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The field of software engineering may value team 
productivity over individual growth, but legendary 
computer scientist Randall Hyde wants to make 
promising programmers into masters of their craft. 
To that end, Engineering Software—the latest volume 
in Hyde’s highly regarded Write Great Code series—
offers his signature in-depth coverage of everything 
from development methodologies and strategic 
productivity to object-oriented design requirements and 
system documentation. 

You’ll learn:

• Why following the software craftsmanship model
can lead you to do your best work

• How to utilize traceability to enforce consistency
within your documentation

• The steps for creating your own UML requirements
with use-case analysis

• How to leverage the IEEE documentation standards
to create better software

This advanced apprenticeship in the skills, attitudes, 
and ethics of quality software development reveals 
the right way to apply engineering principles to 
programming. Hyde will teach you the rules, and 
show you when to break them. Along the way, he 
offers illuminating insights into best practices while 
empowering you to invent new ones. 

Brimming with resources and packed with examples, 
Engineering Software is your go-to guide for writing 
code that will set you apart from your peers.
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I N T R O D U C T I O N

In the late 1960s, the need for computer 
software was outpacing the capability of 

technical schools, colleges, and universities to 
produce trained computer professionals to cre-

ate that software—a phenomenon that became known 
as the software crisis. Increasing the output of colleges 
and universities wasn’t a practical approach; too few qualified students were 
enrolling in computer science programs to satisfy the demand. At the time, 
researchers determined that a better solution was to increase the productivity 
of existing computer programmers. Noticing similarities between software 
development and other engineering activities, these researchers concluded 
that the procedures and policies that worked for other engineering disci-
plines could solve the software crisis. Thus, software engineering was born.

Until the field of software engineering blossomed, software develop-
ment was a mysterious craft practiced by gurus with varying abilities and 
accomplishments. Up to that point, a software project’s success depended 
entirely upon the abilities of one or two key programmers rather than those 
of the entire team. Software engineering sought to balance the skills of 
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software teams to make them more productive and less reliant upon those 
one or two highly talented individuals.

To a large extent, the practice of software engineering has been success-
ful. Large projects built by teams of programmers could never have been com-
pleted with the ad hoc organizational methods of the past. But at the same 
time, important qualities were lost. Software engineering encourages team 
productivity at the expense of individual creativity, skill, and growth. Although 
software engineering techniques have the potential to turn poor program-
mers into good programmers, they can also restrict great programmers from 
doing their best work. The world has too few great programmers. The last 
thing we want to do is to discourage a programmer from reaching their poten-
tial; however, this is what the software engineering regimen often does.

The Write Great Code series is an effort to restore some of that lost indi-
vidual creativity, skill, and growth. It covers what I call personal software 
engineering, or how a programmer can improve the quality of their code. 
Specifically, it describes how you can produce great code—code that’s easy 
to maintain, enhance, test and debug, document, deploy, and even retire—
from mediocre code. Great code is devoid of the kludges and hacks that are 
often the result of unreasonable pressure or ill planning on the engineer’s 
or management’s part. Great code is code you can be proud of.

As I completed Write Great Code, Volume 2: Thinking Low-Level, Writing 
High-Level (WGC2), I had intended to incorporate more information in this 
book. In the last chapter of WGC2, I wrote the following:

[Write Great Code, Volume 3: Engineering Software] begins discuss-
ing the personal software engineering aspects of programming. The 
software engineering field focuses primarily on the management 
of large software systems. Personal software engineering, on the 
other hand, covers those topics germane to writing great code 
at a personal level—craftsmanship, art, and pride in workman-
ship. So, in Engineering Software, we’ll consider those aspects 
through discussions on software development metaphors, software 
developer metaphors, and system documentation [emphasis added], 
among other topics.

System documentation (including requirements, test procedures, 
design documents, and the like) is a huge part of software engineering. 
Therefore, a book on the subject must provide, at the very least, an overview 
of these subjects. Well, about seven chapters into this book I realized there 
wasn’t enough room to cover all this material in a single book. In the end, 
I wound up splitting this volume, Engineering Software, into four volumes. 
The first of these four volumes is this one, which is the third volume of the 
Write Great Code series. It concentrates on software development models and 
system documentation. The fourth volume of the series will teach software 
design; the fifth volume will develop the great-coding theme further; and a 
sixth volume will deal with testing. 

As I write this, it’s been 10 years since I completed Volume 2 of the Write 
Great Code series. It was time to complete Volume 3, even if it meant split-
ting the original information across two or more volumes. If you’ve read my 
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earlier books, you know I like to cover subjects in depth; I’m not interested 
in writing books that barely touch on the subject matter. Thus, I was faced 
with either splitting the work across multiple volumes and getting them out 
the door or producing a 2,000-page tome that, as history has oft demon-
strated, might never be completed. I apologize to those who expected this 
book to cover additional subjects. Fear not—the information will arrive in 
future volumes. You’re just getting the first part of it sooner in this book.

Assumptions and Prerequisites
In order to concentrate on engineering software, this book has to make cer-
tain assumptions. Although I’ve tried to keep those to a minimum, you’ll ben-
efit most from this book if your personal skill set fulfills some prerequisites.

You should be reasonably competent in at least one imperative (pro-
cedural) or object-oriented programming language. This includes C and 
C++, C#, Swift, Pascal, BASIC, Java, and assembly. You should know how to 
take a small problem description and work through the design and imple-
mentation of its software solution. A typical semester or quarter course at a 
college or university or several months’ experience on your own should be 
sufficient for using this book.

You should also have a basic grasp of machine organization and data 
representation. For example, you should understand hexadecimal and 
binary numbering systems, and how computers represent various high-level 
data types, such as signed integers, characters, and strings in memory. Write 
Great Code, Volume 1: Understanding the Machine (WGC1) fully covers machine 
organization if you feel your knowledge in this area is weak. Although I 
might refer to material in WGC1, you should have no problem reading this 
book independently of that one.

What Is Great Code?
Great code is software that follows a set of rules that guide the decisions 
a programmer makes when implementing an algorithm as source code. 
Great code is written with other programmers in mind—with documenta-
tion that allows others to read, comprehend, and maintain the software. 
I call this the Golden Rule of Software Development, and it holds the key to 
software engineering. 

Taking things down a level, great code:

•	 Is fast and uses the CPU, system resources, and memory efficiently

•	 Is well documented and easy to read, maintain, and enhance

•	 Follows a consistent set of style guidelines 

•	 Uses an explicit design that follows established software engineering 
conventions

•	 Is well tested and robust

•	 Is produced on time and under budget
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While Volumes 1 and 2 of the Write Great Code series deal with many of 
the efficiency aspects associated with great code, the remaining books in the 
series, starting with this one, focus specifically on creating code that meets 
the preceding criteria.

Programmer Classifications
In order to understand what makes a programmer great, let’s first consider 
the differences between amateurs, programmers at various levels, and soft-
ware engineers.

Amateurs
The amateur programmer is self-taught, with only a small amount of expe-
rience, and as such is the antithesis of the great programmer. In the early 
days of computers, these programmers were known as hackers. That term 
has morphed into several different meanings today that don’t necessarily 
describe a programmer without sufficient education or experience to do 
professional-level software engineering. 

The problem with code written by amateur programmers is that typically 
they write it for themselves or for friends; thus, it doesn’t usually adhere to 
contemporary standards for software engineering projects. However, amateur 
programmers can improve their status with a little education (which the WGC 
series can help provide).

Programmers
Computer programmers have a wide range of experiences and responsi-
bilities, which is often reflected in titles like junior programmer, coder, 
Programmer I and II, analyst/system analyst, and system architect. Here 
we explore some of these roles and how they differ. 

Interns

Typically, interns are students working part-time who are assigned so-called 
grunt work—tasks such as running a set of canned test procedures on the 
code or documenting the software.

Junior Programmer

Recent graduates typically fill the junior programmer position. Often, they 
work on testing or maintenance tasks. Rarely do they get the opportunity 
to work on new projects; instead, most of their programming time is spent 
reworking existing statements or dealing with legacy code.

Coder

A programmer advances to the coder level when they gain sufficient experi-
ence for management to trust them with developing new code for projects. 
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A more senior programmer assigns (less complex) subcomponents of a 
larger project to the coder to help complete the project faster.

Programmer I and II

As a programmer gains more experience and is capable of handling 
complex implementation tasks on their own, they progress from coder to 
Programmer I and then Programmer II. A system analyst can often provide 
a Programmer I or II with a general idea of what they want, and the pro-
grammer is able to fill in the missing details and produce an application 
in line with the system analyst’s expectations.

System Analyst

A system analyst studies a problem and determines the best way to imple-
ment a solution. Often, the system analyst chooses the major algorithms to 
use and creates the final application’s organization.

System Architect

The system architect chooses how the components designed by a system 
analyst in a large-scale system will work together. Often, the system archi-
tect specifies processes, hardware, and other non-software-related items as 
part of the total solution.

The Complete Programmer

A complete programmer is the amalgamation of all these subdivisions. That is, 
a complete programmer is capable of studying a problem, designing a solu-
tion, implementing that solution in a programming language, and testing 
the result. 

T HE PROBL E M W I T H PROGR A MME R CL A SSIF IC AT ION

In reality, most of these programmer categories are artificial; they exist simply 
to justify a different pay scale for beginning programmers and experienced 
programmers . For example, a system analyst designs the algorithms and overall 
data flow for a particular application, then hands off the design to a coder, 
who implements that design in a particular programming language . We nor-
mally associate both tasks with programming, but junior members of the pro-
gramming staff don’t have the proper experience to design large systems from 
scratch, although they’re perfectly capable of taking a design and converting it 
into an appropriate programming language . The system analysts and architects 
usually have the experience and ability to handle the entire project . However, 
management generally finds it more cost-effective to use them on those portions 
of the project that require their experience rather than having them do the low-
level coding that a recent graduate could do (at lower cost) .
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Software Engineers
In the engineering fields, engineers approach a specified problem by fol-
lowing a prescribed set of rules, building a custom solution from a combina-
tion of predetermined solutions. This approach allows even less talented 
engineers to produce working solutions without having to develop a system 
from scratch. Software engineering emerged as an effort to maximize the 
value of the entire programming team by applying traditional engineering 
concepts to software development. For the most part, the software engi-
neering revolution has been successful. Software engineers with the proper 
training and leadership can produce high-quality code in less time and for 
less money than was possible before.

Pure software engineering discourages divergent thinking, because 
it risks wasting time and leading the engineer down an unsuccessful path 
(resulting in higher development costs and longer development times). In 
general, software engineering is more concerned with developing an appli-
cation on time and under budget than with writing code the best possible way. But 
if software engineering practitioners never try anything new, they often miss 
opportunities to produce a great design, never develop any new practices to 
incorporate into their rule book, and never become great programmers.

Great Programmers
Great programmers are cognizant of the budgetary issues, but they also real-
ize that exploring new ideas and methodologies is important to advance the 
field. They know when it’s essential to follow the rules but also when it’s okay 
to break (or at least bend) them. But most important of all, great program-
mers use their skill sets to their fullest, achieving results that wouldn’t be pos-
sible by simply thinking inside the box. Hackers are born, software engineers 
are made, and great programmers are a bit of both. They have three main 
characteristics: a genuine love for the work, ongoing education and training, 
and the ability to think outside the box when solving problems.

Loving What You Do, Doing What You Love

People tend to excel at tasks they love and do poorly on activities they dis-
like. The bottom line is that if you hate computer programming, you won’t 
make a very good computer programmer. If you weren’t born with the 
desire to solve problems and overcome challenges, no amount of educa-
tion and training will change your disposition. Thus, the most important 
prerequisite to becoming a great programmer is that you really love to write 
computer programs.

Prioritizing Education and Training

Great programmers enjoy the types of tasks the field demands, but they also 
need something else—formal education and training. We’ll discuss educa-
tion and training in greater depth in later chapters, but for now it suffices 
to say that great programmers are well educated (perhaps possessing a post-
secondary degree) and continue their education throughout their careers.
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Thinking Outside the Box 

As mentioned, following a predetermined set of rules to produce code is 
the typical expectation of a software engineer. However, as you’ll see in 
Chapter 1, to become a great programmer (a “Grand Master Programmer”), 
you need to be willing and able to devise new programming techniques 
that come only from divergent thinking rather than blindly following rules. 
Great programmers have an innate desire to push boundaries and explore 
new solutions to the problems they face.

So You Want to Be a Great Programmer
To summarize, if you want to be a truly great programmer and inspire awe 
from your peers, you’ll need the following:

•	 A love of computer programming and problem solving 

•	 A wide range of computer science knowledge based on a college or 
university degree1

•	 A lifelong commitment to education and training

•	 The ability and willingness to think outside the box when exploring 
solutions

•	 The personal desire and motivation to excel at a task and always pro-
duce the best possible work

With these attributes, the only thing keeping you from becoming a 
great programmer is more knowledge. That’s where this book comes in.

A Final Note on Ethics and Character
The software engineer’s job is to create the best possible product given 
conflicting requirements by making appropriate compromises in a system’s 
design. During this process, the engineer must prioritize requirements 
and choose the best solution to the problem given the project’s constraints. 
Ethics and personal character often impact decisions individuals make 
while working on complex projects, particularly stressful ones. Being intel-
lectually dishonest (for example, fudging project estimates or claiming a 
piece of software works without fully testing it), pirating software develop-
ment tools (or other software), introducing undocumented features in 
software (such as backdoors) without management approval, or adopting 
an elitist attitude (thinking you’re better than other team members) are all 
cases of software engineering ethical lapses. Exercising sound moral judg-
ment and practicing good ethics will make you both a better person and a 
better programmer. 

1. Or equivalent self-study, which is very rarely accomplished in reality despite honest intentions.
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PART I
P E R S O N A L  S O F T W A R E  

E N G I N E E R I N G 





How do we define the software develop-
ment process? This might seem like a silly 

question. Why not just say “software develop-
ment is software development” and leave it at 

that? Well, if we can draw analogies between software 
development tasks and other professional endeavors, 
we can gain insight into the software development process. Then we can 
refine the process by studying process improvements in related fields. To 
that end, this chapter explores some of the common ways of understanding 
software development.

1.1 What Is Software?
To better understand how programmers create software, we can compare 
software to other things people create. Doing so will provide important 
insight into why certain creative metaphors apply, or don’t apply, to soft-
ware development.

1
S O F T W A R E  D E V E L O P M E N T 

M E T A P H O R S 
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In his book, Software Engineering: A Beginner’s Approach, Robert Pressman 
identifies several characteristics of software. This section explores those 
characteristics to illuminate the nature of software and how it defines a 
computer programmer’s work.

1.1.1 Software Is Not Manufactured
Software is developed or engineered; it is not manufactured in the 
classical sense.

—Robert Pressman

Compared to hardware products, the manufacturing cost of a software prod-
uct is very low: stamping out a CD or DVD costs only a few pennies, plus 
a small amount for shipping and handling (and electronic distribution is 
even less expensive). Also, the software design has very little impact on 
the quality or final cost of the manufactured CD/DVD. Assuming reason-
able quality controls at the manufacturing plant, a computer programmer 
rarely has to consider manufacturing issues when designing a software 
application.1 Contrast this with other engineering professions where the 
engineer has to design in manufacturability of the product.

1.1.2 Software Doesn’t Wear Out
Both software and hardware suffer from failures due to poor design early in 
the products’ lives. However, if we could eliminate design flaws in the prod-
ucts (that is, deliver a defect-free piece of software or hardware), the differ-
ences between the two become obvious. Once a piece of software is correct, 
it doesn’t ever fail or “wear out.” As long as the underlying computer system 
is functioning properly, the software will continue to work.2 The software 
engineer, unlike the hardware engineer, doesn’t have to worry about design-
ing in the ability to easily replace components that fail over time.

1.1.3 Most Software Is Custom
Most software is custom built rather than being assembled  
from existing [standard] components.

—Robert Pressman

Although many attempts have been made to create similarly standardized 
software components that software engineers can assemble into large applica-
tions, the concept of a software IC (that is, the equivalent of an electronic inte-
grated circuit) has never been realized. Software libraries and object-oriented 
programming techniques encourage reusing prewritten code, but the premise 
of constructing large software systems from smaller preassembled components 
has failed to produce anything close to what’s possible in hardware design.

1. Probably the only time this consideration comes up in software development is when the pro-
gram becomes so large that it requires multiple CDs, DVDs, or other media for distribution.

2. Arguably, we could say software “wears out” when the hardware it requires becomes obso-
lete and eventually fails without any way of being replaced. 
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1.1.4 Software Can Be Easily Upgraded
In many cases, it’s possible to completely replace an existing software applica-
tion in the field with a new version (or even a completely different appli-
cation) without incurring a huge cost.3 The application’s end user can 
simply replace the old software with the new and enjoy the benefits of the 
upgraded version. In fact, most modern software systems and applications 
auto-update via the internet during normal operation. 

1.1.5 Software Is Not an Independent Entity
Software is not a stand-alone product. An electrical engineer can design a 
hardware device that can operate completely on its own. However, software 
depends upon something else (typically a computer system) for proper 
operation. Therefore, a software developer must live with the constraints 
imposed by external systems (computer systems, operating systems, pro-
gramming languages, and so on) when designing and implementing a soft-
ware application.

1.2 Parallels to Other Fields
Computer programmers are often compared to artists, craftsmen, engineers, 
architects, and technicians. Although computer programming doesn’t match 
any of these professions exactly, we can draw useful parallels to these fields 
and gain insight from the techniques they employ.

1.2.1 Programmer as Artist
In the early days of computer programming, software development was 
considered an art. The ability to write software—to make sense of so much 
nonsense to create a working program—seemed to be a God-given talent 
exercised by a select few, akin to master painters or musical virtuosos. (In 
fact, considerable anecdotal evidence suggests that musicians and computer 
programmers use the same areas of their brains for their creative activities, 
and a decent percentage of programmers were, or are, musicians.4)

But is software development an actual art form? An artist is typically 
defined as someone blessed with certain talents and the skill to use them in 
a creative way. The key word here is talent, which is a natural ability. Because 
not everyone is born with the same talents, not everyone can be an artist. 
To apply the analogy, it would seem that if you want to be a programmer, 
you have to be born that way; indeed, some people seem to be born with a 
natural talent or aptitude for programming. 

3. We’ll ignore the cost of development, marketing, and upgrade fees here, and simply con-
sider the cost of doing a field upgrade of a piece of software.

4. Kathleen Melymuka, “Why Musicians May Make the Best Tech Workers,” CNN.com, 
July 31, 1998.
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The “programmer as artist” comparison seems to apply to the very best 
programmers. Although artists follow their own set of rules to produce 
quality art, they often produce their most exceptional art when they bend 
the rules and explore new creative ground. Similarly, the very best pro-
grammers are familiar with good software development rules but are also 
willing to experiment with new techniques to try to improve the develop-
ment process. Just as true artists are not content with duplicating existing 
work or styles, the “programmer as artist” is happier creating new applica-
tions than grinding out yet another version of an old one.

N O T E  One of the most well-respected textbook series on computer science is Donald Knuth’s 
The Art of Computer Programming. Clearly, the notion of programming as an 
art form is well entrenched in the computer science field.

1.2.2 Programmer as Architect 
The artist metaphor works great for small projects where the artist creates 
the idea and implements a work of art, much like a programmer designs 
and implements a small software system. However, for larger software sys-
tems, the “programmer as architect” analogy is probably a better fit. An 
architect designs the structure but leaves the implementation to others 
(because often it’s logistically impossible for one person to build it). In 
computer science, those who design a system for others to implement are 
often called programmer/analysts. 

An architect exercises large-scale creative control over a project. For 
example, an architect designing a fancy building defines how it will look, 
what materials to use, and the guidelines for the construction workers to 
follow, but doesn’t handle the construction itself. An architect might super-
vise the build (much like a programmer/analyst would review modules 
others add to their software system); however, the architect doesn’t wield a 
hammer or operate a crane.

It might seem that this analogy doesn’t apply to small projects, but it can 
if you allow an individual to “change hats.” That is, during the first phase of 
the project, the programmer puts on their architect/programmer/analyst hat 
and creates the design for the system. Then the programmer switches hats and 
puts on their programmer/coder hat to implement the system.

What the “programmer as architect” paradigm adds over and above 
the “programmer as artist” model is verification and safety measures. When 
an artist paints an image, composes a piece of music, or sculpts an object, 
they generally don’t worry about whether that work meets any require-
ments other than their own. Also, they don’t have to worry about how that 
art might physically hurt life or property.5 An architect, on the other hand, 
must consider physical realities and the fact that a bad design can lead to 
injury or harm. The “programmer as architect” paradigm introduces per-
sonal responsibility, review (testing), and safety to the programmer’s task.

5. An exception might be a performance artwork, such as a fireworks display.



Software Development Metaphors    7

1.2.3 Programmer as Engineer
A NATO conference in 1968 challenged the notion that good programmers 
are born, not made. As mentioned in this book’s introduction, the world 
was facing a software crisis—new software applications were needed faster 
than programmers could be trained to create them. So NATO sponsored 
the 1968 conference, coining the term software engineering to describe how 
to tackle the problem by applying engineering principles to the wild world 
of computer programming. 

Engineers are interested in solving practical problems cost-effectively, 
in terms of both the design effort and the cost of production. For this rea-
son, coupled with the fact that the engineering profession has been around 
for a very long time (particularly mechanical and chemical engineering), a 
large number of procedures and policies have been created for engineers 
over the years to streamline their work. 

In many engineering fields today, an engineer’s task is to construct a 
large system from smaller, predesigned building blocks. An electrical engi-
neer who wants to design a computer system doesn’t start by designing cus-
tom transistors or other small components; instead, they use predesigned 
CPUs, memory elements, and I/O devices, assembling them into a complete 
system. Similarly, a mechanical engineer can use predesigned trusses and 
pedestals to design a new bridge. Design reuse is the hallmark of the engi-
neering profession. It’s one of the key elements to producing safe, reliable, 
functional, and cost-effective designs as rapidly as possible.

Software engineers also follow a set of well-defined procedures and 
policies to construct large systems from smaller predefined systems. Indeed, 
the Institute of Electrical and Electronics Engineers (IEEE) defines software 
engineering as follows:

The application of a systematic, disciplined, quantifiable 
approach to development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.

1.2.4 Programmer as Craftsman
The craftsman model lies somewhere between the artist and the engineer. 
Central to this paradigm is the idea of programmers as individuals; that is, 
the software craftsman metaphor recognizes that people matter. Throwing 
more people and restrictive rules at a problem doesn’t produce higher-quality 
software, but training individuals better and allowing them to apply their 
natural talents and skills does.

There are parallels between the traditional craftsman’s development 
process and that of the software craftsman. Like all craftsmen, a software 
craftsman starts as an apprentice or an intern. An apprentice works under 
the close guidance of another craftsman. After learning the ropes, the 
apprentice programmer becomes a journeyman, usually working with 
teams of other programmers under the supervision of a software crafts-
man. Ultimately, the programmer’s skills increase to the point that they 
become a master craftsman.
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The craftsman model provides the best metaphor for programmers 
intent upon becoming great programmers. I’ll return to the discussion of 
this metaphor later in this chapter, in the section “Software Craftsmanship” 
on page 13.

1.2.5 Artist, Architect, Engineer, or Craftsman?
To write great code, you must understand what makes code great. You 
need to use the best tools, coding techniques, procedures, processes, and 
policies when writing code. In addition, you must constantly increase your 
knowledge and improve the development processes you use to enhance the 
quality of the software you develop. That’s why it’s important to consider 
different approaches to software development, understand the software 
product, and choose the best approach.

You need to work hard to learn how to write great code and then work 
hard at actually writing it. A great software developer adopts ideas that work 
from each of the fields just discussed and dispenses with those that don’t 
work. To summarize: 

•	 Great artists practice their skills to develop their talents. They engage in 
divergent thinking to explore new ways of presenting their message. 

•	 Great architects know how to build upon existing designs using standard 
components to create custom objects. They understand cost constraints, 
safety issues, requirements, and the need for overdesign to ensure reli-
able operation. Great architects understand the relationship between 
form and function, as well as the need to fulfill customer requirements.

•	 Great engineers recognize the benefit of consistency. They document and 
automate development steps to avoid missing steps in the process. Like 
architects, engineers encourage the reuse of existing designs to deliver 
more robust and cost-effective solutions. Engineering provides proce-
dures and policies to help overcome personal limitations in a project.

•	 Great craftsmen train and practice skills under the tutelage of a master 
with the ultimate goal of becoming a master craftsman. This metaphor 
emphasizes the qualities of the individual such as their problem-solving 
and organizational abilities.

1.3 Software Engineering
Since its emergence in the late 1960s, software engineering has become an 
unqualified success. Today, few professional programmers would accept 
the coding horrors that were “standard procedure” at the dawn of the field. 
Concepts that modern programmers take for granted—such as structured 
programming, proper program layout (like indentation), commenting, 
and good naming policies—are all due to software engineering research. 
Indeed, decades of such research have greatly influenced modern program-
ming languages and other programming tools.
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Software engineering has been around for so long and has had such an 
impact on all facets of computer programming that many people assume 
the term software engineer is synonymous with computer programmer. It’s cer-
tainly true that any professional software engineer should also be a capable 
computer programmer, but computer programming constitutes only a 
small part of software engineering. Software engineering largely involves 
economics and project management. Interestingly, those responsible for 
managing the projects, maintaining the schedules, choosing the method-
ologies to use, and so on are not called software engineers; they’re called 
managers, project leads, and other titles implying a position of authority. 
Likewise, the people we call software engineers don’t actually do the soft-
ware engineering—they simply write the code specified by the actual soft-
ware engineers (managers and project leads). This is, perhaps, why there 
is so much confusion around the term software engineering. 

1.3.1 A Formal Definition
No single definition of software engineering seems to satisfy everyone. Different 
authors add their own “spin,” making their definition slightly (or greatly) 
different than those found in other texts. The reason this book is titled 
Engineering Software is because I want to avoid adding yet another definition 
to the mix. As a reminder, the IEEE defines software engineering as 

The application of a systematic, disciplined, quantifiable 
approach to development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.

The original software engineering definition, and the one I use, is

Software engineering is the study of the development and man-
agement of large software systems.

The operative term here is large. Progress in software engineering has 
mostly been funded by defense contracts and the like, so it’s no surprise 
that software engineering is synonymous with large systems. The IEEE 
definition could apply to systems of nearly any size, but because most of the 
research into software engineering deals with very large systems, I prefer 
the second definition.

N O T E  To avoid confusion with the generic term software engineering, I use a more spe-
cialized term, personal software engineering, to describe those processes and meth-
odologies that apply to a single programmer working on a small project or a small 
part of a larger project. My intent is to describe what computer programmers believe is 
the essence of software engineering without all the extraneous detail that has little to 
do with writing great code.

When it comes to software development, people have completely dif-
ferent concepts of what “large” means. An undergraduate in a computer 
science program might think that a program containing a couple thou-
sand lines of source code is a large system. To a project manager at Boeing 
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(or other large firm), a large system contains well over one million lines 
of code. The last time I counted (which was a long time ago), Microsoft’s 
Windows operating system (OS) exceeded 50 million lines of source code; 
no one questions that Windows is a large system!

Because traditional software engineering definitions generally apply 
to large software systems, we need to come up with a reasonable defini-
tion of large (and small) software systems. Although lines of code (LOC) is 
the metric software engineers often use to describe the size of a software 
system, it is a low-quality metric with almost a two-order-of-magnitude 
variance.6 This book will often use the LOC or thousands of lines of code 
(KLOC) metric. But it’s not a good idea to base a formal definition on 
such a poor metric. Doing so weakens the definition.

1.3.2 Project Size
A small project is one that an average programmer can complete on their 
own in a reasonable amount of time (less than two years). A medium-sized 
project is too large for an individual to complete in a reasonable time frame, 
but a small team of two to five programmers can accomplish it. A large 
project requires a large team of programmers (more than five members). 
In terms of LOC, a small project contains about 50 to 100 KLOC; medium-
sized projects fall into the 50 to 1,000 KLOC (one million lines of source 
code) range; and large projects start at around 500 to 1,000 KLOC.

Small projects are trivial to manage. Because small projects require 
no interaction between programmers and very little interaction between 
the programmer and the outside world, productivity depends almost solely 
upon the programmer’s abilities.

Medium-sized projects introduce new challenges. Because multiple 
programmers are working on the project, communication can become a 
problem, but the team is small enough that this overhead is manageable. 
Nevertheless, the group dynamics require extra support, which increases 
the cost of each line of code written.

Large projects require a large team of programmers. Communication 
and other overhead often consume 50 percent of each engineer’s productiv-
ity. Effective project management is crucial.

Software engineering deals with the methodologies, practices, and poli-
cies needed to successfully manage projects requiring large teams of pro-
grammers. Unfortunately, practices that work well for individuals, or even 
small teams, don’t scale up to large teams, and large-project methodologies, 
practices, and policies don’t scale down to small and medium-sized projects. 
Practices that work well for large projects typically inject unreasonable over-
head into small and medium-sized projects, reducing the productivity of 
those small teams.

Let’s take a closer look at some benefits and drawbacks of projects of 
different sizes.

6. That is, two software systems with the same approximate complexity could vary by a factor 
of almost 100 in terms of the number of lines of code.
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1.3.2.1 Small Projects

On small projects, a single software engineer is completely responsible for 
system design, implementation, testing, debugging, deployment, and docu-
mentation. On such a project, the lone engineer is accountable for far more 
tasks than a single engineer would be on a medium-sized or large project. 
But the tasks are small and therefore manageable. Because a small project 
requires an individual to perform a wide range of tasks, the programmer 
must possess a varied skill set. Personal software engineering covers all the 
activities a developer would do on a small project.

Small projects make the most efficient use of engineering resources. 
The engineer can employ the most productive approach to solving prob-
lems because they don’t have to reach a consensus with other engineers on 
the project. The engineer can also optimize the time they spend on each 
development phase. In a structured software design regimen, considerable 
time is spent documenting operations, which doesn’t make sense when 
there’s only a single programmer on a project (though a different program-
mer might need to work with the code later in the product’s lifetime).

The drawback, and the trap, of a small project is that an engineer must 
be capable of handling all the different tasks required. Many small projects 
fail (or their development cost is too high) because the engineer doesn’t 
have the proper training to handle an entire project. More than any other 
goal, the purpose of the Write Great Code series is to teach programmers how 
to do small projects properly.

1.3.2.2 Medium-Sized Projects

On a medium-sized project, personal software engineering encompasses 
those aspects of the project for which a single engineer is responsible. This 
typically includes the design of their system component, its implementa-
tion (coding), and the documentation for that module. Generally, they 
are also responsible for testing their component (unit testing), and then the 
team as a whole tests the entire system (integration testing). Usually, there’s 
one engineer in charge of the complete system design (the project head or 
lead programmer) who also handles deployment. Depending on the project, 
a technical writer might handle system documentation. Because engineers 
share tasks in a medium-sized project, specialization is possible, and the 
project doesn’t require each engineer to be capable of performing all the 
individual tasks. The lead programmer can direct the activities of those less 
experienced to maintain quality throughout the project.

A single engineer on a small project sees the total picture and can opti-
mize certain activities based on their understanding of the entire project. 
On a large project, a single engineer is unaware of much of the project 
beyond their small piece of it. Medium-sized projects provide a hybrid of 
these two extremes: individuals can see much of the entire project and 
adjust their approach to system implementation. They can also specialize 
on certain aspects of the system without becoming overwhelmed by the 
details of the rest of the system.



12   Chapter 1

1.3.2.3 Large Projects

On a large project, various team members have specialized roles, from sys-
tem design to implementation, testing, documentation, deployment, and 
system enhancement and maintenance. As with medium-sized projects, in 
large projects personal software engineering encompasses only those activi-
ties for which an individual programmer is responsible. Software engineers 
on a large project generally do only a few tasks (such as coding and unit 
testing); therefore, they don’t require the wide-ranging skill set of a lone 
programmer on a small project.

Beyond the scope of activity, the size of a project affects the productiv-
ity of its engineers. On a large project, engineers can become very special-
ized and concentrate on their one area of expertise. This allows them to 
do their job more efficiently than if they had to use a more generalized 
skill set. However, large projects must use a common software development 
approach to be effective, and some engineers may not be as productive if 
they don’t like the approach.

1.3.3 Where Software Engineering Fails
It’s possible to apply engineering techniques to software development to pro-
duce applications in a more cost-effective manner. However, as Pete McBreen 
states in Software Craftsmanship: The New Imperative, the biggest problem with 
software engineering is the assumption that a “systematic, disciplined, quan-
tifiable approach” is the only reasonable approach. In fact, he raises a very 
good question: is it even possible to make software development systematic 
and quantified? Quoting http://www.controlchaos.com/, McBreen says:

If a process can be fully defined, with all things known about it 
so that it can be designed and run repeatedly with predictable 
results, it is known as a defined process, and it can be subjected 
to automation. If all things about a process aren’t fully known—
only what generally happens when you mix these inputs and what 
to measure and control to get the desired output—these are 
called empirical processes.

Software development is not a defined process; it’s an empirical pro-
cess. As such, software development cannot be fully automated, and it’s 
often difficult to apply engineering principles to software development. 
Part of the problem is that practical engineering relies so much on the 
reuse of existing designs. Although a considerable amount of reuse is pos-
sible in computer programming, too, it requires much more customization 
than you find in other engineering professions.

Another significant problem with software engineering, as briefly 
discussed in the book’s introduction, is that software engineering treats 
software engineers as commodity resources that a manager can swap 
arbitrarily into and out of a project, which disregards the importance of 
an individual’s talents. The issue isn’t that engineering techniques aren’t 
ever valuable, but that management attempts to apply them uniformly to 
everyone and encourages the use of some current set of “best practices” in 



Software Development Metaphors    13

software development. This approach can produce quality software, but it 
doesn’t allow for thinking outside the box and creating new practices that 
might be better.

1.4 Software Craftsmanship
Software craftmanship, where a programmer trains and practices skills 
under the tutelage of a master, is about lifelong learning to be the best 
software developer you can be. Following the craftmanship model, a pro-
grammer gets an education, completes an apprenticeship, becomes a jour-
neyman programmer, and strives to develop a masterpiece.

1.4.1 Education
Colleges and universities provide the prerequisites that interns need to be 
software craftsmen. If an internship exposed a beginning programmer 
(intern/apprentice) to the same information and challenges that a formal 
education does, the internship might be equivalent to a formal education. 
Unfortunately, few software craftsmen have the time or ability to train an 
apprentice from scratch. They’re far too busy working on real-world projects 
to devote the time needed to teach an intern everything they need to know. 
Therefore, education is the first step on the road to software craftsmanship.

Additionally, a formal education at a college or university accomplishes 
two main objectives: first, you’re forced to study those computer science 
topics that you’d probably just skip over if you were studying the material 
on your own; and second, you prove to the world that you’re capable of fin-
ishing a major commitment that you’ve started. In particular, after you’ve 
completed a formal computer science program, you’re ready to really start 
learning about software development.

However, a college degree, no matter how advanced, doesn’t automati-
cally qualify you as a software craftsman. A person with a graduate degree, 
which requires a deeper and more specialized study of computer science, 
starts out as an intern, just as someone with an undergraduate degree does. 
The intern with the graduate degree might spend fewer years as an appren-
tice but still needs considerable training.

1.4.2 Apprenticeship
Completing a formal computer science program prepares you to start learn-
ing, at an apprentice level, how to become a craftsman. A typical computer 
science program teaches you about programming languages (their syntax 
and semantics), data structures, and the theory of compilers, operating sys-
tems, and the like, but doesn’t teach you how to program beyond the first- or 
second-semester Introduction to Programming courses. An apprenticeship 
shows you what programming is about when you enter the real world. The 
purpose of an apprenticeship is to get the experience necessary to use what 
you’ve learned to approach problems in many different ways, and to gain as 
many different experiences as possible.
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An apprentice studies under someone who has mastered advanced 
programming techniques. This person can be either a software journeyman 
(see the next section) or a software craftsman. The “master” assigns tasks to 
the apprentice, demonstrates how to accomplish the task, and reviews the 
apprentice’s work, making appropriate mid-course corrections to obtain 
high-quality work. Most important, the apprentice also reviews their mas-
ter’s work. This can take various forms, including testing, structured walk-
throughs, and debugging. The important factor is that the apprentice 
learns how the master’s code operates.7 In doing so, the apprentice picks up 
programming techniques they would never master on their own.

If an apprentice is lucky, they’ll have the opportunity to study under 
several masters and learn solid techniques from all of them. With each proj-
ect completed under the tutelage of an advanced programmer, the appren-
tice nears the end of their apprenticeship and moves on to the next stage in 
the software craftsman’s route: the software journeyman.

In one sense, an apprenticeship never ends. You should always be on the 
lookout for new techniques and new skills. For example, consider all the 
software engineers who grew up on structured programming and had to 
learn object-oriented programming. However, at some point, you reach the 
stage where you’re using your existing skills more often than developing 
new ones. At that point, you start imparting your wisdom to others rather 
than learning from others. It’s then that the “masters” you’re working with 
feel you’re ready to tackle projects on your own without assistance or super-
vision. That’s when you become a software journeyman.

1.4.3 The Software Journeyman
Software journeymen handle the bulk of software development. As the 
name suggests, they typically move from project to project, applying their 
skills to solve application problems. Even though a software developer’s edu-
cation never ends, a software journeyman is more focused on application 
development than on learning how to develop applications. 

Another important task that software journeymen take on is training 
new software apprentices. They review the work of apprentices on their 
project and share programming techniques and knowledge with them.

A software journeyman constantly looks for new tools and techniques 
that can improve the software development process. By adopting new (but 
proven) techniques early on, they stay ahead of the learning curve and 
keep up with current trends to avoid falling behind. Utilizing industry best 
practices to create efficient and cost-effective solutions for customers is the 
hallmark of this stage of craftsmanship. Software journeymen are produc-
tive, knowledgeable, and exactly the type of software developer most project 
managers hope to find when assembling a software team. 

7. Another advantage to the apprenticeship process is that multiple individuals now under-
stand how the code operates, so if one leaves, another can pick up the project in their place.
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1.4.4 The Master Craftsman
The traditional way to become a master craftsman is to create a masterpiece, 
a work that sets you apart from your peers. Some (high-end) examples of 
software masterpieces include VisiCalc,8 the Linux operating system, and 
the vi and emacs text editors. These products were initially the brainchild 
and creation of a single person, even though they went on to involve doz-
ens or hundreds of different programmers. A masterpiece doesn’t have to 
become famous, like Linux or some GNU tool. However, your immediate 
peers must recognize your masterpiece as a useful and creative solution to 
a problem. A masterpiece doesn’t have to be a stand-alone original piece 
of code, either. Writing a complex device driver for an operating system, or 
extending some other program in several useful ways, could very well qual-
ify as a masterpiece. The purpose of the masterpiece is to create an item in 
your portfolio that tells the world: “I’m capable of producing serious soft-
ware—take me seriously!” A masterpiece work lets others know that they 
should seriously consider your opinions and trust what you have to say.

Generally, the domain of the master craftsman is to determine what 
current best practices are and invent new ones. Best practices describe the 
best known way, not necessarily the absolute best way, to accomplish a task. 
The master craftsman investigates whether there’s a better approach for 
designing applications, recognizes the utility of a new technique or meth-
odology as it applies to a wide spectrum of applications, and verifies that a 
practice is best and communicates that information to others.

1.4.5 Where Software Craftsmanship Fails
Steve McConnell, in his classic software engineering book Code Complete, 
claims that experience is one of those characteristics that doesn’t matter 
as much as people think: “If a programmer hasn’t learned C after a year or 
two, the next three years won’t make much difference.” He then asks, “If 
you work for 10 years, do you get 10 years of experience or do you get 1 year 
of experience 10 times?” McConnell even suggests that book learning 
might be more important than programming experience. He claims that 
the computer science field changes so fast that someone with 10 years of 
programming experience has missed out on all the great research to which 
new programmers have been exposed during that decade.

1.5 The Path to Writing Great Code
Writing great code doesn’t happen because you follow a list of rules. You 
must make a personal decision to put in the effort to ensure the code you’re 
writing is truly great. Violating well-understood software engineering prin-
ciples is a good way to ensure that your code is not great, but rigidly fol-
lowing such rules doesn’t guarantee greatness, either. A well-experienced 
and meticulous developer, or software craftsman, can navigate both 

8. For those too young to remember VisiCalc, it was the precursor to Microsoft Excel.
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approaches: following established practices when it’s required, but being 
unafraid to try a different technique or strategy when the need arises.

Unfortunately, a book can only teach you the rules and methodologies. 
Creativity and wisdom are qualities you need to develop on your own. This 
book teaches you the rules and suggests when you might consider breaking 
them. However, it’s still up to you to decide whether to do so.

1.6 For More Information
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In the late 1960s, it was clear that train-
ing more programmers would not alleviate 

the software crisis. The only solution was to 
increase programmer productivity—that is, 

enable existing programmers to write more code—
which is how the software engineering field originated. 
Therefore, a good place to start studying software 
engineering is with an understanding of productivity.

2.1 What Is Productivity?
Although the term productivity is commonly described as the basis for soft-
ware engineering, it’s amazing how many people have a distorted view of it. 
Ask any programmer about productivity, and you’re bound to hear “lines 
of code,” “function points,” “complexity metrics,” and so on. The truth is, 

2
P R O D U C T I V I T Y
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there is nothing magical or mysterious about the concept of productivity on 
a software project. We can define productivity as:

The number of unit tasks completed in a unit amount of time or 
completed for a given cost.

The challenge with this definition is specifying a unit task. One con-
venient unit task might be a project; however, projects vary wildly in terms 
of size and complexity. The fact that programmer A has completed three 
projects in a given amount of time, whereas programmer B has worked 
only on a small portion of a large project, tells us nothing about the rela-
tive productivity of these two programmers. For this reason, the unit task is 
usually much smaller than an entire project. Typically, it’s something like a 
function, a single line of code, or an even smaller component of the project. 
The exact metric is irrelevant as long as the unit task is consistent between 
various projects and a single programmer would be expected to take the 
same amount of time to complete a unit task on any project. In general, if 
we say that programmer A is n times more productive than programmer B, 
programmer A can complete n times as many (equivalent) projects in the 
same amount of time as it would take programmer B to complete one of 
those projects.

2.2 Programmer Productivity vs. Team Productivity
In 1968, Sackman, Erikson, and Grant published an eye-opening article 
claiming that there was a 10 to 20 times difference in productivity among 
programmers.1 Later studies and articles have pushed this difference even 
higher. This means that certain programmers produce as much as 20 (or 
more) times as much code as some less capable programmers. Some com-
panies even claim a two-order-of-magnitude difference in productivity 
between various software teams in their organizations. This is an astound-
ing difference! If it’s possible for some programmers to be 20 times more 
productive than others (so-called Grand Master Programmers [GMPs]), is 
there some technique or methodology we can use to improve the productiv-
ity of a typical (or low-productivity) programmer?

Because it’s not possible to train every programmer to raise them to the 
GMP level, most software engineering methodologies use other techniques, 
such as better management processes, to improve the productivity of a large 
team. This book series takes the other approach: rather than attempting to 
increase the productivity of a team, it teaches individual programmers how 
to increase their own productivity and work toward becoming a GMP.

Although the productivity of individual programmers has the largest 
impact on a project’s delivery schedule, the real world is more concerned 
with project cost—how long it takes and how much it costs to complete the 

1. Harold Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies 
Comparing Online and Offline Programming Performance,” Communications of the ACM 11, 
no. 1 (1968): 3–11.
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project—than with programmer productivity. Except for small projects, the 
productivity of the team takes priority over the productivity of a team member.

Team productivity isn’t simply the average of the productivities of 
each member; it’s based on complex interactions between team members. 
Meetings, communications, personal interactions, and other activities can 
all have a negative impact on team members’ productivity, as can bringing 
new or less knowledgeable team members up to speed and reworking exist-
ing code. (The lack of overhead from these activities is the main reason a 
programmer is far more productive when working on a small project than 
when working on a medium- or large-sized project.) Teams can improve 
their productivity by managing overhead for communication and training, 
resisting the urge to rework existing code unless it’s really necessary, and 
managing the project so code is written correctly the first time (reducing 
the need to rework it).

2.3 Man-Hours and Real Time
The definition given earlier provides two measures for productivity: one 
based on time (productivity is the number of unit tasks completed in a 
unit amount of time) and one based on cost (productivity is the number 
of unit tasks completed for a given cost). Sometimes cost is more important 
than time, and vice versa. To measure cost and time, we can use man-hours 
and real time, respectively.

From a corporation’s view, the portion of a project’s cost related to 
programmer productivity is directly proportional to its man-hours, or the 
number of hours each team member spends working on the project. A man-
day is approximately 8 man-hours, a man-month is approximately 176 man-
hours, and a man-year is approximately 2,000 man-hours. The total cost of a 
project is the total number of man-hours spent on that project multiplied by 
the average hourly wage of each team member.

Real time (also known as calendar time or wall clock time) is just the pro-
gression of time during a project. Project schedules and delivery of the final 
product are usually based on real time.

Man-hours are the product of real time multiplied by the number of 
team members concurrently working on the project, but optimizing for one 
of these quantities doesn’t always optimize for the other. For example, sup-
pose you’re working on an application needed in a municipal election. The 
most critical quantity in this case is real time; the software must be com-
pletely functional and deployed by the election date regardless of the cost. 
In contrast, a “basement programmer” working on the world’s next killer 
app can spend more time on the project, thus extending the delivery date 
in real time, but can’t afford to hire additional personnel to complete the 
app sooner.

One of the biggest mistakes project managers make on large projects 
is to confuse man-hours with real time. If two programmers can complete 
a project in 2,000 man-hours (and 1,000 real hours), you might conclude 
that four programmers can complete the project in 500 real hours. In other 
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words, by doubling the staff on the project, you can get it done in half the 
time and complete the project on schedule. In reality, this doesn’t always 
work (just like adding a second oven won’t bake a cake any faster). 

Increasing staff to increase the number of man-hours per calendar 
hour is generally more successful on large projects than on small and 
medium-sized projects. Small projects are sufficiently limited in scope 
that a single programmer can track all the details associated with the 
project; there’s no need for the programmer to consult, coordinate with, 
or train anyone else to work on the project. Generally speaking, adding 
programmers to a small project eliminates these advantages and increases 
the costs dramatically without significantly affecting the delivery schedule. 
On medium-sized projects, the balance is delicate: two programmers may 
be more productive than three,2 but adding more programming resources 
can help get an understaffed project finished sooner (though, perhaps, at a 
greater cost). On large software projects, increasing the team size reduces 
the project’s schedule accordingly, but once the team grows beyond a cer-
tain point, you might have to add two or three people to do the amount of 
work usually done by one person. 

2.4 Conceptual and Scope Complexity
As projects become more complex,3 programmer productivity decreases, 
because a more complex project requires deeper (and longer) thought to 
understand what is going on. In addition, as project complexity increases, 
there’s a greater likelihood that a software engineer will introduce errors 
into the system, and that defects introduced early in the system will not be 
caught until later, when the cost of correcting them is much higher.

Complexity comes in a couple of forms. Consider the following two 
definitions of complex :

1. Having a complicated, involved, or intricate arrangement of parts so as 
to be hard to understand

2. Composed of many interconnected parts

We can call the first definition conceptual complexity. For example, con-
sider a single arithmetic expression in a high-level language (HLL), such as 
C/C++, which can contain intricate function calls, several weird arithmetic/
logical operators with varying levels of precedence, and lots of parentheses 
that make the expression difficult to comprehend. Conceptual complexity 
can occur in any software project.

We can call the second definition scope complexity, which occurs when 
there is too much information for a human mind to easily digest. Even if 
the individual components of the project are simple, the sheer size of the 

2. Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt, “Prototyping Versus Specifying: 
A Multiproject Experience,” IEEE Transactions on Software Engineering 10, no. 3 (1984): 290–303.

3. Generally, this means larger, although conceptual complexity applies as well.
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project makes it impossible for one person to understand the whole thing. 
Scope complexity occurs in medium- and large-scale projects (indeed, it’s 
this form of complexity that differentiates small projects from the others).

Conceptual complexity affects programmer productivity in two ways. 
First, complex constructs require more thought (and therefore more time) 
to produce than simple constructs. Second, complex constructs are more 
likely to contain defects that must be corrected later, producing a corre-
sponding loss in productivity.

Scope complexity introduces different problems. When the project 
reaches a certain size, a programmer on the project might be completely 
unaware of what is going on in other parts of the project, and might dupli-
cate code already in the system. Clearly, this reduces programmer produc-
tivity, because the programmer wasted time writing that code.4 Inefficient 
use of system resources can also occur as a result of scope complexity. When 
working on a part of the system, a small team of engineers might be testing 
their piece by itself, but they don’t see its interaction with the rest of the sys-
tem (which might not even be ready yet). As a result, problems with system 
resource usages (such as CPU cycles or memory) might not be uncovered 
until later.

With good software engineering practices, it’s possible to mitigate 
some of this complexity. But the general result is the same: as systems 
become more complex, people must spend more time thinking about 
them and the opportunity for defects increases dramatically. The end 
result is reduced productivity.

2.5 Predicting Productivity
Productivity is a project attribute that you can measure and attempt to 
predict. When a project is complete, it’s fairly easy to determine the team’s 
(and its members’) productivity, assuming the team kept accurate records 
of the tasks accomplished during project development. Though success or 
failure on past projects doesn’t guarantee success or failure on future proj-
ects, past performance is the best indicator available to predict a software 
team’s future performance. If you want to improve the software develop-
ment process, you need to track the techniques that work well and those 
that don’t, so you’ll know what to do (or not to do) on future projects. To 
track this information, programmers and their support personnel must 
document all software development activities. This is a good example of 
pure overhead introduced by software engineering: the documentation does 
almost nothing to help get the current project out the door or improve 
its quality, but it’s an investment in future projects to help predict (and 
improve) productivity.

4. Some large projects appoint a “librarian” whose job is to keep track of reusable code com-
ponents. Programmers looking for a particular routine can ask the librarian about its avail-
ability and spare themselves from having to write that code. The productivity loss is limited to 
the time the librarian spends to maintain the library and the time the programmer and the 
librarian spend communicating.
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Watts S. Humphrey’s A Discipline for Software Engineering (Addison-Wesley 
Professional, 1994) is a great read for those interested in learning about 
tracking programmer productivity. Humphrey teaches a system of forms, 
guidelines, and procedures for developing software that he calls the Personal 
Software Process (PSP). Although the PSP is targeted at individuals, it offers 
valuable insight into where a programmer’s problems lie in the software 
development process. In turn, this can greatly help them to determine how 
to attack their next major project.

2.6 Metrics and Why We Need Them
The problem with predicting a team’s or an individual’s productivity by 
looking at their past performance on similar projects is that it applies only 
to similar projects. If a new project is significantly different than a team’s past 
projects, past performance might not be a good indicator. Because projects 
vary greatly in size, measuring productivity across whole projects might not 
provide sufficient information to predict future performance. Therefore, 
some system of measurement (a metric) at a granularity level below a whole 
project is needed to better evaluate teams and team members. An ideal met-
ric is independent of the project (team members, programming language 
chosen, tools used, and other related activities and components); it must 
be usable across multiple projects to allow for comparison between them. 
Several metrics do exist, but none is perfect—or even very good. Still, a poor 
metric is better than no metric, so software engineers will continue to use 
them until a better measurement comes along. In this section, I’ll discuss sev-
eral of the more common metrics and the problems and benefits of each.

2.6.1 Executable Size Metric
One simple metric that programmers use to specify a software system’s com-
plexity is the size of the executables in the final system.5 The assumption is 
that complex projects produce large executable files. 

The advantages of this metric are:

•	 It is trivial to compute (typically, you need only look at a directory list-
ing and compute the sum of one or more executable files).

•	 It doesn’t require access to the original source code.

Unfortunately, the executable size metric also has deficiencies that 
disqualify it for most projects:

•	 Executable files often contain uninitialized data whose contribution to 
the file size have little or nothing to do with the complexity of the system.

5. Note that a project might contain multiple executable files. In such a case, the “executable 
file size” is the sum of all the executable components in the system.
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•	 Library functions add to the executable’s size, yet they actually reduce 
the complexity of the project.6

•	 The executable file size metric is not language-independent. For exam-
ple, assembly language programs tend to be much more compact than 
HLL executables, yet most people consider assembly programs much 
more complex than equivalent HLL programs.

•	 The executable file size metric is not CPU-independent. For example, 
an executable for an 80x86 CPU is usually smaller than the same pro-
gram compiled for an ARM (or other RISC) CPU.

2.6.2 Machine Instructions Metric
A major failing of the executable file size metric is that certain executable file 
formats include space for uninitialized static variables, which means trivial 
changes to the input source file can dramatically alter the executable file size. 
One way to solve this problem is to count only the machine instructions in a 
source file (either the size, in bytes, of the machine instructions or the total 
number of machine instructions). While this metric solves the problem of 
uninitialized static arrays, it still exhibits all the other problems of the execut-
able file size metric: it’s CPU-dependent, it counts code (such as library code) 
that wasn’t written by the programmer, and it’s language-dependent.

2.6.3 Lines of Code Metric
The lines of code (LOC, or KLOC for thousands of lines of code) metric 
is the most common software metric in use today. As its name suggests, it’s 
a count of the number of lines of source code in a project. The metric has 
several good qualities, as well as some bad ones.

Simply counting the number of source lines appears to be the most 
popular form of using the LOC metric. Writing a line count program is 
fairly trivial, and most word count programs available for operating systems 
like Linux will compute the line count for you. 

Here are some common claims about the LOC metric:

•	 It takes about the same amount of time to write a single line of source 
code regardless of the programming language in use. 

•	 The LOC metric is not affected by the use of library routines (or other 
code reuse) in a project (assuming, of course, you don’t count the num-
ber of lines in the prewritten library source code).

•	 The LOC metric is independent of the CPU.

The LOC metric does have some drawbacks:

•	 It doesn’t provide a good indication of how much work the programmer 
has accomplished. One hundred lines of code in a VHLL accomplishes 
more than 100 lines of assembly code.

6. Assuming, of course, that the library routines existed prior to the project and were not part 
of the project’s development.
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•	 It assumes that the cost of each line of source code is the same. However, 
this isn’t the case. Blank lines have a trivial cost, simple data declara-
tions have a low conceptual complexity, and statements with complex 
Boolean expressions have a very high conceptual complexity.

2.6.4 Statement Count Metric
The statement count metric counts the number of language statements in 
a source file. It does not count blank lines or comments, nor does it count a 
single statement spread across multiple lines as separate entities. As a result, it 
does a better job than LOC of calculating the amount of programmer effort.

Although the statement count metric provides a better view of program 
complexity than lines of code, it suffers from many of the same problems. 
It measures effort rather than work accomplished, it isn’t as language-
independent as we’d like, and it assumes that each statement in the pro-
gram requires the same amount of effort to produce.

2.6.5 Function Point Analysis
Function point analysis (FPA) was originally devised as a mechanism for pre-
dicting the amount of work a project would require before any source code 
was written. The basic idea was to consider the number of inputs a program 
requires, the number of outputs it produces, and the basic computations it 
must perform, and use this information to determine a project schedule.7 

FPA offers several advantages over simplistic metrics like line or state-
ment count. It is truly language- and system-independent. It depends upon 
the functionality of the software rather than its implementation.

FPA does have a few serious drawbacks, though. First, unlike line count 
or even statement count, it’s not straightforward to compute the number 
of “function points” in a program. The analysis is subjective: the person 
analyzing the program must decide on the relative complexity of each func-
tion. Additionally, FPA has never been successfully automated. How would 
such a program decide where one calculation ends and another begins? 
How would it apply different complexity values (again, a subjective assign-
ment) to each function point? Because this manual analysis is rather time-
consuming and expensive, FPA is not as popular as other metrics. Largely, 
FPA is a postmortem (end-of-project) tool applied at the completion of a proj-
ect rather than during development.

2.6.6 McCabe’s Cyclomatic Complexity Metric
As mentioned earlier, a fundamental failure of the LOC and statement count 
metrics is that they assume each statement has equivalent complexity. FPA 
fares a little better but requires an analyst to assign a complexity rating to 
each statement. Unfortunately, these metrics don’t accurately reflect the 

7. True function point analysis is based on five components: external inputs, external out-
puts, external inquiries, internal logical file operations, and external file interfaces. But this 
basically boils down to tracking the inputs, outputs, and computations.
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effort that went into the work being measured, and, therefore fail to docu-
ment programmer productivity.

Thomas McCabe developed a software metric known as cyclomatic com-
plexity to measure the complexity of source code by counting the number 
of paths through it. It begins with a flowchart of the program. The nodes 
in the flowchart correspond to statements in the program, and the edges 
between the nodes correspond to nonsequential control flow in the pro-
gram. A simple calculation involving the number of nodes, the number of 
edges, and the number of connected components in the flowchart provides 
a single cyclomatic complexity rating for the code. Consider a 1,000-line 
printf program (with nothing else); the cyclomatic complexity would be 1, 
because there is a single path through the program. Now consider a second 
example, with a large mixture of control structures and other statements; it 
would have a much higher cyclomatic complexity rating.

The cyclomatic complexity metric is useful because it’s an objective 
measure, and it’s possible to write a program to compute this value. Its 
drawback is that the bulk size of a program is irrelevant; that is, it treats a 
single printf statement the same as 1,000 printf statements in a row, even 
though the second version clearly requires more work (even if that extra 
work is just a bunch of cut-and-paste operations). 

2.6.7 Other Metrics
There’s no shortage of metrics we could devise to measure some facet of 
programmer productivity. One common metric is to count the number of 
operators in a program. This metric recognizes and adjusts for the fact that 
some statements (including those that don’t involve control paths) are more 
complex than others, taking more time to write, test, and debug. Another 
metric is to count the number of tokens (such as identifiers, reserved words, 
operators, constants, and punctuation) in a program. No matter the metric, 
though, it will have shortcomings.

Many people attempt to use a combination of metrics (such as line 
count multiplied by cyclomatic complexity and operator count) to create a 
more “multidimensional” metric that better measures the amount of work 
involved in producing a bit of code. Unfortunately, as the complexity of the 
metric increases, it becomes more difficult to use on a given project. LOC 
has been successful because you can use the Unix wc (word count) utility, 
which also counts lines, to get a quick idea of program size. Computing a 
value for one of these other metrics usually requires a specialized, language-
dependent application (assuming the metric is automatable). For this 
reason, although people have proposed a large number of metrics, few 
have become as universally popular as LOC.

2.6.8 The Problem with Metrics
Metrics that roughly measure the amount of source code for a project 
provide a good indication of the time spent on a project if we assume that 
each line or statement in the program takes some average amount of time 
to write, but only a tenuous relationship exists between lines of code (or 
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statements) and the work accomplished. Unfortunately, metrics measure 
some physical attributes of the program but rarely measure what we’re 
really interested in knowing: the intellectual effort needed to write the 
code in the first place. 

Another failure of almost every metric is that they all assume that more 
work produces more (or more complex) code. This is not always true. For 
example, a great programmer will often expend effort to refactor their 
code, making it smaller and less complex. In this case, more work produces 
less code (and less complex code).

Metrics also fail to consider environmental issues concerning the code. 
For example, are 10 lines of code written for a bare-metal embedded device 
equivalent to 10 lines of code written for a SQL database application?

All these metrics fail to consider the learning curve for certain proj-
ects. Are 10 lines of Windows device driver code equivalent to 10 lines 
of Java code in a web applet? The LOC values for these two projects are 
incomparable.

Ultimately, most metrics fail because they measure the wrong thing. They 
measure the amount of code a programmer produces rather than the program-
mer’s overall contribution to the complete project (productivity). For example, 
one programmer could use a single statement to accomplish a task (such as a 
standard library call), whereas a second programmer could write several hun-
dred lines of code to accomplish the same task. Most metrics would suggest 
the second programmer is the more productive of the two.

For these very reasons, even the most complex software metrics cur-
rently in use have fundamental flaws that prevent them from being com-
pletely effective. Therefore, choosing a “better” metric often produces 
results that are no better than using a “flawed” metric. This is yet another 
reason the LOC metric continues to be so popular (and why this book uses 
it). It’s an amazingly bad metric, but it’s not a whole lot worse than many 
of the other existing metrics, and it’s very easy to compute without writing 
special software. 

2.7 How Do We Beat 10 Lines per Day?
Early texts on software engineering claim that a programmer on a major 
product produces an average of ten lines of code per day. In a 1977 article, 
Walston and Felix report about 274 LOC per month per developer.8 Both 
numbers describe the production of debugged and documented code over 
the lifetime of that product (that is, LOC divided by the amount of time all 
the programmers spent on the product from first release to retirement), 
rather than simply time spent writing code from day to day. Even so, the 
numbers seem low. Why?

At the start of a project, programmers might quickly crank out 1,000 
lines of code per day, then slow down to research a solution to a particular 

8. Claude E. Walston and Charles P. Felix, “A Method of Programming Measurement and 
Estimation,” IBM Systems Journal 16, no. 1 (1977): 54–73.
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portion of the project, test the code, fix bugs, rewrite half their code, and 
then document their work. By the product’s first release, productivity has 
dropped tenfold since that first day or two: from 1,000 LOC per day to 
fewer than 100. Once the first release is out the door, work generally begins 
on the second release, then the third, and so on. Over the product’s lifetime, 
several different developers will probably work on the code. By the time the 
project is retired, it has been rewritten several times (a tremendous loss in 
productivity), and several programmers have spent valuable time learning 
how the code operates (also sapping their productivity). Therefore, over 
the lifetime of the product, programmer productivity is down to 10 LOC 
per day.

One of the most important results from software engineering produc-
tivity studies is that the best way to improve productivity is not by inventing 
some scheme that allows programmers to write twice as many lines of code 
per unit time, but to reduce the time wasted on debugging, testing, documenting, 
and rewriting the code, and on educating new programmers about the code once the 
first version exists. To reduce that loss, it’s much easier to improve the pro-
cesses that programmers use on the project than it is to train them to write 
twice as much code per unit time. Software engineering has always recog-
nized this problem and has attempted to solve it by reducing the time spent 
by all programmers. Personal software engineering’s goal is to reduce the 
time spent by individual programmers on their portion of the project.

2.8 Estimating Development Time
As noted earlier, while productivity is of interest to management for award-
ing bonuses, pay raises, or verbal praise, the real purpose for tracking it is 
to predict development times on future projects. Past results don’t guaran-
tee future performance, so you also need to know how to estimate a project 
schedule (or at least the schedule for your portion of a project). As an indi-
vidual software engineer, you typically don’t have the background, educa-
tion, and experience to determine what goes into a schedule, so you should 
meet with your project manager, have them explain what needs to be con-
sidered in the schedule (which is more than just the time required to write 
code), and then build the estimate that way. Though all the details needed 
to properly estimate a project are beyond the scope of this book (see “For 
More Information” on page 37 for suggested resources), it’s worthwhile 
to briefly describe how development time estimates differ depending on 
whether you’re working on a small, medium, or large project, or just a por-
tion of a project.

2.8.1 Estimating Small Project Development Time
By definition, a small project is one that a single engineer works on. The 
major influence on the project schedule will be the ability and productivity 
of that software engineer. 

Estimating development time for small projects is much easier and 
more accurate than for larger projects. Small projects won’t involve 
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parallel development, and the schedule only has to consider a single devel-
oper’s productivity. 

Without question, the first step in estimating the development time for 
a small project is to identify and understand all the work that needs to be 
done. If some parts of the project are undefined at that point, you intro-
duce considerable error in the schedule when the undefined components 
inevitably take far more time than you imagined.

For estimating a project’s completion time, the design documentation 
is the most important part of the project. Without a detailed design, it’s 
impossible to know what subtasks make up the project and how much time 
each will take to accomplish. Once you’ve broken down the project into 
suitably sized subtasks (a suitable size is where it’s clear how long it will take 
to complete), all you need to do is add the times for all the subtasks to pro-
duce a decent first estimate.

One of the biggest mistakes people make when estimating small proj-
ects, however, is that they add the times for the subtasks and call that their 
schedule, forgetting to include time for meetings, phone calls, emails, and 
other administrative tasks. They also forget to add in testing time, plus time 
to correct (and retest) the software when defects are found. Because it’s 
difficult to estimate how many defects will be in the software, and thus how 
much time it will take to resolve them, most managers scale a schedule’s 
first approximation by a factor of 2 to 4. Assuming the programmer (team) 
maintains reasonable productivity on the project, this formula produces a 
good estimate for a small project.

2.8.2 Estimating Medium and Large Project Development Time
Conceptually, medium and large projects consist of many small projects 
(assigned to individual team members) that combine to form the final 
result. So a first approximation on a large project schedule is to break it 
down into a bunch of smaller projects, develop estimates for each of those 
subprojects, and then combine (add) the estimates. It’s sort of a bigger ver-
sion of the small project estimate. Unfortunately, in real life, this form of 
estimate is fraught with error.

The first problem is that medium and large projects introduce prob-
lems that don’t exist in small projects. A small project typically has one 
engineer, and, as noted previously, the schedule completely depends upon 
that person’s productivity and availability. In a larger project, multiple 
people (including many nonengineers) affect the estimated schedule. One 
software engineer who has a key piece of knowledge might be on vacation 
or sick for several days, holding up a second engineer who needs that infor-
mation to make progress. Engineers on larger projects usually have sev-
eral meetings a week (unaccounted for in most schedules) that take them 
offline—that is, they’re not programming—for several hours. The team 
composition can change on large projects; some experienced programmers 
leave and someone else has to pick up and learn the subtasks, and new pro-
grammers join the project and need time to get up to speed. Sometimes 
even getting a computer workstation for a new hire can take weeks (for 
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example, in a large company with a bureaucratic IT department). Waiting 
for software tools to be purchased, hardware to be developed, and support 
from other parts of the organization also creates scheduling problems. The 
list goes on and on. Few schedule estimates can accurately predict how the 
time will be consumed in these myriad ways.

Ultimately, creating medium and large project schedule estimates 
involves four tasks: breaking down the project into smaller projects, run-
ning the small project estimations on those, adding in time for integration 
testing and debugging (that is, combining the small tasks and getting them 
to work properly together), and then applying a multiplicative factor to that 
sum. They’re not precise, but they’re about as good as it gets today.

2.8.3 Problems with Estimating Development Time
Because project schedule estimates involve predicting a development team’s 
future performance, few people believe that a projected schedule will be 
totally accurate. However, typical software development schedule projec-
tions are especially bad. Here are some of the reasons why:

They’re research and development projects. R&D projects involve 
doing something you’ve never done before. They require a research 
phase during which the development team analyzes the problem and 
tries to determine solutions. Usually, there’s no way to predict how long 
the research phase will take.

Management has preconceived schedules. Typically, the marketing 
department decides that it wants to have a product to sell by a certain 
date, and management creates project schedules by working backward 
from that date. Before asking the programming team for their time 
estimates of the subtasks, management already has some preconceived 
notions about how long each task should take.

The team’s done this before. It’s common for management to assume 
that if you’ve done something before, it will be easier the second time 
around (and therefore will take less time). In certain cases, there’s an 
element of truth to this: if a team works on an R&D project, it will be 
easier to do a second time because they only have to do the develop-
ment and can skip (at least most of) the research. However, the assump-
tion that a project is always easier the second time is rarely correct.

There isn’t enough time or money. In many cases, management sets 
some sort of monetary or time limit within with a project must be com-
pleted or else it will be canceled. That’s the wrong thing to say to some-
one whose paycheck depends on the project moving forward. If given a 
choice between saying, “Yes, we can meet that schedule,” or looking for 
a new job, most people—even knowing the odds are against them—will 
opt for the first.

Programmers overstate their efficiency. Sometimes when a software 
engineer is asked if they can complete a project within a certain time-
frame, they don’t lie about how long it will take, but instead make opti-
mistic estimates of their performance—which rarely hold up during 
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the actual work. When asked how much they can produce when really 
pushed, most software engineers give a figure that represents their maxi-
mum output ever achieved over a short period of time (for example, 
while working in “crisis mode” and putting in 60–70 hours per week) 
and don’t consider unexpected hindrances (such as a really nasty bug 
that comes along).

Schedules rely on extra hours. Management (and engineers) often 
assume that programmers can always put in “a few extra hours” when the 
schedule starts to slip. As a result, schedules tend to be more aggressive 
than they should be (ignoring the negative repercussions of having engi-
neers put in massive overtime).

Engineers are like building blocks. A common problem with project 
schedules is that management assumes it can add programmers to a 
project to achieve an earlier release date. However, as mentioned ear-
lier, this isn’t necessarily true. You can’t add or remove engineers from a 
project and expect a proportional change in the project schedule.

Subproject estimates are inaccurate. Realistic project schedules are 
developed in a top-down fashion. The whole project is divided into 
smaller subprojects. Then those subprojects are divided into sets of sub-
subprojects, and so on until the subproject size is so small that someone 
can accurately predict the time needed for each tiny part. However, 
there are three challenges with this approach: 

• Being willing to put in the effort to create a schedule this way 
(that is, to provide a correct and accurate top-down analysis of 
the project)

• Obtaining accurate estimates for the tiny subprojects (particu-
larly from software engineers who may not have the appropri-
ate management training to understand what must go into their 
schedule estimates)

• Accepting the results the schedule predicts

2.9 Crisis Mode Project Management
Despite the best intentions of everyone involved, many projects fall signifi-
cantly behind schedule and management must accelerate development to 
meet some important milestone. To achieve the deadline, engineers often 
are expected to put in more time each week to reduce the (real time) deliv-
ery date. When this occurs, the project is said to be in “crisis mode.”

