
R A N D A L L H Y D E

W R I T E G R E A T C O D E / V O L U M E 2

T H I N K I N G L O W L E V E L ,
W R I T I N G H I G H L E V E L

T H I N K I N G L O W L E V E L ,
W R I T I N G H I G H L E V E L

2 N D E D I T I O N

PRAISE FOR THE FIRST EDITION OF
WRITE GREAT CODE, VOLUME 2

“Set aside some money and buy this book, or get a friend to buy it and get
it from them while still in the store. When you get home, read it TWICE so
that you master what is in these pages. Then read it again.”
—DevCity

“Write Great Code, Volume 2, exceeds its goal of helping developers pay more
attention to application performance when writing applications in high-level
languages. This book is a must for any high-level application developer.”
—Free SoFtware Magazine

“As a high-level-language programmer, if you want to know what’s really
going on with your programs, you need to spend a little time learning
assembly language—and you won’t find an easier introduction.”
—DevX

“This is a good book. A very, very good book. Frankly, I’m blown away at the
quality of writing.”
—toronto ruby uSer group

by Randall Hyde

San Francisco

W R I T E G R E AT
C O D E

V O L U M E 2
2 N D E D I T I O N

T h i n k i n g L o w - L e v e l,
W r i t i n g H i g h - L e v e l

WRITE GREAT CODE, Volume 2: Thinking Low-Level, Writing High-Level, 2nd Edition.
Copyright © 2020 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-855-1
ISBN-13: 978-1-59327-855-7

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Rachel Monaghan
Developmental Editor: Athabasca Witschi
Project Editor: Dapinder Dosanjh
Cover and Interior Design: Octopod Studios
Technical Reviewer: Anthony Tribelli
Copyeditor: Rachel Monaghan
Compositor: Danielle Foster
Proofreader: James Fraleigh
Illustrator: David Van Ness

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition of Volume 1:

Hyde, Randall.

 Write great code : understanding the machine / Randall Hyde.

 p. cm.

 ISBN 1-59327-003-8

1. Computer programming. 2. Computer architecture. I. Title.

 QA76.6.H94 2004

 005.1--dc22

 2003017502

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

www.nostarch.com

About the Author
Randall Hyde is the author of The Art of Assembly Language and
Write Great Code, Volumes 1, 2, and 3 (all from No Starch Press), as
well as Using 6502 Assembly Language and P-Source (Datamost). He is
also the coauthor of Microsoft Macro Assembler 6.0 Bible (The Waite
Group). Over the past 40 years, Hyde has worked as an embedded
software/hardware engineer developing instrumentation for
nuclear reactors, traffic control systems, and other consumer elec-
tronics devices. He has also taught computer science at California
State Polytechnic University, Pomona, and at the University of
California, Riverside. His website is www.randallhyde.com/.

About the Technical Reviewer
Tony Tribelli has more than 35 years of experience in software
development, including work on embedded device kernels and
molecular modeling. He developed video games for 10 years
at Blizzard Entertainment. He is currently a software develop-
ment consultant and privately develops applications utilizing
computer vision.

B R I E F C O N T E N T S

Acknowledgments . xvii

Introduction . xix

Chapter 1: Thinking Low-Level, Writing High-Level . 1

Chapter 2: Shouldn’t You Learn Assembly Language? . 9

Chapter 3: 80x86 Assembly for the HLL Programmer . 17

Chapter 4: Compiler Operation and Code Generation . 47

Chapter 5: Tools for Analyzing Compiler Output . 99

Chapter 6: Constants and High-Level Languages . 145

Chapter 7: Variables in a High-Level Language . 173

Chapter 8: Array Data Types . 225

Chapter 9: Pointer Data Types . 267

Chapter 10: String Data Types . 293

Chapter 11: Record, Union, and Class Data Types . 331

Chapter 12: Arithmetic and Logical Expressions . 385

Chapter 13: Control Structures and Programmatic Decisions 451

Chapter 14: Iterative Control Structures . 503

Chapter 15: Functions and Procedures . 535

Afterword: Engineering Software . 599

Glossary . 601

Online Appendixes . 607

Index . 609

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xvii

INTRODUCTION xix
Performance Characteristics of Great Code . xx
The Goal of This Book . xxii
Chapter Organization . xxii
Assumptions and Prerequisites .xxiii
The Environment for This Book .xxiii
For More Information .xxiv

1
THINKING LOW-LEVEL, WRITING HIGH-LEVEL 1
1 .1 Misconceptions About Compiler Quality . 2
1 .2 Why Learning Assembly Language Is Still a Good Idea . 2
1 .3 Why Learning Assembly Language Isn’t Absolutely Necessary 3
1 .4 Thinking Low-Level . 3

1 .4 .1 Compilers Are Only as Good as the Source Code You Feed Them 4
1 .4 .2 How to Help the Compiler Produce Better Machine Code 4
1 .4 .3 How to Think in Assembly While Writing HLL Code 5

1 .5 Writing High-Level . 6
1 .6 Language-Neutral Approach . 7
1 .7 Additional Tips . 7
1 .8 For More Information . 8

2
SHOULDN’T YOU LEARN ASSEMBLY LANGUAGE? 9
2 .1 Benefits and Roadblocks to Learning Assembly Language 10
2 .2 How This Book Can Help . 10
2 .3 High-Level Assemblers to the Rescue . 11
2 .4 High-Level Assembly Language . 12
2 .5 Thinking High-Level, Writing Low-Level . 13
2 .6 The Assembly Programming Paradigm

(Thinking Low-Level) . 14
2 .7 For More Information . 16

3
80X86 ASSEMBLY FOR THE HLL PROGRAMMER 17
3 .1 Learning One Assembly Language Is Good, Learning More Is Better 18
3 .2 80x86 Assembly Syntaxes . 18

3 .2 .1 Basic 80x86 Architecture . 19
3 .2 .2 Registers . 19

x

3 .2 .3 80x86 32-Bit General-Purpose Registers . 20
3 .2 .4 The 80x86 EFLAGS Register . 21

3 .3 Literal Constants . 22
3 .3 .1 Binary Literal Constants . 23
3 .3 .2 Decimal Literal Constants . 23
3 .3 .3 Hexadecimal Literal Constants . 24
3 .3 .4 Character and String Literal Constants . 25
3 .3 .5 Floating-Point Literal Constants . 26

3 .4 Manifest (Symbolic) Constants in Assembly Language . 27
3 .4 .1 Manifest Constants in HLA . 27
3 .4 .2 Manifest Constants in Gas . 27
3 .4 .3 Manifest Constants in MASM . 28

3 .5 80x86 Addressing Modes . 28
3 .5 .1 80x86 Register Addressing Modes . 28
3 .5 .2 Immediate Addressing Mode . 30
3 .5 .3 Displacement-Only Memory Addressing Mode 30
3 .5 .4 RIP-Relative Addressing Mode . 32
3 .5 .5 Register Indirect Addressing Mode . 32
3 .5 .6 Indexed Addressing Mode . 34
3 .5 .7 Scaled-Index Addressing Modes . 37

3 .6 Declaring Data in Assembly Language . 39
3 .6 .1 Data Declarations in HLA . 39
3 .6 .2 Data Declarations in MASM . 40
3 .6 .3 Data Declarations in Gas . 41

3 .7 Specifying Operand Sizes in Assembly Language . 43
3 .7 .1 Type Coercion in HLA . 44
3 .7 .2 Type Coercion in MASM . 45
3 .7 .3 Type Coercion in Gas . 45

3 .8 For More Information . 45

4
COMPILER OPERATION AND CODE GENERATION 47
4 .1 File Types That Programming Languages Use . 48
4 .2 Source Files . 48

4 .2 .1 Tokenized Source Files . 48
4 .2 .2 Specialized Source Files . 49

4 .3 Types of Computer Language Processors . 49
4 .3 .1 Pure Interpreters . 49
4 .3 .2 Interpreters . 50
4 .3 .3 Compilers . 50
4 .3 .4 Incremental Compilers . 50

4 .4 The Translation Process . 52
4 .4 .1 Scanning (Lexical Analysis) . 53
4 .4 .2 Parsing (Syntax Analysis) . 54
4 .4 .3 Intermediate Code Generation . 55
4 .4 .4 Optimization . 56
4 .4 .5 Compiler Benchmarking . 67
4 .4 .6 Native Code Generation . 67

4 .5 Compiler Output . 67
4 .5 .1 Emitting HLL Code as Compiler Output . 67
4 .5 .2 Emitting Assembly Language as Compiler Output 69

 xi

4 .5 .3 Emitting Object Files as Compiler Output . 70
4 .5 .4 Emitting Executable Files as Compiler Output 71

4 .6 Object File Formats . 71
4 .6 .1 The COFF File Header . 72
4 .6 .2 The COFF Optional Header . 74
4 .6 .3 COFF Section Headers . 77
4 .6 .4 COFF Sections . 79
4 .6 .5 The Relocation Section . 80
4 .6 .6 Debugging and Symbolic Information . 80

4 .7 Executable File Formats . 80
4 .7 .1 Pages, Segments, and File Size . 81
4 .7 .2 Internal Fragmentation . 83
4 .7 .3 Reasons to Optimize for Space . 84

4 .8 Data and Code Alignment in an Object File . 85
4 .8 .1 Choosing a Section Alignment Size . 86
4 .8 .2 Combining Sections . 87
4 .8 .3 Controlling the Section Alignment . 87
4 .8 .4 Aligning Sections Within Library Modules . 88

4 .9 How Linkers Affect Code . 96
4 .10 For More Information . 98

5
TOOLS FOR ANALYZING COMPILER OUTPUT 99
5 .1 Background . 100
5 .2 Telling a Compiler to Produce Assembly Output . 101

5 .2 .1 Assembly Output from GNU Compilers . 102
5 .2 .2 Assembly Output from Visual C++ . 102
5 .2 .3 Example Assembly Language Output . 102
5 .2 .4 Assembly Output Analysis . 111

5 .3 Using Object Code Utilities to Analyze Compiler Output 112
5 .3 .1 The Microsoft dumpbin .exe Utility . 112
5 .3 .2 The FSF/GNU objdump Utility . 121

5 .4 Using a Disassembler to Analyze Compiler Output . 127
5 .5 Using the Java Bytecode Disassembler to Analyze Java Output 130
5 .6 Using the IL Disassembler to Analyze Microsoft C# and Visual Basic Output 132
5 .7 Using a Debugger to Analyze Compiler Output . 134

5 .7 .1 Using an IDE’s Debugger . 135
5 .7 .2 Using a Stand-Alone Debugger . 136

5 .8 Comparing Output from Two Compilations . 137
5 .8 .1 Before-and-After Comparisons with diff . 138

5 .9 For More Information . 143

6
CONSTANTS AND HIGH-LEVEL LANGUAGES 145
6 .1 Literal Constants and Program Efficiency . 146
6 .2 Binding Times . 150
6 .3 Literal Constants vs . Manifest Constants . 151
6 .4 Constant Expressions . 151
6 .5 Manifest Constants vs . Read-Only Memory Objects . 153
6 .6 Swift let Statements . 154

xii

6 .7 Enumerated Types . 155
6 .8 Boolean Constants . 157
6 .9 Floating-Point Constants . 159
6 .10 String Constants . 165
6 .11 Composite Data Type Constants . 169
6 .12 Constants Don’t Change . 171
6 .13 For More Information . 171

7
VARIABLES IN A HIGH-LEVEL LANGUAGE 173
7 .1 Runtime Memory Organization . 174

7 .1 .1 The Code, Constant, and Read-Only Sections 175
7 .1 .2 The Static Variables Section . 177
7 .1 .3 The Storage Variables Section . 178
7 .1 .4 The Stack Section . 179
7 .1 .5 The Heap Section and Dynamic Memory Allocation 179

7 .2 What Is a Variable? . 180
7 .2 .1 Attributes . 180
7 .2 .2 Binding . 181
7 .2 .3 Static Objects . 181
7 .2 .4 Dynamic Objects . 181
7 .2 .5 Scope . 181
7 .2 .6 Lifetime . 182
7 .2 .7 Variable Definition . 182

7 .3 Variable Storage . 183
7 .3 .1 Static Binding and Static Variables . 183
7 .3 .2 Pseudo-Static Binding and Automatic Variables 187
7 .3 .3 Dynamic Binding and Dynamic Variables . 189

7 .4 Common Primitive Data Types . 193
7 .4 .1 Integer Variables . 193
7 .4 .2 Floating-Point/Real Variables . 196
7 .4 .3 Character Variables . 197
7 .4 .4 Boolean Variables . 197

7 .5 Variable Addresses and High-Level Languages . 198
7 .5 .1 Allocating Storage for Global and Static Variables 199
7 .5 .2 Using Automatic Variables to Reduce Offset Sizes 200
7 .5 .3 Allocating Storage for Intermediate Variables 206
7 .5 .4 Allocating Storage for Dynamic Variables and Pointers 207
7 .5 .5 Using Records/Structures to Reduce Instruction Offset Sizes 209
7 .5 .6 Storing Variables in Machine Registers . 210

7 .6 Variable Alignment in Memory . 212
7 .6 .1 Records and Alignment . 218

7 .7 For More Information . 223

8
ARRAY DATA TYPES 225
8 .1 Arrays . 226

8 .1 .1 Array Declarations . 226
8 .1 .2 Array Representation in Memory . 231
8 .1 .3 Swift Array Implementation . 234

 xiii

8 .1 .4 Accessing Elements of an Array . 235
8 .1 .5 Padding vs . Packing . 238
8 .1 .6 Multidimensional Arrays . 241
8 .1 .7 Dynamic vs . Static Arrays . 257

8 .2 For More Information . 266

9
POINTER DATA TYPES 267
9 .1 The Definition of a Pointer . 268
9 .2 Pointer Implementation in High-Level Languages . 269
9 .3 Pointers and Dynamic Memory Allocation . 271
9 .4 Pointer Operations and Pointer Arithmetic . 272

9 .4 .1 Adding an Integer to a Pointer . 273
9 .4 .2 Subtracting an Integer from a Pointer . 275
9 .4 .3 Subtracting a Pointer from a Pointer . 275
9 .4 .4 Comparing Pointers . 277
9 .4 .5 Using Logical AND/OR Operations with Pointers 278
9 .4 .6 Using Other Operations with Pointers . 279

9 .5 A Simple Memory Allocator Example . 280
9 .6 Garbage Collection . 282
9 .7 The OS and Memory Allocation . 283
9 .8 Heap Memory Overhead . 284
9 .9 Common Pointer Problems . 286

9 .9 .1 Using an Uninitialized Pointer . 286
9 .9 .2 Using a Pointer That Contains an Illegal Value 287
9 .9 .3 Continuing to Use Storage After It Has Been Freed 287
9 .9 .4 Failing to Free Storage After Using It . 288
9 .9 .5 Accessing Indirect Data Using the Wrong Data Type 289
9 .9 .6 Performing Illegal Operations on Pointers . 290

9 .10 Pointers in Modern Languages . 290
9 .11 Managed Pointers . 291
9 .12 For More Information . 291

10
STRING DATA TYPES 293
10 .1 Character String Formats . 294

10 .1 .1 Zero-Terminated Strings . 295
10 .1 .2 Length-Prefixed Strings . 309
10 .1 .3 Seven-Bit Strings . 311
10 .1 .4 HLA Strings . 312
10 .1 .5 Descriptor-Based Strings . 315

10 .2 Static, Pseudo-Dynamic, and Dynamic Strings . 316
10 .2 .1 Static Strings . 316
10 .2 .2 Pseudo-Dynamic Strings . 317
10 .2 .3 Dynamic Strings . 317

10 .3 Reference Counting for Strings . 318
10 .4 Delphi Strings . 318
10 .5 Using Strings in a High-Level Language . 319
10 .6 Unicode Character Data in Strings . 321

10 .6 .1 The Unicode Character Set . 321

xiv

10 .6 .2 Unicode Code Points . 322
10 .6 .3 Unicode Code Planes . 322
10 .6 .4 Surrogate Code Points . 323
10 .6 .5 Glyphs, Characters, and Grapheme Clusters 323
10 .6 .6 Unicode Normals and Canonical Equivalence 326
10 .6 .7 Unicode Encodings . 327
10 .6 .8 Unicode Combining Characters . 328

10 .7 Unicode String Functions and Performance . 330
10 .8 For More Information . 330

11
RECORD, UNION, AND CLASS DATA TYPES 331
11 .1 Records . 332

11 .1 .1 Declaring Records in Various Languages 332
11 .1 .2 Instantiating a Record . 336
11 .1 .3 Initializing Record Data at Compile Time 342
11 .1 .4 Storing Records in Memory . 347
11 .1 .5 Using Records to Improve Memory Performance 350
11 .1 .6 Working with Dynamic Record Types and Databases 351

11 .2 Discriminant Unions . 351
11 .2 .1 Declaring Unions in Various Languages . 352
11 .2 .2 Storing Unions in Memory . 354
11 .2 .3 Using Unions in Other Ways . 355

11 .3 Variant Types . 356
11 .4 Namespaces . 361
11 .5 Classes and Objects . 363

11 .5 .1 Classes vs . Objects . 363
11 .5 .2 Simple Class Declarations in C++ . 363
11 .5 .3 Class Declarations in C# and Java . 366
11 .5 .4 Class Declarations in Delphi (Object Pascal) 367
11 .5 .5 Class Declarations in HLA . 367
11 .5 .6 Virtual Method Tables . 367
11 .5 .7 Abstract Methods . 371
11 .5 .8 Sharing VMTs . 371
11 .5 .9 Inheritance in Classes . 372
11 .5 .10 Polymorphism in Classes . 375
11 .5 .11 Multiple Inheritance (in C++) . 376

11 .6 Protocols and Interfaces . 378
11 .7 Classes, Objects, and Performance . 381
11 .8 For More Information . 382

12
ARITHMETIC AND LOGICAL EXPRESSIONS 385
12 .1 Arithmetic Expressions and Computer Architecture . 386

12 .1 .1 Stack-Based Machines . 386
12 .1 .2 Accumulator-Based Machines . 391
12 .1 .3 Register-Based Machines . 393
12 .1 .4 Typical Forms of Arithmetic Expressions . 394
12 .1 .5 Three-Address Architectures . 394

 xv

12 .1 .6 Two-Address Architectures . 395
12 .1 .7 Architectural Differences and Your Code 395
12 .1 .8 Complex Expressions . 396

12 .2 Optimization of Arithmetic Statements . 397
12 .2 .1 Constant Folding . 397
12 .2 .2 Constant Propagation . 400
12 .2 .3 Dead Code Elimination . 404
12 .2 .4 Common Subexpression Elimination . 410
12 .2 .5 Strength Reduction . 417
12 .2 .6 Induction . 422
12 .2 .7 Loop Invariants . 427
12 .2 .8 Optimizers and Programmers . 429

12 .3 Side Effects in Arithmetic Expressions . 430
12 .4 Containing Side Effects: Sequence Points . 434
12 .5 Avoiding Problems Caused by Side Effects . 438
12 .6 Forcing a Particular Order of Evaluation . 439
12 .7 Short-Circuit Evaluation . 441

12 .7 .1 Using Short-Circuit Evaluation with Boolean Expressions 441
12 .7 .2 Forcing Short-Circuit or Complete Boolean Evaluation 443
12 .7 .3 Comparing Short-Circuit and Complete Boolean Evaluation Efficiency 445

12 .8 The Relative Cost of Arithmetic Operations . 449
12 .9 For More Information . 450

13
CONTROL STRUCTURES AND PROGRAMMATIC DECISIONS 451
13 .1 How Control Structures Affect a Program’s Efficiency 452
13 .2 Introduction to Low-Level Control Structures . 452
13 .3 The goto Statement . 455

13 .3 .1 Restricted Forms of the goto Statement . 459
13 .4 The if Statement . 460

13 .4 .1 Improving the Efficiency of Certain if/else Statements 463
13 .4 .2 Forcing Complete Boolean Evaluation in an if Statement 465
13 .4 .3 Forcing Short-Circuit Evaluation in an if Statement 471

13 .5 The switch/case Statement . 476
13 .5 .1 Semantics of a switch/case Statement . 477
13 .5 .2 Jump Tables vs . Chained Comparisons . 478
13 .5 .3 Other Implementations of switch/case . 485
13 .5 .4 The Swift switch Statement . 500
13 .5 .5 Compiler Output for switch Statements . 501

13 .6 For More Information . 501

14
ITERATIVE CONTROL STRUCTURES 503
14 .1 The while Loop . 504

14 .1 .1 Forcing Complete Boolean Evaluation in a while Loop 506
14 .1 .2 Forcing Short-Circuit Boolean Evaluation in a while Loop 515

14 .2 The repeat . .until (do . .until/do . .while) Loop . 518
14 .2 .1 Forcing Complete Boolean Evaluation in a repeat . .until Loop 521
14 .2 .2 Forcing Short-Circuit Boolean Evaluation in a repeat . .until Loop 524

xvi

14 .3 The forever . .endfor Loop . 529
14 .3 .1 Forcing Complete Boolean Evaluation in a forever Loop 532
14 .3 .2 Forcing Short-Circuit Boolean Evaluation in a forever Loop 532

14 .4 The Definite Loop (for Loops) . 532
14 .5 For More Information . 534

15
FUNCTIONS AND PROCEDURES 535
15 .1 Simple Function and Procedure Calls . 536

15 .1 .1 Return Address Storage . 539
15 .1 .2 Other Sources of Overhead . 544

15 .2 Leaf Functions and Procedures . 545
15 .3 Macros and Inline Functions . 549
15 .4 Passing Parameters to a Function or Procedure . 556
15 .5 Activation Records and the Stack . 563

15 .5 .1 Breaking Down the Activation Record . 565
15 .5 .2 Assigning Offsets to Local Variables . 568
15 .5 .3 Associating Offsets with Parameters . 570
15 .5 .4 Accessing Parameters and Local Variables 575
15 .5 .5 Registers to the Rescue . 585
15 .5 .6 Java VM and Microsoft CLR Parameters and Locals 587

15 .6 Parameter-Passing Mechanisms . 588
15 .6 .1 Pass-by-Value . 588
15 .6 .2 Pass-by-Reference . 589

15 .7 Function Return Values . 590
15 .8 For More Information . 597

AFTERWORD: ENGINEERING SOFTWARE 599

GLOSSARY 601

ONLINE APPENDIXES 607

INDEX 609

A C K N O W L E D G M E N T S

Many people have read and reread every word, symbol, and punctuation
mark in this book in order to produce a better result. Kudos to the follow-
ing people for their careful work on the second edition: development editor
Athabasca Witschi, copyeditor/production editor Rachel Monaghan, and
proofreader James Fraleigh.

