
THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

The field of software engineering may value team
productivity over individual growth, but legendary
computer scientist Randall Hyde wants to make
promising programmers into masters of their craft.
To that end, Engineering Software—the latest volume
in Hyde’s highly regarded Write Great Code series—
offers his signature in-depth coverage of everything
from development methodologies and strategic
productivity to object-oriented design requirements and
system documentation.

You’ll learn:

• Why following the software craftsmanship model
can lead you to do your best work

• How to utilize traceability to enforce consistency
within your documentation

• The steps for creating your own UML requirements
with use-case analysis

• How to leverage the IEEE documentation standards
to create better software

This advanced apprenticeship in the skills, attitudes,
and ethics of quality software development reveals
the right way to apply engineering principles to
programming. Hyde will teach you the rules, and
show you when to break them. Along the way, he
offers illuminating insights into best practices while
empowering you to invent new ones.

Brimming with resources and packed with examples,
Engineering Software is your go-to guide for writing
code that will set you apart from your peers.

A U T H O R B I O

Randall Hyde is the author of The Art of Assembly
Language and the three volume Write Great Code
series (all No Starch Press). He is also the co-author of
The Waite Group’s MASM 6.0 Bible. He has written
for Dr. Dobb’s Journal and Byte, and professional and
academic journals.

R E - E N G I N E E R
Y O U R A P P R O A C H

T O P R O G R A M M I N G

$49.95 ($65.95 CDN)

H
Y

D
E

E
N

G
IN

E
E

R
IN

G
 S

O
F

T
W

A
R

E

W R I T E
G R E A T
C O D E
V O L 3

R A N D A L L H Y D E

E N G I N E E R I N G
S O F T W A R E

W R I T E G R E A T C O D E / V O L U M E 3

WRITE GREAT CODE, Volume 3

by Randall Hyde

San Francisco

W R I T E G R E AT
C O D E

V O L U M E 3

E n g i n e e r i n g S o f t w a r e

WRITE GREAT CODE, Volume 3: Engineering Software
Copyright © 2020 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59327-979-0 (print)
ISBN-13: 978-1-59327-981-3 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Rachel Monaghan
Developmental Editors: Liz Chadwick, Neville Young, and Athabasca Witschi
Project Editor: Dapinder Dosanjh
Cover and Interior Design: Octopod Studios
Technical Reviewer: Anthony Tribelli
Copyeditor: Rachel Monaghan
Compositor: Danielle Foster
Proofreader: James Fraleigh
Illustrator: David Van Ness

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition of Volume 1:

Hyde, Randall.

 Write great code : understanding the machine / Randall Hyde.

 p. cm.

 ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture. I. Title.

 QA76.6.H94 2004

 005.1--dc22

 2003017502

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

www.nostarch.com

About the Author
Randall Hyde is the author of The Art of Assembly Language and
Write Great Code, Volumes 1, 2, and 3 (all from No Starch Press), as
well as Using 6502 Assembly Language and P-Source (Datamost). He is
also the coauthor of Microsoft Macro Assembler 6.0 Bible (The Waite
Group). Over the past 40 years, Hyde has worked as an embedded
software/hardware engineer developing instrumentation for
nuclear reactors, traffic control systems, and other consumer elec-
tronics devices. He has also taught computer science at California
State Polytechnic University, Pomona, and at the University of
California, Riverside. His website is www.randallhyde.com/.

About the Technical Reviewer
Tony Tribelli has more than 35 years of experience in software
development, including work on embedded device kernels and
molecular modeling. He developed video games for 10 years
at Blizzard Entertainment. He is currently a software develop-
ment consultant and privately develops applications utilizing
computer vision.

B R I E F C O N T E N T S

Acknowledgments . xvii

Introduction . xix

PART I: PERSONAL SOFTWARE ENGINEERING . 1

Chapter 1: Software Development Metaphors . 3

Chapter 2: Productivity . 17

Chapter 3: Software Development Models . 39

PART II: UML . 71

Chapter 4: An Introduction to UML and Use Cases . 73

Chapter 5: UML Activity Diagrams . 89

Chapter 6: UML Class Diagrams . 103

Chapter 7: UML Interaction Diagrams . 127

Chapter 8: Miscellaneous UML Diagrams . 155

PART III: DOCUMENTATION . 167

Chapter 9: System Documentation . 169

Chapter 10: Requirements Documentation . 185

Chapter 11: Software Design Description Documentation . 227

Chapter 12: Software Test Documentation . 261

Afterword: Designing Great Code . 317

Glossary . 319

Index . 327

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xvii

INTRODUCTION xix
Assumptions and Prerequisites . xxi
What Is Great Code? . xxi
Programmer Classifications . xxii

Amateurs . xxii
Programmers . xxii
Software Engineers .xxiv
Great Programmers .xxiv

So You Want to Be a Great Programmer . xxv
A Final Note on Ethics and Character . xxv
For More Information .xxvi

PART I: PERSONAL SOFTWARE ENGINEERING 1

1
SOFTWARE DEVELOPMENT METAPHORS 3
1 .1 What Is Software? . 3

1 .1 .1 Software Is Not Manufactured . 4
1 .1 .2 Software Doesn’t Wear Out . 4
1 .1 .3 Most Software Is Custom . 4
1 .1 .4 Software Can Be Easily Upgraded . 5
1 .1 .5 Software Is Not an Independent Entity . 5

1 .2 Parallels to Other Fields . 5
1 .2 .1 Programmer as Artist . 5
1 .2 .2 Programmer as Architect . 6
1 .2 .3 Programmer as Engineer . 7
1 .2 .4 Programmer as Craftsman . 7
1 .2 .5 Artist, Architect, Engineer, or Craftsman? . 8

1 .3 Software Engineering . 8
1 .3 .1 A Formal Definition . 9
1 .3 .2 Project Size . 10
1 .3 .3 Where Software Engineering Fails . 12

1 .4 Software Craftsmanship . 13
1 .4 .1 Education . 13
1 .4 .2 Apprenticeship . 13
1 .4 .3 The Software Journeyman . 14
1 .4 .4 The Master Craftsman . 15
1 .4 .5 Where Software Craftsmanship Fails . 15

x Contents in Detail

1 .5 The Path to Writing Great Code . 15
1 .6 For More Information . 16

2
PRODUCTIVITY 17
2 .1 What Is Productivity? . 17
2 .2 Programmer Productivity vs . Team Productivity . 18
2 .3 Man-Hours and Real Time . 19
2 .4 Conceptual and Scope Complexity . 20
2 .5 Predicting Productivity . 21
2 .6 Metrics and Why We Need Them . 22

2 .6 .1 Executable Size Metric . 22
2 .6 .2 Machine Instructions Metric . 23
2 .6 .3 Lines of Code Metric . 23
2 .6 .4 Statement Count Metric . 24
2 .6 .5 Function Point Analysis . 24
2 .6 .6 McCabe’s Cyclomatic Complexity Metric . 24
2 .6 .7 Other Metrics . 25
2 .6 .8 The Problem with Metrics . 25

2 .7 How Do We Beat 10 Lines per Day? . 26
2 .8 Estimating Development Time . 27

2 .8 .1 Estimating Small Project Development Time . 27
2 .8 .2 Estimating Medium and Large Project Development Time 28
2 .8 .3 Problems with Estimating Development Time 29

2 .9 Crisis Mode Project Management . 30
2 .10 How to Be More Productive . 31

2 .10 .1 Choose Software Development Tools Wisely 31
2 .10 .2 Manage Overhead . 33
2 .10 .3 Set Clear Goals and Milestones . 33
2 .10 .4 Practice Self-Motivation . 34
2 .10 .5 Focus and Eliminate Distractions . 34
2 .10 .6 If You’re Bored, Work on Something Else . 35
2 .10 .7 Be as Self-Sufficient as Possible . 35
2 .10 .8 Recognize When You Need Help . 36
2 .10 .9 Overcome Poor Morale . 36

2 .11 For More Information . 37

3
SOFTWARE DEVELOPMENT MODELS 39
3 .1 The Software Development Life Cycle . 39
3 .2 The Software Development Model . 42

3 .2 .1 The Informal Model . 43
3 .2 .2 The Waterfall Model . 44
3 .2 .3 The V Model . 45
3 .2 .4 The Iterative Model . 46
3 .2 .5 The Spiral Model . 48
3 .2 .6 The Rapid Application Development Model . 49
3 .2 .7 The Incremental Model . 51

Contents in Detail xi

3 .3 Software Development Methodologies . 52
3 .3 .1 Traditional (Predictive) Methodologies . 52
3 .3 .2 Adaptive Methodologies . 52
3 .3 .3 Agile . 52
3 .3 .4 Extreme Programming . 55
3 .3 .5 Scrum . 65
3 .3 .6 Feature-Driven Development . 66

3 .4 Models and Methodologies for the Great Programmer . 68
3 .5 For More Information . 69

PART II: UML 71

4
AN INTRODUCTION TO UML AND USE CASES 73
4 .1 The UML Standard . 73
4 .2 The UML Use Case Model . 74

4 .2 .1 Use Case Diagram Elements . 74
4 .2 .2 Use Case Packages . 76
4 .2 .3 Use Case Inclusion . 76
4 .2 .4 Use Case Generalization . 77
4 .2 .5 Use Case Extension . 79
4 .2 .6 Use Case Narratives . 80
4 .2 .7 Use Case Scenarios . 86

4 .3 The UML System Boundary Diagrams . 87
4 .4 Beyond Use Cases . 88
4 .5 For More Information . 88

5
UML ACTIVITY DIAGRAMS 89
5 .1 UML Activity State Symbols . 89

5 .1 .1 Start and Stop States . 90
5 .1 .2 Activities . 90
5 .1 .3 States . 91
5 .1 .4 Transitions . 91
5 .1 .5 Conditionals . 91
5 .1 .6 Merge Points . 93
5 .1 .7 Events and Triggers . 94
5 .1 .8 Forks and Joins (Synchronization) . 96
5 .1 .9 Call Symbols . 96
5 .1 .10 Partitions . 97
5 .1 .11 Comments and Annotations . 98
5 .1 .12 Connectors . 98
5 .1 .13 Additional Activity Diagram Symbols . 98

5 .2 Extending UML Activity Diagrams . 99
5 .3 For More Information . 100

xii Contents in Detail

6
UML CLASS DIAGRAMS 103
6 .1 Object-Oriented Analysis and Design in UML . 103
6 .2 Visibility in a Class Diagram . 105

6 .2 .1 Public Class Visibility . 105
6 .2 .2 Private Class Visibility . 106
6 .2 .3 Protected Class Visibility . 107
6 .2 .4 Package Class Visibility . 107
6 .2 .5 Unsupported Visibility Types . 108

6 .3 Class Attributes . 108
6 .3 .1 Attribute Visibility . 109
6 .3 .2 Attribute Derived Values . 109
6 .3 .3 Attribute Names . 109
6 .3 .4 Attribute Data Types . 110
6 .3 .5 Operation Data Types (Return Values) . 110
6 .3 .6 Attribute Multiplicity . 111
6 .3 .7 Default Attribute Values . 111
6 .3 .8 Property Strings . 112
6 .3 .9 Attribute Syntax . 112

6 .4 Class Operations . 112
6 .5 UML Class Relationships . 114

6 .5 .1 Class Dependency Relationships . 114
6 .5 .2 Class Association Relationships . 115
6 .5 .3 Class Aggregation Relationships . 116
6 .5 .4 Class Composition Relationships . 117
6 .5 .5 Relationship Features . 117
6 .5 .6 Class Inheritance Relationships . 125

6 .6 Objects . 125
6 .7 For More Information . 126

7
UML INTERACTION DIAGRAMS 127
7 .1 Sequence Diagrams . 128

7 .1 .1 Lifelines . 128
7 .1 .2 Message Types . 129
7 .1 .3 Message Labels . 130
7 .1 .4 Message Numbers . 130
7 .1 .5 Guard Conditions . 131
7 .1 .6 Iterations . 132
7 .1 .7 Long Delays and Time Constraints . 132
7 .1 .8 External Objects . 133
7 .1 .9 Activation Bars . 133
7 .1 .10 Branching . 134
7 .1 .11 Alternative Flows . 135
7 .1 .12 Object Creation and Destruction . 136
7 .1 .13 Sequence Fragments . 137

7 .2 Collaboration Diagrams . 152
7 .3 For More Information . 153

Contents in Detail xiii

8
MISCELLANEOUS UML DIAGRAMS 155
8 .1 Component Diagrams . 155
8 .2 Package Diagrams . 158
8 .3 Deployment Diagrams . 159
8 .4 Composite Structure Diagrams . 160
8 .5 Statechart Diagrams . 163
8 .6 More UML . 165
8 .7 For More Information . 165

PART III: DOCUMENTATION 167

9
SYSTEM DOCUMENTATION 169
9 .1 System Documentation Types . 170
9 .2 Traceability . 171

9 .2 .1 Ways to Build Traceability into Your Documentation 172
9 .2 .2 Tag Formats . 172
9 .2 .3 The Requirements/Reverse Traceability Matrix 178

9 .3 Validation, Verification, and Reviews . 181
9 .4 Reducing Development Costs Using Documentation . 182

9 .4 .1 Reducing Costs via Validation . 182
9 .4 .2 Reducing Costs via Verification . 183

9 .5 For More Information . 184

10
REQUIREMENTS DOCUMENTATION 185
10 .1 Requirement Origins and Traceability . 185

10 .1 .1 A Suggested Requirements Format . 186
10 .1 .2 Characteristics of Good Requirements . 187

10 .2 Design Goals . 193
10 .3 The System Requirements Specification Document . 193
10 .4 The Software Requirements Specification Document . 194

10 .4 .1 Introduction . 195
10 .4 .2 Overall Description . 196
10 .4 .3 Specific Requirements . 199
10 .4 .4 Supporting Information . 203
10 .4 .5 A Sample Software Requirements Specification 203

10 .5 Creating Requirements . 212
10 .6 Use Cases . 214

10 .6 .1 Enable/Disable Debug Mode . 215
10 .6 .2 Enable/Disable Ethernet . 216
10 .6 .3 Enable/Disable RS-232 . 218
10 .6 .4 Enable/Disable Test Mode . 218
10 .6 .5 Enable/Disable USB . 218
10 .6 .6 Read DIP Switches . 218

xiv Contents in Detail

10 .7 Creating DAQ Software Requirements from the Use Cases 218
10 .8 (Selected) DAQ Software Requirements (from SRS) . 219
10 .9 Updating the Traceability Matrix with Requirement Information 222

10 .9 .1 Requirements to Be Verified by Review . 223
10 .9 .2 Requirements to Be Verified by Testing . 225

10 .10 For More Information . 225

11
SOFTWARE DESIGN DESCRIPTION DOCUMENTATION 227
11 .1 IEEE Std 1016-1998 vs . IEEE Std 1016-2009 . 228
11 .2 IEEE 1016-2009 Conceptual Model . 228

11 .2 .1 Design Concerns and Design Stakeholders 228
11 .2 .2 Design Viewpoints and Design Elements . 229
11 .2 .3 Design Views, Overlays, and Rationales . 239
11 .2 .4 The IEEE Std 1016-2009 Conceptual Model 242

11 .3 SDD Required Contents . 244
11 .3 .1 SDD Identification . 244
11 .3 .2 Design Stakeholders and Their Design Concerns 244
11 .3 .3 Design Views, Viewpoints, Overlays, and Rationales 245

11 .4 SDD Traceability and Tags . 245
11 .5 A Suggested SDD Outline . 245
11 .6 A Sample SDD . 247
11 .7 Updating the Traceability Matrix with Design Information 259
11 .8 Creating a Software Design . 260
11 .9 For More Information . 260

12
SOFTWARE TEST DOCUMENTATION 261
12 .1 The Software Test Documents in Std 829 . 262

12 .1 .1 Process Support . 262
12 .1 .2 Integrity Levels and Risk Assessment . 263
12 .1 .3 Software Development Testing Levels . 265

12 .2 Test Plans . 266
12 .2 .1 Master Test Plan . 266
12 .2 .2 Level Test Plan . 267
12 .2 .3 Level Test Design Documentation . 269

12 .3 Software Review List Documentation . 270
12 .3 .1 Sample SRL Outline . 270
12 .3 .2 Sample SRL . 271
12 .3 .3 Adding SRL Items to the Traceability Matrix 274

12 .4 Software Test Case Documentation . 274
12 .4 .1 Introduction in the STC Document . 277
12 .4 .2 Details . 278
12 .4 .3 General . 280
12 .4 .4 A Sample Software Test Case Document . 281
12 .4 .5 Updating the RTM with STC Information . 288

12 .5 Software Test Procedure Documentation . 288
12 .5 .1 The IEEE Std 829-2009 Software Test Procedure 289
12 .5 .2 Extended Outline for Software Test Procedure 290
12 .5 .3 Introduction in the STP Document . 292

Contents in Detail xv

12 .5 .4 Test Procedures . 294
12 .5 .5 General . 296
12 .5 .6 Index . 297
12 .5 .7 A Sample STP . 297
12 .5 .8 Updating the RTM with STP Information . 302

12 .6 Level Test Logs . 303
12 .6 .1 Introduction in the Level Test Logs Document 304
12 .6 .2 Details . 305
12 .6 .3 Glossary . 305
12 .6 .4 A Few Comments on Test Logs . 305

12 .7 Anomaly Reports . 308
12 .7 .1 Introduction in the Anomaly Reports Document 309
12 .7 .2 Details . 310
12 .7 .3 A Few Comments on Anomaly Reports . 311

12 .8 Test Reports . 312
12 .8 .1 Brief Mention of the Master Test Report . 313
12 .8 .2 Level Test Reports . 313

12 .9 Do You Really Need All of This? . 315
12 .10 For More Information . 315

AFTERWORD: DESIGNING GREAT CODE 317

GLOSSARY 319

INDEX 327

A C K N O W L E D G M E N T S

Many people have read and reread every word, symbol, and punctuation
mark in this book in order to produce a better result. Kudos to the follow-
ing people for their careful work on the second edition: development editor
Athabasca Witschi, copyeditor/production editor Rachel Monaghan, and
proofreader James Fraleigh.

I would like to take the opportunity to graciously thank Anthony
Tribelli, a longtime friend, who went well beyond the call of duty when
doing a technical review of this book. He pulled every line of code out
of this book (including snippets) and compiled and ran it to make sure it
worked properly. His suggestions and opinions throughout the technical
review process have dramatically improved the quality of this work.

Thanks to all of you,
Randall Hyde

I N T R O D U C T I O N

In the late 1960s, the need for computer
software was outpacing the capability of

technical schools, colleges, and universities to
produce trained computer professionals to cre-

ate that software—a phenomenon that became known
as the software crisis. Increasing the output of colleges
and universities wasn’t a practical approach; too few qualified students were
enrolling in computer science programs to satisfy the demand. At the time,
researchers determined that a better solution was to increase the productivity
of existing computer programmers. Noticing similarities between software
development and other engineering activities, these researchers concluded
that the procedures and policies that worked for other engineering disci-
plines could solve the software crisis. Thus, software engineering was born.

Until the field of software engineering blossomed, software develop-
ment was a mysterious craft practiced by gurus with varying abilities and
accomplishments. Up to that point, a software project’s success depended
entirely upon the abilities of one or two key programmers rather than those
of the entire team. Software engineering sought to balance the skills of

xx Introduction

software teams to make them more productive and less reliant upon those
one or two highly talented individuals.

To a large extent, the practice of software engineering has been success-
ful. Large projects built by teams of programmers could never have been com-
pleted with the ad hoc organizational methods of the past. But at the same
time, important qualities were lost. Software engineering encourages team
productivity at the expense of individual creativity, skill, and growth. Although
software engineering techniques have the potential to turn poor program-
mers into good programmers, they can also restrict great programmers from
doing their best work. The world has too few great programmers. The last
thing we want to do is to discourage a programmer from reaching their poten-
tial; however, this is what the software engineering regimen often does.

The Write Great Code series is an effort to restore some of that lost indi-
vidual creativity, skill, and growth. It covers what I call personal software
engineering, or how a programmer can improve the quality of their code.
Specifically, it describes how you can produce great code—code that’s easy
to maintain, enhance, test and debug, document, deploy, and even retire—
from mediocre code. Great code is devoid of the kludges and hacks that are
often the result of unreasonable pressure or ill planning on the engineer’s
or management’s part. Great code is code you can be proud of.

As I completed Write Great Code, Volume 2: Thinking Low-Level, Writing
High-Level (WGC2), I had intended to incorporate more information in this
book. In the last chapter of WGC2, I wrote the following:

[Write Great Code, Volume 3: Engineering Software] begins discuss-
ing the personal software engineering aspects of programming. The
software engineering field focuses primarily on the management
of large software systems. Personal software engineering, on the
other hand, covers those topics germane to writing great code
at a personal level—craftsmanship, art, and pride in workman-
ship. So, in Engineering Software, we’ll consider those aspects
through discussions on software development metaphors, software
developer metaphors, and system documentation [emphasis added],
among other topics.

System documentation (including requirements, test procedures,
design documents, and the like) is a huge part of software engineering.
Therefore, a book on the subject must provide, at the very least, an overview
of these subjects. Well, about seven chapters into this book I realized there
wasn’t enough room to cover all this material in a single book. In the end,
I wound up splitting this volume, Engineering Software, into four volumes.
The first of these four volumes is this one, which is the third volume of the
Write Great Code series. It concentrates on software development models and
system documentation. The fourth volume of the series will teach software
design; the fifth volume will develop the great-coding theme further; and a
sixth volume will deal with testing.

As I write this, it’s been 10 years since I completed Volume 2 of the Write
Great Code series. It was time to complete Volume 3, even if it meant split-
ting the original information across two or more volumes. If you’ve read my

Introduction xxi

earlier books, you know I like to cover subjects in depth; I’m not interested
in writing books that barely touch on the subject matter. Thus, I was faced
with either splitting the work across multiple volumes and getting them out
the door or producing a 2,000-page tome that, as history has oft demon-
strated, might never be completed. I apologize to those who expected this
book to cover additional subjects. Fear not—the information will arrive in
future volumes. You’re just getting the first part of it sooner in this book.

Assumptions and Prerequisites
In order to concentrate on engineering software, this book has to make cer-
tain assumptions. Although I’ve tried to keep those to a minimum, you’ll ben-
efit most from this book if your personal skill set fulfills some prerequisites.

You should be reasonably competent in at least one imperative (pro-
cedural) or object-oriented programming language. This includes C and
C++, C#, Swift, Pascal, BASIC, Java, and assembly. You should know how to
take a small problem description and work through the design and imple-
mentation of its software solution. A typical semester or quarter course at a
college or university or several months’ experience on your own should be
sufficient for using this book.

You should also have a basic grasp of machine organization and data
representation. For example, you should understand hexadecimal and
binary numbering systems, and how computers represent various high-level
data types, such as signed integers, characters, and strings in memory. Write
Great Code, Volume 1: Understanding the Machine (WGC1) fully covers machine
organization if you feel your knowledge in this area is weak. Although I
might refer to material in WGC1, you should have no problem reading this
book independently of that one.

What Is Great Code?
Great code is software that follows a set of rules that guide the decisions
a programmer makes when implementing an algorithm as source code.
Great code is written with other programmers in mind—with documenta-
tion that allows others to read, comprehend, and maintain the software.
I call this the Golden Rule of Software Development, and it holds the key to
software engineering.

Taking things down a level, great code:

•	 Is fast and uses the CPU, system resources, and memory efficiently

•	 Is well documented and easy to read, maintain, and enhance

•	 Follows a consistent set of style guidelines

•	 Uses an explicit design that follows established software engineering
conventions

•	 Is well tested and robust

•	 Is produced on time and under budget

xxii Introduction

While Volumes 1 and 2 of the Write Great Code series deal with many of
the efficiency aspects associated with great code, the remaining books in the
series, starting with this one, focus specifically on creating code that meets
the preceding criteria.

Programmer Classifications
In order to understand what makes a programmer great, let’s first consider
the differences between amateurs, programmers at various levels, and soft-
ware engineers.

Amateurs
The amateur programmer is self-taught, with only a small amount of expe-
rience, and as such is the antithesis of the great programmer. In the early
days of computers, these programmers were known as hackers. That term
has morphed into several different meanings today that don’t necessarily
describe a programmer without sufficient education or experience to do
professional-level software engineering.

The problem with code written by amateur programmers is that typically
they write it for themselves or for friends; thus, it doesn’t usually adhere to
contemporary standards for software engineering projects. However, amateur
programmers can improve their status with a little education (which the WGC
series can help provide).

Programmers
Computer programmers have a wide range of experiences and responsi-
bilities, which is often reflected in titles like junior programmer, coder,
Programmer I and II, analyst/system analyst, and system architect. Here
we explore some of these roles and how they differ.

Interns

Typically, interns are students working part-time who are assigned so-called
grunt work—tasks such as running a set of canned test procedures on the
code or documenting the software.

Junior Programmer

Recent graduates typically fill the junior programmer position. Often, they
work on testing or maintenance tasks. Rarely do they get the opportunity
to work on new projects; instead, most of their programming time is spent
reworking existing statements or dealing with legacy code.

Coder

A programmer advances to the coder level when they gain sufficient experi-
ence for management to trust them with developing new code for projects.

Introduction xxiii

A more senior programmer assigns (less complex) subcomponents of a
larger project to the coder to help complete the project faster.

Programmer I and II

As a programmer gains more experience and is capable of handling
complex implementation tasks on their own, they progress from coder to
Programmer I and then Programmer II. A system analyst can often provide
a Programmer I or II with a general idea of what they want, and the pro-
grammer is able to fill in the missing details and produce an application
in line with the system analyst’s expectations.

System Analyst

A system analyst studies a problem and determines the best way to imple-
ment a solution. Often, the system analyst chooses the major algorithms to
use and creates the final application’s organization.

System Architect

The system architect chooses how the components designed by a system
analyst in a large-scale system will work together. Often, the system archi-
tect specifies processes, hardware, and other non-software-related items as
part of the total solution.

The Complete Programmer

A complete programmer is the amalgamation of all these subdivisions. That is,
a complete programmer is capable of studying a problem, designing a solu-
tion, implementing that solution in a programming language, and testing
the result.

T HE PROBL E M W I T H PROGR A MME R CL A SSIF IC AT ION

In reality, most of these programmer categories are artificial; they exist simply
to justify a different pay scale for beginning programmers and experienced
programmers . For example, a system analyst designs the algorithms and overall
data flow for a particular application, then hands off the design to a coder,
who implements that design in a particular programming language . We nor-
mally associate both tasks with programming, but junior members of the pro-
gramming staff don’t have the proper experience to design large systems from
scratch, although they’re perfectly capable of taking a design and converting it
into an appropriate programming language . The system analysts and architects
usually have the experience and ability to handle the entire project . However,
management generally finds it more cost-effective to use them on those portions
of the project that require their experience rather than having them do the low-
level coding that a recent graduate could do (at lower cost) .

xxiv Introduction

Software Engineers
In the engineering fields, engineers approach a specified problem by fol-
lowing a prescribed set of rules, building a custom solution from a combina-
tion of predetermined solutions. This approach allows even less talented
engineers to produce working solutions without having to develop a system
from scratch. Software engineering emerged as an effort to maximize the
value of the entire programming team by applying traditional engineering
concepts to software development. For the most part, the software engi-
neering revolution has been successful. Software engineers with the proper
training and leadership can produce high-quality code in less time and for
less money than was possible before.

Pure software engineering discourages divergent thinking, because
it risks wasting time and leading the engineer down an unsuccessful path
(resulting in higher development costs and longer development times). In
general, software engineering is more concerned with developing an appli-
cation on time and under budget than with writing code the best possible way. But
if software engineering practitioners never try anything new, they often miss
opportunities to produce a great design, never develop any new practices to
incorporate into their rule book, and never become great programmers.

Great Programmers
Great programmers are cognizant of the budgetary issues, but they also real-
ize that exploring new ideas and methodologies is important to advance the
field. They know when it’s essential to follow the rules but also when it’s okay
to break (or at least bend) them. But most important of all, great program-
mers use their skill sets to their fullest, achieving results that wouldn’t be pos-
sible by simply thinking inside the box. Hackers are born, software engineers
are made, and great programmers are a bit of both. They have three main
characteristics: a genuine love for the work, ongoing education and training,
and the ability to think outside the box when solving problems.

Loving What You Do, Doing What You Love

People tend to excel at tasks they love and do poorly on activities they dis-
like. The bottom line is that if you hate computer programming, you won’t
make a very good computer programmer. If you weren’t born with the
desire to solve problems and overcome challenges, no amount of educa-
tion and training will change your disposition. Thus, the most important
prerequisite to becoming a great programmer is that you really love to write
computer programs.

Prioritizing Education and Training

Great programmers enjoy the types of tasks the field demands, but they also
need something else—formal education and training. We’ll discuss educa-
tion and training in greater depth in later chapters, but for now it suffices
to say that great programmers are well educated (perhaps possessing a post-
secondary degree) and continue their education throughout their careers.

Introduction xxv

Thinking Outside the Box

As mentioned, following a predetermined set of rules to produce code is
the typical expectation of a software engineer. However, as you’ll see in
Chapter 1, to become a great programmer (a “Grand Master Programmer”),
you need to be willing and able to devise new programming techniques
that come only from divergent thinking rather than blindly following rules.
Great programmers have an innate desire to push boundaries and explore
new solutions to the problems they face.

So You Want to Be a Great Programmer
To summarize, if you want to be a truly great programmer and inspire awe
from your peers, you’ll need the following:

•	 A love of computer programming and problem solving

•	 A wide range of computer science knowledge based on a college or
university degree1

•	 A lifelong commitment to education and training

•	 The ability and willingness to think outside the box when exploring
solutions

•	 The personal desire and motivation to excel at a task and always pro-
duce the best possible work

With these attributes, the only thing keeping you from becoming a
great programmer is more knowledge. That’s where this book comes in.

A Final Note on Ethics and Character
The software engineer’s job is to create the best possible product given
conflicting requirements by making appropriate compromises in a system’s
design. During this process, the engineer must prioritize requirements
and choose the best solution to the problem given the project’s constraints.
Ethics and personal character often impact decisions individuals make
while working on complex projects, particularly stressful ones. Being intel-
lectually dishonest (for example, fudging project estimates or claiming a
piece of software works without fully testing it), pirating software develop-
ment tools (or other software), introducing undocumented features in
software (such as backdoors) without management approval, or adopting
an elitist attitude (thinking you’re better than other team members) are all
cases of software engineering ethical lapses. Exercising sound moral judg-
ment and practicing good ethics will make you both a better person and a
better programmer.

1. Or equivalent self-study, which is very rarely accomplished in reality despite honest intentions.

xxvi Introduction

For More Information
Barger, Robert N. Computer Ethics: A Case-Based Approach. Cambridge, UK:

Cambridge University Press, 2008.

Floridi, Luciano, ed. The Cambridge Handbook of Information and Computer
Ethics. Cambridge, UK: Cambridge University Press, 2006.

Forester, Tom, and Perry Morrison. Computer Ethics: Cautionary Tales and
Ethical Dilemmas in Computing. 2nd ed. Cambridge, MA: MIT Press, 1993.

Parker, Donn B. “Rules of Ethics in Information Processing.”
Communications of the ACM 11, no. 3 (1968): 198–201. https://dl.acm.org
/doi/10.1145/362929.362987.

Wiener, Norbert. The Human Use of Human Beings: Cybernetics and Society.
Boston: Houghton Mifflin Harcourt, 1950.

WikiWikiWeb. “Grand Master Programmer.” Last updated November 23,
2014. http://c2.com/cgi/wiki?GrandMasterProgrammer/.

https://dl.acm.org/doi/10.1145/362929.362987
https://dl.acm.org/doi/10.1145/362929.362987

PART I
P E R S O N A L S O F T W A R E

E N G I N E E R I N G

How do we define the software develop-
ment process? This might seem like a silly

question. Why not just say “software develop-
ment is software development” and leave it at

that? Well, if we can draw analogies between software
development tasks and other professional endeavors,
we can gain insight into the software development process. Then we can
refine the process by studying process improvements in related fields. To
that end, this chapter explores some of the common ways of understanding
software development.

1.1 What Is Software?
To better understand how programmers create software, we can compare
software to other things people create. Doing so will provide important
insight into why certain creative metaphors apply, or don’t apply, to soft-
ware development.

1
S O F T W A R E D E V E L O P M E N T

M E T A P H O R S

4 Chapter 1

In his book, Software Engineering: A Beginner’s Approach, Robert Pressman
identifies several characteristics of software. This section explores those
characteristics to illuminate the nature of software and how it defines a
computer programmer’s work.

1.1.1 Software Is Not Manufactured
Software is developed or engineered; it is not manufactured in the
classical sense.

—Robert Pressman

Compared to hardware products, the manufacturing cost of a software prod-
uct is very low: stamping out a CD or DVD costs only a few pennies, plus
a small amount for shipping and handling (and electronic distribution is
even less expensive). Also, the software design has very little impact on
the quality or final cost of the manufactured CD/DVD. Assuming reason-
able quality controls at the manufacturing plant, a computer programmer
rarely has to consider manufacturing issues when designing a software
application.1 Contrast this with other engineering professions where the
engineer has to design in manufacturability of the product.

1.1.2 Software Doesn’t Wear Out
Both software and hardware suffer from failures due to poor design early in
the products’ lives. However, if we could eliminate design flaws in the prod-
ucts (that is, deliver a defect-free piece of software or hardware), the differ-
ences between the two become obvious. Once a piece of software is correct,
it doesn’t ever fail or “wear out.” As long as the underlying computer system
is functioning properly, the software will continue to work.2 The software
engineer, unlike the hardware engineer, doesn’t have to worry about design-
ing in the ability to easily replace components that fail over time.

1.1.3 Most Software Is Custom
Most software is custom built rather than being assembled
from existing [standard] components.

—Robert Pressman

Although many attempts have been made to create similarly standardized
software components that software engineers can assemble into large applica-
tions, the concept of a software IC (that is, the equivalent of an electronic inte-
grated circuit) has never been realized. Software libraries and object-oriented
programming techniques encourage reusing prewritten code, but the premise
of constructing large software systems from smaller preassembled components
has failed to produce anything close to what’s possible in hardware design.

1. Probably the only time this consideration comes up in software development is when the pro-
gram becomes so large that it requires multiple CDs, DVDs, or other media for distribution.

2. Arguably, we could say software “wears out” when the hardware it requires becomes obso-
lete and eventually fails without any way of being replaced.

Software Development Metaphors 5

1.1.4 Software Can Be Easily Upgraded
In many cases, it’s possible to completely replace an existing software applica-
tion in the field with a new version (or even a completely different appli-
cation) without incurring a huge cost.3 The application’s end user can
simply replace the old software with the new and enjoy the benefits of the
upgraded version. In fact, most modern software systems and applications
auto-update via the internet during normal operation.

1.1.5 Software Is Not an Independent Entity
Software is not a stand-alone product. An electrical engineer can design a
hardware device that can operate completely on its own. However, software
depends upon something else (typically a computer system) for proper
operation. Therefore, a software developer must live with the constraints
imposed by external systems (computer systems, operating systems, pro-
gramming languages, and so on) when designing and implementing a soft-
ware application.

1.2 Parallels to Other Fields
Computer programmers are often compared to artists, craftsmen, engineers,
architects, and technicians. Although computer programming doesn’t match
any of these professions exactly, we can draw useful parallels to these fields
and gain insight from the techniques they employ.

1.2.1 Programmer as Artist
In the early days of computer programming, software development was
considered an art. The ability to write software—to make sense of so much
nonsense to create a working program—seemed to be a God-given talent
exercised by a select few, akin to master painters or musical virtuosos. (In
fact, considerable anecdotal evidence suggests that musicians and computer
programmers use the same areas of their brains for their creative activities,
and a decent percentage of programmers were, or are, musicians.4)

But is software development an actual art form? An artist is typically
defined as someone blessed with certain talents and the skill to use them in
a creative way. The key word here is talent, which is a natural ability. Because
not everyone is born with the same talents, not everyone can be an artist.
To apply the analogy, it would seem that if you want to be a programmer,
you have to be born that way; indeed, some people seem to be born with a
natural talent or aptitude for programming.

3. We’ll ignore the cost of development, marketing, and upgrade fees here, and simply con-
sider the cost of doing a field upgrade of a piece of software.

4. Kathleen Melymuka, “Why Musicians May Make the Best Tech Workers,” CNN.com,
July 31, 1998.

6 Chapter 1

The “programmer as artist” comparison seems to apply to the very best
programmers. Although artists follow their own set of rules to produce
quality art, they often produce their most exceptional art when they bend
the rules and explore new creative ground. Similarly, the very best pro-
grammers are familiar with good software development rules but are also
willing to experiment with new techniques to try to improve the develop-
ment process. Just as true artists are not content with duplicating existing
work or styles, the “programmer as artist” is happier creating new applica-
tions than grinding out yet another version of an old one.

N O T E One of the most well-respected textbook series on computer science is Donald Knuth’s
The Art of Computer Programming. Clearly, the notion of programming as an
art form is well entrenched in the computer science field.

1.2.2 Programmer as Architect
The artist metaphor works great for small projects where the artist creates
the idea and implements a work of art, much like a programmer designs
and implements a small software system. However, for larger software sys-
tems, the “programmer as architect” analogy is probably a better fit. An
architect designs the structure but leaves the implementation to others
(because often it’s logistically impossible for one person to build it). In
computer science, those who design a system for others to implement are
often called programmer/analysts.

An architect exercises large-scale creative control over a project. For
example, an architect designing a fancy building defines how it will look,
what materials to use, and the guidelines for the construction workers to
follow, but doesn’t handle the construction itself. An architect might super-
vise the build (much like a programmer/analyst would review modules
others add to their software system); however, the architect doesn’t wield a
hammer or operate a crane.

It might seem that this analogy doesn’t apply to small projects, but it can
if you allow an individual to “change hats.” That is, during the first phase of
the project, the programmer puts on their architect/programmer/analyst hat
and creates the design for the system. Then the programmer switches hats and
puts on their programmer/coder hat to implement the system.

What the “programmer as architect” paradigm adds over and above
the “programmer as artist” model is verification and safety measures. When
an artist paints an image, composes a piece of music, or sculpts an object,
they generally don’t worry about whether that work meets any require-
ments other than their own. Also, they don’t have to worry about how that
art might physically hurt life or property.5 An architect, on the other hand,
must consider physical realities and the fact that a bad design can lead to
injury or harm. The “programmer as architect” paradigm introduces per-
sonal responsibility, review (testing), and safety to the programmer’s task.

5. An exception might be a performance artwork, such as a fireworks display.

Software Development Metaphors 7

1.2.3 Programmer as Engineer
A NATO conference in 1968 challenged the notion that good programmers
are born, not made. As mentioned in this book’s introduction, the world
was facing a software crisis—new software applications were needed faster
than programmers could be trained to create them. So NATO sponsored
the 1968 conference, coining the term software engineering to describe how
to tackle the problem by applying engineering principles to the wild world
of computer programming.

Engineers are interested in solving practical problems cost-effectively,
in terms of both the design effort and the cost of production. For this rea-
son, coupled with the fact that the engineering profession has been around
for a very long time (particularly mechanical and chemical engineering), a
large number of procedures and policies have been created for engineers
over the years to streamline their work.

In many engineering fields today, an engineer’s task is to construct a
large system from smaller, predesigned building blocks. An electrical engi-
neer who wants to design a computer system doesn’t start by designing cus-
tom transistors or other small components; instead, they use predesigned
CPUs, memory elements, and I/O devices, assembling them into a complete
system. Similarly, a mechanical engineer can use predesigned trusses and
pedestals to design a new bridge. Design reuse is the hallmark of the engi-
neering profession. It’s one of the key elements to producing safe, reliable,
functional, and cost-effective designs as rapidly as possible.

Software engineers also follow a set of well-defined procedures and
policies to construct large systems from smaller predefined systems. Indeed,
the Institute of Electrical and Electronics Engineers (IEEE) defines software
engineering as follows:

The application of a systematic, disciplined, quantifiable
approach to development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.

1.2.4 Programmer as Craftsman
The craftsman model lies somewhere between the artist and the engineer.
Central to this paradigm is the idea of programmers as individuals; that is,
the software craftsman metaphor recognizes that people matter. Throwing
more people and restrictive rules at a problem doesn’t produce higher-quality
software, but training individuals better and allowing them to apply their
natural talents and skills does.

There are parallels between the traditional craftsman’s development
process and that of the software craftsman. Like all craftsmen, a software
craftsman starts as an apprentice or an intern. An apprentice works under
the close guidance of another craftsman. After learning the ropes, the
apprentice programmer becomes a journeyman, usually working with
teams of other programmers under the supervision of a software crafts-
man. Ultimately, the programmer’s skills increase to the point that they
become a master craftsman.

8 Chapter 1

The craftsman model provides the best metaphor for programmers
intent upon becoming great programmers. I’ll return to the discussion of
this metaphor later in this chapter, in the section “Software Craftsmanship”
on page 13.

1.2.5 Artist, Architect, Engineer, or Craftsman?
To write great code, you must understand what makes code great. You
need to use the best tools, coding techniques, procedures, processes, and
policies when writing code. In addition, you must constantly increase your
knowledge and improve the development processes you use to enhance the
quality of the software you develop. That’s why it’s important to consider
different approaches to software development, understand the software
product, and choose the best approach.

You need to work hard to learn how to write great code and then work
hard at actually writing it. A great software developer adopts ideas that work
from each of the fields just discussed and dispenses with those that don’t
work. To summarize:

•	 Great artists practice their skills to develop their talents. They engage in
divergent thinking to explore new ways of presenting their message.

•	 Great architects know how to build upon existing designs using standard
components to create custom objects. They understand cost constraints,
safety issues, requirements, and the need for overdesign to ensure reli-
able operation. Great architects understand the relationship between
form and function, as well as the need to fulfill customer requirements.

•	 Great engineers recognize the benefit of consistency. They document and
automate development steps to avoid missing steps in the process. Like
architects, engineers encourage the reuse of existing designs to deliver
more robust and cost-effective solutions. Engineering provides proce-
dures and policies to help overcome personal limitations in a project.

•	 Great craftsmen train and practice skills under the tutelage of a master
with the ultimate goal of becoming a master craftsman. This metaphor
emphasizes the qualities of the individual such as their problem-solving
and organizational abilities.

1.3 Software Engineering
Since its emergence in the late 1960s, software engineering has become an
unqualified success. Today, few professional programmers would accept
the coding horrors that were “standard procedure” at the dawn of the field.
Concepts that modern programmers take for granted—such as structured
programming, proper program layout (like indentation), commenting,
and good naming policies—are all due to software engineering research.
Indeed, decades of such research have greatly influenced modern program-
ming languages and other programming tools.

Software Development Metaphors 9

Software engineering has been around for so long and has had such an
impact on all facets of computer programming that many people assume
the term software engineer is synonymous with computer programmer. It’s cer-
tainly true that any professional software engineer should also be a capable
computer programmer, but computer programming constitutes only a
small part of software engineering. Software engineering largely involves
economics and project management. Interestingly, those responsible for
managing the projects, maintaining the schedules, choosing the method-
ologies to use, and so on are not called software engineers; they’re called
managers, project leads, and other titles implying a position of authority.
Likewise, the people we call software engineers don’t actually do the soft-
ware engineering—they simply write the code specified by the actual soft-
ware engineers (managers and project leads). This is, perhaps, why there
is so much confusion around the term software engineering.

1.3.1 A Formal Definition
No single definition of software engineering seems to satisfy everyone. Different
authors add their own “spin,” making their definition slightly (or greatly)
different than those found in other texts. The reason this book is titled
Engineering Software is because I want to avoid adding yet another definition
to the mix. As a reminder, the IEEE defines software engineering as

The application of a systematic, disciplined, quantifiable
approach to development, operation, and maintenance of soft-
ware; that is, the application of engineering to software.

The original software engineering definition, and the one I use, is

Software engineering is the study of the development and man-
agement of large software systems.

The operative term here is large. Progress in software engineering has
mostly been funded by defense contracts and the like, so it’s no surprise
that software engineering is synonymous with large systems. The IEEE
definition could apply to systems of nearly any size, but because most of the
research into software engineering deals with very large systems, I prefer
the second definition.

N O T E To avoid confusion with the generic term software engineering, I use a more spe-
cialized term, personal software engineering, to describe those processes and meth-
odologies that apply to a single programmer working on a small project or a small
part of a larger project. My intent is to describe what computer programmers believe is
the essence of software engineering without all the extraneous detail that has little to
do with writing great code.

When it comes to software development, people have completely dif-
ferent concepts of what “large” means. An undergraduate in a computer
science program might think that a program containing a couple thou-
sand lines of source code is a large system. To a project manager at Boeing

10 Chapter 1

(or other large firm), a large system contains well over one million lines
of code. The last time I counted (which was a long time ago), Microsoft’s
Windows operating system (OS) exceeded 50 million lines of source code;
no one questions that Windows is a large system!

Because traditional software engineering definitions generally apply
to large software systems, we need to come up with a reasonable defini-
tion of large (and small) software systems. Although lines of code (LOC) is
the metric software engineers often use to describe the size of a software
system, it is a low-quality metric with almost a two-order-of-magnitude
variance.6 This book will often use the LOC or thousands of lines of code
(KLOC) metric. But it’s not a good idea to base a formal definition on
such a poor metric. Doing so weakens the definition.

1.3.2 Project Size
A small project is one that an average programmer can complete on their
own in a reasonable amount of time (less than two years). A medium-sized
project is too large for an individual to complete in a reasonable time frame,
but a small team of two to five programmers can accomplish it. A large
project requires a large team of programmers (more than five members).
In terms of LOC, a small project contains about 50 to 100 KLOC; medium-
sized projects fall into the 50 to 1,000 KLOC (one million lines of source
code) range; and large projects start at around 500 to 1,000 KLOC.

Small projects are trivial to manage. Because small projects require
no interaction between programmers and very little interaction between
the programmer and the outside world, productivity depends almost solely
upon the programmer’s abilities.

Medium-sized projects introduce new challenges. Because multiple
programmers are working on the project, communication can become a
problem, but the team is small enough that this overhead is manageable.
Nevertheless, the group dynamics require extra support, which increases
the cost of each line of code written.

Large projects require a large team of programmers. Communication
and other overhead often consume 50 percent of each engineer’s productiv-
ity. Effective project management is crucial.

Software engineering deals with the methodologies, practices, and poli-
cies needed to successfully manage projects requiring large teams of pro-
grammers. Unfortunately, practices that work well for individuals, or even
small teams, don’t scale up to large teams, and large-project methodologies,
practices, and policies don’t scale down to small and medium-sized projects.
Practices that work well for large projects typically inject unreasonable over-
head into small and medium-sized projects, reducing the productivity of
those small teams.

Let’s take a closer look at some benefits and drawbacks of projects of
different sizes.

6. That is, two software systems with the same approximate complexity could vary by a factor
of almost 100 in terms of the number of lines of code.

Software Development Metaphors 11

1.3.2.1 Small Projects

On small projects, a single software engineer is completely responsible for
system design, implementation, testing, debugging, deployment, and docu-
mentation. On such a project, the lone engineer is accountable for far more
tasks than a single engineer would be on a medium-sized or large project.
But the tasks are small and therefore manageable. Because a small project
requires an individual to perform a wide range of tasks, the programmer
must possess a varied skill set. Personal software engineering covers all the
activities a developer would do on a small project.

Small projects make the most efficient use of engineering resources.
The engineer can employ the most productive approach to solving prob-
lems because they don’t have to reach a consensus with other engineers on
the project. The engineer can also optimize the time they spend on each
development phase. In a structured software design regimen, considerable
time is spent documenting operations, which doesn’t make sense when
there’s only a single programmer on a project (though a different program-
mer might need to work with the code later in the product’s lifetime).

The drawback, and the trap, of a small project is that an engineer must
be capable of handling all the different tasks required. Many small projects
fail (or their development cost is too high) because the engineer doesn’t
have the proper training to handle an entire project. More than any other
goal, the purpose of the Write Great Code series is to teach programmers how
to do small projects properly.

1.3.2.2 Medium-Sized Projects

On a medium-sized project, personal software engineering encompasses
those aspects of the project for which a single engineer is responsible. This
typically includes the design of their system component, its implementa-
tion (coding), and the documentation for that module. Generally, they
are also responsible for testing their component (unit testing), and then the
team as a whole tests the entire system (integration testing). Usually, there’s
one engineer in charge of the complete system design (the project head or
lead programmer) who also handles deployment. Depending on the project,
a technical writer might handle system documentation. Because engineers
share tasks in a medium-sized project, specialization is possible, and the
project doesn’t require each engineer to be capable of performing all the
individual tasks. The lead programmer can direct the activities of those less
experienced to maintain quality throughout the project.

A single engineer on a small project sees the total picture and can opti-
mize certain activities based on their understanding of the entire project.
On a large project, a single engineer is unaware of much of the project
beyond their small piece of it. Medium-sized projects provide a hybrid of
these two extremes: individuals can see much of the entire project and
adjust their approach to system implementation. They can also specialize
on certain aspects of the system without becoming overwhelmed by the
details of the rest of the system.

12 Chapter 1

1.3.2.3 Large Projects

On a large project, various team members have specialized roles, from sys-
tem design to implementation, testing, documentation, deployment, and
system enhancement and maintenance. As with medium-sized projects, in
large projects personal software engineering encompasses only those activi-
ties for which an individual programmer is responsible. Software engineers
on a large project generally do only a few tasks (such as coding and unit
testing); therefore, they don’t require the wide-ranging skill set of a lone
programmer on a small project.

Beyond the scope of activity, the size of a project affects the productiv-
ity of its engineers. On a large project, engineers can become very special-
ized and concentrate on their one area of expertise. This allows them to
do their job more efficiently than if they had to use a more generalized
skill set. However, large projects must use a common software development
approach to be effective, and some engineers may not be as productive if
they don’t like the approach.

1.3.3 Where Software Engineering Fails
It’s possible to apply engineering techniques to software development to pro-
duce applications in a more cost-effective manner. However, as Pete McBreen
states in Software Craftsmanship: The New Imperative, the biggest problem with
software engineering is the assumption that a “systematic, disciplined, quan-
tifiable approach” is the only reasonable approach. In fact, he raises a very
good question: is it even possible to make software development systematic
and quantified? Quoting http://www.controlchaos.com/, McBreen says:

If a process can be fully defined, with all things known about it
so that it can be designed and run repeatedly with predictable
results, it is known as a defined process, and it can be subjected
to automation. If all things about a process aren’t fully known—
only what generally happens when you mix these inputs and what
to measure and control to get the desired output—these are
called empirical processes.

Software development is not a defined process; it’s an empirical pro-
cess. As such, software development cannot be fully automated, and it’s
often difficult to apply engineering principles to software development.
Part of the problem is that practical engineering relies so much on the
reuse of existing designs. Although a considerable amount of reuse is pos-
sible in computer programming, too, it requires much more customization
than you find in other engineering professions.

Another significant problem with software engineering, as briefly
discussed in the book’s introduction, is that software engineering treats
software engineers as commodity resources that a manager can swap
arbitrarily into and out of a project, which disregards the importance of
an individual’s talents. The issue isn’t that engineering techniques aren’t
ever valuable, but that management attempts to apply them uniformly to
everyone and encourages the use of some current set of “best practices” in

Software Development Metaphors 13

software development. This approach can produce quality software, but it
doesn’t allow for thinking outside the box and creating new practices that
might be better.

1.4 Software Craftsmanship
Software craftmanship, where a programmer trains and practices skills
under the tutelage of a master, is about lifelong learning to be the best
software developer you can be. Following the craftmanship model, a pro-
grammer gets an education, completes an apprenticeship, becomes a jour-
neyman programmer, and strives to develop a masterpiece.

1.4.1 Education
Colleges and universities provide the prerequisites that interns need to be
software craftsmen. If an internship exposed a beginning programmer
(intern/apprentice) to the same information and challenges that a formal
education does, the internship might be equivalent to a formal education.
Unfortunately, few software craftsmen have the time or ability to train an
apprentice from scratch. They’re far too busy working on real-world projects
to devote the time needed to teach an intern everything they need to know.
Therefore, education is the first step on the road to software craftsmanship.

Additionally, a formal education at a college or university accomplishes
two main objectives: first, you’re forced to study those computer science
topics that you’d probably just skip over if you were studying the material
on your own; and second, you prove to the world that you’re capable of fin-
ishing a major commitment that you’ve started. In particular, after you’ve
completed a formal computer science program, you’re ready to really start
learning about software development.

However, a college degree, no matter how advanced, doesn’t automati-
cally qualify you as a software craftsman. A person with a graduate degree,
which requires a deeper and more specialized study of computer science,
starts out as an intern, just as someone with an undergraduate degree does.
The intern with the graduate degree might spend fewer years as an appren-
tice but still needs considerable training.

1.4.2 Apprenticeship
Completing a formal computer science program prepares you to start learn-
ing, at an apprentice level, how to become a craftsman. A typical computer
science program teaches you about programming languages (their syntax
and semantics), data structures, and the theory of compilers, operating sys-
tems, and the like, but doesn’t teach you how to program beyond the first- or
second-semester Introduction to Programming courses. An apprenticeship
shows you what programming is about when you enter the real world. The
purpose of an apprenticeship is to get the experience necessary to use what
you’ve learned to approach problems in many different ways, and to gain as
many different experiences as possible.

14 Chapter 1

An apprentice studies under someone who has mastered advanced
programming techniques. This person can be either a software journeyman
(see the next section) or a software craftsman. The “master” assigns tasks to
the apprentice, demonstrates how to accomplish the task, and reviews the
apprentice’s work, making appropriate mid-course corrections to obtain
high-quality work. Most important, the apprentice also reviews their mas-
ter’s work. This can take various forms, including testing, structured walk-
throughs, and debugging. The important factor is that the apprentice
learns how the master’s code operates.7 In doing so, the apprentice picks up
programming techniques they would never master on their own.

If an apprentice is lucky, they’ll have the opportunity to study under
several masters and learn solid techniques from all of them. With each proj-
ect completed under the tutelage of an advanced programmer, the appren-
tice nears the end of their apprenticeship and moves on to the next stage in
the software craftsman’s route: the software journeyman.

In one sense, an apprenticeship never ends. You should always be on the
lookout for new techniques and new skills. For example, consider all the
software engineers who grew up on structured programming and had to
learn object-oriented programming. However, at some point, you reach the
stage where you’re using your existing skills more often than developing
new ones. At that point, you start imparting your wisdom to others rather
than learning from others. It’s then that the “masters” you’re working with
feel you’re ready to tackle projects on your own without assistance or super-
vision. That’s when you become a software journeyman.

1.4.3 The Software Journeyman
Software journeymen handle the bulk of software development. As the
name suggests, they typically move from project to project, applying their
skills to solve application problems. Even though a software developer’s edu-
cation never ends, a software journeyman is more focused on application
development than on learning how to develop applications.

Another important task that software journeymen take on is training
new software apprentices. They review the work of apprentices on their
project and share programming techniques and knowledge with them.

A software journeyman constantly looks for new tools and techniques
that can improve the software development process. By adopting new (but
proven) techniques early on, they stay ahead of the learning curve and
keep up with current trends to avoid falling behind. Utilizing industry best
practices to create efficient and cost-effective solutions for customers is the
hallmark of this stage of craftsmanship. Software journeymen are produc-
tive, knowledgeable, and exactly the type of software developer most project
managers hope to find when assembling a software team.

7. Another advantage to the apprenticeship process is that multiple individuals now under-
stand how the code operates, so if one leaves, another can pick up the project in their place.

Software Development Metaphors 15

1.4.4 The Master Craftsman
The traditional way to become a master craftsman is to create a masterpiece,
a work that sets you apart from your peers. Some (high-end) examples of
software masterpieces include VisiCalc,8 the Linux operating system, and
the vi and emacs text editors. These products were initially the brainchild
and creation of a single person, even though they went on to involve doz-
ens or hundreds of different programmers. A masterpiece doesn’t have to
become famous, like Linux or some GNU tool. However, your immediate
peers must recognize your masterpiece as a useful and creative solution to
a problem. A masterpiece doesn’t have to be a stand-alone original piece
of code, either. Writing a complex device driver for an operating system, or
extending some other program in several useful ways, could very well qual-
ify as a masterpiece. The purpose of the masterpiece is to create an item in
your portfolio that tells the world: “I’m capable of producing serious soft-
ware—take me seriously!” A masterpiece work lets others know that they
should seriously consider your opinions and trust what you have to say.

Generally, the domain of the master craftsman is to determine what
current best practices are and invent new ones. Best practices describe the
best known way, not necessarily the absolute best way, to accomplish a task.
The master craftsman investigates whether there’s a better approach for
designing applications, recognizes the utility of a new technique or meth-
odology as it applies to a wide spectrum of applications, and verifies that a
practice is best and communicates that information to others.

1.4.5 Where Software Craftsmanship Fails
Steve McConnell, in his classic software engineering book Code Complete,
claims that experience is one of those characteristics that doesn’t matter
as much as people think: “If a programmer hasn’t learned C after a year or
two, the next three years won’t make much difference.” He then asks, “If
you work for 10 years, do you get 10 years of experience or do you get 1 year
of experience 10 times?” McConnell even suggests that book learning
might be more important than programming experience. He claims that
the computer science field changes so fast that someone with 10 years of
programming experience has missed out on all the great research to which
new programmers have been exposed during that decade.

1.5 The Path to Writing Great Code
Writing great code doesn’t happen because you follow a list of rules. You
must make a personal decision to put in the effort to ensure the code you’re
writing is truly great. Violating well-understood software engineering prin-
ciples is a good way to ensure that your code is not great, but rigidly fol-
lowing such rules doesn’t guarantee greatness, either. A well-experienced
and meticulous developer, or software craftsman, can navigate both

8. For those too young to remember VisiCalc, it was the precursor to Microsoft Excel.

16 Chapter 1

approaches: following established practices when it’s required, but being
unafraid to try a different technique or strategy when the need arises.

Unfortunately, a book can only teach you the rules and methodologies.
Creativity and wisdom are qualities you need to develop on your own. This
book teaches you the rules and suggests when you might consider breaking
them. However, it’s still up to you to decide whether to do so.

1.6 For More Information
Hunt, Andrew, and David Thomas. The Pragmatic Programmer. Upper Saddle

River, NJ: Addison-Wesley Professional, 1999.

Kernighan, Brian, and Rob Pike. The Practice of Programming. Upper Saddle
River, NJ: Addison-Wesley Professional, 1999.

McBreen, Pete. Software Craftsmanship: The New Imperative. Upper Saddle
River, NJ: Addison-Wesley Professional, 2001.

McConnell, Steve. Code Complete. 2nd ed. Redmond, WA: Microsoft Press,
2004.

———. Rapid Development: Taming Wild Software Schedules. Redmond, WA:
Microsoft Press, 1996.

Pressman, Robert S. Software Engineering, A Practitioner’s Approach. New York:
McGraw-Hill, 2010.

In the late 1960s, it was clear that train-
ing more programmers would not alleviate

the software crisis. The only solution was to
increase programmer productivity—that is,

enable existing programmers to write more code—
which is how the software engineering field originated.
Therefore, a good place to start studying software
engineering is with an understanding of productivity.

2.1 What Is Productivity?
Although the term productivity is commonly described as the basis for soft-
ware engineering, it’s amazing how many people have a distorted view of it.
Ask any programmer about productivity, and you’re bound to hear “lines
of code,” “function points,” “complexity metrics,” and so on. The truth is,

2
P R O D U C T I V I T Y

18 Chapter 2

there is nothing magical or mysterious about the concept of productivity on
a software project. We can define productivity as:

The number of unit tasks completed in a unit amount of time or
completed for a given cost.

The challenge with this definition is specifying a unit task. One con-
venient unit task might be a project; however, projects vary wildly in terms
of size and complexity. The fact that programmer A has completed three
projects in a given amount of time, whereas programmer B has worked
only on a small portion of a large project, tells us nothing about the rela-
tive productivity of these two programmers. For this reason, the unit task is
usually much smaller than an entire project. Typically, it’s something like a
function, a single line of code, or an even smaller component of the project.
The exact metric is irrelevant as long as the unit task is consistent between
various projects and a single programmer would be expected to take the
same amount of time to complete a unit task on any project. In general, if
we say that programmer A is n times more productive than programmer B,
programmer A can complete n times as many (equivalent) projects in the
same amount of time as it would take programmer B to complete one of
those projects.

2.2 Programmer Productivity vs. Team Productivity
In 1968, Sackman, Erikson, and Grant published an eye-opening article
claiming that there was a 10 to 20 times difference in productivity among
programmers.1 Later studies and articles have pushed this difference even
higher. This means that certain programmers produce as much as 20 (or
more) times as much code as some less capable programmers. Some com-
panies even claim a two-order-of-magnitude difference in productivity
between various software teams in their organizations. This is an astound-
ing difference! If it’s possible for some programmers to be 20 times more
productive than others (so-called Grand Master Programmers [GMPs]), is
there some technique or methodology we can use to improve the productiv-
ity of a typical (or low-productivity) programmer?

Because it’s not possible to train every programmer to raise them to the
GMP level, most software engineering methodologies use other techniques,
such as better management processes, to improve the productivity of a large
team. This book series takes the other approach: rather than attempting to
increase the productivity of a team, it teaches individual programmers how
to increase their own productivity and work toward becoming a GMP.

Although the productivity of individual programmers has the largest
impact on a project’s delivery schedule, the real world is more concerned
with project cost—how long it takes and how much it costs to complete the

1. Harold Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies
Comparing Online and Offline Programming Performance,” Communications of the ACM 11,
no. 1 (1968): 3–11.

Productivity 19

project—than with programmer productivity. Except for small projects, the
productivity of the team takes priority over the productivity of a team member.

Team productivity isn’t simply the average of the productivities of
each member; it’s based on complex interactions between team members.
Meetings, communications, personal interactions, and other activities can
all have a negative impact on team members’ productivity, as can bringing
new or less knowledgeable team members up to speed and reworking exist-
ing code. (The lack of overhead from these activities is the main reason a
programmer is far more productive when working on a small project than
when working on a medium- or large-sized project.) Teams can improve
their productivity by managing overhead for communication and training,
resisting the urge to rework existing code unless it’s really necessary, and
managing the project so code is written correctly the first time (reducing
the need to rework it).

2.3 Man-Hours and Real Time
The definition given earlier provides two measures for productivity: one
based on time (productivity is the number of unit tasks completed in a
unit amount of time) and one based on cost (productivity is the number
of unit tasks completed for a given cost). Sometimes cost is more important
than time, and vice versa. To measure cost and time, we can use man-hours
and real time, respectively.

From a corporation’s view, the portion of a project’s cost related to
programmer productivity is directly proportional to its man-hours, or the
number of hours each team member spends working on the project. A man-
day is approximately 8 man-hours, a man-month is approximately 176 man-
hours, and a man-year is approximately 2,000 man-hours. The total cost of a
project is the total number of man-hours spent on that project multiplied by
the average hourly wage of each team member.

Real time (also known as calendar time or wall clock time) is just the pro-
gression of time during a project. Project schedules and delivery of the final
product are usually based on real time.

Man-hours are the product of real time multiplied by the number of
team members concurrently working on the project, but optimizing for one
of these quantities doesn’t always optimize for the other. For example, sup-
pose you’re working on an application needed in a municipal election. The
most critical quantity in this case is real time; the software must be com-
pletely functional and deployed by the election date regardless of the cost.
In contrast, a “basement programmer” working on the world’s next killer
app can spend more time on the project, thus extending the delivery date
in real time, but can’t afford to hire additional personnel to complete the
app sooner.

One of the biggest mistakes project managers make on large projects
is to confuse man-hours with real time. If two programmers can complete
a project in 2,000 man-hours (and 1,000 real hours), you might conclude
that four programmers can complete the project in 500 real hours. In other

20 Chapter 2

words, by doubling the staff on the project, you can get it done in half the
time and complete the project on schedule. In reality, this doesn’t always
work (just like adding a second oven won’t bake a cake any faster).

Increasing staff to increase the number of man-hours per calendar
hour is generally more successful on large projects than on small and
medium-sized projects. Small projects are sufficiently limited in scope
that a single programmer can track all the details associated with the
project; there’s no need for the programmer to consult, coordinate with,
or train anyone else to work on the project. Generally speaking, adding
programmers to a small project eliminates these advantages and increases
the costs dramatically without significantly affecting the delivery schedule.
On medium-sized projects, the balance is delicate: two programmers may
be more productive than three,2 but adding more programming resources
can help get an understaffed project finished sooner (though, perhaps, at a
greater cost). On large software projects, increasing the team size reduces
the project’s schedule accordingly, but once the team grows beyond a cer-
tain point, you might have to add two or three people to do the amount of
work usually done by one person.

2.4 Conceptual and Scope Complexity
As projects become more complex,3 programmer productivity decreases,
because a more complex project requires deeper (and longer) thought to
understand what is going on. In addition, as project complexity increases,
there’s a greater likelihood that a software engineer will introduce errors
into the system, and that defects introduced early in the system will not be
caught until later, when the cost of correcting them is much higher.

Complexity comes in a couple of forms. Consider the following two
definitions of complex :

1. Having a complicated, involved, or intricate arrangement of parts so as
to be hard to understand

2. Composed of many interconnected parts

We can call the first definition conceptual complexity. For example, con-
sider a single arithmetic expression in a high-level language (HLL), such as
C/C++, which can contain intricate function calls, several weird arithmetic/
logical operators with varying levels of precedence, and lots of parentheses
that make the expression difficult to comprehend. Conceptual complexity
can occur in any software project.

We can call the second definition scope complexity, which occurs when
there is too much information for a human mind to easily digest. Even if
the individual components of the project are simple, the sheer size of the

2. Barry W. Boehm, Terence E. Gray, and Thomas Seewaldt, “Prototyping Versus Specifying:
A Multiproject Experience,” IEEE Transactions on Software Engineering 10, no. 3 (1984): 290–303.

3. Generally, this means larger, although conceptual complexity applies as well.

Productivity 21

project makes it impossible for one person to understand the whole thing.
Scope complexity occurs in medium- and large-scale projects (indeed, it’s
this form of complexity that differentiates small projects from the others).

Conceptual complexity affects programmer productivity in two ways.
First, complex constructs require more thought (and therefore more time)
to produce than simple constructs. Second, complex constructs are more
likely to contain defects that must be corrected later, producing a corre-
sponding loss in productivity.

Scope complexity introduces different problems. When the project
reaches a certain size, a programmer on the project might be completely
unaware of what is going on in other parts of the project, and might dupli-
cate code already in the system. Clearly, this reduces programmer produc-
tivity, because the programmer wasted time writing that code.4 Inefficient
use of system resources can also occur as a result of scope complexity. When
working on a part of the system, a small team of engineers might be testing
their piece by itself, but they don’t see its interaction with the rest of the sys-
tem (which might not even be ready yet). As a result, problems with system
resource usages (such as CPU cycles or memory) might not be uncovered
until later.

With good software engineering practices, it’s possible to mitigate
some of this complexity. But the general result is the same: as systems
become more complex, people must spend more time thinking about
them and the opportunity for defects increases dramatically. The end
result is reduced productivity.

2.5 Predicting Productivity
Productivity is a project attribute that you can measure and attempt to
predict. When a project is complete, it’s fairly easy to determine the team’s
(and its members’) productivity, assuming the team kept accurate records
of the tasks accomplished during project development. Though success or
failure on past projects doesn’t guarantee success or failure on future proj-
ects, past performance is the best indicator available to predict a software
team’s future performance. If you want to improve the software develop-
ment process, you need to track the techniques that work well and those
that don’t, so you’ll know what to do (or not to do) on future projects. To
track this information, programmers and their support personnel must
document all software development activities. This is a good example of
pure overhead introduced by software engineering: the documentation does
almost nothing to help get the current project out the door or improve
its quality, but it’s an investment in future projects to help predict (and
improve) productivity.

4. Some large projects appoint a “librarian” whose job is to keep track of reusable code com-
ponents. Programmers looking for a particular routine can ask the librarian about its avail-
ability and spare themselves from having to write that code. The productivity loss is limited to
the time the librarian spends to maintain the library and the time the programmer and the
librarian spend communicating.

22 Chapter 2

Watts S. Humphrey’s A Discipline for Software Engineering (Addison-Wesley
Professional, 1994) is a great read for those interested in learning about
tracking programmer productivity. Humphrey teaches a system of forms,
guidelines, and procedures for developing software that he calls the Personal
Software Process (PSP). Although the PSP is targeted at individuals, it offers
valuable insight into where a programmer’s problems lie in the software
development process. In turn, this can greatly help them to determine how
to attack their next major project.

2.6 Metrics and Why We Need Them
The problem with predicting a team’s or an individual’s productivity by
looking at their past performance on similar projects is that it applies only
to similar projects. If a new project is significantly different than a team’s past
projects, past performance might not be a good indicator. Because projects
vary greatly in size, measuring productivity across whole projects might not
provide sufficient information to predict future performance. Therefore,
some system of measurement (a metric) at a granularity level below a whole
project is needed to better evaluate teams and team members. An ideal met-
ric is independent of the project (team members, programming language
chosen, tools used, and other related activities and components); it must
be usable across multiple projects to allow for comparison between them.
Several metrics do exist, but none is perfect—or even very good. Still, a poor
metric is better than no metric, so software engineers will continue to use
them until a better measurement comes along. In this section, I’ll discuss sev-
eral of the more common metrics and the problems and benefits of each.

2.6.1 Executable Size Metric
One simple metric that programmers use to specify a software system’s com-
plexity is the size of the executables in the final system.5 The assumption is
that complex projects produce large executable files.

The advantages of this metric are:

•	 It is trivial to compute (typically, you need only look at a directory list-
ing and compute the sum of one or more executable files).

•	 It doesn’t require access to the original source code.

Unfortunately, the executable size metric also has deficiencies that
disqualify it for most projects:

•	 Executable files often contain uninitialized data whose contribution to
the file size have little or nothing to do with the complexity of the system.

5. Note that a project might contain multiple executable files. In such a case, the “executable
file size” is the sum of all the executable components in the system.

Productivity 23

•	 Library functions add to the executable’s size, yet they actually reduce
the complexity of the project.6

•	 The executable file size metric is not language-independent. For exam-
ple, assembly language programs tend to be much more compact than
HLL executables, yet most people consider assembly programs much
more complex than equivalent HLL programs.

•	 The executable file size metric is not CPU-independent. For example,
an executable for an 80x86 CPU is usually smaller than the same pro-
gram compiled for an ARM (or other RISC) CPU.

2.6.2 Machine Instructions Metric
A major failing of the executable file size metric is that certain executable file
formats include space for uninitialized static variables, which means trivial
changes to the input source file can dramatically alter the executable file size.
One way to solve this problem is to count only the machine instructions in a
source file (either the size, in bytes, of the machine instructions or the total
number of machine instructions). While this metric solves the problem of
uninitialized static arrays, it still exhibits all the other problems of the execut-
able file size metric: it’s CPU-dependent, it counts code (such as library code)
that wasn’t written by the programmer, and it’s language-dependent.

2.6.3 Lines of Code Metric
The lines of code (LOC, or KLOC for thousands of lines of code) metric
is the most common software metric in use today. As its name suggests, it’s
a count of the number of lines of source code in a project. The metric has
several good qualities, as well as some bad ones.

Simply counting the number of source lines appears to be the most
popular form of using the LOC metric. Writing a line count program is
fairly trivial, and most word count programs available for operating systems
like Linux will compute the line count for you.

Here are some common claims about the LOC metric:

•	 It takes about the same amount of time to write a single line of source
code regardless of the programming language in use.

•	 The LOC metric is not affected by the use of library routines (or other
code reuse) in a project (assuming, of course, you don’t count the num-
ber of lines in the prewritten library source code).

•	 The LOC metric is independent of the CPU.

The LOC metric does have some drawbacks:

•	 It doesn’t provide a good indication of how much work the programmer
has accomplished. One hundred lines of code in a VHLL accomplishes
more than 100 lines of assembly code.

6. Assuming, of course, that the library routines existed prior to the project and were not part
of the project’s development.

24 Chapter 2

•	 It assumes that the cost of each line of source code is the same. However,
this isn’t the case. Blank lines have a trivial cost, simple data declara-
tions have a low conceptual complexity, and statements with complex
Boolean expressions have a very high conceptual complexity.

2.6.4 Statement Count Metric
The statement count metric counts the number of language statements in
a source file. It does not count blank lines or comments, nor does it count a
single statement spread across multiple lines as separate entities. As a result, it
does a better job than LOC of calculating the amount of programmer effort.

Although the statement count metric provides a better view of program
complexity than lines of code, it suffers from many of the same problems.
It measures effort rather than work accomplished, it isn’t as language-
independent as we’d like, and it assumes that each statement in the pro-
gram requires the same amount of effort to produce.

2.6.5 Function Point Analysis
Function point analysis (FPA) was originally devised as a mechanism for pre-
dicting the amount of work a project would require before any source code
was written. The basic idea was to consider the number of inputs a program
requires, the number of outputs it produces, and the basic computations it
must perform, and use this information to determine a project schedule.7

FPA offers several advantages over simplistic metrics like line or state-
ment count. It is truly language- and system-independent. It depends upon
the functionality of the software rather than its implementation.

FPA does have a few serious drawbacks, though. First, unlike line count
or even statement count, it’s not straightforward to compute the number
of “function points” in a program. The analysis is subjective: the person
analyzing the program must decide on the relative complexity of each func-
tion. Additionally, FPA has never been successfully automated. How would
such a program decide where one calculation ends and another begins?
How would it apply different complexity values (again, a subjective assign-
ment) to each function point? Because this manual analysis is rather time-
consuming and expensive, FPA is not as popular as other metrics. Largely,
FPA is a postmortem (end-of-project) tool applied at the completion of a proj-
ect rather than during development.

