
StaticConstant(<upper-bound>, 8,

 DoubleInit(922337203685477

Table B-13: Converting TACKY Arithmetic Operators to Assembly

TACKY operator Assembly operator

Complement Not

TACKY operator Assembly operator

Negate (integer negation) Neg

Add Add

Subtract Sub

Multiply Mult

Divide (double division) DivDouble

Table B-14: Converting TACKY Comparisons to Assembly

TACKY comparison Assembly condition code

Equal E

NotEqual NE

LessThan Signed L

Unsigned, pointer, or double B

LessOrEqual Signed LE

Unsigned, pointer, or double BE

GreaterThan Signed G

Unsigned, pointer, or double A

GreaterOrEqual Signed GE

Unsigned, pointer, or double AE

Table B-15: Converting TACKY Operands to Assembly

TACKY operand Assembly operand

Constant(ConstChar(int)) Imm(int)

Constant(ConstInt(int)) Imm(int)

Constant(ConstLong(int)) Imm(int)

Constant(ConstUChar(int)) Imm(int)

Constant(ConstUInt(int)) Imm(int)

Constant(ConstULong(int)) Imm(int)

Constant(ConstDouble(double)) Data(<ident>, 0)

And add a top-level constant:
StaticConstant(<ident>, 8,

DoubleInit(double))

Var(identifier) Scalar value Pseudo(identifier)

Aggregate
value

PseudoMem(identifier, 0)

Table B-16: Converting Types to Assembly

Source type Assembly type Alignment

Char Byte 1

SChar Byte 1

UChar Byte 1

Int Longword 4

UInt Longword 4

Long Quadword 8

Source type Assembly type Alignment

ULong Quadword 8

Double Double 8

Pointer(referenced_t) Quadword 8

Array(element, size) Variables that are
16 bytes or larger

ByteArray(<size of element> *

size, 16)

16

Everything else ByteArray(<size of element> *

size, <alignment of element>)

Same alignment
as element

Structure(tag) ByteArray(<size from type

table>, <alignment from type

table>)

Alignment from
type table

Code Emission

Tables B-17 through B-23 show the complete code emission pass at the end of Part II.

Table B-17: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(top_levels)

Print out each top-level construct.
On Linux, add at end of file:
 .section .note.GNU-stack,"",@pr

Function(name, global, instructions)

 <global-directive>

 .text
 <name>:
 pushq %rbp

 movq %rsp, %rbp

 <instructions>

Assembly top-level construct Output

StaticVariable(name, global,

 alignment,

 init_list)

Integer
initialized
to zero, or
any
variable
initialized
only with
ZeroInit

 <global-directive>

 .bss
 <alignment-directive>
 <name>:

 <init_list>

All other
variables

 <global-directive>

 .data
 <alignment-directive>
 <name>:

 <init_list>

StaticConstant(name, alignment,

 init)

Linux

 .section .rodata

 <alignment-directive>
 <name>:

 <init>

macOS
(8-byte-
aligned
numeric
constants)

 .literal8

 .balign 8

 <name>:
 <init>

macOS
(16-byte-
aligned
numeric
constants)

 .literal16

 .balign 16

 <name>:
 <init>
 .quad 0

Assembly top-level construct Output

macOS
(string
constants)

 .cstring

 <name>:
 <init>

Global directive

 If global is true:
 .globl <identifier>

 Otherwise, omit this directive.

Alignment directive Linux only

.align <alignment>

macOS or
Linux

.balign <alignment>

Table B-18: Formatting Static Initializers

Static initializer Output

CharInit(0) .zero 1

CharInit(i) .byte <i>

IntInit(0) .zero 4

IntInit(i) .long <i>

LongInit(0) .zero 8

LongInit(i) .quad <i>

Static initializer Output

UCharInit(0) .zero 1

UCharInit(i) .byte <i>

UIntInit(0) .zero 4

UIntInit(i) .long <i>

ULongInit(0) .zero 8

ULongInit(i) .quad <i>

ZeroInit(n) .zero <n>

DoubleInit(d)

.double <d>

 or
 .quad <d-interpreted-as-long>

StringInit(s, True) .asciz "<s>"

StringInit(s, False) .ascii "<s>"

PointerInit(label) .quad <label>

Table B-19: Formatting Assembly Instructions

Assembly instruction Output

Mov(t, src, dst)

mov<t> <src>, <dst>

Movsx(src_t, dst_t, src, dst)

movs<src_t><dst_t> <src>, <dst>

Assembly instruction Output

MovZeroExtend(src_t, dst_t, src, dst)

movz<src_t><dst_t> <src>, <dst>

Lea

leaq <src>, <dst>

Cvtsi2sd(t, src, dst)

cvtsi2sd<t> <src>, <dst>

Cvttsd2si(t, src, dst)

cvttsd2si<t> <src>, <dst>

Ret

movq %rbp, %rsp

popq %rbp

ret

Unary(unary_operator, t, operand)

<unary_operator><t> <operand>

Binary(Xor, Double, src, dst)

xorpd <src>, <dst>

Binary(Mult, Double, src, dst)

mulsd <src>, <dst>

Assembly instruction Output

Binary(binary_operator, t, src, dst)

<binary_operator><t> <src>, <dst>

Idiv(t, operand)

idiv<t> <operand>

Div(t, operand)

div<t> <operand>

Cdq(Longword)

cdq

Cdq(Quadword)

cqo

Push(operand)

pushq <operand>

Call(label)

call <label>

or
call <label>@PLT

Cmp(Double, operand, operand)

comisd <operand>, <operand>

Assembly instruction Output

Cmp(t, operand, operand)

cmp<t> <operand>, <operand>

Jmp(label)

jmp .L<label>

JmpCC(cond_code, label)

j<cond_code> .L<label>

SetCC(cond_code, operand)

set<cond_code> <operand>

Label(label)

.L<label>:

Table B-20: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg neg

Not not

Shr shr

Add add

Sub sub

Assembly operator Instruction name

Mult (integer multiplication only) imul

DivDouble div

And and

Or or

Shl shl

ShrTwoOp shr

Table B-21: Instruction Suffixes for Assembly Types

Assembly type Instruction suffix

Byte b

Longword l

Quadword q

Double sd

Table B-22: Instruction Suffixes for Condition Codes

Condition code Instruction suffix

E e

NE ne

L l

LE le

G g

Condition code Instruction suffix

GE ge

A a

AE ae

B b

BE be

Table B-23: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 8-byte %rax

4-byte %eax

1-byte %al

Reg(DX) 8-byte %rdx

4-byte %edx

1-byte %dl

Reg(CX) 8-byte %rcx

4-byte %ecx

1-byte %cl

Reg(DI) 8-byte %rdi

4-byte %edi

1-byte %dil

Reg(SI) 8-byte %rsi

Assembly operand Output

4-byte %esi

1-byte %sil

Reg(R8) 8-byte %r8

4-byte %r8d

1-byte %r8b

Reg(R9) 8-byte %r9

4-byte %r9d

1-byte %r9b

Reg(R10) 8-byte %r10

4-byte %r10d

1-byte %r10b

Reg(R11) 8-byte %r11

4-byte %r11d

1-byte %r11b

Reg(SP) %rsp

Reg(BP) %rbp

Reg(XMM0) %xmm0

Reg(XMM1) %xmm1

Reg(XMM2) %xmm2

Reg(XMM3) %xmm3

Assembly operand Output

Reg(XMM4) %xmm4

Reg(XMM5) %xmm5

Reg(XMM6) %xmm6

Reg(XMM7) %xmm7

Reg(XMM14) %xmm14

Reg(XMM15) %xmm15

Memory(reg, int) <int>(<reg>)

Indexed(reg1, reg2, int)

(<reg1>,

<reg2>, <int>)

Imm(int)

$<int>

Data(identifier, int)

<identifier>

+<int>(%rip)

Part III

In Part III, we don’t change the conversion from TACKY to assembly, but we do add some new registers to the
assembly AST and update the code emission pass accordingly. How the code emission pass looks at the end of
this section depends on whether you completed Part II first or skipped straight from Part I to Part III.

Tables B-24 through B-28 show the complete code emission pass at the end of Part III if you skipped over Part II.

Table B-24: Formatting Top-Level Assembly Constructs

Assembly top-level
construct

Output

Program(top_levels)

Print out each top-level construct.
On Linux, add at end of file:
 .section .note.GNU-stack,"",@progbits

Function(name, global, instructions)

 <global-directive>

 .text
 <name>:
 pushq %rbp

 movq %rsp, %rbp

 <instructions>

StaticVariable(name,

global, init)

Initialized to
zero

 <global-directive>

 .bss
 <alignment-directive>
<name>:

 .zero 4

Initialized to
nonzero
value

 <global-directive>

 .data
 <alignment-directive>

Assembly top-level
construct

Output

 <name>:

 .long <init>

Global directive

 If global is true:
.globl <identifier>

 Otherwise, omit this directive.

Alignment directive Linux only

.align 4

macOS or
Linux

.balign 4

Table B-25: Formatting Assembly Instructions

Assembly instruction Output

Mov(src, dst)

movl <src>, <dst>

Ret

movq %rbp, %rsp

popq %rbp

ret

Assembly instruction Output

Unary(unary_operator, operand)

<unary_operator> <operand>

Binary(binary_operator, src, dst)

<binary_operator> <src>, <dst>

Idiv(operand)

idivl <operand>

Cdq

cdq

AllocateStack(int)

subq $<int>, %rsp

DeallocateStack(int)

addq $<int>, %rsp

Push(operand)

pushq <operand>

Pop(reg)

popq <reg>

Assembly instruction Output

Call(label)

call <label>
or
call <label>@PLT

Cmp(operand, operand)

cmpl <operand>, <operand>

Jmp(label)

jmp .L<label>

JmpCC(cond_code, label)

j<cond_code> .L<label>

SetCC(cond_code, operand)

set<cond_code> <operand>

Label(label)

.L<label>:

Table B-26: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg negl

Not notl

Assembly operator Instruction name

Add addl

Sub subl

Mult imull

Table B-27: Instruction Suffixes for Condition Codes

Condition code Instruction suffix

E e

NE ne

L l

LE le

G g

GE ge

Table B-28: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 8-byte %rax

4-byte %eax

1-byte %al

Reg(DX) 8-byte %rdx

4-byte %edx

1-byte %dl

Assembly operand Output

Reg(CX) 8-byte %rcx

4-byte %ecx

1-byte %cl

Reg(BX) 8-byte %rbx

4-byte %ebx

1-byte %bl

Reg(DI) 8-byte %rdi

4-byte %edi

1-byte %dil

Reg(SI) 8-byte %rsi

4-byte %esi

1-byte %sil

Reg(R8) 8-byte %r8

4-byte %r8d

1-byte %r8b

Reg(R9) 8-byte %r9

4-byte %r9d

1-byte %r9b

Reg(R10) 8-byte %r10

4-byte %r10d

Assembly operand Output

1-byte %r10b

Reg(R11) 8-byte %r11

4-byte %r11d

1-byte %r11b

Reg(R12) 8-byte %r12

4-byte %r12d

1-byte %r12b

Reg(R13) 8-byte %r13

4-byte %r13d

1-byte %r13b

Reg(R14) 8-byte %r14

4-byte %r14d

1-byte %r14b

Reg(R15) 8-byte %r15

4-byte %r15d

1-byte %r15b

Stack(int) <int>(%rbp)

Imm(int) $<int>

Data(identifier) <identifier>(%rip)

Tables B-29 through B-35 show the complete code emission pass after completing Parts I, II, and III.

Table B-29: Formatting Top-Level Assembly Constructs

Assembly top-level construct Output

Program(top_levels)

Print out each top-level construct.
On Linux, add at end of file:
 .section .note.GNU-stack,"",@pro

Function(name, global, instructions)

 <global-directive>

 .text

 <name>:
 pushq %rbp

 movq %rsp, %rbp

 <instructions>

StaticVariable(name, global,

 alignment,

 init_list)

Integer
initialized
to zero, or
any
variable
initialized
only with
ZeroInit

 <global-directive>

 .bss
 <alignment-directive>
 <name>:

 <init_list>

All other
variables

 <global-directive>

 .data
 <alignment-directive>
 <name>:

 <init_list>

StaticConstant(name, alignment,

 init)

Linux

 .section .rodata

 <alignment-directive>
 <name>:

 <init>

Assembly top-level construct Output

macOS
(8-byte-
aligned
numeric
constants)

 .literal8

 .balign 8

 <name>:
 <init>

macOS
(16-byte-
aligned
numeric
constants)

 .literal16

 .balign 16

 <name>:
 <init>
 .quad 0

macOS
(string
constants)

 .cstring

 <name>:
 <init>

Global directive

 If global is true:
 .globl <identifier>

 Otherwise, omit this directive.

Alignment directive Linux only

.align <alignment>

macOS or
Linux

.balign <alignment>

Table B-30: Formatting Static Initializers

Static initializer Output

CharInit(0) .zero 1

CharInit(i) .byte <i>

IntInit(0) .zero 4

IntInit(i) .long <i>

LongInit(0) .zero 8

LongInit(i) .quad <i>

UCharInit(0) .zero 1

UCharInit(i) .byte <i>

UIntInit(0) .zero 4

UIntInit(i) .long <i>

ULongInit(0) .zero 8

ULongInit(i) .quad <i>

ZeroInit(n) .zero <n>

DoubleInit(d)

.double <d>

or
.quad <d-interpreted-as-long>

StringInit(s, True) .asciz "<s>"

StringInit(s, False) .ascii "<s>"

PointerInit(label) .quad <label>

Table B-31: Formatting Assembly Instructions

Assembly instruction Output

Mov(t, src, dst)

mov<t> <src>, <dst>

Movsx(src_t, dst_t, src, dst)

movs<src_t><dst_t> <src>, <dst>

MovZeroExtend(src_t, dst_t, src, dst)

movz<src_t><dst_t> <src>, <dst>

Lea

leaq <src>, <dst>

Cvtsi2sd(t, src, dst)

cvtsi2sd<t> <src>, <dst>

Cvttsd2si(t, src, dst)

cvttsd2si<t> <src>, <dst>

Ret

movq %rbp, %rsp

popq %rbp

ret

Unary(unary_operator, t, operand)

<unary_operator><t> <operand>

Assembly instruction Output

Binary(Xor, Double, src, dst)

xorpd <src>, <dst>

Binary(Mult, Double, src, dst)

mulsd <src>, <dst>

Binary(binary_operator, t, src, dst)

<binary_operator><t> <src>, <dst>

Idiv(t, operand)

idiv<t> <operand>

Div(t, operand)

div<t> <operand>

Cdq(Longword)

cdq

Cdq(Quadword)

cqo

Push(operand)

pushq <operand>

Assembly instruction Output

Pop(reg)

popq <reg>

Call(label)

call <label>

or
call <label>@PLT

Cmp(Double, operand, operand)

comisd <operand>, <operand>

Cmp(t, operand, operand)

cmp<t> <operand>, <operand>

Jmp(label)

jmp .L<label>

JmpCC(cond_code, label)

j<cond_code> .L<label>

SetCC(cond_code, operand)

set<cond_code> <operand>

Label(label)

.L<label>:

Table B-32: Instruction Names for Assembly Operators

Assembly operator Instruction name

Neg neg

Not not

Shr shr

Add add

Sub sub

Mult (integer multiplication only) imul

DivDouble div

And and

Or or

Shl shl

ShrTwoOp shr

Table B-33: Instruction Suffixes for Assembly Types

Assembly type Instruction suffix

Byte b

Longword l

Quadword q

Double sd

Table B-34: Instruction Suffixes for Condition Codes

Condition code Instruction suffix

E e

NE ne

L l

LE le

G g

GE ge

A a

AE ae

B b

BE be

Table B-35: Formatting Assembly Operands

Assembly operand Output

Reg(AX) 8-byte %rax

4-byte %eax

1-byte %al

Reg(DX) 8-byte %rdx

4-byte %edx

1-byte %dl

Reg(CX) 8-byte %rcx

Assembly operand Output

4-byte %ecx

1-byte %cl

Reg(BX) 8-byte %rbx

4-byte %ebx

1-byte %bl

Reg(DI) 8-byte %rdi

4-byte %edi

1-byte %dil

Reg(SI) 8-byte %rsi

4-byte %esi

1-byte %sil

Reg(R8) 8-byte %r8

4-byte %r8d

1-byte %r8b

Reg(R9) 8-byte %r9

4-byte %r9d

1-byte %r9b

Reg(R10) 8-byte %r10

4-byte %r10d

1-byte %r10b

Assembly operand Output

Reg(R11) 8-byte %r11

4-byte %r11d

1-byte %r11b

Reg(R12) 8-byte %r12

4-byte %r12d

1-byte %r12b

Reg(R13) 8-byte %r13

4-byte %r13d

1-byte %r13b

Reg(R14) 8-byte %r14

4-byte %r14d

1-byte %r14b

Reg(R15) 8-byte %r15

4-byte %r15d

1-byte %r15b

Reg(SP) %rsp

Reg(BP) %rbp

Reg(XMM0) %xmm0

Reg(XMM1) %xmm1

Reg(XMM2) %xmm2

Assembly operand Output

Reg(XMM3) %xmm3

Reg(XMM4) %xmm4

Reg(XMM5) %xmm5

Reg(XMM6) %xmm6

Reg(XMM7) %xmm7

Reg(XMM8) %xmm8

Reg(XMM9) %xmm9

Reg(XMM10) %xmm10

Reg(XMM11) %xmm11

Reg(XMM12) %xmm12

Reg(XMM13) %xmm13

Reg(XMM14) %xmm14

Reg(XMM15) %xmm15

Memory(reg, int) <int>(<reg>)

Indexed(reg1, reg2, int) (<reg1>, <reg2>, <int>)

Imm(int) $<int>

Data(identifier, 0) <identifier>(%rip)

Data(identifier, int) <identifier>+<int>(%rip)

REFERENCES

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. “Machine-Independent Optimizations.” Chapter
9 in Compilers: Principles, Techniques, & Tools, 2nd ed. Boston: Addison-Wesley, 2006.

Ballman, Aaron. Comment on Issue 53631: “C Compiler: Missing Diagnostics ‘Dereferencing “void *” Pointer.’ ”
LLVM issue tracker. GitHub, September 21, 2022. https://github.com/llvm/llvm-project/issues
/53631#issuecomment-1253653888.

Bendersky, Eli. “The Context Sensitivity of C’s Grammar, Revisited.” Eli Bendersky’s Website, May 2, 2011.
https://eli.thegreenplace.net/2011/05/02/the-context-sensitivity-of-cs-grammar-revisited.

Bendersky, Eli. “Directed Graph Traversal, Orderings and Applications to Data-Flow Analysis.” Eli Bendersky’s
Website, October 16, 2015. https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-
applications-to-data-flow-analysis.

Bendersky, Eli. “Parsing Expressions by Precedence Climbing.” Eli Bendersky’s Website, August 2, 2012. https://
eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing.

Bendersky, Eli. “Position Independent Code (PIC) in Shared Libraries.” Eli Bendersky’s Website, November 3,
2011. https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries.

Bendersky, Eli. “Position Independent Code (PIC) in Shared Libraries on x64.” Eli Bendersky’s Website, November
11, 2011. https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64.

Bendersky, Eli. “Some Problems of Recursive Descent Parsers.” Eli Bendersky’s Website, March 14, 2009. https://
eli.thegreenplace.net/2009/03/14/some-problems-of-recursive-descent-parsers.

Borgwardt, Michael. The Floating-Point Guide. Accessed January 12, 2023. https://floating-point-gui.de.
Briggs, Preston, Keith D. Cooper, and Linda Torczon. “Improvements to Graph Coloring Register Allocation.” ACM

Transactions on Programming Languages and Systems 16, no. 3 (May 1994): 428–455. https://doi.org/10
.1145/177492.177575.

Chaitin, G. J. “Register Allocation & Spilling via Graph Coloring.” ACM SIGPLAN Notices 17, no. 6 (June 1982):
98–101. https://doi.org/10.1145/872726.806984.

Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W.
Markstein. “Register Allocation via Coloring.” Computer Languages 6, no. 1 (January 1981): 47–57. https://doi
.org/10.1016/0096-0551(81)90048-5.

Chu, Andy. “Pratt Parsing and Precedence Climbing Are the Same Algorithm.” Oils Blog, November 1, 2016.
https://www.oilshell.org/blog/2016/11/01.html.

Chu, Andy. “Precedence Climbing Is Widely Used.” Oils Blog, March 30, 2017. https://www.oilshell.org/blog/2017
/03/30.html.