Crisis mode engineering can be effective for short bursts to handle 
(rapidly) approaching deadlines, but in general, crisis mode is never that 
effective, and results in lower productivity, because most people have things 
to take care of outside of work, and need time off to rest, decompress, and 
allow their brains to sort out all the problems they’ve been collecting while 
putting in long hours. Working while you’re tired leads to mistakes that 
often take far more time to correct later on. It’s more efficient in the long 
run to forgo the crisis mode and stick to 40-hour weeks.
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The best way to handle crisis mode schedules is to add milestones 
throughout the project to generate a series of “small crises” rather than one 
big crisis at the end. Putting in an extra day or a couple of long days once 
a month is infinitely better than having to put in several seven-day weeks 
at the end of the project. Working one or two 16-hour days to meet a dead-
line won’t adversely affect the quality of your life or lead you to the point 
of exhaustion.

Beyond the health and productivity issues, operating in crisis mode can 
cause scheduling, ethical, and legal problems:

•	 A poor schedule can affect future projects as well. If you work 60-hour 
weeks, management will assume that future projects can also be done 
in the same amount of (real) time, expecting this pace from you in the 
future without any additional compensation. 

•	 Technical staff turnover is high on projects that operate for lengthy 
periods of time in crisis mode, further reducing team productivity.

•	 There is also the legal issue of putting in lots of extra hours without 
being paid overtime. Several high-profile lawsuits in the video game 
industry have shown that engineers are entitled to overtime pay (they 
are not salary exempt employees). Even if your company can survive such 
lawsuits, the rules for time reporting, administrative overhead, and 
work schedules will become much more restrictive, leading to produc-
tivity drops.

Again, operating in crisis mode can help you meet certain deadlines if 
managed properly. But the best solution is to work out better schedules to 
avoid crisis mode altogether.

2.10 How to Be More Productive
This chapter has spent considerable time defining productivity and metrics 
for measuring it. But it hasn’t devoted much time to describing how a pro-
grammer can increase their productivity to become a great programmer. 
Whole books can be (and have been) written on this subject. This section 
provides an overview of techniques you can use to improve your productiv-
ity on individual and team projects.

2.10.1 Choose Software Development Tools Wisely
As a software developer, you’ll spend most of your time working with soft-
ware development tools, and the quality of your tools can have a huge impact 
on your productivity. Sadly, the main criterion for selecting development 
tools seems to be familiarity with a tool rather than the applicability of the 
tool to the current project.

Keep in mind when choosing your tools at the start of the project 
that you’ll probably have to live with them for the life of the project (and 
maybe beyond that). For example, once you start using a defect tracking 
system, it might be very difficult to switch to a different one because of 
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incompatible database file formats; the same goes for source code control 
systems. Fortunately, software development tools (especially IDEs) are rela-
tively mature these days, and a large number of them are interoperable, so 
it’s hard to make a bad choice. Still, careful thought at the beginning of a 
project can spare you a lot of problems down the road.

The most significant tool choice for a software development project is 
which programming language and which compilers/interpreters/transla-
tors to use. Optimal language choice is a difficult problem to solve. It’s easy 
to justify some programming language because you’re familiar with it and 
you won’t lose productivity learning it; however, future engineers new to 
the product might be far less productive because they’re learning the pro-
gramming language while trying to maintain the code. Furthermore, some 
language choices could streamline the development process, sufficiently 
improving productivity to make up for lost time learning the language. As 
noted earlier, a poor language choice could result in wasted development 
time using that language until it becomes clear that it is unsuitable for the 
project and you have to start over.

Compiler performance (how many lines per second it takes to process 
a common source file) can have a huge impact on your productivity. If your 
compiler takes two seconds to compile an average source file rather than 
two minutes, you’ll probably be far more productive using the faster com-
piler (though the faster compiler might be missing some features that com-
pletely kill your productivity in other ways). The less time your tools take to 
process your code, the more time you’ll have for designing, testing, debug-
ging, and polishing your code.

It’s also important to use a set of tools that work well together. Today, we 
take for granted integrated development environments (IDEs), which combine an 
editor, compiler, debugger, source code browser, and other tools into a single 
program. Being able to quickly make small changes in an editor, recompile 
a source code module, and run the result in a debugger all within the same 
window onscreen provides a phenomenal boost in productivity. 

However, you’ll often have to work on parts of your project outside the 
IDE. For example, some IDEs don’t support source code control facilities 
or defect tracking directly in the IDE (though many do). Most IDEs don’t 
provide a word processor for writing documentation, nor do they provide 
simple database or spreadsheet capabilities to maintain requirements lists, 
design documentation, or user documentation. Most likely, you’ll have 
to use a few programs outside your IDE—word processing, spreadsheet, 
drawing/graphics, web design, and database programs, to name a few—
to do all the work needed on your project. 

Running programs outside an IDE isn’t a problem. Just make sure the 
applications you choose are compatible with your development process and 
the files your IDE produces (and vice versa). Your productivity will decrease 
if you must constantly run a translator program when moving files between 
your IDE and an external application. 

Can I recommend tools for you to use? No way. There are too many 
projects with different needs to even consider such suggestions here. My 
recommendation is to simply be aware of the issues at the start of the project.
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But one recommendation I can make is to avoid the “Gee whiz, why 
don’t we try this new technology” approach when choosing a development 
tool. Discovering that a development tool can’t do the job after spending six 
months working with it (and basing your source code on it) can be disastrous. 
Evaluate your tools apart from your product development, and work in new 
tools only after you’re confident that they’ll work for you. A classic example 
of this is Apple’s Swift programming language. Until Swift v5.0 was released 
(about four years after Swift was first introduced), using Swift was an exercise 
in frustration. Every year Apple would release a new version that was source 
code–incompatible with earlier releases, forcing you to go back and change 
old programs. In addition, many features were missing in early versions of 
the language, and several features weren’t quite ready for “prime time.” By 
version 5.0 (released as this book was being written), the language seems rela-
tively stable. However, the poor souls who jumped on the Swift bandwagon 
early on paid the price for the immature development of the language.9

Sadly, you don’t get to choose the development tools on many projects. 
That decision is an edict from on high, or you inherit tools from earlier 
products. Complaining about it wastes time and energy, and reduces your 
productivity. Instead, make the best of the tool set you have, and become an 
expert at using it.

2.10.2 Manage Overhead
On any project, we can divide the work into two categories: work that is 
directly associated with the project (such as writing lines of code or docu-
mentation for the project) and work that is indirectly related to the project. 
Indirect activities include meetings, reading and replying to emails, filling 
out time cards, and updating schedules. These are overhead activities: they 
add time and money to a project’s cost but don’t directly contribute to get-
ting the work done.

By following Watts S. Humphrey’s Personal Software Engineering guidelines, 
you can track where you spend your time during a project and easily see how 
much is spent directly on the project versus on overhead activities. If your 
overhead climbs above 10 percent of your total time, reconsider your daily 
activities. Try to decrease or combine those activities to reduce their impact 
on your productivity. If you don’t track your time outside the project, you’ll 
miss the opportunity to improve your productivity by managing overhead.

2.10.3 Set Clear Goals and Milestones
It’s a natural human tendency to relax when no deadlines are looming, and 
then go into “hypermode” as one approaches. Without goals to achieve, 
very little productive work ever gets done. Without deadlines to meet, 
rarely is there any motivation to achieve those goals in a timely manner. 

9. Today, I don’t have a problem recommending Swift. It’s a great language, and version 5.0 
and later seem relatively stable and reliable. It’s moved beyond the “Gee whiz, ain’t this a 
great new language” stage and is now a valid software development tool for real projects.
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Therefore, to improve your productivity, be sure to have clear goals and 
subgoals, and attach hard milestones to them.

From a project management viewpoint, a milestone is a marker in a proj-
ect that determines how far work has progressed. A good manager always sets 
goals and milestones in the project schedule. However, few schedules provide 
useful goals for individual programmers. This is where personal software 
engineering comes into play. To become a superproductive programmer, 
micromanage your own goals and milestones on your (portion of the) proj-
ect. Simple goals, such as “I’ll finish this function before I take lunch” or “I’ll 
find the source of this error before going home today” can keep you focused. 
Larger goals, such as “I’ll finish testing this module by next Tuesday” or “I’ll 
run at least 20 test procedures today” help you gauge your productivity and 
determine if you’re achieving what you want.

2.10.4 Practice Self-Motivation
Improving your productivity is all about attitude. Although others can help 
you manage your time better and aid you when you’re stuck, the bottom 
line is that you must have the initiative to better yourself. Always be con-
scious of your pace and constantly strive to improve your performance. By 
keeping track of your goals, efforts, and progress, you’ll know when you 
need to “psych yourself up” and work harder to improve your productivity.

A lack of motivation can be one of the greatest impediments to your 
productivity. If your attitude is “Ugh, I have to work on that today,” it will 
probably take you longer to complete the task than if your attitude is “Oh! 
This is the best part! This will be fun!” 

Of course, not every task you work on will be interesting and fun. This 
is one area where personal software engineering kicks in. If you want to 
maintain higher-than-average productivity, you need to have considerable 
self-motivation when a project makes you feel “less than motivated.” Try 
to create reasons to make the work appealing. For example, create mini-
challenges for yourself and reward yourself for achieving them. A produc-
tive software engineer constantly practices self-motivation: the longer you 
remain motivated to do a project, the more productive you’ll be.

2.10.5 Focus and Eliminate Distractions
Staying focused on a task and eliminating distractions is another way to 
dramatically improve your productivity. Be “in the zone.” Software engi-
neers operating this way are more productive than those who are mentally 
multitasking. To increase your productivity, concentrate on a single task for 
as long as possible.

Focusing on a task is easiest in a quiet environment without any visual 
stimulation (other than your display screen). Sometimes, work environ-
ments aren’t conducive to an extreme focus. In such cases, putting on head-
phones and playing background music might help remove the distractions. 
If music is too distracting, try listening to white noise; there are several 
white noise apps available online.
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Whenever you’re interrupted in the middle of a task, it will take time to 
get back in the zone. In fact, it could take as long as half an hour to become 
fully refocused on your work. When you need to focus and complete a task, 
put up a sign saying that you should only be interrupted for urgent busi-
ness, or post “office hours”—times when you can be interrupted—near 
your workstation; for example, you could allow interruptions at the top of 
the hour for five minutes. Saving your coworkers 10 minutes by answering 
a question they could figure out themselves could cost you half an hour of 
productivity. You do have to work as part of the team and be a good team-
mate; however, it’s just as important to ensure that excessive team interac-
tions don’t impair your (and others’) productivity.

During a typical workday, there will be many scheduled interruptions: 
meal breaks, rest breaks, meetings, administrative sessions (for example, 
handling emails and time accounting), and more. If possible, try to schedule 
other interruptions around these events. For example, turn off any email 
alerts; answering emails within a few seconds is rarely imperative, and some-
one can find you in person or call you if it’s an emergency. Set an alarm to 
remind you to check email at fixed times if people do expect quick responses 
from you (ditto with text messages and other interruptions). If you can get 
away with it, consider silencing your phone if you get a lot of nonurgent 
phone calls, checking your messages every hour or so during your breaks. 
What works for you depends on your personal and professional life. But the 
fewer interruptions you have, the more productive you’ll become. 

2.10.6 If You’re Bored, Work on Something Else
Sometimes, no matter how self-motivated you are, you’ll be bored with what 
you’re working on and have trouble focusing; your productivity will plum-
met. If you can’t get into the zone and focus on the task, take a break from 
it and work on something else. Don’t use boredom as an excuse to flitter 
from task to task without accomplishing much. But when you’re really stuck 
and can’t move forward, switch to something you can be productive doing.

2.10.7 Be as Self-Sufficient as Possible
As much as possible, you should try to handle all tasks assigned to you. This 
won’t improve your productivity; however, if you’re constantly seeking help 
from other engineers, you might be damaging their productivity (remem-
ber, they need to stay focused and avoid interruptions, too).

If you’re working on a task that requires more knowledge than you cur-
rently possess, and you don’t want to constantly interrupt other engineers, 
you have a few options:

•	 Spend time educating yourself so you can do the task. Although you 
might hurt your short-term productivity, the knowledge you gain will 
help you with similar future tasks.

•	 Meet with your manager and explain the problems you’re having. 
Discuss the possibility of their reassigning the task to someone more 
experienced and assigning you a task you’re better able to handle.
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•	 Arrange with your manager to schedule a meeting to get help from 
other engineers at a time that won’t impact their productivity as much 
(for example, at the beginning of the workday).

2.10.8 Recognize When You Need Help
You can take the self-supporting attitude a little too far. You can spend an 
inordinate amount of time working on a problem that a teammate could 
solve in just a few minutes. One aspect of being a great programmer is rec-
ognizing when you’re stuck and need help to move forward. When you’re 
stuck, the best approach is to set a timer alarm. After some number of min-
utes, hours, or even days being stuck on the problem, seek help. If you know 
who to ask for help, seek that help directly. If you’re not sure, talk to your 
manager. Most likely, your manager can direct you to the right person so 
you don’t interrupt others who wouldn’t be able to help you anyway.

Team meetings (daily or weekly) are a good place to seek help from 
team members. If you have several tasks on your plate and you’re stuck on 
one particular task, set it aside, work on other tasks (if possible), and save 
your questions for a team meeting. If you run out of work before a meeting, 
ask your manager to keep you busy so you don’t have to interrupt anyone. 
Further, while working on other tasks, the solution just might come to you.

2.10.9 Overcome Poor Morale
Nothing can kill a project faster than an infestation of bad morale among team 
members. Here are some suggestions to help you overcome poor morale:

•	 Understand the business value of your project. By learning about, or 
reminding yourself of, the real-world practical applications of your proj-
ect, you’ll become more invested and interested in the project.

•	 Take ownership and responsibility for (your portion of) a project. 
When you own the project, your pride and reputation are on the line. 
Regardless of what else might happen, ensure that you can always talk 
about the contributions you made to the project.

•	 Avoid becoming emotionally invested in those project components 
over which you have no control. For example, if management has made 
some poor decisions that affect the project’s schedule or design, work 
as best as you can within those confines. Don’t just sit around thinking 
bad thoughts about management when you could be putting that effort 
into solving problems.

•	 If you’re faced with personality differences that are creating morale 
problems, discuss those issues with your manager and other affected 
personnel. Communication is key. Allowing problems to continue will 
only lead to larger morale problems down the road.

•	 Always be on the lookout for situations and attitudes that could damage 
morale. Once morale on a project begins to decline, it’s often very dif-
ficult to restore what was lost. The sooner you deal with morale issues, 
the easier it will be to resolve them.
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Sometimes, financial, resource, or personnel issues decrease morale 
among the project’s participants. Your job as a great programmer is to step 
in, rise above the issues, and continue writing great code—and encourage 
those on the project to do the same. This isn’t always easy, but no one ever 
said that becoming a great programmer was easy.
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You don’t write great code by following a 
fixed set of rules for every project. For some 

projects, hacking out a few hundred lines of 
code might be all you need to produce a great 

program. Other projects, however, could involve mil-
lions of code lines, hundreds of project engineers, and 
several layers of management or other support personnel; in these cases, the 
software development process you use will greatly affect the project’s success.

In this chapter, we’ll look at various development models and when to 
use them. 

3.1 The Software Development Life Cycle
During its life, a piece of software generally goes through eight phases, 
collectively known as the Software Development Life Cycle (SDLC):

1. Product conceptualization

2. Requirement development and analysis

3
S O F T W A R E  D E V E L O P M E N T 

M O D E L S
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3. Design

4. Coding (implementation)

5. Testing

6. Deployment

7. Maintenance

8. Retirement

Let’s look at each phase in turn.

Product conceptualization
A customer or manager develops an idea for some software and creates 
a business case justifying its development.

Often, a nonengineer envisions a need for the software and 
approaches a company or individual who can implement it. 

Requirement development and analysis 
Once you have a product concept, the product requirements must be 
outlined. Project managers, stakeholders, and clients (users) meet to 
discuss and formalize what the software system must do to satisfy every-
one. Of course, users will want the software to do everything under the 
sun. Project managers will temper this expectation based on the avail-
able resources (for example, programmers), estimated development 
times, and costs. Other stakeholders might include venture capitalists 
(others financing the project), regulatory agencies (for example, the 
Nuclear Regulatory Commission if you’re developing software for a 
nuclear reactor), and marketing personnel who might provide input on 
the design to make it saleable.

By meeting, discussing, negotiating, and so on, the interested par-
ties develop requirements based on questions like the following:

• For whom is the system intended?

• What inputs should be provided to the system?

• What output should the system produce (and in what format)?

• What types of calculations will be involved?

• If there is a video display, what screen layouts should the system use?

• What are the expected response times between input and output?

From this discussion, the developers will put together the System 
Requirements Specification (SyRS) document, which specifies all the 
major requirements for hardware, software, and so on. Then the 
program management and system analysts use the SyRS to produce 
a Software Requirements Specification (SRS) document,1 which is the 

1. Depending on the system, they might also produce a Hardware Requirements Specification 
(HRS) document, and other documents as well, all of which are outside the scope of 
this book.
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end result of this phase. As a rule, the SRS is for internal consump-
tion only, used by the software development team, whereas the SyRS 
is an external document for customer reference. The SRS extracts 
all the software requirements from the SyRS and expands on them. 
Chapter 10 discusses these two documents in detail (see “The System 
Requirements Specification Document” on page 193 and “The 
Software Requirements Specification Document” on page 194).

Design
The software design architect (software engineer) uses the software 
requirements from the SRS to prepare the Software Design Description 
(SDD). The SDD provides some combination, but not necessarily all, 
of the following items:

• A system overview

• Design goals

• The data (via a data dictionary) and databases used

• A data flow (perhaps using data flow diagrams)

• An interface design (how the software interacts with other software 
and the software’s users)

• Any standards that must be followed

• Resource requirements (for example, memory, CPU cycles, and 
disk capacity)

• Performance requirements

• Security requirements

See Chapter 11 for further details on the contents of the SDD. The 
design documentation becomes the input for the next phase, coding.

Coding
Coding—writing the actual software—is the step most familiar and fun 
to software engineers. A software engineer uses the SDD to write the 
software. WGC5: Great Coding will be dedicated to this phase.

Testing
In this phase, the code is tested against the SRS to ensure the product 
solves the problems listed in the requirements. There are several com-
ponents in this phase, including:

Unit testing Checks the individual statements and modules in the 
program to verify that they behave as expected. This actually occurs 
during coding but logically belongs in the testing phase.

Integration testing Verifies that the individual subsystems in the soft-
ware work well together. This also occurs during the coding phase, usu-
ally toward the end.
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System testing Validates the implementation; that is, it shows that the 
software correctly implements the SRS.

Acceptance testing Demonstrates to the customer that the software is 
suitable for its intended purpose.

WGC6: Testing, Debugging, and Quality Assurance will cover the test-
ing phase in detail. Chapter 12 describes the software test case and soft-
ware test procedure documents you’ll create to guide testing.

Deployment
The software product is delivered to the customer(s) for their use.

Maintenance
Once customers begin using the software, chances are fairly high that 
they’ll discover defects and request new functionality. During this time, 
the software engineers might fix the defects or add the new enhance-
ments, and then deploy new versions of the software to the customer(s).

Retirement
Eventually in some software’s life, development will cease, perhaps 
because the development organization decides to no longer sup-
port or work on it, it is replaced by a different version, the company 
making it goes out of business, or the hardware on which it runs 
becomes obsolete.

3.2 The Software Development Model
A software development model describes how all the phases of the SDLC com-
bine in a software project. Different models are suitable for different cir-
cumstances: some emphasize certain phases and deemphasize others, some 
repeat various phases throughout the development process, and others skip 
some phases entirely. 

There are eight well-respected software development models and doz-
ens, if not hundreds, of variations of these eight models in use today. Why 
don’t developers just pick one popular model and use it for everything? The 
reason, as noted in Chapter 1, is that practices that work well for individuals 
or small teams don’t scale up well to large teams. Likewise, techniques that 
work well for large projects rarely scale down well for small projects. This 
book will focus on techniques that work well for individuals, but great pro-
grammers must be able to work within all design processes if they want to 
be great programmers on projects of all sizes.

In this chapter I’ll describe the eight major software models—their 
advantages, disadvantages, and how to apply them appropriately. However, 
in practice, none of these models can be followed blindly or expected to 
guarantee a successful project. This chapter also discusses what great pro-
grammers can do to work around the limitations of a model forced on them 
and still produce great code.
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3.2.1 The Informal Model
The Informal model describes software development with minimal process or 
discipline: no formal design, no formal testing, and a lack of project manage-
ment. This model was originally known as hacking2 and those who engaged 
in it were known as hackers. However, as those original hackers grew up and 
gained experience, education, and skills, they proudly retained the name 
“hacker,” so the term no longer refers to an inexperienced or unskilled pro-
grammer.3 I’ll still use the term hacking to mean an informal coding process, 
but I’ll use informal coder to describe a person who engages in hacking. This 
will avoid confusion with differing definitions of hacker.

In the Informal model, the programmer moves directly from product 
conceptualization to coding, “hacking away” at the program until some-
thing is working (often not well), rather than designing a robust, flexible, 
readable program.

Hacking has a few advantages: it’s fun, done independently (though 
certainly many people participate in group events like hackathons), and the 
programmer is responsible for most design decisions and for moving the 
project along, so they can often get something working faster than could a 
software engineer following a formal development process.

The problem with the Informal model is that its conscious lack of 
design may lead to an invalid system that doesn’t do what end users want, 
because their requests weren’t considered in the requirements and software 
specifications—if those even exist—and often the software isn’t tested or 
documented, which makes it difficult for anyone other than the original 
programmer to use it. 

Thus, the Informal model works for small, throwaway programs 
intended for use only by the programmer who coded them. For such proj-
ects, it’s far cheaper and more efficient to bang out a couple hundred lines 
of code for limited and careful use than to go through the full software 
development process. (Unfortunately, some “throwaway” programs can 
take on a life of their own and become popular once users discover them. 
Should this happen, the program should be redesigned and reimplemented 
so it can be maintained properly.)

Hacking is also useful for developing small prototypes, especially 
screen displays intended to demonstrate a program in development to a 
prospective customer. One sticky problem here, though, is that clients and 
managers may look at the prototype and assume that a large amount of 
code is already in place, meaning they may push to further develop the 
hacked code rather than start the development process from the beginning, 
which will lead to problems down the road.

2. The original definition of hacking, from https://www.merriam-webster.com, is “a person who is 
inexperienced or unskilled at a particular activity; e.g., a tennis hacker.”

3. Of course, along the way the term hacker was also redefined to describe someone engaged 
in criminal activities on computers. We’ll ignore that definition here.

https://www.merriam-webster.com
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3.2.2 The Waterfall Model
The Waterfall model is the granddaddy of software development models, 
and most models are a variation of it. In the Waterfall model, each step of 
the SDLC is executed sequentially from beginning to end (see Figure 3-1), 
with the output from each step forming the input for the next step. 

System requirements

Software requirements

Software design

Coding

Testing

Maintenance

Figure 3-1: The Waterfall model

You begin the Waterfall model by producing the SyRS. Once the system 
requirements are specified, you produce the SRS from the SyRS. When the 
software requirements are specified, you produce the SDD from the SRS. 
You then produce source code from the SDD and test the software. Then 
you deploy and maintain the software. Everything in the SLDC happens in 
that order, without deviation.

As the original SDLC model, the Waterfall model is usually very simple 
to understand and apply to a software development project because each 
step is distinct, with well-understood inputs and deliverables. It’s also rela-
tively easy to review work performed using this model and verify that the 
project is on track.

However, the Waterfall model suffers from some huge problems. The 
most important is that it assumes that you perform each step perfectly 
before progressing to the next step, and that you’ll find errors early in one 
step and make repairs before proceeding. In reality, this is rarely the case: 
defects in the requirements or design phases are typically not caught until 
testing or deployment. At that point, it can be very expensive to back up 
through the system and correct everything.

Another disadvantage is that the Waterfall model doesn’t allow you 
to produce a working system for customers to review until very late in the 
development process. I can’t count the number of times I’ve shown a client 
static screenshots or diagrams of how code would work, received their buy-
in, and then had them reject the running result. That major disconnect in 
expectations could have been avoided had I produced a working prototype 
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of the code that would have allowed customers to experiment with certain 
aspects of the system during the requirements phase. 

Ultimately, this model is very risky. Unless you can exactly specify what 
the system will do before you start the process, the Waterfall model is likely 
inappropriate for your project. 

The Waterfall model is appropriate for small projects of, say, less than 
a few tens of thousands of code lines involving only a couple of program-
mers; for very large projects (because nothing else works at that level); or 
when the current project is similar to a previous product that employed the 
Waterfall model during development (so you can use the existing documen-
tation as a template).

3.2.3 The V Model
The V model, shown in Figure 3-2, follows the same basic steps as the 
Waterfall model but emphasizes the development of testing criteria early 
in the development life cycle. The V model is organized so the earlier steps, 
requirements and design, produce two sets of outputs: one for the step that 
follows and one for a parallel step during the testing phase. 

Conceptualization

Requirements 
and architecture

Design

Coding/implementation

Unit and 
integration testing

System 
testing and 

verification/validation

Operation and 
maintenance

Figure 3-2: The V model

In Figure 3-2, the items on the left side of the V link straight across to 
the items on the right side: at each design stage, the programmer is think-
ing about how to test and use the concepts being modeled. For example, 
during the requirements and architecture phase, the system architect designs 
the system acceptance tests that will verify that the software correctly imple-
ments all the requirements. During the design phase, the system designer 
implements the software’s unit and integration tests.
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The big difference here from the Waterfall model is that the engineer 
implements test cases and procedures early on, so by the time coding 
begins, the software engineer can use existing test procedures to verify 
the code’s behavior during development. Known as test-driven development 
(TDD), in this approach the programmer constantly runs tests throughout 
the development process. Continuous testing allows you to find bugs much 
sooner and makes it cheaper and faster to correct them.

That said, the V model is far from perfect. Like its parent, the Waterfall 
model, the V model is too simple, and requires too much perfection in the 
early stages in order to prevent disasters in the later stages. For example, a 
defect in the requirements and architecture phase might not surface until 
system testing and validation, resulting in expensive backtracking through 
the development. For this reason, the V model doesn’t work well for projects 
whose requirements are subject to change throughout a product’s lifetime.

The model often encourages verification at the expense of validation. 
Verification ensures that a product meets certain requirements (such as its 
software requirements). It’s easy to develop tests that show the software is 
fulfilling requirements laid out in the SRS and SyRS. In contrast, validation 
shows that the product meets the needs of its end users. Being more open-
ended, validation is more difficult to achieve. 

It’s difficult, for example, to test that the software doesn’t crash because 
it tries to process a NULL pointer. For this reason, validation tests are often 
entirely missing in the test procedures. Most test cases are requirements-
driven, and rarely are there requirements like “no divisions by zero in this 
section of code” or “no memory leaks in this module” (these are known as 
requirement gaps; coming up with test cases without any requirements to base 
them on can be challenging, especially for novices).

3.2.4 The Iterative Model
Sequential models like Waterfall and V rely on the assumption that speci-
fication, requirements, and design are all perfect before coding occurs, 
meaning users won’t discover design problems until the software is first 
deployed. By then it’s often too costly (or too late) to repair the design, cor-
rect the software, and test it. The Iterative model overcomes this problem by 
taking multiple passes over the development model. 

The hallmark of the Iterative model is user feedback. The system 
designers start with a general idea of the product from the users and stake-
holders and create a minimal set of requirements and design documenta-
tion. The coders implement and test this minimal implementation. The 
users then play with this implementation and provide feedback. The system 
designers produce a new set of requirements and designs based on the user 
feedback, and the programmers implement and test the changes. Finally, 
users are given a second version for their evaluation. This process repeats 
until the users are satisfied or the software meets the original goals.
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One big advantage of the Iterative model is that it works reasonably well 
when it’s difficult to completely specify the software’s behavior at the begin-
ning of the development cycle. System architects can work from a general 
road map to design enough of the system for end users to play with and 
determine which new features are necessary. This avoids spending consider-
able effort producing features end users want implemented differently or 
don’t want at all. 

Another advantage is that the Iterative model reduces time to market risk. 
To get the product to market quickly, you decide on a subset of features the 
final product will have and develop those first, get the product working (in 
a minimalist fashion), and ship this minimum viable product (MVP). Then, 
you add functionality to each new iteration to produce a new enhanced ver-
sion of the product.

Advantages of the Iterative model include:

•	 You can achieve minimal functionality very rapidly.

•	 Managing risk is easier than in sequential models because you don’t 
have to complete the entire program to determine that it won’t do the 
job properly.

•	 Managing the project as it progresses (toward completion) is easier and 
more obvious than with sequential models.

•	 Changing requirements is supported.

•	 Changing requirements costs less.

•	 Parallel development is possible with two (or more) sets of teams work-
ing on alternate versions.

Here are some disadvantages of the Iterative model:

•	 Managing the project is more work.

•	 It doesn’t scale down to smaller projects very well.

•	 It might take more resources (especially if parallel development 
takes place).

•	 Defining the iterations might require a “grander” road map of the sys-
tem (that is, going back to specifying all the requirements before devel-
opment starts).

•	 There might be no limit on the number of iterations; hence, it could 
be impossible to predict when the project will be complete.
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3.2.5 The Spiral Model
The Spiral model is also an iterative model that repeats four phases: plan-
ning, design, evaluation/risk analysis, and construction (see Figure 3-3). 

Progress

Cumulative cost

Concept of
requirements

Concept of
operation

Requirements
plan

Requirements

Verification 
and 
validation

Development
plan

Proto Prototype 2
Operational
prototype

Detailed
design

Code

Integration

Test

Implementation

Release

Draft

Verification and
validationTest plan

Plan the 
next iteration

Determine 
objectives

Identify alternatives 
and resolve risk

Construction

Risk
analysis

Risk
analysis

Choose
alternatives

Choose
alternatives

Figure 3-3: The Spiral model

The Spiral model is heavily risk-based: each iteration assesses the risks 
of going forward with the project. Management chooses which features to 
add and omit and which approaches to take by analyzing the risk (that is, 
the likelihood of failure). 

The Spiral is often called a model generator or meta model because you can 
use further development models—the same type or a different one—on 
each spiral. The drawback is that the resulting model becomes specific to 
that project, making it difficult to apply to others.

One key advantage of the Spiral model is that it involves end users with 
the software early and continuously during development by producing 
working prototypes on a regular basis. The end user can play with these 
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prototypes, determine if development is on the right track, and redirect the 
development process if needed. This addresses one of the great shortcom-
ings of the Waterfall and V models.

A drawback of this approach is that it rewards “ just good enough” design. 
If the code can be written “ just fast enough” or “ just small enough,” further 
optimization is delayed until a later phase when it’s necessary. Similarly, 
testing is done only to a level sufficient to achieve a minimal amount of 
confidence in the code. Additional testing is considered a waste of time, 
money, and resources. The Spiral model often leads to compromises in the 
early work, particularly when it’s managed poorly, which leads to problems 
later in development.

Another downside is that the Spiral model increases management com-
plexity. This model is complex, so project management requires risk analysis 
experts. Finding managers and engineers with this expertise is difficult, and 
substituting someone without appropriate experience is usually a disaster.

The Spiral model is suitable only for large, risky projects. The effort 
(especially with respect to documentation) expended is hard to justify for 
low-risk projects. Even on larger projects, the Spiral model might cycle 
indefinitely, never producing the final product, or the budget might be 
completely consumed while development is still on an intermediate spiral. 

Another concern is that engineers spend considerable time develop-
ing prototypes and other code needed for intermediate versions that don’t 
appear in the final software release, meaning the Spiral model often costs 
more than developing software with other methodologies.

Nevertheless, the Spiral model offers some big advantages:

•	 The requirements don’t need to be fully specified before the project 
starts; the model is ideal for projects with changing requirements.

•	 It produces working code early in the development cycle.

•	 It works extremely well with rapid prototyping (see the next section, 
“The Rapid Application Development Model”), affording customers 
and other stakeholders a good level of comfort with the application 
early in its development.

•	 Development can be divided up and the riskier portions can be created 
early, reducing the overall development risk.

•	 Because requirements can be created as they’re discovered, they are 
more accurate.

•	 As in the Iterative model, functionality can be spread out over time, 
enabling the addition of new features as time/budget allows without 
impacting the initial release.

3.2.6 The Rapid Application Development Model
Like the Spiral model, the Rapid Application Development (RAD) model 
emphasizes continuous interaction with users during development. Devised 
by James Martin, a researcher at IBM in the 1990s, the original RAD model 
divides software development into four phases (see Figure 3-4).
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Requirements
planning

Cutover

ConstructionUser design

Figure 3-4: The RAD model

Requirements planning A project’s stakeholders come together to dis-
cuss business needs, scope, constraints, and system requirements.

User design End users interact with the development team to pro-
duce models and prototypes for the system (detailing inputs, outputs, 
and computations), typically using computer-aided software engineering 
(CASE) tools.

Construction The development team builds the software using tools 
to automatically generate code from the requirements and user design. 
Users remain involved during this phase, suggesting changes as the UI 
comes to life.

Cutover The software is deployed.

RAD is more lightweight than Spiral, with fewer risk mitigation tech-
niques and fairly light documentation needs, meaning it works well for 
small to medium-sized projects. Unlike other models, traditional RAD 
heavily depends on very-high-level languages (VHLLs), user interface 
modeling tools, complex libraries and frameworks of existing code, and 
CASE tools to automatically generate code from requirements and user 
interface models. In general, RAD is practical only when there are CASE 
tools available for the specific project problems. Today, many generic lan-
guage systems support a high degree of automatic code generation, includ-
ing Microsoft’s Visual Basic and Visual Studio packages, Apple’s Xcode/
Interface Builder package, Free Pascal/Lazarus, and Embarcadero’s Delphi 
(Object Pascal) package.

The advantages of the RAD model are similar to those of the Spiral model:

•	 The customer is involved with the product throughout development, 
resulting in less risk.

•	 RAD reduces development time because less time is spent writing docu-
mentation that must be rewritten later when the specifications inevita-
bly change.
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•	 The RAD model encourages the fast delivery of working code, and test-
ing (and defect mitigation) is more efficient. Developers spend more 
time running the code, testing for problems.

Like any development model, RAD has some disadvantages as well:

•	 RAD requires Grand Master–level software engineers who have the 
experience to short-circuit much of the heavyweight development 
process found in other models. Such resources are scarce in many 
organizations.

•	 RAD requires continuous interaction with end users, which may be 
limited on many projects.

•	 RAD may be difficult to schedule and control. Managers who live and 
die by Microsoft Project will find it difficult to deal with the uncertain-
ties in the RAD model.

•	 Unless carefully managed, RAD can rapidly devolve into hacking. 
Software engineers might forgo formal design methodologies and just 
hack away at the code to make changes. This can be especially trouble-
some when end users start making suggestions “ just to see what the 
result will look like.”4

•	 RAD doesn’t work well for large system development.

3.2.7 The Incremental Model
The Incremental model is very similar to the Iterative model, with the 
main difference being in planning and design. In the Iterative model, the 
system design is created first and software engineers implement various 
pieces at each iteration; the initial design defines only the first piece of 
working code. Once the program is running, new features are designed 
and added incrementally.

The Incremental model emphasizes the “keep the code working” con-
cept. When a base product is operational, the development team adds a 
minimal amount of new functionality at each iteration, and the software 
is tested and kept functional. By limiting new features, the team can more 
easily locate and solve development problems.

The advantage of the Incremental model is that you always maintain 
a working product. The model also comes naturally to programmers, 
especially on small projects. The disadvantage is that it doesn’t consider 
the product’s full design in the beginning. Often, new features are simply 
hacked on to the existing design. This could result in problems down the 
road when end users request features that were never considered in the 
original design. The Incremental model is sufficient for small projects but 

4. I was once tasked with setting up user interface colors on an embedded application. The 
client requested one set of colors. A week later I showed up with their desired changes, and 
they didn’t like them. So, we tried a second set. They didn’t like those. Then a third set, then 
a fourth set. A month later they decided the initial color set was the best. In the meantime, 
the project had lost a month.
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doesn’t scale well to large projects, where the Iterative model might be a 
better choice.

3.3 Software Development Methodologies
A software development model describes what work is done but leaves consider-
able leeway as to how it is done. This section looks at some development meth-
odologies and processes you can apply to many of the models just discussed.

The Belitsoft company blog5 describes software methodology as follows:

A system of principles, as well as a set of ideas, concepts, methods, 
techniques, and tools that define the style of software development.

Thus, we can reduce the concept of software methodology to one word: 
style. There are various styles you can use when developing software.

3.3.1 Traditional (Predictive) Methodologies
The traditional methodology is predictive, meaning that management pre-
dicts which activities will take place, when they will take place, and who will 
do them. These methodologies work hand in hand with linear/sequential 
development models, like the Waterfall or V model. You could use predic-
tion with other models, but those are designed to purposely avoid the prob-
lems that predictive methodologies are prone to.

Predictive methodologies fail when it’s impossible to predict changes in 
future requirements, key personnel, or economic conditions (for example, 
did the company receive the expected additional financing at some mile-
stone in the project?).

3.3.2 Adaptive Methodologies
The Spiral, RAD, Incremental, and Iterative models came about specifi-
cally because it’s usually difficult to correctly predict requirements for a 
large software system. Adaptive methodologies handle these unpredictable 
changes in the workflow and emphasize short-term planning. After all, if 
you’re planning only 30 days in advance on a large project, the worst that 
can happen is you have to replan for the next 30 days; this is nowhere near 
the disaster you’d face in the middle of a large Waterfall/Predictive-based 
project, when a change would force you to resync the entire project.

3.3.3 Agile
Agile is an incremental methodology that focuses on customer collabo-
ration, short development iterations that respond to changes quickly, 
working software, and support for individuals’ contributions and interac-
tions. The Agile methodology was created as an umbrella to cover several 

5. Sadly, the link to this quote is no longer active. Ah, the joys of the internet. Nevertheless, 
this is one of the best, most concise definitions I’ve found that doesn’t try to promote a par-
ticular methodology.
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different “lightweight” (that is, nonpredictive) methodologies, including 
Extreme Programming, Scrum, Dynamic System Development Model 
(DSDM), Adaptive Software Development (ASD), Crystal, Feature-Driven 
Development (FDD), Pragmatic Programming, and others. Most of these 
methodologies are considered “Agile,” although they often cover different 
aspects of the software development process. Agile has largely proven itself 
on real-world projects, making it one of the currently most popular meth-
odologies, so we’ll dedicate a fair amount of space to it here.

N O T E  For a detailed list of the principles behind Agile, see the Agile Manifesto at  
http://agilemanifesto.org/.

3.3.3.1 Agile Is Incremental in Nature

Agile development is incremental, iterative, and evolutionary in nature, and 
so works best with Incremental or Iterative models (using Spiral or RAD is 
also possible). A project is broken down into tasks that a team can complete 
in one to four weeks, which is often called a sprint. During each sprint, the 
development team plans, creates requirements, designs, codes, unit-tests, 
and acceptance-tests the software with the new features.

At the end of the sprint, the deliverable is a working piece of software 
that demonstrates the new functionality with as few defects as possible.

3.3.3.2 Agile Requires Face-to-Face Communication

Throughout the sprint, a customer representative must be available to 
answer questions that arise. Without this, the development process can eas-
ily veer off in the wrong direction or get bogged down while the team waits 
for responses. 

Efficient communication in Agile requires a face-to-face conversation.6 
When a developer demonstrates a product directly to the customer, that 
customer often raises questions that would never come up in an email or if 
they’d just tried the feature on their own. Sometimes, offhand remarks in a 
demo can result in a burst of divergent thinking that would never happen if 
the conversation weren’t in person.

3.3.3.3 Agile Is Focused on Quality 

Agile emphasizes various quality-enhancing techniques, such as automated 
unit testing, TDD, design patterns, pair programming, code refactoring, 
and other well-known best software practices. The idea is to produce code 
with as few defects as possible (during initial design and coding).

Automated unit testing creates a test framework that a developer can auto-
matically run to verify that the software runs correctly. It’s also important 
for regression testing, which tests to ensure the code still works properly after 

6. Note that although face-to-face communication is more efficient, these meetings can also 
have a negative impact on engineers’ productivity. See “Focus and Eliminate Distractions” on 
page 34 for more details.
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new features have been added. Manually running regression tests is too 
labor-intensive, so it generally won’t happen. 

In TDD, developers write automated tests prior to writing the code, 
which means that the test will initially fail. The developer runs the tests, 
picks a test that fails, writes the software to fix that failure, and then reruns 
the tests. As soon as a test succeeds, the developer moves on to the next fail-
ing test. Successfully eliminating all the failed tests verifies that the software 
meets the requirements.

Pair programming, one of Agile’s more controversial practices, involves 
two programmers working on each section of code together. One program-
mer enters the code while the other watches, catching mistakes onscreen, 
offering design tips, providing quality control, and keeping the first pro-
grammer focused on the project. 

3.3.3.4 Agile Sprints (Iterations) Are Short

Agile methodologies work best when the iterations are short—from one 
week to (at most) a couple of months. This is a nod to the old adage “If it 
weren’t for the last minute, nothing would ever get done.” By keeping itera-
tions short, software engineers are always working during the last minute, 
reducing fatigue and procrastination and increasing project focus.

Hand in hand with short sprints are short feedback cycles. A common 
Agile feature is a brief daily stand-up meeting, typically no more than 
15 minutes,7 where programmers concisely describe what they’re working 
on, what they’re stuck on, and what they’ve finished. This allows project 
management to rearrange resources and provide help if the schedule is slip-
ping. The meetings catch any problems early rather than wasting several 
weeks before the issue comes to project management’s attention.

3.3.3.5 Agile Deemphasizes Heavyweight Documentation

One of the Waterfall model’s biggest problems is that it produces reams 
of documentation that is never again read. Overly comprehensive, heavy-
weight documentation has a few problems:

•	 Documentation must be maintained. Whenever a change is made in 
the software, the documentation must be updated. Changes in one 
document have to be reflected in many other documents, increasing 
workload.

•	 Many documents are difficult to write prior to the code. More often 
than not, such documents are updated after the code is written and then 
never read again (a waste of time and money).

•	 An iterative development process quickly destroys coherence between 
code and documentation. Therefore, properly maintaining the docu-
mentation at each iteration doesn’t fit well with the Agile methodology.

7. They’re called “stand-up” meetings because everyone who can is required to stand up. 
This makes everyone physically uncomfortable, which results in shorter meetings.
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Agile emphasizes just barely good enough (JBGE) documentation—that is, 
enough documentation so the next programmer can pick up where you left 
off, but no more (in fact, Agile emphasizes JBGE for most concepts, includ-
ing design/modeling). 

Many books have been written on Agile development (see “For More 
Information” on page 69). This is not one of them, but we’ll look at a 
couple of the different methodologies under the Agile umbrella. These 
methodologies are not mutually exclusive; two or more can be combined 
and used on the same project.

3.3.4 Extreme Programming
Extreme Programming (XP) is perhaps the most widely used Agile meth-
odology. It aims to streamline development practices and processes to 
deliver working software that provides the desired feature set without 
unnecessary extras. 

XP is guided by five values:

Communication Good communication between the customer and the 
team, among team members, and between the team and management 
is essential for success.

Simplicity XP strives to produce the simplest system today, even if it 
costs more to extend it tomorrow, rather than producing a complicated 
product that implements features that might never be used. 

Feedback XP depends upon continuous feedback: unit and functional 
tests provide programmers with feedback when they make changes to 
their code; the customer provides immediate feedback when a new 
feature is added; and project management tracks the development 
schedule, providing feedback about estimates.

Respect XP requires that team members respect one another. A pro-
grammer will never commit a change to the code base that breaks the 
compilation or existing unit tests (or do anything else that will delay 
the work of other team members). 

Courage XP’s rules and practices don’t line up with traditional soft-
ware development practices. XP requires the commitment of resources 
(such as an “always available” customer representative or pair program-
mers) that can be expensive or difficult to justify in older methodolo-
gies. Some XP policies like “refactor early, refactor often” run counter 
to common practice such as “if it ain’t broke, don’t fix it.” Without the 
courage to fully implement its extreme policies, XP becomes less disci-
plined and can devolve into hacking.

3.3.4.1 The XP Team

Paramount to the XP process is the XP whole team concept: all members of 
the team work together to produce the final product. Team members are 
not specialists in one field, but often take on different responsibilities or 
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roles, and different team members might perform the same role at different 
times. An XP team fills the following roles with various team members.

A customer representative
The customer representative is responsible for keeping the project on 
the right track, providing validation, writing user stories (requirements, 
features, and use cases) and functional tests, and deciding the priorities 
(release planning) for new functionality. The customer representative 
must be available whenever the team needs them.

Not having an available customer representative is one of the larg-
est impediments to successful XP projects. Without continuous feed-
back and direction from the customer, XP degenerates into hacking. 
XP doesn’t rely on requirements documentation; instead, the represen-
tative is a “living version” of that documentation.

Programmers
Programmers have several responsibilities on an XP team: working with 
the customer representative to produce user stories, estimating how 
resources should be allocated for those stories, estimating timelines 
and costs to implement stories, writing unit tests, and writing the code 
to implement the stories.

Testers
Testers (programmers who implement or modify a given unit run unit 
tests) run the functional tests. Often, at least one of the testers is the 
customer representative.

Coach
The coach is the team leader, typically the lead programmer, whose 
job is to make sure the project succeeds. The coach ensures the team 
has the appropriate work environment; fosters good communication; 
shields the team from the rest of the organization by, for example, act-
ing as a liaison to upper management; helps team members maintain 
self-discipline; and ensures the team maintains the XP process. When 
a programmer is having difficulty, coaches provide resources to help 
them overcome the problem.

Manager/tracker
The XP project manager is responsible for scheduling meetings and 
recording their results. The tracker is often, but not always, the same as 
the manager, and is responsible for tracking the project’s progress and 
determining whether the current iteration’s schedule can be met. To do 
so, the tracker checks with each programmer a couple of times a week.

Different XP configurations often include additional team roles, such 
as analysts, designers, doomsayers, and so on. Because of the small size of 
XP teams (typically around 15 members) and the fact that (paired) pro-
grammers constitute the majority of the team, most roles are shared. See 
“For More Information” on page 69 for additional references.
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3.3.4.2 XP Software Development Activities

XP uses four basic software development activities: coding, testing, listen-
ing, and designing.

Coding
XP considers code to be the only important output of the development 
process. Contrary to the “think first, code later” philosophy of serial 
models like Waterfall, XP programmers start writing code at the begin-
ning of the software development cycle. After all, “at the end of the day, 
there has to be a working program.”8

XP programmers don’t immediately start coding, but are given a 
list of small and simple features to implement. They work on a basic 
design for a particular feature and then code that feature and make 
sure it’s working before expanding in increments, with each increment 
working correctly to ensure that the main body of code is always run-
ning. Programmers make only small changes to the project before inte-
grating those changes into the larger system. XP minimizes all noncode 
output, such as documentation, because there is very little benefit to it. 

Testing
XP emphasizes TDD using automated unit and functional tests. This 
allows XP engineers to develop the product right (verification via auto-
mated unit tests) and develop the right product (validation via functional 
tests). WGC6: Testing, Debugging, and Quality Assurance will deal more 
exclusively with testing, so we won’t go too far into it here; just know 
that TDD is very important to the XP process because it ensures that 
the system is always working.

Testing in XP is always automated. If adding one feature breaks an 
unrelated feature for some reason, it’s critical to immediately catch that. 
By running a full set of unit (and functional) tests when adding a new 
feature, you can ensure that your new code doesn’t cause a regression.

Listening
XP developers communicate almost constantly with their customers to 
ensure they’re developing the right product (validation). 

XP is a change-driven process, meaning it expects changes in require-
ments, resources, technology, and performance, based on feedback 
from customers as they test the product throughout the process.

Designing
Design occurs constantly throughout the XP process—during release 
planning, iteration planning, refactoring, and so on. This focus pre-
vents XP from devolving into hacking.

8. Wilfrid Hutagalung, “Extreme Programming,” http://www.umsl.edu/~sauterv/analysis 
/f06Papers/Hutagalung/.

http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
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3.3.4.3 The XP Process

Each cycle of XP produces a software release. Frequent releases ensure con-
stant feedback from the customer. Each cycle consists of a couple of fixed-
period blocks of time known as iterations (with no more than a couple of 
weeks for each iteration). Cycles, as shown in Figure 3-5, are necessary for 
planning; the middle box in this figure represents one or more iterations.

Planning game

Exploration Release
planning

ImplementationIteration
planning

Functional
testing

Release

Iteration

Next iteration

Release done

Figure 3-5: An XP cycle

In the planning game, the XP team decides which features to imple-
ment, estimates their costs, and plans the release. During the exploration 
step, the customer defines the feature set and developers estimate costs and 
time requirements for those features. The next section (under “User sto-
ries”) describes the mechanism customers use to specify features. 

During release planning, the customer negotiates with the developers 
on the features to implement in the given iteration. The developers commit 
to the release plan, and engineers are assigned various tasks. At the end of 
release planning, the process enters the steering phase, during which the 
customer ensures that the project remains on track.

After the overall plan is determined, the process for the current release 
enters an inner loop consisting of three steps: iteration planning, imple-
mentation, and functional testing. Iteration planning is the planning game 
scaled down for a single feature. 

The implementation step is the coding and unit testing of the feature. 
The developer writes a set of unit tests, implements just enough code to 
make the unit tests succeed, refactors the code as necessary, and integrates 
the changes into the common code base.

During the last step of the iteration, customers perform functional test-
ing. Then the process repeats for the next iteration, or a release is produced 
if all iterations are completed for the current release. 
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3.3.4.4 XP Software Development Rules

XP implements the four software development activities—coding, testing, 
listening, and designing—using 12 simple rules:9

•	 User stories (planning game)

•	 Small releases (building blocks)

•	 Metaphors (standardized naming schemes)

•	 Collective ownership

•	 Coding standard

•	 Simple design

•	 Refactoring

•	 Testing

•	 Pair programming

•	 Onsite customer

•	 Continuous integration

•	 Sustainable pace 

Each rule is described next, along with its advantages and 
disadvantages.

User stories
User stories describe a simplified set of use cases, written by the cus-
tomer, that define the system’s requirements. The project team uses 
this set, which should provide only enough detail to estimate how long 
it will take to implement the feature, to estimate the cost and plan the 
system’s development. 

At the beginning of a project, the customer generates 50 to 100 
user stories to use during a release planning session. Then the cus-
tomer and the team negotiate which features the team will implement 
in the next release. The customer, possibly with help from a developer, 
also creates functional tests from the user stories. 

Small releases
Once a piece of software is functional, the team adds one feature at a 
time. Other features are not added until that new feature is written, 
tested, debugged, and incorporated into the main build. The team cre-
ates a new build of the system for each feature it adds.

Metaphors
XP projects revolve around a story about the system’s operation that all 
stakeholders can understand. Metaphors are naming conventions used 
within the software to ensure that operations are obvious to everyone; 

9. Actually, there are 28 different XP rules, but they can be simplified to these 12.
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they replace a complex business process name with a simple name. For 
example, “train conductor” might describe how a data acquisition sys-
tem operates.

Collective ownership
In XP, the entire team owns and maintains all source code. At any time, 
any team member can check out code and modify it. During reviews, no 
one is singled out for coding mistakes. Collective code ownership pre-
vents delays and means one person’s absence doesn’t hinder progress.

Coding standard
All XP members must adhere to common coding standards concern-
ing styles and formats. The team can develop the standards or they can 
come from an outside source, but everyone must follow them. Coding 
standards make the system easier to read and understand, especially 
for newcomers getting up to speed with the project, and help the team 
avoid having to waste time later refactoring the code to bring it into 
compliance.

Simple design
The simplest design that meets all the requirements is always chosen. At 
no time does the design anticipate features that have yet to be added—
for example, adding “hooks” or application programming interfaces 
(APIs) that allow future code to interface with the current code. Simple 
design means just enough to get the current job done. The simplest code will 
pass all the tests for the current iteration. This runs counter to tradi-
tional software engineering, where software is designed as generically 
as possible to handle any future enhancements. 

Refactoring
Refactoring code is the process of restructuring or rewriting the code 
without changing its external behavior, to make the code simpler, more 
readable, or better by some other improvement metric.

WGC5: Great Coding will go into refactoring in much greater detail. 
See “For More Information” on page 69 for additional references on 
refactoring.

Testing
XP uses a TDD methodology, as discussed in “XP Software Development 
Activities” on page 57.

Pair programming
In pair programming, one programmer (the driver) enters code, and 
the second programmer (the navigator) reviews each line of code as it’s 
written. The two engineers change roles throughout and pairs are often 
created and broken apart. 

It’s often difficult to convince management that two program-
mers working together on the same code are more productive than 
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they are working separately on different pieces of code. XP evangelists 
argue that because the navigator is constantly reviewing the driver’s 
code, a separate review session isn’t needed, among other benefits:10

Economic benefits Pairs spend about 15 percent more time on pro-
grams than individuals, but the code has 15 percent fewer defects.11

Design quality Two programmers produce a better design because 
they bring more experiences to the project. They think about the prob-
lem in different ways, and they devise the solution differently based on 
their driver/navigator roles. A better design means the project requires 
less backtracking and redesign throughout its life cycle.

Satisfaction A majority of programmers enjoy working in pairs rather 
than alone. They feel more confident in their work and, as a result, pro-
duce better code.

Learning Pair programming allows pair members to learn from 
each other, increasing their respective skills. This cannot happen in 
solo programming.

Team building and communication Team members share prob-
lems and solutions, which helps spread the intellectual property (IP) 
around and makes it easier for others to work on a given code section. 

Overall, the research on the effectiveness of pair programming is 
a mixed bag. Most published papers from industry sources talk about 
how well pair programming has worked, but papers describing its fail-
ure in industry (versus academic) settings generally don’t get published. 
Research by Kim Man Lui and Andreas Hofer considers three types 
of pairings in pair programming: expert–expert, novice–novice, and 
expert–novice.

Expert–expert pairing can produce effective results, but two expert 
programmers are likely to use “tried and true” methods without intro-
ducing any new insight, meaning the effectiveness of this pairing versus 
two solo expert programmers is questionable.

Novice–novice pairing is often more effective than having the part-
ners work on solo projects. Novices will have greatly varying back-
grounds and experiences, and their knowledge is more likely to be 
complementary than overlapping (as is the case for expert pairs). Two 
novices working together are likely to work faster on two projects seri-
ally rather than they would working independently on their own project 
in parallel.

Expert–novice pairing is commonly called mentoring. Many XP adher-
ents don’t consider this to be pair programming, but mentoring is an 
efficient way to get a junior programmer up to speed with the code 
base. In mentoring, it’s best to have the novice act as the driver so they 
can interact with and learn from the code. 

10. http://en.wikipedia.org/wiki/Pair_programming

11. http://collaboration.csc.ncsu.edu/laurie/Papers/dissertation.pdf and https://collaboration.csc.ncsu 
.edu/laurie/Papers/ieeeSoftware.PDF

https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
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GUIDE L INE S FOR SIMPL E DE SIGN 

Common phrases associated with simple design include:

Don’t repeat yourself (DRY) Duplicate code is complex code.
Once and only once (OAOO) All unique functionality should exist as some 
method/procedure in the code and appear only once in the code (this last 
point is DRY).
You aren’t gonna need it (YAGNI) Avoid speculative coding. When adding 
a feature to your code base, make sure it’s specified by a user story (require-
ment). Don’t add code in anticipation of future requirements.
Limit APIs and (published) interfaces If your code interfaces with other systems 
by publishing an API, limiting the number of interfaces to the bare minimum will 
make it easier to modify your code in the future (without breaking external code).

Simple design is amazingly difficult to achieve. More often than not, you 
accomplish it only by writing complex code and then refactoring it repeatedly 
until you’re happy with the result. A few quotes from some famous computer 
scientists will help drive this point home:

There are two ways of constructing a software design: one way is to make it so 
simple that there are obviously no deficiencies, and the other way is to make it 

so complicated that there are no obvious deficiencies.
—C. A. R. Hoare

The cheapest, fastest, and most reliable components are those that aren’t there.
—Gordon Bell

Deleted code is debugged code.
—Jeff Sickle

Debugging is twice as hard as writing the code in the first place. Therefore, 
if you write the code as cleverly as possible, you are, by definition, not smart 

enough to debug it.
—Brian Kernighan and P. J. Plauger

Any program that tries to be so generalized and configurable that it could han-
dle any kind of task will either fall short of this goal or will be horribly broken.

—Chris Wenham

The cost of adding a feature isn’t just the time it takes to code it. The cost also 
includes the addition of an obstacle to future expansion. The trick is to pick the 

features that don’t fight each other.
—John Carmack

Simplicity is hard to build, easy to use, and hard to charge for. Complexity is 
easy to build, hard to use, and easy to charge for.

—Chris Sacca
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Though supporting evidence for pair programming is anecdotal and 
essentially unproven, XP depends on pair programming to replace for-
mal code reviews, structured walk-throughs, and—to a limited extent—
design documentation, so it can’t be forgone. As is common in the XP 
methodology, certain heavyweight processes like code reviews are often 
folded into other activities like pair programming. Trying to eliminate 
one rule or subprocess will likely open a gap in the overall methodology.

Not all XP activities are done in pairs. Many nonprogramming 
activities are done solo—for example, reading (and writing) documen-
tation, dealing with emails, and doing research on the web—and some 
are always done solo, like writing code spikes (throwaway code needed 
to test a theory or idea). Ultimately, pair programming is essential for suc-
cessful XP ventures. If a team cannot handle pair programming well, it 
should use a different development methodology.

Onsite customer
As noted many times previously, in XP the customer is part of the devel-
opment team and must be available at all times.

The onsite customer rule is probably the most difficult to follow. 
Most customers aren’t willing or able to provide this resource. However, 
without the continuous availability of a customer representative, the 
software could go off track, encounter delays, or regress from previous 
working versions. These problems are all solvable, but their solution 
destroys the benefits of using XP.

Continuous integration
In a traditional software development system like Waterfall, individual 
components of the system, written by different developers, are not tested 
together until some big milestone in the project, and the integrated 
software may fail spectacularly. The problem is that the unit tests don’t 
behave the same as the code that must be integrated with the units, typi-
cally due to communication problems or misunderstood requirements.

There will always be miscommunication and misunderstandings, 
but XP makes integration problems easier to solve via continuous integra-
tion. As soon as a new feature is implemented, it’s merged with the main 
build and tested. Some tests might fail because a feature has not yet 
been implemented, but the entire program is run, testing linkages with 
other units in the application. Software builds are created frequently 
(several times per day). As a result, you’ll discover integration problems 
early when they’re less costly to correct.

Sustainable pace
Numerous studies show that creative people produce their best results 
when they’re not overworked. XP dictates a 40-hour workweek for soft-
ware engineers. Sometimes a crisis might arise that requires a small 
amount of overtime. But if management keeps its programming team 
in constant crisis mode, the quality of the work suffers and the overtime 
becomes counterproductive.
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3.3.4.5 Other Common Practices

In addition to the previous 12 rules, XP promotes several other common 
practices:

Open workspace and collocation
The XP methodology suggests open work areas for the entire team, 
who work in pairs at adjacent workstations. Having everyone together 
promotes constant communication and keeps the team focused.12 
Questions can be quickly asked and answered, and other programmers 
can inject comments into a discussion as appropriate.

But open workspaces have their challenges. Some people are more 
easily distracted than others. Loud noise and conversations can be very 
annoying and break concentration.

Open workspaces are a “best practice” in XP, not an absolute rule. 
If this setup doesn’t work for a particular pair, they can use an office or 
cubicle and work without distractions.

Retrospectives/debriefings
When a project is complete, the team meets to discuss the successes and 
failures, disseminating the information to help improve the next project.

Self-directed teams
A self-directed team works on a project without the usual managerial 
levels (project leads, senior and junior level engineers, and so forth). 
The team makes decisions on priorities by consensus. XP teams aren’t 
completely unmanaged, but the idea here is that given a set of tasks and 
appropriate deadlines, the team can manage the task assignments and 
project progress on its own.

3.3.4.6 Problems with XP

XP is not a panacea. There are several problems with it, including:

•	 Detailed specifications aren’t created or preserved. This makes it dif-
ficult to add new programmers later in the project or for a separate pro-
gramming team to maintain the project.

•	 Pair programming is required, even if it doesn’t work. In some cases, 
it can be overkill. Having two programmers work on a relatively simple 
piece of code can double your development costs.

•	 To be practical, XP typically requires that all team members be GMPs 
in order to handle the wide range of roles each member must support. 
This is rarely achievable in real life, except on the smallest of projects.

12. This isn’t quite the same as having a manager constantly looking over your shoulder 
because your team isn’t explicitly watching what you’re doing. Hence, the stress level is 
quite a bit lower.
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•	 Constant refactoring can introduce as many problems (new bugs) as 
it solves. It can also waste time when programmers refactor code that 
doesn’t need it.

•	 No Big Design Up Front (that is, non-Waterfall-like development) often 
leads to excessive redesign.

•	 A customer representative is necessary. Often, the customer will assign 
a junior-level person to this position because of the perceived costs, 
resulting in a failure point. If the customer representative leaves before 
the project is complete, all the requirements that aren’t written down 
are lost.

•	 XP is not scalable to large teams. The limit for a productive XP team is 
approximately a dozen engineers.

•	 XP is especially susceptible to “feature creep.” The customer can inject 
new features into the system due to a lack of documented requirements/
features.

•	 Unit tests, even those created by XP programmers, often fail to point 
out missing features. Unit tests test “the code that is present,” not “the 
code that should be present.”

•	 XP is generally considered an “all or nothing” methodology: if you 
don’t follow every tenet of the “XP religion,” the process fails. Most XP 
rules have weaknesses that are covered by the strengths of other rules. 
If you fail to apply one rule, another rule will likely break (because 
its weaknesses are no longer covered, and that broken rule will break 
another, ad nauseam).

This small introduction to XP cannot do the topic justice. For more 
information on XP, see “For More Information” on page 69.

3.3.5 Scrum 
The Scrum methodology is not a software development methodology per 
se, but an Agile mechanism for managing the software development process. 
More often than not, Scrum is used to manage some other model such as XP.

Beyond engineers, a Scrum team has two special members: the product 
owner and the scrum master. The product owner is responsible for guiding the 
team toward building the right product by, for example, maintaining require-
ments and features. The scrum master is a coach who guides the team members 
through the Scrum-based development process, managing team progress, 
maintaining lists of projects, and ensuring team members aren’t held up.

Scrum is an iterative development process like all other Agile method-
ologies, and each iteration is a one- to four-week sprint. A sprint begins with 
a planning meeting where the team determines the work to be done. A list 
of items known as a backlog is assembled, and the team estimates how much 
time is required for each item on the backlog. Once the backlog is created, 
the sprint can begin.

Each day the team has a short stand-up meeting during which the mem-
bers briefly mention yesterday’s progress and their plans for today. The scrum 



66   Chapter 3

master notes any progress problems and deals with them after the meeting. 
No detailed discussions about the project take place during the stand-up 
meeting.

Team members pick items from the backlog and work on those items. 
As items are removed from the backlog, the scrum master maintains a 
Scrum burn-down chart that shows the current sprint’s progress. When 
all the items have been implemented to the product owner’s satisfaction, 
or the team determines that some items cannot be finished on time or at 
all, the team holds an end meeting.

At the end meeting, the team demonstrates the features that were 
implemented and explains the failures of the items not completed. If pos-
sible, the scrum master collects unfinished items for the next sprint.

Also part of the end meeting is the sprint retrospective, where team mem-
bers discuss their progress, suggest process improvements, and determine 
what went well and what went wrong.

Note that Scrum doesn’t dictate how the engineers perform their jobs 
or how the tasks are documented, and doesn’t provide a set of rules or best 
practices to follow during development. Scrum leaves these decisions to the 
development team. Many teams, for example, employ the XP methodology 
under Scrum. Any methodology compatible with iterative development will 
work fine.

Like XP, Scrum works well with small teams fewer than a dozen mem-
bers and fails to scale to larger teams. Some extensions to Scrum have been 
made to support larger teams. Specifically, a “scrum-of-scrums” process 
allows multiple teams to apply a Scrum methodology to a large project. 
The large project is broken down into multiple teams, and then an ambas-
sador from each team is sent to the daily scrum-of-scrums meeting to 
discuss their progress. This doesn’t solve all the communication problems 
of a large team, but it does extend the methodology to work for slightly 
larger projects.

3.3.6 Feature-Driven Development
Feature-driven development, one of the more interesting methodolo-
gies under the Agile umbrella, is specifically designed to scale up to 
large projects.

One common thread among most Agile methodologies is that they 
require expert programmers in order to succeed. FDD, on the other hand, 
allows for large teams where it is logistically impossible to ensure you have 
the best person working on every activity of the project, and is worth serious 
consideration on projects involving more than a dozen software engineers.

FDD uses an iterative model. Three processes take place at the begin-
ning of the project (often called iteration zero), and then the remaining 
two processes are iteratively carried out for the duration of the project. 
These processes are as follows:

1. Develop an overall model.

2. Build a features list.
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3. Plan by feature.

4. Design by feature.

5. Build by feature.

3.3.6.1 Develop an Overall Model

Developing an overall model is a collaborative effort between all the stake-
holders—clients, architects, and developers—where all team members work 
together to understand the system. Unlike the specifications and design 
documents in the serial methods, the overall model concentrates on breadth 
rather than depth to fill in as many generalized features as possible to define 
the entire project, and then fill in the depth of the model design’s future 
iterations, with the purpose of guiding the current project, not document-
ing it for the future.

The advantage of this approach versus other Agile approaches is that 
most features are planned from the beginning of the project. Therefore, 
the design can’t take off in a direction that makes certain features difficult 
or impossible to add at a later date, and new features cannot be added in an 
ad hoc fashion.

3.3.6.2 Build a Features List

During the second step of FDD, the team documents the feature list devised 
in the model development step, which is then formalized by the chief 
programmer for use during design and development. The output of this 
process is a formal features document. Although not as heavyweight as the 
SRS document found in other models, the feature descriptions are formal 
and unambiguous.

3.3.6.3 Plan by Feature

The plan-by-feature process involves creating an initial schedule for the 
software development that dictates which features will be implemented ini-
tially and which features will be implemented on successive iterations.

Plan by feature also assigns sets of features to various chief program-
mers who, along with their teams, are responsible for implementing them. 
The chief programmer and associated team members take ownership of 
these features and the associated code. This deviates somewhat from stan-
dard Agile practice, where the entire team owns the code. This is one of the 
reasons FDD works better for large projects than standard Agile processes: 
collective code ownership doesn’t scale well to large projects.

As a rule, each feature is a small task that a three- to five-person team 
can develop in two or three weeks (and, more often, just days). Each feature 
class is independent of the others, so no feature depends on the develop-
ment of features in classes owned by other teams.
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3.3.6.4 Design by Feature

Once the features for a given iteration are selected, the chief program-
mer who owns each feature set forms a team to design the feature. Feature 
teams are not static; they’re formed and disbanded for each iteration of 
the design-by-feature and build-by-feature processes. 

The feature team analyzes the requirements and designs the feature(s) 
for the current iteration. The teams decide on that feature’s implementa-
tion and its interaction with the rest of the system. If the feature is far-
reaching, the chief programmer might involve other feature class owners to 
avoid conflicts with other feature sets.

During the design phase, the feature teams decide on the algorithms 
and processes to use, and develop and document tests for the features. If 
necessary, the chief programmer (along with the original set of stakehold-
ers) updates the overall model to reflect the design.

3.3.6.5 Build by Feature

The build-by-feature step involves coding and testing the feature. The devel-
opers unit-test their code and feature teams provide formal system testing 
of the features. FDD doesn’t mandate TDD, but it does insist that all fea-
tures added to the system be tested and reviewed.

FDD requires code reviews (a best practice, but not required by most 
Agile processes). As Steve McConnell points out in Code Complete (Microsoft 
Press, 2004), well-executed code inspections uncover many defects that test-
ing alone will never find.

3.4 Models and Methodologies for the Great Programmer
A great programmer should be capable of adapting to any software develop-
ment model or methodology in use by their team. That said, some models 
are more appropriate than others. If you’re given the choice of model, this 
chapter should guide you in choosing an appropriate one.

No methodology is scalable up or down, so you’ll need to choose a suit-
able model and methodology based on the project size. For tiny projects, 
hacking or a documentation-less version of the Waterfall model is probably 
a good choice. For medium-sized projects, one of the iterative (Agile) mod-
els and methodologies is best. For large projects, the sequential models or 
FDD are the most successful (although often quite expensive).

More often than not, you won’t get to choose the developmental models 
for projects you work on unless they’re your personal projects. The key is 
to become familiar with the various models so you’re comfortable with any 
model you’re asked to use. The following section provides some resources 
for learning more about the different software development models and 
methodologies this chapter describes. As always, an internet search will 
provide considerable information on software development models and 
methodologies.
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The Unified Modeling Language (UML) is 
a graphic-based developmental language 

used to describe requirements and standards 
for software design. The latest versions of the 

Institute of Electrical and Electronics Engineers (IEEE) 
SDD standard are built around UML concepts, so we’ll 
start by covering the background and features of UML before moving on 
to how the language implements use cases to help us represent software 
system designs clearly and consistently.

4.1 The UML Standard
UML started out in the mid-1990s as a collection of three independent 
modeling languages: the Booch method (Grady Booch), the object mod-
eling technique (Jim Rumbaugh), and the object-oriented software engi-
neering system (Ivar Jacobson). After this initial amalgamation, the Object 
Management Group (OMG) developed the first UML standard, with input 
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from a multitude of researchers, in 1997. UML remains under OMG’s man-
agement today. Because UML was essentially designed by unification, it 
contains many different ways to specify the same thing, resulting in a lot of 
systemwide redundancy and inconsistency. 

So why use UML? Well, despite its shortcomings, it’s a rather complete 
modeling language for object-oriented design. It’s also become the de facto 
IEEE documentation standard to use. So even if you don’t intend to use 
UML for your own projects, you’ll need to be able to read it when dealing 
with documentation from other projects. Because UML has become popu-
lar, there’s a good chance your project’s stakeholders are already familiar 
with it. It’s sort of like the C programming language (or BASIC, if you don’t 
know C): it’s ugly as far as language design goes, but everybody knows it.