2.6.6 McCabe’s Cyclomatic Complexity Metric
As mentioned earlier, a fundamental failure of the LOC and statement count
metrics is that they assume each statement has equivalent complexity. FPA
fares a little better but requires an analyst to assign a complexity rating to
each statement. Unfortunately, these metrics don’t accurately reflect the

7. True function point analysis is based on five components: external inputs, external out-
puts, external inquiries, internal logical file operations, and external file interfaces. But this
basically boils down to tracking the inputs, outputs, and computations.

Productivity 25

effort that went into the work being measured, and, therefore fail to docu-
ment programmer productivity.

Thomas McCabe developed a software metric known as cyclomatic com-
plexity to measure the complexity of source code by counting the number
of paths through it. It begins with a flowchart of the program. The nodes
in the flowchart correspond to statements in the program, and the edges
between the nodes correspond to nonsequential control flow in the pro-
gram. A simple calculation involving the number of nodes, the number of
edges, and the number of connected components in the flowchart provides
a single cyclomatic complexity rating for the code. Consider a 1,000-line
printf program (with nothing else); the cyclomatic complexity would be 1,
because there is a single path through the program. Now consider a second
example, with a large mixture of control structures and other statements; it
would have a much higher cyclomatic complexity rating.

The cyclomatic complexity metric is useful because it’s an objective
measure, and it’s possible to write a program to compute this value. Its
drawback is that the bulk size of a program is irrelevant; that is, it treats a
single printf statement the same as 1,000 printf statements in a row, even
though the second version clearly requires more work (even if that extra
work is just a bunch of cut-and-paste operations).

2.6.7 Other Metrics
There’s no shortage of metrics we could devise to measure some facet of
programmer productivity. One common metric is to count the number of
operators in a program. This metric recognizes and adjusts for the fact that
some statements (including those that don’t involve control paths) are more
complex than others, taking more time to write, test, and debug. Another
metric is to count the number of tokens (such as identifiers, reserved words,
operators, constants, and punctuation) in a program. No matter the metric,
though, it will have shortcomings.

Many people attempt to use a combination of metrics (such as line
count multiplied by cyclomatic complexity and operator count) to create a
more “multidimensional” metric that better measures the amount of work
involved in producing a bit of code. Unfortunately, as the complexity of the
metric increases, it becomes more difficult to use on a given project. LOC
has been successful because you can use the Unix wc (word count) utility,
which also counts lines, to get a quick idea of program size. Computing a
value for one of these other metrics usually requires a specialized, language-
dependent application (assuming the metric is automatable). For this
reason, although people have proposed a large number of metrics, few
have become as universally popular as LOC.

2.6.8 The Problem with Metrics
Metrics that roughly measure the amount of source code for a project
provide a good indication of the time spent on a project if we assume that
each line or statement in the program takes some average amount of time
to write, but only a tenuous relationship exists between lines of code (or

26 Chapter 2

statements) and the work accomplished. Unfortunately, metrics measure
some physical attributes of the program but rarely measure what we’re
really interested in knowing: the intellectual effort needed to write the
code in the first place.

Another failure of almost every metric is that they all assume that more
work produces more (or more complex) code. This is not always true. For
example, a great programmer will often expend effort to refactor their
code, making it smaller and less complex. In this case, more work produces
less code (and less complex code).

Metrics also fail to consider environmental issues concerning the code.
For example, are 10 lines of code written for a bare-metal embedded device
equivalent to 10 lines of code written for a SQL database application?

All these metrics fail to consider the learning curve for certain proj-
ects. Are 10 lines of Windows device driver code equivalent to 10 lines
of Java code in a web applet? The LOC values for these two projects are
incomparable.

Ultimately, most metrics fail because they measure the wrong thing. They
measure the amount of code a programmer produces rather than the program-
mer’s overall contribution to the complete project (productivity). For example,
one programmer could use a single statement to accomplish a task (such as a
standard library call), whereas a second programmer could write several hun-
dred lines of code to accomplish the same task. Most metrics would suggest
the second programmer is the more productive of the two.

For these very reasons, even the most complex software metrics cur-
rently in use have fundamental flaws that prevent them from being com-
pletely effective. Therefore, choosing a “better” metric often produces
results that are no better than using a “flawed” metric. This is yet another
reason the LOC metric continues to be so popular (and why this book uses
it). It’s an amazingly bad metric, but it’s not a whole lot worse than many
of the other existing metrics, and it’s very easy to compute without writing
special software.

2.7 How Do We Beat 10 Lines per Day?
Early texts on software engineering claim that a programmer on a major
product produces an average of ten lines of code per day. In a 1977 article,
Walston and Felix report about 274 LOC per month per developer.8 Both
numbers describe the production of debugged and documented code over
the lifetime of that product (that is, LOC divided by the amount of time all
the programmers spent on the product from first release to retirement),
rather than simply time spent writing code from day to day. Even so, the
numbers seem low. Why?

At the start of a project, programmers might quickly crank out 1,000
lines of code per day, then slow down to research a solution to a particular

8. Claude E. Walston and Charles P. Felix, “A Method of Programming Measurement and
Estimation,” IBM Systems Journal 16, no. 1 (1977): 54–73.

Productivity 27

portion of the project, test the code, fix bugs, rewrite half their code, and
then document their work. By the product’s first release, productivity has
dropped tenfold since that first day or two: from 1,000 LOC per day to
fewer than 100. Once the first release is out the door, work generally begins
on the second release, then the third, and so on. Over the product’s lifetime,
several different developers will probably work on the code. By the time the
project is retired, it has been rewritten several times (a tremendous loss in
productivity), and several programmers have spent valuable time learning
how the code operates (also sapping their productivity). Therefore, over
the lifetime of the product, programmer productivity is down to 10 LOC
per day.

One of the most important results from software engineering produc-
tivity studies is that the best way to improve productivity is not by inventing
some scheme that allows programmers to write twice as many lines of code
per unit time, but to reduce the time wasted on debugging, testing, documenting,
and rewriting the code, and on educating new programmers about the code once the
first version exists. To reduce that loss, it’s much easier to improve the pro-
cesses that programmers use on the project than it is to train them to write
twice as much code per unit time. Software engineering has always recog-
nized this problem and has attempted to solve it by reducing the time spent
by all programmers. Personal software engineering’s goal is to reduce the
time spent by individual programmers on their portion of the project.

2.8 Estimating Development Time
As noted earlier, while productivity is of interest to management for award-
ing bonuses, pay raises, or verbal praise, the real purpose for tracking it is
to predict development times on future projects. Past results don’t guaran-
tee future performance, so you also need to know how to estimate a project
schedule (or at least the schedule for your portion of a project). As an indi-
vidual software engineer, you typically don’t have the background, educa-
tion, and experience to determine what goes into a schedule, so you should
meet with your project manager, have them explain what needs to be con-
sidered in the schedule (which is more than just the time required to write
code), and then build the estimate that way. Though all the details needed
to properly estimate a project are beyond the scope of this book (see “For
More Information” on page 37 for suggested resources), it’s worthwhile
to briefly describe how development time estimates differ depending on
whether you’re working on a small, medium, or large project, or just a por-
tion of a project.

2.8.1 Estimating Small Project Development Time
By definition, a small project is one that a single engineer works on. The
major influence on the project schedule will be the ability and productivity
of that software engineer.

Estimating development time for small projects is much easier and
more accurate than for larger projects. Small projects won’t involve

28 Chapter 2

parallel development, and the schedule only has to consider a single devel-
oper’s productivity.

Without question, the first step in estimating the development time for
a small project is to identify and understand all the work that needs to be
done. If some parts of the project are undefined at that point, you intro-
duce considerable error in the schedule when the undefined components
inevitably take far more time than you imagined.

For estimating a project’s completion time, the design documentation
is the most important part of the project. Without a detailed design, it’s
impossible to know what subtasks make up the project and how much time
each will take to accomplish. Once you’ve broken down the project into
suitably sized subtasks (a suitable size is where it’s clear how long it will take
to complete), all you need to do is add the times for all the subtasks to pro-
duce a decent first estimate.

One of the biggest mistakes people make when estimating small proj-
ects, however, is that they add the times for the subtasks and call that their
schedule, forgetting to include time for meetings, phone calls, emails, and
other administrative tasks. They also forget to add in testing time, plus time
to correct (and retest) the software when defects are found. Because it’s
difficult to estimate how many defects will be in the software, and thus how
much time it will take to resolve them, most managers scale a schedule’s
first approximation by a factor of 2 to 4. Assuming the programmer (team)
maintains reasonable productivity on the project, this formula produces a
good estimate for a small project.

2.8.2 Estimating Medium and Large Project Development Time
Conceptually, medium and large projects consist of many small projects
(assigned to individual team members) that combine to form the final
result. So a first approximation on a large project schedule is to break it
down into a bunch of smaller projects, develop estimates for each of those
subprojects, and then combine (add) the estimates. It’s sort of a bigger ver-
sion of the small project estimate. Unfortunately, in real life, this form of
estimate is fraught with error.

The first problem is that medium and large projects introduce prob-
lems that don’t exist in small projects. A small project typically has one
engineer, and, as noted previously, the schedule completely depends upon
that person’s productivity and availability. In a larger project, multiple
people (including many nonengineers) affect the estimated schedule. One
software engineer who has a key piece of knowledge might be on vacation
or sick for several days, holding up a second engineer who needs that infor-
mation to make progress. Engineers on larger projects usually have sev-
eral meetings a week (unaccounted for in most schedules) that take them
offline—that is, they’re not programming—for several hours. The team
composition can change on large projects; some experienced programmers
leave and someone else has to pick up and learn the subtasks, and new pro-
grammers join the project and need time to get up to speed. Sometimes
even getting a computer workstation for a new hire can take weeks (for

Productivity 29

example, in a large company with a bureaucratic IT department). Waiting
for software tools to be purchased, hardware to be developed, and support
from other parts of the organization also creates scheduling problems. The
list goes on and on. Few schedule estimates can accurately predict how the
time will be consumed in these myriad ways.

Ultimately, creating medium and large project schedule estimates
involves four tasks: breaking down the project into smaller projects, run-
ning the small project estimations on those, adding in time for integration
testing and debugging (that is, combining the small tasks and getting them
to work properly together), and then applying a multiplicative factor to that
sum. They’re not precise, but they’re about as good as it gets today.

2.8.3 Problems with Estimating Development Time
Because project schedule estimates involve predicting a development team’s
future performance, few people believe that a projected schedule will be
totally accurate. However, typical software development schedule projec-
tions are especially bad. Here are some of the reasons why:

They’re research and development projects. R&D projects involve
doing something you’ve never done before. They require a research
phase during which the development team analyzes the problem and
tries to determine solutions. Usually, there’s no way to predict how long
the research phase will take.

Management has preconceived schedules. Typically, the marketing
department decides that it wants to have a product to sell by a certain
date, and management creates project schedules by working backward
from that date. Before asking the programming team for their time
estimates of the subtasks, management already has some preconceived
notions about how long each task should take.

The team’s done this before. It’s common for management to assume
that if you’ve done something before, it will be easier the second time
around (and therefore will take less time). In certain cases, there’s an
element of truth to this: if a team works on an R&D project, it will be
easier to do a second time because they only have to do the develop-
ment and can skip (at least most of) the research. However, the assump-
tion that a project is always easier the second time is rarely correct.

There isn’t enough time or money. In many cases, management sets
some sort of monetary or time limit within with a project must be com-
pleted or else it will be canceled. That’s the wrong thing to say to some-
one whose paycheck depends on the project moving forward. If given a
choice between saying, “Yes, we can meet that schedule,” or looking for
a new job, most people—even knowing the odds are against them—will
opt for the first.

Programmers overstate their efficiency. Sometimes when a software
engineer is asked if they can complete a project within a certain time-
frame, they don’t lie about how long it will take, but instead make opti-
mistic estimates of their performance—which rarely hold up during

30 Chapter 2

the actual work. When asked how much they can produce when really
pushed, most software engineers give a figure that represents their maxi-
mum output ever achieved over a short period of time (for example,
while working in “crisis mode” and putting in 60–70 hours per week)
and don’t consider unexpected hindrances (such as a really nasty bug
that comes along).

Schedules rely on extra hours. Management (and engineers) often
assume that programmers can always put in “a few extra hours” when the
schedule starts to slip. As a result, schedules tend to be more aggressive
than they should be (ignoring the negative repercussions of having engi-
neers put in massive overtime).

Engineers are like building blocks. A common problem with project
schedules is that management assumes it can add programmers to a
project to achieve an earlier release date. However, as mentioned ear-
lier, this isn’t necessarily true. You can’t add or remove engineers from a
project and expect a proportional change in the project schedule.

Subproject estimates are inaccurate. Realistic project schedules are
developed in a top-down fashion. The whole project is divided into
smaller subprojects. Then those subprojects are divided into sets of sub-
subprojects, and so on until the subproject size is so small that someone
can accurately predict the time needed for each tiny part. However,
there are three challenges with this approach:

• Being willing to put in the effort to create a schedule this way
(that is, to provide a correct and accurate top-down analysis of
the project)

• Obtaining accurate estimates for the tiny subprojects (particu-
larly from software engineers who may not have the appropri-
ate management training to understand what must go into their
schedule estimates)

• Accepting the results the schedule predicts

2.9 Crisis Mode Project Management
Despite the best intentions of everyone involved, many projects fall signifi-
cantly behind schedule and management must accelerate development to
meet some important milestone. To achieve the deadline, engineers often
are expected to put in more time each week to reduce the (real time) deliv-
ery date. When this occurs, the project is said to be in “crisis mode.”

Crisis mode engineering can be effective for short bursts to handle
(rapidly) approaching deadlines, but in general, crisis mode is never that
effective, and results in lower productivity, because most people have things
to take care of outside of work, and need time off to rest, decompress, and
allow their brains to sort out all the problems they’ve been collecting while
putting in long hours. Working while you’re tired leads to mistakes that
often take far more time to correct later on. It’s more efficient in the long
run to forgo the crisis mode and stick to 40-hour weeks.

Productivity 31

The best way to handle crisis mode schedules is to add milestones
throughout the project to generate a series of “small crises” rather than one
big crisis at the end. Putting in an extra day or a couple of long days once
a month is infinitely better than having to put in several seven-day weeks
at the end of the project. Working one or two 16-hour days to meet a dead-
line won’t adversely affect the quality of your life or lead you to the point
of exhaustion.

Beyond the health and productivity issues, operating in crisis mode can
cause scheduling, ethical, and legal problems:

•	 A poor schedule can affect future projects as well. If you work 60-hour
weeks, management will assume that future projects can also be done
in the same amount of (real) time, expecting this pace from you in the
future without any additional compensation.

•	 Technical staff turnover is high on projects that operate for lengthy
periods of time in crisis mode, further reducing team productivity.

•	 There is also the legal issue of putting in lots of extra hours without
being paid overtime. Several high-profile lawsuits in the video game
industry have shown that engineers are entitled to overtime pay (they
are not salary exempt employees). Even if your company can survive such
lawsuits, the rules for time reporting, administrative overhead, and
work schedules will become much more restrictive, leading to produc-
tivity drops.

Again, operating in crisis mode can help you meet certain deadlines if
managed properly. But the best solution is to work out better schedules to
avoid crisis mode altogether.

2.10 How to Be More Productive
This chapter has spent considerable time defining productivity and metrics
for measuring it. But it hasn’t devoted much time to describing how a pro-
grammer can increase their productivity to become a great programmer.
Whole books can be (and have been) written on this subject. This section
provides an overview of techniques you can use to improve your productiv-
ity on individual and team projects.

2.10.1 Choose Software Development Tools Wisely
As a software developer, you’ll spend most of your time working with soft-
ware development tools, and the quality of your tools can have a huge impact
on your productivity. Sadly, the main criterion for selecting development
tools seems to be familiarity with a tool rather than the applicability of the
tool to the current project.

Keep in mind when choosing your tools at the start of the project
that you’ll probably have to live with them for the life of the project (and
maybe beyond that). For example, once you start using a defect tracking
system, it might be very difficult to switch to a different one because of

32 Chapter 2

incompatible database file formats; the same goes for source code control
systems. Fortunately, software development tools (especially IDEs) are rela-
tively mature these days, and a large number of them are interoperable, so
it’s hard to make a bad choice. Still, careful thought at the beginning of a
project can spare you a lot of problems down the road.

The most significant tool choice for a software development project is
which programming language and which compilers/interpreters/transla-
tors to use. Optimal language choice is a difficult problem to solve. It’s easy
to justify some programming language because you’re familiar with it and
you won’t lose productivity learning it; however, future engineers new to
the product might be far less productive because they’re learning the pro-
gramming language while trying to maintain the code. Furthermore, some
language choices could streamline the development process, sufficiently
improving productivity to make up for lost time learning the language. As
noted earlier, a poor language choice could result in wasted development
time using that language until it becomes clear that it is unsuitable for the
project and you have to start over.

Compiler performance (how many lines per second it takes to process
a common source file) can have a huge impact on your productivity. If your
compiler takes two seconds to compile an average source file rather than
two minutes, you’ll probably be far more productive using the faster com-
piler (though the faster compiler might be missing some features that com-
pletely kill your productivity in other ways). The less time your tools take to
process your code, the more time you’ll have for designing, testing, debug-
ging, and polishing your code.

It’s also important to use a set of tools that work well together. Today, we
take for granted integrated development environments (IDEs), which combine an
editor, compiler, debugger, source code browser, and other tools into a single
program. Being able to quickly make small changes in an editor, recompile
a source code module, and run the result in a debugger all within the same
window onscreen provides a phenomenal boost in productivity.

However, you’ll often have to work on parts of your project outside the
IDE. For example, some IDEs don’t support source code control facilities
or defect tracking directly in the IDE (though many do). Most IDEs don’t
provide a word processor for writing documentation, nor do they provide
simple database or spreadsheet capabilities to maintain requirements lists,
design documentation, or user documentation. Most likely, you’ll have
to use a few programs outside your IDE—word processing, spreadsheet,
drawing/graphics, web design, and database programs, to name a few—
to do all the work needed on your project.

Running programs outside an IDE isn’t a problem. Just make sure the
applications you choose are compatible with your development process and
the files your IDE produces (and vice versa). Your productivity will decrease
if you must constantly run a translator program when moving files between
your IDE and an external application.

Can I recommend tools for you to use? No way. There are too many
projects with different needs to even consider such suggestions here. My
recommendation is to simply be aware of the issues at the start of the project.

Productivity 33

But one recommendation I can make is to avoid the “Gee whiz, why
don’t we try this new technology” approach when choosing a development
tool. Discovering that a development tool can’t do the job after spending six
months working with it (and basing your source code on it) can be disastrous.
Evaluate your tools apart from your product development, and work in new
tools only after you’re confident that they’ll work for you. A classic example
of this is Apple’s Swift programming language. Until Swift v5.0 was released
(about four years after Swift was first introduced), using Swift was an exercise
in frustration. Every year Apple would release a new version that was source
code–incompatible with earlier releases, forcing you to go back and change
old programs. In addition, many features were missing in early versions of
the language, and several features weren’t quite ready for “prime time.” By
version 5.0 (released as this book was being written), the language seems rela-
tively stable. However, the poor souls who jumped on the Swift bandwagon
early on paid the price for the immature development of the language.9

Sadly, you don’t get to choose the development tools on many projects.
That decision is an edict from on high, or you inherit tools from earlier
products. Complaining about it wastes time and energy, and reduces your
productivity. Instead, make the best of the tool set you have, and become an
expert at using it.

2.10.2 Manage Overhead
On any project, we can divide the work into two categories: work that is
directly associated with the project (such as writing lines of code or docu-
mentation for the project) and work that is indirectly related to the project.
Indirect activities include meetings, reading and replying to emails, filling
out time cards, and updating schedules. These are overhead activities: they
add time and money to a project’s cost but don’t directly contribute to get-
ting the work done.

By following Watts S. Humphrey’s Personal Software Engineering guidelines,
you can track where you spend your time during a project and easily see how
much is spent directly on the project versus on overhead activities. If your
overhead climbs above 10 percent of your total time, reconsider your daily
activities. Try to decrease or combine those activities to reduce their impact
on your productivity. If you don’t track your time outside the project, you’ll
miss the opportunity to improve your productivity by managing overhead.

2.10.3 Set Clear Goals and Milestones
It’s a natural human tendency to relax when no deadlines are looming, and
then go into “hypermode” as one approaches. Without goals to achieve,
very little productive work ever gets done. Without deadlines to meet,
rarely is there any motivation to achieve those goals in a timely manner.

9. Today, I don’t have a problem recommending Swift. It’s a great language, and version 5.0
and later seem relatively stable and reliable. It’s moved beyond the “Gee whiz, ain’t this a
great new language” stage and is now a valid software development tool for real projects.

34 Chapter 2

Therefore, to improve your productivity, be sure to have clear goals and
subgoals, and attach hard milestones to them.

From a project management viewpoint, a milestone is a marker in a proj-
ect that determines how far work has progressed. A good manager always sets
goals and milestones in the project schedule. However, few schedules provide
useful goals for individual programmers. This is where personal software
engineering comes into play. To become a superproductive programmer,
micromanage your own goals and milestones on your (portion of the) proj-
ect. Simple goals, such as “I’ll finish this function before I take lunch” or “I’ll
find the source of this error before going home today” can keep you focused.
Larger goals, such as “I’ll finish testing this module by next Tuesday” or “I’ll
run at least 20 test procedures today” help you gauge your productivity and
determine if you’re achieving what you want.

2.10.4 Practice Self-Motivation
Improving your productivity is all about attitude. Although others can help
you manage your time better and aid you when you’re stuck, the bottom
line is that you must have the initiative to better yourself. Always be con-
scious of your pace and constantly strive to improve your performance. By
keeping track of your goals, efforts, and progress, you’ll know when you
need to “psych yourself up” and work harder to improve your productivity.

A lack of motivation can be one of the greatest impediments to your
productivity. If your attitude is “Ugh, I have to work on that today,” it will
probably take you longer to complete the task than if your attitude is “Oh!
This is the best part! This will be fun!”

Of course, not every task you work on will be interesting and fun. This
is one area where personal software engineering kicks in. If you want to
maintain higher-than-average productivity, you need to have considerable
self-motivation when a project makes you feel “less than motivated.” Try
to create reasons to make the work appealing. For example, create mini-
challenges for yourself and reward yourself for achieving them. A produc-
tive software engineer constantly practices self-motivation: the longer you
remain motivated to do a project, the more productive you’ll be.

2.10.5 Focus and Eliminate Distractions
Staying focused on a task and eliminating distractions is another way to
dramatically improve your productivity. Be “in the zone.” Software engi-
neers operating this way are more productive than those who are mentally
multitasking. To increase your productivity, concentrate on a single task for
as long as possible.

Focusing on a task is easiest in a quiet environment without any visual
stimulation (other than your display screen). Sometimes, work environ-
ments aren’t conducive to an extreme focus. In such cases, putting on head-
phones and playing background music might help remove the distractions.
If music is too distracting, try listening to white noise; there are several
white noise apps available online.

Productivity 35

Whenever you’re interrupted in the middle of a task, it will take time to
get back in the zone. In fact, it could take as long as half an hour to become
fully refocused on your work. When you need to focus and complete a task,
put up a sign saying that you should only be interrupted for urgent busi-
ness, or post “office hours”—times when you can be interrupted—near
your workstation; for example, you could allow interruptions at the top of
the hour for five minutes. Saving your coworkers 10 minutes by answering
a question they could figure out themselves could cost you half an hour of
productivity. You do have to work as part of the team and be a good team-
mate; however, it’s just as important to ensure that excessive team interac-
tions don’t impair your (and others’) productivity.

During a typical workday, there will be many scheduled interruptions:
meal breaks, rest breaks, meetings, administrative sessions (for example,
handling emails and time accounting), and more. If possible, try to schedule
other interruptions around these events. For example, turn off any email
alerts; answering emails within a few seconds is rarely imperative, and some-
one can find you in person or call you if it’s an emergency. Set an alarm to
remind you to check email at fixed times if people do expect quick responses
from you (ditto with text messages and other interruptions). If you can get
away with it, consider silencing your phone if you get a lot of nonurgent
phone calls, checking your messages every hour or so during your breaks.
What works for you depends on your personal and professional life. But the
fewer interruptions you have, the more productive you’ll become.

2.10.6 If You’re Bored, Work on Something Else
Sometimes, no matter how self-motivated you are, you’ll be bored with what
you’re working on and have trouble focusing; your productivity will plum-
met. If you can’t get into the zone and focus on the task, take a break from
it and work on something else. Don’t use boredom as an excuse to flitter
from task to task without accomplishing much. But when you’re really stuck
and can’t move forward, switch to something you can be productive doing.

2.10.7 Be as Self-Sufficient as Possible
As much as possible, you should try to handle all tasks assigned to you. This
won’t improve your productivity; however, if you’re constantly seeking help
from other engineers, you might be damaging their productivity (remem-
ber, they need to stay focused and avoid interruptions, too).

If you’re working on a task that requires more knowledge than you cur-
rently possess, and you don’t want to constantly interrupt other engineers,
you have a few options:

•	 Spend time educating yourself so you can do the task. Although you
might hurt your short-term productivity, the knowledge you gain will
help you with similar future tasks.

•	 Meet with your manager and explain the problems you’re having.
Discuss the possibility of their reassigning the task to someone more
experienced and assigning you a task you’re better able to handle.

36 Chapter 2

•	 Arrange with your manager to schedule a meeting to get help from
other engineers at a time that won’t impact their productivity as much
(for example, at the beginning of the workday).

2.10.8 Recognize When You Need Help
You can take the self-supporting attitude a little too far. You can spend an
inordinate amount of time working on a problem that a teammate could
solve in just a few minutes. One aspect of being a great programmer is rec-
ognizing when you’re stuck and need help to move forward. When you’re
stuck, the best approach is to set a timer alarm. After some number of min-
utes, hours, or even days being stuck on the problem, seek help. If you know
who to ask for help, seek that help directly. If you’re not sure, talk to your
manager. Most likely, your manager can direct you to the right person so
you don’t interrupt others who wouldn’t be able to help you anyway.

Team meetings (daily or weekly) are a good place to seek help from
team members. If you have several tasks on your plate and you’re stuck on
one particular task, set it aside, work on other tasks (if possible), and save
your questions for a team meeting. If you run out of work before a meeting,
ask your manager to keep you busy so you don’t have to interrupt anyone.
Further, while working on other tasks, the solution just might come to you.

2.10.9 Overcome Poor Morale
Nothing can kill a project faster than an infestation of bad morale among team
members. Here are some suggestions to help you overcome poor morale:

•	 Understand the business value of your project. By learning about, or
reminding yourself of, the real-world practical applications of your proj-
ect, you’ll become more invested and interested in the project.

•	 Take ownership and responsibility for (your portion of) a project.
When you own the project, your pride and reputation are on the line.
Regardless of what else might happen, ensure that you can always talk
about the contributions you made to the project.

•	 Avoid becoming emotionally invested in those project components
over which you have no control. For example, if management has made
some poor decisions that affect the project’s schedule or design, work
as best as you can within those confines. Don’t just sit around thinking
bad thoughts about management when you could be putting that effort
into solving problems.

•	 If you’re faced with personality differences that are creating morale
problems, discuss those issues with your manager and other affected
personnel. Communication is key. Allowing problems to continue will
only lead to larger morale problems down the road.

•	 Always be on the lookout for situations and attitudes that could damage
morale. Once morale on a project begins to decline, it’s often very dif-
ficult to restore what was lost. The sooner you deal with morale issues,
the easier it will be to resolve them.

Productivity 37

Sometimes, financial, resource, or personnel issues decrease morale
among the project’s participants. Your job as a great programmer is to step
in, rise above the issues, and continue writing great code—and encourage
those on the project to do the same. This isn’t always easy, but no one ever
said that becoming a great programmer was easy.

2.11 For More Information
Bellinger, Gene. “Project Systems.” Systems Thinking, 2004. http://systems

-thinking.org/prjsys/prjsys.htm.

Heller, Robert, and Tim Hindle. Essential Managers: Managing Meetings.
New York: DK Publishing, 1998.

Humphrey, Watts S. A Discipline for Software Engineering. Upper Saddle River,
NJ: Addison-Wesley Professional, 1994.

Kerzner, Harold. Project Management: A Systems Approach to Planning,
Scheduling, and Controlling. Hoboken, NJ: Wiley, 2003.

Lencioni, Patrick. Death by Meeting: A Leadership Fable . . . About Solving the
Most Painful Problem in Business. San Francisco: Jossey-Bass, 2004.

Levasseur, Robert E. Breakthrough Business Meetings: Shared Leadership in
Action. Lincoln, NE: iUniverse.com, Inc., 2000.

Lewis, James P. Project Planning, Scheduling, and Control. New York: McGraw-
Hill, 2000.

McConnell, Steve. Software Project Survival Guide. Redmond, WA: Microsoft
Press, 1997.

Mochal, Tom. “Get Creative to Motivate Project Teams When Morale Is
Low.” TechRepublic, September, 21, 2001. http://www.techrepublic.com
/article/get-creative-to-motivate-project-teams-when-morale-is-low/.

Wysocki, Robert K., and Rudd McGary. Effective Project Management.
Indianapolis: Wiley, 2003.

http://systems-thinking.org/prjsys/prjsys.htm
http://systems-thinking.org/prjsys/prjsys.htm
https://www.techrepublic.com/article/get-creative-to-motivate-project-teams-when-morale-is-low/
https://www.techrepublic.com/article/get-creative-to-motivate-project-teams-when-morale-is-low/

You don’t write great code by following a
fixed set of rules for every project. For some

projects, hacking out a few hundred lines of
code might be all you need to produce a great

program. Other projects, however, could involve mil-
lions of code lines, hundreds of project engineers, and
several layers of management or other support personnel; in these cases, the
software development process you use will greatly affect the project’s success.

In this chapter, we’ll look at various development models and when to
use them.

3.1 The Software Development Life Cycle
During its life, a piece of software generally goes through eight phases,
collectively known as the Software Development Life Cycle (SDLC):

1. Product conceptualization

2. Requirement development and analysis

3
S O F T W A R E D E V E L O P M E N T

M O D E L S

40 Chapter 3

3. Design

4. Coding (implementation)

5. Testing

6. Deployment

7. Maintenance

8. Retirement

Let’s look at each phase in turn.

Product conceptualization
A customer or manager develops an idea for some software and creates
a business case justifying its development.

Often, a nonengineer envisions a need for the software and
approaches a company or individual who can implement it.

Requirement development and analysis
Once you have a product concept, the product requirements must be
outlined. Project managers, stakeholders, and clients (users) meet to
discuss and formalize what the software system must do to satisfy every-
one. Of course, users will want the software to do everything under the
sun. Project managers will temper this expectation based on the avail-
able resources (for example, programmers), estimated development
times, and costs. Other stakeholders might include venture capitalists
(others financing the project), regulatory agencies (for example, the
Nuclear Regulatory Commission if you’re developing software for a
nuclear reactor), and marketing personnel who might provide input on
the design to make it saleable.

By meeting, discussing, negotiating, and so on, the interested par-
ties develop requirements based on questions like the following:

• For whom is the system intended?

• What inputs should be provided to the system?

• What output should the system produce (and in what format)?

• What types of calculations will be involved?

• If there is a video display, what screen layouts should the system use?

• What are the expected response times between input and output?

From this discussion, the developers will put together the System
Requirements Specification (SyRS) document, which specifies all the
major requirements for hardware, software, and so on. Then the
program management and system analysts use the SyRS to produce
a Software Requirements Specification (SRS) document,1 which is the

1. Depending on the system, they might also produce a Hardware Requirements Specification
(HRS) document, and other documents as well, all of which are outside the scope of
this book.

Software Development Models 41

end result of this phase. As a rule, the SRS is for internal consump-
tion only, used by the software development team, whereas the SyRS
is an external document for customer reference. The SRS extracts
all the software requirements from the SyRS and expands on them.
Chapter 10 discusses these two documents in detail (see “The System
Requirements Specification Document” on page 193 and “The
Software Requirements Specification Document” on page 194).

Design
The software design architect (software engineer) uses the software
requirements from the SRS to prepare the Software Design Description
(SDD). The SDD provides some combination, but not necessarily all,
of the following items:

• A system overview

• Design goals

• The data (via a data dictionary) and databases used

• A data flow (perhaps using data flow diagrams)

• An interface design (how the software interacts with other software
and the software’s users)

• Any standards that must be followed

• Resource requirements (for example, memory, CPU cycles, and
disk capacity)

• Performance requirements

• Security requirements

See Chapter 11 for further details on the contents of the SDD. The
design documentation becomes the input for the next phase, coding.

Coding
Coding—writing the actual software—is the step most familiar and fun
to software engineers. A software engineer uses the SDD to write the
software. WGC5: Great Coding will be dedicated to this phase.

Testing
In this phase, the code is tested against the SRS to ensure the product
solves the problems listed in the requirements. There are several com-
ponents in this phase, including:

Unit testing Checks the individual statements and modules in the
program to verify that they behave as expected. This actually occurs
during coding but logically belongs in the testing phase.

Integration testing Verifies that the individual subsystems in the soft-
ware work well together. This also occurs during the coding phase, usu-
ally toward the end.

42 Chapter 3

System testing Validates the implementation; that is, it shows that the
software correctly implements the SRS.

Acceptance testing Demonstrates to the customer that the software is
suitable for its intended purpose.

WGC6: Testing, Debugging, and Quality Assurance will cover the test-
ing phase in detail. Chapter 12 describes the software test case and soft-
ware test procedure documents you’ll create to guide testing.

Deployment
The software product is delivered to the customer(s) for their use.

Maintenance
Once customers begin using the software, chances are fairly high that
they’ll discover defects and request new functionality. During this time,
the software engineers might fix the defects or add the new enhance-
ments, and then deploy new versions of the software to the customer(s).

Retirement
Eventually in some software’s life, development will cease, perhaps
because the development organization decides to no longer sup-
port or work on it, it is replaced by a different version, the company
making it goes out of business, or the hardware on which it runs
becomes obsolete.

3.2 The Software Development Model
A software development model describes how all the phases of the SDLC com-
bine in a software project. Different models are suitable for different cir-
cumstances: some emphasize certain phases and deemphasize others, some
repeat various phases throughout the development process, and others skip
some phases entirely.

There are eight well-respected software development models and doz-
ens, if not hundreds, of variations of these eight models in use today. Why
don’t developers just pick one popular model and use it for everything? The
reason, as noted in Chapter 1, is that practices that work well for individuals
or small teams don’t scale up well to large teams. Likewise, techniques that
work well for large projects rarely scale down well for small projects. This
book will focus on techniques that work well for individuals, but great pro-
grammers must be able to work within all design processes if they want to
be great programmers on projects of all sizes.

In this chapter I’ll describe the eight major software models—their
advantages, disadvantages, and how to apply them appropriately. However,
in practice, none of these models can be followed blindly or expected to
guarantee a successful project. This chapter also discusses what great pro-
grammers can do to work around the limitations of a model forced on them
and still produce great code.

Software Development Models 43

3.2.1 The Informal Model
The Informal model describes software development with minimal process or
discipline: no formal design, no formal testing, and a lack of project manage-
ment. This model was originally known as hacking2 and those who engaged
in it were known as hackers. However, as those original hackers grew up and
gained experience, education, and skills, they proudly retained the name
“hacker,” so the term no longer refers to an inexperienced or unskilled pro-
grammer.3 I’ll still use the term hacking to mean an informal coding process,
but I’ll use informal coder to describe a person who engages in hacking. This
will avoid confusion with differing definitions of hacker.

In the Informal model, the programmer moves directly from product
conceptualization to coding, “hacking away” at the program until some-
thing is working (often not well), rather than designing a robust, flexible,
readable program.

Hacking has a few advantages: it’s fun, done independently (though
certainly many people participate in group events like hackathons), and the
programmer is responsible for most design decisions and for moving the
project along, so they can often get something working faster than could a
software engineer following a formal development process.

The problem with the Informal model is that its conscious lack of
design may lead to an invalid system that doesn’t do what end users want,
because their requests weren’t considered in the requirements and software
specifications—if those even exist—and often the software isn’t tested or
documented, which makes it difficult for anyone other than the original
programmer to use it.

Thus, the Informal model works for small, throwaway programs
intended for use only by the programmer who coded them. For such proj-
ects, it’s far cheaper and more efficient to bang out a couple hundred lines
of code for limited and careful use than to go through the full software
development process. (Unfortunately, some “throwaway” programs can
take on a life of their own and become popular once users discover them.
Should this happen, the program should be redesigned and reimplemented
so it can be maintained properly.)

Hacking is also useful for developing small prototypes, especially
screen displays intended to demonstrate a program in development to a
prospective customer. One sticky problem here, though, is that clients and
managers may look at the prototype and assume that a large amount of
code is already in place, meaning they may push to further develop the
hacked code rather than start the development process from the beginning,
which will lead to problems down the road.

2. The original definition of hacking, from https://www.merriam-webster.com, is “a person who is
inexperienced or unskilled at a particular activity; e.g., a tennis hacker.”

3. Of course, along the way the term hacker was also redefined to describe someone engaged
in criminal activities on computers. We’ll ignore that definition here.

https://www.merriam-webster.com

44 Chapter 3

3.2.2 The Waterfall Model
The Waterfall model is the granddaddy of software development models,
and most models are a variation of it. In the Waterfall model, each step of
the SDLC is executed sequentially from beginning to end (see Figure 3-1),
with the output from each step forming the input for the next step.

System requirements

Software requirements

Software design

Coding

Testing

Maintenance

Figure 3-1: The Waterfall model

You begin the Waterfall model by producing the SyRS. Once the system
requirements are specified, you produce the SRS from the SyRS. When the
software requirements are specified, you produce the SDD from the SRS.
You then produce source code from the SDD and test the software. Then
you deploy and maintain the software. Everything in the SLDC happens in
that order, without deviation.

As the original SDLC model, the Waterfall model is usually very simple
to understand and apply to a software development project because each
step is distinct, with well-understood inputs and deliverables. It’s also rela-
tively easy to review work performed using this model and verify that the
project is on track.

However, the Waterfall model suffers from some huge problems. The
most important is that it assumes that you perform each step perfectly
before progressing to the next step, and that you’ll find errors early in one
step and make repairs before proceeding. In reality, this is rarely the case:
defects in the requirements or design phases are typically not caught until
testing or deployment. At that point, it can be very expensive to back up
through the system and correct everything.

Another disadvantage is that the Waterfall model doesn’t allow you
to produce a working system for customers to review until very late in the
development process. I can’t count the number of times I’ve shown a client
static screenshots or diagrams of how code would work, received their buy-
in, and then had them reject the running result. That major disconnect in
expectations could have been avoided had I produced a working prototype

Software Development Models 45

of the code that would have allowed customers to experiment with certain
aspects of the system during the requirements phase.

Ultimately, this model is very risky. Unless you can exactly specify what
the system will do before you start the process, the Waterfall model is likely
inappropriate for your project.

The Waterfall model is appropriate for small projects of, say, less than
a few tens of thousands of code lines involving only a couple of program-
mers; for very large projects (because nothing else works at that level); or
when the current project is similar to a previous product that employed the
Waterfall model during development (so you can use the existing documen-
tation as a template).

3.2.3 The V Model
The V model, shown in Figure 3-2, follows the same basic steps as the
Waterfall model but emphasizes the development of testing criteria early
in the development life cycle. The V model is organized so the earlier steps,
requirements and design, produce two sets of outputs: one for the step that
follows and one for a parallel step during the testing phase.

Conceptualization

Requirements
and architecture

Design

Coding/implementation

Unit and
integration testing

System
testing and

verification/validation

Operation and
maintenance

Figure 3-2: The V model

In Figure 3-2, the items on the left side of the V link straight across to
the items on the right side: at each design stage, the programmer is think-
ing about how to test and use the concepts being modeled. For example,
during the requirements and architecture phase, the system architect designs
the system acceptance tests that will verify that the software correctly imple-
ments all the requirements. During the design phase, the system designer
implements the software’s unit and integration tests.

46 Chapter 3

The big difference here from the Waterfall model is that the engineer
implements test cases and procedures early on, so by the time coding
begins, the software engineer can use existing test procedures to verify
the code’s behavior during development. Known as test-driven development
(TDD), in this approach the programmer constantly runs tests throughout
the development process. Continuous testing allows you to find bugs much
sooner and makes it cheaper and faster to correct them.

That said, the V model is far from perfect. Like its parent, the Waterfall
model, the V model is too simple, and requires too much perfection in the
early stages in order to prevent disasters in the later stages. For example, a
defect in the requirements and architecture phase might not surface until
system testing and validation, resulting in expensive backtracking through
the development. For this reason, the V model doesn’t work well for projects
whose requirements are subject to change throughout a product’s lifetime.

The model often encourages verification at the expense of validation.
Verification ensures that a product meets certain requirements (such as its
software requirements). It’s easy to develop tests that show the software is
fulfilling requirements laid out in the SRS and SyRS. In contrast, validation
shows that the product meets the needs of its end users. Being more open-
ended, validation is more difficult to achieve.

It’s difficult, for example, to test that the software doesn’t crash because
it tries to process a NULL pointer. For this reason, validation tests are often
entirely missing in the test procedures. Most test cases are requirements-
driven, and rarely are there requirements like “no divisions by zero in this
section of code” or “no memory leaks in this module” (these are known as
requirement gaps; coming up with test cases without any requirements to base
them on can be challenging, especially for novices).

3.2.4 The Iterative Model
Sequential models like Waterfall and V rely on the assumption that speci-
fication, requirements, and design are all perfect before coding occurs,
meaning users won’t discover design problems until the software is first
deployed. By then it’s often too costly (or too late) to repair the design, cor-
rect the software, and test it. The Iterative model overcomes this problem by
taking multiple passes over the development model.

The hallmark of the Iterative model is user feedback. The system
designers start with a general idea of the product from the users and stake-
holders and create a minimal set of requirements and design documenta-
tion. The coders implement and test this minimal implementation. The
users then play with this implementation and provide feedback. The system
designers produce a new set of requirements and designs based on the user
feedback, and the programmers implement and test the changes. Finally,
users are given a second version for their evaluation. This process repeats
until the users are satisfied or the software meets the original goals.

Software Development Models 47

One big advantage of the Iterative model is that it works reasonably well
when it’s difficult to completely specify the software’s behavior at the begin-
ning of the development cycle. System architects can work from a general
road map to design enough of the system for end users to play with and
determine which new features are necessary. This avoids spending consider-
able effort producing features end users want implemented differently or
don’t want at all.

Another advantage is that the Iterative model reduces time to market risk.
To get the product to market quickly, you decide on a subset of features the
final product will have and develop those first, get the product working (in
a minimalist fashion), and ship this minimum viable product (MVP). Then,
you add functionality to each new iteration to produce a new enhanced ver-
sion of the product.

Advantages of the Iterative model include:

•	 You can achieve minimal functionality very rapidly.

•	 Managing risk is easier than in sequential models because you don’t
have to complete the entire program to determine that it won’t do the
job properly.

•	 Managing the project as it progresses (toward completion) is easier and
more obvious than with sequential models.

•	 Changing requirements is supported.

•	 Changing requirements costs less.

•	 Parallel development is possible with two (or more) sets of teams work-
ing on alternate versions.

Here are some disadvantages of the Iterative model:

•	 Managing the project is more work.

•	 It doesn’t scale down to smaller projects very well.

•	 It might take more resources (especially if parallel development
takes place).

•	 Defining the iterations might require a “grander” road map of the sys-
tem (that is, going back to specifying all the requirements before devel-
opment starts).

•	 There might be no limit on the number of iterations; hence, it could
be impossible to predict when the project will be complete.

48 Chapter 3

3.2.5 The Spiral Model
The Spiral model is also an iterative model that repeats four phases: plan-
ning, design, evaluation/risk analysis, and construction (see Figure 3-3).

Progress

Cumulative cost

Concept of
requirements

Concept of
operation

Requirements
plan

Requirements

Verification
and
validation

Development
plan

Proto Prototype 2
Operational
prototype

Detailed
design

Code

Integration

Test

Implementation

Release

Draft

Verification and
validationTest plan

Plan the
next iteration

Determine
objectives

Identify alternatives
and resolve risk

Construction

Risk
analysis

Risk
analysis

Choose
alternatives

Choose
alternatives

Figure 3-3: The Spiral model

The Spiral model is heavily risk-based: each iteration assesses the risks
of going forward with the project. Management chooses which features to
add and omit and which approaches to take by analyzing the risk (that is,
the likelihood of failure).

The Spiral is often called a model generator or meta model because you can
use further development models—the same type or a different one—on
each spiral. The drawback is that the resulting model becomes specific to
that project, making it difficult to apply to others.

One key advantage of the Spiral model is that it involves end users with
the software early and continuously during development by producing
working prototypes on a regular basis. The end user can play with these

Software Development Models 49

prototypes, determine if development is on the right track, and redirect the
development process if needed. This addresses one of the great shortcom-
ings of the Waterfall and V models.

A drawback of this approach is that it rewards “ just good enough” design.
If the code can be written “ just fast enough” or “ just small enough,” further
optimization is delayed until a later phase when it’s necessary. Similarly,
testing is done only to a level sufficient to achieve a minimal amount of
confidence in the code. Additional testing is considered a waste of time,
money, and resources. The Spiral model often leads to compromises in the
early work, particularly when it’s managed poorly, which leads to problems
later in development.

Another downside is that the Spiral model increases management com-
plexity. This model is complex, so project management requires risk analysis
experts. Finding managers and engineers with this expertise is difficult, and
substituting someone without appropriate experience is usually a disaster.

The Spiral model is suitable only for large, risky projects. The effort
(especially with respect to documentation) expended is hard to justify for
low-risk projects. Even on larger projects, the Spiral model might cycle
indefinitely, never producing the final product, or the budget might be
completely consumed while development is still on an intermediate spiral.

Another concern is that engineers spend considerable time develop-
ing prototypes and other code needed for intermediate versions that don’t
appear in the final software release, meaning the Spiral model often costs
more than developing software with other methodologies.

Nevertheless, the Spiral model offers some big advantages:

•	 The requirements don’t need to be fully specified before the project
starts; the model is ideal for projects with changing requirements.

•	 It produces working code early in the development cycle.

•	 It works extremely well with rapid prototyping (see the next section,
“The Rapid Application Development Model”), affording customers
and other stakeholders a good level of comfort with the application
early in its development.

•	 Development can be divided up and the riskier portions can be created
early, reducing the overall development risk.

•	 Because requirements can be created as they’re discovered, they are
more accurate.

•	 As in the Iterative model, functionality can be spread out over time,
enabling the addition of new features as time/budget allows without
impacting the initial release.

3.2.6 The Rapid Application Development Model
Like the Spiral model, the Rapid Application Development (RAD) model
emphasizes continuous interaction with users during development. Devised
by James Martin, a researcher at IBM in the 1990s, the original RAD model
divides software development into four phases (see Figure 3-4).

50 Chapter 3

Requirements
planning

Cutover

ConstructionUser design

Figure 3-4: The RAD model

Requirements planning A project’s stakeholders come together to dis-
cuss business needs, scope, constraints, and system requirements.

User design End users interact with the development team to pro-
duce models and prototypes for the system (detailing inputs, outputs,
and computations), typically using computer-aided software engineering
(CASE) tools.

Construction The development team builds the software using tools
to automatically generate code from the requirements and user design.
Users remain involved during this phase, suggesting changes as the UI
comes to life.

Cutover The software is deployed.

RAD is more lightweight than Spiral, with fewer risk mitigation tech-
niques and fairly light documentation needs, meaning it works well for
small to medium-sized projects. Unlike other models, traditional RAD
heavily depends on very-high-level languages (VHLLs), user interface
modeling tools, complex libraries and frameworks of existing code, and
CASE tools to automatically generate code from requirements and user
interface models. In general, RAD is practical only when there are CASE
tools available for the specific project problems. Today, many generic lan-
guage systems support a high degree of automatic code generation, includ-
ing Microsoft’s Visual Basic and Visual Studio packages, Apple’s Xcode/
Interface Builder package, Free Pascal/Lazarus, and Embarcadero’s Delphi
(Object Pascal) package.

The advantages of the RAD model are similar to those of the Spiral model:

•	 The customer is involved with the product throughout development,
resulting in less risk.

•	 RAD reduces development time because less time is spent writing docu-
mentation that must be rewritten later when the specifications inevita-
bly change.

Software Development Models 51

•	 The RAD model encourages the fast delivery of working code, and test-
ing (and defect mitigation) is more efficient. Developers spend more
time running the code, testing for problems.

Like any development model, RAD has some disadvantages as well:

•	 RAD requires Grand Master–level software engineers who have the
experience to short-circuit much of the heavyweight development
process found in other models. Such resources are scarce in many
organizations.

•	 RAD requires continuous interaction with end users, which may be
limited on many projects.

•	 RAD may be difficult to schedule and control. Managers who live and
die by Microsoft Project will find it difficult to deal with the uncertain-
ties in the RAD model.

•	 Unless carefully managed, RAD can rapidly devolve into hacking.
Software engineers might forgo formal design methodologies and just
hack away at the code to make changes. This can be especially trouble-
some when end users start making suggestions “ just to see what the
result will look like.”4

•	 RAD doesn’t work well for large system development.

3.2.7 The Incremental Model
The Incremental model is very similar to the Iterative model, with the
main difference being in planning and design. In the Iterative model, the
system design is created first and software engineers implement various
pieces at each iteration; the initial design defines only the first piece of
working code. Once the program is running, new features are designed
and added incrementally.

The Incremental model emphasizes the “keep the code working” con-
cept. When a base product is operational, the development team adds a
minimal amount of new functionality at each iteration, and the software
is tested and kept functional. By limiting new features, the team can more
easily locate and solve development problems.

The advantage of the Incremental model is that you always maintain
a working product. The model also comes naturally to programmers,
especially on small projects. The disadvantage is that it doesn’t consider
the product’s full design in the beginning. Often, new features are simply
hacked on to the existing design. This could result in problems down the
road when end users request features that were never considered in the
original design. The Incremental model is sufficient for small projects but

4. I was once tasked with setting up user interface colors on an embedded application. The
client requested one set of colors. A week later I showed up with their desired changes, and
they didn’t like them. So, we tried a second set. They didn’t like those. Then a third set, then
a fourth set. A month later they decided the initial color set was the best. In the meantime,
the project had lost a month.

52 Chapter 3

doesn’t scale well to large projects, where the Iterative model might be a
better choice.

3.3 Software Development Methodologies
A software development model describes what work is done but leaves consider-
able leeway as to how it is done. This section looks at some development meth-
odologies and processes you can apply to many of the models just discussed.

The Belitsoft company blog5 describes software methodology as follows:

A system of principles, as well as a set of ideas, concepts, methods,
techniques, and tools that define the style of software development.

Thus, we can reduce the concept of software methodology to one word:
style. There are various styles you can use when developing software.

3.3.1 Traditional (Predictive) Methodologies
The traditional methodology is predictive, meaning that management pre-
dicts which activities will take place, when they will take place, and who will
do them. These methodologies work hand in hand with linear/sequential
development models, like the Waterfall or V model. You could use predic-
tion with other models, but those are designed to purposely avoid the prob-
lems that predictive methodologies are prone to.

Predictive methodologies fail when it’s impossible to predict changes in
future requirements, key personnel, or economic conditions (for example,
did the company receive the expected additional financing at some mile-
stone in the project?).

3.3.2 Adaptive Methodologies
The Spiral, RAD, Incremental, and Iterative models came about specifi-
cally because it’s usually difficult to correctly predict requirements for a
large software system. Adaptive methodologies handle these unpredictable
changes in the workflow and emphasize short-term planning. After all, if
you’re planning only 30 days in advance on a large project, the worst that
can happen is you have to replan for the next 30 days; this is nowhere near
the disaster you’d face in the middle of a large Waterfall/Predictive-based
project, when a change would force you to resync the entire project.

3.3.3 Agile
Agile is an incremental methodology that focuses on customer collabo-
ration, short development iterations that respond to changes quickly,
working software, and support for individuals’ contributions and interac-
tions. The Agile methodology was created as an umbrella to cover several

5. Sadly, the link to this quote is no longer active. Ah, the joys of the internet. Nevertheless,
this is one of the best, most concise definitions I’ve found that doesn’t try to promote a par-
ticular methodology.

Software Development Models 53

different “lightweight” (that is, nonpredictive) methodologies, including
Extreme Programming, Scrum, Dynamic System Development Model
(DSDM), Adaptive Software Development (ASD), Crystal, Feature-Driven
Development (FDD), Pragmatic Programming, and others. Most of these
methodologies are considered “Agile,” although they often cover different
aspects of the software development process. Agile has largely proven itself
on real-world projects, making it one of the currently most popular meth-
odologies, so we’ll dedicate a fair amount of space to it here.

N O T E For a detailed list of the principles behind Agile, see the Agile Manifesto at
http://agilemanifesto.org/.

3.3.3.1 Agile Is Incremental in Nature

Agile development is incremental, iterative, and evolutionary in nature, and
so works best with Incremental or Iterative models (using Spiral or RAD is
also possible). A project is broken down into tasks that a team can complete
in one to four weeks, which is often called a sprint. During each sprint, the
development team plans, creates requirements, designs, codes, unit-tests,
and acceptance-tests the software with the new features.

At the end of the sprint, the deliverable is a working piece of software
that demonstrates the new functionality with as few defects as possible.

3.3.3.2 Agile Requires Face-to-Face Communication

Throughout the sprint, a customer representative must be available to
answer questions that arise. Without this, the development process can eas-
ily veer off in the wrong direction or get bogged down while the team waits
for responses.

Efficient communication in Agile requires a face-to-face conversation.6
When a developer demonstrates a product directly to the customer, that
customer often raises questions that would never come up in an email or if
they’d just tried the feature on their own. Sometimes, offhand remarks in a
demo can result in a burst of divergent thinking that would never happen if
the conversation weren’t in person.

3.3.3.3 Agile Is Focused on Quality

Agile emphasizes various quality-enhancing techniques, such as automated
unit testing, TDD, design patterns, pair programming, code refactoring,
and other well-known best software practices. The idea is to produce code
with as few defects as possible (during initial design and coding).

Automated unit testing creates a test framework that a developer can auto-
matically run to verify that the software runs correctly. It’s also important
for regression testing, which tests to ensure the code still works properly after

6. Note that although face-to-face communication is more efficient, these meetings can also
have a negative impact on engineers’ productivity. See “Focus and Eliminate Distractions” on
page 34 for more details.

54 Chapter 3

new features have been added. Manually running regression tests is too
labor-intensive, so it generally won’t happen.

In TDD, developers write automated tests prior to writing the code,
which means that the test will initially fail. The developer runs the tests,
picks a test that fails, writes the software to fix that failure, and then reruns
the tests. As soon as a test succeeds, the developer moves on to the next fail-
ing test. Successfully eliminating all the failed tests verifies that the software
meets the requirements.

Pair programming, one of Agile’s more controversial practices, involves
two programmers working on each section of code together. One program-
mer enters the code while the other watches, catching mistakes onscreen,
offering design tips, providing quality control, and keeping the first pro-
grammer focused on the project.

3.3.3.4 Agile Sprints (Iterations) Are Short

Agile methodologies work best when the iterations are short—from one
week to (at most) a couple of months. This is a nod to the old adage “If it
weren’t for the last minute, nothing would ever get done.” By keeping itera-
tions short, software engineers are always working during the last minute,
reducing fatigue and procrastination and increasing project focus.

Hand in hand with short sprints are short feedback cycles. A common
Agile feature is a brief daily stand-up meeting, typically no more than
15 minutes,7 where programmers concisely describe what they’re working
on, what they’re stuck on, and what they’ve finished. This allows project
management to rearrange resources and provide help if the schedule is slip-
ping. The meetings catch any problems early rather than wasting several
weeks before the issue comes to project management’s attention.

3.3.3.5 Agile Deemphasizes Heavyweight Documentation

One of the Waterfall model’s biggest problems is that it produces reams
of documentation that is never again read. Overly comprehensive, heavy-
weight documentation has a few problems:

•	 Documentation must be maintained. Whenever a change is made in
the software, the documentation must be updated. Changes in one
document have to be reflected in many other documents, increasing
workload.

•	 Many documents are difficult to write prior to the code. More often
than not, such documents are updated after the code is written and then
never read again (a waste of time and money).

•	 An iterative development process quickly destroys coherence between
code and documentation. Therefore, properly maintaining the docu-
mentation at each iteration doesn’t fit well with the Agile methodology.

7. They’re called “stand-up” meetings because everyone who can is required to stand up.
This makes everyone physically uncomfortable, which results in shorter meetings.

Software Development Models 55

Agile emphasizes just barely good enough (JBGE) documentation—that is,
enough documentation so the next programmer can pick up where you left
off, but no more (in fact, Agile emphasizes JBGE for most concepts, includ-
ing design/modeling).

Many books have been written on Agile development (see “For More
Information” on page 69). This is not one of them, but we’ll look at a
couple of the different methodologies under the Agile umbrella. These
methodologies are not mutually exclusive; two or more can be combined
and used on the same project.

3.3.4 Extreme Programming
Extreme Programming (XP) is perhaps the most widely used Agile meth-
odology. It aims to streamline development practices and processes to
deliver working software that provides the desired feature set without
unnecessary extras.

XP is guided by five values:

Communication Good communication between the customer and the
team, among team members, and between the team and management
is essential for success.

Simplicity XP strives to produce the simplest system today, even if it
costs more to extend it tomorrow, rather than producing a complicated
product that implements features that might never be used.

Feedback XP depends upon continuous feedback: unit and functional
tests provide programmers with feedback when they make changes to
their code; the customer provides immediate feedback when a new
feature is added; and project management tracks the development
schedule, providing feedback about estimates.

Respect XP requires that team members respect one another. A pro-
grammer will never commit a change to the code base that breaks the
compilation or existing unit tests (or do anything else that will delay
the work of other team members).

Courage XP’s rules and practices don’t line up with traditional soft-
ware development practices. XP requires the commitment of resources
(such as an “always available” customer representative or pair program-
mers) that can be expensive or difficult to justify in older methodolo-
gies. Some XP policies like “refactor early, refactor often” run counter
to common practice such as “if it ain’t broke, don’t fix it.” Without the
courage to fully implement its extreme policies, XP becomes less disci-
plined and can devolve into hacking.

3.3.4.1 The XP Team

Paramount to the XP process is the XP whole team concept: all members of
the team work together to produce the final product. Team members are
not specialists in one field, but often take on different responsibilities or

56 Chapter 3

roles, and different team members might perform the same role at different
times. An XP team fills the following roles with various team members.

A customer representative
The customer representative is responsible for keeping the project on
the right track, providing validation, writing user stories (requirements,
features, and use cases) and functional tests, and deciding the priorities
(release planning) for new functionality. The customer representative
must be available whenever the team needs them.

Not having an available customer representative is one of the larg-
est impediments to successful XP projects. Without continuous feed-
back and direction from the customer, XP degenerates into hacking.
XP doesn’t rely on requirements documentation; instead, the represen-
tative is a “living version” of that documentation.

Programmers
Programmers have several responsibilities on an XP team: working with
the customer representative to produce user stories, estimating how
resources should be allocated for those stories, estimating timelines
and costs to implement stories, writing unit tests, and writing the code
to implement the stories.

Testers
Testers (programmers who implement or modify a given unit run unit
tests) run the functional tests. Often, at least one of the testers is the
customer representative.

Coach
The coach is the team leader, typically the lead programmer, whose
job is to make sure the project succeeds. The coach ensures the team
has the appropriate work environment; fosters good communication;
shields the team from the rest of the organization by, for example, act-
ing as a liaison to upper management; helps team members maintain
self-discipline; and ensures the team maintains the XP process. When
a programmer is having difficulty, coaches provide resources to help
them overcome the problem.

Manager/tracker
The XP project manager is responsible for scheduling meetings and
recording their results. The tracker is often, but not always, the same as
the manager, and is responsible for tracking the project’s progress and
determining whether the current iteration’s schedule can be met. To do
so, the tracker checks with each programmer a couple of times a week.

Different XP configurations often include additional team roles, such
as analysts, designers, doomsayers, and so on. Because of the small size of
XP teams (typically around 15 members) and the fact that (paired) pro-
grammers constitute the majority of the team, most roles are shared. See
“For More Information” on page 69 for additional references.

Software Development Models 57

3.3.4.2 XP Software Development Activities

XP uses four basic software development activities: coding, testing, listen-
ing, and designing.

Coding
XP considers code to be the only important output of the development
process. Contrary to the “think first, code later” philosophy of serial
models like Waterfall, XP programmers start writing code at the begin-
ning of the software development cycle. After all, “at the end of the day,
there has to be a working program.”8

XP programmers don’t immediately start coding, but are given a
list of small and simple features to implement. They work on a basic
design for a particular feature and then code that feature and make
sure it’s working before expanding in increments, with each increment
working correctly to ensure that the main body of code is always run-
ning. Programmers make only small changes to the project before inte-
grating those changes into the larger system. XP minimizes all noncode
output, such as documentation, because there is very little benefit to it.

Testing
XP emphasizes TDD using automated unit and functional tests. This
allows XP engineers to develop the product right (verification via auto-
mated unit tests) and develop the right product (validation via functional
tests). WGC6: Testing, Debugging, and Quality Assurance will deal more
exclusively with testing, so we won’t go too far into it here; just know
that TDD is very important to the XP process because it ensures that
the system is always working.

Testing in XP is always automated. If adding one feature breaks an
unrelated feature for some reason, it’s critical to immediately catch that.
By running a full set of unit (and functional) tests when adding a new
feature, you can ensure that your new code doesn’t cause a regression.

Listening
XP developers communicate almost constantly with their customers to
ensure they’re developing the right product (validation).

XP is a change-driven process, meaning it expects changes in require-
ments, resources, technology, and performance, based on feedback
from customers as they test the product throughout the process.

Designing
Design occurs constantly throughout the XP process—during release
planning, iteration planning, refactoring, and so on. This focus pre-
vents XP from devolving into hacking.

8. Wilfrid Hutagalung, “Extreme Programming,” http://www.umsl.edu/~sauterv/analysis
/f06Papers/Hutagalung/.

http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/
http://www.umsl.edu/~sauterv/analysis/f06Papers/Hutagalung/

58 Chapter 3

3.3.4.3 The XP Process

Each cycle of XP produces a software release. Frequent releases ensure con-
stant feedback from the customer. Each cycle consists of a couple of fixed-
period blocks of time known as iterations (with no more than a couple of
weeks for each iteration). Cycles, as shown in Figure 3-5, are necessary for
planning; the middle box in this figure represents one or more iterations.

Planning game

Exploration Release
planning

ImplementationIteration
planning

Functional
testing

Release

Iteration

Next iteration

Release done

Figure 3-5: An XP cycle

In the planning game, the XP team decides which features to imple-
ment, estimates their costs, and plans the release. During the exploration
step, the customer defines the feature set and developers estimate costs and
time requirements for those features. The next section (under “User sto-
ries”) describes the mechanism customers use to specify features.

During release planning, the customer negotiates with the developers
on the features to implement in the given iteration. The developers commit
to the release plan, and engineers are assigned various tasks. At the end of
release planning, the process enters the steering phase, during which the
customer ensures that the project remains on track.

After the overall plan is determined, the process for the current release
enters an inner loop consisting of three steps: iteration planning, imple-
mentation, and functional testing. Iteration planning is the planning game
scaled down for a single feature.

The implementation step is the coding and unit testing of the feature.
The developer writes a set of unit tests, implements just enough code to
make the unit tests succeed, refactors the code as necessary, and integrates
the changes into the common code base.

During the last step of the iteration, customers perform functional test-
ing. Then the process repeats for the next iteration, or a release is produced
if all iterations are completed for the current release.

Software Development Models 59

3.3.4.4 XP Software Development Rules

XP implements the four software development activities—coding, testing,
listening, and designing—using 12 simple rules:9

•	 User stories (planning game)

•	 Small releases (building blocks)

•	 Metaphors (standardized naming schemes)

•	 Collective ownership

•	 Coding standard

•	 Simple design

•	 Refactoring

•	 Testing

•	 Pair programming

•	 Onsite customer

•	 Continuous integration

•	 Sustainable pace

Each rule is described next, along with its advantages and
disadvantages.

User stories
User stories describe a simplified set of use cases, written by the cus-
tomer, that define the system’s requirements. The project team uses
this set, which should provide only enough detail to estimate how long
it will take to implement the feature, to estimate the cost and plan the
system’s development.

At the beginning of a project, the customer generates 50 to 100
user stories to use during a release planning session. Then the cus-
tomer and the team negotiate which features the team will implement
in the next release. The customer, possibly with help from a developer,
also creates functional tests from the user stories.

Small releases
Once a piece of software is functional, the team adds one feature at a
time. Other features are not added until that new feature is written,
tested, debugged, and incorporated into the main build. The team cre-
ates a new build of the system for each feature it adds.

Metaphors
XP projects revolve around a story about the system’s operation that all
stakeholders can understand. Metaphors are naming conventions used
within the software to ensure that operations are obvious to everyone;

9. Actually, there are 28 different XP rules, but they can be simplified to these 12.

60 Chapter 3

they replace a complex business process name with a simple name. For
example, “train conductor” might describe how a data acquisition sys-
tem operates.

Collective ownership
In XP, the entire team owns and maintains all source code. At any time,
any team member can check out code and modify it. During reviews, no
one is singled out for coding mistakes. Collective code ownership pre-
vents delays and means one person’s absence doesn’t hinder progress.

Coding standard
All XP members must adhere to common coding standards concern-
ing styles and formats. The team can develop the standards or they can
come from an outside source, but everyone must follow them. Coding
standards make the system easier to read and understand, especially
for newcomers getting up to speed with the project, and help the team
avoid having to waste time later refactoring the code to bring it into
compliance.

Simple design
The simplest design that meets all the requirements is always chosen. At
no time does the design anticipate features that have yet to be added—
for example, adding “hooks” or application programming interfaces
(APIs) that allow future code to interface with the current code. Simple
design means just enough to get the current job done. The simplest code will
pass all the tests for the current iteration. This runs counter to tradi-
tional software engineering, where software is designed as generically
as possible to handle any future enhancements.

Refactoring
Refactoring code is the process of restructuring or rewriting the code
without changing its external behavior, to make the code simpler, more
readable, or better by some other improvement metric.

WGC5: Great Coding will go into refactoring in much greater detail.
See “For More Information” on page 69 for additional references on
refactoring.

Testing
XP uses a TDD methodology, as discussed in “XP Software Development
Activities” on page 57.

Pair programming
In pair programming, one programmer (the driver) enters code, and
the second programmer (the navigator) reviews each line of code as it’s
written. The two engineers change roles throughout and pairs are often
created and broken apart.

It’s often difficult to convince management that two program-
mers working together on the same code are more productive than

Software Development Models 61

they are working separately on different pieces of code. XP evangelists
argue that because the navigator is constantly reviewing the driver’s
code, a separate review session isn’t needed, among other benefits:10

Economic benefits Pairs spend about 15 percent more time on pro-
grams than individuals, but the code has 15 percent fewer defects.11

Design quality Two programmers produce a better design because
they bring more experiences to the project. They think about the prob-
lem in different ways, and they devise the solution differently based on
their driver/navigator roles. A better design means the project requires
less backtracking and redesign throughout its life cycle.

Satisfaction A majority of programmers enjoy working in pairs rather
than alone. They feel more confident in their work and, as a result, pro-
duce better code.

Learning Pair programming allows pair members to learn from
each other, increasing their respective skills. This cannot happen in
solo programming.

Team building and communication Team members share prob-
lems and solutions, which helps spread the intellectual property (IP)
around and makes it easier for others to work on a given code section.

Overall, the research on the effectiveness of pair programming is
a mixed bag. Most published papers from industry sources talk about
how well pair programming has worked, but papers describing its fail-
ure in industry (versus academic) settings generally don’t get published.
Research by Kim Man Lui and Andreas Hofer considers three types
of pairings in pair programming: expert–expert, novice–novice, and
expert–novice.

Expert–expert pairing can produce effective results, but two expert
programmers are likely to use “tried and true” methods without intro-
ducing any new insight, meaning the effectiveness of this pairing versus
two solo expert programmers is questionable.

Novice–novice pairing is often more effective than having the part-
ners work on solo projects. Novices will have greatly varying back-
grounds and experiences, and their knowledge is more likely to be
complementary than overlapping (as is the case for expert pairs). Two
novices working together are likely to work faster on two projects seri-
ally rather than they would working independently on their own project
in parallel.

Expert–novice pairing is commonly called mentoring. Many XP adher-
ents don’t consider this to be pair programming, but mentoring is an
efficient way to get a junior programmer up to speed with the code
base. In mentoring, it’s best to have the novice act as the driver so they
can interact with and learn from the code.

10. http://en.wikipedia.org/wiki/Pair_programming

11. http://collaboration.csc.ncsu.edu/laurie/Papers/dissertation.pdf and https://collaboration.csc.ncsu
.edu/laurie/Papers/ieeeSoftware.PDF

https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF
https://collaboration.csc.ncsu.edu/laurie/Papers/ieeeSoftware.PDF

62 Chapter 3

GUIDE L INE S FOR SIMPL E DE SIGN

Common phrases associated with simple design include:

Don’t repeat yourself (DRY) Duplicate code is complex code.
Once and only once (OAOO) All unique functionality should exist as some
method/procedure in the code and appear only once in the code (this last
point is DRY).
You aren’t gonna need it (YAGNI) Avoid speculative coding. When adding
a feature to your code base, make sure it’s specified by a user story (require-
ment). Don’t add code in anticipation of future requirements.
Limit APIs and (published) interfaces If your code interfaces with other systems
by publishing an API, limiting the number of interfaces to the bare minimum will
make it easier to modify your code in the future (without breaking external code).

Simple design is amazingly difficult to achieve. More often than not, you
accomplish it only by writing complex code and then refactoring it repeatedly
until you’re happy with the result. A few quotes from some famous computer
scientists will help drive this point home:

There are two ways of constructing a software design: one way is to make it so
simple that there are obviously no deficiencies, and the other way is to make it

so complicated that there are no obvious deficiencies.
—C. A. R. Hoare

The cheapest, fastest, and most reliable components are those that aren’t there.
—Gordon Bell

Deleted code is debugged code.
—Jeff Sickle

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart

enough to debug it.
—Brian Kernighan and P. J. Plauger

Any program that tries to be so generalized and configurable that it could han-
dle any kind of task will either fall short of this goal or will be horribly broken.

—Chris Wenham

The cost of adding a feature isn’t just the time it takes to code it. The cost also
includes the addition of an obstacle to future expansion. The trick is to pick the

features that don’t fight each other.
—John Carmack

Simplicity is hard to build, easy to use, and hard to charge for. Complexity is
easy to build, hard to use, and easy to charge for.

—Chris Sacca

Software Development Models 63

Though supporting evidence for pair programming is anecdotal and
essentially unproven, XP depends on pair programming to replace for-
mal code reviews, structured walk-throughs, and—to a limited extent—
design documentation, so it can’t be forgone. As is common in the XP
methodology, certain heavyweight processes like code reviews are often
folded into other activities like pair programming. Trying to eliminate
one rule or subprocess will likely open a gap in the overall methodology.

Not all XP activities are done in pairs. Many nonprogramming
activities are done solo—for example, reading (and writing) documen-
tation, dealing with emails, and doing research on the web—and some
are always done solo, like writing code spikes (throwaway code needed
to test a theory or idea). Ultimately, pair programming is essential for suc-
cessful XP ventures. If a team cannot handle pair programming well, it
should use a different development methodology.

Onsite customer
As noted many times previously, in XP the customer is part of the devel-
opment team and must be available at all times.

The onsite customer rule is probably the most difficult to follow.
Most customers aren’t willing or able to provide this resource. However,
without the continuous availability of a customer representative, the
software could go off track, encounter delays, or regress from previous
working versions. These problems are all solvable, but their solution
destroys the benefits of using XP.

Continuous integration
In a traditional software development system like Waterfall, individual
components of the system, written by different developers, are not tested
together until some big milestone in the project, and the integrated
software may fail spectacularly. The problem is that the unit tests don’t
behave the same as the code that must be integrated with the units, typi-
cally due to communication problems or misunderstood requirements.

There will always be miscommunication and misunderstandings,
but XP makes integration problems easier to solve via continuous integra-
tion. As soon as a new feature is implemented, it’s merged with the main
build and tested. Some tests might fail because a feature has not yet
been implemented, but the entire program is run, testing linkages with
other units in the application. Software builds are created frequently
(several times per day). As a result, you’ll discover integration problems
early when they’re less costly to correct.

Sustainable pace
Numerous studies show that creative people produce their best results
when they’re not overworked. XP dictates a 40-hour workweek for soft-
ware engineers. Sometimes a crisis might arise that requires a small
amount of overtime. But if management keeps its programming team
in constant crisis mode, the quality of the work suffers and the overtime
becomes counterproductive.

64 Chapter 3

3.3.4.5 Other Common Practices

In addition to the previous 12 rules, XP promotes several other common
practices:

Open workspace and collocation
The XP methodology suggests open work areas for the entire team,
who work in pairs at adjacent workstations. Having everyone together
promotes constant communication and keeps the team focused.12
Questions can be quickly asked and answered, and other programmers
can inject comments into a discussion as appropriate.