I would like to take the opportunity to graciously thank Anthony
Tribelli, a longtime friend, who went well beyond the call of duty when
doing a technical review of this book. He pulled every line of code out
of this book (including snippets) and compiled and ran it to make sure it
worked properly. His suggestions and opinions throughout the technical
review process have dramatically improved the quality of this work.

Of course, I would also like to thank all the countless readers over the
years who’ve emailed suggestions and corrections, many of which have
found their way into this second edition.

Thanks to all of you,
Randall Hyde

I N T R O D U C T I O N

What do we mean by great code? Different
programmers will have different opinions.

Therefore, it is impossible to provide an
all-encompassing definition that will satisfy

everyone. Here is the definition this book will use:

Great code is software that is written using a consistent and pri-
oritized set of good software characteristics. In particular, great
code follows a set of rules that guide the decisions a programmer
makes when implementing an algorithm as source code.

xx Introduction

However, as I noted in Write Great Code, Volume 1: Understanding the
Machine (hereafter, WGC1), there are some attributes of great code that
nearly everyone can agree on. Specifically, great code:

•	 Uses the CPU efficiently (that is, it’s fast)

•	 Uses memory efficiently (that is, it’s small)

•	 Uses system resources efficiently

•	 Is easy to read and maintain

•	 Follows a consistent set of style guidelines

•	 Uses an explicit design that follows established software engineering
conventions

•	 Is easy to enhance

•	 Is well tested and robust (that is, it works)

•	 Is well documented

We could easily add dozens of items to this list. Some programmers, for
example, may feel that great code must be portable, must follow a given set
of programming style guidelines, or must be written in a certain language
(or not be written in a certain language). Some may feel that great code
must be written as simply as possible, while others believe that it must be
written quickly. Still others may feel that great code is created on time and
under budget.

Given that there are so many aspects of great code—too many to
describe properly in a single book—this second volume of the Write
Great Code series concentrates primarily on one: efficient performance.
Although efficiency might not always be the primary goal of a software
development effort—nor does it have to be for code to qualify as great—
people generally agree that inefficient code is not great code. And inef-
ficiency is one of the major problems with modern applications, so it’s
an important topic to emphasize.

Performance Characteristics of Great Code
As computer system performance has increased from megahertz to hun-
dreds of megahertz to gigahertz, computer software performance has taken
a back seat to other concerns. Today, it’s not at all uncommon for software
engineers to exclaim, “You should never optimize your code!” Funny, you
don’t hear too many software users making such statements.

Although this book describes how to write efficient code, it’s not a book
about optimization. Optimization is a phase near the end of the Software
Development Life Cycle (SDLC) in which software engineers determine
why their code does not meet performance specifications and then refine
it accordingly. But unfortunately, if they don’t put any thought into the
application’s performance until the optimization phase, it’s unlikely that

Introduction xxi

optimization will prove practical. The time to ensure that an application
meets reasonable performance benchmarks is at the beginning of the SDLC,
during the design and implementation phases. Optimization can fine-tune
a system’s performance, but it can rarely deliver a miracle.

Although the quote is often attributed to Donald Knuth, who popular-
ized it, it was Tony Hoare who originally said, “Premature optimization is
the root of all evil.” This statement has long been the rallying cry of soft-
ware engineers who neglect application performance until the very end of
the SDLC—at which point optimization is typically ignored for economic or
time-to-market reasons. However, Hoare did not say, “Concern about appli-
cation performance during the early stages of an application’s development
is the root of all evil.” He specifically said premature optimization, which, back
then, meant counting cycles and instructions in assembly language code—
not the type of coding you want to do during initial program design, when
the code base is fluid. Thus, Hoare’s comments were on the mark.

The following excerpt from a short essay by Charles Cook (https://bit.ly
/38NhZkT) further describes the problem with reading too much into
Hoare’s statement:

I’ve always thought this quote has all too often led software
designers into serious mistakes because it has been applied to
a different problem domain to what was intended.

The full version of the quote is “We should forget about small
efficiencies, say about 97% of the time: premature optimization
is the root of all evil.” and I agree with this. It’s usually not worth
spending a lot of time micro-optimizing code before it’s obvious
where the performance bottlenecks are. But, conversely, when
designing software at a system level, performance issues should
always be considered from the beginning. A good software devel-
oper will do this automatically, having developed a feel for where
performance issues will cause problems. An inexperienced devel-
oper will not bother, misguidedly believing that a bit of fine tun-
ing at a later stage will fix any problems.

Indeed, Hoare was saying that software engineers should worry about
other issues, like good algorithm design and implementation, before they
worry about traditional optimizations, like how many CPU cycles a particu-
lar statement requires for execution.

Although you could certainly apply many of this book’s concepts dur-
ing an optimization phase, most of the techniques here really need to be
applied during the initial coding. An experienced software engineer may
argue that doing so produces only minor improvements in performance. In
some cases, this is true—but keep in mind that these minor effects accumu-
late. If you put off these ideas until you reach “code complete,” it’s unlikely
that they’ll ever find their way into your software. It’s just too much work to
implement them after the fact (and too risky to make such changes to oth-
erwise working code).

xxii Introduction

The Goal of This Book
This book (and WGC1) attempts to fill the gaps in the education of the cur-
rent generation of programmers so they can write quality code. In particu-
lar, it covers the following concepts:

•	 Why it’s important to consider the low-level execution of your
high-level programs

•	 How compilers generate machine code from high-level language
(HLL) statements

•	 How compilers represent various data types using low-level, primitive
data types

•	 How to write your HLL code to help the compiler produce better
machine code

•	 How to take advantage of a compiler’s optimization facilities

•	 How to “think” in assembly language (low-level terms) while writing
HLL code

This book will teach you how to choose appropriate HLL statements
that translate into efficient machine code with a modern optimizing com-
piler. In most cases, different HLL statements provide many ways to achieve
a given result, some of which, at the machine level, are naturally more effi-
cient than others. Though there may be a very good reason for choosing
a less efficient statement sequence over a more efficient one (for example,
readability), the truth is that most software engineers have no idea about
HLL statement runtime costs and thus are unable to make an educated
choice. The goal of this book is to change that.

Again, this book is not about choosing the most efficient statement
sequence no matter what. It is about understanding the cost of various
HLL constructs so that, when faced with multiple options, you can make
an informed decision about which sequence is most appropriate to use.

Chapter Organization
Though you don’t need to be an expert assembly language programmer in
order to write efficient code, you’ll need at least a basic knowledge of it to
understand the compiler output in this book. Chapters 1 and 2 discuss sev-
eral aspects of learning assembly language, covering common misconcep-
tions, considerations around compilers, and available resources. Chapter 3
provides a quick primer for 80x86 assembly language. Online appendixes
(http://www.randallhyde.com/) provide primers for the PowerPC, ARM, Java
bytecode, and Common Intermediate Language (CIL) assembly languages.

In Chapters 4 and 5, you’ll learn about determining the quality of
your HLL statements by examining compiler output. These chapters
describe disassemblers, object code dump tools, debuggers, various HLL
compiler options for displaying assembly language code, and other useful
software tools.

http://www.randallhyde.com
http://www.randallhyde.com

Introduction xxiii

The remainder of the book, Chapters 6 through 15, describes how com-
pilers generate machine code for different HLL statements and data types.
Armed with this knowledge, you’ll be able to choose the most appropriate
data types, constants, variables, and control structures to produce efficient
applications.

Assumptions and Prerequisites
This book was written with certain assumptions about your prior knowl-
edge. You’ll reap the greatest benefit from this material if your personal
skill set matches the following:

•	 You should be reasonably competent in at least one imperative (proce-
dural) or object-oriented programming language. This includes C and
C++, Pascal, Java, Swift, BASIC, Python, and assembly, as well as lan-
guages like Ada, Modula-2, and FORTRAN.

•	 You should be capable of taking a small problem description and work-
ing through the design and implementation of a software solution
for that problem. A typical semester or quarter course at a college or
university (or several months of experience on your own) should be suf-
ficient preparation.

•	 You should have a basic grasp of machine organization and data repre-
sentation. You should know about the hexadecimal and binary number-
ing systems. You should understand how computers represent various
high-level data types such as signed integers, characters, and strings
in memory. Although the next couple of chapters provide a primer on
machine language, it would help considerably if you’ve picked up this
information along the way. WGC1 fully covers the subject of machine
organization if you feel your knowledge in this area is a little weak.

The Environment for This Book
Although this book presents generic information, parts of the discussion will
necessarily be system specific. Because the Intel Architecture PCs are, by far,
the most common in use today, that’s the platform I’ll use when discussing
specific system-dependent concepts in this book. However, those concepts
still apply to other systems and CPUs—such as the PowerPC CPU in the
older Power Macintosh systems, ARM CPUs in mobile phones, tablets and
single-board computers (SBCs; like the Raspberry Pi or higher-end Arduino
boards), and other RISC CPUs in a Unix box—although you may need to
research the particular solution for an example on your specific platform.

Most of the examples in this book run under macOS, Windows, and
Linux. When creating the examples, I tried to stick with standard library
interfaces to the OS wherever possible and make OS-specific calls only
when the alternative was to write “less than great” code.

xxiv Introduction

Most of the specific examples in this text will run on a late-model Intel
Architecture (including AMD) CPU under Windows, macOS, and Linux,
with a reasonable amount of RAM and other system peripherals normally
found on a modern PC. The concepts, if not the software itself, will apply
to Macs, Unix boxes, SBCs, embedded systems, and even mainframes.

For More Information
Mariani, Rico. “Designing for Performance.” December 11, 2003.

https://docs.microsoft.com/en-us/archive/blogs/ricom/designing-for-performance/.

Wikipedia. “Program Optimization.” https://en.wikipedia.org/wiki
/Program_optimization.

https://en.wikipedia.org/wiki/Program_optimization
https://en.wikipedia.org/wiki/Program_optimization

1
T H I N K I N G L O W - L E V E L ,
W R I T I N G H I G H - L E V E L

This book doesn’t teach anything rev-
olutionary. Rather, it describes a time-

tested, well-proven approach to writing
great code— understanding how the code

you write will actually execute on a real machine.
The journey to that understanding begins with this
chapter. In it, we’ll explore these topics:

•	 Misconceptions programmers have about the code quality produced by
typical compilers

•	 Why learning assembly language is still a good idea

•	 How to think in low-level terms while writing HLL code

So, without further ado, let’s begin!

If you want to write the best high-level language code,
learn assembly language.

—Common programming advice

2 Chapter 1

1.1 Misconceptions About Compiler Quality
In the early days of the personal computer revolution, high-performance
software was written in assembly language. As time passed, optimizing
compilers for high-level languages were improved, and their authors began
claiming that the performance of compiler-generated code was within 10 to
50 percent of hand-optimized assembly code. Such proclamations ushered
the ascent of HLLs for PC application development, sounding the death
knell for assembly language. Many programmers began citing statistics like
“my compiler achieves 90 percent of assembly’s speed, so it’s insane to use
assembly language.” The problem is that they never bothered to write hand-
optimized assembly versions of their applications to check their claims.
Often, their assumptions about their compiler’s performance were wrong.
Worse still, as compilers for languages such as C and C++ matured to the
point that they were producing very good output code, programmers began
favoring more high-level languages, such as Java, Python, and Swift, that
were either interpreted (or semi-interpreted) or had very immature code
generators producing terrible output code.

The authors of optimizing compilers weren’t lying. Under the right
conditions, an optimizing compiler can produce code that is almost as good
as hand-optimized assembly language. However, the HLL code has to be
written in an appropriate way to achieve these performance levels. Writing
HLL code in this manner requires a firm understanding of how computers
operate and execute software.

1.2 Why Learning Assembly Language Is Still a Good Idea
When programmers first began giving up assembly language in favor of
using HLLs, they generally understood the low-level ramifications of the
HLL they were using and could choose their HLL statements appropriately.
Unfortunately, the generation of computer programmers that followed
them did not have the benefit of mastering assembly language. As a result,
they were not equipped to wisely choose statements and data structures that
HLLs could efficiently translate into machine code. Their applications, if
measured against the performance of a comparable hand-optimized assem-
bly language program, surely proved inferior.

Veteran programmers who recognized this problem offered sage
advice to the new programmers: “If you want to learn how to write good
HLL code, you need to learn assembly language.” By learning assembly
language, programmers can understand the low-level implications of their
code and make informed decisions about the best way to write applications
in an HLL.1 Chapter 2 will discuss assembly language further.

1. A knowledge of assembly may also come in handy for debugging in that programmers could
examine the assembly instructions and registers to see where the HLL code went wrong.

Thinking Low-Level, Writing High-Level 3

1.3 Why Learning Assembly Language Isn’t
Absolutely Necessary

While it’s a good idea for any well-rounded programmer to learn to program
in assembly language, it isn’t a necessary condition for writing great, efficient
code. What’s most important is to understand how HLLs translate statements
into machine code so that you can choose appropriate HLL statements. And
while one way to do this is to become an expert assembly language program-
mer, that approach requires considerable time and effort.

The question, then, is, “Can a programmer just study the low-level
nature of the machine and improve the HLL code they write without
becoming an expert assembly programmer in the process?” The answer,
given the preceding point, is a qualified yes. That’s the purpose of this
book: to teach you what you need to know to write great code without hav-
ing to become an expert assembly language programmer.

1.4 Thinking Low-Level
When Java was first becoming popular in the late 1990s, the language
received complaints like the following:

Java’s interpreted code is forcing me to take a lot more care when
writing software; I can’t get away with using linear searches the
way I could in C/C++. I have to use good (and more difficult to
implement) algorithms like binary search.

Such statements demonstrate the major problem with using optimizing
compilers: they allow programmers to get lazy. Although optimizing com-
pilers have made tremendous strides over the past several decades, none of
them can make up for poorly written HLL source code.

Of course, many novice HLL programmers read about how marvelous
the optimization algorithms are in modern compilers and assume that the
compiler will produce efficient code regardless of what it’s fed. However,
that’s not the case: although compilers can do a great job of translating
well-written HLL code into efficient machine code, poorly written source
code stymies the compiler’s optimization algorithms. In fact, it’s not uncom-
mon to hear C/C++ programmers praising their compiler, never realizing
how poor a job it’s actually doing because of how they’ve written their code.
The problem is that they’ve never actually looked at the machine code the
compiler produces from their HLL source code. They assume that the com-
piler is doing a great job because they’ve been told that compilers produce
code that’s almost as good as what an expert assembly language program-
mer can produce.

4 Chapter 1

1.4.1 Compilers Are Only as Good as the Source Code You Feed Them
It goes without saying that a compiler won’t change your algorithms in order
to improve your software’s performance. For example, if you use a linear
search rather than a binary search, you can’t expect the compiler to use a bet-
ter algorithm for you. Certainly, the optimizer may improve the speed of your
linear search by a constant factor (for example, double or triple the speed of
your code), but this improvement may be nothing compared to using a better
algorithm. In fact, it’s very easy to show that, given a sufficiently large data-
base, a binary search processed by an interpreter with no optimization will
run faster than a linear search algorithm processed by the best compiler.

1.4.2 How to Help the Compiler Produce Better Machine Code
Let’s assume that you’ve chosen the best possible algorithm(s) for your
application and you’ve spent the extra money to get the best compiler avail-
able. Is there something you can do to write HLL code that is more efficient
than you would otherwise produce? Generally, the answer is yes.

One of the best-kept secrets in the compiler world is that most compiler
benchmarks are rigged. Most real-world compiler benchmarks specify an
algorithm to use, but they leave it up to the compiler vendors to actually imple-
ment the algorithm in their particular language. These compiler vendors gen-
erally know how their compilers behave when fed certain code sequences, so
they will write the code sequence that produces the best possible executable.

Some may feel that this is cheating, but it’s really not. If a compiler
is capable of producing that same code sequence under normal circum-
stances (that is, the code generation trick wasn’t developed specifically for
the benchmark), there’s nothing wrong with showing off its performance.
And if the compiler vendor can pull little tricks like this, so can you. By
carefully choosing the statements you use in your HLL source code, you
can “manually optimize” the machine code the compiler produces.

Several levels of manual optimization are possible. At the most abstract
level, you can optimize a program by selecting a better algorithm for the
software. This technique is independent of the compiler and the language.

Dropping down a level of abstraction, the next step is to manually opti-
mize your code based on the HLL that you’re using while keeping the opti-
mizations independent of the particular implementation of that language.
While such optimizations may not apply to other languages, they should
apply across different compilers for the same language.

Dropping down yet another level, you can start thinking about structur-
ing the code so that the optimizations are applicable only to a certain ven-
dor or perhaps only to a specific version of a compiler.

Finally, at perhaps the lowest level, you can consider the machine code
that the compiler emits and adjust how you write statements in an HLL
to force the compiler to generate some sequence of machine instructions.
The Linux kernel is an example of this approach. Legend has it that the
kernel developers were constantly tweaking the C code they wrote in the
Linux kernel in order to control the 80x86 machine code that the GNU C
Compiler (GCC) was producing.

Thinking Low-Level, Writing High-Level 5

Although this development process may be a bit overstated, one thing is
for sure: programmers who employ it will produce the best possible machine
code from a compiler. This is the type of code that’s comparable to what
decent assembly language programmers produce, and the kind of compiler
output that HLL programmers like to cite when arguing that compilers
produce code that’s comparable to handwritten assembly. The fact that
most people do not go to these extremes to write their HLL code never
enters into the argument. Nevertheless, the fact remains that carefully writ-
ten HLL code can be nearly as efficient as decent assembly code.

Will compilers ever produce code that is as good as or better than what
an expert assembly language programmer can write? The correct answer is
no; after all, an expert assembly language programmer can always look at a
compiler’s output and improve on that. However, careful programmers writ-
ing code in HLLs like C/C++ can come close if they write their program
such that the compiler can easily translate it into efficient machine code.
Thus, the real question is, “How do I write my HLL code so that the com-
piler can translate it most efficiently?” Well, answering that question is the
subject of this book. But the short answer is, “Think in assembly; write in a
high-level language.” Let’s take a quick look at how to do that.

1.4.3 How to Think in Assembly While Writing HLL Code
HLL compilers translate statements in that language to a sequence of one or
more machine language (or assembly language) instructions. The amount
of space in memory that an application consumes, and the amount of time
that an application spends in execution, are directly related to the number
and type of machine instructions that the compiler emits.

However, the fact that you can achieve the same result with two differ-
ent code sequences in an HLL does not imply that the compiler generates
the same sequence of machine instructions for each approach. The HLL
if and switch/case statements are classic examples. Most introductory pro-
gramming texts suggest that a chain of if-elseif-else statements is equiva-
lent to a switch/case statement. Consider the following trivial C example:

switch(x)
 {
 case 1:
 printf("X=1\n");
 break;

 case 2:
 printf("X=2\n");
 break;

 case 3:
 printf("X=3\n");
 break;

 case 4:
 printf("X=4\n");
 break;

6 Chapter 1

 default:
 printf("X does not equal 1, 2, 3, or 4\n");
 }

/* equivalent if statement */

 if(x == 1)
 printf("X=1\n");
 else if(x== 2)
 printf("X=2\n");
 else if(x==3)
 printf("X=3\n");
 else if(x==4)
 printf("X=4\n");
 else
 printf("X does not equal 1, 2, 3, or 4\n");

Although these two code sequences might be semantically equivalent
(that is, they compute the same result), there is no guarantee that the com-
piler will generate the same sequence of machine instructions for both.

Which one will be better? Unless you understand how the compiler
translates statements like these into machine code, and have a basic knowl-
edge of the different efficiencies between various machines, you probably
can’t answer that. Programmers who fully understand how a compiler
will translate these two sequences can evaluate both and then judiciously
choose one based on the quality of the expected output code.