UML is a very complex language that requires considerable study 
to master, an educational process that is beyond the scope of this book. 
Fortunately, dozens of good books are available on the subject, some almost 
1,000 pages long (for example, The UML Bible by Tom Pender; see “For 
More Information” on page 88). This chapter and those that follow are 
not intended to make you an expert on UML, but rather to quickly cover 
the UML features and concepts that the rest of the book uses. That way, you 
can refer back to these chapters when you’re trying to make sense of UML 
diagrams later in the book.

With that brief introduction behind us, next we’ll discuss how UML 
enables us to visualize a system’s design in a standardized way. 

4.2 The UML Use Case Model
UML specifies use cases to describe a system’s functionality. A use case roughly 
corresponds to a requirement. Designers create a use case diagram to specify 
what a system does from an external observer’s point of view, meaning they 
specify only what a system does, not how it does it. They’ll then create a use 
case narrative to fill in the details of the diagram. 

4.2.1 Use Case Diagram Elements
Use case diagrams typically contain three elements: an actor, a communica-
tion link (or association), and the actual use case: 

•	 Actors, typically drawn as stick figures, represent users or external 
devices and systems that use the system under design.

•	 Communication links are drawn as a line between an actor and a use case, 
and indicate some form of communication between the two.

•	 Use cases are drawn as ovals with an appropriate description and repre-
sent the activities the actors perform on the system.

Figure 4-1 shows an example of a use case diagram.
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Select pulse operation

Actor Communication link Use case

Figure 4-1: A sample use case diagram

Every use case should have a high-level name that concisely and 
uniquely describes the operation. For example, a nuclear reactor operator 
might want to select a power input from a nuclear power (NP) channel: 
“select %Pwr” is a general description, whereas “press the percent power 
button on the NP device” is probably too specific. How the user selects per-
cent power is more of a design issue, not a system analysis issue (analysis is 
what we’re doing at this stage).

The use case name should be unique, because you’ll likely use it to 
associate the diagram with a use case narrative elsewhere in your UML 
documentation. One way to achieve uniqueness is by attaching a tag (see 
“Tag Formats” on page 172). However, the whole point of a use case dia-
gram is to make the action obvious to the readers and stakeholders (that 
is, the external observers), and tags can obfuscate the meaning. One pos-
sible solution is to include a descriptive name (or phrase) and a tag inside 
the use case oval, as shown in Figure 4-2.

 

Select pulse operation
Rctr_USE_002

Figure 4-2: A use case tag combined  
with a user-friendly name

The tag uniquely identifies the use case narrative, and the user-friendly 
name makes the diagram easy to read and understand.

A use case diagram can contain multiple actors as well as multiple 
use cases, as shown in Figure 4-3, which provides use cases for generating 
Individual Megawatt Hour (MWH) and other reports.

Reactor 
Operator

Sr. Reactor 
Operator

Individual 
MWH report All reports

Figure 4-3: Multiple actors and use cases in a use case diagram
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Stick figures are useful for making it instantly obvious that you’re speci-
fying an actor, but they have some drawbacks. First, a stick figure is rather 
large and can consume considerable screen (or page) space. Also, in a large 
and cluttered UML diagram, it can become difficult to associate names and 
other information with a stick figure actor. For this reason, UML designers 
often use a stereotype to represent an actor. A stereotype is a special UML 
name (such as “actor”) surrounded by guillemets (« and ») and enclosed 
along with the element’s name inside a rectangle, as shown in Figure 4-4. 
(You can use a pair of angle brackets—less-than and greater-than symbols— 
if you don’t have access to guillemets in your editing system.)

«Actor»
Reactor Operator

Figure 4-4: An actor stereotype

Stereotypes can apply to any UML element, not just an actor. The ste-
reotype consumes less space and creates less clutter, though its disadvan-
tage is that the type of element isn’t as instantly clear as it would be using 
the actual icon.1

4.2.2 Use Case Packages
You can assign use case names to different packages by separating the pack-
age name from the use case name using a pair of colons. For example, if 
the aforementioned reactor operator needs to select percent power from 
two different nuclear power systems (NP and NPP), we could use NP and NPP 
packages to separate these operations (see Figure 4-5).

Reactor Operator

NP::Select%Pwr

NPP::Select%Pwr

Figure 4-5: Package names in a use case

4.2.3 Use Case Inclusion
Sometimes, use cases will replicate information. For example, the use 
case in Figure 4-5 might correspond to a reactor operator selecting which 
nuclear power channel to use (the NP or NPP instrument) for a given 
operation. If the operator must verify that the channel is online before 
making the selection, presumably either of the use cases for NP::Select%Pwr 

1. This is a good example of redundancy in UML—that is, using two different notations for the 
same thing.
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and NPP::Select%Pwr would contain the steps needed to confirm this. When 
writing the narrative for these two use cases, you’ll probably discover that 
you’re duplicating considerable information. 

To avoid this replication, UML defines use case inclusion, which allows 
one use case to completely include the functionality of another.

You specify use case inclusion by drawing two use cases with oval icons, 
and placing a dashed open arrow from the including use case to the included 
use case. Also attach the label «include» to the dashed arrow, as shown in 
Figure 4-6.

«include»

Including
case

Included
case

Figure 4-6: Use case inclusion

We could redraw Figure 4-5 using inclusion as shown in Figure 4-7.

Reactor
Operator

NP::Select%Pwr

NPP::Select%Pwr

Verify channel online

«include»

«include»

Figure 4-7: Use case inclusion example

An inclusion is the use case diagram equivalent of a function call. 
Inclusion allows you to reuse a use case from other use cases, thereby 
reducing redundancy.

4.2.4 Use Case Generalization
Sometimes, two or more use cases share an underlying base design and 
build upon it to produce different use cases. Revisiting the example from 
Figure 4-3, the Sr. Reactor Operator actor might produce additional reactor 
reports (that is, “All reports”) beyond those that the Reactor Operator actor 
produces (“Individual MWH report”). However, both use cases are still an 
example of the more general “Generate reports” use case and, therefore, 
they share some common (inherited) operations. This relationship is known 
as use case generalization.

We can illustrate use case generalization in a use case diagram by draw-
ing a hollow arrow from a specific use case to the more general use case, as 
shown in Figure 4-8. 
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Reactor
Operator

Sr. Reactor
Operator

Generate reports

Individual
MWH report All reports

Figure 4-8: Generalization of use cases

This figure tells us that the “Individual MWH report” and “All reports” 
use cases share some common activities inherited from the “Generate 
reports” use case.

We can generalize actors in the same fashion by drawing an open arrow 
from multiple (specific) actors to a generalized actor, as shown in Figure 4-9.

Reactor
Operator

Operator

Sr. Reactor
Operator

Generate reports

Individual
MWH report

NP::Select%Pwr

NPP::Select%Pwr

All reports

Figure 4-9: Generalization of actors

Generalization (particularly, use case generalization) is equivalent to 
inheritance in object-oriented systems. The hollow arrow points at the base 
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use case, and the tail of the arrow (that is, the end without the arrowhead) 
connects to the inheriting, or derived, use case. In Figure 4-9, “Generate 
reports” is the base use case, and “Individual MWH report” and “All reports” 
are the derived use cases.

A derived use case inherits all the features and activities of the base 
use case. That is, all the items and functionality in the base use case are 
present in the derived use case, along with certain items unique to the 
derived use case. 

In Figure 4-9, the Reactor Operator actor can select only an “Individual 
MWH report.” Therefore, any report generated by the Reactor Operator 
actor always follows the steps associated with that individual report. The Sr. 
Reactor Operator actor, on the other hand, can generate any report derived 
from the “All reports” or “Individual MWH report” use case.

Although generalization might seem very similar to inclusion, there 
are subtle differences. With inclusion a use case is completely included, 
but with inheritance the base use case is augmented by the features in the 
derived use case.

4.2.5 Use Case Extension
The UML use case extension allows you to specify the optional (conditional) 
inclusion of some use case. You draw an extension similar to an inclusion 
except you use the word «extend» rather than «include» and the arrow is a 
dashed line with a solid arrowhead. Another difference is that the arrow-
head points at the extended use case, and the tail points at the extending 
use case, as shown in Figure 4-10.

Extending use case 1

Extending use case 2

Extended use case

«extend»

«extend»

Figure 4-10: Use case extension

Use case extensions are useful when you want to select one of several 
different use cases based on some internal system/software state. A classic 
example would be error or exception handling conditions. Suppose you 
have a small command line processor that recognizes certain commands 
beginning with a verb (such as read_digital). The command syntax might 
take the form: 

read_digital port#
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where port# is a numeric string indicating the port to read from. Two things 
could go wrong when the software processes this command: port# could 
have a syntax error (that is, it doesn’t represent a valid numeric value) or 
the port# value could be out of range. Thus, there are three possible out-
comes from processing this command: the command is correct and reads 
the specified port; a syntax error occurs and the system presents an appro-
priate message to the user; or a range error occurs and the system displays 
an appropriate error message. Use case extensions easily handle these situa-
tions, as shown in Figure 4-11.

read_port
command

Syntax error Range error

«extend» «extend»

Figure 4-11: Use case extension example

Note that the normal case (no error) is not an extension use case. The 
read_port command use case handles the nonerror case directly.

4.2.6 Use Case Narratives
By themselves, the use case diagrams you’ve seen thus far don’t explain any 
details. An actual use case (as opposed to a use case diagram) is text, not 
graphics. The diagrams provide an “executive overview” of the use case 
and make it easy for external observers to differentiate activities, but the 
use case narrative is where you truly describe a use case. Although there is no 
defined set of items that appear in a use case narrative, it typically contains 
the information listed in Table 4-1.

Table 4-1: Use Case Narrative Items

Use case narrative item Description

Associated requirements A requirements tag or other indication of the 
requirement(s) associated with the use case. 
This provides traceability to the SyRS and 
SRS documentation.

Actors A list of the actors that interact with the use case.

Goal/purpose/brief description A description of the goal (and its context within the 
system) to clarify the purpose of the use case.

Assumptions and preconditions A description of what must be true prior to the 
execution of the use case. 

Triggers External events that start the execution of the 
use case.
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Use case narrative item Description

Interaction/Flow of Events The step-by-step description of how an external 
actor interacts with the system during the execution 
of the use case.

Optional interactions/Alternative 
Flow of Events

Alternative interactions from those the interaction 
steps describe.

Termination Conditions that result in the termination of a 
use case.

End conditions Conditions describing what happens when the use 
case successfully terminates or when it fails.

Post conditions Conditions that apply upon completion of the 
execution of a use case (success or failure).

Additional items (search online for descriptions) might include:2

•	 Minimal guarantees

•	 Successful guarantees

•	 Dialog (effectively another name for interactions)

•	 Secondary actors

•	 Extensions (another name for optional/conditional interactions)

•	 Exceptions (that is, error-handling conditions)

•	 Related use cases (that is, other relevant use cases)

•	 Stakeholders (people with an interest in the use case)

•	 Priority (among use cases for implementation)

4.2.6.1 Use Case Narrative Formality

Use case narratives can range in formality from casual to fully dressed.
A casual use case narrative is a natural language (for example, English) 

description of the use case without much structure. Casual narratives are 
ideal for small projects, and often vary from use case to use case.

A fully dressed use case narrative is a formal description of the use 
case, typically created via a form with all the narrative items defined 
for your project. A fully dressed use case narrative will likely consist of 
three forms: 

•	 A list of the use case items, exclusive of the Dialog/Flow of Events/
Interaction and Alternative Flow of Events/Optional Interactions items

•	 The main Flow of Events

•	 The Alternative Flow of Events (extensions)

2. This is a nonexhaustive list. You may freely add any items specific to your project.
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Tables 4-2, 4-3, and 4-4 show an example of a fully dressed use case 
narrative.

Table 4-2: Select Nuclear Power Source, RCTR_USE_022

Requirement(s) RCTR_SyRS_022, RCTR_SRS_022_000

Actors Reactor Operator, Sr. Reactor Operator

Goal To select the power measurement channel used during 
automatic operation

Assumptions and 
preconditions

Operator has logged in to the reactor console

Trigger Operator presses appropriate button, selecting automatic mode 
power source

Termination Operator-specified power source is selected

End conditions System uses the selected power source for current actual power 
during automatic operation, if successful; system reverts to 
original auto-mode power source if unsuccessful

Post condition System has an operational automatic-mode power source 
available

Table 4-3: Flow of Events, RCTR_USE_022

Step Action

1 Operator presses NP selection button

2 System verifies that the NP is online

3 System switches auto-mode power selection to the NP channel

Table 4-4: Alternative Flow of Events (Extensions), RCTR_USE_022

Step Action

2.1 The NP channel is not online

2.2 The system doesn’t switch to using the NP power channel and continues to use 
the previously selected power channel for automatic mode

4.2.6.2 Alternative Flow of Events

Whenever a step in the Flow of Events table contains a conditional or 
optional item (an extension in UML terminology), you’ll have some cor-
responding entries in the Alternative Flow of Events table that describe 
the behavior when the conditional item is false. Note that you don’t use a 
separate Alternative Flow of Events table for each condition; you simply use 
substeps (in this example, 2.1 and 2.2 in Table 4-4) associated with the step 
number(s) from the Flow of Events table (step 2 in Table 4-3).

This is just one possible example of a fully dressed use case narrative. 
Many other forms are possible. For example, you could create a fourth table 
to list all the possible end conditions, as shown in Table 4-5.
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Table 4-5: End Conditions, RCTR_USE_022

Condition Result

Success The NP channel is selected as the automatic-mode power channel

Failure The previously selected channel continues to control automatic mode

Adding an end conditions table is especially compelling if there are 
more than two end conditions.

As another example, consider the read_port use case in Figure 4-11. The 
narrative for it could be similar to Tables 4-6, 4-7, and 4-8.

Table 4-6: read_port Command

Requirement(s) DAQ_SyRS_102, DAQ_SRS_102_000

Actors PC host computer system

Goal To read a digital data port on the data acquisition 
system

Assumptions and preconditions Digital data acquisition ports have been initialized as 
input ports

Trigger Receipt of the read_port command

Termination Data port is read and the value returned to 
requesting system

End conditions System returns port value or appropriate error 
message if the command was malformed

Post condition The system is ready to accept another command

Table 4-7: Flow of Events, read_port Command

Step Action

1 The host PC sends a command line beginning with read_port

2 System verifies that there is a second parameter

3 System verifies that the second parameter is a valid numeric string

4 System verifies that the second parameter is a numeric value in the range 0–15

5 System reads the digital data from the specified port

6 System returns the port value to the host PC

Table 4-8: Alternative Flow of Events (Extensions), read_port Command

Step Action

2.1 Second parameter doesn’t exist

2.2 System returns a “syntax error” message to the host PC

3.1 Second parameter isn’t a valid numeric string

3.2 System returns a “syntax error” message to the host PC

4.1 Second parameter is outside the range 0–15

4.2 The system returns a “range error” message to the host PC
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Table 4-8 actually contains several independent flows of events. The 
major number to the left of the decimal point specifies the associated step 
in the Flow of Events table; the minor number to the right of the decimal 
point is the particular step within the Alternative Flow of Events. The flow 
occurs only within the steps associated with a single Flow of Events number. 
That is, the flow from 2.1 to 2.2 ends with 2.2; it doesn’t continue into 3.1 
(in this example). 

Generally, once a system selects an alternative flow (such as the “range 
error” flow, steps 4.1 and 4.2 in this example), the use case ends with the 
completion of that alternative flow (that is, at step 4.2). Control doesn’t 
return to the main Flow of Events. Execution to the end of the main Flow 
of Events list happens only if no alternative flows occur.

The “correct” way to use the Flow of Events and Alternative Flow of 
Events is to write a straight-line sequence representing the path through 
the use case that produces the intended result. If multiple viable paths 
exist, you would typically create multiple use cases, one for each correct 
path. The alternative flows handle any deviations (usually error paths) from 
the correct path. Of course, one risk of this approach is that you might wind 
up with an excessive number of use case diagrams. 

For a Flow of Events, diagrams are more expensive to create and main-
tain than a textual description; even with the proper UML diagramming 
tools, creating figures generally takes more time and effort than just writing 
textual descriptions.

4.2.6.3 Conditional Flow of Events

For use cases that have multiple correct paths, you could encode those 
paths in the main Flow of Events using branches and conditionals, and 
leave the alternative paths for exceptional conditions. Consider a command 
for a data acquisition system that supports two different syntaxes:3

ppdio boards
ppdio boards boardCount

The first variant returns the number of PPDIO boards in the system, 
and the second variant sets the number of PPDIO boards. The technically 
correct solution to document these two commands is to create two separate 
use cases, each with its own Flow of Events. However, if the data acquisition 
system has dozens of different commands, creating individual use cases 
could clutter your documentation. One solution is to combine these use 
cases into a single use case by incorporating conditional operations (that is, 
if..else..endif) into a single Flow of Events, as in the following example.

3. This example is from a real-world project: Plantation Productions’ “Open Source /Open 
Hardware Digital Data Acquisition & Control System” (http://www.plantation-productions .com 
/Electronics/DAQ/DAQ.html).
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Flow of Events

1. Verify command begins with ppdio.

2. Verify second word on command line is boards.

3. If no additional parameters appear on command line:

a. Return number of PPDIO boards in system as response.

4. Verify there is a single numeric parameter on the line.

5. Verify that the numeric parameter is in the range 0..6.

6. Set the number of PPDIO boards to the value specified by the numeric 
parameter.

Alternative Flows

1.1 If command doesn’t begin with ppdio, return not PPDIO response.

2.1  If command doesn’t begin with ppdio boards, return not PPDIO BOARDS 
response.

5.1 Return syntax error as the response.

6.1 Return range error as the response.

Having conditionals and multiple exit points from a Flow of Events isn’t 
“clean” UML; however, it can reduce the overall size of the documentation 
(saving time and expenses), so this is a common kludge in use cases. 

You could even add while, for, switch, and other high-level-language–
style operations to your Flow of Events. But keep in mind that use cases 
(and their descriptions) should be very general. Once you start embedding 
programming language concepts into your use cases, you invariably start 
introducing implementation details, which don’t belong in use cases; save 
those for later UML diagram types (such as activity diagrams).

These examples might seem to suggest that alternative flows are solely 
for error handling, but you can use them for other purposes as well; any 
time a conditional branch is out of a main flow, you can use extensions to 
handle that. However, one problem with using alternative flows for generic 
conditionals is that concepts that are inherently related wind up separated 
from one another in your use case descriptions, which can make following 
the logic in those descriptions more difficult.

4.2.6.4 Generalization vs. Extension

Generalization is often a better tool than extension. For example, suppose 
you have a generic port_command use case and you want to attach read_port 
and write_port to it. In theory, you could create an extension to handle this, 
as shown in Figure 4-12.
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read_port

port_command

write_port

«extend» «extend»

Figure 4-12: Poor example of use case extension

In practice, this particular situation is probably better handled with 
generalization, because read_port and write_port are special cases of a 
port _command (rather than being alternative branches from port_command). 
Figure 4-13 shows the generalization approach.

read_port

port_command

write_port

«extend» «extend»

Figure 4-13: Using generalization rather  
than extension

With generalization, the derived use case follows all the steps in the 
base use case. When you use extensions, control transfers from the main 
Flow of Events to the Alternative Flow of Events, and any remaining steps in 
the main flow don’t happen.

4.2.7 Use Case Scenarios
A scenario is a single path through a use case. For example, the read_port 
use case has four scenarios: the success scenario when the command reads 
a port and returns the port data; two syntax error scenarios (2.1/2.2 and 
3.1/3.2 in the Alternative Flow of Events); and one range error scenario 
(4.1/4.2 in the Alternative Flow of Events). You generate a full scenario by 
choosing the steps from the Flow of Events and Alternative Flow of Events 
that complete a specific path. The read_port command has the following 
scenarios:

Success scenario

1. The host sends a command beginning with read_port.

2. The system verifies that there is a second parameter.
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3. The system verifies that the second parameter is a numeric string.

4. The system verifies that the second parameter is a value in the 
range 0..15.

5. The system reads the data from the specified port.

6. The system returns the port value to the host PC.

Syntax error #1 scenario

1. The host sends a command beginning with read_port.

2. The system determines there is no second parameter.

3. The system sends a syntax error to the host PC.

Syntax error #2 scenario

1. The host sends a command beginning with read_port.

2. The system verifies that there is a second parameter.

3. The system determines that the second parameter is not a legal 
numeric string.

4. The system sends a syntax error to the host PC.

Range error scenario

1. The host sends a command beginning with read_port.

2. The system verifies that there is a second parameter.

3. The system verifies that the second parameter is a numeric string.

4. The system determines that the numeric string is a value outside the 
range 0..15.

5. The system sends a range error to the host PC.

You can use scenarios to create test cases and test procedures for your 
system. You’ll have one or more test cases for each scenario.

You can combine use case scenarios by incorporating if statements in 
your Flow of Events. However, because this introduces low-level details 
into your use case narratives, you should avoid combining scenarios unless 
the number of use case narratives grows out of control.

4.3 The UML System Boundary Diagrams
When you’re drawing a simple use case diagram, it should be obvious which 
components are internal to the system and which are external. Specifically, 
actors are external entities, and the use cases are internal. If you’re using 
stereotyped rectangles instead of stick figures for the actors, though, it 
might not be immediately clear which components are external to the 
system. Also, if you reference multiple systems in a use case diagram, deter-
mining which use cases are part of which system can be challenging. UML 
system boundary diagrams solve these problems.
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A UML system boundary diagram is simply a shaded rectangle surrounding 
the use cases that are internal to a particular system, as shown in Figure 4-14. 
The system title generally appears near the top of the rectangle.

port_command

Data Acquisition System

Host PC

Figure 4-14: A system boundary diagram

4.4 Beyond Use Cases
This chapter introduced UML uses cases, a very important feature of the 
Unified Modeling Language. However, there are many other components of 
UML beyond use cases. The next chapter presents UML activity diagrams, 
which provide a way to model actions within a software design.

4.5 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit, 

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press, 
1999. A sample chapter is available at http://www.untechnicalpress.com 
/Downloads/UMM%20sample%20doc.pdf.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented 
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River, 
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction 
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick Reference. 
2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill 
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf


UML activity diagrams, traditionally known 
as flowcharts, illustrate the workflow between 

different components of a system. Flowcharts 
were prevalent in the early days of software 

development and were still used in software design just 
before the rise of object-oriented programming (OOP). 
Although the UML object-oriented notation supersedes old-fashioned flow-
charting to a large extent, OOP still relies on small methods, functions, and 
procedures to implement the low-level, nitty-gritty details, and flowcharting 
is useful for describing control flow in those cases. Hence, UML’s designers 
created activity diagrams as an updated version of flowcharting.

5.1 UML Activity State Symbols
UML activity diagrams use state symbols based on traditional flowchart 
symbols. This section describes some of the ones you’ll commonly use.

5
U M L  A C T I V I T Y  D I A G R A M S
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N O T E  If you want information on general flowcharting, any web search should yield 
decent results.

5.1.1 Start and Stop States
UML diagrams always contain a single start state, which represents the start 
terminal object. This consists of a solid circle with a single arrow (transition 
in UML parlance) coming from it. You might associate the start state with a 
label, which would be the name of the whole activity diagram.

UML also usually contains end state and end flow symbols. An end state 
symbol terminates an entire process, while an end flow symbol terminates 
a single thread, useful for processes that involve multiple threads of execu-
tion. You might associate the end state symbol with a label that indicates the 
system’s state at the end of the process.

Figure 5-1 shows the start state, end state, and end flow symbols.

Start state End state End flow

Figure 5-1: UML starting and ending states

While an activity diagram has only one starting state symbol, it might 
have multiple ending state symbols (think of a method returning from sev-
eral points in the code). The labels attached to the various ending states 
will likely be different, such as “exception exit” and “normal exit.”

5.1.2 Activities
Activity symbols in UML are rectangles with semicircular ends (like the 
terminal symbol in a flowchart) that represent some action, as shown in 
Figure 5-2.1

Action

Figure 5-2: UML activities

Activities, as a general rule, correspond to one or more statements 
(actions) in a programming language that execute sequentially. The text 
inside the symbol describes the action to perform, such as “read data” or 
“compute CRC.” Generally, a UML activity doesn’t include much low-level 
detail; it’s the programmer’s job to provide that. 

1. Some authors use roundangles, rectangles with rounded corners, to show activities. 
However, the UML standard uses roundangles for states. 
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5.1.3 States
UML activity diagrams also provide intermediate states, in addition to start 
and end states, which effectively act as milestones indicating some existing 
condition(s) at the point of the state symbol. State symbols are rounded 
rectangles (roundangles), as shown in Figure 5-3, although the rounded cor-
ners are much smaller than those of activity symbols.

State

Figure 5-3: UML states

The text in the state symbol should describe the state of the system at 
that given point. For example, if the activity is “compute CRC,” you might 
label the state immediately following it as “CRC computed” or “CRC avail-
able.” States don’t incorporate any action, only the current condition of the 
system at a given point.

5.1.4 Transitions
Transitions indicate a flow of control from one point in an activity diagram 
(for example, a state or activity) to another. If a transition flows out of some 
activity, it means the system makes that transition upon completing most of 
the actions associated with that activity. If a pair of transitions flows into and 
out of a state, control flow transfers immediately to wherever the outgoing 
arrow points. A UML state is effectively a marker in the middle of a transi-
tion, and so no action takes place in a UML state, as shown in Figure 5-4.

Control flows through a state 
with no actions, as though the 
state were not present.

State State

Figure 5-4: Control flow through a state

5.1.5 Conditionals
You can handle conditionals in a couple of different ways in a UML activity 
diagram: transition guards and decision points. 

5.1.5.1 Transition Guards

In conditionals, a Boolean expression is attached to a transition symbol. 
UML calls these Boolean expressions guards. A conditional UML symbol 
must have at least two guarded transitions, which are labeled with expres-
sions surrounded by square brackets, but might have more than two, as in 
Figure 5-5 (where the hexagon shape represents an arbitrary UML symbol). 
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[Boolean expr3]

[Boolean expr2]

[Boolean expr1]

Some sort of
UML symbol

Figure 5-5: Transition guards

The set of Boolean expressions must be mutually exclusive; that is, 
only one expression can be true at all times. Furthermore, the expression 
coverage must be complete, which in this context means that for all possible 
combinations of input values, at least one Boolean expression in a set of 
guarded transitions must evaluate to true (which, combined with the first 
condition, means exactly one Boolean condition must evaluate to true).

If you want a “catch-all” transition to handle any input values that the 
existing guards don’t handle, just attach a word like else, otherwise, or default 
to a transition (see Figure 5-6).

[otherwise]

[Boolean expr2]

[Boolean expr1]

Some sort of
UML symbol

Figure 5-6: Catch-all transition guard

5.1.5.2 Decision Points

Transitions with guards can exit just about any UML symbol; state and action 
symbols often contain them. Problems can occur, however, if you have several 
actions or states merging into a single point at which a decision can create 
divergent paths. For this, UML provides a special symbol, the decision point, 
to cleanly collect and join paths where a decision branch occurs. Decision 
points use a diamond-shaped symbol, as shown in Figure 5-7.
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[otherwise]

[Boolean expr2]

[Boolean expr1]

Figure 5-7: A UML decision point

Although UML allows guarded transitions to emanate from any UML 
symbol, it’s good practice to always use a decision point to begin a set of 
related guarded transitions.

5.1.6 Merge Points
In UML we can also use the diamond shape to collect several incoming 
transitions into a single outgoing transition, as shown in Figure 5-8; we 
call this a merge point.

Figure 5-8: A UML merge point

Technically, a merge point and a decision point are the same object 
type. Essentially, a merge point is an unnamed state object; it takes no 
action other than passing control from all the incoming transitions to the 
outgoing transition. A decision point is just a special case of a merge point 
that has multiple outgoing guarded transitions.
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In theory, a merge point could have both multiple incoming and outgo-
ing guarded transitions. However, the result would be so ugly that the com-
mon convention is instead to divide the single point into separate merge 
and decision points, as shown in Figure 5-9. Most of the time, this separa-
tion is clearer and easier to read than the alternative.

[otherwise]

[Boolean expr2]

[Boolean expr1]

Figure 5-9: UML merge and decision points

5.1.7 Events and Triggers 
Events and triggers are actions outside the current flow of control, typically 
from some other thread of execution or hardware input, that cause some 
change in it.2 In UML, event and trigger transitions are syntactically similar 
to guarded transitions in that they consist of a labeled transition. The dif-
ference is that a guarded transition immediately evaluates some Boolean 
expression and transfers control to the UML symbol at the other end of the 
transition, whereas an event or trigger transition waits for the event or trig-
ger to occur before transferring control.

2. For the most part, an event and a trigger in UML are the same thing—a signal from a 
source outside the current flow of control that causes a change in it. This book uses the 
terms trigger and event interchangeably.
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Event and trigger transitions are labeled with the name of the event or 
trigger along with any necessary parameters provided to the control flow 
when it occurs (see Figure 5-10).

Waiting for
user input

Load file

Quit program
Exit()

saveFile(filename)

loadFile(filename)

Save file

Figure 5-10: UML events or triggers

In this example, the system is waiting for input from the user (perhaps 
clicking a UI button on the display). When the user activates the save, 
exit, or load operation, control transfers to the specified action at the end 
of the event or trigger transition (Save file, Quit program, or Load file, 
respectively).

You can also attach guard conditions to an event or trigger transition, 
consisting of a Boolean expression inside square brackets immediately 
following the trigger or event, as shown in Figure 5-11. When you do so, 
the transition occurs only when the event or trigger occurs and the guard 
expression evaluates to true.

Waiting for
user input

Load file

Quit program
Exit()

saveFile(filename)
[filename != NULL]

loadFile(filename)
[filename != NULL]

Save file

Figure 5-11: Guard conditions on events or triggers

UML events and triggers also support action expressions and mul-
tiple actions, which are beyond the scope of this chapter. To find out 
more, check out examples in Tom Pender’s UML Bible (see “For More 
Information” on page 100).
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5.1.8 Forks and Joins (Synchronization)
UML offers support for concurrent processing by providing symbols to split 
a single thread of execution into multiple threads as well as to join multiple 
threads of execution into a single thread (see Figure 5-12).3 

Thread 1 activities

Thread 2 activities

Thread 3 activities

Figure 5-12: Forks and joins

The UML fork operation (a thin, solid rectangle) splits a single thread 
of execution into two or more concurrent operations. The join operation 
(also represented by a thin, solid rectangle) merges multiple sets of threads 
into a single thread of execution. The join operation also synchronizes the 
threads: the diagram assumes that all but the last thread entering the join 
operation will halt until the final thread arrives, at which point a single 
thread of execution continues on output.

5.1.9 Call Symbols 
A call symbol in UML, which looks 
like a small rake, attaches to an activ-
ity to explicitly declare it as an invo-
cation of another UML sequence. 
You include the call symbol inside 
the UML activity along with the 
name of the sequence to invoke, as 
shown in Figure 5-13.

Elsewhere in your UML docu-
ment, you’ll define that sequence 
(or subroutine) using the invocation 
name as the activity diagram name, 
as shown in Figure 5-14.

3. Note that UML’s thread operations are only a suggestion. When a UML diagram shows 
multiple threads executing concurrently, it’s simply an indication that the separate paths 
are independent and could be executed concurrently. In actual execution, the system could 
execute the paths serially in any order.

SequenceToCall

Figure 5-13: A UML sequence invocation

SequenceToCall

Actions to execute

Figure 5-14: A UML subroutine
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5.1.10 Partitions
Partitions, which organize the steps of a process, consist of several side-
by-side rectangular boxes, each labeled at the top with an actor, object, 
or domain name.4 The activity diagram transitions between the boxes as 
each part of the process comes under the control of the owner of a given 
box, as shown in Figure 5-15.

Test1()

Select test

Display “Pass”

Determine
pass/fail

Run diagnostic

[test failed]
[test passed]

Run test #1

Run procedure

Operator Test Code

Figure 5-15: A UML partition 

The process in Figure 5-15 shows some code under test. An operator 
selects a test to run, passing control to the test software. An event or trigger 
then transfers control to the “Run test #1” action. The test software calls the 
code under test (in the third partition). After the code under test executes, 
control returns to the test software, which determines whether the test passed 
or failed. If the test passes, the test code displays “Pass” to the operator; 
other wise, the test code runs a diagnostic routine.

4. Older versions of UML call partitions swim lanes, so you’ll see that term used in many books 
and papers referring to this construct.



98   Chapter 5

5.1.11 Comments and Annotations
Comments and annotations in UML use an icon that looks like a small page 
with a folded corner, as shown in Figure 5-16. You draw a dashed line from 
one side of the box to the UML item you want to annotate.

UML item 
to annotate

Comment text
goes inside box

Figure 5-16: A UML comment or annotation 

5.1.12 Connectors
Connectors are circles with an internal label, typically a number, that indi-
cate that control transfers to some other point in the diagram with the 
same label (see Figure 5-17). You’d use the same symbol for on-page and 
off-page connectors.

Some actions
to perform

More actions
to perform

1

1

Figure 5-17: UML connectors

When used properly, UML connectors can make an activity diagram 
easier to read by reducing long or overlapping transition lines. However, 
keep in mind that connectors are the UML equivalent of a goto statement 
in a programming language, and overuse can make diagrams more diffi-
cult to read.

5.1.13 Additional Activity Diagram Symbols
The full UML 2.0 specification provides many additional symbols you can 
use in activity diagrams, such as structured activities, expansion regions/
nodes, conditional nodes, loop nodes, and more. We don’t have space to 
discuss them all in this book’s basic introduction to UML, but if you’re 
interested in more details, see the sources listed in “For More Information” 
on page 100 or search online for “UML.”
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5.2 Extending UML Activity Diagrams
Sometimes the UML activity diagram notation just doesn’t cut it. In such 
cases, you might be tempted to come up with your own custom symbols. 
This is almost always a bad idea, for the following reasons:

•	 UML is a standard. If you extend UML, you’re no longer using a well-
defined standard. That means all the people who’ve learned UML won’t 
be able to read your activity diagrams unless they first read your docu-
mentation (and will that documentation be available to them in your 
nonstandard activity diagrams?).

•	 There are many UML diagramming tools available for creating and 
editing UML activity diagrams, and most of them can’t handle nonstan-
dard symbols and objects.

•	 Many computer-aided software engineering (CASE) tools can generate 
code directly from a UML diagram. Again, these CASE tools work only 
with standard UML and probably won’t be able to handle your nonstan-
dard extensions.

•	 If you can’t figure out how to do something in a UML activity diagram, 
you may be able to use some other scheme. Using a nonstandard way to 
do a task that you can easily do with standard tools may come across to 
other UML users as an amateur approach.

All that being said, UML is far from perfect. In rare cases, develop-
ing some nonstandard activity diagram objects can vastly simplify your 
activity diagrams.

As an example, consider a concurrent programming critical section, a 
region of code in which only one thread of execution can take place at a 
time. UML sequence diagrams (the subject of Chapter 7) use sequence frag-
ment notation to describe concurrency with critical regions. Although you 
could adapt sequence fragment notation to activity diagrams, the result 
is messy and hard to read and understand. In some activity diagrams I’ve 
created for personal projects, I used the custom notation in Figure 5-18 to 
indicate critical regions. 

Code in the 
critical sectionT3

T4

T5

T2

T1

T3

T4

T5

T2

T1

Figure 5-18: A nonstandard critical region diagram

Arrows coming in to the pentagon on the left indicate transitions (gen-
erally from different threads) competing for a critical section. The single 
line out of the pentagon represents the single thread of execution that 
takes place in the critical section. The pentagon on the right accepts that 



100   Chapter 5

single thread of execution and routes it back to the original thread (for 
example, if T1 was the thread that entered the critical section, the close of 
the critical section routes control back to the T1 transition/flow).

This diagram doesn’t imply that there are only five threads that can 
use this critical section. Instead, it conveys that there are five activity dia-
gram flows (T1–T5) that could compete for the critical resource. In fact, 
there could be multiple threads executing any one of these flows that are 
also competing for the critical region. For example, there could be three 
threads all executing the T1 flow and waiting for the critical region to 
be available.

Because multiple threads could be executing on the same flow in the 
critical section diagram, it’s quite possible to have only a single flow enter-
ing the critical region (see Figure 5-19).

Code in the 
critical sectionT1 T1

Figure 5-19: A single-flow critical region diagram

This example requires that multiple threads execute the same flow (T1) 
for this diagram to make any sense.

As you can see, even a simple diagram like this requires a fair amount 
of documentation to describe and validate it. If that documentation isn’t 
readily available (that is, if it’s not embedded directly in your UML activity 
diagrams), readers probably won’t find it when they’re trying to understand 
your diagram. Annotating a nonstandard object directly within the dia-
gram is the only reasonable approach. Placing meaningful documentation 
in a separate section of the document containing the activity diagrams 
(such as the SDD document), or in a separate document altogether, makes 
this information unavailable when someone cuts and pastes your diagram 
into a different document.

N O T E  The critical region diagram in Figure 5-19 is simply an example of how you might 
extend UML activity diagrams. In general, I don’t recommend adopting it in your 
own diagrams, nor do I recommend extending UML notation. However, you should 
know that the option is available if you really need it.

5.3 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit, 

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press, 1999. 
A sample chapter is available at http://www.untechnicalpress.com/Downloads 
/UMM%20sample%20doc.pdf.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
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Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction 
to UML. Sebastopol, CA: O’Reilly Media, 2003.
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Education, 2003.
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This chapter describes class diagrams, one 
of the more important diagramming tools 

in UML. Class diagrams are the basis for 
defining data types, data structures, and opera-

tions on that data in programs. In turn, they’re the 
basis for object-oriented analysis (OOA) and object-oriented 
design (OOD).

6.1 Object-Oriented Analysis and Design in UML
The creators of UML wanted a formal system for designing object-oriented 
software to replace the structured programming formalisms available at the 
time (1990s). Here we’ll discuss how to represent classes (data types) and 
objects (instance variables of data types) in UML.

6
U M L  C L A S S  D I A G R A M S
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The most complete form of a class diagram in UML is shown in 
Figure 6-1.

ClassName

Attributes

Operations

Figure 6-1: A complete  
class diagram

Attributes correspond to data field members of a class (that is, variables 
and constants); they represent information internal to the class.

Operations correspond to the activities that represent the class’s behav-
ior. Operations include methods, functions, procedures, and other things 
we normally identify as code.

Sometimes, you don’t need to list all the attributes and operations when 
referencing a class diagram (or there might not even be any attributes or 
operations). In such situations, you can instead draw a partial class dia-
gram, shown in Figure 6-2.

ClassName ClassName

Attributes Operations

Figure 6-2: Partial class diagrams

The fact that attributes or operations are missing from a partial class 
diagram doesn’t imply that they don’t exist; it just means that it’s not neces-
sary in the current context to add them to the diagram. The designer might 
be leaving it up to the coder to fill them in during coding; or perhaps the 
complete class diagram appears elsewhere, and the current diagram con-
tains only information of interest.

In its simplest form, UML represents classes with a simple rectangle 
containing the name of the class, as shown in Figure 6-3. 

className

Figure 6-3: A simple class diagram

Again, this doesn’t imply that the class contains no attributes or opera-
tions (which wouldn’t make sense); it just means that those items are not of 
interest in the current diagram.



UML Class Diagrams   105

6.2 Visibility in a Class Diagram
UML defines four types of class member visibility (all taken from C++ and 
Java, although other languages, such as Swift, also support them): public, 
private, protected, and package. We’ll discuss each in turn.

6.2.1 Public Class Visibility
A public class member is visible to all classes and code, inside and outside the 
class containing the public item. In well-designed object-oriented systems, 
public items are almost always operations (methods, functions, procedures, 
and so forth) and form the class’s interface to the world outside the class. 
Although you can also make attributes public, doing so often defeats one 
of the primary benefits of object-oriented programming: encapsulation, or the 
ability to hide values and activities inside a class from the outside world. 

In UML we preface public attributes and operations with the plus 
sign (+), as shown in Figure 6-4. The set of public attributes and opera-
tions provides the class’s public interface.

poolMonitor

+maxSalinity_c

+getCurSalinity()
+getCurChlorine()

Figure 6-4: Public attributes  
and operations

This figure has a single public attribute, maxSalinity_c. The _c suffix is a 
convention I use to indicate that the field is a constant rather than a vari-
able.1 In good designs constants are usually the only public attributes in a 
class, because external code cannot change the value of a constant: it’s still 
visible (that is, not hidden or encapsulated), but it’s unchangeable. One of 
the main reasons for encapsulation is to prevent side effects that can occur 
when some external code changes an internal class attribute. Because exter-
nal code cannot change a constant’s value, this immutability achieves the 
same result as encapsulation; therefore, object-oriented designers are will-
ing to make certain class constants visible.2

1. The standard convention in C-derived languages is to use all uppercase characters to 
denote constants, but this is an absolutely terrible convention that I refuse to use for my 
own constants because ALL UPPERCASE IDENTIFIERS ARE MUCH HARDER TO READ 
THAN MIXED-CASE IDENTIFIERS. I modified the Unix convention of using _t to specify 
a type identifier to include _c for constants. Also, this convention is applicable across multiple 
languages and is not specific to C++.

2. This is not to imply that you should never make a variable attribute public. As with any 
other convention or rule, there are always exceptions where it makes sense to violate the con-
vention. However, violations should be rare.
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6.2.2 Private Class Visibility
At the other end of the spectrum lies private visibility. Private attributes and 
operations are accessible only within that class: they’re hidden from other 
classes and code. Private attributes and operations are the embodiment of 
encapsulation. 

We use the minus sign (-) to denote private entities within a class dia-
gram, as shown in Figure 6-5.

poolMonitor

+maxSalinity_c

-saltPPM
-chlorinePPM
-pH

+getCurSalinity()
+getCurChlorine()
+getpH()

-readphSensor()
-readSalinitySensor()
-readChlorineSensor()

Figure 6-5: Private attributes  
and operations

You should use private visibility for any attribute or operation that doesn’t 
absolutely require some other form of visibility, and strive to ensure that all 
attributes (data fields in the class) are private members of the class. If out-
side code needs to access a data field, you can use public accessor functions 
(getters and setters) to provide access to the private class member. A getter 
function returns the value of a private field. A setter function stores a value 
into a private field. 

If you’re wondering why you should even bother using accessor 
functions (after all, it’s a whole lot easier to simply access the data field 
directly3), consider this: a setter function can check the value you’re 
storing in an attribute to ensure it’s within range. Also, not all fields are 
independent of all other attributes in a class. For example, in a saltwater 
pool, the salinity, chlorine, and pH levels aren’t completely independent 
of one another: the pool contains an electrolysis cell that converts water 
and sodium chloride (salt) into sodium hydroxide and chlorine. This con-
version reduces the salinity and increases the chlorine and pH levels. So 
rather than allowing some external code to arbitrarily change the salinity 
level, you might want to pass the change through a setter function that can 
decide whether to adjust other levels at the same time.

3. Some modern languages, like Apple’s Swift, provide syntax options that let you invoke 
getter and setter functions using standard assignment operations. Therefore, there’s no syn-
tactical overhead associated with using getters and setters (other than, of course, writing the 
getter or setter methods in the first place).
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6.2.3 Protected Class Visibility
Although public and private visibility covers a large percentage of the vis-
ibility requirements, in some special situations, like inheritance, you’ll need 
to use something in between: protected visibility.

Inheritance, along with encapsulation and polymorphism, is one of the 
“big three” features of object-oriented programming. Inheritance allows 
one class to receive all the features from another class.

One problem with private visibility is that you cannot access private fields 
within classes that inherit them. Protected visibility, however, relaxes these 
restrictions to allow access by inheriting classes, but it doesn’t allow access 
to private fields outside the original class or its inheriting classes.

UML notation uses the hash symbol (#) to denote protected visibility, 
as shown in Figure 6-6.

poolMonitor

#salinityCalibration
#pHCalibration
#chlorineCalibration

#testphSensor()
#testSalinitySensor()
#testChlorineSensor()

Figure 6-6: Protected attributes  
and operations

6.2.4 Package Class Visibility
Package visibility sits between private and protected and is largely a Java 
concept. Other languages have something similar, including Swift, C++, 
and C#, in which you can use namespaces to simulate package visibility, 
although the semantics aren’t quite the same.

Package-protected fields are visible among all classes in the same pack-
age. Classes outside the package (even if they inherit from the class contain-
ing the package-protected fields) cannot access items with package visibility.

We use the tilde (~) to denote package visibility, as shown in Figure 6-7. 
Chapter 8 discusses UML package notation (that is, how to place several 
classes in the same package).

poolMonitor

~powerSupplyVoltage_c

~readCurPwrSupplyV()

Figure 6-7: Package attributes  
and operations
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6.2.5 Unsupported Visibility Types
What happens if your programming language of choice doesn’t support the 
same visibility types that UML specifies? Well, the good news is that UML 
visibility is largely a spectrum, as shown in Figure 6-8.4

Public PrivateProtected Package

More public More private

Figure 6-8: Visibility spectrum

You can always substitute a more public visibility for a more private 
visibility if your programming language doesn’t support a specific visibil-
ity. For example, the High-Level Assembly (HLA) language supports only 
public fields; C++ only partially supports package visibility (using friend 
declarations or namespaces); and Swift supports an offshoot of package 
visibility—all private fields within an object are automatically visible to all 
classes declared in the same source file. One way to avoid abusing the extra 
visibility is to add some sort of visibility notation to the attribute or opera-
tion’s name in the class—for example, by prefacing protected names with 
prot_ and then declaring them as public objects, as shown in Figure 6-9.

poolMonitor

+prot_powerSupplyVoltage_c

+prot_readCurPwrSupplyV()

Figure 6-9: Faking visibility restriction

6.3 Class Attributes
Attributes in a UML class (also known as data fields or simply fields) hold the 
data associated with an object. An attribute has a visibility and a name; it 
can also have a data type and an initial value, as shown in Figure 6-10.

itemList

+maxItems_c :int = 100
-listName :String

Figure 6-10: Attributes

4. Package and protected visibility might vary in this diagram depending on your choice of 
programming language, but the basic idea of a spectrum applies nonetheless.
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6.3.1 Attribute Visibility
As discussed earlier, you specify the visibility of an attribute by prefixing its 
name with the +, -, #, or ~ symbols, which specify public, private, protected, 
and package visibility, respectively. See “Visibility in a Class Diagram” on 
page 105 for more details. 

6.3.2 Attribute Derived Values
Most of the time, a class stores the value of an attribute as a variable or con-
stant data field (a base value). However, some fields contain derived values 
rather than base values. The class calculates a derived value whenever some 
expression references that attribute. Some languages, like Swift, provide 
syntax for directly defining declared values; in other languages (such as 
C++), you’ll typically write getter and setter accessor functions to implement 
a derived value.

To create a derived attribute in UML, you immediately precede the 
attribute name (after the visibility symbol) with a forward slash (/), as 
shown in Figure 6-11.

poolMonitor

-minNaClLevel : double
-maxNaClLevel : double
-/NaClRange : double

NaClRange
is computed as
maxNaClLevel - minNaClLevel

Figure 6-11: A derived attribute

Whenever you use a derived attribute, somewhere you must define how 
to calculate it. Figure 6-11 uses a comment for this purpose, although you 
could also use a property string (see “Property Strings” on page 112).

6.3.3 Attribute Names
The attribute name should work in whichever programming language(s) 
you use to implement the design. As much as possible, you should refrain 
from naming syntax or conventions that are specific to a programming lan-
guage unless you’re requiring implementation in that language. As a gen-
eral rule, the following conventions work well for UML attribute names:

•	 All names should begin with an (ASCII) alphabetic character (a–z 
or A–Z).

•	 After the first character, names should contain only ASCII alphabetic 
characters (a–z, A–Z), numeric digits (0–9), or underscores (_).
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•	 All names should be unique within the first six to eight characters 
(some compilers allow arbitrary-length names but keep only a prefix 
of them in the internal symbol table during compilation).

•	 Names should be shorter than some arbitrary length (we’ll use 32 char-
acters here).

•	 All names should be case neutral; that is, two separate names must con-
tain at least one distinct character rather than just a difference in case. 
Also, all occurrences of a given name should be consistent with respect 
to alphabetic case.5

6.3.4 Attribute Data Types
A UML object can optionally have an associated data type (see the exam-
ples in Figure 6-10). UML doesn’t require you to explicitly state the data 
type; if it’s absent, the assumption is that the reader can infer it from the 
attribute’s name or usage, or that the programmer will decide on a type 
while implementing the design.

You can use any type names you want for primitive data types and leave 
it up to the programmer to choose the appropriate or closest matching data 
type when writing the code. That being said, when working with generic 
data types most people choose C++ or Java type names (which makes sense, 
because UML’s design was largely based on these two languages). Common 
data types you’ll find attached to UML attributes include:

•	 int, long, unsigned, unsigned long, short, unsigned short

•	 float, double

•	 char, wchar

•	 string, wstring

Of course, any user-defined type names are perfectly valid as well. For 
example, if you’ve defined uint16_t to mean the same thing as unsigned short 
in your design, then using uint16_t as an attribute type is perfectly accept-
able. In addition, any class objects you define in UML also make perfectly 
good data type names.

6.3.5 Operation Data Types (Return Values)
You can also associate a data type with an operation. Functions, for example, 
can return a value having some data type. To specify a return data type, 
follow the operation name (and parameter list) with a colon and the data 
type, as shown in Figure 6-12.

5. Case neutrality guarantees that the names you choose will be valid in both case-sensitive and 
case-insensitive languages. For example, hello and Hello would be considered different names 
in a case-sensitive language like C++, but the same in a case-insensitive language like Pascal. 
Neither is case neutral, so you should consistently use only one or the other in UML diagrams.
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itemList

+sumItems() :int
-localFunction() :double

Figure 6-12: Return types

We’ll discuss operations more in “Class Operations” on page 112.

6.3.6 Attribute Multiplicity
Some attributes could contain a collection (array or list) of data objects. In 
UML we denote multiplicity using square brackets [], similar to array decla-
rations in many high-level languages; see Figure 6-13. 

poolMonitor

-tempSensors[1..2] :int

tempSensors[1] 
is the pool temperature and
tempSensors[2] 
is the spa temperature

Figure 6-13: Multiplicity

Within the brackets, you specify an expression, which can be any of 
the following:

•	 A numeric value (for example, 5) indicating the number of elements in 
the collection

•	 A numeric range (for example, 1..5 or 0..7) indicating the number of 
elements and valid suffix range for the collection of elements

•	 An asterisk (*) representing an arbitrary number of elements

•	 An asterisk-terminated range (for example, 0..* or 1..*) indicating an 
open-ended range of array elements

If this notation is absent, the multiplicity defaults to [1] (that is, a single 
data object).

6.3.7 Default Attribute Values
To specify an initial value for an attribute, you use an equal sign (=) fol-
lowed by an expression (with a type appropriate for the attribute). This 
typically follows the attribute’s multiplicity (if present) and/or type. But 
if the type can be inferred from the initial value, you can omit both it and 
the multiplicity. If the multiplicity is something other than 1, you enclose a 
comma-separated list of initial values, one for each element, within a pair 
of braces. See Figure 6-14.
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poolMonitor

-numTempSensors = 2
-tempSensorOffset[2] : double = {32.0, 32.0}
-tempSensorSpan = {100.0, 100.0}

Figure 6-14: Initial values

In this example, the numTempSensors attribute is an integer type (which can 
be inferred by the initial value 2), and tempSensorSpan is an array of doubles with 
two elements (inferred by the number and types of values in the braces).

6.3.8 Property Strings
UML’s attribute syntax probably doesn’t cover every possible case for your 
attributes. UML provides the property string to handle outlier situations. To 
create a property string, you add text within braces at the end of the attri-
bute that describes it, as shown in Figure 6-15.

poolMonitor

-minNaClLevel : double
-maxNaClLevel : double
-/NaClRange : double {maxNaClLevel - minNaClLevel}

Figure 6-15: Property strings

You can also use property strings to define other property types. 
Common examples include {readOnly}, {unique}, and {static}.6 Keep in 
mind that a property string is a catch-all field in the attribute. You can 
define any syntax you want inside the braces.

6.3.9 Attribute Syntax
The formal syntax for an attribute looks as follows (note that optional 
items appear in braces, except quoted braces, which represent literal 
brace characters):

{visibility}{"/"} name { ":" type }{multiplicity}{"=" initial}{"{"property string"}"}

6.4 Class Operations
Class operations are items within a class that perform actions. Generally, 
the operations represent the code in a class (but there can also be code 
associated with derived attributes, so having code is not exclusive to opera-
tions in a UML class).

6. Underlining the attribute is the standard way to specify static objects in UML, but using 
a property string is probably clearer.
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UML class diagrams place attributes and operations into separate rect-
angles, though this is not what differentiates one from the other. (Consider 
Figure 6-2: the partial class diagrams are ambiguous with respect to which 
class diagram contains only attributes and which contains only operations.) 
In UML we explicitly specify operations within a class diagram by following 
the operation’s name with a (possibly empty) parameter list surrounded by 
parentheses (refer to Figure 6-4 for an example). 

As noted in “Operation Data Types (Return Values)” on page 110, you 
can also specify a return type for an operation by following the parameter 
list with a colon and a data type name. If the type is present, you definitely 
have a function; if it’s absent, you likely have a procedure (a void function).

What’s been missing in all the operation examples thus far is param-
eters. To specify parameters, you insert a comma-separated list of attributes 
within the parentheses immediately following the operation name, as 
shown in Figure 6-16.

poolMonitor

-sumItems( count:int, items[*]:int ):int
+aveTemp( includeSpa:boolean,
            startDate:date, numDays:int ):double
+displayTemp( temp:double, in Fahrenheit:boolean )

Figure 6-16: Operation parameters

By default, parameters in a UML operation are value parameters, mean-
ing they’re passed to the operation as an argument, and changes an opera-
tion makes to a value parameter do not affect the actual parameter the 
caller passes to the function. A value parameter is an input parameter.

UML also supports output parameters and input/output parameters. As 
their names suggest, output parameters return information from the opera-
tion to the calling code; input/output parameters pass information to and 
return data from an operation. UML uses the following syntax to denote 
input, output, and input/output parameters:

•	 Input parameters: in paramName:paramType

•	 Output parameters: out paramName:paramType

•	 Input/output parameters: inout paramName:paramType

The default parameter-passing mechanism is input. If there’s nothing 
specified before the parameter name, UML assumes that it is an in param-
eter. Figure 6-17 shows a simple example of an inout parameter.

poolMonitor

-sortItems( count:int, inout items[*]:int )

Figure 6-17: Parameter inout example
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In this figure, the list of items to sort is an input and an output param-
eter. On input, the items array contains the data to be sorted; on output, it 
contains the sorted items (an in-place sort).

UML tries to be as generic as possible. The in, out, and inout parameter- 
passing specifiers don’t necessarily imply pass by value or pass by reference. 
This implementation detail is left to, well, the actual implementation. From 
a design point of view, UML is specifying only the direction in which, not 
how, the data is transferred.

6.5 UML Class Relationships
In this section, we’ll explore five different types of relationships between 
classes: dependency, association, aggregation, composition, and 
inheritance. 

Like visibility, class relationships fall along a spectrum (see Figure 6-18). 
This range is based on their strength, or the level and type of intercommuni-
cation between two classes. 

Dependency Composition InheritanceAssociation Aggregation

Weaker
Relationship

Stronger

Figure 6-18: Class relationship spectrum

Strength ranges from loosely coupled to tightly coupled. When two classes 
are tightly coupled, any modifications to one class will likely affect the state 
of the other class. Loosely coupled classes are mostly independent of each 
other; changes to one are unlikely to affect the other.

We’ll discuss each type of class relationship in turn, from weakest 
to strongest.

6.5.1 Class Dependency Relationships
Two classes are dependent on each other when objects of one class need 
to briefly work with objects of another class. In UML we use a dashed open-
ended arrow to denote a dependency relationship, as shown in Figure 6-19.

userInterface poolMonitor

Figure 6-19: Dependency relationship

In this example, the userInterface and poolMonitor classes work together 
whenever a userInterface object wants to retrieve data to display (for exam-
ple, when you pass a poolMonitor object to a userInterface method as a param-
eter). Other than that, the two classes (and objects of those classes) operate 
independently of each other.
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6.5.2 Class Association Relationships
An association relationship occurs when one class contains an attribute 
whose type is a second class. There are two ways to draw an association 
relationship in UML: inline attributes and association links. You’ve already 
seen inline attributes—they’re the normal attribute definitions you saw in 
“Attribute Syntax” on page 112). The only requirement is that the type 
name must be some other class. 

The second way to specify a class association relationship is with an 
association line or link, as shown in Figure 6-20.

mainClass assocClass

Association
name

—or—

mainClass assocClass

Association
name

Figure 6-20: Association relationship

The association name is typically a verb phrase that describes the 
association, such as has, owns, controls, is owned by, and is controlled by 
(see Figure 6-21).

poolMonitor phClass
has

—or—

poolMonitor pumpClass
is controlled by

Figure 6-21: Association names

How can we tell from an association diagram which class is an attribute 
of the other? Notice the arrowhead immediately to the left or right of the 
association name. This provides the direction of the association; here, it 
shows that the poolMonitor has a phClass, rather than the reverse.

But while a meaningful association name and arrowhead verb phrase 
can give you a clue, there’s no guarantee that your intuition will be correct. 
Although it might seem counterintuitive, pumpClass in Figure 6-21 could con-
tain the poolMonitor object as an attribute, even though the poolMonitor class 
controls the pumpClass object. The UML solution is to apply navigability (see 
“Navigability” on page 123) by placing an open-ended arrow pointing at 
the class that is an attribute of the other class, as shown in Figure 6-22. 
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poolMonitor phClass
has

—or—

poolMonitor pumpClass
is controlled by

Figure 6-22: Association navigability

6.5.3 Class Aggregation Relationships
An aggregation, a slightly more tightly coupled version of association, exists 
as a class that could be stand-alone but is part of a larger class. Most of the 
time, an aggregation relationship is a controls relationship; that is, a control-
ling class (the aggregate or whole class) controls a set of subservient objects 
or attributes (the parts classes). The aggregate class cannot exist without the 
parts classes; however, the parts classes can exist outside the context of the 
aggregate class (for example, a parts class could be associated with both 
the aggregate class and an additional class).

Aggregates act as gatekeepers to their parts attributes, ensuring that 
the parts’ methods are being called with appropriate (for example, range-
checked) parameters and that the operating environment for those parts is 
consistent. The aggregate class can also check return values for consistency 
and handle exceptions and other issues raised by the parts.

For example, you could have a pHSensor class that works well with a stand-
alone pH meter and a salinitySensor class that works well with a stand-alone 
salinity (or conductivity) sensor. The poolMonitor class is not a stand-alone 
class: it needs both of these classes to do its job, even though they don’t need 
poolMonitor to do theirs. We model this relationship using an empty diamond 
symbol on the aggregate class (poolMonitor) and an association line leading to 
the parts classes (pHSensor and salinitySensor), as shown in Figure 6-23.

poolMonitor phSensor
controls

salinitySensor
controls

Figure 6-23: Aggregation relationship

The class with the open diamond end of the association line (that is, 
the aggregated class) always contains the attribute-associated class (the 
parts class) at the other end of the line.

The lifetimes of an aggregate object and its associated parts objects are 
not necessarily the same. You could create several parts objects and then 
attach them to an aggregate object. When the aggregate object finishes its 
task, it can be deallocated while the parts objects continue to solve other 
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problems. In other words, from a low-level programming perspective, the 
system stores pointers to the parts objects in the aggregate object. When 
the system deallocates the storage for the aggregate object, the pointers 
might go away, but the objects they reference might persist (and could be 
pointed at by other aggregate objects in the system).

Why use an aggregate diagram? The code produced for an associa-
tion and an aggregation will be identical. The difference is one of intent. 
In an aggregation diagram, the designer is saying that the parts objects or 
classes are under the control of the aggregate class or object. To return to 
our poolMonitor example, in the aggregation relationship, the poolMonitor 
is in complete charge—the salinitySensor and pHSensor objects are being 
controlled by it, and never the other way around. In an association relation-
ship, however, the associated classes are peers rather than having a master/
slave relationship; that is, both the pHSensor and salinitySensor could operate 
independently of the poolMonitor—and vice versa—sharing information only 
as necessary. 

6.5.4 Class Composition Relationships
In composition relationships, the smaller classes contained by the larger 
class are not stand-alone classes: they exist strictly to support the contain-
ing, or composing, class. Unlike with aggregates, composition parts can 
belong only to a single composition. 

The lifetimes of the composing object and the parts objects are the 
same. When you destroy the composing object, you also destroy the parts 
objects it contains. The composing object is responsible for allocating and 
deallocating storage associated with the parts.

We use a solid diamond to denote a composition relationship, as shown 
in Figure 6-24.

poolMonitor tempHistory
writes to

salinityHistory
writes to

pHHistory
writes to

Figure 6-24: Composition relationship

6.5.5 Relationship Features
For dependency, association, aggregation, and composition relationships, 
UML supports these 10 features, some of which you’ve already seen:

•	 Attribute names

•	 Roles
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•	 Interface specifiers

•	 Visibility

•	 Multiplicity

•	 Ordering

•	 Constraints

•	 Qualifiers

•	 Navigability

•	 Changeability

These features don’t apply to the inheritance relationship, which is 
why I haven’t yet described it. We’ll get to inheritance shortly in the section 
“Class Inheritance Relationships” on page 125, but first we’ll cover each of 
these relationship features.

N O T E  For simplicity’s sake I use association to discuss each feature, but dependency, 
aggregate, and composition all equally apply.

6.5.5.1 Association and Attribute Names

The association name attached to a link can tell you the type or owner-
ship of the interaction, but it doesn’t tell you how the two classes refer to 
each other. The association link only provides a connection between the 
two class objects. Classes refer to each other using attribute and operation 
fields in the class definition.

As you read in “Class Association Relationships” on page 115, the asso-
ciation diagram is effectively an alternative to the inline syntax for incorpo-
rating an attribute or operation name within a class. The two diagrams in 
Figure 6-25 are equivalent.

—is equivalent to—

poolMonitor phClass
has

poolMonitor

-pHSensor:pHClass

Figure 6-25: Shorthand (top) and longhand (bottom)  
association relationship diagrams

In Figure 6-25, the shorthand version is missing the attribute or opera-
tion name (pHSensor in this example) and the visibility (-, or private), but 
you can supply these missing pieces by attaching the attribute name to the 
association link nearest the object that will hold the object reference data 
field, as shown in Figure 6-26.

Like the inline syntax, an attribute name consists of an attribute or 
operation name with a visibility symbol prefix (-, ~, #, or +). The visibility 



UML Class Diagrams   119

symbol must be present because it differentiates an attribute name from a 
role (described next).

poolMonitor phClass
has

-pHSensor

Figure 6-26: Attribute name 

Another option is to combine the association and attribute names, 
as shown in Figure 6-27.

poolMonitor phClass
has -pHSensor

Figure 6-27: Combining association and attribute names

6.5.5.2 Roles

In Figure 6-27, it isn’t entirely clear what the two classes are doing. The pool 
Monitor class has a pHSensor field that connects to the pHClass, but otherwise 
the diagram doesn’t explain what’s going on. Roles, which typically appear 
at both ends of the association link, provide this missing description. 

In this example, the poolMonitor class or object generally reads the 
pH value from a pH sensor device (encapsulated in pHClass). Conversely, 
the pHClass class or object can supply pH readings. You can describe these 
two activities (reading pH and supplying a pH value) using roles in UML. 
Figure 6-28 shows an example of these roles.

poolMonitor phClass
Reads pH Supplies pH

has -pHSensor

Figure 6-28: Roles

6.5.5.3 Interface Specifiers

An interface is a set of operations expected from certain classes. It’s simi-
lar to a class except there are no objects instantiated from it. Classes that 
adhere to an interface are guaranteed to provide all the operations present 
in it (and provide methods for those operations). If you’re a C++ program-
mer, you can think of an interface as an abstract base class containing only 
abstract member functions. Java, C#, and Swift have their own special syn-
tax for defining interfaces (also known as protocols).

N O T E  Interface specifiers are supported in UML 1.x but have been dropped from UML 2.0. 
I describe them in this chapter because you might encounter them, but you shouldn’t 
use them in new UML documents because they’re deprecated.

If a class implements an interface, it’s effectively inheriting all the 
operations from that interface. That is, if an interface provides operations 
A, B, and C, and some class implements that interface, that class must also 
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provide operations A, B, and C (and provide concrete implementations of 
these operations). There are two distinct ways to specify an interface—with 
stereotype or ball notation, as shown in Figure 6-29.

«interface»
sensor

—or—

sensor

+startReading()
+waitForReading()
+readSensor:double
+calibrateSensor( calibrations[]:double )

+startReading()
+waitForReading()
+readSensor:double
+calibrateSensor( calibrations[]:double )

Figure 6-29: Interface syntax: stereotype (top)  
and ball (bottom) notation

To show that a class implements a given interface, you draw a dashed 
line with a hollow arrowhead from the class to the interface diagram, as 
shown in Figure 6-30.

«interface»
sensor

+startReading()
+waitForReading()
+readSensor:double
+calibrateSensor( calibrations[]:double )

phClass

Figure 6-30: Interface implementation diagram

6.5.5.4 Visibility

Visibility applies to attribute names in an association link. As noted earlier, 
all attribute names must be prefixed with a symbol (-, ~, #, or +) that speci-
fies their visibility (private, package, protected, or public, respectively).

6.5.5.5 Multiplicity

The section “Attribute Multiplicity” on page 111 described multiplicity for 
inline attributes. You can also include multiplicity in association diagrams 
by specifying multiplicity values at either or both ends of an association 
link (see Figure 6-31). Place multiplicity values above or below the link and 
closest to the class or object to which they apply. If a multiplicity value is not 
provided, it defaults to 1.
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poolMonitor phClass
1 1..*

has

—same as—

-pHSensor

poolMonitor phClass
1..*

has -pHSensor

Figure 6-31: Multiplicity on an association link

Figure 6-31 indicates that there is a single poolMonitor object, and it can 
have one or more associated pHSensors (there could be, for example, sepa-
rate pH sensors in the spa and in the swimming pool proper).

This example shows a one-to-many relationship. It’s also possible to 
have many-to-one and even many-to-many relationships in these diagrams. 
For example, Figure 6-32 shows a many-to-many relationship between 
poolMonitor and pHClass classes or objects (if you’re having a hard time visu-
alizing how this would work, consider a water park that has multiple pools 
with multiple pH meters). 

poolMonitor phClass
1..* 1..*

has -pHSensor

Figure 6-32: Many-to-many relationship

6.5.5.6 Ordering

UML provides the {ordered} constraint, which you can attach to any associa-
tion that has a multiplicity other than 1 (see Figure 6-33). 

poolMonitor tempHistoryClass
1..* 1..*

{ordered}

records -history

Figure 6-33: An ordered association

When appearing by itself, the {ordered} constraint doesn’t specify how 
to order the list of items, only that they are ordered. The type of ordering 
must be handled by the implementation.

6.5.5.7 Constraints

A constraint is application-specific text within braces that you attach to an 
association link. Although UML has some predefined constraints (like the 
{ordered} constraint just mentioned), you usually create your own to provide 
some application-defined control over the association link. You can even 
specify multiple constraints by separating them with commas within the 
braces. For example, the singular {ordered} constraint in Figure 6-33 doesn’t 
describe how to sort the temperature history information. You can specify 
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the ordering by adding another constraint to the diagram, such as sorted 
by date/time, as shown in Figure 6-34.

poolMonitor tempHistoryClass
1..* 1..*

{ordered, 
sorted by date/time}

records -history

Figure 6-34: A custom constraint 

6.5.5.8 Qualifiers

A qualifier informs the implementer that a specified association requires 
fast access, typically using a key or index value. For example, suppose the 
temperature recording mechanism in Figure 6-34 records the pool temper-
ature every minute. Over the span of a week, the history object will accumu-
late 10,080 readings; over a year, it will accumulate more than 3.6 million 
readings. To extract one reading per day (say, the temperature at noon) 
over the past year, you have to scan through nearly 4 million readings to 
produce 365 or 366 readings. That could be computationally intensive and 
create some performance issues, particularly for real-time systems (which 
the pool monitor system is likely to be). We could instead give each reading 
a unique index value so we can extract only those we need. 

To create a UML qualifier, you place some qualification (usually an 
attribute name in the qualifying class or object) in a rectangle at one end 
of the association link, as shown in Figure 6-35.

poolMonitor

tempHistoryClass

1

1

{ordered,
unique date/time,
sorted by date/time}

date_time

records -history

Figure 6-35: A qualifier example

The unique qualifier requires all tempHistoryClass objects to have 
unique dates and times; that is, no two readings can have the same date 
and time value.

Figure 6-35 suggests that the system will maintain a special mechanism 
that lets us directly select a single tempHistoryClass object based on its date_time 
value. This is similar to a key in a database table.7 

In this example, the multiplicity values are both 1 because the dates 
and times are all unique, and the date_time qualifier will pick a specific 

7. Similar to a key but not identical. A database maintains records and keys as disk files; quali-
fiers generally assume an in-memory data structure, such as an associative array, hash table, 
or map, to provide access to the specific record of interest.
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date, for which there can be only one associated record. (Technically, there 
could be zero matches; however, the diagram doesn’t allow for that, so 
there must be a matching object.)

The multiplicity could be something other than 1 if the date_time key is 
not unique among the history objects. For example, if you want to generate 
a report with all the temperatures recorded at noon, you could specify that 
as shown in Figure 6-36.

poolMonitor

tempHistoryClass

1

1..*

{ordered,
unique date/time,
sorted by date/time}

time = noon

records -history

Figure 6-36: A qualifier set example

Assuming you have a year’s worth of readings in the tempHistoryClass 
object, you’ll get a set of 365/366 readings, all on different dates but at the 
same time (noon in this example).