But open workspaces have their challenges. Some people are more
easily distracted than others. Loud noise and conversations can be very
annoying and break concentration.

Open workspaces are a “best practice” in XP, not an absolute rule.
If this setup doesn’t work for a particular pair, they can use an office or
cubicle and work without distractions.

Retrospectives/debriefings
When a project is complete, the team meets to discuss the successes and
failures, disseminating the information to help improve the next project.

Self-directed teams
A self-directed team works on a project without the usual managerial
levels (project leads, senior and junior level engineers, and so forth).
The team makes decisions on priorities by consensus. XP teams aren’t
completely unmanaged, but the idea here is that given a set of tasks and
appropriate deadlines, the team can manage the task assignments and
project progress on its own.

3.3.4.6 Problems with XP

XP is not a panacea. There are several problems with it, including:

•	 Detailed specifications aren’t created or preserved. This makes it dif-
ficult to add new programmers later in the project or for a separate pro-
gramming team to maintain the project.

•	 Pair programming is required, even if it doesn’t work. In some cases,
it can be overkill. Having two programmers work on a relatively simple
piece of code can double your development costs.

•	 To be practical, XP typically requires that all team members be GMPs
in order to handle the wide range of roles each member must support.
This is rarely achievable in real life, except on the smallest of projects.

12. This isn’t quite the same as having a manager constantly looking over your shoulder
because your team isn’t explicitly watching what you’re doing. Hence, the stress level is
quite a bit lower.

Software Development Models 65

•	 Constant refactoring can introduce as many problems (new bugs) as
it solves. It can also waste time when programmers refactor code that
doesn’t need it.

•	 No Big Design Up Front (that is, non-Waterfall-like development) often
leads to excessive redesign.

•	 A customer representative is necessary. Often, the customer will assign
a junior-level person to this position because of the perceived costs,
resulting in a failure point. If the customer representative leaves before
the project is complete, all the requirements that aren’t written down
are lost.

•	 XP is not scalable to large teams. The limit for a productive XP team is
approximately a dozen engineers.

•	 XP is especially susceptible to “feature creep.” The customer can inject
new features into the system due to a lack of documented requirements/
features.

•	 Unit tests, even those created by XP programmers, often fail to point
out missing features. Unit tests test “the code that is present,” not “the
code that should be present.”

•	 XP is generally considered an “all or nothing” methodology: if you
don’t follow every tenet of the “XP religion,” the process fails. Most XP
rules have weaknesses that are covered by the strengths of other rules.
If you fail to apply one rule, another rule will likely break (because
its weaknesses are no longer covered, and that broken rule will break
another, ad nauseam).

This small introduction to XP cannot do the topic justice. For more
information on XP, see “For More Information” on page 69.

3.3.5 Scrum
The Scrum methodology is not a software development methodology per
se, but an Agile mechanism for managing the software development process.
More often than not, Scrum is used to manage some other model such as XP.

Beyond engineers, a Scrum team has two special members: the product
owner and the scrum master. The product owner is responsible for guiding the
team toward building the right product by, for example, maintaining require-
ments and features. The scrum master is a coach who guides the team members
through the Scrum-based development process, managing team progress,
maintaining lists of projects, and ensuring team members aren’t held up.

Scrum is an iterative development process like all other Agile method-
ologies, and each iteration is a one- to four-week sprint. A sprint begins with
a planning meeting where the team determines the work to be done. A list
of items known as a backlog is assembled, and the team estimates how much
time is required for each item on the backlog. Once the backlog is created,
the sprint can begin.

Each day the team has a short stand-up meeting during which the mem-
bers briefly mention yesterday’s progress and their plans for today. The scrum

66 Chapter 3

master notes any progress problems and deals with them after the meeting.
No detailed discussions about the project take place during the stand-up
meeting.

Team members pick items from the backlog and work on those items.
As items are removed from the backlog, the scrum master maintains a
Scrum burn-down chart that shows the current sprint’s progress. When
all the items have been implemented to the product owner’s satisfaction,
or the team determines that some items cannot be finished on time or at
all, the team holds an end meeting.

At the end meeting, the team demonstrates the features that were
implemented and explains the failures of the items not completed. If pos-
sible, the scrum master collects unfinished items for the next sprint.

Also part of the end meeting is the sprint retrospective, where team mem-
bers discuss their progress, suggest process improvements, and determine
what went well and what went wrong.

Note that Scrum doesn’t dictate how the engineers perform their jobs
or how the tasks are documented, and doesn’t provide a set of rules or best
practices to follow during development. Scrum leaves these decisions to the
development team. Many teams, for example, employ the XP methodology
under Scrum. Any methodology compatible with iterative development will
work fine.

Like XP, Scrum works well with small teams fewer than a dozen mem-
bers and fails to scale to larger teams. Some extensions to Scrum have been
made to support larger teams. Specifically, a “scrum-of-scrums” process
allows multiple teams to apply a Scrum methodology to a large project.
The large project is broken down into multiple teams, and then an ambas-
sador from each team is sent to the daily scrum-of-scrums meeting to
discuss their progress. This doesn’t solve all the communication problems
of a large team, but it does extend the methodology to work for slightly
larger projects.

3.3.6 Feature-Driven Development
Feature-driven development, one of the more interesting methodolo-
gies under the Agile umbrella, is specifically designed to scale up to
large projects.

One common thread among most Agile methodologies is that they
require expert programmers in order to succeed. FDD, on the other hand,
allows for large teams where it is logistically impossible to ensure you have
the best person working on every activity of the project, and is worth serious
consideration on projects involving more than a dozen software engineers.

FDD uses an iterative model. Three processes take place at the begin-
ning of the project (often called iteration zero), and then the remaining
two processes are iteratively carried out for the duration of the project.
These processes are as follows:

1. Develop an overall model.

2. Build a features list.

Software Development Models 67

3. Plan by feature.

4. Design by feature.

5. Build by feature.

3.3.6.1 Develop an Overall Model

Developing an overall model is a collaborative effort between all the stake-
holders—clients, architects, and developers—where all team members work
together to understand the system. Unlike the specifications and design
documents in the serial methods, the overall model concentrates on breadth
rather than depth to fill in as many generalized features as possible to define
the entire project, and then fill in the depth of the model design’s future
iterations, with the purpose of guiding the current project, not document-
ing it for the future.

The advantage of this approach versus other Agile approaches is that
most features are planned from the beginning of the project. Therefore,
the design can’t take off in a direction that makes certain features difficult
or impossible to add at a later date, and new features cannot be added in an
ad hoc fashion.

3.3.6.2 Build a Features List

During the second step of FDD, the team documents the feature list devised
in the model development step, which is then formalized by the chief
programmer for use during design and development. The output of this
process is a formal features document. Although not as heavyweight as the
SRS document found in other models, the feature descriptions are formal
and unambiguous.

3.3.6.3 Plan by Feature

The plan-by-feature process involves creating an initial schedule for the
software development that dictates which features will be implemented ini-
tially and which features will be implemented on successive iterations.

Plan by feature also assigns sets of features to various chief program-
mers who, along with their teams, are responsible for implementing them.
The chief programmer and associated team members take ownership of
these features and the associated code. This deviates somewhat from stan-
dard Agile practice, where the entire team owns the code. This is one of the
reasons FDD works better for large projects than standard Agile processes:
collective code ownership doesn’t scale well to large projects.

As a rule, each feature is a small task that a three- to five-person team
can develop in two or three weeks (and, more often, just days). Each feature
class is independent of the others, so no feature depends on the develop-
ment of features in classes owned by other teams.

68 Chapter 3

3.3.6.4 Design by Feature

Once the features for a given iteration are selected, the chief program-
mer who owns each feature set forms a team to design the feature. Feature
teams are not static; they’re formed and disbanded for each iteration of
the design-by-feature and build-by-feature processes.

The feature team analyzes the requirements and designs the feature(s)
for the current iteration. The teams decide on that feature’s implementa-
tion and its interaction with the rest of the system. If the feature is far-
reaching, the chief programmer might involve other feature class owners to
avoid conflicts with other feature sets.

During the design phase, the feature teams decide on the algorithms
and processes to use, and develop and document tests for the features. If
necessary, the chief programmer (along with the original set of stakehold-
ers) updates the overall model to reflect the design.

3.3.6.5 Build by Feature

The build-by-feature step involves coding and testing the feature. The devel-
opers unit-test their code and feature teams provide formal system testing
of the features. FDD doesn’t mandate TDD, but it does insist that all fea-
tures added to the system be tested and reviewed.

FDD requires code reviews (a best practice, but not required by most
Agile processes). As Steve McConnell points out in Code Complete (Microsoft
Press, 2004), well-executed code inspections uncover many defects that test-
ing alone will never find.

3.4 Models and Methodologies for the Great Programmer
A great programmer should be capable of adapting to any software develop-
ment model or methodology in use by their team. That said, some models
are more appropriate than others. If you’re given the choice of model, this
chapter should guide you in choosing an appropriate one.

No methodology is scalable up or down, so you’ll need to choose a suit-
able model and methodology based on the project size. For tiny projects,
hacking or a documentation-less version of the Waterfall model is probably
a good choice. For medium-sized projects, one of the iterative (Agile) mod-
els and methodologies is best. For large projects, the sequential models or
FDD are the most successful (although often quite expensive).

More often than not, you won’t get to choose the developmental models
for projects you work on unless they’re your personal projects. The key is
to become familiar with the various models so you’re comfortable with any
model you’re asked to use. The following section provides some resources
for learning more about the different software development models and
methodologies this chapter describes. As always, an internet search will
provide considerable information on software development models and
methodologies.

Software Development Models 69

3.5 For More Information
Astels, David R. Test-Driven Development: A Practical Guide. Upper Saddle

River, NJ: Pearson Education, 2003.

Beck, Kent. Test-Driven Development by Example. Boston: Addison-Wesley
Professional, 2002.

Beck, Kent, with Cynthia Andres. Extreme Programming Explained: Embrace
Change. 2nd ed. Boston: Addison-Wesley, 2004.

Boehm, Barry. Spiral Development: Experience, Principles, and Refinements.
(Special Report CMU/SEI-2000-SR-008.) Edited by Wilfred J. Hansen.
Pittsburgh: Carnegie Mellon Software Engineering Institute, 2000.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Reading,
MA: Addison-Wesley, 1999.

Kerievsky, Joshua. Refactoring to Patterns. Boston: Addison-Wesley, 2004.

Martin, James. Rapid Application Development. Indianapolis: Macmillan, 1991.

Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices.
Upper Saddle River, NJ: Pearson Education, 2003.

McConnell, Steve. Code Complete. 2nd ed. Redmond, WA: Microsoft Press,
2004.

———. Rapid Development: Taming Wild Software Schedules. Redmond, WA:
Microsoft Press, 1996.

Mohammed, Nabil, Ali Munassar, and A. Govardhan. “A Comparison
Between Five Models of Software Engineering.” IJCSI International Journal
of Computer Science Issues 7, no. 5 (2010).

Pressman, Robert S. Software Engineering, A Practitioner’s Approach. New York:
McGraw-Hill, 2010.

Schwaber, Ken. Agile Project Management with Scrum (Developer Best Practices).
Redmond, WA: Microsoft Press, 2004.

Shore, James, and Shane Warden. The Art of Agile Development. Sebastopol,
CA: O’Reilly, 2007.

Stephens, Matt, and Doug Rosenberg. Extreme Programming Refactored:
The Case Against XP. New York: Apress, 2003.

Wake, William C. Refactoring Workbook. Boston: Addison-Wesley Professional,
2004.

Williams, Laurie, and Robert Kessler. Pair Programming Illuminated. Reading,
MA: Addison-Wesley, 2003.

PART II
U M L

The Unified Modeling Language (UML) is
a graphic-based developmental language

used to describe requirements and standards
for software design. The latest versions of the

Institute of Electrical and Electronics Engineers (IEEE)
SDD standard are built around UML concepts, so we’ll
start by covering the background and features of UML before moving on
to how the language implements use cases to help us represent software
system designs clearly and consistently.

4.1 The UML Standard
UML started out in the mid-1990s as a collection of three independent
modeling languages: the Booch method (Grady Booch), the object mod-
eling technique (Jim Rumbaugh), and the object-oriented software engi-
neering system (Ivar Jacobson). After this initial amalgamation, the Object
Management Group (OMG) developed the first UML standard, with input

4
A N I N T R O D U C T I O N T O U M L A N D

U S E C A S E S

74 Chapter 4

from a multitude of researchers, in 1997. UML remains under OMG’s man-
agement today. Because UML was essentially designed by unification, it
contains many different ways to specify the same thing, resulting in a lot of
systemwide redundancy and inconsistency.

So why use UML? Well, despite its shortcomings, it’s a rather complete
modeling language for object-oriented design. It’s also become the de facto
IEEE documentation standard to use. So even if you don’t intend to use
UML for your own projects, you’ll need to be able to read it when dealing
with documentation from other projects. Because UML has become popu-
lar, there’s a good chance your project’s stakeholders are already familiar
with it. It’s sort of like the C programming language (or BASIC, if you don’t
know C): it’s ugly as far as language design goes, but everybody knows it.

UML is a very complex language that requires considerable study
to master, an educational process that is beyond the scope of this book.
Fortunately, dozens of good books are available on the subject, some almost
1,000 pages long (for example, The UML Bible by Tom Pender; see “For
More Information” on page 88). This chapter and those that follow are
not intended to make you an expert on UML, but rather to quickly cover
the UML features and concepts that the rest of the book uses. That way, you
can refer back to these chapters when you’re trying to make sense of UML
diagrams later in the book.

With that brief introduction behind us, next we’ll discuss how UML
enables us to visualize a system’s design in a standardized way.

4.2 The UML Use Case Model
UML specifies use cases to describe a system’s functionality. A use case roughly
corresponds to a requirement. Designers create a use case diagram to specify
what a system does from an external observer’s point of view, meaning they
specify only what a system does, not how it does it. They’ll then create a use
case narrative to fill in the details of the diagram.

4.2.1 Use Case Diagram Elements
Use case diagrams typically contain three elements: an actor, a communica-
tion link (or association), and the actual use case:

•	 Actors, typically drawn as stick figures, represent users or external
devices and systems that use the system under design.

•	 Communication links are drawn as a line between an actor and a use case,
and indicate some form of communication between the two.

•	 Use cases are drawn as ovals with an appropriate description and repre-
sent the activities the actors perform on the system.

Figure 4-1 shows an example of a use case diagram.

An Introduction to UML and Use Cases 75

Select pulse operation

Actor Communication link Use case

Figure 4-1: A sample use case diagram

Every use case should have a high-level name that concisely and
uniquely describes the operation. For example, a nuclear reactor operator
might want to select a power input from a nuclear power (NP) channel:
“select %Pwr” is a general description, whereas “press the percent power
button on the NP device” is probably too specific. How the user selects per-
cent power is more of a design issue, not a system analysis issue (analysis is
what we’re doing at this stage).

The use case name should be unique, because you’ll likely use it to
associate the diagram with a use case narrative elsewhere in your UML
documentation. One way to achieve uniqueness is by attaching a tag (see
“Tag Formats” on page 172). However, the whole point of a use case dia-
gram is to make the action obvious to the readers and stakeholders (that
is, the external observers), and tags can obfuscate the meaning. One pos-
sible solution is to include a descriptive name (or phrase) and a tag inside
the use case oval, as shown in Figure 4-2.

Select pulse operation
Rctr_USE_002

Figure 4-2: A use case tag combined
with a user-friendly name

The tag uniquely identifies the use case narrative, and the user-friendly
name makes the diagram easy to read and understand.

A use case diagram can contain multiple actors as well as multiple
use cases, as shown in Figure 4-3, which provides use cases for generating
Individual Megawatt Hour (MWH) and other reports.

Reactor
Operator

Sr. Reactor
Operator

Individual
MWH report All reports

Figure 4-3: Multiple actors and use cases in a use case diagram

76 Chapter 4

Stick figures are useful for making it instantly obvious that you’re speci-
fying an actor, but they have some drawbacks. First, a stick figure is rather
large and can consume considerable screen (or page) space. Also, in a large
and cluttered UML diagram, it can become difficult to associate names and
other information with a stick figure actor. For this reason, UML designers
often use a stereotype to represent an actor. A stereotype is a special UML
name (such as “actor”) surrounded by guillemets (« and ») and enclosed
along with the element’s name inside a rectangle, as shown in Figure 4-4.
(You can use a pair of angle brackets—less-than and greater-than symbols—
if you don’t have access to guillemets in your editing system.)

«Actor»
Reactor Operator

Figure 4-4: An actor stereotype

Stereotypes can apply to any UML element, not just an actor. The ste-
reotype consumes less space and creates less clutter, though its disadvan-
tage is that the type of element isn’t as instantly clear as it would be using
the actual icon.1

4.2.2 Use Case Packages
You can assign use case names to different packages by separating the pack-
age name from the use case name using a pair of colons. For example, if
the aforementioned reactor operator needs to select percent power from
two different nuclear power systems (NP and NPP), we could use NP and NPP
packages to separate these operations (see Figure 4-5).

Reactor Operator

NP::Select%Pwr

NPP::Select%Pwr

Figure 4-5: Package names in a use case

4.2.3 Use Case Inclusion
Sometimes, use cases will replicate information. For example, the use
case in Figure 4-5 might correspond to a reactor operator selecting which
nuclear power channel to use (the NP or NPP instrument) for a given
operation. If the operator must verify that the channel is online before
making the selection, presumably either of the use cases for NP::Select%Pwr

1. This is a good example of redundancy in UML—that is, using two different notations for the
same thing.

An Introduction to UML and Use Cases 77

and NPP::Select%Pwr would contain the steps needed to confirm this. When
writing the narrative for these two use cases, you’ll probably discover that
you’re duplicating considerable information.

To avoid this replication, UML defines use case inclusion, which allows
one use case to completely include the functionality of another.

You specify use case inclusion by drawing two use cases with oval icons,
and placing a dashed open arrow from the including use case to the included
use case. Also attach the label «include» to the dashed arrow, as shown in
Figure 4-6.

«include»

Including
case

Included
case

Figure 4-6: Use case inclusion

We could redraw Figure 4-5 using inclusion as shown in Figure 4-7.

Reactor
Operator

NP::Select%Pwr

NPP::Select%Pwr

Verify channel online

«include»

«include»

Figure 4-7: Use case inclusion example

An inclusion is the use case diagram equivalent of a function call.
Inclusion allows you to reuse a use case from other use cases, thereby
reducing redundancy.

4.2.4 Use Case Generalization
Sometimes, two or more use cases share an underlying base design and
build upon it to produce different use cases. Revisiting the example from
Figure 4-3, the Sr. Reactor Operator actor might produce additional reactor
reports (that is, “All reports”) beyond those that the Reactor Operator actor
produces (“Individual MWH report”). However, both use cases are still an
example of the more general “Generate reports” use case and, therefore,
they share some common (inherited) operations. This relationship is known
as use case generalization.

We can illustrate use case generalization in a use case diagram by draw-
ing a hollow arrow from a specific use case to the more general use case, as
shown in Figure 4-8.

78 Chapter 4

Reactor
Operator

Sr. Reactor
Operator

Generate reports

Individual
MWH report All reports

Figure 4-8: Generalization of use cases

This figure tells us that the “Individual MWH report” and “All reports”
use cases share some common activities inherited from the “Generate
reports” use case.

We can generalize actors in the same fashion by drawing an open arrow
from multiple (specific) actors to a generalized actor, as shown in Figure 4-9.

Reactor
Operator

Operator

Sr. Reactor
Operator

Generate reports

Individual
MWH report

NP::Select%Pwr

NPP::Select%Pwr

All reports

Figure 4-9: Generalization of actors

Generalization (particularly, use case generalization) is equivalent to
inheritance in object-oriented systems. The hollow arrow points at the base

An Introduction to UML and Use Cases 79

use case, and the tail of the arrow (that is, the end without the arrowhead)
connects to the inheriting, or derived, use case. In Figure 4-9, “Generate
reports” is the base use case, and “Individual MWH report” and “All reports”
are the derived use cases.

A derived use case inherits all the features and activities of the base
use case. That is, all the items and functionality in the base use case are
present in the derived use case, along with certain items unique to the
derived use case.

In Figure 4-9, the Reactor Operator actor can select only an “Individual
MWH report.” Therefore, any report generated by the Reactor Operator
actor always follows the steps associated with that individual report. The Sr.
Reactor Operator actor, on the other hand, can generate any report derived
from the “All reports” or “Individual MWH report” use case.

Although generalization might seem very similar to inclusion, there
are subtle differences. With inclusion a use case is completely included,
but with inheritance the base use case is augmented by the features in the
derived use case.

4.2.5 Use Case Extension
The UML use case extension allows you to specify the optional (conditional)
inclusion of some use case. You draw an extension similar to an inclusion
except you use the word «extend» rather than «include» and the arrow is a
dashed line with a solid arrowhead. Another difference is that the arrow-
head points at the extended use case, and the tail points at the extending
use case, as shown in Figure 4-10.

Extending use case 1

Extending use case 2

Extended use case

«extend»

«extend»

Figure 4-10: Use case extension

Use case extensions are useful when you want to select one of several
different use cases based on some internal system/software state. A classic
example would be error or exception handling conditions. Suppose you
have a small command line processor that recognizes certain commands
beginning with a verb (such as read_digital). The command syntax might
take the form:

read_digital port#

80 Chapter 4

where port# is a numeric string indicating the port to read from. Two things
could go wrong when the software processes this command: port# could
have a syntax error (that is, it doesn’t represent a valid numeric value) or
the port# value could be out of range. Thus, there are three possible out-
comes from processing this command: the command is correct and reads
the specified port; a syntax error occurs and the system presents an appro-
priate message to the user; or a range error occurs and the system displays
an appropriate error message. Use case extensions easily handle these situa-
tions, as shown in Figure 4-11.

read_port
command

Syntax error Range error

«extend» «extend»

Figure 4-11: Use case extension example

Note that the normal case (no error) is not an extension use case. The
read_port command use case handles the nonerror case directly.

4.2.6 Use Case Narratives
By themselves, the use case diagrams you’ve seen thus far don’t explain any
details. An actual use case (as opposed to a use case diagram) is text, not
graphics. The diagrams provide an “executive overview” of the use case
and make it easy for external observers to differentiate activities, but the
use case narrative is where you truly describe a use case. Although there is no
defined set of items that appear in a use case narrative, it typically contains
the information listed in Table 4-1.

Table 4-1: Use Case Narrative Items

Use case narrative item Description

Associated requirements A requirements tag or other indication of the
requirement(s) associated with the use case.
This provides traceability to the SyRS and
SRS documentation.

Actors A list of the actors that interact with the use case.

Goal/purpose/brief description A description of the goal (and its context within the
system) to clarify the purpose of the use case.

Assumptions and preconditions A description of what must be true prior to the
execution of the use case.

Triggers External events that start the execution of the
use case.

An Introduction to UML and Use Cases 81

Use case narrative item Description

Interaction/Flow of Events The step-by-step description of how an external
actor interacts with the system during the execution
of the use case.

Optional interactions/Alternative
Flow of Events

Alternative interactions from those the interaction
steps describe.

Termination Conditions that result in the termination of a
use case.

End conditions Conditions describing what happens when the use
case successfully terminates or when it fails.

Post conditions Conditions that apply upon completion of the
execution of a use case (success or failure).

Additional items (search online for descriptions) might include:2

•	 Minimal guarantees

•	 Successful guarantees

•	 Dialog (effectively another name for interactions)

•	 Secondary actors

•	 Extensions (another name for optional/conditional interactions)

•	 Exceptions (that is, error-handling conditions)

•	 Related use cases (that is, other relevant use cases)

•	 Stakeholders (people with an interest in the use case)

•	 Priority (among use cases for implementation)

4.2.6.1 Use Case Narrative Formality

Use case narratives can range in formality from casual to fully dressed.
A casual use case narrative is a natural language (for example, English)

description of the use case without much structure. Casual narratives are
ideal for small projects, and often vary from use case to use case.

A fully dressed use case narrative is a formal description of the use
case, typically created via a form with all the narrative items defined
for your project. A fully dressed use case narrative will likely consist of
three forms:

•	 A list of the use case items, exclusive of the Dialog/Flow of Events/
Interaction and Alternative Flow of Events/Optional Interactions items

•	 The main Flow of Events

•	 The Alternative Flow of Events (extensions)

2. This is a nonexhaustive list. You may freely add any items specific to your project.

82 Chapter 4

Tables 4-2, 4-3, and 4-4 show an example of a fully dressed use case
narrative.

Table 4-2: Select Nuclear Power Source, RCTR_USE_022

Requirement(s) RCTR_SyRS_022, RCTR_SRS_022_000

Actors Reactor Operator, Sr. Reactor Operator

Goal To select the power measurement channel used during
automatic operation

Assumptions and
preconditions

Operator has logged in to the reactor console

Trigger Operator presses appropriate button, selecting automatic mode
power source

Termination Operator-specified power source is selected

End conditions System uses the selected power source for current actual power
during automatic operation, if successful; system reverts to
original auto-mode power source if unsuccessful

Post condition System has an operational automatic-mode power source
available

Table 4-3: Flow of Events, RCTR_USE_022

Step Action

1 Operator presses NP selection button

2 System verifies that the NP is online

3 System switches auto-mode power selection to the NP channel

Table 4-4: Alternative Flow of Events (Extensions), RCTR_USE_022

Step Action

2.1 The NP channel is not online

2.2 The system doesn’t switch to using the NP power channel and continues to use
the previously selected power channel for automatic mode

4.2.6.2 Alternative Flow of Events

Whenever a step in the Flow of Events table contains a conditional or
optional item (an extension in UML terminology), you’ll have some cor-
responding entries in the Alternative Flow of Events table that describe
the behavior when the conditional item is false. Note that you don’t use a
separate Alternative Flow of Events table for each condition; you simply use
substeps (in this example, 2.1 and 2.2 in Table 4-4) associated with the step
number(s) from the Flow of Events table (step 2 in Table 4-3).

This is just one possible example of a fully dressed use case narrative.
Many other forms are possible. For example, you could create a fourth table
to list all the possible end conditions, as shown in Table 4-5.

An Introduction to UML and Use Cases 83

Table 4-5: End Conditions, RCTR_USE_022

Condition Result

Success The NP channel is selected as the automatic-mode power channel

Failure The previously selected channel continues to control automatic mode

Adding an end conditions table is especially compelling if there are
more than two end conditions.

As another example, consider the read_port use case in Figure 4-11. The
narrative for it could be similar to Tables 4-6, 4-7, and 4-8.

Table 4-6: read_port Command

Requirement(s) DAQ_SyRS_102, DAQ_SRS_102_000

Actors PC host computer system

Goal To read a digital data port on the data acquisition
system

Assumptions and preconditions Digital data acquisition ports have been initialized as
input ports

Trigger Receipt of the read_port command

Termination Data port is read and the value returned to
requesting system

End conditions System returns port value or appropriate error
message if the command was malformed

Post condition The system is ready to accept another command

Table 4-7: Flow of Events, read_port Command

Step Action

1 The host PC sends a command line beginning with read_port

2 System verifies that there is a second parameter

3 System verifies that the second parameter is a valid numeric string

4 System verifies that the second parameter is a numeric value in the range 0–15

5 System reads the digital data from the specified port

6 System returns the port value to the host PC

Table 4-8: Alternative Flow of Events (Extensions), read_port Command

Step Action

2.1 Second parameter doesn’t exist

2.2 System returns a “syntax error” message to the host PC

3.1 Second parameter isn’t a valid numeric string

3.2 System returns a “syntax error” message to the host PC

4.1 Second parameter is outside the range 0–15

4.2 The system returns a “range error” message to the host PC

84 Chapter 4

Table 4-8 actually contains several independent flows of events. The
major number to the left of the decimal point specifies the associated step
in the Flow of Events table; the minor number to the right of the decimal
point is the particular step within the Alternative Flow of Events. The flow
occurs only within the steps associated with a single Flow of Events number.
That is, the flow from 2.1 to 2.2 ends with 2.2; it doesn’t continue into 3.1
(in this example).

Generally, once a system selects an alternative flow (such as the “range
error” flow, steps 4.1 and 4.2 in this example), the use case ends with the
completion of that alternative flow (that is, at step 4.2). Control doesn’t
return to the main Flow of Events. Execution to the end of the main Flow
of Events list happens only if no alternative flows occur.

The “correct” way to use the Flow of Events and Alternative Flow of
Events is to write a straight-line sequence representing the path through
the use case that produces the intended result. If multiple viable paths
exist, you would typically create multiple use cases, one for each correct
path. The alternative flows handle any deviations (usually error paths) from
the correct path. Of course, one risk of this approach is that you might wind
up with an excessive number of use case diagrams.

For a Flow of Events, diagrams are more expensive to create and main-
tain than a textual description; even with the proper UML diagramming
tools, creating figures generally takes more time and effort than just writing
textual descriptions.

4.2.6.3 Conditional Flow of Events

For use cases that have multiple correct paths, you could encode those
paths in the main Flow of Events using branches and conditionals, and
leave the alternative paths for exceptional conditions. Consider a command
for a data acquisition system that supports two different syntaxes:3

ppdio boards
ppdio boards boardCount

The first variant returns the number of PPDIO boards in the system,
and the second variant sets the number of PPDIO boards. The technically
correct solution to document these two commands is to create two separate
use cases, each with its own Flow of Events. However, if the data acquisition
system has dozens of different commands, creating individual use cases
could clutter your documentation. One solution is to combine these use
cases into a single use case by incorporating conditional operations (that is,
if..else..endif) into a single Flow of Events, as in the following example.

3. This example is from a real-world project: Plantation Productions’ “Open Source /Open
Hardware Digital Data Acquisition & Control System” (http://www.plantation-productions .com
/Electronics/DAQ/DAQ.html).

An Introduction to UML and Use Cases 85

Flow of Events

1. Verify command begins with ppdio.

2. Verify second word on command line is boards.

3. If no additional parameters appear on command line:

a. Return number of PPDIO boards in system as response.

4. Verify there is a single numeric parameter on the line.

5. Verify that the numeric parameter is in the range 0..6.

6. Set the number of PPDIO boards to the value specified by the numeric
parameter.

Alternative Flows

1.1 If command doesn’t begin with ppdio, return not PPDIO response.

2.1 If command doesn’t begin with ppdio boards, return not PPDIO BOARDS
response.

5.1 Return syntax error as the response.

6.1 Return range error as the response.

Having conditionals and multiple exit points from a Flow of Events isn’t
“clean” UML; however, it can reduce the overall size of the documentation
(saving time and expenses), so this is a common kludge in use cases.

You could even add while, for, switch, and other high-level-language–
style operations to your Flow of Events. But keep in mind that use cases
(and their descriptions) should be very general. Once you start embedding
programming language concepts into your use cases, you invariably start
introducing implementation details, which don’t belong in use cases; save
those for later UML diagram types (such as activity diagrams).

These examples might seem to suggest that alternative flows are solely
for error handling, but you can use them for other purposes as well; any
time a conditional branch is out of a main flow, you can use extensions to
handle that. However, one problem with using alternative flows for generic
conditionals is that concepts that are inherently related wind up separated
from one another in your use case descriptions, which can make following
the logic in those descriptions more difficult.

4.2.6.4 Generalization vs. Extension

Generalization is often a better tool than extension. For example, suppose
you have a generic port_command use case and you want to attach read_port
and write_port to it. In theory, you could create an extension to handle this,
as shown in Figure 4-12.

86 Chapter 4

read_port

port_command

write_port

«extend» «extend»

Figure 4-12: Poor example of use case extension

In practice, this particular situation is probably better handled with
generalization, because read_port and write_port are special cases of a
port _command (rather than being alternative branches from port_command).
Figure 4-13 shows the generalization approach.

read_port

port_command

write_port

«extend» «extend»

Figure 4-13: Using generalization rather
than extension

With generalization, the derived use case follows all the steps in the
base use case. When you use extensions, control transfers from the main
Flow of Events to the Alternative Flow of Events, and any remaining steps in
the main flow don’t happen.

4.2.7 Use Case Scenarios
A scenario is a single path through a use case. For example, the read_port
use case has four scenarios: the success scenario when the command reads
a port and returns the port data; two syntax error scenarios (2.1/2.2 and
3.1/3.2 in the Alternative Flow of Events); and one range error scenario
(4.1/4.2 in the Alternative Flow of Events). You generate a full scenario by
choosing the steps from the Flow of Events and Alternative Flow of Events
that complete a specific path. The read_port command has the following
scenarios:

Success scenario

1. The host sends a command beginning with read_port.

2. The system verifies that there is a second parameter.

An Introduction to UML and Use Cases 87

3. The system verifies that the second parameter is a numeric string.

4. The system verifies that the second parameter is a value in the
range 0..15.

5. The system reads the data from the specified port.

6. The system returns the port value to the host PC.

Syntax error #1 scenario

1. The host sends a command beginning with read_port.

2. The system determines there is no second parameter.

3. The system sends a syntax error to the host PC.

Syntax error #2 scenario

1. The host sends a command beginning with read_port.

2. The system verifies that there is a second parameter.

3. The system determines that the second parameter is not a legal
numeric string.

4. The system sends a syntax error to the host PC.

Range error scenario

1. The host sends a command beginning with read_port.

2. The system verifies that there is a second parameter.

3. The system verifies that the second parameter is a numeric string.

4. The system determines that the numeric string is a value outside the
range 0..15.

5. The system sends a range error to the host PC.

You can use scenarios to create test cases and test procedures for your
system. You’ll have one or more test cases for each scenario.

You can combine use case scenarios by incorporating if statements in
your Flow of Events. However, because this introduces low-level details
into your use case narratives, you should avoid combining scenarios unless
the number of use case narratives grows out of control.

4.3 The UML System Boundary Diagrams
When you’re drawing a simple use case diagram, it should be obvious which
components are internal to the system and which are external. Specifically,
actors are external entities, and the use cases are internal. If you’re using
stereotyped rectangles instead of stick figures for the actors, though, it
might not be immediately clear which components are external to the
system. Also, if you reference multiple systems in a use case diagram, deter-
mining which use cases are part of which system can be challenging. UML
system boundary diagrams solve these problems.

88 Chapter 4

A UML system boundary diagram is simply a shaded rectangle surrounding
the use cases that are internal to a particular system, as shown in Figure 4-14.
The system title generally appears near the top of the rectangle.

port_command

Data Acquisition System

Host PC

Figure 4-14: A system boundary diagram

4.4 Beyond Use Cases
This chapter introduced UML uses cases, a very important feature of the
Unified Modeling Language. However, there are many other components of
UML beyond use cases. The next chapter presents UML activity diagrams,
which provide a way to model actions within a software design.

4.5 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit,

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press,
1999. A sample chapter is available at http://www.untechnicalpress.com
/Downloads/UMM%20sample%20doc.pdf.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick Reference.
2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

UML activity diagrams, traditionally known
as flowcharts, illustrate the workflow between

different components of a system. Flowcharts
were prevalent in the early days of software

development and were still used in software design just
before the rise of object-oriented programming (OOP).
Although the UML object-oriented notation supersedes old-fashioned flow-
charting to a large extent, OOP still relies on small methods, functions, and
procedures to implement the low-level, nitty-gritty details, and flowcharting
is useful for describing control flow in those cases. Hence, UML’s designers
created activity diagrams as an updated version of flowcharting.

5.1 UML Activity State Symbols
UML activity diagrams use state symbols based on traditional flowchart
symbols. This section describes some of the ones you’ll commonly use.

5
U M L A C T I V I T Y D I A G R A M S

90 Chapter 5

N O T E If you want information on general flowcharting, any web search should yield
decent results.

5.1.1 Start and Stop States
UML diagrams always contain a single start state, which represents the start
terminal object. This consists of a solid circle with a single arrow (transition
in UML parlance) coming from it. You might associate the start state with a
label, which would be the name of the whole activity diagram.

UML also usually contains end state and end flow symbols. An end state
symbol terminates an entire process, while an end flow symbol terminates
a single thread, useful for processes that involve multiple threads of execu-
tion. You might associate the end state symbol with a label that indicates the
system’s state at the end of the process.

Figure 5-1 shows the start state, end state, and end flow symbols.

Start state End state End flow

Figure 5-1: UML starting and ending states

While an activity diagram has only one starting state symbol, it might
have multiple ending state symbols (think of a method returning from sev-
eral points in the code). The labels attached to the various ending states
will likely be different, such as “exception exit” and “normal exit.”

5.1.2 Activities
Activity symbols in UML are rectangles with semicircular ends (like the
terminal symbol in a flowchart) that represent some action, as shown in
Figure 5-2.1

Action

Figure 5-2: UML activities

Activities, as a general rule, correspond to one or more statements
(actions) in a programming language that execute sequentially. The text
inside the symbol describes the action to perform, such as “read data” or
“compute CRC.” Generally, a UML activity doesn’t include much low-level
detail; it’s the programmer’s job to provide that.

1. Some authors use roundangles, rectangles with rounded corners, to show activities.
However, the UML standard uses roundangles for states.

UML Activity Diagrams 91

5.1.3 States
UML activity diagrams also provide intermediate states, in addition to start
and end states, which effectively act as milestones indicating some existing
condition(s) at the point of the state symbol. State symbols are rounded
rectangles (roundangles), as shown in Figure 5-3, although the rounded cor-
ners are much smaller than those of activity symbols.

State

Figure 5-3: UML states

The text in the state symbol should describe the state of the system at
that given point. For example, if the activity is “compute CRC,” you might
label the state immediately following it as “CRC computed” or “CRC avail-
able.” States don’t incorporate any action, only the current condition of the
system at a given point.

5.1.4 Transitions
Transitions indicate a flow of control from one point in an activity diagram
(for example, a state or activity) to another. If a transition flows out of some
activity, it means the system makes that transition upon completing most of
the actions associated with that activity. If a pair of transitions flows into and
out of a state, control flow transfers immediately to wherever the outgoing
arrow points. A UML state is effectively a marker in the middle of a transi-
tion, and so no action takes place in a UML state, as shown in Figure 5-4.

Control flows through a state
with no actions, as though the
state were not present.

State State

Figure 5-4: Control flow through a state

5.1.5 Conditionals
You can handle conditionals in a couple of different ways in a UML activity
diagram: transition guards and decision points.

5.1.5.1 Transition Guards

In conditionals, a Boolean expression is attached to a transition symbol.
UML calls these Boolean expressions guards. A conditional UML symbol
must have at least two guarded transitions, which are labeled with expres-
sions surrounded by square brackets, but might have more than two, as in
Figure 5-5 (where the hexagon shape represents an arbitrary UML symbol).

92 Chapter 5

[Boolean expr3]

[Boolean expr2]

[Boolean expr1]

Some sort of
UML symbol

Figure 5-5: Transition guards

The set of Boolean expressions must be mutually exclusive; that is,
only one expression can be true at all times. Furthermore, the expression
coverage must be complete, which in this context means that for all possible
combinations of input values, at least one Boolean expression in a set of
guarded transitions must evaluate to true (which, combined with the first
condition, means exactly one Boolean condition must evaluate to true).

If you want a “catch-all” transition to handle any input values that the
existing guards don’t handle, just attach a word like else, otherwise, or default
to a transition (see Figure 5-6).

[otherwise]

[Boolean expr2]

[Boolean expr1]

Some sort of
UML symbol

Figure 5-6: Catch-all transition guard

5.1.5.2 Decision Points

Transitions with guards can exit just about any UML symbol; state and action
symbols often contain them. Problems can occur, however, if you have several
actions or states merging into a single point at which a decision can create
divergent paths. For this, UML provides a special symbol, the decision point,
to cleanly collect and join paths where a decision branch occurs. Decision
points use a diamond-shaped symbol, as shown in Figure 5-7.

UML Activity Diagrams 93

[otherwise]

[Boolean expr2]

[Boolean expr1]

Figure 5-7: A UML decision point

Although UML allows guarded transitions to emanate from any UML
symbol, it’s good practice to always use a decision point to begin a set of
related guarded transitions.

5.1.6 Merge Points
In UML we can also use the diamond shape to collect several incoming
transitions into a single outgoing transition, as shown in Figure 5-8; we
call this a merge point.

Figure 5-8: A UML merge point

Technically, a merge point and a decision point are the same object
type. Essentially, a merge point is an unnamed state object; it takes no
action other than passing control from all the incoming transitions to the
outgoing transition. A decision point is just a special case of a merge point
that has multiple outgoing guarded transitions.

94 Chapter 5

In theory, a merge point could have both multiple incoming and outgo-
ing guarded transitions. However, the result would be so ugly that the com-
mon convention is instead to divide the single point into separate merge
and decision points, as shown in Figure 5-9. Most of the time, this separa-
tion is clearer and easier to read than the alternative.

[otherwise]

[Boolean expr2]

[Boolean expr1]

Figure 5-9: UML merge and decision points

5.1.7 Events and Triggers
Events and triggers are actions outside the current flow of control, typically
from some other thread of execution or hardware input, that cause some
change in it.2 In UML, event and trigger transitions are syntactically similar
to guarded transitions in that they consist of a labeled transition. The dif-
ference is that a guarded transition immediately evaluates some Boolean
expression and transfers control to the UML symbol at the other end of the
transition, whereas an event or trigger transition waits for the event or trig-
ger to occur before transferring control.

2. For the most part, an event and a trigger in UML are the same thing—a signal from a
source outside the current flow of control that causes a change in it. This book uses the
terms trigger and event interchangeably.

UML Activity Diagrams 95

Event and trigger transitions are labeled with the name of the event or
trigger along with any necessary parameters provided to the control flow
when it occurs (see Figure 5-10).

Waiting for
user input

Load file

Quit program
Exit()

saveFile(filename)

loadFile(filename)

Save file

Figure 5-10: UML events or triggers

In this example, the system is waiting for input from the user (perhaps
clicking a UI button on the display). When the user activates the save,
exit, or load operation, control transfers to the specified action at the end
of the event or trigger transition (Save file, Quit program, or Load file,
respectively).

You can also attach guard conditions to an event or trigger transition,
consisting of a Boolean expression inside square brackets immediately
following the trigger or event, as shown in Figure 5-11. When you do so,
the transition occurs only when the event or trigger occurs and the guard
expression evaluates to true.

Waiting for
user input

Load file

Quit program
Exit()

saveFile(filename)
[filename != NULL]

loadFile(filename)
[filename != NULL]

Save file

Figure 5-11: Guard conditions on events or triggers

UML events and triggers also support action expressions and mul-
tiple actions, which are beyond the scope of this chapter. To find out
more, check out examples in Tom Pender’s UML Bible (see “For More
Information” on page 100).

96 Chapter 5

5.1.8 Forks and Joins (Synchronization)
UML offers support for concurrent processing by providing symbols to split
a single thread of execution into multiple threads as well as to join multiple
threads of execution into a single thread (see Figure 5-12).3

Thread 1 activities

Thread 2 activities

Thread 3 activities

Figure 5-12: Forks and joins

The UML fork operation (a thin, solid rectangle) splits a single thread
of execution into two or more concurrent operations. The join operation
(also represented by a thin, solid rectangle) merges multiple sets of threads
into a single thread of execution. The join operation also synchronizes the
threads: the diagram assumes that all but the last thread entering the join
operation will halt until the final thread arrives, at which point a single
thread of execution continues on output.

5.1.9 Call Symbols
A call symbol in UML, which looks
like a small rake, attaches to an activ-
ity to explicitly declare it as an invo-
cation of another UML sequence.
You include the call symbol inside
the UML activity along with the
name of the sequence to invoke, as
shown in Figure 5-13.

Elsewhere in your UML docu-
ment, you’ll define that sequence
(or subroutine) using the invocation
name as the activity diagram name,
as shown in Figure 5-14.

3. Note that UML’s thread operations are only a suggestion. When a UML diagram shows
multiple threads executing concurrently, it’s simply an indication that the separate paths
are independent and could be executed concurrently. In actual execution, the system could
execute the paths serially in any order.

SequenceToCall

Figure 5-13: A UML sequence invocation

SequenceToCall

Actions to execute

Figure 5-14: A UML subroutine

UML Activity Diagrams 97

5.1.10 Partitions
Partitions, which organize the steps of a process, consist of several side-
by-side rectangular boxes, each labeled at the top with an actor, object,
or domain name.4 The activity diagram transitions between the boxes as
each part of the process comes under the control of the owner of a given
box, as shown in Figure 5-15.

Test1()

Select test

Display “Pass”

Determine
pass/fail

Run diagnostic

[test failed]
[test passed]

Run test #1

Run procedure

Operator Test Code

Figure 5-15: A UML partition

The process in Figure 5-15 shows some code under test. An operator
selects a test to run, passing control to the test software. An event or trigger
then transfers control to the “Run test #1” action. The test software calls the
code under test (in the third partition). After the code under test executes,
control returns to the test software, which determines whether the test passed
or failed. If the test passes, the test code displays “Pass” to the operator;
other wise, the test code runs a diagnostic routine.

4. Older versions of UML call partitions swim lanes, so you’ll see that term used in many books
and papers referring to this construct.

98 Chapter 5

5.1.11 Comments and Annotations
Comments and annotations in UML use an icon that looks like a small page
with a folded corner, as shown in Figure 5-16. You draw a dashed line from
one side of the box to the UML item you want to annotate.

UML item
to annotate

Comment text
goes inside box

Figure 5-16: A UML comment or annotation

5.1.12 Connectors
Connectors are circles with an internal label, typically a number, that indi-
cate that control transfers to some other point in the diagram with the
same label (see Figure 5-17). You’d use the same symbol for on-page and
off-page connectors.

Some actions
to perform

More actions
to perform

1

1

Figure 5-17: UML connectors

When used properly, UML connectors can make an activity diagram
easier to read by reducing long or overlapping transition lines. However,
keep in mind that connectors are the UML equivalent of a goto statement
in a programming language, and overuse can make diagrams more diffi-
cult to read.

5.1.13 Additional Activity Diagram Symbols
The full UML 2.0 specification provides many additional symbols you can
use in activity diagrams, such as structured activities, expansion regions/
nodes, conditional nodes, loop nodes, and more. We don’t have space to
discuss them all in this book’s basic introduction to UML, but if you’re
interested in more details, see the sources listed in “For More Information”
on page 100 or search online for “UML.”

UML Activity Diagrams 99

5.2 Extending UML Activity Diagrams
Sometimes the UML activity diagram notation just doesn’t cut it. In such
cases, you might be tempted to come up with your own custom symbols.
This is almost always a bad idea, for the following reasons:

•	 UML is a standard. If you extend UML, you’re no longer using a well-
defined standard. That means all the people who’ve learned UML won’t
be able to read your activity diagrams unless they first read your docu-
mentation (and will that documentation be available to them in your
nonstandard activity diagrams?).

•	 There are many UML diagramming tools available for creating and
editing UML activity diagrams, and most of them can’t handle nonstan-
dard symbols and objects.

•	 Many computer-aided software engineering (CASE) tools can generate
code directly from a UML diagram. Again, these CASE tools work only
with standard UML and probably won’t be able to handle your nonstan-
dard extensions.

•	 If you can’t figure out how to do something in a UML activity diagram,
you may be able to use some other scheme. Using a nonstandard way to
do a task that you can easily do with standard tools may come across to
other UML users as an amateur approach.

All that being said, UML is far from perfect. In rare cases, develop-
ing some nonstandard activity diagram objects can vastly simplify your
activity diagrams.

As an example, consider a concurrent programming critical section, a
region of code in which only one thread of execution can take place at a
time. UML sequence diagrams (the subject of Chapter 7) use sequence frag-
ment notation to describe concurrency with critical regions. Although you
could adapt sequence fragment notation to activity diagrams, the result
is messy and hard to read and understand. In some activity diagrams I’ve
created for personal projects, I used the custom notation in Figure 5-18 to
indicate critical regions.

Code in the
critical sectionT3

T4

T5

T2

T1

T3

T4

T5

T2

T1

Figure 5-18: A nonstandard critical region diagram

Arrows coming in to the pentagon on the left indicate transitions (gen-
erally from different threads) competing for a critical section. The single
line out of the pentagon represents the single thread of execution that
takes place in the critical section. The pentagon on the right accepts that

100 Chapter 5

single thread of execution and routes it back to the original thread (for
example, if T1 was the thread that entered the critical section, the close of
the critical section routes control back to the T1 transition/flow).

This diagram doesn’t imply that there are only five threads that can
use this critical section. Instead, it conveys that there are five activity dia-
gram flows (T1–T5) that could compete for the critical resource. In fact,
there could be multiple threads executing any one of these flows that are
also competing for the critical region. For example, there could be three
threads all executing the T1 flow and waiting for the critical region to
be available.

Because multiple threads could be executing on the same flow in the
critical section diagram, it’s quite possible to have only a single flow enter-
ing the critical region (see Figure 5-19).

Code in the
critical sectionT1 T1

Figure 5-19: A single-flow critical region diagram

This example requires that multiple threads execute the same flow (T1)
for this diagram to make any sense.

As you can see, even a simple diagram like this requires a fair amount
of documentation to describe and validate it. If that documentation isn’t
readily available (that is, if it’s not embedded directly in your UML activity
diagrams), readers probably won’t find it when they’re trying to understand
your diagram. Annotating a nonstandard object directly within the dia-
gram is the only reasonable approach. Placing meaningful documentation
in a separate section of the document containing the activity diagrams
(such as the SDD document), or in a separate document altogether, makes
this information unavailable when someone cuts and pastes your diagram
into a different document.

N O T E The critical region diagram in Figure 5-19 is simply an example of how you might
extend UML activity diagrams. In general, I don’t recommend adopting it in your
own diagrams, nor do I recommend extending UML notation. However, you should
know that the option is available if you really need it.

5.3 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit,

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press, 1999.
A sample chapter is available at http://www.untechnicalpress.com/Downloads
/UMM%20sample%20doc.pdf.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

UML Activity Diagrams 101

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick
Reference. 2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/

This chapter describes class diagrams, one
of the more important diagramming tools

in UML. Class diagrams are the basis for
defining data types, data structures, and opera-

tions on that data in programs. In turn, they’re the
basis for object-oriented analysis (OOA) and object-oriented
design (OOD).

6.1 Object-Oriented Analysis and Design in UML
The creators of UML wanted a formal system for designing object-oriented
software to replace the structured programming formalisms available at the
time (1990s). Here we’ll discuss how to represent classes (data types) and
objects (instance variables of data types) in UML.

6
U M L C L A S S D I A G R A M S

104 Chapter 6

The most complete form of a class diagram in UML is shown in
Figure 6-1.

ClassName

Attributes

Operations

Figure 6-1: A complete
class diagram

Attributes correspond to data field members of a class (that is, variables
and constants); they represent information internal to the class.

Operations correspond to the activities that represent the class’s behav-
ior. Operations include methods, functions, procedures, and other things
we normally identify as code.

Sometimes, you don’t need to list all the attributes and operations when
referencing a class diagram (or there might not even be any attributes or
operations). In such situations, you can instead draw a partial class dia-
gram, shown in Figure 6-2.

ClassName ClassName

Attributes Operations

Figure 6-2: Partial class diagrams

The fact that attributes or operations are missing from a partial class
diagram doesn’t imply that they don’t exist; it just means that it’s not neces-
sary in the current context to add them to the diagram. The designer might
be leaving it up to the coder to fill them in during coding; or perhaps the
complete class diagram appears elsewhere, and the current diagram con-
tains only information of interest.

In its simplest form, UML represents classes with a simple rectangle
containing the name of the class, as shown in Figure 6-3.

className

Figure 6-3: A simple class diagram

Again, this doesn’t imply that the class contains no attributes or opera-
tions (which wouldn’t make sense); it just means that those items are not of
interest in the current diagram.

UML Class Diagrams 105

6.2 Visibility in a Class Diagram
UML defines four types of class member visibility (all taken from C++ and
Java, although other languages, such as Swift, also support them): public,
private, protected, and package. We’ll discuss each in turn.

6.2.1 Public Class Visibility
A public class member is visible to all classes and code, inside and outside the
class containing the public item. In well-designed object-oriented systems,
public items are almost always operations (methods, functions, procedures,
and so forth) and form the class’s interface to the world outside the class.
Although you can also make attributes public, doing so often defeats one
of the primary benefits of object-oriented programming: encapsulation, or the
ability to hide values and activities inside a class from the outside world.

In UML we preface public attributes and operations with the plus
sign (+), as shown in Figure 6-4. The set of public attributes and opera-
tions provides the class’s public interface.

poolMonitor

+maxSalinity_c

+getCurSalinity()
+getCurChlorine()

Figure 6-4: Public attributes
and operations

This figure has a single public attribute, maxSalinity_c. The _c suffix is a
convention I use to indicate that the field is a constant rather than a vari-
able.1 In good designs constants are usually the only public attributes in a
class, because external code cannot change the value of a constant: it’s still
visible (that is, not hidden or encapsulated), but it’s unchangeable. One of
the main reasons for encapsulation is to prevent side effects that can occur
when some external code changes an internal class attribute. Because exter-
nal code cannot change a constant’s value, this immutability achieves the
same result as encapsulation; therefore, object-oriented designers are will-
ing to make certain class constants visible.2

1. The standard convention in C-derived languages is to use all uppercase characters to
denote constants, but this is an absolutely terrible convention that I refuse to use for my
own constants because ALL UPPERCASE IDENTIFIERS ARE MUCH HARDER TO READ
THAN MIXED-CASE IDENTIFIERS. I modified the Unix convention of using _t to specify
a type identifier to include _c for constants. Also, this convention is applicable across multiple
languages and is not specific to C++.

2. This is not to imply that you should never make a variable attribute public. As with any
other convention or rule, there are always exceptions where it makes sense to violate the con-
vention. However, violations should be rare.

106 Chapter 6

6.2.2 Private Class Visibility
At the other end of the spectrum lies private visibility. Private attributes and
operations are accessible only within that class: they’re hidden from other
classes and code. Private attributes and operations are the embodiment of
encapsulation.

We use the minus sign (-) to denote private entities within a class dia-
gram, as shown in Figure 6-5.

poolMonitor

+maxSalinity_c

-saltPPM
-chlorinePPM
-pH

+getCurSalinity()
+getCurChlorine()
+getpH()

-readphSensor()
-readSalinitySensor()
-readChlorineSensor()

Figure 6-5: Private attributes
and operations

You should use private visibility for any attribute or operation that doesn’t
absolutely require some other form of visibility, and strive to ensure that all
attributes (data fields in the class) are private members of the class. If out-
side code needs to access a data field, you can use public accessor functions
(getters and setters) to provide access to the private class member. A getter
function returns the value of a private field. A setter function stores a value
into a private field.

If you’re wondering why you should even bother using accessor
functions (after all, it’s a whole lot easier to simply access the data field
directly3), consider this: a setter function can check the value you’re
storing in an attribute to ensure it’s within range. Also, not all fields are
independent of all other attributes in a class. For example, in a saltwater
pool, the salinity, chlorine, and pH levels aren’t completely independent
of one another: the pool contains an electrolysis cell that converts water
and sodium chloride (salt) into sodium hydroxide and chlorine. This con-
version reduces the salinity and increases the chlorine and pH levels. So
rather than allowing some external code to arbitrarily change the salinity
level, you might want to pass the change through a setter function that can
decide whether to adjust other levels at the same time.

3. Some modern languages, like Apple’s Swift, provide syntax options that let you invoke
getter and setter functions using standard assignment operations. Therefore, there’s no syn-
tactical overhead associated with using getters and setters (other than, of course, writing the
getter or setter methods in the first place).

UML Class Diagrams 107

6.2.3 Protected Class Visibility
Although public and private visibility covers a large percentage of the vis-
ibility requirements, in some special situations, like inheritance, you’ll need
to use something in between: protected visibility.

Inheritance, along with encapsulation and polymorphism, is one of the
“big three” features of object-oriented programming. Inheritance allows
one class to receive all the features from another class.

One problem with private visibility is that you cannot access private fields
within classes that inherit them. Protected visibility, however, relaxes these
restrictions to allow access by inheriting classes, but it doesn’t allow access
to private fields outside the original class or its inheriting classes.

UML notation uses the hash symbol (#) to denote protected visibility,
as shown in Figure 6-6.

poolMonitor

#salinityCalibration
#pHCalibration
#chlorineCalibration

#testphSensor()
#testSalinitySensor()
#testChlorineSensor()

Figure 6-6: Protected attributes
and operations

6.2.4 Package Class Visibility
Package visibility sits between private and protected and is largely a Java
concept. Other languages have something similar, including Swift, C++,
and C#, in which you can use namespaces to simulate package visibility,
although the semantics aren’t quite the same.

Package-protected fields are visible among all classes in the same pack-
age. Classes outside the package (even if they inherit from the class contain-
ing the package-protected fields) cannot access items with package visibility.

We use the tilde (~) to denote package visibility, as shown in Figure 6-7.
Chapter 8 discusses UML package notation (that is, how to place several
classes in the same package).

poolMonitor

~powerSupplyVoltage_c

~readCurPwrSupplyV()

Figure 6-7: Package attributes
and operations

108 Chapter 6

6.2.5 Unsupported Visibility Types
What happens if your programming language of choice doesn’t support the
same visibility types that UML specifies? Well, the good news is that UML
visibility is largely a spectrum, as shown in Figure 6-8.4

Public PrivateProtected Package

More public More private

Figure 6-8: Visibility spectrum

You can always substitute a more public visibility for a more private
visibility if your programming language doesn’t support a specific visibil-
ity. For example, the High-Level Assembly (HLA) language supports only
public fields; C++ only partially supports package visibility (using friend
declarations or namespaces); and Swift supports an offshoot of package
visibility—all private fields within an object are automatically visible to all
classes declared in the same source file. One way to avoid abusing the extra
visibility is to add some sort of visibility notation to the attribute or opera-
tion’s name in the class—for example, by prefacing protected names with
prot_ and then declaring them as public objects, as shown in Figure 6-9.

poolMonitor

+prot_powerSupplyVoltage_c

+prot_readCurPwrSupplyV()

Figure 6-9: Faking visibility restriction

6.3 Class Attributes
Attributes in a UML class (also known as data fields or simply fields) hold the
data associated with an object. An attribute has a visibility and a name; it
can also have a data type and an initial value, as shown in Figure 6-10.

itemList

+maxItems_c :int = 100
-listName :String

Figure 6-10: Attributes

4. Package and protected visibility might vary in this diagram depending on your choice of
programming language, but the basic idea of a spectrum applies nonetheless.

UML Class Diagrams 109

6.3.1 Attribute Visibility
As discussed earlier, you specify the visibility of an attribute by prefixing its
name with the +, -, #, or ~ symbols, which specify public, private, protected,
and package visibility, respectively. See “Visibility in a Class Diagram” on
page 105 for more details.

6.3.2 Attribute Derived Values
Most of the time, a class stores the value of an attribute as a variable or con-
stant data field (a base value). However, some fields contain derived values
rather than base values. The class calculates a derived value whenever some
expression references that attribute. Some languages, like Swift, provide
syntax for directly defining declared values; in other languages (such as
C++), you’ll typically write getter and setter accessor functions to implement
a derived value.

To create a derived attribute in UML, you immediately precede the
attribute name (after the visibility symbol) with a forward slash (/), as
shown in Figure 6-11.

poolMonitor

-minNaClLevel : double
-maxNaClLevel : double
-/NaClRange : double

NaClRange
is computed as
maxNaClLevel - minNaClLevel

Figure 6-11: A derived attribute

Whenever you use a derived attribute, somewhere you must define how
to calculate it. Figure 6-11 uses a comment for this purpose, although you
could also use a property string (see “Property Strings” on page 112).

6.3.3 Attribute Names
The attribute name should work in whichever programming language(s)
you use to implement the design. As much as possible, you should refrain
from naming syntax or conventions that are specific to a programming lan-
guage unless you’re requiring implementation in that language. As a gen-
eral rule, the following conventions work well for UML attribute names:

•	 All names should begin with an (ASCII) alphabetic character (a–z
or A–Z).

•	 After the first character, names should contain only ASCII alphabetic
characters (a–z, A–Z), numeric digits (0–9), or underscores (_).

110 Chapter 6

•	 All names should be unique within the first six to eight characters
(some compilers allow arbitrary-length names but keep only a prefix
of them in the internal symbol table during compilation).

•	 Names should be shorter than some arbitrary length (we’ll use 32 char-
acters here).

•	 All names should be case neutral; that is, two separate names must con-
tain at least one distinct character rather than just a difference in case.
Also, all occurrences of a given name should be consistent with respect
to alphabetic case.5

6.3.4 Attribute Data Types
A UML object can optionally have an associated data type (see the exam-
ples in Figure 6-10). UML doesn’t require you to explicitly state the data
type; if it’s absent, the assumption is that the reader can infer it from the
attribute’s name or usage, or that the programmer will decide on a type
while implementing the design.

You can use any type names you want for primitive data types and leave
it up to the programmer to choose the appropriate or closest matching data
type when writing the code. That being said, when working with generic
data types most people choose C++ or Java type names (which makes sense,
because UML’s design was largely based on these two languages). Common
data types you’ll find attached to UML attributes include:

•	 int, long, unsigned, unsigned long, short, unsigned short

•	 float, double

•	 char, wchar

•	 string, wstring

Of course, any user-defined type names are perfectly valid as well. For
example, if you’ve defined uint16_t to mean the same thing as unsigned short
in your design, then using uint16_t as an attribute type is perfectly accept-
able. In addition, any class objects you define in UML also make perfectly
good data type names.

6.3.5 Operation Data Types (Return Values)
You can also associate a data type with an operation. Functions, for example,
can return a value having some data type. To specify a return data type,
follow the operation name (and parameter list) with a colon and the data
type, as shown in Figure 6-12.

5. Case neutrality guarantees that the names you choose will be valid in both case-sensitive and
case-insensitive languages. For example, hello and Hello would be considered different names
in a case-sensitive language like C++, but the same in a case-insensitive language like Pascal.
Neither is case neutral, so you should consistently use only one or the other in UML diagrams.

UML Class Diagrams 111

itemList

+sumItems() :int
-localFunction() :double

Figure 6-12: Return types

We’ll discuss operations more in “Class Operations” on page 112.

6.3.6 Attribute Multiplicity
Some attributes could contain a collection (array or list) of data objects. In
UML we denote multiplicity using square brackets [], similar to array decla-
rations in many high-level languages; see Figure 6-13.

poolMonitor

-tempSensors[1..2] :int

tempSensors[1]
is the pool temperature and
tempSensors[2]
is the spa temperature

Figure 6-13: Multiplicity

Within the brackets, you specify an expression, which can be any of
the following:

•	 A numeric value (for example, 5) indicating the number of elements in
the collection

•	 A numeric range (for example, 1..5 or 0..7) indicating the number of
elements and valid suffix range for the collection of elements

•	 An asterisk (*) representing an arbitrary number of elements

•	 An asterisk-terminated range (for example, 0..* or 1..*) indicating an
open-ended range of array elements

If this notation is absent, the multiplicity defaults to [1] (that is, a single
data object).

6.3.7 Default Attribute Values
To specify an initial value for an attribute, you use an equal sign (=) fol-
lowed by an expression (with a type appropriate for the attribute). This
typically follows the attribute’s multiplicity (if present) and/or type. But
if the type can be inferred from the initial value, you can omit both it and
the multiplicity. If the multiplicity is something other than 1, you enclose a
comma-separated list of initial values, one for each element, within a pair
of braces. See Figure 6-14.

112 Chapter 6

poolMonitor

-numTempSensors = 2
-tempSensorOffset[2] : double = {32.0, 32.0}
-tempSensorSpan = {100.0, 100.0}

Figure 6-14: Initial values

In this example, the numTempSensors attribute is an integer type (which can
be inferred by the initial value 2), and tempSensorSpan is an array of doubles with
two elements (inferred by the number and types of values in the braces).

6.3.8 Property Strings
UML’s attribute syntax probably doesn’t cover every possible case for your
attributes. UML provides the property string to handle outlier situations. To
create a property string, you add text within braces at the end of the attri-
bute that describes it, as shown in Figure 6-15.

poolMonitor

-minNaClLevel : double
-maxNaClLevel : double
-/NaClRange : double {maxNaClLevel - minNaClLevel}

Figure 6-15: Property strings

You can also use property strings to define other property types.
Common examples include {readOnly}, {unique}, and {static}.6 Keep in
mind that a property string is a catch-all field in the attribute. You can
define any syntax you want inside the braces.

6.3.9 Attribute Syntax
The formal syntax for an attribute looks as follows (note that optional
items appear in braces, except quoted braces, which represent literal
brace characters):

{visibility}{"/"} name { ":" type }{multiplicity}{"=" initial}{"{"property string"}"}

6.4 Class Operations
Class operations are items within a class that perform actions. Generally,
the operations represent the code in a class (but there can also be code
associated with derived attributes, so having code is not exclusive to opera-
tions in a UML class).

6. Underlining the attribute is the standard way to specify static objects in UML, but using
a property string is probably clearer.

UML Class Diagrams 113

UML class diagrams place attributes and operations into separate rect-
angles, though this is not what differentiates one from the other. (Consider
Figure 6-2: the partial class diagrams are ambiguous with respect to which
class diagram contains only attributes and which contains only operations.)
In UML we explicitly specify operations within a class diagram by following
the operation’s name with a (possibly empty) parameter list surrounded by
parentheses (refer to Figure 6-4 for an example).

As noted in “Operation Data Types (Return Values)” on page 110, you
can also specify a return type for an operation by following the parameter
list with a colon and a data type name. If the type is present, you definitely
have a function; if it’s absent, you likely have a procedure (a void function).

What’s been missing in all the operation examples thus far is param-
eters. To specify parameters, you insert a comma-separated list of attributes
within the parentheses immediately following the operation name, as
shown in Figure 6-16.

poolMonitor

-sumItems(count:int, items[*]:int):int
+aveTemp(includeSpa:boolean,
 startDate:date, numDays:int):double
+displayTemp(temp:double, in Fahrenheit:boolean)

Figure 6-16: Operation parameters

By default, parameters in a UML operation are value parameters, mean-
ing they’re passed to the operation as an argument, and changes an opera-
tion makes to a value parameter do not affect the actual parameter the
caller passes to the function. A value parameter is an input parameter.

UML also supports output parameters and input/output parameters. As
their names suggest, output parameters return information from the opera-
tion to the calling code; input/output parameters pass information to and
return data from an operation. UML uses the following syntax to denote
input, output, and input/output parameters:

•	 Input parameters: in paramName:paramType

•	 Output parameters: out paramName:paramType

•	 Input/output parameters: inout paramName:paramType

The default parameter-passing mechanism is input. If there’s nothing
specified before the parameter name, UML assumes that it is an in param-
eter. Figure 6-17 shows a simple example of an inout parameter.

poolMonitor

-sortItems(count:int, inout items[*]:int)

Figure 6-17: Parameter inout example

114 Chapter 6

In this figure, the list of items to sort is an input and an output param-
eter. On input, the items array contains the data to be sorted; on output, it
contains the sorted items (an in-place sort).

UML tries to be as generic as possible. The in, out, and inout parameter-
passing specifiers don’t necessarily imply pass by value or pass by reference.
This implementation detail is left to, well, the actual implementation. From
a design point of view, UML is specifying only the direction in which, not
how, the data is transferred.

6.5 UML Class Relationships
In this section, we’ll explore five different types of relationships between
classes: dependency, association, aggregation, composition, and
inheritance.

Like visibility, class relationships fall along a spectrum (see Figure 6-18).
This range is based on their strength, or the level and type of intercommuni-
cation between two classes.

Dependency Composition InheritanceAssociation Aggregation

Weaker
Relationship

Stronger

Figure 6-18: Class relationship spectrum

Strength ranges from loosely coupled to tightly coupled. When two classes
are tightly coupled, any modifications to one class will likely affect the state
of the other class. Loosely coupled classes are mostly independent of each
other; changes to one are unlikely to affect the other.

We’ll discuss each type of class relationship in turn, from weakest
to strongest.

6.5.1 Class Dependency Relationships
Two classes are dependent on each other when objects of one class need
to briefly work with objects of another class. In UML we use a dashed open-
ended arrow to denote a dependency relationship, as shown in Figure 6-19.

userInterface poolMonitor

Figure 6-19: Dependency relationship

In this example, the userInterface and poolMonitor classes work together
whenever a userInterface object wants to retrieve data to display (for exam-
ple, when you pass a poolMonitor object to a userInterface method as a param-
eter). Other than that, the two classes (and objects of those classes) operate
independently of each other.

UML Class Diagrams 115

6.5.2 Class Association Relationships
An association relationship occurs when one class contains an attribute
whose type is a second class. There are two ways to draw an association
relationship in UML: inline attributes and association links. You’ve already
seen inline attributes—they’re the normal attribute definitions you saw in
“Attribute Syntax” on page 112). The only requirement is that the type
name must be some other class.

The second way to specify a class association relationship is with an
association line or link, as shown in Figure 6-20.

mainClass assocClass

Association
name

—or—

mainClass assocClass

Association
name

Figure 6-20: Association relationship

The association name is typically a verb phrase that describes the
association, such as has, owns, controls, is owned by, and is controlled by
(see Figure 6-21).

poolMonitor phClass
has

—or—

poolMonitor pumpClass
is controlled by

Figure 6-21: Association names

How can we tell from an association diagram which class is an attribute
of the other? Notice the arrowhead immediately to the left or right of the
association name. This provides the direction of the association; here, it
shows that the poolMonitor has a phClass, rather than the reverse.

But while a meaningful association name and arrowhead verb phrase
can give you a clue, there’s no guarantee that your intuition will be correct.
Although it might seem counterintuitive, pumpClass in Figure 6-21 could con-
tain the poolMonitor object as an attribute, even though the poolMonitor class
controls the pumpClass object. The UML solution is to apply navigability (see
“Navigability” on page 123) by placing an open-ended arrow pointing at
the class that is an attribute of the other class, as shown in Figure 6-22.

116 Chapter 6

poolMonitor phClass
has

—or—

poolMonitor pumpClass
is controlled by

Figure 6-22: Association navigability

6.5.3 Class Aggregation Relationships
An aggregation, a slightly more tightly coupled version of association, exists
as a class that could be stand-alone but is part of a larger class. Most of the
time, an aggregation relationship is a controls relationship; that is, a control-
ling class (the aggregate or whole class) controls a set of subservient objects
or attributes (the parts classes). The aggregate class cannot exist without the
parts classes; however, the parts classes can exist outside the context of the
aggregate class (for example, a parts class could be associated with both
the aggregate class and an additional class).

Aggregates act as gatekeepers to their parts attributes, ensuring that
the parts’ methods are being called with appropriate (for example, range-
checked) parameters and that the operating environment for those parts is
consistent. The aggregate class can also check return values for consistency
and handle exceptions and other issues raised by the parts.

For example, you could have a pHSensor class that works well with a stand-
alone pH meter and a salinitySensor class that works well with a stand-alone
salinity (or conductivity) sensor. The poolMonitor class is not a stand-alone
class: it needs both of these classes to do its job, even though they don’t need
poolMonitor to do theirs. We model this relationship using an empty diamond
symbol on the aggregate class (poolMonitor) and an association line leading to
the parts classes (pHSensor and salinitySensor), as shown in Figure 6-23.

poolMonitor phSensor
controls

salinitySensor
controls

Figure 6-23: Aggregation relationship

The class with the open diamond end of the association line (that is,
the aggregated class) always contains the attribute-associated class (the
parts class) at the other end of the line.

The lifetimes of an aggregate object and its associated parts objects are
not necessarily the same. You could create several parts objects and then
attach them to an aggregate object. When the aggregate object finishes its
task, it can be deallocated while the parts objects continue to solve other

UML Class Diagrams 117

problems. In other words, from a low-level programming perspective, the
system stores pointers to the parts objects in the aggregate object. When
the system deallocates the storage for the aggregate object, the pointers
might go away, but the objects they reference might persist (and could be
pointed at by other aggregate objects in the system).

Why use an aggregate diagram? The code produced for an associa-
tion and an aggregation will be identical. The difference is one of intent.
In an aggregation diagram, the designer is saying that the parts objects or
classes are under the control of the aggregate class or object. To return to
our poolMonitor example, in the aggregation relationship, the poolMonitor
is in complete charge—the salinitySensor and pHSensor objects are being
controlled by it, and never the other way around. In an association relation-
ship, however, the associated classes are peers rather than having a master/
slave relationship; that is, both the pHSensor and salinitySensor could operate
independently of the poolMonitor—and vice versa—sharing information only
as necessary.

6.5.4 Class Composition Relationships
In composition relationships, the smaller classes contained by the larger
class are not stand-alone classes: they exist strictly to support the contain-
ing, or composing, class. Unlike with aggregates, composition parts can
belong only to a single composition.

The lifetimes of the composing object and the parts objects are the
same. When you destroy the composing object, you also destroy the parts
objects it contains. The composing object is responsible for allocating and
deallocating storage associated with the parts.

We use a solid diamond to denote a composition relationship, as shown
in Figure 6-24.

poolMonitor tempHistory
writes to

salinityHistory
writes to

pHHistory
writes to

Figure 6-24: Composition relationship

6.5.5 Relationship Features
For dependency, association, aggregation, and composition relationships,
UML supports these 10 features, some of which you’ve already seen:

•	 Attribute names

•	 Roles

118 Chapter 6

•	 Interface specifiers

•	 Visibility

•	 Multiplicity

•	 Ordering

•	 Constraints

•	 Qualifiers

•	 Navigability

•	 Changeability

These features don’t apply to the inheritance relationship, which is
why I haven’t yet described it. We’ll get to inheritance shortly in the section
“Class Inheritance Relationships” on page 125, but first we’ll cover each of
these relationship features.