By thinking in low-level terms when writing HLL code, a program-
mer can help an optimizing compiler approach the level of code quality
achieved by hand-optimized assembly language code. Sadly, the converse is
usually true as well: if a programmer does not consider the low-level rami-
fications of their HLL code, the compiler will rarely generate the best pos-
sible machine code.

1.5 Writing High-Level
One problem with thinking in low-level terms while writing high-level code
is that it’s almost as much work to write HLL code this way as it is to write
assembly code. This negates many of the familiar benefits of writing pro-
grams in HLLs, such as faster development time, better readability, and
easier maintenance. If you’re sacrificing the benefits of writing applications
in an HLL, why not simply write them in assembly language to begin with?

As it turns out, thinking in low-level terms won’t lengthen your overall
project schedule as much as you would expect. Although it does slow down
the initial coding process, the resulting HLL code will still be readable
and portable, and it will maintain the other attributes of well-written, great
code. But more importantly, it will also gain some efficiency that it wouldn’t
otherwise have. Once the code is written, you won’t have to constantly
think about it in low-level terms during the maintenance and enhancement
phases of the Software Development Life Cycle (SDLC). In short, thinking

Thinking Low-Level, Writing High-Level 7

in low-level terms during the initial software development stage retains the
advantages of both low-level and high-level coding (efficiency plus ease of
maintenance) without the corresponding disadvantages.

1.6 Language-Neutral Approach
Although this book assumes you are conversant in at least one imperative
language, it is not entirely language specific; its concepts transcend whatever
programming language(s) you’re using. To help make the examples more
accessible, the programming examples we’ll use will rotate among several
languages, such as C/C++, Pascal, BASIC, Java, Swift, and assembly. When
presenting examples, I’ll explain exactly how the code operates so that even
if you’re unfamiliar with the specific programming language, you’ll be able
to understand its operation by reading the accompanying description.

This book uses the following languages and compilers in various examples:

•	 C/C++: GCC and Microsoft’s Visual C++

•	 Pascal: Borland’s Delphi, and Free Pascal

•	 Assembly language: Microsoft’s MASM, HLA (High-Level Assembly),
and Gas (the GNU Assembler)

•	 Basic: Microsoft’s Visual Basic

If you’re not comfortable working with assembly language, don’t worry:
the primer on 80x86 assembly language and the online reference (http://
www.writegreatcode.com/) will allow you to read compiler output. If you’d like
to extend your knowledge of assembly language, see the resources listed at
the end of this chapter.

1.7 Additional Tips
No single book can completely cover everything you need to know in order
to write great code. This book, therefore, concentrates on the areas that are
most pertinent for writing great software, providing the 90 percent solution
for those who are interested in writing the best possible code. To get that
last 10 percent you’ll need additional help. Here are some suggestions:

Become an expert assembly language programmer. Fluency in at
least one assembly language will fill in many missing details that you
just won’t get from this book. As noted, the purpose of this book is to
teach you how to write the best possible code without actually becom-
ing an assembly language programmer. However, the extra effort will
improve your ability to think in low-level terms.

Study compiler construction theory. Although this is an advanced
topic in computer science, there’s no better way to understand how
compilers generate code than to study the theory behind compilers.
While there’s a wide variety of textbooks on this subject, many of them
require considerable prerequisite knowledge. Carefully review any

8 Chapter 1

book before you purchase it in order to determine if it was written at
an appropriate level for your skill set. You can also search online to find
some excellent web tutorials.

Study advanced computer architecture. Machine organization and
assembly language programming are a subset of the study of computer
architecture. While you may not need to know how to design your own
CPUs, studying computer architecture may help you discover additional
ways to improve the HLL code that you write.

1.8 For More Information
Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:

Wiley, 2009.

Hennessy, John L., and David A. Patterson. Computer Architecture:
A Quantitative Approach. 5th ed. Waltham, MA: Morgan Kaufmann, 2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Although this book will teach you how
to write better code without mastering

assembly language, the absolute best HLL
programmers do know assembly, and that

knowledge is one of the reasons they write great code.
As mentioned in Chapter 1, although this book can
provide a 90 percent solution if you just want to write great HLL code,
to fill in that last 10 percent you’ll need to learn assembly language. While
teaching you assembly language is beyond the scope of this book, it’s still
an important subject to discuss. To that end, this chapter will explore
the following:

•	 The problem with learning assembly language

•	 High-level assemblers and how they can make learning assembly lan-
guage easier

2
S H O U L D N ’ T Y O U L E A R N
A S S E M B LY L A N G U A G E ?

10 Chapter 2

•	 How you can use real-world products like Microsoft Macro Assembler
(MASM), Gas (Gnu Assembler), and HLA (High-Level Assembly) to
easily learn assembly language programming

•	 How an assembly language programmer thinks (that is, the assembly
language programming paradigm)

•	 Resources available to help you learn assembly language programming

2.1 Benefits and Roadblocks to Learning Assembly Language
Learning assembly language—really learning assembly language—offers
two benefits. First, you’ll gain a complete understanding of the machine
code that a compiler can generate. By mastering assembly language, you’ll
achieve the 100 percent solution just described and be able to write better
HLL code. Second, you’ll be able to code critical parts of your application
in assembly language when your HLL compiler is incapable, even with your
help, of producing the best possible code. Once you’ve absorbed the les-
sons of the following chapters to hone your HLL skills, moving on to learn
assembly language is a very good idea.

There’s one catch to learning assembly language, though. In the past,
it’s been a long, difficult, and frustrating task. The assembly language pro-
gramming paradigm is sufficiently different from HLL programming that
most people feel like they’re starting over from square one when learning it.
It’s very frustrating when you know how to do something in a programming
language like C/C++, Java, Swift, Pascal, or Visual Basic, but you can’t yet
figure out the solution in assembly language.

Most programmers like being able to apply past experience when learn-
ing something new. Unfortunately, traditional approaches to learning assem-
bly language programming tend to force HLL programmers to forget what
they’ve learned in the past. This book, in contrast, offers a way for you to effi-
ciently leverage your existing knowledge while learning assembly language.

2.2 How This Book Can Help
Once you’ve read through this book, there are three reasons you’ll find it
much easier to learn assembly language:

•	 You’ll be more motivated to learn it because you’ll understand why
doing so can help you write better code.

•	 You’ll have had five brief primers on assembly language (80x86,
PowerPC, ARM, Java bytecode, and Microsoft IL), so even if you’d never
seen it before, you’ll have learned some by the time you finish this book.

•	 You’ll have already seen how compilers emit machine code for all the
common control and data structures, so you’ll have learned one of the
most difficult lessons for a beginning assembly programmer—how to
achieve things in assembly language that they already know how to do
in an HLL.

Shouldn’t You Learn Assembly Language? 11

Though this book won’t teach you how to become an expert assembly
language programmer, the large number of example programs that dem-
onstrate how compilers translate HLLs into machine code will acquaint you
with many assembly language programming techniques. You’ll find these
useful should you decide to learn assembly language after reading this book.

Certainly, you’ll find this book easier to read if you already know assem-
bly language. However, you’ll also find assembly language easier to master
once you’ve read this book. Since learning assembly language is probably
more time-consuming than reading this book, the more efficient approach
is to start with the book.

2.3 High-Level Assemblers to the Rescue
Way back in 1995, I had a discussion with the University of California,
Riverside, computer science department chair. I was lamenting the fact
that students had to start over when taking the assembly course, spending
precious time to relearn so many things. As the discussion progressed, it
became clear that the problem wasn’t with assembly language, per se, but
with the syntax of existing assemblers (like Microsoft Macro Assembler,
or MASM). Learning assembly language entailed a whole lot more than
learning a few machine instructions. First of all, you have to learn a new
programming style. Mastering assembly language involves learning not
only the semantics of a few machine instructions but also how to put those
instructions together to solve real-world problems. And that’s the hard part.

Second, pure assembly language is not something you can efficiently
pick up a few instructions at a time. Writing even the simplest programs
requires considerable knowledge and a repertoire of a couple dozen or
more machine instructions. When you add that repertoire to all the other
machine organization topics students must learn in a typical assembly
course, it’s often several weeks before they are prepared to write anything
other than “spoon-fed” trivial applications in assembly language.

One important feature of MASM back in 1995 was support for HLL-like
control statements such as .if and .while. While these statements are not
true machine instructions, they do allow students to use familiar program-
ming constructs early in the course, until they’ve had time to learn enough
low-level machine instructions that they can use them in their applications.
By using these high-level constructs early on in the term, students can con-
centrate on other aspects of assembly language programming and not have
to assimilate everything all at once. This allows them to start writing code
much sooner in the course and, as a result, they wind up covering more
material by the end of the term.

An assembler like MASM (32-bit v6.0 and later) that provides control
statements similar to those found in HLLs—in addition to the traditional
low-level machine instructions that do the same thing—is called a high-level
assembler. In theory, with an appropriate textbook that teaches assembly
language programming using these high-level assemblers, students could
begin writing simple programs during the very first week of the course.

12 Chapter 2

The only problem with high-level assemblers like MASM is that they
provide just a few HLL control statements and data types. Almost every-
thing else is foreign to someone who is familiar with HLL programming.
For example, data declarations in MASM are completely different from data
declarations in most HLLs. Beginning assembly programmers still have
to relearn a considerable amount of information, despite the presence of
HLL-like control statements.

2.4 High-Level Assembly Language
Shortly after the discussion with my department chair, it occurred to me
that there is no reason an assembler couldn’t adopt a more high-level syntax
without changing the semantics of assembly language. For example, con-
sider the following statements in C/C++ and Pascal that declare an integer
array variable:

int intVar[8]; // C/C++

var intVar: array[0..7] of integer; (* Pascal *)

Now consider the MASM declaration for the same object:

intVar sdword 8 dup (?) ;MASM

While the C/C++ and Pascal declarations differ from each other, the
assembly language version is radically different from both. A C/C++ pro-
grammer will probably be able to figure out the Pascal declaration even if
they have never seen Pascal code before, and vice versa. However, Pascal
and C/C++ programmers probably won’t be able to make heads or tails of
the assembly language declaration. This is but one example of the problems
HLL programmers face when first learning assembly language.

The sad part is that there’s really no reason a variable declaration in
assembly language has to be so radically different from one in an HLL.
It makes absolutely no difference in the final executable file which syntax
an assembler uses for variable declarations. Given that, why shouldn’t an
assembler use a more high-level-like syntax so people switching over from
HLLs will find the assembler easier to learn? Pondering this question led
me to develop a new assembly language, specifically geared toward teaching
assembly language programming to students who had already mastered an
HLL, called High-Level Assembly (HLA). In HLA, the aforementioned array
declaration looks like this:

var intVar:int32[8]; // HLA

Though the syntax is slightly different from C/C++ and Pascal (actu-
ally, it’s a combination of the two), most HLL programmers can probably
figure out the meaning of this declaration.

Shouldn’t You Learn Assembly Language? 13

The whole purpose of HLA’s design is to provide an assembly language
programming environment as similar as possible to that of traditional
(imperative) high-level programming languages, without sacrificing the
capability to write real assembly language programs. Those components
of the language that have nothing to do with machine instructions use a
familiar high-level language syntax, while the machine instructions still
map one-to-one to the underlying 80x86 machine instructions.

Making HLA as similar as possible to various HLLs means that students
learning assembly language programming don’t have to spend as much
time assimilating a radically different syntax. Instead, they can apply their
existing HLL knowledge, which makes the process of learning assembly lan-
guage easier and faster.

A comfortable syntax for declarations and a few HLL-like control
statements aren’t all you need to make learning assembly language as effi-
cient as possible, however. One very common complaint about learning
assembly language is that it provides very little support for programmers,
who must constantly reinvent the wheel while writing assembly code. For
example, when learning assembly language programming using MASM,
you’ll quickly discover that assembly language doesn’t provide useful I/O
facilities such as the ability to print integer values as strings to the user’s
console. Assembly programmers are responsible for writing such code
themselves. Unfortunately, writing a decent set of I/O routines requires
sophisticated knowledge of assembly language programming. The only
way to gain that knowledge is by writing a fair amount of code first, but
doing so without having any I/O routines is difficult. Therefore, a good
assembly language educational tool also needs to provide a set of I/O rou-
tines that allow beginning assembly programmers to do simple I/O tasks,
like reading and writing integer values, before they have the program-
ming sophistication to write such routines themselves. HLA accomplishes
this with the HLA Standard Library, a collection of subroutines and macros
that make it very easy to write complex applications.

Because of HLA’s popularity and the fact that HLA is a free, open
source, and public domain product available for Windows and Linux, this
book uses HLA syntax for compiler-neutral examples involving assembly
language. Despite the fact that it is now over 20 years old and supports only
the 32-bit Intel instruction set, HLA is still an excellent way to learn assem-
bly language programming. Although the latest Intel CPUs directly support
64-bit registers and operations, learning 32-bit assembly language is just as
relevant for HLL programmers as 64-bit assembly.

2.5 Thinking High-Level, Writing Low-Level
The goal of HLA is to allow a beginning assembly programmer to think in
HLL terms while writing low-level code (in other words, the exact opposite
of what this book is trying to teach). For students first approaching assem-
bly language, being able to think in high-level terms is a godsend—they can
apply techniques they’ve already learned in other languages when faced

14 Chapter 2

with a particular assembly language programming problem. Controlling the
rate at which a student has to learn new concepts in this way can make the
educational process more efficient.

Ultimately, of course, the goal is to learn the low-level programming
paradigm. This means gradually giving up HLL-like control structures and
writing pure low-level code (that is, “thinking low-level and writing low-level”).
Nevertheless, starting out by “thinking high-level while writing low-level” is
a great, incremental way to learn assembly language programming.

2.6 The Assembly Programming Paradigm
(Thinking Low-Level)

It should be clear now that programming in assembly language is quite dif-
ferent from programming in common HLLs. Fortunately, for this book, you
don’t need to be able to write assembly language programs from scratch.
Nevertheless, if you know how assembly programs are written, you’ll be able
to understand why a compiler emits certain code sequences. To that end,
I’ll take some time here to describe how assembly language programmers
(and compilers) “think.”

The most fundamental aspect of the assembly language program-
ming paradigm—that is, the model for how assembly programming is
accomplished—is that large projects are broken up into mini-tasks that
the machine can handle. Fundamentally, a CPU can do only one tiny task
at a time; this is true even for complex instruction set computers (CISC).
Therefore, complex operations, like statements you’ll find in an HLL, have
to be broken down into smaller components that the machine can execute
directly. As an example, consider the following Visual Basic (VB) assign-
ment statement:

profits = sales - costOfGoods - overhead - commissions

No practical CPU will allow you to execute this entire VB statement as
a single machine instruction. Instead, you have to break this assignment
statement down to a sequence of machine instructions that compute indi-
vidual components of it. For example, many CPUs provide a subtract instruc-
tion that lets you subtract one value from a machine register. Because the
assignment statement in this example consists of three subtractions, you’ll
have to break the assignment operation down into at least three different
subtract instructions.

The 80x86 CPU family provides a fairly flexible subtract instruction:
sub(). This particular instruction allows the following forms (in HLA syntax):

sub(constant, reg); // reg = reg - constant
sub(constant, memory); // memory = memory - constant
sub(reg1, reg2); // reg2 = reg2 - reg1
sub(memory, reg); // reg = reg - memory
sub(reg, memory); // memory = memory - reg

Shouldn’t You Learn Assembly Language? 15

Assuming that all of the identifiers in the original VB code represent
variables, we can use the 80x86 sub() and mov() instructions to implement
the same operation with the following HLA code sequence:

// Get sales value into EAX register:

mov(sales, eax);

// Compute sales-costOfGoods (EAX := EAX - costOfGoods)

sub(costOfGoods, eax);

// Compute (sales-costOfGoods) - overhead
// (note: EAX contains sales-costOfGoods)

sub(overhead, eax);

// Compute (sales-costOfGoods-overhead)-commissions
// (note: EAX contains sales-costOfGoods-overhead)

sub(commissions, eax);

// Store result (in EAX) into profits:

mov(eax, profits);

This code breaks down the single VB statement into five different HLA
statements, each of which does a small part of the total calculation. The
secret behind the assembly language programming paradigm is knowing
how to break down complex operations like this into a simple sequence of
machine instructions. We’ll take another look at this process in Chapter 13.

HLL control structures are another big area where complex operations
are broken down into simpler statement sequences. For example, consider
the following Pascal if() statement:

if(i = j) then begin

 writeln("i is equal to j");

end;

CPUs do not support an if machine instruction. Instead, you compare
two values that set condition-code flags and then test the result of these condi-
tion codes by using conditional jump instructions. A common way to translate
an HLL if statement into assembly language is to test the opposite condi-
tion (i <> j) and then jump over the statements that would be executed if
the original condition (i = j) evaluates to true. For example, here’s a trans-
lation of the former Pascal if statement into HLA (using pure assembly lan-
guage—that is, no HLL-like constructs):

 mov(i, eax); // Get i's value into eax register
 cmp(eax, j); // Compare eax to j's value

16 Chapter 2

 jne skipIfBody; // Skip body of if statement if i <> j

 << code to print string >>

skipIfBody:

As the Boolean expressions in the HLL control structures increase
in complexity, the number of corresponding machine instructions also
increases. But the process remains the same. Later, we’ll take a look at how
compilers translate HLL control structures into assembly language (see
Chapters 13 and 14).

Passing parameters to a procedure or function, accessing those param-
eters, and then accessing other data local to that procedure or function is
another area where assembly language is quite a bit more complex than
typical HLLs. This is an important subject, but it’s beyond the scope of this
chapter, so we’ll revisit it in Chapter 15.

The bottom line is that when converting an algorithm from a high-level
language, you have to break down the problem into much smaller pieces
in order to code it in assembly language. As noted earlier, the good news is
that you don’t have to figure out which machine instructions to use when all
you’re doing is reading assembly code—the compiler (or assembly program-
mer) that originally created the code will have already done this for you.
All you have to do is draw a correspondence between the HLL code and the
assembly code. How you accomplish that is the subject of much of the rest
of this book.

2.7 For More Information
Bartlett, Jonathan. Programming from the Ground Up. Edited by Dominick

Bruno, Jr. Self-published, 2004. An older, free version of this book,
which teaches assembly language programming using Gas, can be
found online at http://www.plantation-productions.com/AssemblyLanguage
/ProgrammingGroundUp-1-0-booksize.pdf.

Blum, Richard. Professional Assembly Language. Indianapolis: Wiley, 2005.

Carter, Paul. PC Assembly Language. Self-published, 2019. https://pacman128
.github.io/static/pcasm-book.pdf.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

———. “Webster: The Place on the Internet to Learn Assembly.”
http://plantation-productions.com/Webster/index.html.

http://www.plantation-productions.com/AssemblyLanguage/ProgrammingGroundUp-1-0-booksize.pdf
http://www.plantation-productions.com/AssemblyLanguage/ProgrammingGroundUp-1-0-booksize.pdf
https://pacman128.github.io/static/pcasm-book.pdf
https://pacman128.github.io/static/pcasm-book.pdf

3
8 0 X 8 6 A S S E M B LY F O R T H E

H L L P R O G R A M M E R

Throughout this book, you’ll examine
high-level language code and compare

it to the machine code that a compiler
generates for it. Making sense of a compiler’s

output requires some knowledge of assembly language,
but fortunately, you don’t need to be an expert assembly
programmer for this. As discussed in previous chapters, all you really need
is the ability to read code generated by compilers and other assembly lan-
guage programmers.

This chapter provides a primer specifically on the 80x86 assembly lan-
guage, covering the following topics:

•	 The basic 80x86 machine architecture

•	 How to read the 80x86 output produced by various compilers

•	 The addressing modes that the 32-bit and 64-bit 80x86 CPUs support

•	 The syntax that several common 80x86 assemblers (HLA, MASM,
and Gas) use

•	 How to use constants and declare data in assembly language programs

18 Chapter 3

3.1 Learning One Assembly Language Is Good, Learning
More Is Better

If you intend to write code for a processor other than the 80x86, you should
really learn how to read at least two different assembly languages. By doing
so, you’ll avoid the pitfall of coding for the 80x86 in an HLL and then
finding that your “optimizations” work only on the 80x86 CPU. For this
reason, this book includes several online appendixes that provide addi-
tional resources:

•	 Appendix A covers the minimal x86 instruction set.

•	 Appendix B is a primer on the PowerPC CPU.

•	 Appendix C examines the ARM processor.

•	 Appendix D describes the Java bytecode assembly language.

•	 Appendix E covers the Microsoft Intermediate Language.

You’ll see that all five architectures rely on many of the same concepts,
but there are some important differences among them, and advantages and
disadvantages to each.

Perhaps the main difference between complex instruction set computer (CISC)
and reduced instruction set computer (RISC) architectures is the way they use
memory. RISC architectures limit memory access to certain instructions,
so applications go to great lengths to avoid accessing memory. The 80x86
architecture, on the other hand, allows most instructions to access memory,
and applications generally take advantage of this facility.

The Java bytecode (JBC) and Microsoft Intermediate Language (IL)
architectures differ from the 80x86, PowerPC, and ARM families in that
JBC and IL are virtual machines, not actual CPUs. Generally, software inter-
prets or attempts to compile JBC at runtime (IL code is always compiled at
runtime).1 This means JBC and IL code tends to run much slower than true
machine code.