One detail to keep in mind is that you can have multiple association 
diagrams that describe variants of the same association. For example, it’s 
not unreasonable to find Figures 6-34, 6-35, and 6-36 in the same set of 
UML documents. Figure 6-34 describes the generic association between 
the poolMonitor class or object and the tempHistoryClass object. Figure 6-35 
might describe a search operation where you’re searching for a specific 
temperature; this operation might be so common that you want to generate 
some sort of associative array (that is, a hash table) to improve its perfor-
mance. Likewise, Figure 6-36 suggests that you want another fast lookup 
table to speed up collecting a set of readings recorded at noon. Each dia-
gram exists in its own context; they don’t conflict with one another.

6.5.5.9 Navigability

In “Attribute Names” on page 109, I introduced the concept of adding attri-
bute names to an association link. The suggestion was to place the name 
close to the class or object that contains the attribute (that is, that refers 
to the other class or object at the end of the association link). Although 
implicitly specifying the communication direction and attribute ownership 
this way works well for most simple diagrams, it can become confusing as 
your UML diagrams become more complex. The UML navigability feature 
remedies this problem.

Navigability specifies the direction of information flow in a diagram 
(that is, how the data navigates through the system). By default, association 
links are navigable in both directions. This means that a class/object at 
one end of the link can access data fields or methods at the other end. It’s 
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possible, however, to specify that information flows in only one direction 
along the association link. 

To indicate navigability, place an arrowhead at the end of an asso-
ciation link to specify the direction of communication flow (you don’t 
need to place arrowheads on both ends of an association link to specify 
bidirectional communication). For example, in Figure 6-37, the commu-
nication flows from the poolMonitor class or object to the pHClass class or 
object. This direction tells you two things: the pHSensor attribute is a mem-
ber of the poolMonitor class or object, and the pHClass has no attributes that 
let it reference anything inside poolMonitor.

poolMonitor phClass
has

-pHSensor

Figure 6-37: Navigability 

UML 2.x added a new symbol to explicitly indicate that communication 
doesn’t occur in a given direction: you place a small × on the association 
link near the side forbidding communication (see Figure 6-38). 

poolMonitor phClass
has

-pHSensor

Figure 6-38: Explicit non-navigability 

I think this clutters the diagram and makes it harder to read, so I 
stick with the default specification. You can decide for yourself which 
option to use.

6.5.5.10 Changeability

The UML changeability feature allows you to specify whether a particular 
data set can be modified after its creation. In the history recording example 
from Figure 6-34, once a temperature is recorded in the history database, 
you don’t want the system or a user to edit or delete that value. You can 
achieve this by adding the {frozen} constraint to the association link, as 
shown in Figure 6-39.

poolMonitor tempHistoryClass
1..* 1..*

{frozen,
ordered,
sorted by date/time}

records -history

Figure 6-39: A {frozen} example

Now that you have a better understanding of the features of the first 
four relationship types, let’s turn to the final type: inheritance.
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6.5.6 Class Inheritance Relationships
The inheritance relationship (also known as the generalization relationship in 
UML) is the strongest, or most tightly coupled, form of class relationships. 
Any change you make to a base class’s fields will have an immediate and 
dramatic effect on the child (inheriting) classes or objects.8 Inheritance is 
a considerably different relationship than dependency, association, aggre-
gation, or composition. These other relationships describe how one class 
or object uses another class or object; inheritance describes how one class 
includes everything from another class.

For inheritance we use a line with a hollow arrowhead at one end. The 
arrowhead points at the base class (the general item), and the other end of 
the line connects to the inheriting (derived) class, as shown in Figure 6-40.

poolMonitor

mainPoolMonitorspaMonitor

Figure 6-40: Inheritance 

In this example, spaMonitor and mainPoolMonitor are derived classes that 
inherit all the fields of the base (ancestor) class poolMonitor (likely, these 
derived classes add new attributes and operations as well).

The inheritance relationship is not like dependency, association, aggre-
gation, or composition in that features such as multiplicity, roles, and navi-
gability don’t apply.

6.6 Objects
You’ve seen two types of participants in all the diagrams thus far: actors 
and classes. Specifically, most items have been classes. However, from an 
object-oriented programming point of view, classes are merely data types, 
not actual data items that software can manipulate. An object is an instan-
tiation of a class—the actual data object that maintains state within an 
application. In UML, you represent an object using a rectangle, just as you 
represent classes. The difference is that you specify an object name with its 
associated class name, and you underline the pair in the object diagram, as 
shown in Figure 6-41.

pMon:poolMonitor

Figure 6-41: An object 

8. The base class is also known as the ancestor class.



126   Chapter 6

6.7 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit, 

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press, 
1999. A sample chapter is available at http://www.untechnicalpress.com 
/Downloads/UMM%20sample%20doc.pdf.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented 
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River, 
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction 
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick 
Reference. 2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill 
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
https://www.tutorialspoint.com/uml/


7
U M L  I N T E R A C T I O N  D I A G R A M S

Interaction diagrams model the opera-
tions that occur between different objects 

(participants) in a system. There are three 
main types of interaction diagrams in UML: 

sequence, collaboration (communication), and 
timing.  The majority of this chapter will focus on 
sequence diagrams, followed by a very brief discus-
sion of collaboration diagrams. 
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7.1 Sequence Diagrams
Sequence diagrams show the interaction between participants (actors, 
objects) in the order in which it takes place. Whereas activity diagrams 
describe the particulars of one operation on an object, sequence diagrams 
tie activity diagrams together to show the order in which multiple opera-
tions occur. From a design perspective, sequence diagrams are more infor-
mative than activity diagrams as they illustrate the overall architecture of 
the system; at the (lower) level of an activity diagram, however, a system 
architect can usually safely assume that the software engineer implement-
ing the system can figure out the activities required by the design. 

7.1.1 Lifelines
At the top of a sequence diagram you draw the set of participants, using 
rectangles or stick figures (see Figure 7-1), and then draw a dashed line 
from each participant to the bottom of the diagram to indicate that object’s 
lifeline. Lifelines show the flow of time from the earliest (topmost) point of 
execution to the latest (bottommost) point. However, lifelines by themselves 
do not indicate the amount of time that passes, only the passage of time from 
the top to the bottom of the diagram, and equal line lengths need not cor-
respond to the same amount of time—a 1 cm section at one point could be 
days, while a 1 cm section elsewhere could be microseconds.

User

Time

Lifelines

pMon:poolMonitor pump:pumpCtrlr

Figure 7-1: A basic sequence diagram
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7.1.2 Message Types
Communication between participants takes the form of messages (which I 
will sometimes call operations), which consist of an arrow drawn between 
lifelines, or even from one lifeline to itself. 

There are four types of message arrows you can use, as shown in 
Figure 7-2. 

Synchronous

Return

Asynchronous

Flat

Figure 7-2: Message types in sequence  
diagrams

Synchronous messages are the typical call/return operation that most 
programs use (to execute object methods, functions, and procedures). The 
sender suspends execution until the receiver returns control. 

Return messages indicate that control returns from a synchronous mes-
sage back to the message sender, but they are purely optional in a sequence 
diagram. An object cannot continue execution until a synchronous message 
completes, so the presence of some other message (received or sent) on the 
same timeline inherently implies a return operation. Because a large number 
of return arrows can obfuscate a sequence diagram, it’s best to leave them 
off if the diagram starts to get cluttered. If the sequence diagram is relatively 
clean, however, a return arrow can help show exactly what is happening.

Asynchronous messages trigger an invocation of some code in the 
receiver, but the message sender does not have to wait for a return message 
before continuing execution. For this reason, there’s no need to draw an 
explicit return arrow for an asynchronous call in your sequence diagrams.

Flat messages can be either synchronous or asynchronous. Use a flat 
message when the type doesn’t matter for the design and you want to leave 
the choice up to the engineer implementing the code. As a general rule, 
you do not draw return arrows for flat messages because that would imply 
that the implementer must use a synchronous call. 

N O T E  Flat messages are UML 1.x entities only. In UML 2.0, asynchronous messages use 
the full open arrowhead instead.
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7.1.3 Message Labels
When you draw a message, you must attach a label to the message’s arrow. 
This label could simply be a description of the message, as in Figure 7-3.

 

User

Select immediate
pool clean

pMon:poolMonitor pump:pumpCtrlr

Turn on pump

Figure 7-3: Message labels

The sequence of messages is indicated by their vertical placement. In 
Figure 7-3, the “Select immediate pool clean” label is the first message line 
in the diagram, meaning it is the first operation to execute. Moving down-
ward, “Turn on pump” is the second message line, so it executes next. The 
return from “Turn on pump” is the third operation and the return from 
“Select immediate pool clean” is the fourth.

7.1.4 Message Numbers
As your sequence diagrams become more complex, it may be difficult to 
determine the execution order from the message position alone, so it can be 
helpful to attach additional indicators like numbers to each message label. 
Figure 7-4 uses sequential integers, though UML doesn’t require this. You 
could use numbers like 3.2.4 or even non-numeric indicators (for example, 
A, B, C). However, the goal is to make it easy to determine the message 
sequence, so if you get too carried away here you might defeat that purpose.

 

User

1: Select immediate
pool clean

pMon:poolMonitor pump:pumpCtrlr

2: Turn on pump

3: Return

4: Return

Figure 7-4: Message numbers
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Although the message labels you’ve seen thus far are relatively straight-
forward descriptions, it’s not uncommon to use the actual operation names, 
parameters, and return values as labels on message arrows, as in Figure 7-5.

User

1: immediateClean()

pMon:poolMonitor pump:pumpCtrlr

2: pump(100):boolean

3: Return true

4: Return

speed
=

100%

Figure 7-5: Message arguments and return values

7.1.5 Guard Conditions
Your message labels can also include guard conditions: Boolean expressions 
enclosed in brackets (see Figure 7-6). If the guard expression evaluates to 
true, the system sends the message; if it evaluates to false, the system does 
not send the message. 

User

1: immediateClean()

pMon:poolMonitor pump:pumpCtrlr

    [pumpPower==on]
2: pump(100):boolean

3: Return true

4: Return

Figure 7-6: Message guard conditions

In Figure 7-6, the pMon object sends a pump(100) message to pump only if 
pumpPower is on (true). If pumpPower is off (false) and the pump(100) message does 
not execute, the corresponding return operation (sequence item 3) will not 
execute either, and control will move to the next outgoing arrow item in the 
pMon lifeline (sequence item 4, returning control to the user object).
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7.1.6 Iterations
You can also specify the number of times a message executes by providing 
an iteration count in a sequence diagram. To specify an iteration, you use an 
asterisk symbol (*) followed by a guard condition or for loop iteration count 
(see Figure 7-7). The system will repeatedly send the message as long as the 
guard condition is true.

*[for each i in 1..100]
pumpPwrAndDelay(i)

Figure 7-7: Partial sequence  
diagram with iteration

In Figure 7-7, the message executes 100 times, with the variable i 
taking on the value 1 through 100, incrementing on each iteration. If the 
pumpPwrAndDelay function applies the percent power specified as the argu-
ment and delays for 1 second, then in about 1 minute, 40 seconds, the 
pump will be running at full speed (increasing by 1 percent of the total 
speed each second).

7.1.7 Long Delays and Time Constraints
Sequence diagrams typically describe only the order of messages, not the 
amount of time each message takes to execute. Sometimes, however, a 
designer might want to indicate that a particular operation might take a 
long time relative to others. This is particularly common when one object 
sends a message to another object located outside the bounds of the cur-
rent system (for example, when a software component sends a message to 
some object on a remote server across the internet), which we’ll discuss 
shortly. You indicate that an operation will take longer by pointing the mes-
sage arrow slightly downward. In Figure 7-8, for example, you would expect 
the scheduledClean() operation to take more time than a typical operation.

«Actor»
Timer Module

1: scheduledClean()

pMon:poolMonitor pump:pumpCtrlr

*[run for scheduled time]
2: pump(100):boolean

3: Return true

4: Return

{Time not
to exceed
12 hours}

Figure 7-8: Timed messages with timing constraints
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You must also specify the expected amount of time for each message by 
adding some sort of constraint to the diagram. Figure 7-8 demonstrates this 
with a dashed vertical arrow from the start of the scheduledClean() operation 
to the point on the lifeline where the system returns control to the Timer 
Module actor (probably the physical timer on the pool monitor system). The 
required time constraint appears inside braces next to the dashed arrow.

7.1.8 External Objects
Occasionally a component of a sequence diagram must communicate with 
some object external to the system. For example, some code in the pool mon-
itor might check the salinity level and send an SMS message to the owner’s 
cell phone if it drops too low. The code to actually transmit the SMS mes-
sage is probably handled by an Internet of Things (IoT) device and thus 
outside the scope of the pool monitor software; hence, the SMS code is an 
external object.

You draw a heavy border around external objects and use a solid line 
for their lifelines rather than a dashed line (see Figure 7-9).

«Actor»
Timer Module

1: salinityCheck()

salinity:saltSensor SMS:IoTDevice

[salinity < 3600 ppm]
2: sendMsg(msg)

3: updateSalinityDisp()

{10 minutes}

Figure 7-9: External objects in a sequence diagram

In Figure 7-9, the Timer Module makes an asynchronous call to the 
salinity object, and there is no return from the salinityCheck() operation. 
After that call, the Timer Module can perform other tasks (not shown in 
this simple diagram). Ten minutes later, as noted by the time constraint, 
the salinity object makes an asynchronous call to the Timer Module actor 
and has it update the salinity value on the display.

Because there isn’t an explicit time constraint on the sendMsg() opera-
tion, it could occur any time after the salinityCheck() operation and before 
the updateSalinityDisp() operation; this is indicated by the sendMsg() message 
arrow’s position between the other two messages.

7.1.9 Activation Bars
Activation bars indicate that an object is instantiated and active, and appear 
as open rectangles across a lifeline (see Figure 7-10). They are optional, as 
you can generally infer the lifetime of an object simply by looking at the 
messages traveling to and from it. 
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«Actor»
Timer Module

1: getSalinity():ppm

salinity:saltSensor

2: return salinity

Figure 7-10: Activation bars

N O T E  For the most part, activation bars clutter up sequence diagrams, so this book will not 
use them. They’re described here just in case you encounter them in sequence diagrams 
from other sources.

7.1.10 Branching 
As noted in “Guard Conditions” on page 131, you can apply guard con-
ditions to a message that say, effectively, “if true, then execute message; 
else, continue along this lifeline.” Another handy tool is branching—the 
equivalent of the C-style switch/case statement where you can select one 
of several messages to execute based on a set of guard conditions, one 
guard for each message. In order to execute different messages based 
on whether a pool uses chlorine or bromine as a sanitizer, you might be 
tempted to draw branching logic as shown in Figure 7-11.

«Actor»
Timer Module

Cl:chlorine Br:bromine

[sanitizer = chlorine]
1a: getChlorine():ppm

[sanitizer = bromine]
1b: getBromine():ppm

Figure 7-11: Bad implementation of branching logic

In one aspect, this diagram makes perfect sense. If the sanitizer for 
this particular pool is bromine rather than chlorine, the first message 
does not execute and control flows down to the second message, which 
does execute. The problem with this diagram is that the two messages 
appear at different points on the lifeline and, therefore, could execute at 
completely different times. Particularly as your sequence diagrams get 
more complex, some other message invocation could wind up between 
these two—and thus would execute prior to the getBromine() message. 
Instead, if the sanitizer is not chlorine you’d want to immediately check 
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to see if it is bromine, with no possibility of intervening messages. Figure 7-12 
shows the proper way to draw this logic.

«Actor»
Timer Module

Cl:chlorine Br:bromine

[sanitizer = chlorine]
1a: getChlorine():ppm

[sanitizer = bromine]
1b: getBromine():ppm

Figure 7-12: Good implementation of branching logic

Drawing branching logic with the arrow tails that start from the same 
vertical position and the arrowheads that end at the same vertical position 
avoids any ambiguity with the sequence of execution (assuming that the 
guard conditions are mutually exclusive—that is, it is not possible for both 
conditions to be simultaneously true).

Branching uses slanted message arrows similar to long delays, but a 
long delay item will have an associated time constraint.1

7.1.11 Alternative Flows
There’s another potential issue with branching: what happens when you 
need to send one of two different messages to the same destination object? 
Because the arrow tails and heads must start and end, respectively, at the 
same vertical positions for both arrows, the two arrows would overlay each 
other and there would be no indication that branching takes place at all. 
The solution to this problem is to use an alternative flow.

In an alternative flow, a single lifeline splits into two separate lifelines 
at some point (see Figure 7-13). 

«Actor»
Timer Module

ClGen:salinitySensor

[sanitizer = chlorine]
1a: getSalinity():ppm

[choice = NaOH]
1b: getNaOH():ppm

Figure 7-13: Alternative flows

1. If you’re thinking this is a bad design element in the UML language, you’re correct. Given 
its history and design-by-(political)-committee approach, it’s understandable why UML isn’t 
a little cleaner.
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In this example, the Timer Module has to choose between retrieving 
the current level of salinity (NaCl) or sodium hydroxide (NaOH). The 
getSalinity() and getNaOH() operations are methods within the same class; 
therefore, their message arrows will both point at the same spot in the ClGen 
lifeline. To avoid overlapping the message arrows, Figure 7-13 splits the 
ClGen lifeline into two lifelines: the original and an alternative flow. 

After the message invocation, you can merge the two flows back 
together if desired. 

7.1.12 Object Creation and Destruction
So far in the examples, the objects have existed throughout the lifetime 
of the sequence diagram; that is, all objects existed prior to the execution of 
the first message (operation) and persist after the execution of the last mes-
sage. In real-world designs, you’ll need to create and destroy objects that 
don’t exist for the full duration of the program’s execution.

Object creation and destruction are messages just like any other. The 
common convention in UML is to use the special messages «create» and 
«destroy» (see Figure 7-14) to show object lifetimes within the sequence 
diagram; however, you can use any message name you like. The X at the 
end of the cleanProcess lifeline, immediately below the «destroy» operation, 
denotes the end of the lifeline, because the object no longer exists.

«Actor»
Timer Module

cleanProcess:pumpCtrl
1: «create»

{<8 hours}

2: cleaningDone()

3: «destroy»

X

Figure 7-14: Object creation and destruction

This example uses a dropped title box to indicate the beginning of the 
lifeline for a newly created object. As Russ Miles and Kim Hamilton point 
out in Learning UML 2.0 (O’Reilly, 2003), many standardized UML tools 
don’t support using dropped title boxes, allowing you to place the object 
title boxes only at the top of the diagram. There are a couple of solutions to 
this problem that should work with most standard UML tools.
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You can put the object at the top of the diagram and add a comment to 
explicitly indicate object creation and destruction at the points where they 
occur (see Figure 7-15).

«Actor»
Timer Module

cleanProcess:pumpCtrl

1: «create»

{<8 hours}

2: cleaningDone()

3: «destroy»

X

cleanProcess
created here

Figure 7-15: Using notes to indicate object lifetime

You can also use an alternative flow to indicate the lifetime of the 
object (see Figure 7-16).

«Actor»
Timer Module

cleanProcess:pumpCtrl

1: «create»

{<8 hours}

2: cleaningDone()

3: «destroy»

X

Figure 7-16: Using alternative flows to indicate object lifetime

Activation bars provide a third alternative that might be clearer here.

7.1.13 Sequence Fragments
UML 2.0 added sequence fragments to show loops, branches, and other alter-
natives, enabling you to better manage sequence diagrams. UML defines 
several standard sequence fragment types you can use, defined briefly in 
Table 7-1 (full descriptions appear later in this section).
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Table 7-1: Brief Descriptions of Sequence Fragment Types

alt Executes only the alternative fragment that is true (think of an if/else 
or switch statement).

assert Notes that operations within the fragment are valid if a guard condition 
is true.

break Exits a loop fragment (based on some guard condition).
consider Provides a list of valid messages in a sequence fragment.
ignore Provides a list of invalid messages in a sequence fragment.
loop Runs multiple times and the guard condition determines whether the 

fragment repeats.
neg Never executes.
opt Executes only if the associated condition is true. Comparable to alt 

with only one alternative fragment.
par Runs multiple fragments in parallel.
ref Indicates a call to another sequence diagram.
region (Also known as critical.) Defines a critical region in which only one 

thread of execution is possible.
seq Indicates that operations (in a multitasking environment) must occur in a 

specific sequence.
strict A stricter version of seq.

In general, you draw sequence fragments as a rectangle surrounding 
the messages, with a special penta-rectangle symbol (a rectangle with the 
lower-right corner cropped) in its upper-left corner that contains the UML 
fragment name/type (see Figure 7-17; substitute any actual fragment type 
for typ in this diagram).

Object1 Object2 Object3 Object4

typ additional info

Figure 7-17: Generic sequence fragment form

For example, if you wanted to repeat a sequence of messages several 
times, you would enclose those messages in a loop sequence fragment. This 
tells the engineer implementing the program to repeat those messages the 
number of times specified by the loop fragment.
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You can also include an optional additional info item, which is typically a 
guard condition or iteration count. The following subsections describe the 
sequence fragment types from Table 7-1 in detail, as well as any additional 
information they may require.

7.1.13.1 ref 

There are two components to a ref sequence fragment: the UML inter-
action occurrence and the reference itself. An interaction occurrence is a 
stand-alone sequence diagram corresponding to a subroutine (procedure 
or function) in code. It is surrounded by a sequence fragment box. The 
penta-rectangle in the upper-left corner of the box contains sd (for sequence 
diagram) followed by the name of the ref fragment and any arguments you 
want to assign to it (see Figure 7-18).

Object2

msg1

Object3 Object4

msg2

sd example(arguments)

Figure 7-18: An interaction occurrence example

The leftmost incoming arrow corresponds to the subroutine entry point. If 
this isn’t present, you can assume that control flows to the leftmost partici-
pant at the top of its lifeline.

Now we come to the second component of the ref sequence fragment: 
referencing the interaction occurrence within a different sequence diagram 
(see Figure 7-19).

Object2Object1 Object3 Object4

example(arguments)ref

Figure 7-19: A ref sequence fragment example

This corresponds to a call to a subroutine (procedure or function) 
in code.
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7.1.13.2 consider and ignore

The consider sequence fragment lists all messages that are valid within a sec-
tion of the sequence diagram; all other messages/operators are illegal. The 
ignore operator lists names of messages that are invalid within a section of 
the sequence diagram; all other operators/messages are legal.

consider and ignore work either as operators in conjunction with an 
existing sequence fragment or as sequence fragments by themselves. A 
consider or ignore operator takes the following form:

consider{ comma-separated-list-of-operators }
ignore{ comma-separated-list-of-operators }

The consider and ignore operators may appear after the sd name title in 
an interaction occurrence (see Figure 7-20), in which case they apply to the 
entire diagram.

Object2

msg1

Object3 Object4

msg2

sd example(arguments)
consider(msg1,msg2)

Figure 7-20: A consider operator example

You may also create a sequence fragment within another sequence 
diagram and label that fragment with a consider or ignore operation. In 
that case, consider or ignore applies only to the messages within the specific 
sequence fragment (see Figure 7-21).

Object2

msg1

Object3 Object4

msg2

sd example(arguments)

ignore(msg1)

Figure 7-21: An ignore sequence fragment example

If these fragment types seem strange, consider creating a very generic ref 
fragment that handles only certain messages, but then referencing that 
ref from several different places that might pass along unhandled messages 
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along with the handled ones. By adding a consider or ignore operator to the 
ref, you can have the fragment simply ignore the messages it doesn’t explic-
itly handle, which allows you to use that ref without having to add any extra 
design to the system.

7.1.13.3 assert

The assert sequence fragment tells the system implementer that the mes-
sages within it are valid only if some guard condition evaluates to true. At 
the end of the assert fragment, you typically provide some sort of Boolean 
condition (the guard condition) that must be true once the sequence is 
complete (see Figure 7-22). If the condition isn’t true after the assert frag-
ment has finished executing, the design can’t guarantee correct results. 
The assert reminds the engineer to verify that this condition is indeed true 
by, for example, using a C++ assert macro invocation (or something similar 
in other languages, or even just an if statement).

Object2

msg1

Object3

{condition==true}

Object4

msg2

sd example(arguments)

assert

Figure 7-22: An assert sequence fragment example

In C/C++ you’d probably implement the sequence in Figure 7-22 using 
code like this:

Object3->msg1();             // Inside example
Object4->msg2();             // Inside Object3::msg1
assert( condition == TRUE ); // Inside Object3::msg1

7.1.13.4 loop

The loop sequence fragment indicates iteration. You place the loop operator 
in the penta-rectangle associated with the sequence fragment, and may also 
include a guard condition enclosed in brackets at the top of the sequence 
fragment. The combination of the loop operator and guard condition con-
trols the number of iterations.

The simplest form of this sequence fragment is the infinite loop, con-
sisting of the loop operator without any arguments and without a guard 
condition (see Figure 7-23). Most “infinite” loops actually aren’t infinite, 
but terminate with a break sequence fragment when some condition is true 
(we’ll discuss the break sequence in the next section).
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Object2

msg1

Object3 Object4

msg2

sd example(arguments)

loop

Figure 7-23: An infinite loop

The loop in Figure 7-23 is roughly equivalent to the following 
C/C++ code:

// This loop appears inside Object3::msg1
for(;;)
{
      Object4->msg2();
} // endfor

Or, alternatively: 

while(1)
{
      Object4->msg2()
} // end while

N O T E  Personally, I prefer the following:

#define ever ;;
 .
 .
 .
for(ever)
{
      Object4->msg2();
} // endfor

I feel this is the most readable solution. Of course, if you’re “anti-macro at all costs,” 
you would probably disagree with my choice for an infinite loop!

Definite loops execute a fixed number of times and can appear in two 
forms. The first is loop(integer), which is shorthand for loop(0, integer); that 
is, it will execute a minimum of zero times and a maximum of integer times. 
The second is loop(minInt, maxInt), which indicates that the loop will exe-
cute a minimum of minInt times and a maximum of maxInt times. Without a 
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guard condition, the minimum count is irrelevant; the loop will always exe-
cute maxInt times. Therefore, most definite loops use the form loop(integer) 
where integer is the number of iterations to perform (see Figure 7-24).

Object2

msg1

Object3 Object4

msg2

sd example

loop(10)

msg2 
call executes 
10 times

Figure 7-24: A definite loop

The loop in Figure 7-24 is roughly equivalent to the following 
C/C++ code:

// This code appears inside Object3::msg1
for( i = 1; i<=10; ++i )
{
      Object4->msg2();
} // end for

You can also use the multiplicity symbol * to denote infinity. Therefore, 
loop(*) is equivalent to loop(0, *) which is equivalent to loop (in other 
words, you get an infinite loop).

An indefinite loop executes an indeterminate2 number of times (corre-
sponding to while, do/while, repeat/until, and other loop forms in program-
ming languages). Indefinite loops include a guard condition as part of the 
loop sequence fragment,3 meaning the loop sequence fragment will always 
execute the loop minInt times (zero times if minInt is not present). After 
minInt iterations, the loop sequence fragment will begin testing the guard 
condition and continue iterating only while the guard condition is true. The 
loop sequence fragment will execute at most maxInt iterations (total, not in 
addition to the minInt iterations). Figure 7-25 shows a traditional while-type 
loop that executes a minimum of zero times and a maximum of infinity 
times, as long as the guard condition ([cond == true]) evaluates to true.

2. Indeterminate upon encountering the beginning of the loop on the first iteration.

3. Arguably, an infinite loop with a break sequence fragment is also an indefinite loop, not an 
infinite loop.
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Object2

msg1

Object3 Object4

msg2

sd example

loop [cond==true]

Figure 7-25: An indefinite while loop

The loop in Figure 7-25 is roughly equivalent to the following 
C/C++ code:

// This code appears inside Object3::msg1
while( cond == TRUE )
{
      Object4->msg2();
} // end while

You can create a do..while loop by setting the minInt value to 1 and the 
maxInt value to *, and then specifying the Boolean expression to continue 
loop execution (see Figure 7-26).

Object2

msg1

Object3 Object4

msg2

sd example

loop(1,*) [cond==true]

Figure 7-26: An indefinite do..while loop

The loop in Figure 7-26 is roughly equivalent to the following 
C/C++ code:

// This code appears inside Object3::msg1
do
{
      Object4->msg2();
} while( cond == TRUE );
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It’s possible to create many other complex loop types, but I’ll leave that 
as an exercise for interested readers.

7.1.13.5 break

The break sequence fragment consists of the word break in a penta-rectangle 
along with a guard condition. If the guard condition evaluates to true, then 
the system executes the sequence inside the break sequence fragment, after 
which control immediately exits the enclosing sequence fragment. If the 
enclosing sequence fragment is a loop, control immediately executes to the 
first message past the loop (like a break statement in languages like Swift, 
C/C++, and Java). Figure 7-27 provides an example of such a loop. 

Object2

msg1

Object3 Object4

msg2

sd example

loop [cond==true]

msg3

break [bcnt>=10]

Figure 7-27: An example of the break  
sequence fragment

The loop in Figure 7-27 is roughly equivalent to the following C++ 
code fragment:

// This code appears inside Object3::msg1
while( cond == TRUE )
{
      Object4->msg2();
      if( bcnt >= 10 )
      {
            Object4->msg3();
            break;
      } // end if
      Object4->msg4();
} // end while loop

If the most recent break-compatible enclosing sequence is a subroutine, 
not a loop, the break sequence fragment behaves like a return from a sub-
routine operation.
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7.1.13.6 opt and alt

The opt and alt sequence fragments allow you to control the execution of 
a set of messages with a single guard condition—particularly if the values 
of the components making up the guard condition could change over the 
execution of the sequence.

The opt sequence fragment is like a simple if statement without an 
else clause. You attach a guard condition and the system will execute the 
sequence contained within the opt fragment only if the guard condition 
evaluates to true (see Figure 7-28).

Object2

msg1

Object3 Object4

msg2

sd example

opt [cond==true]

Figure 7-28: An example of the opt sequence  
fragment

The example in Figure 7-28 is roughly equivalent to the following 
C/C++ code:

// Assumption: Class2 is Object2's data type. Because control
// transfers into the Object2 sequence at the top of its 
// lifeline, example must be a member function of Object2/Class2

void Class2::example( void )
{
      Object3->msg1();
} // end example
--snip--
//    This code appears in Object3::msg1 
if( cond == TRUE )
{
      Object4->msg2();
} // end if

For more complex logic, use the alt sequence fragment, which acts like 
an if/else or switch/case. To create an alt sequence fragment, you combine 
several rectangles, each with its own guard condition and an optional else, 
to form a multiway decision (see Figure 7-29).
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Object2

msg1

Object3 Object4

msg2a

sd example

alt

[cond1==true]

msg2b[cond2==true]

msg2c[cond3==true]

msg2d[cond4==true]

Figure 7-29: An alt sequence fragment

The interaction occurrence in Figure 7-29 is roughly equivalent to the 
following code:

// Assumption: Class2 is Object2's data type. Because control
// transfers into the Object2 sequence at the top of its
// lifeline, example must be a member function of Object2/Class2

void Class2::example( void )
{
      Object3->msg1();
} // end example

--snip--
//    This code appears in Object3::msg1 
if( cond1 == TRUE )
{
      Object4->msg2a();
}
else if( cond2 == TRUE )
{
      Object4->msg2b();
}
else if( cond3 == TRUE )
{
      Object3->msg2c();
}
else
{
      Object4->msg2d();
} // end if
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7.1.13.7 neg

You use a neg sequence fragment to enclose a sequence that will not be part of 
the final design. Effectively, using neg comments out the enclosed sequence. 
Why even include a sequence if it’s not going to be part of the design? There 
are at least two good reasons: code generation and future features.

Although, for the most part, UML is a diagramming language intended 
to help with system design prior to implementation in a programming 
language like Java or Swift, there are certain UML tools that will convert 
UML diagrams directly into code. During development, you might want to 
include some diagrams that illustrate something but are not yet complete 
(certainly not to the point of producing executable code). In this scenario, 
you could use the neg sequence fragment to turn off the code generation for 
those sequences that aren’t quite yet ready for prime time.

Even if you don’t intend to generate code directly from a UML dia-
gram, you might want to use the neg for future features. When you hand 
your UML diagrams off to an engineer to implement the design, they 
represent a contract that says, “This is how the code is to be written.” 
Sometimes, though, you’ll want your diagrams to show features that you 
plan to include in a future version of the software, but not in the first (or 
current) version. The neg sequence fragment is a clean way to tell the engi-
neer to ignore that part of the design. Figure 7-30 shows a simple example 
of the neg sequence fragment.

Object2

msg1

Object3 Object4

msg2neg

sd example

Figure 7-30: An example of the neg sequence  
fragment

The example in Figure 7-30 is roughly equivalent to the following 
C/C++ code:

// Assumption: Class2 is Object2's data type. Because control
// transfers into the Object2 sequence at the top of its
// lifeline, example must be a member function of Object2/Class2

void Class2::example( void )
{
      Object3->msg1();
} // end example
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7.1.13.8 par

The par sequence fragment, an example of which is shown in Figure 7-31, 
states that the enclosed sequences4 (operations) can be executed in parallel 
with each other. 

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

par

sd example

Operand1

Operand2

Operand3

Figure 7-31: An example of the par sequence fragment

Figure 7-31 shows three operands: the sequence with {msg2a, msg2b, msg2c}, 
the sequence with {msg3a, msg3b, msg3c}, and the sequence with {msg4a, msg4b, 
msg4c}. The par sequence fragment requires that the operations within a given 
sequence must execute in the order in which they appear (for example, msg2a, 
then msg2b, then msg2c). However, the system is free to interleave operations 
from different operands as long as it maintains the internal order of those 
operands. So, in Figure 7-31, the order {msg2a, msg3a, msg3b, msg4a, msg2b, msg2c, 
msg4b, msg4c, msg3c} is legitimate, as is {msg4a, msg4b, msg4c, msg3a, msg3b, msg3c, 
msg2a, msg2b, msg2c}, because the ordering of the enclosed sequences matches. 
However, {msg2a, msg2c, msg4a, msg4b, msg4c, msg3a, msg3b, msg3c, msg2b} is not legiti-
mate because msg2c occurs before msg2b (which is contrary to the ordering 
specified in Figure 7-31).

4. There will be two or more, separated by dashed lines, similar in syntax to the alt 
sequence fragment.
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7.1.13.9 seq

The par sequence fragment enforces the following restrictions:

•	 The system maintains the ordering of the operations within an operand.

•	 The system allows operations on different lifelines from different 
operands to execute in any order.

And the seq sequence adds another: 

•	 Operations on the same lifeline in different operands must execute in 
the order in which they appear in the diagram (from top to bottom).

In Figure 7-32, for example, Operand1 and Operand3 have messages that 
are sent to the same object (lifeline). Therefore, in a seq sequence frag-
ment, msg2a, msg2b, and msg2c must all execute before msg4a.

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

seq

sd example

Operand1

Operand2

Operand3

msg2a–msg2c
must execute
before
msg4a–msg4c
as they both
send messages
to the same
lifeline

Figure 7-32: An example of the seq sequence fragment

Figure 7-32 shows a stand-alone seq sequence fragment. In typical 
usage, however, a seq sequence fragment will appear inside a par to control 
the execution sequence of a portion of the par’s operands.

7.1.13.10 strict

The strict sequence fragment forces the operations to occur in the sequence 
they appear in each operand; interleaving of operations between operands 
is not allowed. The format for a strict sequence fragment is similar to that 
of par and seq (see Figure 7-33).
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Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

strict

sd example

Operand1

Operand2

Operand3

Figure 7-33: An example of the strict sequence fragment

The strict parallel operation allows the operands to execute in any 
order, but once a given operand begins execution, all the operations within 
it must complete in the sequence specified before any other operand can 
begin executing. 

In Figure 7-33, there are six different operation sequences possible: 
{Operand1, Operand2, Operand3}; {Operand1, Operand3, Operand2}; {Operand2, Operand1, 
Operand3}; {Operand2, Operand3, Operand1}; {Operand3, Operand1, Operand2}; and 
{Operand3, Operand2, Operand1}. 

However, operations internal to the operands cannot interleave, and 
must execute from top to bottom.

7.1.13.11 region

In the section “Extending UML Activity Diagrams” on page 99, I used 
the example of a home-brew critical section in an activity diagram to dem-
onstrate how to extend UML for your own purposes. I pointed out why this 
is a bad idea (reread that section for the details), and mentioned there is 
another way to achieve what you want to do using standard UML: the region 
sequence fragment. UML activity diagrams don’t support critical sections, 
but sequence diagrams do. 

The region sequence fragment specifies that once execution enters the 
region, no other operations in the same parallel execution context can 
be interleaved until it completes execution. The region sequence fragment 
must always appear within some other parallel sequence fragment (gener-
ally par or seq; technically it could appear inside strict, though ultimately 
this would serve no purpose). 
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As an example, consider Figure 7-34—the system is free to interleave 
the execution of any operand’s messages, subject to the rules given for the 
par sequence fragment, but once the system enters the critical region (with 
the execution of the msg4a operation), no other threads in the par sequence 
fragment can execute.

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

par

region

sd example

Figure 7-34: The region sequence fragment

7.2 Collaboration Diagrams
Collaboration (or communication) diagrams provide the same information 
as sequence diagrams but in a slightly more compact form. Rather than 
drawing arrows between lifelines, in collaboration diagrams we draw mes-
sage arrows directly between objects, and attach numbers to each message 
to indicate the sequence (see Figure 7-35). 

«Actor»
Timer Module 1: salinityCheck()

3: updateSalinityDisp()
    [salinity < 3600 ppm]
2: sendMsg(msg)

salinity:saltSensor

SMS:IoTDevice

Figure 7-35: A collaboration diagram
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The diagram in Figure 7-35 is roughly equivalent to the sequence 
diagram in Figure 7-9 (without the time constraint of 10 minutes). In 
Figure 7-35 the salinityCheck message executes first, sendMsg executes sec-
ond, and updateSalinityDisplay executes last.

Figure 7-36 shows a more complex collaboration diagram that better 
demonstrates the compactness of this option. The six messages sent in this 
example would require six lines in a sequence diagram but here require 
only three communication links.

«Actor»
Host

2: boards(1)
3: config(1)
4: dir(1,input)

1: reset()

5: resetMCP23s17(1)
6: setDDir(1,input)

board1:PPDIO

daq1:PPDAQ

Figure 7-36: A more complex collaboration diagram

N O T E  Having both collaboration and sequence diagrams is probably an artifact of merging 
different systems together when UML was created. Which one you use is really just a 
matter of personal preference. Keep in mind, however, that as the diagrams become 
more complex, collaboration diagrams become harder to follow.
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This chapter finishes up the book’s discus
sion of UML by describing five additional 

diagrams that are useful for UML documen
tation: component, package, deployment, com

posite structure, and statechart diagrams.

8.1 Component Diagrams
UML uses component diagrams to encapsulate reusable components such as 
libraries and frameworks. Though components are generally larger and 
have more responsibilities than classes, they support much of the same 
functionality as classes, including:

•	 Generalization and association with other classes and components

•	 Operations

•	 Interfaces

8
M I S C E L L A N E O U S  U M L  D I A G R A M S



156   Chapter 8

UML defines components using a rectangle with the «component» stereo
type (see Figure 81). Some users (and CASE tools) also use the stereotype 
«subsystem» to denote components.

«component»
SomeComponent

Figure 8-1: A UML component

Components use interfaces (or protocols) to encourage encapsulation 
and loose coupling. This improves the usability of a component by making 
its design independent of external objects. The component and the rest of 
the system communicate via two types of predefined interfaces: provided 
and required. A provided interface is one that the component provides and 
that external code can use. A required interface must be provided for the 
component by external code. This could be an external function that 
the component invokes.

As you would expect from UML by now, there’s more than one way to 
draw components: using stereotype notation (of which there are two versions) 
or ball and socket notation. 

The most compact way to represent a UML component with interfaces 
is probably the simple form of stereotype notation shown in Figure 82, 
which lists the interfaces inside the component. 

«component»
SomeComponent

«providedInterfaces»
someProvidedInterface,
anotherProvidedIntfc

«requiredInterfaces»
aFunctionToBeCalled

Figure 8-2: A simple form of  
stereotype notation

Figure 83 shows a more complete (though bulkier) version of stereo
type notation with individual interface objects in the diagram. This option 
is better when you want to list the individual attributes of the interfaces.
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«component»

«realization»«realization»

«uses»

SomeComponent

«interface»
someProvidedInterface

+someMethodToCall():int

«interface»
anotherProvidedIntfc

+anotherMethodToCall():int

«interface»
aFunctionToBeCalled

+theFunctionToCall():int

Figure 8-3: A more complete form of stereotype notation

Ball and socket notation provides an alternative to the stereotype nota
tion, using a circle icon (the ball) to represent a provided interface and a 
halfcircle (the socket) to represent required interfaces (see Figure 84).

«component»
SomeComponent

someProvidedInterface
aFunctionToBeCalled

anotherProvidedIntfc

Figure 8-4: Ball and socket notation

The nice thing about ball and socket notation is that connecting com
ponents can be visually appealing (see Figure 85). 

«component»
component1

«component»
component2

func()

Figure 8-5: Connecting two ball and socket components
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As you can see, the required interface of component1 connects nicely 
with the provided interface of component2 in this diagram. But while ball 
and socket notation can be more compact and attractive than the stereo
type notation, it doesn’t scale well beyond a few interfaces. As you add 
more provided and required interfaces, the stereotyped notation is often 
a better solution.

8.2 Package Diagrams
A UML package is a container for other UML items (including other pack
ages). A UML package is the equivalent of a subdirectory in a filesystem, a 
namespace in C++ and C#, or packages in Java and Swift. To define a pack
age in UML, you use a file folder icon with the package name attached (see 
Figure 86).

packageName

Figure 8-6: A UML package

For a more concrete example, let’s return to the pool monitor applica
tion. One useful package might be sensors, to contain classes/objects associ
ated with, say, pH and salinity sensors. Figure 87 shows what this package 
might look like in UML. The + prefix on the phSensors and saltSensor objects 
indicates that these are public objects accessible outside the package.1

sensors

+phSensor

+saltSensor

Figure 8-7: The sensors package

To reference (public) objects outside of a package, you use a name of 
the form packageName::objectName. For example, outside the sensors pack
age you would use sensors::pHSensor and sensors::saltSensor to access the 
internal objects. If you have one package nested inside another, you could 
access objects in the innermost package using a sequence like outsidePackage
::internalPackage::object. For example, suppose you have two nuclear power 
channels named NP and NPP (from the use case examples in Chapter 4). 
You could create a package named instruments to hold the two packages NP 
and NPP. The NP and NPP packages could contain the objects directly associ
ated with the NP and NPP instruments (see Figure 88). 

1. The protected, private, and package visibility prefixes are also valid here with the appropri
ate meanings.
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instruments

+NP

+calibrate()
+pctPwr():real

+NPP

+calibrate()
+pctPwr():real

Figure 8-8: Nested packages

Note that the NP and NPP packages both contain functions named 
calibrate() and pctPwr(). There is no ambiguity about which function you’re 
calling because outside these individual packages you have to use quali-
fied names to access these functions. For example, outside the instruments 
package you’d have to use names like instruments::NP::calibrate and 
instruments::NPP::calibrate so that there is no confusion.

8.3 Deployment Diagrams
Deployment diagrams present a physical view of a system. Physical objects 
include PCs, peripherals like printers and scanners, servers, plugin inter
face boards, and displays.

To represent physical objects, UML uses nodes, a 3D box image. 
Inside the box you place the stereotype «device» plus the name of the 
node. Figure 89 provides a simple example from the DAQ data acquisi
tion system. It shows a host PC connected to a DAQ_IF and a Plantation 
Productions’ PPDIO96 96channel digital I/O board.

«device»
Host PC

«device»
DAQ_IF

«Ethernet»

«SPI bus»

«device»
PPDIO96

Figure 8-9: A deployment diagram

One thing missing from this figure is the actual software installed on 
the system. In this system, there are likely to be at least two application 
programs running: a program running on the host PC that communicates 
with the DAQ_IF module (let’s call it daqtest.exe) and the firmware program 
(frmwr.hex) running on the DAQ_IF board (which is likely the true software 
system the deployment diagram describes). Figure 810 shows an expanded 
version with small icons denoting the software installed on the machines. 
Deployment diagrams use the stereotype «artifact» to denote binary 
machine code.
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«device»
Host PC

«device»
DAQ_IF«Ethernet»

«SPI bus»

«device»
PPDIO96

«artifact»
daqtest.exe

«artifact»
frmwr.hex

Figure 8-10: An expanded deployment diagram

Note that the PPDIO96 board is directly controlled by the DAQ_IF 
board: there is no CPU on the PPDIO96 board and, therefore, there is no 
software loaded onto the PPDIO96.

There is actually quite a bit more to deployment diagrams, but this dis
cussion will suffice for those we’ll need in this book. If you’re interested, see 
“For More Information” on page 165 for references that explain deploy
ment diagrams in more detail. 

8.4 Composite Structure Diagrams
In some instances, class and sequence diagrams cannot accurately depict 
the relationships and actions between components in some classes. 
Consider Figure 811, which illustrates a class for the PPDIO96. 

portInitialization writePort

PPDIO96

Figure 8-11: PPDIO96 class composition

This class composition diagram tells us that the PPDIO96 class contains 
(is composed of) two subclasses: portInitialization and writePort. What 
it does not tell us is how these two subclasses of PPDIO96 interact with each 
other. For example, when you initialize a port via the portInitialization 
class, perhaps the portInitialization class also invokes a method in writePort 
to initialize that port with some default value (such as 0). The bare class 
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diagrams don’t show this, nor should they. Having portIntialization write a 
default value via a writePort invocation is probably only one of many differ
ent operations that could arise within PPDIO96. Any attempt to show allowed 
and possible internal communications within PPDIO96 would produce a very 
messy, illegible diagram.

Composite structure diagrams provide a solution by focusing only on 
those communication links of interest (it could be just one communica
tion link, or a few, but generally not so many that the diagram becomes 
incomprehensible). 

A first (but problematic) attempt at a composite structure diagram is 
shown in Figure 812.

portInitialization writePort

PPDIO96

Figure 8-12: Attempted composite structure diagram

The problem with this diagram is that it doesn’t explicitly state which 
writePort object portInitialization is communicating with. Remember, 
classes are just generic types, whereas the actual communication takes place 
between explicitly instantiated objects. In an actual system the intent of 
Figure 812 is probably better conveyed by Figure 813.

init:portInitialization write:writePort

digOut[0]:PPDIO96

Figure 8-13: Instantiated composite structure diagram

However, neither Figure 812 nor Figure 813 implies that the port 
Initialization and writePort instantiated objects belong specifically to the 
PPDIO96 object. For example, if there are two sets of PPDIO96, portInitialization, 
and writePort objects, the topology in Figure 814 is perfectly valid based on 
the class diagram in Figure 812. 
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i1:portInitialization

w1:writePort

d1:PPDIO96

i2:portInitialization

w2:writePort

d2:PPDIO96

Figure 8-14: Weird, but legal, communication links

In this example, i1 (which belongs to object d1) calls w2 (which belongs to 
object d2) to write the digital value to its port; i2 (which belongs to d2) calls 
w1 to write its initial value to its port. This probably isn’t what the original 
designer had in mind, even though the generic composition structure dia
gram in Figure 812 technically allows it. Although any reasonable program
mer would immediately realize that i1 should be invoking w1 and i2 should 
be invoking w2, the composite structure diagram doesn’t make this clear. 
Obviously, we want to eliminate as much ambiguity as possible in our designs.

To correct this shortcoming, UML 2.0 provides (true) composite struc
ture diagrams that incorporate the member attributes directly within the 
encapsulating class diagram, as shown in Figure 815. 

portInitialization writePort

PPDIO96

Figure 8-15: Composite structure diagram

This diagram makes it clear that an instantiated object of PPDIO96 will 
constrain the communication between the portInitialization and writePort 
classes to objects associated with that same instance.

The small squares on the sides of the portInitialization and writePort 
are ports. This term is unrelated to the writePort object or hardware ports 
on the PPDIO96 in general; this is a UML concept referring to an inter
action point between two objects in UML. Ports can appear in compos
ite structure diagrams and in component diagrams (see “Component 
Diagrams” on page 155) to specify required or provided interfaces to an 
object. In Figure 815 the port on the portInitialization side is (probably) 
a required interface and the port on the writePort side of the connection is 
(probably) a provided interface.

N O T E  On either side of a connection, one port will generally be a required interface and the 
other will be a provided interface.
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In Figure 815 the ports are anonymous. However, in many diagrams 
(particularly where you are listing the interfaces to a system) you can attach 
names to the ports (see Figure 816).

portInitialization
initPort

writeByte
writePort

PPDIO96

Figure 8-16: Named ports

You can also use the ball and socket notation to indicate which side 
of a communication link is the provider and which side has the required 
interface (remember, the socket side denotes the required interface; the 
ball side denotes the provided interface). You can even name the communi
cation link if you so desire (see Figure 817). A typical communication link 
takes the form name:type where name is a unique name (within the compo
nent) and type is the type of the communication link.

portInitialization

w:writeByte

writePort

PPDIO96

Figure 8-17: Indicating provided and required interfaces

8.5 Statechart Diagrams
UML statechart (or state machine) diagrams are very similar to activity dia
grams in that they show the flow of control through a system. The main dif
ference is that a statechart diagram simply shows the various states possible 
for a system and how the system transitions from one state to the next.

Statechart diagrams do not introduce any new diagramming symbols; 
they use existing elements from activity diagrams—specifically the start 
state, end state, state transitions, state symbols, and (optionally) decision 
symbols, as shown in Figure 818.

Start state symbol End state symbol State transition

Decision symbolState symbol

Figure 8-18: Elements of a statechart diagram
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A given statechart diagram will have exactly one start state symbol; this is 
where activity begins. The state symbols in a statechart diagram always have 
an associated state name (which, obviously, indicates the current state). A 
statechart diagram can have more than one end state symbol, which is a spe
cial state that marks the end of activity (entry into any end state symbol stops 
the state machine). Transition arrows show the flow between states in the 
machine (see Figure 819).

[wait for on button]

System is active

[wait for off button]

Figure 8-19: A simple statechart diagram

Transitions usually occur in response to some external events, or trig
gers, in the system. Triggers are stimuli that cause the transition from one 
state to another in the system. You attach guard conditions to a transition, 
as shown in Figure 819, to indicate the trigger that causes the transition to 
take place. 

Transition arrows have a head and a tail. When activity occurs in a 
statechart diagram, transitions always occur from the state attached to the 
arrow tail to the state pointed at by the arrowhead.

If you are in a particular state and some event occurs for which there 
is no transition out of that state, the state machine ignores that event.2 For 
example, in Figure 819, if you’re already in the “System is active” state and 
an on button event occurs, the system remains in the “System is active” state.

If two transitions out of a state have the same guard condition, then the 
state machine is nondeterministic. This means that the choice of transition 
arrow is arbitrary (and could be randomly chosen). Nondeterminism is a 
bad thing in UML statechart diagrams, as it introduces ambiguity. When 
creating UML statechart diagrams, you should always strive to keep them 
deterministic by ensuring that the transitions all have mutually exclusive 
guard conditions. In theory, you should have exactly one exiting transition 
from a state for every possible event that could occur; however, most system 

2. Technically, we should put a transition arrow from a state back to that same state labeled 
else to handle this situation; however, the else condition is implied in UML statechart 
diagrams.
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designers assume that, as mentioned before, if an event occurs for which 
there is no exit transition, then the state ignores that event.

It is possible to have a transition from one state to another without a 
guard condition attached; this implies that the system can arbitrarily move 
from the first state (at the transition’s tail) to the second state (at the head). 
This is useful when you’re using decision symbols in a state machine (see 
Figure 820). Decision symbols aren’t necessary in a statechart diagram—
just as for activity diagrams, you could have multiple transitions directly out 
of a state (such as the “System is active” state in Figure 820)—but you can 
sometimes clean up your diagrams by using them.

[wait for on button]

System is active

System is sleeping

[wait for off button]

[Sleep button pressed]

[wait for on button]

Figure 8-20: A decision symbol in a statechart

8.6 More UML
As has been a constant theme, this is but a brief introduction to UML. 
There are more diagrams and other features, such as the Object Constraint 
Language (OCL), that this book won’t use, so this chapter doesn’t discuss 
them. However, if you’re interested in using UML to document your soft
ware projects, you should spend more time learning about it. See the next 
section for recommended reading.

8.7 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit, 

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press, 
1999. A sample chapter is available at http://www.untechnicalpress.com 
/Downloads/UMM%20sample%20doc.pdf.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
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System documentation specifies system 
requirements, design, test cases, and test 

procedures. In a large software system, the 
system documentation is often the most expen-

sive part; the Waterfall software development model, 
for example, often produces more documentation than 
code. In addition, typically you must maintain system documentation man-
ually, so if you change a description (such as a requirement) in one docu-
ment, you’ll need to search through the system documentation and update 
every other document that references that description for consistency. This 
is a difficult and costly process. 

In this chapter, we’ll look at the common types of system documents, 
ways to enforce consistency within them, and documentation strategies to 
reduce some of the costs associated with development.

N O T E  This chapter discusses system documentation, not user documentation. To learn 
about user documentation in detail, check out “For More Information” on page 184.

9
S Y S T E M  D O C U M E N T A T I O N
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9.1 System Documentation Types
Traditional software engineering generally uses the following system docu-
mentation types:

System Requirements Specification (SyRS) document 
The SyRS (see “The System Requirements Specification Document” on 
page 193) is a system-level requirements document. In addition to soft-
ware requirements, it might include hardware, business, procedural, 
manual, and other non-software-related requirements. The SyRS is a 
customer/management/stakeholder-level document that eschews detail 
to present a “big picture” view of the requirements.

Software Requirements Specification (SRS) document 
The SRS (see “The Software Requirements Specification Document” 
on page 194) extracts the software requirements1 from the SyRS and 
drills down on the high-level requirements to introduce new require-
ments at a much finer level of detail (suitable for software engineers).

N O T E  The SyRS and SRS are requirements documents whose content may differ in scope 
and detail. Many organizations produce a single document rather than two separate 
ones, but this book treats them separately because the SyRS deals with a wider range of 
requirements (for example, hardware and business requirements) than the SRS.

Software Design Description (SDD) document
The SDD (see Chapter 11) discusses how the system will be constructed 
(versus the SyRS and SRS, which describe what the system will do). In 
theory, any programmer should be able to use the SDD and write the 
corresponding code to implement the software system.

Software Test Cases (STC) document 
The STC (see “Software Test Case Documentation” on page 274) 
describes the various test values needed to verify that the system 
incorporates all the requirements, and functions correctly beyond 
the requirements list.

Software Test Procedures (STP) document 
The STP (see “Software Test Procedure Documentation” on page 288) 
describes the procedures to efficiently execute the software test cases 
(from the STC) to verify correct system operation.

Requirements (or Reverse) Traceability Matrix (RTM) document 
The RTM (see “The Requirements/Reverse Traceability Matrix” on 
page 178) links the requirements against the design, test cases, and 

1. Hardware requirements might be extracted to a Hardware Requirements Specification 
(HRS), and other requirement types might be likewise extracted to their own specialized 
documents. Those documents are beyond the scope of this book.
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code. Using an RTM, a stakeholder can verify that a requirement is 
implemented in the design and the code, and that the test cases and 
procedures properly check that requirement’s implementation.

N O T E  Some organizations might also have a Functional Requirements Specification 
document; this often refers to the requirements that an external customer provides, or it 
can simply be a synonym for the SRS or SyRS. This book won’t use this term further.

There are many additional types of documents, but these are the basic 
ones you’d expect for any (non-XP, at least) project, and they correspond 
to the various stages of the Waterfall model (see “The Waterfall Model” on 
page 44), as shown in Figure 9-1.

SyRS SRS

STP

SDD

STC

Figure 9-1: System documentation dependencies

As you can see, the SRS is constructed from the SyRS. The SDD is 
constructed from the SRS, as is the STC (which, in some cases, is also influ-
enced by the SDD, as indicated by the gray arrow2). The STP is constructed 
from the STC. 

9.2 Traceability
Perhaps the greatest logistical issue with system documentation is consis-
tency. A requirement typically generates some design item and a test case 
(which is part of a test procedure in the STP). This is an intuitive and natu-
ral progression when you’re following a strict Waterfall model—writing the 
SRS first, followed by the SDD, the STC, and the SDD. However, problems 
arise when you have to make corrections to documents earlier in this chain. 
For example, when you change a requirement, you might need to change 
entries in the SDD, STC, and STP documents. Best practice is therefore to 
use traceability, which allows you to easily trace items from one document 
to all the other system documents. If you can trace your requirements to 
design elements, test cases, and test procedures, you can rapidly locate and 
change those elements whenever you modify a requirement.

Reverse traceability allows you to trace a test procedure back to the cor-
responding test cases, and test cases and design items back to their corre-
sponding requirements. For example, you might encounter problems with a 
test that require changes to the test procedure, in which case you can locate 
the corresponding test cases and requirements to ensure that your changes 

2. While the STC can be influenced by the SDD, it’s generated from the SRS, because you create 
test cases from the requirements, not from the design. Any test cases constructed from the 
SDD will come from design entities originating from requirements.
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to the test procedure still handle all of them. In this way, reverse traceabil-
ity also helps you determine whether you need to make changes to the test 
cases or requirements.

9.2.1 Ways to Build Traceability into Your Documentation 
There are a couple of ways to accomplish traceability and reverse traceabil-
ity. One approach is to build the traceability into an identifier, or tag, asso-
ciated with the requirement, design element, test case, or test procedure 
documentation. This tag could be a paragraph (or item) number, a descrip-
tive word, or some other set of symbols that uniquely identify the text to 
reference. Software documents that use tags avoid wasting space by directly 
quoting other documents. 

Often authors use paragraph numbers as tags, which is really easy 
to do in a word processing system. However, many word processors don’t 
support cross-referencing across multiple document types. Also, the tag-
ging mechanism or format you want to use might not match what the word 
processor provides.

Although it’s possible to write custom software, or use a database appli-
cation to extract and maintain cross-reference information, the most com-
mon solution is to maintain tags manually. This might sound as though 
it would require considerable effort, but with a little planning, it isn’t 
very difficult.

Perhaps the best solution is to create an RTM (see “The Requirements/
Reverse Traceability Matrix” on page 178), which tracks the links between 
the items in your system documentation. Although the RTM is yet another 
document you’ll have to maintain, it provides a complete and easy-to-use 
mechanism for tracking all the components in your system.

We’ll first talk through common tag formats, and then we’ll look into 
building an RTM. 

9.2.2 Tag Formats
There is no particular standard for tag syntax; tags can take any form you 
like as long as the syntax is consistent and each tag is unique. For my own 
purposes (and for this book), I’ve created a syntax that incorporates ele-
ments of traceability directly into the tag. The tag formats that follow are 
organized by document type.

9.2.2.1 SyRS Tags

For the SyRS, a tag takes the form [productID_SYRS_xxx] where:

productID Refers to the product or project. For example, for a swim-
ming pool monitor application, productID might be “POOL.” You don’t 
want to use a long ID (four to five characters should be the maximum 
length) because it will be typed frequently.

SYRS  States that this is a tag from the SyRS document (this is prob-
ably a system requirements tag).
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xxx  Represents one or more numbers, separated by periods if more 
than one integer is used. This numeric sequence uniquely identifies the 
tag within the SyRS. 

In a perfect world, all the SyRS requirements (and other items requiring 
a tag) would be numbered sequentially from 1 with no correlation between 
the integers and the meanings of the text blocks to which they refer. 

Consider the following two requirements in an SyRS document:

[POOL_SYRS_001]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_002]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature 
exceeds 86 degrees Fahrenheit.

Let’s say that 150 additional requirements follow [POOL_SYRS_002].
Now suppose that someone suggests a requirement that the pool heater 

be turned on if the pool temperature drops below 70 degrees Fahrenheit. 
You could add the following requirements:

[POOL_SYRS_153]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops 
below 70 degrees Fahrenheit.

[POOL_SYRS_154]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature 
exceeds 70 degrees Fahrenheit.

In the SyRS, it makes sense to arrange related requirements close to 
one another, so the reader can locate all the pertinent requirements for a 
given feature at one point in the document. You can see why you wouldn’t 
want to sort the requirements by their tags—doing so would push the two 
new requirements for the pool heater to the end of the document, away 
from the other pool temperature requirements. 

There’s nothing stopping you from moving the requirements together; 
however, it’s somewhat confusing to see a set of requirements like this:

[POOL_SYRS_001]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_153]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops 
below 70 degrees Fahrenheit.

[POOL_SYRS_154]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature 
exceeds 70 degrees Fahrenheit.
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[POOL_SYRS_002]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature 
exceeds 86 degrees Fahrenheit.

A better solution is to renumber the tags using dotted sequences to 
expand the tag numbers. A dotted sequence consists of two or more inte-
gers separated by a dot. For example:

[POOL_SYRS_001]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_001.1]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops 
below 70 degrees Fahrenheit.

[POOL_SYRS_001.2]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature 
exceeds 70 degrees Fahrenheit.

[POOL_SYRS_002]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature 
exceeds 86 degrees Fahrenheit.

This allows you to flow in new requirements or changes anywhere. Note 
that 001.1 and 001.10 are not the same. These numbers are not floating-
point numeric values; they’re two integers separated by a period. The num-
ber 001.10 is probably the 10th value in the sequence 001.1 through 001.10. 
Likewise, 001 is not the same as 001.0.

If you need to insert a requirement between 001.1 and 001.2, you can 
simply add another period to the end of the sequence, such as 001.1.1. You 
can also leave gaps between your tag numbers if you expect to insert addi-
tional tags in the future, like so:

[POOL_SYRS_010]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_020]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature 
exceeds 86 degrees Fahrenheit.

So when you decide to add the other two requirements, you have:

[POOL_SYRS_010]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_013]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops 
below 70 degrees Fahrenheit.
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[POOL_SYRS_017]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature 
exceeds 70 degrees Fahrenheit.

[POOL_SYRS_020]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature 
exceeds 86 degrees Fahrenheit.

Keep in mind that it’s important to make all the tags unique.

N O T E  Thus far in this section, tags have been part of a paragraph title, which is useful 
when people want to search for the tags within the document (particularly, if the docu-
ment is not in electronic form). However, you can also place tags within paragraphs.

9.2.2.2 SRS Tags

For system document sets that have only the SRS—not an SyRS—as the 
requirements document, “SRS” can simply replace “SYRS” in the tag: 
[POOL_SRS_010]: Pool temperature monitoring.

However, when a project’s document set includes both an SyRS and 
an SRS, this book uses a convention that builds reverse traceability from 
the SRS to the SyRS directly into the SRS tag. Such SRS tags have the 
format [productID_SRS_xxx_yyy].

The productID is the same as for the SyRS tag: SRS denotes a Software 
Requirements Specification tag (versus a System Requirements Specification 
tag), and xxx and yyy are decimal numbers, where xxx is the number of a 
corresponding SyRS tag (see “SyRS Tags” on page 172).

Including the tag number of the parent SyRS requirement embeds 
reverse traceability information for an SRS requirement directly into its 
tag. Because almost all SRS requirements are derived from a corresponding 
SyRS tag, and there is a one-to-many relationship between SyRS require-
ments and SRS requirements, a single SyRS requirement can generate one 
or more SRS requirements, but each SRS requirement can be traced back 
to just one SyRS requirement, as shown in Figure 9-2. 

SyRS SRS

SRS

SRS

Figure 9-2: An SyRS-to-SRS  
relationship
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The yyy component is the SRS tag value. As a general rule (and the 
convention this book follows), yyy doesn’t have to be unique among all the 
SRS tags, but the combination xxx_yyy must be unique. The following are all 
valid (and unique) SRS tags:

[POOL_SRS_020_001]

[POOL_SRS_020_001.5]

[POOL_SRS_020_002]

[POOL_SRS_030.1_005]

[POOL_SRS_031_003]

This book also uses the convention of restarting the yyy numbering with 
each xxx value.

By constructing SRS tags this way, you build automatic reverse trace-
ability from the SRS to the SyRS directly into the tag identifier. To locate 
the SyRS requirement associated with an SRS requirement, just extract the 
xxx value and search for the corresponding tag in your SyRS document. It’s 
also easy to locate SRS tags associated with an SyRS tag in the SRS docu-
ment. For example, to find all SRS requirements associated with POOL_
SYRS_030, search for all instances of “SRS_030” in your SRS document. 

It’s possible that an SRS document might produce some brand-new 
requirements that are not based on a specific SyRS requirement. If so, 
there won’t be an xxx number to use as part of the SRS tag. This book 
reserves SyRS tag number 000 (that is, there will never be an SyRS tag 
[productID_SYRS_000]), and any new SRS requirement that isn’t based on 
an SyRS requirement will take the form [productID_SRS_000_yyy]. 

N O T E  Another convention this book uses is to substitute an asterisk (*) in place of the 
000 value.

It’s a good idea to include all software-related requirements from the 
SyRS directly in the SRS.3 This allows the SRS to serve as a stand-alone 
document for software developers to use. When copying SyRS requirements 
directly into the SRS, we’ll use the syntax [productID_SRS_xxx_000] for the 
copied requirement tags. That is, a yyy value of 000 denotes a copied tag.

9.2.2.3 SDD Tags

Unfortunately, there is not a one-to-many relationship between SRS 
requirements and SDD design elements.4 That makes it more difficult to 
build reverse traceability from an SDD tag to the corresponding SRS tag 

3. Keep in mind that the SyRS might contain hardware and other non-software-related 
requirements that wouldn’t be copied to the SRS; for more information, see “The 
Requirements/Reverse Traceability Matrix” on page 178, particularly the description 
of allocations.

4. In well-designed systems, there can be a many-to-one relationship between requirements 
and design items; in the worst case, there is a many-to-many relationship.
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into the SDD tag syntax. You’ll have to rely on an external RTM document 
to provide the links between the SRS and SDD documents.

Given that reverse traceability is not practical in the SDD tag, this book 
uses the simplified SDD tag format [productID_SDD_ddd], where productID 
has the usual meaning, and ddd is a unique identifier similar to xxx in the 
SyRS tag.

9.2.2.4 STC Tags

There should be a one-to-many relationship between SRS requirements and 
STC test cases, as shown in Figure 9-3. 

SRS STC

STC

STC

Figure 9-3: An SRS-to-STC  
tag relationship

This means you can build reverse traceability from the STC to the SRS 
into the tags, just as you did from the SRS to the SyRS. For STC tags, this 
book uses the syntax [productID_STC_xxx_yyy_zzz]. If all your yyy values 
were unique (rather than the xxx_yyy combination being unique), you could 
drop the xxx from the tag, but having both xxx and yyy does provide reverse 
traceability to both the SRS and SyRS, which can be convenient (at the 
expense of extra typing for your STC tags).

Although it rarely occurs, it’s possible to create a unique test case that 
isn’t based on any SRS requirement.5 For example, the software engineers 
using the SDD to implement the code might create test cases based on the 
source code they write. In such situations, this book uses the scheme shown 
previously for SRS requirements that aren’t based on an SyRS requirement: 
we reserve the xxx_yyy value of 000_000 or *_*, and any new STC tags that 
aren’t based on a requirement tag will use 000 as the tag number suffix. An 
xxx_000 component means that the test case is based on an SyRS require-
ment but not any underlying SRS requirement (or perhaps it’s based on the 
SRS tag copied from the SyRS using the syntax shown earlier); this is not a 
stand-alone test case. 

5. Generally, if you need to test something, a requirement should be driving that test. 
However, you might derive some test cases from the SDD rather than directly from the SRS. 
For example, the requirements generally don’t state details such as whether a coder should 
use an array or a dictionary (lookup table) to implement some operation. The SDD, on the 
other hand, might specify a particular data structure such as an array. This could lead to a 
test case that tests to ensure the program doesn’t violate the bounds of the array when index-
ing into it.
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STC tags that have the numeric form 000_000 don’t contain any trace-
ability information. In such cases, you’ll need to explicitly provide link infor-
mation to describe the origin of the test case. Here are a few suggestions:

•	 Use :source after the tag to describe the source of the test case (where 
source is the name of the file or other document containing the infor-
mation producing the test case).

•	 Use an RTM to provide the source information (see the next section, 
“The Requirements/Reverse Traceability Matrix,” for more details).

•	 Ensure that the document containing the source of the test case con-
tains a comment or other link specifying the STC tag.

9.2.2.5 STP Tags

STC test cases have a many-to-one relationship with STP test procedures, as 
shown in Figure 9-4. 

STPSTC

STC

STC

Figure 9-4: An STC-to-STP  
tag relationship

This means, as with the SDD, you can’t encode reverse traceability 
information into the STP tags. Therefore, for STP tags this book uses the 
syntax [productID_STP_ppp], where productID has the usual meaning, and 
ppp is a unique STP tag value.

9.2.3 The Requirements/Reverse Traceability Matrix
As mentioned, it isn’t possible to build reverse traceability into the SDD 
and STP tags, so you’ll need the Requirements/Reverse Traceability 
Matrix (RTM). 

As its name implies, an RTM is a two-dimensional matrix, or table, 
wherein:

•	 Each row specifies a link between requirements, design items, test 
cases, or test procedures.

•	 Each column specifies a particular document (SyRS, SRS, SDD, STC, 
or STP).

•	 Each cell contains the tag for the associated document type.

A typical row in the table might contain entries such as the following:

POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005
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In general, the SyRS or SRS requirement tags drive the RTM, and you’d 
usually organize the table by sorting it via these columns. 

Because there is a one-to-many relationship between SyRS requirements 
and SRS requirements, you might need to replicate the SyRS requirements 
across multiple rows, as in this example:

1 POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

2 POOL_SYRS_020 POOL_SRS_020_002 POOL_SDD_005 POOL_STC_020_002_001 POOL_STP_005

3 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_001 POOL_STP_004

4 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_002 POOL_STP_006

5 POOL_SYRS_030 POOL_SRS_030_001 POOL_SDD_006 POOL_STC_030_001_001 POOL_STP_010

Rows 1, 2, and 3 share the same SyRS tag with different SRS tags; rows 3 
and 4 share the same SRS tags (and SyRS tags) with differing STC tags.