N O T E For simplicity’s sake I use association to discuss each feature, but dependency,
aggregate, and composition all equally apply.

6.5.5.1 Association and Attribute Names

The association name attached to a link can tell you the type or owner-
ship of the interaction, but it doesn’t tell you how the two classes refer to
each other. The association link only provides a connection between the
two class objects. Classes refer to each other using attribute and operation
fields in the class definition.

As you read in “Class Association Relationships” on page 115, the asso-
ciation diagram is effectively an alternative to the inline syntax for incorpo-
rating an attribute or operation name within a class. The two diagrams in
Figure 6-25 are equivalent.

—is equivalent to—

poolMonitor phClass
has

poolMonitor

-pHSensor:pHClass

Figure 6-25: Shorthand (top) and longhand (bottom)
association relationship diagrams

In Figure 6-25, the shorthand version is missing the attribute or opera-
tion name (pHSensor in this example) and the visibility (-, or private), but
you can supply these missing pieces by attaching the attribute name to the
association link nearest the object that will hold the object reference data
field, as shown in Figure 6-26.

Like the inline syntax, an attribute name consists of an attribute or
operation name with a visibility symbol prefix (-, ~, #, or +). The visibility

UML Class Diagrams 119

symbol must be present because it differentiates an attribute name from a
role (described next).

poolMonitor phClass
has

-pHSensor

Figure 6-26: Attribute name

Another option is to combine the association and attribute names,
as shown in Figure 6-27.

poolMonitor phClass
has -pHSensor

Figure 6-27: Combining association and attribute names

6.5.5.2 Roles

In Figure 6-27, it isn’t entirely clear what the two classes are doing. The pool
Monitor class has a pHSensor field that connects to the pHClass, but otherwise
the diagram doesn’t explain what’s going on. Roles, which typically appear
at both ends of the association link, provide this missing description.

In this example, the poolMonitor class or object generally reads the
pH value from a pH sensor device (encapsulated in pHClass). Conversely,
the pHClass class or object can supply pH readings. You can describe these
two activities (reading pH and supplying a pH value) using roles in UML.
Figure 6-28 shows an example of these roles.

poolMonitor phClass
Reads pH Supplies pH

has -pHSensor

Figure 6-28: Roles

6.5.5.3 Interface Specifiers

An interface is a set of operations expected from certain classes. It’s simi-
lar to a class except there are no objects instantiated from it. Classes that
adhere to an interface are guaranteed to provide all the operations present
in it (and provide methods for those operations). If you’re a C++ program-
mer, you can think of an interface as an abstract base class containing only
abstract member functions. Java, C#, and Swift have their own special syn-
tax for defining interfaces (also known as protocols).

N O T E Interface specifiers are supported in UML 1.x but have been dropped from UML 2.0.
I describe them in this chapter because you might encounter them, but you shouldn’t
use them in new UML documents because they’re deprecated.

If a class implements an interface, it’s effectively inheriting all the
operations from that interface. That is, if an interface provides operations
A, B, and C, and some class implements that interface, that class must also

120 Chapter 6

provide operations A, B, and C (and provide concrete implementations of
these operations). There are two distinct ways to specify an interface—with
stereotype or ball notation, as shown in Figure 6-29.

«interface»
sensor

—or—

sensor

+startReading()
+waitForReading()
+readSensor:double
+calibrateSensor(calibrations[]:double)

+startReading()
+waitForReading()
+readSensor:double
+calibrateSensor(calibrations[]:double)

Figure 6-29: Interface syntax: stereotype (top)
and ball (bottom) notation

To show that a class implements a given interface, you draw a dashed
line with a hollow arrowhead from the class to the interface diagram, as
shown in Figure 6-30.

«interface»
sensor

+startReading()
+waitForReading()
+readSensor:double
+calibrateSensor(calibrations[]:double)

phClass

Figure 6-30: Interface implementation diagram

6.5.5.4 Visibility

Visibility applies to attribute names in an association link. As noted earlier,
all attribute names must be prefixed with a symbol (-, ~, #, or +) that speci-
fies their visibility (private, package, protected, or public, respectively).

6.5.5.5 Multiplicity

The section “Attribute Multiplicity” on page 111 described multiplicity for
inline attributes. You can also include multiplicity in association diagrams
by specifying multiplicity values at either or both ends of an association
link (see Figure 6-31). Place multiplicity values above or below the link and
closest to the class or object to which they apply. If a multiplicity value is not
provided, it defaults to 1.

UML Class Diagrams 121

poolMonitor phClass
1 1..*

has

—same as—

-pHSensor

poolMonitor phClass
1..*

has -pHSensor

Figure 6-31: Multiplicity on an association link

Figure 6-31 indicates that there is a single poolMonitor object, and it can
have one or more associated pHSensors (there could be, for example, sepa-
rate pH sensors in the spa and in the swimming pool proper).

This example shows a one-to-many relationship. It’s also possible to
have many-to-one and even many-to-many relationships in these diagrams.
For example, Figure 6-32 shows a many-to-many relationship between
poolMonitor and pHClass classes or objects (if you’re having a hard time visu-
alizing how this would work, consider a water park that has multiple pools
with multiple pH meters).

poolMonitor phClass
1..* 1..*

has -pHSensor

Figure 6-32: Many-to-many relationship

6.5.5.6 Ordering

UML provides the {ordered} constraint, which you can attach to any associa-
tion that has a multiplicity other than 1 (see Figure 6-33).

poolMonitor tempHistoryClass
1..* 1..*

{ordered}

records -history

Figure 6-33: An ordered association

When appearing by itself, the {ordered} constraint doesn’t specify how
to order the list of items, only that they are ordered. The type of ordering
must be handled by the implementation.

6.5.5.7 Constraints

A constraint is application-specific text within braces that you attach to an
association link. Although UML has some predefined constraints (like the
{ordered} constraint just mentioned), you usually create your own to provide
some application-defined control over the association link. You can even
specify multiple constraints by separating them with commas within the
braces. For example, the singular {ordered} constraint in Figure 6-33 doesn’t
describe how to sort the temperature history information. You can specify

122 Chapter 6

the ordering by adding another constraint to the diagram, such as sorted
by date/time, as shown in Figure 6-34.

poolMonitor tempHistoryClass
1..* 1..*

{ordered,
sorted by date/time}

records -history

Figure 6-34: A custom constraint

6.5.5.8 Qualifiers

A qualifier informs the implementer that a specified association requires
fast access, typically using a key or index value. For example, suppose the
temperature recording mechanism in Figure 6-34 records the pool temper-
ature every minute. Over the span of a week, the history object will accumu-
late 10,080 readings; over a year, it will accumulate more than 3.6 million
readings. To extract one reading per day (say, the temperature at noon)
over the past year, you have to scan through nearly 4 million readings to
produce 365 or 366 readings. That could be computationally intensive and
create some performance issues, particularly for real-time systems (which
the pool monitor system is likely to be). We could instead give each reading
a unique index value so we can extract only those we need.

To create a UML qualifier, you place some qualification (usually an
attribute name in the qualifying class or object) in a rectangle at one end
of the association link, as shown in Figure 6-35.

poolMonitor

tempHistoryClass

1

1

{ordered,
unique date/time,
sorted by date/time}

date_time

records -history

Figure 6-35: A qualifier example

The unique qualifier requires all tempHistoryClass objects to have
unique dates and times; that is, no two readings can have the same date
and time value.

Figure 6-35 suggests that the system will maintain a special mechanism
that lets us directly select a single tempHistoryClass object based on its date_time
value. This is similar to a key in a database table.7

In this example, the multiplicity values are both 1 because the dates
and times are all unique, and the date_time qualifier will pick a specific

7. Similar to a key but not identical. A database maintains records and keys as disk files; quali-
fiers generally assume an in-memory data structure, such as an associative array, hash table,
or map, to provide access to the specific record of interest.

UML Class Diagrams 123

date, for which there can be only one associated record. (Technically, there
could be zero matches; however, the diagram doesn’t allow for that, so
there must be a matching object.)

The multiplicity could be something other than 1 if the date_time key is
not unique among the history objects. For example, if you want to generate
a report with all the temperatures recorded at noon, you could specify that
as shown in Figure 6-36.

poolMonitor

tempHistoryClass

1

1..*

{ordered,
unique date/time,
sorted by date/time}

time = noon

records -history

Figure 6-36: A qualifier set example

Assuming you have a year’s worth of readings in the tempHistoryClass
object, you’ll get a set of 365/366 readings, all on different dates but at the
same time (noon in this example).

One detail to keep in mind is that you can have multiple association
diagrams that describe variants of the same association. For example, it’s
not unreasonable to find Figures 6-34, 6-35, and 6-36 in the same set of
UML documents. Figure 6-34 describes the generic association between
the poolMonitor class or object and the tempHistoryClass object. Figure 6-35
might describe a search operation where you’re searching for a specific
temperature; this operation might be so common that you want to generate
some sort of associative array (that is, a hash table) to improve its perfor-
mance. Likewise, Figure 6-36 suggests that you want another fast lookup
table to speed up collecting a set of readings recorded at noon. Each dia-
gram exists in its own context; they don’t conflict with one another.

6.5.5.9 Navigability

In “Attribute Names” on page 109, I introduced the concept of adding attri-
bute names to an association link. The suggestion was to place the name
close to the class or object that contains the attribute (that is, that refers
to the other class or object at the end of the association link). Although
implicitly specifying the communication direction and attribute ownership
this way works well for most simple diagrams, it can become confusing as
your UML diagrams become more complex. The UML navigability feature
remedies this problem.

Navigability specifies the direction of information flow in a diagram
(that is, how the data navigates through the system). By default, association
links are navigable in both directions. This means that a class/object at
one end of the link can access data fields or methods at the other end. It’s

124 Chapter 6

possible, however, to specify that information flows in only one direction
along the association link.

To indicate navigability, place an arrowhead at the end of an asso-
ciation link to specify the direction of communication flow (you don’t
need to place arrowheads on both ends of an association link to specify
bidirectional communication). For example, in Figure 6-37, the commu-
nication flows from the poolMonitor class or object to the pHClass class or
object. This direction tells you two things: the pHSensor attribute is a mem-
ber of the poolMonitor class or object, and the pHClass has no attributes that
let it reference anything inside poolMonitor.

poolMonitor phClass
has

-pHSensor

Figure 6-37: Navigability

UML 2.x added a new symbol to explicitly indicate that communication
doesn’t occur in a given direction: you place a small × on the association
link near the side forbidding communication (see Figure 6-38).

poolMonitor phClass
has

-pHSensor

Figure 6-38: Explicit non-navigability

I think this clutters the diagram and makes it harder to read, so I
stick with the default specification. You can decide for yourself which
option to use.

6.5.5.10 Changeability

The UML changeability feature allows you to specify whether a particular
data set can be modified after its creation. In the history recording example
from Figure 6-34, once a temperature is recorded in the history database,
you don’t want the system or a user to edit or delete that value. You can
achieve this by adding the {frozen} constraint to the association link, as
shown in Figure 6-39.

poolMonitor tempHistoryClass
1..* 1..*

{frozen,
ordered,
sorted by date/time}

records -history

Figure 6-39: A {frozen} example

Now that you have a better understanding of the features of the first
four relationship types, let’s turn to the final type: inheritance.

UML Class Diagrams 125

6.5.6 Class Inheritance Relationships
The inheritance relationship (also known as the generalization relationship in
UML) is the strongest, or most tightly coupled, form of class relationships.
Any change you make to a base class’s fields will have an immediate and
dramatic effect on the child (inheriting) classes or objects.8 Inheritance is
a considerably different relationship than dependency, association, aggre-
gation, or composition. These other relationships describe how one class
or object uses another class or object; inheritance describes how one class
includes everything from another class.

For inheritance we use a line with a hollow arrowhead at one end. The
arrowhead points at the base class (the general item), and the other end of
the line connects to the inheriting (derived) class, as shown in Figure 6-40.

poolMonitor

mainPoolMonitorspaMonitor

Figure 6-40: Inheritance

In this example, spaMonitor and mainPoolMonitor are derived classes that
inherit all the fields of the base (ancestor) class poolMonitor (likely, these
derived classes add new attributes and operations as well).

The inheritance relationship is not like dependency, association, aggre-
gation, or composition in that features such as multiplicity, roles, and navi-
gability don’t apply.

6.6 Objects
You’ve seen two types of participants in all the diagrams thus far: actors
and classes. Specifically, most items have been classes. However, from an
object-oriented programming point of view, classes are merely data types,
not actual data items that software can manipulate. An object is an instan-
tiation of a class—the actual data object that maintains state within an
application. In UML, you represent an object using a rectangle, just as you
represent classes. The difference is that you specify an object name with its
associated class name, and you underline the pair in the object diagram, as
shown in Figure 6-41.

pMon:poolMonitor

Figure 6-41: An object

8. The base class is also known as the ancestor class.

126 Chapter 6

6.7 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit,

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press,
1999. A sample chapter is available at http://www.untechnicalpress.com
/Downloads/UMM%20sample%20doc.pdf.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick
Reference. 2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
https://www.tutorialspoint.com/uml/

7
U M L I N T E R A C T I O N D I A G R A M S

Interaction diagrams model the opera-
tions that occur between different objects

(participants) in a system. There are three
main types of interaction diagrams in UML:

sequence, collaboration (communication), and
timing. The majority of this chapter will focus on
sequence diagrams, followed by a very brief discus-
sion of collaboration diagrams.

128 Chapter 7

7.1 Sequence Diagrams
Sequence diagrams show the interaction between participants (actors,
objects) in the order in which it takes place. Whereas activity diagrams
describe the particulars of one operation on an object, sequence diagrams
tie activity diagrams together to show the order in which multiple opera-
tions occur. From a design perspective, sequence diagrams are more infor-
mative than activity diagrams as they illustrate the overall architecture of
the system; at the (lower) level of an activity diagram, however, a system
architect can usually safely assume that the software engineer implement-
ing the system can figure out the activities required by the design.

7.1.1 Lifelines
At the top of a sequence diagram you draw the set of participants, using
rectangles or stick figures (see Figure 7-1), and then draw a dashed line
from each participant to the bottom of the diagram to indicate that object’s
lifeline. Lifelines show the flow of time from the earliest (topmost) point of
execution to the latest (bottommost) point. However, lifelines by themselves
do not indicate the amount of time that passes, only the passage of time from
the top to the bottom of the diagram, and equal line lengths need not cor-
respond to the same amount of time—a 1 cm section at one point could be
days, while a 1 cm section elsewhere could be microseconds.

User

Time

Lifelines

pMon:poolMonitor pump:pumpCtrlr

Figure 7-1: A basic sequence diagram

UML Interaction Diagrams 129

7.1.2 Message Types
Communication between participants takes the form of messages (which I
will sometimes call operations), which consist of an arrow drawn between
lifelines, or even from one lifeline to itself.

There are four types of message arrows you can use, as shown in
Figure 7-2.

Synchronous

Return

Asynchronous

Flat

Figure 7-2: Message types in sequence
diagrams

Synchronous messages are the typical call/return operation that most
programs use (to execute object methods, functions, and procedures). The
sender suspends execution until the receiver returns control.

Return messages indicate that control returns from a synchronous mes-
sage back to the message sender, but they are purely optional in a sequence
diagram. An object cannot continue execution until a synchronous message
completes, so the presence of some other message (received or sent) on the
same timeline inherently implies a return operation. Because a large number
of return arrows can obfuscate a sequence diagram, it’s best to leave them
off if the diagram starts to get cluttered. If the sequence diagram is relatively
clean, however, a return arrow can help show exactly what is happening.

Asynchronous messages trigger an invocation of some code in the
receiver, but the message sender does not have to wait for a return message
before continuing execution. For this reason, there’s no need to draw an
explicit return arrow for an asynchronous call in your sequence diagrams.

Flat messages can be either synchronous or asynchronous. Use a flat
message when the type doesn’t matter for the design and you want to leave
the choice up to the engineer implementing the code. As a general rule,
you do not draw return arrows for flat messages because that would imply
that the implementer must use a synchronous call.

N O T E Flat messages are UML 1.x entities only. In UML 2.0, asynchronous messages use
the full open arrowhead instead.

130 Chapter 7

7.1.3 Message Labels
When you draw a message, you must attach a label to the message’s arrow.
This label could simply be a description of the message, as in Figure 7-3.

User

Select immediate
pool clean

pMon:poolMonitor pump:pumpCtrlr

Turn on pump

Figure 7-3: Message labels

The sequence of messages is indicated by their vertical placement. In
Figure 7-3, the “Select immediate pool clean” label is the first message line
in the diagram, meaning it is the first operation to execute. Moving down-
ward, “Turn on pump” is the second message line, so it executes next. The
return from “Turn on pump” is the third operation and the return from
“Select immediate pool clean” is the fourth.

7.1.4 Message Numbers
As your sequence diagrams become more complex, it may be difficult to
determine the execution order from the message position alone, so it can be
helpful to attach additional indicators like numbers to each message label.
Figure 7-4 uses sequential integers, though UML doesn’t require this. You
could use numbers like 3.2.4 or even non-numeric indicators (for example,
A, B, C). However, the goal is to make it easy to determine the message
sequence, so if you get too carried away here you might defeat that purpose.

User

1: Select immediate
pool clean

pMon:poolMonitor pump:pumpCtrlr

2: Turn on pump

3: Return

4: Return

Figure 7-4: Message numbers

UML Interaction Diagrams 131

Although the message labels you’ve seen thus far are relatively straight-
forward descriptions, it’s not uncommon to use the actual operation names,
parameters, and return values as labels on message arrows, as in Figure 7-5.

User

1: immediateClean()

pMon:poolMonitor pump:pumpCtrlr

2: pump(100):boolean

3: Return true

4: Return

speed
=

100%

Figure 7-5: Message arguments and return values

7.1.5 Guard Conditions
Your message labels can also include guard conditions: Boolean expressions
enclosed in brackets (see Figure 7-6). If the guard expression evaluates to
true, the system sends the message; if it evaluates to false, the system does
not send the message.

User

1: immediateClean()

pMon:poolMonitor pump:pumpCtrlr

 [pumpPower==on]
2: pump(100):boolean

3: Return true

4: Return

Figure 7-6: Message guard conditions

In Figure 7-6, the pMon object sends a pump(100) message to pump only if
pumpPower is on (true). If pumpPower is off (false) and the pump(100) message does
not execute, the corresponding return operation (sequence item 3) will not
execute either, and control will move to the next outgoing arrow item in the
pMon lifeline (sequence item 4, returning control to the user object).

132 Chapter 7

7.1.6 Iterations
You can also specify the number of times a message executes by providing
an iteration count in a sequence diagram. To specify an iteration, you use an
asterisk symbol (*) followed by a guard condition or for loop iteration count
(see Figure 7-7). The system will repeatedly send the message as long as the
guard condition is true.

*[for each i in 1..100]
pumpPwrAndDelay(i)

Figure 7-7: Partial sequence
diagram with iteration

In Figure 7-7, the message executes 100 times, with the variable i
taking on the value 1 through 100, incrementing on each iteration. If the
pumpPwrAndDelay function applies the percent power specified as the argu-
ment and delays for 1 second, then in about 1 minute, 40 seconds, the
pump will be running at full speed (increasing by 1 percent of the total
speed each second).

7.1.7 Long Delays and Time Constraints
Sequence diagrams typically describe only the order of messages, not the
amount of time each message takes to execute. Sometimes, however, a
designer might want to indicate that a particular operation might take a
long time relative to others. This is particularly common when one object
sends a message to another object located outside the bounds of the cur-
rent system (for example, when a software component sends a message to
some object on a remote server across the internet), which we’ll discuss
shortly. You indicate that an operation will take longer by pointing the mes-
sage arrow slightly downward. In Figure 7-8, for example, you would expect
the scheduledClean() operation to take more time than a typical operation.

«Actor»
Timer Module

1: scheduledClean()

pMon:poolMonitor pump:pumpCtrlr

*[run for scheduled time]
2: pump(100):boolean

3: Return true

4: Return

{Time not
to exceed
12 hours}

Figure 7-8: Timed messages with timing constraints

UML Interaction Diagrams 133

You must also specify the expected amount of time for each message by
adding some sort of constraint to the diagram. Figure 7-8 demonstrates this
with a dashed vertical arrow from the start of the scheduledClean() operation
to the point on the lifeline where the system returns control to the Timer
Module actor (probably the physical timer on the pool monitor system). The
required time constraint appears inside braces next to the dashed arrow.

7.1.8 External Objects
Occasionally a component of a sequence diagram must communicate with
some object external to the system. For example, some code in the pool mon-
itor might check the salinity level and send an SMS message to the owner’s
cell phone if it drops too low. The code to actually transmit the SMS mes-
sage is probably handled by an Internet of Things (IoT) device and thus
outside the scope of the pool monitor software; hence, the SMS code is an
external object.

You draw a heavy border around external objects and use a solid line
for their lifelines rather than a dashed line (see Figure 7-9).

«Actor»
Timer Module

1: salinityCheck()

salinity:saltSensor SMS:IoTDevice

[salinity < 3600 ppm]
2: sendMsg(msg)

3: updateSalinityDisp()

{10 minutes}

Figure 7-9: External objects in a sequence diagram

In Figure 7-9, the Timer Module makes an asynchronous call to the
salinity object, and there is no return from the salinityCheck() operation.
After that call, the Timer Module can perform other tasks (not shown in
this simple diagram). Ten minutes later, as noted by the time constraint,
the salinity object makes an asynchronous call to the Timer Module actor
and has it update the salinity value on the display.

Because there isn’t an explicit time constraint on the sendMsg() opera-
tion, it could occur any time after the salinityCheck() operation and before
the updateSalinityDisp() operation; this is indicated by the sendMsg() message
arrow’s position between the other two messages.

7.1.9 Activation Bars
Activation bars indicate that an object is instantiated and active, and appear
as open rectangles across a lifeline (see Figure 7-10). They are optional, as
you can generally infer the lifetime of an object simply by looking at the
messages traveling to and from it.

134 Chapter 7

«Actor»
Timer Module

1: getSalinity():ppm

salinity:saltSensor

2: return salinity

Figure 7-10: Activation bars

N O T E For the most part, activation bars clutter up sequence diagrams, so this book will not
use them. They’re described here just in case you encounter them in sequence diagrams
from other sources.

7.1.10 Branching
As noted in “Guard Conditions” on page 131, you can apply guard con-
ditions to a message that say, effectively, “if true, then execute message;
else, continue along this lifeline.” Another handy tool is branching—the
equivalent of the C-style switch/case statement where you can select one
of several messages to execute based on a set of guard conditions, one
guard for each message. In order to execute different messages based
on whether a pool uses chlorine or bromine as a sanitizer, you might be
tempted to draw branching logic as shown in Figure 7-11.

«Actor»
Timer Module

Cl:chlorine Br:bromine

[sanitizer = chlorine]
1a: getChlorine():ppm

[sanitizer = bromine]
1b: getBromine():ppm

Figure 7-11: Bad implementation of branching logic

In one aspect, this diagram makes perfect sense. If the sanitizer for
this particular pool is bromine rather than chlorine, the first message
does not execute and control flows down to the second message, which
does execute. The problem with this diagram is that the two messages
appear at different points on the lifeline and, therefore, could execute at
completely different times. Particularly as your sequence diagrams get
more complex, some other message invocation could wind up between
these two—and thus would execute prior to the getBromine() message.
Instead, if the sanitizer is not chlorine you’d want to immediately check

UML Interaction Diagrams 135

to see if it is bromine, with no possibility of intervening messages. Figure 7-12
shows the proper way to draw this logic.

«Actor»
Timer Module

Cl:chlorine Br:bromine

[sanitizer = chlorine]
1a: getChlorine():ppm

[sanitizer = bromine]
1b: getBromine():ppm

Figure 7-12: Good implementation of branching logic

Drawing branching logic with the arrow tails that start from the same
vertical position and the arrowheads that end at the same vertical position
avoids any ambiguity with the sequence of execution (assuming that the
guard conditions are mutually exclusive—that is, it is not possible for both
conditions to be simultaneously true).

Branching uses slanted message arrows similar to long delays, but a
long delay item will have an associated time constraint.1

7.1.11 Alternative Flows
There’s another potential issue with branching: what happens when you
need to send one of two different messages to the same destination object?
Because the arrow tails and heads must start and end, respectively, at the
same vertical positions for both arrows, the two arrows would overlay each
other and there would be no indication that branching takes place at all.
The solution to this problem is to use an alternative flow.

In an alternative flow, a single lifeline splits into two separate lifelines
at some point (see Figure 7-13).

«Actor»
Timer Module

ClGen:salinitySensor

[sanitizer = chlorine]
1a: getSalinity():ppm

[choice = NaOH]
1b: getNaOH():ppm

Figure 7-13: Alternative flows

1. If you’re thinking this is a bad design element in the UML language, you’re correct. Given
its history and design-by-(political)-committee approach, it’s understandable why UML isn’t
a little cleaner.

136 Chapter 7

In this example, the Timer Module has to choose between retrieving
the current level of salinity (NaCl) or sodium hydroxide (NaOH). The
getSalinity() and getNaOH() operations are methods within the same class;
therefore, their message arrows will both point at the same spot in the ClGen
lifeline. To avoid overlapping the message arrows, Figure 7-13 splits the
ClGen lifeline into two lifelines: the original and an alternative flow.

After the message invocation, you can merge the two flows back
together if desired.

7.1.12 Object Creation and Destruction
So far in the examples, the objects have existed throughout the lifetime
of the sequence diagram; that is, all objects existed prior to the execution of
the first message (operation) and persist after the execution of the last mes-
sage. In real-world designs, you’ll need to create and destroy objects that
don’t exist for the full duration of the program’s execution.

Object creation and destruction are messages just like any other. The
common convention in UML is to use the special messages «create» and
«destroy» (see Figure 7-14) to show object lifetimes within the sequence
diagram; however, you can use any message name you like. The X at the
end of the cleanProcess lifeline, immediately below the «destroy» operation,
denotes the end of the lifeline, because the object no longer exists.

«Actor»
Timer Module

cleanProcess:pumpCtrl
1: «create»

{<8 hours}

2: cleaningDone()

3: «destroy»

X

Figure 7-14: Object creation and destruction

This example uses a dropped title box to indicate the beginning of the
lifeline for a newly created object. As Russ Miles and Kim Hamilton point
out in Learning UML 2.0 (O’Reilly, 2003), many standardized UML tools
don’t support using dropped title boxes, allowing you to place the object
title boxes only at the top of the diagram. There are a couple of solutions to
this problem that should work with most standard UML tools.

UML Interaction Diagrams 137

You can put the object at the top of the diagram and add a comment to
explicitly indicate object creation and destruction at the points where they
occur (see Figure 7-15).

«Actor»
Timer Module

cleanProcess:pumpCtrl

1: «create»

{<8 hours}

2: cleaningDone()

3: «destroy»

X

cleanProcess
created here

Figure 7-15: Using notes to indicate object lifetime

You can also use an alternative flow to indicate the lifetime of the
object (see Figure 7-16).

«Actor»
Timer Module

cleanProcess:pumpCtrl

1: «create»

{<8 hours}

2: cleaningDone()

3: «destroy»

X

Figure 7-16: Using alternative flows to indicate object lifetime

Activation bars provide a third alternative that might be clearer here.

7.1.13 Sequence Fragments
UML 2.0 added sequence fragments to show loops, branches, and other alter-
natives, enabling you to better manage sequence diagrams. UML defines
several standard sequence fragment types you can use, defined briefly in
Table 7-1 (full descriptions appear later in this section).

138 Chapter 7

Table 7-1: Brief Descriptions of Sequence Fragment Types

alt Executes only the alternative fragment that is true (think of an if/else
or switch statement).

assert Notes that operations within the fragment are valid if a guard condition
is true.

break Exits a loop fragment (based on some guard condition).
consider Provides a list of valid messages in a sequence fragment.
ignore Provides a list of invalid messages in a sequence fragment.
loop Runs multiple times and the guard condition determines whether the

fragment repeats.
neg Never executes.
opt Executes only if the associated condition is true. Comparable to alt

with only one alternative fragment.
par Runs multiple fragments in parallel.
ref Indicates a call to another sequence diagram.
region (Also known as critical.) Defines a critical region in which only one

thread of execution is possible.
seq Indicates that operations (in a multitasking environment) must occur in a

specific sequence.
strict A stricter version of seq.

In general, you draw sequence fragments as a rectangle surrounding
the messages, with a special penta-rectangle symbol (a rectangle with the
lower-right corner cropped) in its upper-left corner that contains the UML
fragment name/type (see Figure 7-17; substitute any actual fragment type
for typ in this diagram).

Object1 Object2 Object3 Object4

typ additional info

Figure 7-17: Generic sequence fragment form

For example, if you wanted to repeat a sequence of messages several
times, you would enclose those messages in a loop sequence fragment. This
tells the engineer implementing the program to repeat those messages the
number of times specified by the loop fragment.

UML Interaction Diagrams 139

You can also include an optional additional info item, which is typically a
guard condition or iteration count. The following subsections describe the
sequence fragment types from Table 7-1 in detail, as well as any additional
information they may require.

7.1.13.1 ref

There are two components to a ref sequence fragment: the UML inter-
action occurrence and the reference itself. An interaction occurrence is a
stand-alone sequence diagram corresponding to a subroutine (procedure
or function) in code. It is surrounded by a sequence fragment box. The
penta-rectangle in the upper-left corner of the box contains sd (for sequence
diagram) followed by the name of the ref fragment and any arguments you
want to assign to it (see Figure 7-18).

Object2

msg1

Object3 Object4

msg2

sd example(arguments)

Figure 7-18: An interaction occurrence example

The leftmost incoming arrow corresponds to the subroutine entry point. If
this isn’t present, you can assume that control flows to the leftmost partici-
pant at the top of its lifeline.

Now we come to the second component of the ref sequence fragment:
referencing the interaction occurrence within a different sequence diagram
(see Figure 7-19).

Object2Object1 Object3 Object4

example(arguments)ref

Figure 7-19: A ref sequence fragment example

This corresponds to a call to a subroutine (procedure or function)
in code.

140 Chapter 7

7.1.13.2 consider and ignore

The consider sequence fragment lists all messages that are valid within a sec-
tion of the sequence diagram; all other messages/operators are illegal. The
ignore operator lists names of messages that are invalid within a section of
the sequence diagram; all other operators/messages are legal.

consider and ignore work either as operators in conjunction with an
existing sequence fragment or as sequence fragments by themselves. A
consider or ignore operator takes the following form:

consider{ comma-separated-list-of-operators }
ignore{ comma-separated-list-of-operators }

The consider and ignore operators may appear after the sd name title in
an interaction occurrence (see Figure 7-20), in which case they apply to the
entire diagram.

Object2

msg1

Object3 Object4

msg2

sd example(arguments)
consider(msg1,msg2)

Figure 7-20: A consider operator example

You may also create a sequence fragment within another sequence
diagram and label that fragment with a consider or ignore operation. In
that case, consider or ignore applies only to the messages within the specific
sequence fragment (see Figure 7-21).

Object2

msg1

Object3 Object4

msg2

sd example(arguments)

ignore(msg1)

Figure 7-21: An ignore sequence fragment example

If these fragment types seem strange, consider creating a very generic ref
fragment that handles only certain messages, but then referencing that
ref from several different places that might pass along unhandled messages

UML Interaction Diagrams 141

along with the handled ones. By adding a consider or ignore operator to the
ref, you can have the fragment simply ignore the messages it doesn’t explic-
itly handle, which allows you to use that ref without having to add any extra
design to the system.

7.1.13.3 assert

The assert sequence fragment tells the system implementer that the mes-
sages within it are valid only if some guard condition evaluates to true. At
the end of the assert fragment, you typically provide some sort of Boolean
condition (the guard condition) that must be true once the sequence is
complete (see Figure 7-22). If the condition isn’t true after the assert frag-
ment has finished executing, the design can’t guarantee correct results.
The assert reminds the engineer to verify that this condition is indeed true
by, for example, using a C++ assert macro invocation (or something similar
in other languages, or even just an if statement).

Object2

msg1

Object3

{condition==true}

Object4

msg2

sd example(arguments)

assert

Figure 7-22: An assert sequence fragment example

In C/C++ you’d probably implement the sequence in Figure 7-22 using
code like this:

Object3->msg1(); // Inside example
Object4->msg2(); // Inside Object3::msg1
assert(condition == TRUE); // Inside Object3::msg1

7.1.13.4 loop

The loop sequence fragment indicates iteration. You place the loop operator
in the penta-rectangle associated with the sequence fragment, and may also
include a guard condition enclosed in brackets at the top of the sequence
fragment. The combination of the loop operator and guard condition con-
trols the number of iterations.

The simplest form of this sequence fragment is the infinite loop, con-
sisting of the loop operator without any arguments and without a guard
condition (see Figure 7-23). Most “infinite” loops actually aren’t infinite,
but terminate with a break sequence fragment when some condition is true
(we’ll discuss the break sequence in the next section).

142 Chapter 7

Object2

msg1

Object3 Object4

msg2

sd example(arguments)

loop

Figure 7-23: An infinite loop

The loop in Figure 7-23 is roughly equivalent to the following
C/C++ code:

// This loop appears inside Object3::msg1
for(;;)
{
 Object4->msg2();
} // endfor

Or, alternatively:

while(1)
{
 Object4->msg2()
} // end while

N O T E Personally, I prefer the following:

#define ever ;;
 .
 .
 .
for(ever)
{
 Object4->msg2();
} // endfor

I feel this is the most readable solution. Of course, if you’re “anti-macro at all costs,”
you would probably disagree with my choice for an infinite loop!

Definite loops execute a fixed number of times and can appear in two
forms. The first is loop(integer), which is shorthand for loop(0, integer); that
is, it will execute a minimum of zero times and a maximum of integer times.
The second is loop(minInt, maxInt), which indicates that the loop will exe-
cute a minimum of minInt times and a maximum of maxInt times. Without a

UML Interaction Diagrams 143

guard condition, the minimum count is irrelevant; the loop will always exe-
cute maxInt times. Therefore, most definite loops use the form loop(integer)
where integer is the number of iterations to perform (see Figure 7-24).

Object2

msg1

Object3 Object4

msg2

sd example

loop(10)

msg2
call executes
10 times

Figure 7-24: A definite loop

The loop in Figure 7-24 is roughly equivalent to the following
C/C++ code:

// This code appears inside Object3::msg1
for(i = 1; i<=10; ++i)
{
 Object4->msg2();
} // end for

You can also use the multiplicity symbol * to denote infinity. Therefore,
loop(*) is equivalent to loop(0, *) which is equivalent to loop (in other
words, you get an infinite loop).

An indefinite loop executes an indeterminate2 number of times (corre-
sponding to while, do/while, repeat/until, and other loop forms in program-
ming languages). Indefinite loops include a guard condition as part of the
loop sequence fragment,3 meaning the loop sequence fragment will always
execute the loop minInt times (zero times if minInt is not present). After
minInt iterations, the loop sequence fragment will begin testing the guard
condition and continue iterating only while the guard condition is true. The
loop sequence fragment will execute at most maxInt iterations (total, not in
addition to the minInt iterations). Figure 7-25 shows a traditional while-type
loop that executes a minimum of zero times and a maximum of infinity
times, as long as the guard condition ([cond == true]) evaluates to true.

2. Indeterminate upon encountering the beginning of the loop on the first iteration.

3. Arguably, an infinite loop with a break sequence fragment is also an indefinite loop, not an
infinite loop.

144 Chapter 7

Object2

msg1

Object3 Object4

msg2

sd example

loop [cond==true]

Figure 7-25: An indefinite while loop

The loop in Figure 7-25 is roughly equivalent to the following
C/C++ code:

// This code appears inside Object3::msg1
while(cond == TRUE)
{
 Object4->msg2();
} // end while

You can create a do..while loop by setting the minInt value to 1 and the
maxInt value to *, and then specifying the Boolean expression to continue
loop execution (see Figure 7-26).

Object2

msg1

Object3 Object4

msg2

sd example

loop(1,*) [cond==true]

Figure 7-26: An indefinite do..while loop

The loop in Figure 7-26 is roughly equivalent to the following
C/C++ code:

// This code appears inside Object3::msg1
do
{
 Object4->msg2();
} while(cond == TRUE);

UML Interaction Diagrams 145

It’s possible to create many other complex loop types, but I’ll leave that
as an exercise for interested readers.

7.1.13.5 break

The break sequence fragment consists of the word break in a penta-rectangle
along with a guard condition. If the guard condition evaluates to true, then
the system executes the sequence inside the break sequence fragment, after
which control immediately exits the enclosing sequence fragment. If the
enclosing sequence fragment is a loop, control immediately executes to the
first message past the loop (like a break statement in languages like Swift,
C/C++, and Java). Figure 7-27 provides an example of such a loop.

Object2

msg1

Object3 Object4

msg2

sd example

loop [cond==true]

msg3

break [bcnt>=10]

Figure 7-27: An example of the break
sequence fragment

The loop in Figure 7-27 is roughly equivalent to the following C++
code fragment:

// This code appears inside Object3::msg1
while(cond == TRUE)
{
 Object4->msg2();
 if(bcnt >= 10)
 {
 Object4->msg3();
 break;
 } // end if
 Object4->msg4();
} // end while loop

If the most recent break-compatible enclosing sequence is a subroutine,
not a loop, the break sequence fragment behaves like a return from a sub-
routine operation.

146 Chapter 7

7.1.13.6 opt and alt

The opt and alt sequence fragments allow you to control the execution of
a set of messages with a single guard condition—particularly if the values
of the components making up the guard condition could change over the
execution of the sequence.

The opt sequence fragment is like a simple if statement without an
else clause. You attach a guard condition and the system will execute the
sequence contained within the opt fragment only if the guard condition
evaluates to true (see Figure 7-28).

Object2

msg1

Object3 Object4

msg2

sd example

opt [cond==true]

Figure 7-28: An example of the opt sequence
fragment

The example in Figure 7-28 is roughly equivalent to the following
C/C++ code:

// Assumption: Class2 is Object2's data type. Because control
// transfers into the Object2 sequence at the top of its
// lifeline, example must be a member function of Object2/Class2

void Class2::example(void)
{
 Object3->msg1();
} // end example
--snip--
// This code appears in Object3::msg1
if(cond == TRUE)
{
 Object4->msg2();
} // end if

For more complex logic, use the alt sequence fragment, which acts like
an if/else or switch/case. To create an alt sequence fragment, you combine
several rectangles, each with its own guard condition and an optional else,
to form a multiway decision (see Figure 7-29).

UML Interaction Diagrams 147

Object2

msg1

Object3 Object4

msg2a

sd example

alt

[cond1==true]

msg2b[cond2==true]

msg2c[cond3==true]

msg2d[cond4==true]

Figure 7-29: An alt sequence fragment

The interaction occurrence in Figure 7-29 is roughly equivalent to the
following code:

// Assumption: Class2 is Object2's data type. Because control
// transfers into the Object2 sequence at the top of its
// lifeline, example must be a member function of Object2/Class2

void Class2::example(void)
{
 Object3->msg1();
} // end example

--snip--
// This code appears in Object3::msg1
if(cond1 == TRUE)
{
 Object4->msg2a();
}
else if(cond2 == TRUE)
{
 Object4->msg2b();
}
else if(cond3 == TRUE)
{
 Object3->msg2c();
}
else
{
 Object4->msg2d();
} // end if

148 Chapter 7

7.1.13.7 neg

You use a neg sequence fragment to enclose a sequence that will not be part of
the final design. Effectively, using neg comments out the enclosed sequence.
Why even include a sequence if it’s not going to be part of the design? There
are at least two good reasons: code generation and future features.

Although, for the most part, UML is a diagramming language intended
to help with system design prior to implementation in a programming
language like Java or Swift, there are certain UML tools that will convert
UML diagrams directly into code. During development, you might want to
include some diagrams that illustrate something but are not yet complete
(certainly not to the point of producing executable code). In this scenario,
you could use the neg sequence fragment to turn off the code generation for
those sequences that aren’t quite yet ready for prime time.

Even if you don’t intend to generate code directly from a UML dia-
gram, you might want to use the neg for future features. When you hand
your UML diagrams off to an engineer to implement the design, they
represent a contract that says, “This is how the code is to be written.”
Sometimes, though, you’ll want your diagrams to show features that you
plan to include in a future version of the software, but not in the first (or
current) version. The neg sequence fragment is a clean way to tell the engi-
neer to ignore that part of the design. Figure 7-30 shows a simple example
of the neg sequence fragment.

Object2

msg1

Object3 Object4

msg2neg

sd example

Figure 7-30: An example of the neg sequence
fragment

The example in Figure 7-30 is roughly equivalent to the following
C/C++ code:

// Assumption: Class2 is Object2's data type. Because control
// transfers into the Object2 sequence at the top of its
// lifeline, example must be a member function of Object2/Class2

void Class2::example(void)
{
 Object3->msg1();
} // end example

UML Interaction Diagrams 149

7.1.13.8 par

The par sequence fragment, an example of which is shown in Figure 7-31,
states that the enclosed sequences4 (operations) can be executed in parallel
with each other.

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

par

sd example

Operand1

Operand2

Operand3

Figure 7-31: An example of the par sequence fragment

Figure 7-31 shows three operands: the sequence with {msg2a, msg2b, msg2c},
the sequence with {msg3a, msg3b, msg3c}, and the sequence with {msg4a, msg4b,
msg4c}. The par sequence fragment requires that the operations within a given
sequence must execute in the order in which they appear (for example, msg2a,
then msg2b, then msg2c). However, the system is free to interleave operations
from different operands as long as it maintains the internal order of those
operands. So, in Figure 7-31, the order {msg2a, msg3a, msg3b, msg4a, msg2b, msg2c,
msg4b, msg4c, msg3c} is legitimate, as is {msg4a, msg4b, msg4c, msg3a, msg3b, msg3c,
msg2a, msg2b, msg2c}, because the ordering of the enclosed sequences matches.
However, {msg2a, msg2c, msg4a, msg4b, msg4c, msg3a, msg3b, msg3c, msg2b} is not legiti-
mate because msg2c occurs before msg2b (which is contrary to the ordering
specified in Figure 7-31).

4. There will be two or more, separated by dashed lines, similar in syntax to the alt
sequence fragment.

150 Chapter 7

7.1.13.9 seq

The par sequence fragment enforces the following restrictions:

•	 The system maintains the ordering of the operations within an operand.

•	 The system allows operations on different lifelines from different
operands to execute in any order.

And the seq sequence adds another:

•	 Operations on the same lifeline in different operands must execute in
the order in which they appear in the diagram (from top to bottom).

In Figure 7-32, for example, Operand1 and Operand3 have messages that
are sent to the same object (lifeline). Therefore, in a seq sequence frag-
ment, msg2a, msg2b, and msg2c must all execute before msg4a.

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

seq

sd example

Operand1

Operand2

Operand3

msg2a–msg2c
must execute
before
msg4a–msg4c
as they both
send messages
to the same
lifeline

Figure 7-32: An example of the seq sequence fragment

Figure 7-32 shows a stand-alone seq sequence fragment. In typical
usage, however, a seq sequence fragment will appear inside a par to control
the execution sequence of a portion of the par’s operands.

7.1.13.10 strict

The strict sequence fragment forces the operations to occur in the sequence
they appear in each operand; interleaving of operations between operands
is not allowed. The format for a strict sequence fragment is similar to that
of par and seq (see Figure 7-33).

UML Interaction Diagrams 151

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

strict

sd example

Operand1

Operand2

Operand3

Figure 7-33: An example of the strict sequence fragment

The strict parallel operation allows the operands to execute in any
order, but once a given operand begins execution, all the operations within
it must complete in the sequence specified before any other operand can
begin executing.

In Figure 7-33, there are six different operation sequences possible:
{Operand1, Operand2, Operand3}; {Operand1, Operand3, Operand2}; {Operand2, Operand1,
Operand3}; {Operand2, Operand3, Operand1}; {Operand3, Operand1, Operand2}; and
{Operand3, Operand2, Operand1}.

However, operations internal to the operands cannot interleave, and
must execute from top to bottom.

7.1.13.11 region

In the section “Extending UML Activity Diagrams” on page 99, I used
the example of a home-brew critical section in an activity diagram to dem-
onstrate how to extend UML for your own purposes. I pointed out why this
is a bad idea (reread that section for the details), and mentioned there is
another way to achieve what you want to do using standard UML: the region
sequence fragment. UML activity diagrams don’t support critical sections,
but sequence diagrams do.

The region sequence fragment specifies that once execution enters the
region, no other operations in the same parallel execution context can
be interleaved until it completes execution. The region sequence fragment
must always appear within some other parallel sequence fragment (gener-
ally par or seq; technically it could appear inside strict, though ultimately
this would serve no purpose).

152 Chapter 7

As an example, consider Figure 7-34—the system is free to interleave
the execution of any operand’s messages, subject to the rules given for the
par sequence fragment, but once the system enters the critical region (with
the execution of the msg4a operation), no other threads in the par sequence
fragment can execute.

Object2

msg1

Object3 Object4

msg2a

msg2b

msg2c

msg3a

msg3b

msg3c

msg4a

msg4b

msg4c

par

region

sd example

Figure 7-34: The region sequence fragment

7.2 Collaboration Diagrams
Collaboration (or communication) diagrams provide the same information
as sequence diagrams but in a slightly more compact form. Rather than
drawing arrows between lifelines, in collaboration diagrams we draw mes-
sage arrows directly between objects, and attach numbers to each message
to indicate the sequence (see Figure 7-35).

«Actor»
Timer Module 1: salinityCheck()

3: updateSalinityDisp()
 [salinity < 3600 ppm]
2: sendMsg(msg)

salinity:saltSensor

SMS:IoTDevice

Figure 7-35: A collaboration diagram

UML Interaction Diagrams 153

The diagram in Figure 7-35 is roughly equivalent to the sequence
diagram in Figure 7-9 (without the time constraint of 10 minutes). In
Figure 7-35 the salinityCheck message executes first, sendMsg executes sec-
ond, and updateSalinityDisplay executes last.

Figure 7-36 shows a more complex collaboration diagram that better
demonstrates the compactness of this option. The six messages sent in this
example would require six lines in a sequence diagram but here require
only three communication links.

«Actor»
Host

2: boards(1)
3: config(1)
4: dir(1,input)

1: reset()

5: resetMCP23s17(1)
6: setDDir(1,input)

board1:PPDIO

daq1:PPDAQ

Figure 7-36: A more complex collaboration diagram

N O T E Having both collaboration and sequence diagrams is probably an artifact of merging
different systems together when UML was created. Which one you use is really just a
matter of personal preference. Keep in mind, however, that as the diagrams become
more complex, collaboration diagrams become harder to follow.

7.3 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit,

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press,
1999. A sample chapter is available at http://www.untechnicalpress.com
/Downloads/UMM%20sample%20doc.pdf.

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick
Reference. 2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

This chapter finishes up the book’s discus
sion of UML by describing five additional

diagrams that are useful for UML documen
tation: component, package, deployment, com

posite structure, and statechart diagrams.

8.1 Component Diagrams
UML uses component diagrams to encapsulate reusable components such as
libraries and frameworks. Though components are generally larger and
have more responsibilities than classes, they support much of the same
functionality as classes, including:

•	 Generalization and association with other classes and components

•	 Operations

•	 Interfaces

8
M I S C E L L A N E O U S U M L D I A G R A M S

156 Chapter 8

UML defines components using a rectangle with the «component» stereo
type (see Figure 81). Some users (and CASE tools) also use the stereotype
«subsystem» to denote components.

«component»
SomeComponent

Figure 8-1: A UML component

Components use interfaces (or protocols) to encourage encapsulation
and loose coupling. This improves the usability of a component by making
its design independent of external objects. The component and the rest of
the system communicate via two types of predefined interfaces: provided
and required. A provided interface is one that the component provides and
that external code can use. A required interface must be provided for the
component by external code. This could be an external function that
the component invokes.

As you would expect from UML by now, there’s more than one way to
draw components: using stereotype notation (of which there are two versions)
or ball and socket notation.

The most compact way to represent a UML component with interfaces
is probably the simple form of stereotype notation shown in Figure 82,
which lists the interfaces inside the component.

«component»
SomeComponent

«providedInterfaces»
someProvidedInterface,
anotherProvidedIntfc

«requiredInterfaces»
aFunctionToBeCalled

Figure 8-2: A simple form of
stereotype notation

Figure 83 shows a more complete (though bulkier) version of stereo
type notation with individual interface objects in the diagram. This option
is better when you want to list the individual attributes of the interfaces.

Miscellaneous UML Diagrams 157

«component»

«realization»«realization»

«uses»

SomeComponent

«interface»
someProvidedInterface

+someMethodToCall():int

«interface»
anotherProvidedIntfc

+anotherMethodToCall():int

«interface»
aFunctionToBeCalled

+theFunctionToCall():int

Figure 8-3: A more complete form of stereotype notation

Ball and socket notation provides an alternative to the stereotype nota
tion, using a circle icon (the ball) to represent a provided interface and a
halfcircle (the socket) to represent required interfaces (see Figure 84).

«component»
SomeComponent

someProvidedInterface
aFunctionToBeCalled

anotherProvidedIntfc

Figure 8-4: Ball and socket notation

The nice thing about ball and socket notation is that connecting com
ponents can be visually appealing (see Figure 85).

«component»
component1

«component»
component2

func()

Figure 8-5: Connecting two ball and socket components

158 Chapter 8

As you can see, the required interface of component1 connects nicely
with the provided interface of component2 in this diagram. But while ball
and socket notation can be more compact and attractive than the stereo
type notation, it doesn’t scale well beyond a few interfaces. As you add
more provided and required interfaces, the stereotyped notation is often
a better solution.

8.2 Package Diagrams
A UML package is a container for other UML items (including other pack
ages). A UML package is the equivalent of a subdirectory in a filesystem, a
namespace in C++ and C#, or packages in Java and Swift. To define a pack
age in UML, you use a file folder icon with the package name attached (see
Figure 86).

packageName

Figure 8-6: A UML package

For a more concrete example, let’s return to the pool monitor applica
tion. One useful package might be sensors, to contain classes/objects associ
ated with, say, pH and salinity sensors. Figure 87 shows what this package
might look like in UML. The + prefix on the phSensors and saltSensor objects
indicates that these are public objects accessible outside the package.1

sensors

+phSensor

+saltSensor

Figure 8-7: The sensors package

To reference (public) objects outside of a package, you use a name of
the form packageName::objectName. For example, outside the sensors pack
age you would use sensors::pHSensor and sensors::saltSensor to access the
internal objects. If you have one package nested inside another, you could
access objects in the innermost package using a sequence like outsidePackage
::internalPackage::object. For example, suppose you have two nuclear power
channels named NP and NPP (from the use case examples in Chapter 4).
You could create a package named instruments to hold the two packages NP
and NPP. The NP and NPP packages could contain the objects directly associ
ated with the NP and NPP instruments (see Figure 88).

1. The protected, private, and package visibility prefixes are also valid here with the appropri
ate meanings.

Miscellaneous UML Diagrams 159

instruments

+NP

+calibrate()
+pctPwr():real

+NPP

+calibrate()
+pctPwr():real

Figure 8-8: Nested packages

Note that the NP and NPP packages both contain functions named
calibrate() and pctPwr(). There is no ambiguity about which function you’re
calling because outside these individual packages you have to use quali-
fied names to access these functions. For example, outside the instruments
package you’d have to use names like instruments::NP::calibrate and
instruments::NPP::calibrate so that there is no confusion.

8.3 Deployment Diagrams
Deployment diagrams present a physical view of a system. Physical objects
include PCs, peripherals like printers and scanners, servers, plugin inter
face boards, and displays.

To represent physical objects, UML uses nodes, a 3D box image.
Inside the box you place the stereotype «device» plus the name of the
node. Figure 89 provides a simple example from the DAQ data acquisi
tion system. It shows a host PC connected to a DAQ_IF and a Plantation
Productions’ PPDIO96 96channel digital I/O board.

«device»
Host PC

«device»
DAQ_IF

«Ethernet»

«SPI bus»

«device»
PPDIO96

Figure 8-9: A deployment diagram

One thing missing from this figure is the actual software installed on
the system. In this system, there are likely to be at least two application
programs running: a program running on the host PC that communicates
with the DAQ_IF module (let’s call it daqtest.exe) and the firmware program
(frmwr.hex) running on the DAQ_IF board (which is likely the true software
system the deployment diagram describes). Figure 810 shows an expanded
version with small icons denoting the software installed on the machines.
Deployment diagrams use the stereotype «artifact» to denote binary
machine code.

160 Chapter 8

«device»
Host PC

«device»
DAQ_IF«Ethernet»

«SPI bus»

«device»
PPDIO96

«artifact»
daqtest.exe

«artifact»
frmwr.hex

Figure 8-10: An expanded deployment diagram

Note that the PPDIO96 board is directly controlled by the DAQ_IF
board: there is no CPU on the PPDIO96 board and, therefore, there is no
software loaded onto the PPDIO96.

There is actually quite a bit more to deployment diagrams, but this dis
cussion will suffice for those we’ll need in this book. If you’re interested, see
“For More Information” on page 165 for references that explain deploy
ment diagrams in more detail.

8.4 Composite Structure Diagrams
In some instances, class and sequence diagrams cannot accurately depict
the relationships and actions between components in some classes.
Consider Figure 811, which illustrates a class for the PPDIO96.

portInitialization writePort

PPDIO96

Figure 8-11: PPDIO96 class composition

This class composition diagram tells us that the PPDIO96 class contains
(is composed of) two subclasses: portInitialization and writePort. What
it does not tell us is how these two subclasses of PPDIO96 interact with each
other. For example, when you initialize a port via the portInitialization
class, perhaps the portInitialization class also invokes a method in writePort
to initialize that port with some default value (such as 0). The bare class

Miscellaneous UML Diagrams 161

diagrams don’t show this, nor should they. Having portIntialization write a
default value via a writePort invocation is probably only one of many differ
ent operations that could arise within PPDIO96. Any attempt to show allowed
and possible internal communications within PPDIO96 would produce a very
messy, illegible diagram.

Composite structure diagrams provide a solution by focusing only on
those communication links of interest (it could be just one communica
tion link, or a few, but generally not so many that the diagram becomes
incomprehensible).

A first (but problematic) attempt at a composite structure diagram is
shown in Figure 812.

portInitialization writePort

PPDIO96

Figure 8-12: Attempted composite structure diagram

The problem with this diagram is that it doesn’t explicitly state which
writePort object portInitialization is communicating with. Remember,
classes are just generic types, whereas the actual communication takes place
between explicitly instantiated objects. In an actual system the intent of
Figure 812 is probably better conveyed by Figure 813.

init:portInitialization write:writePort

digOut[0]:PPDIO96

Figure 8-13: Instantiated composite structure diagram

However, neither Figure 812 nor Figure 813 implies that the port
Initialization and writePort instantiated objects belong specifically to the
PPDIO96 object. For example, if there are two sets of PPDIO96, portInitialization,
and writePort objects, the topology in Figure 814 is perfectly valid based on
the class diagram in Figure 812.

162 Chapter 8

i1:portInitialization

w1:writePort

d1:PPDIO96

i2:portInitialization

w2:writePort

d2:PPDIO96

Figure 8-14: Weird, but legal, communication links

In this example, i1 (which belongs to object d1) calls w2 (which belongs to
object d2) to write the digital value to its port; i2 (which belongs to d2) calls
w1 to write its initial value to its port. This probably isn’t what the original
designer had in mind, even though the generic composition structure dia
gram in Figure 812 technically allows it. Although any reasonable program
mer would immediately realize that i1 should be invoking w1 and i2 should
be invoking w2, the composite structure diagram doesn’t make this clear.
Obviously, we want to eliminate as much ambiguity as possible in our designs.

To correct this shortcoming, UML 2.0 provides (true) composite struc
ture diagrams that incorporate the member attributes directly within the
encapsulating class diagram, as shown in Figure 815.

portInitialization writePort

PPDIO96

Figure 8-15: Composite structure diagram

This diagram makes it clear that an instantiated object of PPDIO96 will
constrain the communication between the portInitialization and writePort
classes to objects associated with that same instance.

The small squares on the sides of the portInitialization and writePort
are ports. This term is unrelated to the writePort object or hardware ports
on the PPDIO96 in general; this is a UML concept referring to an inter
action point between two objects in UML. Ports can appear in compos
ite structure diagrams and in component diagrams (see “Component
Diagrams” on page 155) to specify required or provided interfaces to an
object. In Figure 815 the port on the portInitialization side is (probably)
a required interface and the port on the writePort side of the connection is
(probably) a provided interface.

N O T E On either side of a connection, one port will generally be a required interface and the
other will be a provided interface.

Miscellaneous UML Diagrams 163

In Figure 815 the ports are anonymous. However, in many diagrams
(particularly where you are listing the interfaces to a system) you can attach
names to the ports (see Figure 816).

portInitialization
initPort

writeByte
writePort

PPDIO96

Figure 8-16: Named ports

You can also use the ball and socket notation to indicate which side
of a communication link is the provider and which side has the required
interface (remember, the socket side denotes the required interface; the
ball side denotes the provided interface). You can even name the communi
cation link if you so desire (see Figure 817). A typical communication link
takes the form name:type where name is a unique name (within the compo
nent) and type is the type of the communication link.

portInitialization

w:writeByte

writePort

PPDIO96

Figure 8-17: Indicating provided and required interfaces

8.5 Statechart Diagrams
UML statechart (or state machine) diagrams are very similar to activity dia
grams in that they show the flow of control through a system. The main dif
ference is that a statechart diagram simply shows the various states possible
for a system and how the system transitions from one state to the next.

Statechart diagrams do not introduce any new diagramming symbols;
they use existing elements from activity diagrams—specifically the start
state, end state, state transitions, state symbols, and (optionally) decision
symbols, as shown in Figure 818.

Start state symbol End state symbol State transition

Decision symbolState symbol

Figure 8-18: Elements of a statechart diagram

164 Chapter 8

A given statechart diagram will have exactly one start state symbol; this is
where activity begins. The state symbols in a statechart diagram always have
an associated state name (which, obviously, indicates the current state). A
statechart diagram can have more than one end state symbol, which is a spe
cial state that marks the end of activity (entry into any end state symbol stops
the state machine). Transition arrows show the flow between states in the
machine (see Figure 819).

[wait for on button]

System is active

[wait for off button]

Figure 8-19: A simple statechart diagram

Transitions usually occur in response to some external events, or trig
gers, in the system. Triggers are stimuli that cause the transition from one
state to another in the system. You attach guard conditions to a transition,
as shown in Figure 819, to indicate the trigger that causes the transition to
take place.

Transition arrows have a head and a tail. When activity occurs in a
statechart diagram, transitions always occur from the state attached to the
arrow tail to the state pointed at by the arrowhead.

If you are in a particular state and some event occurs for which there
is no transition out of that state, the state machine ignores that event.2 For
example, in Figure 819, if you’re already in the “System is active” state and
an on button event occurs, the system remains in the “System is active” state.

If two transitions out of a state have the same guard condition, then the
state machine is nondeterministic. This means that the choice of transition
arrow is arbitrary (and could be randomly chosen). Nondeterminism is a
bad thing in UML statechart diagrams, as it introduces ambiguity. When
creating UML statechart diagrams, you should always strive to keep them
deterministic by ensuring that the transitions all have mutually exclusive
guard conditions. In theory, you should have exactly one exiting transition
from a state for every possible event that could occur; however, most system

2. Technically, we should put a transition arrow from a state back to that same state labeled
else to handle this situation; however, the else condition is implied in UML statechart
diagrams.

Miscellaneous UML Diagrams 165

designers assume that, as mentioned before, if an event occurs for which
there is no exit transition, then the state ignores that event.

It is possible to have a transition from one state to another without a
guard condition attached; this implies that the system can arbitrarily move
from the first state (at the transition’s tail) to the second state (at the head).
This is useful when you’re using decision symbols in a state machine (see
Figure 820). Decision symbols aren’t necessary in a statechart diagram—
just as for activity diagrams, you could have multiple transitions directly out
of a state (such as the “System is active” state in Figure 820)—but you can
sometimes clean up your diagrams by using them.

[wait for on button]

System is active

System is sleeping

[wait for off button]

[Sleep button pressed]

[wait for on button]

Figure 8-20: A decision symbol in a statechart

8.6 More UML
As has been a constant theme, this is but a brief introduction to UML.
There are more diagrams and other features, such as the Object Constraint
Language (OCL), that this book won’t use, so this chapter doesn’t discuss
them. However, if you’re interested in using UML to document your soft
ware projects, you should spend more time learning about it. See the next
section for recommended reading.

8.7 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit,

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press,
1999. A sample chapter is available at http://www.untechnicalpress.com
/Downloads/UMM%20sample%20doc.pdf.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf

166 Chapter 8

Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development. 3rd ed. Upper Saddle River,
NJ: Prentice Hall, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Pilone, Dan, and Neil Pitman. UML 2.0 in a Nutshell: A Desktop Quick
Reference. 2nd ed. Sebastopol, CA: O’Reilly Media, 2005.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGrawHill
Education, 2003.

Tutorials Point. “UML Tutorial.” https://www.tutorialspoint.com/uml/.

https://www.tutorialspoint.com/uml/

PART III
D O C U M E N T A T I O N

System documentation specifies system
requirements, design, test cases, and test

procedures. In a large software system, the
system documentation is often the most expen-

sive part; the Waterfall software development model,
for example, often produces more documentation than
code. In addition, typically you must maintain system documentation man-
ually, so if you change a description (such as a requirement) in one docu-
ment, you’ll need to search through the system documentation and update
every other document that references that description for consistency. This
is a difficult and costly process.

In this chapter, we’ll look at the common types of system documents,
ways to enforce consistency within them, and documentation strategies to
reduce some of the costs associated with development.

N O T E This chapter discusses system documentation, not user documentation. To learn
about user documentation in detail, check out “For More Information” on page 184.

9
S Y S T E M D O C U M E N T A T I O N

170 Chapter 9

9.1 System Documentation Types
Traditional software engineering generally uses the following system docu-
mentation types:

System Requirements Specification (SyRS) document
The SyRS (see “The System Requirements Specification Document” on
page 193) is a system-level requirements document. In addition to soft-
ware requirements, it might include hardware, business, procedural,
manual, and other non-software-related requirements. The SyRS is a
customer/management/stakeholder-level document that eschews detail
to present a “big picture” view of the requirements.

Software Requirements Specification (SRS) document
The SRS (see “The Software Requirements Specification Document”
on page 194) extracts the software requirements1 from the SyRS and
drills down on the high-level requirements to introduce new require-
ments at a much finer level of detail (suitable for software engineers).

N O T E The SyRS and SRS are requirements documents whose content may differ in scope
and detail. Many organizations produce a single document rather than two separate
ones, but this book treats them separately because the SyRS deals with a wider range of
requirements (for example, hardware and business requirements) than the SRS.

Software Design Description (SDD) document
The SDD (see Chapter 11) discusses how the system will be constructed
(versus the SyRS and SRS, which describe what the system will do). In
theory, any programmer should be able to use the SDD and write the
corresponding code to implement the software system.

Software Test Cases (STC) document
The STC (see “Software Test Case Documentation” on page 274)
describes the various test values needed to verify that the system
incorporates all the requirements, and functions correctly beyond
the requirements list.

Software Test Procedures (STP) document
The STP (see “Software Test Procedure Documentation” on page 288)
describes the procedures to efficiently execute the software test cases
(from the STC) to verify correct system operation.

Requirements (or Reverse) Traceability Matrix (RTM) document
The RTM (see “The Requirements/Reverse Traceability Matrix” on
page 178) links the requirements against the design, test cases, and

1. Hardware requirements might be extracted to a Hardware Requirements Specification
(HRS), and other requirement types might be likewise extracted to their own specialized
documents. Those documents are beyond the scope of this book.

System Documentation 171

code. Using an RTM, a stakeholder can verify that a requirement is
implemented in the design and the code, and that the test cases and
procedures properly check that requirement’s implementation.

N O T E Some organizations might also have a Functional Requirements Specification
document; this often refers to the requirements that an external customer provides, or it
can simply be a synonym for the SRS or SyRS. This book won’t use this term further.

There are many additional types of documents, but these are the basic
ones you’d expect for any (non-XP, at least) project, and they correspond
to the various stages of the Waterfall model (see “The Waterfall Model” on
page 44), as shown in Figure 9-1.

SyRS SRS

STP

SDD

STC

Figure 9-1: System documentation dependencies

As you can see, the SRS is constructed from the SyRS. The SDD is
constructed from the SRS, as is the STC (which, in some cases, is also influ-
enced by the SDD, as indicated by the gray arrow2). The STP is constructed
from the STC.

9.2 Traceability
Perhaps the greatest logistical issue with system documentation is consis-
tency. A requirement typically generates some design item and a test case
(which is part of a test procedure in the STP). This is an intuitive and natu-
ral progression when you’re following a strict Waterfall model—writing the
SRS first, followed by the SDD, the STC, and the SDD. However, problems
arise when you have to make corrections to documents earlier in this chain.
For example, when you change a requirement, you might need to change
entries in the SDD, STC, and STP documents. Best practice is therefore to
use traceability, which allows you to easily trace items from one document
to all the other system documents. If you can trace your requirements to
design elements, test cases, and test procedures, you can rapidly locate and
change those elements whenever you modify a requirement.

Reverse traceability allows you to trace a test procedure back to the cor-
responding test cases, and test cases and design items back to their corre-
sponding requirements. For example, you might encounter problems with a
test that require changes to the test procedure, in which case you can locate
the corresponding test cases and requirements to ensure that your changes

2. While the STC can be influenced by the SDD, it’s generated from the SRS, because you create
test cases from the requirements, not from the design. Any test cases constructed from the
SDD will come from design entities originating from requirements.

172 Chapter 9

to the test procedure still handle all of them. In this way, reverse traceabil-
ity also helps you determine whether you need to make changes to the test
cases or requirements.

9.2.1 Ways to Build Traceability into Your Documentation
There are a couple of ways to accomplish traceability and reverse traceabil-
ity. One approach is to build the traceability into an identifier, or tag, asso-
ciated with the requirement, design element, test case, or test procedure
documentation. This tag could be a paragraph (or item) number, a descrip-
tive word, or some other set of symbols that uniquely identify the text to
reference. Software documents that use tags avoid wasting space by directly
quoting other documents.

Often authors use paragraph numbers as tags, which is really easy
to do in a word processing system. However, many word processors don’t
support cross-referencing across multiple document types. Also, the tag-
ging mechanism or format you want to use might not match what the word
processor provides.

Although it’s possible to write custom software, or use a database appli-
cation to extract and maintain cross-reference information, the most com-
mon solution is to maintain tags manually. This might sound as though
it would require considerable effort, but with a little planning, it isn’t
very difficult.

Perhaps the best solution is to create an RTM (see “The Requirements/
Reverse Traceability Matrix” on page 178), which tracks the links between
the items in your system documentation. Although the RTM is yet another
document you’ll have to maintain, it provides a complete and easy-to-use
mechanism for tracking all the components in your system.

We’ll first talk through common tag formats, and then we’ll look into
building an RTM.

9.2.2 Tag Formats
There is no particular standard for tag syntax; tags can take any form you
like as long as the syntax is consistent and each tag is unique. For my own
purposes (and for this book), I’ve created a syntax that incorporates ele-
ments of traceability directly into the tag. The tag formats that follow are
organized by document type.

9.2.2.1 SyRS Tags

For the SyRS, a tag takes the form [productID_SYRS_xxx] where:

productID Refers to the product or project. For example, for a swim-
ming pool monitor application, productID might be “POOL.” You don’t
want to use a long ID (four to five characters should be the maximum
length) because it will be typed frequently.

SYRS States that this is a tag from the SyRS document (this is prob-
ably a system requirements tag).

System Documentation 173

xxx Represents one or more numbers, separated by periods if more
than one integer is used. This numeric sequence uniquely identifies the
tag within the SyRS.

In a perfect world, all the SyRS requirements (and other items requiring
a tag) would be numbered sequentially from 1 with no correlation between
the integers and the meanings of the text blocks to which they refer.

Consider the following two requirements in an SyRS document:

[POOL_SYRS_001]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_002]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature
exceeds 86 degrees Fahrenheit.

Let’s say that 150 additional requirements follow [POOL_SYRS_002].
Now suppose that someone suggests a requirement that the pool heater

be turned on if the pool temperature drops below 70 degrees Fahrenheit.
You could add the following requirements:

[POOL_SYRS_153]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops
below 70 degrees Fahrenheit.

[POOL_SYRS_154]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature
exceeds 70 degrees Fahrenheit.

In the SyRS, it makes sense to arrange related requirements close to
one another, so the reader can locate all the pertinent requirements for a
given feature at one point in the document. You can see why you wouldn’t
want to sort the requirements by their tags—doing so would push the two
new requirements for the pool heater to the end of the document, away
from the other pool temperature requirements.

There’s nothing stopping you from moving the requirements together;
however, it’s somewhat confusing to see a set of requirements like this:

[POOL_SYRS_001]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_153]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops
below 70 degrees Fahrenheit.

[POOL_SYRS_154]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature
exceeds 70 degrees Fahrenheit.

174 Chapter 9

[POOL_SYRS_002]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature
exceeds 86 degrees Fahrenheit.

A better solution is to renumber the tags using dotted sequences to
expand the tag numbers. A dotted sequence consists of two or more inte-
gers separated by a dot. For example:

[POOL_SYRS_001]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_001.1]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops
below 70 degrees Fahrenheit.

[POOL_SYRS_001.2]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature
exceeds 70 degrees Fahrenheit.

[POOL_SYRS_002]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature
exceeds 86 degrees Fahrenheit.

This allows you to flow in new requirements or changes anywhere. Note
that 001.1 and 001.10 are not the same. These numbers are not floating-
point numeric values; they’re two integers separated by a period. The num-
ber 001.10 is probably the 10th value in the sequence 001.1 through 001.10.
Likewise, 001 is not the same as 001.0.

If you need to insert a requirement between 001.1 and 001.2, you can
simply add another period to the end of the sequence, such as 001.1.1. You
can also leave gaps between your tag numbers if you expect to insert addi-
tional tags in the future, like so:

[POOL_SYRS_010]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_020]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature
exceeds 86 degrees Fahrenheit.

So when you decide to add the other two requirements, you have:

[POOL_SYRS_010]: Pool temperature monitoring
The system shall monitor the pool temperature.

[POOL_SYRS_013]: Minimum pool temperature
The system shall turn on the pool heater if the pool temperature drops
below 70 degrees Fahrenheit.

System Documentation 175

[POOL_SYRS_017]: Maximum heater on temperature
The system shall turn off the pool heater if the pool temperature
exceeds 70 degrees Fahrenheit.

[POOL_SYRS_020]: Maximum pool temperature
The system shall turn on the “High Temp” LED if the pool temperature
exceeds 86 degrees Fahrenheit.

Keep in mind that it’s important to make all the tags unique.

N O T E Thus far in this section, tags have been part of a paragraph title, which is useful
when people want to search for the tags within the document (particularly, if the docu-
ment is not in electronic form). However, you can also place tags within paragraphs.

9.2.2.2 SRS Tags

For system document sets that have only the SRS—not an SyRS—as the
requirements document, “SRS” can simply replace “SYRS” in the tag:
[POOL_SRS_010]: Pool temperature monitoring.

However, when a project’s document set includes both an SyRS and
an SRS, this book uses a convention that builds reverse traceability from
the SRS to the SyRS directly into the SRS tag. Such SRS tags have the
format [productID_SRS_xxx_yyy].

The productID is the same as for the SyRS tag: SRS denotes a Software
Requirements Specification tag (versus a System Requirements Specification
tag), and xxx and yyy are decimal numbers, where xxx is the number of a
corresponding SyRS tag (see “SyRS Tags” on page 172).

Including the tag number of the parent SyRS requirement embeds
reverse traceability information for an SRS requirement directly into its
tag. Because almost all SRS requirements are derived from a corresponding
SyRS tag, and there is a one-to-many relationship between SyRS require-
ments and SRS requirements, a single SyRS requirement can generate one
or more SRS requirements, but each SRS requirement can be traced back
to just one SyRS requirement, as shown in Figure 9-2.

SyRS SRS

SRS

SRS

Figure 9-2: An SyRS-to-SRS
relationship

176 Chapter 9

The yyy component is the SRS tag value. As a general rule (and the
convention this book follows), yyy doesn’t have to be unique among all the
SRS tags, but the combination xxx_yyy must be unique. The following are all
valid (and unique) SRS tags:

[POOL_SRS_020_001]

[POOL_SRS_020_001.5]

[POOL_SRS_020_002]

[POOL_SRS_030.1_005]

[POOL_SRS_031_003]

This book also uses the convention of restarting the yyy numbering with
each xxx value.

By constructing SRS tags this way, you build automatic reverse trace-
ability from the SRS to the SyRS directly into the tag identifier. To locate
the SyRS requirement associated with an SRS requirement, just extract the
xxx value and search for the corresponding tag in your SyRS document. It’s
also easy to locate SRS tags associated with an SyRS tag in the SRS docu-
ment. For example, to find all SRS requirements associated with POOL_
SYRS_030, search for all instances of “SRS_030” in your SRS document.

It’s possible that an SRS document might produce some brand-new
requirements that are not based on a specific SyRS requirement. If so,
there won’t be an xxx number to use as part of the SRS tag. This book
reserves SyRS tag number 000 (that is, there will never be an SyRS tag
[productID_SYRS_000]), and any new SRS requirement that isn’t based on
an SyRS requirement will take the form [productID_SRS_000_yyy].