Ciechanowski, Bartosz. Float Exposed. Accessed March 29, 2023. https://float.exposed.
Cooper, Keith D., and Linda Torczon. “Register Allocation.” Chapter 13 in Engineering a Compiler, 2nd ed. Boston:

Morgan Kaufmann, 2011.
Cordes, Peter. Answer to “Is a Sign or Zero Extension Required When Adding a 32bit Offset to a Pointer for the

x86-64 ABI?” Stack Overflow, April 21, 2016, updated April 30, 2019. https://stackoverflow.com/a/36760539.
cppreference.com. “C23.” Updated September 25, 2023. https://en.cppreference.com/w/c/23.
cppreference.com. “Order of Evaluation.” Updated September 20, 2023. https://en.cppreference.com/w/c

/language/eval_order.
Cuoq, Pascal. Answer to “Unsigned 64-Bit to Double Conversion: Why This Algorithm from g++.” Stack Overflow,

November 7, 2014, updated October 23, 2018. https://stackoverflow.com/a/26799227.

https://github.com/llvm/llvm-project/issues/53631#issuecomment-1253653888
https://eli.thegreenplace.net/2011/05/02/the-context-sensitivity-of-cs-grammar-revisited
https://eli.thegreenplace.net/2015/directed-graph-traversal-orderings-and-applications-to-data-flow-analysis
https://eli.thegreenplace.net/2012/08/02/parsing-expressions-by-precedence-climbing
https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries
https://eli.thegreenplace.net/2011/11/11/position-independent-code-pic-in-shared-libraries-on-x64
https://eli.thegreenplace.net/2009/03/14/some-problems-of-recursive-descent-parsers
https://floating-point-gui.de/
https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/872726.806984
https://doi.org/10.1016/0096-0551(81)90048-5
https://www.oilshell.org/blog/2016/11/01.html
https://www.oilshell.org/blog/2017/03/30.html
https://float.exposed/
https://stackoverflow.com/a/36760539
https://en.cppreference.com/w/c/23
https://en.cppreference.com/w/c/language/eval_order
https://stackoverflow.com/a/26799227

David542 and Peter Cordes. “Integer Overflow in gas.” Forum discussion. Stack Overflow, October 10, 2020.
https://stackoverflow.com/q/64289590.

Dawson, Bruce. “Sometimes Floating Point Math Is Perfect.” Random ASCII, June 19, 2017. https://randomascii
.wordpress.com/2017/06/19/sometimes-floating-point-math-is-perfect/.

Drysdale, David. “Beginner’s Guide to Linkers.” Updated 2009. https://www.lurklurk.org/linkers/linkers.html.
D’Silva, Vijay, Mathias Payer, and Dawn Song. “The Correctness-Security Gap in Compiler Optimization.” In

Proceedings of the 2015 IEEE Security and Privacy Workshops, 73–87. San Jose, CA, 2015. https://doi.org/10
.1109/SPW.2015.33.

Finley, Thomas. “Two’s Complement.” Department of Computer Science, Cornell University, April 2000. https://
www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html.

Fog, Agner. “Calling Conventions for Different C++ Compilers and Operating Systems.” Updated February 1,
2023. https://www.agner.org/optimize/calling_conventions.pdf.

Friedl, Steve. “Reading C Type Declarations.” December 27, 2003. http://unixwiz.net/techtips/reading-cdecl.html.
GCC Wiki. “Semantics of Floating Point Math in GCC.” Updated April 13, 2021. https://gcc.gnu.org/wiki

/FloatingPointMath.
George, Lal, and Andrew W. Appel. “Iterated Register Coalescing.” ACM Transactions on Programming Languages

and Systems 18, no. 3 (May 1996): 300–324. https://doi.org/10.1145/229542.229546.
Ghuloum, Abdulaziz. “An Incremental Approach to Compiler Construction.” In Proceedings of the 2006 Scheme

and Functional Programming Workshop, 27–37. Portland, OR, 2006. http://scheme2006.cs.uchicago.edu/11-
ghuloum.pdf.

Gibbons, Phillip B. “Lecture 8: Induction Variable Optimizations.” Lecture slides for 15-745 Optimizing Compilers
for Modern Architectures, Carnegie Mellon University, Spring 2019. https://www.cs.cmu.edu/afs/cs/academic
/class/15745-s19/www/lectures/L8-Induction-Variables.pdf.

Gibbons, Phillip B. “Lecture 16: Pointer Analysis.” Lecture slides for 15-745 Optimizing Compilers for Modern
Architectures, Carnegie Mellon University, Spring 2016. https://www.cs.cmu.edu/afs/cs/academic/class/15745
-s16/www/lectures/L16-Pointer-Analysis.pdf.

Gibbons, Phillip B. “Lecture 23: Register Allocation: Coalescing.” Lecture slides for 15-745 Optimizing Compilers
for Modern Architectures, Carnegie Mellon University, Spring 2019. https://www.cs.cmu.edu/afs/cs/academic
/class/15745-s19/www/lectures/L23-Register-Coalescing.pdf.

Godbolt, Matt. Compiler Explorer. Updated September 27, 2023. https://godbolt.org.
Goldberg, David. “What Every Computer Scientist Should Know about Floating-Point Arithmetic.” ACM Computing

Surveys 23, no. 1 (March 1991): 5–48. https://doi.org/10.1145/103162.103163. Edited reprint included as
Appendix D of Numerical Computation Guide. Palo Alto: Sun Microsystems, 2000. https://docs.oracle.com/cd
/E19957-01/806-3568/ncg_goldberg.html.

Gustedt, Jens. “C11 Defects: Initialization of Padding.” Jens Gustedt’s Blog, October 24, 2012. https://gustedt
.wordpress.com/2012/10/24/c11-defects-initialization-of-padding/.

Gustedt, Jens. “Checked Integer Arithmetic in the Prospect of C23.” Jens Gustedt’s Blog, December 18, 2022.
https://gustedt.wordpress.com/2022/12/18/checked-integer-arithmetic-in-the-prospect-of-c23/.

Hailperin, Max. “Comparing Conservative Coalescing Criteria.” ACM Transactions on Programming Languages and
Systems 27, no. 3 (May 2005): 571–582. https://doi.org/10.1145/1065887.1065894.

Hilfinger, Paul. “Lecture 37: Global Optimization.” Lecture slides for CS 164: Programming Languages and
Compilers, University of California, Berkeley, Spring 2011. https://inst.eecs.berkeley.edu/~cs164/sp11
/lectures/lecture37-2x2.pdf.

Hyde, Randall. “Procedures.” Chap. 5 in The Art of 64-Bit Assembly, Vol. 1. San Francisco: No Starch Press,
2021.

https://stackoverflow.com/q/64289590
https://randomascii.wordpress.com/2017/06/19/sometimes-floating-point-math-is-perfect/
https://www.lurklurk.org/linkers/linkers.html
https://doi.org/10.1109/SPW.2015.33
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.agner.org/optimize/calling_conventions.pdf
http://unixwiz.net/techtips/reading-cdecl.html
https://gcc.gnu.org/wiki/FloatingPointMath
https://doi.org/10.1145/229542.229546
http://scheme2006.cs.uchicago.edu/11-ghuloum.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s19/www/lectures/L8-Induction-Variables.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s16/www/lectures/L16-Pointer-Analysis.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15745-s19/www/lectures/L23-Register-Coalescing.pdf
https://godbolt.org/
https://doi.org/10.1145/103162.103163
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://gustedt.wordpress.com/2012/10/24/c11-defects-initialization-of-padding/
https://gustedt.wordpress.com/2022/12/18/checked-integer-arithmetic-in-the-prospect-of-c23/
https://doi.org/10.1145/1065887.1065894
https://inst.eecs.berkeley.edu/~cs164/sp11/lectures/lecture37-2x2.pdf

IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754-2019. New York: IEEE, 2019. https://doi.org/10
.1109/IEEESTD.2019.8766229.

Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s Manual. Vol. 2, Instruction Set
Reference, A-Z. Updated September 2023. https://www.intel.com/content/www/us/en/developer/articles
/technical/intel-sdm.html. Unofficial copy also available online at https://www.felixcloutier.com/x86/.

ISO/IEC. Information Technology—Programming Languages—C. 4th ed. ISO/IEC 9899:2018. Geneva,
Switzerland: ISO, 2018.

ISO/IEC. Information Technology—Programming Languages—C. N3096 (working draft), April 1, 2023. https://
open-std.org/JTC1/SC22/WG14/www/docs/n3096.pdf.

Jones, Joel. “Abstract Syntax Tree Implementation Idioms.” In Proceedings of the 10th Conference on Pattern
Languages of Programs (PLoP2003), 2003. https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs
.pdf.

Levien, Raph. “With Undefined Behavior, Anything Is Possible.” Raph Levien’s Blog, August 17, 2018. https://
raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html.

LLVM. “LLVM: lib/CodeGen/MachineCopyPropagation.Cpp Source File.” Source code. Accessed December 24,
2021. https://llvm.org/doxygen/MachineCopyPropagation_8cpp_source.html.

LLVM Project. “Controlling Floating Point Behavior.” Clang Compiler User’s Manual. Accessed April 11, 2023.
https://clang.llvm.org/docs/UsersManual.html#controlling-floating-point-behavior.

LLVM Project. LLDB documentation. Updated October 4, 2023. https://lldb.llvm.org.
Lu, H.J., Michael Matz, Milind Girkar, Jan Hubička, Andreas Jaeger, and Mark Mitchell, eds. System V Application

Binary Interface AMD64 Architecture Processor Supplement (With LP64 and ILP32 Programming Models).
Updated September 26, 2023. https://gitlab.com/x86-psABIs/x86-64-ABI.

MaskRay. “Copy Relocations, Canonical PLT Entries and Protected Visibility.” MaskRay, January 9, 2021. https://
maskray.me/blog/2021-01-09-copy-relocations-canonical-plt-entries-and-protected.

Meneide, JeanHeyd. “Ever Closer—C23 Draws Nearer.” The Pasture, February 28, 2022. https://thephd.dev/ever-
closer-c23-improvements.

Muchnick, Steven S. “Register Allocation.” Chapter 16 in Advanced Compiler Design and Implementation. San
Francisco: Morgan Kaufmann, 1997.

Myers, Joseph. Comment on Bug 90472: “ ‘extern int i;’ Declaration Inside Function Isn’t Allowed to Shadow
‘static int i;’ at File Scope.” GCC Bugzilla, May 16, 2019. https://gcc.gnu.org/bugzilla/show_bug.cgi?id
=90472#c3.

Nisan, Noam, and Shimon Schocken. “Boolean Arithmetic.” Chapter 2 in The Elements of Computing Systems:
Building a Modern Computer from First Principles, 1st ed. Cambridge: MIT Press, 2008. https://www
.nand2tetris.org/_files/ugd/44046b_f0eaab042ba042dcb58f3e08b46bb4d7.pdf.

Regan, Rick. “Decimal to Floating-Point Converter.” Exploring Binary. Accessed June 2, 2023. https://www
.exploringbinary.com/floating-point-converter/.

Regan, Rick. “GCC Avoids Double Rounding Errors with Round-to-Odd.” Exploring Binary, January 15, 2014.
https://www.exploringbinary.com/gcc-avoids-double-rounding-errors-with-round-to-odd/.

Regan, Rick. “Hexadecimal Floating-Point Constants.” Exploring Binary, October 4, 2010. https://www
.exploringbinary.com/hexadecimal-floating-point-constants/.

Regan, Rick. “Number of Digits Required for Round-Trip Conversions.” Exploring Binary, April 9, 2015. https://
www.exploringbinary.com/number-of-digits-required-for-round-trip-conversions/.

Regan, Rick. “The Spacing of Binary Floating-Point Numbers.” Exploring Binary, March 15, 2015. https://www
.exploringbinary.com/the-spacing-of-binary-floating-point-numbers/.

https://doi.org/10.1109/IEEESTD.2019.8766229.
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.felixcloutier.com/x86/
https://open-std.org/JTC1/SC22/WG14/www/docs/n3096.pdf
https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://llvm.org/doxygen/MachineCopyPropagation_8cpp_source.html
https://clang.llvm.org/docs/UsersManual.html#controlling-floating-point-behavior
https://lldb.llvm.org/
https://gitlab.com/x86-psABIs/x86-64-ABI
https://maskray.me/blog/2021-01-09-copy-relocations-canonical-plt-entries-and-protected
https://thephd.dev/ever-closer-c23-improvements
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90472#c3
https://www.nand2tetris.org/_files/ugd/44046b_f0eaab042ba042dcb58f3e08b46bb4d7.pdf
https://www.exploringbinary.com/floating-point-converter/
https://www.exploringbinary.com/gcc-avoids-double-rounding-errors-with-round-to-odd/
https://www.exploringbinary.com/hexadecimal-floating-point-constants/
https://www.exploringbinary.com/number-of-digits-required-for-round-trip-conversions/
https://www.exploringbinary.com/the-spacing-of-binary-floating-point-numbers/

Regehr, John. “A Guide to Undefined Behavior in C and C++, Part 1.” Embedded in Academia, July 9, 2010.
https://blog.regehr.org/archives/213.

Ritchie, Dennis M. “The Development of the C Language.” In The Second ACM SIGPLAN Conference on History
of Programming Languages, 201–8. Cambridge: ACM, 1993. https://doi.org/10.1145/154766.155580.
Reproduced on the author’s home page, Bell Labs, 2003. https://www.bell-labs.com/usr/dmr/www/chist.html.

Stallman, Richard M., and the GCC Developer Community. “Integers.” Using the GNU Compiler Collection (GCC).
Accessed January 12, 2023. https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html.

Stallman, Richard, Roland Pesch, Stan Shebs, et al. Debugging with GDB: The GNU Source-Level Debugger.
Accessed January 29, 2024. https://sourceware.org/gdb/current/onlinedocs/gdb/index.html.

Taylor, Ian Lance. “Linkers.” Series of blog posts. Airs – Ian Lance Taylor, September 2007. First post available at
https://www.airs.com/blog/archives/38, table of contents available at https://lwn.net/Articles/276782/.

Ullman, Jeffrey D. “Code Optimization I.” Lecture notes. Stanford University InfoLab, Stanford University.
Accessed October 6, 2023. http://infolab.stanford.edu/~ullman/dragon/slides3.pdf.

Ullman, Jeffrey D. “Code Optimization II.” Lecture notes. Stanford University InfoLab, Stanford University.
Accessed October 6, 2023. http://infolab.stanford.edu/~ullman/dragon/slides4.pdf.

Wang, Daniel C., Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. “The Zephyr Abstract Syntax
Description Language.” In Proceeedings of the Conference on Domain Specific Languages (DSL ’97). Santa
Barbara, CA, 1997. https://www.cs.princeton.edu/~appel/papers/asdl97.pdf.

Wikipedia. “Double-Precision Floating-Point Format.” Last modified March 26, 2024. https://en.wikipedia.org/wiki
/Double-precision_floating-point_format.

Yang, Edward Z. “The AST Typing Problem.” Ezyang’s Blog, May 28, 2013. http://blog.ezyang.com/2013/05/the-
ast-typing-problem/.

Yang, Zhaomo, Brian Johannesmeyer, Anders Trier Olesen, Sorin Lerner, and Kirill Levchenko. “Dead Store
Elimination (Still) Considered Harmful.” In Proceedings of the 26th USENIX Security Symposium, 1025–1040.
Vancouver, BC, 2017. https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-yang.pdf.

https://blog.regehr.org/archives/213
https://doi.org/10.1145/154766.155580
https://www.bell-labs.com/usr/dmr/www/chist.html
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html
https://sourceware.org/gdb/current/onlinedocs/gdb/index.html
https://www.airs.com/blog/archives/38
https://lwn.net/Articles/276782/
http://infolab.stanford.edu/~ullman/dragon/slides3.pdf
http://infolab.stanford.edu/~ullman/dragon/slides4.pdf
https://www.cs.princeton.edu/~appel/papers/asdl97.pdf
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
http://blog.ezyang.com/2013/05/the-ast-typing-problem/
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-yang.pdf

INDEX

Symbols
ition) operator. See addition operator

dition assignment) operator, 113

ress) operator. See address operator

ND) operator. See AND operator

gnment) operator. See assignment expressions

wise AND) operator, 67

twise AND assignment) operator, 113

wise complement) operator. See bitwise complement operator

wise OR) operator, 67

twise OR assignment) operator, 113

nditional) operator, 121–124. See also conditional expressions

ecrement) operator, 31–32, 33, 113

eference) operator. See dereference operator

sion) operator. See division operator

vision assignment) operator, 113

ual to) operator. See equal to operator

ater than) operator. See greater than operator

eater than or equal to) operator. See greater than or equal to operator

crement) operator, 113

ft shift) operator, 67

eft shift assignment) operator, 67

s than) operator. See less than operator

ss than or equal to) operator. See less than or equal to operator

tiplication) operator. See multiplication operator

ultiplication assignment) operator, 113

ation) operator. See negation operator

T) operator. See NOT operator

ot equal to) operator. See not equal to operator

R) operator. See OR operator

mainder) operator. See remainder operator

mainder assignment) operator, 113

ght shift) operator, 67

ight shift assignment) operator, 113

ucture member) operator. See structure member operator

ructure pointer) operator. See structure pointer operator

bscript) operator. See subscript operator

traction) operator. See subtraction operator

btraction assignment) operator, 113

R) operator, 67

OR assignment) operator, 113

A
pplication binary interface), 184. See also System V x64 ABI
ct declarators, 361–363

bstract array declarators, 395–396
ct syntax tree (AST), 4, 10–14
ding loop labels, 150
ding type information, 252–253

AST typing problem, 253
ditional resources, 21–22
sembly, 18, 40
nstant representations in, 248, 276, 306
ructure determines order of evaluation, 49
ACKY, 36–37
dge function, 579–580

struction, 60, 62–63

mitting, 66, 270
ing up, 64, 268

on (+) operator, 47–50

sembly for, 60, 62–63
floating-point, 315

rsing, 50–55
ointer addition, 387–390

TACKY for, 406–408
type checking, 400, 472

ACKY for, 58
pe checking, 254–255
on assignment (+=) operator, 113

seudoregisters, 632, 633, 637

r instruction, 406–408

sembly for, 414–415
mitting, 517
ructure member access with, 514–517
ss (&) operator, 349, 353

sembly for, 376
nstraints on, 364, 474
rsing, 354–355

ACKY for, 370–372, 374, 514, 516–517
pe checking, 364–365
ss-taken analysis, 600–601
f expressions, 354. See also address operator

ray decay implemented with, 398–399, 409–410, 441
instruction, 311–312

ing up, 337
ced Compiler Design and Implementation (Muchnick), 669
gate types, 384
Alfred V., 611, 670
nalysis, 601
ditional resources, 611

d variables, 599–602, 609, 637
n directive, 221, 238–239

ed_alloc function, 461

ted storage duration, 213, 461
ateStack instruction, 40, 42, 44, 268

4. See x64 instruction set
&&) operator, 71–77

ort-circuiting, 72
ACKY for, 75–77, 259
pe checking, 255, 470
struction, 323–325, 337, 341

Andrew, 22, 670
Silicon, xxxv
ation binary interface (ABI), 184. See also System V x64 ABI
etic operations. See also names of individual operators
assembly, 60–63

oating-point, 296
in assembly, 311–312, 315–316, 327–328
rounding behavior, 301

ecedence value, 50, 55
pe checking, 254–255, 476–477
etic types, 347, 476–477
ual arithmetic conversions, 254, 279–280, 308, 435
xxvii, 672
declarators, 357–358
bstract, 361–362, 395–396
rsing, 394–396
, 384–399
gnment of, 415
sembly type of, 413

ecay, 386–387
eclaring, 384–385. See also array declarators
ement comparison, 389–390
ement type, 384

complete, 471–473
nction declarations, array types in, 390–391

plicit conversion to pointers. See array-to-pointer decay
tializers, 385. See also compound initializers

string literals as, 425–426, 437–438, 440–441
emory layout, 385–386
ultidimensional, 384–385, 386–389, 393

subscripting, 408–410
pe checking, 398–399, 402–405, 471, 472–473
riable-length, 391
to-pointer decay, 386–387
plemented with AddrOf, 398–399, 409–410, 441

zeof operands not subject to, 462

expression, 495. See also structure pointer operator

10, 204, 426–427, 449–450
lues of escape sequences, 429
i directive, 426–427, 449–450

z directive, 426–427, 449–450

(Zephyr Abstract Syntax Description Language), 13–14, 22, 171
eld names, 14
oduct types, 171
m types, 171
bler directives, 5. See also entries for individual directives
blers, xxviii, 5

NU assembler (GAS), 268, 338
voking, 7
VM assembler, 268, 338
bly code, xxvii, 4–7
ithmetic in, 60–63

floating-point, 311–312, 315–316, 327–328
T&T vs. Intel syntax, 6, 244, 570
twise complement in, 26–27, 40–41
mments in, 20
mparisons in, 78–81, 82–83, 85–86

unsigned, 283–285, 287–288
floating-point, 317, 328

ebugging, 675–697
with GDB, 677–687
with LLDB, 687–698

vision in, 60–63
unsigned, 286, 288

oating-point, 310–336
nction calls in, 161, 184–199, 312–315, 519–528
mps in, 83–87
kage in, 168–169, 220–223
ng integers in, 244–246, 261–264

egation in, 26–27, 40–41, 315–316, 327–328
orage duration in, 220–223
rings in, 426–429, 450
pe conversions in, 244–245, 317–324

floating-point, 317–324, 328–329, 445
sign extension, 244–245, 263, 444
truncation, 245, 263, 444
zero extension, 286–288, 443–444

bly generation, 4, 17–19
mpiler passes in, 39
ference tables, 700–701, 704–711
bly instructions, 5–6, 17–18. See also names of individual instructions
assembly AST, 18
reaming SIMD Extension, 310–312
ffixes, 6, 269, 311, 427, 443–444
bly types, 261–262, 265–266
yte, 443

yteArray, 413

ouble, 324

eightbytes, 536–537
ongword, 261

uadword, 261

ffixes for, 269–271, 340–341, 443
ment expressions, 94–95

ST definition, 97–98
perator, 97, 101

precedence value, 103
rsing, 100–103
solving variables in, 107

ACKY for, 110, 371–374, 516
pe checking, 256, 368, 399
lidating lvalues in, 107, 399
ativity, 50–51
ee abstract syntax tree
syntax, 6, 244, 570
atic storage duration, 212–213, 217
rays with, initializing, 440
atic variables, 208
the symbol table, 229–230
pe checking, 233, 257
struction set extension, 318