Sometimes, it might be cleaner to omit duplicate SyRS and SRS tags 
when they can be inferred from previous rows, like so:

1 POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

2 POOL_SRS_020_002 POOL_SDD_005 POOL_STC_020_002_001 POOL_STP_005

3 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_001 POOL_STP_004

4 POOL_SDD_005 POOL_STC_020_003_002 POOL_STP_006

5 POOL_SYRS_030 POOL_SRS_030_001 POOL_SDD_006 POOL_STC_030_001_001 POOL_STP_010

Although you could create an RTM using a word processor (for 
example, Microsoft Word or Apple Pages), a far better solution is to use a 
spreadsheet program (for example, Microsoft Excel or Apple Numbers) or 
a database application, which allows you to easily sort the rows in the table 
based on your current requirements. This book assumes you’re using a 
spreadsheet program.

9.2.3.1 Adding Extra Columns

At a bare minimum, you’ll want one column in the RTM for each system 
document type—SyRS (if present), SRS, SDD, STC, and STP—but you 
might want to include other information in the RTM as well. For example, 
you might consider a “Description” column that can help make sense of all 
the tags. 

Or, if you have an SyRS document, an “Allocations” column might be 
useful to specify whether an SyRS item is hardware, software, or other. Note 
that SRS, SDD, STP, and STC (by definition) are always software related, so 
the Allocations entry would be either “N/A” (not applicable) or always “soft-
ware” for such tags.

Another useful column might be “Verification,” which describes how a 
particular requirement might be tested (or verified) in the system. Examples 
of verification types might be test (as part of a software test procedure), by 
review, by inspection, by design, by analysis, other, or no test possible.
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One last option is an additional column (or columns) containing 
some row numbers you can use to quickly sort data in different ways. For 
example, you might add a column numbered 1 through n (where n is the 
number of rows) that, when sorted, lists the rows in order of requirements 
(SyRS and SRS); another column numbered 1 through n that could order 
the rows by SDD tag values; and so on. 

9.2.3.2 Sorting the RTM

Of course, if you fill in every cell in the matrix, you can sort by column 
values (or multiple column values). For example, suppose you’re using 
Microsoft Excel and the columns are organized as follows:

A: Description

B: SyRS tags

C: Allocations

D: SRS tags

E: Testing method

F: SDD tags

G: STC tags

H: STP tags

Sorting by column B, then by D, then by G, will sort the document in 
requirements order. Sorting by column F, then by B, then by D, will sort the 
document in design element order. Sorting by column H, then by D, then 
by G, will sort the document in test procedure order.

To use the RTM to trace from an SyRS or SRS requirement to an SRS 
requirement, SDD design item, STC test case, or STP test procedure, sim-
ply sort the matrix by requirements order, find the SyRS or SRS tag you’re 
interested in, and then pick out the corresponding tag(s) for the other 
document(s) from the same row as the requirement tag. You can use this 
same scheme to trace from STC tags to the corresponding test procedure 
(because the requirements sort will also sort the test case tags).

Reverse traceability from STC to SRS to SyRS is inherent in the tag syn-
tax, so nothing special is needed for this operation. Reverse traceability from 
the SDD to the SRS (or SyRS) and from the STP to the STC/SRS/SyRS is a 
little more involved. First, sort the matrix by SDD tag order or STP tag order. 
This will give you a list of SDD or STP tags all collected together (and sorted 
in lexicographical order). Now all the tags on the rows containing a particu-
lar SDD or STP tag will be the tags of interest to you. The following example 
shows the previous RTM examples sorted by test procedure:

3 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_001 POOL_STP_004

1 POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

2 POOL_SYRS_020 POOL_SRS_020_002 POOL_SDD_005 POOL_STC_020_002_001 POOL_STP_005

4 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_002 POOL_STP_006

5 POOL_SYRS_030 POOL_SRS_030_001 POOL_SDD_006 POOL_STC_030_001_001 POOL_STP_010
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In this table, you can easily see that test procedure 005 is associated 
with SyRS tag 020 and SRS tags 020_001 and 020_002. In this simple exam-
ple, you wouldn’t have to sort the data to determine these links. But with a 
more complex RTM (with dozens, hundreds, or even thousands of require-
ments), it would be significantly more work to manually search for these 
reverse links if the table wasn’t sorted by STP tags.

9.3 Validation, Verification, and Reviews
Validation (see “The Iterative Model” on page 46) is the process of show-
ing that the product meets the end users’ needs (that is, “Are we building 
the right product?”), while verification is ensuring that you’ve built it to 
satisfy the project specifications (that is, “Are we building the product 
right?”). While validation takes place at the end of the requirements 
phase(s) and at the end of the entire development cycle (see “Reducing 
Costs via Validation” on page 182), verification typically occurs at the end 
of each phase in the software development process to ensure that the phase 
respects all the input requirements. For example, verification of the SDD 
would consist of ensuring that it covers all the requirements in the SRS 
document (the SRS requirements are the input to the SDD stage).

The verification steps for each phase are as follows:

SyRS/SRS Ensuring that the requirements in the document fully 
cover all the requirements provided by the customer—perhaps from 
UML use cases (see “The UML Use Case Model” on page 74) or the 
customer’s functional specification.

SDD Ensuring that the design covers all requirements. The input is 
the requirements from the SRS. 

STC Ensuring that at least one test case exists for each (testable) 
requirement. The inputs are the requirements from the SRS. 

STP Ensuring that all the test cases are covered by the test proce-
dures. The inputs are the test cases from the STC (and, indirectly, the 
requirements on which the test cases are based). 

To verify each preceding phase, you’ll need to review the document 
resulting from it. The RTM will prove useful during these reviews. For 
example, when reviewing the SDD, you’d search for each requirement 
in the SRS, look up the corresponding SDD tag, and then verify that the 
design element implements the specified requirement. You’d use the same 
process to verify that the STC document covers all the requirements with 
test cases.

When you’re reviewing the code, the safest approach is to go through 
all the inputs to a phase (that is, requirements for the SDD and STC, and 
test cases for the STP) and physically check each input off after verifying 
that you properly handled it. This final list becomes part of the review doc-
ument for that phase.

In the review process, you should also confirm the correctness of the out-
puts from the phase. For example, when reviewing the SRS, you should check 
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each requirement to make sure it’s useful (see “The Software Requirements 
Specification Document” on page 194); when reviewing the SDD, you 
should make sure each design item is correct (for example, you’re using suit-
able algorithms and handling concurrent operations appropriately); when 
reviewing the STC documentation, you should ensure each test case properly 
tests the associated requirement; and when reviewing the STP, you should 
verify that each test procedure properly tests its associated test cases. 

If at all possible, and for the best results, an engineer other than the 
document author should conduct the final, formal review, or a second 
engineer should participate in the review process. The document author is 
more likely to gloss over an omission, because they’re too close to that por-
tion of the project and could mentally fill in missing elements during the 
review. Of course, they should do their own review of the document prior to 
submitting it for formal review. 

9.4 Reducing Development Costs Using Documentation
Documentation costs are often a major component of a project’s overall 
cost. Part of the reason is that there is so much documentation. But another 
reason is that the documents are interdependent, which makes them diffi-
cult to update and maintain. In Code Complete (Microsoft Press, 2004), Steve 
McConnell reports that, compared to the requirements phase, correcting 
errors is 3 times more expensive during the design (architectural) phase, 
5 to 10 times more expensive during coding, and 10 times more expensive 
during system testing. There a couple of reasons for this:

•	 If you fix a defect early in the development process, you don’t waste 
time writing additional documentation, coding, and testing defective 
designs. For example, it takes time to write the SDD documentation for 
a requirement, to write code to implement that requirement, to write 
test cases and test procedures for the requirement, and to run those 
tests. If the requirement was wrong to begin with, you’ve wasted all 
that effort.

•	 If you discover a defective item in one phase of the system, you have to 
locate and edit anything associated with that defect throughout the rest 
of the system. This can be laborious work, and it’s easy to miss changes, 
which creates inconsistencies and other problems down the line.

9.4.1 Reducing Costs via Validation
Nowhere is the validation activity more important than in the requirements 
phase (SyRS and SRS development). If you insist that the customer under-
stands and approves all requirements before moving on to later phases, you 
can ensure there are no unwanted requirements and that you’re solving the 
customer’s problems. Few things are worse than spending several months 
documenting, coding, and testing a program’s feature only to have the cus-
tomer say, “This isn’t what we were asking for.” A good validation process 
can help reduce the likelihood of this scenario.
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Validation, which should take place at the end of the requirements 
phase(s) and at the end of the development cycle, involves asking the fol-
lowing questions:

SyRS (if present)

1. Is each existing requirement important? Does the requirement 
describe some feature that the customer wants?

2. Is each requirement correct? Does it precisely state (without ambi-
guity) exactly what the customer wants?

3. Are there any missing requirements?

SRS

1. Are all software requirements listed in the SyRS (if present) also 
listed in the SRS?

2. Is each existing requirement important? Is this feature important 
to the system architect and agreed upon by the customer?

3. Is each requirement correct? Does it precisely state (without ambi-
guity) exactly what the software must do to be effective?

4. Are there any missing requirements?

During final acceptance testing, the test engineer(s) should have a list 
of all the requirements in the SRS in a checkbox form. They should check 
off each requirement as it’s tested (perhaps when following the test proce-
dures in the STP) to ensure that the software implements it correctly.

9.4.2 Reducing Costs via Verification
As mentioned in “Validation, Verification, and Reviews” on page 181, veri-
fication should occur after each phase of the software development process. 
In particular, there should be a verification step associated with each of the 
system documents after the SRS. Here are some questions you might ask 
after completing each document:

SDD

1. Do the design components completely cover all the requirements in 
the SRS?

2. Is there a many-to-one (or one-to-one) relationship between require-
ments (many) and software design elements (one)? Although a 
design item might satisfy multiple requirements, it should not take 
multiple design elements to satisfy a single requirement.

3. Does a software design element provide an accurate design that will 
implement the given requirement(s)?
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STC

1. Is there a one-to-many (or one-to-one) relationship between 
requirements and test cases? (That is, a requirement can have mul-
tiple associated test cases, but you shouldn’t have multiple require-
ments sharing the same test case.6)

2. Does a particular test case accurately test the associated requirement?

3. Do all the test cases associated with a requirement completely test 
the correct implementation of that requirement?

STP

1. Is there a many-to-one relationship between test cases in the STC 
and test procedures in the STP? That is, does a test procedure 
implement one or more test cases while each test case is handled by 
exactly one test procedure?

2. Does a given test procedure accurately implement all its associated 
test cases?
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R E Q U I R E M E N T S  D O C U M E N T A T I O N

Requirements state what the software must 
do in order to satisfy the customer’s needs, 

specifically:

•	 What functions the system must carry out (a functional requirement)

•	 How well the system must perform them (a nonfunctional requirement)

•	 The resource or design parameters in which the software must operate 
(constraints, which are also nonfunctional requirements)

If a piece of software does not fulfill a particular requirement, you cannot 
consider the software complete or correct. A set of software requirements, 
therefore, is the fundamental starting point for software development.

10.1 Requirement Origins and Traceability
Every software requirement must have an origin. This could be a higher-
level requirements document (for example, a requirement in a Software 
Requirements Specification [SRS] might originate from a System Requirements 
Specification [SyRS], or a requirement in the SyRS might originate from a 
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customer-supplied functional requirements document), a specific use case 
document, a customer “statement of work to be done,” a customer’s verbal 
communication, or a brainstorming meeting. You should be able to trace 
any requirement to its origin; if you can’t, it probably isn’t necessary and 
should be removed.

Reverse traceability is the ability to trace a requirement back to its ori-
gin. As discussed in Chapter 9, the Reverse Traceability Matrix (RTM) is 
a document or database that lists all requirements and their origins. With 
an RTM, you can easily identify the origin of a requirement to determine 
its importance (see “The Requirements/Reverse Traceability Matrix” on 
page 178 for an in-depth description of the RTM). 

10.1.1 A Suggested Requirements Format
A written requirement should take one of the following forms:

•	 [Trigger] Actor shall Action Object [Condition]

•	 [Trigger] Actor must Action Object [Condition]

where the items inside the square brackets are optional. The word 
shall indicates a functional requirement; the word must indicates a 
nonfunctional requirement. Each item is described as follows, based 
on this sample requirement:

When the pool temperature is in the range 40 degrees F 
to 65 degrees F the pool monitor shall turn off the “good” 
indication unless the atmospheric temperature is above 
90 degrees F.

Trigger A trigger is a phrase indicating when the requirement applies. 
The absence of a trigger implies that the requirement always applies. In 
the example, the trigger is “When the pool temperature is in the range 
40 degrees F to 65 degrees F.”

Actor The actor is the person or thing that is performing the action—
in this case, “the pool monitor.”

Action The action is the activity that the requirement causes 
(“turn off”).

Object The object is the thing being acted upon (“the ‘good’ 
indication”).

Condition The condition is typically a negative contingency that stops 
the action (if a positive condition causes the action, it’s a trigger). In 
the example, the condition is “unless the atmospheric temperature is 
above 90 degrees F.”

Some authors allow the words should or may in place of shall or must; 
however, these terms suggest that the requirement is optional. This book 
subscribes to the view that all requirements are necessary and therefore 
should not include the words should or may.
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10.1.2 Characteristics of Good Requirements
This section discusses the attributes that characterize good requirements.

10.1.2.1 Correct

That requirements must be correct should go without saying, but research 
shows that about 40 percent of a project’s cost is due to errors in require-
ments. Therefore, taking time to review requirements and correct any mis-
takes is one of the most cost-efficient ways to ensure quality software.

10.1.2.2 Consistent

Requirements must be consistent with one another; that is, one requirement 
cannot contradict another. For example, if a pool temperature monitor states 
that an alarm must be triggered if the temperature falls below 70 degrees and 
another says that the same alarm must be triggered when the temperature 
falls below 65 degrees, the two requirements are inconsistent. 

Note that consistency refers to requirements within the same docu-
ment. If a requirement is not consistent with a requirement in a higher-level 
document, then that requirement is incorrect—never mind inconsistent.

10.1.2.3 Feasible

If you can’t feasibly implement a software requirement, then you don’t have 
a requirement. After all, requirements state what must be done in order 
to provide a satisfactory software solution; if the requirement is not viable, 
then it’s likewise impossible to provide the software solution.

10.1.2.4 Necessary

By definition, if a software requirement is not necessary, it is not a require-
ment. Requirements are costly to implement—they require documentation, 
code, test procedures, and maintenance—so you do not want to include 
a requirement unless it is necessary. Unnecessary requirements are often 
the result of “gold plating,” or adding features simply because somebody 
thought they would be cool, without regard to the costs involved in imple-
menting them.

A requirement is necessary if it:

•	 makes the product market competitive;

•	 addresses a need expressed by a customer, end user, or other 
stakeholder;

•	 differentiates the product or usage model; or

•	 is dictated by a business strategy, roadmap, or a sustainability need.

10.1.2.5 Prioritized

Software requirements specify everything you must do to produce the 
desired application. However, given various constraints (time, budget, 
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and so on), you may not be able to implement every requirement in the 
first release of the software. Furthermore, as time passes (and dollars are 
spent), some requirements may be abandoned because things change. 
Therefore, a good requirement will have an associated priority. This can 
help drive the schedule, as teams implement the most critical features first 
and relegate the less important ones to the end of the project development 
cycle. Typically, three or four levels of priority should be sufficient: critical/
mandatory, important, desirable, and optional are good examples.

10.1.2.6 Complete

A good requirement will be complete; that is, it will not contain any TBD 
(to be determined) items. 

10.1.2.7 Unambiguous

Requirements must not be open to interpretation (note that TBD is a 
special case of this). Unambiguous means that a requirement has exactly 
one interpretation.

Because most requirements are written in a natural language (such as 
English) and natural languages are ambiguous, you must take special care 
when writing requirements to avoid ambiguity. 

Example of an ambiguous requirement:

When the pool temperature is too cold the software shall 
signal an alarm.

An unambiguous example:

When the pool temperature is below 65 degrees (F) the 
software shall signal an alarm.

Ambiguity results whenever the following natural language features 
appear in a requirement:

Vagueness Results when you use weak words—those without a precise 
meaning—in a requirement. This section will discuss weak words shortly.

Subjectivity Refers to the fact that different people will assign a dif-
ferent meaning for a term (a weak word) based on their own personal 
experiences or opinion.

Incompleteness Results from using TBD items, partial specifications, 
or unbounded lists in a requirement. Unbounded lists will be discussed 
in this section a little later.

Optionality Occurs when you use phrases that make a requirement 
optional rather than required (for example, is caused by, use of, should, 
may, if possible, when appropriate, as desired).

Underspecification Occurs when a requirement does not fully specify 
the requirement, often as a result of using weak words (such as support, 
analyzed, respond, and based on).
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Consider this requirement:

The pool monitor shall support Fahrenheit and Celsius scales.

What exactly does support mean in this context? One developer 
could interpret it to mean that the end user can select the input and 
output to be in degrees F or C (fixed), while another developer could 
interpret it to mean that both scales are used for output and that input 
allows either scale to be used. A better requirement might be:

The pool monitor setup shall allow the user to select either 
the Fahrenheit or Celsius temperature scale.

Underreference Refers to when a requirement provides an incom-
plete or missing reference to another document (such as a require-
ment’s origin).

Overgeneralization Occurs when a requirement contains universal 
qualifiers such as any, all, always, and every, or, in the negative sense, 
none, never, and only.

Nonintelligibility Results from poor writing (grammar), unde-
fined terms, convoluted logic (for example, double negation), and 
incompleteness.

Passive voice Refers to when the requirement does not assign an actor 
to an action. For example, a bad requirement using the passive voice 
might be:

An alarm shall be raised if the temperature drops below 
65 degrees F.

Who is responsible for raising the alarm? Different people could 
interpret this differently. A better requirement might be:

The pool monitor software shall raise an alarm if the tem-
perature drops below 65 degrees F.

Using weak words in requirements often results in ambiguity. Examples 
of weak words include: support, generally, kind of, mostly, pretty, slightly, some-
what, sort of, various, virtually, quickly, easy, timely, before, after, user-friendly, 
effective, multiple, as possible, appropriate, normal, capability, reliable, state-of-the-
art, effortless, and multi.

For example, a requirement such as “The pool monitor shall provide 
multiple sensors” is ambiguous because multiple is a weak word. What does it 
mean? Two? Three? A dozen?

Another way to create an ambiguous requirement is by using an 
unbounded list—a list missing a starting point, an ending point, or both. 
Typical examples include phrasing like at least; including, but not limited to; or 
later; or more ; such as; and so on; and etc.
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For example: “The pool monitor shall support three or more sensors.” 
Does it have to support four sensors? Ten sensors? An infinite number of 
sensors? This requirement doesn’t make it clear what the maximum num-
ber of supported sensors is. A better requirement might be:

The pool monitor must support between three and 
six sensors.

Unbounded lists are impossible to design and test against (so they fail 
both the feasible and verifiable attributes).

10.1.2.8 Implementation-Independent

Requirements must be based solely on the inputs and outputs of a system. 
They should not delve into the implementation details of the application 
(that’s the purpose of the Software Design Description [SDD] document). 
Requirements must view the system as a black box into which inputs are fed 
and from which outputs are produced. 

For example, a requirement might state that an input to the system is a 
list of numbers that produce a sorted list as output. The requirement should 
not state something like “A quicksort algorithm shall be used.” There may be 
good reasons why the software designer would want to use a different algo-
rithm; the requirements should not force the software designer’s or program-
mer’s hand.

10.1.2.9 Verifiable

“If it isn’t testable, it isn’t a requirement” is the mantra by which a require-
ments author should live. If you can’t create a test for it, you also can’t verify 
that the requirement has been fulfilled in the final product. Indeed, the 
requirement might very well be impossible to implement if you can’t come 
up with a way to test it.

If you can’t create a physical test that can be run on the final software 
product, there’s a good chance that your requirement is not based solely 
on system inputs and outputs. For example, if you have a requirement that 
states “The system shall use the quicksort algorithm to sort the data,” how 
do you test for this? If you have to resort to “This requirement is tested by 
reviewing the code,” then you may not have a good requirement. That’s not 
to say that requirements can’t be verified by inspection or analysis, but an 
actual test is always the best way to verify a requirement, especially if you 
can automate that test.

10.1.2.10 Atomic

A good requirement statement must not contain multiple requirements—
that is, it must not be a compound requirement. Requirements should also 
be as independent as possible; their implementation should not rely on 
other requirements.

Some authors claim that the words and and or must never appear in 
a requirement. Strictly speaking, this isn’t true. You simply want to avoid 
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using the fanboys conjunctions (for, and, nor, but, or, yet, so) to combine sepa-
rate requirements into a single statement. For example, the following is not 
a compound requirement:

The pool monitor shall set the “good” indication when the 
temperature is between 70 degrees F and 85 degrees F.

This is a single requirement, not two. The presence of the word and 
does not produce two requirements. If you really want to be a stickler and 
eliminate the word and, you could rewrite the requirement thusly:

The pool monitor shall set the “good” indication when 
the temperature is in the range from 70 degrees F to 
85 degrees F.

However, there’s really nothing wrong with the first version. Here’s an 
example of a compound requirement:

The pool monitor shall clear the “good” indication when the 
temperature is below 70 degrees F or above 85 degrees F.

This should be rewritten as two separate requirements:1

The pool monitor shall clear the “good” indication when 
the temperature is below 70 degrees F.

The pool monitor shall clear the “good” indication when 
the temperature is above 85 degrees F.

Note that compound requirements will create problems later when 
you’re constructing traceability matrices, as this chapter will discuss in 
“Updating the Traceability Matrix with Requirement Information” on 
page 222. Compound requirements also create testing problems. The test 
for a requirement must produce a single answer: pass or fail. You cannot 
have part of a requirement pass and another part fail. That’s a sure sign of 
a compound requirement.

10.1.2.11 Unique

A requirements specification must not contain any duplicate requirements. 
Duplication makes the document much more difficult to maintain, particu-
larly if you ever modify requirements and forget to modify the duplicates.

10.1.2.12 Modifiable

It would be unreasonable to expect the requirements of a project to remain 
constant over its lifetime. Expectations change, technology changes, the 
market changes, and the competition changes. During product develop-
ment, you’ll likely want to revise some requirements to adapt to evolving 

1. Arguably, this could be rewritten as the single requirement “The pool monitor shall clear 
the ‘good’ condition when the temperature is outside the range 70 to 85 degrees F.”
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conditions. In particular, you don’t want to choose requirements that 
enforce certain system constraints that other requirements will be based 
on. For example, consider the following requirement:

The pool monitor shall use an Arduino Mega 2560 single-
board computer as the control module.

Based on this requirement, other requirements might be “The pool 
monitor shall use the A8 pin for the pool level indication” and “The 
pool monitor shall use the D0 pin as the low temperature output.” The prob-
lem with such requirements, which are based on the use of the Mega 2560 
board, is that if a new board comes along (say, a Teensy 4.0 module), then 
changing the first requirement necessitates also changing all the other 
requirements that depend on it. A better set of requirements might be:

The pool monitor shall use a single-board computer 
that supports 8 analog inputs, 4 digital outputs, and 
12 digital inputs.

The pool monitor shall use one of the digital output pins 
as the low temperature alarm.

The pool monitor shall use one of the analog input pins as 
the pool level input.

10.1.2.13 Traceable

All requirements must be forward- and reverse-traceable. Reverse traceability 
means that the requirement can be traced to its origin. To be traceable to 
some other object, the requirement must have a tag (a unique identifier, as 
introduced in Chapter 4).

Each requirement must include the origin as part of the requirement 
text or tag; otherwise, you must provide a separate RTM document (or data-
base) that provides that information. In general, you should explicitly list a 
requirement’s origin within the requirement itself.

Forward traceability provides a link to all documents based on (or 
spawned by) the requirements document. Most of the time, forward trace-
ability is handled via an RTM document; it would be too much work to 
maintain this information in each requirements document (there would be 
too much duplicate information, which, as previously noted, makes docu-
ment maintenance difficult).

10.1.2.14 Positively Stated

A requirement should state what must be true, not what must not happen. 
Most negatively stated requirements are impossible to verify. For example, 
the following is a bad requirement:

The pool monitor shall not operate at atmospheric 
temperatures below freezing.
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This requirement suggests that the pool monitor must stop operation 
once the temperature drops below freezing. Does this mean that the system 
will sense the temperature and shut down below freezing? Or does it simply 
mean that the system cannot be expected to produce reasonable values 
below freezing? Better requirements might be:

The pool monitor shall automatically shut off if the tem-
perature falls below freezing.

Hopefully, there is a requirement that discusses what should happen 
when the temperature rises back above freezing. If the pool monitor has 
been shut off, can it sense this change?

10.2 Design Goals
Although requirements can’t be optional, it’s sometimes beneficial to be 
able to list optional items in a requirements document. Such items are 
known as design goals.

Design goals violate many of the attributes of good requirements. 
Obviously, they are not necessary, but they can also be incomplete, be 
slightly ambiguous, specify implementation, or not be testable. For exam-
ple, a design goal might be to use the C standard library’s built-in sort() 
function (an implementation detail) in order to reduce development time. 
Another design goal might be something like:

The pool monitor should support as many sensors 
as possible.

As you can see, this is both optional and open-ended. A design goal is a 
suggestion that a developer can use to guide development choices. It should 
not involve extra design work or testing that leads to further development 
expenses. It should simply help a developer make certain developmental 
choices when designing the system.

Like requirements, design goals can have tags, though there’s little 
need to trace design goals through the documentation system. However, 
because they might be elevated to requirement status at some point, it’s 
nice to have a tag associated with them so they can serve as an origin for a 
requirement in a spawned document.

10.3 The System Requirements Specification Document
The System Requirements Specification document collects all the require-
ments associated with a complete system. This may include business 
requirements, legislative/political requirements, hardware requirements, 
and software requirements. The SyRS is usually a very high-level document, 
though internal to an organization. Its purpose is to provide a single-source 
origin for all requirements appearing in an organization’s subservient doc-
uments (such as the SRS).
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The SyRS takes the same form as the SRS (described in the next sec-
tion), so I won’t further elaborate on its contents other than to point out 
that the SyRS spawns the SRS (and Hardware Requirements Specifications, 
or HRS, if appropriate). The SyRS is optional and typically absent in small 
software-only projects.

SyRS requirements typically state “The system shall” or “The system 
must.” This is in contrast to requirements in the SRS that typically state 
“The software shall” or “The software must.”

10.4 The Software Requirements Specification Document
The Software Requirements Specification is a document that contains all 
the requirements and design goals for a given software project. There are 
(literally) hundreds, if not thousands, of examples of SRS documents scat-
tered across the internet. Many sites seem to have their own ideas about 
what constitutes an SRS. Rather than introduce yet another new tem-
plate into the cacophony, this book will elect to use the template defined 
by the IEEE: the IEEE 830-1998 Recommended Practice for Software 
Requirements Specifications.

In this book, using the IEEE 830-1998 recommended practice is a safe 
decision, but note that the standard is by no means perfect. It was created 
by a committee and, as a result, it contains a lot of bloat (extraneous infor-
mation). The problem with committee-designed standards is that the only 
way to get them approved is by letting everyone inject their own pet ideas 
into the document, even if those ideas conflict with others in the docu-
ment. Nevertheless, the IEEE 830-1998 recommendation is a good starting 
point. You need not feel compelled to implement everything in it, but you 
should use it as a guideline when creating your SRS.

A typical SRS uses an outline similar to the following:

Table of Contents

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms, and Abbreviations

1.4 References

1.5 Overview

2 Overall Description

2.1 Product Perspective

2.1.1 System Interfaces

2.1.2 User Interfaces

2.1.3 Hardware Interfaces

2.1.4 Software Interfaces
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2.1.5 Communication Interfaces

2.1.6 Memory Constraints

2.1.7 Operations

2.2 Site Adaptation Requirements

2.3 Product Functions

2.4 User Characteristics

2.5 Constraints

2.6 Assumptions and Dependencies

2.7 Apportioning of Requirements

3 Specific Requirements

3.1 External Interfaces

3.2 Functional Requirements

3.3 Performance Requirements

3.4 Logical Database Requirements

3.5 Design Constraints

3.6 Standards Compliance

3.7 Software System Attributes

3.7.1 Reliability

3.7.2 Availability

3.7.3 Security

3.7.4 Maintainability

3.7.5 Portability

3.8 Design Goals

4 Appendixes

5 Index

Section 3 is the most important—this is where you will place all of your 
requirements as well as your design goals.

10.4.1 Introduction
The Introduction contains an overview of the entire SRS. The following 
subsections describe the suggested contents of the Introduction.

10.4.1.1 Purpose

In the Purpose section, you should state the purpose of the SRS and who 
the intended audience is. For an SRS, the intended audience is probably the 
customers who will need to validate the SRS and the developers/designers 
who will create the SDD, software test cases, and software test procedures, 
and will write the code.
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10.4.1.2 Scope

The Scope section describes the software product by name (for example, 
Plantation Productions Pool Monitor), explains what the product will do, 
and, if necessary, states what it will not do. (Don’t worry that this doesn’t 
adhere to the “positively stated” rule, since this is a scope declaration, not 
a requirement statement.) The Scope section also outlines the objectives of 
the project, the benefits and goals of the product, and the application soft-
ware being written for the product.

10.4.1.3 Definitions, Acronyms, and Abbreviations

The Definitions section provides a glossary of all terms, acronyms, and 
abbreviations the SRS uses.

10.4.1.4 References

The References section provides a link to all external documents that the 
SRS references. If your SRS relies on an external RTM document, you 
should reference that document here. If the documents are internal to the 
organization, you should provide their internal document numbers/refer-
ences. If the SRS references a document that is external to the organiza-
tion, the SRS should list the document’s title, author, publisher, and date 
as well as information on how to obtain the document.

10.4.1.5 Overview

The Overview section describes the format of the rest of the SRS and the 
information it contains (this section is particularly important if you’ve omit-
ted items from the IEEE recommendation).

10.4.2 Overall Description
The Overall Description section specifies the requirements of the 
following aspects:

10.4.2.1 Product Perspective

The Product Perspective section contextualizes the product with respect 
to other (possibly competing) products. If this product is part of a larger 
system, the product perspective should point this out (and describe how 
the requirements in this document relate to the larger system). This section 
might also describe various constraints on the product, such as:

10.4.2.1.1 System Interfaces
This section describes how the software will interface with the rest 
of the system. This would typically include any APIs, such as how 
the software interfaces with a Wi-Fi adapter in order to view pool 
readings remotely.
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10.4.2.1.2 User Interfaces
This section lists all user interface (UI) elements needed to meet the 
requirements. For example, in the pool monitor scenario, this section 
could describe how the user interacts with the device via an LCD dis-
play and various push buttons on the device.

10.4.2.1.3 Hardware Interfaces
This section could describe how the software interacts with the under-
lying hardware. For example, the pool monitor SRS could state that 
the software will be running on an Arduino Mega 2560, using the 
A8 through A15 analog inputs to connect to the sensors and the D0 
through D7 digital lines as inputs connected to buttons.

10.4.2.1.4 Software Interfaces
This section describes any additional/external software needed to 
implement the system. This might include operating systems, third-
party libraries, database management systems, or other application 
systems. For example, the pool monitor SRS might describe the use 
of vendor-supplied libraries needed to read data from various sensors. 
For each software item, you should include the following information 
in this section:

•	 Name

•	 Specification number (a vendor-supplied value, if any)

•	 Version number

•	 Source

•	 Purpose

•	 Reference to pertinent documentation

10.4.2.1.5 Communication Interfaces
This section lists any communication interfaces, such as Ethernet, Wi-Fi, 
Bluetooth, and RS-232 serial that the product will use. For example, the 
pool monitor SRS might describe the Wi-Fi interface in this section.

10.4.2.1.6 Memory Constraints
This section describes all the constraints on memory and data storage. 
For the pool monitor running on an Arduino Mega 2560, SRS might 
state that there is a limitation in program storage of 1K EEPROM and 
8K RAM plus 64K to 128K Flash.

10.4.2.1.7 Operations
This section (often folded into the UI section) describes various opera-
tions on the product. It might detail the various modes of operation— 
such as normal, reduced power, maintenance, or installation modes— 
and describe interactive sessions, unattended sessions, and communica-
tion features.
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10.4.2.2 Site Adaptation Requirements

This section describes any site-specific adaptations. For example, the 
pool monitor SRS might describe optional sensors for pools with spas 
in this section.

10.4.2.3 Product Functions

The Product Functions section describes the software’s (major) functional-
ity. For example, the pool monitor SRS might use this section to describe 
how the software monitors pool levels, pool temperatures, atmospheric 
temperature, water conductivity (for saltwater pools), water flow though the 
filtration system, and filtration time since the last filter cleaning.

10.4.2.4 User Characteristics

The User Characteristics section describes the people that will use the prod-
uct. For example, the pool monitor SRS might define a factory test technician 
(responsible for testing and repairing the unit), a field installation techni-
cian, an advanced end user, and an average end user. There may be differ-
ent requirements for the software that apply only to certain types of users.

10.4.2.5 Constraints

The Constraints section describes any limitations that may affect the devel-
oper’s choices when designing and implementing the software, such as:

•	 Regulatory policies

•	 Hardware limitations (for example, signal timing requirements)

•	 Interfaces to other applications

•	 Parallel operation

•	 Audit functions

•	 Control functions

•	 High-level language requirements

•	 Signal handshake protocols (for example, XON-XOFF)

•	 Reliability requirements

•	 Criticality of the application

•	 Safety and security considerations

10.4.2.6 Assumptions and Dependencies

The items listed in the Assumptions and Dependencies section apply only 
to the requirements; they do not present constraints on the design. If 
an assumption were to change, it would require changing requirements 
rather than the design (though changing requirements will likely affect 
the design as well). For example, in the pool monitor SRS an assumption 
might be that the Arduino Mega 2560 will provide sufficient computing 



Requirements Documentation   199

power, ports, and memory to complete the task. If this assumption is 
incorrect, it may affect some requirements with respect to port usage, 
available memory, and the like.

10.4.2.7 Apportioning of Requirements

The Apportioning of Requirements section divides the requirements and 
features into two or more groups: those to be implemented in the current 
release, and those planned for future versions of the software. 

10.4.3 Specific Requirements
The Specific Requirements section should list all the requirements and sup-
porting documentation. This documentation should be written such that 
a system designer can construct a design for the software from the require-
ments documented.

All requirements should possess the characteristics discussed earlier 
in this chapter. They should also have a tag and a cross-reference (trace) 
to their origin. Because the requirements documentation will be read far 
more times than it is written, you should take special care to make this 
document as readable as possible.

10.4.3.1 External Interfaces

The External Interfaces section should describe all the inputs and outputs 
of the software system in great detail but without replicating the information 
in the interface subsections of the Product Perspective section. Each listing 
should contain the following information (as appropriate for the system):

•	 Tag

•	 Description

•	 Input source or output destination

•	 Valid range of values plus necessary accuracy/precision/tolerance

•	 Measurement units

•	 Timing and tolerances

•	 Relationship to other input/output items

•	 Screen/window formats (but list only screen requirements that are 
actual requirements—don’t design the user interface here)

•	 Data formats

•	 Command formats, protocols, and any necessary sentinel messages

Many SRS authors will pull this section out of the Specific Requirements 
section and place it in the Product Perspective section in order to avoid 
redundancy, though the IEEE 830-1998 standard suggests that this section 
be part of the Specific Requirements section. However, the IEEE document 
is only a recommended practice, so the choice is really yours. What matters 
most is that the information appears in the SRS.
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10.4.3.2 Functional Requirements

The Functional Requirements section contains those items that most 
people immediately recognize as requirements. This section lists the fun-
damental activities that take place on inputs and describes how the system 
uses the inputs to produce outputs. By convention, functional requirements 
always contain the auxiliary verb shall. For example, “The software shall 
raise an alarm when the pool low input is active.”

Typical functional requirements include the following:

•	 Input validity checks and responses to invalid inputs

•	 Operation sequences

•	 Abnormal condition responses, including: overflow, underflow, arith-
metic exceptions, communication failures, resource overruns, error 
handling and recovery, and protocol errors

•	 Persistence of data across executions of the software

•	 Effect of parameters

•	 Input/output relationships, including: legal and illegal input patterns, 
relationship of inputs to output, and how outputs are computed from 
inputs (but be careful not to incorporate software design into the 
requirements)

10.4.3.3 Performance Requirements

The Performance Requirements section lists nonfunctional requirements 
that specify either static or dynamic performance targets that the software 
must hit. Like most nonfunctional requirements, performance require-
ments usually contain the auxiliary verb must—for example, “The software 
must be able to control an internal display and a remote display.”

Static performance requirements are those that are defined for the 
system as a whole and do not depend on the software’s capabilities. A good 
example for the pool monitor is “The pool monitor must be able to read 
sensor input data from between 5 and 10 analog sensors.” This is a static 
requirement because the number of sensors is static for a given installation 
(it isn’t going to change because the software is written more efficiently, 
for example).

Dynamic performance requirements are those that the software must 
meet during execution. A good example might be “The software must read 
each sensor between 10 and 20 times per second.”

10.4.3.4 Logical Database Requirements

The Logical Database Requirements section describes nonfunctional 
requirements that specify the record and field formats for databases that 
the application must access. Typically, these requirements deal with exter-
nally accessed databases. Databases internal to the application (that is, not 
visible to the outside world) are generally outside the domain of the soft-
ware requirements, although the SDD might cover these.
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10.4.3.5 Design Constraints

Standards compliance is an example of a design constraint. Any limitation 
that prevents the software designer from using an arbitrary implementation 
should be listed in the Design Constraints section. One example might be 
limiting readings from a 16-bit A/D converter to 13 bits because the A/D 
chip/circuit is noisy and the low-order 3 bits may not be reliable.

10.4.3.6 Standards Compliance

The Standards Compliance section should describe, and provide links to, 
all standards to which the software must adhere. Standards numbers and 
document descriptions should allow the reader to research the standards 
as necessary.

10.4.3.7 Software System Attributes

The Software System Attributes section lists characteristics for the software 
system, including:

10.4.3.7.1 Reliability
The Requirements section will specify the expected uptime requirements 
for the software system. Reliability is a nonfunctional requirement that 
describes, usually as a percentage, the amount of time that the system 
will operate without a failure. A typical example is “an expected reliabil-
ity of 99.99 percent,” meaning that the software will fail no more than 
0.01 percent of the time. As with many nonfunctional requirements, it 
can be difficult to provide tests to ensure that reliability targets are met.

10.4.3.7.2 Availability
The availability attribute specifies the amount of downtime that is 
acceptable in the final application (actually, it specifies the inverse of 
downtime). Availability specifies the ability of the user to access the 
software system at any time. When the system is down, it is not avail-
able to the user. This nonfunctional requirement might differentiate 
between scheduled downtime and unscheduled downtime (for exam-
ple, a hardware failure that forces a restart of the system).

10.4.3.7.3 Security
The security attribute is a nonfunctional requirement that specifies the 
expected system security, which could include items such as encryption 
expectations and network socket types.

10.4.3.7.4 Maintainability
Maintainability is another nonfunctional requirement that can be hard 
to specify and test. In most specifications, there is a nebulous statement 
like “the software shall be easy to maintain.” This is unhelpful. Instead, 
this attribute should state, “It must take an experienced maintenance 
programmer no more than a week to come up to speed on this system 
and make changes to it.”
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R EQUIR E ME N T ORG A NI Z AT ION

Any sufficiently complex system will have a large number of requirements, so 
the SRS can become unwieldy if it is not organized properly. There are many 
different application types, and an equally large number of ways to organize 
their requirements. No particular organization is correct; you’ll have to choose 
one of the following options based on the audience for your SRS. 

Organizing by system mode
Some systems operate in various modes—for example, an embedded sys-
tem might have a low-power mode and a regular mode. In that case, you 
could organize the system requirements into those two groups. 

Organizing by user class
Some systems support different classes of users (for example, beginners, 
power users, and system administrators). In a complex system, you might 
have normal users, power users, maintenance workers, and programmers 
accessing the system.

Organizing by object class
Objects are entities in the software system that correspond to real-world 
objects. You could organize your requirements based on the types or 
classes of these objects.

Organizing by feature
One of the more common ways to organize SRS requirements is by the 
features they implement. This is a particularly useful method of organiza-
tion when the application provides a user interface for all the features in 
the system.

Organizing by input stimulus
If processing different inputs is a primary activity of the application, then 
you might consider organizing your SRS by the type of inputs the applica-
tion processes.

Organizing by output response
Similarly, if producing a wide range of outputs is a primary activity of 
the application, then it might make sense to organize the requirements by 
output response.

Organizing by functional hierarchy
Another common SRS organization approach is by functionality. This is 
often the fallback position SRS authors use when no other organization 
seems appropriate. Grouping the requirements by common inputs, com-
mand outputs, common database operations, and data flow through the 
program are all reasonable ways to organize the SRS.
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10.4.3.7.5 Portability
Portability describes what is involved in moving the software to a differ-
ent environment. This section should include a discussion of portability 
across CPUs, operating systems, and programming language dialects.

10.4.3.8 Design Goals

Often it is tempting to put so-called optional requirements into an SRS. 
However, as noted earlier in this chapter, requirements by definition cannot 
be optional. Nevertheless, there will be times when you might wish to say, 
“If possible, add this feature.” You can state such requests as design goals 
and leave it up to the designer or software engineer to decide if the feature 
is worth having. Place design goals in a separate section and clearly state “As 
a design goal, the software should . . . ” in your SRS.

10.4.4 Supporting Information
Any good software requirements specification will contain supporting 
information such as a table of contents, appendixes, glossaries, and an 
index. There should also be a table of requirement tags (sorted numerically 
or lexicographically) that lists each tag, a short description of the require-
ment, and the page number where it appears in the document (this could 
also be placed in the RTM rather than in the SRS).

10.4.5 A Sample Software Requirements Specification
This section provides a sample SRS for a swimming pool monitor similar 
to the examples given thus far in this chapter. For space reasons, this swim-
ming pool monitor SRS is greatly simplified; the purpose is not to provide a 
complete specification, but rather to provide an illustrative outline.

Table of Contents

1 Introduction

1.1 Purpose
The pool monitor device will track pool water levels and automati-
cally refill the pool when levels are low.

1.2 Scope
The pool monitor software will be produced from this specification.

The objectives of the hardware and software development are to 
provide functions, status information, monitor and control hard-
ware, communications, and self-test functions per the requirements 
that have been allocated to the pool monitor system. 
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1.3 Definitions, Acronyms, and Abbreviations

Term Definition

Accuracy The degree of agreement with the true value of the mea-
sured input, expressed as percent of reading for digital 
readouts (ANSI N42.18-1980).

Anomaly Anything observed in the documentation or operation of 
software that deviates from expectations. (Derived from 
IEEE Std 610.12-1990.)

Catastrophic event An event without warning from which recovery is impos-
sible. Catastrophic events include hardware or software 
failures resulting in computation and processing errors. The 
processor will halt or reset, based on a configuration item, 
after a catastrophic event. 

Handled conditions Conditions that the system is designed to handle and 
continue processing. These conditions include anomalies, 
faults, and failures.

SBC Single-board computer

Software 
Requirements 
Specification (SRS)

Documentation of the essential requirements (functions, 
performance, design constraints, and attributes) of the soft-
ware and its external interfaces (IEEE Std 610.12-1990).

SPM Swimming pool monitor

System Requirements 
Specification (SyRS)

A structured collection of information that embodies 
the requirements of the system (IEEE Std 1233-1998). A 
specification that documents the requirements to establish 
a design basis and the conceptual design for a system 
or subsystem.

1.4 References
[None]

1.5 Overview
Section 2 provides an overall description of the swimming pool 
monitor (hardware and software).

Section 3 lists the specific requirements for the swimming pool 
monitor system.

Sections 4 and 5 provide any necessary appendixes and an index.

In section 3, requirements tags take the following form:

<whitespace> [POOL_SRS_xxx] 
<whitespace> [POOL_SRS_xxx.yy] 
<whitespace> [POOL_SRS_xxx.yy.zz] 
<and so on>.

where xxx is a three- or four-digit SRS requirement number.

Should the need arise to insert a new SRS requirement tag 
between two other values (for example, add a requirement between 
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POOL_SRS_040 and POOL_SRS_041), then a decimal fractional 
number shall be appended to the SRS tag number (for example, 
POOL_SRS_040.5). Any number of decimal point suffixes can be 
added, if needed (for example, POOL_SRS_40.05.02).

2 Overall Description
The purpose behind the swimming pool monitor (SPM) is to provide 
an automatic system for maintaining water level in the pool. This task is 
sufficiently simple to allow the creation of an SRS that is short enough 
to fit within this chapter.

2.1 Product Perspective
In the real world, an SPM would probably provide many addi-
tional features; adding those features here would only increase 
the size of the SRS without providing much additional educa-
tional benefit. This specification is intentionally simplified in 
order to fit within the editorial requirements of this book.

2.1.1 System Interfaces
The SPM design assumes the use of an Arduino-compatible 
SBC. Accordingly, the software will interface to the hard-
ware using Arduino-compatible libraries.

2.1.2 User Interfaces
The user interface shall consist of a small four-line display 
(minimum 20 characters/line), six push buttons (up, 
down, left, right, cancel/back, and select/enter), and a 
rotary encoder (rotating knob).

2.1.3 Hardware Interfaces
This document doesn’t specify a particular SBC to use. 
However, the SBC must provide at least the following:

•	 16 digital inputs

•	 1 analog input

•	 2 digital outputs

•	 A small amount of nonvolatile, writable memory (for 
example, EEPROM) to store configuration values.

•	 A real-time clock (RTC; this can be an external 
module)

•	 A watchdog timer to monitor the system’s software 
operation

The SPM provides pool sensors to determine when the 
pool level is high or low. It also provides a solenoid inter-
face to a water valve, allowing the SPM to turn on or off a 
water source for the pool.
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2.1.4 Software Interfaces
The SPM software is self-contained and provides no exter-
nal interfaces, nor does it require any external software 
interfaces.

2.1.5 Communication Interfaces
The SPM is self-contained and does not communicate with 
the outside world.

2.1.6 Memory Constraints
As the SPM is running on an Arduino-compatible SBC, 
there will be (severe) memory constraints, depending on 
the exact model chosen (for example, an Arduino Mega 
2560 SBC provides only 8KB of static RAM on board).

2.1.7 Operations
The SPM operates in an always-on mode, monitoring the 
pool 24/7/365. Therefore, the module itself should not 
consume excessive electrical power. It will, however, be 
connected to line voltage via a power supply, so extreme 
low-power operation is unnecessary. It will constantly 
monitor the pool’s water level and automatically turn on 
a water source if the pool level is low. To avoid flooding if 
there is a sensor failure, the SPM will limit the amount of 
water introduced to the pool on a daily basis (time limit is 
user-selectable).

2.2 Site Adaptation Requirements
For this particular variant of the SPM, there is little in the way 
of site adaptation requirements. There are no optional sensors 
or operations and the only interfaces outside the SPM itself is a 
source of power for the system and a water source (interfaced via 
the solenoid valve).

2.3 Product Functions
The product shall use seven water-level sensors to determine the 
pool level: three digital sensors that provide a low-pool indication, 
three digital sensors that provide a high-pool indication, and an 
analog sensor that provides a pool level depth indication (perhaps 
only a couple inches or centimeters in range). The three low-pool 
digital sensors are active when the water level is at the level of the 
sensor. The system will begin filling the pool when there is a low-
pool indication. To avoid flooding when a sensor fails, the three 
sensors operate in a two out of three configuration, meaning at least 
two sensors must indicate a low-pool condition before the SPM 
will attempt to fill the pool. The three high-pool sensors work in a 
likewise fashion when the SPM should stop filling the pool (water 
level is high). The analog sensor provides a small range of depth; 
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the SPM will use the analog sensor as a backup to verify that the 
pool level is low prior to filling the pool. The SPM will also use the 
analog sensor to determine that the pool is actually filling while 
the SPM has turned on the water source.

2.4 User Characteristics
There are two types of SPM users: technicians and end users. 
A technician is responsible for installing and adjusting the 
SPM. An end user is the pool’s owner who uses the SPM on a 
day-to-day basis.

2.5 Constraints
The SPM should be carefully designed to prevent inadvertent 
flooding and excessive water use. In particular, the software must 
be robust enough to determine that the pool is not being properly 
filled and to cease attempting to fill the pool if the sensors do not 
indicate proper operation. Should any sensor fail, the software 
should be smart enough to avoid blindly keeping the water turned 
on (which could lead to flood damage). For example, if the SPM 
is attached to an aboveground pool and that pool has a leak, it 
might not ever be possible to fill the pool. The software should 
handle such situations.

The system should be fail-safe insofar as a power failure should 
automatically shut off the water valve. A watchdog timer of some 
sort should also check that the software is operating properly and 
turn off the water valve if a timeout occurs (for example, should 
the software hang up).

To avoid flooding because of a malfunctioning relay, the SPM 
should use two relays in series to open the water valve. Both 
relays must be actuated by the software in order to turn on the 
solenoid valve.

2.6 Assumptions and Dependencies
The requirements in this document assume that the SBC contains 
sufficient resources (computing power) to handle the task and 
that the device can reasonably operate in a 24/7/365 real-time 
environment.

2.7 Apportioning of Requirements
These requirements define a very simple swimming pool moni-
tor for the purposes of demonstrating a complete SRS. As this 
is a minimal requirement set for a very small SPM, the assump-
tion is that a product built around these requirements would 
implement all of them. A real product would probably include 
many additional features beyond those listed here, with a corre-
sponding increase in the number of requirements appearing in 
this document.
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3 Specific Requirements

3.1 External Interfaces
[POOL_SRS_001] 

The SPM shall provide a digital input for the navigation 
up button.

[POOL_SRS_002] 
The SPM shall provide a digital input for the navigation 
down button.

[POOL_SRS_003] 
The SPM shall provide a digital input for the navigation 
left button.

[POOL_SRS_004] 
The SPM shall provide a digital input for the navigation 
right button.

[POOL_SRS_005] 
The SPM shall provide a digital input for the cancel/back 
button.

[POOL_SRS_006] 
The SPM shall provide a digital input for the select/enter 
button.

[POOL_SRS_007] 
The SPM shall provide four digital inputs for the rotary 
encoder (quadrature) input.

[POOL_SRS_008.01]
The SPM shall provide a digital input for the primary water 
level low sensor.

[POOL_SRS_008.02] 
The SPM shall provide a digital input for the secondary 
water level low sensor.

[POOL_SRS_008.03] 
The SPM shall provide a digital input for the tertiary water 
level low sensor.

[POOL_SRS_009.01] 
The SPM shall provide a digital input for the primary water 
level high sensor.

[POOL_SRS_009.02]
The SPM shall provide a digital input for the secondary 
water level high sensor.

[POOL_SRS_009.03] 
The SPM shall provide a digital input for the tertiary water 
level high sensor.
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[POOL_SRS_011]
The SPM shall provide an analog input (minimum 8-bit 
resolution) for the water level sensor.

[POOL_SRS_012] 
The SPM shall provide two digital outputs to control the 
water source solenoid valve.

3.2 Functional Requirements
[POOL_SRS_013] 

The SPM shall allow the user to set the RTC date and time 
via the user interface.

[POOL_SRS_014]
The SPM shall have a maximum fill time, specifying the maxi-
mum amount of time (hours:mins) that the water valve can 
be actuated during a 24-hour period.

[POOL_SRS_015] 
The user shall be able to set the maximum fill time from the 
SPM user interface (using the navigation and enter buttons).

[POOL_SRS_015.01] 
Once the user has selected the maximum fill time from the 
user interface, the user shall be able to select the hours or 
minutes fields using the navigation buttons.

[POOL_SRS_015.02]
The user shall be able to independently set the maximum fill-
time hours value using the rotary encoder after selecting the 
hours field.

[POOL_SRS_015.03] 
The user shall be able to independently set the maximum fill-
time minutes value using the rotary encoder after selecting 
the minutes field.

[POOL_SRS_015.04] 
The software shall not allow a maximum fill time of greater 
than 12 hours.

[POOL_SRS_016]
The SPM shall check the pool level once every 24 hours, 
at a specific time, to determine if it needs to add water to 
the pool.

[POOL_SRS_017]
The user shall be able to set the time the SPM checks the pool 
level (and, therefore, when the SPM fills the pool) from the 
SPM user interface.
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[POOL_SRS_017.01]
Once the user has selected the pool-level check time from 
the user interface, the user shall be able to select the hours 
or minutes fields using the navigation buttons.

[POOL_SRS_017.02] 
The user shall be able to independently set the pool-level 
check-time hours value using the rotary encoder after select-
ing the hours field.

[POOL_SRS_017.03] 
The user shall be able to independently set the pool-level 
check-time minutes value using the rotary encoder after 
selecting the minutes field.

[POOL_SRS_017.04]
The default (factory reset) pool check time shall be 1:00 am.

[POOL_SRS_018]
At the pool check time each day, the system shall read the 
three pool level low sensors and begin a pool fill operation if at 
least two of the three sensors indicate a pool low condition.

[POOL_SRS_018.01] 
During a pool fill operation the software shall accumulate a 
running fill time.

[POOL_SRS_018.02] 
During a pool fill operation if the running fill time exceeds 
the maximum fill time, the software shall cease the pool fill 
operation.

[POOL_SRS_018.03] 
During a pool fill operation the software shall read the pool 
level high sensors and cease the pool fill operation if at least 
two of the three sensors indicate a high pool level.

[POOL_SRS_018.04] 
During a pool fill operation the software shall read the ana-
log pool-level sensor and shut off the water flow if the level 
isn’t increasing after each half-hour of operation.

[POOL_SRS_019] 
The software shall allow the user to select a manual pool fill 
mode that turns on the water source to the pool.

[POOL_SRS_019.01]
The software shall allow the user to select an auto pool fill 
mode that turns off the manual pool fill mode.

[POOL_SRS_019.02]
In the manual pool fill mode, the software shall ignore the 
maximum fill time.
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[POOL_SRS_019.03] 
In the manual pool fill mode, the software shall ignore the 
pool level high and pool level low sensors (filling stops when the 
user turns off the manual fill mode).

[POOL_SRS_020] 
The software shall update the system watchdog timer at least 
twice as frequently as the watchdog timeout period.

[POOL_SRS_020.01] 
The watchdog timeout period shall be no less than 5 seconds 
and no greater than 60 seconds.

3.3 Performance Requirements
[POOL_SRS_001.00.01] 

The SPM shall debounce all button inputs.

[POOL_SRS_007.00.01] 
The SPM shall be capable of reading the rotary encoder 
inputs without losing any changes on the inputs.

[POOL_SRS_015.00.01]
The SPM shall maintain an accuracy of at least one minute for 
the maximum pool fill time.

[POOL_SRS_017.00.01] 
The SPM shall maintain an accuracy of at least one minute for 
the pool level check time.

3.4 Logical Database Requirements
[POOL_SRS_014.00.01]

The SPM shall store the maximum fill time in nonvolatile 
memory.

[POOL_SRS_016.00.01] 
The SPM shall store the pool check time in nonvolatile 
memory.

3.5 Design Constraints
[None]

3.6 Standards Compliance
[None]

3.7 Software System Attributes

3.7.1 Reliability
The software will run 24/7/365. Therefore, robustness 
is a critical factor in system design. In particular, the 
system should be fail-safe insofar as a software or other 
failure should result in the closure of the water valve.
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3.7.2 Availability
The software should be running continuously (24/7/365). 
The software must not be subject to counter overflows or 
other problems associated with long-term execution. The 
end user should expect at least 99.99 percent uptime.

3.7.3 Security
There are no security requirements for the system (closed, 
disconnected, air-gapped system).

3.7.4 Maintainability
There are no maintainability requirements other than 
those customarily expected of a professional software 
engineering project.

That said, this is a bare-bones requirements document. 
Should someone actually build this system, one would 
expect future enhancements. Thus, the system should be 
designed and implemented with such expectations in mind.

3.7.5 Portability
The software is expected to run on an Arduino-class 
device. No portability requirements exist other than the 
possibility of selecting different Arduino-compatible mod-
ules (for example, Arduino Mega 2560 versus Teensy 4.0) 
during implementation.

3.8 Design Goals
None for this project.

4 Appendixes
[None]

5 Index
Given the (small) size of this SRS, no index appears here in order to 
reduce page count for this book. 

10.5 Creating Requirements
Up to this point this chapter has defined requirements as well as require-
ments documentation. But you might be asking, “How does someone come 
up with the requirements in the first place?” This section will provide some 
insight into that question.

The modern approach to requirements creation involves use cases, 
which were introduced in Chapter 4. The system architect studies how an 
end user would use a system (the user story) and creates a set of scenarios 
(use cases) from that study. Each use case becomes the basis for a set of 
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one or more requirements. This section departs from the swimming pool 
monitor scenario to consider an example from a real-world system, the 
Plantation Productions digital data acquisition and control (DAQ) system.2  

The DAQ system consists of multiple interconnecting circuit boards, 
including analog I/O boards, digital I/O boards, digital output boards 
(relay boards), and an SBC, the Netburner MOD54415, that runs the sys-
tem firmware. These components allow a system designer to read various 
analog and digital inputs, compute results and make decisions based on 
those inputs, and then control external devices by sending digital and ana-
log output values to those devices. For example, the DAQ system was origi-
nally designed to control a TRIGA3 research reactor.

The firmware requirements for the DAQ system are too large to duplicate 
here, so this chapter will limit the discussion to certain I/O initialization that 
must take place when the system first powers up. The Netburner MOD54415 
includes a set of eight DIP switches, which the DAQ system uses to initialize 
various system components. These DIP switches do the following:

1. Enable/disable RS-232 port command processing.

2. Enable/disable USB port command processing.

3. Enable/disable Ethernet port command processing.

4. Specify one Ethernet connection or five simultaneous Ethernet 
connections.

5. Specify one of four different Ethernet addresses using two DIP 
switches; see Table 10-1.

6. Enable/disable test mode.

7. Enable/disable debug output.

Table 10-1: Ethernet Address Selection

DIP switch A DIP switch A + 1 Ethernet address

0 0 192.168.2.70

1 0 192.168.2.71

0 1 192.168.2.72

1 1 192.168.2.73

One final thing to note about the DAQ software initialization: debug 
output uses the Netburner COM1: port. The Netburner shares this serial 
port hardware with the USB port. There is a conflict if the user enables 
both the debug output and the USB command ports. Therefore, to enable 
the debug port, two conditions must be met: debug output must be enabled 
and USB port command processing must be disabled.

2. For information on the Plantation Productions DAQ system, see http://www.plantation 
-productions.com/Electronics/DAQ/DAQ.html.

3. TRIGA™ is a registered trademark of General Atomics, Inc.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
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To enable commands from the RS-232 or USB ports, the software must 
read the switches. If the particular switch indicates that the command stream 
is active, then the software must create a new task4 to handle input from 
that port. The newly created task is responsible for reading characters from 
the given port and sending entire lines of text to the system’s command 
processor upon receiving a newline character. If the corresponding DIP 
switches are in the disabled position, the software won’t create the RS-232 
or USB tasks, and the system will ignore these ports.

Enabling Ethernet commands is slightly more complicated. There are 
four DIP switches associated with the Ethernet port. The Ethernet initializa-
tion operation must consider the settings for all four DIP switches.

One DIP switch controls the number of concurrent clients the DAQ 
software supports. In one position, the DAQ software supports only a 
single Ethernet client; in the other position, the software supports up to five 
Ethernet clients. In some environments, you might need to allow multiple 
host computers to access the data acquisition and control hardware; for 
example, while debugging you may want to have a test computer monitor-
ing the operations. In some secure applications (after deployment), you 
may want to limit access to the DAQ system to a single computer.

The third and fourth Ethernet DIP switches allow an operator to 
select one of four separate IP/Ethernet addresses. This allows control of 
up to four separate Netburner modules in the same system. As noted in 
Table 10-1, the four selectable Ethernet addresses are 192.168.2.70 through 
192.168.2.73 (the requirements could be changed to support different IP 
addresses, of course, but these were convenient addresses for the initial 
DAQ system that was built).

10.6 Use Cases
Given the preceding user story, the next step is to build a set of use cases 
that describe these operations. Remember, use cases are more than a few 
UML diagrams—they also include a descriptive narrative (see “Use Case 
Narratives” on page 80).

Actors There is a single actor in the following use cases, the System User.

Triggers In all of the following use cases, the trigger that activates 
each use case is system boot. The system reads the DIP switch settings 
at boot time and initializes based on those settings (see Figure 10-1).

Scenarios/Flow of Events These are the activities that occur for a 
given use case.

Associated Requirements The Associated Requirements provide 
cross-references to the DAQ System SRS. The requirements appear in 

4. The Netburner runs a priority-based multitasking operating system called Micro-C/OS (or 
µC/OS). Tasks are the equivalent of threads in other operating systems.
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the following sections (see “(Selected) DAQ Software Requirements 
(from SRS)” on page 219). You must create the requirements before fill-
ing in this section; otherwise, you’d simply be guessing at the require-
ments you’ll need.

DAQ_UC_001
Enable/Disable

RS-232

DAQ_UC_002
Enable/Disable

USB

DAQ_UC_003
Enable/Disable

Ethernet

DAQ_UC_004
Enable/Disable

Test ModeDipSw 8

DipSw 7

System
user

DipSw 2

DipSw 1 «Include»

«Include»

«Include»

«Include»

«Include»

DipSws 3–6

DAQ_UC_005
Enable/Disable
Debug Mode

DAQ_UC_006
Read DIP
Switches

Figure 10-1: Read DIP switches use case

10.6.1 Enable/Disable Debug Mode

Goal Enabling and disabling debug output on DAQ system.

Precondition System has booted.

End condition Debug mode is active or inactive, as appropriate.
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10.6.1.1 Scenarios/Flow of Events

Enable/Disable Debug Mode

1. During system initialization, read DIP switches.

2. Save the value of DIP switch 8 (on = debug mode on, off = debug 
mode off).

3. Debug mode is enabled if DIP switch 8 is on and DIP switch 2 (USB 
mode) is off.

4. Start the maintPrintf task.

10.6.1.2 Associated Requirements

DAQ_SRS_721_001: PPDAQ Debug Mode Enabled

DAQ_SRS_721_002: PPDAQ Debug Mode Disabled

10.6.2 Enable/Disable Ethernet
Goal Enabling and disabling Ethernet command processing on 
DAQ system.

Precondition System has booted.

End condition Ethernet communication is active or inactive, as appro-
priate. If active, Ethernet input processing tasks are running.

10.6.2.1 Scenarios/Flow of Events

Enable/Disable Ethernet

1. During system initialization, read DIP switches.

2. Use the value of DIP switch 3 to determine if Ethernet is enabled 
(switch is on) or disabled (switch is off). 

3. Save the value of DIP switch 4 to determine if the system supports one 
connection (switch is off) or five concurrent connections (switch is on). 

4. Use the values of DIP switches 5 and 6 to determine the IP address.

5. If Ethernet is enabled (DIP switch 3 is on), then:

5.1 Set the Ethernet address based on the value of DIP switches 5 and 
6 as:

5.1.1 192.168.2.70

5.1.2 192.168.2.71

5.1.3 192.168.2.72

5.1.4 192.168.2.73 

5.2 Start the ethernetListenTask task with priority ETHL_PRIO.

6. Else (if Ethernet is not enabled):

6.1 Do not start the ethernetListenTask.
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ethernetListenTask

1. Initialize an array of five descriptors with zero elements (empty descrip-
tor slots).

2. Wait for an external connection request on Ethernet socket 0x5050.

3. If a connection request is made:

3.1 Search for an empty slot (array element containing zero) in the 
descriptor array.

3.2 If there are no slots available:

3.2.1 Refuse connection.

3.2.2 Go to step 2.

3.3 Else if a slot is available:

3.3.1 Accept connection and store its file descriptor in the avail-
able slot.

3.3.2 Create a new Ethernet command task associated with 
the new connection; the priority of the new task shall be 
ETH1_PRIO through ETH5_PRIO, selected by the index into the 
descriptor slot array; note that SER_PRIO < ETHL_PRIO < ETH1_PRIO 
to ETH5_PRIO < USB_PRIO (where smaller numbers mean the 
task has a higher priority in the task queue). 

3.3.3 Go to step 2.

4. Else if the listen connection is broken, terminate listen task.

10.6.2.2 Associated Requirements

DAQ_SRS_708_000: PPDAQ Ethernet IP Address

DAQ_SRS_709_000: PPDAQ Ethernet IP Address 192.168.2.70

DAQ_SRS_710_000: PPDAQ Ethernet IP Address 192.168.2.71

DAQ_SRS_711_000: PPDAQ Ethernet IP Address 192.168.2.72

DAQ_SRS_712_000: PPDAQ Ethernet IP Address 192.168.2.73

DAQ_SRS_716_000: PPDAQ Ethernet Enabled

DAQ_SRS_716.5_000: PDAQ Ethernet Disabled

DAQ_SRS_716_001: PPDAQ Ethernet Task 

DAQ_SRS_716_002: PPDAQ Ethernet Task Priority

DAQ_SRS_717_000: PPDAQ Ethernet Port 

DAQ_SRS_718_000: PPDAQ Ethernet Multiple Clients Enabled

DAQ_SRS_718_001: PPDAQ Ethernet Multiple Clients Disabled

DAQ_SRS_728_000: PPDAQ Command Source #3

DAQ_SRS_737_000: PPDAQ Maximum Ethernet Connections #1

DAQ_SRS_738_000: PPDAQ Maximum Ethernet Connections #2

DAQ_SRS_738_001: PPDAQ Ethernet Command Processing Tasks

DAQ_SRS_738_002: PPDAQ Ethernet Command Task Priorities
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10.6.3 Enable/Disable RS-232
(Similar to the previous use cases; deleted for brevity.)

10.6.4 Enable/Disable Test Mode
(Similar to the previous use cases; deleted for brevity.)

10.6.5 Enable/Disable USB
(Similar to the previous use cases; deleted for brevity.)

10.6.6 Read DIP Switches
(Similar to the previous use cases; deleted for brevity.)

10.7 Creating DAQ Software Requirements from the 
Use Cases

Converting an informal use case to a formal requirement consists of 
extracting the information from a use case, filling in missing details, and 
structuring the result in the form of a requirement. 

Consider the use case for “Enable/Disable Debug Mode.” You might be 
tempted into thinking this use case generates a single requirement:

The PPDAQ software shall operate in a special debug mode 
if the Netburner DIP switch 8 is set to the ON position and 
USB (DIP switch 2) is not enabled; it shall operate in a 
non-debug mode if switch 8 is in the OFF position or DIP 
switch 2 is enabled.

The problem is that this is actually two separate requirements—not because 
of the “and” and “or” components (you’ll see why in a moment), but 
because of the semicolon separating the two clauses. The two separate 
requirements are:

The PPDAQ software shall operate in a special debug mode 
if the Netburner DIP switch 8 is set to the ON position and 
USB (DIP switch 2) is not enabled.

and

The PPDAQ software shall operate in a non-debug mode if 
switch 8 is in the OFF position or DIP switch 2 is enabled.

Note that the “and USB” and “or DIP switch 2” phrases do not imply 
that these requirements must be split into two separate requirements each. 
The clause “if the Netburner DIP switch 8 is set to the ON position and 
USB (DIP switch 2) is not enabled” is actually a logical phrase that is part of 
the trigger for this requirement. Technically, the requirement should prob-
ably be reworded.
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If the Netburner DIP switch 8 is set to the ON position and 
USB (DIP switch 2) is not enabled, then the PPDAQ soft-
ware shall operate in a special debug mode.

This moves the trigger clause to the beginning of the requirement, as 
suggested in section “A Suggested Requirements Format” on page 186. 
Note, however, that this is simply a suggested format; it’s not unreasonable 
to place the trigger condition after the actor (PPDAQ software), action 
(operate), and object (debug mode).

The next section provides a listing of various requirements from the 
DAQ software system. It gives an example of how the DAQ requirements 
were generated from the use cases. You should be able to fill in the details 
for the remaining requirements on your own.

10.8 (Selected) DAQ Software Requirements (from SRS)
The actual DAQ SRS (not the POOL_SRS presented in “A Sample Software 
Requirements Specification” on page 203) contains hundreds of require-
ments; to keep the size of this chapter reasonable, I’ve selected the follow-
ing requirements as they are representative of those needed to support the 
DIP switch use cases shown earlier. Note that the tags for these SRS require-
ments take the form [DAQ_SRS_xxx_yyy] because the actual DAQ system 
requirements have an SyRS as well as an SRS.

N O T E  The DAQ SRS document puts all requirements in section 3, as is the case for all 
SRSes. That is why the following section numbers revert to 3 rather than continuing 
the paragraph numbering of this chapter.

3.1.1.1 PPDAQ Standard Software Platform

3.1.1.15 PPDAQ Ethernet IP Address

[DAQ_SRS_708_000]
The PPDAQ software shall set the Ethernet IP address to a value in the 
range 192.168.2.70–192.168.2.73 based on DIP switch 5–6 settings on 
the Netburner.

3.1.1.16 PPDAQ Ethernet IP Address 192.168.2.70

[DAQ_SRS_709_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.70 if 
the Netburner DIP switches 5–6 are set to (OFF, OFF).

3.1.1.17 PPDAQ Ethernet IP Address 192.168.2.71

[DAQ_SRS_710_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.71 if 
the Netburner DIP switches 5–6 are set to (ON, OFF).
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3.1.1.18 PPDAQ Ethernet IP Address 192.168.2.72

[DAQ_SRS_711_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.72 if 
the Netburner DIP switches 5–6 are set to (OFF, ON).

3.1.1.19 PPDAQ Ethernet IP Address 192.168.2.73

[DAQ_SRS_712_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.73 if 
the Netburner DIP switches 5–6 are set to (ON, ON).