N O T E Another convention this book uses is to substitute an asterisk (*) in place of the
000 value.

It’s a good idea to include all software-related requirements from the
SyRS directly in the SRS.3 This allows the SRS to serve as a stand-alone
document for software developers to use. When copying SyRS requirements
directly into the SRS, we’ll use the syntax [productID_SRS_xxx_000] for the
copied requirement tags. That is, a yyy value of 000 denotes a copied tag.

9.2.2.3 SDD Tags

Unfortunately, there is not a one-to-many relationship between SRS
requirements and SDD design elements.4 That makes it more difficult to
build reverse traceability from an SDD tag to the corresponding SRS tag

3. Keep in mind that the SyRS might contain hardware and other non-software-related
requirements that wouldn’t be copied to the SRS; for more information, see “The
Requirements/Reverse Traceability Matrix” on page 178, particularly the description
of allocations.

4. In well-designed systems, there can be a many-to-one relationship between requirements
and design items; in the worst case, there is a many-to-many relationship.

System Documentation 177

into the SDD tag syntax. You’ll have to rely on an external RTM document
to provide the links between the SRS and SDD documents.

Given that reverse traceability is not practical in the SDD tag, this book
uses the simplified SDD tag format [productID_SDD_ddd], where productID
has the usual meaning, and ddd is a unique identifier similar to xxx in the
SyRS tag.

9.2.2.4 STC Tags

There should be a one-to-many relationship between SRS requirements and
STC test cases, as shown in Figure 9-3.

SRS STC

STC

STC

Figure 9-3: An SRS-to-STC
tag relationship

This means you can build reverse traceability from the STC to the SRS
into the tags, just as you did from the SRS to the SyRS. For STC tags, this
book uses the syntax [productID_STC_xxx_yyy_zzz]. If all your yyy values
were unique (rather than the xxx_yyy combination being unique), you could
drop the xxx from the tag, but having both xxx and yyy does provide reverse
traceability to both the SRS and SyRS, which can be convenient (at the
expense of extra typing for your STC tags).

Although it rarely occurs, it’s possible to create a unique test case that
isn’t based on any SRS requirement.5 For example, the software engineers
using the SDD to implement the code might create test cases based on the
source code they write. In such situations, this book uses the scheme shown
previously for SRS requirements that aren’t based on an SyRS requirement:
we reserve the xxx_yyy value of 000_000 or *_*, and any new STC tags that
aren’t based on a requirement tag will use 000 as the tag number suffix. An
xxx_000 component means that the test case is based on an SyRS require-
ment but not any underlying SRS requirement (or perhaps it’s based on the
SRS tag copied from the SyRS using the syntax shown earlier); this is not a
stand-alone test case.

5. Generally, if you need to test something, a requirement should be driving that test.
However, you might derive some test cases from the SDD rather than directly from the SRS.
For example, the requirements generally don’t state details such as whether a coder should
use an array or a dictionary (lookup table) to implement some operation. The SDD, on the
other hand, might specify a particular data structure such as an array. This could lead to a
test case that tests to ensure the program doesn’t violate the bounds of the array when index-
ing into it.

178 Chapter 9

STC tags that have the numeric form 000_000 don’t contain any trace-
ability information. In such cases, you’ll need to explicitly provide link infor-
mation to describe the origin of the test case. Here are a few suggestions:

•	 Use :source after the tag to describe the source of the test case (where
source is the name of the file or other document containing the infor-
mation producing the test case).

•	 Use an RTM to provide the source information (see the next section,
“The Requirements/Reverse Traceability Matrix,” for more details).

•	 Ensure that the document containing the source of the test case con-
tains a comment or other link specifying the STC tag.

9.2.2.5 STP Tags

STC test cases have a many-to-one relationship with STP test procedures, as
shown in Figure 9-4.

STPSTC

STC

STC

Figure 9-4: An STC-to-STP
tag relationship

This means, as with the SDD, you can’t encode reverse traceability
information into the STP tags. Therefore, for STP tags this book uses the
syntax [productID_STP_ppp], where productID has the usual meaning, and
ppp is a unique STP tag value.

9.2.3 The Requirements/Reverse Traceability Matrix
As mentioned, it isn’t possible to build reverse traceability into the SDD
and STP tags, so you’ll need the Requirements/Reverse Traceability
Matrix (RTM).

As its name implies, an RTM is a two-dimensional matrix, or table,
wherein:

•	 Each row specifies a link between requirements, design items, test
cases, or test procedures.

•	 Each column specifies a particular document (SyRS, SRS, SDD, STC,
or STP).

•	 Each cell contains the tag for the associated document type.

A typical row in the table might contain entries such as the following:

POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

System Documentation 179

In general, the SyRS or SRS requirement tags drive the RTM, and you’d
usually organize the table by sorting it via these columns.

Because there is a one-to-many relationship between SyRS requirements
and SRS requirements, you might need to replicate the SyRS requirements
across multiple rows, as in this example:

1 POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

2 POOL_SYRS_020 POOL_SRS_020_002 POOL_SDD_005 POOL_STC_020_002_001 POOL_STP_005

3 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_001 POOL_STP_004

4 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_002 POOL_STP_006

5 POOL_SYRS_030 POOL_SRS_030_001 POOL_SDD_006 POOL_STC_030_001_001 POOL_STP_010

Rows 1, 2, and 3 share the same SyRS tag with different SRS tags; rows 3
and 4 share the same SRS tags (and SyRS tags) with differing STC tags.

Sometimes, it might be cleaner to omit duplicate SyRS and SRS tags
when they can be inferred from previous rows, like so:

1 POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

2 POOL_SRS_020_002 POOL_SDD_005 POOL_STC_020_002_001 POOL_STP_005

3 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_001 POOL_STP_004

4 POOL_SDD_005 POOL_STC_020_003_002 POOL_STP_006

5 POOL_SYRS_030 POOL_SRS_030_001 POOL_SDD_006 POOL_STC_030_001_001 POOL_STP_010

Although you could create an RTM using a word processor (for
example, Microsoft Word or Apple Pages), a far better solution is to use a
spreadsheet program (for example, Microsoft Excel or Apple Numbers) or
a database application, which allows you to easily sort the rows in the table
based on your current requirements. This book assumes you’re using a
spreadsheet program.

9.2.3.1 Adding Extra Columns

At a bare minimum, you’ll want one column in the RTM for each system
document type—SyRS (if present), SRS, SDD, STC, and STP—but you
might want to include other information in the RTM as well. For example,
you might consider a “Description” column that can help make sense of all
the tags.

Or, if you have an SyRS document, an “Allocations” column might be
useful to specify whether an SyRS item is hardware, software, or other. Note
that SRS, SDD, STP, and STC (by definition) are always software related, so
the Allocations entry would be either “N/A” (not applicable) or always “soft-
ware” for such tags.

Another useful column might be “Verification,” which describes how a
particular requirement might be tested (or verified) in the system. Examples
of verification types might be test (as part of a software test procedure), by
review, by inspection, by design, by analysis, other, or no test possible.

180 Chapter 9

One last option is an additional column (or columns) containing
some row numbers you can use to quickly sort data in different ways. For
example, you might add a column numbered 1 through n (where n is the
number of rows) that, when sorted, lists the rows in order of requirements
(SyRS and SRS); another column numbered 1 through n that could order
the rows by SDD tag values; and so on.

9.2.3.2 Sorting the RTM

Of course, if you fill in every cell in the matrix, you can sort by column
values (or multiple column values). For example, suppose you’re using
Microsoft Excel and the columns are organized as follows:

A: Description

B: SyRS tags

C: Allocations

D: SRS tags

E: Testing method

F: SDD tags

G: STC tags

H: STP tags

Sorting by column B, then by D, then by G, will sort the document in
requirements order. Sorting by column F, then by B, then by D, will sort the
document in design element order. Sorting by column H, then by D, then
by G, will sort the document in test procedure order.

To use the RTM to trace from an SyRS or SRS requirement to an SRS
requirement, SDD design item, STC test case, or STP test procedure, sim-
ply sort the matrix by requirements order, find the SyRS or SRS tag you’re
interested in, and then pick out the corresponding tag(s) for the other
document(s) from the same row as the requirement tag. You can use this
same scheme to trace from STC tags to the corresponding test procedure
(because the requirements sort will also sort the test case tags).

Reverse traceability from STC to SRS to SyRS is inherent in the tag syn-
tax, so nothing special is needed for this operation. Reverse traceability from
the SDD to the SRS (or SyRS) and from the STP to the STC/SRS/SyRS is a
little more involved. First, sort the matrix by SDD tag order or STP tag order.
This will give you a list of SDD or STP tags all collected together (and sorted
in lexicographical order). Now all the tags on the rows containing a particu-
lar SDD or STP tag will be the tags of interest to you. The following example
shows the previous RTM examples sorted by test procedure:

3 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_001 POOL_STP_004

1 POOL_SYRS_020 POOL_SRS_020_001 POOL_SDD_005 POOL_STC_020_001_001 POOL_STP_005

2 POOL_SYRS_020 POOL_SRS_020_002 POOL_SDD_005 POOL_STC_020_002_001 POOL_STP_005

4 POOL_SYRS_020 POOL_SRS_020_003 POOL_SDD_005 POOL_STC_020_003_002 POOL_STP_006

5 POOL_SYRS_030 POOL_SRS_030_001 POOL_SDD_006 POOL_STC_030_001_001 POOL_STP_010

System Documentation 181

In this table, you can easily see that test procedure 005 is associated
with SyRS tag 020 and SRS tags 020_001 and 020_002. In this simple exam-
ple, you wouldn’t have to sort the data to determine these links. But with a
more complex RTM (with dozens, hundreds, or even thousands of require-
ments), it would be significantly more work to manually search for these
reverse links if the table wasn’t sorted by STP tags.

9.3 Validation, Verification, and Reviews
Validation (see “The Iterative Model” on page 46) is the process of show-
ing that the product meets the end users’ needs (that is, “Are we building
the right product?”), while verification is ensuring that you’ve built it to
satisfy the project specifications (that is, “Are we building the product
right?”). While validation takes place at the end of the requirements
phase(s) and at the end of the entire development cycle (see “Reducing
Costs via Validation” on page 182), verification typically occurs at the end
of each phase in the software development process to ensure that the phase
respects all the input requirements. For example, verification of the SDD
would consist of ensuring that it covers all the requirements in the SRS
document (the SRS requirements are the input to the SDD stage).

The verification steps for each phase are as follows:

SyRS/SRS Ensuring that the requirements in the document fully
cover all the requirements provided by the customer—perhaps from
UML use cases (see “The UML Use Case Model” on page 74) or the
customer’s functional specification.

SDD Ensuring that the design covers all requirements. The input is
the requirements from the SRS.

STC Ensuring that at least one test case exists for each (testable)
requirement. The inputs are the requirements from the SRS.

STP Ensuring that all the test cases are covered by the test proce-
dures. The inputs are the test cases from the STC (and, indirectly, the
requirements on which the test cases are based).

To verify each preceding phase, you’ll need to review the document
resulting from it. The RTM will prove useful during these reviews. For
example, when reviewing the SDD, you’d search for each requirement
in the SRS, look up the corresponding SDD tag, and then verify that the
design element implements the specified requirement. You’d use the same
process to verify that the STC document covers all the requirements with
test cases.

When you’re reviewing the code, the safest approach is to go through
all the inputs to a phase (that is, requirements for the SDD and STC, and
test cases for the STP) and physically check each input off after verifying
that you properly handled it. This final list becomes part of the review doc-
ument for that phase.

In the review process, you should also confirm the correctness of the out-
puts from the phase. For example, when reviewing the SRS, you should check

182 Chapter 9

each requirement to make sure it’s useful (see “The Software Requirements
Specification Document” on page 194); when reviewing the SDD, you
should make sure each design item is correct (for example, you’re using suit-
able algorithms and handling concurrent operations appropriately); when
reviewing the STC documentation, you should ensure each test case properly
tests the associated requirement; and when reviewing the STP, you should
verify that each test procedure properly tests its associated test cases.

If at all possible, and for the best results, an engineer other than the
document author should conduct the final, formal review, or a second
engineer should participate in the review process. The document author is
more likely to gloss over an omission, because they’re too close to that por-
tion of the project and could mentally fill in missing elements during the
review. Of course, they should do their own review of the document prior to
submitting it for formal review.

9.4 Reducing Development Costs Using Documentation
Documentation costs are often a major component of a project’s overall
cost. Part of the reason is that there is so much documentation. But another
reason is that the documents are interdependent, which makes them diffi-
cult to update and maintain. In Code Complete (Microsoft Press, 2004), Steve
McConnell reports that, compared to the requirements phase, correcting
errors is 3 times more expensive during the design (architectural) phase,
5 to 10 times more expensive during coding, and 10 times more expensive
during system testing. There a couple of reasons for this:

•	 If you fix a defect early in the development process, you don’t waste
time writing additional documentation, coding, and testing defective
designs. For example, it takes time to write the SDD documentation for
a requirement, to write code to implement that requirement, to write
test cases and test procedures for the requirement, and to run those
tests. If the requirement was wrong to begin with, you’ve wasted all
that effort.

•	 If you discover a defective item in one phase of the system, you have to
locate and edit anything associated with that defect throughout the rest
of the system. This can be laborious work, and it’s easy to miss changes,
which creates inconsistencies and other problems down the line.

9.4.1 Reducing Costs via Validation
Nowhere is the validation activity more important than in the requirements
phase (SyRS and SRS development). If you insist that the customer under-
stands and approves all requirements before moving on to later phases, you
can ensure there are no unwanted requirements and that you’re solving the
customer’s problems. Few things are worse than spending several months
documenting, coding, and testing a program’s feature only to have the cus-
tomer say, “This isn’t what we were asking for.” A good validation process
can help reduce the likelihood of this scenario.

System Documentation 183

Validation, which should take place at the end of the requirements
phase(s) and at the end of the development cycle, involves asking the fol-
lowing questions:

SyRS (if present)

1. Is each existing requirement important? Does the requirement
describe some feature that the customer wants?

2. Is each requirement correct? Does it precisely state (without ambi-
guity) exactly what the customer wants?

3. Are there any missing requirements?

SRS

1. Are all software requirements listed in the SyRS (if present) also
listed in the SRS?

2. Is each existing requirement important? Is this feature important
to the system architect and agreed upon by the customer?

3. Is each requirement correct? Does it precisely state (without ambi-
guity) exactly what the software must do to be effective?

4. Are there any missing requirements?

During final acceptance testing, the test engineer(s) should have a list
of all the requirements in the SRS in a checkbox form. They should check
off each requirement as it’s tested (perhaps when following the test proce-
dures in the STP) to ensure that the software implements it correctly.

9.4.2 Reducing Costs via Verification
As mentioned in “Validation, Verification, and Reviews” on page 181, veri-
fication should occur after each phase of the software development process.
In particular, there should be a verification step associated with each of the
system documents after the SRS. Here are some questions you might ask
after completing each document:

SDD

1. Do the design components completely cover all the requirements in
the SRS?

2. Is there a many-to-one (or one-to-one) relationship between require-
ments (many) and software design elements (one)? Although a
design item might satisfy multiple requirements, it should not take
multiple design elements to satisfy a single requirement.

3. Does a software design element provide an accurate design that will
implement the given requirement(s)?

184 Chapter 9

STC

1. Is there a one-to-many (or one-to-one) relationship between
requirements and test cases? (That is, a requirement can have mul-
tiple associated test cases, but you shouldn’t have multiple require-
ments sharing the same test case.6)

2. Does a particular test case accurately test the associated requirement?

3. Do all the test cases associated with a requirement completely test
the correct implementation of that requirement?

STP

1. Is there a many-to-one relationship between test cases in the STC
and test procedures in the STP? That is, does a test procedure
implement one or more test cases while each test case is handled by
exactly one test procedure?

2. Does a given test procedure accurately implement all its associated
test cases?

9.5 For More Information
Bremer, Michael. The User Manual Manual: How to Research, Write, Test, Edit,

and Produce a Software Manual. Grass Valley, CA: UnTechnical Press,
1999. A sample chapter is available at http://www.untechnicalpress.com
/Downloads/UMM%20sample%20doc.pdf.

IEEE. “IEEE Standard 830-1998: IEEE Recommended Practice for Software
Requirements Specifications.” October 20, 1998. https://doi.org/10.1109
/IEEESTD.1998.88286.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements. Boston:
Addison-Wesley Professional, 2003.

McConnell, Steve. Code Complete. 2nd ed. Redmond, WA: Microsoft Press, 2004.

Miles, Russ, and Kim Hamilton. Learning UML 2.0: A Pragmatic Introduction
to UML. Sebastopol, CA: O’Reilly Media, 2003.

Pender, Tom. UML Bible. Indianapolis: Wiley, 2003.

Roff, Jason T. UML: A Beginner’s Guide. Berkeley, CA: McGraw-Hill
Education, 2003.

Wiegers, Karl E. Software Requirements. Redmond, WA: Microsoft Press, 2009.

———. “Writing Quality Requirements.” Software Development 7, no. 5
(May 1999): 44–48.

6. It might turn out that a single test case would incidentally work for multiple requirements.
However, you would still produce independent test cases. This redundancy is resolved when
you create the test procedures.

http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
http://www.untechnicalpress.com/Downloads/UMM%20sample%20doc.pdf
https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1109/IEEESTD.1998.88286

10
R E Q U I R E M E N T S D O C U M E N T A T I O N

Requirements state what the software must
do in order to satisfy the customer’s needs,

specifically:

•	 What functions the system must carry out (a functional requirement)

•	 How well the system must perform them (a nonfunctional requirement)

•	 The resource or design parameters in which the software must operate
(constraints, which are also nonfunctional requirements)

If a piece of software does not fulfill a particular requirement, you cannot
consider the software complete or correct. A set of software requirements,
therefore, is the fundamental starting point for software development.

10.1 Requirement Origins and Traceability
Every software requirement must have an origin. This could be a higher-
level requirements document (for example, a requirement in a Software
Requirements Specification [SRS] might originate from a System Requirements
Specification [SyRS], or a requirement in the SyRS might originate from a

186 Chapter 10

customer-supplied functional requirements document), a specific use case
document, a customer “statement of work to be done,” a customer’s verbal
communication, or a brainstorming meeting. You should be able to trace
any requirement to its origin; if you can’t, it probably isn’t necessary and
should be removed.

Reverse traceability is the ability to trace a requirement back to its ori-
gin. As discussed in Chapter 9, the Reverse Traceability Matrix (RTM) is
a document or database that lists all requirements and their origins. With
an RTM, you can easily identify the origin of a requirement to determine
its importance (see “The Requirements/Reverse Traceability Matrix” on
page 178 for an in-depth description of the RTM).

10.1.1 A Suggested Requirements Format
A written requirement should take one of the following forms:

•	 [Trigger] Actor shall Action Object [Condition]

•	 [Trigger] Actor must Action Object [Condition]

where the items inside the square brackets are optional. The word
shall indicates a functional requirement; the word must indicates a
nonfunctional requirement. Each item is described as follows, based
on this sample requirement:

When the pool temperature is in the range 40 degrees F
to 65 degrees F the pool monitor shall turn off the “good”
indication unless the atmospheric temperature is above
90 degrees F.

Trigger A trigger is a phrase indicating when the requirement applies.
The absence of a trigger implies that the requirement always applies. In
the example, the trigger is “When the pool temperature is in the range
40 degrees F to 65 degrees F.”

Actor The actor is the person or thing that is performing the action—
in this case, “the pool monitor.”

Action The action is the activity that the requirement causes
(“turn off”).

Object The object is the thing being acted upon (“the ‘good’
indication”).

Condition The condition is typically a negative contingency that stops
the action (if a positive condition causes the action, it’s a trigger). In
the example, the condition is “unless the atmospheric temperature is
above 90 degrees F.”

Some authors allow the words should or may in place of shall or must;
however, these terms suggest that the requirement is optional. This book
subscribes to the view that all requirements are necessary and therefore
should not include the words should or may.

Requirements Documentation 187

10.1.2 Characteristics of Good Requirements
This section discusses the attributes that characterize good requirements.

10.1.2.1 Correct

That requirements must be correct should go without saying, but research
shows that about 40 percent of a project’s cost is due to errors in require-
ments. Therefore, taking time to review requirements and correct any mis-
takes is one of the most cost-efficient ways to ensure quality software.

10.1.2.2 Consistent

Requirements must be consistent with one another; that is, one requirement
cannot contradict another. For example, if a pool temperature monitor states
that an alarm must be triggered if the temperature falls below 70 degrees and
another says that the same alarm must be triggered when the temperature
falls below 65 degrees, the two requirements are inconsistent.

Note that consistency refers to requirements within the same docu-
ment. If a requirement is not consistent with a requirement in a higher-level
document, then that requirement is incorrect—never mind inconsistent.

10.1.2.3 Feasible

If you can’t feasibly implement a software requirement, then you don’t have
a requirement. After all, requirements state what must be done in order
to provide a satisfactory software solution; if the requirement is not viable,
then it’s likewise impossible to provide the software solution.

10.1.2.4 Necessary

By definition, if a software requirement is not necessary, it is not a require-
ment. Requirements are costly to implement—they require documentation,
code, test procedures, and maintenance—so you do not want to include
a requirement unless it is necessary. Unnecessary requirements are often
the result of “gold plating,” or adding features simply because somebody
thought they would be cool, without regard to the costs involved in imple-
menting them.

A requirement is necessary if it:

•	 makes the product market competitive;

•	 addresses a need expressed by a customer, end user, or other
stakeholder;

•	 differentiates the product or usage model; or

•	 is dictated by a business strategy, roadmap, or a sustainability need.

10.1.2.5 Prioritized

Software requirements specify everything you must do to produce the
desired application. However, given various constraints (time, budget,

188 Chapter 10

and so on), you may not be able to implement every requirement in the
first release of the software. Furthermore, as time passes (and dollars are
spent), some requirements may be abandoned because things change.
Therefore, a good requirement will have an associated priority. This can
help drive the schedule, as teams implement the most critical features first
and relegate the less important ones to the end of the project development
cycle. Typically, three or four levels of priority should be sufficient: critical/
mandatory, important, desirable, and optional are good examples.

10.1.2.6 Complete

A good requirement will be complete; that is, it will not contain any TBD
(to be determined) items.

10.1.2.7 Unambiguous

Requirements must not be open to interpretation (note that TBD is a
special case of this). Unambiguous means that a requirement has exactly
one interpretation.

Because most requirements are written in a natural language (such as
English) and natural languages are ambiguous, you must take special care
when writing requirements to avoid ambiguity.

Example of an ambiguous requirement:

When the pool temperature is too cold the software shall
signal an alarm.

An unambiguous example:

When the pool temperature is below 65 degrees (F) the
software shall signal an alarm.

Ambiguity results whenever the following natural language features
appear in a requirement:

Vagueness Results when you use weak words—those without a precise
meaning—in a requirement. This section will discuss weak words shortly.

Subjectivity Refers to the fact that different people will assign a dif-
ferent meaning for a term (a weak word) based on their own personal
experiences or opinion.

Incompleteness Results from using TBD items, partial specifications,
or unbounded lists in a requirement. Unbounded lists will be discussed
in this section a little later.

Optionality Occurs when you use phrases that make a requirement
optional rather than required (for example, is caused by, use of, should,
may, if possible, when appropriate, as desired).

Underspecification Occurs when a requirement does not fully specify
the requirement, often as a result of using weak words (such as support,
analyzed, respond, and based on).

Requirements Documentation 189

Consider this requirement:

The pool monitor shall support Fahrenheit and Celsius scales.

What exactly does support mean in this context? One developer
could interpret it to mean that the end user can select the input and
output to be in degrees F or C (fixed), while another developer could
interpret it to mean that both scales are used for output and that input
allows either scale to be used. A better requirement might be:

The pool monitor setup shall allow the user to select either
the Fahrenheit or Celsius temperature scale.

Underreference Refers to when a requirement provides an incom-
plete or missing reference to another document (such as a require-
ment’s origin).

Overgeneralization Occurs when a requirement contains universal
qualifiers such as any, all, always, and every, or, in the negative sense,
none, never, and only.

Nonintelligibility Results from poor writing (grammar), unde-
fined terms, convoluted logic (for example, double negation), and
incompleteness.

Passive voice Refers to when the requirement does not assign an actor
to an action. For example, a bad requirement using the passive voice
might be:

An alarm shall be raised if the temperature drops below
65 degrees F.

Who is responsible for raising the alarm? Different people could
interpret this differently. A better requirement might be:

The pool monitor software shall raise an alarm if the tem-
perature drops below 65 degrees F.

Using weak words in requirements often results in ambiguity. Examples
of weak words include: support, generally, kind of, mostly, pretty, slightly, some-
what, sort of, various, virtually, quickly, easy, timely, before, after, user-friendly,
effective, multiple, as possible, appropriate, normal, capability, reliable, state-of-the-
art, effortless, and multi.

For example, a requirement such as “The pool monitor shall provide
multiple sensors” is ambiguous because multiple is a weak word. What does it
mean? Two? Three? A dozen?

Another way to create an ambiguous requirement is by using an
unbounded list—a list missing a starting point, an ending point, or both.
Typical examples include phrasing like at least; including, but not limited to; or
later; or more ; such as; and so on; and etc.

190 Chapter 10

For example: “The pool monitor shall support three or more sensors.”
Does it have to support four sensors? Ten sensors? An infinite number of
sensors? This requirement doesn’t make it clear what the maximum num-
ber of supported sensors is. A better requirement might be:

The pool monitor must support between three and
six sensors.

Unbounded lists are impossible to design and test against (so they fail
both the feasible and verifiable attributes).

10.1.2.8 Implementation-Independent

Requirements must be based solely on the inputs and outputs of a system.
They should not delve into the implementation details of the application
(that’s the purpose of the Software Design Description [SDD] document).
Requirements must view the system as a black box into which inputs are fed
and from which outputs are produced.

For example, a requirement might state that an input to the system is a
list of numbers that produce a sorted list as output. The requirement should
not state something like “A quicksort algorithm shall be used.” There may be
good reasons why the software designer would want to use a different algo-
rithm; the requirements should not force the software designer’s or program-
mer’s hand.

10.1.2.9 Verifiable

“If it isn’t testable, it isn’t a requirement” is the mantra by which a require-
ments author should live. If you can’t create a test for it, you also can’t verify
that the requirement has been fulfilled in the final product. Indeed, the
requirement might very well be impossible to implement if you can’t come
up with a way to test it.

If you can’t create a physical test that can be run on the final software
product, there’s a good chance that your requirement is not based solely
on system inputs and outputs. For example, if you have a requirement that
states “The system shall use the quicksort algorithm to sort the data,” how
do you test for this? If you have to resort to “This requirement is tested by
reviewing the code,” then you may not have a good requirement. That’s not
to say that requirements can’t be verified by inspection or analysis, but an
actual test is always the best way to verify a requirement, especially if you
can automate that test.

10.1.2.10 Atomic

A good requirement statement must not contain multiple requirements—
that is, it must not be a compound requirement. Requirements should also
be as independent as possible; their implementation should not rely on
other requirements.

Some authors claim that the words and and or must never appear in
a requirement. Strictly speaking, this isn’t true. You simply want to avoid

Requirements Documentation 191

using the fanboys conjunctions (for, and, nor, but, or, yet, so) to combine sepa-
rate requirements into a single statement. For example, the following is not
a compound requirement:

The pool monitor shall set the “good” indication when the
temperature is between 70 degrees F and 85 degrees F.

This is a single requirement, not two. The presence of the word and
does not produce two requirements. If you really want to be a stickler and
eliminate the word and, you could rewrite the requirement thusly:

The pool monitor shall set the “good” indication when
the temperature is in the range from 70 degrees F to
85 degrees F.

However, there’s really nothing wrong with the first version. Here’s an
example of a compound requirement:

The pool monitor shall clear the “good” indication when the
temperature is below 70 degrees F or above 85 degrees F.

This should be rewritten as two separate requirements:1

The pool monitor shall clear the “good” indication when
the temperature is below 70 degrees F.

The pool monitor shall clear the “good” indication when
the temperature is above 85 degrees F.

Note that compound requirements will create problems later when
you’re constructing traceability matrices, as this chapter will discuss in
“Updating the Traceability Matrix with Requirement Information” on
page 222. Compound requirements also create testing problems. The test
for a requirement must produce a single answer: pass or fail. You cannot
have part of a requirement pass and another part fail. That’s a sure sign of
a compound requirement.

10.1.2.11 Unique

A requirements specification must not contain any duplicate requirements.
Duplication makes the document much more difficult to maintain, particu-
larly if you ever modify requirements and forget to modify the duplicates.

10.1.2.12 Modifiable

It would be unreasonable to expect the requirements of a project to remain
constant over its lifetime. Expectations change, technology changes, the
market changes, and the competition changes. During product develop-
ment, you’ll likely want to revise some requirements to adapt to evolving

1. Arguably, this could be rewritten as the single requirement “The pool monitor shall clear
the ‘good’ condition when the temperature is outside the range 70 to 85 degrees F.”

192 Chapter 10

conditions. In particular, you don’t want to choose requirements that
enforce certain system constraints that other requirements will be based
on. For example, consider the following requirement:

The pool monitor shall use an Arduino Mega 2560 single-
board computer as the control module.

Based on this requirement, other requirements might be “The pool
monitor shall use the A8 pin for the pool level indication” and “The
pool monitor shall use the D0 pin as the low temperature output.” The prob-
lem with such requirements, which are based on the use of the Mega 2560
board, is that if a new board comes along (say, a Teensy 4.0 module), then
changing the first requirement necessitates also changing all the other
requirements that depend on it. A better set of requirements might be:

The pool monitor shall use a single-board computer
that supports 8 analog inputs, 4 digital outputs, and
12 digital inputs.

The pool monitor shall use one of the digital output pins
as the low temperature alarm.

The pool monitor shall use one of the analog input pins as
the pool level input.

10.1.2.13 Traceable

All requirements must be forward- and reverse-traceable. Reverse traceability
means that the requirement can be traced to its origin. To be traceable to
some other object, the requirement must have a tag (a unique identifier, as
introduced in Chapter 4).

Each requirement must include the origin as part of the requirement
text or tag; otherwise, you must provide a separate RTM document (or data-
base) that provides that information. In general, you should explicitly list a
requirement’s origin within the requirement itself.

Forward traceability provides a link to all documents based on (or
spawned by) the requirements document. Most of the time, forward trace-
ability is handled via an RTM document; it would be too much work to
maintain this information in each requirements document (there would be
too much duplicate information, which, as previously noted, makes docu-
ment maintenance difficult).

10.1.2.14 Positively Stated

A requirement should state what must be true, not what must not happen.
Most negatively stated requirements are impossible to verify. For example,
the following is a bad requirement:

The pool monitor shall not operate at atmospheric
temperatures below freezing.

Requirements Documentation 193

This requirement suggests that the pool monitor must stop operation
once the temperature drops below freezing. Does this mean that the system
will sense the temperature and shut down below freezing? Or does it simply
mean that the system cannot be expected to produce reasonable values
below freezing? Better requirements might be:

The pool monitor shall automatically shut off if the tem-
perature falls below freezing.

Hopefully, there is a requirement that discusses what should happen
when the temperature rises back above freezing. If the pool monitor has
been shut off, can it sense this change?

10.2 Design Goals
Although requirements can’t be optional, it’s sometimes beneficial to be
able to list optional items in a requirements document. Such items are
known as design goals.

Design goals violate many of the attributes of good requirements.
Obviously, they are not necessary, but they can also be incomplete, be
slightly ambiguous, specify implementation, or not be testable. For exam-
ple, a design goal might be to use the C standard library’s built-in sort()
function (an implementation detail) in order to reduce development time.
Another design goal might be something like:

The pool monitor should support as many sensors
as possible.

As you can see, this is both optional and open-ended. A design goal is a
suggestion that a developer can use to guide development choices. It should
not involve extra design work or testing that leads to further development
expenses. It should simply help a developer make certain developmental
choices when designing the system.

Like requirements, design goals can have tags, though there’s little
need to trace design goals through the documentation system. However,
because they might be elevated to requirement status at some point, it’s
nice to have a tag associated with them so they can serve as an origin for a
requirement in a spawned document.

10.3 The System Requirements Specification Document
The System Requirements Specification document collects all the require-
ments associated with a complete system. This may include business
requirements, legislative/political requirements, hardware requirements,
and software requirements. The SyRS is usually a very high-level document,
though internal to an organization. Its purpose is to provide a single-source
origin for all requirements appearing in an organization’s subservient doc-
uments (such as the SRS).

194 Chapter 10

The SyRS takes the same form as the SRS (described in the next sec-
tion), so I won’t further elaborate on its contents other than to point out
that the SyRS spawns the SRS (and Hardware Requirements Specifications,
or HRS, if appropriate). The SyRS is optional and typically absent in small
software-only projects.

SyRS requirements typically state “The system shall” or “The system
must.” This is in contrast to requirements in the SRS that typically state
“The software shall” or “The software must.”

10.4 The Software Requirements Specification Document
The Software Requirements Specification is a document that contains all
the requirements and design goals for a given software project. There are
(literally) hundreds, if not thousands, of examples of SRS documents scat-
tered across the internet. Many sites seem to have their own ideas about
what constitutes an SRS. Rather than introduce yet another new tem-
plate into the cacophony, this book will elect to use the template defined
by the IEEE: the IEEE 830-1998 Recommended Practice for Software
Requirements Specifications.

In this book, using the IEEE 830-1998 recommended practice is a safe
decision, but note that the standard is by no means perfect. It was created
by a committee and, as a result, it contains a lot of bloat (extraneous infor-
mation). The problem with committee-designed standards is that the only
way to get them approved is by letting everyone inject their own pet ideas
into the document, even if those ideas conflict with others in the docu-
ment. Nevertheless, the IEEE 830-1998 recommendation is a good starting
point. You need not feel compelled to implement everything in it, but you
should use it as a guideline when creating your SRS.

A typical SRS uses an outline similar to the following:

Table of Contents

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, Acronyms, and Abbreviations

1.4 References

1.5 Overview

2 Overall Description

2.1 Product Perspective

2.1.1 System Interfaces

2.1.2 User Interfaces

2.1.3 Hardware Interfaces

2.1.4 Software Interfaces

Requirements Documentation 195

2.1.5 Communication Interfaces

2.1.6 Memory Constraints

2.1.7 Operations

2.2 Site Adaptation Requirements

2.3 Product Functions

2.4 User Characteristics

2.5 Constraints

2.6 Assumptions and Dependencies

2.7 Apportioning of Requirements

3 Specific Requirements

3.1 External Interfaces

3.2 Functional Requirements

3.3 Performance Requirements

3.4 Logical Database Requirements

3.5 Design Constraints

3.6 Standards Compliance

3.7 Software System Attributes

3.7.1 Reliability

3.7.2 Availability

3.7.3 Security

3.7.4 Maintainability

3.7.5 Portability

3.8 Design Goals

4 Appendixes

5 Index

Section 3 is the most important—this is where you will place all of your
requirements as well as your design goals.

10.4.1 Introduction
The Introduction contains an overview of the entire SRS. The following
subsections describe the suggested contents of the Introduction.

10.4.1.1 Purpose

In the Purpose section, you should state the purpose of the SRS and who
the intended audience is. For an SRS, the intended audience is probably the
customers who will need to validate the SRS and the developers/designers
who will create the SDD, software test cases, and software test procedures,
and will write the code.

196 Chapter 10

10.4.1.2 Scope

The Scope section describes the software product by name (for example,
Plantation Productions Pool Monitor), explains what the product will do,
and, if necessary, states what it will not do. (Don’t worry that this doesn’t
adhere to the “positively stated” rule, since this is a scope declaration, not
a requirement statement.) The Scope section also outlines the objectives of
the project, the benefits and goals of the product, and the application soft-
ware being written for the product.

10.4.1.3 Definitions, Acronyms, and Abbreviations

The Definitions section provides a glossary of all terms, acronyms, and
abbreviations the SRS uses.

10.4.1.4 References

The References section provides a link to all external documents that the
SRS references. If your SRS relies on an external RTM document, you
should reference that document here. If the documents are internal to the
organization, you should provide their internal document numbers/refer-
ences. If the SRS references a document that is external to the organiza-
tion, the SRS should list the document’s title, author, publisher, and date
as well as information on how to obtain the document.

10.4.1.5 Overview

The Overview section describes the format of the rest of the SRS and the
information it contains (this section is particularly important if you’ve omit-
ted items from the IEEE recommendation).

10.4.2 Overall Description
The Overall Description section specifies the requirements of the
following aspects:

10.4.2.1 Product Perspective

The Product Perspective section contextualizes the product with respect
to other (possibly competing) products. If this product is part of a larger
system, the product perspective should point this out (and describe how
the requirements in this document relate to the larger system). This section
might also describe various constraints on the product, such as:

10.4.2.1.1 System Interfaces
This section describes how the software will interface with the rest
of the system. This would typically include any APIs, such as how
the software interfaces with a Wi-Fi adapter in order to view pool
readings remotely.

Requirements Documentation 197

10.4.2.1.2 User Interfaces
This section lists all user interface (UI) elements needed to meet the
requirements. For example, in the pool monitor scenario, this section
could describe how the user interacts with the device via an LCD dis-
play and various push buttons on the device.

10.4.2.1.3 Hardware Interfaces
This section could describe how the software interacts with the under-
lying hardware. For example, the pool monitor SRS could state that
the software will be running on an Arduino Mega 2560, using the
A8 through A15 analog inputs to connect to the sensors and the D0
through D7 digital lines as inputs connected to buttons.

10.4.2.1.4 Software Interfaces
This section describes any additional/external software needed to
implement the system. This might include operating systems, third-
party libraries, database management systems, or other application
systems. For example, the pool monitor SRS might describe the use
of vendor-supplied libraries needed to read data from various sensors.
For each software item, you should include the following information
in this section:

•	 Name

•	 Specification number (a vendor-supplied value, if any)

•	 Version number

•	 Source

•	 Purpose

•	 Reference to pertinent documentation

10.4.2.1.5 Communication Interfaces
This section lists any communication interfaces, such as Ethernet, Wi-Fi,
Bluetooth, and RS-232 serial that the product will use. For example, the
pool monitor SRS might describe the Wi-Fi interface in this section.

10.4.2.1.6 Memory Constraints
This section describes all the constraints on memory and data storage.
For the pool monitor running on an Arduino Mega 2560, SRS might
state that there is a limitation in program storage of 1K EEPROM and
8K RAM plus 64K to 128K Flash.

10.4.2.1.7 Operations
This section (often folded into the UI section) describes various opera-
tions on the product. It might detail the various modes of operation—
such as normal, reduced power, maintenance, or installation modes—
and describe interactive sessions, unattended sessions, and communica-
tion features.

198 Chapter 10

10.4.2.2 Site Adaptation Requirements

This section describes any site-specific adaptations. For example, the
pool monitor SRS might describe optional sensors for pools with spas
in this section.

10.4.2.3 Product Functions

The Product Functions section describes the software’s (major) functional-
ity. For example, the pool monitor SRS might use this section to describe
how the software monitors pool levels, pool temperatures, atmospheric
temperature, water conductivity (for saltwater pools), water flow though the
filtration system, and filtration time since the last filter cleaning.

10.4.2.4 User Characteristics

The User Characteristics section describes the people that will use the prod-
uct. For example, the pool monitor SRS might define a factory test technician
(responsible for testing and repairing the unit), a field installation techni-
cian, an advanced end user, and an average end user. There may be differ-
ent requirements for the software that apply only to certain types of users.

10.4.2.5 Constraints

The Constraints section describes any limitations that may affect the devel-
oper’s choices when designing and implementing the software, such as:

•	 Regulatory policies

•	 Hardware limitations (for example, signal timing requirements)

•	 Interfaces to other applications

•	 Parallel operation

•	 Audit functions

•	 Control functions

•	 High-level language requirements

•	 Signal handshake protocols (for example, XON-XOFF)

•	 Reliability requirements

•	 Criticality of the application

•	 Safety and security considerations

10.4.2.6 Assumptions and Dependencies

The items listed in the Assumptions and Dependencies section apply only
to the requirements; they do not present constraints on the design. If
an assumption were to change, it would require changing requirements
rather than the design (though changing requirements will likely affect
the design as well). For example, in the pool monitor SRS an assumption
might be that the Arduino Mega 2560 will provide sufficient computing

Requirements Documentation 199

power, ports, and memory to complete the task. If this assumption is
incorrect, it may affect some requirements with respect to port usage,
available memory, and the like.

10.4.2.7 Apportioning of Requirements

The Apportioning of Requirements section divides the requirements and
features into two or more groups: those to be implemented in the current
release, and those planned for future versions of the software.

10.4.3 Specific Requirements
The Specific Requirements section should list all the requirements and sup-
porting documentation. This documentation should be written such that
a system designer can construct a design for the software from the require-
ments documented.

All requirements should possess the characteristics discussed earlier
in this chapter. They should also have a tag and a cross-reference (trace)
to their origin. Because the requirements documentation will be read far
more times than it is written, you should take special care to make this
document as readable as possible.

10.4.3.1 External Interfaces

The External Interfaces section should describe all the inputs and outputs
of the software system in great detail but without replicating the information
in the interface subsections of the Product Perspective section. Each listing
should contain the following information (as appropriate for the system):

•	 Tag

•	 Description

•	 Input source or output destination

•	 Valid range of values plus necessary accuracy/precision/tolerance

•	 Measurement units

•	 Timing and tolerances

•	 Relationship to other input/output items

•	 Screen/window formats (but list only screen requirements that are
actual requirements—don’t design the user interface here)

•	 Data formats

•	 Command formats, protocols, and any necessary sentinel messages

Many SRS authors will pull this section out of the Specific Requirements
section and place it in the Product Perspective section in order to avoid
redundancy, though the IEEE 830-1998 standard suggests that this section
be part of the Specific Requirements section. However, the IEEE document
is only a recommended practice, so the choice is really yours. What matters
most is that the information appears in the SRS.

200 Chapter 10

10.4.3.2 Functional Requirements

The Functional Requirements section contains those items that most
people immediately recognize as requirements. This section lists the fun-
damental activities that take place on inputs and describes how the system
uses the inputs to produce outputs. By convention, functional requirements
always contain the auxiliary verb shall. For example, “The software shall
raise an alarm when the pool low input is active.”

Typical functional requirements include the following:

•	 Input validity checks and responses to invalid inputs

•	 Operation sequences

•	 Abnormal condition responses, including: overflow, underflow, arith-
metic exceptions, communication failures, resource overruns, error
handling and recovery, and protocol errors

•	 Persistence of data across executions of the software

•	 Effect of parameters

•	 Input/output relationships, including: legal and illegal input patterns,
relationship of inputs to output, and how outputs are computed from
inputs (but be careful not to incorporate software design into the
requirements)

10.4.3.3 Performance Requirements

The Performance Requirements section lists nonfunctional requirements
that specify either static or dynamic performance targets that the software
must hit. Like most nonfunctional requirements, performance require-
ments usually contain the auxiliary verb must—for example, “The software
must be able to control an internal display and a remote display.”

Static performance requirements are those that are defined for the
system as a whole and do not depend on the software’s capabilities. A good
example for the pool monitor is “The pool monitor must be able to read
sensor input data from between 5 and 10 analog sensors.” This is a static
requirement because the number of sensors is static for a given installation
(it isn’t going to change because the software is written more efficiently,
for example).

Dynamic performance requirements are those that the software must
meet during execution. A good example might be “The software must read
each sensor between 10 and 20 times per second.”

10.4.3.4 Logical Database Requirements

The Logical Database Requirements section describes nonfunctional
requirements that specify the record and field formats for databases that
the application must access. Typically, these requirements deal with exter-
nally accessed databases. Databases internal to the application (that is, not
visible to the outside world) are generally outside the domain of the soft-
ware requirements, although the SDD might cover these.

Requirements Documentation 201

10.4.3.5 Design Constraints

Standards compliance is an example of a design constraint. Any limitation
that prevents the software designer from using an arbitrary implementation
should be listed in the Design Constraints section. One example might be
limiting readings from a 16-bit A/D converter to 13 bits because the A/D
chip/circuit is noisy and the low-order 3 bits may not be reliable.

10.4.3.6 Standards Compliance

The Standards Compliance section should describe, and provide links to,
all standards to which the software must adhere. Standards numbers and
document descriptions should allow the reader to research the standards
as necessary.

10.4.3.7 Software System Attributes

The Software System Attributes section lists characteristics for the software
system, including:

10.4.3.7.1 Reliability
The Requirements section will specify the expected uptime requirements
for the software system. Reliability is a nonfunctional requirement that
describes, usually as a percentage, the amount of time that the system
will operate without a failure. A typical example is “an expected reliabil-
ity of 99.99 percent,” meaning that the software will fail no more than
0.01 percent of the time. As with many nonfunctional requirements, it
can be difficult to provide tests to ensure that reliability targets are met.

10.4.3.7.2 Availability
The availability attribute specifies the amount of downtime that is
acceptable in the final application (actually, it specifies the inverse of
downtime). Availability specifies the ability of the user to access the
software system at any time. When the system is down, it is not avail-
able to the user. This nonfunctional requirement might differentiate
between scheduled downtime and unscheduled downtime (for exam-
ple, a hardware failure that forces a restart of the system).

10.4.3.7.3 Security
The security attribute is a nonfunctional requirement that specifies the
expected system security, which could include items such as encryption
expectations and network socket types.

10.4.3.7.4 Maintainability
Maintainability is another nonfunctional requirement that can be hard
to specify and test. In most specifications, there is a nebulous statement
like “the software shall be easy to maintain.” This is unhelpful. Instead,
this attribute should state, “It must take an experienced maintenance
programmer no more than a week to come up to speed on this system
and make changes to it.”

202 Chapter 10

R EQUIR E ME N T ORG A NI Z AT ION

Any sufficiently complex system will have a large number of requirements, so
the SRS can become unwieldy if it is not organized properly. There are many
different application types, and an equally large number of ways to organize
their requirements. No particular organization is correct; you’ll have to choose
one of the following options based on the audience for your SRS.

Organizing by system mode
Some systems operate in various modes—for example, an embedded sys-
tem might have a low-power mode and a regular mode. In that case, you
could organize the system requirements into those two groups.

Organizing by user class
Some systems support different classes of users (for example, beginners,
power users, and system administrators). In a complex system, you might
have normal users, power users, maintenance workers, and programmers
accessing the system.

Organizing by object class
Objects are entities in the software system that correspond to real-world
objects. You could organize your requirements based on the types or
classes of these objects.

Organizing by feature
One of the more common ways to organize SRS requirements is by the
features they implement. This is a particularly useful method of organiza-
tion when the application provides a user interface for all the features in
the system.

Organizing by input stimulus
If processing different inputs is a primary activity of the application, then
you might consider organizing your SRS by the type of inputs the applica-
tion processes.

Organizing by output response
Similarly, if producing a wide range of outputs is a primary activity of
the application, then it might make sense to organize the requirements by
output response.

Organizing by functional hierarchy
Another common SRS organization approach is by functionality. This is
often the fallback position SRS authors use when no other organization
seems appropriate. Grouping the requirements by common inputs, com-
mand outputs, common database operations, and data flow through the
program are all reasonable ways to organize the SRS.

Requirements Documentation 203

10.4.3.7.5 Portability
Portability describes what is involved in moving the software to a differ-
ent environment. This section should include a discussion of portability
across CPUs, operating systems, and programming language dialects.

10.4.3.8 Design Goals

Often it is tempting to put so-called optional requirements into an SRS.
However, as noted earlier in this chapter, requirements by definition cannot
be optional. Nevertheless, there will be times when you might wish to say,
“If possible, add this feature.” You can state such requests as design goals
and leave it up to the designer or software engineer to decide if the feature
is worth having. Place design goals in a separate section and clearly state “As
a design goal, the software should . . . ” in your SRS.

10.4.4 Supporting Information
Any good software requirements specification will contain supporting
information such as a table of contents, appendixes, glossaries, and an
index. There should also be a table of requirement tags (sorted numerically
or lexicographically) that lists each tag, a short description of the require-
ment, and the page number where it appears in the document (this could
also be placed in the RTM rather than in the SRS).

10.4.5 A Sample Software Requirements Specification
This section provides a sample SRS for a swimming pool monitor similar
to the examples given thus far in this chapter. For space reasons, this swim-
ming pool monitor SRS is greatly simplified; the purpose is not to provide a
complete specification, but rather to provide an illustrative outline.

Table of Contents

1 Introduction

1.1 Purpose
The pool monitor device will track pool water levels and automati-
cally refill the pool when levels are low.

1.2 Scope
The pool monitor software will be produced from this specification.

The objectives of the hardware and software development are to
provide functions, status information, monitor and control hard-
ware, communications, and self-test functions per the requirements
that have been allocated to the pool monitor system.

204 Chapter 10

1.3 Definitions, Acronyms, and Abbreviations

Term Definition

Accuracy The degree of agreement with the true value of the mea-
sured input, expressed as percent of reading for digital
readouts (ANSI N42.18-1980).

Anomaly Anything observed in the documentation or operation of
software that deviates from expectations. (Derived from
IEEE Std 610.12-1990.)

Catastrophic event An event without warning from which recovery is impos-
sible. Catastrophic events include hardware or software
failures resulting in computation and processing errors. The
processor will halt or reset, based on a configuration item,
after a catastrophic event.

Handled conditions Conditions that the system is designed to handle and
continue processing. These conditions include anomalies,
faults, and failures.

SBC Single-board computer

Software
Requirements
Specification (SRS)

Documentation of the essential requirements (functions,
performance, design constraints, and attributes) of the soft-
ware and its external interfaces (IEEE Std 610.12-1990).

SPM Swimming pool monitor

System Requirements
Specification (SyRS)

A structured collection of information that embodies
the requirements of the system (IEEE Std 1233-1998). A
specification that documents the requirements to establish
a design basis and the conceptual design for a system
or subsystem.

1.4 References
[None]

1.5 Overview
Section 2 provides an overall description of the swimming pool
monitor (hardware and software).

Section 3 lists the specific requirements for the swimming pool
monitor system.

Sections 4 and 5 provide any necessary appendixes and an index.

In section 3, requirements tags take the following form:

<whitespace> [POOL_SRS_xxx]
<whitespace> [POOL_SRS_xxx.yy]
<whitespace> [POOL_SRS_xxx.yy.zz]
<and so on>.

where xxx is a three- or four-digit SRS requirement number.

Should the need arise to insert a new SRS requirement tag
between two other values (for example, add a requirement between

Requirements Documentation 205

POOL_SRS_040 and POOL_SRS_041), then a decimal fractional
number shall be appended to the SRS tag number (for example,
POOL_SRS_040.5). Any number of decimal point suffixes can be
added, if needed (for example, POOL_SRS_40.05.02).

2 Overall Description
The purpose behind the swimming pool monitor (SPM) is to provide
an automatic system for maintaining water level in the pool. This task is
sufficiently simple to allow the creation of an SRS that is short enough
to fit within this chapter.

2.1 Product Perspective
In the real world, an SPM would probably provide many addi-
tional features; adding those features here would only increase
the size of the SRS without providing much additional educa-
tional benefit. This specification is intentionally simplified in
order to fit within the editorial requirements of this book.

2.1.1 System Interfaces
The SPM design assumes the use of an Arduino-compatible
SBC. Accordingly, the software will interface to the hard-
ware using Arduino-compatible libraries.

2.1.2 User Interfaces
The user interface shall consist of a small four-line display
(minimum 20 characters/line), six push buttons (up,
down, left, right, cancel/back, and select/enter), and a
rotary encoder (rotating knob).

2.1.3 Hardware Interfaces
This document doesn’t specify a particular SBC to use.
However, the SBC must provide at least the following:

•	 16 digital inputs

•	 1 analog input

•	 2 digital outputs

•	 A small amount of nonvolatile, writable memory (for
example, EEPROM) to store configuration values.

•	 A real-time clock (RTC; this can be an external
module)

•	 A watchdog timer to monitor the system’s software
operation

The SPM provides pool sensors to determine when the
pool level is high or low. It also provides a solenoid inter-
face to a water valve, allowing the SPM to turn on or off a
water source for the pool.

206 Chapter 10

2.1.4 Software Interfaces
The SPM software is self-contained and provides no exter-
nal interfaces, nor does it require any external software
interfaces.

2.1.5 Communication Interfaces
The SPM is self-contained and does not communicate with
the outside world.

2.1.6 Memory Constraints
As the SPM is running on an Arduino-compatible SBC,
there will be (severe) memory constraints, depending on
the exact model chosen (for example, an Arduino Mega
2560 SBC provides only 8KB of static RAM on board).

2.1.7 Operations
The SPM operates in an always-on mode, monitoring the
pool 24/7/365. Therefore, the module itself should not
consume excessive electrical power. It will, however, be
connected to line voltage via a power supply, so extreme
low-power operation is unnecessary. It will constantly
monitor the pool’s water level and automatically turn on
a water source if the pool level is low. To avoid flooding if
there is a sensor failure, the SPM will limit the amount of
water introduced to the pool on a daily basis (time limit is
user-selectable).

2.2 Site Adaptation Requirements
For this particular variant of the SPM, there is little in the way
of site adaptation requirements. There are no optional sensors
or operations and the only interfaces outside the SPM itself is a
source of power for the system and a water source (interfaced via
the solenoid valve).

2.3 Product Functions
The product shall use seven water-level sensors to determine the
pool level: three digital sensors that provide a low-pool indication,
three digital sensors that provide a high-pool indication, and an
analog sensor that provides a pool level depth indication (perhaps
only a couple inches or centimeters in range). The three low-pool
digital sensors are active when the water level is at the level of the
sensor. The system will begin filling the pool when there is a low-
pool indication. To avoid flooding when a sensor fails, the three
sensors operate in a two out of three configuration, meaning at least
two sensors must indicate a low-pool condition before the SPM
will attempt to fill the pool. The three high-pool sensors work in a
likewise fashion when the SPM should stop filling the pool (water
level is high). The analog sensor provides a small range of depth;

Requirements Documentation 207

the SPM will use the analog sensor as a backup to verify that the
pool level is low prior to filling the pool. The SPM will also use the
analog sensor to determine that the pool is actually filling while
the SPM has turned on the water source.

2.4 User Characteristics
There are two types of SPM users: technicians and end users.
A technician is responsible for installing and adjusting the
SPM. An end user is the pool’s owner who uses the SPM on a
day-to-day basis.

2.5 Constraints
The SPM should be carefully designed to prevent inadvertent
flooding and excessive water use. In particular, the software must
be robust enough to determine that the pool is not being properly
filled and to cease attempting to fill the pool if the sensors do not
indicate proper operation. Should any sensor fail, the software
should be smart enough to avoid blindly keeping the water turned
on (which could lead to flood damage). For example, if the SPM
is attached to an aboveground pool and that pool has a leak, it
might not ever be possible to fill the pool. The software should
handle such situations.

The system should be fail-safe insofar as a power failure should
automatically shut off the water valve. A watchdog timer of some
sort should also check that the software is operating properly and
turn off the water valve if a timeout occurs (for example, should
the software hang up).

To avoid flooding because of a malfunctioning relay, the SPM
should use two relays in series to open the water valve. Both
relays must be actuated by the software in order to turn on the
solenoid valve.

2.6 Assumptions and Dependencies
The requirements in this document assume that the SBC contains
sufficient resources (computing power) to handle the task and
that the device can reasonably operate in a 24/7/365 real-time
environment.

2.7 Apportioning of Requirements
These requirements define a very simple swimming pool moni-
tor for the purposes of demonstrating a complete SRS. As this
is a minimal requirement set for a very small SPM, the assump-
tion is that a product built around these requirements would
implement all of them. A real product would probably include
many additional features beyond those listed here, with a corre-
sponding increase in the number of requirements appearing in
this document.

208 Chapter 10

3 Specific Requirements

3.1 External Interfaces
[POOL_SRS_001]

The SPM shall provide a digital input for the navigation
up button.

[POOL_SRS_002]
The SPM shall provide a digital input for the navigation
down button.

[POOL_SRS_003]
The SPM shall provide a digital input for the navigation
left button.

[POOL_SRS_004]
The SPM shall provide a digital input for the navigation
right button.

[POOL_SRS_005]
The SPM shall provide a digital input for the cancel/back
button.

[POOL_SRS_006]
The SPM shall provide a digital input for the select/enter
button.

[POOL_SRS_007]
The SPM shall provide four digital inputs for the rotary
encoder (quadrature) input.

[POOL_SRS_008.01]
The SPM shall provide a digital input for the primary water
level low sensor.

[POOL_SRS_008.02]
The SPM shall provide a digital input for the secondary
water level low sensor.

[POOL_SRS_008.03]
The SPM shall provide a digital input for the tertiary water
level low sensor.

[POOL_SRS_009.01]
The SPM shall provide a digital input for the primary water
level high sensor.

[POOL_SRS_009.02]
The SPM shall provide a digital input for the secondary
water level high sensor.

[POOL_SRS_009.03]
The SPM shall provide a digital input for the tertiary water
level high sensor.

Requirements Documentation 209

[POOL_SRS_011]
The SPM shall provide an analog input (minimum 8-bit
resolution) for the water level sensor.

[POOL_SRS_012]
The SPM shall provide two digital outputs to control the
water source solenoid valve.

3.2 Functional Requirements
[POOL_SRS_013]

The SPM shall allow the user to set the RTC date and time
via the user interface.

[POOL_SRS_014]
The SPM shall have a maximum fill time, specifying the maxi-
mum amount of time (hours:mins) that the water valve can
be actuated during a 24-hour period.

[POOL_SRS_015]
The user shall be able to set the maximum fill time from the
SPM user interface (using the navigation and enter buttons).

[POOL_SRS_015.01]
Once the user has selected the maximum fill time from the
user interface, the user shall be able to select the hours or
minutes fields using the navigation buttons.

[POOL_SRS_015.02]
The user shall be able to independently set the maximum fill-
time hours value using the rotary encoder after selecting the
hours field.

[POOL_SRS_015.03]
The user shall be able to independently set the maximum fill-
time minutes value using the rotary encoder after selecting
the minutes field.

[POOL_SRS_015.04]
The software shall not allow a maximum fill time of greater
than 12 hours.

[POOL_SRS_016]
The SPM shall check the pool level once every 24 hours,
at a specific time, to determine if it needs to add water to
the pool.

[POOL_SRS_017]
The user shall be able to set the time the SPM checks the pool
level (and, therefore, when the SPM fills the pool) from the
SPM user interface.

210 Chapter 10

[POOL_SRS_017.01]
Once the user has selected the pool-level check time from
the user interface, the user shall be able to select the hours
or minutes fields using the navigation buttons.

[POOL_SRS_017.02]
The user shall be able to independently set the pool-level
check-time hours value using the rotary encoder after select-
ing the hours field.

[POOL_SRS_017.03]
The user shall be able to independently set the pool-level
check-time minutes value using the rotary encoder after
selecting the minutes field.

[POOL_SRS_017.04]
The default (factory reset) pool check time shall be 1:00 am.

[POOL_SRS_018]
At the pool check time each day, the system shall read the
three pool level low sensors and begin a pool fill operation if at
least two of the three sensors indicate a pool low condition.

[POOL_SRS_018.01]
During a pool fill operation the software shall accumulate a
running fill time.

[POOL_SRS_018.02]
During a pool fill operation if the running fill time exceeds
the maximum fill time, the software shall cease the pool fill
operation.

[POOL_SRS_018.03]
During a pool fill operation the software shall read the pool
level high sensors and cease the pool fill operation if at least
two of the three sensors indicate a high pool level.

[POOL_SRS_018.04]
During a pool fill operation the software shall read the ana-
log pool-level sensor and shut off the water flow if the level
isn’t increasing after each half-hour of operation.

[POOL_SRS_019]
The software shall allow the user to select a manual pool fill
mode that turns on the water source to the pool.

[POOL_SRS_019.01]
The software shall allow the user to select an auto pool fill
mode that turns off the manual pool fill mode.

[POOL_SRS_019.02]
In the manual pool fill mode, the software shall ignore the
maximum fill time.

Requirements Documentation 211

[POOL_SRS_019.03]
In the manual pool fill mode, the software shall ignore the
pool level high and pool level low sensors (filling stops when the
user turns off the manual fill mode).

[POOL_SRS_020]
The software shall update the system watchdog timer at least
twice as frequently as the watchdog timeout period.

[POOL_SRS_020.01]
The watchdog timeout period shall be no less than 5 seconds
and no greater than 60 seconds.

3.3 Performance Requirements
[POOL_SRS_001.00.01]

The SPM shall debounce all button inputs.

[POOL_SRS_007.00.01]
The SPM shall be capable of reading the rotary encoder
inputs without losing any changes on the inputs.

[POOL_SRS_015.00.01]
The SPM shall maintain an accuracy of at least one minute for
the maximum pool fill time.

[POOL_SRS_017.00.01]
The SPM shall maintain an accuracy of at least one minute for
the pool level check time.

3.4 Logical Database Requirements
[POOL_SRS_014.00.01]

The SPM shall store the maximum fill time in nonvolatile
memory.

[POOL_SRS_016.00.01]
The SPM shall store the pool check time in nonvolatile
memory.

3.5 Design Constraints
[None]

3.6 Standards Compliance
[None]

3.7 Software System Attributes

3.7.1 Reliability
The software will run 24/7/365. Therefore, robustness
is a critical factor in system design. In particular, the
system should be fail-safe insofar as a software or other
failure should result in the closure of the water valve.

212 Chapter 10

3.7.2 Availability
The software should be running continuously (24/7/365).
The software must not be subject to counter overflows or
other problems associated with long-term execution. The
end user should expect at least 99.99 percent uptime.

3.7.3 Security
There are no security requirements for the system (closed,
disconnected, air-gapped system).

3.7.4 Maintainability
There are no maintainability requirements other than
those customarily expected of a professional software
engineering project.

That said, this is a bare-bones requirements document.
Should someone actually build this system, one would
expect future enhancements. Thus, the system should be
designed and implemented with such expectations in mind.

3.7.5 Portability
The software is expected to run on an Arduino-class
device. No portability requirements exist other than the
possibility of selecting different Arduino-compatible mod-
ules (for example, Arduino Mega 2560 versus Teensy 4.0)
during implementation.

3.8 Design Goals
None for this project.

4 Appendixes
[None]

5 Index
Given the (small) size of this SRS, no index appears here in order to
reduce page count for this book.

10.5 Creating Requirements
Up to this point this chapter has defined requirements as well as require-
ments documentation. But you might be asking, “How does someone come
up with the requirements in the first place?” This section will provide some
insight into that question.

The modern approach to requirements creation involves use cases,
which were introduced in Chapter 4. The system architect studies how an
end user would use a system (the user story) and creates a set of scenarios
(use cases) from that study. Each use case becomes the basis for a set of

Requirements Documentation 213

one or more requirements. This section departs from the swimming pool
monitor scenario to consider an example from a real-world system, the
Plantation Productions digital data acquisition and control (DAQ) system.2

The DAQ system consists of multiple interconnecting circuit boards,
including analog I/O boards, digital I/O boards, digital output boards
(relay boards), and an SBC, the Netburner MOD54415, that runs the sys-
tem firmware. These components allow a system designer to read various
analog and digital inputs, compute results and make decisions based on
those inputs, and then control external devices by sending digital and ana-
log output values to those devices. For example, the DAQ system was origi-
nally designed to control a TRIGA3 research reactor.

The firmware requirements for the DAQ system are too large to duplicate
here, so this chapter will limit the discussion to certain I/O initialization that
must take place when the system first powers up. The Netburner MOD54415
includes a set of eight DIP switches, which the DAQ system uses to initialize
various system components. These DIP switches do the following:

1. Enable/disable RS-232 port command processing.

2. Enable/disable USB port command processing.

3. Enable/disable Ethernet port command processing.

4. Specify one Ethernet connection or five simultaneous Ethernet
connections.

5. Specify one of four different Ethernet addresses using two DIP
switches; see Table 10-1.

6. Enable/disable test mode.

7. Enable/disable debug output.

Table 10-1: Ethernet Address Selection

DIP switch A DIP switch A + 1 Ethernet address

0 0 192.168.2.70

1 0 192.168.2.71

0 1 192.168.2.72

1 1 192.168.2.73

One final thing to note about the DAQ software initialization: debug
output uses the Netburner COM1: port. The Netburner shares this serial
port hardware with the USB port. There is a conflict if the user enables
both the debug output and the USB command ports. Therefore, to enable
the debug port, two conditions must be met: debug output must be enabled
and USB port command processing must be disabled.

2. For information on the Plantation Productions DAQ system, see http://www.plantation
-productions.com/Electronics/DAQ/DAQ.html.

3. TRIGA™ is a registered trademark of General Atomics, Inc.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

214 Chapter 10

To enable commands from the RS-232 or USB ports, the software must
read the switches. If the particular switch indicates that the command stream
is active, then the software must create a new task4 to handle input from
that port. The newly created task is responsible for reading characters from
the given port and sending entire lines of text to the system’s command
processor upon receiving a newline character. If the corresponding DIP
switches are in the disabled position, the software won’t create the RS-232
or USB tasks, and the system will ignore these ports.

Enabling Ethernet commands is slightly more complicated. There are
four DIP switches associated with the Ethernet port. The Ethernet initializa-
tion operation must consider the settings for all four DIP switches.

One DIP switch controls the number of concurrent clients the DAQ
software supports. In one position, the DAQ software supports only a
single Ethernet client; in the other position, the software supports up to five
Ethernet clients. In some environments, you might need to allow multiple
host computers to access the data acquisition and control hardware; for
example, while debugging you may want to have a test computer monitor-
ing the operations. In some secure applications (after deployment), you
may want to limit access to the DAQ system to a single computer.

The third and fourth Ethernet DIP switches allow an operator to
select one of four separate IP/Ethernet addresses. This allows control of
up to four separate Netburner modules in the same system. As noted in
Table 10-1, the four selectable Ethernet addresses are 192.168.2.70 through
192.168.2.73 (the requirements could be changed to support different IP
addresses, of course, but these were convenient addresses for the initial
DAQ system that was built).

10.6 Use Cases
Given the preceding user story, the next step is to build a set of use cases
that describe these operations. Remember, use cases are more than a few
UML diagrams—they also include a descriptive narrative (see “Use Case
Narratives” on page 80).

Actors There is a single actor in the following use cases, the System User.

Triggers In all of the following use cases, the trigger that activates
each use case is system boot. The system reads the DIP switch settings
at boot time and initializes based on those settings (see Figure 10-1).

Scenarios/Flow of Events These are the activities that occur for a
given use case.

Associated Requirements The Associated Requirements provide
cross-references to the DAQ System SRS. The requirements appear in

4. The Netburner runs a priority-based multitasking operating system called Micro-C/OS (or
µC/OS). Tasks are the equivalent of threads in other operating systems.

Requirements Documentation 215

the following sections (see “(Selected) DAQ Software Requirements
(from SRS)” on page 219). You must create the requirements before fill-
ing in this section; otherwise, you’d simply be guessing at the require-
ments you’ll need.

DAQ_UC_001
Enable/Disable

RS-232

DAQ_UC_002
Enable/Disable

USB

DAQ_UC_003
Enable/Disable

Ethernet

DAQ_UC_004
Enable/Disable

Test ModeDipSw 8

DipSw 7

System
user

DipSw 2

DipSw 1 «Include»

«Include»

«Include»

«Include»

«Include»

DipSws 3–6

DAQ_UC_005
Enable/Disable
Debug Mode

DAQ_UC_006
Read DIP
Switches

Figure 10-1: Read DIP switches use case

10.6.1 Enable/Disable Debug Mode

Goal Enabling and disabling debug output on DAQ system.

Precondition System has booted.

End condition Debug mode is active or inactive, as appropriate.

216 Chapter 10

10.6.1.1 Scenarios/Flow of Events

Enable/Disable Debug Mode

1. During system initialization, read DIP switches.

2. Save the value of DIP switch 8 (on = debug mode on, off = debug
mode off).

3. Debug mode is enabled if DIP switch 8 is on and DIP switch 2 (USB
mode) is off.

4. Start the maintPrintf task.

10.6.1.2 Associated Requirements

DAQ_SRS_721_001: PPDAQ Debug Mode Enabled

DAQ_SRS_721_002: PPDAQ Debug Mode Disabled

10.6.2 Enable/Disable Ethernet
Goal Enabling and disabling Ethernet command processing on
DAQ system.

Precondition System has booted.

End condition Ethernet communication is active or inactive, as appro-
priate. If active, Ethernet input processing tasks are running.

10.6.2.1 Scenarios/Flow of Events

Enable/Disable Ethernet

1. During system initialization, read DIP switches.

2. Use the value of DIP switch 3 to determine if Ethernet is enabled
(switch is on) or disabled (switch is off).

3. Save the value of DIP switch 4 to determine if the system supports one
connection (switch is off) or five concurrent connections (switch is on).

4. Use the values of DIP switches 5 and 6 to determine the IP address.

5. If Ethernet is enabled (DIP switch 3 is on), then:

5.1 Set the Ethernet address based on the value of DIP switches 5 and
6 as:

5.1.1 192.168.2.70

5.1.2 192.168.2.71

5.1.3 192.168.2.72

5.1.4 192.168.2.73

5.2 Start the ethernetListenTask task with priority ETHL_PRIO.

6. Else (if Ethernet is not enabled):

6.1 Do not start the ethernetListenTask.

Requirements Documentation 217

ethernetListenTask

1. Initialize an array of five descriptors with zero elements (empty descrip-
tor slots).

2. Wait for an external connection request on Ethernet socket 0x5050.

3. If a connection request is made:

3.1 Search for an empty slot (array element containing zero) in the
descriptor array.

3.2 If there are no slots available:

3.2.1 Refuse connection.

3.2.2 Go to step 2.

3.3 Else if a slot is available:

3.3.1 Accept connection and store its file descriptor in the avail-
able slot.

3.3.2 Create a new Ethernet command task associated with
the new connection; the priority of the new task shall be
ETH1_PRIO through ETH5_PRIO, selected by the index into the
descriptor slot array; note that SER_PRIO < ETHL_PRIO < ETH1_PRIO
to ETH5_PRIO < USB_PRIO (where smaller numbers mean the
task has a higher priority in the task queue).

3.3.3 Go to step 2.

4. Else if the listen connection is broken, terminate listen task.

10.6.2.2 Associated Requirements

DAQ_SRS_708_000: PPDAQ Ethernet IP Address

DAQ_SRS_709_000: PPDAQ Ethernet IP Address 192.168.2.70

DAQ_SRS_710_000: PPDAQ Ethernet IP Address 192.168.2.71

DAQ_SRS_711_000: PPDAQ Ethernet IP Address 192.168.2.72

DAQ_SRS_712_000: PPDAQ Ethernet IP Address 192.168.2.73

DAQ_SRS_716_000: PPDAQ Ethernet Enabled

DAQ_SRS_716.5_000: PDAQ Ethernet Disabled

DAQ_SRS_716_001: PPDAQ Ethernet Task

DAQ_SRS_716_002: PPDAQ Ethernet Task Priority

DAQ_SRS_717_000: PPDAQ Ethernet Port

DAQ_SRS_718_000: PPDAQ Ethernet Multiple Clients Enabled

DAQ_SRS_718_001: PPDAQ Ethernet Multiple Clients Disabled

DAQ_SRS_728_000: PPDAQ Command Source #3

DAQ_SRS_737_000: PPDAQ Maximum Ethernet Connections #1

DAQ_SRS_738_000: PPDAQ Maximum Ethernet Connections #2

DAQ_SRS_738_001: PPDAQ Ethernet Command Processing Tasks

DAQ_SRS_738_002: PPDAQ Ethernet Command Task Priorities

218 Chapter 10

10.6.3 Enable/Disable RS-232
(Similar to the previous use cases; deleted for brevity.)

10.6.4 Enable/Disable Test Mode
(Similar to the previous use cases; deleted for brevity.)

10.6.5 Enable/Disable USB
(Similar to the previous use cases; deleted for brevity.)

10.6.6 Read DIP Switches
(Similar to the previous use cases; deleted for brevity.)

10.7 Creating DAQ Software Requirements from the
Use Cases

Converting an informal use case to a formal requirement consists of
extracting the information from a use case, filling in missing details, and
structuring the result in the form of a requirement.

Consider the use case for “Enable/Disable Debug Mode.” You might be
tempted into thinking this use case generates a single requirement:

The PPDAQ software shall operate in a special debug mode
if the Netburner DIP switch 8 is set to the ON position and
USB (DIP switch 2) is not enabled; it shall operate in a
non-debug mode if switch 8 is in the OFF position or DIP
switch 2 is enabled.

The problem is that this is actually two separate requirements—not because
of the “and” and “or” components (you’ll see why in a moment), but
because of the semicolon separating the two clauses. The two separate
requirements are:

The PPDAQ software shall operate in a special debug mode
if the Netburner DIP switch 8 is set to the ON position and
USB (DIP switch 2) is not enabled.

and

The PPDAQ software shall operate in a non-debug mode if
switch 8 is in the OFF position or DIP switch 2 is enabled.

Note that the “and USB” and “or DIP switch 2” phrases do not imply
that these requirements must be split into two separate requirements each.
The clause “if the Netburner DIP switch 8 is set to the ON position and
USB (DIP switch 2) is not enabled” is actually a logical phrase that is part of
the trigger for this requirement. Technically, the requirement should prob-
ably be reworded.

Requirements Documentation 219

If the Netburner DIP switch 8 is set to the ON position and
USB (DIP switch 2) is not enabled, then the PPDAQ soft-
ware shall operate in a special debug mode.