B
nd symbol table, 266–267

complete types in, 530, 546
gister usage tracked in, 621–622, 635, 637, 647
turn value passing information tracked in, 546, 550
p-level constants in, 327, 339, 446
ard analysis, 584, 604

erative algorithm, 607–608
gn directive, 238–289

an, Aaron, 475
pointer, 29
blocks, 576–578
eating, 578–579
mpty, 583
nreachable, 581–582
source character set, 430
type, 356
rsky, Eli, 21, 68, 222, 611
expressions

ST definition, 48
rmal grammar, 51, 52
rsing, 50–55

with precedence climbing, 51–55
with recursive descent, 50–51

perands, unsequenced, 58–59
ACKY for, 58
pe checking, 254–255
fractions, 297
operators. See binary expressions and names of individual operators

e AND (&) operator, 67

e AND assignment (&=) operator, 113

e complement (~) operator, 26

sembly for, 26–27, 40–41
rsing, 33–34

ACKY for, 36–37
ken for, 31–32
pe checking, 254, 308, 369, 435
e OR (|) operator, 67

e OR assignment (|=) operator, 113

, 132, 135
mpound statements as, 132
rsing, 136
solving variables in, 136–139
scope declarations, 208–217. See also scopes
valid, 220
solving identifiers in, 228–229

pe checking, 232–233
ardt, Michael, 343
labels, 155–158
statements, 146–148

notating, 150, 151, 152–154
rsing, 149–150

ACKY for, 155–156
, Preston, 669
test, 656–659, 666–667
ditional resources, 669–670

mits of, 661–663
directive, 222

ection, 222
x, 427, 443

_graph function, 631–632

directive, 450

C
saved and callee-saved registers, 185, 648–649
llee-saved registers in assembly AST, 620–621
graph coloring algorithm, 645–646
ving and restoring, 187, 193–194, 196–197, 648–649
acking callee-saved register usage, 646–647
convention, 161, 184. See also System V x64 calling convention
nstruction, 186, 189–190

mitting, 201–202
enerating, 198–199
c function, 461

statements, 159

expression, 248

plicit type conversions represented by, 255
xpressions. See also type conversions
rsing, 247–249, 464–466

ointer types as operands, 351–352
ACKY for, 259–260, 281–283, 309–310, 375, 440, 479
pe checking, 254, 369, 402, 471, 505
void, 459, 471, 479

struction, 61–63, 262

mitting, 66, 269
n, Gregory, 669
n-Briggs algorithm, 669–670
cter constants, 424
xing, 429–431

rsing, 433
pe of, 424
TF–8, 424
cter types, 423–424
sembly type, 443
har, 423–424

teger promotions, 424, 435
gned char, 423–424

ecifiers, parsing, 433
atic initializers for, 436
pe conversions

assembly for, 443–445
TACKY for, 440

nsigned char, 423–424

de, 424
keyword, 429

type, 423–424

gnedness, 424
atic initializer for, 436–438
Andy, 68
nowski, Bartosz, 345
xxxiv–xxxv, 4–5

oating-point support, 296–297, 317–318, 344
stalling, xxxiv
voking with gcc command, xxxv, 4

nguage extensions, 395, 401, 471
stem V ABI violation, 444–445
oid, treatment of, 474–475

ify_parameters function, 329–330, 534–536

ify_return_value function, 532–533, 537–538

ify_structure function, 533–534

struction, 79–80, 85–86, 262

mitting, 90, 270
ing up, 88, 268
sce function, 665–666

build-coalesce loop, 663
emission, 4, 19–20. See also entries for individual instructions and language constructs
oating-point constants, 338–339
nction names, 201
nction prologue and epilogue, 43–44
struction size suffixes, 269–271, 340–341, 443
cal labels, 89, 339, 450
on-executable stack note, 19
PLT suffix, 201–202

ference tables
Part I, 702–704
Part II, 711–715
Part III, 716–724

gister aliases, 88, 90, 203
ring literals, 449–450
_graph function, 644–646

d instruction, 317, 324, 328

mitting, 341
ing up, 337
on real type, 254–255, 279–280, 308, 435
arisons, 78–83. See also pointer comparisons; relational operators
oating-point, 317, 328
nsigned, 283–286
er, xxvii
ages, 3–4
er driver, xxviii, 7–8
mmand line options, 8
-c, 169–170

--codegen, 8, 43

--eliminate-dead-stores, 570

--eliminate-unreachable-code, 569

--fold-constants, 569

-l, 301

--lex, 8

--optimize, 570

--parse, 8

--propagate-copies, 569

-S, 569

--tacky, 38

--validate, 109

enerating assembly files, 569
enerating object files, 169
king shared libraries, 301
ler Explorer (Godbolt), xxxvi
lers: Principles, Techniques, and Tools, 2nd edition (Aho et al.), 611, 670
ete types, 461–462
quired, 471–473, 477–478, 488, 491
ructure types, 486–487
ound assignment operators, 113–114
ound initializers, 385
sembly for, 413, 418–419

ST definition, 393

ot implemented, 391–392
rsing, 396
atic, 404–405, 509–511
r structures, 492

ACKY for, 406, 410–411, 517–518
pe checking, 403–405, 509–511
ound literals, 391
ound statements, 131

blocks, 132
rsing, 135–136
solving variables in, 136–139
ope determined by, 131–134

ACKY for, 140
ete syntax tree, 14
ional (?:) operator, 121–124

ional expressions, 117
elimiter tokens, 118
rsing, 121–125
solving variables in, 125–126

ACKY for, 127, 479–480
pe checking, 256, 368, 467, 470, 476, 508
oid operands, 459, 476

ional jump instructions. See jump instructions (assembly); jump instructions (TACKY)
ional set instructions, 82–83

mitting, 88–90
enerating, 85–86
etCC, 85–86

ion codes, 85–86, 285, 287–288
ffixes for, 90, 291
rvative_coalesceable function, 666–667

rvative coalescing, 653, 656, 670
nt folding, 561, 573–576
mbining with other optimizations, 569
nt propagation, 563
nt strings, 425–426
assembly, 428, 446

mitting, 449–451
the symbol table, 437–439, 441
TACKY, 441–442
pe checking, 436, 437–439
nt tokens, 8–10
aracter, 429–431

oating-point, 302–303
rounding, 300

ng integer, 247
gular expressions, 304

nsigned integer, 275
nsigned long integer, 275
ue labels, 155–158
nue statements, 146–150

notating, 150, 151, 152–154
rsing, 149–150

ACKY for, 155–156
l-flow graphs, 570, 576–581
l-flow protection, 5
lling expression, 118–119
ops, 144–145
pe checking, 352, 470
l structures, 117
rsion ranks, 279
rt_by_assignment function, 368, 469, 504–505

rt_function_call function, 197–199, 263, 331–333, 538–541

rt_unop function, 37–38

rt_val function, 198

r, Keith, 669–670
bytes_from_reg function, 543–544

bytes_to_reg function, 541–543

romOffset instruction, 512–513

sembly for, 532, 548
ructure member access with, 513–514, 516
nstruction, 75–77, 110

sembly for, 86
with non-scalar operands, 531

pe conversions with, 282, 574
propagation, 563–564, 585–602. See also reaching copies analysis
ditional resources, 611
mbining with other optimizations, 569
th Part II TACKY programs, 599–602
writing instructions, 598–599, 602
oOffset instruction, 406–407

sembly for, 414
with non-scalar operands, 531–532

tializing aggregate objects with, 410–411, 440–441, 517–518
ructure member access with, 514, 516
s, Peter, 445
struction, 269

dard, xxxvi
(address) operator applied to dereferenced pointer, 353

ray decay, 386–387
sic source character set, 430

17, xxxvi–xxxvii, 164
23 standard, xxxvi–xxxvii

checked integer arithmetic, 82
decimal floating-point types, 300
empty initializers, 519
empty parameter lists, 164
memset_explicit, 565

old-style function definitions removed, 164
u8 character constants, 424

eclarators, 358
cape sequences, 429
aluation order, 59

short-circuiting operators, 72
oating-point types, 296
or loops, missing controlling expression in, 158

plementation-defined behavior, 245
complete types, 461
kage, 167–168, 210–212
alues, 348
bservable behavior, 560
eprocessing tokens, 303
eturn statements, missing, 111–112

orage duration, 212
rict aliasing rules, 352
ructure member declarations, 488–489
mporary lifetimes, 508
pe conversions, 244, 274
pes of integer constants, 278
pe specifiers, 278
ndefined behavior, 80, 91, 107, 112
nsigned wraparound, 285
ual arithmetic conversions, 254, 279–280
oid, 458, 473–475

ing directive, 428, 450

Pascal, 344
2sd instruction, 320–321, 324, 329

character type conversions, 445
ing up, 337
d2si instruction, 317–318, 324

character type conversions, 445
ing up, 337

D
ng else ambiguity, 120–121
ow analysis, 563, 584–585
ditional resources, 611
eness analysis, 604–609

of assembly programs, 633–636
aching copies analysis, 589–598
operand, 236–238

r constants, 326, 339
fset, 529, 550, 551
ection, 221
on, Bruce, 344
store elimination, 564–565, 603–609
mbining with other optimizations, 569
eness analysis, 604–609

iterative algorithm, 607–608
meet operator, 606–607
transfer function, 605–606

th Part II TACKY programs, 608–609
curity impact, 566
ocateStack instruction, 194–195, 198–199, 202, 264

gers, xxxiv, 675–698
DB (GNU debugger), xxxiv–xxxv, 677–687
DB (LLVM debugger), xxxv, 687–698
ations, 94, 162–163, 208–220. See also function declarations; variable declarations
. definitions, 214–216
dden, 133
kage, 166–168, 209–212
ope, 131–134, 208–209
. statements, 98–99
ructure type, 486–491
ators, 356–361
bstract, 361–363, 395–396
ray, 357–358, 394–396
C standard, 358
nction, 357
rsing, 358–361, 362–363, 394–396

ointer, 356, 361
ment (--) operator, 31–32, 33, 113

lt statements, 159

e, 638
e < k rule, 638
rence (*) operator, 349–350

operator applied to result, 353

rsing, 354–355
ointers to void as operands, 473–475

ACKY for, 371–374
pe checking, 364–365
erencedPointer construct, 372–374, 408, 410, 515–517

d types, 354
t-set data structures, 663–664
struction, 286, 287–288

ing up, 290
n (/) operator, 47–48

sembly for, 60–63
floating-point, 315, 327
unsigned, 286, 288

rsing, 50–55
ACKY for, 58
pe checking, 254–255, 369
n assignment (/=) operator, 113

instruction, 315

vDouble, 324–325

ing up, 337
tements, 144, 148–151, 152–155, 156

perator, 495. See also structure member operator

le directive, 312, 338–339

e extended precision floating-point format, 299
e-precision floating-point format, 297–299
e rounding error, 306
ditional resources, 344
pe conversion with, 320–323
eToInt instruction, 309–310

sembly for, 317–318
eToUInt instruction, 309–310

sembly for, 318–320
e type, 295–301. See also floating-point constants; floating-point operations

gnment, 336
sembly type, 324
nversions. See conversions to and from double under integer types; double under type conversions

function calls, 312–315, 329–333
presentation, 297–299

precision, 301
unding, 299–301
ze, 336
ecifier, 302, 305, 306–307
atic initializers for, 308–309, 340
pe checking, 308–309

ale, David, 21
a, Vijay, 611
mic linkers, 202

E
egister, 5–6, 40–41, 60–62, 185, 193, 525
See Extended Backus-Naur Form notation

egister, 60–64, 185, 525
ve type, 352
nts of Computing Systems, The (Nisan and Schocken), 45
xecutable and Linkable Format), 201
clause, 118–121, 126–127

ngling else ambiguity, 120–121
ering a Compiler, 2nd edition (Cooper and Torczon), 669–670
to (==) operator, 71–74

sembly for, 85–87
floating-point, 317, 328

ointer comparisons, 352
ACKY for, 75–76, 77
pe checking, 254–255, 366–367, 476–477
e sequences, 429–431
assembly, 449–450
table and Linkable Format (ELF), 201
table stacks, 19
ditional resources, 22
t function, 16

ssions, 14
nverting to TACKY, 38
l, 374

alue vs. non-lvalue, 348
rsing, 34. See also precedence climbing
solving variables in, 107
pe checking, 251–256

result types, 251
id, 459–460

ssion statements, 95, 98, 110
ded Backus-Naur Form (EBNF) notation, 15
ptional sequences, 101
peated sequences, 100

at least once, 225
al linkage, 167–168, 209–211
al variables, 208
solving, 227–229
n specifier, 207, 208, 210–212, 213, 214–217

 declarations with incomplete types, 474, 505
identifier resolution, 228–229
rsing, 225–226
the type checker, 230–233

credit features, xxxii–xxxiii
twise operators, 67
ase statements, 159

mpound assignment operators, 113–114
ecrement (--) operator, 113

efault statements, 159

oto statements, 128

crement (++) operator, 113

beled statements, 128
aN, 342–343
witch statements, 159

nion types, 552–553

F
execute cycle, 84
ope, 207–208
ope variable declarations, 208–217
solving identifiers in, 227–228
pe checking, 231–232
Thomas, 45

g-point constants
sembly for, 311–312

emitting, 338–339
generating, 324–327
local labels, 312, 326–327, 339

ST representation, 305–306
exadecimal, 302, 338–339, 345
xing, 302–304
unding decimal constants to, 300, 306
g-point formats, 296–299

ecimal, 300
ouble extended precision, 299
ouble-precision, 297–298
EE 754, 296–299
ngle-precision, 299
oating-Point Guide (website), 343
g-point instructions. See Streaming SIMD Extension instructions
g-point operations
ithmetic operations, 296

in assembly, 311–312, 315–316, 327–328

rounding behavior, 301
mparisons

in assembly, 317, 328
with NaN, 299, 317, 342
with negative zero, 298, 317

th Streaming SIMD Extension instructions, 310–312
pe conversions

in assembly, 317–324, 328–329, 445
rounding behavior, 300–301
in TACKY, 309–310, 440

g-point registers. See XMM registers
g-point values
sembly type, 324
function calls, 312–315, 329–333
presentation, 297–299

gaps between, 300–301, 322, 344
normalized floating-point numbers, 298
precision, 301

ecial values, 298–299
infinity, 298
NaN, 299, 342–343
negative zero, 298
subnormal numbers, 298

type, 295, 299

gner, 553–554
grammar, 14–15

mbiguity, 50, 120
r binary expressions, 51, 52
ft recursion, 50
r unary expressions, 33, 397, 465
atements, 144–145, 148–151, 152, 154, 157–158

eaders, restrictions on, 172, 220
ssing controlling expression in, 158
d data-flow analysis, 584
function, 460–461

Steve, 358
nd symbol table, 266. See also symbol table internal to compiler
pressions, 374
ll instruction, 182–183

sembly for. See in assembly under function calls
liveness analysis, 605–606

ptional destination, 479, 482
reaching copies analysis, 591–592, 601–602

on calls, 165

guments, 165
assembly, 161, 184–194, 197–199

with floating-point values, 312–315, 329–333
with quadword arguments, 263
with structures, 519–528, 532–544
with void return type, 482

ST definition, 171
rsing, 172–173
solving identifiers in, 175–176

ACKY for, 182–183, 479
pe checking, 179, 181–182, 256
on declarations, 162–163
ray types in, 390–391
ST definition, 171, 224, 247–248
identifier resolution, 174, 176–178
complete types in, 505
kage, 166–169, 209–212
rsing, 172–173, 226–227
pe checking, 179–181, 230–231, 257, 402–403
th void parameters, 466

on definitions, 162–163
assembly, 195

accessing function parameters, 195–197
allocating stack space, 200

nverting to TACKY, 110–111, 182–183
ested, 163
d-style, 164
on pointers, 164, 359–361, 364
on prologue and epilogue, 26–27, 29–31
mitting, 43–44
ons, 161–169
guments, 165
lling convention, 161, 184–194, 312–315, 519–528

eclarators, 357
rameters, 162–163, 165, 177
pes, 178–179, 247–248
riadic, 191
th void return types, 458, 469–470, 479, 482

G
GNU assembler), 268, 338
xxxiv–xxxv, 4–5
oating-point support, 296–297, 317–318, 344
plementation-defined type conversion in, 245

stalling, xxxiv–xxxv
nguage extensions, 395, 401, 471
rrow arguments, treatment of, 445

ptimizations, 27, 558–559
ndefinedBehaviorSanitizer, 672
oid, treatment of, 474–475

ommand, 4–5

voking Clang with, xxxv, 4
GNU debugger)
ebugging assembly code, 677–687
stalling, xxxiv–xxxv
al-purpose registers, 311
e, Lal, 670
e test, 659–663
ditional resources, 670

mits of, 661–663
dress instruction, 370–372, 374

as analysis and, 599–601
sembly for, 376
ommon_pointer_type function, 366–368, 468

ommon_type function, 254–255, 280, 308, 435

um, Abdulaziz, xxvi
ns, Phillip, 611, 670
offset table (GOT), 223
symbol, 5, 168–169
l directive, 5, 20, 168–169, 221, 238

ssembler (GAS), 268, 338
erg, David, 343
statements, 128

coloring, 622–646
gorithm, 638–646
egree < k rule, 638
ptimistic coloring, 669
illing registers, 627–630, 642–644, 646
r than (>) operator, 71–74

sembly for, 85–87
floating-point, 317, 328
unsigned, 287–288

ointer comparisons, 389–390
ACKY for, 75–76, 77
pe checking, 254–255, 401
r than or equal to (>=) operator, 71–74

sembly for, 85–87
floating-point, 317, 328

unsigned, 287–288
ointer comparisons, 389–390
ACKY for, 75–76, 77
pe checking, 254–255, 401

H
rin, Max, 670
 World!” program, 204, 451–453
ecimal floating-point constant, 302, 338–339, 345
er, Paul, 611
Randall, 199

I
ier resolution, 174–178, 227–229, 364. See also variable resolution
named from variable resolution, 174
ructure tags, 498–500
iers, 8
togenerated, 37–38, 105–106

xing, 8–10
kage of, 167–169, 209–212
ope of, 131–134, 208–209
ructure tags, 486–488, 489–490
the symbol table, 179–181, 229–233, 257–258
pe of, 178–179
nstruction, 60–65, 262

mitting, 66, 270
754 standard, 296–299
ditional resources, 343–344

ouble-precision format, 297–299
oating-point formats, 296–299
unding modes, 299
tements, 117–121

ST definition, 118–119
rsing, 118–121

dangling else ambiguity, 120–121
solving variables in, 125–126

ACKY for, 126–127
diate values, 18, 268

function arguments, 198–199
ze inferred, 266
perand, 18–20

mentation-defined behavior, 245–246
har signedness, 424

trdiff_t, 400

unding behavior, 307
ze_t, 460

urce character set, 430
pe conversions, 245, 352
nstruction, 60, 62–63

mitting, 66, 270
ing up, 64–65, 268
plete types, 461–462
backend symbol table, 530, 546
function declarations, 505

ointers to, 461–462, 471–472, 473, 505
ructure types, 486–487, 505–506
pe checking, 471–473, 505–506

ment (++) operator, 113

rminately sequenced evaluations, 58–59, 82
ed addressing, 412
ed operand, 412–415

mitting, 419
zers, 94. See also compound initializers; static initializers
ray, 385, 425, 440

string literals as, 425–426, 437–438, 440–441
valid, 220
solving identifiers in, 105–106
ructure type, 492
ACKY for, 110, 440–441
ing variables in their own, 106–107

ction fix-up pass, 42–43
ratch registers, 42, 64–65, 325, 337
ction pointer (IP), 84. See also RIP register
ction register, 84
ER class, 519
r constants, 6, 8. See also character constants
rsing, 250–251, 278
gular expressions for, 304
presentation in the abstract syntax tree, 248, 276
kens for, 8, 247, 275, 304
r overflow, 78–82
r promotions, 424, 435
r types
mmon real type, 254–255, 279–280
nversions between, 244–245, 274–275, 279–280

in assembly, 244–245, 263, 286–288, 443–444
conversion rank, 279

in TACKY, 259–260, 281–283
nversions to and from double

in assembly, 317–324, 328–329, 445
rounding behavior, 300–301
in TACKY, 309–310, 440

rsing specifiers, 249–250, 277–278
4 Software Developer’s Manual, xxxvi, 344
yntax, 6
ctive devices, 560
ediate representations (IRs), 35–36
ntrol-flow graphs, 570, 576–581
al linkage, 209–212
rocedural optimizations, 570
rocedural optimizations, 570
Double instruction, 309–310

sembly for, 320
pe

gnment of, 246
ze of, 244
atic initializer for, 257
truction pointer), 84
d register coalescing, 663
ve algorithms, 585
py propagation, 593–599

ead store elimination, 607–608

J
truction, 84–85

instruction, 85–86, 89

struction, 83–84, 85

struction, 85

Joel, 21
fNotZero instruction, 75–76

fZero instruction, 75–76

nstruction, 75–76

nstructions (assembly), 83–85
assembly generation, 85–87
nditional, 84–85

mitting, 89
e, 84–85

mp, 83–84, 85

mpCC, 85–86, 89

ne, 85

nconditional jump instructions, 83
nstructions (TACKY), 75–77, 126–127, 155–158
sembly, converting to, 86–87, 328
nditional, 75–76
nstant folding, 561, 573–576
moving useless, 582–583

nconditional jump instructions, 75–76

K
rable graphs, 622, 624–625, 627
tephen, 474
rds, 9–10
copy, 587
variable, 603
Jeff, 22