3.1.1.20 PPDAQ Ethernet Enabled

[DAQ_SRS_716_000]
The PPDAQ software shall enable Ethernet operation if the Netburner 
DIP switch 3 is in the ON position.

3.1.1.21 PPDAQ Ethernet Disabled

[DAQ_SRS_716.5_000]
The PPDAQ software shall disable Ethernet operation if the Netburner 
DIP switch 3 is in the OFF position.

3.1.1.22 PPDAQ Ethernet Task

[DAQ_SRS_716_001]
The Ethernet listening task shall be started if Ethernet communications 
are enabled.

3.1.1.23 PPDAQ Ethernet Task Priority

[DAQ_SRS_716_002]
The Ethernet listening task shall have a priority lower than the USB 
task but higher than the serial task.

3.1.1.24 PPDAQ Ethernet Port

[DAQ_SRS_717_000]
The PPDAQ software shall communicate via Ethernet using socket port 
0x5050 (decimal 20560, ASCII PP, for Plantation Productions).

3.1.1.25 PPDAQ Ethernet Multiple Clients Enabled

[DAQ_SRS_718_000]
The PPDAQ software shall allow up to five Ethernet clients if the 
Netburner DIP switch 4 is set to the ON position.
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3.1.1.26 PPDAQ Ethernet Multiple Clients Disabled

[DAQ_SRS_718_001]
The PPDAQ software shall allow only a single Ethernet client if the 
Netburner DIP switch 4 is set to the OFF position.

3.1.1.29 PPDAQ Unit Test Mode I/O

[DAQ_SRS_721_000]
The PPDAQ software shall utilize the UART0 serial port on the 
Netburner MOD54415 MOD-70 evaluation board for unit test commu-
nication unless USB commands are enabled (USB commands share the 
same serial port [UART0] as the test mode output).

3.1.1.30 PPDAQ Debug Mode Enabled

[DAQ_SRS_721_001]
The PPDAQ software shall operate in a special debug mode if the 
Netburner DIP switch 8 is set to the ON position and USB (DIP 
switch 2) is not enabled.

3.1.1.31 PPDAQ Debug Mode Disabled

[DAQ_SRS_721_002]
The PPDAQ software shall operate in the normal (nondebug) mode if 
the Netburner DIP switch 8 is set to the OFF position.

3.1.1.38 PPDAQ Command Source #3

[DAQ_SRS_728_000]
The PPDAQ software shall accept commands from the Ethernet port on 
the Netburner MOD54415 MOD-70 evaluation board if Ethernet com-
munications are enabled.

3.1.1.40 PPDAQ Maximum Ethernet Connections #1

[DAQ_SRS_737_000]
The PPDAQ software shall only recognize a single connection on the 
Ethernet port if the Netburner DIP switch 4 is in the OFF position. 

3.1.1.41 PPDAQ Maximum Ethernet Connections #2

[DAQ_SRS_738_000]
The PPDAQ software shall only recognize up to five connections on the 
Ethernet port if the Netburner DIP switch 4 is in the ON position. 

3.1.1.42 PPDAQ Ethernet Command Processing Tasks

[DAQ_SRS_738_001]
The PPDAQ software shall start a new process to handle command pro-
cessing for each connection.
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3.1.1.43 PPDAQ Ethernet Command Task Priorities

[DAQ_SRS_738_002]
The PPDAQ command processing tasks shall each have a different pri-
ority that is higher than the priority of the Ethernet listening task and 
less than the priority of the USB command task.

10.9 Updating the Traceability Matrix with Requirement 
Information

The SyRS and SRS requirements typically add four to six columns to 
the RTM: Description, SyRS tag (if you have an SyRS), Allocations, SRS 
tag, and Test/verification type. The Description column provides a brief 
description of the requirement, such as PPDAQ Standard Software Platform 
from requirement DAQ_SRS_700_000 in the previous section. (Note that 
this does not refer to the POOL_SRS tag presented in “A Sample Software 
Requirements Specification” on page 203.) 

The SyRS and SRS tag columns contain the actual SyRS (if present) 
and SRS tag identifiers. Generally, you would sort the rows in the RTM by 
SyRS (primary key) and then SRS (secondary key) unless there are no SyRS 
tags, in which case you’d simply sort the rows by the SRS tag.

The Allocations column specifies whether the requirement is hardware 
(H), software (S), other (O), or a combination of these. Typically, only SyRS 
requirements have hardware-only allocations; after all, SRS requirements 
are software requirements. It is possible, however, for an SRS requirement 
to have an HS allocation if it covers both software and hardware aspects of 
the system. The other designation is a catch-all to cover requirements that 
don’t clearly fit into a hardware or software category (this could describe a 
manual process, for example).

Note that if you don’t have an SyRS, or all of your requirement alloca-
tions are software allocations, you can eliminate the Allocations column; 
this can help reduce the size and complexity of the RTM.

The Verification type column in the RTM specifies how you will verify 
(test) this requirement in the system. Possible entries are: by test (T); by 
review (R); by inspection (I; the “by review” variant for hardware designs); by 
design (D ; usually applies to hardware, not software); by analysis (A); other 
(O); and no test, or no test possible (N).

Clearly, requirements that have a T verification method will have some 
associated test to run to verify the requirement. This generally means that 
you will have a corresponding test case for this requirement and a test pro-
cedure to execute it.

It may be difficult, impractical, or dangerous to test certain require-
ments.5 In these situations it may be much easier to carefully review the 

5. For example, some requirements might state that it is preferable to damage the system 
hardware rather than allow the system to enter a state that might cause bodily harm or death. 
You would not want to test this by damaging the system.
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code to verify that it will behave properly. For such requirements, the verifi-
cation method would be R, by review.

The by analysis (A) verification method means that somewhere you are 
offering a formal (mathematical) proof that the software meets the formal 
requirement. This is a much more stringent process than by review and a 
subject that is well beyond the scope of this book. Nevertheless, this type 
of verification may be necessary for certain requirements whose failure 
could lead to catastrophic events (such as death). Consider the very first 
requirement from “(Selected) DAQ Software Requirements (from SRS)” 
on page 219:

[DAQ_SRS_700_000]
The PPDAQ software shall run on a Netburner MOD54415 MOD-70 
evaluation board connected to a DAQ_IF interface board.

It would be somewhat difficult to come up with an actual test that 
proves this requirement is being met (other than installing the software on 
a Netburner MOD54415 and verifying that it actually runs). On the other 
hand, it’s nearly trivial to look at the source code (and the build files) and 
verify that this code was written for the Netburner MOD54415. A test by review 
is easily the most appropriate way to handle this particular requirement. 

The other verification method is a catch-all category that implies you’re 
going to provide the documentation to justify either the lack of a testing 
method or the verification approach you plan to use. 

The no test or no test possible verification requires you to justify why a test 
is not needed. If you are specifying N to represent no test possible, you should 
carefully consider whether the requirement is valid (is an actual require-
ment). Remember, if it can’t be tested, it isn’t a requirement.

These are the four column entries that [DAQ_SRS_700_000] would 
add to the RTM.

Description SRS tag Allocation Verification

PPDAQ Standard 
Software Platform

DAQ_SRS_700_000 HS R

Given the requirements in “(Selected) DAQ Software Requirements 
(from SRS)” on page 219, we can divide the requirements into two groups: 
those whose verification type should be by test and those whose verification 
type should be by review (because an actual test for them might be difficult 
to perform or awkward to create).

10.9.1 Requirements to Be Verified by Review
Table 10-2 shows a list of the requirements from “(Selected) DAQ Software 
Requirements (from SRS)” on page 219 that should be verified by review 
and should provide a justification for the choice that has been made.6

6. This is my opinion, so feel free to add or remove items from this list if your opinion differs. 
Note that I will use this list when creating a Software Review List later in this book.
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Table 10-2: DAQ Software Requirement Justifications

Requirement Justification

DAQ_SRS_700_000 Although you could argue that running the software on a Netburner verifies 
that it runs on a Netburner, reviewing the make/build files is an easier and 
more practical way to verify this requirement.

DAQ_SRS_700_000.01 Although you could argue that running the software on a µC/OS verifies that 
it runs under µC/OS, reviewing the make/build files is an easier and more 
practical way to verify this requirement.

DAQ_SRS_702_001 Writing a test to show that a separate process is running would be difficult 
without actually changing the code (i.e., to print some output to show this). 
However, reviewing the code to see that it is starting a new task to handle 
RS-232 communication isn’t that difficult.

DAQ_SRS_702_002 Writing a test to show that the RS-232 process is running at a particular prior-
ity level would require modifying the code; reviewing the code is easier.

DAQ_SRS_703_001 Making this one by review is arguable. You could argue that if the system 
is accepting RS-232 commands, the task is running. However, this does not 
prove that a separate task is running or not running (the main task could 
be processing the commands). Hence, this should probably be a by review 
verification.

DAQ_SRS_705_001 The same argument applies as for DAQ_SRS_702_001 (just applied to the 
USB input task).

DAQ_SRS_705_002 Same justification as for DAQ_SRS_702_002.

DAQ_SRS_706_001 Same argument as for DAQ_SRS_705_001 (just the complement of that 
requirement).

DAQ_SRS_716_001 Same argument as for DAQ_SRS_702_001 (just applied to the Ethernet 
listen task).

DAQ_SRS_716_002 Same argument as for DAQ_SRS_702_002 (just applied to the Ethernet listen 
task priority).

DAQ_SRS_719_000 Currently, unit test mode is undefined on the DAQ system so there is no way to 
test that the system has entered this mode. Reviewing the code verifies that the 
internal variable is properly set up (the only effect the DIP switch will have).

DAQ_SRS_720_000 See DAQ_SRS_719_000.

DAQ_SRS_723_000 Another arguable case. The fact that the system is reading the DIP switches (to 
handle other tests) should be enough to show that the software is reading the 
Netburner switches. However, this requirement is sufficiently unimportant that 
the choice of review/test doesn’t really matter.

DAQ_SRS_723_000.01 See DAQ_SRS_723_000.

DAQ_SRS_723_000.02 See DAQ_SRS_723_000.

DAQ_SRS_725_000 Checking to see that the DAQ responds to a command is no big deal (easily 
testable); however, this requirement states that the DAQ does not initiate com-
munication on its own (that is, it’s negatively stated, which, in general, is bad 
in a requirement). Reviewing code is the only proper way to handle negative 
requirements (which is why you want to avoid them).

DAQ_SRS_738_001 Similar justification to DAQ_SRS_702_001.

DAQ_SRS_738_002 Similar justification to DAQ_SRS_702_002.
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10.9.2 Requirements to Be Verified by Testing
All requirements in “(Selected) DAQ Software Requirements (from SRS)” 
on page 219 that are not also listed in “Requirements to Be Verified by 
Review” on page 223 will be verified using test cases and test procedures.

10.10 For More Information
IEEE. “IEEE Standard 830-1998: IEEE Recommended Practice for Software 

Requirements Specifications.” October 20, 1998. https://doi.org/10.1109/
IEEESTD.1998.88286.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements. Boston: 
Addison-Wesley Professional, 2003.

Wiegers, Karl E. Software Requirements. Redmond, WA: Microsoft Press, 2009.

———. “Writing Quality Requirements.” Software Development 7, no. 5 (May 
1999): 44–48. 





The Software Design Description (SDD) 
document provides low-level implementa-

tion details for the design of the software. 
While it doesn’t necessarily dive down to the 

level of actual code, it does provide the algorithms, 
data structures, and low-level flow control for the 
software implementation.

There are lots of different ideas about how to document software 
design. This chapter follows the guidelines proposed by IEEE Standard 
(Std) 1016-20091 and uses many of the concepts described in that standard.

IEEE Std 1016-2009 was written in an attempt to be language-independent. 
However, the Unified Modeling Language covers almost all of the require-
ments of the standard, which is why Chapter 4 introduced UML and why 
we’ll use it in this chapter. If you’re interested in the other software design 

1. IEEE Std 1016 is a registered trademark of the IEEE. IEEE Std 1016-2009 is a revision of 
IEEE Std 1016-1998 that incorporates UML as the software modeling language.

11
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modeling languages available, feel free to check out their descriptions in 
the IEEE Std 1016-2009 document.

11.1 IEEE Std 1016-1998 vs. IEEE Std 1016-2009
Finalized in 1998, the original IEEE SDD guidelines were based on struc-
tured programming software engineering concepts prevalent in the 1980s 
and 1990s. The recommendations were released just as the object-oriented 
programming revolution was under way and, as a result, immediately became 
outdated. It took 10 years to update, but the revision, Std 1016-2009, covered 
object-oriented analysis and design. The new guidelines maintained features 
of the 1016-1998 standard but in a somewhat deprecated form. Note, however, 
that some of them are still useful in modern design, so there’s no reason to 
ignore the old standard if those features are appropriate in your context.

11.2 IEEE 1016-2009 Conceptual Model
The SDD does not live in a vacuum. The material in an SDD flows naturally 
from the Software Requirements Specification (SRS), and the Reverse 
Traceability Matrix (RTM) binds the two documents. Figure 11-1 shows 
this relationship.

SRS SDD
traceability

matrix

Figure 11-1: SRS relationship to SDD

11.2.1 Design Concerns and Design Stakeholders
Each requirement in the SRS ultimately relates to a design concern in the 
SDD (see Figure 11-2). A design concern is anything that is of interest to a 
stakeholder in the design of the system. A stakeholder is anyone who has a 
say in the system’s design. A requirement refers to any individual requirement 
from the SRS, as explained in Chapter 10. 

Design concern

Requirement

Stakeholder

raises 0..*

has 1..*

is important to 1..*

Figure 11-2: Mapping requirements  
to design concerns
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Figure 11-2 maps requirements to design concerns as follows:

0..* Each requirement has zero or more associated design concerns.

1..* A single design concern is important to one or more design 
stakeholders.

1...* Each stakeholder has at least one (and possibly more) 
design concerns.

The IEEE conceptual model states that requirements raise zero or more 
design concerns. But in fact, requirements and design concerns should have 
a one-to-one relationship: for each design concern there is exactly one associ-
ated requirement. If a requirement doesn’t raise any design concerns—that 
is, the requirement has no impact on the software design—then perhaps that 
requirement isn’t necessary (and, therefore, is not a valid requirement). If a 
requirement maps to multiple design concerns, this probably suggests that 
you have a compound requirement that should be broken down into atomic 
requirements in your SRS (see “Atomic” on page 190). 

Stakeholders and design concerns should have a many-to-many rela-
tionship. One stakeholder can (and usually does) have many design con-
cerns. Likewise, a single design concern can be (and usually is) shared by 
many different stakeholders.

11.2.2 Design Viewpoints and Design Elements
Ultimately, the design concern (or just the requirement) is the interface 
point to the SDD. A design viewpoint logically groups a set of one or more 
design concerns. For example, a logical viewpoint (see “Logical Viewpoint” on 
page 235) would describe the static data structures in the design, so all the 
requirements associated with classes and data objects would be associated 
with that viewpoint. An algorithmic viewpoint (see “Algorithmic Viewpoint” 
on page 239) would describe certain algorithms that the design uses, so 
any requirements that specify certain algorithms to use (which, admittedly, 
should be rare) would be associated with that viewpoint.

IEEE Std 1016-2009 calls for specifying each design viewpoint by:

•	 A viewpoint name

•	 Design concerns associated with the viewpoint

•	 A list of design elements (types of design entities, attributes, and con-
straints) that the viewpoint uses

•	 A discussion of the analysis someone would use to construct a design 
view based on the viewpoint

•	 Criteria for interpreting and evaluating the design

•	 Author’s name or a reference to the source material used for the viewpoint
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Figure 11-3 shows the relationship between design concerns and design 
viewpoints. The multiplicity item 1..* indicates that a single viewpoint 
frames (or groups) one or more requirements.

Design 
concern

Design 
viewpoint

frames 1..*

Figure 11-3: Mapping design concerns to design viewpoints

Design concerns and design viewpoints have a fundamental one-to-
many relationship that provides traceability between the SDD and SRS. 
In the RTM, each requirement (design concern) will link to exactly one 
design viewpoint. Therefore, you would normally attach SDD tags to design 
viewpoints (or, as you’ll see in a moment, you could also attach the tags 
to design views, as there is a one-to-one relationship between design views 
and design viewpoints).

Design viewpoints define a set of design elements (see Figure 11-4), exam-
ples of which include class diagrams, sequence diagrams, state diagrams, 
packages, use cases, and activity diagrams. 

Design 
viewpoint

Design 
element

defines 1..*

Figure 11-4: Mapping design viewpoints to design elements

A design element is anything that you would put in a design view, 
including design entities, attributes, relationships, and constraints: 

•	 Design entities are objects that describe the major components of a 
design. Examples include systems, subsystems, libraries, frameworks, 
patterns, templates, components, classes, structures, types, data stores, 
modules, program units, programs, threads, and processes. IEEE Std 
1016-2009 requires that each design entity in an SDD have a name and 
a purpose.

•	 Design elements have associated attributes: a name, a type, a purpose, 
and an author. When listing the design elements in your SDD view-
point, you must provide these attributes.

•	 Design relationships have an associated name and type. IEEE Std 
1016-2009 does not predefine any relationships; however, UML 2.0 
defines several—such as association, aggregation, dependency, and 
generalization—that you would typically use in your SDDs. As per the 
IEEE requirements, you must describe all relationships you use in 
the design viewpoint specification.

•	 A design constraint is an element (the source element) that applies 
restrictions or rules to some other design element (the target element) 
of a design view. The IEEE requires that you list all design constraints 
by name and type (and source/target elements) in the viewpoint that 
defines them.
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You define design elements using a formal design language (see 
Figure 11-5). As noted earlier, IEEE Std 1016-2009 tries to be language-
agnostic, but the truth is that it was designed specifically around UML. 
Other (formal) design languages the IEEE suggests include IDEFO, 
IDEF1X, and Vienna Definition Method. However, for this book, you’re 
probably better off using UML.

Design 
viewpoint

Design 
element

Design 
language

defines 1..*

Figure 11-5: Relationship between design viewpoints, elements,  
and language

IEEE Std 1016-2009 defines a common set of design viewpoints. As the 
standard is a set of recommended practices, not absolute requirements, the 
list of viewpoints that follows here is neither exhaustive nor required. That is, 
in your SDD you can define and add further viewpoints as you see fit, and you 
don’t need to include all of them (indeed, some of them are deprecated and 
included only for compatibility with the older IEEE Std 1016-1998). 

11.2.2.1 Context Viewpoint

The design elements for which the context viewpoint collects requirements 
are actors (users, external systems, stakeholders), services the system pro-
vides, and their interactions (such as input and output). The context view-
point also manages various design constraints, such as quality of service, 
reliability, and performance. In a sense, you begin this work while develop-
ing the requirements for the SRS (for example, while creating use cases to 
drive the requirements) and finish the work while developing the SDD.

The main purpose of the context viewpoint is to set the system bound-
ary and define those considerations that are internal to the system and 
those that are external. This limits the scope of the design so that the 
designer and author(s) of the SDD can concentrate on the system design 
and not waste time considering external factors.

You typically represent context viewpoints in UML use case diagrams 
(see “Use Cases” on page 214). For a good example, refer back to Figure 10-1, 
which lists the initializations the user can set via DIP switches on the data 
acquisition (DAQ) system. As another example, Figure 11-6 shows an 
abbreviated set of use cases for DAQ commands between a host system 
(typically a PC) and the DAQ CPU interface board. 
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Host

DAQ_UC_016
Timestamp

DAQ_UC_017
Reset

DAQ_UC_021
PPDIO Cmds

DAQ_UC_018
Version

DAQ_UC_019
Echo

DAQ_UC_020
Help

DAQ_UC_022
PPDO Cmds

DAQ_UC_024
PPDIO::Polarity

DAQ_UC_025
PPDIO::Pullup

DAQ_UC_026
PPDIO::Boards

DAQ_UC_027
PPDIO::Config

DAQ_UC_028
PPDIO::Filter

DAQ_UC_029
PPDIO::Debounce

DAQ_UC_030
PPDIO::DIN

DAQ_UC_033
PPDO::Boards

DAQ_UC_034
PPDO::DOUT

Figure 11-6: DAQ commands use case
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This figure shows the command interface between the external system 
(the host actor) and the DAQ system. Note that each use case—in this 
example, there are 16—corresponds to requirements in the DAQ SRS.2

11.2.2.2 Composition Viewpoint

The composition viewpoint lists the major modules/components that make 
up the system. One of the main goals of this viewpoint is to foster code 
reuse by identifying, in the design, items that could come from existing 
libraries, or proprietary designs that could be reused in the system.

Design entities included in the composition viewpoint are—to name a 
few—composition (obviously), include, use, and generalization. The com-
position viewpoint states relationships between design entities using realiza-
tion, dependency, aggregation, composition, and generalization as well as 
any other relationships between objects.

Note that this is an older viewpoint carried over from IEEE Std 1016-
1998.3 For the most part it is superseded by the structure viewpoint (see 
“Structure Viewpoint” on page 237) and, to a lesser extent, the logical 
viewpoint (see the next section). The composition viewpoint hails from the 
days when programs were composed largely of procedures and functions 
organized into libraries, long before the days of object-oriented analysis 
and design.

Modern designs, if they contain a composition viewpoint at all, largely 
relegate it to describing major components of a system, as recommended by 
IEEE Std 1016-2009. Figure 11-7 provides an example of such a composition 
viewpoint for the DAQ system, using watered-down component diagrams. In 
my opinion, component diagrams are not a good fit for composition view-
point diagrams—they are too low-level for the task. Component diagrams 
typically include interfaces (required and provided) that don’t make sense 
at the composition viewpoint level. However, apparently due to the similarity 
of the words composition and component, it’s very common to use watered-down 
UML component diagrams to denote the composition viewpoint.

2. There are actually 29 use cases in the full use case diagram. See http://www.plantation 
-productions.com/Electronics/DAQ/DAQ.html.

3. The IEEE Std 1016-2009 includes many older viewpoints carried over from the 1016-1998 
standard. You probably shouldn’t use these older viewpoints in new designs. They are included 
only so that older SDD documents can still claim to be compliant with IEEE Std 1016.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
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Command 
processing

Watchdog
maintenance

USB/Serial
communications

Analog
input

Digital
input

Digital
output

Analog
output

Ethernet
communications

Note: Watchdog maintenance is 
associated with command processing 
while the other components are part of 
(aggregates of) command processing.

Figure 11-7: Composition viewpoint diagram

Some engineers use a combination of component and deployment dia-
grams (see “Deployment Diagrams” on page 159) to illustrate a composi-
tion viewpoint, as shown in Figure 11-8.

Command 
processing

Watchdog
maintenance

USB/Serial
communications

Analog
input

Digital
input

Digital
output

Analog
output

Ethernet
communications

Figure 11-8: Deployment/component diagram
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Note that the nodes in this diagram still include the component symbol 
to indicate that they are components forming a larger system, rather than 
hardware items. This is a nonstandard diagramming method for UML, but 
I’ve seen it in several example SDDs so I’ve included it here.

11.2.2.3 Logical Viewpoint

The logical viewpoint describes preexisting and new types used in the 
design, along with their class, interface/protocol, and structural definitions. 
The logical viewpoint also describes the objects (instances of the types) the 
design uses.

The logical viewpoint deals with classes, interfaces, data types, objects, 
attributes, methods, functions, procedures (subroutines), templates, macros, 
and namespaces. It also assigns attributes—such as names, visibility type, and 
values—and attaches appropriate constraints to these design entities.

Typically, you use UML class diagrams to implement a logical view-
point. Figure 11-9 shows a class diagram for an adcClass_t class that might 
be appropriate for the analog input module in Figure 11-8. In addition to 
this basic class diagram, you’d probably want to include a data dictionary, or 
text describing the purpose of all the attributes for this class.

 adc_Class_t

-numBoards:int
+chPerBoard_c:int=4

+init( boards:int)
+readADC( ch:int, brd:int):int
+setGain( ch:int, brd:int, gain:int)

Figure 11-9: adc class diagram

In addition to the bare class diagrams, a logical viewpoint should also 
include relationships between classes (such as dependency, association, 
aggregation, composition, and inheritance). See “UML Class Relationships” 
on page 114 for more details on these class relationships and how you can 
diagram them.

11.2.2.4 Dependency Viewpoint

Like the composition viewpoint, the dependency viewpoint is a deprecated 
viewpoint maintained for compatibility with IEEE Std 1016-1998; you gener-
ally wouldn’t use this viewpoint in modern designs, as other options (such 
as the logical and resource viewpoints) can map dependencies in a more 
logical manner. However, there’s nothing stopping you from using depen-
dency viewpoints where appropriate, and it’s also likely that you’ll encoun-
ter them in SDDs, so you should know about them.

In an SDD, the dependency viewpoint illustrates design entity relation-
ships and interconnections, including shared information, interface param-
eterization, and order of execution using terms such as uses, provides, and 
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requires. Dependency viewpoints apply to subsystems, components, modules, 
and resources. IEEE Std 1016-2009 recommends using UML component 
diagrams and package diagrams to depict this viewpoint. Using a combined 
deployment/component diagram (as in Figure 11-8) is probably a good 
solution if you want to go the component diagram route (say, for dependen-
cies between components or subsystems). Using package diagrams is a good 
idea if you are describing the dependency relationship between packages, 
as shown in Figure 11-10.

+display()

+getInput

UI

+phSensor

+saltSensor

sensors

+getTime()

+setTime

clock

«depends on»«depends on»

Figure 11-10: Package dependencies

11.2.2.5 Information/Database Viewpoint

The information/database viewpoint describes persistent data usage in 
your design. It is similar to the logical viewpoint in that you use class dia-
grams to show data structure, content, and metadata definitions. The 
information viewpoint would also describe data access schemes, data man-
agement strategies, and data storage mechanisms.

This is also a deprecated item included to maintain compatibility with 
IEEE Std 1016-1998. In modern designs, you would likely use the logical 
viewpoint or possibly the resource viewpoint instead. 

11.2.2.6 Patterns Use Viewpoint

The patterns use viewpoint maps out the design patterns—and the reus-
able components implemented from them—that are used in the project. 
For more information about design patterns, see “For More Information” 
on page 260.

Patterns use viewpoint diagrams use a combination of UML composite 
structures, class diagrams, and package diagrams along with association, 
collaboration use, and connectors to indicate objects generated from the 
patterns. This viewpoint is loosely designed, so you have a lot of latitude in 
its creation should you choose to use it in your SDD.
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11.2.2.7 Interface Viewpoint

The interface viewpoint describes the services (for example, APIs) provided 
by the design. Specifically, it includes a description of interfaces for which 
there are no requirements in the SRS, including interfaces to third-party 
libraries, other parts of the project, or other projects within the same orga-
nization. It is a road map that other programmers can use when interacting 
with the portion of the design covered by the interface viewpoint.

IEEE Std 1016-2009 recommends using UML component diagrams for 
the interface viewpoint. Figure 11-11 shows two components (possibly in the 
DAQ system) dealing with digital I/O and relay output (a specific form of 
digital output).

«component»
Digital I/O

«component»

Relay output

Direction

Read

Write Init/Reset

Init/ResetWrite

Figure 11-11: Interface viewpoint example

In addition to the component diagram, the interface viewpoint should 
include a description of how the system interacts with these interfaces, 
including data types, function calls, latencies, constraints on inputs, the 
range of outputs, and other important issues. For example, when discussing 
the Direction interface, you might include information such as:

Direction
Direction(ddir:int, port:int)

A call to Direction sets the specified digital I/O port (port = 0..95) 
to either an input port (if ddir = 0) or an output port (if ddir = 1).

For Read, you might use a description such as:

Read
Read(port:int):int

A call to Read returns the current value (0 or 1) of the specified 
digital input port (port = 0..95).

Again, the interface viewpoint is included in IEEE Std 1016-2009 only for 
compatibility with the older IEEE Std 1016-1998. In modern SDDs, consider 
placing interface items in the context and structure viewpoints instead.

11.2.2.8 Structure Viewpoint

The structure viewpoint describes the internal organization and construc-
tion of the objects in the design. It is the more modern version of the com-
position viewpoint, which describes how the design is (recursively) broken 
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down into parts. You would use the structure viewpoint to break down 
larger objects into their smaller pieces for the purpose of determining how 
to reuse those smaller components throughout the design.

The diagramming methods typically used for the structure viewpoint 
are UML composite structure diagrams, UML package diagrams, and UML 
class diagrams. These diagrams are illustrated for the swimming pool mon-
itor (SPM) in Figures 11-12, 11-13, and 11-14, respectively. 

Swimming pool monitor

userInterface

-readKpd
-getPoolLvl
-pumpCtrl
-getPoolHiLo

kbdScanner

+readButtons

analogInput

+readPoolLvl

digitalOutput

+writeRelay

digitalInput

+realPoolLvl(6)

Figure 11-12: SPM composite structure diagram 

SPM

userInterface digital_IO

realTimeClk

I2C_Library

interrupt_handlertemperature_conv

display_driver

analog_IO

Figure 11-13: SPM package diagram 

Swimming pool monitor

-curPoolLevel:int
-poolLow:boolean
-poolHi:boolean
-curTime:dateTime
-fillCheckTime:dateTime
-maxFillTime:dateTime
-curFillTime:dateTime
-doingManualFill:boolean

-readKpd():char
-getPoolLvl():int
-pumpCtrl( onOff:boolean )
-getPoolHiLo( sensor:int ):boolean

Figure 11-14: SPM class diagram
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These examples illustrate that you’ll typically have more than one dia-
gram in a given viewpoint. Also note that a typical structure viewpoint will 
have multiple composite structure diagrams, (possibly) multiple package 
diagrams, and (certainly) multiple class diagrams. 

11.2.2.9 Interaction Viewpoint

The interaction viewpoint is the main place where you define the activities 
that take place in the software. This is where you’ll place most of your inter-
action diagrams—activity diagrams, sequence diagrams, collaboration dia-
grams, and the like—with the possible exception of state diagrams, because 
they normally appear in the state dynamics viewpoint (covered in the next 
section). In addition to interaction diagrams, you might also use composite 
structure and package diagrams in the interaction viewpoint.

A full example of the interaction viewpoint appears in “A Sample SDD” 
on page 247.

11.2.2.10 State Dynamics Viewpoint

The state dynamics viewpoint describes the internal operating state of a 
software system. For this viewpoint, you would typically use UML statechart 
diagrams (see “Statechart Diagrams” on page 163).

11.2.2.11 Algorithmic Viewpoint

The algorithmic viewpoint is another older viewpoint carried over from 
IEEE 1016-1998. Its purpose was to describe the algorithms (typically 
through flowcharts, Warnier/Orr diagrams, pseudocode, and the like) 
used in the system. This viewpoint largely has been replaced by the interac-
tion viewpoint in the Std 1016-2009 document.

11.2.2.12 Resource Viewpoint

The resource viewpoint describes how the design uses various system 
resources. This includes CPU usage (including multicore usage), memory 
usage, storage, peripheral usage, shared libraries, and other security, per-
formance, and cost issues associated with the design. Typically, resources 
are entities that are external to the design.

This is another Std 1016-1998 item included for compatibility reasons 
in Std 1016-2009. In new designs, you would typically use the context view-
point to describe resource usage.

11.2.3 Design Views, Overlays, and Rationales
IEEE Std 1016-2009 states that an SDD is organized into one or more 
design views. Therefore, the design view is the fundamental unit of organi-
zation in an SDD. Design views provide (possibly) multiple perspectives on 
the system design to help clarify to stakeholders, designers, and program-
mers how the design fulfills the requirements as specified by an associated 
design viewpoint.
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An SDD is complete when it covers every requirement (design concern) 
in at least one design view, covers all the entities and relationships in the 
associated design viewpoint, and lives within all the constraints applied to 
the design. In plain terms, this means that you’ve matched all the require-
ments to appropriate diagrams and textual discussions as outlined in 
“Design Viewpoints and Design Elements” on page 229.

An SDD is consistent if there is no conflict between any of the elements 
in the design views. For example, if a class diagram states that an attribute 
(field) named hasValue is a boolean, but an activity diagram treats that field 
as a string, you have an inconsistency.

11.2.3.1 Design Views vs. Design Viewpoints

There is a one-to-one relationship between design view and design view-
points, as shown in Figure 11-15. The association link states that a design 
view conforms to exactly one design viewpoint and a design viewpoint is 
governed by exactly one design view.

Design viewpoint
conforms to 1

governs 1
Design view

Figure 11-15: Design views and design viewpoints

So, what’s the difference between a design view and a design viewpoint? 
A design view is the actual information (graphic and textual) that you would 
normally consider to be the “design.” A design viewpoint is the point of 
view from which you create the design. In the IEEE recommendations, the 
design viewpoints would be something like the context viewpoint or interac-
tion viewpoint. These are not the actual design views, but rather the format 
used to present the views. In terms of the organization of your SDD, the 
view/viewpoint section of the table of contents might look something like 
the following:4

1 Viewpoint #1

1.1 Viewpoint #1 Specification (see “Design Viewpoints and Design 
Elements” on page 229)

1.2 View #1

2 Viewpoint #2

2.1 Viewpoint #2 Specification

2.2 View #2

4. In almost every sample SDD I’ve found on the internet, the authors combine design view-
points and design views into the same sections. When they differentiate them, the Design 
Views section is a brief introduction and the actual views are listed under the Viewpoint sec-
tions (which seems backward to me, but the IEEE Std 1016-2009 document is not very clear 
on this matter).
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3 Viewpoint #3

3.1 Viewpoint #3 Specification

3.2 View #3

4 Etc.

The reason for organizing the views by viewpoints is simple: viewpoints 
represent the perspectives of different stakeholders, so this organization 
allows stakeholders to quickly locate the sections of the SDD of interest to 
them instead of having to read the whole document.

Note that each view in this outline does not necessarily correspond 
to a single diagram or textual description. A single view could consist of 
many separate UML diagrams and intervening textual descriptions. For 
example, in a logical viewpoint you’ll probably have many different class 
diagrams (not just one) if for no other reason than that it’s difficult to com-
bine multiple classes into a single diagram. Even if you could, you might 
want to logically organize your class diagrams to make them easier to read. 
Furthermore, in addition to the class diagrams themselves, you’ll need to 
provide some text describing the members (attributes) of those classes. 
Rather than having a huge class diagram (perhaps consuming dozens of 
pages) followed by a very long textual description (spanning additional doz-
ens of pages), it’s probably better to put a few class diagrams in one figure, 
immediately follow them with the textual information about the attributes, 
and then repeat this for the remaining classes you need to document.

11.2.3.2 Design Overlays

A design overlay is an “escape clause” for a view. Design views conform to 
design overlays or, conversely, design overlays govern design views, as shown 
in Figure 11-16. So, if you’ve created a logical viewpoint, for example, and 
you want to incorporate some interaction diagrams in that viewpoint for 
clarification, you would use a design overlay. 

A design overlay modifies the view/viewpoint organization like so: 

1 Viewpoint #1

1.1 Viewpoint #1 Specification 

1.2 View #1

1.3 Overlay #1

1.4 Overlay #2

1.5 Etc.

2 Etc.
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has 1..* Design
overlay

Design
view

Design
rationale

Figure 11-16: Design view/overlay/rationale relationship

Design overlays must be identified as such (to avoid confusion with 
the associated viewpoint), uniquely named, and associated with only a 
single viewpoint.

One benefit of a design overlay is that it lets you mix and match design 
languages or extend an existing design language when it isn’t expressive 
enough to satisfy your needs. Design overlays also allow you to extend an 
existing view without having to create a whole new viewpoint (which can 
be a lot of extra work).

11.2.3.3 Design Rationale

The design rationale explains the purpose behind the design and justifies 
the design to other viewers. Generally, a design rationale consists of com-
ments and annotations throughout the design. It may address (but certainly 
isn’t limited to) potential concerns about the design, different options 
and tradeoffs considered during the design, arguments and justifications 
for why certain decisions were made, and even changes made during the 
prototyping or development phases (because the original design did not 
pan out). Figure 11-16 shows the relationship of design rationales to design 
views (the aggregation symbol implies that the design rationale comments 
are included, or are a part of, the design view).

11.2.4 The IEEE Std 1016-2009 Conceptual Model
Figures 11-17 and 11-18 provide conceptual model diagrams for the SDD 
and design elements, according to IEEE Std 1016-2009.5

5. With a few changes for clarity.
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has 1..*

has 1..*
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Figure 11-17: SDD conceptual model

refined into 1..*
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of 1..*Design
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Design
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Design
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Design
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Design
concern

Design
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has roles in 0..*

Figure 11-18: SDD design element conceptual model
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11.3 SDD Required Contents
An SDD must have the following contents (according to IEEE Std 1016-2009):

•	 An SDD identification

•	 A list of the design stakeholders

•	 Design concerns (developed from the product requirements)

•	 A set of one or more design viewpoints (note that there’s exactly one 
design viewpoint for each design view in an SDD)

•	 A set of one or more design views (roughly corresponding to the differ-
ent types of UML diagrams, though a design viewpoint is not necessar-
ily tied to a particular UML diagram type)

•	 Any needed design overlays

•	 Any necessary design rationales (IEEE requires at least a purpose)

11.3.1 SDD Identification
At the very least, an SDD should include the following identification infor-
mation (not necessarily in this order):

•	 Creation date/date of issue

•	 Current status

•	 Purpose/scope

•	 Issuing organization

•	 Authors (including copyright information)

•	 References

•	 Context

•	 A description of the design languages used for design viewpoints

•	 Body

•	 Summary

•	 Glossary

•	 Change history

Most of this information is boilerplate (except for dates, you typically 
copy this information from an organization’s generic SDD template). 
Obviously, some of this information changes from one SDD to another 
(like dates, authors, and change history), but for the most part very little 
intellectual activity is involved in the SDD identification. It exists primarily 
so that the SDD can stand as an independent document.

11.3.2 Design Stakeholders and Their Design Concerns
The SDD must list all the individuals who contributed requirements/design 
concerns to the project. This content is critical: if there is ever a question 
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about the design rationale that is not addressed in the SDD, a reader should 
be able to determine which stakeholder to contact with questions about the 
design concerns.

11.3.3 Design Views, Viewpoints, Overlays, and Rationales
The design views, viewpoints, overlays, and rationales form the main body 
of the SDD.

11.4 SDD Traceability and Tags
We haven’t yet discussed how to trace design elements in an SDD back to 
the SRS and other system documents via the RTM (see “Traceability” on 
page 171). As noted in Chapter 9, you use tags to trace elements of the 
design throughout the documentation. For SDDs, you use tags of the form 
proj_SDD_xxx where proj is some project-specific name or mnemonic and 
xxx is a numeric (possibly decimal) value (see “SDD Tags” on page 176). 
All you have to do, then, is ensure you have unique SDD tags (generally 
by verifying that xxx is unique among all the SDD tags) and define where 
exactly to attach the SDD tags.

Technically, the requirements from the SRS map directly to the design 
concerns (one-to-one usually), which might tempt you to think that you 
should attach SDD tags to the design concerns. However, as the design 
views form the main body of the SDD and design concerns map to them 
in a many-to-one fashion (through the design viewpoints, which have a 
one-to-one relationship to design views), it’s best to attach SDD tags to the 
design views or viewpoints. It will make your life a whole lot easier when 
you’re creating the RTM if the mapping from the requirements to the 
design elements is either one-to-many or many-to-one (in particular, you 
want to avoid many-to-many). 

In practice, a given design view can be broken down into multiple 
images or descriptions. If you are careful to only ever connect a design con-
cern to one of these images or descriptions, you can assign SDD tags to the 
individual components of a design view. However, you must exercise caution 
when doing this, because if a single design concern maps to a couple of dif-
ferent components in a single design view, you can wind up with a many-to-
many relationship.6

11.5 A Suggested SDD Outline
IEEE Std 1016-2009, Annex C, provides one suggested outline to organize 
and format an SDD that conforms to the required contents (see “SDD 

6. Note that a many-to-many relationship between design concerns and components in a 
design view isn’t invalid, even if you attach tags to all of the components. However, the RTM 
can become unwieldy when this happens and, seeing as the RTM is messy enough as it is, you 
don’t want to make it worse.
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Required Contents” on page 244). Note that this outline is by no means a 
requirement; you can organize your SDD however you like and it will still 
be valid as long as it contains those required contents. The following is a 
slightly modified variant of the IEEE’s suggestion:7

1 Frontispiece

1.1 Table of Contents

1.2 Date of Issue and Status

1.3 Issuing Organization

1.4 Authorship

1.5 Change History

2 Introduction

2.1 Purpose

2.2 Scope

2.3 Intended Audience

2.4 Context

2.5 Overview/Summary

3 Definitions, Acronyms, and Abbreviations

4 References

5 Glossary

6 Body

6.1 Identified Stakeholders and Design Concerns

6.2 Design Viewpoint 1

6.2.1 Design View 1

6.2.2 (Optional) Design Overlays 1

6.2.3 (Optional) Design Rationales 1

6.3 Design Viewpoint 2

6.3.1 Design View 2

6.3.2 (Optional) Design Overlays 2

6.3.3 (Optional) Design Rationales 2

6.4 Design Viewpoint n

6.4.1 Design View n

6.4.2 (Optional) Design Overlays n

6.4.3 (Optional) Design Rationales n

7 (Optional) Index

7. These modifications are for clarity and consistency with the SRS guidelines  
(see “The System Requirements Specification Document” on page 193).
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11.6 A Sample SDD
This section presents a complete (though highly simplified, for editorial 
reasons) SDD example. This SDD describes the design for the sample use 
case and requirements documentation appearing in the previous chapter 
(see “Use Cases” on page 214). Specifically, this SDD covers the design of 
the Plantation Productions digital data acquisition and control (DAQ) sys-
tem components that process the DIP switches upon system initialization.

1 Plantation Productions DAQ DIP Switch Control

1.1 Table of Contents
[Omitted for editorial reasons]

1.2 Date of Issue and Status
First created on Mar 18, 2018

Current status: complete

1.3 Issuing Organization
Plantation Productions, Inc.

1.4 Authorship
Randall L. Hyde

Copyright 2019, Plantation Productions, Inc.

1.5 Change History
Mar 18, 2019: Initial SDD created.

2 Introduction

2.1 Purpose
The DAQ system from Plantation Productions, Inc., is a digital 
data acquisition and control system intended to provide analog 
and digital I/O for industrial and scientific systems.

This Software Design Description (SDD) describes the DIP switch 
initialization component of the DAQ system. The intent is that 
a developer wishing to implement the functionality for the DIP 
switch control from the Software Requirement Specifications 
(SRS) can use this document to achieve that purpose.

2.2 Scope
This document describes only the DIP switch design in the DAQ 
system (for space/editorial reasons). For the full SDD, please see 
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html.

2.3 Intended Audience
The intended audience expected for an SDD:

This document is intended for use by software developers who will 
implement this design, by design stakeholders who wish to review 
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the design prior to its implementation, and by the authors of the 
Software Test Cases (STC) and Software Test Procedures (STD) 
documents.

The true intended audience for this SDD:

This document is intended for readers of Write Great Code, 
Volume 3, as a means for providing a sample SDD.

2.4 Context
The Plantation Productions DAQ system fulfilled a need for a 
well-documented digital data acquisition and control system that 
engineers could design into safety-critical systems such as nuclear 
research reactors. Although there are many commercial off-
the-shelf (COTS) systems that could be used, they suffer from a 
couple of major drawbacks including: they are usually proprietary 
(difficult to modify or repair after purchase), they are often obso-
lete within 5 to 10 years with no way to repair or replace them, 
and they rarely have full support documentation (for example, 
SRS, SDD, STC, and STP) that an engineer can use to validate 
and verify the system.

The DAQ system overcomes this problem by providing an open 
hardware and open source set of designs with full design docu-
mentation that is validated and verified for safety systems.

Although originally designed for a nuclear research reactor, the 
DAQ system is useful in any place where you need an Ethernet-
based control system supporting digital (TTL-level) I/O, optically 
isolated digital inputs, mechanical or solid-state relay digital out-
puts (isolated and conditioned), analog inputs (for example, ±10v 
and 4–20mA), and (conditioned) analog outputs (±10v). 

2.5 Overview/Summary
The remainder of this documentation is organized as follows.

Section 3 covers the software design, including:

Section 3.1 Stakeholders and Design Concerns

Section 3.2 Context Viewpoint and Overall Architecture

Section 3.3 Logical Viewpoint and Data Dictionary

Section 3.4 Interaction Viewpoint and Control Flow

Section 4 provides an index.8

8. The index is actually empty for editorial/space reasons. It is a placeholder in this sample to 
show that you should provide an index in your SDD.
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3 Definitions, Acronyms, and Abbreviations

Term Definition

DAQ Data acquisition system

SBC Single-board computer

Software Design Description 
(SDD)

Documentation of the design of the software system 
(IEEE Std 1016-2009)—that is, this document.

Software Requirements 
Specification (SRS)

Documentation of the essential requirements (func-
tions, performance, design constraints, and attributes) 
of the software and its external interfaces (IEEE Std 
610.12-1990).

System Requirements 
Specification (SyRS)

A structured collection of information that embodies 
the requirements of the system (IEEE Std 1233-1998). 
A specification that documents the requirements to 
establish a design basis and the conceptual design for 
a system or subsystem.

4 References

Reference Discussion

IEEE Std 830-1998 SRS documentation standard

IEEE Std 829-2008 STP documentation standard

IEEE Std 1012-1998 Software verification and validation standard

IEEE Std 1016-2009 SDD documentation standard

IEEE Std 1233-1998 SyRS documentation standard

5 Glossary
DIP: Dual inline package

6 Software Design

6.1 Stakeholders and Design Concerns
The stakeholders for the DAQ DIP switch design are Plantation 
Productions, Inc., and Randall Hyde. One main design concern is 
to create a simplified SDD that fits within the editorial constraints 
of Write Great Code, Volume 3, while still providing a reasonable 
example of an SDD. The remaining design concerns are all the 
requirements for the DAQ DIP switch system as described in the 
SRS (see “(Selected) DAQ Software Requirements (from SRS)” on 
page 219).

6.2 Context Viewpoint and Overall Architecture
The DAQ context viewpoint shows the functionality that exists 
between the user and the system. 

Name/tag: DAQ_SDD_001

Author: Randall Hyde
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Design elements used: This viewpoint employs use cases, actors 
(host PC and end user), nodes, components, and packages to 
describe the system interface.

Requirements/design concerns:9

DAQ_SRS_700_000

DAQ_SRS_701_000

DAQ_SRS_704_000

DAQ_SRS_707_000

DAQ_SRS_723_000.1

6.2.1 Contextual View10

The DAQ system firmware runs on a Netburner MOD54415 
SBC connected to a DAQ_IF (DAQ interface) board. An 
end user can set DIP switch settings to initialize the way 
the DAQ interfaces to a host PC. The host PC can com-
municate with the DAQ system using RS-232 Serial, USB, 
or Ethernet connections (see Figure 11-19). This design 
expects existing library routines for maintPrintf, serialTask 
Init, usbTaskInit, ethernetTaskInit, and readDIPSwitches.

Host PC USB

RS-232

End user

Ethernet Netburner/DAQ_IF

Commands

DIP Sw

Figure 11-19: Sample contextual view

9. The requirements listing also provides a means for evaluating/verifying the design to see that 
it meets the specifications defined in the SRS. A reviewer will compare each of the listed require-
ments in the SRS against the contextual view to see that the view meets the requirements.

10. As the contextual view is provided here, there’s no need to discuss the analysis needed to 
create the design view; that’s trivial, because the design view is already present.
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6.2.2 Component/Deployment Overlay
The following design overlay provides a different look at 
the contextual view using a combination deployment/
component diagram. Figure 11-20 shows the physical com-
ponents of the system11 and their interconnections.

Netburner MOD54415

«component»
micro C/OS

«component»
DAQ application

Host PC

DAQ_IF

0..1

RS-232

0..1

USB

0..5

Ethernet

J2 Bus

Library

maintPrintfTask()
serialTaskInit()
usbTaskInit()
ethTaskInit()
readDIPSwitches()

Figure 11-20: Sample design overlay diagram

6.2.3 (Optional) Design Rationales
The purpose of this viewpoint is to show how the user con-
trols the way in which the host PC communicates with the 
DAQ system.

6.3 Logical Viewpoint and Data Dictionary
Name/tag: DAQ_SDD_002

Author: Randall Hyde

Design elements used: This viewpoint employs a single class dia-
gram to describe the data storage for this application. 

11. At least those components important to this SDD.
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N O T E  In the real application, it would probably be better to use global variables to hold the 
DIP switch settings rather than an actual class.

Requirements/Design Concerns:

DAQ_SRS_723_000.2

6.3.1 DIP Switch Variables
The data storage requirement for the DAQ (DIP switch) 
application is very simple. A set of 12 global variables in 
Figure 11-21 (which this SDD groups together under glo-
bals) is all that is really needed.

Name Description

dipsw_g Eight-bit array (in a byte) containing DIP switch values
serialEnable_g true if RS-232 communication is enabled
USBEnabled_g true if USB communications is enabled
ethEnabled_g true if Ethernet communications is enabled
ethMultClients_g Allow only a single Ethernet client if false; allow five clients if true
ethernetDipSw_g Hold dipsw_g[5] in bit 0 and dipsw_g[6] in bit 1 (0..3)
unitTestMode_g true if operating in unit test mode
debugMode_g true if maintPrintf() function sends output to COM1:, false if 

maintPrintf()is disabled
ethernetAdrs_g Holds IP address (192.168.2.70–192.168.2.73)
maxSockets_g Either 0, 1, or 5 based on ethEnabled_g and ethMultClients_g 

values
slots_g Holds file descriptors for up to five active Ethernet sockets
slot_g Used to index into slots_g
maintPrintfTask() External function that starts the maintPrintf() task (to handle 

debug output)
serialTaskInit() External function that starts the RS-232 command receipt task
usbTaskInit() External function that starts the USB command receipt task
ethTaskInit() External function that starts an Ethernet command receipt task (up 

to five of these threads can be running concurrently)
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globals

+dipsw_g : boolean[8]
+serialEnable_g : boolean
+USBEnabled_g : boolean
+ethEnabled_g : boolean
+ethMultClients_g : boolean
+ethernetDipSw_g : int
+unitTestMode_g : boolean
+debugMode_g : boolean
+ethernetAdrs_g : string
+maxSockets : int
+slots_g : fileDescriptor[5]
+slot_g : int

externals

+maintPrintfTask()
+serialTaskInit( prio:int )
+usbTaskInit( prio: int )
+ethTaskInit( prio: int )

+ethernetListenTask( prio:int )

Figure 11-21: DAQ global entities

6.3.2 Design Overlays
[None]

6.3.3 Design Rationales
This logical view used a class diagram rather than a set of 
global variables simply because a typical read dipswitches 
function for the Netburner returns all eight readings in a 
single 8-bit byte (that is, as a bit array). For that reason, it 
makes sense to treat all eight values as fields of a class, as 
these attributes would normally be derived anyway—that 
is, computed by masking out the specific bit.

6.4 Interaction Viewpoint and Control Flow
Name/tag: DAQ_SDD_003

Author: Randall Hyde

Design elements used: This viewpoint employs a couple of activ-
ity diagrams to show the control flow (and the value calculations) 
through the program.
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Requirements/design concerns:

DAQ_SRS_702_000

DAQ_SRS_702_001

DAQ_SRS_702_002

DAQ_SRS_703_000 

DAQ_SRS_703_001

DAQ_SRS_705_000 

DAQ_SRS_705_001 

DAQ_SRS_705_002

DAQ_SRS_706_000

DAQ_SRS_706_001

DAQ_SRS_708_000

DAQ_SRS_709_000

DAQ_SRS_710_000

DAQ_SRS_711_000

DAQ_SRS_712_000

DAQ_SRS_716_000

DAQ_SRS_716_001

DAQ_SRS_716_002

DAQ_SRS_716.5_000

DAQ_SRS_717_000

DAQ_SRS_718_000

DAQ_SRS_718_001

DAQ_SRS_719_000

DAQ_SRS_720_000

DAQ_SRS_721_001

DAQ_SRS_721_002

DAQ_SRS_723_000

DAQ_SRS_723_000

DAQ_SRS_723_000

DAQ_SRS_723_000.2
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DAQ_SRS_726_000

DAQ_SRS_727_000

DAQ_SRS_728_000

DAQ_SRS_737_000

DAQ_SRS_738_000

DAQ_SRS_738_001

DAQ_SRS_738_002

6.4.1 Design View
The design view for the interaction viewpoint uses UML 
activity diagrams (flowcharts) to show the control flow 
through the application. See Figures 11-22, 11-23, and 11-24.

Read DIP
switches

RS232enable =
DIPSw[1]

ethernetDipSw_g = 0else

[!DIPSw[5] & !DIPSw[6]]

USBEnabled_g =
DIPSw[2]

ethEnabled_g =
DIPSw[3]

ethMultClients_g =
DIPSw[4]

UnitTestMode =
DIPSw[7]

debugMode_g =
DIPSw[8] &
!DIPSw{2]

System boot

1
start

maintPrintfTask

ethernetDipSw_g = 1else

[DIPSw[5] & !DIPSw[6]]

ethernetDipSw_g = 2else

[!DIPSw[5] & DIPSw[6]]

ethernetDipSw_g = 3else

[DIPSw[5] & DIPSw[6]]

Figure 11-22: Activity diagram: reading DIP switches
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ethernetAdrs_g = 192.168.2.70else

else
[ethernetDipSw_g = 0]

[ethEnabled_g = true]

2

1

start
ethernetListenTask( ETHL_PRIO )

ethernetAdrs_g = 192.168.2.71else

[ethernetDipSw_g = 1]

ethernetAdrs_g = 192.168.2.72else

[ethernetDipSw_g = 2]

ethernetAdrs_g = 192.168.2.73

maxSockets = 1

maxSockets = 5

else

else

[ethernetDipSw_g = 3]

[ethMultClients_g = true]

Figure 11-23: Activity diagram continuation #1
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else

[serialEnable_g = true]

2

start
serialTaskInit( SER_PRIO )

else

[USBEnabled_g = true]

start
usbTaskInit( USB_PRIO )

Figure 11-24: Activity diagram continuation #2

The serialTaskInit() and usbTaskInit() functions are library 
code that is external to this design. These functions start a 
task, ethernetListenTask, to handle RS-232 and USB commu-
nications as shown in Figure 11-25.

The ethTaskInit() function (provided in a library external 
to this design) runs until the connecting host terminates 
the Ethernet connection. At that time, the ethernetListen-
Task task will set the entry of the corresponding slots to 0 
and terminate the task (thread). Should the listen connec-
tion become broken, ethernetListenTask terminates.
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ethernetListenTask

start
ethTaskInit( slot_g + 1 )

slots[0..4] = 0
connectionCnt = 0

listen for connection
on port 0x5050

[no connection]

[connection requested]

[connection
broken]

slot_g = 0

[slot <= 5]

else

else

refuse connection

[slots[slot] = 0]

slots[slot] = listen file descriptor

slot_g = slot_g + 1

Figure 11-25: Activity diagram: ethernetListenTask

6.4.2 Sequence Diagram Overlay
The sequence diagram in Figure 11-26 shows another way 
of looking at the initialization of the threads in the DAQ 
application.

6.4.3 Design Rationale
The DAQ DIP switches project is relatively simple (pur-
posely, so that the SDD example wouldn’t be too large to fit 
into this book). Accordingly, the design is an old-fashioned 
procedural/imperative programming model (as opposed 
to an object-oriented design).

7 Index
[Omitted for editorial reasons]



Software Design Description Documentation   259

Main maintPrintf
Task

ethernetListen
Task

serialTask
Init

usbTask
Init

start

Connection request
[Connection allowed
&& slot available]

start

[ethEnabled_g = true]
start

[serialEnable_g = true]
start

[USBEnabled_g = true]
start

ref

Listen

Host PC

Listen ethTaskInit

Figure 11-26: Sequence diagram: initializing tasks

11.7 Updating the Traceability Matrix with Design Information
The SDD adds a single column to the RTM: the SDD tag column. However, 
the SDD tag does not directly embed any traceability information, so you’ll 
have to extract that information from the SDD to determine where to place 
your SDD tags in the RTM.

As noted in “Design Views vs. Design Viewpoints” on page 240, each 
viewpoint in an SDD must include design concerns and requirements infor-
mation. In this chapter (see “A Sample SDD” on page 247), I’ve strongly sug-
gested supplying all the SRS requirement tags as the list of design concerns in 
the viewpoint documentation. If you’ve done that, you’ve already created the 
reverse traceability back to the requirements. As a result, filling in the SDD 
tags in the RTM is easy: just locate each requirement tag (listed in the cur-
rent viewpoint) and copy the viewpoint’s SDD tag into the SDD tag column 
in the RTM. Of course, considering that you can have multiple requirements 
associated with a single viewpoint, you’ll also have several copies of the same 
SDD tag spread throughout the RTM (one per associated requirement). 
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Should you ever want to trace your SDD tags back to all the require-
ments in the RTM (without looking up the list in the SDD), simply sort the 
RTM by the SDD tag column. This will collect all the requirements (and 
everything else linked to that SDD tag) into a contiguous group in the 
matrix and make it easy to identify everything associated with that tag.

If you choose some other method of specifying design concerns in the 
viewpoint that doesn’t involve incorporating the SRS tags within them, 
then determining the placement of the SDD tags in the RTM becomes a 
manual (even laborious) process. That’s why I strongly recommend using 
SRS tags when generating your viewpoints. Since you have to consider all 
the requirements when generating the viewpoint anyway, it makes sense to 
collect that information into the SDD at the same time.

11.8 Creating a Software Design
This chapter has spent considerable time discussing how to create a 
Software Design Description. In the examples you’ve seen, it might seem 
that the actual designs were plucked out of thin air. Where did these 
designs originate from? If you’re creating a new system design, how do you 
come up with that design in the first place? Well, that’s the subject of the 
next volume in this series, Write Great Code, Volume 4: Designing Great Code. 
This chapter has laid the groundwork for that book.

11.9 For More Information
Freeman, Eric, and Elizabeth Robson. Head First Design Patterns: A Brain-

Friendly Guide. Sebastopol, CA: O’Reilly Media, 2004.

Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented 
Software. Upper Saddle River, NJ: Addison-Wesley Professional, 1994.

IEEE. “IEEE Std 1016-2009: IEEE Standard for Information Technology—
Systems Design—Software Design Descriptions.” July 20, 2009. https://
ieeexplore.ieee.org/document/5167255/. (It’s not cheap—about $100—and 
it’s worded in a way that only a lawyer can appreciate, but this is the gold 
standard for SDDs.)



This chapter covers software test documen-
tation, focusing primarily on the Software 

Test Case (STC) and Software Test Procedure 
(STP) documents. As has been the case for the 

previous chapters, this discussion is based on IEEE 
Standards, specifically the IEEE Standard for Software 
and System Test Documentation (IEEE Std 829-2008, 
hereafter Std 8291).

1. IEEE Std 829-2008 is a registered trademark of the IEEE. 

12
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12.1 The Software Test Documents in Std 829
Std 829 actually describes many additional documents above and beyond 
the STC and STP, including:

•	 Master Test Plan (MTP)

•	 Level Test Plan (LTP)

•	 Level Test Design (LTD)

•	 Level Test Case (LTC)

•	 Level Test Procedure (LTPr)

•	 Level Test Log (LTL)

•	 Anomaly Report (AR)

•	 Level Interim Test Status Report (LITSR)

•	 Level Test Report (LTR)

•	 Master Test Report (MTR)

Note that these are not actual document names—the word level is a 
placeholder for the scope or extent of software testing being documented. 
The scope could be at the level of components or component integration, apply 
to the entire system, or focus on acceptance. For example, Level Test Plan 
could refer to a Component (or Unit) Test Plan, Component Integration 
(or simply Integration) Test Plan, System (or System Integration) Test Plan, 
or an Acceptance Test Plan.

N O T E  Test levels are explained further in “Software Development Testing Levels” on 
page 265.

In all, Std 829 defines 31 different document types, but these are the 
main ones. The majority of these documents exist to support software man-
agement activities. Because this is a book on personal software engineering 
rather than software project management, this chapter won’t go into detail 
on most of them. Instead, we’ll concentrate on those level test documents 
that pertain to actual software testing—specifically, the Level Test Case, 
Level Test Procedure, Level Test Log, and Anomaly Report document types. 
We will cover all four level classifications—component, component inte-
gration, system, and acceptance—though the latter two are the main test 
documents used in this chapter. The differences between the level test docu-
ments are relatively minor, so this chapter applies the umbrella names men-
tioned earlier: Software Test Cases and Software Test Procedures. Keep in 
mind, however, that while these are common software engineering terms, 
Std 829 refers only to the level test documents.

12.1.1 Process Support
Although this chapter focuses on software testing, Std 829 describes the 
testing process in far more general terms. In particular, the testing process 
also handles the verification and validation of each document step in the 
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development process. Specifically, this means that the testing process tests 
the documentation as well as the actual software. 

For the SyRS and SRS, the verification step ensures that the require-
ments actually satisfy customer needs (and only satisfy customer needs, with-
out gold plating). For the SDD, the verification step ensures that the SDD 
covers all the requirements. For the STC, the verification step ensures that 
each requirement has one or more test cases that test the requirement. For 
the STP, the verification ensures that the set of test procedures fully covers 
all the test cases.

In addition to documentation, Std 829 discusses test procedures for 
verifying acquisitions (such as purchases of third-party libraries and com-
puting hardware), administering RFPs (Requests for Proposals), and many 
other activities. These testing activities are very important. As noted previ-
ously, though, these are largely management activities rather than software 
development activities, so they’re mentioned only briefly here. 

Std 829 states that testing needs to support the processes of manage-
ment, acquisition, supply, development, operation, and maintenance. This 
chapter will concentrate on the development and operation processes (and, 
to a limited extent, the maintenance processes, which are largely an itera-
tion of the development and operation processes). For more details on 
the other processes, see Std 829, IEEE/EIA Std 12207.0-1996 [B21], and 
ISO-IEC-IEEE-29148-2011.

Note that Std 829 allows you to combine and omit some of the testing 
documents. This means that you could have only a single document and 
still conform to Std 829. In reality, the final number of documents you 
create depends on the size of the project (large projects will require more 
documentation) and the turnaround you expect (fast projects will have 
fewer documents).

12.1.2 Integrity Levels and Risk Assessment
Std 829 defines four integrity levels that describe the importance or sensitiv-
ity to risk for a piece of software:

Catastrophic (level 4) This level means that the software must execute 
properly, or something disastrous could occur (such as death, irreparable 
harm to the system, environmental damage, or a huge financial loss). 
There are no workarounds for catastrophic system failures. An example 
is a braking failure in a software-controlled self-driving vehicle.

Critical (level 3) This level means that software must execute prop-
erly, or there could be serious problems including permanent injury, 
major performance degradation, environmental damage, or financial 
loss. A partial workaround may be possible for a critical system failure. 
An example is the transmission-controlling software in the self-driving 
vehicle being unable to shift out of second gear.

Marginal (level 2) This level means that the software must execute 
properly, or there may be (minor) incorrect results produced and some 
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functionality lost. Workarounds to solve the problem are possible. 
Continuing with the self-driving-vehicle example, a software failure that 
prevents the infotainment center from operating is a marginal problem.

Negligible (level 1) This level means that the software must execute 
properly, or else some minor functionality might not exist in the system 
(or the software might not be as “polished” as it should be). Negligible 
issues generally don’t require a workaround and can be safely ignored 
until an update comes along. An example is a spelling mistake on the 
touchscreen of the infotainment center in the self-driving vehicle.

The higher the level, the greater the importance of the testing process; 
that is, level 4 (catastrophic) items demand higher-quality and more inten-
sive testing than level 1 (negligible) items. Integrity levels, then, become 
the basis for determining the number, quality, and depth of test cases you 
create. For a feature in the program that could have catastrophic results in 
the event of a failure, you want a fair number of test cases that exercise that 
feature with considerable depth. For features that have negligible potential 
consequences, you might not have any test cases or only very shallow tests 
(such as a cursory review).2

Risk assessment is an attempt to determine where in your system failures 
are likely to occur, their expected frequency, and the associated costs. While 
risk assessment is predictive by its very nature (which means it won’t be per-
fect), you can often identify those parts of the program that are more likely 
to exhibit problems (such as complex sections of code, code produced by 
less experienced engineers, code from questionable sources like open source 
libraries found on the internet, and code using poorly understood algo-
rithms). If you can categorize the likelihood of a problem as likely, probable, 
occasional, or unlikely, you can help identify the code that warrants more strin-
gent testing (and, conversely, code that requires minimal testing). 

You can combine the integrity level and risk assessment levels in a 
matrix to produce a risk assessment scheme, as shown in Table 12-1. In this 
example, a value of 4 denotes extreme importance, and a value of 1 indi-
cates little importance.

Table 12-1: Risk Assessment Scheme

Consequence Likelihood

Likely Probable Occasional Unlikely

Catastrophic 4 4 3.5 3

Critical 4 3.5 3 2.5

Marginal 3 2.5 1.5 1

Negligible 2 1.5 1 1

2. It might seem strange to not have any test cases at all. However, keep in mind that having 
too many trivial test cases will make the testing process lengthy and more expensive, resulting 
in too little time spent testing the really important features of the system.
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Std 829 does not mandate using an integrity level or risk assessment 
scheme in your test documentation, though it does consider this to be best 
practice. If you do use an integrity level, Std 829 does not require that you 
use the IEEE-recommended scheme (you could, for example, use a finer-
grained integrity level with values from 1 to 10). However, if you “roll your 
own” integrity level, the IEEE recommends that you document a mapping 
from your integrity levels to those suggested by the IEEE so that readers can 
easily compare them.

12.1.3 Software Development Testing Levels
In addition—and in contrast—to the integrity levels just described, the 
IEEE defines four testing levels, each of which generally describes the scope 
or extent of software testing being documented: 

Component (also known as unit)3 This level deals with subroutines, 
functions, modules, and subprograms at the lowest code level. Unit 
testing, for example, consists of testing individual functions and other 
small program units independent of the rest of the program.

Component integration (also known as simply integration) This level 
is the point at which you begin combining individual units together to 
form a larger portion of the system, though not necessarily the whole 
system. Integration testing, for example, occurs when you combine 
(pretested) units to see if they play well together (that is, pass appropri-
ate parameters, return appropriate function results, and so on).

System (also known as system integration) This level of testing is the 
ultimate form of integration testing—you’ve integrated all the pro-
gram units together and formed the complete system. Unit testing, 
integration testing, and system integration testing are typically tests 
the developers perform before releasing a complete system outside the 
development group.

Acceptance (variants include factory acceptance and site acceptance)  
Acceptance testing (AT) is post-development. As its name implies, it refers 
to how the customer determines whether the system is acceptable. 
Depending on the system, there may be a couple of acceptance testing 
variants. Factory acceptance testing (FAT) occurs on systems prior to leav-
ing the manufacturer (typically on the factory floor, hence the name). 
Even if a product is pure software, it can have a factory acceptance test 
where the customer’s representatives come to test the software under 
the watchful eye of the software development team. This allows the 
team to make quick changes to the system if the customer discovers 
minor errors during the FAT.

A site acceptance test (SAT) is performed at the customer’s site after 
the system is installed. For hardware-based systems, this ensures that 

3. The names in parentheses are not part of the IEEE Std 829-2008. However, they are com-
mon industry names.
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the hardware is installed properly and the software is functioning as 
intended. For pure software systems, the SAT provides a final check 
(after a possible AT or FAT) that the software is usable by the system’s 
end users.

12.2 Test Plans
A software test plan is a document that describes the scope, organization, 
and activities associated with the testing process. This is largely a manage-
rial overview of how the testing will take place, the resources testing will 
require, schedules, necessary tools, and objectives. This chapter won’t con-
sider test plans in detail, as they are beyond the scope of this book; however, 
the following sections will present outlines provided in IEEE Std 829-2008 
as a reference. For more details on these test plans, consult Std 829.

12.2.1 Master Test Plan 
The Master Test Plan (MTP) is an organization-wide top-level management 
document that tracks the testing process across a whole project (or set of 
projects). Software engineers are rarely involved directly with the MTP, 
which is largely an umbrella document that the QA (Quality Assurance) 
department uses to track quality aspects of a project. A project manager or 
project lead might be aware of the MTP—and might contribute to it during 
schedule and resource development—but the development team rarely sees 
the MTP except in passing.

The following outline comes from Section 8 of IEEE Std 829-2008 (and 
uses the IEEE section numbers):

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 System Overview and Key Features

1.5 Test Overview

1.5.1 Organization

1.5.2 Master Test Schedule

1.5.3 Integrity Level Schema

1.5.4 Resources Summary

1.5.5 Responsibilities

1.5.6 Tools, Techniques, Methods, and Metrics

2 Details of the Master Test Plan

2.1 Test Processes Including Definition of Test Levels

2.1.1 Process: Management

2.1.1.1 Activity: Management of Test Effort
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2.1.2 Process: Acquisition

2.1.2.1 Activity: Acquisition Support Test

2.1.3 Process: Supply

2.1.3.1 Activity: Planning Test

2.1.4 Process: Development

2.1.4.1 Activity: Concept

2.1.4.2 Activity: Requirements

2.1.4.3 Activity: Design

2.1.4.4 Activity: Implementation

2.1.4.5 Activity: Test

2.1.4.6 Activity: Install/Checkout

2.1.5 Process: Operation

2.1.5.1 Activity: Operational Test

2.1.6 Process: Maintenance

2.1.6.1 Activity: Maintenance Test

2.2 Test Documentation Requirements

2.3 Test Administration Requirements

2.4 Test Reporting Requirements

3 General

3.1 Glossary

3.2 Document Change Procedures and History

Many of these sections contain information common to IEEE docu-
ments (for example, see the SRS and SDD samples in previous chapters). 
As the MTP is beyond the scope of this chapter, please consult Std 829 for 
specific descriptions of each section in this outline.