3.2 80x86 Assembly Syntaxes
While 80x86 programmers can choose from a wide variety of program
development tools, this abundance has a minor drawback: syntactical
incompatibility. Different compilers and debuggers for the 80x86 family
output different assembly language listings for the exact same program.
This is because those tools emit code for different assemblers. For exam-
ple, Microsoft’s Visual C++ package generates assembly code compatible
with Microsoft Macro Assembler (MASM). The GNU Compiler Suite
(GCC) generates Gas-compatible source code (Gas is the GNU Assembler

1. The JBC interpreter can provide just-in-time (JIT) compilation that translates the inter-
preted bytecode to machine code at runtime. Microsoft’s intermediate code is always JIT-
compiled. However, the quality of a JIT compiler is rarely as good as the machine code
produced by a native code compiler.

80x86 Assembly for the HLL Programmer 19

from the Free Software Foundation). In addition to the code that compil-
ers emit, you’ll find tons of assembly programming examples written with
assemblers like FASM, NASM, GoAsm, and HLA (High-Level Assembly).

It would be nice to use just a single assembler syntax throughout this
book, but because our approach is not compiler specific, we must consider
the syntaxes for several different common assemblers. This book will gen-
erally present non-compiler-specific examples using HLA. Therefore, this
chapter will discuss the syntaxes for HLA as well as two other common
assemblers, MASM and Gas. Fortunately, once you master the syntax for
one assembler, learning the syntax of other assemblers is very easy.

3.2.1 Basic 80x86 Architecture
The Intel CPU is generally classified as a Von Neumann machine. Von Neumann
computer systems contain three main building blocks: the central processing
unit (CPU), memory, and input/output (I/O) devices. These three components
are connected via the system bus (consisting of the address, data, and control
buses). Figure 3-1 shows this relationship.

CPU

Memory

I/O devices

System bus

Figure 3-1: Block diagram of a Von Neumann system

The CPU communicates with memory and I/O devices by placing a
numeric value on the address bus to select one of the memory locations
or I/O device port locations, each of which has a unique binary numeric
address. Then the CPU, I/O, and memory devices pass data among them-
selves by placing the data on the data bus. The control bus contains signals
that determine the direction of the data transfer (to or from memory, and
to or from an I/O device).

3.2.2 Registers
The register set is the most prominent feature within the CPU. Almost all
calculations on the 80x86 CPU involve at least one register. For example, to
add the value of two variables and store their sum in a third variable, you
must load one of the variables into a register, add the second operand to
the register, and then store the register’s value in the destination variable.

20 Chapter 3

Registers are middlemen in almost every calculation and thus are very
important in 80x86 assembly language programs.

The 80x86 CPU registers can be broken down into four categories:
general-purpose registers, special-purpose application-accessible registers,
segment registers, and special-purpose kernel-mode registers. We won’t
consider the last two categories, because the segment registers are not
used very much in modern operating systems (for example, Windows, BSD,
macOS, and Linux), and the special-purpose kernel-mode registers are
intended for writing operating systems, debuggers, and other system-level
tools—a topic well beyond the scope of this book.

3.2.3 80x86 32-Bit General-Purpose Registers
The 32-bit 80x86 (Intel family) CPUs provide several general-purpose reg-
isters for application use. These include eight 32-bit registers: EAX, EBX,
ECX, EDX, ESI, EDI, EBP, and ESP.

The E prefix on each name stands for extended. This prefix differenti-
ates the 32-bit registers from the original eight 16-bit registers: AX, BX, CX,
DX, SI, DI, BP, and SP.

Finally, the 80x86 CPUs provide eight 8-bit registers: AL, AH, BL, BH,
CL, CH, DL, and DH.

The most important thing to note about the general-purpose registers
is that they are not independent. That is, the 80x86 architecture does not
provide 24 separate registers. Instead, it overlaps the 32-bit registers with
the 16-bit registers, and it overlaps the 16-bit registers with the 8-bit regis-
ters. Figure 3-2 shows this relationship.

CX

CH CL

ECX

DX

DH DL

EDX

AX

AL

EAX ESI

EDI

EBP

ESP

SI

BX

BH BL

EBX

DI

BP

SP

AH

Figure 3-2: Intel 80x86 CPU general-purpose registers

The fact that modifying one register may modify as many as three
other registers cannot be overemphasized. For example, modifying the
EAX register may also modify the AL, AH, and AX registers. You will often
see compiler-generated code using this feature of the 80x86. For example, a
compiler may clear (set to 0) all the bits in the EAX register and then load

80x86 Assembly for the HLL Programmer 21

AL with a 1 or 0 in order to produce a 32-bit true (1) or false (0) value. Some
machine instructions manipulate only the AL register, yet the program may
need to return those instructions’ results in EAX. By taking advantage of
the register overlap, the compiler-generated code can use an instruction
that manipulates AL to return that value in all of EAX.

Although Intel calls these registers general purpose, that’s not to suggest
that you can use any register for any purpose. The SP/ESP register pair, for
example, has a very special purpose that effectively prevents you from using
it for any other reason (it’s the stack pointer). Likewise, the BP/EBP register
has a special purpose that limits its usefulness as a general-purpose regis-
ter. All the 80x86 registers have their own special purposes that limit their
use in certain contexts; we’ll consider these special uses as we discuss the
machine instructions that use them (see the online resources).

Contemporary versions of the 80x86 CPU (typically known as the x86-
64 CPU) provide two important extensions to the 32-bit register set: a set
of 64-bit registers and a second set of eight registers (64-bit, 32-bit, 16-bit,
and 8-bit). The main 64-bit registers have the following names: RAX, RBX,
RCX, RDX, RSI, RDI, RBP, and RSP.

These 64-bit registers overlap the 32-bit “E” registers. That is, the 32-bit
registers comprise the LO (low-order) 32 bits of each of these registers. For
example, EAX is the LO 32 bits of RAX. Similarly, AX is the LO 16 bits of
RAX, and AL is the LO 8 bits of RAX.

In addition to providing 64-bit variants of the existing 80x86 32-bit reg-
isters, the x86-64 CPUs also add eight other 64/32/16/8-bit registers: R15,
R14, R13, R12, R11, R10, R9, and R8.

You can refer to the LO 32 bits of each of these registers as R15d, R14d,
R13d, R12d, R11d, R10d, R9d, and R8d.

You can refer to the LO 16 bits of each of these registers as R15w, R14w,
R13w, R12w, R11w, R10w, R9w, and R8w.

Finally, you can refer to the LO byte of each of these registers as R15b,
R14b, R13b, R12b, R11b, R10b, R9b, and R8b.

3.2.4 The 80x86 EFLAGS Register
The 32-bit EFLAGS register encapsulates numerous single-bit Boolean
(true/false) values (or flags). Most of these bits are either reserved for
kernel-mode (operating system) functions or of little interest to application
programmers. There are, however, 8 bits relevant to application program-
mers reading (or writing) assembly language code: the overflow, direction,
interrupt disable,2 sign, zero, auxiliary carry, parity, and carry flags. Figure
3-3 shows their layout within the EFLAGS register.

Of the eight flags that application programmers can use, four flags in
particular are extremely valuable: the overflow, carry, sign, and zero flags.
We call these four flags the condition codes. Each flag has a state—set or
cleared—that you can use to test the result of previous computations. For

2. Application programs cannot modify the interrupt flag, but I’ve mentioned it here because
it’s discussed later in this text.

22 Chapter 3

example, after comparing two values, the condition-code flags will tell you
if one value is less than, equal to, or greater than the other.

Overflow
Direction
Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

Not very
interesting to
application
programmers

15 0

Able to use CPU ID Instruction

Virtual Interrupt Pending
Virtual Interrupt Flag

Alignment Check

Virtual 8086 Mode

Resume Flag

Reserved

31 16

Figure 3-3: Layout of the 80x86 flags register (LO 16 bits)

The x86-64 64-bit RFLAGS register reserves all bits from bit 32 through
bit 63. The upper 16 bits of the EFLAGS register are generally useful only
to operating systems code.

Because the RFLAGS register doesn’t contain anything of interest when
reading compiler output, this book will simply refer to the x86 and x86-64
flags register as EFLAGs, even on 64-bit variants of the CPU.

3.3 Literal Constants
Most assemblers support literal numeric (binary, decimal, and hexadecimal),
character, and string constants. Unfortunately, just about every assembler out
there uses a different syntax for literal constants. This section describes the
syntax for the assemblers we’ll be using in this book.

80x86 Assembly for the HLL Programmer 23

3.3.1 Binary Literal Constants
All assemblers provide the ability to specify base-2 (binary) literal con-
stants. Few compilers emit binary constants, so you probably won’t see these
values in the output a compiler produces, but you may see them in hand-
written assembly code. C++ 14 supports binary literals (0bxxxxx) as well.

3.3.1.1 Binary Literal Constants in HLA

Binary literal constants in HLA begin with the percent character (%) followed
by one or more binary digits (0 or 1). Underscore characters may appear
between any two digits in a binary number. By convention, HLA program-
mers separate each group of four digits with an underscore. For example:

%1011
%1010_1111
%0011_1111_0001_1001
%1011001010010101

3.3.1.2 Binary Literal Constants in Gas

Binary literal constants in Gas begin with the special 0b prefix followed by
one or more binary digits (0 or 1). For example:

0b1011
0b10101111
0b0011111100011001
0b1011001010010101

3.3.1.3 Binary Literal Constants in MASM

Binary literal constants in MASM consist of one or more binary digits (0 or
1) followed by the special b suffix. For example:

1011b
10101111b
0011111100011001b
1011001010010101b

3.3.2 Decimal Literal Constants
Decimal constants in most assemblers take the standard form—a sequence
of one or more decimal digits without any special prefix or suffix. This
is one of the two common numeric formats that compilers emit, so you’ll
often see decimal literal constants in compiler output code.

24 Chapter 3

3.3.2.1 Decimal Literal Constants in HLA

HLA allows you to optionally insert underscores between any two digits in
a decimal number. HLA programmers generally use underscores to sepa-
rate groups of three digits in a decimal number. For example, for the fol-
lowing numbers:

123
1209345

an HLA programmer could insert underscores as follows:

1_024
1_021_567

3.3.2.2 Decimal Literal Constants in Gas and MASM

Gas and MASM use a string of decimal digits (the standard “computer” for-
mat for decimal values). For example:

123
1209345

Unlike HLA, Gas and MASM do not allow embedded underscores in
decimal literal constants.

3.3.3 Hexadecimal Literal Constants
Hexadecimal (base-16) literal constants are the other common numeric
format you’ll find in assembly language programs (especially those that
compilers emit).

3.3.3.1 Hexadecimal Literal Constants in HLA

Hexadecimal literal constants in HLA consist of a string of hexadecimal
digits (0..9, a..f, or A..F) with a $ prefix. Underscores may optionally appear
between any two hexadecimal digits in the number. By convention, HLA pro-
grammers separate sequences of four digits with underscores. For example:

$1AB0
$1234_ABCD
$dead

3.3.3.2 Hexadecimal Literal Constants in Gas

Hexadecimal literal constants in Gas consist of a string of hexadecimal dig-
its (0..9, a..f, or A..F) with a 0x prefix. For example:

0x1AB0
0x1234ABCD
0xdead

80x86 Assembly for the HLL Programmer 25

3.3.3.3 Hexadecimal Literal Constants in MASM

Hexadecimal literal constants in MASM consist of a string of hexadecimal
digits (0..9, a..f, or A..F) with an h suffix. The values must begin with a dec-
imal digit (0 if the constant would normally begin with a digit in the range
a..f). For example:

1AB0h
1234ABCDh
0deadh

3.3.4 Character and String Literal Constants
Character and string data are also common data types that you’ll find in
assembly programs. MASM does not differentiate between character or
string literal constants. HLA and Gas, however, use a different internal rep-
resentation for characters and strings, so the distinction between the two
kinds of literal constants is very important in those assemblers.

3.3.4.1 Character and String Literal Constants in HLA

Character literal constants in HLA take a few different forms. The most
common is a single printable character surrounded by a pair of apostro-
phes, such as 'A'. To specify an actual apostrophe as a character literal con-
stant, HLA requires that you surround one pair of apostrophes by another
(''''). Finally, you can also indicate a character constant using the # symbol
followed by a binary, decimal, or hexadecimal numeric value that specifies
the ASCII code of the character you want to use. For example:

'a'
''''
' '
#$d
#10
#%0000_1000

String literal constants in HLA consist of a sequence of zero or more
characters surrounded by quotation marks. To indicate an actual quotation
mark character within a string constant, you use two adjacent quotation
marks. For example:

"Hello World"
"" -- The empty string
"He said ""Hello"" to them"
"""" -- string containing one quote character

26 Chapter 3

3.3.4.2 Character and String Literal Constants in Gas

Character literal constants in Gas consist of an apostrophe followed by a
single character. More modern versions of Gas (and Gas on the Mac) also
allow character constants of the form 'a'. For example:

'a
''
'!
'a' // Modern versions of Gas and Mac's assembler
'!' // Modern versions of Gas and Mac's assembler

String literal constants in Gas consist of a sequence of zero or more
characters surrounded by quotes, and use the same syntax as C strings.
You use the \ escape sequence to embed special characters in a Gas
string. For example:

"Hello World"
"" -- The empty string
"He said \"Hello\" to them"
"\"" -- string containing one quote character

3.3.4.3 Character and String Literal Constants in MASM

Character and string literal constants in MASM take the same form: a
sequence of one or more characters surrounded by either apostrophes or
quotes. MASM does not differentiate character constants and string con-
stants. For example:

'a'
"'" - An apostrophe character
'"' - A quote character
"Hello World"
"" -- The empty string
'He said "Hello" to them'

3.3.5 Floating-Point Literal Constants
Floating-point literal constants in assembly language typically take the same
form you’ll find in HLLs (a sequence of digits, possibly containing a deci-
mal point, optionally followed by a signed exponent). For example:

3.14159
2.71e+2
1.0e-5
5e2

80x86 Assembly for the HLL Programmer 27

3.4 Manifest (Symbolic) Constants in Assembly Language
Almost every assembler provides a mechanism for declaring symbolic (named)
constants. In fact, most assemblers provide several ways to associate a value
with an identifier in the source file.

3.4.1 Manifest Constants in HLA
The HLA assembler, true to its name, uses a high-level syntax for declaring
named constants in the source file. You may define constants in one of three
ways: in a const section, in a val section, or with the ? compile-time operator.
The const and val sections appear in the declaration section of an HLA pro-
gram, and their syntax is very similar. The difference between them is that
you may reassign values to identifiers you define in the val section, but you
may not reassign values to identifiers appearing in a const section. Although
HLA supports a wide range of options in these declaration sections, the basic
declaration takes the following form:

const
 someIdentifier := someValue;

Wherever someIdentifier appears in the source file (after this declaration),
HLA will substitute the value someValue in the identifier’s place. For example:

const
 aCharConst := 'a';
 anIntConst := 12345;
 aStrConst := "String Const";
 aFltConst := 3.12365e-2;

val
 anotherCharConst := 'A';
 aSignedConst := -1;

In HLA, the ? statement allows you to embed val declarations anywhere
whitespace is allowed in the source file. This is sometimes useful because
it isn’t always convenient to declare constants in a declaration section.
For example:

?aValConst := 0;

3.4.2 Manifest Constants in Gas
Gas uses the .equ (“equate”) statement to define a symbolic constant in the
source file. This statement has the following syntax:

.equ symbolName, value

28 Chapter 3

Here are some examples of equates within a Gas source file:

.equ false, 0

.equ true, 1

.equ anIntConst, 12345

3.4.3 Manifest Constants in MASM
MASM also provides a couple of different ways to define manifest constants
within a source file. One way is with the equ directive:

false equ 0
true equ 1
anIntConst equ 12345

Another is with the = operator:

false = 0
true = 1
anIntConst = 12345

The difference between the two is minor; see the MASM documenta-
tion for details.

N O T E For the most part, compilers tend to emit the equ form rather than the = form.

3.5 80x86 Addressing Modes
An addressing mode is a hardware-specific mechanism for accessing instruc-
tion operands. The 80x86 family provides three different classes of oper-
ands: register, immediate, and memory operands. This section discusses
each of these addressing modes.

3.5.1 80x86 Register Addressing Modes
Most 80x86 instructions can operate on the 80x86’s general-purpose register
set. You access a register by specifying its name as an instruction operand.

Let’s consider some examples of how our assemblers implement this
strategy, using the 80x86 mov (move) instruction.

3.5.1.1 Register Access in HLA

The HLA mov instruction looks like this:

mov(source, destination);

This instruction copies the data from the source operand to the
destination operand. The 8-bit, 16-bit, and 32-bit registers are valid

80x86 Assembly for the HLL Programmer 29

operands for this instruction; the only restriction is that both operands
must be the same size.

Now let’s look at some actual 80x86 mov instructions:

mov(bx, ax); // Copies the value from BX into AX
mov(al, dl); // Copies the value from AL into DL
mov(edx, esi); // Copies the value from EDX into ESI

Note that HLA supports only the 32-bit 80x86 register set, not the
64-bit register set.

3.5.1.2 Register Access in Gas

Gas prepends each register name with percent sign (%). For example:

%al, %ah, %bl, %bh, %cl, %ch, %dl, %dh
%ax, %bx, %cx, %dx, %si, %di, %bp, %sp
%eax, %ebx, %ecx, %edx, %esi, %edi, %ebp, %esp
%rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp
%r15b, %r14b, %r13b, %r12b, %r11b, %r10b, %r9b, %r8b
%r15w, %r14w, %r13w, %r12w, %r11w, %r10w, %r9w, %r8w
%r15d, %r14d, %r13d, %r12d, %r11d, %r10d, %r9d, %r8d
%r15, %r14, %r13, %r12, %r11, %r10, %r9, %r8

The Gas syntax for the mov instruction is similar to HLA’s, except that it
drops the parentheses and semicolons and requires the assembly language
statements to fit completely on one physical line of source code. For example:

mov %bx, %ax // Copies the value from BX into AX
mov %al, %dl // Copies the value from AL into DL
mov %edx, %esi // Copies the value from EDX into ESI

3.5.1.3 Register Access in MASM

The MASM assembler uses the same register names as HLA but adds sup-
port for the 64-bit register set:

al, ah, bl, bh, cl, ch, dl, dh
ax, bx, cx, dx, si, di, bp, sp
eax, ebx, ecx, edx, esi, edi, ebp, esp
rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp
r15b, r14b, r13b, r12b, r11b, r10b, r9b, r8b
r15w, r14w, r13w, r12w, r11w, r10w, r9w, r8w
r15d, r14d, r13d, r12d, r11d, r10d, r9d, r8d
r15, r14, r13, r12, r11, r10, r9, r8

MASM uses a basic syntax that’s similar to that of Gas, except that MASM
reverses the operands (which is the standard Intel syntax). That is, a typical
instruction like mov takes this form:

mov destination, source

30 Chapter 3

Here are some examples of the mov instruction in MASM syntax:

mov ax, bx ; Copies the value from BX into AX
mov dl, al ; Copies the value from AL into DL
mov esi, edx ; Copies the value from EDX into ESI

3.5.2 Immediate Addressing Mode
Most instructions that allow register and memory operands also allow imme-
diate, or constant, operands. The following HLA mov instructions, for example,
load appropriate values into the corresponding destination registers:

mov(0, al);
mov(12345, bx);
mov(123_456_789, ecx);

Most assemblers allow you to specify a wide variety of literal constant
types when using the immediate addressing mode. For example, you can
supply numbers in hexadecimal, decimal, or binary form. You can also sup-
ply character constants as operands. The rule is that the constant must fit in
the size specified for the destination operand.

Here are some additional examples with HLA, Gas, and MASM (note
that Gas requires a $ before immediate operands):

mov('a', ch); // HLA
mov $'a', %ch // Gas
mov ch, 'a' ; MASM

mov($1234, ax); // HLA
mov $0x1234, %ax // Gas
mov ax, 1234h ; MASM

mov(4_012_345_678, eax); // HLA
mov $4012345678, %eax // Gas
mov eax, 4012345678 ; MASM

Almost every assembler lets you create symbolic constant names and
supply them as source operands. For example, HLA predefines the two
Boolean constants true and false, so you can supply those names as mov
instruction operands:

mov(true, al);
mov(false, ah);

Some assemblers even allow pointer constants and other abstract data
type constants. (See the reference manual for your assembler for details.)

3.5.3 Displacement-Only Memory Addressing Mode
The most common 32-bit addressing mode, and the one that’s the easiest to
understand, is the displacement-only (or direct) addressing mode, in which a

80x86 Assembly for the HLL Programmer 31

32-bit constant specifies the address of the memory location, which may be
either the source or the destination operand. Note that this addressing mode
is available only on 32-bit x86 processors or when operating in 32-bit mode on
a 64-bit processor.

For example, assuming that variable J is a byte variable appearing at
address $8088, the HLA instruction mov(J,al); loads the AL register with a
copy of the byte at memory location $8088. Likewise, if the byte variable K is
at address $1234 in memory, then the instruction mov(dl,K); writes the value
in the DL register to memory location $1234 (see Figure 3-4).

$8088 (Address of J)AL

DL $1234 (Address of K)

mov(J, al);

mov(dl, K);

Figure 3-4: Displacement-only (direct) addressing mode

The displacement-only addressing mode is perfect for accessing simple
scalar variables. It is the addressing mode you’d normally use to access
static or global variables in an HLL program.