L
d statements, 128
(assembly), 5, 83–87

mitting, 88–89
cal, 89, 326–327, 450
r static variables, 221–222
(TACKY), 75–77, 86, 126–127, 155–158
oiding naming conflicts, 77
moving useless, 582–583
nding, 202
oad effective address) instruction, 376–379

sociative operations, 50, 53
ift (<<) operator, 67

ift assignment (<<) operator, 67

an (<) operator, 71–74

sembly for, 85–87
floating-point, 317, 328
unsigned, 287–288

ointer comparisons, 389–390
ACKY for, 75–76, 77
pe checking, 254–255, 401
an or equal to (<=) operator, 71–74

sembly for, 85–87
floating-point, 317, 328
unsigned, 287–288

ointer comparisons, 389–390
ACKY for, 75–76, 77

pe checking, 254–255, 401
, Raph, 91
4, 8–10. See also tokens
e of an object, 212–213, 461, 508
rkers, 7

e, 166–168, 209–212
assembly, 168–169, 220–221
nflicting, 176, 217–219, 228–229, 230–232
ternal, 167–168, 209–211
entifier resolution and, 175–177, 227–229
ternal, 209–212
pe checking and, 229–233
, xxviii, 5–6
ditional resources, 21

ynamic, 202
d identifier linkage, 168–169
voking, 7
ocation, 6
d shared libraries, 202, 301
mbol resolution, 6, 174
mbols, 5
mbol table, 5, 89
ral8 directive, 312

ral16 directive, 312

ndian, 86
ss analysis, 584
assembly programs, 633–636

meet operator, 633–634
transfer function, 634–636

r dead store elimination, 604–609
iterative algorithm, 607–608
meet operator, 606–607
transfer function, 605–606

nges, 625–626
xxxiv

align directive on, 221

cal label prefix, 89
ocedure linkage table (PLT), 201
ad-only data section, 339
tup instructions, xxxiv–xxxv
xxxv, 687–698
compiler framework, 36, 599
sembler, 268, 338
ang, xxxiv–xxxv, 4

py propagation, 611
termediate representation, 599
DB, xxxv, 687–698
ffective address (lea) instruction, 376–379

nstruction, 370–371, 374–375

sembly for, 376, 531
abels, 89
r assembly constants, 312, 326–327, 339, 450
ariables, 93–95. See also variable declarations
signment, 94–95, 107, 110

eclarations, 94, 98, 105–106, 110
tializers, 94, 106–107, 110
kage, 167–168, 209
solving, 104–108, 136–139, 178, 228–229
 the stack, 29

orage duration, 214
ndefined behavior, 96

operators, 71. See also names of individual operators
rsing, 73–75
ecedence values, 74
ort-circuiting, 72

ACKY for, 75–77, 259
kens for, 72
pe checking, 255, 369, 470
directive, 221

double type, 295, 299

ntegers, 243. See also long type

assembly, 244–246, 261–264
assembly type, 261

nsigned long type, 273–281

keyword, 247

type, 243

gnment, 246
nstants of, 247–248, 250–251, 254
nversions, 244–245, 274–275

ze, 244
atic initializer, 257–258
ord assembly type, 261–262

ords, 6, 244, 267, 270
suffix, 60

144–148
alysis, 638, 670
o, 144–146, 148–151, 154, 156

fect on spill cost, 638

closing loops, 146, 151, 153
or, 144–145, 148–151, 152, 154, 157–158

beling, 150, 152–155
solving variables in, 151–152

ACKY for, 155–158
hile, 144, 148–150, 151–155, 157

efix, 89. See also local labels

s, 95, 348, 349–350
nversion, 348, 350
ring literals, 425, 436
ructure members, 491, 507–508
TACKY, 371–374, 515–517
lidating, 107, 364, 365, 399, 436, 507–508
d void, 474–475

M
ne-dependent optimizations, 558
ne-independent optimizations, 557–558
nstant folding, 561, 573–576
py propagation, 563–564, 585–602

ead store elimination, 564–565, 603–609
nreachable code elimination, 561–562, 581–584
ne instruction, 5–6
O file format, 201
S, xxxiv
cal label prefix, 89
atform-specific directives, 221, 238–239, 312, 339, 428, 450
efix for user-defined names, 19, 201, 238
tup instructions, xxxiv–xxxv
function, 4, 6, 169

tacky_variable function, 261

temporary function, 37–38

c function, 460

ssa, 297
operator, 585
eness analysis, 606–607

of assembly programs, 633–634
aching copies analysis, 592–593
er access operators. See structure member operator; structure pointer operator
RY class, 519
ry management functions, 457–458, 460–461
igned_alloc, 461

alloc, 461

ree, 460–461

alloc, 460

ealloc, 461

y operands, 375–379

struction, 5–6, 18, 261–262

mitting, 20
ing up, 42, 268, 270
instruction, 311–312

instruction, 244–245, 261, 263, 444

mitting, 269, 450–451
ing up, 267

gn extension with, 263
roExtend instruction, 287–289, 443–444

conversions to double, 329, 445

mitting, 450–451
ing up, 290, 449
nstruction, 443, 449

ick, Steven, 669
instruction, 315

mitting, 341–342
ing up, 337
imensional arrays, 384–385, 386–389, 393
lication (*) operator, 47–48

sembly for, 60, 62–63
floating-point, 315, 327

rsing, 50–55
ACKY for, 58
pe checking, 254–255, 369
lication assignment (*=) operator, 113

 Joseph, 218

N
(not-a-number), 299, 342–343
mparing, 299, 317, 342
tra credit, 342
iet, 299

gnaling, 299
on (-) operator, 26

sembly for, 26–27, 40–41
floating-point, 315–316, 327–328

rsing, 33–34
ACKY for, 36–38
ken for, 31–32

pe checking, 254, 369, 435
ve infinity, 298
ve zero, 298, 317, 326, 340
struction, 26–27, 40–41, 44

mitting, 44, 270
d function definitions, 163

Noam, 45
calar types, 470–471
erminal symbols, 15
!) operator, 71–74

sembly for, 86, 328
ACKY for, 75–76, 77
pe checking, 254, 369, 470
ual to (!=) operator, 71–74

sembly for, 85–87
floating-point, 317, 328

ointer comparisons, 352
ACKY for, 75–76, 77
pe checking, 254–255, 366–367
struction, 26–27, 40–41

mitting, 44, 270
ointers, 351–352
mparisons, 352
nstants, 351, 366–368, 401
static initializers, 369

atements, 98, 110

O
code, xxviii
files, xxviii, 5

enerating, 169–170
ctions of, 5

BSS, 222, 340, 418
data, 221–222
read-only data, 311–312, 339
text, 5

s, 348
etime of, 212–213, 461, 508
vable behavior, 558–560
e overflow flag
stic coloring, 669
zation pipeline, 570–573, 600–601
zations. See also machine-independent optimizations and entries for individual optimizations
nstant folding, 561, 573–576

py propagation, 563–564, 585–602
ead store elimination, 564–565, 603–609
terprocedural, 570
traprocedural, 570
achine-dependent, 558
fety of, 558
curity impact, 564–565

nreachable code elimination, 561–562, 581–584
ize function, 570–573, 601

rmination, 572–573
|) operator, 71–77

ort-circuiting, 72
ACKY for, 75–77, 259
pe checking, 255, 470
truction, 323–325, 337, 341

ow, 78–82
ow flag (OF), 78–80, 83
ot applicable, 284–285, 317

P
d operands, 310, 316
eter-passing registers, 185, 312
eters, 162–163, 165, 177, 195–197
flag (PF), 342
_exp function, 16, 34, 51–57, 101–102, 124

generators, 11
s, 4, 10–17. See also recursive descent parsing
ndwritten, 11
ecedence climbing, 51–57
edictive, 16
_type function, 249–250, 277, 307, 433, 466

n matching, xxxiii–xxxiv
Mathias, 611
rity flag), 342
ordering problem, 573
Operand construct, 372–374

rocedure linkage table), 201–202
r analysis, 601
r arithmetic, 387–390
dition, 387–390
sembly for, 414–415
ationship to subscript operator, 387–389
btraction, 388–390

ACKY for, 406–408

pe checking, 400–401, 472
ndefined behavior, 388, 390
r comparisons, 352–353, 389–390
sembly for, 377, 415
pe checking, 366–367, 401
ACKY for, 375, 408
rs, 347, 349–353. See also null pointers
nversions to and from, 351–352, 460

pointers to void, 467–469

TACKY for, 375
type checking, 367–369, 467–469

eclarators, 356, 361
ereferencing, 349–350

incomplete types, 461–462, 471–472, 473, 505
perations on, 349–353
ointerInit, 437, 450

ferenced types, 354
atic initializers for, 369–370, 428–429, 437, 438–439
pe checking, 364–370, 400–402, 467–469, 471–472
pes

AST definition, 354
parsing, 356–364

struction, 27–28, 30–31, 620–621, 648

mitting, 44, 649
e infinity, 298

x operators, 113, 396–397, 498
der traversals, 49

dence climbing, 47, 51–57
ditional resources, 68
mbined with recursive descent parsing, 52–53
ample of, 55–57
eudocode for, 54

with assignment operator, 102
with conditional operator, 124

ght-associative operators, 101–102
dence values
ithmetic operators, 55
signment operator, 103
nditional operator, 123
gical operators, 74
ational operators, 74
oring register interference graphs, 625
tive parsers, 16
operators, 113, 396

ocessor, xxviii, 7
-printer, 17
dure linkage table (PLT), 201–202
ction rule, 15
oMem operand, 412–414

placing, 417–418
o operand, 40–42

oregisters, 40–41
placing, 42, 237, 267
nstruction, 27–30, 194–195

mitting, 43, 203
ing up, 378–379
ssing arguments with, 188–189, 198–199, 263, 332
ar function, 204

function, 451–453

n, xxxiv

Q
directive, 246, 270, 428, 450

ord assembly type, 261–262

words, 6
guments, 263
structions, 244, 261–262

suffix, 6, 269
eudoregisters, 267
atic, 246

R
egister, 5–6, 40–41, 60–62, 185, 193, 525
egister, 29–30, 375
egister, 60–64, 185, 525
ng copies, 589
ng copies analysis, 584, 589–599
erative algorithm, 593–599
eet operator, 592–593
ansfer function, 589–592, 601–602
nly data section, 311–312, 339
oc function, 461

ive descent parsing, 15–17
th backtracking, 17
binary operations, 50–51
mbined with precedence climbing, 52–53
ngling else ambiguity handled, 120–121

declarators, 359
ecedence and associativity, issues with, 50–51
, Rick, 344–345
r, John, 91

er allocation, 613–619. See also spilling
ditional resources, 669–670
aph coloring, 622–646

algorithm, 638–646
degree < k rule, 638

ndling multiple types, 631, 637
gister coalescing, 618–619, 651–668

iterated, 663
p-level algorithm, 630
er coalescing, 614, 618–619, 651–653, 663–667
nservative coalescing, 653, 656, 670

Briggs test, 657–659, 661–663, 666–667, 669–670
George test, 659–663, 666–667, 670

erated, 663
pdating the graph while, 653–656, 663, 666
er interference graphs, 622–626
ilding, 631–637
loring, 622–625, 638–646

precoloring, 625
etecting interference, 623–624, 626–627
pdating, 653–656, 666
ers, 5–6
ases, 40
sembly AST definition, 18, 40, 62, 620–621

parameter-passing registers, 195
RBP register, 375
RSP register, 264
XMM registers, 325

ller-saved and callee-saved, 185, 620–621, 645–646, 648–649
eneral-purpose, 311
struction, 84
rameter-passing, 185, 195, 312

MM, 311–312, 316, 325
perand, 40

nal operators, 71. See also names of individual operators
sembly for, 85–88

floating-point, 317, 328
unsigned, 285, 287–288

rsing, 73–75
precedence values, 74

ointer operands, 352, 389–390

ACKY for, 75–76
kens for, 72
pe checking, 254–255, 366–367, 401, 476–477
nder (%) operator, 47–48

sembly for, 60–63
unsigned, 288

rsing, 50–55
ACKY for, 58
pe checking, 254–255, 308, 369
nder assignment (%=) operator, 113

ng pseudoregisters, 42
th different types, 267
eudoMem operands, 417–418

th static storage duration, 237
struction, 6, 18

mitting, 20, 44
n statements, 4

sembly for, 18, 333, 482, 545–546
ST definition, 13–14
ssing, 111–113, 458
rsing, 14–17
thout return values, 458, 469–470, 479, 482

ACKY for, 36–38, 479
pe checking, 256–257, 469–470
values, 4–6, 14

bsent, 458, 469–470, 479, 482
assifying, 537–538. See also classify _return_value function

floating-point type, 312–313, 333
structure type, 525–528, 537–541, 545–546
te_coalesced function, 667–668

S register, 78
ssociative operators, 50, 101–102, 123–124
hift (>>) operator, 67

hift assignment (>>=) operator, 113

gister, 83–84, 189–190, 222
lative addressing, 222, 223, 311, 376, 529
ata operand, 236–238

e, Dennis, 390
ta directive, 311–312, 339, 428, 450

a 2, xxxv
ng modes, 299, 320
und-to-nearest, ties-to-even, 299, 321, 575
ng to odd, 322–324

egister, 27–30, 43–44, 185, 264

S
of optimizations, 558
types, 384, 470–471
ken, Shimon, 45
s, 131–134, 208–209
ock scope, 208
mpound statements determine, 131–134
e scope, 207–208
. storage duration, 213
ion .rodata directive, 311–312

tic analysis, 93, 103–104
entifier resolution (aka variable resolution), 104–109, 174–178, 227–229
op labeling, 150, 152–155
pe checking, 178–182, 251–258
Christopher, 22
instruction, 85–87

mitting, 89–90
p_parameters function, 544–545

gn flag), 78–80, 83
eft (shl) instruction, 529–530, 541–543, 551

ght (shr) instruction, 320–321, 323–325, 529

wo-operand form, 529, 543, 551
circuiting operators, 72, 76–77
d char type, 423–424

 integers, 243
erflow, 78–82
presentation, 26, 61, 244
pe conversions, 244–246, 274–275
d keyword, 275

xtend instruction, 259–260, 263, 282–283

xtension, 61, 244–245, 275
assembly, 263, 444
TACKY, 259–260, 282–283
ag (SF), 78–80, 83
cant degree, 638
-precision format, 299
f operator, 458, 462–466, 471, 477–478, 480–481

Dawn, 611
e character set, 430
e file, xxviii, 7–8, 208
l characters, 429, 450
l sequences (EBNF), 15
g, 616, 627–630, 642–644, 646
ndidates for, 642

ill code, 616, 620
ill cost, 630–631, 638, 642, 644–645
tatic single assignment) form, 672
ee Streaming SIMD Extension instructions
ass, 519
19, 27–31
gnment, 185, 197–198, 648–649
ecutable, 19

additional resources, 22
ames, 29–31

allocating, 42, 197–199, 200–201
ointer, 27
frames, 29–31
operand, 40, 42, 44

placed with Memory operand, 375

cConstant construct (assembly), 324, 326, 336, 446

mitting, 340
cConstant construct (TACKY), 442, 446

nitializers, 213–214. See also ZeroInit construct

assembly, 221–222, 238–239
r characters, 436
mpound, 404–405

in assembly, 418–419
for structures, 509–511

r double type, 308–309, 340

r long integers, 246, 257–258, 270
r pointers, 369–370, 428–429, 437, 438–439

null pointers as, 369
rings as, 437–439
the symbol table, 257
pe checking, 257–258
r unsigned integers, 280–281
single assignment (SSA) form, 672
c specifier, 208, 209–211, 213, 216–217, 230–233

storage duration, 213–214. See also static variables
placing pseudoregisters with, 237
cVariable construct (assembly), 235–236, 263–264, 413

mitting, 238–239
cVariable construct (TACKY), 234–235, 258–259, 406

variables, 213–214
sembly for, 221–222, 235–239, 246
tializing, 213–214. See also static initializers
TACKY, 234–235
pe checking, 229–230, 231–233

flags, 78–80
rry, 284–285, 317
erflow, 78–80, 83
rity, 342

gn, 78–80, 83
ro, 78–80, 83
nz lemma, 319
e-class specifiers, 207–208, 223
fects, 209–217
rsing, 225–226
e duration, 207, 212–213
ocated, 213, 461
assembly, 221–222
tomatic, 212–213, 217
. scope, 213
atic, 213–214, 237
the symbol table, 229–230
read, 213
instruction, 370–374

d liveness analysis, 609
d reaching copies analysis, 599–600, 601–602

ming SIMD Extension (SSE) instructions, 310–312
ithmetic, 315–316
mparisons, 317
pe conversions, 317, 320
aliasing rules, 352
literals, 425–426
array initializers, 425, 426
TACKY for, 440–441
type checking, 437–438

assembly, 426–429
ST definition, 324
mitting, 449–450
esignating constant strings, 425–426

TACKY for, 441–442
type checking, 436, 438–439

xing, 429–431
alues, 425, 436
rsing, 433
t keyword, 494

ure member (.) operator, 491, 495

rsing, 497–498
ACKY for, 513–517
ken for, 494

pe checking, 506–508
ure pointer (->) operator, 491, 495

rsing, 497–498
ACKY for, 514–515, 517
ken for, 494
pe checking, 506–507
ure tags, 486–488, 489–490
solving, 498–500
ure types
assifying, 519–522, 533–534
mplete, 486–487, 503
pying, 531–532

eclarations, 486–491
efinitions, 486

in the type table, 501–502
validating, 501

function calls, 519–528, 532–546
complete, 486–487, 490, 503, 505–506
tializers, 492

TACKY for, 517–518
type checking, 509–511

yout in memory, 492–494
ot implemented, 490–491
perations on, 491–492. See also structure member operator; structure point operator
dding, 493, 510–511, 518–519
turn values of, 525–528, 545–546
ecifiers, 498
gs, 486–488, 489–490

resolving, 498–500
pe checking, 500–511
struction, 29–30, 60, 62–63

mitting, 66, 270
ing up, 64, 268
rmal numbers, 298
ject construct, 515–517

ipt ([]) operator, 389

ST definition, 393
eneration, 408
rsing, 396–397

ACKY for, 408–410
pe checking, 399, 401–402, 471–472
instruction, 315

ing up, 337
ction (-) operator, 47–48

sembly for, 60, 62–63
floating-point, 315, 327

rsing, 50–55
ointer subtraction, 388–390

TACKY for, 406–408
type checking, 400–401, 472

ACKY for, 58
pe checking, 254–255
ction assignment (-=) operator, 113

h statements, 159

ols (assembly), 5
obal vs. local, 168–169
mbol tables, 5, 89

ol table internal to compiler, 174–175, 179–181. See also backend symbol table
enerating TACKY top-level definitions from, 234–235, 442
entifier attributes in, 229–233, 257–258, 438
named to frontend symbol table, 266
mporary variables in, 260–261
ntative definitions in, 229–230, 235

ol tables in object files, 5, 89
m V x64 ABI, xxxvi, 184. See also System V x64 calling convention
rays, alignment of, 415
har, signedness of, 424

ang violation of, 444–445
oating-point format, 296, 297
nt and long

alignment of, 246
size of, 244

ze_t, definition of, 460

ructures, size and alignment of, 493
m V x64 calling convention, 184–194
ditional resources, 344, 553–554

assifying values, 519
oating-point values in, 312–315
rrow arguments in, 444–445
ructures in, 519–528

T
hree-address code), 35–36

Y, 36–38
onstant operands, 36

eneration, 37–38
address (&) operator, 370–372, 374, 514, 516–517

assignment expressions, 110, 371–374, 516

binary expressions, 58
break and continue statements, 155–156

cast expressions, 259–260, 281–283, 309–310, 375, 440, 479
compound initializers, 406, 410–411, 517–518
compound statements, 140
conditional expressions, 127, 479–480
dereference (*) operator, 371–374

function calls, 182–183, 479
function definitions, 182–183
if statements, 126–127

loops, 155–158
pointer arithmetic, 406–408
return statements, 36–38, 479

short-circuiting operators, 76–77
sizeof operator, 480–481

static variables, 234–235
structure member access operators, 513–517
subscript ([]) operator, 408

unary expressions, 37–38
structions, 42–43
alue conversion in, 371–374, 515–517
mporary variables, 36–38, 260–261
p-level constants, 442
ar operands, 36