12.2.2 Level Test Plan
A Level Test Plan (LTP) refers to a set of test plans based on the development 
state. As this chapter noted earlier, each document in the set generally 
describes the scope or extent of software test being documented: Component 
Test Plan (aka Unit Test Plan, or UTP), Component Integration Test Plan 
(aka Integration Test Plan, or ITP), System Test Plan (aka System Integration 
Test Plan, or SITP), and Acceptance Test Plan (ATP; may include a Factory 
Acceptance Test Plan [FATP] or Site Acceptance Test Plan [SATP]).4 

LTPs are also managerial/QA documents, but the development team 
(even to the level of individual software engineers) often has input on their 
creation and use, because these documents reference detailed features of 
the software design. These test plans are not guiding documents—that is, 

4. The parenthetical names are common names for these test plans; these names do not come 
from Std 829.
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a software engineer wouldn’t necessarily reference these documents while 
actually testing the software—but they can’t be created without develop-
ment team feedback. Like the MTP, LTPs provide a road map for the cre-
ation of the test case and test procedure documents (of primary interest to 
the development and testing teams) and outline how to perform the tests. 
LTPs provide a good high-level view of the testing process, especially for 
external organizations interested in its quality.5

Here is the LTP outline from Std 829:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 Level in the Overall Sequence

1.5 Test Classes and Overall Test Conditions

2 Details for This Level of Test Plan

2.1 Test Items and Their Identifiers

2.2 Test Traceability Matrix

2.3 Features to Be Tested

2.4 Features Not to Be Tested

2.5 Approach

2.6 Item Pass/Fail Criteria

2.7 Suspension Criteria and Resumption Requirements

2.8 Test Deliverables

3 Test Management

3.1 Planned Activities and Tasks; Test Progression

3.2 Environmental/Infrastructure

3.3 Responsibilities and Authority

3.4 Interfaces Among the Parties Involved

3.5 Resources and Their Allocation

3.6 Training

3.7 Schedules, Estimates, and Costs

3.8 Risk(s) and Contingency(s)

4 General

4.1 Quality Assurance Procedures

4.2 Metrics

4.3 Test Coverage

5. A good example of such an external organization is the Nuclear Regulatory Commission 
(NRC), a US-based governmental organization tasked with licensing commercial 
nuclear reactors.
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4.4 Glossary

4.5 Document Change Procedures and History

You might notice that there is considerable overlap between the LTPs 
and the MTP. Std 829 states that if you are replicating information in a 
test plan that exists elsewhere, you can simply provide a reference to the 
containing document rather than duplicating the information in your LTP 
(or MTP). For example, you’re likely to have an overall Reverse Traceability 
Matrix (RTM) that includes traceability for all the tests. Rather than repli-
cating that traceability information in section 2.2 of an LTP, you would sim-
ply reference the RTM document that contains this information.

12.2.3 Level Test Design Documentation
The Level Test Design (LTD) documentation, as its name suggests, describes 
the design of the tests. Once again, there are four types of LTD documents, 
each generally describing the scope or extent of software testing being 
documented: Component Test Design (aka Unit Test Design, or UTD), 
Component Integration Test Design (aka Integration Test Design, or ITD), 
System Test Design (aka System Integration Test Design, or SITD), and 
Acceptance Test Design (ATD; this may include a Factory Acceptance Test 
Design [FATD] or a Site Acceptance Test Design [SATD]).

The main purpose of the LTD is to collect common information in one 
place that would be replicated throughout the test procedures. That means 
that this document could very easily be merged with your test procedures 
document (at the cost of some repetition in that document). This book will 
take that approach, merging pertinent items from the test design directly 
into the test cases and test procedures documents.6 For that reason this sec-
tion will present the IEEE recommended outline without additional com-
mentary and save the details for the STC and STP documents.

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details of the Level Test Design

2.1 Features to Be Tested

2.2 Approach Refinements

2.3 Test Identification

2.4 Feature Pass/Fail Criteria

2.5 Test Deliverables

6. I personally prefer this approach, even at the cost of maintaining duplicate information 
(and potentially introducing inconsistencies), because it keeps those documents self-contained 
(especially the test procedure documents). During the testing process, I don’t want to have to 
keep referring to different documents, which can slow down the testing and lead to errors in 
the testing process.
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3 General

3.1 Glossary

3.2 Document Change Procedures and History

12.3 Software Review List Documentation
When you build the RTM starting with your requirements, one of the col-
umns you usually create is the test/verification type column. Typically, a 
software requirement will have one of two associated verification types: T 
(for test) and R (for review).7 Requirements marked T will have associated 
test cases and test procedures (see “Updating the Traceability Matrix with 
Requirement Information” on page 222 for details on creating test cases). 
Items marked R will need to be reviewed. This section describes how to cre-
ate a Software Review List (SRL) document to track the review of the sys-
tem (usually the source code) to verify those requirements.

The SRL is relatively straightforward. The core of the document is sim-
ply a list of items, each of which you check off after you review it and are 
confident that the software properly supports the associated requirement.

In theory, you could create level review list documentation at four sep-
arate levels: component, component integration, system, and acceptance 
(as is the case for other Std 829 level documents). In reality, however, a 
single SRL that is suitable for both system (integration) and acceptance 
use will suffice. 

N O T E  The SRL document is not a part of Std 829 (or any other IEEE standards document, 
for that matter). Std 829 certainly allows you to use this document as part of your 
verification package, but the format presented in this section is not from the IEEE.

12.3.1 Sample SRL Outline
Although the SRL is not a standard IEEE document, the following outline 
for it is somewhat similar to the SRS, STC, and STP recommended formats 
from the IEEE:

1 Introduction (once per document)

1.1 Document Identifier

1.2 Document Change Procedures and History

1.3 Scope

1.4 Intended Audience

1.5 Definitions, Acronyms, and Abbreviations

7. There are other verification types, but we’ll ignore those here. If you ever use those types 
(typically for hardware, although analysis, other, and no test are possible software options), 
you’ll have to create an appropriate document that justifies or describes how you will verify 
the associated requirement.
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1.6 References

1.7 Notation for Description

2 General System Description

3 Checklist (one per review item)

3.1 Review Identifier (Tag)

3.2 Discussion of Item to Review

12.3.2 Sample SRL
This sample SRL continues to use the DAQ DIP switch project from the 
previous chapters. Specifically, this SRL is based on the requirements from 
“(Selected) DAQ Software Requirements (from SRS)” on page 219 and 
the verification types detailed in “Requirements to Be Verified by Review” 
on page 223. 

1 Introduction
This Software Review List provides a software review checklist for those 
DAQ system requirements that are to be verified by review.

1.1 Document Identifier
DAQ_SRL v1.0

1.2 Document Change Procedures and History
All revisions should be noted here, by date and version number.

Mar 23, 2018—Version 1.0

1.3 Scope
This SRL deals with those requirements in the DAQ DIP switch 
initialization project for which creating a formal test procedure 
would be difficult (or otherwise economically unviable) but whose 
correctness can be easily verified by reviewing the source code 
and the build system for the source code.

1.4 Intended Audience
The normal audience for an SRL:

This document is intended primarily for those individuals who 
will be testing/reviewing the DAQ DIP switch project. Project 
management and the development team may also wish to review 
this document.

The real audience for this SRL:

This SRL is intended for readers of Write Great Code, Volume 3. It 
provides an example SRL that can serve as a template for SRLs 
they may need to create.
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1.5 Definitions, Acronyms, and Abbreviations
DAQ: Data acquisition system

DIP: Dual inline package

SDD: Software Design Document

SRL: Software Review List

SRS: Software Requirements Specification

1.6 References
SDD: IEEE Std 1016-2009

SRS: IEEE Std 830-1998

STC/STP: IEEE Std 829-2008

1.7 Notation for Description
Review identifiers (tags) in this document shall take the form:

DAQ_SR_xxx_yyy_zzz

where xxx_yyy is a string of (possibly decimal) numbers taken from 
the corresponding requirement (for example, DAQ_SRS_xxx_yyy) 
and zzz is a (possibly decimal) numeric sequence that creates a 
unique identifier out of the whole sequence. Note that zzz values 
in SRL tags are usually numbered from 000 or 001 and usually 
increment by 1 for each additional review item sharing the same 
xxx_yyy string.

2 General System Description
The purpose behind the DAQ DIP switch system is to initialize the DAQ 
system upon power-up. The DAQ DIP switch system is a small subset 
of the larger Plantation Productions DAQ system that is useful as an 
example within this book.

3 Checklist 
Check off each of the following items as it is verified during the 
review process.

3.1 DAQ_SR_700_000_000
Verify code is written for a Netburner MOD54415 evaluation 
board.

3.2 DAQ_SR_700_000.01_000.1
Verify code is written for µC/OS.

3.3 DAQ_SR_702_001_000
Verify that software creates a separate task to handle serial port 
command processing. 
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3.4 DAQ_SR_702_002_000
Verify that serial task priority is lower than USB and Ethernet task 
priorities (note that the higher the priority number, the lower 
the priority). 

3.5 DAQ_SR_703_001_000
Same as DAQ_SRS_702_001, but doesn’t start an RS-232 task if 
DIP switch 1 is in the OFF position.

3.6 DAQ_SR_705_001_000
Verify that software creates a separate task to handle USB port 
command processing. 

3.7 DAQ_SR_705_002_000
Verify that a USB task has a higher priority than the Ethernet and 
serial protocol tasks. 

3.8 DAQ_SR_706_001_000
Verify that software does not start the USB task if DIP switch 2 is 
in the OFF position. 

3.9 DAQ_SR_716_001_000
Verify that the Ethernet listening task is started only if Ethernet 
communications are enabled. 

3.10 DAQ_SR_716_002_000
Verify that the Ethernet listening task has a priority lower than 
the USB task but higher than the serial task. 

3.11 DAQ_SR_719_000_000
Verify that software sets the unit test mode value to ON based on 
the DIP switch 7 setting. 

3.12 DAQ_SR_720_000_000
Verify that software sets the unit test mode value to OFF based on 
the DIP switch 7 setting.

3.13 DAQ_SR_723_000_000
Verify that the software provides a function to read the DIP 
switches.

3.14 DAQ_SR_723_000.01_000
Verify that the system uses the DIP switch reading to initialize 
RS-232 (serial), USB, Ethernet, unit test mode, and debug mode 
on startup.

3.15 DAQ_SR_723_000.02_000
Verify that the startup code stores the DIP switch reading for later 
use by the software.
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3.16 DAQ_SR_725_000_000
Verify that the command processor responds to a command when 
a complete line of text is received from the USB, RS-232, and 
Ethernet ports.

3.17 DAQ_SR_738_001_000
Verify that the system starts a new process (task) to handle com-
mand processing for each new Ethernet connection.

3.18 DAQ_SR_738_002_000
Verify that the Ethernet command processing tasks have a priority 
between the Ethernet listening task and the USB command task.

12.3.3 Adding SRL Items to the Traceability Matrix
Once you’ve created an SRL, you’ll want to add all the SR tags to the RTM 
so you can trace the reviewed items back to the requirements, as well as to 
everything else in the RTM. To do so, just locate the requirement associated 
with each review item tag (this is trivial if you’re using the tag numbering 
this chapter recommends; the SRS tag number is incorporated into the 
SRL tag number) and add the SRL tag to the appropriate column in the 
same row of the RTM containing the requirement.

When you’ve got both SRL and STC documents, there’s really no need 
to create separate columns in the RTM for both types, as they are mutu-
ally exclusive and the tag will differentiate them. (See “A Sample Software 
Requirements Specification” on page 203 for some additional commentary 
on this.)

12.4 Software Test Case Documentation 
For each item in the RTM whose requirement verification type is T, you’ll 
need to create a software test case. The Software Test Case (STC) document is 
where you’ll put the actual test cases. 

As with all the 829 Std level documents, there are four levels in the Level 
Test Case documentation. The term Software Test Case generically refers to 
any one of these. As this chapter noted earlier, this is actually a set of test 
cases, where each document in the set type generally describes the scope 
or extent of software testing being documented: Component Test Cases 
(aka Unit Test Cases, or UTC), Component Integration Test Cases (aka 
Integration Test Cases, or ITC), System Test Cases (aka System Integration 
Test Cases, or SITC), and Acceptance Test Cases (ATC; may include Factory 
Acceptance Test Cases [FATC] and Site Acceptance Test Cases [SATC]).8 

8. As usual, I’ve included some common (non-IEEE) names in parentheses.
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The STC document lists all the individual test cases (tests) for a project. 
Here is the Std 829 outline for the Level Test Case documentation:

1 Introduction (once per document)

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 Context

1.5 Notation for Description

2 Details (once per test case)

2.1 Test Case Identifier

2.2 Objective

2.3 Inputs

2.4 Outcome(s)

2.5 Environmental Needs

2.6 Special Procedural Requirements

2.7 Intercase Dependencies

3 Global (once per document)

3.1 Glossary

3.2 Document Change Procedures and History

In common practice, the Unit Test Cases and the Integration Test Cases 
are often combined into the same document (the differentiation between 
the two usually occurs at the level of test procedures). You will typically 
develop UTCs and ITCs from your source code and from the SDD (see 
Figure 12-1, which is an extension of Figure 9-1).

SyRS SRS

STP

SDD

STC

Source code

Figure 12-1: Unit and Integration Test Case sources

Often, the UTC and ITC (and test procedure) documents exist as soft-
ware rather than as natural-language documents. Using an automated test 
procedure, a piece of software that runs all the unit and integration tests, 
is a software engineering best practice. By doing so, you can dramatically 
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reduce the time it takes to run tests as well as the errors introduced in man-
ually performed test procedures.9 

Unfortunately, it isn’t possible to create automated tests for every test 
case, so you’ll usually have a UTC/ITC document covering (at least) the 
test cases you must perform manually.

Many organizations—particularly those that embrace Agile develop-
ment models and test-driven development (TDD)—forgo formal UTC and 
ITC documents. Informally written procedures and automated test proce-
dures are far more common in these situations because the cost of creating 
and (especially) maintaining the documentation quickly gets out of hand. 
As long as the development team can provide some documentation that 
they are performing a fixed set of unit/integration tests (that is, they’re not 
doing ad hoc, “by the seat of the pants” tests that could differ on every test 
run), larger organizations tend to leave them be.

Regardless of whether it’s formal, informal, or automated, having a 
repeatable test procedure is key. Regression tests, which check to see if any-
thing has broken, or regressed, since you’ve made changes to the code, 
require a repeatable testing process. Therefore, you need some kind of test 
case to ensure repeatability.

For unit/integration testing, the test data you generate will be a com-
bination of black-box-generated test data and white-box-generated test 
data. Black-box test data generally comes from the system requirements 
(SyRS and SRS); you consider only the functionality of the system (which 
the requirements provide) when you create its input test data. When you 
generate white-box test data, on the other hand, you analyze the software’s 
source code. For example, ensuring that you execute every statement in 
the program at least once during testing—that is, achieving complete code 
coverage—requires careful analysis of the source code and, therefore, is a 
white-box test-data-generation technique. 

N O T E  Write Great Code, Volume 6: Testing, Debugging, and Quality Assurance will 
consider the techniques for generating white-box and black-box test data in greater detail.

Once you get to the level of a system integration test or (even more 
importantly) an acceptance test, formal documentation for your test cases 
becomes mandatory. If you’re creating a custom system for a customer, 
or your software is subject to regulatory or legal restrictions (such as life-
threatening environments in an autonomous vehicle), you’ll likely have 
to convince some overseer organization that you’ve put in your best effort 
during testing and prove that the system meets its requirements. This is 
where it’s essential to have formal documentation like that recommended 

9. Do keep in mind, however, that creating the automated test procedure can be expensive 
and you have to validate the resulting code to ensure that it properly executes all the tests. In 
the long run, automated test procedures tend to be cost-effective because on all but the small-
est of projects, you wind up rerunning test procedures many times during development.
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by Std 829.10 For this reason, most SITC and (most certainly) ATC docu-
ments derive their cases directly from the requirements (see Figure 12-2). 
So, with this motivation in hand, let’s return to the discussion of the Level 
Test Case document (see the outline at the beginning of this section).

SyRS SRS

System test cases can
be derived from the SDD;
acceptance test cases come
only from the SRS/SyRS.

STP

SDD

STC

Figure 12-2: SITC and ATC derivation

More often than not, the (F)ATC document is simply a subset of the 
SITC document. (If you have FATC documentation and SATC documenta-
tion, the site variant is often a subset of the FATC document.) The SITC 
document will contain test cases for every requirement. In the ATC docu-
ments, system architects may merge or eliminate test cases that are nearly 
or entirely redundant, or are of little interest to customers and end users.

12.4.1 Introduction in the STC Document
The introductory section of an STC (or any Level Test Case) document 
should include the following information.

12.4.1.1 Document Identifier

The document identifier should be some unique name/number and should 
include the issuing date, author identification, status (for example, draft 
or final), approval signatures, and possibly a version number. A single ID 
name/number is imperative so you can reference the test case documenta-
tion in other documents (such as the STP and RTM).

12.4.1.2 Scope

This section summarizes the software system and features to test.

12.4.1.3 References

This section should provide a list of all reference documents, internal and 
external, associated with the STC. Internal references would normally 
include documents such as the SyRS, SRS, SDD, RTM, and (if it exists) the 
MTP. External references would include standards like IEEE Std 829-2008 
and any regulatory or legal documents that might apply. 

10. Even if your system is not life-threatening or doesn’t exhibit catastrophic consequences if 
it misbehaves, having formal SITC and ATC documentation can help prevent you from deliv-
ering a shoddy product. At the very least, great code is going to run through a formal test 
process with formal test case/test procedure documentation.
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12.4.1.4 Context

In this section you provide any context for the test cases that doesn’t appear 
in any other documentation. Examples might include naming automated 
test-generation software or internet-based tools used to generate or evaluate 
test cases.

12.4.1.5 Notation for Description

This section should describe the tags (identifiers) you’ll apply to the test 
cases. For example, this chapter uses tags of the form proj_STC_xxx_yyy_zzz, 
so this section of the STC would explain what this means and how to gener-
ate STC tags.

12.4.2 Details 
You repeat the subsections contained herein for each test case in the STC.

12.4.2.1 Test Case Identifier

The test case identifier is the tag associated with this particular test case. 
For example, this book uses tags of the form DAQ_STC_002_000_001 where 
DAQ is the project ID (for the DAQ DIP switch project), 002_000 is from the 
SRS requirement tag, and 001 is a test-case-specific value to make this tag 
unique among all the others. The Swimming Pool Monitor (SPM) project 
from previous chapters might use tags like POOL_STC_002_001 within the 
STC. Std 829 doesn’t require the use of this tag format, only that all test 
case tags be unique.

12.4.2.2 Objective

This is a brief description of the focus or goal of this particular test case. 
(Note that a set of test cases can have the same objective, in which case 
this field could simply reference the objectives in a different test case.) This 
field is a good place to put risk assessment and integrity level information, 
if relevant.

12.4.2.3 Input(s)

This section lists all inputs and their relationships (in terms of timing, 
ordering, and the like) that a tester needs in order to perform this test case. 
Some inputs might be exact, and some may be approximate, in which case 
you must provide tolerances for the input data. If the input set is large, this 
section might simply reference an input file, database, or some other input 
stream that will provide the test data.11

11. Note that test runs must be reproducible outputs. Therefore, random input data is rarely 
appropriate as an input data stream unless you’re testing average responses to inputs that 
don’t depend on any particular input data set.
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12.4.2.4 Outcome(s)

This section lists all expected output data values and behaviors such as 
response time, timing relationships, and order of output data. The test case 
should provide exact output data values if possible; if you can provide only 
approximate data values, the test case must also supply tolerances. If an out-
put stream is large, then this section can reference externally supplied files 
or databases. 

If the test is successful by virtue of the fact that it runs without crashing—
that is, self-validating—then this section is unnecessary in the test case. 

12.4.2.5 Environmental Needs

This section describes any preexisting software or data such as a known 
database that is needed for the test. It could also describe any internet 
sites referenced by their URLs that must be active in order to execute the 
test case. This could also include any special power requirements, such 
as requiring a UPS to be fully charged before testing power failures, or it 
could include other conditions such as the swimming pool being filled with 
water before running tests on the SPM system.

12.4.2.5.1 Hardware Environmental Needs
This section lists any hardware needed to run the test and specifies its 
configuration settings. It could also specify any special hardware such 
as a test fixture for the test operation. For example, a test fixture for 
the SPM might be a five-gallon bucket filled with water and a hose con-
nected to the water feed valve that is part of the SPM.

12.4.2.5.2 Software Environmental Needs
This section lists all software (and its versions/configurations) that 
would be needed to run the test. This could include operating systems/
device drivers, dynamically linked libraries, simulators, code scaffold-
ing (as in code drivers),12 and test tools.

12.4.2.5.3 Other Environmental Needs
This is a catch-all section that lets you add information such as con-
figuration specifics or anything else you feel the need to document. 
For example, for tests at a specific date or time, you’d need to consider 
Daylight Saving Time changes where a daily report may have 23 or 25 
hours to report on, and so on.

12.4.2.6 Special Procedural Requirements

This section lists any exceptional conditions or constraints on the test 
case. This could also include any special preconditions or postconditions. 
For example, one precondition on the SPM when testing to see if the soft-
ware properly responds to a low pool condition is that the water level is 

12. Write Great Code, Volume 6, will go into details concerning code scaffolding and drivers.
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below all three low-pool sensors. This should also list any postconditions, 
such as the bucket must not have overfilled. If you’re using an automated 
test procedure, this is a good place to specify the particular tool to use and 
how to employ it for the test.

Note that this section should not duplicate steps that appear in the test 
procedure. Instead, it should provide guidance for properly writing the 
steps in the test procedure that will perform this test case.

12.4.2.7 Intercase Dependencies

This section should list (by tag identifier) any test cases that must be exe-
cuted immediately prior to the current one, so that appropriate system state 
conditions are in place before the current test is executed. Std 829 suggests 
that by sequencing the test cases in the order in which they must execute, 
you can reduce the need to state intercase dependencies. (Obviously, such 
dependencies should be clearly documented.) In general, however, you 
shouldn’t rely on such implicit dependency organization and should explic-
itly document any dependencies. In the STP, though, you can rely on the 
ordering of test steps. Having already clearly delineated the execution order 
in the STC will help reduce errors when you create the STP.

12.4.2.8 Pass/Fail Criteria 

In Std 829, the IEEE recommends putting the pass/fail criteria in the Level 
Test Design documentation; they are not part of the Std 829 STC. However, 
it’s not a bad idea, especially in cases where you don’t have an LTD in your 
documentation set, to include pass/fail criteria for each test case.

Note that if the pass/fail criterion is simply “All system outputs must 
match that specified by the Outcome(s) section,” then you can probably 
dispense with this section, but it wouldn’t hurt to explicitly state this default 
condition in the introduction section.

12.4.3 General
This section provides a brief introduction and discussion of the Glossary 
and Document Change Procedures and History sections.

12.4.3.1 Glossary

The Glossary section provides an alphabetical list of all terms used in the 
STC. It should include all acronyms along with their definitions. Although 
Std 829 lists the glossary at the end of the outline, it usually appears near 
the beginning of the document, close to the References section.

12.4.3.2 Document Change Procedures and History

This section describes the process for creating, implementing, and approv-
ing changes to the STC. This could be nothing more than a reference to a 
Configuration Management Plan document that describes the document 
change procedures for all project documents or for all documents within an 



Software Test Documentation   281

organization. The change history should contain a chronological list of the 
following information:

•	 Document ID (each revision should have a unique ID, which can simply 
be a date affixed to the document ID)

•	 Version number (which you should number sequentially, starting with 
the first approved version of the STC)

•	 A description of the changes made to the STC for the current version

•	 Authorship and role

Often, the change history appears in the STC near the beginning of the 
document, or just after the cover page and near the document identifier.

12.4.4 A Sample Software Test Case Document
Continuing with the theme of the past couple of chapters, this chapter will 
provide a sample STC for the Plantation Productions DAQ system DIP switch 
initialization design. This STC will serve as an acceptance test (pure func-
tional test cases) built exclusively from the project SRS (see “(Selected) DAQ 
Software Requirements (from SRS)” on page 219). The test cases appearing 
in this sample STC are all the requirements from this project SRS that have 
not been included in “Requirements to Be Verified by Review” on page 223 
where the “verify by review” requirements are listed. Note, however, that for 
editorial/space reasons, this example will not provide test cases for every 
“verify by review” test requirement in that project SRS.13 

Term Definition

DAQ Data acquisition system

SBC Single-board computer

Software Design 
Description (SDD)

Documentation of the design of the software system (IEEE Std 
1016-2009)—that is, this document.

Software Requirements 
Specification (SRS)

Documentation of the essential requirements (functions, perfor-
mance, design constraints, and attributes) of the software and 
its external interfaces (IEEE Std 610.12-1990).

System Requirements 
Specification (SyRS)

A structured collection of information that embodies the 
requirements of the system (IEEE Std 1233-1998). A specifica-
tion that documents the requirements to establish a design 
basis and the conceptual design for a system or subsystem.

Software Test Cases 
(STC)

Documentation that describes test cases (inputs and outcomes) 
to verify correct operation of the software based on various 
design concerns/requirements (IEEE Std 829-2009).

Software Test 
Procedures (STP)

Documentation that describes the step-by-step procedure to 
execute a set of test cases to verify correct operation of the 
software based on various design concerns/requirements 
(IEEE Std 829-2009).

13. Once you’ve seen a half-dozen sample test cases or so, you’ll learn the basic idea of how 
to write them. Explicitly providing all the test cases for a phantom project like the DAQ DIP 
switches won’t help you learn the material any better. 
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1 Introduction
Software Test Cases for DAQ DIP Switch Project

1.1 Document Identifier (and Change History)
Mar 22, 2018: DAQ_STC v1.0; Author: Randall Hyde

1.2 Scope
This document describes only the DIP switch test cases in the 
DAQ system (for space/editorial reasons). For the full software 
design description, please see http://www.plantation-productions 
.com/Electronics/DAQ/DAQ.html.

1.3 Glossary, Acronyms, and Abbreviations

N O T E  This is a very simple and short example to keep the book’s page count down. Please 
don’t use this as boilerplate; you should diligently pick out terms and abbreviations 
that your document uses and list them in this section.

1.4 References

Reference Discussion

DAQ STC An example of a full STC for the Plantation 
Productions DAQ system can be found at  
http://www.plantation-productions.com /
Electronics/DAQ/DAQ.html.

IEEE Std 830-1998 SRS documentation standard

IEEE Std 829-2008 STP documentation standard

IEEE Std 1012-1998 Software verification and validation standard

IEEE Std 1016-2009 SDD documentation standard

IEEE Std 1233-1998 SyRS documentation standard

1.5 Context
The DAQ system of Plantation Productions, Inc., fulfilled a need 
for a well-documented digital data acquisition and control sys-
tem that engineers could design into safety-critical systems such 
as nuclear research reactors. Although there are many COTS 
systems14 that could be used, they suffer from a couple of major 
drawbacks, including: they are usually proprietary, thus being dif-
ficult to modify or repair after purchase; they are often obsolete 
within 5 to 10 years without a way to repair or replace them; and 
they rarely have full support documentation (for example, SRS, 
SDD, STC, and STP) that an engineer can use to validate and 
verify the system.

14. Commercial off-the-shelf systems.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
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The DAQ system overcomes this problem by providing an open 
hardware and open source set of designs with full design docu-
mentation that is validated and verified for safety systems.

Although originally designed for a nuclear research reactor, the 
DAQ system is useful anywhere you need an Ethernet-based con-
trol system supporting digital (TTL-level) I/O, optically isolated 
digital inputs, mechanical or solid-state relay digital outputs, 
(isolated and conditioned) analog inputs (for example, ±10v and 
4-20mA), and (conditioned) analog outputs (±10v). 

1.6 Notation for Description
Test case identifiers (tags) in this document shall take the form:

DAQ_STC_xxx_yyy_zzz

where xxx_yyy is a string of (possibly decimal) numbers taken from 
the corresponding requirement (for example, DAQ_SRS_xxx_yyy) 
and zzz is a (possibly decimal) numeric sequence that creates a 
unique identifier out of the whole sequence. Note that zzz values 
in STC tags are usually numbered from 000 or 001 and usually 
increment by 1 for each additional test case item sharing the same 
xxx_yyy string.

2 Details (Test Cases)

2.1 DAQ_STC_701_000_000
Objective: Test command acceptance across RS-232.

Inputs: 

1. DIP switch 1 set to ON position.

2. Type help command on serial terminal.

Outcome:

1. Screen displays help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

[None]
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2.2 DAQ_STC_702_000_000
Objective: Test command acceptance with DIP switch 1 ON.

Inputs: 

1. DIP switch 1 set to ON position.

2. Type help command on serial terminal.

Outcome:

1. Screen displays help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Same test as DAQ_STC_701_000_000

2.3 DAQ_STC_703_000_000
Objective: Test command rejection with DIP switch 1 OFF.

Inputs: 

1. DIP switch 1 set to OFF position.

2. Type help command on serial terminal.

Outcome:

1. System ignores command, no response on terminal program.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

[None]

N O T E  For space/editorial reasons, this sample has deleted several test cases at this point 
because they are very similar in content to the previous test cases.
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2.4 DAQ_STC_709_000_000
Objective: Test Ethernet address with both DIP switches 5 and 6 OFF.

Inputs: 

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to OFF position.

3. DIP switch 6 set to OFF position

4. Using an Ethernet terminal program, attempt connection to 
IP address 192.168.2.70, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program display DAQ help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000 
are closely related and should be performed together. 

N O T E  For space/editorial reasons, this sample has deleted several test cases at this point 
because they are very similar in content to the previous test cases.

2.6 DAQ_STC_710_000_000
Objective: Test Ethernet address with DIP switches 5 ON and 6 OFF.

Inputs: 

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to ON position.

3. DIP switch 6 set to OFF position.

4. Using an Ethernet terminal program, attempt connection to 
IP address 192.168.2.71, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program displays DAQ help message.
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Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000 
are closely related and should be performed together.

2.7 DAQ_STC_711_000_000
Objective: Test Ethernet address with DIP switch 5 OFF and 6 ON.

Inputs: 

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to OFF position.

3. DIP switch 6 set to ON position.

4. Using an Ethernet terminal program, attempt connection to 
IP address 192.168.2.72, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program displays DAQ help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000 
are closely related and should be performed together.

2.8 DAQ_STC_712_000_000
Objective: Test Ethernet address with both DIP switches 5 and 6 ON.

Inputs: 

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to ON position.
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3. DIP switch 6 set to ON position.

4. Using an Ethernet terminal program, attempt connection to 
IP address 192.168.2.73, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program displays DAQ help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000 
are closely related and should be performed together.

N O T E  For space/editorial reasons, this sample has deleted several test cases at this point 
because they are very similar in content to the previous test cases.

2.9 DAQ_STC_726_000_000
Objective: Test command acceptance from RS-232 port.

Inputs: 

1. DIP switch 1 set to ON position.

2. Type help command on serial terminal.

Outcome:

1. Screen displays help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with 
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Same test as DAQ_STC_701_000_000
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3 Test Case Document Change Procedure
When making any modifications to this STC, the author of the change 
must make a new entry in section 1.1 of this STC document, listing 
(at a minimum) the date, document ID (DAQ_STC), version number, 
and authorship.

12.4.5 Updating the RTM with STC Information
Due to software review and software test case (and analysis/other) verifi-
cation methods being mutually exclusive, you need only a single column 
in the RTM to associate the tags for these objects with other items in the 
RTM. In the RTM of the official DAQ system (which has only test cases 
and software review items), the label for this column is simply Software Test /
Review Cases. When you add both DAQ_SR_xxx_yyy_zzz and DAQ_STC_xxx_
yyy_zzz items to this column, there is never any ambiguity as the tag clearly 
identifies which verification type you’re using. Of course, this assumes that 
you’re using the tag identifier format that this chapter suggests. You could 
use your own tag format that also differentiates review and test case items 
in the tag name.

If you’re using this chapter’s STC tag format, locating the row in the RTM  
where you want to place the test case tag is very easy. Just locate the require-
ment with the tag DAQ_SRS_xxx_yyy and add the STC tag to the appro-
priate column in the same row. If you’re using a different tag format that 
doesn’t include requirement traceability directly in the tag name, you’ll 
have to determine the association manually (hopefully it’s contained 
within the test case).

12.5 Software Test Procedure Documentation
The Software Test Procedure (STP) specifies the steps for executing a collection 
of test cases, which, in turn, evaluate the quality of the software system. In 
one respect, the STP is an optional document; after all, if you execute all the 
test cases (in an appropriate order), you will fully test all the test cases. The 
purpose behind an STP is to streamline the testing process. More often than 
not, test cases overlap. Although they test different requirements, it may turn 
out that the inputs for multiple test cases are identical. In some cases, even 
the outcomes are identical. By merging such test cases into a single proce-
dure, you can run a single test sequence that handles all test cases.

Another reason for merging test cases into a single STP is the conve-
nience of a common setup. Many test cases require (possibly elaborate) 
setup to ensure certain environmental conditions prior to execution. More 
often than not, multiple test cases require the same setup prior to their 
execution. By merging those test cases into a single procedure, you can per-
form the setup once for the entire set rather than repeating it for each and 
every test case.

Finally, some test cases may have dependencies that require other test 
cases to execute prior to their execution. By putting these test cases in a test 
procedure, you can ensure that the test operation satisfies the dependencies.
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Std 829 defines a set of Level Test Procedures (LTPr). As with all of the 
level test documents in Std 829 there are four variants of the LTPr, each 
variant being a document generally describing the scope or extent of 
software testing being documented: Component Test Procedures (aka 
Unit Test Procedures, or UTP), Component Integration Test Procedures 
(aka Integration Test Procedures, or ITP), System Test Procedures (aka 
System Integration Test Procedures, or SITP), and Acceptance Test 
Procedures (ATP; may include Factory Acceptance Test Procedures 
[FATP] or Site Acceptance Test Procedures [SATP]).15

UTPs and ITPs are often automated test procedures or less formal 
documents, similar to their test case document counterparts; see “Software 
Test Case Documentation” on page 274 for an in-depth discussion.

If you look back at Figures 12-1 and 12-2, you can see that the STP 
(and all LTPrs) are derived directly from the STC (LTC) documentation. 
Figure 12-1 applies to UTPs and ITPs. Figure 12-2 applies to SITPs and ATPs 
(noting that ATPs derive from test cases that come strictly from SyRS/SRS 
requirements, not from SDD elements). 

As is true for test case documentation, ATPs are usually a subset of the 
SITPs to the customer or end user. Likewise, if there are FATP and SATP 
documents, the SATP is often a subset of the FATP, with further refinement 
to end-user requirements.16 

12.5.1 The IEEE Std 829-2009 Software Test Procedure 
The outline for the Std 829 STP is as follows:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 Relationship to Other Documents

2 Details

2.1 Inputs, Outputs, and Special Requirements

2.2 Ordered Description of the Steps to Be Taken to Execute the 
Test Cases

3 General

3.1 Glossary

3.2 Document Change Procedures and History

15. As usual, I’ve included some industry-standard names that are synonyms for the Level Test 
Procedure names in parentheses. Remember, Software Test Procedure is a generic term repre-
senting any one of these four levels of test procedure.

16. This is not always true. Sometimes the SATP has to include additional testing procedures 
to deal with site environmental issues that may not exist at the factory. For example, noise 
(electrical as well as acoustical) and the actual physical system installation may expose some 
defects that could not be caught on the factory floor.
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12.5.2 Extended Outline for Software Test Procedure 
As is typical for IEEE standards, you’re allowed to augment this outline 
(adding, deleting, moving, and editing items, with appropriate justifica-
tion). This flexibility is important in this particular case because there are 
a couple of things missing from this outline. 

First of all, the introduction is missing Notation for Descriptions, 
which appears in the STC outline (“Software Test Case Documentation” 
on page 274).17 Perhaps the authors of Std 829 were expecting very few 
test procedures to appear in Section 2 (“Details”) of the document. In 
practice, however, it’s common to have a large number of test procedures. 
There are some very good reasons for breaking a single large test proce-
dure into a series of smaller ones:

•	 Testing can take place in parallel. By assigning (independent) test pro-
cedures to multiple test teams, you can complete the testing faster.

•	 Certain tests may tie up resources (for example, test equipment such as 
oscilloscopes, logic analyzers, test fixtures, and signal generators). By 
breaking up a large test procedure into smaller test procedures, you may 
be able to limit the time a testing team needs access to certain resources.

•	 It’s nice to be able to complete a test procedure within a single working 
day (or even between breaks in the day) so testers don’t lose focus when 
performing tests.

•	 Organizing test procedures by their related activities (and by required 
setup prior to those activities) can streamline test procedures, reducing 
steps and making them more efficient to run.

•	 Many organizations require a testing team to rerun a test procedure 
from the beginning (a regression test) if any part of that test fails. 
Breaking a test procedure into smaller pieces makes rerunning test pro-
cedures far less expensive.

To be able to trace these test procedures back to the STC, to the SRS, 
and to other documentation in the RTM, you’re going to need test proce-
dure identifiers (tags). Therefore, you should have a section to describe the 
notation you’re using for these tags.

Of course, the second thing missing from the IEEE outline is an entry 
for the test procedure identification in the Details section. To make trace-
ability easier, it would also be nice to have a section in each test procedure 
where you list the associated test cases it covers. Finally, for my own purposes, 
I like to include the following information with each test procedure:

•	 Brief description

•	 Tag/identification

•	 Purpose

17. It’s also missing the Context field, but that’s nearly irrelevant here. The context is implied 
by the Context field in the STC documentation.
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•	 Traceability (test cases covered)

•	 Pass/fail criteria (as this may change with each procedure)

•	 Any special requirements (for example, environmental) required to 
run this test procedure; this could include input/output files that must 
exist, among other things

•	 All setup required prior to running the test procedure

•	 Software version number when executing the test procedure

•	 Procedure steps to execute the test procedure

Incorporating these items produces the following extended outline for 
an arbitrary STP suitable for an SIT, AT, FAT, or SAT:

1 Table of Contents

2 Introduction

2.1 Document Identifier and Change History (moved)

2.2 Scope

2.3 Glossary, Acronyms, and Abbreviations (moved)

2.4 References

2.5 Notation for Descriptions

2.6 Relationship to Other Documents (removed)

2.7 Instructions for Running the Tests (added)

3 Test Procedures (name changed from Details)

3.1 Brief Description (simple phrase), Procedure #1

3.1.1 Procedure Identification (Tag)

3.1.2 Purpose

3.1.3 List of Test Cases Covered by This Procedure

3.1.4 Special Requirements

3.1.5 Setup Required Prior to Running Procedure

3.1.6 Software Version Number for This Execution

3.1.7 Detailed Steps to Run the Procedure

3.1.8 Sign-off on Test Procedure

3.2 Brief Description (simple phrase), Procedure #2 

•	 (Same subsections as previous section)

•	 . . . 

3.n Brief Description (simple phrase), Procedure #n

•	 (Same subsections as previous sections)

4 General

4.1 Document Change Procedures

4.2 Attachments and Appendixes

5 Index
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12.5.3 Introduction in the STP Document
The following subsections describe the components of the STP 
introduction.

12.5.3.1 Document Identifier and Change History

The document identifier should be some (organization-wide) unique name; 
this will typically include some project designation such as DAQ_STP, a 
creation/modification date, a version number, and authorship. A list of 
these identifiers (one for each revision to the document) would form the 
change history.

12.5.3.2 Scope

The scope here has largely the same definition as that used for the STC 
(see “Software Test Case Documentation” on page 274). Std 829 suggests 
describing the scope of the STP based on its focus and relationship to the 
STC and other test documentation. More often than not, you can get away 
with a simple reference to the Scope section in the STC.

12.5.3.3 References

As usual, provide a link to any external documents (such as the STC) 
that are relevant to the STP. Std 829 also suggests including links to the 
individual test cases covered by this procedure. That, however, would be 
meaningful only if the STP contained just a few test procedures. In this 
revised format, the STP will attach the test case links to the individual test 
procedures in Section 3 (“Test Procedures”). If you have a very large system 
consisting of multiple, independent applications, you will probably have 
separate STPs for each of those applications. You would want to provide 
links to those other STPs in this section of the STP document.

12.5.3.4 Notation for Descriptions

As in the STC, you would describe your STP tag format here. This book 
recommends using STP tags of the form proj_STP_xxx, where proj is some 
project-specific ID (such as DAQ or POOL) and xxx is some unique (possibly 
decimal) numeric sequence.

Note that there is a many-to-one relationship from STC test cases to 
STP test procedures. Therefore, you cannot easily embed traceability infor-
mation into the STP tags (there’s a similar situation with SDD tags; see 
“SDD Traceability and Tags” on page 245). This is why it’s important to 
include the related STC tags with each test procedure, to facilitate trace-
ability back to the corresponding test cases.

12.5.3.5 Relationship to Other Documents

In the modified variant of the STP, I’ve removed this section. Std 829 sug-
gests using it to describe the relationship of this STP to other test procedure 
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documents—specifically, which test procedures must be performed before 
or after other test procedures. However, in the modified form all test pro-
cedures appear in the same document. Therefore, a description of the rela-
tionship between tests should accompany each individual test procedure. 
(This information appears in the “Special Requirements” section.) 

This is one reason for including this section in the modified form of 
the STP: very large systems may contain multiple (and relatively indepen-
dent) software applications. There would probably be separate STP docu-
ments for each of these applications. This section of the modified STP 
could describe the relationship of this STP to those others, including the 
order in which tests must execute these STPs.

12.5.3.6 Instructions for Running Tests

This section should contain generic instructions to whomever will be run-
ning the tests. Usually the people running the tests are not the software 
developers.18 This section can provide insights into the software to be tested 
for those who have not lived with it on a daily basis from its inception.

One important piece of information that should appear here is what to 
do if a test procedure fails. Should the tester attempt to continue that test 
procedure (if possible) in hopes of finding additional problems? Should 
the tester immediately suspend testing operations until the development 
team resolves the issue? If a test has been suspended, what is the process for 
resuming the test? For example, most QA teams require, at the very least, 
rerunning the test procedure from the beginning.19 Some QA teams may 
also require a meeting with development to determine a set of regression 
tests to run before resuming the test procedure from the point of failure.

This section should also discuss how to log any problems/anomalies 
that occur during testing and to describe how to bring the system back into 
a stable state or shut it down should a critical or catastrophic event occur. 

This is also where you’ll describe how to log successful runs of a test 
procedure. A tester will usually log the date and time they begin a test, pro-
vide the name of the test engineer, and specify which test procedure they 
are executing. At the successful conclusion of a test, most test procedures 
require signatures by the test engineer, a possible QA or customer represen-
tative, and possibly other managerial or project-related personnel. This sec-
tion should describe the process for obtaining these signatures and signing 
off on successful runs of a test procedure.

18. Indeed, QA guidelines claim that it is unacceptable and unethical for developers to run 
the formal system integration and acceptance tests for a product. Many companies won’t even 
allow the developers to produce the executable code, instead relying on the QA department 
to construct the builds from the source code control system for testing.

19. Some might even require running the entire STP from the beginning, although this is 
usually too expensive and, therefore, impractical. The usual compromise is to rerun each 
test procedure that fails and then, at the end of the STP, rerun the whole STP to guarantee it 
runs in its entirety without failure.
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12.5.4 Test Procedures
This section of the document repeats for each individual test procedure 
for the system under test. This is a modification of the Std 829 STP, which 
describes only a single (or maybe a few) test procedures in the document. 
Presumably, there would be multiple STP documents if your system 
requires a large number of test procedures.

12.5.4.1 Brief Description (for Test Procedure #1)

This is the title of the test procedure. It should be a short phrase, such as 
DIP Switch #1 Test, that provides a quick and perhaps informal procedure 
identification.

Procedure Identification
This is the unique identifier (tag) for this test procedure. Other docu-
mentation (such as the RTM) will reference this test procedure using 
its tag.

Purpose
This is an expanded description of this test procedure: why it exists, 
what it tests, and where it sits in the big picture. 

List of Test Cases Covered by This Procedure
This section provides reverse traceability back to the STC document. It 
is simply a list of all the test cases that this test procedure covers. Note 
that this set of test cases should be mutually exclusive of the sets found 
in other test procedures—no test case tag should ever appear in more 
than one test procedure. You want to preserve the many-to-one rela-
tionship from test cases to test procedures. This will help keep the RTM 
clean, meaning that you won’t have to attach multiple test procedures 
to the same row in the RTM. 

Now, it is quite possible that multiple test procedures will provide 
inputs (and verify corresponding outcomes) that test the same test case. 
This isn’t a problem; just pick one procedure that will take credit for 
covering that test case and assign the test case to that procedure. When 
someone is tracing through the requirements and verifying that the 
test procedures test a particular requirement, they’re not going to care 
if the test procedures test that requirement multiple times; they’ll be 
interested only in determining that the requirement has been tested at 
least once somewhere in the test procedures.

If you have a choice of test procedures with which to associate a 
given test case, it’s best to include that test case in a test procedure that 
also handles related test cases. Of course, in general, this type of asso-
ciation, whereby related test cases are put into the same test procedure, 
happens automatically. That’s because you don’t arbitrarily create test 
procedures and then assign test cases to them. Instead, you pick a set of 
(related) test cases and use them to generate a test procedure. 
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Special Requirements
This section identifies anything external you’ll need for the test proce-
dure in order to successfully execute the test. This includes databases, 
input files, existing directory paths, online resources (such as web 
pages), dynamically linked libraries and other third-party tools, and 
automated test procedures.

Setup Required Prior to Running Procedure
This section describes any processes or procedures to execute before 
you can run the test procedure. For example, a test procedure for 
autonomous vehicle software might require an operator to drive the 
vehicle to a specified starting point on a test track before starting the 
test. Other examples might be ensuring an internet or server connec-
tion is available. With the SPM, an example of setup could include 
ensuring that the test fixture (five-gallon bucket of water) is filled to 
some specified level.

Software Version Number for This Execution
This is a “fill in the blank” field for the test procedure. It does not man-
date a software version for running the test; rather, the tester enters the 
current software version number prior to the test’s execution. Note that 
this field has to be filled in for each test procedure. You cannot sim-
ply write this value down once for the whole STP. The reason is quite 
simple: during testing you may encounter defects that require you to 
suspend the test. Once the development team corrects those defects, 
the testing can resume, usually from the beginning of the test proce-
dure. Because different procedures in an STP could have been run on 
different versions of the software, you need to identify which version of 
the software you’re using when running each procedure.20

Detailed Steps Required to Run This Procedure
This section contains steps that are necessary to execute the test proce-
dure. There are two types of steps in a test procedure: actions and veri-
fications. An action is a statement of work to be done, such as providing 
some input to the system. A verification involves checking some outcome/
output and confirming that the system is operating correctly. 

You must number all procedure steps sequentially—typically 
starting from 1, though you could also use section numbers like 3.2.1 
through 3.2.40 for a test procedure that has 40 steps. At the very least, 
each verification step should be preceded by three or so underline 
characters (___) or a box symbol (see Figure 12-3) so that the tester 
can physically check off the step once they have successfully completed 

20. As noted earlier, some QA teams will require running the entire LTP over again if there 
were any failures on individual test procedures (whose defects were presumably corrected and 
retested). This ensures that all test procedures in the LTP all have the same version number.
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it. Some people prefer putting the checkbox on every item (that is, both 
actions and verifications) in the test procedure to ensure that the tester 
marks off each step as they complete it. Perhaps there should be lines 
on the actions and checkboxes on the verifications. However, this adds 
considerable menial work to the process, so consider carefully whether 
it’s important enough to do.

3.1.25 Verify…

Figure 12-3: Using a checkbox  
on a verify statement

Note that the detailed steps should include information (in appro-
priate positions) such as the following:

•	 Any actions needed to start the procedure (obviously, these should 
appear in the first few steps of the procedure)

•	 A discussion of how to make measurements or observe outputs 
(don’t assume the tester is as familiar with the software as the devel-
opers are)

•	 How to shut down the system at the conclusion of the test proce-
dure to leave the system in a stable state (if this is necessary, it will 
obviously appear in the last steps of the procedure)

•	 Sign-off

At the end of the test procedure there should be blank lines for the 
tester, observers, customer representatives, and possibly management 
personnel to sign off on the successful conclusion of the test procedure. 
A signature and date are the minimum information that should appear 
here. Each organization may mandate which signatures are necessary. 
At the very least (such as in a one-person shop), whoever executes the 
test procedure should sign and date it to affirm that it was run.

12.5.5 General
The last section of an STP is a generic catch-all section where you can place 
information that doesn’t fit anywhere else.

12.5.5.1 Document Change Procedures

Many organizations have set policies for changing test procedure docu-
ments. They could, for example, require customer approval before making 
official changes to an ATP. This section outlines the rules and necessary 
approval procedures and processes for making changes to the STP.

12.5.5.2 Attachments and Appendixes

It’s often useful to attach large tables, images, and other documentation 
directly to the LTP so that it is always available to a reader, as opposed to 
providing a link to a document that the reader cannot access. 
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12.5.6 Index
If desired, you can add an index at the end of the STP.

12.5.7 A Sample STP
This section presents a shortened (for space/editorial purposes) example 
of an STP for the DAQ DIP switch project. 

1 Table of Contents
[Omitted for space reasons]

2 Introduction

2.1 Document Identifier
Mar 22, 2018: DAQ_LTP, Version 1.0 Randall Hyde

2.2 Scope
This document describes some of the DIP switch test procedures 
in the DAQ system (shortened for space/editorial reasons).

2.3 Glossary, Acronyms, and Abbreviations

N O T E  This is a very simple and short example to keep this book smaller. Please don’t use this 
as boilerplate; you should diligently pick out terms and abbreviations your document 
uses and list them in this section.

Term Definition

DAQ Data acquisition system

SBC Single-board computer

Software Design Description 
(SDD)

Documentation of the design of the software system 
(IEEE Std 1016-2009)—that is, this document.

Software Requirements 
Specification (SRS)

Documentation of the essential requirements (func-
tions, performance, design constraints, and attri-
butes) of the software and its external interfaces 
(IEEE Std 610.12-1990).

System Requirements 
Specification (SyRS)

A structured collection of information that embod-
ies the requirements of the system (IEEE Std 
1233-1998). A specification that documents the 
requirements to establish a design basis and the 
conceptual design for a system or subsystem.

Software Test Cases (STC) Documentation that describes test cases (inputs and 
outcomes) to verify correct operation of the soft-
ware based on various design concerns/require-
ments (IEEE Std 829-2009).

Software Test Procedures 
(STP)

Documentation that describes the step-by-step 
procedure to execute a set of test cases to verify 
correct operation of the software based on various 
design concerns/requirements (IEEE Std 829-2009).
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2.4 References

Reference Discussion

DAQ STC See “A Sample Software Test Case Document” on 
page 281.

DAQ STP An example of a full STP for the Plantation Productions 
DAQ system can be found at http://www.plantation 
-productions.com/Electronics/DAQ/DAQ.html.

IEEE Std 830-1998 SRS documentation standard

IEEE Std 829-2008 STP documentation standard

IEEE Std 1012-1998 Software verification and validation standard

IEEE Std 1016-2009 SDD documentation standard

IEEE Std 1233-1998 SyRS documentation standard

N O T E  An additional reference that might make sense (not included here because it doesn’t 
exist for this simple project) is a link to any associated documentation for the DAQ 
system, such as programming manuals or schematics.

2.5 Notation for Descriptions
Test procedure identifiers (tags) in this document shall take 
the form:

DAQ_STP_xxx

where xxx is a (possibly dotted decimal) numeric sequence that 
creates a unique identifier out of the whole sequence. Note that 
xxx values for STP tags are usually numbered from 000 or 001 and 
usually increment by 1 for each additional test case item sharing 
the same xxx string.

2.6 Instructions for Running the Tests
Execute each test procedure exactly as stated. If tester encounters 
an error or omission in the procedure, tester should redline (with 
red ink, which tester should use only for redlines) the procedure 
with the correct information and justify the redline in the test log 
(with date/timestamp and signature). All redlines within the test 
procedure(s) must be initialized by all signatories at the end of 
the test procedure.

If tester discovers a defect in the software itself (that is, not simply 
a defect in the test procedure), the tester shall note the anomaly 
in a test log and create an Anomaly Report for the defect. If the 
defect is marginal or negligible in nature, the tester may con-
tinue with the test procedure, if possible, and attempt to find any 
other defects in the system on the same test procedure run. If the 
defect is critical or catastrophic in nature, or the defect is such 
that it is impossible to continue the test procedure, the tester shall 

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
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immediately suspend the test and shut off power to the system. 
Once the defect is corrected, tester must restart the test proce-
dure from the beginning of the procedure.

A test procedure succeeds if and only if the tester completes all 
steps without any failures.

3 Test Procedures

3.1 RS-232 (Serial Port) Operation 

3.1.1 DAQ_STP_001

3.1.2 Purpose
This test procedure tests the proper operation of DAQ 
commands sourced from the RS-232 port.

3.1.3 Test Cases
DAQ_STC_701_000_000

DAQ_STC_702_000_000

DAQ_STC_703_000_000

DAQ_STC_726_000_000

3.1.4 Special Requirements
This test procedure requires a serial terminal emulator 
program running on a PC (for example, the MTTY.exe pro-
gram that comes as part of the Netburner SDK; you could 
even use Hyperterm if you are masochistic). There should 
be a NULL modem cable between the PC’s serial port and 
the COM1 port on the Netburner.

3.1.5 Setup Required Prior to Running
Netburner powered up and running application software. 
Serial terminal program should be properly connected to 
the serial port on the PC that is wired to the Netburner.

3.1.6 Software Version Number
Version number:      

Date:      

3.1.7 Detailed Steps
1. Set DIP switch 1 to the ON position.

2.  Reset the Netburner and wait several seconds for 
it to finish rebooting. Note: Rebooting Netburner 
may produce information on the serial terminal. 
You can ignore this.

3.  Press enter on the line by itself into the terminal 
emulator.
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4.     Verify that the DAQ system responds with a new-
line without any other output

5.   Type help, then press enter on a line by itself.

6.     Verify that the DAQ software responds with a help 
message (contents unimportant as long as it is obvi-
ously a help response).

7.   Set DIP switch 1 to the OFF position.

8.   Reset the Netburner and wait several seconds for 
it to finish rebooting. Note: Rebooting Netburner 
may produce information on the serial terminal. 
You can ignore this.

9.   Type the help command into the serial terminal.

10.     Verify that the DAQ system ignores the help 
command.

3.1.8 Sign-off on Test Procedure
Tester:             Date:       

QA:             Date:      

N O T E  In a full STP document, there would probably be additional test procedures here; the 
following test procedure ignores that possibility and continues tag numbering with 
DAQ_STP_002.

3.2 Ethernet Address Selection

3.2.1 DAQ_STP_002

3.2.2 Purpose
This test procedure tests the initialization of the Ethernet 
IP address based on DIP switches 5 and 6.

3.2.3 Test Cases
DAQ_STC_709_000_000

DAQ_STC_710_000_000

DAQ_STC_711_000_000

DAQ_STC_712_000_000

3.2.4 Special Requirements
This test procedure requires an Ethernet terminal emula-
tor program running on a PC (Hercules.exe has been a good 
choice in the past). There should be an Ethernet (crossover 
or through a hub) cable between the PC’s Ethernet port 
and the Ethernet port on the Netburner.
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3.2.5 Setup Required Prior to Running
Netburner powered up and running application software. DIP 
switch 3 in the ON position. DIP switch 4 in the OFF position.

3.2.6 Software Version Number
Version number:      

Date:      

3.2.7 Detailed Steps
1.   Set DIP switches 5 and 6 to the OFF position. 

2.   Reset the Netburner and wait several seconds for it 
to finish rebooting. 

3.   From the Ethernet terminal program, attempt 
to connect to the Netburner at IP address 
192.168.2.70, port 20560 (0x5050).

4.   Verify that the connection was successful. 

5.   Enter a help command and press the enter key. 

6.     Verify that the DAQ system responds with an 
appropriate help message. 

7.   Set DIP switch 5 to the ON position and 6 to the 
OFF position. 

8.   Reset the Netburner and wait several seconds for it 
to finish rebooting. 

9.   From the Ethernet terminal program, attempt 
to connect to the Netburner at IP address 
192.168.2.71, port 20560 (0x5050). 

10.     Verify that the connection was successful. 

11.   Enter a help command and press the enter key. 

12.     Verify that the DAQ system responds with an 
appropriate help message. 

13.   Set DIP switch 5 to the OFF position and 6 to the 
ON position.

14.   Reset the Netburner and wait several seconds for it 
to finish rebooting. 

15.   From the Ethernet terminal program, attempt 
to connect to the Netburner at IP address 
192.168.2.72, port 20560 (0x5050). 

16.     Verify that the connection was successful. 

17.   Enter a help command and press the enter key. 



302   Chapter 12

18.     Verify that the DAQ system responds with an 
appropriate help message. 

19.   Set DIP switches 5 and 6 to the ON position. 

20.   Reset the Netburner and wait several seconds for it 
to finish rebooting. 

21.   From the Ethernet terminal program, attempt 
to connect to the Netburner at IP address 
192.168.2.73, port 20560 (0x5050). 

22.     Verify that the connection was successful. 

23.   Enter a help command and press the enter key. 

24.     Verify that the DAQ system responds with an 
appropriate help message. 

3.2.8 Sign-off on Test Procedure
Tester:             Date:       

QA:             Date:      

N O T E  In a full STP document, there would probably be additional test procedures here.

4 General

4.1 Document Change Procedures
Whenever making changes to this document, add a new line to 
Section 2.1 listing, at a minimum, the date, project name (DAQ_
STP), version number, and authorship.

4.2 Attachments and Appendixes
[In the interests of space, none are provided here; in a real STP, 
putting the schematic of the DAQ system would be a good idea.]

5 Index
[Omitted for space reasons.]

12.5.8 Updating the RTM with STP Information
Because STP tags are very similar in nature to SDD tags, it should come as 
no surprise that the process for adding STP tags to the RTM is quite similar 
to that for adding SDD tags (see “Updating the Traceability Matrix with 
Design Information” on page 259). 

The STP adds a single column to the RTM: the STP tag column. 
Unfortunately, the STP tag does not directly embed any traceability infor-
mation, so you’ll have to extract that information from the STP to deter-
mine where to place STP tags in the RTM.

As you may recall from “List of Test Cases Covered by This Procedure” 
on page 294, each test procedure in an STP must include the list of test 
cases it covers. Though Std 829 does not require this, I strongly suggest 



Software Test Documentation   303

that you include this section. If you’ve done that, you’ve already created the 
reverse traceability back to the requirements, which makes it easy to fill in 
the STP tags in the RTM. To do so, just locate each test case tag (listed in the 
current test procedure) and copy the test procedure’s STP tag into the STP 
tag column in the RTM (on the same row as the corresponding test case). 
Of course, because there are multiple test cases associated with a single 
test procedure, you’ll also have several copies of the same STP tag spread 
throughout the RTM (one per associated test case). 

Should you ever want to easily trace your STP tags back to all the require-
ments in the RTM, particularly without having to look up the list in the 
STP, simply sort the RTM by the STP tag column. This will collect all the 
requirements (and everything else linked to that STP tag) into a contiguous 
group in the matrix and make it easy to identify everything associated with 
that tag.

If you choose some other method of specifying test cases in the test 
procedure that doesn’t involve incorporating the STC tags within the test 
procedures, then determining the placement of the STP tags in the RTM 
becomes a manual—and often laborious—process. That’s why I strongly 
recommend including STC tag numbers in a test procedure when you first 
create it. 

12.6 Level Test Logs 
Although each test procedure contains a signature section where the tester 
(and any other desired personnel) can sign off on a successful test comple-
tion, a separate test log is needed to handle anomalies that occur during 
testing or to simply hold comments and concerns that the tester may have 
while running the test procedure.

Perhaps the most important job of this Level Test Log (LTL) is to present a 
chronological view of the testing process. Whenever a tester begins running 
a test procedure, they should first log an entry stating the date, time, test pro-
cedure they are executing, and their name. Throughout the test’s execution, 
the tester can add entries to the test log (as necessary) indicating:

•	 Start of a test procedure (date/time)

•	 End of a test procedure (date/time)

•	 Anomalies/defects found (and whether the test was continued or 
suspended)

•	 Redlines/changes needed to the test procedure because of errors 
found in the procedure itself (for example, the test procedure could list 
an incorrect outcome; if the tester can show that the program output 
was correct even if it differs from the test procedure, they would redline 
the test procedure and add an appropriate justification to the test log)

•	 Concerns about outcomes the program produces that the tester finds 
questionable (perhaps the test procedure doesn’t list any outcome, or 
the test procedure’s outcomes are questionable)
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•	 Personnel changes (for example, if a tester changes in the middle of a 
test due to a break, shift change, or different experience needed)

•	 Any break period during the test procedure (for example, lunch break 
or end of the workday)

Technically, all you need for a test log is a sheet of (preferably lined) 
paper. More often than not, STP creators add several sheets of lined paper 
to the end of the STP specifically for this test log. Some organizations sim-
ply maintain the test log electronically using a word processor or text editor 
(or even a specially written application). Of course, Std 829 outlines a for-
mal recommendation for test logs:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details

2.1 Description

2.2 Activity and Event Entries

3 General

3.1 Glossary

12.6.1 Introduction in the Level Test Logs Document
In addition to introducing the subsections that follow, this section might 
also identify the organization that created the document and the current 
status.

12.6.1.1 Document Identifier

A unique identifier for this document; as with all Std 829 documents this 
should include, at the very least, the date, some descriptive name, a version 
number, and authorship. A change history (of the outline/format, not the 
specific log) might appear here as well.

12.6.1.2 Scope

The Scope section summarizes the system and features that the associated 
test procedure tested. Generally, this would be a reference to the test proce-
dure’s Scope section unless there was something special about this particu-
lar test run.

12.6.1.3 References

At the very least, this section should refer to the STP (and in particular, the 
specific test) document for which this test log was created.
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12.6.2 Details
This section introduces the following subsections and is what most people 
would consider the actual “test log.”

12.6.2.1 Description

This section (only one occurrence per test log) describes items that will 
apply to all test log entries. This could include the following:

•	 Identification of the test subject (for example, by version number)

•	 Identification of any changes made to the test procedure (for example, 
redlines) prior to this test

•	 Date and time of the start of the test

•	 Date and time of the stop of the test

•	 Name of the tester running the test

•	 Explanation for why testing was halted (if this should happen)

12.6.2.2 Activities and Event Entries

This section of the test log records each event during the execution of the 
test procedure. This section (containing multiple entries) typically docu-
ments the following:

•	 Description of the test procedure execution (procedure ID/tag)

•	 All personnel observing/involved in the test run—including testers, 
support personnel, and observers—and the role of each participant

•	 The result of each test procedure execution (pass, fail, commentary)

•	 A record of any deviations from the test procedure (for example, redlines)

•	 A record of any defects or anomalies discovered during the test proce-
dure (along with a reference to an associated Anomaly Report if one 
is generated)

12.6.3 Glossary
This section of the LTL documentation contains the usual glossary associ-
ated with all Std 829 documents.

12.6.4 A Few Comments on Test Logs
To be honest, the Std 829 outline is way too much effort for such a simple 
task. There are a few tips for managing the effort involved in this document.

12.6.4.1 Overhead Management

Almost all of the effort that would go into creating an Std 829 LTL outline-
compliant document can be eliminated by simply attaching the test log 
directly to the end of the STP. The test log then inherits all the preface 
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information from the STP, so all you need to document is the information 
that appears at the very beginning of “Level Test Logs” on page 303.

Note that LTLs have four variants, as typical for all Std 829 level docu-
ments: Component Test Logs (aka Unit Test Logs), Component Integration 
Test Logs (aka Integration Test Logs), System Test Logs (aka System 
Integration Test Logs), and Acceptance Test Logs (possibly including 
Factory Acceptance Test Logs or Site Acceptance Test Logs).21

In reality, it’s rare for there to be much in the way of Component or 
Component Integration Test Logs. Most frequently, the corresponding 
test procedures are automated tests. Even when they’re not, the develop-
ment team usually runs these tests and immediately corrects any defects 
they find. Because these tests run frequently (often multiple times per day, 
particularly in teams using Agile-based methodologies), the overhead with 
documenting these test runs is far too much.

System Test Logs and Acceptance Test Logs are the variants of the LTL 
that testers (independent of the development team) run, and hence the 
ones that require the creation of actual test logs.

12.6.4.2 Recordkeeping

The test logs are different from the other Std 829 documents in a very 
fundamental sense. Most Std 829 documents are static documents; about 
the only thing you do with them is fill in details like software version num-
bers and check off verification steps. The basic structure of the document 
doesn’t change if you run the procedure over and over again. Ultimately, 
there is no reason to keep any old copies of the test procedure around (like 
runs of the test procedure that failed in the middle of execution). All you 
really need to show the customer is the last run of the test procedure where 
you successfully executed all steps and passed the entire procedure.

The test logs, unlike the other documents you’ve seen in this chapter 
thus far, are dynamic documents. They will differ radically from test run to 
test run (even if nothing else changes, at least all the dates and timestamps 
will change). Furthermore, a test log isn’t a boilerplate document where you 
simply fill in a few blanks and check off some checkboxes. It’s essentially a 
blank slate that you create while actually running the test. If there are fail-
ures, or redlines, or commentary, the test log maintains the history of these 
events. Therefore, it is important to keep all your test logs, even the ones that 
recorded failed tests. It is highly improbable that any system will be perfect; 
there will be mistakes and defects you discover during testing. The test logs 
provide proof that you’ve found, corrected, and retested for these defects. 

If you throw away all the old test logs that document all the defects 
discovered along the way and present only perfect test logs, any reasonable 
customer is going to question what you’re hiding. Mistakes and defects are 
a normal part of the process. If you don’t show that you’ve found and cor-
rected these mistakes, your customers will assume that you haven’t tested 
the system well enough to find the defects or that you’ve faked the test logs. 

21. As usual, I’ve included some common names (non–Std 829) in parentheses.
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Keep the old test logs! This proves you’ve done your QA due diligence for 
your product.

You could argue that keeping old test procedures to show redlines or 
interruptions in the test process is also important. However, any redline or 
interruption that appears on a test procedure document had better show up 
in the corresponding test log, so you don’t need to keep old test procedures 
that you’ve actually rerun. 

Note that this does not imply that all test procedures you’ve run should 
be perfect. If you have properly documented and justified redlines on a test 
procedure, yet the test execution ran successfully to its conclusion, there is 
no need to rewrite the test procedure and refill all the checkboxes to include 
a clean test procedure in your final documentation. If it was successful, 
even with redlines, leave it alone.22 Redlines don’t indicate a failure of the 
software system; they are a defect, of course, but in the test procedure itself 
rather than the software. The goal of the test procedure is to test the soft-
ware, not the test procedure. If minor changes to the test procedure are all 
you have, redline them and move on.

In many organizations, as I’ve said before, if any verification step in a 
test procedure fails, then after any defects are corrected, the entire proce-
dure must be run from the beginning (a full regression test). For some test 
procedures or in some organizations, there may be a process in place to 
temporarily suspend a test procedure, update the software, and then resume 
the test procedure upon resolving the defect. In such cases, you can treat the 
verification failure step as though it were a redline: document the original 
failure in the test log, document the fact that the development team repaired 
the defect, and then document the correct operation of the software (at the 
failed verification step) with the new version of the software.23

12.6.4.3 Paper vs. Electronic Logs

Some people prefer creating electronic test logs; some organizations or 
customers demand paper test logs (filled in with pens, not pencils). The 
problem with electronic logs (especially if you create them using a word 
processor rather than an application program specifically designed to 
log test procedure runs) is that they are easily faked. Of course, no great 
programmer would ever fake a test log. However, there are less-than-great 
programmers in this world who have faked a test log. Unfortunately, the 
actions of those few have sullied the reputations of all software engineers. 
Therefore, it’s best to create test logs that are not easily faked, which often 
means using paper.

Someone could fake paper logs; however, it’s a lot more work and usually 
more obvious. Ultimately, customers are probably going to want hard copies 

22. You should, of course, update the electronic version of the document so you don’t have to 
re-redline the test procedure if you ever have to run it again.

23. Personally, I would have a big problem with this approach. However, if you have a par-
ticularly large test procedure, it could be very expensive to restart that procedure every time 
testers find a defect. 
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of the test logs; when they want them in electronic form, they’ll probably 
want scanned images of the hardcopy logs. They will be expecting you to 
maintain those paper logs in storage for legal reasons.

Perhaps the best solution is to use a software application specifically 
designed for creating test logs, one that automatically logs the entries to a 
database (making it a bit more difficult to fake the data). For the customer, 
you would print a report from the database to provide a hardcopy (or gen-
erate a PDF report if they wanted an electronic copy).

Regardless of how testers generate the original test log, most organiza-
tions will require them to eventually create a paper test log, and then the 
testers, observers, and other personnel associated with the test run will have 
to sign and date it to certify that the information is correct and accurate. 
This is a legal document at this point; someone attempting to fake any data 
could land in serious legal jeopardy.

12.6.4.4 Inclusion in the RTM

Normally, test logs don’t appear in the traceability matrix. However, there 
is no reason you couldn’t include them there. There is a one-to-many rela-
tionship between test procedures (and, therefore, STPs) and test logs. Thus, 
if you assign a unique identifier (tag) to each test report, you can add that 
identifier to an appropriate column in the RTM.

Because test logs have a many-to-one relationship to test procedures, 
it wouldn’t be a bad idea to model the tag ID on the others that this book 
presents. For example, use something such as: proj_TL_xxx_yyy where xxx 
comes from the test procedure tag (for example, 005 from DAQ_STP_005) 
and yyy is a (possibly decimal) numeric sequence that creates a unique tag 
for the test log.

12.7 Anomaly Reports
When a tester, a development team member, a customer, or anyone else 
using the system discovers a software defect, the proper way to document it 
is with an Anomaly Report (AR), also known as a Bug Report or Defect Report. 
All too often an AR consists of someone telling a programmer, “Hey, I 
found a problem in your code.” The programmer then runs off to their 
machine to correct the problem and there’s no documentation to track the 
anomaly. This is very unfortunate, because tracking defects in a system is 
very important to maintaining the quality of that system.