N O T E Intel named this addressing mode “displacement-only” because a 32-bit constant (dis-
placement) follows the mov opcode in memory. On the 80x86 processors, this displace-
ment is an offset from the beginning of memory (that is, address 0).

The examples in this chapter will often access byte-sized objects in
memory. Don’t forget, however, that you can also access words and double
words on the 80x86 processors by specifying the address of their first byte
(see Figure 3-5).

$1000 (Address of M)

$1234 (Address of K)
$1235

$1003
$1002
$1001

mov(K, ax);

mov(edx, M);

AX

EDX

Figure 3-5: Accessing a word or double word using the direct addressing mode

32 Chapter 3

MASM and Gas use the same syntax for the displacement addressing
mode as HLA: for the operand, you simply specify the name of the object
you want to access. Some MASM programmers put brackets around the
variable names, although that isn’t strictly necessary with those assemblers.

Here are several examples using HLA, Gas, and MASM syntax:

mov(byteVar, ch); // HLA
movb byteVar, %ch // Gas
mov ch, byteVar ; MASM

mov(wordVar, ax); // HLA
movw wordVar, %ax // Gas
mov ax, wordVar ; MASM

mov(dwordVar, eax); // HLA
movl dwordVar, %eax // Gas
mov eax, dwordVar ; MASM

3.5.4 RIP-Relative Addressing Mode
The x86-64 CPUs, when operating in 64-bit mode, do not support the 32-bit
direct addressing mode. Not wanting to add a 64-bit constant to the end of
the instruction (to support the entire 64-bit address space), AMD engineers
chose to create an RIP-relative addressing mode that computes the effective
memory address by adding a signed 32-bit constant (replacing the direct
address) to the value in the RIP (instruction pointer) register. This allows
for accessing data within a ±2GB range around the current instruction.3

3.5.5 Register Indirect Addressing Mode
The 80x86 CPUs let you access memory indirectly through a register using
the register indirect addressing modes. These modes are called indirect
because the operand is not the actual address; rather, its value specifies
the memory address to use. In the case of the register indirect addressing
modes, the register’s value is the address to access. For example, the HLA
instruction mov(eax,[ebx]); tells the CPU to store EAX’s value at the location
whose address is held in EBX.

The x86-64 CPUs also support a register indirect addressing mode in
64-bit mode using one of the 64-bit registers (for example, RAX, RBX, . . . ,
R15). The register indirect addressing mode allows full access to the 64-bit
address space. For example, the MASM instruction mov eax, [rbx] tells the
CPU to load the EAX register from the location whose address is in RBX.

3. Technically, the x86-64 does allow you to load/store the AL, AX, EAX, or RAX register
using a 64-bit displacement. This form exists mainly to access memory-mapped I/O devices
and isn’t an instruction typical applications would use.

80x86 Assembly for the HLL Programmer 33

3.5.5.1 Register Indirect Modes in HLA

There are eight forms of this addressing mode on the 80x86. Using HLA
syntax, they look like this:

mov([eax], al);
mov([ebx], al);
mov([ecx], al);
mov([edx], al);
mov([edi], al);
mov([esi], al);
mov([ebp], al);
mov([esp], al);

These eight addressing modes reference the memory location at the
offset found in the register enclosed by brackets (EAX, EBX, ECX, EDX,
EDI, ESI, EBP, or ESP, respectively).

N O T E The HLA register indirect addressing modes require a 32-bit register. You cannot
specify a 16-bit or 8-bit register when using an indirect addressing mode.

3.5.5.2 Register Indirect Modes in MASM

MASM uses exactly the same syntax as HLA for the register indirect address-
ing modes in 32-bit mode (though keep in mind that MASM reverses the
instruction operands; only the addressing mode syntax is identical). In 64-bit
mode the syntax is the same—a pair of brackets around a register name—
although this mode uses 64-bit registers rather than 32-bit registers.

Here are the MASM equivalents of the instructions given earlier:

mov al, [eax]
mov al, [ebx]
mov al, [ecx]
mov al, [edx]
mov al, [edi]
mov al, [esi]
mov al, [ebp]
mov al, [esp]

Here are the MASM 64-bit register indirect addressing mode examples:

mov al, [rax]
mov ax, [rbx]
mov eax, [rcx]
mov rax, [rdx]
mov r15b, [rdi]
mov r15w, [rsi]
mov r15d, [rbp]
mov r15, [rsp]
mov al, [r8]
mov ax, [r9]
mov eax, [r10]
mov rax, [r11]

34 Chapter 3

mov r15b, [r12]
mov r15w, [r13]
mov r15d, [r14]
mov r15, [r15]

3.5.5.3 Register Indirect Modes in Gas

Gas uses parentheses instead of brackets around the register names. Here
are the Gas variants of the previous 32-bit HLA mov instructions:

movb (%eax), %al
movb (%ebx), %al
movb (%ecx), %al
movb (%edx), %al
movb (%edi), %al
movb (%esi), %al
movb (%ebp), %al
movb (%esp), %al

Here are Gas’s 64-bit register indirect variants:

movb (%rax), %al
movb (%rbx), %al
movb (%rcx), %al
movb (%rdx), %al
movb (%rdi), %al
movb (%rsi), %al
movb (%rbp), %al
movb (%rsp), %al
movb (%r8), %al
movb (%r9), %al
movb (%r10), %al
movb (%r11), %al
movb (%r12), %al
movb (%r13), %al
movb (%r14), %al
movb (%r15), %al

3.5.6 Indexed Addressing Mode
The effective address is the ultimate address in memory that an instruction
will access once all the address calculations are complete. The indexed
addressing mode computes an effective address by adding the address
(also called the displacement or offset) of the variable to the value held in
the 32-bit or 64-bit register within the square brackets. Their sum provides
the memory address that the instruction accesses. For example, if VarName is
at address $1100 in memory and EBX contains 8, then mov(VarName[ebx],al);
loads the byte at address $1108 into the AL register (see Figure 3-6).

On the x86-64 CPUs, the addressing mode uses one of the 64-bit reg-
isters. Note, however, that the displacement encoded as part of the instruc-
tion is still 32 bits. Thus, the register must hold the base address while the
displacement provides an offset (index) from the base address.

80x86 Assembly for the HLL Programmer 35

EBX

AL

+

VarName
This is the
address of
VarName

$1100

$1108

$08

mov(VarName [ebx], al);

Figure 3-6: Indexed addressing mode

3.5.6.1 Indexed Addressing Mode in HLA

The indexed addressing modes use the following HLA syntax, where
VarName is the name of some static variable in your program:

mov(VarName[eax], al);
mov(VarName[ebx], al);
mov(VarName[ecx], al);
mov(VarName[edx], al);
mov(VarName[edi], al);
mov(VarName[esi], al);
mov(VarName[ebp], al);
mov(VarName[esp], al);

3.5.6.2 Indexed Addressing Mode in MASM

MASM supports the same syntax as HLA in 32-bit mode, but it also allows
several variations of this syntax for specifying the indexed addressing
mode. The following are equivalent formats that demonstrate some of the
variations MASM supports:

varName[reg32]
[reg32 + varName]
[varName][reg32]
[varName + reg32]
[reg32][varName]
varName[reg32 + const]
[reg32 + varName + const]
[varName][reg32][const]
varName[const + reg32]
[const + reg32 + varName]
[const][reg32][varName]
varName[reg32 - const]
[reg32 + varName - const]
[varName][reg32][-const]

Thanks to the commutative nature of addition, MASM also allows
many other combinations. It treats two juxtaposed items within brackets as
though they were separated by the + operator.

36 Chapter 3

Here are the MASM equivalents to the previous HLA example:

mov al, VarName[eax]
mov al, VarName[ebx]
mov al, VarName[ecx]
mov al, VarName[edx]
mov al, VarName[edi]
mov al, VarName[esi]
mov al, VarName[ebp]
mov al, VarName[esp]

In 64-bit mode, MASM requires that you specify 64-bit register names
for the indexed addressing mode. In 64-bit mode, the register holds the
base address of the variable in memory, and the displacement encoded into
the instruction provides an offset from that base address. This means that
you cannot use a register as an index into a global array (which would nor-
mally use the RIP-relative addressing mode).

Here are examples of the valid MASM indexed address modes in
64-bit mode:

mov al, [rax + SomeConstant]
mov al, [rbx + SomeConstant]
mov al, [rcx + SomeConstant]
mov al, [rdx + SomeConstant]
mov al, [rdi + SomeConstant]
mov al, [rsi + SomeConstant]
mov al, [rbp + SomeConstant]
mov al, [rsp + SomeConstant]

3.5.6.3 Indexed Addressing Mode in Gas

As with the register indirect addressing mode, Gas uses parentheses rather
than brackets. Here is the Gas syntax for the indexed addressing mode:

varName(%reg32)
const(%reg32)
varName + const(%reg32)

Here are the Gas equivalents to the HLA instructions given earlier:

movb VarName(%eax), al
movb VarName(%ebx), al
movb VarName(%ecx), al
movb VarName(%edx), al
movb VarName(%edi), al
movb VarName(%esi), al
movb VarName(%ebp), al
movb VarName(%esp), al

80x86 Assembly for the HLL Programmer 37

In 64-bit mode, Gas requires that you specify 64-bit register names for
the indexed addressing mode. The same rules apply as for MASM.

Here are examples of the valid Gas indexed address modes in
64-bit mode:

mov %al, SomeConstant(%rax)
mov %al, SomeConstant(%rbx)
mov %al, SomeConstant(%rcx)
mov %al, SomeConstant(%rdx)
mov %al, SomeConstant(%rsi)
mov %al, SomeConstant(%rdi)
mov %al, SomeConstant(%rbp)
mov %al, SomeConstant(%rsp)

3.5.7 Scaled-Index Addressing Modes
The scaled-index addressing modes are similar to the indexed addressing
modes, but with two differences. The scaled-index addressing modes allow
you to:

•	 Combine two registers plus a displacement

•	 Multiply the index register by a (scaling) factor of 1, 2, 4, or 8

To see what makes this possible, consider the following HLA example:

mov(eax, VarName[ebx + esi*4]);

The primary difference between the scaled-index addressing mode and
the indexed addressing mode is the inclusion of the esi*4 component. This
example computes the effective address by adding in the value of ESI multi-
plied by 4 (see Figure 3-7).

EBX

VarName

AL

+

ESI * scale +

mov(VarName [ebx + esi * scale], al);

Figure 3-7: Scaled-index addressing mode

In 64-bit mode, substitute 64-bit registers for the base and index registers.

38 Chapter 3

3.5.7.1 Scaled-Index Addressing in HLA

HLA’s syntax provides several different ways to specify the scaled-index
addressing mode. Here are the various syntactical forms:

VarName[IndexReg32*scale]
VarName[IndexReg32*scale + displacement]
VarName[IndexReg32*scale - displacement]

[BaseReg32 + IndexReg32*scale]
[BaseReg32 + IndexReg32*scale + displacement]
[BaseReg32 + IndexReg32*scale - displacement]

VarName[BaseReg32 + IndexReg32*scale]
VarName[BaseReg32 + IndexReg32*scale + displacement]
VarName[BaseReg32 + IndexReg32*scale - displacement]

In these examples, BaseReg32 represents any general-purpose 32-bit reg-
ister, IndexReg32 represents any general-purpose 32-bit register except ESP,
and scale must be one of the constants 1, 2, 4, or 8. VarName represents a static
variable name and displacement represents a 32-bit constant.

3.5.7.2 Scaled-Index Addressing in MASM

MASM supports the same syntax for these addressing modes as HLA,
but with additional forms comparable to those presented for the indexed
addressing mode. Those forms are just syntactical variants based on the
commutativity of the + operator.

MASM also supports 64-bit scaled-index addressing, which has the
same syntax as the 32-bit mode except you swap in 64-bit register names. The
major difference between the 32-bit and 64-bit scaled-index addressing
modes is that there is no 64-bit disp[reg*index] addressing mode. On 64-bit
addressing modes, this is a PC-relative indexed addressing mode, where the
displacement is a 32-bit offset from the current instruction pointer value.

3.5.7.3 Scaled-Index Addressing in Gas

As usual, Gas uses parentheses rather than brackets to surround scaled-
index operands. Gas also uses a three-operand syntax to specify the base
register, the index register, and the scale factor, rather than the arithmetic
expression syntax that the other assemblers employ. The generic syntax
for the Gas scaled-index addressing mode is:

expression(baseReg32, indexReg32, scaleFactor)

More specifically:

VarName(,IndexReg32, scale)
VarName + displacement(,IndexReg32, scale)
VarName - displacement(,IndexReg32, scale)

80x86 Assembly for the HLL Programmer 39

(BaseReg32, IndexReg32, scale)
displacement(BaseReg32, IndexReg32, scale)

VarName(BaseReg32, IndexReg32, scale)
VarName + displacement(BaseReg32, IndexReg32, scale)
VarName - displacement(BaseReg32, IndexReg32, scale)

where scale is one of the values 1, 2, 4, or 8.
Gas also supports 64-bit scaled-index addressing. It uses the same

syntax as the 32-bit mode except you swap in 64-bit register names. When
using 64-bit addressing, you cannot also specify an RIP-relative variable
name (VarName in these examples); only a 32-bit displacement is legal.

3.6 Declaring Data in Assembly Language
The 80x86 architecture provides only a few low-level machine data types on
which individual machine instructions operate:

byte Holds arbitrary 8-bit values.

word Holds arbitrary 16-bit values.

dword “Double word”; holds arbitrary 32-bit values.

qword “Quad word”; holds arbitrary 64-bit values.

real32 (aka real4) Holds 32-bit single-precision floating-point values.

real64 (aka real8) Holds 64-bit double-precision floating-point values.

N O T E 80x86 assemblers typically support tbyte (“ten byte”) and real80/real10 data types,
but we won’t cover those types here because most modern (64-bit) HLL compilers
don’t use them. (However, certain C/C++ compilers support real80 values using the
long double data type; Swift also supports real80 values on Intel machines using
the float80 type.)

3.6.1 Data Declarations in HLA
The HLA assembler, true to its high-level nature, provides a wide variety of
single-byte data types including character, signed integer, unsigned integer,
Boolean, and enumerated types. Were you to write an application in assem-
bly language, having all these different data types (along with the type
checking that HLA provides) would be quite useful. For our purposes, how-
ever, we can simply allocate storage for byte variables and set aside a block
of bytes for larger data structures. The HLA byte type is all we really need
for 8-bit and array objects.

You can declare byte objects in an HLA static section as follows:

static
 variableName : byte;

40 Chapter 3

To allocate storage for a block of bytes, you’d use the following
HLA syntax:

static
 blockOfBytes : byte[sizeOfBlock];

These HLA declarations create uninitialized variables. Technically
speaking, HLA always initializes static objects with 0s, so they aren’t truly
uninitialized, but the main point is that this code does not explicitly initial-
ize these byte objects with a value. You can, however, tell HLA to initialize
your byte variables with a value when the operating system loads the pro-
gram into memory using statements like the following:

static
 // InitializedByte has the initial value 5:

 InitializedByte : byte := 5;

 // InitializedArray is initialized with 0, 1, 2, and 3;

 InitializedArray : byte[4] := [0,1,2,3];

3.6.2 Data Declarations in MASM
In MASM, you would normally use the db or byte directives within a .data
section to reserve storage for a byte object or an array of byte objects. The
syntax for a single declaration would take one of these equivalent forms:

variableName db ?
variableName byte ?

The preceding declarations create uninitialized objects (which are
actually initialized with 0s, just as with HLA). The ? in the operand field of
the db/byte directive informs the assembler that you don’t want to explicitly
attach a value to the declaration.

To declare a variable that is a block of bytes, you’d use syntax like the
following:

variableName db sizeOfBlock dup (?)
variableName byte sizeOfBlock dup (?)

To create objects with an initial value other than zero, you could use
syntax like the following:

 .data
InitializedByte db 5
InitializedByte2 byte 6
InitializedArray0 db 4 dup (5) ; array is 5,5,5,5
InitializedArray1 db 5 dup (6) ; array is 6,6,6,6,6

80x86 Assembly for the HLL Programmer 41

To create an initialized array of bytes whose values are not all the same,
you simply specify a comma-delimited list of values in the operand field of
the MASM db/byte directive:

 .data
InitializedArray2 byte 0,1,2,3
InitializedArray3 byte 4,5,6,7,8

3.6.3 Data Declarations in Gas
Gas uses the .byte directive in a .data section to declare a byte variable. The
generic form of this directive is:

variableName: .byte 0

Gas doesn’t provide an explicit format for creating uninitialized vari-
ables; instead, you just supply a 0 operand for uninitialized variables. Here
are two actual byte variable declarations in Gas:

InitializedByte: .byte 5
ZeroedByte .byte 0 // Zeroed value

Gas does not provide an explicit directive for declaring an array of byte
objects, but you can use the .rept/.endr directives to create multiple copies
of the .byte directive as follows:

variableName:
 .rept sizeOfBlock
 .byte 0
 .endr

N O T E You can also supply a comma-delimited list of values if you want to initialize the
array with different values.

Here are a couple of array declaration examples in Gas:

 .section .data
InitializedArray0: // Creates an array with elements 5,5,5,5
 .rept 4
 .byte 5
 .endr

InitializedArray1:
 .byte 0,1,2,3,4,5

3.6.3.1 Accessing Byte Variables in Assembly Language

When accessing byte variables, you simply use the variable’s declared name
in one of the 80x86 addressing modes. For example, given a byte object

42 Chapter 3

named byteVar and an array of bytes named byteArray, you could use any
of the following instructions to load that variable into the AL register using
the mov instruction (these examples assume 32-bit code):

// HLA's mov instruction uses "src, dest" syntax:

mov(byteVar, al);
mov(byteArray[ebx], al); // EBX is the index into byteArray

// Gas's movb instruction also uses a "src, dest" syntax:

movb byteVar, %al
movb byteArray(%ebx), %al

; MASM's mov instructions use "dest, src" syntax

mov al, byteVar
mov al, byteArray[ebx]

For 16-bit objects, HLA uses the word data type, MASM uses either the dw
or word directives, and Gas uses the .int directive. Other than the size of
the object these directives declare, their use is identical to the byte declara-
tions. For example:

// HLA example:

static

 // HLAwordVar: 2 bytes, initialized with 0s:

 HLAwordVar : word;

 // HLAwordArray: 8 bytes, initialized with 0s:

 HLAwordArray : word[4];

 // HLAwordArray2: 10 bytes, initialized with 0, ..., 5:

 HLAwordArray2 : word[5] := [0,1,2,3,4];

; MASM example:

 .data
MASMwordVar word ?
MASMwordArray word 4 dup (?)
MASMwordArray2 word 0,1,2,3,4

// Gas example:

 .section .data
GasWordVar: .int 0

80x86 Assembly for the HLL Programmer 43

GasWordArray:
 .rept 4
 .int 0
 .endr

GasWordArray2: .int 0,1,2,3,4

For 32-bit objects, HLA uses the dword data type, MASM uses the dd or
dword directives, and Gas uses the .long directive. For example:

// HLA example:

static
 // HLAdwordVar: 4 bytes, initialized with 0s:

 HLAdwordVar : dword;

 // HLAdwordArray: 16 bytes, initialized with 0s.

 HLAdwordArray : dword[4];

 // HLAdwordArray: 20 bytes, initialized with 0, ..., 4:

 HLAdwordArray2 : dword[5] := [0,1,2,3,4];

; MASM/TASM example:

 .data
MASMdwordVar dword ?
MASMdwordArray dword 4 dup (?)
MASMdwordArray2 dword 0,1,2,3,4

// Gas example:

 .section .data
GasDWordVar: .long 0
GasDWordArray:
 .rept 4
 .long 0
 .endr

GasDWordArray2: .long 0,1,2,3,4

3.7 Specifying Operand Sizes in Assembly Language
80x86 assemblers use two mechanisms to specify their operand sizes:

•	 The operands specify the size using type checking (most assemblers
do this).

•	 The instructions themselves specify the size (Gas does this).

44 Chapter 3

For example, consider the following three HLA mov instructions:

mov(0, al);
mov(0, ax);
mov(0, eax);

In each case, the register operand specifies the size of the data that
the mov instruction copies into that register. MASM uses a similar syntax
(though the operands are reversed):

mov al, 0 ; 8-bit data movement
mov ax, 0 ; 16-bit data movement
mov eax, 0 ; 32-bit data movement

The takeaway here is that the instruction mnemonic (mov) is exactly the
same in all six cases. The operand, not the instruction mnemonic, specifies
the size of the data transfer.

N O T E Modern versions of Gas also allow you to specify the size of the operation by operand
(register) size without using a suffix such as b or w. This book, however, will continue
to use mnemonics such as movb or movw to avoid confusion with older variants of Gas.
“Type Coercion in Gas” on page 45.

3.7.1 Type Coercion in HLA
There is one problem with the preceding approach to specifying the oper-
and size. Consider the following HLA example:

mov(0, [ebx]); // Copy 0 to the memory location
// pointed at by EBX.