Ian Lance, 21, 22
rary lifetimes, 508
rary variables, 36–38
ming, 38
 the stack, 29
the symbol table, 260–261
ve definitions, 215–216
nverting to TACKY, 235
the symbol table, 229–230, 235, 411
pe checking, 231–232
ndefined behavior, 219–220
al symbols, 15
y operators, 121. See also conditional expressions
directive, 238

ection, 5, 283
 storage duration, 213
address code (TAC), 35–36. See also TACKY
s, 3, 8–10
nstants, 8–10

character, 429

floating-point, 302–304
integer, 8, 247, 275, 304

entifiers, 8–10
ring literals, 429
n, Linda, 669–670
er functions, 584–585
eness analysis, 605–606

for assembly code, 634–636
with Part II types, 608–609

aching copies analysis, 589–592
with Part II types, 601–602

ation units, 167, 208
ate instruction, 259–260, 263, 282

complement, 26, 45, 78, 274
hecking, 178–182, 251–258
rays, 398–399, 402–405, 471, 472–473
mpound initializers, 403–405, 509–511

eclarations, 179–181, 230–233, 257–258, 402–403
ouble, 308–309

pressions, 253–256
arithmetic operators, 254–255, 369, 435, 476–477
assignment, 256, 368, 399
bitwise complement (~) operator, 308, 369, 435

cast, 254, 369, 402, 471, 505
conditional, 256, 368, 467, 470, 476, 508
logical operators, 254–255, 470
pointer arithmetic, 400–401, 472
relational operators, 254–255, 366–367, 401, 476–477
remainder (%) operator, 254–255, 308, 369

sizeof operator, 477–478

structure member access operators, 506–507

subscript ([]) operator, 399, 401–402, 471–472

e scope variable declarations, 231–232
nction calls, 179, 181–182, 256
complete types, 471–473, 505–506
ointers, 364–370, 400–402, 467–469, 471–472
eturn statements, 256–257, 469–470

ring literals, 436–439
ructure types, 500–511
pe errors, 174
onversions
assembly, 244–245, 317–324

floating-point, 317–324, 328–329
sign extension, 244–245, 444

truncation, 245, 263, 444
zero extension, 286–288, 443–444

aracter, 443–445
ouble, 317–324

to and from character types, 445
rounding behavior, 300–301
undefined, 308, 371

plementation-defined, 245, 352
plicit, 254–255, 279, 351, 467–469

as if by assignment, 368, 468–469, 504–505
Cast expression representing, 255

usual arithmetic conversions, 254–255, 279–280, 308, 435
teger, 244–245, 274–275
ointer, 351–352, 460
TACKY, 259–260, 281–283, 309–310
Copy, 259–260

to and from double, 309–310

SignExtend, 259–260

Truncate, 259–260

ZeroExtend, 281–283

ef declarations, 108–109

rrors, 174. See also type checking
ames, 361–363, 462, 465–466
178–179. See also character types; integer types; void type

gregate, 384
ithmetic, 347, 476–477
ray, 384–392

erived, 354
 exp nodes, 252–253

oating-point, 295–299
nction, 178–179, 247–248
complete, 461–462
on-scalar, 470–471
ointer, 347, 349–353
alar, 384, 470–471
pecifiers
har, 429

aracter, 433
ouble, 302, 306–307

nt, 8

teger, 249–250, 277–278
ong, 247

gned, 275

ructures, 498
nsigned, 275

oid, 8

able, 500–502, 503–504, 506–507, 509–511, 515, 517–518

U
oDouble instruction, 309–310

sembly for, 320–324
n, Jeffrey, 611
expressions, 25–27, 31–38

ST definition, 33
rsing, 33–34

formal grammar, 33, 397, 465
ACKY for, 36–38
pe checking, 254
operators. See unary expressions and names of individual operators
ditional jump instructions. See jump instructions (assembly); jump instructions (TACKY)
ared variables, 104, 107, 134
ned behavior, 80–82
ditional resources, 91
nflicting linkage, 218–219
ndling safely, 672
teger overflow, 80–82
ssing return statement, 111–112

odifying objects, 425–426, 508
t-of-range type conversions, 308, 317

ointer arithmetic, 388, 390
ointer dereferences, 351–352
ntative definitions, 219–220
riable accesses, 96, 106–107
nedBehaviorSanitizer, 672
types, 552–553
sal character names, 10
chable code elimination, 561–562, 581–584
mbining with other optimizations, 569
uenced evaluations, 58–59, 82
ned char type, 424

ed integers, 273–289
assembly, 283–289

assembly type, 287
unsigned comparisons, 283–285, 287–288
unsigned division, 286, 288

nstants, 275–278
regular expression for, 304

atic initializers for, 280–281
pe conversions, 274–275, 279–280, 282–283
nsigned int type, 273–281

nsigned long type, 273–281

raparound, 79, 285–286, 575
ned keyword, 275

arithmetic conversions, 254–255, 279–280, 308, 435

V
, 348
e declarations, 94–95, 208–220
array type, 384–385

ST definition, 98, 171
kage, 209–212
rsing, 100–101, 224–227
solving identifiers in, 105–106, 138–139, 227–229
opes, 131–134, 208–209

block scope, 208
file scope, 208

orage duration, 212–214
pe checking, 179–180, 231–233, 257–258
e resolution, 104–108, 136–139, 227–229
nditional expressions, 125–126
f statements, 125–126

ops, 151–152
ultiple scopes, 136–139
named identifier resolution, 174
es, 93–97, 208–222. See also static variables
ased, 599–602, 609, 637
tomatic, 208
ternal, 208, 227–229
e, 603
cal, 93–95
solving, 104–107, 227–229
opes, 131–134, 208–209
TACKY, 36–38, 110

temporary, 36–38, 260–261
pe checking, 181, 253
riable resolution, 107
c functions, 191
xpressions, 459
keyword, 8–9

 parameter list, 162, 459, 466–467
type, 458–460

sts to, 459, 471, 479
nditional expressions with, 459, 476, 479–480
C standard, 458, 474–475
nctions returning, 458, 469–470, 479, 482

ointers to, 460–461, 475
conversions to and from, 467–469

strictions on, 473–476
hen valid, 473–475
e objects, 560

W
Daniel, 22
statements, 144, 148–150, 151–155, 157

pace, 9–10
haracter types, 424
ws Subsystem for Linux (WSL), xxxiv
x, 28

X
struction set, xxvii. See also assembly code and names of individual instructions

T&T vs. Intel syntax, 6, 244, 570
ocumentation, xxxvi
reaming SIMD Extension instructions, 310–312
ocessor, xxxiv
tle-endian, 86
emory address size, 28
4. See x64 instruction set; x64 processor
, xxxiv–xxxv
egisters, 311–312, 325
ocating, 631

building register interference graph, 637
function calls, 312–315, 329–333, 519, 532–541, 545–546
roing, 316
^) operator, 67

ssignment (^=) operator, 113

instruction, 316, 324–325, 328

mitting, 341
ing up, 337

Y
Edward, 253
Zhaomo, 611

Z
r Abstract Syntax Description Language. See ASDL
directive, 222

xtend instruction, 281–283, 288

xtension, 274, 281–282, 286–288, 443–444
ag (ZF), 78–80, 83
omisd, set by, 317

unsigned comparisons, 284–285
nit construct, 405

mitting, 418–419
tializing padding, 510–511
tializing scalar variables, 405
tializing tentatively defined arrays, 411

A flow chart shows the steps of the compilation process.

1. The process begins with C source code (text).

2. The preprocessor turns the source code into preprocessed source code (text).

3. The compiler turns the preprocessed source code into assembly code (text).

4. The assembler turns the assembly code into an object file (binary).

5. The linker turns the object file and two other object files (binary) into an executable (also binary).

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Assembly generation turns the abstract syntax tree into assembly.

4. Code emission writes assembly to program.s.

Return to text

A tree diagram shows the AST.

· The root node is "If(condition, then).”

● The root node’s "condition" child is "Binary(operator, left, right).”

○ The "left" child is "Var(a).”

○ The "operator" child is "LessThan.”

○ The "right" child is "Var(b).”

● The root node’s "then" child is "Return(exp).”

○ The "exp" child is "Binary(operator, left, right).”

■ The "left" child is "Constant(2).”

■ The "operator" child is "Add.”

■ The "right" child is "Constant(2).”

Return to text

A tree diagram shows the AST. Each node has one child.

· The root node is "Program(function_definition).”

● The "function_definition" child is "Function(main, body).”

■ The "body" child is "Return(exp).”

● The "exp" child is "Constant(2).”

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. TACKY Generation (a new stage) turns the abstract syntax tree into TACKY.

4. Assembly generation turns TACKY into assembly. It has three steps (all new):

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

5. Code emission writes assembly to program.s.

Return to text

The diagram shows the system state before and after the push instruction.

· Before push, the stack has the following contents, from top to bottom:

● "a" at address 0x7ffeea685918

● "b" at address 0x7ffeea685920

● "c" at address 0x7ffeea685928

RSP holds the address 0x7ffeea685918 and points to "a".

· After push, the stack has the following contents, from top to bottom:

● 3 at address 0x7ffeea685910

● "a" at address 0x7ffeea685918

● "b" at address 0x7ffeea685920

● "c" at address 0x7ffeea685928

RSP holds the address 0x7ffeea685910 and points to 3.

Return to text

Four diagrams show the system state at the beginning of the function and after each instruction in the function
prologue.

· At the beginning of the function, the caller stack frame starts at the top of the stack, at address 0x7ffeea685918,
and extends to address 0x7ffeea685960. RSP holds address 0x7ffeea685918 and points to the top of the caller
stack frame. RBP holds address 0x7ffeea685960 and points to the bottom of the caller stack frame.

· After pushq %rbp, the stack holds the following values, from top to bottom:

● value 0x7ffeea685960 at address 0x7ffeea685910

● The caller stack frame, which starts at address 0x7ffeea685918 and extends to address 0x7ffeea685960.

RSP holds address 0x7ffeea685910 and points to the value at the top of the stack. RBP holds address
0x7ffeea685960 and points to the bottom of the caller stack frame.

· After movq %rsp, %rbp, the stack has the following contents, from top to bottom:

● value 0x7ffeea685960 at address 0x7ffeea685910

● The caller stack frame, which starts at address 0x7ffeea685918 and extends to address 0x7ffeea685960.

RSP and RBP both hold address 0x7ffeea685910 and point to the value at the top of the stack.

· After subq $24, %rsp, the stack has the following contents, from top to bottom:

● 24 bytes of unused memory starting at address 0x7ffeea6858f8

● value 0x7ffeea685960 at address 0x7ffeea685910

● The caller stack frame, which starts at address 0x7ffeea685918 and extends to address 0x7ffeea685960.

RSP holds address 0x7ffeea6858f8 and points to the start of the unused memory.

RBP holds address 0x7ffeea685910 and points to the value just below the unused memory, 0x7ffeea685960.

Return to text

Three diagrams show the system state at the beginning of the function and after each instruction in the function
prologue.

· At the start of the epilogue, the stack has the following contents, from top to bottom:

● 24 bytes containing local variables, starting at address 0x7ffeea6858f8.

● value 0x7ffeea685960 at address 0x7ffeea685910

● The caller stack frame, which starts at address 0x7ffeea685918 and extends to address 0x7ffeea685960.

RSP holds address 0x7ffeea6858f8 and points to the start of the memory holding local variables.

RBP holds address 0x7ffeea685910 and points to the value just below the local variables, 0x7ffeea685960.

· After movq %rbp, %rsp, the stack has the following contents, from top to bottom:

● value 0x7ffeea685960 at address 0x7ffeea685910

● The caller stack frame, which starts at address 0x7ffeea685918 and extends to address 0x7ffeea685960.

RSP and RBP both hold address 0x7ffeea685910 and point to the value 0x7ffeea685960 at the top of the stack.

· After popq %rbp, the caller stack frame starts at the top of the stack, at address 0x7ffeea685918, and extends
to address 0x7ffeea685960. RSP holds address 0x7ffeea685918 and points to the top of the caller stack frame
stack. RBP holds address 0x7ffeea685960 and points to the bottom of the caller stack frame.

Return to text

A flow chart shows the stages of the compiler.

● The lexer turns program.c into a token list.

● The parser turns the token list into an abstract syntax tree.

● TACKY Generation turns the abstract syntax tree into TACKY.

● Assembly generation turns TACKY into assembly. It has three steps:

● Converting TACKY to Assembly

● Replacing Pseudoregisters

● Instruction Fix-Up

● Code emission writes assembly to program.s.

Return to text

A tree diagram shows the AST.

● The root node is +. It has two children.

● The root node’s first child is 1.

● The root node’s second child is *. It has two children.

● The first child is 2.

● The second child is 3.

Return to text

A tree diagram shows the AST.

● The root node is *. It has two children.

● The root node’s first child is +. It has two children.

● The first child is 1.

● The second child is 2.

● The root node’s second child is 3.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. TACKY Generation turns the abstract syntax tree into TACKY.

4. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

5. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler, including one new stage.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis (a new stage) turns the AST into a transformed AST. It has one step:

a. Variable resolution

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has one step:

a. Variable resolution

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has one step:

a. Variable resolution

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler, including one new step in the semantic analysis stage.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has two steps:

a. Variable resolution

b. Loop Labeling (a new step)

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler, including one new step in the semantic analysis stage.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking (a new step)

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

● Left column: The registers and the stack are shown side by side. The value on top of the stack is the saved base
address of the prior stack frame. The prior stack frame is immediately below this value.

RSP and RBP point to the saved base address on top of the stack. RDI holds the value 15. RSI, RDX, RCX, R8, R9,
and RAX are uninitialized.

The contents of the stack are listed from top to bottom:

○ Value 0x7000000000160 is stored at address 0x7000000000110

○ The prior stack frame extends from address 0x7000000000118 to 0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x7000000000110

RBP 0x7000000000110

RDI 15

RSI uninitialized

RDX uninitialized

RCX uninitialized

R8 uninitialized

R9 uninitialized

RAX uninitialized

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. RIP holds the address 0x10000000 and points to the first instruction, “pushq %rdi”. Instructions and
their address are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

0x1000000b addq $24, %rsp

0x1000000c popq %rdi

Return to text

● Left column: The registers and the stack are shown side by side, as in Figure 9-1. Four new items have been
pushed onto the stack. These are, from top to bottom: the value 7, the value 8, padding, and the value 15. These
are followed by the saved base address of the prior stack frame, then the prior stack frame, as before.

RSP now points to the value 7 on top of the stack. RBP points to the saved base address of the prior stack frame,
as before. RDI, RSI, RDX, RCX, R8, and R9 hold values 1 through 6, and RAX is uninitialized.

The contents of the stack are listed from top to bottom:

○ Value 7 at address 0x70000000000f0

○ Value 8

○ Padding

○ Value 15

○ Value 0x7000000000160 at address 0x7000000000110

○ The prior stack frame, which extends from address 0x7000000000118 to 0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x70000000000f0

RBP 0x7000000000110

RDI 1

RSI 2

RDX 3

RCX 4

R8 5

R9 6

RAX uninitialized

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. RIP holds the address 0x1000000a and points to the eleventh instruction, “call fun”. Instructions and
their address are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

0x1000000b addq $24, %rsp

0x1000000c popq %rdi

Return to text

● Left column: The registers and the stack are shown side by side, as in Figure 9-2. One new value has been
pushed onto the stack: 0x1000000b, the address of the assembly instruction just after the call instruction. RSP
points to this new value. The remaining registers and stack contents are unchanged from Figure 9-2.

The contents of the stack are listed from top to bottom:

○ Value 0x1000000b at address 0x70000000000e8

○ Value 7 at address 0x70000000000f0

○ Value 8

○ Padding

○ Value 15

○ Value 0x7000000000160 at address 0x7000000000110

○ The prior stack frame, which extends from address 0x7000000000118 to 0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x70000000000e8

RBP 0x7000000000110

RDI 1

RSI 2

RDX 3

RCX 4

R8 5

R9 6

RAX uninitialized

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. These instructions are grayed out in this diagram.

The assembly instructions for fun, from Listing 9-26, are stored in memory starting at address 0x10000100. RIP
holds the address 0x10000100 and points to the first instruction in fun, “pushq %rbp”.

The instructions to call fun and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

0x1000000b addq $24, %rsp

0x1000000c popq %rdi

Instructions in the “fun” function and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000100 pushq %rbp

0x10000101 movq %rsp, %rbp

0x10000102 movl %edi, %eax

0x10000103 addl 24(%rbp), %eax

0x10000104 movq %rbp, %rsp

0x10000105 popq %rbp

0x10000106 ret

Return to text

● Left column: The registers and the stack are shown side by side, as in Figure 9-3. One new value has been
pushed onto the stack: 0x7000000000110, the previous value of RBP. RSP and RBP both point to this new value.
The remaining registers and stack contents are unchanged from Figure 9-3.

The stack is shaded with three different background colors to indicate different regions. The contents of the stack
are listed from top to bottom, organized by region.

○ The white region includes one item: value 0x7000000000110 at address 0x70000000000e0

○ The light gray region includes six items:

■ Value 0x1000000b at address 0x70000000000e8

■ Value 7 at address 0x70000000000f0

■ Value 8

■ Padding

■ Value 15

■ Value 0x7000000000160 at address 0x7000000000110

○ The dark gray region is the prior stack frame, which extends from address 0x7000000000118 to
0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x70000000000e0

RBP 0x70000000000e0

RDI 1

RSI 2

RDX 3

RCX 4

Register Contents

R8 5

R9 6

RAX uninitialized

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. These instructions are grayed out in this diagram.

The assembly instructions for fun, from Listing 9-26, are stored in memory starting at address 0x10000100. RIP
holds the address 0x10000102 and points to the third instruction in fun, “movl %edi, %eax”.

The instructions to call fun and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

Instruction Addresses Instructions

0x1000000b addq $24, %rsp

0x1000000c popq %rdi

Instructions in the “fun” function and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000100 pushq %rbp

0x10000101 movq %rsp, %rbp

0x10000102 movl %edi, %eax

0x10000103 addl 24(%rbp), %eax

0x10000104 movq %rbp, %rsp

0x10000105 popq %rbp

0x10000106 ret

Return to text

● Left column: The registers and the stack are shown side by side, as in Figure 9-4. The saved value of RBP,
0x7000000000110, has been popped off the top of the stack. The stack contents are otherwise unchanged from
Figure 9-4.

RSP points to the value 0x1000000b, the return address, which is currently on top of the stack. RBP points to the
saved base address of the prior stack frame, which is the sixth item from the top of the stack. RAX holds the value
9. The other registers are unchanged from Figure 9-4.

The contents of the stack are listed from top to bottom:

○ Value 0x1000000b at address 0x70000000000e8

○ Value 7 at address 0x70000000000f0

○ Value 8

○ Padding

○ Value 15

○ Value 0x7000000000160 at address 0x7000000000110

○ The prior stack frame, which extends from address 0x7000000000118 to 0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x70000000000e8

RBP 0x7000000000110

RDI 1

RSI 2

RDX 3

RCX 4

R8 5

Register Contents

R9 6

RAX 9

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. These instructions are grayed out in this diagram.

The assembly instructions for fun, from Listing 9-26, are stored in memory starting at address 0x10000100. RIP
holds the address 0x10000106 and points to the seventh and final instruction in fun, “ret”.

The instructions to call fun and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

0x1000000b addq $24, %rsp

Instruction Addresses Instructions

0x1000000c popq %rdi

Instructions in the “fun” function and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000100 pushq %rbp

0x10000101 movq %rsp, %rbp

0x10000102 movl %edi, %eax

0x10000103 addl 24(%rbp), %eax

0x10000104 movq %rbp, %rsp

0x10000105 popq %rbp

0x10000106 ret

Return to text

● Left column: The registers and the stack are shown side by side, as in Figure 9-5. The return address,
0x1000000b, has been popped off the top of the stack. The stack contents are otherwise unchanged from Figure
9-5.

RSP points to the top of the stack, which is now the value 7. The other registers are unchanged from Figure 9-5.

The contents of the stack are listed from top to bottom:

○ Value 7 at address 0x70000000000f0

○ Value 8

○ Padding

○ Value 15

○ Value 0x7000000000160 at address 0x7000000000110

○ The prior stack frame, which extends from address 0x7000000000118 to 0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x70000000000f0

RBP 0x7000000000110

RDI 1

RSI 2

RDX 3

RCX 4

R8 5

R9 6

RAX 9

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. These instructions are no longer grayed out. RIP holds the address 0x1000000b and points to the
twelfth instruction, “addq $24, %rsp”.