The AR is the formal way to track system defects. Among other things, 
it captures the following information:

•	 Date and time of defect occurrence

•	 The person who discovered the defect (or at least, who recorded the 
defect report in response to some user’s complaint)

•	 A description of the defect

•	 A procedure for reproducing the defect in the system (assuming the 
issue is deterministic and is easy enough to reproduce)
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•	 The impact the defect has on the system (for example, catastrophic, 
critical, marginal, negligible)

•	 The importance of the defect to end users (economic and social 
impact) so management can assign a priority to correcting it

•	 Any possible workarounds to the defect (so users can continue using 
the system while the development team works on correcting the defect)

•	 A discussion of what it might take to correct the defect (including rec-
ommendations and conclusions concerning the defect)

•	 Current status of the anomaly (for example, “new anomaly,” “develop-
ment team is working on correction,” “in testing,” “corrected in soft-
ware version xxx.xxx”)

Naturally, Std 829 has a suggested outline for Anomaly Reports. 
However, most organizations use defect-tracking software to record defects 
or anomalies. If you aren’t willing to spend the money on a commercial 
product, there are many open source products freely available, such as 
Bugzilla. Most of these products use a database organization that is reason-
ably compatible with the recommendations from Std 829:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details

2.1 Summary

2.2 Date Anomaly Discovered

2.3 Context

2.4 Description of Anomaly

2.5 Impact

2.6 Originator’s Assessment of Urgency (see IEEE 1044-1993 [B13])

2.7 Description of Corrective Action

2.8 Status of the Anomaly

2.9 Conclusions and Recommendations

3 General

3.1 Document Change Procedures and History

12.7.1 Introduction in the Anomaly Reports Document
The following subsections describe the components of the AR introduction.

12.7.1.1 Document Identifier

This is a unique name that other reports can reference (such as test logs 
and test reports).
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12.7.1.2 Scope

The Scope section gives a brief description of anything that doesn’t appear 
elsewhere in the AR.

12.7.1.3 References

References include links to other relevant documents, such as test logs and 
test procedures.

12.7.2 Details
This section introduces the subsections that follow.

12.7.2.1 Summary

Here you give a brief description of the anomaly.

12.7.2.2 Date Anomaly Discovered

List the date (and time, if possible/appropriate) when the anomaly was 
discovered.

12.7.2.3 Context

Software version and installation/configuration information goes in the 
Context section. This section should also refer to relevant test procedures 
and test logs, if appropriate, which should help to identify this anomaly. If 
no such test procedure exists for this anomaly, consider suggesting an addi-
tion to some test procedure that would catch it.

12.7.2.4 Description of Anomaly

Provide an in-depth description of the defect including (if possible) how to 
reproduce it. The description might include the following information:

•	 Inputs

•	 Actual results

•	 Outcome(s) (particularly, the outcomes that vary from the test 
procedure)

•	 Procedure step of failure

•	 Environment

•	 Was the defect repeatable?

•	 Any tests executed immediately prior to failure than might have 
affected results

•	 Tester(s)

•	 Observer(s)
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12.7.2.5 Impact

Describe the impact this defect will have on system users. Describe any pos-
sible workarounds, such as changing the documentation or modifying the 
use of the system. If possible, estimate cost and time to repair this defect 
and the risk associated with leaving it in place. Estimate the risk associated 
with fixing it, which could impact other system features.

12.7.2.6 Originator’s Assessment of Urgency

State the level of urgency for a speedy repair. The integrity levels and risk 
assessment scale from “Integrity Levels and Risk Assessment” on page 263 
are probably a good minimum mechanism for stating the urgency of repair.

12.7.2.7 Description of Corrective Action

This section describes the time needed to determine the reason for the 
defect; an estimate of the time, cost, and risk associated with repairing it; 
and an estimate of the effort required to retest the system. Include any nec-
essary regression tests to ensure that nothing else is broken by the fix.

12.7.2.8 Status of the Anomaly

List the status of the current defect. Std 829 recommends statuses such as 
“open,” “approved for resolution,” “assigned for resolution,” “fixed,” and 
“tested with the fix confirmed.”

12.7.2.9 Conclusions and Recommendations

This section should provide commentary as to why the defect occurred and 
recommend possible changes to the development process to prevent similar 
defects in the future. This section might also suggest additional require-
ments, test cases, and (modifications to) test procedures to catch the anom-
aly in the future; this is particularly important if testing discovered the 
anomaly by accident rather than by running specific test procedure steps to 
catch this particular defect.

12.7.2.10 General

This is the usual end-of-document section in Std 829 documents providing 
a change history (to the AR format, not to a specific AR) and change proce-
dures. Std 829 does not recommend a glossary.

12.7.3 A Few Comments on Anomaly Reports
It is worthwhile to bear the following points in mind when dealing with 
Anomaly Reports.



312   Chapter 12

12.7.3.1 ARs Don’t Go in the RTM

The purpose of the traceability matrix is to be able to trace requirements 
of designs and tests to ensure that the system successfully meets all require-
ments. While one could argue that test logs belong in the RTM, most people 
don’t bother to put them there because they normally attach test logs directly 
to the completed test procedures. 

Anomalies, on the other hand, aren’t something whose existence 
you’re trying to prove; indeed, in a perfect world you’re trying to disprove 
the existence of anomalies. This doesn’t mean you discard ARs. Just as 
with test logs, it’s very important to keep all the old ARs around—they pro-
vide valuable proof that you’ve done your due diligence when testing the 
system. More importantly, you want to keep ARs for regression purposes. 
Sometimes long after a defect has been discovered and corrected, it finds its 
way into the system again. Having a historical record of ARs makes it pos-
sible to go back and examine the original cause and its solution.

12.7.3.2 Electronic vs. Paper ARs

As this chapter noted earlier, most organizations use a defect-tracking sys-
tem to capture and track ARs. Although Std 829 doesn’t specifically suggest 
or require paper documents (indeed, Std 829 points out that you can use 
software to track anomalies), the outline form tends to suggest a hardcopy 
format. But given that most organizations use defect-tracking software, why 
bother with hardcopy ARs? The main reason is portability in the “you can 
carry it with you” sense. While using the defect-tracking system makes a 
lot of sense for system integration, factory acceptance tests, and other tests 
done at the development site where there is easy access to the tracker, in 
some cases it may not be available or accessible at an installation during a 
site acceptance test.24 In such situations, creating ARs on paper and then 
entering them into the defect-tracking system when possible is probably 
the best approach.

12.8 Test Reports
When testing is completed, a test report summarizes the results. As for 
many of the other test documents, Std 829 describes a wide variety of test 
reports you can produce. Std 829 defines Level Interim Test Status Reports 
(LITSR), Level Test Reports (LTR), and Master Test Reports (MTR). Of 
course, you can substitute Component, Component Integration, System, and 
Acceptance in place of Level (with the usual common names as well).

A very large organization might need to produce interim test reports so 
management can figure out what’s going on in an equally large system. For 
more information on LITSRs, refer to IEEE Std 829-2008; they are, quite 

24. Many defect-tracking systems are accessible via a web page interface. So as long as 
you have internet access and your tracking system is available online, you can fill out bug 
reports remotely.
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frankly, documentation for documentation’s sake for most projects, but 
large governmental contracts might explicitly require them.

Level and Master Test Reports vary according to the size of the project. 
Most small to medium-sized systems with (typically) a single software applica-
tion and, therefore, a single STP, will have a single test report, if any at all. 

Once a system grows to the size that it contains several major software 
applications, there will usually be a test report for each major application 
and then an MTR as a summary of the results from the individual test 
reports. The MTR, then, provides an executive-level review of all the tests.

12.8.1 Brief Mention of the Master Test Report 
As the MTR is generally not a document that individual developers will deal 
with, this section will simply present the Std 829-suggested outline without 
further comment and then concentrate on LTRs.

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details of the Master Test Report

2.1 Overview of All Aggregate Test Results

2.2 Rationale for Decisions

2.3 Conclusions and Recommendations

3 General

3.1 Glossary

3.2 Document Change Procedures and History

For more information on the MTR, see IEEE Std 829-2008.

12.8.2 Level Test Reports 
Although you could have component/unit test reports and component inte-
gration test reports, most organizations leave unit and integration testing to 
the development department, as upper management generally doesn’t care 
about the low-level details. Thus, the most common Level Test Reports (LTRs) 
you’ll see will be System (Integration) Test Reports and Acceptance Test 
Reports, typically Factory Acceptance Test Reports and Site Acceptance Test 
Reports. Std 829 outlines LTRs as follows:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References
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2 Details

2.1 Overview of Test Results

2.2 Detailed Test Results

2.3 Rationale for Decisions

2.4 Conclusions and Recommendations

3 General

3.1 Glossary

3.2 Document Change Procedures and History

Sections 1 (“Introduction”) and 3 (“General”) are the same as for most 
other Std 829 test documents in this chapter. The core of the test report is 
in Section 2 (“Details”). The following subsections describe its contents.

12.8.2.1 Overview of the Test Results

This section is a summary of the test activities. It would briefly describe the 
features covered by the tests, testing environment, software/hardware ver-
sion numbers, and any other general information about the test. The over-
view should also mention if there was anything special about the testing 
environment that would yield different results if the test were conducted in 
a different environment, like a factory.

12.8.2.2 Detailed Test Result

Summarize all the results in this section. List all anomalies discovered and 
their resolution. If the resolution to a defect has been deferred, be sure 
to provide justification and discuss the impact that defect will have on 
the system.

If there were any deviations from the test procedure, explain and justify 
those deviations. Describe any changes (redlines) to the test procedures.

This section should also provide a confidence level in the testing pro-
cess. For example, if the testing process focuses on code coverage, this sec-
tion should describe the estimated percentage of code coverage that the 
testing processing achieved. 

12.8.2.3 Rationale for Decisions

If the team had to make any decisions during the testing process such as 
deviations from test procedures or failure to correct known anomalies, this 
section should provide the rationale for those decisions. This section might 
also justify any conclusions reached (in the next section).

12.8.2.4 Conclusions and Recommendations

This section should state any conclusions emanating from the test process-
ing. This section should discuss the product’s fitness for release/production 
use, and recommend possibilities such as disabling certain, possibly known, 
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anomalous features to allow early release of the system. This section could 
also recommend stalling the release pending further development and pos-
sible debugging.

12.9 Do You Really Need All of This?
IEEE Std 829-2008 describes a huge volume of documentation. Do you 
really need to create all this documentation for the next “killer app” you’re 
developing by yourself in your home office? Of course not. Except for the 
largest (government-sponsored) applications, the vast majority of the docu-
mentation described in Std 829 is complete overkill. For normal projects, 
you’ll probably want to have the STC, SRL, and STP documents.25 Test logs 
will simply be an appendix to the STP. Anomaly Reports would be entries 
in your defect-tracking system (from which you can produce hardcopy 
reports). 

You can also reduce the size of your STC and STP documents by using 
automated testing. You probably can’t eliminate all manual tests, but you 
can get rid of many of them.

Test reports are easy enough to eliminate in smaller projects. The test 
log at the end of the STP will likely serve as a reasonable alternative unless 
you have multiple levels of management demanding full documentation.

Agile development methodologies might seem like a good alternative 
for reducing the cost of all this documentation. However, keep in mind that 
developing, validating, verifying, and maintaining all those automated test 
procedures also has an associated—and often equivalent—cost.

12.10 For More Information
Dingeldein, Tirena. “5 Best Free and Open Source Bug Tracking Software 

for Cutting IT Costs.” September 6, 2019. https://blog.capterra.com/top-free 
-bug-tracking-software/.

IEEE. “IEEE Std 829-2008: IEEE Standard for Software and System Test 
Documentation.” July 18, 2008. http://standards.ieee.org/findstds/standard 
/829-2008.html. This is expensive ($160 US when I last checked), but this 
is the gold standard. It’s more readable than the SDD standard, but still 
heavy reading.

Peham, Thomas. “7 Excellent Open Source Bug Tracking Tools Unveiled by 
Usersnap.” May 8, 2016. https://usersnap.com/blog/open-source-bug -tracking/.

25. With careful requirements design, you can probably eliminate the SRL if all your require-
ments are testable. If you are really brave, you could combine the STC and LTP into a single 
document; however, it’s almost always a better idea to keep them separate.

https://usersnap.com/blog/open-source-bug-tracking/
https://blog.capterra.com/top-free-bug-tracking-software/
https://blog.capterra.com/top-free-bug-tracking-software/
http://standards.ieee.org/findstds/standard/829-2008.html
http://standards.ieee.org/findstds/standard/829-2008.html
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Plantation Productions, Inc. “Open Source/Open Hardware: Digital Data 
Acquisition & Control System.” n.d. http://www.plantation-productions.com  
/Electronics/DAQ/DAQ.html. This is where you’ll find the DAQ Data 
Acquisition Software Review, Software Test Case, Software Test 
Procedures, and Reverse Traceability Matrix.

Software Testing Help. “15 Best Bug Tracking Software: Top Defect/Issue 
Tracking Tools of 2019.” November 14, 2019. http://www.softwaretestinghelp 
.com/popular-bug-tracking-software/.

Wikipedia. “Bug Tracking System.” Last modified April 4, 2020.  
https://en.wikipedia.org/wiki/Bug_tracking_system.

https://en.wikipedia.org/wiki/Bug_tracking_system
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.softwaretestinghelp.com/popular-bug-tracking-software/
http://www.softwaretestinghelp.com/popular-bug-tracking-software/


In the introduction, I explained how 
there wasn’t space in this book for many 

of the topics that Volume 2 promised would 
be included here. Expect to see those topics in 

Volumes 4, 5, and 6:
•	 Volume 4: Designing Great Code

•	 Volume 5: Great Coding

•	 Volume 6: Testing, Debugging, and Quality Assurance

Assuming I’m still alive to finish this series, I might add a book on user 
documentation to the list. About the only thing I can promise is that there 
won’t be as large a gap between Volumes 3 and 4 as there was between 
Volumes 2 and 3!

Volume 4, Designing Great Code, will pick up where the second half of 
this book left off. In this volume you’ve learned how to document the soft-
ware development process; in Volume 4 you’ll learn more about the design 
process and how to apply the knowledge you’ve gained to design great code.

A F T E R W O R D :  
D E S I G N I N G  G R E A T  C O D E
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A
Accessor function A function whose 
sole purpose is to provide read or write 
access to an otherwise private member of 
some object. 

ACM Association for Computing 
Machinery 

Activity diagram A UML flowcharting 
scheme that graphically indicates the flow 
of control through some design. 

Actor External entity that interacts with 
or otherwise controls a system. 

Aggregation A relationship where one 
class (the whole class) controls another class 
(the parts class). The parts class could be 
stand-alone (used by itself or other classes), 
but the whole class cannot exist without the 
parts class. 

Alternative flow A condition section 
in a Flow of Events scenario—typically, 
where error or exceptional conditions 
are handled. 

Amateur programmer A novice or a pro-
grammer who lacks formal training, who 
engages in programming without talent or 
skill, or who prioritizes writing clever code 
to impress others over making code more 
readable and maintainable.

Anomaly Report A formal document 
(electronic or hard copy) reporting an 
instance of a defect in a software system. 

Apprentice A person learning by practical 
experience under skilled workers. 

AR Anomaly Report 

ASD Adaptive Software Development 

AT Acceptance Test 

B
Backdoor An exploit that a computer 
programmer preprograms into a system to 
allow anyone with knowledge of the back-
door to bypass system security. 

Best practices A set of well-known proce-
dures or processes that have proved to pro-
duce successful and efficient results. 

Black-box test data Input data for tests 
that is generated by considering only the 
system’s functionality, without looking at 
the source code. 

BSCS Bachelor of Science in Computer 
Science

Bug Report See Anomaly Report. 

C
CACM Communications of the ACM 
(journal)

CASE Computer-Aided Software 
Engineering

Case-neutral An identifier is case-neutral 
if it would be accepted by a compiler that is 
either case-insensitive or case-sensitive (that 
is, the compiler would not permit two iden-
tifiers that differ only by alphabetic case). 

G L O S S A R Y
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Catastrophic integrity level A definition 
for software such that the consequences of 
failure are disastrous (including death, sys-
tem destruction, environmental damage, or 
huge financial loss). 

Change-driven process A development 
process that anticipates changes in require-
ments, resources, technology, and perfor-
mance as the project progresses, and is 
focused on delivering value incrementally. 

Coarse-grained Low level of detail. 

Code coverage The percentage of the 
source code that executes based on a set 
of input (test) data. Code coverage of 
100 percent implies that every statement 
in the program executes at least once 
given the corresponding set of inputs. 

Code drivers Temporary testing code 
used to simulate a function when the real 
function doesn’t yet exist. 

Code monkey Derogatory term for an 
amateur programmer. Also see Cowboy coder.

Code refactoring Restructuring code to 
improve the source without changing the 
external behavior of the software. 

Code scaffolding Temporary testing 
code used to call functions that are part 
of a system (when the system doesn’t yet 
contain code to call those functions or the 
system code isn’t stable or able to call the 
function code). 

Code spike A brief coding activity by a 
single person to test a theory or to proto-
type some code (usually throwaway code). 

Coder An engineer responsible for writ-
ing computer code. 

Conceptual complexity Complexity 
resulting from a system whose components 
are difficult to understand. 

Constraint A restriction on the domain or 
range of some value or function. 

COTS Commercial Off-the-Shelf. 
Basically, any system you can pur-
chase on the open market that is not 
custom-designed. 

Cowboy coder Generally, a synonym for 
an amateur programmer—one who writes 
code without formal processes or consider-
ation for others.

Cowboy coding Software development 
where programmers have autonomy over 
the development process. This includes 
control of the project’s schedule, languages, 
algorithms, tools, frameworks, and coding 
style. (Source: Wikipedia.)

CPM Critical Path Method 

CPU Central Processing Unit

Cracker A criminal who illegally accesses 
computer systems or computer data by 
stealing passwords or employing other 
system exploits. 

Craftsman One who creates or performs 
with skill or dexterity. 

Critical integrity level A level of perfor-
mance where software must execute prop-
erly or there could be serious problems 
including permanent injury, major perfor-
mance degradation, environmental dam-
age, or financial loss. 

Critical section A section of code that 
cannot support concurrent execution by 
multiple threads. 

D
DAQ Shortened name for the Plantation 
Productions Digital Data Acquisition sys-
tem. See http://www.plantation-productions 
.com/Electronics/DAQ/DAQ.html. 

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
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DAQ_IF DAQ interface board. A circuit 
board containing level shifters, a watch-
dog timer, I2C multiplexer, and other 
SBC support circuitry for the Plantation 
Productions DAQ system. 

Defect Report See Anomaly Report. 

Delphi An object-oriented program-
ming language based on (Object) 
Pascal. Originally created by Borland 
International, currently marketed by 
Embarcadero, Inc. 

Derived value An attribute (data field 
of a class) is derived if its value is com-
puted on each access rather than retrieved 
from memory. 

Design attribute Anything in a design 
that is a characteristic of a design entity, 
relationship, or constraint. 

Design constraint Any restriction or rule 
that applies to a design element, attribute, 
or relationship. 

Design element Any item occurring in 
a design that is structurally or functional 
distinct from other items in the design. 
Any item that is part of a design including 
design entities, relationships, attributes, or 
constraints. 

Design entity A major component of a 
design, such as a library, component, or 
program unit. 

Design patterns Generic templates for 
common programming tasks. 

Design relationship A design element 
that names a connection or correspondence 
between design entities. 

Deterministic In a deterministic system, 
the same series of inputs produces the same 
flow of activity with the same outcomes. 

DRY Don’t repeat yourself. Duplicate 
code is complex code. See also OAOO.

Due diligence (in software development)  
Research and quality assurance tasks that a 
development team does to prepare for the 
release of a software system. 

E
Elitism The belief that belonging to a 
select group makes an individual better 
than others outside that group. 

Empirical Originating in or being based 
on observation or experience, as opposed 
to being based on theory alone. 

Encapsulation Hiding information inside 
an object so that external entities cannot 
access it. Also known as information hiding. 

Ethics A system or set of moral principles. 

Event External stimulus to a system that 
often causes a transition from one state 
to another or initiates the execution of 
some activity. 

F
FAT Factory Acceptance Test 

FDD Feature-Driven Development 

Feature creep Constantly adding new fea-
tures to the system. 

Fine-grained Highly detailed. 

Flow of Events (UML) Step-by-step 
description of how an external actor inter-
acts with a system during the execution of a 
use case. 

Flowchart A graphical representation of 
control flow through a program. 

FPA See Function Point Analysis. 

Framework A software library containing 
a skeletal component of an application into 
which a programmer injects application-
specific code. 
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Functional Requirements Specification 
(FRS) External requirements provided by 
a customer for a software system. 

Function Point Analysis A software 
metric that considers the number of 
inputs, outputs, and basic computations a 
program requires. 

G
Gantt charts Resource scheduling charts 
that specify resource usage over time. 

Getter An accessor function that returns 
the value of a private member of some object. 

GMP Grand Master Programmer 

Gold plating Padding a system with 
unnecessary or unrequested features. 

Grand Master Programmer A program-
mer who is approximately 10 times (or 
better) more productive than the least pro-
ductive programmer. 

Guards (UML) A conditional expression 
attached to a transition in a UML activity 
diagram. The transition occurs only if the 
expression evaluates as true. 

H
Hacking Writing code without any formal 
development process in place. Also see cow-
boy coding.

HLL High-level language 

HRS Hardware Requirements 
Specification 

HTML HyperText Markup Language. 
An early standard language for creating 
web pages. 

I
IDE Integrated Development Environment. 
Usually a software tool that combines an 
editor, compiler, linker, debugger, and 
other software tools into the same package. 

IEEE The Institute of Electrical and 
Electronics Engineers. This is an umbrella 
organization that also covers computer and 
software engineers. 

In the zone Mentally focused on the cur-
rent task. 

Incremental model A software develop-
ment model that is similar to the iterative 
model, but involves putting more work into 
the initial design with only minor (incre-
mental) improvements after the initial 
implementation. 

Information hiding See encapsulation. 

Integration testing Combining (usually 
independently pretested) program units 
together and testing them to see if the units 
communicate properly with each other. 

Integrity level An ordinality assigned to a 
piece of software describing its importance 
and risk to stakeholders. IEEE Std 829-2008 
defines four integrity levels: Catastrophic, 
Critical, Marginal, and Negligible. 

IoT Internet of Things 

IP Intellectual property (also: internet 
protocol) 

Iterative model A software model that 
runs through multiple cycles of require-
ments, coding, testing, demonstration, and 
feedback in order to validate the design 
(that is, to ensure it properly satisfies the 
end users of the software). 
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J
JBGE Just barely good enough 

Journeyman A worker who has learned a 
trade and works for another person. 

K
K&R Kernighan and Ritchie (authors of 
The C Programming Language). 

Killer app A genre-defining, massively 
selling, popular application.

KLOC Thousands of lines of code

L
Large-scale project A software project 
that requires a large team (more than 
5 to 10 people) to create. 

Lead programmer The engineer directly 
in charge of a particular software project. 

Learning curve The graph of the time 
it takes a programmer to learn a concept 
versus their productivity with respect to that 
concept. Specifically, this term describes 
the amount of time it takes to learn and 
become proficient in some subject. 

Lightweight process A process that 
requires little overhead. In software devel-
opment, reducing documentation and 
managing overhead is the hallmark of a 
lightweight process. 

LITSR Level Interim Status Report 
(document) 

LOC Lines of code 

LTC Level Test Case (document) 

LTD Level Test Design (document) 

LTL Level Test Log (document) 

LTP Level Test Plan (document) 

LTPr Level Test Procedure (document) 

LTR Level Test Report (document)

M
Man-hour A unit of one hour of work per-
formed by one person. Used for accounting 
purposes. 

Marginal integrity level A level of per-
formance where software must execute 
properly, or there may be (minor) incorrect 
results and some program functionality lost. 

MBA Master of Business Administration

Medium-sized projects Projects that 
require a small team (typically five people 
or fewer) to accomplish in a reasonable 
amount of time. 

Metaphor A figurative representation of a 
real situation, often used as an analogy. For 
example, “It’s like shooting fish in a barrel” 
is a metaphor meaning something is very 
easy to do.

Milestone A significant (and often articu-
lated) point in development. 

Mnemonic A memory aid. 

MSCS Master of Science in Computer 
Science

MTP Master Test Plan (document) 

MTR Master Test Report (document)

Multiplicity An expression denoting a 
counting relationship between two objects 
(or the number of elements associated with 
a single object). Can also represent one-to-
many, many-to-one, and other unbounded 
relationships. 
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N
Negligible integrity level A software per-
formance level below which some expected 
functionality might not be present in the sys-
tem but no serious consequences will result. 

NRC Nuclear Regulatory Commission (a 
US-based governmental agency that over-
sees many of the nuclear reactors in the 
United States). 

O
OAOO Once and only once (see also DRY). 

Overhead Activities that add time and 
money to a project’s cost but don’t directly 
contribute to getting the work done. 

P
Penta-rectangle A rectangle with the 
lower right-hand corner folded in (which 
actually makes it a pentagon). 

Personal software engineering Processes 
and methodologies that apply to a single 
programmer working on a small project or 
on their portion of a larger project. 

PERT Program Evaluation Review 
Technique 

Polymorphism The ability to take on 
different forms (types) based on context. 

Productivity The number of unit tasks 
completed in a unit amount of time or for 
a given cost. 

Project head The engineer or manager 
directly in charge of a project (or portion 
of a project). 

PSP Personal Software Process (see 
Watts S. Humphrey’s A Discipline for Software 
Engineering). 

Q
QA Quality Assurance 

R
R&D Research and development

Rapid Application Development (RAD)  
A lightweight version of the Spiral devel-
opment model emphasizing prototypes 
and VHLLs. 

Real hours The amount of real time 
(“wall clock time” or “calendar time”) 
consumed by a project regardless of the 
number of people working on it (see also 
man-hour). 

Regression test A test to ensure that 
something that was previously working 
hasn’t broken (regressed) in the current 
version of the software. 

Requirement A mandatory goal associ-
ated with a software system. 

Requirement gap Features (and associ-
ated tests) that should be in a program 
to satisfy user needs, but do not appear 
as actual, documented requirements for 
the software. 

Reverse Traceability Matrix (RTM)  
A document/database that allows the 
reader to trace features in documentation 
(such as the STP, STC, and SDD) back to 
their original requirements. 

RFP Request for Proposal, a request 
for a bid from vendors to supply products 
or services. 

Risk assessment Evaluation of the risks 
associated with a project and attempt-
ing to quantify those risks, allowing for 
mitigating them. 

RTM Reverse Traceability Matrix. Also 
known as the Requirements Traceability Matrix. 
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S
SAT Site Acceptance Test 

SBC Single-board computer 

Scaffolding See code scaffolding. 

Scale down Modifying a process that 
works for a large project so it will work for a 
smaller project. 

Scaling up Modifying a process that 
works for a small project so it will work for 
a larger project. 

Scenario (UML) A single path through 
a use case. 

Scope complexity Complexity resulting 
when the size of a system becomes too large 
for a single person to completely under-
stand the whole system. 

SDD Software Design Description 

SDLC Software Development Life Cycle 

Self-validating A test is self-validating if 
the simple execution of that test runs prop-
erly (that is, without crashing the system or 
indicating errors). 

Setter A function that allows a caller 
to write a value to a private member of 
some object. 

Small-scale projects Software systems 
than can be easily produced by a single 
engineer in a reasonable amount of time. 

SMS Short Message Service, a text mes-
sage on a cell phone. 

Software crisis A situation in which the 
need for software is expanding faster than 
the supply of programmers who can write 
that software. 

Software development model An abstrac-
tion of the software development process 
that helps engineers understand how to 
compare different approaches to software 
development. 

Software engineering The study of the 
development and management of large soft-
ware systems. 

Software IC A standardized software 
module that can be plugged into arbitrary 
applications, much like how an integrated 
circuit (IC) could be plugged into an elec-
tronic circuit. 

Software methodology A system of prin-
ciples—as well as a set of ideas, concepts, 
methods, techniques, and tools—that 
defines the style of software development. 

Spiral model An iterative software devel-
opment model that repeats four phases: 
planning, design, risk analysis/evaluation, 
and construction. 

SPM Swimming pool monitor, a software 
system example used throughout this book. 

Sprint A short amount of time, typically 
one to four weeks, allotted to complete a 
software development task. 

SRL Software Review List (document) 

SRS Software Requirements Specification 
(document)

Stakeholder An individual or other party 
that has an interest in the design and devel-
opment of a system. 

Standard library A set of standardized 
functions and subroutines, often tied to a 
specific programming language or frame-
work, to achieve common tasks. 

Stand-up meeting A meeting where every 
(capable) person remains standing. This 
forces the meeting to be short and focused, 
as people don’t want to stand for more than 
a few minutes. 

State diagram A graphical representation 
showing how a system transitions from one 
state to another. 

STC Software Test Cases 
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Stereotype An extension mechanism for 
UML to create new elements. 

STP Software Test Procedures 

SyRS System Requirements Specification 
(document)

T
TBD To be determined 

TDD Test-driven development 

Test-driven development (TDD) A soft-
ware development process in which you 
develop tests first and then write the code 
that satisfies these tests. 

Throwaway programs Small programs that 
are written once, used once or only a few times, 
and then discarded and never used again. 

Time to market The time between the 
initial conceptualization of a product and 
its first delivery to customers. 

Traceability matrix See Reverse Traceability 
Matrix. 

Trigger (UML) External event that causes 
the execution of a use case. 

U
UML Unified Modeling Language 

Unit testing Testing small program units 
(such as functions) independently of the 
rest of the system. 

UPS Uninterruptible Power Supply 

URL Uniform Resource Locator, a pro-
tocol for addressing objects on the internet 
(for instance, a web address). 

Use case A list of actions or event steps 
defining the interactions between an (exter-
nal) actor and a system to achieve some goal. 

User stories Requirements, features, and 
use case documentation. 

V
V model A software development process 
based on the Waterfall model (see also 
Waterfall model). 

Validation The process of showing that a 
product meets the needs of its end users. 

Verification The process of ensuring that 
a product meets requirements. 

VHLL Very high-level language

W
Waterfall model A software development 
process whereby software occurs in distinct 
and serial steps (for example, system docu-
mentation, coding, testing, deployment, 
maintenance, and retirement). 

Weak words Imprecise words, generally 
adjectives, that attempt to make some-
thing sound better or worse without any 
quantification. 

White-box test data Input test data gen-
erated by looking at the source code for a 
system. For example, to achieve code cover-
age you need to look at the source code to 
create test data that exercises all statements 
in a program. 

X
XP Extreme Programming 

Y
Y2K Year 2000. Specifically relating to 
computer software maintaining only the 
last two digits of a year (for example, “99” 
for “1999”) and being unable to handle 
dates from 2000 and beyond. 

YAGNI You aren’t gonna need it. Avoid 
speculative coding. 
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I N D E X

Symbols
+ (UML class visibility operator), 105
~ (UML package class visibility 

operator), 107
* (iteration specification in UML 

sequence diagrams), 132
- (UML private class visibility 

operator), 106
# (UML protected class visibility 

operator), 107
«component» stereotype (UML), 156
«create» message in a UML sequence 

diagram, 136–137
«destroy» message in a UML sequence 

diagram, 136–137
«extend» keyword, 79
{frozen} UML constraint, 124
{ordered} UML constraint, 121
{readOnly} UML property, 112
{static} UML property, 112
{unique} UML property, 112

A
Acceptance Test Cases, 274
Acceptance Test Design, 269
Acceptance Test Plan, 267
acceptance testing (AT), 42, 265
accessor functions, 106, 109
actions

in a requirement, 186
in a test procedure, 295

activation bars (sequence diagrams, 
UML), 133

activity diagrams, UML, 89–101, 
239–251

call symbols, 96
expression coverage, 92
partitions, 96, 97
states, 91
state symbols, 89

actor
in a requirement, 186
use case element, 74

Adaptive Software Development 
(ASD), 53

adding SRL items to the traceability 
matrix, 274

aggregration relationships, UML, 116
Agile Manifesto, 53
Agile software methodology

heavyweight documentation, 54–55
JBGE (Just Barely Good Enough) 

documentation, 55
pair programming, 54
regression testing, 53
sprints, 53–54
stand-up meetings, 54

algorithmic viewpoint (SDD), 229, 239
Allocations column (RTM), 222
alternative flows in UML sequence 

diagrams, 81, 135
alt sequence fragment (UML), 146
amateur (programmer 

classification), xxii
ambiguity

in requirements, 188
in state machines, 164

analysis phase, software development, 40
analysis verification method (RTM), 222
analysts (programmers), 6
annotations and comments (UML), 98
anomaly logging during tests, 293
Anomaly Reports (AR), 262, 308–311

assessment of urgency, 311
conclusions and 

recommendations, 311
Context section, 310
correcting defects, 309
date and time of defect 

occurrence, 308
Description of Anomaly section, 310
Description of Corrective Action 

section, 311
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automated unit testing
Agile, 53
XP, 57

availability (SRS), 201

B
ball and socket notation (UML), 

156, 163
base values in a class (UML), 109
BASIC programming language, xxi
best practices, 14, 265

Agile, 53
lack of in Scrum, 66

in software development, 15
binary numbering system, xxi
black-box-generated test data, 276
break sequence fragment (UML), 

138, 145
Brief Description section (STP), 

294–296
build by feature (FDD), 68
burn-down chart in Scrum, 66

C
C and C++ programming languages, xxi
C, C++, and C# programming 

languages, xxi
calling a UML subroutine, 96
CASE (computer-aided software 

engineering), 50
case neutrality in identifiers, 110
casual narratives, 81
catch-all transition in a UML activity 

diagram, 92
changeability, 124
change-driven process in XP, 57
change history

STC, 280
STP, 292

change procedures
STC, 280

characteristics of good requirements, 
187–193

class aggregation relationships 
(UML), 116

class association relationships 
(UML), 115

class attributes (UML), 108–112
class composition relationships 

(UML), 117

Anomaly Reports (continued)
Details section, 310
document identifier, 309
electronic versus paper, 312
Impact section, 311
information to include, 308–309
Introduction section, 309
References section, 310
reproducing defects, 308
Scope section, 310
summary, 310
workarounds to a defect, 309

anomaly status, 309
anonymous ports (UML), 163
applying engineering principles to 

software development, 12
Apportioning of Requirements section 

(SRS), 199
apprenticeship, 7, 13
architects

computer programmers as, 6
contribution to software 

development, 8
AR. See Anomaly Reports
artists

computer programmers as, 5
contribution to software 

development, 8
assert sequence fragment, 141
assessment of urgency (AR), 311
associating test cases with a test 

procedure, 294
associations, UML

links, 115
names, 115, 118
relationships, 114

Assumptions and Dependencies section 
(SRS), 198

asynchronous messages in UML 
sequence diagrams, 129

AT (acceptance testing), 42, 265
atomic requirements, 190
ATP (Acceptance Test Procedure), 289
attributes, UML

data types, 110
derived values, 109
multiplicity, 111
names, 109
syntax, 112
visibility, 109

audit functions in an SRS, 198
automated test procedures, 275–276
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class dependency relationships 
(UML), 114

class diagrams, UML, 104, 235, 236, 238
class inheritance relationships 

(UML), 125
class interface, 105
class operators, UML, 112
class relationships, UML, 114–125
cleaning up UML sequence 

diagrams, 129
coach on XP team, 56
coder (programmer classification), xxii
coding in XP, 57
coding standards in XP, 60
collaboration diagrams (UML), 152, 239
collective ownership in XP, 60
collocation in XP, 64
comments and annotations (UML), 98
common setup for test cases, 288
communication diagrams. 

See collaboration 
diagrams (UML)

Communication Interfaces section 
(SRS), 197

communication links, UML, 74
communication in XP, 58
completeness of an SDD, 240
complete programmer (programmer 

classification), xxiii
component diagrams, UML, 155–158, 

236, 237
Component Integration Test Cases, 274
Component Integration Test Design, 269
Component Integration Test Plan, 267
«component» stereotype (UML), 156
Component Test Cases, 274
Component Test Design, 269
Component Test Plan, 267
Component Test Procedures, 289
composite structure diagrams (UML), 

160–163, 236, 238
composition relationships, UML, 117
composition viewpoint (SDD), 233–235
compound requirement, 190
computer-aided software engineering 

(CASE), 50
computer programmers as musicians, 5
conceptual model diagrams (SDD), 44
concurrent processing (UML), 96
conditionals (UML)

decision points, 92–93
transition guards, 91–92

condition for a requirement, 186
Configuration Management Plan, 280
connectors (UML), 98
consider sequence fragment (UML), 138
consistency in requirements, 187
consistency in an SDD, 240
consistency in system 

documentation, 171
constraints in requirements, 185
Constraints section (SRS), 198
constraints, UML, 121

{frozen}, 124
{ordered}, 121
timing in sequence diagrams, 133

construction phase in Rapid 
Application Development 
model, 50

Context section
in an AR, 310
in an STC document, 278

context viewpoint (SDD), 231–233
continuous integration in XP, 63
control functions in an SRS, 198
correcting defects, 309
courage in XP, 55
craftsmen

computer programmers as, 7
contribution to software 

development, 8
«create» message in a UML sequence 

diagram, 136–137
creating requirements, 212–214
criticality of an application in an 

SRS, 198
critical requirements, 188
critical section of UML activity 

diagram, 99
customer representative in XP, 56
cutover phase in RAD model, 50

D
dangerous-to-test requirements, 222
database viewpoint (SDD), 236
data dictionary

in a class diagram, 235
in an SDD, 41

data fields. See class attributes (UML)
debriefings in XP, 64
decision points, 92–93
decision symbols (UML), 163–165
default attribute values (UML), 111–112
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Defect Reports. See Anomaly Reports
defining software systems, 12
definite loops, UML, 142
Definitions section (SRS), 196
dependency relationships, UML, 

114, 117
dependency viewpoint (SDD), 235–236
deployment diagrams, UML, 159–160
deployment phase, 42
derived attributes, 253
derived classes in UML, 125
derived use cases, 79
derived values in a class (UML), 109
Description of Anomaly section 

(AR), 310
Description of Corrective Action 

section (AR), 311
design by feature (FDD), 68
design concerns in a viewpoint 

(SDD), 229
Design Constraints section (SRS), 201
design elements (SDD), 230
design entities (SDD), 230
design goals (SRS), 193, 203
design guidelines, 62
designing in XP, 57
design language (SDD), 231
design overlay (SDD), 241–242
design patterns (SDD), 236
design phase

in RAD, 50
in SDD, 41

design quality obtained from pair 
programming, 61

design rationale (SDD), 242
design relationships (SDD), 230
design verification method (RTM), 222
design viewpoints (SDD), 229–239
design views (SDD), 239–240
desirable requirements, 188
«destroy» message in a UML sequence 

diagram, 136–137
Detailed Steps Required to Run This 

Test Procedure section 
(STP), 295

Details section (Anomaly Report), 310
deterministic defects, 308
deterministic state machines, 164
developing an overall model in FDD, 67
dialog (use case), 81

differentiating between branching 
and long delays in UML 
sequence diagrams, 135

difficult-to-test requirements, 222
document change procedures for a test 

procedure (STP), 296
documented code, xxi
document identifier

in an AR, 309
in an STP, 292

Don’t repeat yourself (DRY) design 
principle, 62

downtime, 201
driver on pair programming team, 60
dropped title box (UML sequence 

diagrams), 136
DRY (Don’t repeat yourself) design 

principle, 62
duplicate code, 62

E
economic benefits of pair 

programming, 61
education and training, xxiv–xxv, 13
efficiency and great code, xxi
electronic test logs, 307–308
electronic versus paper ARs, 312
elements, design (SDD), 230
empirical processes, 12
encapsulation, 105, 107
end conditions (UML), 81
end state (UML), 163
engineers

computer programmers as, 7
contribution to software 

development, 8
engineers, software, xxiv
enhanceable code, xxi
environmental condition requirement 

in test cases and test 
procedures, 288

environmental needs (STC), 279
event (state machine), 164
events (UML), 94–95
exceptions (use case), 81
expression coverage in a UML activity 

diagram, 92
«extend» keyword, 79
extension, use case, 79–80, 81, 85
External Interfaces section (SRS), 199
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external objects in a UML sequence 
diagram, 133

Extreme Programming (XP)
change-driven process, 57
coding in, 57
coding standards, 60
collective ownership, 60
continuous integration, 63
debriefings, 64
designing, 57
feature creep, 65
functional testing, 58
implementation phase, 58
iterations, 58
listening, 57
metaphors, 59
No Big Design Up Front, 65
onsite customer, 59
open workspace and collocation, 64
pair programming, 54, 60–63
planning game, 58
priorities (release planning), 56
problems with, 64
refactoring, 60
release cycles, 58
release planning, 58
respect, 55
retrospectives, 64
roles, 56
scalability, 65
self-directed teams, 64
simple design, 59, 60
simplicity, 55
small releases (building blocks), 7
software development activities, 65
steering phase, 184
sustainable pace, 59, 63
test-driven development, 57
testers, 56
testing, 57, 59, 60
unit tests, 65
user stories, 56, 59
values of, 55
whole team concept, 55

F
factory acceptance (software 

development level), 265
Factory Acceptance Test Cases, 274

Factory Acceptance Test Design, 269
Factory Acceptance Test Plan, 267
Factory Acceptance Test Procedures, 289
faking test logs, 307
fast code, xxi
feasible requirements, 187
feature creep in XP, 65
Feature-Driven Development (FDD), 66

build by feature, 68
design by feature, 68
developing an overall model, 67
iteration zero, 66
plan by feature, 67

feedback in XP, 55
flat messages in UML sequence 

diagrams, 129
flowcharts. See activity diagrams, UML
Flow of Events (UML use cases), 81
fork operation (UML), 96
forward traceability (requirements), 192
{frozen} UML constraint, 124
fully dressed use case, 81
functional requirements, 185
Functional Requirements section 

(SRS), 200
Functional Requirements 

Specification, 171
functional tests in XP, 56, 58
function return type, 129

G
generalization relationship. 

See class inheritance 
relationships (UML)

generalization, use case, 77–79
getter functions, 106, 109
Glossary section (STC), 280
GNU toolset, 15
Golden Rule of Software 

Development, xxi
gold plating, 187
graduating from a software 

apprenticeship, 14
great programmers, characteristics 

of, xxiv
guard conditions in UML sequence 

diagram messages, 131, 134
guards (UML), 91
guidelines for simple design, 62
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H
hacking, 43
hardware environmental needs 

(STC), 279
Hardware Interfaces section (SRS), 197
hardware limitations (SRS), 198
heavyweight documentation, 54–55
hexadecimal numbering system, xxi
high-level language requirements 

(SRS), 198

I
IEEE/EIA Std 12207.0-1996 [B21], 263
IEEE Standard for Software and System 

Test Documentation, 261
IEEE Std 829-2009 Level Test 

Procedure, 289
IEEE Std 1016-1998 versus IEEE Std 

1016-2009, 228
IEEE Std 1016-2009, 227
if statements in use case 

descriptions, 84
ignore sequence fragment, 138
impact of a defect, 309
Impact section (AR), 311
imperative (procedural) programming 

languages, xxi
implementation-independent 

requirements, 190
implementation phase in XP, 58
importance of an apprenticeship, 13
important requirements, 188
impractical-to-test requirements, 222
including test logs in the RTM, 308
inclusion (use case), 77
incompleteness in requirements, 188
Incremental software development 

model, 51–52
disadvantages of, 51
“keep the code working” concept, 51

indefinite loops, 143
industry best practices, 14
information in an Anomaly Report, 

308–309
information viewpoint (SDD), 236
inheritance, 107
input/output parameters (UML), 113
Input section (STC), 278
inspection verification method 

(RTM), 222

Instructions for Running Tests section 
(STP), 293

integration (software development 
level), 265

Integration Test Cases, 274
Integration Test Design, 269
Integration Test Plan, 267
Integration Test Procedures, 289
integration testing, 11, 41, 265
integrity levels, 263–265
intellectual property (IP), 61
interaction occurrence sequence 

diagram (UML), 139
interaction viewpoint (SDD), 239
intercase dependencies (STC), 280
interface specifiers, 119–120
interfaces to other applications 

(SRS), 198
interfaces (UML), 156
interface viewpoint (SDD), 237
Internet of Things, 133
intern (programmer classification), xxii
intern, software, 7
Introduction section

in an AR, 309
in an SRS, 195
in an STC, 277

iterations in UML sequence 
diagrams, 132

iterations in XP, 58
iteration zero in FDD, 66
Iterative software development model, 

46–47

J
Java programming language, xxi
JBGE (Just Barely Good Enough) 

documentation, 55
join operation (UML), 96
journeyman, software, 7
junior programmer (programmer 

classification), xxii
Just Barely Good Enough (JBGE) 

documentation, 55

K
keeping test logs, 306
killer app, 315
KLOC (thousands of lines of code), 10
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L
large projects, 10, 12
lead programmer, 11
learning while pair programming, 61
legal jeopardy, test logs and, 308
Level Interim Test Status Reports, 

262, 312
Level Test Case, 262
Level Test Design, 262
Level Test Design documentation, 269
Level Test Logs, 303
Level Test Plans, 267–269
Level Test Procedures, 262, 289, 290
Level Test Reports, 312
lifeline in UML sequence diagrams, 128
lifetime of an object in a UML 

sequence diagram, 136
lightweight software development 

models, 50
limiting APIs, 62
lines of code (LOC), 10
Linux, 15
listening in XP, 57
List of Test Cases Covered by This 

Procedure section (STP), 
294

LOC (lines of code), 10
logging anomalies during tests 

(STP), 293
Logical Database Requirements section 

(SRS), 200
logical viewpoint (SDD), 229, 235
long delays in UML sequence 

diagrams, 132–133
looking for new software development 

tools and techniques, 14
loop sequence fragment (UML), 

138, 141–145
loosely coupled classes (UML), 114

M
maintainability (SRS), 201
maintainable code, xxi
maintaining documentation, 54
maintenance phase of software 

development, 42
management complexity in Spiral 

model, 49
manager/tracker on XP team, 56
man-hours and real time, 19

master craftsman, 15
masterpieces, software, 15
Master Test Plan, 266–267
Master Test Reports, 312
medium-sized projects, 10, 11
Memory Constraints section (SRS), 197
memory usage of great code, xxi
merge points (UML), 93–94
merging test cases into a single test 

procedure, 288
messages in UML sequence diagrams, 

129–130
metaphors, computer programming

programmer as architect, 6
programmer as artist, 5
programmer as craftsman, 7
programmer as engineer, 7

metaphors in XP, 59
minimal guarantees (use case), 81
minimum viable product (MVP), 47
modifiable requirements, 191
multiple merge/decision points 

(UML), 94
multiple requirements in one 

statement, 190
multiplicity, 120
musicians, computer programmers as, 5
MVP (minimum viable product), 47

N
namespaces (packages), UML, 76
naming a communication link 

(UML), 163
NATO and the creation of software 

engineering, 7
natural talents of a computer 

programmer, 5
navigability (UML), 115, 123
navigator on pair programming 

team, 60
neg sequence fragment (UML), 138, 148
Netburner MOD54415, 213
No Big Design Up Front (XP), 65
nodes (UML), 159
nondeterministic state machines, 164
nonfunctional requirements, 185
nonintelligibility in requirements, 189
Notation for Description section

in STC, 278
in STP, 290, 292

no test verification method (RTM), 222
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O
object (in a requirement), 186
object-oriented analysis and design 

(UML), 103–104
object-oriented programming 

languages, xxi
Objective section (STC), 278
objects in UML, 125
old test logs, 306
Once and only once (OAOO) design 

principle, 62
onsite customer in XP, 59
open hardware, 283
open source, 283
open workspace in XP, 64
Operations section (SRS), 197
operator return type, 129
operators, UML, 112
opt sequence fragment (UML), 138, 146
optimization in Spiral-based software 

development model, 49
optionality (requirements), 188
{ordered} constraint (UML), 121
organizing test procedures by their 

related activities (STP), 290
other allocations in an RTM, 222
other verification method (RTM), 222
Outcome section (STC), 279
overgeneralization in requirements, 189
overlapping test cases, 288
Overview section (SRS), 196

P
package diagrams (UML), 236, 238
package visibility (UML), 107
packages (UML), 76
pair programming

Agile, 54
design quality, 61
driver role, 60
economic benefits of, 61
learning during, 61
navigator role, 60
satisfaction, 61
team building and 

communication, 61
in XP, 59

parallel execution in UML diagrams, 149
parallel operations (SRS), 198
parameters in UML sequence diagram 

messages, 131

par sequence fragment (UML), 138, 149
partial class diagrams (UML), 104
Pascal programming language, xxi
pass/fail criteria, 280

in an STP, 291
passive voice in requirements, 189
patterns use viewpoint (SDD), 236
penta-rectangle symbol in sequence 

diagram, 138
Performance Requirements section 

(SRS), 200
phases in software development

coding, 41
deployment, 42
design, 41
maintenance, 42
product conceptualization, 40
requirement development and 

analysis, 40
retirement, 42
testing, 41

plan by feature (FDD), 67
planning game in XP, 58
polymorphism, 107
portability (SRS), 203
ports, 162
positively stated requirements, 192
post conditions (UML), 81
predictive software development 

methodologies, 52
priorities (release planning) in XP, 56
private class visibility (UML), 106
problems with XP, 64
procedural programming languages, xxi
procedure identifier/tag (STP), 294
product conceptualization phase, 40
Product Functions section (SRS), 198
product owner in Scrum, 65
programmer/analysts, 6
programmer classifications

amateurs, xxii
problem with, xxiii
programmers, xxii

coder, xxii
complete programmer, xxiii
interns, xxii
junior programmer, xxii
Programmer I and II, xxiii
system analyst, xxiii
system architect, xxiii

Programmer I (programmer 
classification), xxiii
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Programmer II (programmer 
classification), xxiii

programmer role in XP, 56
project head, 11
property strings (UML), 109, 112
protected class visibility (UML), 107
protocols, 119
provided interfaces

UML components, 156
UML composite structures, 162

pseudocode, 239
public class visibility (UML), 105
Purpose section

in an SRS, 195
in an STP, 290, 294

Q
qualified names in UML packages, 159
qualifiers (UML), 122
Quality Assurance department, 266
quality requirements, 185

R
RAD (Rapid Application Development) 

model, 49–51
construction phase, 50
cutover phase, 50
design phase, 50
requirements planning phase, 50
risk management, 50

rake symbol (UML), 96
Rapid Application Development model. 

See RAD model
rapid prototyping, 49
readable code, xxi
{readOnly} property (UML), 112
redlines in test procedures, 307
reducing resource usage with test 

procedures, 290
refactoring in XP, 60
References section

in an AR, 310
in an SRS, 196
in an STC, 277

ref sequence fragment (UML), 138, 139
region sequence fragment (UML), 

138, 151
regression testing, 53, 276, 290
regulatory policies (SRS), 198
relationship features, UML, 117

relationship strength, UML, 114
Relationship to Other Documents 

section (STP), 292
release cycles in XP, 58
release planning in XP, 58
reliability (SRS), 198, 201
reproducing defects (AR), 308
request for proposal (RFP), 263
required interfaces (UML composite 

structures), 162
required setup for an STP, 291
requirement gaps, 46
requirement organization (SRS), 202
requirement origins, 185
requirements

atomic, 190
characteristics of good, 187–193
compound, 190
consistency, 187
constraints, 185
correctness, 187
creating in SRS, 212–214
desirable, 188
difficult to test, 222
feasible, 187
gold plating, avoiding, 187
implementation-independent, 190
important, 188
impractical to test, 222
incompleteness, ambiguity as 

result of, 188
modifiable, 191
multiple in one statement, 190
nonfunctional, 185
nonintelligibility in, 189
optionality, 188
organization, 202
overgeneralization in, 189
passive voice in, 189
portability, 203
positively stated, 192
prioritized, 187–188
quality, 185
reverse traceability, 192
for SDD, 228
subjectivity, 188
for SyRS, 193
tags and traceability, 192
traceability, 192
unbounded lists, 189
underreference, 189
underspecification, 188
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requirements (continued)
uniqueness, 191
unnecessary, 187
vagueness, 188
verifiable, 190
weak words and, 189

requirements and architecture phase 
in V model, 45

requirements planning phase in RAD 
model, 50

rerunning test procedures (STP), 290
resource usage when running tests 

(STP), 290
resource viewpoint (SDD), 239
respect in XP, 55
resuming tests (STP), 293
retirement phase, 42
retrospectives in XP, 64
return from subroutine in a UML 

sequence diagram, 145
return messages in UML sequence 

diagrams, 129
return type (UML), 113
return values in UML class diagrams, 110
return values in UML sequence 

diagram messages, 131
reusability of UML components, 

155–158
reuse in computer programming, 12
reverse traceability, 171, 186, 192

in an SRS tag, 175
Reverse Traceability Matrix. See RTM
review verification method (RTM), 222
RFP (request for proposal), 263
risk assessment, 263
risk-based software development 

models, 48
risk management in the RAD model, 50
risk management in the Spiral 

development model, 49
risk management in the Waterfall 

model, 45
robust code, xxi
roles in XP, 56
roles (UML), 119
RTM (Reverse Traceability Matrix), 

170, 172, 186, 302
adding SRL items, 274
Allocations column, 222
including test logs in, 308

SDD tag column, 259
Software Test/Review Cases 

column, 288
SRS tag column, 222
verification methods, 222

running test procedures in parallel 
(STP), 290

running tests (STP instructions), 293

S
satisfaction from pair programming, 61
SAT (Site Acceptance Test), 265, 289, 291
scalability in XP, 65
scaling up and down (engineering 

methodologies), 10, 42
scenario (use case), 86
scheduled downtime, 201
Scope section

in an AR, 310
in an SRS, 196
in an STC, 277
in an STP, 292

scrum master in Scrum, 65
Scrum methodology, 53, 65

burn-down chart, 66
product owner, 65
scrum master, 65
scrum-of-scrums, 66
sprint restrospectives, 66
stand-up meeting, 65

SDD (Software Design Description), 227
completeness of, 240
conceptual model diagrams, 44
definition of, 170
design concerns in a viewpoint, 229
design constraints, 230
design elements, 230
design entities, 230
design overlay, 241–242
design patterns, 236
design phase, 41
design rationale, 242
design relationship, 242
design views, 239–240
source element, 291
state dynamics viewpoint, 163
tags, 44
target element, 230
validation, 183
viewpoint name, 229
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viewpoints
composition, 233–235
context, 231–233
database, 236
dependency, 235–236
design, 229–239
information, 236
interaction, 239
interface, 237
logical, 229
patterns use, 236
resource, 290
structure, 237

Waterfall model, 44
SDD tag column (RTM), 259
SDLC (Software Development Life 

Cycle), 39–42
secondary actors in use cases, 81
security (SRS), 201
seeking better approaches to designing 

applications, 15
self-directed teams in XP, 64
seq sequence fragment (UML), 

138, 150
sequence diagrams, UML

activation bars, 133
alternative flow, 135
asynchronous messages, 129
consider sequence fragment, 138
«create» message in, 136–137
creating objects, 136
«destroy» message, 136–137
destroying objects, 136
differentiating between branching 

and long delays, 135
dropped title box, 136
external objects, 133
flat messages, 129
guard conditions, 131, 134
ignore sequence fragment, 138, 140
indefinite loops, 143
interaction occurrence, 139
interaction viewpoint, 239
iterations, 309
lifelines, 128
long delays and time constraints, 

132–133
loop sequence fragment, 141–145
message parameters, 131
messages, 129–130
neg sequence fragment, 148

object lifetime, 136
opt sequence fragment, 138, 146
par sequence fragment, 149
ref sequence fragment, 139

entry point, 139
region sequence fragment, 138, 151
return from subroutine, 145
return messages, 129
seq sequence fragment, 138
sequence numbers, 138
showing operation order, 128
synchronous messages, 129
time constraints, 133

sequence fragments, UML, 137, 149
alt, 146
assert, 146
break, 138
ignore, 138
loop, 142
neg, 138
opt, 138
par, 149
ref, 139
region, 138, 151
seq, 138, 150
strict, 138, 150

sequence message labels, UML, 130
sequence numbers, UML, 130
sequential software development 

models, 46
setter functions, 106, 109
setup (STP), 295
showing the order of operations in 

UML diagrams, 128
signal handshake protocols (SRS), 198
sign-off on a test procedure (STP), 296
simple design

guidelines for, 62
in XP, 59, 60

simplicity in XP, 55
site acceptance (software development 

level), 265
Site Acceptance Test Cases, 274
Site Acceptance Test Design, 269
Site Acceptance Test Plan, 267
Site Acceptance Test Procedures, 289
Site Acceptance Test (SAT), 265, 289, 291
Site Adaptation Requirements section 

(SRS), 198
SIT (System Integration Test), 289, 291
small projects, 6, 10, 11
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small releases (building blocks) 
in XP, 59

SMS message, 133
software allocations in an RTM, 222
software apprentices, 7, 13
software craftsman, 14
software craftsmanship, 13–15
software crisis of the 1960s, xix
Software Design Description. See SDD
Software Development Life Cycle 

(SDLC), 39–42
software development methodologies, 

52–68
Agile, 52
definition of, 52
predictive, 52
traditional, 52

software development models, 42–52
Incremental, 51
Iterative, 46–47
lightweight, 50
RAD, 49, 74

risk management, 50
risk-based, 48
sequential models, 46
Spiral, 48–49

risk management, 50
V, 45–46
Waterfall, 44–45

software development phases
deployment, 42
design in RAD, 50
maintenance, 42
product conceptualization, 40
retirement, 42
testing, 41

software development testing levels
factory acceptance, 265
integration, 265
site acceptance, 265
system integration, 265
unit, 191, 265

software engineering
IEEE definition, 7
invention of, 7
original definition, 9

software engineering conventions and 
great code, xxi

software engineers, xxiv
software environmental needs 

(STC), 279
Software Interfaces section (SRS), 197

software journeyman, 7, 14–15
Software Requirements Specification 

(SRS) document. See SRS
Software Review List (SRL) document, 

270–274
Software System Attributes section 

(SRS)
downtime, 201
maintainability, 201
portability, 203
reliability, 201
security, 201

Software Test Case (STC) document. 
See STC

software test document types, 262
Software Test Procedure (STP) 

document. See STP
Software Test/Review Cases column 

(RTM), 288
software version for a test procedure 

run (STP), 291, 295
source element (SDD), 230
Special Requirements section 

(STP), 291, 295
Specific Requirements section 

(SRS), 199
Spiral software development model, 

48–49
risk management, 50

sprint retrospectives, 66
sprints, Agile, 53–54
SRS (Software Requirements 

Specification), 44, 170
Apportioning of Requirements 

section, 199
Assumptions and Dependencies 

section, 198
attributes

security, 201
audit functions, 198
Communications Interfaces 

section, 197
Constraints section, 198
control functions, 59
creating requirements, 212–214
Definitions section, 196
Design Constraints section, 201
External Interfaces section, 199
Functional Requirements 

section, 200
Hardware Interfaces section, 197
hardware limitations, 198
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high-level language 
requirements, 198

interfaces to other applications, 198
Introduction section, 195
Logical Database Requirements 

section, 200
maintainability, 201
Memory Constraints section, 197
Operations section, 197
organization by feature, 202
organization by functional 

hierarchy, 202
organization by input stimulus, 202
organization by object class, 202
organization by output 

response, 202
organization by system mode, 202
organization by user class, 202
Overview section, 288
parallel operations, 198
Performance Requirements 

section, 200
Product Functions section, 198
Purpose section, 195
References section, 196
regulatory policies, 198
requirement organization, 202
safety and security 

considerations, 198
Scope section, 292
signal handshake protocols, 198
Site Adaption Requirements 

section, 198
Software Interfaces section, 197
Specific Requirements section, 199
stakeholders, 228
Standards Compliance section, 201
supporting information, 203
tags, 175
User Characteristics section, 198
User Interfaces section, 196, 197
validating, 183

SRS tag column (RTM), 222
stakeholder in system design, 228
Standards Compliance section 

(SRS), 201
stand-up meeting, 54
start state (UML), 90
start symbol (UML), 164
statechart diagrams, UML, 163–165

end state, 163
start state, 163

state dynamics viewpoint (SDD), 239
statement count metric, 24
states (UML), 91
state transitions, UML, 163
{static} property (UML), 112
status of an anomaly, 309
STC (Software Test Case), 170, 261

change history, 280
change procedures, 280
Context section, 278
document identifier, 277
environmental needs, 279
Glossary section, 280
hardware environmental needs, 279
identifiers, 278
Input section, 278
intercase dependencies, 280
Introduction section, 277
Notation for Description section, 278
Objective section, 278
Outcome section, 279
references, 139
References section, 277
Scope section, 277
software environmental needs, 279
special procedural requirements, 279
validation, 184

STC tag format, 278
steering phase in XP, 58
stereotype notation (UML), 120
stop state (UML), 90
STP (Software Test Procedure), 170, 261

Brief Description section, 294–296
change history, 292
Detailed Steps Required to Run 

a Test Procedure section 
(STP), 295

document change procedures, 296
document identifier, 292
Instructions for Running Tests 

section, 293
Introduction section, 292
List of Test Cases Covered by 

Procedure section, 294
Notation for Descriptions 

section, 290
organizating test procedures, 290
pass/fail criteria, 291
procedure identifier/tag, 294
Purpose section, 290, 294
reducing resource usage by test 

procedures, 290
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STP (continued)
References section, 292
Relationship to Other Documents 

section, 292
required setup, 291
rerunning test procedures, 290
resuming tests, 293
running test procedures in 

parallel, 56
Scope section, 292
setup, 46
sign-off on test procedures, 296
software version for a test run, 295
Special Requirements section, 

291, 295
streamlining test procedures 

(STP), 288, 290
suspended tests, 293
Traceability section, 291
verifying, 295

STP tag format, 292
streamlining test procedures (STP), 

288, 290
strength of a relationship (UML), 114
strict sequence fragment (UML), 

138, 150
structure viewpoint (SDD), 237
style guidelines, xxi
subjectivity (requirement), 188
subroutine entry point in a ref 

sequence fragment 
(UML), 139

subsystem stereotype (UML), 156
successful guarantees (use cases), 81
summary (AR), 310
supporting information (SRS), 203
suspended tests (STP), 293
sustainable pace in XP, 59, 63
Swift programming language, xxi
swim lanes (UML), 97
synchronization (UML), 96
synchronous messages (sequence 

diagram, UML), 129
SyRS (System Requirements 

Specification), 40, 44, 
170, 193

validating, 183
SyRS tag column (in RTM), 222
SyRS tags, 172
system analyst (programmer 

classification), xxiii

system architect (programmer 
classification), xxiii

system boundary diagrams (UML), 87
system documentation consistency, 171
system documentation traceability, 171
system integration (software 

development testing 
level), 265

System Integration Test, 265
System Integration Test Cases, 274
System Integration Test Design, 269
System Integration Test Plan, 267
System Integration Test 

Procedures, 289
System Requirements Specification 

(SyRS) document. See SyRS
system resources and great code, xxi
System Test Cases, 274
System Test Design, 269
System Test Plan, 267
system testing, 42

T
tags, 172–178, 245

dotted sequences, 174
requirement, 192
SRS, 175
STC, 177
STP, 178
SyRS, 172

target element (SDD), 230
team building and communication 

from pair programming, 61
termination (use case), 81
test case assignment to a test 

procedure, 294
test case dependencies, 288
test case identifier (STC), 278
test design, 269–270
test-driven development (TDD), 

46, 54, 57
test logs, 306
test plans, 266
test procedures (STP), 294–296
Test Reports, 312–315
test verification method (RTM), 222
Test/verification type column in an 

RTM, 222
tested code, xxi
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testers on XP team, 56
testing in XP, 57, 59, 60
testing phase, 41
“throwaway” programs, 43
tightly coupled classes (UML), 114
time constraints in UML sequence 

diagrams, 133
time to market, 47
traceability, 171–181, 192
Traceability section (STP), 291
tracing STP tags back to test cases and 

requirements, 303
traditional software development 

methodologies, 52
training new software apprentices, 14
transition guards, 91–92
transitions (UML), 90, 91

state, 163
triggers

in a requirement, 186
state machine, 164
UML, 94

U
UML (Unified Modeling Language)

- (private class visibility operator), 
106

* (iteration operator in sequence 
diagrams), 132

# (protected class visibility 
operator), 107

+ (class visibility operator), 105
~ (package class visibility operator), 

107
activity diagrams

catch-all transition, 92
expression coverage, 92
partitions, 97

activity diagram symbols, 89
alternative flows, 135
annotations, 98
attributes

data types, 110
derived values, 109
multiplicity, 111, 120
names, 109
syntax, 112
visibility, 109

ball and socket notation, 156, 163
base values in a class, 109

changeability, 124
class attributes, 108–112
class composition relationships, 117
class diagrams, 104
class operators, 112
class relationships, 114–125

aggregation, 116
association, 115
composition, 117
dependency, 114
inheritance, 114

collaboration diagrams, 152
comments, 98
communication links, 74
component diagrams, 155–158
«component» stereotype, 156
composite structure diagrams, 

160–163, 236, 238
concurrent processing, 96
conditionals, 91
connectors, 98
constraints, 121

{frozen}, 124
{ordered}, 121

decision symbols, 163–165
default attribute values, 111–112
deployment diagrams, 159–160
derived classes, 253
derived values, 109
events, 94–95
fork operation, 96
guards, 91
input/output parameters, 113
interfaces, 156
join operation, 96
merge points, 93–94
message types, 129
multiple merge/decision points, 94
namespaces (packages), 76
naming a communication link, 163
navigability, 123
nodes, 159
object-oriented analysis, 103–104
object-oriented design, 103–104
objects, 125
package diagrams, 236, 238
package visibility, 107
packages, 76
partial class diagrams, 104
ports, 201
private class visibility, 106
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UML (continued)
property strings, 109, 112
protected class visibility, 107
provided interfaces, 156, 162
public class visibility, 105
qualified names in packages, 159
qualifiers, 159
rake symbol, 96
{readOnly} property, 112
relationship strength, 114
required interfaces, 162
return type, 129
return values in sequence diagram 

messages, 129
reusability of components, 155–158
roles, 56
sequence diagrams

«create» message, 136–137
creating objects, 136
«destroy» message, 136–137
destroying objects, 136
differentiating between 

branching and long 
delays, 135

dropped title box, 136
external objects, 133
flat messages, 129
guard conditions, 131, 134
indefinite loops, 143
interaction occurrence, 139
iterations, 309
lifelines, 128
long delays and time 

constraints, 132–133
message parameters, 131
messages, 129–130
object lifetime, 136
return from subroutine, 145
return messages, 129
sequence numbers, 138
showing operation order, 128
strict sequence fragment, 150
synchronous messages, 129
time constraints, 133

sequence fragments
alt, 146
assert, 138
break, 138
consider, 138

ignore, 138
loop, 141–145, 142
neg, 138, 148
opt, 138, 146
par, 138, 149
ref, 139
region, 138, 151
seq, 138, 150
strict, 138, 150

sequence message labels, 130
start state, 163
start symbol, 164
statechart diagrams, 163
states, 91
state transitions, 163
{static} property, 112
stereotype notation, 184
stop state, 163
subroutine entry point in a ref 

segment fragment, 139
subroutines, 96
subsystem stereotype, 156
swim lanes, 97
synchronization, 96
system boundary diagrams, 87
tightly coupled classes, 114
transitions, 90, 91
triggers, 94
{unique} property, 112
use cases

description, 80
diagrams, 231
end conditions, 81
«extend» keyword, 79
extension, 79–80, 85
Flow of Events, 81
formality, 81
fully dressed, 81
generalization, 77–79
if statements in descriptions, 84
inclusion, 77
minimal guarantees, 81
narratives, 80–86
post conditions, 81
scenarios, 86–87, 291
successful guarantees, 81
termination, 81
triggers, 80

value parameters, 113
visibility, 105, 108, 120
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unbounded list in requirements, 
188, 189

underreference in requirements, 189
underspecification in requirements, 188
Unified Modeling Language. See UML
{unique} property (UML), 112
uniqueness (requirement), 191
unit (software development testing 

level), 265
unit tasks (productivity), 18
Unit Test Cases, 274
Unit Test Design, 269
Unit Test Plan, 267
Unit Test Procedures, 289
unit testing, 41, 265
unit tests in XP, 65
unnecessary requirements, 187
unscheduled downtime, 201
updating an RTM

with SRL information, 274
with STC information, 288
with STP information, 302

use cases, UML, 74, 81, 212, 214
derived, 79
description, 80
diagrams, 231
elements, 74
end conditions, 81
exceptions, 81
«extend» keyword, 79
extension, 79–80, 81, 85
Flow of Events, 81
generalization, 77–79
if statements in descriptions, 84
inclusion, 77
minimal guarantees, 81
narratives, 80–86

formality of, 81–82
post conditions, 81
scenarios, 86–87, 291
secondary actors, 39
successful guarantees, 81
termination, 81
triggers, 94

User Characteristics section (SRS), 198
user feedback in Iterative software 

development models, 46
User Interfaces section (SRS), 196
user stories in XP, 56, 59

V
V software development model, 45–46

shortcomings, 49
vagueness in requirements, 188
validation

reducing costs via, 182
SDD, 183
SRS, 183
STP, 184
SyRS, 183
versus verification, 46

value parameters (UML), 113
verifiable requirements, 190
verification, 46, 263

in a test procedure, 295
reducing costs via, 183
versus validation, 46

verification methods in RTM, 222
version number for a test procedure, 295
visibility (UML), 105

spectrum, 108
of UML attribute names, 120

W
Warnier/Orr diagrams, 239
Waterfall model, 44–45
weak words, ambiguity as result of, 

188, 189
white-box-generated test data, 276
whole team concept in XP, 55
workarounds to a defect (AR), 309

X
XP. See Extreme Programming
XP software development activities, 57
XP teams, 55

Y
You aren’t gonna need it (YAGNI) 

design principle, 62
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