This instruction is ambiguous. The memory location to which EBX
points could be a byte, a word, or a double word. Nothing in the instruc-
tion tells the assembler the size of the operand. Faced with an instruction
like this, the assembler will report an error, and you’ll have to explicitly tell
it the size of the memory operand. In HLA’s case, this is done with a type
coercion operator as follows:

mov(0, (type word [ebx])); // 16-bit data movement.

In general, you can coerce any memory operand to an appropriate size
using the following HLA syntax:

(type new_type memory)

where new_type represents a data type (such as byte, word, or dword) and memory
represents the memory address whose type you would like to override.

80x86 Assembly for the HLL Programmer 45

3.7.2 Type Coercion in MASM
MASM suffers from this same problem. You will need to coerce the memory
location using a coercion operator like the following:

mov word ptr [ebx], 0 ; 16-bit data movement.

Of course, you can substitute byte or dword for word in these two examples
to coerce the memory location to a byte or double word size.

3.7.3 Type Coercion in Gas
Gas doesn’t require type coercion operators, because it uses a different
technique to specify the size of its operands. Rather than using the single
mnemonic mov, Gas uses four mnemonics consisting of mov plus a single-
character suffix that indicates the size:

movb Copy an 8-bit (byte) value

movw Copy a 16-bit (word) value

movl Copy a 32-bit (long) value

movq Copy a 64-bit (long long) value

There is never any ambiguity when you use these mnemonics, even if
their operands don’t have an explicit size. For example:

movb $0, (%ebx) // 8-bit data copy
movw $0, (%ebx) // 16-bit data copy
movl $0, (%ebx) // 32-bit data copy
movq $0, (%rbx) // 64-bit data copy

With this basic information, you should now be able to understand the
output from a typical compiler.

3.8 For More Information
Bartlett, Jonathan. Programming from the Ground Up. Edited by Dominick

Bruno, Jr. Self-published, 2004. An older, free version of this book,
which teaches assembly language programming using Gas, can be
found online at http://www.plantation-productions.com/AssemblyLanguage
/ProgrammingGroundUp-1-0-booksize.pdf.

Blum, Richard. Professional Assembly Language. Indianapolis: Wiley, 2005.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Intel. “Intel 64 and IA-32 Architectures Software Developer Manuals.”
Updated November 11, 2019. https://software.intel.com/en-us/articles /intel-sdm/.

http://www.plantation-productions.com/AssemblyLanguage/ProgrammingGroundUp-1-0-booksize.pdf
http://www.plantation-productions.com/AssemblyLanguage/ProgrammingGroundUp-1-0-booksize.pdf
https://software.intel.com/en-us/articles/intel-sdm/

4
C O M P I L E R O P E R A T I O N A N D

C O D E G E N E R A T I O N

In order to write HLL code that produces
efficient machine code, you must first

under stand how compilers and linkers trans-
late high-level source statements into executable

machine code. Complete coverage of compiler theory is
beyond the scope of this book; however, this chapter
explains the basics of the translation process so you can understand and work
within the limitations of HLL compilers. We’ll cover the following topics:

•	 The different types of input files programming languages use

•	 Differences between compilers and interpreters

•	 How typical compilers process source files to produce executable
programs

•	 The process of optimization and why compilers cannot produce the
best possible code for a given source file

•	 Different types of output files that compilers produce

•	 Common object file formats, such as COFF and ELF

48 Chapter 4

•	 Memory organization and alignment issues that affect the size and
efficiency of executable files a compiler produces

•	 How linker options can affect the efficiency of your code

This material provides the foundation for all the chapters that follow,
and is crucial to helping a compiler produce the best possible code. We’ll
begin with a discussion of file formats used by programming languages.

4.1 File Types That Programming Languages Use
A typical program can take many forms. A source file is a human-readable
form that a programmer creates and supplies to a language translator (such
as a compiler). A typical compiler translates the source file or files into an
object code file. A linker program combines separate object modules to produce
a relocatable or executable file. Finally, a loader (usually the operating sys-
tem) loads the executable file into memory and makes the final modifica-
tions to the object code prior to execution. Note that the modifications are
made to the object code that is now in memory; the actual file on the disk
does not get modified. These are not the only types of files that language
processing systems manipulate, but they are typical. To fully understand
compiler limitations, it’s important to know how the language processor
deals with each of these file types. We’ll look at source files first.

4.2 Source Files
Traditionally, source files contain pure ASCII or Unicode text (or some
other character set) that a programmer has created with a text editor. One
advantage to using pure text files is that a programmer can manipulate a
source file using any program that processes text files. For example, a pro-
gram that counts the number of lines in an arbitrary text file will also count
the number of source lines in a program. Because there are hundreds of
little filter programs that manipulate text files, maintaining source files
in a pure text format is a good approach. This format is sometimes called
plain vanilla text.

4.2.1 Tokenized Source Files
Some language processing systems (especially interpreters) maintain their
source files in a tokenized form. Tokenized source files generally use special
single-byte token values to compress reserved words and other lexical ele-
ments in the source language, and thus they are often smaller than text
source files. Furthermore, interpreters that operate on tokenized code are
generally an order of magnitude faster than interpreters that operate on
pure text, because processing strings of single-byte tokens is far more effi-
cient than recognizing reserved word strings.

Generally, the tokenized file from the interpreter consists of a sequence
of bytes that map directly to strings such as if and print in the source file.

Compiler Operation and Code Generation 49

So, by using a table of strings and a little extra logic, you can decipher a
tokenized program to produce the original source code. (Usually, you lose
any extra whitespace you inserted into the source file, but that’s about the
only difference.) Many of the original BASIC interpreters found on early
PC systems worked this way. You’d type a line of BASIC source code into
the interpreter, and the interpreter would immediately tokenize that line
and store the tokenized form in memory. Later, when you executed the LIST
command, the interpreter would detokenize the source code in memory to
produce the listing.

On the flip side, tokenized source files often use a proprietary format.
This means they can’t take advantage of general-purpose text-manipulation
tools like wc (word count), entab, and detab (which count the number of
lines, words, and characters in a text file; replace spaces with tabs; and
replace tabs with spaces, respectively).

To overcome this limitation, most languages that operate on tokenized
files enable you to detokenize a source file to produce a standard text file.
(They also allow you to retokenize a source file, given an input text file.)
You then run the resulting text file through some filter program, and reto-
kenize the output of the filter program to produce a new tokenized source
file. Although this takes considerable work, it allows language translators
that work with tokenized files to take advantage of various text-based util-
ity programs.

4.2.2 Specialized Source Files
Some programming languages, such as Embarcadero’s Delphi and Free
Pascal’s comparable Lazarus program, do not use a traditional text-based
file format at all. Instead, they often use graphical elements like flowcharts
and forms to represent the instructions the program is to perform. Other
examples are the Scratch programming language, which allows you to write
simple programs using graphical elements on a bitmapped display, and the
Microsoft Visual Studio and Apple Xcode integrated development environ-
ments (IDEs), which both allow you to specify a screen layout using graphi-
cal operations rather than a text-based source file.

4.3 Types of Computer Language Processors
Computer language processing systems generally fall into one of four cat-
egories: pure interpreters, interpreters, compilers, and incremental com-
pilers. These systems differ in how they process the source program and
execute the result, which affects their respective efficiency.

4.3.1 Pure Interpreters
Pure interpreters operate directly on a text source file and tend to be very
inefficient. They continuously scan the source file (usually an ASCII text
file), processing it as string data. Recognizing lexemes (language compo-
nents such as reserved words, literal constants, and the like) consumes

50 Chapter 4

time. Indeed, many pure interpreters spend more time processing the lex-
emes (that is, performing lexical analysis) than they do actually executing
the program. Because the actual on-the-fly execution of the lexeme takes
only a little additional effort beyond the lexical analysis, pure interpreters
tend to be the smallest of the computer language processing programs. For
this reason, pure interpreters are popular when you need a very compact
language processor. They are also popular for scripting languages and very
high-level languages that let you manipulate the language’s source code as
string data during program execution.

4.3.2 Interpreters
An interpreter executes some representation of a program’s source file at
runtime. This representation isn’t necessarily a text file in human-readable
form. As noted in the previous section, many interpreters operate on tokenized
source files in order to avoid lexical analysis during execution. Some interpret-
ers read a text source file as input and translate the input file to a tokenized
form prior to execution. This allows programmers to work with text files in
their favorite editor while enjoying the fast execution of a tokenized format.
The only costs are an initial delay to tokenize the source file (which is unno-
ticeable on most modern machines) and the fact that it may not be possible
to execute strings containing program statements.

4.3.3 Compilers
A compiler translates a source program in text form into executable machine
code. This is a complex process, particularly in optimizing compilers. There
are a couple of things to note about the code a compiler produces. First,
a compiler produces machine instructions that the underlying CPU can
execute directly. Therefore, the CPU doesn’t waste any cycles decoding the
source file while executing the program—all of the CPU’s resources are
dedicated to executing the machine code. Thus, the resulting program
generally runs many times faster than an interpreted version does. Of
course, some compilers do a better job of translating HLL source code into
machine code than other compilers, but even low-quality compilers do a
better job than most interpreters.

A compiler’s translation from source code to machine code is a one-way
function. In contrast to interpreters, it is very difficult, if not impossible, to
reconstruct the original source file if you’re given only the machine code
output from a program.

4.3.4 Incremental Compilers
An incremental compiler is a cross between a compiler and an interpreter.
There are many different types of incremental compilers, but in general,
they operate like an interpreter in that they do not compile the source file
directly into machine code; instead, they translate the source code into an
intermediate form. Unlike the tokenized code from interpreters, however,
this intermediate form usually is not strongly correlated to the original

Compiler Operation and Code Generation 51

source file. The intermediate form is generally the machine code for a vir-
tual machine language—“virtual” in that there is no real CPU that can exe-
cute this code. However, it is easy to write an interpreter that can execute
it. Because interpreters for virtual machines (VMs) are usually much more
efficient than interpreters for tokenized code, executing VM code is usually
much faster than executing a list of tokens in an interpreter. Languages
like Java use this compilation technique, along with a Java bytecode engine
(an interpreter program), to interpretively execute the Java “machine
code” (see Figure 4-1). The big advantage to VM execution is that the VM
code is portable; that is, programs running on the virtual machine can
execute anywhere an interpreter is available. True machine code, by con-
trast, executes only on the CPU (family) for which it was written. Generally,
interpreted VM code runs about 2 to 10 times faster than interpreted code
(tokenized), and pure machine code runs about 2 to 10 times faster than
interpreted VM code.

Java byte codes in sequential memory locations

JBC interpreter
(typically written in C)

Actions specified by the
execution of the JBC instructions

Computer system memory

Figure 4-1: The JBC interpreter

In an attempt to improve the performance of programs compiled via an
incremental compiler, many vendors (particularly Java systems vendors) have
turned to a technique known as just-in-time (JIT) compilation. The concept is
based on the fact that the time spent in interpretation is largely consumed by
fetching and deciphering the VM code at runtime. This interpretation occurs
repeatedly as the program executes. JIT compilation translates the VM code
to actual machine code whenever it encounters a VM instruction for the first
time. This spares the interpreter from repeating the interpretation process the
next time it encounters the same statement in the program (for example, in a
loop). Although JIT compilation is nowhere near as good as a true compiler, it
can typically improve the performance of a program by a factor of two to five.

N O T E Older compilers and some freely available compilers compile the source code to assem-
bly language, and then a separate compiler, known as an assembler, assembles this
output to the desired machine code. Most modern and highly efficient compilers skip
this step altogether. See “Compiler Output” on page 67 for more on this subject.

52 Chapter 4

Of the four categories of computer language processors just described,
this chapter will focus on compilers. By understanding how a compiler
generates machine code, you can choose appropriate HLL statements to
generate better, more efficient machine code. If you want to improve the
performance of programs written with an interpreter or incremental com-
piler instead, the best approach is to use an optimizing compiler to pro-
cess your application. For example, GNU provides a compiler for Java that
produces optimized machine code rather than interpreted Java bytecode
(JBC); the resulting executable files run much faster than interpreted JBC
or even JIT-compiled bytecode.

4.4 The Translation Process
A typical compiler is broken down into several logical components called
phases. Although their exact number and names may vary somewhat among
different compilers, the five most common phases are lexical analysis, syntax
analysis, intermediate code generation, native code generation, and, for compilers
that support it, optimization.

Figure 4-2 shows how the compiler logically arranges these phases to
translate source code in the HLL into machine (object) code.

Lexical analysis
phase (scanner)

Syntax analysis
phase (parser)

Intermediate code
generation phase

Native code
generation phase

Optimization phase
(post--code generation)

Optimization phase
(pre--code generation)

Source code

Object code

Figure 4-2: Phases of compilation

Although Figure 4-2 suggests that the compiler executes these phases
sequentially, most compilers do not. Instead, the phases tend to execute in

Compiler Operation and Code Generation 53

parallel, with each phase doing a small amount of work, passing its output
to the next phase, and then waiting for input from the previous phase. In a
typical compiler, the parser (the syntax analysis phase) is probably the clos-
est thing you’ll find to the main program or the master process. The parser
usually drives the compilation process in that it calls the scanner (lexical
analysis phase) to obtain input and calls the intermediate code generator to
process its own output. The intermediate code generator may (optionally)
call the optimizer and then call the native code generator. The native code
generator may (optionally) call the optimizer as well. The output from the
native code generation phase is the executable code. After the native code
generator/optimizer emits some code, execution returns to the intermedi-
ate code generator, then to the parser, which requests more input from the
scanner, starting the whole process over.

N O T E Other compiler organizations are possible. Some compilers, for example, allow the user
to choose whether the compiler runs the optimization phase, while others don’t have an
optimization phase at all. Similarly, some compilers dispense with intermediate code
generation and directly call a native code generator. Some compilers include addi-
tional phases that process object modules compiled at different times.

Thus, although Figure 4-2 doesn’t accurately depict the typical (paral-
lel) execution path, the data flow it shows is correct. The scanner reads the
source file, translates it to a different form, and then passes this translated
data on to the parser. The parser accepts its input from the scanner, trans-
lates that input to a different form, and then passes this new data to the
intermediate code generator. Similarly, the remaining phases read their
input from the previous phase, translate the input to a (possibly) different
form, and then pass that input on to the next phase. The compiler writes
the output of its last phase to the executable object file.

Let’s take a closer look at each phase of the code translation process.

4.4.1 Scanning (Lexical Analysis)
The scanner (aka the lexical analyzer, or lexer) is responsible for reading the
character/string data found in the source file and breaking up this data
into tokens that represent the lexical items, or lexemes, in the source file.
As mentioned previously, lexemes are the character sequences in the source
file that we would recognize as atomic components of the language. For
example, a scanner for the C language would recognize substrings like if
and while as C reserved words. The scanner would not, however, pick out the
“if ” within the identifier ifReady and treat it as a reserved word. Instead,
the scanner considers the context in which a reserved word is used so that it
can differentiate between reserved words and identifiers. For each lexeme,
the scanner creates a small data package—a token—and passes it on to the
parser. A token typically contains several values:

•	 A small integer that uniquely identifies the token’s class (whether it’s
a reserved word, identifier, integer constant, operator, or character
string literal)

54 Chapter 4

•	 Another value that differentiates the token within a class (for example,
this value would indicate which reserved word the scanner has processed)

•	 Any other attributes the scanner might associate with the lexeme

N O T E Do not confuse this reference to a token with the compressed-style tokens in an inter-
preter discussed previously. In this context, tokens are simply a variable-sized data
structure that holds information associated with a lexeme for the interpreter/compiler.

When the scanner sees the character string 12345 in the source file, for
example, it might identify the token’s class as a literal constant, the token’s
second value as an integer typed constant, and the token’s attribute as the
numeric equivalent of the string (that is, twelve thousand, three hundred,
forty-five). Figure 4-3 demonstrates what this token might look like in
memory.

345 “Token” value

5

12345

“12345”

Token class

Token attribute

Lexeme

Figure 4-3: A token for the
lexeme "12345"

The token’s enumerated value is 345 (indicating an integer constant),
the token class’s value is 5 (indicating a literal constant), the token’s attri-
bute value is 12345 (the numeric form of the lexeme), and the lexeme string
is "12345" as returned by the scanner. Different code sequences in the com-
piler can refer to this token data structure as appropriate.

Strictly speaking, the lexical analysis phase is optional. A parser could
work directly with the source file. However, tokenization makes the compila-
tion process more efficient, because it allows the parser to deal with tokens
as integer values rather than as string data. Because most CPUs can handle
small integer values much more efficiently than string data, and because
the parser has to refer to the token data multiple times during processing,
lexical analysis saves considerable time during compilation. Generally, pure
interpreters are the only language processors that rescan each token dur-
ing parsing, and this is one major reason why they are so slow (compared
to, say, an interpreter that stores the source file in a tokenized form to avoid
constantly processing a pure-text source file).

4.4.2 Parsing (Syntax Analysis)
The parser is the part of the compiler that is responsible for checking
whether the source program is syntactically (and semantically) correct.
If there’s an error in the source file, it’s usually the parser that discovers
and reports it. The parser is also responsible for reorganizing the token
stream (that is, the source code) into a more complex data structure that

Compiler Operation and Code Generation 55

represents the meaning or semantics of the program. The scanner and
parser generally process the source file in a linear fashion from the begin-
ning to the end of the file, and the compiler usually reads the source file
only once. Later phases, however, need to refer to the body of the source
program in a more ad hoc way. By building up a data structure represen-
tation of the source code (often called an abstract syntax tree, or AST), the
parser enables the code generation and optimization phases to easily refer-
ence different parts of the program.

Figure 4-4 shows how a compiler might represent the expression 12345+6
using three nodes in an AST (43 is the value for the addition operator and 7
is the subclass representing arithmetic operators).

43 “Token” value

7

“+”

Token class (operator)

Token attribute (N/A)

Lexeme

345 “Token” value

5

6

“6”

Token class

Token attribute

Lexeme

345 “Token” value

5

12345

“12345”

Token class

Token attribute

Lexeme

12345 + 6

Figure 4-4: A portion of an abstract syntax tree

4.4.3 Intermediate Code Generation
The intermediate code generation phase is responsible for translating the
AST representation of the source file into a quasi–machine code form. There
are two reasons compilers typically translate a program into an intermediate
form rather than converting it directly to native machine code.

First, the compiler’s optimization phase can do certain types of optimi-
zations, such as common subexpression elimination, much more easily on
this intermediate form.

Second, many compilers, known as cross-compilers, generate executable
machine code for several different CPUs. By breaking the code generation
phase into two pieces—the intermediate code generator and the native
code generator—the compiler writer can move all the CPU-independent
activities into the intermediate code generation phase and write this
code only once. This simplifies the native code generation phase. That is,

56 Chapter 4

because the compiler needs only one intermediate code generation phase
but may need separate native code generation phases for each CPU the
compiler supports, moving as much of the CPU-independent code as pos-
sible into the intermediate code generator will reduce the size of the native
code generators. For the same reason, the optimization phase is often bro-
ken into two components (refer back to Figure 4-2): a CPU-independent
component (the part following the intermediate code generator) and a
CPU-dependent component.

Some language systems, such as Microsoft’s VB.NET and C#, actually
emit the intermediate code as the output of the compiler (in the .NET sys-
tem, Microsoft calls this code Common Intermediate Language, or CIL). Native
code generation and optimization are actually handled by the Microsoft
Common Language Runtime (CLR) system, which performs JIT compilation
on the CIL code the .NET compilers produce.

4.4.4 Optimization
The optimization phase, which follows intermediate code generation,
translates the intermediate code into a more efficient form. This generally
involves eliminating unnecessary entries from the AST. For example, the
compiler’s optimizer might transform the following intermediate code:

move the constant 5 into the variable i
move a copy of i into j
move a copy of j into k
add k to m

to something like:

move the constant 5 into k
add k to m

If there are no more references to i and j, the optimizer can eliminate
all references to them. Indeed, if k is never used again, the optimizer can
replace these two instructions with the single instruction add 5 to m. Note that
this type of transformation is valid on nearly all CPUs. Therefore, this type of
transformation/optimization is perfect for the first optimization phase.

4.4.4.1 The Problem with Optimization

Transforming intermediate code “into a more efficient form” is not a well-
defined process—what makes one form of a program more efficient than
another? The primary definition of efficiency is that the program mini-
mizes the use of some system resource, usually memory (space) or CPU
cycles (speed). A compiler’s optimizer could manage other resources, but
space and speed are the principal considerations for programmers. But
even if we consider only these two facets of optimization, describing the
“optimal” result is difficult. The problem is that optimizing for one goal
(say, better performance) may create conflicts with another optimization

Compiler Operation and Code Generation 57

goal (such as reduced memory usage). For this reason, the optimization
process is usually a matter of compromise, where you make trade-offs and
sacrifice certain subgoals (for example, running certain sections of the
code a little slower) in order to create a reasonable result (like creating a
program that doesn’t consume too much memory).

4.4.4.2 Optimization’s Effect on Compile Time

You might think that it’s possible to set a single goal (for example, highest
possible performance) and optimize strictly for that. However, the compiler
must also be capable of producing an executable result in a reasonable
amount of time. The optimization process is an example of what complexity
theory calls an NP-complete problem. These are problems that are, as far as we
know, intractable; that is, you cannot produce a guaranteed correct result
(for example, an optimal version of a program) without first computing all
possibilities and choosing from among them. Unfortunately, the time gen-
erally required to solve an NP-complete problem increases exponentially
with the size of the input, which in the case of compiler optimization means
roughly the number of lines of source code.