Instructions to call fun and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

0x1000000b addq $24, %rsp

0x1000000c popq %rdi

Return to text

● Left column: The registers and the stack are shown side by side, as in Figure 9-6. Four values have been
removed from the top of the stack. The saved base address of the prior stack frame is now on top of the stack,
and the prior stack frame is immediately below this value.

RSP and RBP point to the saved base address on top of the stack. RDI holds the value 15. RAX holds the value 9
and the remaining registers hold the values 2 through 6, as in Figure 9-6.

The contents of the stack are listed from top to bottom:

○ Value 0x7000000000160 at address 0x7000000000110

○ The prior stack frame, which extends from address 0x7000000000118 to 0x7000000000160

The contents of the registers are given in the following table.

Register Contents

RSP 0x7000000000110

RBP 0x7000000000110

RDI 15

RSI 2

RDX 3

RCX 4

R8 5

R9 6

RAX 9

● Right column: the assembly instructions to call fun, from Listing 9-27, are stored in memory starting at address
0x10000000. RIP holds the address 0x1000000d and points to the unspecified instruction just after “popq %rdi”.

Instructions to call fun and their addresses are given in the following table.

Instruction Addresses Instructions

0x10000000 pushq %rdi

0x10000001 subq $8, %rsp

0x10000002 movl $1, %edi

0x10000003 movl $2, %esi

0x10000004 movl $3, %edx

0x10000005 movl $4, %ecx

0x10000006 movl $5, %r8d

0x10000007 movl $6, %r9d

0x10000008 pushq $8

0x10000009 pushq $7

0x1000000a call fun

0x1000000b addq $24, %rsp

0x1000000c popq %rdi

0x1000000d ...

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A diagram shows the three fields in the double-precision format.

● The fraction is 52 bits, bits 0 through 51.

● The exponent is 11 bits, bits 62 through 52.

● The sign is 1 bit, bit 63.

Return to text

The diagram shows the contents of the general-purpose and floating-point registers. Here their contents are
presented in two lists.

General-purpose registers:

● RDI: i1

● RSI: i2

● RDX: i3

● RCX: i4

● R8: i5

● R9: unused

Floating-point registers:

● XMM0: d1

● XMM1: d2

● XMM2: d3

● XMM3 through XMM7 are unused.

Return to text

The diagram shows the contents of the general-purpose registers, the floating-point registers, and the stack. Here
their contents are presented in three lists.

General-purpose registers:

● RDI: i1

● RSI: i2

● RDX: i3

● RCX: i4

● R8: i5

● R9: i6

Floating-point registers:

● XMM0: d1

● XMM1: d2

● XMM2: d3

● XMM3: d4

● XMM4 through XMM7 are unused.

Stack contents, from top to bottom:

● i7

● i8

● Caller stack frame

RSP points to i7 at the top of the stack.

Return to text

The diagram shows the contents of the general-purpose registers, the floating-point registers, and the stack. Here
their contents are presented in three lists.

General-purpose registers:

● RDI: i1

● RSI: i2

● RDX: i3

● RCX: i4

● R8: i5

● R9: i6

Floating-point registers:

● XMM0: d1

● XMM1: d2

● XMM2: d3

● XMM3: d4

● XMM4: d5

● XMM5: d6

● XMM6: d7

● XMM7: d8

Stack contents, from top to bottom:

● d9

● d10

● i7

● d11

● i8

● i9

● Caller stack frame

RSP points to d9 at the top of the stack.

Return to text

A number line illustrates the correct and incorrect rounding of 4,611,686,018,427,388,416.5 to the nearest double.
The number line includes four markings:

1. 4,611,686,018,427,387,904.0

2. 4,611,686,018,427,388,416

3. 4,611,686,018,427,388,416.5

4. 4,611,686,018,427,388,928.0.

A dotted arrow goes from 4,611,686,018,427,388,416.5, the original value, up to 4,611,686,018,427,388,928.0.

A solid arrow goes from 4,611,686,018,427,388,416.5 down to 4,611,686,018,427,388,416, and a second solid
arrow goes from there down to 4,611,686,018,427,387,904.0.

Return to text

Four number lines show different cases of rounding to odd. Each number line starts at
4,611,686,018,427,387,904.0 and ends at 4,611,686,018,427,388,928.0. Each number line has labels at
increments of 0.5 from 4,611,686,018,427,388,414.5 to 4,611,686,018,427,388,417.

● In the first case, we round from 4,611,686,018,427,388,416.5 up to 4,611,686,018,427,388,417, then from
there up to 4,611,686,018,427,388,928.0.

● In the second case, we round only once, from 4,611,686,018,427,388,416 down to
4,611,686,018,427,387,904.0.

● In the third case, we round from 4,611,686,018,427,388,415.5 down to 4,611,686,018,427,388,415, then from
there down to 4,611,686,018,427,387,904.0.

● In the fourth case, we round from 4,611,686,018,427,388,414.5 up to 4,611,686,018,427,388,415, then from
there down to 4,611,686,018,427,387,904.0.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudoregisters

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

Stack contents, from top to bottom:

● Value 0 at address 0x7ffeee67b938 (variable x)

● Value 0x7ffeee67b938 at address 0x7ffeee67b940 (variable ptr)

Return to text

Stack contents, from top to bottom:

● Value 4 at address 0x7ffeee67b938 (variable x)

● Value 0x7ffeee67b938 at address 0x7ffeee67b940 (variable ptr)

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudo-operands

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

The contents of memory are given in the following table.

Memory Address Memory Contents

0x10 1

0x14 2

0x18 3

0x1c 4

0x20 5

0x24 6

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudo-operands

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudo-operands

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

A flow chart shows the stages of the compiler.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Assembly generation turns TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudo-operands

c. Instruction Fix-Up

6. Code emission writes assembly to program.s.

Return to text

The positions of the members and padding in the structure are given as a list.

● Bytes 0 through 3 contain member1.

● Bytes 4 through 7 contain padding.

● Bytes 8 through 15 contain member2.

● Bytes 16 through 18 contain array. Byte 16 contains array element 0, byte 17 contains array element 1, and byte
18 contains array element 2.

● Bytes 19 through 23 contain padding.

Return to text

Bytes 0 through 7 are the first eightbyte. Bytes 8 through 11 are the second eightbyte. The positions of the
members and padding in the structure are given as a list.

● Bytes 0 through 3 contain i.

● Bytes 4 through 11 contain arr. Byte 4 contains element 0 of arr, byte 5 contains element 1 of arr, and so on, up
to byte 11, which contains element 7 of arr.

Return to text

Bytes 0 through 7 are the first eightbyte. Bytes 8 through 11 are the second eightbyte. The positions of the
members and padding in the structure are given as a list.

● Byte 0 contains ch1.

● Bytes 1 through 3 contain padding.

● Bytes 4 through 11 contain nested. Within nested:

○ Bytes 4 through 7 contain i.

○ Byte 8 contains ch2.

○ Bytes 9 through 11 contain padding.

Return to text

Four diagrams show the contents of the stack at different points in the function call from Listing 18-46. In these
diagrams, the stack is shaded with different background colors to indicate three regions. First, the caller’s stack
frame from before the function call. Second: values the caller pushes onto the stack during the function call.
Third: the callee’s stack frame. In each diagram, the contents of the stack are listed from top to bottom, organized
by region (not every region is present in every diagram).

The four diagrams are as follows:

● Before parameter passing, the stack has the following contents:

○ Caller’s stack frame:

■ A local variable at address −16(%rbp)

■ Another local variable at address −8(%rbp)

■ The old value of RBP at address 0(%rbp)

● After the first pushq instruction, the stack has the following contents, from top to bottom:

○ Pushed during call:

■ arg.b at address −24(%rbp)

○ Caller’s stack frame:

■ A local variable at address −16(%rbp)

■ Another local variable at address −8(%rbp)

■ The old value of RBP at address 0(%rbp)

● After the second pushq instruction, the stack has the following contents:

○ Pushed during call:

■ arg.a at address −32(%rbp)

■ arg.b at address −24(%rbp)

○ Caller’s stack frame:

■ A local variable at address −16(%rbp)

■ Another local variable at address −8(%rbp)

■ The old value of RBP at address 0(%rbp)

● After the callee prologue, RBP points to the top of the stack. Note that this changes the addresses of existing
items relative to RBP, even though their absolute addresses are the same. The stack has the following contents:

○ Callee’s stack frame:

■ caller RBP at address 0(%rbp)

○ Pushed during call:

■ return address at 8(%rbp)

■ arg.a at address 16(%rbp)

■ arg.b at address 24(%rbp)

○ Caller’s stack frame:

■ A local variable

■ Another local variable

■ The old value of RBP

Return to text

The contents of the stack are listed from top to bottom:

● 8 bytes of padding

● 24 bytes (or 3 eight-byte stack slots) of uninitialized memory, reserved for caller_result.

● The previous RBP

● The prior stack frame

The contents of the registers are summarized in the text below this figure. The following list describes them in
detail:

● RSP holds the address 0x70000000000f0 and points to the padding on top of the stack.

● RDI holds the address 0x70000000000f8 and points to the start of the memory reserved for caller_result

● RBP holds the address 0x7000000000110 and points to the previous RBP

● RSI holds the value 10.

● The remaining registers (RDX, RCX, R8, R9, and RAX) are uninitialized.

Return to text

The stack is shaded with different background colors to indicate different stack frames.

The contents of the stack are listed from top to bottom, organized by stack frame.

● Callee’s stack frame:

○ 8 bytes of padding

○ Value 0

○ Value 1

○ Value 10

○ Value 0x7000000000110

The part of the callee’s stack frame holding values 0, 1, and 10 is labeled callee_result.

● Caller’s stack frame:

○ Return address

○ 8 bytes of padding

○ Value 0

○ Value 1

○ Value 10

○ Previous RBP

The part of the caller’s stack frame holding values 0, 1, and 10 is labeled caller_result.

● Prior stack frame, with no individual items shown.

The contents of the registers are given in the following list:

● RSP holds the address 0x70000000000c0 and points to the padding at the top of the stack

● RBP holds the address 0x70000000000e0 and points to the value x7000000000110 at the bottom of the callee’s
stack frame

● RAX holds the value 0x70000000000f8 and points to the value 0 in the caller’s stack frame, which is the first
value in caller_result.

● RDI also holds the value 0x70000000000f8 and points to the value 0 in the caller’s stack frame.

● RSI holds the value 10.

● The remaining registers (RDX, RCX, R8, R9, and RAX) are uninitialized.

Return to text

Five diagrams show the contents of RDI at each step. Here each diagram is depicted as a table, where one cell
contains one byte. Table headers indicate which register aliases contain each byte. Bytes are listed left to right
from most to least significant.

● After movb x+2(%rip), %dil

RDI RDI and EDI RDI, EDI, and DIL

00 00 00 00 00 00 00 03

● After shlq $8, %rdi

RDI RDI and EDI RDI, EDI, and DIL

00 00 00 00 00 00 03 00

● After movb x+1(%rip), %dil

RDI RDI and EDI RDI, EDI, and DIL

00 00 00 00 00 00 03 02

● After shlq $8, %rdi

RDI RDI and EDI RDI, EDI, and DIL

00 00 00 00 00 03 02 00

● After movb x (%rip), %dil

RDI RDI and EDI RDI, EDI, and DIL

00 00 00 00 00 03 02 01

Return to text

The contents of memory are given in the following table.

Memory Address Memory Contents

-4(%rbp) 0x01

-3(%rbp) 0x02

-2(%rbp) 0x03

-1(%rbp) 0x00

Return to text

A flow chart shows the stages of the compiler, including a new optimization stage.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Optimization (a new stage) turns TACKY into optimized TACKY. It has four steps:

a. Constant Folding

b. Unreachable Code Elimination

c. Copy Propagation

d. Dead Store Elimination

An arrow leads from each step to the next. Another arrow leads from dead store elimination back to constant
folding.

6. Assembly generation turns optimized TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Replacing Pseudo-operands

c. Instruction Fix-Up

7. Code emission writes assembly to program.s.

Return to text

Here the nodes in the control-flow graph are presented as a list. Basic blocks are labeled B0, B1, and so on. We
give each node’s contents, then list its outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

LoopStart:

input = get_input()

JumpIfNotZero(input, ProcessIt)

Edge list:

● B1

● B2

3. B1

Return (-1)

Edge list:

● EXIT

4. B2

ProcessIt:

done = process_input(input)

JumpIfNotZero(done, LoopStart)

Edge list:

● B0

● B3

5. B3

Return(0)

Edge list:

● EXIT

6. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

● ENTRY

Edge list:

○ B0

● B0

x = 5

Jump(Target)

Edge list:

○ B2

● B1

x = my_function()

Edge list:

○ B2

● B2

Target:

Return(x)

Edge list:

● EXIT

● EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

x = foo()

JumpIfNotZero(arg, End)

Edge list:

● B1

● B2

3. B1

x = 2

Edge list:

● B2

4. B2

End:

Return(x)

Edge list:

● EXIT

5. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

x = 2

JumpIfNotZero(arg, End)

Edge list:

● B1

● B2

3. B1

do_something()

Edge list:

● B2

4. B2

End:

Return(x)

Edge list:

● EXIT

6. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

JumpIfNotZero(arg, A)

Edge list:

● B1

● B2

3. B1

y = 20

x = y

Jump(End)

Edge list:

● BL2>B3

4. B2

A:

y = 100

x = y

Edge list:

● B3

5. B3

End:

Return(x)

Edge list:

● EXIT

6. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

y = foo()

x = y

JumpIfNotZero(arg, End)

Edge list:

● B1

● B2

3. B1

y = 10

Edge list:

● B2

4. B2

End:

Return(x)

Edge list:

● EXIT

5. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

y = 3

Edge list:

● B1

3. B1

Loop:

x = process(y)

y = 4

JumpIfNotZero(x, Loop)

Edge list:

● B1

● B2

4. B2

Return(x)

Edge list:

● EXIT

5. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then its
annotation, and then list its outgoing edges.

1. ENTRY

Annotation: empty set

Edge list:

● B0

2. B0

y = 3

Annotation: { y = 3 }

Edge list:

● B1

3. B1

Loop:

x = process(y)

y = 4

JumpIfNotZero(x, Loop)

Annotation: { y = 3, y = 4 }

Edge list:

● B1

● B2

4. B2

Return(x)

Annotation: { y = 3, y = 4 }

Edge list:

● EXIT

5. EXIT. No annotation. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then its
annotation, and then list its outgoing edges.

1. ENTRY

Annotation: empty set

Edge list:

● B0

2. B0

y = 3

Annotation: { y = 3 }

Edge list:

● B1

3. B1

Loop:

x = process(y)

y = 4

JumpIfNotZero(x, Loop)

Annotation: { y = 4 }

Edge list:

● B1

● B2

4. B2

Return(x)

Annotation: { y = 4 }

Edge list:

● EXIT

5. EXIT. No annotation. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

x = 10

JumpIfNotZero(arg, A)

Edge list:

● B1

● B2

3. B1

Return(0)

Edge list:

● EXIT

4. B2

A:

Return(x)

Edge list:

● EXIT

5. EXIT. No outgoing edges.

Return to text

Here the nodes in the control-flow graph are presented as a list. We give each node’s contents, then list its
outgoing edges.

1. ENTRY

Edge list:

● B0

2. B0

x = 10

JumpIfNotZero(arg, A)

Edge list:

● B1

● B2

3. B1

x = f()

Return(x)

Edge list:

● EXIT

4. B2

A:

x = g()

Return(x)

Edge list:

● EXIT

5. EXIT. No outgoing edges.

Return to text

A flow chart shows the stages of the compiler, including one new step in the assembly generation stage.

1. The lexer turns program.c into a token list.

2. The parser turns the token list into an abstract syntax tree.

3. Semantic analysis turns the AST into a transformed AST. It has three steps:

a. Identifier resolution

b. Type checking

c. Loop Labeling

4. TACKY Generation turns the transformed AST into TACKY.

5. Optimization turns TACKY into optimized TACKY. It has four steps:

a. Constant Folding

b. Unreachable Code Elimination

c. Copy Propagation

d. Dead Store Elimination

An arrow leads from each step to the next. Another arrow leads from dead store elimination back to constant
folding.

6. Assembly generation turns optimized TACKY into assembly. It has three steps:

a. Converting TACKY to Assembly

b. Register allocation (a new step)

c. Replacing Pseudo-operands

d. Instruction Fix-Up

7. Code emission writes assembly to program.s.

Return to text

An undirected graph with five nodes labeled A through E. Each one is colored black, white, or gray. C is in the
center. A, B, D, and E are arranged around C. A on top, B to the left, D to the right, E on the bottom. The nodes
around C are connected to form a diamond shape. All four are also connected to C. C is black. A and E are white.
B and D are gray.

The graph is also presented here as a list of nodes. Each node’s neighbors and their colors are listed beneath it.

● A, white, top. Neighbors:

○ B, gray

○ C, black

○ D, gray

● B, gray, left. Neighbors:

○ A, white

○ C, black

○ E, white

● C, black, center. Neighbors:

○ A, white

○ B, gray

○ D, gray

○ E, white

● D, gray, right. Neighbors:

○ A, white

○ C, black

○ E, white

● E, white, bottom. Neighbors:

○ B, gray

○ C, black

○ D, gray

Return to text

An undirected graph with seven nodes. Four hard registers: EDI, ESI, EAX, and EDX. Three pseudoregisters: a, b,
and tmp.

All nodes except tmp are arranged in a circle. a and b are on the right side of the circle. tmp is to the right of b.
The text after the figure summarizes the edges.

Here the graph is presented as a list of nodes. Each node’s neighbors are listed beneath it.

● EDI. Neighbors:

○ ESI

○ EAX

○ EDX

● ESI. Neighbors:

○ EDI

○ EAX

○ EDX

○ a

● EAX. Neighbors:

○ EDI

○ ESI

○ EDX

○ b

● EDX. Neighbors:

○ ESI

○ EDI

○ EAX

○ b

● a. Neighbors:

○ ESI

○ b

● b. Neighbors:

○ EAX

○ EDX

○ a

○ tmp

● tmp. Neighbors:

○ b

Return to text

Three diagrams. Each shows the graph from Figure 20-2 with nodes colored. The colors are black, white, gray,
and striped. For each graph, we summarize the nodes’ colors, then list each node, its color, and its neighbors’
colors.

● First graph. EDI and b are striped. ESI is black. EAX and tmp are white. EDX and a are gray.

○ EDI, striped. Neighbors:

● ESI, black

● EAX, white

● EDX, gray

○ ESI, black. Neighbors:

● EDI, striped

● EAX, white

● EDX, gray

● a, gray

○ EAX, white. Neighbors:

● EDI, striped

● ESI, black

● EDX, gray

● b, striped

○ EDX, gray. Neighbors:

● EDI, striped

● ESI, black

● EAX, white

● b, striped

○ a, gray. Neighbors:

● ESI, black

● b, striped

○ b, striped. Neighbors:

● EAX, white

● EDX, gray

● a, gray

● tmp, white

○ tmp, white. Neighbors:

● b, striped

● Second graph. EDI is black. ESI and b are gray. EAX, a, and tmp are striped. EDX is white.

○ EDI, black. Neighbors:

● ESI, gray

● EAX, striped

● EDX, white

○ ESI, gray. Neighbors:

● EDI, black

● EAX, striped

● EDX, white

● a, striped

○ EAX, striped. Neighbors:

● EDI, black

● ESI, gray

● EDX, white

● b, gray

○ EDX, white. Neighbors:

● EDI, black

● ESI, gray

● EAX, striped

● b, gray

○ a, striped. Neighbors:

● ESI, gray

● b, gray

○ b, gray. Neighbors:

● EAX, striped

● EDX, white

● a, striped

● tmp, striped

○ tmp, striped. Neighbors:

● b, gray

● Third graph. EDI and a are gray. ESI and b are white. EAX is striped. EDX and tmp are black.

○ EDI, gray. Neighbors:

● ESI, white

● EAX, striped

● EDX, black

○ ESI, white. Neighbors:

● EDI, gray

● EAX, striped

● EDX, black

● a, gray

○ EAX, striped. Neighbors:

● EDI, gray

● ESI, white

● EDX, black

● b, white

○ EDX, black. Neighbors:

● EDI, gray

● ESI, white

● EAX, striped

● b, white

○ a, gray. Neighbors:

● ESI, white

● b, white

○ b, white. Neighbors:

● EAX, striped

● EDX, black

● a, gray

● tmp, black

○ tmp, black. Neighbors:

● b, white

Return to text

An undirected graph with seven nodes. The four hard registers: EDI, ESI, EAX, and EDX. The three
pseudoregisters: arg1, arg2, and tmp.

The nodes are in four rows. Top row: EDI and ESI. Second row: EAX and EDX. Third row: arg1 and arg2. Bottom
row: tmp.

All four hard registers are neighbors. EAX and EDX both neighbor all three pseudoregisters. All three
pseudoregisters are neighbors. arg1 also neighbors ESI.

The graph is also presented as a list of nodes.