This moves the trigger clause to the beginning of the requirement, as
suggested in section “A Suggested Requirements Format” on page 186.
Note, however, that this is simply a suggested format; it’s not unreasonable
to place the trigger condition after the actor (PPDAQ software), action
(operate), and object (debug mode).

The next section provides a listing of various requirements from the
DAQ software system. It gives an example of how the DAQ requirements
were generated from the use cases. You should be able to fill in the details
for the remaining requirements on your own.

10.8 (Selected) DAQ Software Requirements (from SRS)
The actual DAQ SRS (not the POOL_SRS presented in “A Sample Software
Requirements Specification” on page 203) contains hundreds of require-
ments; to keep the size of this chapter reasonable, I’ve selected the follow-
ing requirements as they are representative of those needed to support the
DIP switch use cases shown earlier. Note that the tags for these SRS require-
ments take the form [DAQ_SRS_xxx_yyy] because the actual DAQ system
requirements have an SyRS as well as an SRS.

N O T E The DAQ SRS document puts all requirements in section 3, as is the case for all
SRSes. That is why the following section numbers revert to 3 rather than continuing
the paragraph numbering of this chapter.

3.1.1.1 PPDAQ Standard Software Platform

3.1.1.15 PPDAQ Ethernet IP Address

[DAQ_SRS_708_000]
The PPDAQ software shall set the Ethernet IP address to a value in the
range 192.168.2.70–192.168.2.73 based on DIP switch 5–6 settings on
the Netburner.

3.1.1.16 PPDAQ Ethernet IP Address 192.168.2.70

[DAQ_SRS_709_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.70 if
the Netburner DIP switches 5–6 are set to (OFF, OFF).

3.1.1.17 PPDAQ Ethernet IP Address 192.168.2.71

[DAQ_SRS_710_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.71 if
the Netburner DIP switches 5–6 are set to (ON, OFF).

220 Chapter 10

3.1.1.18 PPDAQ Ethernet IP Address 192.168.2.72

[DAQ_SRS_711_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.72 if
the Netburner DIP switches 5–6 are set to (OFF, ON).

3.1.1.19 PPDAQ Ethernet IP Address 192.168.2.73

[DAQ_SRS_712_000]
The PPDAQ software shall set the Ethernet IP address to 192.168.2.73 if
the Netburner DIP switches 5–6 are set to (ON, ON).

3.1.1.20 PPDAQ Ethernet Enabled

[DAQ_SRS_716_000]
The PPDAQ software shall enable Ethernet operation if the Netburner
DIP switch 3 is in the ON position.

3.1.1.21 PPDAQ Ethernet Disabled

[DAQ_SRS_716.5_000]
The PPDAQ software shall disable Ethernet operation if the Netburner
DIP switch 3 is in the OFF position.

3.1.1.22 PPDAQ Ethernet Task

[DAQ_SRS_716_001]
The Ethernet listening task shall be started if Ethernet communications
are enabled.

3.1.1.23 PPDAQ Ethernet Task Priority

[DAQ_SRS_716_002]
The Ethernet listening task shall have a priority lower than the USB
task but higher than the serial task.

3.1.1.24 PPDAQ Ethernet Port

[DAQ_SRS_717_000]
The PPDAQ software shall communicate via Ethernet using socket port
0x5050 (decimal 20560, ASCII PP, for Plantation Productions).

3.1.1.25 PPDAQ Ethernet Multiple Clients Enabled

[DAQ_SRS_718_000]
The PPDAQ software shall allow up to five Ethernet clients if the
Netburner DIP switch 4 is set to the ON position.

Requirements Documentation 221

3.1.1.26 PPDAQ Ethernet Multiple Clients Disabled

[DAQ_SRS_718_001]
The PPDAQ software shall allow only a single Ethernet client if the
Netburner DIP switch 4 is set to the OFF position.

3.1.1.29 PPDAQ Unit Test Mode I/O

[DAQ_SRS_721_000]
The PPDAQ software shall utilize the UART0 serial port on the
Netburner MOD54415 MOD-70 evaluation board for unit test commu-
nication unless USB commands are enabled (USB commands share the
same serial port [UART0] as the test mode output).

3.1.1.30 PPDAQ Debug Mode Enabled

[DAQ_SRS_721_001]
The PPDAQ software shall operate in a special debug mode if the
Netburner DIP switch 8 is set to the ON position and USB (DIP
switch 2) is not enabled.

3.1.1.31 PPDAQ Debug Mode Disabled

[DAQ_SRS_721_002]
The PPDAQ software shall operate in the normal (nondebug) mode if
the Netburner DIP switch 8 is set to the OFF position.

3.1.1.38 PPDAQ Command Source #3

[DAQ_SRS_728_000]
The PPDAQ software shall accept commands from the Ethernet port on
the Netburner MOD54415 MOD-70 evaluation board if Ethernet com-
munications are enabled.

3.1.1.40 PPDAQ Maximum Ethernet Connections #1

[DAQ_SRS_737_000]
The PPDAQ software shall only recognize a single connection on the
Ethernet port if the Netburner DIP switch 4 is in the OFF position.

3.1.1.41 PPDAQ Maximum Ethernet Connections #2

[DAQ_SRS_738_000]
The PPDAQ software shall only recognize up to five connections on the
Ethernet port if the Netburner DIP switch 4 is in the ON position.

3.1.1.42 PPDAQ Ethernet Command Processing Tasks

[DAQ_SRS_738_001]
The PPDAQ software shall start a new process to handle command pro-
cessing for each connection.

222 Chapter 10

3.1.1.43 PPDAQ Ethernet Command Task Priorities

[DAQ_SRS_738_002]
The PPDAQ command processing tasks shall each have a different pri-
ority that is higher than the priority of the Ethernet listening task and
less than the priority of the USB command task.

10.9 Updating the Traceability Matrix with Requirement
Information

The SyRS and SRS requirements typically add four to six columns to
the RTM: Description, SyRS tag (if you have an SyRS), Allocations, SRS
tag, and Test/verification type. The Description column provides a brief
description of the requirement, such as PPDAQ Standard Software Platform
from requirement DAQ_SRS_700_000 in the previous section. (Note that
this does not refer to the POOL_SRS tag presented in “A Sample Software
Requirements Specification” on page 203.)

The SyRS and SRS tag columns contain the actual SyRS (if present)
and SRS tag identifiers. Generally, you would sort the rows in the RTM by
SyRS (primary key) and then SRS (secondary key) unless there are no SyRS
tags, in which case you’d simply sort the rows by the SRS tag.

The Allocations column specifies whether the requirement is hardware
(H), software (S), other (O), or a combination of these. Typically, only SyRS
requirements have hardware-only allocations; after all, SRS requirements
are software requirements. It is possible, however, for an SRS requirement
to have an HS allocation if it covers both software and hardware aspects of
the system. The other designation is a catch-all to cover requirements that
don’t clearly fit into a hardware or software category (this could describe a
manual process, for example).

Note that if you don’t have an SyRS, or all of your requirement alloca-
tions are software allocations, you can eliminate the Allocations column;
this can help reduce the size and complexity of the RTM.

The Verification type column in the RTM specifies how you will verify
(test) this requirement in the system. Possible entries are: by test (T); by
review (R); by inspection (I; the “by review” variant for hardware designs); by
design (D ; usually applies to hardware, not software); by analysis (A); other
(O); and no test, or no test possible (N).

Clearly, requirements that have a T verification method will have some
associated test to run to verify the requirement. This generally means that
you will have a corresponding test case for this requirement and a test pro-
cedure to execute it.

It may be difficult, impractical, or dangerous to test certain require-
ments.5 In these situations it may be much easier to carefully review the

5. For example, some requirements might state that it is preferable to damage the system
hardware rather than allow the system to enter a state that might cause bodily harm or death.
You would not want to test this by damaging the system.

Requirements Documentation 223

code to verify that it will behave properly. For such requirements, the verifi-
cation method would be R, by review.

The by analysis (A) verification method means that somewhere you are
offering a formal (mathematical) proof that the software meets the formal
requirement. This is a much more stringent process than by review and a
subject that is well beyond the scope of this book. Nevertheless, this type
of verification may be necessary for certain requirements whose failure
could lead to catastrophic events (such as death). Consider the very first
requirement from “(Selected) DAQ Software Requirements (from SRS)”
on page 219:

[DAQ_SRS_700_000]
The PPDAQ software shall run on a Netburner MOD54415 MOD-70
evaluation board connected to a DAQ_IF interface board.

It would be somewhat difficult to come up with an actual test that
proves this requirement is being met (other than installing the software on
a Netburner MOD54415 and verifying that it actually runs). On the other
hand, it’s nearly trivial to look at the source code (and the build files) and
verify that this code was written for the Netburner MOD54415. A test by review
is easily the most appropriate way to handle this particular requirement.

The other verification method is a catch-all category that implies you’re
going to provide the documentation to justify either the lack of a testing
method or the verification approach you plan to use.

The no test or no test possible verification requires you to justify why a test
is not needed. If you are specifying N to represent no test possible, you should
carefully consider whether the requirement is valid (is an actual require-
ment). Remember, if it can’t be tested, it isn’t a requirement.

These are the four column entries that [DAQ_SRS_700_000] would
add to the RTM.

Description SRS tag Allocation Verification

PPDAQ Standard
Software Platform

DAQ_SRS_700_000 HS R

Given the requirements in “(Selected) DAQ Software Requirements
(from SRS)” on page 219, we can divide the requirements into two groups:
those whose verification type should be by test and those whose verification
type should be by review (because an actual test for them might be difficult
to perform or awkward to create).

10.9.1 Requirements to Be Verified by Review
Table 10-2 shows a list of the requirements from “(Selected) DAQ Software
Requirements (from SRS)” on page 219 that should be verified by review
and should provide a justification for the choice that has been made.6

6. This is my opinion, so feel free to add or remove items from this list if your opinion differs.
Note that I will use this list when creating a Software Review List later in this book.

224 Chapter 10

Table 10-2: DAQ Software Requirement Justifications

Requirement Justification

DAQ_SRS_700_000 Although you could argue that running the software on a Netburner verifies
that it runs on a Netburner, reviewing the make/build files is an easier and
more practical way to verify this requirement.

DAQ_SRS_700_000.01 Although you could argue that running the software on a µC/OS verifies that
it runs under µC/OS, reviewing the make/build files is an easier and more
practical way to verify this requirement.

DAQ_SRS_702_001 Writing a test to show that a separate process is running would be difficult
without actually changing the code (i.e., to print some output to show this).
However, reviewing the code to see that it is starting a new task to handle
RS-232 communication isn’t that difficult.

DAQ_SRS_702_002 Writing a test to show that the RS-232 process is running at a particular prior-
ity level would require modifying the code; reviewing the code is easier.

DAQ_SRS_703_001 Making this one by review is arguable. You could argue that if the system
is accepting RS-232 commands, the task is running. However, this does not
prove that a separate task is running or not running (the main task could
be processing the commands). Hence, this should probably be a by review
verification.

DAQ_SRS_705_001 The same argument applies as for DAQ_SRS_702_001 (just applied to the
USB input task).

DAQ_SRS_705_002 Same justification as for DAQ_SRS_702_002.

DAQ_SRS_706_001 Same argument as for DAQ_SRS_705_001 (just the complement of that
requirement).

DAQ_SRS_716_001 Same argument as for DAQ_SRS_702_001 (just applied to the Ethernet
listen task).

DAQ_SRS_716_002 Same argument as for DAQ_SRS_702_002 (just applied to the Ethernet listen
task priority).

DAQ_SRS_719_000 Currently, unit test mode is undefined on the DAQ system so there is no way to
test that the system has entered this mode. Reviewing the code verifies that the
internal variable is properly set up (the only effect the DIP switch will have).

DAQ_SRS_720_000 See DAQ_SRS_719_000.

DAQ_SRS_723_000 Another arguable case. The fact that the system is reading the DIP switches (to
handle other tests) should be enough to show that the software is reading the
Netburner switches. However, this requirement is sufficiently unimportant that
the choice of review/test doesn’t really matter.

DAQ_SRS_723_000.01 See DAQ_SRS_723_000.

DAQ_SRS_723_000.02 See DAQ_SRS_723_000.

DAQ_SRS_725_000 Checking to see that the DAQ responds to a command is no big deal (easily
testable); however, this requirement states that the DAQ does not initiate com-
munication on its own (that is, it’s negatively stated, which, in general, is bad
in a requirement). Reviewing code is the only proper way to handle negative
requirements (which is why you want to avoid them).

DAQ_SRS_738_001 Similar justification to DAQ_SRS_702_001.

DAQ_SRS_738_002 Similar justification to DAQ_SRS_702_002.

Requirements Documentation 225

10.9.2 Requirements to Be Verified by Testing
All requirements in “(Selected) DAQ Software Requirements (from SRS)”
on page 219 that are not also listed in “Requirements to Be Verified by
Review” on page 223 will be verified using test cases and test procedures.

10.10 For More Information
IEEE. “IEEE Standard 830-1998: IEEE Recommended Practice for Software

Requirements Specifications.” October 20, 1998. https://doi.org/10.1109/
IEEESTD.1998.88286.

Leffingwell, Dean, and Don Widrig. Managing Software Requirements. Boston:
Addison-Wesley Professional, 2003.

Wiegers, Karl E. Software Requirements. Redmond, WA: Microsoft Press, 2009.

———. “Writing Quality Requirements.” Software Development 7, no. 5 (May
1999): 44–48.

The Software Design Description (SDD)
document provides low-level implementa-

tion details for the design of the software.
While it doesn’t necessarily dive down to the

level of actual code, it does provide the algorithms,
data structures, and low-level flow control for the
software implementation.

There are lots of different ideas about how to document software
design. This chapter follows the guidelines proposed by IEEE Standard
(Std) 1016-20091 and uses many of the concepts described in that standard.

IEEE Std 1016-2009 was written in an attempt to be language-independent.
However, the Unified Modeling Language covers almost all of the require-
ments of the standard, which is why Chapter 4 introduced UML and why
we’ll use it in this chapter. If you’re interested in the other software design

1. IEEE Std 1016 is a registered trademark of the IEEE. IEEE Std 1016-2009 is a revision of
IEEE Std 1016-1998 that incorporates UML as the software modeling language.

11
S O F T W A R E D E S I G N D E S C R I P T I O N

D O C U M E N T A T I O N

228 Chapter 11

modeling languages available, feel free to check out their descriptions in
the IEEE Std 1016-2009 document.

11.1 IEEE Std 1016-1998 vs. IEEE Std 1016-2009
Finalized in 1998, the original IEEE SDD guidelines were based on struc-
tured programming software engineering concepts prevalent in the 1980s
and 1990s. The recommendations were released just as the object-oriented
programming revolution was under way and, as a result, immediately became
outdated. It took 10 years to update, but the revision, Std 1016-2009, covered
object-oriented analysis and design. The new guidelines maintained features
of the 1016-1998 standard but in a somewhat deprecated form. Note, however,
that some of them are still useful in modern design, so there’s no reason to
ignore the old standard if those features are appropriate in your context.

11.2 IEEE 1016-2009 Conceptual Model
The SDD does not live in a vacuum. The material in an SDD flows naturally
from the Software Requirements Specification (SRS), and the Reverse
Traceability Matrix (RTM) binds the two documents. Figure 11-1 shows
this relationship.

SRS SDD
traceability

matrix

Figure 11-1: SRS relationship to SDD

11.2.1 Design Concerns and Design Stakeholders
Each requirement in the SRS ultimately relates to a design concern in the
SDD (see Figure 11-2). A design concern is anything that is of interest to a
stakeholder in the design of the system. A stakeholder is anyone who has a
say in the system’s design. A requirement refers to any individual requirement
from the SRS, as explained in Chapter 10.

Design concern

Requirement

Stakeholder

raises 0..*

has 1..*

is important to 1..*

Figure 11-2: Mapping requirements
to design concerns

Software Design Description Documentation 229

Figure 11-2 maps requirements to design concerns as follows:

0..* Each requirement has zero or more associated design concerns.

1..* A single design concern is important to one or more design
stakeholders.

1...* Each stakeholder has at least one (and possibly more)
design concerns.

The IEEE conceptual model states that requirements raise zero or more
design concerns. But in fact, requirements and design concerns should have
a one-to-one relationship: for each design concern there is exactly one associ-
ated requirement. If a requirement doesn’t raise any design concerns—that
is, the requirement has no impact on the software design—then perhaps that
requirement isn’t necessary (and, therefore, is not a valid requirement). If a
requirement maps to multiple design concerns, this probably suggests that
you have a compound requirement that should be broken down into atomic
requirements in your SRS (see “Atomic” on page 190).

Stakeholders and design concerns should have a many-to-many rela-
tionship. One stakeholder can (and usually does) have many design con-
cerns. Likewise, a single design concern can be (and usually is) shared by
many different stakeholders.

11.2.2 Design Viewpoints and Design Elements
Ultimately, the design concern (or just the requirement) is the interface
point to the SDD. A design viewpoint logically groups a set of one or more
design concerns. For example, a logical viewpoint (see “Logical Viewpoint” on
page 235) would describe the static data structures in the design, so all the
requirements associated with classes and data objects would be associated
with that viewpoint. An algorithmic viewpoint (see “Algorithmic Viewpoint”
on page 239) would describe certain algorithms that the design uses, so
any requirements that specify certain algorithms to use (which, admittedly,
should be rare) would be associated with that viewpoint.

IEEE Std 1016-2009 calls for specifying each design viewpoint by:

•	 A viewpoint name

•	 Design concerns associated with the viewpoint

•	 A list of design elements (types of design entities, attributes, and con-
straints) that the viewpoint uses

•	 A discussion of the analysis someone would use to construct a design
view based on the viewpoint

•	 Criteria for interpreting and evaluating the design

•	 Author’s name or a reference to the source material used for the viewpoint

230 Chapter 11

Figure 11-3 shows the relationship between design concerns and design
viewpoints. The multiplicity item 1..* indicates that a single viewpoint
frames (or groups) one or more requirements.

Design
concern

Design
viewpoint

frames 1..*

Figure 11-3: Mapping design concerns to design viewpoints

Design concerns and design viewpoints have a fundamental one-to-
many relationship that provides traceability between the SDD and SRS.
In the RTM, each requirement (design concern) will link to exactly one
design viewpoint. Therefore, you would normally attach SDD tags to design
viewpoints (or, as you’ll see in a moment, you could also attach the tags
to design views, as there is a one-to-one relationship between design views
and design viewpoints).

Design viewpoints define a set of design elements (see Figure 11-4), exam-
ples of which include class diagrams, sequence diagrams, state diagrams,
packages, use cases, and activity diagrams.

Design
viewpoint

Design
element

defines 1..*

Figure 11-4: Mapping design viewpoints to design elements

A design element is anything that you would put in a design view,
including design entities, attributes, relationships, and constraints:

•	 Design entities are objects that describe the major components of a
design. Examples include systems, subsystems, libraries, frameworks,
patterns, templates, components, classes, structures, types, data stores,
modules, program units, programs, threads, and processes. IEEE Std
1016-2009 requires that each design entity in an SDD have a name and
a purpose.

•	 Design elements have associated attributes: a name, a type, a purpose,
and an author. When listing the design elements in your SDD view-
point, you must provide these attributes.

•	 Design relationships have an associated name and type. IEEE Std
1016-2009 does not predefine any relationships; however, UML 2.0
defines several—such as association, aggregation, dependency, and
generalization—that you would typically use in your SDDs. As per the
IEEE requirements, you must describe all relationships you use in
the design viewpoint specification.

•	 A design constraint is an element (the source element) that applies
restrictions or rules to some other design element (the target element)
of a design view. The IEEE requires that you list all design constraints
by name and type (and source/target elements) in the viewpoint that
defines them.

Software Design Description Documentation 231

You define design elements using a formal design language (see
Figure 11-5). As noted earlier, IEEE Std 1016-2009 tries to be language-
agnostic, but the truth is that it was designed specifically around UML.
Other (formal) design languages the IEEE suggests include IDEFO,
IDEF1X, and Vienna Definition Method. However, for this book, you’re
probably better off using UML.

Design
viewpoint

Design
element

Design
language

defines 1..*

Figure 11-5: Relationship between design viewpoints, elements,
and language

IEEE Std 1016-2009 defines a common set of design viewpoints. As the
standard is a set of recommended practices, not absolute requirements, the
list of viewpoints that follows here is neither exhaustive nor required. That is,
in your SDD you can define and add further viewpoints as you see fit, and you
don’t need to include all of them (indeed, some of them are deprecated and
included only for compatibility with the older IEEE Std 1016-1998).

11.2.2.1 Context Viewpoint

The design elements for which the context viewpoint collects requirements
are actors (users, external systems, stakeholders), services the system pro-
vides, and their interactions (such as input and output). The context view-
point also manages various design constraints, such as quality of service,
reliability, and performance. In a sense, you begin this work while develop-
ing the requirements for the SRS (for example, while creating use cases to
drive the requirements) and finish the work while developing the SDD.

The main purpose of the context viewpoint is to set the system bound-
ary and define those considerations that are internal to the system and
those that are external. This limits the scope of the design so that the
designer and author(s) of the SDD can concentrate on the system design
and not waste time considering external factors.

You typically represent context viewpoints in UML use case diagrams
(see “Use Cases” on page 214). For a good example, refer back to Figure 10-1,
which lists the initializations the user can set via DIP switches on the data
acquisition (DAQ) system. As another example, Figure 11-6 shows an
abbreviated set of use cases for DAQ commands between a host system
(typically a PC) and the DAQ CPU interface board.

232 Chapter 11

Host

DAQ_UC_016
Timestamp

DAQ_UC_017
Reset

DAQ_UC_021
PPDIO Cmds

DAQ_UC_018
Version

DAQ_UC_019
Echo

DAQ_UC_020
Help

DAQ_UC_022
PPDO Cmds

DAQ_UC_024
PPDIO::Polarity

DAQ_UC_025
PPDIO::Pullup

DAQ_UC_026
PPDIO::Boards

DAQ_UC_027
PPDIO::Config

DAQ_UC_028
PPDIO::Filter

DAQ_UC_029
PPDIO::Debounce

DAQ_UC_030
PPDIO::DIN

DAQ_UC_033
PPDO::Boards

DAQ_UC_034
PPDO::DOUT

Figure 11-6: DAQ commands use case

Software Design Description Documentation 233

This figure shows the command interface between the external system
(the host actor) and the DAQ system. Note that each use case—in this
example, there are 16—corresponds to requirements in the DAQ SRS.2

11.2.2.2 Composition Viewpoint

The composition viewpoint lists the major modules/components that make
up the system. One of the main goals of this viewpoint is to foster code
reuse by identifying, in the design, items that could come from existing
libraries, or proprietary designs that could be reused in the system.

Design entities included in the composition viewpoint are—to name a
few—composition (obviously), include, use, and generalization. The com-
position viewpoint states relationships between design entities using realiza-
tion, dependency, aggregation, composition, and generalization as well as
any other relationships between objects.

Note that this is an older viewpoint carried over from IEEE Std 1016-
1998.3 For the most part it is superseded by the structure viewpoint (see
“Structure Viewpoint” on page 237) and, to a lesser extent, the logical
viewpoint (see the next section). The composition viewpoint hails from the
days when programs were composed largely of procedures and functions
organized into libraries, long before the days of object-oriented analysis
and design.

Modern designs, if they contain a composition viewpoint at all, largely
relegate it to describing major components of a system, as recommended by
IEEE Std 1016-2009. Figure 11-7 provides an example of such a composition
viewpoint for the DAQ system, using watered-down component diagrams. In
my opinion, component diagrams are not a good fit for composition view-
point diagrams—they are too low-level for the task. Component diagrams
typically include interfaces (required and provided) that don’t make sense
at the composition viewpoint level. However, apparently due to the similarity
of the words composition and component, it’s very common to use watered-down
UML component diagrams to denote the composition viewpoint.

2. There are actually 29 use cases in the full use case diagram. See http://www.plantation
-productions.com/Electronics/DAQ/DAQ.html.

3. The IEEE Std 1016-2009 includes many older viewpoints carried over from the 1016-1998
standard. You probably shouldn’t use these older viewpoints in new designs. They are included
only so that older SDD documents can still claim to be compliant with IEEE Std 1016.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

234 Chapter 11

Command
processing

Watchdog
maintenance

USB/Serial
communications

Analog
input

Digital
input

Digital
output

Analog
output

Ethernet
communications

Note: Watchdog maintenance is
associated with command processing
while the other components are part of
(aggregates of) command processing.

Figure 11-7: Composition viewpoint diagram

Some engineers use a combination of component and deployment dia-
grams (see “Deployment Diagrams” on page 159) to illustrate a composi-
tion viewpoint, as shown in Figure 11-8.

Command
processing

Watchdog
maintenance

USB/Serial
communications

Analog
input

Digital
input

Digital
output

Analog
output

Ethernet
communications

Figure 11-8: Deployment/component diagram

Software Design Description Documentation 235

Note that the nodes in this diagram still include the component symbol
to indicate that they are components forming a larger system, rather than
hardware items. This is a nonstandard diagramming method for UML, but
I’ve seen it in several example SDDs so I’ve included it here.

11.2.2.3 Logical Viewpoint

The logical viewpoint describes preexisting and new types used in the
design, along with their class, interface/protocol, and structural definitions.
The logical viewpoint also describes the objects (instances of the types) the
design uses.

The logical viewpoint deals with classes, interfaces, data types, objects,
attributes, methods, functions, procedures (subroutines), templates, macros,
and namespaces. It also assigns attributes—such as names, visibility type, and
values—and attaches appropriate constraints to these design entities.

Typically, you use UML class diagrams to implement a logical view-
point. Figure 11-9 shows a class diagram for an adcClass_t class that might
be appropriate for the analog input module in Figure 11-8. In addition to
this basic class diagram, you’d probably want to include a data dictionary, or
text describing the purpose of all the attributes for this class.

 adc_Class_t

-numBoards:int
+chPerBoard_c:int=4

+init(boards:int)
+readADC(ch:int, brd:int):int
+setGain(ch:int, brd:int, gain:int)

Figure 11-9: adc class diagram

In addition to the bare class diagrams, a logical viewpoint should also
include relationships between classes (such as dependency, association,
aggregation, composition, and inheritance). See “UML Class Relationships”
on page 114 for more details on these class relationships and how you can
diagram them.

11.2.2.4 Dependency Viewpoint

Like the composition viewpoint, the dependency viewpoint is a deprecated
viewpoint maintained for compatibility with IEEE Std 1016-1998; you gener-
ally wouldn’t use this viewpoint in modern designs, as other options (such
as the logical and resource viewpoints) can map dependencies in a more
logical manner. However, there’s nothing stopping you from using depen-
dency viewpoints where appropriate, and it’s also likely that you’ll encoun-
ter them in SDDs, so you should know about them.

In an SDD, the dependency viewpoint illustrates design entity relation-
ships and interconnections, including shared information, interface param-
eterization, and order of execution using terms such as uses, provides, and

236 Chapter 11

requires. Dependency viewpoints apply to subsystems, components, modules,
and resources. IEEE Std 1016-2009 recommends using UML component
diagrams and package diagrams to depict this viewpoint. Using a combined
deployment/component diagram (as in Figure 11-8) is probably a good
solution if you want to go the component diagram route (say, for dependen-
cies between components or subsystems). Using package diagrams is a good
idea if you are describing the dependency relationship between packages,
as shown in Figure 11-10.

+display()

+getInput

UI

+phSensor

+saltSensor

sensors

+getTime()

+setTime

clock

«depends on»«depends on»

Figure 11-10: Package dependencies

11.2.2.5 Information/Database Viewpoint

The information/database viewpoint describes persistent data usage in
your design. It is similar to the logical viewpoint in that you use class dia-
grams to show data structure, content, and metadata definitions. The
information viewpoint would also describe data access schemes, data man-
agement strategies, and data storage mechanisms.

This is also a deprecated item included to maintain compatibility with
IEEE Std 1016-1998. In modern designs, you would likely use the logical
viewpoint or possibly the resource viewpoint instead.

11.2.2.6 Patterns Use Viewpoint

The patterns use viewpoint maps out the design patterns—and the reus-
able components implemented from them—that are used in the project.
For more information about design patterns, see “For More Information”
on page 260.

Patterns use viewpoint diagrams use a combination of UML composite
structures, class diagrams, and package diagrams along with association,
collaboration use, and connectors to indicate objects generated from the
patterns. This viewpoint is loosely designed, so you have a lot of latitude in
its creation should you choose to use it in your SDD.

Software Design Description Documentation 237

11.2.2.7 Interface Viewpoint

The interface viewpoint describes the services (for example, APIs) provided
by the design. Specifically, it includes a description of interfaces for which
there are no requirements in the SRS, including interfaces to third-party
libraries, other parts of the project, or other projects within the same orga-
nization. It is a road map that other programmers can use when interacting
with the portion of the design covered by the interface viewpoint.

IEEE Std 1016-2009 recommends using UML component diagrams for
the interface viewpoint. Figure 11-11 shows two components (possibly in the
DAQ system) dealing with digital I/O and relay output (a specific form of
digital output).

«component»
Digital I/O

«component»

Relay output

Direction

Read

Write Init/Reset

Init/ResetWrite

Figure 11-11: Interface viewpoint example

In addition to the component diagram, the interface viewpoint should
include a description of how the system interacts with these interfaces,
including data types, function calls, latencies, constraints on inputs, the
range of outputs, and other important issues. For example, when discussing
the Direction interface, you might include information such as:

Direction
Direction(ddir:int, port:int)

A call to Direction sets the specified digital I/O port (port = 0..95)
to either an input port (if ddir = 0) or an output port (if ddir = 1).

For Read, you might use a description such as:

Read
Read(port:int):int

A call to Read returns the current value (0 or 1) of the specified
digital input port (port = 0..95).

Again, the interface viewpoint is included in IEEE Std 1016-2009 only for
compatibility with the older IEEE Std 1016-1998. In modern SDDs, consider
placing interface items in the context and structure viewpoints instead.

11.2.2.8 Structure Viewpoint

The structure viewpoint describes the internal organization and construc-
tion of the objects in the design. It is the more modern version of the com-
position viewpoint, which describes how the design is (recursively) broken

238 Chapter 11

down into parts. You would use the structure viewpoint to break down
larger objects into their smaller pieces for the purpose of determining how
to reuse those smaller components throughout the design.

The diagramming methods typically used for the structure viewpoint
are UML composite structure diagrams, UML package diagrams, and UML
class diagrams. These diagrams are illustrated for the swimming pool mon-
itor (SPM) in Figures 11-12, 11-13, and 11-14, respectively.

Swimming pool monitor

userInterface

-readKpd
-getPoolLvl
-pumpCtrl
-getPoolHiLo

kbdScanner

+readButtons

analogInput

+readPoolLvl

digitalOutput

+writeRelay

digitalInput

+realPoolLvl(6)

Figure 11-12: SPM composite structure diagram

SPM

userInterface digital_IO

realTimeClk

I2C_Library

interrupt_handlertemperature_conv

display_driver

analog_IO

Figure 11-13: SPM package diagram

Swimming pool monitor

-curPoolLevel:int
-poolLow:boolean
-poolHi:boolean
-curTime:dateTime
-fillCheckTime:dateTime
-maxFillTime:dateTime
-curFillTime:dateTime
-doingManualFill:boolean

-readKpd():char
-getPoolLvl():int
-pumpCtrl(onOff:boolean)
-getPoolHiLo(sensor:int):boolean

Figure 11-14: SPM class diagram

Software Design Description Documentation 239

These examples illustrate that you’ll typically have more than one dia-
gram in a given viewpoint. Also note that a typical structure viewpoint will
have multiple composite structure diagrams, (possibly) multiple package
diagrams, and (certainly) multiple class diagrams.

11.2.2.9 Interaction Viewpoint

The interaction viewpoint is the main place where you define the activities
that take place in the software. This is where you’ll place most of your inter-
action diagrams—activity diagrams, sequence diagrams, collaboration dia-
grams, and the like—with the possible exception of state diagrams, because
they normally appear in the state dynamics viewpoint (covered in the next
section). In addition to interaction diagrams, you might also use composite
structure and package diagrams in the interaction viewpoint.

A full example of the interaction viewpoint appears in “A Sample SDD”
on page 247.

11.2.2.10 State Dynamics Viewpoint

The state dynamics viewpoint describes the internal operating state of a
software system. For this viewpoint, you would typically use UML statechart
diagrams (see “Statechart Diagrams” on page 163).

11.2.2.11 Algorithmic Viewpoint

The algorithmic viewpoint is another older viewpoint carried over from
IEEE 1016-1998. Its purpose was to describe the algorithms (typically
through flowcharts, Warnier/Orr diagrams, pseudocode, and the like)
used in the system. This viewpoint largely has been replaced by the interac-
tion viewpoint in the Std 1016-2009 document.

11.2.2.12 Resource Viewpoint

The resource viewpoint describes how the design uses various system
resources. This includes CPU usage (including multicore usage), memory
usage, storage, peripheral usage, shared libraries, and other security, per-
formance, and cost issues associated with the design. Typically, resources
are entities that are external to the design.

This is another Std 1016-1998 item included for compatibility reasons
in Std 1016-2009. In new designs, you would typically use the context view-
point to describe resource usage.

11.2.3 Design Views, Overlays, and Rationales
IEEE Std 1016-2009 states that an SDD is organized into one or more
design views. Therefore, the design view is the fundamental unit of organi-
zation in an SDD. Design views provide (possibly) multiple perspectives on
the system design to help clarify to stakeholders, designers, and program-
mers how the design fulfills the requirements as specified by an associated
design viewpoint.

240 Chapter 11

An SDD is complete when it covers every requirement (design concern)
in at least one design view, covers all the entities and relationships in the
associated design viewpoint, and lives within all the constraints applied to
the design. In plain terms, this means that you’ve matched all the require-
ments to appropriate diagrams and textual discussions as outlined in
“Design Viewpoints and Design Elements” on page 229.

An SDD is consistent if there is no conflict between any of the elements
in the design views. For example, if a class diagram states that an attribute
(field) named hasValue is a boolean, but an activity diagram treats that field
as a string, you have an inconsistency.

11.2.3.1 Design Views vs. Design Viewpoints

There is a one-to-one relationship between design view and design view-
points, as shown in Figure 11-15. The association link states that a design
view conforms to exactly one design viewpoint and a design viewpoint is
governed by exactly one design view.

Design viewpoint
conforms to 1

governs 1
Design view

Figure 11-15: Design views and design viewpoints

So, what’s the difference between a design view and a design viewpoint?
A design view is the actual information (graphic and textual) that you would
normally consider to be the “design.” A design viewpoint is the point of
view from which you create the design. In the IEEE recommendations, the
design viewpoints would be something like the context viewpoint or interac-
tion viewpoint. These are not the actual design views, but rather the format
used to present the views. In terms of the organization of your SDD, the
view/viewpoint section of the table of contents might look something like
the following:4

1 Viewpoint #1

1.1 Viewpoint #1 Specification (see “Design Viewpoints and Design
Elements” on page 229)

1.2 View #1

2 Viewpoint #2

2.1 Viewpoint #2 Specification

2.2 View #2

4. In almost every sample SDD I’ve found on the internet, the authors combine design view-
points and design views into the same sections. When they differentiate them, the Design
Views section is a brief introduction and the actual views are listed under the Viewpoint sec-
tions (which seems backward to me, but the IEEE Std 1016-2009 document is not very clear
on this matter).

Software Design Description Documentation 241

3 Viewpoint #3

3.1 Viewpoint #3 Specification

3.2 View #3

4 Etc.

The reason for organizing the views by viewpoints is simple: viewpoints
represent the perspectives of different stakeholders, so this organization
allows stakeholders to quickly locate the sections of the SDD of interest to
them instead of having to read the whole document.

Note that each view in this outline does not necessarily correspond
to a single diagram or textual description. A single view could consist of
many separate UML diagrams and intervening textual descriptions. For
example, in a logical viewpoint you’ll probably have many different class
diagrams (not just one) if for no other reason than that it’s difficult to com-
bine multiple classes into a single diagram. Even if you could, you might
want to logically organize your class diagrams to make them easier to read.
Furthermore, in addition to the class diagrams themselves, you’ll need to
provide some text describing the members (attributes) of those classes.
Rather than having a huge class diagram (perhaps consuming dozens of
pages) followed by a very long textual description (spanning additional doz-
ens of pages), it’s probably better to put a few class diagrams in one figure,
immediately follow them with the textual information about the attributes,
and then repeat this for the remaining classes you need to document.

11.2.3.2 Design Overlays

A design overlay is an “escape clause” for a view. Design views conform to
design overlays or, conversely, design overlays govern design views, as shown
in Figure 11-16. So, if you’ve created a logical viewpoint, for example, and
you want to incorporate some interaction diagrams in that viewpoint for
clarification, you would use a design overlay.

A design overlay modifies the view/viewpoint organization like so:

1 Viewpoint #1

1.1 Viewpoint #1 Specification

1.2 View #1

1.3 Overlay #1

1.4 Overlay #2

1.5 Etc.

2 Etc.

242 Chapter 11

has 1..* Design
overlay

Design
view

Design
rationale

Figure 11-16: Design view/overlay/rationale relationship

Design overlays must be identified as such (to avoid confusion with
the associated viewpoint), uniquely named, and associated with only a
single viewpoint.

One benefit of a design overlay is that it lets you mix and match design
languages or extend an existing design language when it isn’t expressive
enough to satisfy your needs. Design overlays also allow you to extend an
existing view without having to create a whole new viewpoint (which can
be a lot of extra work).

11.2.3.3 Design Rationale

The design rationale explains the purpose behind the design and justifies
the design to other viewers. Generally, a design rationale consists of com-
ments and annotations throughout the design. It may address (but certainly
isn’t limited to) potential concerns about the design, different options
and tradeoffs considered during the design, arguments and justifications
for why certain decisions were made, and even changes made during the
prototyping or development phases (because the original design did not
pan out). Figure 11-16 shows the relationship of design rationales to design
views (the aggregation symbol implies that the design rationale comments
are included, or are a part of, the design view).

11.2.4 The IEEE Std 1016-2009 Conceptual Model
Figures 11-17 and 11-18 provide conceptual model diagrams for the SDD
and design elements, according to IEEE Std 1016-2009.5

5. With a few changes for clarity.

Software Design Description Documentation 243

governs 1

has 1..*

has 1..*

has 1..*

has 1..*important to 1..*

conforms to 1

1

raises 0..

Design viewDesign
viewpoint

Design
element

Design
language

Design
overlay

Design
rationale

Diagram
type

Design
concern

Software Design
Description

Requirement

Stakeholder

1 1

1

1

defines 1..*

Figure 11-17: SDD conceptual model

refined into 1..*

names characteristics
of 1..*Design

entity

Design
element

Design
relationship

Design
constraint

Design
concern

Design
attribute

has roles in 0..*

Figure 11-18: SDD design element conceptual model

244 Chapter 11

11.3 SDD Required Contents
An SDD must have the following contents (according to IEEE Std 1016-2009):

•	 An SDD identification

•	 A list of the design stakeholders

•	 Design concerns (developed from the product requirements)

•	 A set of one or more design viewpoints (note that there’s exactly one
design viewpoint for each design view in an SDD)

•	 A set of one or more design views (roughly corresponding to the differ-
ent types of UML diagrams, though a design viewpoint is not necessar-
ily tied to a particular UML diagram type)

•	 Any needed design overlays

•	 Any necessary design rationales (IEEE requires at least a purpose)

11.3.1 SDD Identification
At the very least, an SDD should include the following identification infor-
mation (not necessarily in this order):

•	 Creation date/date of issue

•	 Current status

•	 Purpose/scope

•	 Issuing organization

•	 Authors (including copyright information)

•	 References

•	 Context

•	 A description of the design languages used for design viewpoints

•	 Body

•	 Summary

•	 Glossary

•	 Change history

Most of this information is boilerplate (except for dates, you typically
copy this information from an organization’s generic SDD template).
Obviously, some of this information changes from one SDD to another
(like dates, authors, and change history), but for the most part very little
intellectual activity is involved in the SDD identification. It exists primarily
so that the SDD can stand as an independent document.

11.3.2 Design Stakeholders and Their Design Concerns
The SDD must list all the individuals who contributed requirements/design
concerns to the project. This content is critical: if there is ever a question

Software Design Description Documentation 245

about the design rationale that is not addressed in the SDD, a reader should
be able to determine which stakeholder to contact with questions about the
design concerns.

11.3.3 Design Views, Viewpoints, Overlays, and Rationales
The design views, viewpoints, overlays, and rationales form the main body
of the SDD.

11.4 SDD Traceability and Tags
We haven’t yet discussed how to trace design elements in an SDD back to
the SRS and other system documents via the RTM (see “Traceability” on
page 171). As noted in Chapter 9, you use tags to trace elements of the
design throughout the documentation. For SDDs, you use tags of the form
proj_SDD_xxx where proj is some project-specific name or mnemonic and
xxx is a numeric (possibly decimal) value (see “SDD Tags” on page 176).
All you have to do, then, is ensure you have unique SDD tags (generally
by verifying that xxx is unique among all the SDD tags) and define where
exactly to attach the SDD tags.

Technically, the requirements from the SRS map directly to the design
concerns (one-to-one usually), which might tempt you to think that you
should attach SDD tags to the design concerns. However, as the design
views form the main body of the SDD and design concerns map to them
in a many-to-one fashion (through the design viewpoints, which have a
one-to-one relationship to design views), it’s best to attach SDD tags to the
design views or viewpoints. It will make your life a whole lot easier when
you’re creating the RTM if the mapping from the requirements to the
design elements is either one-to-many or many-to-one (in particular, you
want to avoid many-to-many).

In practice, a given design view can be broken down into multiple
images or descriptions. If you are careful to only ever connect a design con-
cern to one of these images or descriptions, you can assign SDD tags to the
individual components of a design view. However, you must exercise caution
when doing this, because if a single design concern maps to a couple of dif-
ferent components in a single design view, you can wind up with a many-to-
many relationship.6

11.5 A Suggested SDD Outline
IEEE Std 1016-2009, Annex C, provides one suggested outline to organize
and format an SDD that conforms to the required contents (see “SDD

6. Note that a many-to-many relationship between design concerns and components in a
design view isn’t invalid, even if you attach tags to all of the components. However, the RTM
can become unwieldy when this happens and, seeing as the RTM is messy enough as it is, you
don’t want to make it worse.

246 Chapter 11

Required Contents” on page 244). Note that this outline is by no means a
requirement; you can organize your SDD however you like and it will still
be valid as long as it contains those required contents. The following is a
slightly modified variant of the IEEE’s suggestion:7

1 Frontispiece

1.1 Table of Contents

1.2 Date of Issue and Status

1.3 Issuing Organization

1.4 Authorship

1.5 Change History

2 Introduction

2.1 Purpose

2.2 Scope

2.3 Intended Audience

2.4 Context

2.5 Overview/Summary

3 Definitions, Acronyms, and Abbreviations

4 References

5 Glossary

6 Body

6.1 Identified Stakeholders and Design Concerns

6.2 Design Viewpoint 1

6.2.1 Design View 1

6.2.2 (Optional) Design Overlays 1

6.2.3 (Optional) Design Rationales 1

6.3 Design Viewpoint 2

6.3.1 Design View 2

6.3.2 (Optional) Design Overlays 2

6.3.3 (Optional) Design Rationales 2

6.4 Design Viewpoint n

6.4.1 Design View n

6.4.2 (Optional) Design Overlays n

6.4.3 (Optional) Design Rationales n

7 (Optional) Index

7. These modifications are for clarity and consistency with the SRS guidelines
(see “The System Requirements Specification Document” on page 193).

Software Design Description Documentation 247

11.6 A Sample SDD
This section presents a complete (though highly simplified, for editorial
reasons) SDD example. This SDD describes the design for the sample use
case and requirements documentation appearing in the previous chapter
(see “Use Cases” on page 214). Specifically, this SDD covers the design of
the Plantation Productions digital data acquisition and control (DAQ) sys-
tem components that process the DIP switches upon system initialization.

1 Plantation Productions DAQ DIP Switch Control

1.1 Table of Contents
[Omitted for editorial reasons]

1.2 Date of Issue and Status
First created on Mar 18, 2018

Current status: complete

1.3 Issuing Organization
Plantation Productions, Inc.

1.4 Authorship
Randall L. Hyde

Copyright 2019, Plantation Productions, Inc.

1.5 Change History
Mar 18, 2019: Initial SDD created.

2 Introduction

2.1 Purpose
The DAQ system from Plantation Productions, Inc., is a digital
data acquisition and control system intended to provide analog
and digital I/O for industrial and scientific systems.

This Software Design Description (SDD) describes the DIP switch
initialization component of the DAQ system. The intent is that
a developer wishing to implement the functionality for the DIP
switch control from the Software Requirement Specifications
(SRS) can use this document to achieve that purpose.

2.2 Scope
This document describes only the DIP switch design in the DAQ
system (for space/editorial reasons). For the full SDD, please see
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html.

2.3 Intended Audience
The intended audience expected for an SDD:

This document is intended for use by software developers who will
implement this design, by design stakeholders who wish to review

248 Chapter 11

the design prior to its implementation, and by the authors of the
Software Test Cases (STC) and Software Test Procedures (STD)
documents.

The true intended audience for this SDD:

This document is intended for readers of Write Great Code,
Volume 3, as a means for providing a sample SDD.

2.4 Context
The Plantation Productions DAQ system fulfilled a need for a
well-documented digital data acquisition and control system that
engineers could design into safety-critical systems such as nuclear
research reactors. Although there are many commercial off-
the-shelf (COTS) systems that could be used, they suffer from a
couple of major drawbacks including: they are usually proprietary
(difficult to modify or repair after purchase), they are often obso-
lete within 5 to 10 years with no way to repair or replace them,
and they rarely have full support documentation (for example,
SRS, SDD, STC, and STP) that an engineer can use to validate
and verify the system.

The DAQ system overcomes this problem by providing an open
hardware and open source set of designs with full design docu-
mentation that is validated and verified for safety systems.

Although originally designed for a nuclear research reactor, the
DAQ system is useful in any place where you need an Ethernet-
based control system supporting digital (TTL-level) I/O, optically
isolated digital inputs, mechanical or solid-state relay digital out-
puts (isolated and conditioned), analog inputs (for example, ±10v
and 4–20mA), and (conditioned) analog outputs (±10v).

2.5 Overview/Summary
The remainder of this documentation is organized as follows.

Section 3 covers the software design, including:

Section 3.1 Stakeholders and Design Concerns

Section 3.2 Context Viewpoint and Overall Architecture

Section 3.3 Logical Viewpoint and Data Dictionary

Section 3.4 Interaction Viewpoint and Control Flow

Section 4 provides an index.8

8. The index is actually empty for editorial/space reasons. It is a placeholder in this sample to
show that you should provide an index in your SDD.

Software Design Description Documentation 249

3 Definitions, Acronyms, and Abbreviations

Term Definition

DAQ Data acquisition system

SBC Single-board computer

Software Design Description
(SDD)

Documentation of the design of the software system
(IEEE Std 1016-2009)—that is, this document.

Software Requirements
Specification (SRS)

Documentation of the essential requirements (func-
tions, performance, design constraints, and attributes)
of the software and its external interfaces (IEEE Std
610.12-1990).

System Requirements
Specification (SyRS)

A structured collection of information that embodies
the requirements of the system (IEEE Std 1233-1998).
A specification that documents the requirements to
establish a design basis and the conceptual design for
a system or subsystem.

4 References

Reference Discussion

IEEE Std 830-1998 SRS documentation standard

IEEE Std 829-2008 STP documentation standard

IEEE Std 1012-1998 Software verification and validation standard

IEEE Std 1016-2009 SDD documentation standard

IEEE Std 1233-1998 SyRS documentation standard

5 Glossary
DIP: Dual inline package

6 Software Design

6.1 Stakeholders and Design Concerns
The stakeholders for the DAQ DIP switch design are Plantation
Productions, Inc., and Randall Hyde. One main design concern is
to create a simplified SDD that fits within the editorial constraints
of Write Great Code, Volume 3, while still providing a reasonable
example of an SDD. The remaining design concerns are all the
requirements for the DAQ DIP switch system as described in the
SRS (see “(Selected) DAQ Software Requirements (from SRS)” on
page 219).

6.2 Context Viewpoint and Overall Architecture
The DAQ context viewpoint shows the functionality that exists
between the user and the system.

Name/tag: DAQ_SDD_001

Author: Randall Hyde

250 Chapter 11

Design elements used: This viewpoint employs use cases, actors
(host PC and end user), nodes, components, and packages to
describe the system interface.

Requirements/design concerns:9

DAQ_SRS_700_000

DAQ_SRS_701_000

DAQ_SRS_704_000

DAQ_SRS_707_000

DAQ_SRS_723_000.1

6.2.1 Contextual View10

The DAQ system firmware runs on a Netburner MOD54415
SBC connected to a DAQ_IF (DAQ interface) board. An
end user can set DIP switch settings to initialize the way
the DAQ interfaces to a host PC. The host PC can com-
municate with the DAQ system using RS-232 Serial, USB,
or Ethernet connections (see Figure 11-19). This design
expects existing library routines for maintPrintf, serialTask
Init, usbTaskInit, ethernetTaskInit, and readDIPSwitches.

Host PC USB

RS-232

End user

Ethernet Netburner/DAQ_IF

Commands

DIP Sw

Figure 11-19: Sample contextual view

9. The requirements listing also provides a means for evaluating/verifying the design to see that
it meets the specifications defined in the SRS. A reviewer will compare each of the listed require-
ments in the SRS against the contextual view to see that the view meets the requirements.

10. As the contextual view is provided here, there’s no need to discuss the analysis needed to
create the design view; that’s trivial, because the design view is already present.

Software Design Description Documentation 251

6.2.2 Component/Deployment Overlay
The following design overlay provides a different look at
the contextual view using a combination deployment/
component diagram. Figure 11-20 shows the physical com-
ponents of the system11 and their interconnections.

Netburner MOD54415

«component»
micro C/OS

«component»
DAQ application

Host PC

DAQ_IF

0..1

RS-232

0..1

USB

0..5

Ethernet

J2 Bus

Library

maintPrintfTask()
serialTaskInit()
usbTaskInit()
ethTaskInit()
readDIPSwitches()

Figure 11-20: Sample design overlay diagram

6.2.3 (Optional) Design Rationales
The purpose of this viewpoint is to show how the user con-
trols the way in which the host PC communicates with the
DAQ system.

6.3 Logical Viewpoint and Data Dictionary
Name/tag: DAQ_SDD_002

Author: Randall Hyde

Design elements used: This viewpoint employs a single class dia-
gram to describe the data storage for this application.

11. At least those components important to this SDD.

252 Chapter 11

N O T E In the real application, it would probably be better to use global variables to hold the
DIP switch settings rather than an actual class.

Requirements/Design Concerns:

DAQ_SRS_723_000.2

6.3.1 DIP Switch Variables
The data storage requirement for the DAQ (DIP switch)
application is very simple. A set of 12 global variables in
Figure 11-21 (which this SDD groups together under glo-
bals) is all that is really needed.

Name Description

dipsw_g Eight-bit array (in a byte) containing DIP switch values
serialEnable_g true if RS-232 communication is enabled
USBEnabled_g true if USB communications is enabled
ethEnabled_g true if Ethernet communications is enabled
ethMultClients_g Allow only a single Ethernet client if false; allow five clients if true
ethernetDipSw_g Hold dipsw_g[5] in bit 0 and dipsw_g[6] in bit 1 (0..3)
unitTestMode_g true if operating in unit test mode
debugMode_g true if maintPrintf() function sends output to COM1:, false if

maintPrintf()is disabled
ethernetAdrs_g Holds IP address (192.168.2.70–192.168.2.73)
maxSockets_g Either 0, 1, or 5 based on ethEnabled_g and ethMultClients_g

values
slots_g Holds file descriptors for up to five active Ethernet sockets
slot_g Used to index into slots_g
maintPrintfTask() External function that starts the maintPrintf() task (to handle

debug output)
serialTaskInit() External function that starts the RS-232 command receipt task
usbTaskInit() External function that starts the USB command receipt task
ethTaskInit() External function that starts an Ethernet command receipt task (up

to five of these threads can be running concurrently)

Software Design Description Documentation 253

globals

+dipsw_g : boolean[8]
+serialEnable_g : boolean
+USBEnabled_g : boolean
+ethEnabled_g : boolean
+ethMultClients_g : boolean
+ethernetDipSw_g : int
+unitTestMode_g : boolean
+debugMode_g : boolean
+ethernetAdrs_g : string
+maxSockets : int
+slots_g : fileDescriptor[5]
+slot_g : int

externals

+maintPrintfTask()
+serialTaskInit(prio:int)
+usbTaskInit(prio: int)
+ethTaskInit(prio: int)

+ethernetListenTask(prio:int)

Figure 11-21: DAQ global entities

6.3.2 Design Overlays
[None]

6.3.3 Design Rationales
This logical view used a class diagram rather than a set of
global variables simply because a typical read dipswitches
function for the Netburner returns all eight readings in a
single 8-bit byte (that is, as a bit array). For that reason, it
makes sense to treat all eight values as fields of a class, as
these attributes would normally be derived anyway—that
is, computed by masking out the specific bit.

6.4 Interaction Viewpoint and Control Flow
Name/tag: DAQ_SDD_003

Author: Randall Hyde

Design elements used: This viewpoint employs a couple of activ-
ity diagrams to show the control flow (and the value calculations)
through the program.

254 Chapter 11

Requirements/design concerns:

DAQ_SRS_702_000

DAQ_SRS_702_001

DAQ_SRS_702_002

DAQ_SRS_703_000

DAQ_SRS_703_001

DAQ_SRS_705_000

DAQ_SRS_705_001

DAQ_SRS_705_002

DAQ_SRS_706_000

DAQ_SRS_706_001

DAQ_SRS_708_000

DAQ_SRS_709_000

DAQ_SRS_710_000

DAQ_SRS_711_000

DAQ_SRS_712_000

DAQ_SRS_716_000

DAQ_SRS_716_001

DAQ_SRS_716_002

DAQ_SRS_716.5_000

DAQ_SRS_717_000

DAQ_SRS_718_000

DAQ_SRS_718_001

DAQ_SRS_719_000

DAQ_SRS_720_000

DAQ_SRS_721_001

DAQ_SRS_721_002

DAQ_SRS_723_000

DAQ_SRS_723_000

DAQ_SRS_723_000

DAQ_SRS_723_000.2

Software Design Description Documentation 255

DAQ_SRS_726_000

DAQ_SRS_727_000

DAQ_SRS_728_000

DAQ_SRS_737_000

DAQ_SRS_738_000

DAQ_SRS_738_001

DAQ_SRS_738_002

6.4.1 Design View
The design view for the interaction viewpoint uses UML
activity diagrams (flowcharts) to show the control flow
through the application. See Figures 11-22, 11-23, and 11-24.

Read DIP
switches

RS232enable =
DIPSw[1]

ethernetDipSw_g = 0else

[!DIPSw[5] & !DIPSw[6]]

USBEnabled_g =
DIPSw[2]

ethEnabled_g =
DIPSw[3]

ethMultClients_g =
DIPSw[4]

UnitTestMode =
DIPSw[7]

debugMode_g =
DIPSw[8] &
!DIPSw{2]

System boot

1
start

maintPrintfTask

ethernetDipSw_g = 1else

[DIPSw[5] & !DIPSw[6]]

ethernetDipSw_g = 2else

[!DIPSw[5] & DIPSw[6]]

ethernetDipSw_g = 3else

[DIPSw[5] & DIPSw[6]]

Figure 11-22: Activity diagram: reading DIP switches

256 Chapter 11

ethernetAdrs_g = 192.168.2.70else

else
[ethernetDipSw_g = 0]

[ethEnabled_g = true]

2

1

start
ethernetListenTask(ETHL_PRIO)

ethernetAdrs_g = 192.168.2.71else

[ethernetDipSw_g = 1]

ethernetAdrs_g = 192.168.2.72else

[ethernetDipSw_g = 2]

ethernetAdrs_g = 192.168.2.73

maxSockets = 1

maxSockets = 5

else

else

[ethernetDipSw_g = 3]

[ethMultClients_g = true]

Figure 11-23: Activity diagram continuation #1

Software Design Description Documentation 257

else

[serialEnable_g = true]

2

start
serialTaskInit(SER_PRIO)

else

[USBEnabled_g = true]

start
usbTaskInit(USB_PRIO)

Figure 11-24: Activity diagram continuation #2

The serialTaskInit() and usbTaskInit() functions are library
code that is external to this design. These functions start a
task, ethernetListenTask, to handle RS-232 and USB commu-
nications as shown in Figure 11-25.

The ethTaskInit() function (provided in a library external
to this design) runs until the connecting host terminates
the Ethernet connection. At that time, the ethernetListen-
Task task will set the entry of the corresponding slots to 0
and terminate the task (thread). Should the listen connec-
tion become broken, ethernetListenTask terminates.

258 Chapter 11

ethernetListenTask

start
ethTaskInit(slot_g + 1)

slots[0..4] = 0
connectionCnt = 0

listen for connection
on port 0x5050

[no connection]

[connection requested]

[connection
broken]

slot_g = 0

[slot <= 5]

else

else

refuse connection

[slots[slot] = 0]

slots[slot] = listen file descriptor

slot_g = slot_g + 1

Figure 11-25: Activity diagram: ethernetListenTask

6.4.2 Sequence Diagram Overlay
The sequence diagram in Figure 11-26 shows another way
of looking at the initialization of the threads in the DAQ
application.

6.4.3 Design Rationale
The DAQ DIP switches project is relatively simple (pur-
posely, so that the SDD example wouldn’t be too large to fit
into this book). Accordingly, the design is an old-fashioned
procedural/imperative programming model (as opposed
to an object-oriented design).

7 Index
[Omitted for editorial reasons]

Software Design Description Documentation 259

Main maintPrintf
Task

ethernetListen
Task

serialTask
Init

usbTask
Init

start

Connection request
[Connection allowed
&& slot available]

start

[ethEnabled_g = true]
start

[serialEnable_g = true]
start

[USBEnabled_g = true]
start

ref

Listen

Host PC

Listen ethTaskInit

Figure 11-26: Sequence diagram: initializing tasks

11.7 Updating the Traceability Matrix with Design Information
The SDD adds a single column to the RTM: the SDD tag column. However,
the SDD tag does not directly embed any traceability information, so you’ll
have to extract that information from the SDD to determine where to place
your SDD tags in the RTM.

As noted in “Design Views vs. Design Viewpoints” on page 240, each
viewpoint in an SDD must include design concerns and requirements infor-
mation. In this chapter (see “A Sample SDD” on page 247), I’ve strongly sug-
gested supplying all the SRS requirement tags as the list of design concerns in
the viewpoint documentation. If you’ve done that, you’ve already created the
reverse traceability back to the requirements. As a result, filling in the SDD
tags in the RTM is easy: just locate each requirement tag (listed in the cur-
rent viewpoint) and copy the viewpoint’s SDD tag into the SDD tag column
in the RTM. Of course, considering that you can have multiple requirements
associated with a single viewpoint, you’ll also have several copies of the same
SDD tag spread throughout the RTM (one per associated requirement).

260 Chapter 11

Should you ever want to trace your SDD tags back to all the require-
ments in the RTM (without looking up the list in the SDD), simply sort the
RTM by the SDD tag column. This will collect all the requirements (and
everything else linked to that SDD tag) into a contiguous group in the
matrix and make it easy to identify everything associated with that tag.

If you choose some other method of specifying design concerns in the
viewpoint that doesn’t involve incorporating the SRS tags within them,
then determining the placement of the SDD tags in the RTM becomes a
manual (even laborious) process. That’s why I strongly recommend using
SRS tags when generating your viewpoints. Since you have to consider all
the requirements when generating the viewpoint anyway, it makes sense to
collect that information into the SDD at the same time.

11.8 Creating a Software Design
This chapter has spent considerable time discussing how to create a
Software Design Description. In the examples you’ve seen, it might seem
that the actual designs were plucked out of thin air. Where did these
designs originate from? If you’re creating a new system design, how do you
come up with that design in the first place? Well, that’s the subject of the
next volume in this series, Write Great Code, Volume 4: Designing Great Code.
This chapter has laid the groundwork for that book.

11.9 For More Information
Freeman, Eric, and Elizabeth Robson. Head First Design Patterns: A Brain-

Friendly Guide. Sebastopol, CA: O’Reilly Media, 2004.

Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Upper Saddle River, NJ: Addison-Wesley Professional, 1994.

IEEE. “IEEE Std 1016-2009: IEEE Standard for Information Technology—
Systems Design—Software Design Descriptions.” July 20, 2009. https://
ieeexplore.ieee.org/document/5167255/. (It’s not cheap—about $100—and
it’s worded in a way that only a lawyer can appreciate, but this is the gold
standard for SDDs.)

This chapter covers software test documen-
tation, focusing primarily on the Software

Test Case (STC) and Software Test Procedure
(STP) documents. As has been the case for the

previous chapters, this discussion is based on IEEE
Standards, specifically the IEEE Standard for Software
and System Test Documentation (IEEE Std 829-2008,
hereafter Std 8291).

1. IEEE Std 829-2008 is a registered trademark of the IEEE.

12
S O F T W A R E T E S T D O C U M E N T A T I O N

262 Chapter 12

12.1 The Software Test Documents in Std 829
Std 829 actually describes many additional documents above and beyond
the STC and STP, including:

•	 Master Test Plan (MTP)

•	 Level Test Plan (LTP)

•	 Level Test Design (LTD)

•	 Level Test Case (LTC)

•	 Level Test Procedure (LTPr)

•	 Level Test Log (LTL)

•	 Anomaly Report (AR)

•	 Level Interim Test Status Report (LITSR)

•	 Level Test Report (LTR)

•	 Master Test Report (MTR)

Note that these are not actual document names—the word level is a
placeholder for the scope or extent of software testing being documented.
The scope could be at the level of components or component integration, apply
to the entire system, or focus on acceptance. For example, Level Test Plan
could refer to a Component (or Unit) Test Plan, Component Integration
(or simply Integration) Test Plan, System (or System Integration) Test Plan,
or an Acceptance Test Plan.

N O T E Test levels are explained further in “Software Development Testing Levels” on
page 265.

In all, Std 829 defines 31 different document types, but these are the
main ones. The majority of these documents exist to support software man-
agement activities. Because this is a book on personal software engineering
rather than software project management, this chapter won’t go into detail
on most of them. Instead, we’ll concentrate on those level test documents
that pertain to actual software testing—specifically, the Level Test Case,
Level Test Procedure, Level Test Log, and Anomaly Report document types.
We will cover all four level classifications—component, component inte-
gration, system, and acceptance—though the latter two are the main test
documents used in this chapter. The differences between the level test docu-
ments are relatively minor, so this chapter applies the umbrella names men-
tioned earlier: Software Test Cases and Software Test Procedures. Keep in
mind, however, that while these are common software engineering terms,
Std 829 refers only to the level test documents.

12.1.1 Process Support
Although this chapter focuses on software testing, Std 829 describes the
testing process in far more general terms. In particular, the testing process
also handles the verification and validation of each document step in the

Software Test Documentation 263

development process. Specifically, this means that the testing process tests
the documentation as well as the actual software.

For the SyRS and SRS, the verification step ensures that the require-
ments actually satisfy customer needs (and only satisfy customer needs, with-
out gold plating). For the SDD, the verification step ensures that the SDD
covers all the requirements. For the STC, the verification step ensures that
each requirement has one or more test cases that test the requirement. For
the STP, the verification ensures that the set of test procedures fully covers
all the test cases.

In addition to documentation, Std 829 discusses test procedures for
verifying acquisitions (such as purchases of third-party libraries and com-
puting hardware), administering RFPs (Requests for Proposals), and many
other activities. These testing activities are very important. As noted previ-
ously, though, these are largely management activities rather than software
development activities, so they’re mentioned only briefly here.

Std 829 states that testing needs to support the processes of manage-
ment, acquisition, supply, development, operation, and maintenance. This
chapter will concentrate on the development and operation processes (and,
to a limited extent, the maintenance processes, which are largely an itera-
tion of the development and operation processes). For more details on
the other processes, see Std 829, IEEE/EIA Std 12207.0-1996 [B21], and
ISO-IEC-IEEE-29148-2011.

Note that Std 829 allows you to combine and omit some of the testing
documents. This means that you could have only a single document and
still conform to Std 829. In reality, the final number of documents you
create depends on the size of the project (large projects will require more
documentation) and the turnaround you expect (fast projects will have
fewer documents).

12.1.2 Integrity Levels and Risk Assessment
Std 829 defines four integrity levels that describe the importance or sensitiv-
ity to risk for a piece of software:

Catastrophic (level 4) This level means that the software must execute
properly, or something disastrous could occur (such as death, irreparable
harm to the system, environmental damage, or a huge financial loss).
There are no workarounds for catastrophic system failures. An example
is a braking failure in a software-controlled self-driving vehicle.

Critical (level 3) This level means that software must execute prop-
erly, or there could be serious problems including permanent injury,
major performance degradation, environmental damage, or financial
loss. A partial workaround may be possible for a critical system failure.
An example is the transmission-controlling software in the self-driving
vehicle being unable to shift out of second gear.

Marginal (level 2) This level means that the software must execute
properly, or there may be (minor) incorrect results produced and some

264 Chapter 12

functionality lost. Workarounds to solve the problem are possible.
Continuing with the self-driving-vehicle example, a software failure that
prevents the infotainment center from operating is a marginal problem.

Negligible (level 1) This level means that the software must execute
properly, or else some minor functionality might not exist in the system
(or the software might not be as “polished” as it should be). Negligible
issues generally don’t require a workaround and can be safely ignored
until an update comes along. An example is a spelling mistake on the
touchscreen of the infotainment center in the self-driving vehicle.

The higher the level, the greater the importance of the testing process;
that is, level 4 (catastrophic) items demand higher-quality and more inten-
sive testing than level 1 (negligible) items. Integrity levels, then, become
the basis for determining the number, quality, and depth of test cases you
create. For a feature in the program that could have catastrophic results in
the event of a failure, you want a fair number of test cases that exercise that
feature with considerable depth. For features that have negligible potential
consequences, you might not have any test cases or only very shallow tests
(such as a cursory review).2

Risk assessment is an attempt to determine where in your system failures
are likely to occur, their expected frequency, and the associated costs. While
risk assessment is predictive by its very nature (which means it won’t be per-
fect), you can often identify those parts of the program that are more likely
to exhibit problems (such as complex sections of code, code produced by
less experienced engineers, code from questionable sources like open source
libraries found on the internet, and code using poorly understood algo-
rithms). If you can categorize the likelihood of a problem as likely, probable,
occasional, or unlikely, you can help identify the code that warrants more strin-
gent testing (and, conversely, code that requires minimal testing).

You can combine the integrity level and risk assessment levels in a
matrix to produce a risk assessment scheme, as shown in Table 12-1. In this
example, a value of 4 denotes extreme importance, and a value of 1 indi-
cates little importance.

Table 12-1: Risk Assessment Scheme

Consequence Likelihood

Likely Probable Occasional Unlikely

Catastrophic 4 4 3.5 3

Critical 4 3.5 3 2.5

Marginal 3 2.5 1.5 1

Negligible 2 1.5 1 1

2. It might seem strange to not have any test cases at all. However, keep in mind that having
too many trivial test cases will make the testing process lengthy and more expensive, resulting
in too little time spent testing the really important features of the system.

Software Test Documentation 265

Std 829 does not mandate using an integrity level or risk assessment
scheme in your test documentation, though it does consider this to be best
practice. If you do use an integrity level, Std 829 does not require that you
use the IEEE-recommended scheme (you could, for example, use a finer-
grained integrity level with values from 1 to 10). However, if you “roll your
own” integrity level, the IEEE recommends that you document a mapping
from your integrity levels to those suggested by the IEEE so that readers can
easily compare them.

12.1.3 Software Development Testing Levels
In addition—and in contrast—to the integrity levels just described, the
IEEE defines four testing levels, each of which generally describes the scope
or extent of software testing being documented:

Component (also known as unit)3 This level deals with subroutines,
functions, modules, and subprograms at the lowest code level. Unit
testing, for example, consists of testing individual functions and other
small program units independent of the rest of the program.

Component integration (also known as simply integration) This level
is the point at which you begin combining individual units together to
form a larger portion of the system, though not necessarily the whole
system. Integration testing, for example, occurs when you combine
(pretested) units to see if they play well together (that is, pass appropri-
ate parameters, return appropriate function results, and so on).

System (also known as system integration) This level of testing is the
ultimate form of integration testing—you’ve integrated all the pro-
gram units together and formed the complete system. Unit testing,
integration testing, and system integration testing are typically tests
the developers perform before releasing a complete system outside the
development group.

Acceptance (variants include factory acceptance and site acceptance)
Acceptance testing (AT) is post-development. As its name implies, it refers
to how the customer determines whether the system is acceptable.
Depending on the system, there may be a couple of acceptance testing
variants. Factory acceptance testing (FAT) occurs on systems prior to leav-
ing the manufacturer (typically on the factory floor, hence the name).
Even if a product is pure software, it can have a factory acceptance test
where the customer’s representatives come to test the software under
the watchful eye of the software development team. This allows the
team to make quick changes to the system if the customer discovers
minor errors during the FAT.

A site acceptance test (SAT) is performed at the customer’s site after
the system is installed. For hardware-based systems, this ensures that

3. The names in parentheses are not part of the IEEE Std 829-2008. However, they are com-
mon industry names.

266 Chapter 12

the hardware is installed properly and the software is functioning as
intended. For pure software systems, the SAT provides a final check
(after a possible AT or FAT) that the software is usable by the system’s
end users.

12.2 Test Plans
A software test plan is a document that describes the scope, organization,
and activities associated with the testing process. This is largely a manage-
rial overview of how the testing will take place, the resources testing will
require, schedules, necessary tools, and objectives. This chapter won’t con-
sider test plans in detail, as they are beyond the scope of this book; however,
the following sections will present outlines provided in IEEE Std 829-2008
as a reference. For more details on these test plans, consult Std 829.

12.2.1 Master Test Plan
The Master Test Plan (MTP) is an organization-wide top-level management
document that tracks the testing process across a whole project (or set of
projects). Software engineers are rarely involved directly with the MTP,
which is largely an umbrella document that the QA (Quality Assurance)
department uses to track quality aspects of a project. A project manager or
project lead might be aware of the MTP—and might contribute to it during
schedule and resource development—but the development team rarely sees
the MTP except in passing.

The following outline comes from Section 8 of IEEE Std 829-2008 (and
uses the IEEE section numbers):

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 System Overview and Key Features

1.5 Test Overview

1.5.1 Organization

1.5.2 Master Test Schedule

1.5.3 Integrity Level Schema

1.5.4 Resources Summary

1.5.5 Responsibilities

1.5.6 Tools, Techniques, Methods, and Metrics

2 Details of the Master Test Plan

2.1 Test Processes Including Definition of Test Levels

2.1.1 Process: Management

2.1.1.1 Activity: Management of Test Effort

Software Test Documentation 267

2.1.2 Process: Acquisition

2.1.2.1 Activity: Acquisition Support Test

2.1.3 Process: Supply

2.1.3.1 Activity: Planning Test

2.1.4 Process: Development

2.1.4.1 Activity: Concept

2.1.4.2 Activity: Requirements

2.1.4.3 Activity: Design

2.1.4.4 Activity: Implementation

2.1.4.5 Activity: Test

2.1.4.6 Activity: Install/Checkout

2.1.5 Process: Operation

2.1.5.1 Activity: Operational Test

2.1.6 Process: Maintenance

2.1.6.1 Activity: Maintenance Test

2.2 Test Documentation Requirements

2.3 Test Administration Requirements

2.4 Test Reporting Requirements

3 General

3.1 Glossary

3.2 Document Change Procedures and History

Many of these sections contain information common to IEEE docu-
ments (for example, see the SRS and SDD samples in previous chapters).
As the MTP is beyond the scope of this chapter, please consult Std 829 for
specific descriptions of each section in this outline.

12.2.2 Level Test Plan
A Level Test Plan (LTP) refers to a set of test plans based on the development
state. As this chapter noted earlier, each document in the set generally
describes the scope or extent of software test being documented: Component
Test Plan (aka Unit Test Plan, or UTP), Component Integration Test Plan
(aka Integration Test Plan, or ITP), System Test Plan (aka System Integration
Test Plan, or SITP), and Acceptance Test Plan (ATP; may include a Factory
Acceptance Test Plan [FATP] or Site Acceptance Test Plan [SATP]).4

LTPs are also managerial/QA documents, but the development team
(even to the level of individual software engineers) often has input on their
creation and use, because these documents reference detailed features of
the software design. These test plans are not guiding documents—that is,

4. The parenthetical names are common names for these test plans; these names do not come
from Std 829.

268 Chapter 12

a software engineer wouldn’t necessarily reference these documents while
actually testing the software—but they can’t be created without develop-
ment team feedback. Like the MTP, LTPs provide a road map for the cre-
ation of the test case and test procedure documents (of primary interest to
the development and testing teams) and outline how to perform the tests.
LTPs provide a good high-level view of the testing process, especially for
external organizations interested in its quality.5

Here is the LTP outline from Std 829:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 Level in the Overall Sequence

1.5 Test Classes and Overall Test Conditions

2 Details for This Level of Test Plan

2.1 Test Items and Their Identifiers

2.2 Test Traceability Matrix

2.3 Features to Be Tested

2.4 Features Not to Be Tested

2.5 Approach

2.6 Item Pass/Fail Criteria

2.7 Suspension Criteria and Resumption Requirements

2.8 Test Deliverables

3 Test Management

3.1 Planned Activities and Tasks; Test Progression

3.2 Environmental/Infrastructure

3.3 Responsibilities and Authority

3.4 Interfaces Among the Parties Involved

3.5 Resources and Their Allocation

3.6 Training

3.7 Schedules, Estimates, and Costs

3.8 Risk(s) and Contingency(s)

4 General

4.1 Quality Assurance Procedures

4.2 Metrics

4.3 Test Coverage

5. A good example of such an external organization is the Nuclear Regulatory Commission
(NRC), a US-based governmental organization tasked with licensing commercial
nuclear reactors.