This means that in the worst case, producing a truly optimal program
would take longer than it was worth. Adding one line of source code could
approximately double the amount of time it takes to compile and optimize
the code. Adding two lines could quadruple the amount of time. In fact, a
full guaranteed optimization of a modern application could take longer
than the known lifetime of the universe.

For all but the smallest source files (a few dozen lines), a perfect
optimizer would take far too long to be of any practical value (and such
optimizers have been written; search online for “superoptimizers” for
details). For this reason, compiler optimizers rarely produce a truly optimal
program. They simply produce the best result they can, given the limited
amount of CPU time the user is willing to allow for the process.

N O T E Languages that rely on JIT compilation (such as Java, C#, and VB.Net) move part
of the optimization phase to runtime. Therefore, the optimizer’s performance has a
direct impact on the application’s runtime. Because the JIT compiler system is run-
ning concurrently with the application, it cannot spend considerable time optimiz-
ing the code without having a huge impact on runtime. This is why languages such
as Java and C#, even when ultimately compiled to low-level machine code, rarely
perform as well as highly optimized code compiled by traditional languages such as
C/C++ and Pascal.

Rather than trying all possibilities and choosing the best result, mod-
ern optimizers use heuristics and case-based algorithms to determine the
transformations they will apply to the machine code they produce. You
need to be aware of these techniques so you can write your HLL code in
a manner that allows an optimizer to easily process it and produce better
machine code.

58 Chapter 4

4.4.4.3 Basic Blocks, Reducible Code, and Optimization

Understanding how the compiler organizes the intermediate code (to out-
put better machine code in later phases) is very important if you want to
be able to help the optimizer do its job more efficiently. As control flows
through the program, the optimizer keeps track of variable values in a
process known as data flow analysis (DFA). After careful DFA, a compiler
can determine where a variable is uninitialized, when the variable contains
certain values, when the program no longer uses the variable, and (just as
importantly) when the compiler simply doesn’t know anything about the
variable’s value. For example, consider the following Pascal code:

 path := 5;
 if(i = 2) then begin

 writeln('Path = ', path);

 end;
 i := path + 1;
 if(i < 20) then begin

 path := path + 1;
 i := 0;

 end;

A good optimizer will replace this code with something like the following:

 if(i = 2) then begin

 (* Because the compiler knows that path = 5 *)

 writeln('path = ', 5);

 end;
 i := 0; (* Because the compiler knows that path < 20 *)
 path := 6; (* Because the compiler knows that path < 20 *)

In fact, the compiler probably would not generate code for the last two
statements; instead, it would substitute the value 0 for i and 6 for path in
later references. If this seems impressive to you, note that some compilers
can even track constant assignments and expressions through nested func-
tion calls and complex expressions.

Although a complete description of how a compiler analyzes data flow
is beyond the scope of this book, you should have a basic understanding of
the process, because a sloppily written program can thwart the compiler’s
optimization abilities. Great code works synergistically with the compiler,
not against it.

Some compilers can do some truly amazing things when it comes to
optimizing high-level code. However, optimization is an inherently slow
process. As noted earlier, it is an intractable problem. Fortunately, most

Compiler Operation and Code Generation 59

programs don’t require full optimization. Even if it runs a little slower than
the optimal program, a good approximation is an acceptable compromise
when compared to intractable compilation times.

The major concession to compilation time that compilers make during
optimization is that they search for only so many possible improvements
to a section of code before they move on. Therefore, if your programming
style confuses the compiler, it may not be able to generate an optimal (or
even close to optimal) executable because it has too many possibilities to
consider. The trick, then, is to learn how compilers optimize the source file
so you can accommodate them.

To analyze data flow, compilers divide the source code into sequences
known as basic blocks—machine instructions into and out of which there are
no branches except at the beginning and end. For example, consider the
following C code:

 x = 2; // Basic block 1
 j = 5;
 i = f(&x, j); // End of basic block 1
 j = i * 2 + j; // Basic block 2
 if(j < 10) // End of basic block 2
 {
 j = 0; // Basic block 3
 i = i + 10;
 x = x + i; // End of basic block 3
 }
 else
 {
 temp = i; // Basic block 4
 i = j;
 j = j + x;
 x = temp; // End of basic block 4
 }
 x = x * 2; // Basic block 5
 ++i;
 --j;

 printf("i=%d, j=%d, x=%d\n", i, j, x); // End basic block 5

 // Basic block 6 begins here

This code snippet contains five basic blocks. Basic block 1 starts with
the beginning of the source code. A basic block ends at the point where
there is a jump into or out of the sequence of instructions. Basic block 1
ends at the call to the f() function. Basic block 2 starts with the statement
following the call to the f() function, then ends at the beginning of the
if statement because the if can transfer control to either of two locations.
The else clause terminates basic block 3. It also marks the beginning of
basic block 4 because there is a jump (from the if’s then clause) to the first
statement following the else clause. Basic block 4 ends not because the code

60 Chapter 4

transfers control somewhere else, but because there is a jump from basic
block 2 to the first statement that begins basic block 5 (from the if’s then
section). Basic block 5 ends with a call to the C printf() function.

The easiest way to determine where the basic blocks begin and end is
to consider the assembly code that the compiler will generate. Wherever
there is a conditional branch/jump, unconditional jump, or call instruc-
tion, a basic block will end. Note, however, that the basic block includes
the instruction that transfers control to a new location. A new basic block
begins immediately after the instruction that transfers control to a new
location. Also note that the target label of any conditional branch, uncon-
ditional jump, or call instruction begins a basic block.

Basic blocks make it easy for the compiler to track what’s happening
to variables and other program objects. As the compiler processes each
statement, it can (symbolically) track the values that a variable will hold
based upon their initial values and the computations on them within the
basic block.

A problem occurs when the paths from two basic blocks join into a
single code stream. For example, at the end of basic block 3 in the current
example, the compiler could easily determine that the variable j contains
zero because code in the basic block assigns the value 0 to j and then makes
no other assignments to j. Similarly, at the end of basic block 3, the pro-
gram knows that j contains the value j0 + x0 (assuming j0 represents the
initial value of j upon entry into the basic block and x0 represents the ini-
tial value of x upon entry into the block). But when the paths merge at the
beginning of basic block 4, the compiler probably can’t determine whether
j will contain zero or the value j0 + x0. This means the compiler has to note
that j’s value could be either of two different values at this point.

While keeping track of two possible values that a variable might contain
at a given point is easy for a decent optimizer, it’s not hard to imagine a situ-
ation where the compiler would have to keep track of many different pos-
sible values. In fact, if you have several if statements that the code executes
sequentially, and each path through these if statements modifies a given
variable, then the number of possible values for each variable doubles with
each if statement. In other words, the number of possibilities increases
exponentially with the number of if statements in a code sequence. At some
point, the compiler cannot keep track of all the possible values a variable
might contain, so it has to stop monitoring that information for the given
variable. When this happens, there are fewer optimization possibilities that
the compiler can consider.

Fortunately, although loops, conditional statements, switch/case state-
ments, and procedure/function calls can increase the number of possible
paths through the code exponentially, in practice compilers have few prob-
lems with typical well-written programs. This is because as paths from basic
blocks converge, programs often make new assignments to their variables
(thereby eliminating the old values the compiler was tracking). Compilers
generally assume that programs rarely assign a different value to a variable
along every distinct path in the program, and their internal data structures

Compiler Operation and Code Generation 61

reflect this. Keep in mind that if you violate this assumption, the compiler
may lose track of variable values and generate inferior code as a result.

Poorly structured programs can create control flow paths that confuse
the compiler, reducing the opportunities for optimization. Good programs
produce reducible flow graphs, pictorial depictions of the control flow path.
Figure 4-5 is a flow graph for the previous code fragment.

x = 2;

j = 5;

i = f(&x, j);

j = i * 2 + j;

if(j < 10)

{

j = 0;

i = i + 10;

x = x + i;

}

else
{

temp = i;
i = j;
j = j + x;
x = temp;

}

x = x * 2;

++i;

--j;

printf("i=%d, j=%d, x=%d\n", i, j, x);

Figure 4-5: An example flow graph

As you can see, arrows connect the end of each basic block with the
beginning of the basic block into which they transfer control. In this par-
ticular example, all of the arrows flow downward, but this isn’t always the
case. Loops, for example, transfer control backward in the flow graph. As
another example, consider the following Pascal code:

 write('Input a value for i:');
 readln(i);
 j := 0;
 while((j < i) and (i > 0)) do begin

 a[j] := i;
 b[i] := 0;
 j := j + 1;
 i := i - 1;

62 Chapter 4

 end; (* while *)
 k := i + j;
 writeln('i = ', i, 'j = ', j, 'k = ', k);

Figure 4-6 shows the flow graph for this simple code fragment.

write("Input a value for i:");

readln (i);

j := 0;

while(j < i and i > 0) do begin

a[j] := i;

b[i] := 0;

j := j + 1;

i := i - 1;

end; (* while *)

k := i + j;

writeln ('i = ', i, 'j = ', j, 'k = ', k);

Figure 4-6: Flow graph for a while loop

As mentioned, flow graphs in well-structured programs are reducible.
Although a complete description of what constitutes a reducible flow graph
is beyond the scope of this book, any program that consists only of struc-
tured control statements (if, while, repeat..until, and so on) and avoids goto
statements will be reducible. This is an important point because compiler
optimizers generally do a much better job when working on reducible pro-
grams. In contrast, programs that are not reducible tend to confuse them.

What makes reducible programs easier for optimizers to deal with is
that their basic blocks can be collapsed in an outline fashion, with enclos-
ing blocks inheriting properties (for example, which variables the block
modifies) from the enclosed blocks. By processing the source file this way,
the optimizer can deal with a small number of basic blocks rather than a
large number of statements. This hierarchical approach to optimization
is more efficient and allows the optimizer to maintain more information
about the program’s state. Furthermore, the exponential time complex-
ity of the optimization problem works for us in this case. By reducing the
number of blocks the code has to deal with, you dramatically decrease

Compiler Operation and Code Generation 63

the amount of work the optimizer must do. Again, the exact details of
how the compiler achieves this are not important here. The takeaway is
that making your programs reducible enables the optimizer to do its job
more effectively. Attempts to “optimize” your code by sticking in lots of
goto statements—to avoid duplicating code and executing unnecessary
tests—may actually work against you. While you may save a few bytes or a
few cycles in the immediate area you’re working on, the end result might
confuse the compiler enough that it cannot optimize as well, causing an
overall loss of efficiency.

4.4.4.4 Common Compiler Optimizations

Chapter 12 will provide complete definitions and examples of common
compiler optimizations in programming contexts where compilers typically
use them. But for now, here’s a quick preview of the basic types:

Constant folding
Constant folding computes the value of constant expressions or sub-
expressions at compile time rather than at runtime. See “Constant
Folding” on page 397 for more information.

Constant propagation
Constant propagation replaces a variable with a constant value if the
compiler determines that the program assigned that constant to the
variable earlier in the code. See “Constant Propagation” on page 400
for more information.

Dead code elimination
Dead code elimination removes the object code associated with a par-
ticular source code statement when the program will never use the
result of that statement, or when a conditional block will never be true.
See “Dead Code Elimination” on page 404 for more information.

Common subexpression elimination
Frequently, part of an expression will appear elsewhere in the current
function; this is known as a subexpression. If the values of the variables in
a subexpression haven’t changed, the program does not need to recom-
pute them everywhere the subexpression appears. The program can
simply save the subexpression’s value on the first evaluation and then
use it for every other occurrence of the subexpression. See “Common
Subexpression Elimination” on page 410 for more information.

Strength reduction
Often, the CPU can directly compute a value using a different opera-
tor than the source code specifies. For example, a shift instruction can
implement multiplication or division by a constant that is a power of 2,
and a bitwise and instruction can compute certain modulo (remainder)
operations (the shift and and instructions generally execute much faster
than the multiply and divide instructions). Most compiler optimizers

64 Chapter 4

are good at recognizing such operations and replacing the more expen-
sive computation with a less expensive sequence of machine instruc-
tions. See “Strength Reduction” on page 417 for more information.

Induction
In many expressions, particularly those appearing within a loop, the value
of one variable in the expression is completely dependent upon some other
variable. Frequently, the compiler can eliminate the computation of the
new value or merge the two computations into one for the duration of that
loop. See “Induction” on page 422 for more information.

Loop invariants
The optimizations so far have all been techniques a compiler can use to
improve code that is already well written. Handling loop invariants, by
contrast, is a compiler optimization for fixing bad code. A loop invariant
is an expression that does not change on each iteration of some loop. An
optimizer can compute the result of such a calculation just once, outside
the loop, and then use the computed value within the loop’s body. Many
optimizers are smart enough to discover loop invariant calculations and
can use code motion to move the invariant calculation outside the loop.
See “Loop Invariants” on page 427 for more information.

Good compilers can perform many other optimizations, but these are
the standard optimizations that any decent compiler should be able to do.

4.4.4.5 Compiler Optimization Control

By default, most compilers do very little or no optimization unless you
explicitly tell them to. This might seem counterintuitive; after all, we gener-
ally want compilers to produce the best possible code for us. However, there
are many definitions of “optimal,” and no single compiler output is going to
satisfy every possible one.

You might argue that some sort of optimization, even if it’s not the par-
ticular type you’re interested in, is better than none at all. However, there
are a few reasons why no optimization is a compiler’s default state:

•	 Optimization is a slow process. You get quicker turnaround times on
compiles when you have the optimizer turned off. This can be a big
help during rapid edit-compile-test cycles.

•	 Many debuggers don’t work properly with optimized code, and you have
to turn off optimization in order to use a debugger on your application
(this also makes analyzing the compiler output much easier).

•	 Most compiler defects occur in the optimizer. By emitting unoptimized
code, you’re less likely to encounter defects in the compiler (then again,
the compiler’s author is less likely to be notified about defects in the
compiler, too).

Compiler Operation and Code Generation 65

Most compilers provide command-line options that let you control the
types of optimization the compiler performs. Early C compilers under Unix
used command-line arguments like -O, -O1, and -O2. Many later compilers (C
and otherwise) have adopted this strategy, if not exactly the same command-
line options.

If you’re wondering why a compiler might offer multiple options to con-
trol optimization rather than just a single option (optimization or no optimi-
zation), remember that “optimal” means different things to different people.
Some people might want code that is optimized for space; others might want
code that is optimized for speed (and those two optimizations could be
mutually exclusive in a given situation). Some people might want to optimize
their files but don’t want the compiler to take forever to process them, so
they’d be willing to compromise with a small set of fast optimizations. Others
might want to control optimization for a specific member of a CPU family
(such as the Core i9 processor in the 80x86 family). Furthermore, some opti-
mizations are “safe” (that is, they always produce correct code) only if the
program is written in a certain way. You certainly don’t want to enable such
optimizations unless the programmer guarantees that they’ve written their
code accordingly. Finally, for programmers who are writing their HLL code
carefully, some optimizations the compiler performs may actually produce
inferior code, in which case the ability to specify optimizations is very handy.
For these reasons and more, most modern compilers provide considerable
flexibility over the types of optimizations they perform.

Consider the Microsoft Visual C++ compiler. It provides the following
command-line options to control optimization:

 -OPTIMIZATION-

/O1 minimize space
/O2 maximize speed
/Ob<n> inline expansion (default n=0)
/Od disable optimizations (default)
/Og enable global optimization
/Oi[-] enable intrinsic functions
/Os favor code space
/Ot favor code speed
/Ox maximum optimizations
/favor:<blend|AMD64|INTEL64|ATOM> select processor to optimize for, one of:
 blend - a combination of optimizations for several different x64 processors
 AMD64 - 64-bit AMD processors
 INTEL64 - Intel(R)64 architecture processors
 ATOM - Intel(R) Atom(TM) processors

 -CODE GENERATION-

/Gw[-] separate global variables for linker
/GF enable read-only string pooling
/Gm[-] enable minimal rebuild
/Gy[-] separate functions for linker
/GS[-] enable security checks

66 Chapter 4

/GR[-] enable C++ RTTI
/GX[-] enable C++ EH (same as /EHsc)
/guard:cf[-] enable CFG (control flow guard)
/EHs enable C++ EH (no SEH exceptions)
/EHa enable C++ EH (w/ SEH exceptions)
/EHc extern "C" defaults to nothrow
/EHr always generate noexcept runtime termination checks
/fp:<except[-]|fast|precise|strict> choose floating-point model:
 except[-] - consider floating-point exceptions when generating code
 fast - "fast" floating-point model; results are less predictable
 precise - "precise" floating-point model; results are predictable
 strict - "strict" floating-point model (implies /fp:except)
/Qfast_transcendentals generate inline FP intrinsics even with /fp:except
/Qspectre[-] enable mitigations for CVE 2017-5753
/Qpar[-] enable parallel code generation
/Qpar-report:1 auto-parallelizer diagnostic; indicate parallelized loops
/Qpar-report:2 auto-parallelizer diagnostic; indicate loops not parallelized
/Qvec-report:1 auto-vectorizer diagnostic; indicate vectorized loops
/Qvec-report:2 auto-vectorizer diagnostic; indicate loops not vectorized
/GL[-] enable link-time code generation
/volatile:<iso|ms> choose volatile model:
 iso - Acquire/release semantics not guaranteed on volatile accesses
 ms - Acquire/release semantics guaranteed on volatile accesses
/GA optimize for Windows Application
/Ge force stack checking for all funcs
/Gs[num] control stack checking calls
/Gh enable _penter function call
/GH enable _pexit function call
/GT generate fiber-safe TLS accesses
/RTC1 Enable fast checks (/RTCsu)
/RTCc Convert to smaller type checks
/RTCs Stack Frame runtime checking
/RTCu Uninitialized local usage checks
/clr[:option] compile for common language runtime, where option is:
 pure - produce IL-only output file (no native executable code)
 safe - produce IL-only verifiable output file
 initialAppDomain - enable initial AppDomain behavior of Visual C++ 2002
 noAssembly - do not produce an assembly
 nostdlib - ignore the default \clr directory
/homeparams Force parameters passed in registers to be written to the stack
/GZ Enable stack checks (/RTCs)
/arch:AVX enable use of instructions available with AVX-enabled CPUs
/arch:AVX2 enable use of instructions available with AVX2-enabled CPUs
/Gv __vectorcall calling convention

GCC has a comparable—though much longer—list, which you can view
by specifying -v --help on the GCC command line. Most of the individual
optimization flags begin with -f. You can also use -On, where n is a single
digit integer value, to specify different levels of optimization. Take care
when using -O3 (or higher), as doing so may perform some unsafe optimiza-
tions in certain cases.

Compiler Operation and Code Generation 67

4.4.5 Compiler Benchmarking
One real-world constraint on our ability to produce great code is that differ-
ent compilers provide a wildly varying set of optimizations. Even the same
optimizations performed by two different compilers can differ greatly in
effectiveness.

Fortunately, several websites have benchmarked various compilers.
(One good example is Willus.com.) Simply search online for a topic like
“compiler benchmarks” or “compiler comparisons” and have fun.

4.4.6 Native Code Generation
The native code generation phase is responsible for translating the inter-
mediate code into machine code for the target CPU. An 80x86 native code
generator, for example, might translate the intermediate code sequence
given previously into something like the following:

mov(5, eax); // move the constant 5 into the EAX register.
mov(eax, k); // Store the value in EAX (5) into k.
add(eax, m); // Add the value in EAX to variable m.

The second optimization phase, which takes place after native code gen-
eration, handles machine idiosyncrasies that don’t exist on all machines. For
example, an optimizer for a Pentium II processor might replace an instruc-
tion of the form add(1, eax); with the instruction inc(eax);. Optimizers for
later CPUs might do just the opposite. Optimizers for certain 80x86 proces-
sors might arrange the sequence of instructions one way to maximize parallel
execution of the instructions in a superscalar CPU, while an optimizer target-
ing a different (80x86) CPU might arrange the instructions differently.

4.5 Compiler Output
The previous section stated that compilers typically produce machine code
as their output. Strictly speaking, this is neither necessary nor even that com-
mon. Most compiler output is not code that a given CPU can directly execute.
Some compilers emit assembly language source code, which requires further
processing by an assembler prior to execution. Other compilers produce an
object file, which is similar to executable code but is not directly executable.
Still other compilers actually produce source code output that requires fur-
ther processing by a different HLL compiler. I’ll discuss these different out-
put formats and their advantages and disadvantages in this section.

4.5.1 Emitting HLL Code as Compiler Output
Some compilers actually emit output that is source code for a different
high-level programming language (see Figure 4-7). For example, many
compilers (including the original C++ compiler) emit C code as their out-
put. Indeed, compiler writers who emit some high-level source code from
their compiler frequently choose the C programming language.

68 Chapter 4

Emitting HLL code as compiler output offers several advantages.
The output is human-readable and generally easy to verify. The HLL
code emitted is often portable across various platforms; for example, if
a compiler emits C code, you can usually compile that output on several
different machines because C compilers exist for most platforms. Finally,
by emitting HLL code, a translator can rely on the optimizer of the target
language’s compiler, thereby saving the effort of writing its own optimizer.
In other words, emitting HLL code allows a compiler writer to create a
less complex code generator module and rely on the robustness of some
other compiler for the most complex part of the compilation process.