● EDI. Neighbors:

○ ESI

○ EAX

○ EDX

● ESI. Neighbors:

○ EDI

○ EAX

○ EDX

○ arg1

● EAX. Neighbors:

○ EDI

○ ESI

○ EDX

○ arg1

○ arg2

○ tmp

● EDX. Neighbors:

○ EDI

○ ESI

○ EAX

○ arg1

○ arg2

○ tmp

● arg1

○ ESI

○ EAX

○ EDX

○ arg2

○ tmp

● arg2

○ EAX

○ EDX

○ arg1

○ tmp

● tmp

○ EAX

○ EDX

○ arg1

○ arg2

Return to text

The graph from Figure 20-4 with tmp removed. Each remaining node has a color. EDI and arg1 are white. ESI and
arg2 are gray. EAX is black. EDX is striped.

All four hard registers are neighbors. EAX and EDX both neighbor arg1 and arg2. arg1 and arg2 are neighbors.
arg1 also neighbors ESI.

The graph is also presented as a list of nodes.

● EDI, white. Neighbors:

○ ESI, gray

○ EAX, black

○ EDX, striped

● ESI, gray. Neighbors:

○ EDI, white

○ EAX, black

○ EDX, striped

○ arg1, white

● EAX, black

○ EDI, white

○ ESI, gray

○ EDX, striped

○ arg1, white

○ arg2, gray

● EDX, striped. Neighbors:

○ EDI, white

○ ESI, gray

○ EAX, black

○ arg1, white

○ arg2, gray

● arg1, white

○ ESI, gray

○ EAX, black

○ EDX, striped

○ arg2, gray

● arg2, gray

○ EAX, black

○ EDX, striped

○ arg1, white

Return to text

The graph has twelve nodes arranged in a circle, one for each register. Each register interferes with the other 11.

Return to text

The graph has eight nodes labeled A through H. They are arranged in order in three rows. The first row contains A
and B, the second contains C, D, and E, and the third contains F, G, and H.

The graph is presented as a list of nodes.

● A. Neighbors:

○ B

○ C

○ D

○ E

● B. Neighbors:

○ A

○ E

● C. Neighbors:

○ A

○ D

● D. Neighbors:

○ A

○ C

○ E

○ F

○ G

● E. Neighbors:

○ A

○ B

○ D

○ G

● F. Neighbors:

○ D

○ G

● G. Neighbors:

○ D

○ E

○ F

○ H

● H. Neighbors:

○ G

Return to text

All nodes and edges in the graph are in the same position as Figure 20-7. Pruned nodes are circles with dashed
borders. Edges where either endpoint has been pruned are dashed lines. Remaining nodes are circles with solid
borders. Remaining edges are solid lines.

A, D, E, and G remain in the graph. In the remaining graph, A, D, and E are all neighbors. D and E also neighbor
G.

The complete graph, including pruned nodes, is presented as a list.

● A, remaining. Neighbors:

○ B, pruned

○ C, pruned

○ D, remaining

○ E, remaining

● B, pruned. Neighbors:

○ A, remaining

○ E, remaining

● C, pruned. Neighbors:

○ A, remaining

○ D, remaining

● D, remaining. Neighbors:

○ A, remaining

○ C, pruned

○ E, remaining

○ F, pruned

○ G, remaining

● E, remaining. Neighbors:

○ A, remaining

○ B, pruned

○ D, remaining

○ G, remaining

● F, pruned. Neighbors:

○ D, remaining

○ G, remaining

● G, remaining. Neighbors:

○ D, remaining

○ E, remaining

○ F, pruned

○ H, pruned

● H, pruned. Neighbor:

○ G, remaining

Stack contents, from top to bottom:

● H

● F

● C

● B

Return to text

All nodes and edges in the graph are in the same position as Figure 20-7. Pruned nodes have dashed borders.
Edges where either endpoint has been pruned are dashed lines. Remaining nodes have solid borders. Remaining
edges are solid lines.

D and E remain in the graph. They are neighbors.

The complete graph, including pruned nodes, is presented as a list.

● A, pruned. Neighbors:

○ B, pruned

○ C, pruned

○ D, remaining

○ E, remaining

● B, pruned. Neighbors:

○ A, pruned

○ E, remaining

● C, pruned. Neighbors:

○ A, pruned

○ D, remaining

● D, remaining. Neighbors:

○ A, pruned

○ C, pruned

○ E, remaining

○ F, pruned

○ G, pruned

● E, remaining. Neighbors:

○ A, pruned

○ B, pruned

○ D, remaining

○ G, pruned

● F, pruned. Neighbors:

○ D, remaining

○ G, pruned

● G, pruned. Neighbors:

○ D, remaining

○ E, remaining

○ F, pruned

○ H, pruned

● H, pruned. Neighbors:

○ G, pruned

Stack contents, from top to bottom:

● G

● A

● H

● F

● C

● B

Return to text

All nodes and edges in the graph are in the same position as Figure 20-7. All nodes have dashed borders and all
edges are dashed lines, indicating that they have been pruned from the graph.

Stack contents, from top to bottom:

● E

● D

● G

● A

● H

● F

● C

● B

Return to text

Nine diagrams are shown. Each shows the graph and the stack. In each diagram, all nodes and edges in the graph
are in the same position as Figure 20-7. Pruned nodes have dashed borders. Edges where either endpoint has
been pruned are dashed lines.

Nodes that have been put back are colored white, black, or gray, and have solid borders. Edges whose endpoints
have both been put back are solid lines. For each diagram, we give a summary. Then we describe the full graph,
including pruned nodes. Then we describe the stack.

● First diagram. The graph is identical to Figure 20-10. All nodes have been pruned.

Stack contents, from top to bottom:

○ E

○ D

○ G

○ A

○ H

○ F

○ C

○ B

● Second diagram. E is popped off the stack. E is the only node in the graph. It is white.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, pruned

● E, white

○ B, pruned. Neighbors:

● A, pruned

● E, white

○ C, pruned. Neighbors:

● A, pruned

● D, pruned

○ D, pruned. Neighbors:

● A, pruned

● C, pruned

● E, white

● F, pruned

● G, pruned

○ E, white. Neighbors:

● A, pruned

● B, pruned

● D, pruned

● G, pruned

○ F, pruned. Neighbors:

● D, pruned

● G, pruned

○ G, pruned. Neighbors:

● D, pruned

● E, white

● F, pruned

● H, pruned

○ H, pruned. Neighbors:

● G, pruned

Stack contents, from top to bottom:

○ D

○ G

○ A

○ H

○ F

○ C

○ B

● Third diagram. D is popped off the stack. The graph has two nodes: D is gray and E is white. They are
neighbors.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, gray

● E, white

○ B, pruned. Neighbors:

● A, pruned

● E, white

○ C, pruned. Neighbors:

● A, pruned

● D, gray

○ D, gray. Neighbors:

● A, pruned

● C, pruned

● E, white

● F, pruned

● G, pruned

○ E, white. Neighbors:

● A, pruned

● B, pruned

● D, gray

● G, pruned

○ F, pruned. Neighbors:

● D, gray

● G, pruned

○ G, pruned. Neighbors:

● D, gray

● E, white

● F, pruned

● H, pruned

○ H, pruned. Neighbors:

● G, pruned

Stack contents, from top to bottom:

○ G

○ A

○ H

○ F

○ C

○ B

● Fourth diagram. G is popped off the stack. The graph has three nodes: G is black, D is gray, and E is white.
They are all neighbors.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, gray

● E, white

○ B, pruned. Neighbors:

● A, pruned

● E, white

○ C, pruned. Neighbors:

● A, pruned

● D, gray

○ D, gray. Neighbors:

● A, pruned

● C, pruned

● E, white

● F, pruned

● G, black

○ E, white. Neighbors:

● A, pruned

● B, pruned

● D, gray

● G, black

○ F, pruned. Neighbors:

● D, gray

● G, black

○ G, black. Neighbors:

● D, gray

● E, white

● F, pruned

● H, pruned

○ H, pruned. Neighbors:

● G, black

Stack contents, from top to bottom:

○ A

○ H

○ F

○ C

○ B

● Fifth diagram. A is popped off the stack and added to the graph. A is black. It neighbors D, gray, and E, white.
No other changes from the previous diagram.

Full graph, as a list:

○ A, black. Neighbors:

● B, pruned

● C, pruned

● D, gray

● E, white

○ B, pruned. Neighbors:

● A, black

● E, white

○ C, pruned. Neighbors:

● A, black

● D, gray

○ D, gray. Neighbors:

● A, black

● C, pruned

● E, white

● F, pruned

● G, black

○ E, white. Neighbors:

● A, black

● B, pruned

● D, gray

● G, black

○ F, pruned. Neighbors:

● D, gray

● G, black

○ G, black. Neighbors:

● D, gray

● E, white

● F, pruned

● H, pruned

○ H, pruned. Neighbors:

● G, black

Stack contents, from top to bottom:

○ H

○ F

○ C

○ B

● Sixth diagram. H is popped off the stack and added to the graph. H is white. It neighbors G, black. No other
changes from the previous diagram.

Full graph, as a list:

○ A, black. Neighbors:

● B, pruned

● C, pruned

● D, gray

● E, white

○ B, pruned. Neighbors:

● A, black

● E, white

○ C, pruned. Neighbors:

● A, black

● D, gray

○ D, gray. Neighbors:

● A, black

● C, pruned

● E, white

● F, pruned

● G, black

○ E, white. Neighbors:

● A, black

● B, pruned

● D, gray

● G, black

○ F, pruned. Neighbors:

● D, gray

● G, black

○ G, black. Neighbors:

● D, gray

● E, white

● F, pruned

● H, white

○ H, white. Neighbors:

● G, black

Stack contents, from top to bottom:

○ F

○ C

○ B

● Seventh diagram. F is popped off the stack and added to the graph. It is white. Its neighbors are D, gray, and G,
black. No other changes from the previous diagram.

Full graph, as a list:

○ A, black. Neighbors:

● B, pruned

● C, pruned

● D, gray

● E, white

○ B, pruned. Neighbors:

● A, black

● E, white

○ C, pruned. Neighbors:

● A, black

● D, gray

○ D, gray. Neighbors:

● A, black

● C, pruned

● E, white

● F, white

● G, black

○ E, white. Neighbors:

● A, black

● B, pruned

● D, gray

● G, black

○ F, white. Neighbors:

● D, gray

● G, black

○ G, black. Neighbors:

● D, gray

● E, white

● F, white

● H, white

○ H, white. Neighbors:

● G, black

Stack contents, from top to bottom:

○ C

○ B

● Eighth diagram. C is popped off the stack and added to the graph. It is white. Its neighbors are A, black, and D,
gray. No other changes from the previous diagram.

Full graph, as a list:

○ A, black. Neighbors:

● B, pruned

● C, white

● D, gray

● E, white

○ B, pruned. Neighbors:

● A, black

● E, white

○ C, white. Neighbors:

● A, black

● D, gray

○ D, gray. Neighbors:

● A, black

● C, white

● E, white

● F, white

● G, black

○ E, white. Neighbors:

● A, black

● B, pruned

● D, gray

● G, black

○ F, white. Neighbors:

● D, gray

● G, black

○ G, black. Neighbors:

● D, gray

● E, white

● F, white

● H, white

○ H, white. Neighbors:

● G, black

Stack contents:

○ B

● Ninth diagram. B is popped off the stack and added to the graph. It is gray. Its neighbors are A, black, and E,
white. No other changes from the previous diagram.

Full graph, as a list:

○ A, black. Neighbors:

● B, gray

● C, white

● D, gray

● E, white

○ B, gray. Neighbors:

● A, black

● E, white

○ C, white. Neighbors:

● A, black

● D, gray

○ D, gray. Neighbors:

● A, black

● C, white

● E, white

● F, white

● G, black

○ E, white. Neighbors:

● A, black

● B, gray

● D, gray

● G, black

○ F, white. Neighbors:

● D, gray

● G, black

○ G, black. Neighbors:

● D, gray

● E, white

● F, white

● H, white

○ H, white. Neighbors:

● G, black

The stack is empty.

Return to text

An undirected graph with six nodes labeled A through F. A, B, D, and E are arranged around C.

A on top, B to the left, D to the right, E on the bottom. F is below E. The four nodes around C are connected to
form a diamond shape. All four are also connected to C. F is connected to B, D, and E.

As a list of nodes:

● A. Neighbors:

○ B

○ C

○ D

● B. Neighbors:

○ A

○ C

○ E

○ F

● C. Neighbors:

○ A

○ B

○ D

○ E

● D. Neighbors:

○ A

○ C

○ E

● E. Neighbors:

○ B

○ C

○ D

○ F

● F. Neighbors:

○ B

○ D

○ E

Return to text

Six diagrams are shown. Each shows the graph and the stack. In each diagram, all nodes and edges in the graph
are in the same position as Figure 20-12.

Pruned nodes have dashed borders. Edges where either endpoint has been pruned are dashed lines. Nodes that
have been put back are colored white, black, or gray, and have solid borders. Edges whose endpoints have both
been put back are solid lines.

For each diagram, we give a summary. Then we describe the full graph, including pruned nodes. Then we describe
the stack.

● First diagram. All nodes have dashed borders and all edges are dashed lines, indicating that they have been
pruned from the graph.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, pruned

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, pruned

● F, pruned

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, pruned

● E, pruned

○ D, pruned. Neighbors:

● A, pruned

● C, pruned

● E, pruned

● F, pruned

○ E, pruned. Neighbors:

● B, pruned

● C, pruned

● D, pruned

● F, pruned

○ F, pruned. Neighbors:

● B, pruned

● D, pruned

● E, pruned

Stack contents, from top to bottom:

○ F

○ E

○ D

○ B

○ A

○ C

● Second diagram. F is popped off the stack. It is the only node in the graph. It is white.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, pruned

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, pruned

● F, white

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, pruned

● E, pruned

○ D, pruned. Neighbors:

● A, pruned

● C, pruned

● E, pruned

● F, white

○ E, pruned. Neighbors:

● B, pruned

● C, pruned

● D, pruned

● F, white

○ F, white. Neighbors:

● B, pruned

● D, pruned

● E, pruned

Stack contents, from top to bottom:

○ E

○ D

○ B

○ A

○ C

● Third diagram. E is popped off the stack. The graph has two nodes: E, gray, and F, white. They are neighbors.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, pruned

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, white

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, pruned

● E, gray

○ D, pruned. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, white

○ E, gray. Neighbors:

● B, pruned

● C, pruned

● D, pruned

● F, white

○ F, white. Neighbors:

● B, pruned

● D, pruned

● E, gray

Stack contents, from top to bottom:

○ D

○ B

○ A

○ C

● Fourth diagram. D is popped off the stack. The graph has three nodes: D, black, E, gray, and F, white. They are
all neighbors.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, black

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, white

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, black

● E, gray

○ D, black. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, white

○ E, gray. Neighbors:

● B, pruned

● C, pruned

● D, black

● F, white

○ F, white. Neighbors:

● B, pruned

● D, black

● E, gray

Stack contents, from top to bottom:

○ B

○ A

○ C

● Fifth diagram. B is popped off the stack and added to the graph. It is black. It neighbors E, gray, and F, white.
No other changes from the previous diagram.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, black

● C, pruned

● D, black

○ B, black. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, white

○ C, pruned. Neighbors:

● A, pruned

● B, black

● D, black

● E, gray

○ D, black. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, white

○ E, gray. Neighbors:

● B, black

● C, pruned

● D, black

● F, white

○ F, white. Neighbors:

● B, black

● D, black

● E, gray

Stack contents, from top to bottom:

○ A

○ C

● Sixth diagram. A is popped off the stack and added to the graph. It is white. It neighbors B, black, and D, black.
No other changes from the previous diagram.

Full graph, as a list:

○ A, white. Neighbors:

● B, black

● C, pruned

● D, black

○ B, black. Neighbors:

● A, white

● C, pruned

● E, gray

● F, white

○ C, pruned. Neighbors:

● A, white

● B, black

● D, black

● E, gray

○ D, black. Neighbors:

● A, white

● C, pruned

● E, gray

● F, white

○ E, gray. Neighbors:

● B, black

● C, pruned

● D, black

● F, white

○ F, white. Neighbors:

● B, black

● D, black

● E, gray

Stack contents:

○ C

Return to text

Seven diagrams are shown. Each shows the graph and the stack. In each graph, all nodes and edges are in the
same position as in Figure 20-12.

Nodes that have been put back are colored white, black, or gray. Pruned and colored nodes are depicted the same
way as in Figure 20-13.

For each diagram, we give a summary. Then we describe the full graph, including pruned nodes. Then we describe
the stack.

● First diagram. All nodes have dashed borders and all edges are dashed lines, indicating that they have been
pruned from the graph.

Stack contents, from top to bottom:

○ D

○ E

○ F

○ B

○ A

○ C

● Second diagram. D is popped off the stack. It is the only node in the graph. It is white.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, white

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, pruned

● F, pruned

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, white

● E, pruned

○ D, white. Neighbors:

● A, pruned

● C, pruned

● E, pruned

● F, pruned

○ E, pruned. Neighbors:

● B, pruned

● C, pruned

● D, white

● F, pruned

○ F, pruned. Neighbors:

● B, pruned

● D, white

● E, pruned

Stack contents, from top to bottom:

○ E

○ F

○ B

○ A

○ C

● Third diagram. E is popped off the stack. The graph has two nodes: E, gray, and D, white. They are neighbors.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, white

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, pruned

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, white

● E, gray

○ D, white. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, pruned

○ E, gray. Neighbors:

● B, pruned

● C, pruned

● D, white

● F, pruned

○ F, pruned. Neighbors:

● B, pruned

● D, white

● E, gray

Stack contents, from top to bottom:

○ F

○ B

○ A

○ C

● Fourth diagram. F is popped off the stack. The graph has three nodes: F, black, E, gray, and D, white. They are
all neighbors.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, pruned

● C, pruned

● D, white

○ B, pruned. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, black

○ C, pruned. Neighbors:

● A, pruned

● B, pruned

● D, white

● E, gray

○ D, white. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, black

○ E, gray. Neighbors:

● B, pruned

● C, pruned

● D, white

● F, black

○ F, black. Neighbors:

● B, pruned

● D, white

● E, gray

Stack contents, from top to bottom:

○ B

○ A

○ C

● Fifth diagram. B is popped off the stack and added to the graph. It is white. It neighbors E, gray, and F, black.
No other changes from the previous diagram.

Full graph, as a list:

○ A, pruned. Neighbors:

● B, white

● C, pruned

● D, white

○ B, white. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, black

○ C, pruned. Neighbors:

● A, pruned

● B, white

● D, white

● E, gray

○ D, white. Neighbors:

● A, pruned

● C, pruned

● E, gray

● F, black

○ E, gray. Neighbors:

● B, white

● C, pruned

● D, white

● F, black

○ F, black. Neighbors:

● B, white

● D, white

● E, gray

Stack contents, from top to bottom:

○ A

○ C

● Sixth diagram. A is popped off the stack and added to the graph. It is gray. It neighbors B, white, and D, white.
No other changes from the previous diagram.

Full graph, as a list:

○ A, gray. Neighbors:

● B, white

● C, pruned

● D, white

○ B, white. Neighbors:

● A, gray

● C, pruned

● E, gray

● F, black

○ C, pruned. Neighbors:

● A, gray

● B, white

● D, white

● E, gray

○ D, white. Neighbors:

● A, gray

● C, pruned

● E, gray

● F, black

○ E, gray. Neighbors:

● B, white

● C, pruned

● D, white

● F, black

○ F, black. Neighbors:

● B, white

● D, white

● E, gray

Stack contents, from top to bottom:

○ C

● Seventh diagram. C is popped off the stack and added to the graph. It is black. It neighbors A (gray), B (white),
D (white), and E (gray). No other changes from the previous diagram.

Full graph, as a list:

○ A, gray. Neighbors:

● B, white

● C, black

● D, white

○ B, white. Neighbors:

● A, gray

● C, black

● E, gray

● F, black

○ C, black. Neighbors:

● A, gray

● B, white

● D, white

● E, gray

○ D, white. Neighbors:

● A, gray

● C, black

● E, gray

● F, black

○ E, gray. Neighbors:

● B, white

● C, black

● D, white

● F, black

○ F, black. Neighbors:

● B, white

● D, white

● E, gray

The stack is empty.

Return to text

An undirected graph with four nodes: EDI, EAX, tmp, and arg. EDI neighbors EAX. EAX also neighbors tmp. tmp
also neighbors arg.

Return to text

An undirected graph with three nodes: EDI, EAX, and tmp. All three nodes are neighbors.

Return to text

Two diagrams show the interference graph before and after coalescing.

● Original interference graph. An undirected graph with seven nodes. Three hard registers: EDI, ESI, and EAX.
Four pseudoregisters: tmp1, tmp2, tmp3, and tmp4.

On the left, EDI, ESI, and EAX are arranged in a triangle. To their right, tmp1, tmp2, tmp3, and tmp4 are arranged
in a square. All three hard registers are neighbors. EDI also neighbors tmp1. tmp1 also neighbors tmp2. tmp2 also
neighbors tmp3. tmp3 also neighbors tmp4.