Software Test Documentation 269

4.4 Glossary

4.5 Document Change Procedures and History

You might notice that there is considerable overlap between the LTPs
and the MTP. Std 829 states that if you are replicating information in a
test plan that exists elsewhere, you can simply provide a reference to the
containing document rather than duplicating the information in your LTP
(or MTP). For example, you’re likely to have an overall Reverse Traceability
Matrix (RTM) that includes traceability for all the tests. Rather than repli-
cating that traceability information in section 2.2 of an LTP, you would sim-
ply reference the RTM document that contains this information.

12.2.3 Level Test Design Documentation
The Level Test Design (LTD) documentation, as its name suggests, describes
the design of the tests. Once again, there are four types of LTD documents,
each generally describing the scope or extent of software testing being
documented: Component Test Design (aka Unit Test Design, or UTD),
Component Integration Test Design (aka Integration Test Design, or ITD),
System Test Design (aka System Integration Test Design, or SITD), and
Acceptance Test Design (ATD; this may include a Factory Acceptance Test
Design [FATD] or a Site Acceptance Test Design [SATD]).

The main purpose of the LTD is to collect common information in one
place that would be replicated throughout the test procedures. That means
that this document could very easily be merged with your test procedures
document (at the cost of some repetition in that document). This book will
take that approach, merging pertinent items from the test design directly
into the test cases and test procedures documents.6 For that reason this sec-
tion will present the IEEE recommended outline without additional com-
mentary and save the details for the STC and STP documents.

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details of the Level Test Design

2.1 Features to Be Tested

2.2 Approach Refinements

2.3 Test Identification

2.4 Feature Pass/Fail Criteria

2.5 Test Deliverables

6. I personally prefer this approach, even at the cost of maintaining duplicate information
(and potentially introducing inconsistencies), because it keeps those documents self-contained
(especially the test procedure documents). During the testing process, I don’t want to have to
keep referring to different documents, which can slow down the testing and lead to errors in
the testing process.

270 Chapter 12

3 General

3.1 Glossary

3.2 Document Change Procedures and History

12.3 Software Review List Documentation
When you build the RTM starting with your requirements, one of the col-
umns you usually create is the test/verification type column. Typically, a
software requirement will have one of two associated verification types: T
(for test) and R (for review).7 Requirements marked T will have associated
test cases and test procedures (see “Updating the Traceability Matrix with
Requirement Information” on page 222 for details on creating test cases).
Items marked R will need to be reviewed. This section describes how to cre-
ate a Software Review List (SRL) document to track the review of the sys-
tem (usually the source code) to verify those requirements.

The SRL is relatively straightforward. The core of the document is sim-
ply a list of items, each of which you check off after you review it and are
confident that the software properly supports the associated requirement.

In theory, you could create level review list documentation at four sep-
arate levels: component, component integration, system, and acceptance
(as is the case for other Std 829 level documents). In reality, however, a
single SRL that is suitable for both system (integration) and acceptance
use will suffice.

N O T E The SRL document is not a part of Std 829 (or any other IEEE standards document,
for that matter). Std 829 certainly allows you to use this document as part of your
verification package, but the format presented in this section is not from the IEEE.

12.3.1 Sample SRL Outline
Although the SRL is not a standard IEEE document, the following outline
for it is somewhat similar to the SRS, STC, and STP recommended formats
from the IEEE:

1 Introduction (once per document)

1.1 Document Identifier

1.2 Document Change Procedures and History

1.3 Scope

1.4 Intended Audience

1.5 Definitions, Acronyms, and Abbreviations

7. There are other verification types, but we’ll ignore those here. If you ever use those types
(typically for hardware, although analysis, other, and no test are possible software options),
you’ll have to create an appropriate document that justifies or describes how you will verify
the associated requirement.

Software Test Documentation 271

1.6 References

1.7 Notation for Description

2 General System Description

3 Checklist (one per review item)

3.1 Review Identifier (Tag)

3.2 Discussion of Item to Review

12.3.2 Sample SRL
This sample SRL continues to use the DAQ DIP switch project from the
previous chapters. Specifically, this SRL is based on the requirements from
“(Selected) DAQ Software Requirements (from SRS)” on page 219 and
the verification types detailed in “Requirements to Be Verified by Review”
on page 223.

1 Introduction
This Software Review List provides a software review checklist for those
DAQ system requirements that are to be verified by review.

1.1 Document Identifier
DAQ_SRL v1.0

1.2 Document Change Procedures and History
All revisions should be noted here, by date and version number.

Mar 23, 2018—Version 1.0

1.3 Scope
This SRL deals with those requirements in the DAQ DIP switch
initialization project for which creating a formal test procedure
would be difficult (or otherwise economically unviable) but whose
correctness can be easily verified by reviewing the source code
and the build system for the source code.

1.4 Intended Audience
The normal audience for an SRL:

This document is intended primarily for those individuals who
will be testing/reviewing the DAQ DIP switch project. Project
management and the development team may also wish to review
this document.

The real audience for this SRL:

This SRL is intended for readers of Write Great Code, Volume 3. It
provides an example SRL that can serve as a template for SRLs
they may need to create.

272 Chapter 12

1.5 Definitions, Acronyms, and Abbreviations
DAQ: Data acquisition system

DIP: Dual inline package

SDD: Software Design Document

SRL: Software Review List

SRS: Software Requirements Specification

1.6 References
SDD: IEEE Std 1016-2009

SRS: IEEE Std 830-1998

STC/STP: IEEE Std 829-2008

1.7 Notation for Description
Review identifiers (tags) in this document shall take the form:

DAQ_SR_xxx_yyy_zzz

where xxx_yyy is a string of (possibly decimal) numbers taken from
the corresponding requirement (for example, DAQ_SRS_xxx_yyy)
and zzz is a (possibly decimal) numeric sequence that creates a
unique identifier out of the whole sequence. Note that zzz values
in SRL tags are usually numbered from 000 or 001 and usually
increment by 1 for each additional review item sharing the same
xxx_yyy string.

2 General System Description
The purpose behind the DAQ DIP switch system is to initialize the DAQ
system upon power-up. The DAQ DIP switch system is a small subset
of the larger Plantation Productions DAQ system that is useful as an
example within this book.

3 Checklist
Check off each of the following items as it is verified during the
review process.

3.1 DAQ_SR_700_000_000
Verify code is written for a Netburner MOD54415 evaluation
board.

3.2 DAQ_SR_700_000.01_000.1
Verify code is written for µC/OS.

3.3 DAQ_SR_702_001_000
Verify that software creates a separate task to handle serial port
command processing.

Software Test Documentation 273

3.4 DAQ_SR_702_002_000
Verify that serial task priority is lower than USB and Ethernet task
priorities (note that the higher the priority number, the lower
the priority).

3.5 DAQ_SR_703_001_000
Same as DAQ_SRS_702_001, but doesn’t start an RS-232 task if
DIP switch 1 is in the OFF position.

3.6 DAQ_SR_705_001_000
Verify that software creates a separate task to handle USB port
command processing.

3.7 DAQ_SR_705_002_000
Verify that a USB task has a higher priority than the Ethernet and
serial protocol tasks.

3.8 DAQ_SR_706_001_000
Verify that software does not start the USB task if DIP switch 2 is
in the OFF position.

3.9 DAQ_SR_716_001_000
Verify that the Ethernet listening task is started only if Ethernet
communications are enabled.

3.10 DAQ_SR_716_002_000
Verify that the Ethernet listening task has a priority lower than
the USB task but higher than the serial task.

3.11 DAQ_SR_719_000_000
Verify that software sets the unit test mode value to ON based on
the DIP switch 7 setting.

3.12 DAQ_SR_720_000_000
Verify that software sets the unit test mode value to OFF based on
the DIP switch 7 setting.

3.13 DAQ_SR_723_000_000
Verify that the software provides a function to read the DIP
switches.

3.14 DAQ_SR_723_000.01_000
Verify that the system uses the DIP switch reading to initialize
RS-232 (serial), USB, Ethernet, unit test mode, and debug mode
on startup.

3.15 DAQ_SR_723_000.02_000
Verify that the startup code stores the DIP switch reading for later
use by the software.

274 Chapter 12

3.16 DAQ_SR_725_000_000
Verify that the command processor responds to a command when
a complete line of text is received from the USB, RS-232, and
Ethernet ports.

3.17 DAQ_SR_738_001_000
Verify that the system starts a new process (task) to handle com-
mand processing for each new Ethernet connection.

3.18 DAQ_SR_738_002_000
Verify that the Ethernet command processing tasks have a priority
between the Ethernet listening task and the USB command task.

12.3.3 Adding SRL Items to the Traceability Matrix
Once you’ve created an SRL, you’ll want to add all the SR tags to the RTM
so you can trace the reviewed items back to the requirements, as well as to
everything else in the RTM. To do so, just locate the requirement associated
with each review item tag (this is trivial if you’re using the tag numbering
this chapter recommends; the SRS tag number is incorporated into the
SRL tag number) and add the SRL tag to the appropriate column in the
same row of the RTM containing the requirement.

When you’ve got both SRL and STC documents, there’s really no need
to create separate columns in the RTM for both types, as they are mutu-
ally exclusive and the tag will differentiate them. (See “A Sample Software
Requirements Specification” on page 203 for some additional commentary
on this.)

12.4 Software Test Case Documentation
For each item in the RTM whose requirement verification type is T, you’ll
need to create a software test case. The Software Test Case (STC) document is
where you’ll put the actual test cases.

As with all the 829 Std level documents, there are four levels in the Level
Test Case documentation. The term Software Test Case generically refers to
any one of these. As this chapter noted earlier, this is actually a set of test
cases, where each document in the set type generally describes the scope
or extent of software testing being documented: Component Test Cases
(aka Unit Test Cases, or UTC), Component Integration Test Cases (aka
Integration Test Cases, or ITC), System Test Cases (aka System Integration
Test Cases, or SITC), and Acceptance Test Cases (ATC; may include Factory
Acceptance Test Cases [FATC] and Site Acceptance Test Cases [SATC]).8

8. As usual, I’ve included some common (non-IEEE) names in parentheses.

Software Test Documentation 275

The STC document lists all the individual test cases (tests) for a project.
Here is the Std 829 outline for the Level Test Case documentation:

1 Introduction (once per document)

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 Context

1.5 Notation for Description

2 Details (once per test case)

2.1 Test Case Identifier

2.2 Objective

2.3 Inputs

2.4 Outcome(s)

2.5 Environmental Needs

2.6 Special Procedural Requirements

2.7 Intercase Dependencies

3 Global (once per document)

3.1 Glossary

3.2 Document Change Procedures and History

In common practice, the Unit Test Cases and the Integration Test Cases
are often combined into the same document (the differentiation between
the two usually occurs at the level of test procedures). You will typically
develop UTCs and ITCs from your source code and from the SDD (see
Figure 12-1, which is an extension of Figure 9-1).

SyRS SRS

STP

SDD

STC

Source code

Figure 12-1: Unit and Integration Test Case sources

Often, the UTC and ITC (and test procedure) documents exist as soft-
ware rather than as natural-language documents. Using an automated test
procedure, a piece of software that runs all the unit and integration tests,
is a software engineering best practice. By doing so, you can dramatically

276 Chapter 12

reduce the time it takes to run tests as well as the errors introduced in man-
ually performed test procedures.9

Unfortunately, it isn’t possible to create automated tests for every test
case, so you’ll usually have a UTC/ITC document covering (at least) the
test cases you must perform manually.

Many organizations—particularly those that embrace Agile develop-
ment models and test-driven development (TDD)—forgo formal UTC and
ITC documents. Informally written procedures and automated test proce-
dures are far more common in these situations because the cost of creating
and (especially) maintaining the documentation quickly gets out of hand.
As long as the development team can provide some documentation that
they are performing a fixed set of unit/integration tests (that is, they’re not
doing ad hoc, “by the seat of the pants” tests that could differ on every test
run), larger organizations tend to leave them be.

Regardless of whether it’s formal, informal, or automated, having a
repeatable test procedure is key. Regression tests, which check to see if any-
thing has broken, or regressed, since you’ve made changes to the code,
require a repeatable testing process. Therefore, you need some kind of test
case to ensure repeatability.

For unit/integration testing, the test data you generate will be a com-
bination of black-box-generated test data and white-box-generated test
data. Black-box test data generally comes from the system requirements
(SyRS and SRS); you consider only the functionality of the system (which
the requirements provide) when you create its input test data. When you
generate white-box test data, on the other hand, you analyze the software’s
source code. For example, ensuring that you execute every statement in
the program at least once during testing—that is, achieving complete code
coverage—requires careful analysis of the source code and, therefore, is a
white-box test-data-generation technique.

N O T E Write Great Code, Volume 6: Testing, Debugging, and Quality Assurance will
consider the techniques for generating white-box and black-box test data in greater detail.

Once you get to the level of a system integration test or (even more
importantly) an acceptance test, formal documentation for your test cases
becomes mandatory. If you’re creating a custom system for a customer,
or your software is subject to regulatory or legal restrictions (such as life-
threatening environments in an autonomous vehicle), you’ll likely have
to convince some overseer organization that you’ve put in your best effort
during testing and prove that the system meets its requirements. This is
where it’s essential to have formal documentation like that recommended

9. Do keep in mind, however, that creating the automated test procedure can be expensive
and you have to validate the resulting code to ensure that it properly executes all the tests. In
the long run, automated test procedures tend to be cost-effective because on all but the small-
est of projects, you wind up rerunning test procedures many times during development.

Software Test Documentation 277

by Std 829.10 For this reason, most SITC and (most certainly) ATC docu-
ments derive their cases directly from the requirements (see Figure 12-2).
So, with this motivation in hand, let’s return to the discussion of the Level
Test Case document (see the outline at the beginning of this section).

SyRS SRS

System test cases can
be derived from the SDD;
acceptance test cases come
only from the SRS/SyRS.

STP

SDD

STC

Figure 12-2: SITC and ATC derivation

More often than not, the (F)ATC document is simply a subset of the
SITC document. (If you have FATC documentation and SATC documenta-
tion, the site variant is often a subset of the FATC document.) The SITC
document will contain test cases for every requirement. In the ATC docu-
ments, system architects may merge or eliminate test cases that are nearly
or entirely redundant, or are of little interest to customers and end users.

12.4.1 Introduction in the STC Document
The introductory section of an STC (or any Level Test Case) document
should include the following information.

12.4.1.1 Document Identifier

The document identifier should be some unique name/number and should
include the issuing date, author identification, status (for example, draft
or final), approval signatures, and possibly a version number. A single ID
name/number is imperative so you can reference the test case documenta-
tion in other documents (such as the STP and RTM).

12.4.1.2 Scope

This section summarizes the software system and features to test.

12.4.1.3 References

This section should provide a list of all reference documents, internal and
external, associated with the STC. Internal references would normally
include documents such as the SyRS, SRS, SDD, RTM, and (if it exists) the
MTP. External references would include standards like IEEE Std 829-2008
and any regulatory or legal documents that might apply.

10. Even if your system is not life-threatening or doesn’t exhibit catastrophic consequences if
it misbehaves, having formal SITC and ATC documentation can help prevent you from deliv-
ering a shoddy product. At the very least, great code is going to run through a formal test
process with formal test case/test procedure documentation.

278 Chapter 12

12.4.1.4 Context

In this section you provide any context for the test cases that doesn’t appear
in any other documentation. Examples might include naming automated
test-generation software or internet-based tools used to generate or evaluate
test cases.

12.4.1.5 Notation for Description

This section should describe the tags (identifiers) you’ll apply to the test
cases. For example, this chapter uses tags of the form proj_STC_xxx_yyy_zzz,
so this section of the STC would explain what this means and how to gener-
ate STC tags.

12.4.2 Details
You repeat the subsections contained herein for each test case in the STC.

12.4.2.1 Test Case Identifier

The test case identifier is the tag associated with this particular test case.
For example, this book uses tags of the form DAQ_STC_002_000_001 where
DAQ is the project ID (for the DAQ DIP switch project), 002_000 is from the
SRS requirement tag, and 001 is a test-case-specific value to make this tag
unique among all the others. The Swimming Pool Monitor (SPM) project
from previous chapters might use tags like POOL_STC_002_001 within the
STC. Std 829 doesn’t require the use of this tag format, only that all test
case tags be unique.

12.4.2.2 Objective

This is a brief description of the focus or goal of this particular test case.
(Note that a set of test cases can have the same objective, in which case
this field could simply reference the objectives in a different test case.) This
field is a good place to put risk assessment and integrity level information,
if relevant.

12.4.2.3 Input(s)

This section lists all inputs and their relationships (in terms of timing,
ordering, and the like) that a tester needs in order to perform this test case.
Some inputs might be exact, and some may be approximate, in which case
you must provide tolerances for the input data. If the input set is large, this
section might simply reference an input file, database, or some other input
stream that will provide the test data.11

11. Note that test runs must be reproducible outputs. Therefore, random input data is rarely
appropriate as an input data stream unless you’re testing average responses to inputs that
don’t depend on any particular input data set.

Software Test Documentation 279

12.4.2.4 Outcome(s)

This section lists all expected output data values and behaviors such as
response time, timing relationships, and order of output data. The test case
should provide exact output data values if possible; if you can provide only
approximate data values, the test case must also supply tolerances. If an out-
put stream is large, then this section can reference externally supplied files
or databases.

If the test is successful by virtue of the fact that it runs without crashing—
that is, self-validating—then this section is unnecessary in the test case.

12.4.2.5 Environmental Needs

This section describes any preexisting software or data such as a known
database that is needed for the test. It could also describe any internet
sites referenced by their URLs that must be active in order to execute the
test case. This could also include any special power requirements, such
as requiring a UPS to be fully charged before testing power failures, or it
could include other conditions such as the swimming pool being filled with
water before running tests on the SPM system.

12.4.2.5.1 Hardware Environmental Needs
This section lists any hardware needed to run the test and specifies its
configuration settings. It could also specify any special hardware such
as a test fixture for the test operation. For example, a test fixture for
the SPM might be a five-gallon bucket filled with water and a hose con-
nected to the water feed valve that is part of the SPM.

12.4.2.5.2 Software Environmental Needs
This section lists all software (and its versions/configurations) that
would be needed to run the test. This could include operating systems/
device drivers, dynamically linked libraries, simulators, code scaffold-
ing (as in code drivers),12 and test tools.

12.4.2.5.3 Other Environmental Needs
This is a catch-all section that lets you add information such as con-
figuration specifics or anything else you feel the need to document.
For example, for tests at a specific date or time, you’d need to consider
Daylight Saving Time changes where a daily report may have 23 or 25
hours to report on, and so on.

12.4.2.6 Special Procedural Requirements

This section lists any exceptional conditions or constraints on the test
case. This could also include any special preconditions or postconditions.
For example, one precondition on the SPM when testing to see if the soft-
ware properly responds to a low pool condition is that the water level is

12. Write Great Code, Volume 6, will go into details concerning code scaffolding and drivers.

280 Chapter 12

below all three low-pool sensors. This should also list any postconditions,
such as the bucket must not have overfilled. If you’re using an automated
test procedure, this is a good place to specify the particular tool to use and
how to employ it for the test.

Note that this section should not duplicate steps that appear in the test
procedure. Instead, it should provide guidance for properly writing the
steps in the test procedure that will perform this test case.

12.4.2.7 Intercase Dependencies

This section should list (by tag identifier) any test cases that must be exe-
cuted immediately prior to the current one, so that appropriate system state
conditions are in place before the current test is executed. Std 829 suggests
that by sequencing the test cases in the order in which they must execute,
you can reduce the need to state intercase dependencies. (Obviously, such
dependencies should be clearly documented.) In general, however, you
shouldn’t rely on such implicit dependency organization and should explic-
itly document any dependencies. In the STP, though, you can rely on the
ordering of test steps. Having already clearly delineated the execution order
in the STC will help reduce errors when you create the STP.

12.4.2.8 Pass/Fail Criteria

In Std 829, the IEEE recommends putting the pass/fail criteria in the Level
Test Design documentation; they are not part of the Std 829 STC. However,
it’s not a bad idea, especially in cases where you don’t have an LTD in your
documentation set, to include pass/fail criteria for each test case.

Note that if the pass/fail criterion is simply “All system outputs must
match that specified by the Outcome(s) section,” then you can probably
dispense with this section, but it wouldn’t hurt to explicitly state this default
condition in the introduction section.

12.4.3 General
This section provides a brief introduction and discussion of the Glossary
and Document Change Procedures and History sections.

12.4.3.1 Glossary

The Glossary section provides an alphabetical list of all terms used in the
STC. It should include all acronyms along with their definitions. Although
Std 829 lists the glossary at the end of the outline, it usually appears near
the beginning of the document, close to the References section.

12.4.3.2 Document Change Procedures and History

This section describes the process for creating, implementing, and approv-
ing changes to the STC. This could be nothing more than a reference to a
Configuration Management Plan document that describes the document
change procedures for all project documents or for all documents within an

Software Test Documentation 281

organization. The change history should contain a chronological list of the
following information:

•	 Document ID (each revision should have a unique ID, which can simply
be a date affixed to the document ID)

•	 Version number (which you should number sequentially, starting with
the first approved version of the STC)

•	 A description of the changes made to the STC for the current version

•	 Authorship and role

Often, the change history appears in the STC near the beginning of the
document, or just after the cover page and near the document identifier.

12.4.4 A Sample Software Test Case Document
Continuing with the theme of the past couple of chapters, this chapter will
provide a sample STC for the Plantation Productions DAQ system DIP switch
initialization design. This STC will serve as an acceptance test (pure func-
tional test cases) built exclusively from the project SRS (see “(Selected) DAQ
Software Requirements (from SRS)” on page 219). The test cases appearing
in this sample STC are all the requirements from this project SRS that have
not been included in “Requirements to Be Verified by Review” on page 223
where the “verify by review” requirements are listed. Note, however, that for
editorial/space reasons, this example will not provide test cases for every
“verify by review” test requirement in that project SRS.13

Term Definition

DAQ Data acquisition system

SBC Single-board computer

Software Design
Description (SDD)

Documentation of the design of the software system (IEEE Std
1016-2009)—that is, this document.

Software Requirements
Specification (SRS)

Documentation of the essential requirements (functions, perfor-
mance, design constraints, and attributes) of the software and
its external interfaces (IEEE Std 610.12-1990).

System Requirements
Specification (SyRS)

A structured collection of information that embodies the
requirements of the system (IEEE Std 1233-1998). A specifica-
tion that documents the requirements to establish a design
basis and the conceptual design for a system or subsystem.

Software Test Cases
(STC)

Documentation that describes test cases (inputs and outcomes)
to verify correct operation of the software based on various
design concerns/requirements (IEEE Std 829-2009).

Software Test
Procedures (STP)

Documentation that describes the step-by-step procedure to
execute a set of test cases to verify correct operation of the
software based on various design concerns/requirements
(IEEE Std 829-2009).

13. Once you’ve seen a half-dozen sample test cases or so, you’ll learn the basic idea of how
to write them. Explicitly providing all the test cases for a phantom project like the DAQ DIP
switches won’t help you learn the material any better.

282 Chapter 12

1 Introduction
Software Test Cases for DAQ DIP Switch Project

1.1 Document Identifier (and Change History)
Mar 22, 2018: DAQ_STC v1.0; Author: Randall Hyde

1.2 Scope
This document describes only the DIP switch test cases in the
DAQ system (for space/editorial reasons). For the full software
design description, please see http://www.plantation-productions
.com/Electronics/DAQ/DAQ.html.

1.3 Glossary, Acronyms, and Abbreviations

N O T E This is a very simple and short example to keep the book’s page count down. Please
don’t use this as boilerplate; you should diligently pick out terms and abbreviations
that your document uses and list them in this section.

1.4 References

Reference Discussion

DAQ STC An example of a full STC for the Plantation
Productions DAQ system can be found at
http://www.plantation-productions.com /
Electronics/DAQ/DAQ.html.

IEEE Std 830-1998 SRS documentation standard

IEEE Std 829-2008 STP documentation standard

IEEE Std 1012-1998 Software verification and validation standard

IEEE Std 1016-2009 SDD documentation standard

IEEE Std 1233-1998 SyRS documentation standard

1.5 Context
The DAQ system of Plantation Productions, Inc., fulfilled a need
for a well-documented digital data acquisition and control sys-
tem that engineers could design into safety-critical systems such
as nuclear research reactors. Although there are many COTS
systems14 that could be used, they suffer from a couple of major
drawbacks, including: they are usually proprietary, thus being dif-
ficult to modify or repair after purchase; they are often obsolete
within 5 to 10 years without a way to repair or replace them; and
they rarely have full support documentation (for example, SRS,
SDD, STC, and STP) that an engineer can use to validate and
verify the system.

14. Commercial off-the-shelf systems.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

Software Test Documentation 283

The DAQ system overcomes this problem by providing an open
hardware and open source set of designs with full design docu-
mentation that is validated and verified for safety systems.

Although originally designed for a nuclear research reactor, the
DAQ system is useful anywhere you need an Ethernet-based con-
trol system supporting digital (TTL-level) I/O, optically isolated
digital inputs, mechanical or solid-state relay digital outputs,
(isolated and conditioned) analog inputs (for example, ±10v and
4-20mA), and (conditioned) analog outputs (±10v).

1.6 Notation for Description
Test case identifiers (tags) in this document shall take the form:

DAQ_STC_xxx_yyy_zzz

where xxx_yyy is a string of (possibly decimal) numbers taken from
the corresponding requirement (for example, DAQ_SRS_xxx_yyy)
and zzz is a (possibly decimal) numeric sequence that creates a
unique identifier out of the whole sequence. Note that zzz values
in STC tags are usually numbered from 000 or 001 and usually
increment by 1 for each additional test case item sharing the same
xxx_yyy string.

2 Details (Test Cases)

2.1 DAQ_STC_701_000_000
Objective: Test command acceptance across RS-232.

Inputs:

1. DIP switch 1 set to ON position.

2. Type help command on serial terminal.

Outcome:

1. Screen displays help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

[None]

284 Chapter 12

2.2 DAQ_STC_702_000_000
Objective: Test command acceptance with DIP switch 1 ON.

Inputs:

1. DIP switch 1 set to ON position.

2. Type help command on serial terminal.

Outcome:

1. Screen displays help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Same test as DAQ_STC_701_000_000

2.3 DAQ_STC_703_000_000
Objective: Test command rejection with DIP switch 1 OFF.

Inputs:

1. DIP switch 1 set to OFF position.

2. Type help command on serial terminal.

Outcome:

1. System ignores command, no response on terminal program.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

[None]

N O T E For space/editorial reasons, this sample has deleted several test cases at this point
because they are very similar in content to the previous test cases.

Software Test Documentation 285

2.4 DAQ_STC_709_000_000
Objective: Test Ethernet address with both DIP switches 5 and 6 OFF.

Inputs:

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to OFF position.

3. DIP switch 6 set to OFF position

4. Using an Ethernet terminal program, attempt connection to
IP address 192.168.2.70, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program display DAQ help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000
are closely related and should be performed together.

N O T E For space/editorial reasons, this sample has deleted several test cases at this point
because they are very similar in content to the previous test cases.

2.6 DAQ_STC_710_000_000
Objective: Test Ethernet address with DIP switches 5 ON and 6 OFF.

Inputs:

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to ON position.

3. DIP switch 6 set to OFF position.

4. Using an Ethernet terminal program, attempt connection to
IP address 192.168.2.71, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program displays DAQ help message.

286 Chapter 12

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000
are closely related and should be performed together.

2.7 DAQ_STC_711_000_000
Objective: Test Ethernet address with DIP switch 5 OFF and 6 ON.

Inputs:

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to OFF position.

3. DIP switch 6 set to ON position.

4. Using an Ethernet terminal program, attempt connection to
IP address 192.168.2.72, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program displays DAQ help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000
are closely related and should be performed together.

2.8 DAQ_STC_712_000_000
Objective: Test Ethernet address with both DIP switches 5 and 6 ON.

Inputs:

1. DIP switch 3 set to ON position (4 = don’t care).

2. DIP switch 5 set to ON position.

Software Test Documentation 287

3. DIP switch 6 set to ON position.

4. Using an Ethernet terminal program, attempt connection to
IP address 192.168.2.73, port 20560 (0x5050).

5. Issue help command.

Outcome:

1. Ethernet terminal connects to DAQ system.

2. Terminal program displays DAQ help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
Ethernet port connected to DAQ

Software Latest version of DAQ firmware installed

External Ethernet terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Cases DAQ_STC_708_000_000 to DAQ_STC_718_001_000
are closely related and should be performed together.

N O T E For space/editorial reasons, this sample has deleted several test cases at this point
because they are very similar in content to the previous test cases.

2.9 DAQ_STC_726_000_000
Objective: Test command acceptance from RS-232 port.

Inputs:

1. DIP switch 1 set to ON position.

2. Type help command on serial terminal.

Outcome:

1. Screen displays help message.

Environmental Needs:

Hardware Functioning (booted) DAQ system, PC with
RS-232 port connected to DAQ

Software Latest version of DAQ firmware installed

External Serial terminal emulator program running on PC

Special Procedural Requirements:

[None]

Intercase Dependencies:

Same test as DAQ_STC_701_000_000

288 Chapter 12

3 Test Case Document Change Procedure
When making any modifications to this STC, the author of the change
must make a new entry in section 1.1 of this STC document, listing
(at a minimum) the date, document ID (DAQ_STC), version number,
and authorship.

12.4.5 Updating the RTM with STC Information
Due to software review and software test case (and analysis/other) verifi-
cation methods being mutually exclusive, you need only a single column
in the RTM to associate the tags for these objects with other items in the
RTM. In the RTM of the official DAQ system (which has only test cases
and software review items), the label for this column is simply Software Test /
Review Cases. When you add both DAQ_SR_xxx_yyy_zzz and DAQ_STC_xxx_
yyy_zzz items to this column, there is never any ambiguity as the tag clearly
identifies which verification type you’re using. Of course, this assumes that
you’re using the tag identifier format that this chapter suggests. You could
use your own tag format that also differentiates review and test case items
in the tag name.

If you’re using this chapter’s STC tag format, locating the row in the RTM
where you want to place the test case tag is very easy. Just locate the require-
ment with the tag DAQ_SRS_xxx_yyy and add the STC tag to the appro-
priate column in the same row. If you’re using a different tag format that
doesn’t include requirement traceability directly in the tag name, you’ll
have to determine the association manually (hopefully it’s contained
within the test case).

12.5 Software Test Procedure Documentation
The Software Test Procedure (STP) specifies the steps for executing a collection
of test cases, which, in turn, evaluate the quality of the software system. In
one respect, the STP is an optional document; after all, if you execute all the
test cases (in an appropriate order), you will fully test all the test cases. The
purpose behind an STP is to streamline the testing process. More often than
not, test cases overlap. Although they test different requirements, it may turn
out that the inputs for multiple test cases are identical. In some cases, even
the outcomes are identical. By merging such test cases into a single proce-
dure, you can run a single test sequence that handles all test cases.

Another reason for merging test cases into a single STP is the conve-
nience of a common setup. Many test cases require (possibly elaborate)
setup to ensure certain environmental conditions prior to execution. More
often than not, multiple test cases require the same setup prior to their
execution. By merging those test cases into a single procedure, you can per-
form the setup once for the entire set rather than repeating it for each and
every test case.

Finally, some test cases may have dependencies that require other test
cases to execute prior to their execution. By putting these test cases in a test
procedure, you can ensure that the test operation satisfies the dependencies.

Software Test Documentation 289

Std 829 defines a set of Level Test Procedures (LTPr). As with all of the
level test documents in Std 829 there are four variants of the LTPr, each
variant being a document generally describing the scope or extent of
software testing being documented: Component Test Procedures (aka
Unit Test Procedures, or UTP), Component Integration Test Procedures
(aka Integration Test Procedures, or ITP), System Test Procedures (aka
System Integration Test Procedures, or SITP), and Acceptance Test
Procedures (ATP; may include Factory Acceptance Test Procedures
[FATP] or Site Acceptance Test Procedures [SATP]).15

UTPs and ITPs are often automated test procedures or less formal
documents, similar to their test case document counterparts; see “Software
Test Case Documentation” on page 274 for an in-depth discussion.

If you look back at Figures 12-1 and 12-2, you can see that the STP
(and all LTPrs) are derived directly from the STC (LTC) documentation.
Figure 12-1 applies to UTPs and ITPs. Figure 12-2 applies to SITPs and ATPs
(noting that ATPs derive from test cases that come strictly from SyRS/SRS
requirements, not from SDD elements).

As is true for test case documentation, ATPs are usually a subset of the
SITPs to the customer or end user. Likewise, if there are FATP and SATP
documents, the SATP is often a subset of the FATP, with further refinement
to end-user requirements.16

12.5.1 The IEEE Std 829-2009 Software Test Procedure
The outline for the Std 829 STP is as follows:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

1.4 Relationship to Other Documents

2 Details

2.1 Inputs, Outputs, and Special Requirements

2.2 Ordered Description of the Steps to Be Taken to Execute the
Test Cases

3 General

3.1 Glossary

3.2 Document Change Procedures and History

15. As usual, I’ve included some industry-standard names that are synonyms for the Level Test
Procedure names in parentheses. Remember, Software Test Procedure is a generic term repre-
senting any one of these four levels of test procedure.

16. This is not always true. Sometimes the SATP has to include additional testing procedures
to deal with site environmental issues that may not exist at the factory. For example, noise
(electrical as well as acoustical) and the actual physical system installation may expose some
defects that could not be caught on the factory floor.

290 Chapter 12

12.5.2 Extended Outline for Software Test Procedure
As is typical for IEEE standards, you’re allowed to augment this outline
(adding, deleting, moving, and editing items, with appropriate justifica-
tion). This flexibility is important in this particular case because there are
a couple of things missing from this outline.

First of all, the introduction is missing Notation for Descriptions,
which appears in the STC outline (“Software Test Case Documentation”
on page 274).17 Perhaps the authors of Std 829 were expecting very few
test procedures to appear in Section 2 (“Details”) of the document. In
practice, however, it’s common to have a large number of test procedures.
There are some very good reasons for breaking a single large test proce-
dure into a series of smaller ones:

•	 Testing can take place in parallel. By assigning (independent) test pro-
cedures to multiple test teams, you can complete the testing faster.

•	 Certain tests may tie up resources (for example, test equipment such as
oscilloscopes, logic analyzers, test fixtures, and signal generators). By
breaking up a large test procedure into smaller test procedures, you may
be able to limit the time a testing team needs access to certain resources.

•	 It’s nice to be able to complete a test procedure within a single working
day (or even between breaks in the day) so testers don’t lose focus when
performing tests.

•	 Organizing test procedures by their related activities (and by required
setup prior to those activities) can streamline test procedures, reducing
steps and making them more efficient to run.

•	 Many organizations require a testing team to rerun a test procedure
from the beginning (a regression test) if any part of that test fails.
Breaking a test procedure into smaller pieces makes rerunning test pro-
cedures far less expensive.

To be able to trace these test procedures back to the STC, to the SRS,
and to other documentation in the RTM, you’re going to need test proce-
dure identifiers (tags). Therefore, you should have a section to describe the
notation you’re using for these tags.

Of course, the second thing missing from the IEEE outline is an entry
for the test procedure identification in the Details section. To make trace-
ability easier, it would also be nice to have a section in each test procedure
where you list the associated test cases it covers. Finally, for my own purposes,
I like to include the following information with each test procedure:

•	 Brief description

•	 Tag/identification

•	 Purpose

17. It’s also missing the Context field, but that’s nearly irrelevant here. The context is implied
by the Context field in the STC documentation.

Software Test Documentation 291

•	 Traceability (test cases covered)

•	 Pass/fail criteria (as this may change with each procedure)

•	 Any special requirements (for example, environmental) required to
run this test procedure; this could include input/output files that must
exist, among other things

•	 All setup required prior to running the test procedure

•	 Software version number when executing the test procedure

•	 Procedure steps to execute the test procedure

Incorporating these items produces the following extended outline for
an arbitrary STP suitable for an SIT, AT, FAT, or SAT:

1 Table of Contents

2 Introduction

2.1 Document Identifier and Change History (moved)

2.2 Scope

2.3 Glossary, Acronyms, and Abbreviations (moved)

2.4 References

2.5 Notation for Descriptions

2.6 Relationship to Other Documents (removed)

2.7 Instructions for Running the Tests (added)

3 Test Procedures (name changed from Details)

3.1 Brief Description (simple phrase), Procedure #1

3.1.1 Procedure Identification (Tag)

3.1.2 Purpose

3.1.3 List of Test Cases Covered by This Procedure

3.1.4 Special Requirements

3.1.5 Setup Required Prior to Running Procedure

3.1.6 Software Version Number for This Execution

3.1.7 Detailed Steps to Run the Procedure

3.1.8 Sign-off on Test Procedure

3.2 Brief Description (simple phrase), Procedure #2

•	 (Same subsections as previous section)

•	 . . .

3.n Brief Description (simple phrase), Procedure #n

•	 (Same subsections as previous sections)

4 General

4.1 Document Change Procedures

4.2 Attachments and Appendixes

5 Index

292 Chapter 12

12.5.3 Introduction in the STP Document
The following subsections describe the components of the STP
introduction.

12.5.3.1 Document Identifier and Change History

The document identifier should be some (organization-wide) unique name;
this will typically include some project designation such as DAQ_STP, a
creation/modification date, a version number, and authorship. A list of
these identifiers (one for each revision to the document) would form the
change history.

12.5.3.2 Scope

The scope here has largely the same definition as that used for the STC
(see “Software Test Case Documentation” on page 274). Std 829 suggests
describing the scope of the STP based on its focus and relationship to the
STC and other test documentation. More often than not, you can get away
with a simple reference to the Scope section in the STC.

12.5.3.3 References

As usual, provide a link to any external documents (such as the STC)
that are relevant to the STP. Std 829 also suggests including links to the
individual test cases covered by this procedure. That, however, would be
meaningful only if the STP contained just a few test procedures. In this
revised format, the STP will attach the test case links to the individual test
procedures in Section 3 (“Test Procedures”). If you have a very large system
consisting of multiple, independent applications, you will probably have
separate STPs for each of those applications. You would want to provide
links to those other STPs in this section of the STP document.

12.5.3.4 Notation for Descriptions

As in the STC, you would describe your STP tag format here. This book
recommends using STP tags of the form proj_STP_xxx, where proj is some
project-specific ID (such as DAQ or POOL) and xxx is some unique (possibly
decimal) numeric sequence.

Note that there is a many-to-one relationship from STC test cases to
STP test procedures. Therefore, you cannot easily embed traceability infor-
mation into the STP tags (there’s a similar situation with SDD tags; see
“SDD Traceability and Tags” on page 245). This is why it’s important to
include the related STC tags with each test procedure, to facilitate trace-
ability back to the corresponding test cases.

12.5.3.5 Relationship to Other Documents

In the modified variant of the STP, I’ve removed this section. Std 829 sug-
gests using it to describe the relationship of this STP to other test procedure

Software Test Documentation 293

documents—specifically, which test procedures must be performed before
or after other test procedures. However, in the modified form all test pro-
cedures appear in the same document. Therefore, a description of the rela-
tionship between tests should accompany each individual test procedure.
(This information appears in the “Special Requirements” section.)

This is one reason for including this section in the modified form of
the STP: very large systems may contain multiple (and relatively indepen-
dent) software applications. There would probably be separate STP docu-
ments for each of these applications. This section of the modified STP
could describe the relationship of this STP to those others, including the
order in which tests must execute these STPs.

12.5.3.6 Instructions for Running Tests

This section should contain generic instructions to whomever will be run-
ning the tests. Usually the people running the tests are not the software
developers.18 This section can provide insights into the software to be tested
for those who have not lived with it on a daily basis from its inception.

One important piece of information that should appear here is what to
do if a test procedure fails. Should the tester attempt to continue that test
procedure (if possible) in hopes of finding additional problems? Should
the tester immediately suspend testing operations until the development
team resolves the issue? If a test has been suspended, what is the process for
resuming the test? For example, most QA teams require, at the very least,
rerunning the test procedure from the beginning.19 Some QA teams may
also require a meeting with development to determine a set of regression
tests to run before resuming the test procedure from the point of failure.

This section should also discuss how to log any problems/anomalies
that occur during testing and to describe how to bring the system back into
a stable state or shut it down should a critical or catastrophic event occur.

This is also where you’ll describe how to log successful runs of a test
procedure. A tester will usually log the date and time they begin a test, pro-
vide the name of the test engineer, and specify which test procedure they
are executing. At the successful conclusion of a test, most test procedures
require signatures by the test engineer, a possible QA or customer represen-
tative, and possibly other managerial or project-related personnel. This sec-
tion should describe the process for obtaining these signatures and signing
off on successful runs of a test procedure.

18. Indeed, QA guidelines claim that it is unacceptable and unethical for developers to run
the formal system integration and acceptance tests for a product. Many companies won’t even
allow the developers to produce the executable code, instead relying on the QA department
to construct the builds from the source code control system for testing.

19. Some might even require running the entire STP from the beginning, although this is
usually too expensive and, therefore, impractical. The usual compromise is to rerun each
test procedure that fails and then, at the end of the STP, rerun the whole STP to guarantee it
runs in its entirety without failure.

294 Chapter 12

12.5.4 Test Procedures
This section of the document repeats for each individual test procedure
for the system under test. This is a modification of the Std 829 STP, which
describes only a single (or maybe a few) test procedures in the document.
Presumably, there would be multiple STP documents if your system
requires a large number of test procedures.

12.5.4.1 Brief Description (for Test Procedure #1)

This is the title of the test procedure. It should be a short phrase, such as
DIP Switch #1 Test, that provides a quick and perhaps informal procedure
identification.

Procedure Identification
This is the unique identifier (tag) for this test procedure. Other docu-
mentation (such as the RTM) will reference this test procedure using
its tag.

Purpose
This is an expanded description of this test procedure: why it exists,
what it tests, and where it sits in the big picture.

List of Test Cases Covered by This Procedure
This section provides reverse traceability back to the STC document. It
is simply a list of all the test cases that this test procedure covers. Note
that this set of test cases should be mutually exclusive of the sets found
in other test procedures—no test case tag should ever appear in more
than one test procedure. You want to preserve the many-to-one rela-
tionship from test cases to test procedures. This will help keep the RTM
clean, meaning that you won’t have to attach multiple test procedures
to the same row in the RTM.

Now, it is quite possible that multiple test procedures will provide
inputs (and verify corresponding outcomes) that test the same test case.
This isn’t a problem; just pick one procedure that will take credit for
covering that test case and assign the test case to that procedure. When
someone is tracing through the requirements and verifying that the
test procedures test a particular requirement, they’re not going to care
if the test procedures test that requirement multiple times; they’ll be
interested only in determining that the requirement has been tested at
least once somewhere in the test procedures.

If you have a choice of test procedures with which to associate a
given test case, it’s best to include that test case in a test procedure that
also handles related test cases. Of course, in general, this type of asso-
ciation, whereby related test cases are put into the same test procedure,
happens automatically. That’s because you don’t arbitrarily create test
procedures and then assign test cases to them. Instead, you pick a set of
(related) test cases and use them to generate a test procedure.

Software Test Documentation 295

Special Requirements
This section identifies anything external you’ll need for the test proce-
dure in order to successfully execute the test. This includes databases,
input files, existing directory paths, online resources (such as web
pages), dynamically linked libraries and other third-party tools, and
automated test procedures.

Setup Required Prior to Running Procedure
This section describes any processes or procedures to execute before
you can run the test procedure. For example, a test procedure for
autonomous vehicle software might require an operator to drive the
vehicle to a specified starting point on a test track before starting the
test. Other examples might be ensuring an internet or server connec-
tion is available. With the SPM, an example of setup could include
ensuring that the test fixture (five-gallon bucket of water) is filled to
some specified level.

Software Version Number for This Execution
This is a “fill in the blank” field for the test procedure. It does not man-
date a software version for running the test; rather, the tester enters the
current software version number prior to the test’s execution. Note that
this field has to be filled in for each test procedure. You cannot sim-
ply write this value down once for the whole STP. The reason is quite
simple: during testing you may encounter defects that require you to
suspend the test. Once the development team corrects those defects,
the testing can resume, usually from the beginning of the test proce-
dure. Because different procedures in an STP could have been run on
different versions of the software, you need to identify which version of
the software you’re using when running each procedure.20

Detailed Steps Required to Run This Procedure
This section contains steps that are necessary to execute the test proce-
dure. There are two types of steps in a test procedure: actions and veri-
fications. An action is a statement of work to be done, such as providing
some input to the system. A verification involves checking some outcome/
output and confirming that the system is operating correctly.

You must number all procedure steps sequentially—typically
starting from 1, though you could also use section numbers like 3.2.1
through 3.2.40 for a test procedure that has 40 steps. At the very least,
each verification step should be preceded by three or so underline
characters (___) or a box symbol (see Figure 12-3) so that the tester
can physically check off the step once they have successfully completed

20. As noted earlier, some QA teams will require running the entire LTP over again if there
were any failures on individual test procedures (whose defects were presumably corrected and
retested). This ensures that all test procedures in the LTP all have the same version number.

296 Chapter 12

it. Some people prefer putting the checkbox on every item (that is, both
actions and verifications) in the test procedure to ensure that the tester
marks off each step as they complete it. Perhaps there should be lines
on the actions and checkboxes on the verifications. However, this adds
considerable menial work to the process, so consider carefully whether
it’s important enough to do.

3.1.25 Verify…

Figure 12-3: Using a checkbox
on a verify statement

Note that the detailed steps should include information (in appro-
priate positions) such as the following:

•	 Any actions needed to start the procedure (obviously, these should
appear in the first few steps of the procedure)

•	 A discussion of how to make measurements or observe outputs
(don’t assume the tester is as familiar with the software as the devel-
opers are)

•	 How to shut down the system at the conclusion of the test proce-
dure to leave the system in a stable state (if this is necessary, it will
obviously appear in the last steps of the procedure)

•	 Sign-off

At the end of the test procedure there should be blank lines for the
tester, observers, customer representatives, and possibly management
personnel to sign off on the successful conclusion of the test procedure.
A signature and date are the minimum information that should appear
here. Each organization may mandate which signatures are necessary.
At the very least (such as in a one-person shop), whoever executes the
test procedure should sign and date it to affirm that it was run.

12.5.5 General
The last section of an STP is a generic catch-all section where you can place
information that doesn’t fit anywhere else.

12.5.5.1 Document Change Procedures

Many organizations have set policies for changing test procedure docu-
ments. They could, for example, require customer approval before making
official changes to an ATP. This section outlines the rules and necessary
approval procedures and processes for making changes to the STP.

12.5.5.2 Attachments and Appendixes

It’s often useful to attach large tables, images, and other documentation
directly to the LTP so that it is always available to a reader, as opposed to
providing a link to a document that the reader cannot access.

Software Test Documentation 297

12.5.6 Index
If desired, you can add an index at the end of the STP.

12.5.7 A Sample STP
This section presents a shortened (for space/editorial purposes) example
of an STP for the DAQ DIP switch project.

1 Table of Contents
[Omitted for space reasons]

2 Introduction

2.1 Document Identifier
Mar 22, 2018: DAQ_LTP, Version 1.0 Randall Hyde

2.2 Scope
This document describes some of the DIP switch test procedures
in the DAQ system (shortened for space/editorial reasons).

2.3 Glossary, Acronyms, and Abbreviations

N O T E This is a very simple and short example to keep this book smaller. Please don’t use this
as boilerplate; you should diligently pick out terms and abbreviations your document
uses and list them in this section.

Term Definition

DAQ Data acquisition system

SBC Single-board computer

Software Design Description
(SDD)

Documentation of the design of the software system
(IEEE Std 1016-2009)—that is, this document.

Software Requirements
Specification (SRS)

Documentation of the essential requirements (func-
tions, performance, design constraints, and attri-
butes) of the software and its external interfaces
(IEEE Std 610.12-1990).

System Requirements
Specification (SyRS)

A structured collection of information that embod-
ies the requirements of the system (IEEE Std
1233-1998). A specification that documents the
requirements to establish a design basis and the
conceptual design for a system or subsystem.

Software Test Cases (STC) Documentation that describes test cases (inputs and
outcomes) to verify correct operation of the soft-
ware based on various design concerns/require-
ments (IEEE Std 829-2009).

Software Test Procedures
(STP)

Documentation that describes the step-by-step
procedure to execute a set of test cases to verify
correct operation of the software based on various
design concerns/requirements (IEEE Std 829-2009).

298 Chapter 12

2.4 References

Reference Discussion

DAQ STC See “A Sample Software Test Case Document” on
page 281.

DAQ STP An example of a full STP for the Plantation Productions
DAQ system can be found at http://www.plantation
-productions.com/Electronics/DAQ/DAQ.html.

IEEE Std 830-1998 SRS documentation standard

IEEE Std 829-2008 STP documentation standard

IEEE Std 1012-1998 Software verification and validation standard

IEEE Std 1016-2009 SDD documentation standard

IEEE Std 1233-1998 SyRS documentation standard

N O T E An additional reference that might make sense (not included here because it doesn’t
exist for this simple project) is a link to any associated documentation for the DAQ
system, such as programming manuals or schematics.

2.5 Notation for Descriptions
Test procedure identifiers (tags) in this document shall take
the form:

DAQ_STP_xxx

where xxx is a (possibly dotted decimal) numeric sequence that
creates a unique identifier out of the whole sequence. Note that
xxx values for STP tags are usually numbered from 000 or 001 and
usually increment by 1 for each additional test case item sharing
the same xxx string.

2.6 Instructions for Running the Tests
Execute each test procedure exactly as stated. If tester encounters
an error or omission in the procedure, tester should redline (with
red ink, which tester should use only for redlines) the procedure
with the correct information and justify the redline in the test log
(with date/timestamp and signature). All redlines within the test
procedure(s) must be initialized by all signatories at the end of
the test procedure.

If tester discovers a defect in the software itself (that is, not simply
a defect in the test procedure), the tester shall note the anomaly
in a test log and create an Anomaly Report for the defect. If the
defect is marginal or negligible in nature, the tester may con-
tinue with the test procedure, if possible, and attempt to find any
other defects in the system on the same test procedure run. If the
defect is critical or catastrophic in nature, or the defect is such
that it is impossible to continue the test procedure, the tester shall

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

Software Test Documentation 299

immediately suspend the test and shut off power to the system.
Once the defect is corrected, tester must restart the test proce-
dure from the beginning of the procedure.

A test procedure succeeds if and only if the tester completes all
steps without any failures.

3 Test Procedures

3.1 RS-232 (Serial Port) Operation

3.1.1 DAQ_STP_001

3.1.2 Purpose
This test procedure tests the proper operation of DAQ
commands sourced from the RS-232 port.

3.1.3 Test Cases
DAQ_STC_701_000_000

DAQ_STC_702_000_000

DAQ_STC_703_000_000

DAQ_STC_726_000_000

3.1.4 Special Requirements
This test procedure requires a serial terminal emulator
program running on a PC (for example, the MTTY.exe pro-
gram that comes as part of the Netburner SDK; you could
even use Hyperterm if you are masochistic). There should
be a NULL modem cable between the PC’s serial port and
the COM1 port on the Netburner.

3.1.5 Setup Required Prior to Running
Netburner powered up and running application software.
Serial terminal program should be properly connected to
the serial port on the PC that is wired to the Netburner.

3.1.6 Software Version Number
Version number:

Date:

3.1.7 Detailed Steps
1. Set DIP switch 1 to the ON position.

2. Reset the Netburner and wait several seconds for
it to finish rebooting. Note: Rebooting Netburner
may produce information on the serial terminal.
You can ignore this.

3. Press enter on the line by itself into the terminal
emulator.

300 Chapter 12

4. Verify that the DAQ system responds with a new-
line without any other output

5. Type help, then press enter on a line by itself.

6. Verify that the DAQ software responds with a help
message (contents unimportant as long as it is obvi-
ously a help response).

7. Set DIP switch 1 to the OFF position.

8. Reset the Netburner and wait several seconds for
it to finish rebooting. Note: Rebooting Netburner
may produce information on the serial terminal.
You can ignore this.

9. Type the help command into the serial terminal.

10. Verify that the DAQ system ignores the help
command.

3.1.8 Sign-off on Test Procedure
Tester: Date:

QA: Date:

N O T E In a full STP document, there would probably be additional test procedures here; the
following test procedure ignores that possibility and continues tag numbering with
DAQ_STP_002.

3.2 Ethernet Address Selection

3.2.1 DAQ_STP_002

3.2.2 Purpose
This test procedure tests the initialization of the Ethernet
IP address based on DIP switches 5 and 6.

3.2.3 Test Cases
DAQ_STC_709_000_000

DAQ_STC_710_000_000

DAQ_STC_711_000_000

DAQ_STC_712_000_000

3.2.4 Special Requirements
This test procedure requires an Ethernet terminal emula-
tor program running on a PC (Hercules.exe has been a good
choice in the past). There should be an Ethernet (crossover
or through a hub) cable between the PC’s Ethernet port
and the Ethernet port on the Netburner.

Software Test Documentation 301

3.2.5 Setup Required Prior to Running
Netburner powered up and running application software. DIP
switch 3 in the ON position. DIP switch 4 in the OFF position.

3.2.6 Software Version Number
Version number:

Date:

3.2.7 Detailed Steps
1. Set DIP switches 5 and 6 to the OFF position.

2. Reset the Netburner and wait several seconds for it
to finish rebooting.

3. From the Ethernet terminal program, attempt
to connect to the Netburner at IP address
192.168.2.70, port 20560 (0x5050).

4. Verify that the connection was successful.

5. Enter a help command and press the enter key.

6. Verify that the DAQ system responds with an
appropriate help message.

7. Set DIP switch 5 to the ON position and 6 to the
OFF position.

8. Reset the Netburner and wait several seconds for it
to finish rebooting.

9. From the Ethernet terminal program, attempt
to connect to the Netburner at IP address
192.168.2.71, port 20560 (0x5050).

10. Verify that the connection was successful.

11. Enter a help command and press the enter key.

12. Verify that the DAQ system responds with an
appropriate help message.

13. Set DIP switch 5 to the OFF position and 6 to the
ON position.

14. Reset the Netburner and wait several seconds for it
to finish rebooting.

15. From the Ethernet terminal program, attempt
to connect to the Netburner at IP address
192.168.2.72, port 20560 (0x5050).

16. Verify that the connection was successful.

17. Enter a help command and press the enter key.

302 Chapter 12

18. Verify that the DAQ system responds with an
appropriate help message.

19. Set DIP switches 5 and 6 to the ON position.

20. Reset the Netburner and wait several seconds for it
to finish rebooting.

21. From the Ethernet terminal program, attempt
to connect to the Netburner at IP address
192.168.2.73, port 20560 (0x5050).

22. Verify that the connection was successful.

23. Enter a help command and press the enter key.

24. Verify that the DAQ system responds with an
appropriate help message.

3.2.8 Sign-off on Test Procedure
Tester: Date:

QA: Date:

N O T E In a full STP document, there would probably be additional test procedures here.

4 General

4.1 Document Change Procedures
Whenever making changes to this document, add a new line to
Section 2.1 listing, at a minimum, the date, project name (DAQ_
STP), version number, and authorship.

4.2 Attachments and Appendixes
[In the interests of space, none are provided here; in a real STP,
putting the schematic of the DAQ system would be a good idea.]

5 Index
[Omitted for space reasons.]

12.5.8 Updating the RTM with STP Information
Because STP tags are very similar in nature to SDD tags, it should come as
no surprise that the process for adding STP tags to the RTM is quite similar
to that for adding SDD tags (see “Updating the Traceability Matrix with
Design Information” on page 259).

The STP adds a single column to the RTM: the STP tag column.
Unfortunately, the STP tag does not directly embed any traceability infor-
mation, so you’ll have to extract that information from the STP to deter-
mine where to place STP tags in the RTM.

As you may recall from “List of Test Cases Covered by This Procedure”
on page 294, each test procedure in an STP must include the list of test
cases it covers. Though Std 829 does not require this, I strongly suggest

Software Test Documentation 303

that you include this section. If you’ve done that, you’ve already created the
reverse traceability back to the requirements, which makes it easy to fill in
the STP tags in the RTM. To do so, just locate each test case tag (listed in the
current test procedure) and copy the test procedure’s STP tag into the STP
tag column in the RTM (on the same row as the corresponding test case).
Of course, because there are multiple test cases associated with a single
test procedure, you’ll also have several copies of the same STP tag spread
throughout the RTM (one per associated test case).

Should you ever want to easily trace your STP tags back to all the require-
ments in the RTM, particularly without having to look up the list in the
STP, simply sort the RTM by the STP tag column. This will collect all the
requirements (and everything else linked to that STP tag) into a contiguous
group in the matrix and make it easy to identify everything associated with
that tag.

If you choose some other method of specifying test cases in the test
procedure that doesn’t involve incorporating the STC tags within the test
procedures, then determining the placement of the STP tags in the RTM
becomes a manual—and often laborious—process. That’s why I strongly
recommend including STC tag numbers in a test procedure when you first
create it.

12.6 Level Test Logs
Although each test procedure contains a signature section where the tester
(and any other desired personnel) can sign off on a successful test comple-
tion, a separate test log is needed to handle anomalies that occur during
testing or to simply hold comments and concerns that the tester may have
while running the test procedure.

Perhaps the most important job of this Level Test Log (LTL) is to present a
chronological view of the testing process. Whenever a tester begins running
a test procedure, they should first log an entry stating the date, time, test pro-
cedure they are executing, and their name. Throughout the test’s execution,
the tester can add entries to the test log (as necessary) indicating:

•	 Start of a test procedure (date/time)

•	 End of a test procedure (date/time)

•	 Anomalies/defects found (and whether the test was continued or
suspended)

•	 Redlines/changes needed to the test procedure because of errors
found in the procedure itself (for example, the test procedure could list
an incorrect outcome; if the tester can show that the program output
was correct even if it differs from the test procedure, they would redline
the test procedure and add an appropriate justification to the test log)

•	 Concerns about outcomes the program produces that the tester finds
questionable (perhaps the test procedure doesn’t list any outcome, or
the test procedure’s outcomes are questionable)

304 Chapter 12

•	 Personnel changes (for example, if a tester changes in the middle of a
test due to a break, shift change, or different experience needed)

•	 Any break period during the test procedure (for example, lunch break
or end of the workday)

Technically, all you need for a test log is a sheet of (preferably lined)
paper. More often than not, STP creators add several sheets of lined paper
to the end of the STP specifically for this test log. Some organizations sim-
ply maintain the test log electronically using a word processor or text editor
(or even a specially written application). Of course, Std 829 outlines a for-
mal recommendation for test logs:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details

2.1 Description

2.2 Activity and Event Entries

3 General

3.1 Glossary

12.6.1 Introduction in the Level Test Logs Document
In addition to introducing the subsections that follow, this section might
also identify the organization that created the document and the current
status.

12.6.1.1 Document Identifier

A unique identifier for this document; as with all Std 829 documents this
should include, at the very least, the date, some descriptive name, a version
number, and authorship. A change history (of the outline/format, not the
specific log) might appear here as well.

12.6.1.2 Scope

The Scope section summarizes the system and features that the associated
test procedure tested. Generally, this would be a reference to the test proce-
dure’s Scope section unless there was something special about this particu-
lar test run.

12.6.1.3 References

At the very least, this section should refer to the STP (and in particular, the
specific test) document for which this test log was created.

Software Test Documentation 305

12.6.2 Details
This section introduces the following subsections and is what most people
would consider the actual “test log.”

12.6.2.1 Description

This section (only one occurrence per test log) describes items that will
apply to all test log entries. This could include the following:

•	 Identification of the test subject (for example, by version number)

•	 Identification of any changes made to the test procedure (for example,
redlines) prior to this test

•	 Date and time of the start of the test

•	 Date and time of the stop of the test

•	 Name of the tester running the test

•	 Explanation for why testing was halted (if this should happen)

12.6.2.2 Activities and Event Entries

This section of the test log records each event during the execution of the
test procedure. This section (containing multiple entries) typically docu-
ments the following:

•	 Description of the test procedure execution (procedure ID/tag)

•	 All personnel observing/involved in the test run—including testers,
support personnel, and observers—and the role of each participant

•	 The result of each test procedure execution (pass, fail, commentary)

•	 A record of any deviations from the test procedure (for example, redlines)

•	 A record of any defects or anomalies discovered during the test proce-
dure (along with a reference to an associated Anomaly Report if one
is generated)

12.6.3 Glossary
This section of the LTL documentation contains the usual glossary associ-
ated with all Std 829 documents.

12.6.4 A Few Comments on Test Logs
To be honest, the Std 829 outline is way too much effort for such a simple
task. There are a few tips for managing the effort involved in this document.

12.6.4.1 Overhead Management

Almost all of the effort that would go into creating an Std 829 LTL outline-
compliant document can be eliminated by simply attaching the test log
directly to the end of the STP. The test log then inherits all the preface

306 Chapter 12

information from the STP, so all you need to document is the information
that appears at the very beginning of “Level Test Logs” on page 303.

Note that LTLs have four variants, as typical for all Std 829 level docu-
ments: Component Test Logs (aka Unit Test Logs), Component Integration
Test Logs (aka Integration Test Logs), System Test Logs (aka System
Integration Test Logs), and Acceptance Test Logs (possibly including
Factory Acceptance Test Logs or Site Acceptance Test Logs).21

In reality, it’s rare for there to be much in the way of Component or
Component Integration Test Logs. Most frequently, the corresponding
test procedures are automated tests. Even when they’re not, the develop-
ment team usually runs these tests and immediately corrects any defects
they find. Because these tests run frequently (often multiple times per day,
particularly in teams using Agile-based methodologies), the overhead with
documenting these test runs is far too much.

System Test Logs and Acceptance Test Logs are the variants of the LTL
that testers (independent of the development team) run, and hence the
ones that require the creation of actual test logs.

12.6.4.2 Recordkeeping

The test logs are different from the other Std 829 documents in a very
fundamental sense. Most Std 829 documents are static documents; about
the only thing you do with them is fill in details like software version num-
bers and check off verification steps. The basic structure of the document
doesn’t change if you run the procedure over and over again. Ultimately,
there is no reason to keep any old copies of the test procedure around (like
runs of the test procedure that failed in the middle of execution). All you
really need to show the customer is the last run of the test procedure where
you successfully executed all steps and passed the entire procedure.

The test logs, unlike the other documents you’ve seen in this chapter
thus far, are dynamic documents. They will differ radically from test run to
test run (even if nothing else changes, at least all the dates and timestamps
will change). Furthermore, a test log isn’t a boilerplate document where you
simply fill in a few blanks and check off some checkboxes. It’s essentially a
blank slate that you create while actually running the test. If there are fail-
ures, or redlines, or commentary, the test log maintains the history of these
events. Therefore, it is important to keep all your test logs, even the ones that
recorded failed tests. It is highly improbable that any system will be perfect;
there will be mistakes and defects you discover during testing. The test logs
provide proof that you’ve found, corrected, and retested for these defects.

If you throw away all the old test logs that document all the defects
discovered along the way and present only perfect test logs, any reasonable
customer is going to question what you’re hiding. Mistakes and defects are
a normal part of the process. If you don’t show that you’ve found and cor-
rected these mistakes, your customers will assume that you haven’t tested
the system well enough to find the defects or that you’ve faked the test logs.

21. As usual, I’ve included some common names (non–Std 829) in parentheses.

Software Test Documentation 307

Keep the old test logs! This proves you’ve done your QA due diligence for
your product.

You could argue that keeping old test procedures to show redlines or
interruptions in the test process is also important. However, any redline or
interruption that appears on a test procedure document had better show up
in the corresponding test log, so you don’t need to keep old test procedures
that you’ve actually rerun.

Note that this does not imply that all test procedures you’ve run should
be perfect. If you have properly documented and justified redlines on a test
procedure, yet the test execution ran successfully to its conclusion, there is
no need to rewrite the test procedure and refill all the checkboxes to include
a clean test procedure in your final documentation. If it was successful,
even with redlines, leave it alone.22 Redlines don’t indicate a failure of the
software system; they are a defect, of course, but in the test procedure itself
rather than the software. The goal of the test procedure is to test the soft-
ware, not the test procedure. If minor changes to the test procedure are all
you have, redline them and move on.

In many organizations, as I’ve said before, if any verification step in a
test procedure fails, then after any defects are corrected, the entire proce-
dure must be run from the beginning (a full regression test). For some test
procedures or in some organizations, there may be a process in place to
temporarily suspend a test procedure, update the software, and then resume
the test procedure upon resolving the defect. In such cases, you can treat the
verification failure step as though it were a redline: document the original
failure in the test log, document the fact that the development team repaired
the defect, and then document the correct operation of the software (at the
failed verification step) with the new version of the software.23

12.6.4.3 Paper vs. Electronic Logs

Some people prefer creating electronic test logs; some organizations or
customers demand paper test logs (filled in with pens, not pencils). The
problem with electronic logs (especially if you create them using a word
processor rather than an application program specifically designed to
log test procedure runs) is that they are easily faked. Of course, no great
programmer would ever fake a test log. However, there are less-than-great
programmers in this world who have faked a test log. Unfortunately, the
actions of those few have sullied the reputations of all software engineers.
Therefore, it’s best to create test logs that are not easily faked, which often
means using paper.

Someone could fake paper logs; however, it’s a lot more work and usually
more obvious. Ultimately, customers are probably going to want hard copies

22. You should, of course, update the electronic version of the document so you don’t have to
re-redline the test procedure if you ever have to run it again.

23. Personally, I would have a big problem with this approach. However, if you have a par-
ticularly large test procedure, it could be very expensive to restart that procedure every time
testers find a defect.

308 Chapter 12

of the test logs; when they want them in electronic form, they’ll probably
want scanned images of the hardcopy logs. They will be expecting you to
maintain those paper logs in storage for legal reasons.

Perhaps the best solution is to use a software application specifically
designed for creating test logs, one that automatically logs the entries to a
database (making it a bit more difficult to fake the data). For the customer,
you would print a report from the database to provide a hardcopy (or gen-
erate a PDF report if they wanted an electronic copy).

Regardless of how testers generate the original test log, most organiza-
tions will require them to eventually create a paper test log, and then the
testers, observers, and other personnel associated with the test run will have
to sign and date it to certify that the information is correct and accurate.
This is a legal document at this point; someone attempting to fake any data
could land in serious legal jeopardy.

12.6.4.4 Inclusion in the RTM

Normally, test logs don’t appear in the traceability matrix. However, there
is no reason you couldn’t include them there. There is a one-to-many rela-
tionship between test procedures (and, therefore, STPs) and test logs. Thus,
if you assign a unique identifier (tag) to each test report, you can add that
identifier to an appropriate column in the RTM.

Because test logs have a many-to-one relationship to test procedures,
it wouldn’t be a bad idea to model the tag ID on the others that this book
presents. For example, use something such as: proj_TL_xxx_yyy where xxx
comes from the test procedure tag (for example, 005 from DAQ_STP_005)
and yyy is a (possibly decimal) numeric sequence that creates a unique tag
for the test log.

12.7 Anomaly Reports
When a tester, a development team member, a customer, or anyone else
using the system discovers a software defect, the proper way to document it
is with an Anomaly Report (AR), also known as a Bug Report or Defect Report.
All too often an AR consists of someone telling a programmer, “Hey, I
found a problem in your code.” The programmer then runs off to their
machine to correct the problem and there’s no documentation to track the
anomaly. This is very unfortunate, because tracking defects in a system is
very important to maintaining the quality of that system.

The AR is the formal way to track system defects. Among other things,
it captures the following information:

•	 Date and time of defect occurrence

•	 The person who discovered the defect (or at least, who recorded the
defect report in response to some user’s complaint)

•	 A description of the defect

•	 A procedure for reproducing the defect in the system (assuming the
issue is deterministic and is easy enough to reproduce)

Software Test Documentation 309

•	 The impact the defect has on the system (for example, catastrophic,
critical, marginal, negligible)

•	 The importance of the defect to end users (economic and social
impact) so management can assign a priority to correcting it

•	 Any possible workarounds to the defect (so users can continue using
the system while the development team works on correcting the defect)

•	 A discussion of what it might take to correct the defect (including rec-
ommendations and conclusions concerning the defect)

•	 Current status of the anomaly (for example, “new anomaly,” “develop-
ment team is working on correction,” “in testing,” “corrected in soft-
ware version xxx.xxx”)

Naturally, Std 829 has a suggested outline for Anomaly Reports.
However, most organizations use defect-tracking software to record defects
or anomalies. If you aren’t willing to spend the money on a commercial
product, there are many open source products freely available, such as
Bugzilla. Most of these products use a database organization that is reason-
ably compatible with the recommendations from Std 829:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details

2.1 Summary

2.2 Date Anomaly Discovered

2.3 Context

2.4 Description of Anomaly

2.5 Impact

2.6 Originator’s Assessment of Urgency (see IEEE 1044-1993 [B13])

2.7 Description of Corrective Action

2.8 Status of the Anomaly

2.9 Conclusions and Recommendations

3 General

3.1 Document Change Procedures and History

12.7.1 Introduction in the Anomaly Reports Document
The following subsections describe the components of the AR introduction.

12.7.1.1 Document Identifier

This is a unique name that other reports can reference (such as test logs
and test reports).

310 Chapter 12

12.7.1.2 Scope

The Scope section gives a brief description of anything that doesn’t appear
elsewhere in the AR.

12.7.1.3 References

References include links to other relevant documents, such as test logs and
test procedures.

12.7.2 Details
This section introduces the subsections that follow.

12.7.2.1 Summary

Here you give a brief description of the anomaly.

12.7.2.2 Date Anomaly Discovered

List the date (and time, if possible/appropriate) when the anomaly was
discovered.

12.7.2.3 Context

Software version and installation/configuration information goes in the
Context section. This section should also refer to relevant test procedures
and test logs, if appropriate, which should help to identify this anomaly. If
no such test procedure exists for this anomaly, consider suggesting an addi-
tion to some test procedure that would catch it.

12.7.2.4 Description of Anomaly

Provide an in-depth description of the defect including (if possible) how to
reproduce it. The description might include the following information:

•	 Inputs

•	 Actual results

•	 Outcome(s) (particularly, the outcomes that vary from the test
procedure)

•	 Procedure step of failure

•	 Environment

•	 Was the defect repeatable?

•	 Any tests executed immediately prior to failure than might have
affected results

•	 Tester(s)

•	 Observer(s)

Software Test Documentation 311

12.7.2.5 Impact

Describe the impact this defect will have on system users. Describe any pos-
sible workarounds, such as changing the documentation or modifying the
use of the system. If possible, estimate cost and time to repair this defect
and the risk associated with leaving it in place. Estimate the risk associated
with fixing it, which could impact other system features.

12.7.2.6 Originator’s Assessment of Urgency

State the level of urgency for a speedy repair. The integrity levels and risk
assessment scale from “Integrity Levels and Risk Assessment” on page 263
are probably a good minimum mechanism for stating the urgency of repair.

12.7.2.7 Description of Corrective Action

This section describes the time needed to determine the reason for the
defect; an estimate of the time, cost, and risk associated with repairing it;
and an estimate of the effort required to retest the system. Include any nec-
essary regression tests to ensure that nothing else is broken by the fix.

12.7.2.8 Status of the Anomaly

List the status of the current defect. Std 829 recommends statuses such as
“open,” “approved for resolution,” “assigned for resolution,” “fixed,” and
“tested with the fix confirmed.”

12.7.2.9 Conclusions and Recommendations

This section should provide commentary as to why the defect occurred and
recommend possible changes to the development process to prevent similar
defects in the future. This section might also suggest additional require-
ments, test cases, and (modifications to) test procedures to catch the anom-
aly in the future; this is particularly important if testing discovered the
anomaly by accident rather than by running specific test procedure steps to
catch this particular defect.

12.7.2.10 General

This is the usual end-of-document section in Std 829 documents providing
a change history (to the AR format, not to a specific AR) and change proce-
dures. Std 829 does not recommend a glossary.

12.7.3 A Few Comments on Anomaly Reports
It is worthwhile to bear the following points in mind when dealing with
Anomaly Reports.

312 Chapter 12

12.7.3.1 ARs Don’t Go in the RTM

The purpose of the traceability matrix is to be able to trace requirements
of designs and tests to ensure that the system successfully meets all require-
ments. While one could argue that test logs belong in the RTM, most people
don’t bother to put them there because they normally attach test logs directly
to the completed test procedures.

Anomalies, on the other hand, aren’t something whose existence
you’re trying to prove; indeed, in a perfect world you’re trying to disprove
the existence of anomalies. This doesn’t mean you discard ARs. Just as
with test logs, it’s very important to keep all the old ARs around—they pro-
vide valuable proof that you’ve done your due diligence when testing the
system. More importantly, you want to keep ARs for regression purposes.
Sometimes long after a defect has been discovered and corrected, it finds its
way into the system again. Having a historical record of ARs makes it pos-
sible to go back and examine the original cause and its solution.

12.7.3.2 Electronic vs. Paper ARs

As this chapter noted earlier, most organizations use a defect-tracking sys-
tem to capture and track ARs. Although Std 829 doesn’t specifically suggest
or require paper documents (indeed, Std 829 points out that you can use
software to track anomalies), the outline form tends to suggest a hardcopy
format. But given that most organizations use defect-tracking software, why
bother with hardcopy ARs? The main reason is portability in the “you can
carry it with you” sense. While using the defect-tracking system makes a
lot of sense for system integration, factory acceptance tests, and other tests
done at the development site where there is easy access to the tracker, in
some cases it may not be available or accessible at an installation during a
site acceptance test.24 In such situations, creating ARs on paper and then
entering them into the defect-tracking system when possible is probably
the best approach.

12.8 Test Reports
When testing is completed, a test report summarizes the results. As for
many of the other test documents, Std 829 describes a wide variety of test
reports you can produce. Std 829 defines Level Interim Test Status Reports
(LITSR), Level Test Reports (LTR), and Master Test Reports (MTR). Of
course, you can substitute Component, Component Integration, System, and
Acceptance in place of Level (with the usual common names as well).

A very large organization might need to produce interim test reports so
management can figure out what’s going on in an equally large system. For
more information on LITSRs, refer to IEEE Std 829-2008; they are, quite

24. Many defect-tracking systems are accessible via a web page interface. So as long as
you have internet access and your tracking system is available online, you can fill out bug
reports remotely.

Software Test Documentation 313

frankly, documentation for documentation’s sake for most projects, but
large governmental contracts might explicitly require them.

Level and Master Test Reports vary according to the size of the project.
Most small to medium-sized systems with (typically) a single software applica-
tion and, therefore, a single STP, will have a single test report, if any at all.

Once a system grows to the size that it contains several major software
applications, there will usually be a test report for each major application
and then an MTR as a summary of the results from the individual test
reports. The MTR, then, provides an executive-level review of all the tests.

12.8.1 Brief Mention of the Master Test Report
As the MTR is generally not a document that individual developers will deal
with, this section will simply present the Std 829-suggested outline without
further comment and then concentrate on LTRs.

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

2 Details of the Master Test Report

2.1 Overview of All Aggregate Test Results

2.2 Rationale for Decisions

2.3 Conclusions and Recommendations

3 General

3.1 Glossary

3.2 Document Change Procedures and History

For more information on the MTR, see IEEE Std 829-2008.

12.8.2 Level Test Reports
Although you could have component/unit test reports and component inte-
gration test reports, most organizations leave unit and integration testing to
the development department, as upper management generally doesn’t care
about the low-level details. Thus, the most common Level Test Reports (LTRs)
you’ll see will be System (Integration) Test Reports and Acceptance Test
Reports, typically Factory Acceptance Test Reports and Site Acceptance Test
Reports. Std 829 outlines LTRs as follows:

1 Introduction

1.1 Document Identifier

1.2 Scope

1.3 References

314 Chapter 12

2 Details

2.1 Overview of Test Results

2.2 Detailed Test Results

2.3 Rationale for Decisions

2.4 Conclusions and Recommendations

3 General

3.1 Glossary

3.2 Document Change Procedures and History

Sections 1 (“Introduction”) and 3 (“General”) are the same as for most
other Std 829 test documents in this chapter. The core of the test report is
in Section 2 (“Details”). The following subsections describe its contents.

12.8.2.1 Overview of the Test Results

This section is a summary of the test activities. It would briefly describe the
features covered by the tests, testing environment, software/hardware ver-
sion numbers, and any other general information about the test. The over-
view should also mention if there was anything special about the testing
environment that would yield different results if the test were conducted in
a different environment, like a factory.

12.8.2.2 Detailed Test Result

Summarize all the results in this section. List all anomalies discovered and
their resolution. If the resolution to a defect has been deferred, be sure
to provide justification and discuss the impact that defect will have on
the system.

If there were any deviations from the test procedure, explain and justify
those deviations. Describe any changes (redlines) to the test procedures.

This section should also provide a confidence level in the testing pro-
cess. For example, if the testing process focuses on code coverage, this sec-
tion should describe the estimated percentage of code coverage that the
testing processing achieved.

12.8.2.3 Rationale for Decisions

If the team had to make any decisions during the testing process such as
deviations from test procedures or failure to correct known anomalies, this
section should provide the rationale for those decisions. This section might
also justify any conclusions reached (in the next section).

12.8.2.4 Conclusions and Recommendations

This section should state any conclusions emanating from the test process-
ing. This section should discuss the product’s fitness for release/production
use, and recommend possibilities such as disabling certain, possibly known,

Software Test Documentation 315

anomalous features to allow early release of the system. This section could
also recommend stalling the release pending further development and pos-
sible debugging.

12.9 Do You Really Need All of This?
IEEE Std 829-2008 describes a huge volume of documentation. Do you
really need to create all this documentation for the next “killer app” you’re
developing by yourself in your home office? Of course not. Except for the
largest (government-sponsored) applications, the vast majority of the docu-
mentation described in Std 829 is complete overkill. For normal projects,
you’ll probably want to have the STC, SRL, and STP documents.25 Test logs
will simply be an appendix to the STP. Anomaly Reports would be entries
in your defect-tracking system (from which you can produce hardcopy
reports).

You can also reduce the size of your STC and STP documents by using
automated testing. You probably can’t eliminate all manual tests, but you
can get rid of many of them.

Test reports are easy enough to eliminate in smaller projects. The test
log at the end of the STP will likely serve as a reasonable alternative unless
you have multiple levels of management demanding full documentation.

Agile development methodologies might seem like a good alternative
for reducing the cost of all this documentation. However, keep in mind that
developing, validating, verifying, and maintaining all those automated test
procedures also has an associated—and often equivalent—cost.

12.10 For More Information
Dingeldein, Tirena. “5 Best Free and Open Source Bug Tracking Software

for Cutting IT Costs.” September 6, 2019. https://blog.capterra.com/top-free
-bug-tracking-software/.

IEEE. “IEEE Std 829-2008: IEEE Standard for Software and System Test
Documentation.” July 18, 2008. http://standards.ieee.org/findstds/standard
/829-2008.html. This is expensive ($160 US when I last checked), but this
is the gold standard. It’s more readable than the SDD standard, but still
heavy reading.

Peham, Thomas. “7 Excellent Open Source Bug Tracking Tools Unveiled by
Usersnap.” May 8, 2016. https://usersnap.com/blog/open-source-bug -tracking/.

25. With careful requirements design, you can probably eliminate the SRL if all your require-
ments are testable. If you are really brave, you could combine the STC and LTP into a single
document; however, it’s almost always a better idea to keep them separate.

https://usersnap.com/blog/open-source-bug-tracking/
https://blog.capterra.com/top-free-bug-tracking-software/
https://blog.capterra.com/top-free-bug-tracking-software/
http://standards.ieee.org/findstds/standard/829-2008.html
http://standards.ieee.org/findstds/standard/829-2008.html

316 Chapter 12

Plantation Productions, Inc. “Open Source/Open Hardware: Digital Data
Acquisition & Control System.” n.d. http://www.plantation-productions.com
/Electronics/DAQ/DAQ.html. This is where you’ll find the DAQ Data
Acquisition Software Review, Software Test Case, Software Test
Procedures, and Reverse Traceability Matrix.

Software Testing Help. “15 Best Bug Tracking Software: Top Defect/Issue
Tracking Tools of 2019.” November 14, 2019. http://www.softwaretestinghelp
.com/popular-bug-tracking-software/.

Wikipedia. “Bug Tracking System.” Last modified April 4, 2020.
https://en.wikipedia.org/wiki/Bug_tracking_system.

https://en.wikipedia.org/wiki/Bug_tracking_system
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.softwaretestinghelp.com/popular-bug-tracking-software/
http://www.softwaretestinghelp.com/popular-bug-tracking-software/

In the introduction, I explained how
there wasn’t space in this book for many

of the topics that Volume 2 promised would
be included here. Expect to see those topics in

Volumes 4, 5, and 6:
•	 Volume 4: Designing Great Code

•	 Volume 5: Great Coding

•	 Volume 6: Testing, Debugging, and Quality Assurance

Assuming I’m still alive to finish this series, I might add a book on user
documentation to the list. About the only thing I can promise is that there
won’t be as large a gap between Volumes 3 and 4 as there was between
Volumes 2 and 3!

Volume 4, Designing Great Code, will pick up where the second half of
this book left off. In this volume you’ve learned how to document the soft-
ware development process; in Volume 4 you’ll learn more about the design
process and how to apply the knowledge you’ve gained to design great code.

A F T E R W O R D :
D E S I G N I N G G R E A T C O D E

Glossary 319

A
Accessor function A function whose
sole purpose is to provide read or write
access to an otherwise private member of
some object.

ACM Association for Computing
Machinery

Activity diagram A UML flowcharting
scheme that graphically indicates the flow
of control through some design.

Actor External entity that interacts with
or otherwise controls a system.

Aggregation A relationship where one
class (the whole class) controls another class
(the parts class). The parts class could be
stand-alone (used by itself or other classes),
but the whole class cannot exist without the
parts class.

Alternative flow A condition section
in a Flow of Events scenario—typically,
where error or exceptional conditions
are handled.

Amateur programmer A novice or a pro-
grammer who lacks formal training, who
engages in programming without talent or
skill, or who prioritizes writing clever code
to impress others over making code more
readable and maintainable.

Anomaly Report A formal document
(electronic or hard copy) reporting an
instance of a defect in a software system.

Apprentice A person learning by practical
experience under skilled workers.

AR Anomaly Report

ASD Adaptive Software Development

AT Acceptance Test

B
Backdoor An exploit that a computer
programmer preprograms into a system to
allow anyone with knowledge of the back-
door to bypass system security.

Best practices A set of well-known proce-
dures or processes that have proved to pro-
duce successful and efficient results.

Black-box test data Input data for tests
that is generated by considering only the
system’s functionality, without looking at
the source code.

BSCS Bachelor of Science in Computer
Science

Bug Report See Anomaly Report.

C
CACM Communications of the ACM
(journal)

CASE Computer-Aided Software
Engineering

Case-neutral An identifier is case-neutral
if it would be accepted by a compiler that is
either case-insensitive or case-sensitive (that
is, the compiler would not permit two iden-
tifiers that differ only by alphabetic case).

G L O S S A R Y

320 Glossary

Catastrophic integrity level A definition
for software such that the consequences of
failure are disastrous (including death, sys-
tem destruction, environmental damage, or
huge financial loss).

Change-driven process A development
process that anticipates changes in require-
ments, resources, technology, and perfor-
mance as the project progresses, and is
focused on delivering value incrementally.

Coarse-grained Low level of detail.

Code coverage The percentage of the
source code that executes based on a set
of input (test) data. Code coverage of
100 percent implies that every statement
in the program executes at least once
given the corresponding set of inputs.

Code drivers Temporary testing code
used to simulate a function when the real
function doesn’t yet exist.

Code monkey Derogatory term for an
amateur programmer. Also see Cowboy coder.

Code refactoring Restructuring code to
improve the source without changing the
external behavior of the software.

Code scaffolding Temporary testing
code used to call functions that are part
of a system (when the system doesn’t yet
contain code to call those functions or the
system code isn’t stable or able to call the
function code).

Code spike A brief coding activity by a
single person to test a theory or to proto-
type some code (usually throwaway code).

Coder An engineer responsible for writ-
ing computer code.

Conceptual complexity Complexity
resulting from a system whose components
are difficult to understand.

Constraint A restriction on the domain or
range of some value or function.

COTS Commercial Off-the-Shelf.
Basically, any system you can pur-
chase on the open market that is not
custom-designed.

Cowboy coder Generally, a synonym for
an amateur programmer—one who writes
code without formal processes or consider-
ation for others.

Cowboy coding Software development
where programmers have autonomy over
the development process. This includes
control of the project’s schedule, languages,
algorithms, tools, frameworks, and coding
style. (Source: Wikipedia.)

CPM Critical Path Method

CPU Central Processing Unit

Cracker A criminal who illegally accesses
computer systems or computer data by
stealing passwords or employing other
system exploits.

Craftsman One who creates or performs
with skill or dexterity.

Critical integrity level A level of perfor-
mance where software must execute prop-
erly or there could be serious problems
including permanent injury, major perfor-
mance degradation, environmental dam-
age, or financial loss.

Critical section A section of code that
cannot support concurrent execution by
multiple threads.

D
DAQ Shortened name for the Plantation
Productions Digital Data Acquisition sys-
tem. See http://www.plantation-productions
.com/Electronics/DAQ/DAQ.html.

http://www.plantation-productions.com/Electronics/DAQ/DAQ.html
http://www.plantation-productions.com/Electronics/DAQ/DAQ.html

Glossary 321

DAQ_IF DAQ interface board. A circuit
board containing level shifters, a watch-
dog timer, I2C multiplexer, and other
SBC support circuitry for the Plantation
Productions DAQ system.

Defect Report See Anomaly Report.

Delphi An object-oriented program-
ming language based on (Object)
Pascal. Originally created by Borland
International, currently marketed by
Embarcadero, Inc.

Derived value An attribute (data field
of a class) is derived if its value is com-
puted on each access rather than retrieved
from memory.

Design attribute Anything in a design
that is a characteristic of a design entity,
relationship, or constraint.

Design constraint Any restriction or rule
that applies to a design element, attribute,
or relationship.

Design element Any item occurring in
a design that is structurally or functional
distinct from other items in the design.
Any item that is part of a design including
design entities, relationships, attributes, or
constraints.

Design entity A major component of a
design, such as a library, component, or
program unit.

Design patterns Generic templates for
common programming tasks.

Design relationship A design element
that names a connection or correspondence
between design entities.

Deterministic In a deterministic system,
the same series of inputs produces the same
flow of activity with the same outcomes.

DRY Don’t repeat yourself. Duplicate
code is complex code. See also OAOO.

Due diligence (in software development)
Research and quality assurance tasks that a
development team does to prepare for the
release of a software system.

E
Elitism The belief that belonging to a
select group makes an individual better
than others outside that group.

Empirical Originating in or being based
on observation or experience, as opposed
to being based on theory alone.

Encapsulation Hiding information inside
an object so that external entities cannot
access it. Also known as information hiding.

Ethics A system or set of moral principles.

Event External stimulus to a system that
often causes a transition from one state
to another or initiates the execution of
some activity.

F
FAT Factory Acceptance Test

FDD Feature-Driven Development

Feature creep Constantly adding new fea-
tures to the system.

Fine-grained Highly detailed.

Flow of Events (UML) Step-by-step
description of how an external actor inter-
acts with a system during the execution of a
use case.

Flowchart A graphical representation of
control flow through a program.

FPA See Function Point Analysis.

Framework A software library containing
a skeletal component of an application into
which a programmer injects application-
specific code.

322 Glossary

Functional Requirements Specification
(FRS) External requirements provided by
a customer for a software system.

Function Point Analysis A software
metric that considers the number of
inputs, outputs, and basic computations a
program requires.

G
Gantt charts Resource scheduling charts
that specify resource usage over time.

Getter An accessor function that returns
the value of a private member of some object.

GMP Grand Master Programmer

Gold plating Padding a system with
unnecessary or unrequested features.

Grand Master Programmer A program-
mer who is approximately 10 times (or
better) more productive than the least pro-
ductive programmer.

Guards (UML) A conditional expression
attached to a transition in a UML activity
diagram. The transition occurs only if the
expression evaluates as true.

H
Hacking Writing code without any formal
development process in place. Also see cow-
boy coding.

HLL High-level language

HRS Hardware Requirements
Specification

HTML HyperText Markup Language.
An early standard language for creating
web pages.

I
IDE Integrated Development Environment.
Usually a software tool that combines an
editor, compiler, linker, debugger, and
other software tools into the same package.

IEEE The Institute of Electrical and
Electronics Engineers. This is an umbrella
organization that also covers computer and
software engineers.

In the zone Mentally focused on the cur-
rent task.

Incremental model A software develop-
ment model that is similar to the iterative
model, but involves putting more work into
the initial design with only minor (incre-
mental) improvements after the initial
implementation.

Information hiding See encapsulation.

Integration testing Combining (usually
independently pretested) program units
together and testing them to see if the units
communicate properly with each other.

Integrity level An ordinality assigned to a
piece of software describing its importance
and risk to stakeholders. IEEE Std 829-2008
defines four integrity levels: Catastrophic,
Critical, Marginal, and Negligible.

IoT Internet of Things

IP Intellectual property (also: internet
protocol)

Iterative model A software model that
runs through multiple cycles of require-
ments, coding, testing, demonstration, and
feedback in order to validate the design
(that is, to ensure it properly satisfies the
end users of the software).

Glossary 323

J
JBGE Just barely good enough

Journeyman A worker who has learned a
trade and works for another person.

K
K&R Kernighan and Ritchie (authors of
The C Programming Language).

Killer app A genre-defining, massively
selling, popular application.

KLOC Thousands of lines of code

L
Large-scale project A software project
that requires a large team (more than
5 to 10 people) to create.

Lead programmer The engineer directly
in charge of a particular software project.

Learning curve The graph of the time
it takes a programmer to learn a concept
versus their productivity with respect to that
concept. Specifically, this term describes
the amount of time it takes to learn and
become proficient in some subject.

Lightweight process A process that
requires little overhead. In software devel-
opment, reducing documentation and
managing overhead is the hallmark of a
lightweight process.

LITSR Level Interim Status Report
(document)

LOC Lines of code

LTC Level Test Case (document)

LTD Level Test Design (document)

LTL Level Test Log (document)

LTP Level Test Plan (document)

LTPr Level Test Procedure (document)

LTR Level Test Report (document)

M
Man-hour A unit of one hour of work per-
formed by one person. Used for accounting
purposes.

Marginal integrity level A level of per-
formance where software must execute
properly, or there may be (minor) incorrect
results and some program functionality lost.

MBA Master of Business Administration

Medium-sized projects Projects that
require a small team (typically five people
or fewer) to accomplish in a reasonable
amount of time.

Metaphor A figurative representation of a
real situation, often used as an analogy. For
example, “It’s like shooting fish in a barrel”
is a metaphor meaning something is very
easy to do.

Milestone A significant (and often articu-
lated) point in development.

Mnemonic A memory aid.

MSCS Master of Science in Computer
Science

MTP Master Test Plan (document)

MTR Master Test Report (document)

Multiplicity An expression denoting a
counting relationship between two objects
(or the number of elements associated with
a single object). Can also represent one-to-
many, many-to-one, and other unbounded
relationships.

324 Glossary

N
Negligible integrity level A software per-
formance level below which some expected
functionality might not be present in the sys-
tem but no serious consequences will result.

NRC Nuclear Regulatory Commission (a
US-based governmental agency that over-
sees many of the nuclear reactors in the
United States).

O
OAOO Once and only once (see also DRY).

Overhead Activities that add time and
money to a project’s cost but don’t directly
contribute to getting the work done.

P
Penta-rectangle A rectangle with the
lower right-hand corner folded in (which
actually makes it a pentagon).

Personal software engineering Processes
and methodologies that apply to a single
programmer working on a small project or
on their portion of a larger project.

PERT Program Evaluation Review
Technique

Polymorphism The ability to take on
different forms (types) based on context.

Productivity The number of unit tasks
completed in a unit amount of time or for
a given cost.

Project head The engineer or manager
directly in charge of a project (or portion
of a project).

PSP Personal Software Process (see
Watts S. Humphrey’s A Discipline for Software
Engineering).

Q
QA Quality Assurance

R
R&D Research and development

Rapid Application Development (RAD)
A lightweight version of the Spiral devel-
opment model emphasizing prototypes
and VHLLs.

Real hours The amount of real time
(“wall clock time” or “calendar time”)
consumed by a project regardless of the
number of people working on it (see also
man-hour).

Regression test A test to ensure that
something that was previously working
hasn’t broken (regressed) in the current
version of the software.

Requirement A mandatory goal associ-
ated with a software system.

Requirement gap Features (and associ-
ated tests) that should be in a program
to satisfy user needs, but do not appear
as actual, documented requirements for
the software.

Reverse Traceability Matrix (RTM)
A document/database that allows the
reader to trace features in documentation
(such as the STP, STC, and SDD) back to
their original requirements.

RFP Request for Proposal, a request
for a bid from vendors to supply products
or services.

Risk assessment Evaluation of the risks
associated with a project and attempt-
ing to quantify those risks, allowing for
mitigating them.

RTM Reverse Traceability Matrix. Also
known as the Requirements Traceability Matrix.

Glossary 325

S
SAT Site Acceptance Test

SBC Single-board computer

Scaffolding See code scaffolding.

Scale down Modifying a process that
works for a large project so it will work for a
smaller project.

Scaling up Modifying a process that
works for a small project so it will work for
a larger project.

Scenario (UML) A single path through
a use case.

Scope complexity Complexity resulting
when the size of a system becomes too large
for a single person to completely under-
stand the whole system.

SDD Software Design Description

SDLC Software Development Life Cycle

Self-validating A test is self-validating if
the simple execution of that test runs prop-
erly (that is, without crashing the system or
indicating errors).

Setter A function that allows a caller
to write a value to a private member of
some object.

Small-scale projects Software systems
than can be easily produced by a single
engineer in a reasonable amount of time.

SMS Short Message Service, a text mes-
sage on a cell phone.

Software crisis A situation in which the
need for software is expanding faster than
the supply of programmers who can write
that software.

Software development model An abstrac-
tion of the software development process
that helps engineers understand how to
compare different approaches to software
development.

Software engineering The study of the
development and management of large soft-
ware systems.

Software IC A standardized software
module that can be plugged into arbitrary
applications, much like how an integrated
circuit (IC) could be plugged into an elec-
tronic circuit.

Software methodology A system of prin-
ciples—as well as a set of ideas, concepts,
methods, techniques, and tools—that
defines the style of software development.

Spiral model An iterative software devel-
opment model that repeats four phases:
planning, design, risk analysis/evaluation,
and construction.

SPM Swimming pool monitor, a software
system example used throughout this book.

Sprint A short amount of time, typically
one to four weeks, allotted to complete a
software development task.

SRL Software Review List (document)

SRS Software Requirements Specification
(document)

Stakeholder An individual or other party
that has an interest in the design and devel-
opment of a system.

Standard library A set of standardized
functions and subroutines, often tied to a
specific programming language or frame-
work, to achieve common tasks.

Stand-up meeting A meeting where every
(capable) person remains standing. This
forces the meeting to be short and focused,
as people don’t want to stand for more than
a few minutes.

State diagram A graphical representation
showing how a system transitions from one
state to another.

STC Software Test Cases

326 Glossary

Stereotype An extension mechanism for
UML to create new elements.

STP Software Test Procedures

SyRS System Requirements Specification
(document)

T
TBD To be determined

TDD Test-driven development

Test-driven development (TDD) A soft-
ware development process in which you
develop tests first and then write the code
that satisfies these tests.

Throwaway programs Small programs that
are written once, used once or only a few times,
and then discarded and never used again.

Time to market The time between the
initial conceptualization of a product and
its first delivery to customers.

Traceability matrix See Reverse Traceability
Matrix.

Trigger (UML) External event that causes
the execution of a use case.

U
UML Unified Modeling Language

Unit testing Testing small program units
(such as functions) independently of the
rest of the system.

UPS Uninterruptible Power Supply

URL Uniform Resource Locator, a pro-
tocol for addressing objects on the internet
(for instance, a web address).

Use case A list of actions or event steps
defining the interactions between an (exter-
nal) actor and a system to achieve some goal.

User stories Requirements, features, and
use case documentation.

V
V model A software development process
based on the Waterfall model (see also
Waterfall model).

Validation The process of showing that a
product meets the needs of its end users.

Verification The process of ensuring that
a product meets requirements.

VHLL Very high-level language

W
Waterfall model A software development
process whereby software occurs in distinct
and serial steps (for example, system docu-
mentation, coding, testing, deployment,
maintenance, and retirement).

Weak words Imprecise words, generally
adjectives, that attempt to make some-
thing sound better or worse without any
quantification.

White-box test data Input test data gen-
erated by looking at the source code for a
system. For example, to achieve code cover-
age you need to look at the source code to
create test data that exercises all statements
in a program.

X
XP Extreme Programming

Y
Y2K Year 2000. Specifically relating to
computer software maintaining only the
last two digits of a year (for example, “99”
for “1999”) and being unable to handle
dates from 2000 and beyond.

YAGNI You aren’t gonna need it. Avoid
speculative coding.

Index 327

I N D E X

Symbols
+ (UML class visibility operator), 105
~ (UML package class visibility

operator), 107
* (iteration specification in UML

sequence diagrams), 132
- (UML private class visibility

operator), 106
(UML protected class visibility

operator), 107
«component» stereotype (UML), 156
«create» message in a UML sequence

diagram, 136–137
«destroy» message in a UML sequence

diagram, 136–137
«extend» keyword, 79
{frozen} UML constraint, 124
{ordered} UML constraint, 121
{readOnly} UML property, 112
{static} UML property, 112
{unique} UML property, 112

A
Acceptance Test Cases, 274
Acceptance Test Design, 269
Acceptance Test Plan, 267
acceptance testing (AT), 42, 265
accessor functions, 106, 109
actions

in a requirement, 186
in a test procedure, 295

activation bars (sequence diagrams,
UML), 133

activity diagrams, UML, 89–101,
239–251

call symbols, 96
expression coverage, 92
partitions, 96, 97
states, 91
state symbols, 89

actor
in a requirement, 186
use case element, 74

Adaptive Software Development
(ASD), 53

adding SRL items to the traceability
matrix, 274

aggregration relationships, UML, 116
Agile Manifesto, 53
Agile software methodology

heavyweight documentation, 54–55
JBGE (Just Barely Good Enough)

documentation, 55
pair programming, 54
regression testing, 53
sprints, 53–54
stand-up meetings, 54

algorithmic viewpoint (SDD), 229, 239
Allocations column (RTM), 222
alternative flows in UML sequence

diagrams, 81, 135
alt sequence fragment (UML), 146
amateur (programmer

classification), xxii
ambiguity

in requirements, 188
in state machines, 164

analysis phase, software development, 40
analysis verification method (RTM), 222
analysts (programmers), 6
annotations and comments (UML), 98
anomaly logging during tests, 293
Anomaly Reports (AR), 262, 308–311

assessment of urgency, 311
conclusions and

recommendations, 311
Context section, 310
correcting defects, 309
date and time of defect

occurrence, 308
Description of Anomaly section, 310
Description of Corrective Action

section, 311

328 Index328 Index

automated unit testing
Agile, 53
XP, 57

availability (SRS), 201

B
ball and socket notation (UML),

156, 163
base values in a class (UML), 109
BASIC programming language, xxi
best practices, 14, 265

Agile, 53
lack of in Scrum, 66

in software development, 15
binary numbering system, xxi
black-box-generated test data, 276
break sequence fragment (UML),

138, 145
Brief Description section (STP),

294–296
build by feature (FDD), 68
burn-down chart in Scrum, 66

C
C and C++ programming languages, xxi
C, C++, and C# programming

languages, xxi
calling a UML subroutine, 96
CASE (computer-aided software

engineering), 50
case neutrality in identifiers, 110
casual narratives, 81
catch-all transition in a UML activity

diagram, 92
changeability, 124
change-driven process in XP, 57
change history

STC, 280
STP, 292

change procedures
STC, 280

characteristics of good requirements,
187–193

class aggregation relationships
(UML), 116

class association relationships
(UML), 115

class attributes (UML), 108–112
class composition relationships

(UML), 117

Anomaly Reports (continued)
Details section, 310
document identifier, 309
electronic versus paper, 312
Impact section, 311
information to include, 308–309
Introduction section, 309
References section, 310
reproducing defects, 308
Scope section, 310
summary, 310
workarounds to a defect, 309

anomaly status, 309
anonymous ports (UML), 163
applying engineering principles to

software development, 12
Apportioning of Requirements section

(SRS), 199
apprenticeship, 7, 13
architects

computer programmers as, 6
contribution to software

development, 8
AR. See Anomaly Reports
artists

computer programmers as, 5
contribution to software

development, 8
assert sequence fragment, 141
assessment of urgency (AR), 311
associating test cases with a test

procedure, 294
associations, UML

links, 115
names, 115, 118
relationships, 114

Assumptions and Dependencies section
(SRS), 198

asynchronous messages in UML
sequence diagrams, 129

AT (acceptance testing), 42, 265
atomic requirements, 190
ATP (Acceptance Test Procedure), 289
attributes, UML

data types, 110
derived values, 109
multiplicity, 111
names, 109
syntax, 112
visibility, 109

audit functions in an SRS, 198
automated test procedures, 275–276

Index 329Index 329

class dependency relationships
(UML), 114

class diagrams, UML, 104, 235, 236, 238
class inheritance relationships

(UML), 125
class interface, 105
class operators, UML, 112
class relationships, UML, 114–125
cleaning up UML sequence

diagrams, 129
coach on XP team, 56
coder (programmer classification), xxii
coding in XP, 57
coding standards in XP, 60
collaboration diagrams (UML), 152, 239
collective ownership in XP, 60
collocation in XP, 64
comments and annotations (UML), 98
common setup for test cases, 288
communication diagrams.

See collaboration
diagrams (UML)

Communication Interfaces section
(SRS), 197

communication links, UML, 74
communication in XP, 58
completeness of an SDD, 240
complete programmer (programmer

classification), xxiii
component diagrams, UML, 155–158,

236, 237
Component Integration Test Cases, 274
Component Integration Test Design, 269
Component Integration Test Plan, 267
«component» stereotype (UML), 156
Component Test Cases, 274
Component Test Design, 269
Component Test Plan, 267
Component Test Procedures, 289
composite structure diagrams (UML),

160–163, 236, 238
composition relationships, UML, 117
composition viewpoint (SDD), 233–235
compound requirement, 190
computer-aided software engineering

(CASE), 50
computer programmers as musicians, 5
conceptual model diagrams (SDD), 44
concurrent processing (UML), 96
conditionals (UML)

decision points, 92–93
transition guards, 91–92

condition for a requirement, 186
Configuration Management Plan, 280
connectors (UML), 98
consider sequence fragment (UML), 138
consistency in requirements, 187
consistency in an SDD, 240
consistency in system

documentation, 171
constraints in requirements, 185
Constraints section (SRS), 198
constraints, UML, 121

{frozen}, 124
{ordered}, 121
timing in sequence diagrams, 133

construction phase in Rapid
Application Development
model, 50

Context section
in an AR, 310
in an STC document, 278

context viewpoint (SDD), 231–233
continuous integration in XP, 63
control functions in an SRS, 198
correcting defects, 309
courage in XP, 55
craftsmen

computer programmers as, 7
contribution to software

development, 8
«create» message in a UML sequence

diagram, 136–137
creating requirements, 212–214
criticality of an application in an

SRS, 198
critical requirements, 188
critical section of UML activity

diagram, 99
customer representative in XP, 56
cutover phase in RAD model, 50

D
dangerous-to-test requirements, 222
database viewpoint (SDD), 236
data dictionary

in a class diagram, 235
in an SDD, 41

data fields. See class attributes (UML)
debriefings in XP, 64
decision points, 92–93
decision symbols (UML), 163–165
default attribute values (UML), 111–112

330 Index330 Index

Defect Reports. See Anomaly Reports
defining software systems, 12
definite loops, UML, 142
Definitions section (SRS), 196
dependency relationships, UML,

114, 117
dependency viewpoint (SDD), 235–236
deployment diagrams, UML, 159–160
deployment phase, 42
derived attributes, 253
derived classes in UML, 125
derived use cases, 79
derived values in a class (UML), 109
Description of Anomaly section

(AR), 310
Description of Corrective Action

section (AR), 311
design by feature (FDD), 68
design concerns in a viewpoint

(SDD), 229
Design Constraints section (SRS), 201
design elements (SDD), 230
design entities (SDD), 230
design goals (SRS), 193, 203
design guidelines, 62
designing in XP, 57
design language (SDD), 231
design overlay (SDD), 241–242
design patterns (SDD), 236
design phase

in RAD, 50
in SDD, 41

design quality obtained from pair
programming, 61

design rationale (SDD), 242
design relationships (SDD), 230
design verification method (RTM), 222
design viewpoints (SDD), 229–239
design views (SDD), 239–240
desirable requirements, 188
«destroy» message in a UML sequence

diagram, 136–137
Detailed Steps Required to Run This

Test Procedure section
(STP), 295

Details section (Anomaly Report), 310
deterministic defects, 308
deterministic state machines, 164
developing an overall model in FDD, 67
dialog (use case), 81

differentiating between branching
and long delays in UML
sequence diagrams, 135

difficult-to-test requirements, 222
document change procedures for a test

procedure (STP), 296
documented code, xxi
document identifier

in an AR, 309
in an STP, 292

Don’t repeat yourself (DRY) design
principle, 62

downtime, 201
driver on pair programming team, 60
dropped title box (UML sequence

diagrams), 136
DRY (Don’t repeat yourself) design

principle, 62
duplicate code, 62

E
economic benefits of pair

programming, 61
education and training, xxiv–xxv, 13
efficiency and great code, xxi
electronic test logs, 307–308
electronic versus paper ARs, 312
elements, design (SDD), 230
empirical processes, 12
encapsulation, 105, 107
end conditions (UML), 81
end state (UML), 163
engineers

computer programmers as, 7
contribution to software

development, 8
engineers, software, xxiv
enhanceable code, xxi
environmental condition requirement

in test cases and test
procedures, 288

environmental needs (STC), 279
event (state machine), 164
events (UML), 94–95
exceptions (use case), 81
expression coverage in a UML activity

diagram, 92
«extend» keyword, 79
extension, use case, 79–80, 81, 85
External Interfaces section (SRS), 199

Index 331Index 331

external objects in a UML sequence
diagram, 133

Extreme Programming (XP)
change-driven process, 57
coding in, 57
coding standards, 60
collective ownership, 60
continuous integration, 63
debriefings, 64
designing, 57
feature creep, 65
functional testing, 58
implementation phase, 58
iterations, 58
listening, 57
metaphors, 59
No Big Design Up Front, 65
onsite customer, 59
open workspace and collocation, 64
pair programming, 54, 60–63
planning game, 58
priorities (release planning), 56
problems with, 64
refactoring, 60
release cycles, 58
release planning, 58
respect, 55
retrospectives, 64
roles, 56
scalability, 65
self-directed teams, 64
simple design, 59, 60
simplicity, 55
small releases (building blocks), 7
software development activities, 65
steering phase, 184
sustainable pace, 59, 63
test-driven development, 57
testers, 56
testing, 57, 59, 60
unit tests, 65
user stories, 56, 59
values of, 55
whole team concept, 55

F
factory acceptance (software

development level), 265
Factory Acceptance Test Cases, 274

Factory Acceptance Test Design, 269
Factory Acceptance Test Plan, 267
Factory Acceptance Test Procedures, 289
faking test logs, 307
fast code, xxi
feasible requirements, 187
feature creep in XP, 65
Feature-Driven Development (FDD), 66

build by feature, 68
design by feature, 68
developing an overall model, 67
iteration zero, 66
plan by feature, 67

feedback in XP, 55
flat messages in UML sequence

diagrams, 129
flowcharts. See activity diagrams, UML
Flow of Events (UML use cases), 81
fork operation (UML), 96
forward traceability (requirements), 192
{frozen} UML constraint, 124
fully dressed use case, 81
functional requirements, 185
Functional Requirements section

(SRS), 200
Functional Requirements

Specification, 171
functional tests in XP, 56, 58
function return type, 129

G
generalization relationship.

See class inheritance
relationships (UML)

generalization, use case, 77–79
getter functions, 106, 109
Glossary section (STC), 280
GNU toolset, 15
Golden Rule of Software

Development, xxi
gold plating, 187
graduating from a software

apprenticeship, 14
great programmers, characteristics

of, xxiv
guard conditions in UML sequence

diagram messages, 131, 134
guards (UML), 91
guidelines for simple design, 62

332 Index332 Index

H
hacking, 43
hardware environmental needs

(STC), 279
Hardware Interfaces section (SRS), 197
hardware limitations (SRS), 198
heavyweight documentation, 54–55
hexadecimal numbering system, xxi
high-level language requirements

(SRS), 198

I
IEEE/EIA Std 12207.0-1996 [B21], 263
IEEE Standard for Software and System

Test Documentation, 261
IEEE Std 829-2009 Level Test

Procedure, 289
IEEE Std 1016-1998 versus IEEE Std

1016-2009, 228
IEEE Std 1016-2009, 227
if statements in use case

descriptions, 84
ignore sequence fragment, 138
impact of a defect, 309
Impact section (AR), 311
imperative (procedural) programming

languages, xxi
implementation-independent

requirements, 190
implementation phase in XP, 58
importance of an apprenticeship, 13
important requirements, 188
impractical-to-test requirements, 222
including test logs in the RTM, 308
inclusion (use case), 77
incompleteness in requirements, 188
Incremental software development

model, 51–52
disadvantages of, 51
“keep the code working” concept, 51

indefinite loops, 143
industry best practices, 14
information in an Anomaly Report,

308–309
information viewpoint (SDD), 236
inheritance, 107
input/output parameters (UML), 113
Input section (STC), 278
inspection verification method

(RTM), 222

Instructions for Running Tests section
(STP), 293

integration (software development
level), 265

Integration Test Cases, 274
Integration Test Design, 269
Integration Test Plan, 267
Integration Test Procedures, 289
integration testing, 11, 41, 265
integrity levels, 263–265
intellectual property (IP), 61
interaction occurrence sequence

diagram (UML), 139
interaction viewpoint (SDD), 239
intercase dependencies (STC), 280
interface specifiers, 119–120
interfaces to other applications

(SRS), 198
interfaces (UML), 156
interface viewpoint (SDD), 237
Internet of Things, 133
intern (programmer classification), xxii
intern, software, 7
Introduction section

in an AR, 309
in an SRS, 195
in an STC, 277

iterations in UML sequence
diagrams, 132

iterations in XP, 58
iteration zero in FDD, 66
Iterative software development model,

46–47

J
Java programming language, xxi
JBGE (Just Barely Good Enough)

documentation, 55
join operation (UML), 96
journeyman, software, 7
junior programmer (programmer

classification), xxii
Just Barely Good Enough (JBGE)

documentation, 55

K
keeping test logs, 306
killer app, 315
KLOC (thousands of lines of code), 10

Index 333Index 333

L
large projects, 10, 12
lead programmer, 11
learning while pair programming, 61
legal jeopardy, test logs and, 308
Level Interim Test Status Reports,

262, 312
Level Test Case, 262
Level Test Design, 262
Level Test Design documentation, 269
Level Test Logs, 303
Level Test Plans, 267–269
Level Test Procedures, 262, 289, 290
Level Test Reports, 312
lifeline in UML sequence diagrams, 128
lifetime of an object in a UML

sequence diagram, 136
lightweight software development

models, 50
limiting APIs, 62
lines of code (LOC), 10
Linux, 15
listening in XP, 57
List of Test Cases Covered by This

Procedure section (STP),
294

LOC (lines of code), 10
logging anomalies during tests

(STP), 293
Logical Database Requirements section

(SRS), 200
logical viewpoint (SDD), 229, 235
long delays in UML sequence

diagrams, 132–133
looking for new software development

tools and techniques, 14
loop sequence fragment (UML),

138, 141–145
loosely coupled classes (UML), 114

M
maintainability (SRS), 201
maintainable code, xxi
maintaining documentation, 54
maintenance phase of software

development, 42
management complexity in Spiral

model, 49
manager/tracker on XP team, 56
man-hours and real time, 19

master craftsman, 15
masterpieces, software, 15
Master Test Plan, 266–267
Master Test Reports, 312
medium-sized projects, 10, 11
Memory Constraints section (SRS), 197
memory usage of great code, xxi
merge points (UML), 93–94
merging test cases into a single test

procedure, 288
messages in UML sequence diagrams,

129–130
metaphors, computer programming

programmer as architect, 6
programmer as artist, 5
programmer as craftsman, 7
programmer as engineer, 7

metaphors in XP, 59
minimal guarantees (use case), 81
minimum viable product (MVP), 47
modifiable requirements, 191
multiple merge/decision points

(UML), 94
multiple requirements in one

statement, 190
multiplicity, 120
musicians, computer programmers as, 5
MVP (minimum viable product), 47

N
namespaces (packages), UML, 76
naming a communication link

(UML), 163
NATO and the creation of software

engineering, 7
natural talents of a computer

programmer, 5
navigability (UML), 115, 123
navigator on pair programming

team, 60
neg sequence fragment (UML), 138, 148
Netburner MOD54415, 213
No Big Design Up Front (XP), 65
nodes (UML), 159
nondeterministic state machines, 164
nonfunctional requirements, 185
nonintelligibility in requirements, 189
Notation for Description section

in STC, 278
in STP, 290, 292

no test verification method (RTM), 222

334 Index334 Index

O
object (in a requirement), 186
object-oriented analysis and design

(UML), 103–104
object-oriented programming

languages, xxi
Objective section (STC), 278
objects in UML, 125
old test logs, 306
Once and only once (OAOO) design

principle, 62
onsite customer in XP, 59
open hardware, 283
open source, 283
open workspace in XP, 64
Operations section (SRS), 197
operator return type, 129
operators, UML, 112
opt sequence fragment (UML), 138, 146
optimization in Spiral-based software

development model, 49
optionality (requirements), 188
{ordered} constraint (UML), 121
organizing test procedures by their

related activities (STP), 290
other allocations in an RTM, 222
other verification method (RTM), 222
Outcome section (STC), 279
overgeneralization in requirements, 189
overlapping test cases, 288
Overview section (SRS), 196

P
package diagrams (UML), 236, 238
package visibility (UML), 107
packages (UML), 76
pair programming

Agile, 54
design quality, 61
driver role, 60
economic benefits of, 61
learning during, 61
navigator role, 60
satisfaction, 61
team building and

communication, 61
in XP, 59

parallel execution in UML diagrams, 149
parallel operations (SRS), 198
parameters in UML sequence diagram

messages, 131

par sequence fragment (UML), 138, 149
partial class diagrams (UML), 104
Pascal programming language, xxi
pass/fail criteria, 280

in an STP, 291
passive voice in requirements, 189
patterns use viewpoint (SDD), 236
penta-rectangle symbol in sequence

diagram, 138
Performance Requirements section

(SRS), 200
phases in software development

coding, 41
deployment, 42
design, 41
maintenance, 42
product conceptualization, 40
requirement development and

analysis, 40
retirement, 42
testing, 41

plan by feature (FDD), 67
planning game in XP, 58
polymorphism, 107
portability (SRS), 203
ports, 162
positively stated requirements, 192
post conditions (UML), 81
predictive software development

methodologies, 52
priorities (release planning) in XP, 56
private class visibility (UML), 106
problems with XP, 64
procedural programming languages, xxi
procedure identifier/tag (STP), 294
product conceptualization phase, 40
Product Functions section (SRS), 198
product owner in Scrum, 65
programmer/analysts, 6
programmer classifications

amateurs, xxii
problem with, xxiii
programmers, xxii

coder, xxii
complete programmer, xxiii
interns, xxii
junior programmer, xxii
Programmer I and II, xxiii
system analyst, xxiii
system architect, xxiii

Programmer I (programmer
classification), xxiii

Index 335Index 335

Programmer II (programmer
classification), xxiii

programmer role in XP, 56
project head, 11
property strings (UML), 109, 112
protected class visibility (UML), 107
protocols, 119
provided interfaces

UML components, 156
UML composite structures, 162

pseudocode, 239
public class visibility (UML), 105
Purpose section

in an SRS, 195
in an STP, 290, 294

Q
qualified names in UML packages, 159
qualifiers (UML), 122
Quality Assurance department, 266
quality requirements, 185

R
RAD (Rapid Application Development)

model, 49–51
construction phase, 50
cutover phase, 50
design phase, 50
requirements planning phase, 50
risk management, 50

rake symbol (UML), 96
Rapid Application Development model.

See RAD model
rapid prototyping, 49
readable code, xxi
{readOnly} property (UML), 112
redlines in test procedures, 307
reducing resource usage with test

procedures, 290
refactoring in XP, 60
References section

in an AR, 310
in an SRS, 196
in an STC, 277

ref sequence fragment (UML), 138, 139
region sequence fragment (UML),

138, 151
regression testing, 53, 276, 290
regulatory policies (SRS), 198
relationship features, UML, 117

relationship strength, UML, 114
Relationship to Other Documents

section (STP), 292
release cycles in XP, 58
release planning in XP, 58
reliability (SRS), 198, 201
reproducing defects (AR), 308
request for proposal (RFP), 263
required interfaces (UML composite

structures), 162
required setup for an STP, 291
requirement gaps, 46
requirement organization (SRS), 202
requirement origins, 185
requirements

atomic, 190
characteristics of good, 187–193
compound, 190
consistency, 187
constraints, 185
correctness, 187
creating in SRS, 212–214
desirable, 188
difficult to test, 222
feasible, 187
gold plating, avoiding, 187
implementation-independent, 190
important, 188
impractical to test, 222
incompleteness, ambiguity as

result of, 188
modifiable, 191
multiple in one statement, 190
nonfunctional, 185
nonintelligibility in, 189
optionality, 188
organization, 202
overgeneralization in, 189
passive voice in, 189
portability, 203
positively stated, 192
prioritized, 187–188
quality, 185
reverse traceability, 192
for SDD, 228
subjectivity, 188
for SyRS, 193
tags and traceability, 192
traceability, 192
unbounded lists, 189
underreference, 189
underspecification, 188

336 Index336 Index

requirements (continued)
uniqueness, 191
unnecessary, 187
vagueness, 188
verifiable, 190
weak words and, 189

requirements and architecture phase
in V model, 45

requirements planning phase in RAD
model, 50

rerunning test procedures (STP), 290
resource usage when running tests

(STP), 290
resource viewpoint (SDD), 239
respect in XP, 55
resuming tests (STP), 293
retirement phase, 42
retrospectives in XP, 64
return from subroutine in a UML

sequence diagram, 145
return messages in UML sequence

diagrams, 129
return type (UML), 113
return values in UML class diagrams, 110
return values in UML sequence

diagram messages, 131
reusability of UML components,

155–158
reuse in computer programming, 12
reverse traceability, 171, 186, 192

in an SRS tag, 175
Reverse Traceability Matrix. See RTM
review verification method (RTM), 222
RFP (request for proposal), 263
risk assessment, 263
risk-based software development

models, 48
risk management in the RAD model, 50
risk management in the Spiral

development model, 49
risk management in the Waterfall

model, 45
robust code, xxi
roles in XP, 56
roles (UML), 119
RTM (Reverse Traceability Matrix),

170, 172, 186, 302
adding SRL items, 274
Allocations column, 222
including test logs in, 308

SDD tag column, 259
Software Test/Review Cases

column, 288
SRS tag column, 222
verification methods, 222

running test procedures in parallel
(STP), 290

running tests (STP instructions), 293

S
satisfaction from pair programming, 61
SAT (Site Acceptance Test), 265, 289, 291
scalability in XP, 65
scaling up and down (engineering

methodologies), 10, 42
scenario (use case), 86
scheduled downtime, 201
Scope section

in an AR, 310
in an SRS, 196
in an STC, 277
in an STP, 292

scrum master in Scrum, 65
Scrum methodology, 53, 65

burn-down chart, 66
product owner, 65
scrum master, 65
scrum-of-scrums, 66
sprint restrospectives, 66
stand-up meeting, 65

SDD (Software Design Description), 227
completeness of, 240
conceptual model diagrams, 44
definition of, 170
design concerns in a viewpoint, 229
design constraints, 230
design elements, 230
design entities, 230
design overlay, 241–242
design patterns, 236
design phase, 41
design rationale, 242
design relationship, 242
design views, 239–240
source element, 291
state dynamics viewpoint, 163
tags, 44
target element, 230
validation, 183
viewpoint name, 229

Index 337Index 337

viewpoints
composition, 233–235
context, 231–233
database, 236
dependency, 235–236
design, 229–239
information, 236
interaction, 239
interface, 237
logical, 229
patterns use, 236
resource, 290
structure, 237

Waterfall model, 44
SDD tag column (RTM), 259
SDLC (Software Development Life

Cycle), 39–42
secondary actors in use cases, 81
security (SRS), 201
seeking better approaches to designing

applications, 15
self-directed teams in XP, 64
seq sequence fragment (UML),

138, 150
sequence diagrams, UML

activation bars, 133
alternative flow, 135
asynchronous messages, 129
consider sequence fragment, 138
«create» message in, 136–137
creating objects, 136
«destroy» message, 136–137
destroying objects, 136
differentiating between branching

and long delays, 135
dropped title box, 136
external objects, 133
flat messages, 129
guard conditions, 131, 134
ignore sequence fragment, 138, 140
indefinite loops, 143
interaction occurrence, 139
interaction viewpoint, 239
iterations, 309
lifelines, 128
long delays and time constraints,

132–133
loop sequence fragment, 141–145
message parameters, 131
messages, 129–130
neg sequence fragment, 148

object lifetime, 136
opt sequence fragment, 138, 146
par sequence fragment, 149
ref sequence fragment, 139

entry point, 139
region sequence fragment, 138, 151
return from subroutine, 145
return messages, 129
seq sequence fragment, 138
sequence numbers, 138
showing operation order, 128
synchronous messages, 129
time constraints, 133

sequence fragments, UML, 137, 149
alt, 146
assert, 146
break, 138
ignore, 138
loop, 142
neg, 138
opt, 138
par, 149
ref, 139
region, 138, 151
seq, 138, 150
strict, 138, 150

sequence message labels, UML, 130
sequence numbers, UML, 130
sequential software development

models, 46
setter functions, 106, 109
setup (STP), 295
showing the order of operations in

UML diagrams, 128
signal handshake protocols (SRS), 198
sign-off on a test procedure (STP), 296
simple design

guidelines for, 62
in XP, 59, 60

simplicity in XP, 55
site acceptance (software development

level), 265
Site Acceptance Test Cases, 274
Site Acceptance Test Design, 269
Site Acceptance Test Plan, 267
Site Acceptance Test Procedures, 289
Site Acceptance Test (SAT), 265, 289, 291
Site Adaptation Requirements section

(SRS), 198
SIT (System Integration Test), 289, 291
small projects, 6, 10, 11

338 Index338 Index

small releases (building blocks)
in XP, 59

SMS message, 133
software allocations in an RTM, 222
software apprentices, 7, 13
software craftsman, 14
software craftsmanship, 13–15
software crisis of the 1960s, xix
Software Design Description. See SDD
Software Development Life Cycle

(SDLC), 39–42
software development methodologies,

52–68
Agile, 52
definition of, 52
predictive, 52
traditional, 52

software development models, 42–52
Incremental, 51
Iterative, 46–47
lightweight, 50
RAD, 49, 74

risk management, 50
risk-based, 48
sequential models, 46
Spiral, 48–49

risk management, 50
V, 45–46
Waterfall, 44–45

software development phases
deployment, 42
design in RAD, 50
maintenance, 42
product conceptualization, 40
retirement, 42
testing, 41

software development testing levels
factory acceptance, 265
integration, 265
site acceptance, 265
system integration, 265
unit, 191, 265

software engineering
IEEE definition, 7
invention of, 7
original definition, 9

software engineering conventions and
great code, xxi

software engineers, xxiv
software environmental needs

(STC), 279
Software Interfaces section (SRS), 197

software journeyman, 7, 14–15
Software Requirements Specification

(SRS) document. See SRS
Software Review List (SRL) document,

270–274
Software System Attributes section

(SRS)
downtime, 201
maintainability, 201
portability, 203
reliability, 201
security, 201

Software Test Case (STC) document.
See STC

software test document types, 262
Software Test Procedure (STP)

document. See STP
Software Test/Review Cases column

(RTM), 288
software version for a test procedure

run (STP), 291, 295
source element (SDD), 230
Special Requirements section

(STP), 291, 295
Specific Requirements section

(SRS), 199
Spiral software development model,

48–49
risk management, 50

sprint retrospectives, 66
sprints, Agile, 53–54
SRS (Software Requirements

Specification), 44, 170
Apportioning of Requirements

section, 199
Assumptions and Dependencies

section, 198
attributes

security, 201
audit functions, 198
Communications Interfaces

section, 197
Constraints section, 198
control functions, 59
creating requirements, 212–214
Definitions section, 196
Design Constraints section, 201
External Interfaces section, 199
Functional Requirements

section, 200
Hardware Interfaces section, 197
hardware limitations, 198

Index 339Index 339

high-level language
requirements, 198

interfaces to other applications, 198
Introduction section, 195
Logical Database Requirements

section, 200
maintainability, 201
Memory Constraints section, 197
Operations section, 197
organization by feature, 202
organization by functional

hierarchy, 202
organization by input stimulus, 202
organization by object class, 202
organization by output

response, 202
organization by system mode, 202
organization by user class, 202
Overview section, 288
parallel operations, 198
Performance Requirements

section, 200
Product Functions section, 198
Purpose section, 195
References section, 196
regulatory policies, 198
requirement organization, 202
safety and security

considerations, 198
Scope section, 292
signal handshake protocols, 198
Site Adaption Requirements

section, 198
Software Interfaces section, 197
Specific Requirements section, 199
stakeholders, 228
Standards Compliance section, 201
supporting information, 203
tags, 175
User Characteristics section, 198
User Interfaces section, 196, 197
validating, 183

SRS tag column (RTM), 222
stakeholder in system design, 228
Standards Compliance section

(SRS), 201
stand-up meeting, 54
start state (UML), 90
start symbol (UML), 164
statechart diagrams, UML, 163–165

end state, 163
start state, 163

state dynamics viewpoint (SDD), 239
statement count metric, 24
states (UML), 91
state transitions, UML, 163
{static} property (UML), 112
status of an anomaly, 309
STC (Software Test Case), 170, 261

change history, 280
change procedures, 280
Context section, 278
document identifier, 277
environmental needs, 279
Glossary section, 280
hardware environmental needs, 279
identifiers, 278
Input section, 278
intercase dependencies, 280
Introduction section, 277
Notation for Description section, 278
Objective section, 278
Outcome section, 279
references, 139
References section, 277
Scope section, 277
software environmental needs, 279
special procedural requirements, 279
validation, 184

STC tag format, 278
steering phase in XP, 58
stereotype notation (UML), 120
stop state (UML), 90
STP (Software Test Procedure), 170, 261

Brief Description section, 294–296
change history, 292
Detailed Steps Required to Run

a Test Procedure section
(STP), 295

document change procedures, 296
document identifier, 292
Instructions for Running Tests

section, 293
Introduction section, 292
List of Test Cases Covered by

Procedure section, 294
Notation for Descriptions

section, 290
organizating test procedures, 290
pass/fail criteria, 291
procedure identifier/tag, 294
Purpose section, 290, 294
reducing resource usage by test

procedures, 290

340 Index340 Index

STP (continued)
References section, 292
Relationship to Other Documents

section, 292
required setup, 291
rerunning test procedures, 290
resuming tests, 293
running test procedures in

parallel, 56
Scope section, 292
setup, 46
sign-off on test procedures, 296
software version for a test run, 295
Special Requirements section,

291, 295
streamlining test procedures

(STP), 288, 290
suspended tests, 293
Traceability section, 291
verifying, 295

STP tag format, 292
streamlining test procedures (STP),

288, 290
strength of a relationship (UML), 114
strict sequence fragment (UML),

138, 150
structure viewpoint (SDD), 237
style guidelines, xxi
subjectivity (requirement), 188
subroutine entry point in a ref

sequence fragment
(UML), 139

subsystem stereotype (UML), 156
successful guarantees (use cases), 81
summary (AR), 310
supporting information (SRS), 203
suspended tests (STP), 293
sustainable pace in XP, 59, 63
Swift programming language, xxi
swim lanes (UML), 97
synchronization (UML), 96
synchronous messages (sequence

diagram, UML), 129
SyRS (System Requirements

Specification), 40, 44,
170, 193

validating, 183
SyRS tag column (in RTM), 222
SyRS tags, 172
system analyst (programmer

classification), xxiii

system architect (programmer
classification), xxiii

system boundary diagrams (UML), 87
system documentation consistency, 171
system documentation traceability, 171
system integration (software

development testing
level), 265

System Integration Test, 265
System Integration Test Cases, 274
System Integration Test Design, 269
System Integration Test Plan, 267
System Integration Test

Procedures, 289
System Requirements Specification

(SyRS) document. See SyRS
system resources and great code, xxi
System Test Cases, 274
System Test Design, 269
System Test Plan, 267
system testing, 42

T
tags, 172–178, 245

dotted sequences, 174
requirement, 192
SRS, 175
STC, 177
STP, 178
SyRS, 172

target element (SDD), 230
team building and communication

from pair programming, 61
termination (use case), 81
test case assignment to a test

procedure, 294
test case dependencies, 288
test case identifier (STC), 278
test design, 269–270
test-driven development (TDD),

46, 54, 57
test logs, 306
test plans, 266
test procedures (STP), 294–296
Test Reports, 312–315
test verification method (RTM), 222
Test/verification type column in an

RTM, 222
tested code, xxi

Index 341Index 341

testers on XP team, 56
testing in XP, 57, 59, 60
testing phase, 41
“throwaway” programs, 43
tightly coupled classes (UML), 114
time constraints in UML sequence

diagrams, 133
time to market, 47
traceability, 171–181, 192
Traceability section (STP), 291
tracing STP tags back to test cases and

requirements, 303
traditional software development

methodologies, 52
training new software apprentices, 14
transition guards, 91–92
transitions (UML), 90, 91

state, 163
triggers

in a requirement, 186
state machine, 164
UML, 94

U
UML (Unified Modeling Language)

- (private class visibility operator),
106

* (iteration operator in sequence
diagrams), 132

(protected class visibility
operator), 107

+ (class visibility operator), 105
~ (package class visibility operator),

107
activity diagrams

catch-all transition, 92
expression coverage, 92
partitions, 97

activity diagram symbols, 89
alternative flows, 135
annotations, 98
attributes

data types, 110
derived values, 109
multiplicity, 111, 120
names, 109
syntax, 112
visibility, 109

ball and socket notation, 156, 163
base values in a class, 109

changeability, 124
class attributes, 108–112
class composition relationships, 117
class diagrams, 104
class operators, 112
class relationships, 114–125

aggregation, 116
association, 115
composition, 117
dependency, 114
inheritance, 114

collaboration diagrams, 152
comments, 98
communication links, 74
component diagrams, 155–158
«component» stereotype, 156
composite structure diagrams,

160–163, 236, 238
concurrent processing, 96
conditionals, 91
connectors, 98
constraints, 121

{frozen}, 124
{ordered}, 121

decision symbols, 163–165
default attribute values, 111–112
deployment diagrams, 159–160
derived classes, 253
derived values, 109
events, 94–95
fork operation, 96
guards, 91
input/output parameters, 113
interfaces, 156
join operation, 96
merge points, 93–94
message types, 129
multiple merge/decision points, 94
namespaces (packages), 76
naming a communication link, 163
navigability, 123
nodes, 159
object-oriented analysis, 103–104
object-oriented design, 103–104
objects, 125
package diagrams, 236, 238
package visibility, 107
packages, 76
partial class diagrams, 104
ports, 201
private class visibility, 106

342 Index342 Index

UML (continued)
property strings, 109, 112
protected class visibility, 107
provided interfaces, 156, 162
public class visibility, 105
qualified names in packages, 159
qualifiers, 159
rake symbol, 96
{readOnly} property, 112
relationship strength, 114
required interfaces, 162
return type, 129
return values in sequence diagram

messages, 129
reusability of components, 155–158
roles, 56
sequence diagrams

«create» message, 136–137
creating objects, 136
«destroy» message, 136–137
destroying objects, 136
differentiating between

branching and long
delays, 135

dropped title box, 136
external objects, 133
flat messages, 129
guard conditions, 131, 134
indefinite loops, 143
interaction occurrence, 139
iterations, 309
lifelines, 128
long delays and time

constraints, 132–133
message parameters, 131
messages, 129–130
object lifetime, 136
return from subroutine, 145
return messages, 129
sequence numbers, 138
showing operation order, 128
strict sequence fragment, 150
synchronous messages, 129
time constraints, 133

sequence fragments
alt, 146
assert, 138
break, 138
consider, 138

ignore, 138
loop, 141–145, 142
neg, 138, 148
opt, 138, 146
par, 138, 149
ref, 139
region, 138, 151
seq, 138, 150
strict, 138, 150

sequence message labels, 130
start state, 163
start symbol, 164
statechart diagrams, 163
states, 91
state transitions, 163
{static} property, 112
stereotype notation, 184
stop state, 163
subroutine entry point in a ref

segment fragment, 139
subroutines, 96
subsystem stereotype, 156
swim lanes, 97
synchronization, 96
system boundary diagrams, 87
tightly coupled classes, 114
transitions, 90, 91
triggers, 94
{unique} property, 112
use cases

description, 80
diagrams, 231
end conditions, 81
«extend» keyword, 79
extension, 79–80, 85
Flow of Events, 81
formality, 81
fully dressed, 81
generalization, 77–79
if statements in descriptions, 84
inclusion, 77
minimal guarantees, 81
narratives, 80–86
post conditions, 81
scenarios, 86–87, 291
successful guarantees, 81
termination, 81
triggers, 80

value parameters, 113
visibility, 105, 108, 120

Index 343Index 343

unbounded list in requirements,
188, 189

underreference in requirements, 189
underspecification in requirements, 188
Unified Modeling Language. See UML
{unique} property (UML), 112
uniqueness (requirement), 191
unit (software development testing

level), 265
unit tasks (productivity), 18
Unit Test Cases, 274
Unit Test Design, 269
Unit Test Plan, 267
Unit Test Procedures, 289
unit testing, 41, 265
unit tests in XP, 65
unnecessary requirements, 187
unscheduled downtime, 201
updating an RTM

with SRL information, 274
with STC information, 288
with STP information, 302

use cases, UML, 74, 81, 212, 214
derived, 79
description, 80
diagrams, 231
elements, 74
end conditions, 81
exceptions, 81
«extend» keyword, 79
extension, 79–80, 81, 85
Flow of Events, 81
generalization, 77–79
if statements in descriptions, 84
inclusion, 77
minimal guarantees, 81
narratives, 80–86

formality of, 81–82
post conditions, 81
scenarios, 86–87, 291
secondary actors, 39
successful guarantees, 81
termination, 81
triggers, 94

User Characteristics section (SRS), 198
user feedback in Iterative software

development models, 46
User Interfaces section (SRS), 196
user stories in XP, 56, 59

V
V software development model, 45–46

shortcomings, 49
vagueness in requirements, 188
validation

reducing costs via, 182
SDD, 183
SRS, 183
STP, 184
SyRS, 183
versus verification, 46

value parameters (UML), 113
verifiable requirements, 190
verification, 46, 263

in a test procedure, 295
reducing costs via, 183
versus validation, 46

verification methods in RTM, 222
version number for a test procedure, 295
visibility (UML), 105

spectrum, 108
of UML attribute names, 120

W
Warnier/Orr diagrams, 239
Waterfall model, 44–45
weak words, ambiguity as result of,

188, 189
white-box-generated test data, 276
whole team concept in XP, 55
workarounds to a defect (AR), 309

X
XP. See Extreme Programming
XP software development activities, 57
XP teams, 55

Y
You aren’t gonna need it (YAGNI)

design principle, 62

Write Great Code, Volume 3: Engineering Software is set in New Baskerville,
Futura, and Dogma.

RESOURCES
Visit https://nostarch.com/greatcode3/ for resources, errata, and more information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

More no-nonsense books from NO STARCH PRESS

WRITE GREAT CODE, VOLUME 1,
2ND EDITION
Understanding the Machine
by randall hyde

june 2020, 472 pp., $49.95
IsBn: 978-1-71850-036-5

WRITE GREAT CODE, VOLUME 2,
2ND EDITION
Thinking Low-Level, Writing High-Level
by randall hyde

july 2020, 656 pp., $49.95
IsBn: 978-1-71850-038-9

EFFECTIVE C
An Introduction to Professional
C Programming
by roBert c. seacord

july 2020, 272 pp., $59.95
IsBn 978-1-71850-104-1

THE RUST PROGRAMMING
LANGUAGE
(Covers Rust 2018)
by steve klaBnIk and
carol nIchols

august 2019, 560 pp., $39.95
IsBn 978-1-71850-044-0

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based Introduction
to Programming
by erIc matthes

may 2019, 544 pp., $39.95
IsBn 978-1-59327-928-8

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
by jonathan e. steInhart

august 2019, 504 pp., $44.95
IsBn 978-1-59327-970-7

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

The field of software engineering may value team
productivity over individual growth, but legendary
computer scientist Randall Hyde wants to make
promising programmers into masters of their craft.
To that end, Engineering Software—the latest volume
in Hyde’s highly regarded Write Great Code series—
offers his signature in-depth coverage of everything
from development methodologies and strategic
productivity to object-oriented design requirements and
system documentation.

You’ll learn:

• Why following the software craftsmanship model
can lead you to do your best work

• How to utilize traceability to enforce consistency
within your documentation

• The steps for creating your own UML requirements
with use-case analysis

• How to leverage the IEEE documentation standards
to create better software

This advanced apprenticeship in the skills, attitudes,
and ethics of quality software development reveals
the right way to apply engineering principles to
programming. Hyde will teach you the rules, and
show you when to break them. Along the way, he
offers illuminating insights into best practices while
empowering you to invent new ones.

Brimming with resources and packed with examples,
Engineering Software is your go-to guide for writing
code that will set you apart from your peers.

A U T H O R B I O

Randall Hyde is the author of The Art of Assembly
Language and the three volume Write Great Code
series (all No Starch Press). He is also the co-author of
The Waite Group’s MASM 6.0 Bible. He has written
for Dr. Dobb’s Journal and Byte, and professional and
academic journals.

R E - E N G I N E E R
Y O U R A P P R O A C H

T O P R O G R A M M I N G

$49.95 ($65.95 CDN)

H
Y

D
E

E
N

G
IN

E
E

R
IN

G
 S

O
F

T
W

A
R

E

W R I T E
G R E A T
C O D E
V O L 3

R A N D A L L H Y D E

E N G I N E E R I N G
S O F T W A R E

W R I T E G R E A T C O D E / V O L U M E 3

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Assumptions and Prerequisites
	What Is Great Code?
	Programmer Classifications
	Amateurs
	Programmers
	Software Engineers
	Great Programmers

	So You Want to Be a Great Programmer
	A Final Note on Ethics and Character
	For More Information

	Part 1: Personal Software Engineering
	Chapter 1: Software Development Metaphors
	What Is Software?
	Software Is Not Manufactured
	Software Doesn’t Wear Out
	Most Software Is Custom
	Software Can Be Easily Upgraded
	Software Is Not an Independent Entity

	Parallels to Other Fields
	Programmer as Artist
	Programmer as Architect
	Programmer as Engineer
	Programmer as Craftsman
	Artist, Architect, Engineer, or Craftsman?

	Software Engineering
	A Formal Definition
	Project Size
	Where Software Engineering Fails

	Software Craftsmanship
	Education
	Apprenticeship
	The Software Journeyman
	The Master Craftsman
	Where Software Craftsmanship Fails

	The Path to Writing Great Code
	For More Information

	Chapter 2: Productivity
	What Is Productivity?
	Programmer Productivity vs. Team Productivity
	Man-Hours and Real Time
	Conceptual and Scope Complexity
	Predicting Productivity
	Metrics and Why We Need Them
	Executable Size Metric
	Machine Instructions Metric
	Lines of Code Metric
	Statement Count Metric
	Function Point Analysis
	McCabe’s Cyclomatic Complexity Metric
	Other Metrics
	The Problem with Metrics

	How Do We Beat 10 Lines per Day?
	Estimating Development Time
	Estimating Small Project Development Time
	Estimating Medium and Large Project Development Time
	Problems with Estimating Development Time

	Crisis Mode Project Management
	How to Be More Productive
	Choose Software Development Tools Wisely
	Manage Overhead
	Set Clear Goals and Milestones
	Practice Self-Motivation
	Focus and Eliminate Distractions
	If You’re Bored, Work on Something Else
	Be as Self-Sufficient as Possible
	Recognize When You Need Help
	Overcome Poor Morale

	For More Information

	Chapter 3: Software Development Models
	The Software Development Life Cycle
	The Software Development Model
	The Informal Model
	The Waterfall Model
	The V Model
	The Iterative Model
	The Spiral Model
	The Rapid Application Development Model
	The Incremental Model

	Software Development Methodologies
	Traditional (Predictive) Methodologies
	Adaptive Methodologies
	Agile
	Extreme Programming
	Scrum
	Feature-Driven Development

	Models and Methodologies for the Great Programmer
	For More Information

	Part 2: UML
	Chapter 4: An Introduction to UML and Use Cases
	The UML Standard
	The UML Use Case Model
	Use Case Diagram Elements
	Use Case Packages
	Use Case Inclusion
	Use Case Generalization
	Use Case Extension
	Use Case Narratives
	Use Case Scenarios

	The UML System Boundary Diagrams
	Beyond Use Cases
	For More Information

	Chapter 5: UML Activity Diagrams
	UML Activity State Symbols
	Start and Stop States
	Activities
	States
	Transitions
	Conditionals
	Merge Points
	Events and Triggers
	Forks and Joins (Synchronization)
	Call Symbols
	Partitions
	Comments and Annotations
	Connectors
	Additional Activity Diagram Symbols

	Extending UML Activity Diagrams
	For More Information

	Chapter 6: UML Class Diagrams
	Object-Oriented Analysis and Design in UML
	Visibility in a Class Diagram
	Public Class Visibility
	Private Class Visibility
	Protected Class Visibility
	Package Class Visibility
	Unsupported Visibility Types

	Class Attributes
	Attribute Visibility
	Attribute Derived Values
	Attribute Names
	Attribute Data Types
	Operation Data Types (Return Values)
	Attribute Multiplicity
	Default Attribute Values
	Property Strings
	Attribute Syntax

	Class Operations
	UML Class Relationships
	Class Dependency Relationships
	Class Association Relationships
	Class Aggregation Relationships
	Class Composition Relationships
	Relationship Features
	Class Inheritance Relationships

	Objects
	For More Information

	Chapter 7: UML Interaction Diagrams
	Sequence Diagrams
	Lifelines
	Message Types
	Message Labels
	Message Numbers
	Guard Conditions
	Iterations
	Long Delays and Time Constraints
	External Objects
	Activation Bars
	Branching
	Alternative Flows
	Object Creation and Destruction
	Sequence Fragments

	Collaboration Diagrams
	For More Information

	Chapter 8: Miscellaneous UML Diagrams
	Component Diagrams
	Package Diagrams
	Deployment Diagrams
	Composite Structure Diagrams
	Statechart Diagrams
	More UML
	For More Information

	Part 3: Documentation
	Chapter 9: System Documentation
	System Documentation Types
	Traceability
	Ways to Build Traceability into Your Documentation
	Tag Formats
	The Requirements/Reverse Traceability Matrix

	Validation, Verification, and Reviews
	Reducing Development Costs Using Documentation
	Reducing Costs via Validation
	Reducing Costs via Verification

	For More Information

	Chapter 10: Requirements Documentation
	Requirement Origins and Traceability
	A Suggested Requirements Format
	Characteristics of Good Requirements

	Design Goals
	The System Requirements Specification Document
	The Software Requirements Specification Document
	Introduction
	Overall Description
	Specific Requirements
	Supporting Information
	A Sample Software Requirements Specification

	Creating Requirements
	Use Cases
	Enable/Disable Debug Mode
	Enable/Disable Ethernet
	Enable/Disable RS-232
	Enable/Disable Test Mode
	Enable/Disable USB
	Read DIP Switches

	Creating DAQ Software Requirements from the Use Cases
	(Selected) DAQ Software Requirements (from SRS)
	Updating the Traceability Matrix with Requirement Information
	Requirements to Be Verified by Review
	Requirements to Be Verified by Testing

	For More Information

	Chapter 11: Software Design Description Documentation
	IEEE Std 1016-1998 vs. IEEE Std 1016-2009
	IEEE 1016-2009 Conceptual Model
	Design Concerns and Design Stakeholders
	Design Viewpoints and Design Elements
	Design Views, Overlays, and Rationales
	The IEEE Std 1016-2009 Conceptual Model

	SDD Required Contents
	SDD Identification
	Design Stakeholders and Their Design Concerns
	Design Views, Viewpoints, Overlays, and Rationales

	SDD Traceability and Tags
	A Suggested SDD Outline
	A Sample SDD
	Updating the Traceability Matrix with Design Information
	Creating a Software Design
	For More Information

	Chapter 12: Software Test Documentation
	The Software Test Documents in Std 829
	Process Support
	Integrity Levels and Risk Assessment
	Software Development Testing Levels

	Test Plans
	Master Test Plan
	Level Test Plan
	Level Test Design Documentation

	Software Review List Documentation
	Sample SRL Outline
	Sample SRL
	Adding SRL Items to the Traceability Matrix

	Software Test Case Documentation
	Introduction in the STC Document
	Details
	General
	A Sample Software Test Case Document
	Updating the RTM with STC Information

	Software Test Procedure Documentation
	The IEEE Std 829-2009 Software Test Procedure
	Extended Outline for Software Test Procedure
	Introduction in the STP Document
	Test Procedures
	General
	Index
	A Sample STP
	Updating the RTM with STP Information

	Level Test Logs
	Introduction in the Level Test Logs Document
	Details
	Glossary
	A Few Comments on Test Logs

	Anomaly Reports
	Introduction in the Anomaly Reports Document
	Details
	A Few Comments on Anomaly Reports

	Test Reports
	Brief Mention of the Master Test Report
	Level Test Reports

	Do You Really Need All of This?
	For More Information

	Afterword: Designing Great Code
	Glossary
	Index