As a list of nodes:

○ EDI. Neighbors:

● ESI

● EAX

● tmp1

○ ESI. Neighbors:

● EDI

● EAX

○ EAX. Neighbors:

● EDI

● ESI

○ tmp1. Neighbors:

● EDI

● tmp2

○ tmp2. Neighbors:

● tmp1

● tmp3

○ tmp3. Neighbors:

● tmp2

● tmp4

○ tmp4. Neighbors:

● tmp3

● After coalescing tmp2 into EAX. The previous graph with three changes. First, tmp2 was removed. Second, an
edge was added from tmp1 to EAX. Third, an edge was added from tmp3 to EAX.

The graph is presented as a list:

○ EDI. Neighbors:

● ESI

● EAX

● tmp1

○ ESI. Neighbors:

● EDI

● EAX

○ EAX. Neighbors:

● EDI

● ESI

● tmp1

● tmp3

○ tmp1. Neighbors:

● EDI

● EAX

○ tmp3. Neighbors:

● EAX

● tmp4

○ tmp4. Neighbors:

● tmp3

Return to text

Two diagrams show the interference graph before and after coalescing.

● Original interference graph. An undirected graph with five nodes. Three hard registers: EDI, ESI, and EAX. Two
pseudoregisters: tmp1 and tmp2. On the left, EDI, ESI, and EAX are arranged in a triangle. They are all neighbors.
On the right, tmp1 is above tmp2. They are neighbors.

As a list of nodes:

○ EDI. Neighbors:

● ESI

● EAX

○ ESI. Neighbors:

● EDI

● EAX

○ EAX. Neighbors:

● EDI

● ESI

○ tmp1. Neighbors:

● tmp2

○ tmp2. Neighbors:

● tmp1

● After coalescing tmp1 into EDI. The previous graph with two changes. First, tmp1 was removed. Second, an
edge was added from tmp2 to EDI.

The graph is presented as a list:

○ EDI. Neighbors:

● ESI

● EAX

● tmp2

○ ESI. Neighbors:

● EDI

● EAX

○ EAX. Neighbors:

● EDI

● ESI

○ tmp2. Neighbors:

● EDI

Return to text

An undirected graph with seven nodes. Three hard registers: EDI, ESI, EAX. Four pseudoregisters: a, x, y, and z.

EAX, ESI, and EDI are arranged in a triangle. To their right, x, y and z are arranged in a triangle. a is at the top of
the diagram.

All three hard registers are neighbors. z neighbors x and y. y also neighbors EDI. x, ESI, and a are all neighbors.

As a list of nodes:

● EDI. Neighbors:

○ ESI

○ EAX

○ y

● ESI. Neighbors:

○ EDI

○ EAX

○ a

○ x

● EAX. Neighbors:

○ EDI

○ ESI

● a. Neighbors:

○ ESI

○ x

● x. Neighbors:

○ ESI

○ a

○ z

● y. Neighbors:

○ EDI

○ z

● z. Neighbors:

○ x

○ y

Return to text

The graph in Figure 20-19 with three changes. First, x has been removed. Second, an edge has been added from
a to y. Third, an edge has been added from ESI to y.

The graph is presented as a list of nodes.

● EDI. Neighbors:

○ ESI

○ EAX

○ y

● ESI. Neighbors:

○ EDI

○ EAX

○ a

○ y

● EAX. Neighbors:

○ EDI

○ ESI

● a. Neighbors:

○ ESI

○ y

● y. Neighbors:

○ EDI

○ ESI

○ a

○ z

● z. Neighbors:

○ y

Return to text

The graph is presented as a list of nodes.

● EDI. Neighbors:

○ ESI

○ EAX

○ a

○ y

● ESI. Neighbors:

○ EDI

○ EAX

○ a

○ x

● EAX. Neighbors:

○ EDI

○ ESI

● a. Neighbors:

○ EDI

○ ESI

○ x

● x. Neighbors:

○ ESI

○ a

○ z

● y. Neighbors:

○ EDI

○ z

● z. Neighbors:

○ x

○ y

Return to text

The graph from Figure 20-21 with three changes. First, x has been removed. Second, an edge has been added
from a to y. Third, an edge has been added from ESI to y.

The graph is presented as a list of nodes.

● EDI. Neighbors:

○ ESI

○ EAX

○ a

○ y

● ESI. Neighbors:

○ EDI

○ EAX

○ a

○ y

● EAX. Neighbors:

○ EDI

○ ESI

● a. Neighbors:

○ EDI

○ ESI

○ y

● y. Neighbors:

○ EDI

○ ESI

○ a

○ z

● z. Neighbors:

○ y

Return to text

An undirected graph with five nodes. Three hard registers: EDI, ESI, and EAX. Two pseudoregisters: tmp1 and
tmp2. EDI, ESI, EAX, and tmp1 are all neighbors. tmp2 neighbors ESI and EAX.

As a list of nodes:

● EDI. Neighbors:

○ ESI

○ EAX

○ tmp1

● ESI. Neighbors:

○ EDI

○ EAX

○ tmp1

○ tmp2

● EAX. Neighbors:

○ EDI

○ ESI

○ tmp1

○ tmp2

● tmp1. Neighbors:

○ EDI

○ ESI

○ EAX

● tmp2. Neighbors:

○ ESI

○ EAX

Return to text

An undirected graph with ten nodes. Three hard registers: EDI, ESI, EAX. Seven pseudoregisters: a, b, c, d, x, y,
and z.

EAX, ESI, and EDI are arranged in a triangle. To their right, x, y, and z are arranged in a triangle. At the top of the
diagram, a is surrounded by b, c, and d.

All three hard registers are neighbors. z neighbors x and y. y also neighbors EDI. x, ESI, and a are all neighbors. a
also neighbors b, c, and d.

As a list of nodes:

● EDI. Neighbors:

○ ESI

○ EAX

○ y

● ESI. Neighbors:

○ EDI

○ EAX

○ a

○ x

● EAX. Neighbors:

○ EDI

○ ESI

● a. Neighbors:

○ ESI

○ b

○ c

○ d

○ x

● b. Neighbors:

○ a

● c. Neighbors:

○ a

● d. Neighbors:

○ a

● x. Neighbors:

○ ESI

○ a

○ z

● y. Neighbors:

○ EDI

○ z

● z. Neighbors:

○ x

○ y

Return to text

The previous graph with three changes. First, x has been removed. Second, an edge has been added from a to y.
Third, an edge has been added from ESI to y.

The graph is presented as a list of nodes.

● EDI. Neighbors:

○ ESI

○ EAX

○ y

● ESI. Neighbors:

○ EDI

○ EAX

○ a

○ y

● EAX. Neighbors:

○ EDI

○ ESI

● a. Neighbors:

○ ESI

○ b

○ c

○ d

○ y

● b. Neighbors:

○ a

● c. Neighbors:

○ a

● d. Neighbors:

○ a

● y. Neighbors:

○ EDI

○ ESI

○ a

○ z

● z. Neighbors:

○ y

Return to text

A screenshot of a terminal. The top window shows the message “Register Values Unavailable.” The middle window
displays the first ten instructions from Listing A-1 and their memory addresses. The bottom window shows the
“layout reg” command that was just entered.

Return to text

A screenshot of a terminal. The top window shows the values of the eight-byte general-purpose registers and a
few other registers, displayed in decimal and hexadecimal. The middle window displays the first ten instructions
from Listing A-1 and their memory addresses. The third instruction, “sub $0x10, %rsp”, is highlighted. The bottom
window shows the previous two commands and their output.

Return to text

	Title Page
	Copyright
	Dedication
	About the Author and the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	Why Write a C Compiler?
	Compilation from 10,000 Feet
	What You’ll Build
	How to Use This Book
	The Test Suite
	Extra Credit Features

	Some Advice on Choosing an Implementation Language
	System Requirements
	Installing GCC and GDB on Linux
	Installing the Command Line Developer Tools on macOS
	Running on Apple Silicon
	Validating Your Setup

	Additional Resources
	Let’s Go!

	Part I: The Basics
	1. A Minimal Compiler
	The Four Compiler Passes
	Hello, Assembly!
	The Compiler Driver
	The Lexer
	The Parser
	An Example Abstract Syntax Tree
	The AST Definition
	The Formal Grammar
	Recursive Descent Parsing

	Assembly Generation
	Code Emission
	Summary
	Additional Resources

	2. Unary Operators
	Negation and Bitwise Complement in Assembly
	The Stack
	The Lexer
	The Parser
	TACKY: A New Intermediate Representation
	Defining TACKY
	Generating TACKY
	Generating Names for Temporary Variables
	Updating the Compiler Driver

	Assembly Generation
	Converting TACKY to Assembly
	Replacing Pseudoregisters
	Fixing Up Instructions

	Code Emission
	Summary
	Additional Resources

	3. Binary Operators
	The Lexer
	The Parser
	The Trouble with Recursive Descent Parsing
	The Adequate Solution: Refactoring the Grammar
	The Better Solution: Precedence Climbing
	Precedence Climbing in Action

	TACKY Generation
	Assembly Generation
	Doing Arithmetic in Assembly
	Converting Binary Operations to Assembly
	Replacing Pseudoregisters
	Fixing Up the idiv, add, sub, and imul Instructions

	Code Emission
	Extra Credit: Bitwise Operators
	Summary
	Additional Resources

	4. Logical and Relational Operators
	Short-Circuiting Operators
	The Lexer
	The Parser
	TACKY Generation
	Adding Jumps, Copies, and Comparisons to the TACKY IR
	Converting Short-Circuiting Operators to TACKY
	Generating Labels

	Comparisons and Jumps in Assembly
	Comparisons and Status Flags
	Conditional Set Instructions
	Jump Instructions

	Assembly Generation
	Replacing Pseudoregisters
	Fixing Up the cmp Instruction

	Code Emission
	Summary
	Additional Resources

	5. Local Variables
	Variables, Declarations, and Assignment
	The Lexer
	The Parser
	The Updated AST and Grammar
	An Improved Precedence Climbing Algorithm

	Semantic Analysis
	Variable Resolution
	The --validate Option

	TACKY Generation
	Variable and Assignment Expressions
	Declarations, Statements, and Function Bodies
	Functions with No return Statement

	Extra Credit: Compound Assignment, Increment, and Decrement
	Summary

	6. If Statements and Conditional Expressions
	The Lexer
	The Parser
	Parsing if Statements
	Parsing Conditional Expressions

	Variable Resolution
	TACKY Generation
	Converting if Statements to TACKY
	Converting Conditional Expressions to TACKY

	Extra Credit: Labeled Statements and goto
	Summary

	7. Compound Statements
	The Scoop on Scopes
	The Parser
	Variable Resolution
	Resolving Variables in Multiple Scopes
	Updating the Variable Resolution Pseudocode

	TACKY Generation
	Summary

	8. Loops
	Loops and How to Escape Them
	The Lexer
	The Parser
	Semantic Analysis
	Extending Variable Resolution
	Loop Labeling
	Implementing Loop Labeling

	TACKY Generation
	break and continue Statements
	do Loops
	while Loops
	for Loops

	Extra Credit: switch Statements
	Summary

	9. Functions
	Declaring, Defining, and Calling Functions
	Declarations and Definitions
	Function Calls
	Identifier Linkage

	Compiling Libraries
	The Lexer
	The Parser
	Semantic Analysis
	Extending Identifier Resolution
	Writing the Type Checker

	TACKY Generation
	Assembly Generation
	Understanding Calling Conventions
	Calling Functions with the System V ABI
	Converting Function Calls and Definitions to Assembly
	Replacing Pseudoregisters
	Allocating Stack Space During Instruction Fix-Up

	Code Emission
	Calling Library Functions
	Summary

	10. File Scope Variable Declarations and Storage-Class Specifiers
	All About Declarations
	Scope
	Linkage
	Storage Duration
	Definitions vs. Declarations
	Error Cases

	Linkage and Storage Duration in Assembly
	The Lexer
	The Parser
	Parsing Type and Storage-Class Specifiers
	Distinguishing Between Function and Variable Declarations

	Semantic Analysis
	Identifier Resolution: Resolving External Variables
	Type Checking: Tracking Static Functions and Variables

	TACKY Generation
	Assembly Generation
	Generating Assembly for Variable Definitions
	Replacing Pseudoregisters According to Their Storage Duration
	Fixing Up Instructions

	Code Emission
	Summary

	Part II: Types Beyond Int
	11. Long Integers
	Long Integers in Assembly
	Type Conversions
	Static Long Variables

	The Lexer
	The Parser
	Semantic Analysis
	Adding Type Information to the AST
	Type Checking Expressions
	Type Checking return Statements
	Type Checking Declarations and Updating the Symbol Table

	TACKY Generation
	Tracking the Types of Temporary Variables
	Generating Extra Return Instructions

	Assembly Generation
	Tracking Assembly Types in the Backend Symbol Table
	Replacing Longword and Quadword Pseudoregisters
	Fixing Up Instructions

	Code Emission
	Summary

	12. Unsigned Integers
	Type Conversions, Again
	Converting Between Signed and Unsigned Types of the Same Size
	Converting unsigned int to a Larger Type
	Converting signed int to a Larger Type
	Converting from Larger to Smaller Types

	The Lexer
	The Parser
	The Type Checker
	TACKY Generation
	Unsigned Integer Operations in Assembly
	Unsigned Comparisons
	Unsigned Division
	Zero Extension

	Assembly Generation
	Replacing Pseudoregisters
	Fixing Up the Div and MovZeroExtend Instructions

	Code Emission
	Summary

	13. Floating-Point Numbers
	IEEE 754, What Is It Good For?
	The IEEE 754 Double-Precision Format
	Rounding Behavior
	Rounding Modes
	Rounding Constants
	Rounding Type Conversions
	Rounding Arithmetic Operations

	Linking Shared Libraries
	The Lexer
	Recognizing Floating-Point Constant Tokens
	Matching the End of a Constant

	The Parser
	The Type Checker
	TACKY Generation
	Floating-Point Operations in Assembly
	Working with SSE Instructions
	Using Floating-Point Values in the System V Calling Convention
	Doing Arithmetic with SSE Instructions
	Comparing Floating-Point Numbers
	Converting Between Floating-Point and Integer Types

	Assembly Generation
	Floating-Point Constants
	Unary Instructions, Binary Instructions, and Conditional Jumps
	Type Conversions
	Function Calls
	Return Instructions
	The Complete Conversion from TACKY to Assembly
	Pseudoregister Replacement
	Instruction Fix-Up

	Code Emission
	Formatting Floating-Point Numbers
	Labeling Floating-Point Constants
	Storing Constants in the Read-Only Data Section
	Initializing Static Variables to 0.0 or –0.0
	Putting It All Together

	Extra Credit: NaN
	Summary
	Additional Resources

	14. Pointers
	Objects and Values
	Operations on Pointers
	Address and Dereference Operations
	Null Pointers and Type Conversions
	Pointer Comparisons
	& Operations on Dereferenced Pointers

	The Lexer
	The Parser
	Parsing Declarations
	Parsing Type Names
	Putting It All Together

	Semantic Analysis
	Type Checking Pointer Expressions
	Tracking Static Pointer Initializers in the Symbol Table

	TACKY Generation
	Pointer Operations in TACKY
	A Strategy for TACKY Conversion

	Assembly Generation
	Replacing Pseudoregisters with Memory Operands
	Fixing Up the lea and push Instructions

	Code Emission
	Summary

	15. Arrays and Pointer Arithmetic
	Arrays and Pointer Arithmetic
	Array Declarations and Initializers
	Memory Layout of Arrays
	Array-to-Pointer Decay
	Pointer Arithmetic to Access Array Elements
	Even More Pointer Arithmetic
	Array Types in Function Declarations
	Things We Aren’t Implementing

	The Lexer
	The Parser
	Parsing Array Declarators
	Parsing Abstract Array Declarators
	Parsing Compound Initializers
	Parsing Subscript Expressions

	The Type Checker
	Converting Arrays to Pointers
	Validating Lvalues
	Type Checking Pointer Arithmetic
	Type Checking Subscript Expressions
	Type Checking Cast Expressions
	Type Checking Function Declarations
	Type Checking Compound Initializers
	Initializing Static Arrays
	Initializing Scalar Variables with ZeroInit

	TACKY Generation
	Pointer Arithmetic
	Subscripting
	Compound Initializers
	Tentative Array Definitions

	Assembly Generation
	Converting TACKY to Assembly
	Replacing PseudoMem Operands
	Fixing Up Instructions

	Code Emission
	Summary

	16. Characters and Strings
	Character Traits
	String Literals
	Working with Strings in Assembly
	The Lexer
	The Parser
	Parsing Type Specifiers
	Parsing Character Constants
	Parsing String Literals
	Putting It All Together

	The Type Checker
	Characters
	String Literals in Expressions
	String Literals Initializing Non-static Variables
	String Literals Initializing Static Variables

	TACKY Generation
	String Literals as Array Initializers
	String Literals in Expressions
	Top-Level Constants in TACKY

	Assembly Generation
	Operations on Characters
	Top-Level Constants
	The Complete Conversion from TACKY to Assembly
	Pseudo-Operand Replacement
	Instruction Fix-Up

	Code Emission
	Hello Again, World!
	Summary

	17. Supporting Dynamic Memory Allocation
	The void Type
	Memory Management with void *
	Complete and Incomplete Types
	The sizeof Operator
	The Lexer
	The Parser
	The Type Checker
	Conversions to and from void *
	Functions with void Return Types
	Scalar and Non-scalar Types
	Restrictions on Incomplete Types
	Extra Restrictions on void
	Conditional Expressions with void Operands
	Existing Validation for Arithmetic Expressions and Comparisons
	sizeof Expressions

	TACKY Generation
	Functions with void Return Types
	Casts to void
	Conditional Expressions with void Operands
	sizeof Expressions
	The Latest and Greatest TACKY IR

	Assembly Generation
	Summary

	18. Structures
	Declaring Structure Types
	Structure Member Declarations
	Tag and Member Namespaces
	Structure Type Declarations We Aren’t Implementing

	Operating on Structures
	Structure Layout in Memory
	The Lexer
	The Parser
	Semantic Analysis
	Resolving Structure Tags
	Type Checking Structures

	TACKY Generation
	Implementing the Member Access Operators
	Converting Compound Initializers to TACKY

	Structures in the System V Calling Convention
	Classifying Structures
	Passing Parameters of Structure Type
	Returning Structures

	Assembly Generation
	Extending the Assembly AST
	Copying Structures
	Using Structures in Function Calls
	Putting It All Together
	Replacing Pseudo-operands

	Code Emission
	Extra Credit: Unions
	Summary
	Additional Resources

	Part III: Optimizations
	19. Optimizing Tacky Programs
	Safety and Observable Behavior
	Four TACKY Optimizations
	Constant Folding
	Unreachable Code Elimination
	Copy Propagation
	Dead Store Elimination
	With Our Powers Combined …

	Testing the Optimization Passes
	Wiring Up the Optimization Stage
	Constant Folding
	Constant Folding for Part I TACKY Programs
	Supporting Part II TACKY Programs

	Control-Flow Graphs
	Defining the Control-Flow Graph
	Creating Basic Blocks
	Adding Edges to the Control-Flow Graph
	Converting a Control-Flow Graph to a List of Instructions
	Making Your Control-Flow Graph Code Reusable

	Unreachable Code Elimination
	Eliminating Unreachable Blocks
	Removing Useless Jumps
	Removing Useless Labels
	Removing Empty Blocks

	A Little Bit About Data-Flow Analysis
	Copy Propagation
	Reaching Copies Analysis
	Rewriting TACKY Instructions
	Supporting Part II TACKY Programs

	Dead Store Elimination
	Liveness Analysis
	Removing Dead Stores
	Supporting Part II TACKY Programs

	Summary
	Additional Resources

	20. Register Allocation
	Register Allocation in Action
	Take One: Put Everything on the Stack
	Take Two: Register Allocation
	Take Three: Register Allocation with Coalescing

	Updating the Compiler Pipeline
	Extending the Assembly AST
	Converting TACKY to Assembly
	Register Allocation by Graph Coloring
	Detecting Interference
	Spilling Registers

	The Basic Register Allocator
	Handling Multiple Types During Register Allocation
	Defining the Interference Graph
	Building the Interference Graph
	Calculating Spill Costs
	Coloring the Interference Graph
	Building the Register Map and Rewriting the Function Body

	Instruction Fix-Up with Callee-Saved Registers
	Code Emission
	Register Coalescing
	Updating the Interference Graph
	Conservative Coalescing
	Implementing Register Coalescing

	Summary
	Additional Resources

	Next Steps
	Add Some Missing Features
	Handle Undefined Behavior Safely
	Write More TACKY Optimizations
	Support Another Target Architecture
	Contribute to an Open Source Programming Language Project
	That’s a Wrap!

	Appendix A. Debugging Assembly Code With GDB or LLDB
	The Program
	Debugging with GDB
	Configuring the GDB UI
	Starting and Stopping the Program
	Printing Expressions
	Examining Memory
	Setting Conditional Breakpoints
	Getting Help

	Debugging with LLDB
	Starting and Stopping the Program
	Displaying Assembly Code
	Printing Expressions
	Examining Memory
	Setting Conditional Breakpoints
	Getting Help

	Appendix B. Assembly Generation and Code Emission Tables
	Part I
	Converting TACKY to Assembly
	Code Emission

	Part II
	Converting TACKY to Assembly
	Code Emission

	Part III

	References
	Index