Compiler

HLL source code

HLL source
code as output

Compiler #2

Executable machine code

Figure 4-7: Emission of HLL code
by a compiler

Emitting HLL code has several disadvantages, too. First and foremost,
this approach usually takes more processing time than directly generat-
ing executable code. To produce an executable file, a second, otherwise
unnecessary, compiler might be needed. Worse, the output of that second
compiler might need to be processed further by another compiler or assem-
bler, exacerbating the problem. Another disadvantage is that in HLL code
it’s difficult to embed debugging information that a debugger program can
use. Perhaps the most fundamental problem with this approach, however, is
that HLLs are usually an abstraction of the underlying machine. Therefore,
it could be quite difficult for a compiler to emit statements in an HLL that
efficiently map to low-level machine code.

Generally, compilers that emit HLL statements as their output are
translating a very high-level language (VHLL) into a lower-level language. For
example, C is often considered to be a fairly low-level HLL, which is one
reason why it’s a popular output format for many compilers. Projects that
have attempted to create a special, portable, low-level language specifically
for this purpose have never been enormously popular. Check out any of the
“C- -” projects on the internet for examples of such systems.

If you want to write efficient code by analyzing compiler output, you’ll
probably find it more difficult to work with compilers that output HLL
code. With a standard compiler, all you have to learn is the particular
machine code statements that your compiler produces. However, when a
compiler emits HLL statements as its output, learning to write great code

Compiler Operation and Code Generation 69

with that compiler is more difficult. You need to understand both how the
main language emits the HLL statements and how the second compiler
translates the code into machine code.

Generally, compilers that produce HLL code as their output are either
experimental compilers for VHLLs, or compilers that attempt to translate
legacy code in an older language to a more modern language (for example,
FORTRAN to C). As a result, expecting those compilers to emit efficient
code is generally asking too much. Thus, you’d probably be wise to avoid
a compiler that emits HLL statements. A compiler that directly gener-
ates machine code (or assembly language code) is more likely to produce
smaller and faster-running executables.

4.5.2 Emitting Assembly Language as Compiler Output
Many compilers will emit human-readable assembly language source files
rather than binary machine code files (see Figure 4-8). Probably the most
famous example is the FSF/GNU GCC compiler suite, which emits assem-
bly language output for the FSF/GNU assembler Gas. Like compilers that
emit HLL source code, emitting assembly language has some advantages
and disadvantages.

Compiler

HLL source code

Assembly language
source code as output

Assembler

Executable machine code

Figure 4-8: Emission of assembly code
by a compiler

The principal disadvantages to emitting assembly code are similar to the
downsides of emitting HLL source output. First, you have to run a second
language translator (namely the assembler) to produce the actual object code
for execution. Second, some assemblers may not allow the embedding of
debugging metadata that allows a debugger to work with the original source
code (though many assemblers do support this capability). These two disad-
vantages turn out to be minimal if a compiler emits code for an appropriate
assembler. For example, Gas is very fast and supports the insertion of debug
information for use by source-level debuggers. Therefore, the FSF/GNU com-
pilers don’t suffer as a result of emitting Gas output.

The advantage of assembly language output, particularly for our pur-
poses, is that it’s easy to read the compiler’s output and determine which
machine instructions the compiler emits. Indeed, this book uses this

70 Chapter 4

compiler facility to analyze compiler output. Emitting assembly code frees
the compiler writer from having to worry about several different object
code output formats—the underlying assembler handles that—which allows
the compiler writer to create a more portable compiler. True, the assembler
has to be capable of generating code for different operating systems, but
you only need to repeat this exercise once for each object file format, rather
than once for each format multiplied by the number of compilers you write.
The FSF/GNU compiler suite has taken good advantage of the Unix phi-
losophy of using small tools that chain together to accomplish larger, more
complicated tasks—that is, minimize redundancy.

Another advantage of compilers that can emit assembly language out-
put is that they generally allow you to embed inline assembly language state-
ments in the HLL code. This lets you insert a few machine instructions
directly into time-critical sections of your code without the hassle of having
to create a separate assembly language program and link its output to your
HLL program.

4.5.3 Emitting Object Files as Compiler Output
Most compilers translate the source language into an object file format, an
intermediate file format that contains machine instructions and binary run-
time data along with certain metadata. This metadata allows a linker/loader
program to combine various object modules to produce a complete execut-
able. This in turn allows programmers to link library modules and other object
modules that they’ve written and compiled separately from their main appli-
cation module.

The advantage of object file output is that you don’t need a separate
compiler or assembler to convert the compiler’s output to object code form,
which saves a little time during compilation. Note, however, that a linker
program must still process the object file output, which consumes a little
time after compilation. Nevertheless, linkers are generally quite fast, so
it’s usually more cost-effective to compile a single module and link it with
several previously compiled modules than it is to compile all the modules
together to form an executable file.

Object modules are binary files and do not contain human-readable
data, so it’s a bit more difficult to analyze compiler output in this format
than in the others we’ve discussed. Fortunately, there are utility programs
that will disassemble the output of an object module into a human-readable
form. The result isn’t as easy to read as straight assembly compiler output,
but you can still do a reasonably good job.

Because object files are challenging to analyze, many compiler writers
provide an option to emit assembly code instead of object code. This handy
feature makes analysis much easier, so we’ll use it with various compilers
throughout this book.

N O T E The section “Object File Formats” on page 71 provides a detailed look at the ele-
ments of an object file, focusing on COFF (Common Object File Format).

Compiler Operation and Code Generation 71

4.5.4 Emitting Executable Files as Compiler Output
Some compilers directly emit an executable output file. These compilers are
often very fast, producing almost instantaneous turnaround during the edit-
compile-run-test-debug cycle. Unfortunately, their output is often the most
difficult to read and analyze, requiring the use of a debugger or disassem-
bler program and a lot of manual work. Nevertheless, the fast turnaround
makes these compilers popular, so later in this book, we’ll look at how to
analyze the executable files they produce.

4.6 Object File Formats
As previously noted, object files are among the most popular forms of
compiler output. Even though it is possible to create a proprietary object
file format—one that only a single compiler and its associated tools can
use—most compilers emit code using one or more standardized object file
formats. This allows different compilers to share the same set of object file
utilities, including linkers, librarians, dump utilities, and disassemblers.
Examples of common object file formats include: OMF (Object Module
Format), COFF (Common Object File Format), PE/COFF (Microsoft’s
Portable Executable variant on COFF), and ELF (Executable and Linkable
Format). There are several variants of these file formats, as well as many
altogether different object file formats.

Most programmers understand that object files represent the machine
code that an application executes, but they often don’t realize the impact
of the object file’s organization on their application’s performance and
size. Although you don’t need to have detailed knowledge of an object file’s
internal representation to write great code, having a basic understanding
will help you organize your source files to better take advantage of the way
compilers and assemblers generate code for your applications.

An object file usually begins with a header that comprises the first few
bytes of the file. This header contains certain signature information that iden-
tifies the file as a valid object file, along with several other values that define
the location of various data structures in the file. Beyond the header, an
object file is usually divided into several sections, each containing applica-
tion data, machine instructions, symbol table entries, relocation data, and
other metadata (data about the program). In some cases, the actual code
and data represent only a small part of the entire object code file.

To get a feeling for how object files are structured, it’s worthwhile to
look at a specific object file format in detail. I’ll use COFF in the follow-
ing discussion because most object file formats (for example, ELF and PE/
COFF) are based on, or very similar to, COFF. The basic layout of a COFF
file is shown in Figure 4-9, after which I’ll describe each section in turn.

72 Chapter 4

COFF file header

Optional header

Section headers

Sections’ contents

Relocation information

Line number info

Symbol table

String table

Figure 4-9: Layout of a COFF file

4.6.1 The COFF File Header
At the beginning of every COFF file is a COFF file header. Here are the
definitions that Microsoft Windows and Linux use for the COFF header
structure:

// Microsoft Windows winnt.h version:

typedef struct _IMAGE_FILE_HEADER {
 WORD Machine;
 WORD NumberOfSections;
 DWORD TimeDateStamp;
 DWORD PointerToSymbolTable;
 DWORD NumberOfSymbols;
 WORD SizeOfOptionalHeader;
 WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

// Linux coff.h version:

struct COFF_filehdr {
 char f_magic[2]; /* magic number */
 char f_nscns[2]; /* number of sections */
 char f_timdat[4]; /* time & date stamp */
 char f_symptr[4]; /* file pointer to symtab */
 char f_nsyms[4]; /* number of symtab entries */
 char f_opthdr[2]; /* sizeof(optional hdr) */
 char f_flags[2]; /* flags */
};

Compiler Operation and Code Generation 73

The Linux coff.h header file uses traditional Unix names for these
fields; the Microsoft winnt.h header file uses (arguably) more readable
names. Here’s a summary of each field in the header, with Unix names to
the left of the slash and Microsoft equivalents to the right:

f_magic/Machine

Identifies the system for which this COFF file was created. In the original
Unix definition, this value identified the particular Unix port for which
the code was created. Today’s operating systems define this value some-
what differently, but the bottom line is that this value is a signature that
specifies whether the COFF file contains data or machine instructions
that are appropriate for the current operating system and CPU.

Table 4-1 provides the encodings for the f_magic/Machine field.

Table 4-1: f_magic/Machine Field Encoding

Value Description
0x14c Intel 386
0x8664 x86-64
0x162 MIPS R3000
0x168 MIPS R10000
0x169 MIPS little endian WCI v2
0x183 old Alpha AXP
0x184 Alpha AXP
0x1a2 Hitachi SH3
0x1a3 Hitachi SH3 DSP
0x1a6 Hitachi SH4
0x1a8 Hitachi SH5
0x1c0 ARM little endian
0x1c2 Thumb
0x1c4 ARMv7
0x1d3 Matsushita AM33
0x1f0 PowerPC little endian
0x1f1 PowerPC with floating-point support
0x200 Intel IA64
0x266 MIPS16
0x268 Motorola 68000 series
0x284 Alpha AXP 64-bit
0x366 MIPS with FPU
0x466 MIPS16 with FPU
0xebc EFI bytecode
0x8664 AMD AMD64
0x9041 Mitsubishi M32R little endian
0xaa64 ARM64 little endian
0xc0ee CLR pure MSIL

74 Chapter 4

f_nscns/NumberOfSections

Specifies how many segments (sections) are present in the COFF file. A
linker program can iterate through a set of section headers (described
a little later) using this value.

f_timdat/TimeDateStamp

Contains a Unix-style timestamp (number of seconds since January 1,
1970) value specifying the file’s creation date and time.

f_symptr/PointerToSymbolTable

Contains a file offset value (that is, the number of bytes from the begin-
ning of the file) that specifies where the symbol table begins in the file.
The symbol table is a data structure that specifies the names and other
information about all external, global, and other symbols used by the
code in the COFF file. Linkers use the symbol table to resolve external
references. This symbol table information may also appear in the final
executable file for use by a symbolic debugger.

f_nsyms/NumberOfSymbols

The number of entries in the symbol table.

f_opthdr/SizeOfOptionalHeader

Specifies the size of the optional header that immediately follows the
file header (that is, the first byte of the optional header immediately
follows the f_flags/Characteristics field in the file header structure). A
linker or other object code manipulation program would use the value
in this field to determine where the optional header ends and the sec-
tion headers begin in the file. The section headers immediately follow
the optional header, but the optional header’s size isn’t fixed. Different
implementations of a COFF file can have different optional header
structures. If the optional header is not present in a COFF file, the
f_opthdr/SizeOfOptionalHeader field will contain zero, and the first section
header will immediately follow the file header.

f_flags/Characteristics

A small bitmap that specifies certain Boolean flags, such as whether the
file is executable, whether it contains symbol information, and whether
it contains line number information (for use by debuggers).

4.6.2 The COFF Optional Header
The COFF optional header contains information pertinent to executable
files. This header may not be present if the file contains object code that is
not executable (because of unresolved references). Note, however, that this
optional header is always present in Linux COFF and Microsoft PE/COFF
files, even when the file is not executable. The Windows and Linux struc-
tures for this optional file header take the following forms in C.

Compiler Operation and Code Generation 75

// Microsoft PE/COFF Optional Header (from winnt.h)

typedef struct _IMAGE_OPTIONAL_HEADER {
 //
 // Standard fields.
 //

 WORD Magic;
 BYTE MajorLinkerVersion;
 BYTE MinorLinkerVersion;
 DWORD SizeOfCode;
 DWORD SizeOfInitializedData;
 DWORD SizeOfUninitializedData;
 DWORD AddressOfEntryPoint;
 DWORD BaseOfCode;
 DWORD BaseOfData;

 //
 // NT additional fields.
 //

 DWORD ImageBase;
 DWORD SectionAlignment;
 DWORD FileAlignment;
 WORD MajorOperatingSystemVersion;
 WORD MinorOperatingSystemVersion;
 WORD MajorImageVersion;
 WORD MinorImageVersion;
 WORD MajorSubsystemVersion;
 WORD MinorSubsystemVersion;
 DWORD Win32VersionValue;
 DWORD SizeOfImage;
 DWORD SizeOfHeaders;
 DWORD CheckSum;
 WORD Subsystem;
 WORD DllCharacteristics;
 DWORD SizeOfStackReserve;
 DWORD SizeOfStackCommit;
 DWORD SizeOfHeapReserve;
 DWORD SizeOfHeapCommit;
 DWORD LoaderFlags;
 DWORD NumberOfRvaAndSizes;
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

// Linux/COFF Optional Header format (from coff.h)

typedef struct
{
 char magic[2]; /* type of file */
 char vstamp[2]; /* version stamp */
 char tsize[4]; /* text size in bytes, padded to
 FW bdry */

76 Chapter 4

 char dsize[4]; /* initialized data " " */
 char bsize[4]; /* uninitialized data " " */
 char entry[4]; /* entry pt. */
 char text_start[4]; /* base of text used for this file */
 char data_start[4]; /* base of data used for this file */
} COFF_AOUTHDR;

The first thing to notice is that these structures are not identical. The
Microsoft version has considerably more information than the Linux ver-
sion. The f_opthdr/SizeOfOptionalHeader field exists in the file header to deter-
mine the actual size of the optional header.

magic/Magic

Provides yet another signature value for the COFF file. This signature
value identifies the file type (that is, COFF) rather than the system
under which it was created. Linkers use the value of this field to deter-
mine if they are truly operating on a COFF file (instead of some arbi-
trary file that would confuse the linker).

vstamp/MajorLinkerVersion/MinorLinkerVersion

Specifies the version number of the COFF format so that a linker writ-
ten for an older version of the file format won’t try to process files
intended for newer linkers.

tsize/SizeOfCode

Attempts to specify the size of the code section found in the file. If the
COFF file contains more than one code section, the value of this field
is undefined, although it usually specifies the size of the first code/text
section in the COFF file.

dsize/SizeOfInitializedData

Specifies the size of the data segment appearing in this COFF file. Once
again, this field is undefined if there are two or more data sections in the
file. Usually, this field specifies the size of the first data section if there
are multiple data sections.

bsize/SizeOfUninitializedData

Specifies the size of the block started by symbol (BSS) section—the uninitial-
ized data section—in the COFF file. As for the text and data sections, this
field is undefined if there are two or more BSS sections; in such cases
this field usually specifies the size of the first BSS section in the file.

N O T E See “Pages, Segments, and File Size” on page 81 for more on BSS sections.

entry/AddressOfEntryPoint

Contains the starting address of the executable program. Like other
pointers in the COFF file header, this field is actually an offset into the
file; it is not an actual memory address.

Compiler Operation and Code Generation 77

text_start/BaseOfCode

Specifies a file offset into the COFF file where the code section begins.
If there are two or more code sections, this field is undefined, but it
generally specifies the offset to the first code section in the COFF file.

data_start/BaseOfData

Specifies a file offset into the COFF file where the data section begins.
If there are two or more data sections, this field is undefined, but it gen-
erally specifies the offset to the first data section in the COFF file.

There is no need for a bss_start/StartOfUninitializedData field. The
COFF file format assumes that the operating system’s program loader will
automatically allocate storage for a BSS section when the program loads
into memory. There is no need to consume space in the COFF file for unini-
tialized data (however, “Executable File Formats” on page 80 describes
how some compilers actually merge BSS and DATA sections together for
performance reasons).

The optional file header structure is actually a throwback to the a.out
format, an older object file format used in Unix systems. This is why it doesn’t
handle multiple text/code and data sections, even though COFF allows them.

The remaining fields in the Windows variant of the optional header
hold values that Windows linkers allow programmers to specify. While their
purposes will likely be clear to anyone who has manually run Microsoft’s
linker from a command line, those are not important here. What is impor-
tant is that COFF does not require a specific data structure for the optional
header. Different implementations of COFF (such as Microsoft’s) may freely
extend the definition of the optional header.

4.6.3 COFF Section Headers
The section headers follow the optional header in a COFF file. Unlike the file
and optional headers, a COFF file may contain multiple section headers. The
f_nscns/NumberOfSections field in the file header specifies the exact number of
section headers (and, therefore, sections) found in the COFF file. Keep in
mind that the first section header does not begin at a fixed offset in the file.
Because the optional header’s size is variable (and, in fact, could even be 0 if
it isn’t present), you have to add the f_opthdr/SizeOfOptionalHeader field in the
file header to the size of the file header to get the starting offset of the first
section header. Section headers are a fixed size, so once you have the address
of the first section header you can easily compute the address of any other
by multiplying the desired section header number by the section header size
and adding the result to the base offset of the first section header.

Here are the C struct definitions for Windows and Linux section headers:

// Windows section header structure (from winnt.h)

typedef struct _IMAGE_SECTION_HEADER {
 BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 DWORD PhysicalAddress;

78 Chapter 4

 DWORD VirtualSize;
 } Misc;
 DWORD VirtualAddress;
 DWORD SizeOfRawData;
 DWORD PointerToRawData;
 DWORD PointerToRelocations;
 DWORD PointerToLinenumbers;
 WORD NumberOfRelocations;
 WORD NumberOfLinenumbers;
 DWORD Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

// Linux section header definition (from coff.h)

struct COFF_scnhdr
{
 char s_name[8]; /* section name */
 char s_paddr[4]; /* physical address, aliased s_nlib */
 char s_vaddr[4]; /* virtual address */
 char s_size[4]; /* section size */
 char s_scnptr[4]; /* file ptr to raw data */
 char s_relptr[4]; /* file ptr to relocation */
 char s_lnnoptr[4]; /* file ptr to line numbers */
 char s_nreloc[2]; /* number of relocation entries */
 char s_nlnno[2]; /* number of line number entries */
 char s_flags[4]; /* flags */
};

If you inspect these two structures closely, you’ll find that they are
roughly equivalent (the only structural difference is that Windows over-
loads the physical address field, which in Linux is always equivalent to the
VirtualAddress field, to hold a VirtualSize field).

Here’s a summary of each field:

s_name/Name

Specifies the name of the section. As is apparent in the Linux defini-
tion, this field is limited to eight characters and, accordingly, section
names will be a maximum of eight characters long. (Usually, if a source
file specifies a longer name, the compiler/assembler will truncate it
to 8 characters when creating the COFF file.) If the section name is
exactly eight characters long, those eight characters will consume all
8 bytes of this field and there will be no zero-terminating byte. If the
section name is shorter than eight characters, a zero-terminating byte
will follow the name. The value of this field is often something like
.text, CODE, .data, or DATA. Note, however, that the name does not define
the segment’s type. You could create a code/text section and name it
DATA; you could also create a data section and name it .text or CODE. The
s_flags/Characteristics field determines the actual type of this section.

Compiler Operation and Code Generation 79

s_paddr/PhysicalAddress/VirtualSize

Not used by most tools. Under Unix-like operating systems (such as
Linux), this field is usually set to the same value as the VirtualAddress
field. Different Windows tools set this field to different values (including
zero); the linker/loader seems to ignore whatever value appears here.

s_vaddr/VirtualAddress

Specifies the section’s loading address in memory (that is, its virtual
memory address). Note that this is a runtime memory address, not an
offset into the file. The program loader uses this value to determine
where to load the section into memory.

s_size/SizeOfRawData

Specifies the size, in bytes, of the section.

s_scnptr/PointerToRawData

Provides the file offset to the start of the section’s data in the COFF file.

s_relptr/PointerToRelocations

Provides a file offset to the relocation list for this particular section.

s_lnnoptr/PointerToLinenumbers

Contains a file offset to the line number records for the current section.

s_nreloc/NumberOfRelocations

Specifies the number of relocation entries found at that file offset.
Relocation entries are small structures that provide file offsets to
address data in the section’s data area that must be patched when the
file is loaded into memory. We won’t discuss these relocation entries in
this book, but if you’re interested in more details, see the references at
the end of this chapter.

s_nlnno/NumberOfLinenumbers

Specifies how many line number records can be found at that offset.
Line number information is used by debuggers and is beyond the scope
of this chapter. Again, see the references at the end of this chapter if
you’re interested in more information about the line number entries.

s_flags/Characteristics

A bitmap that specifies the characteristics of this section. In particular,
this field will tell you whether the section requires relocation, whether it
contains code, whether it is read-only, and so on.

4.6.4 COFF Sections
The section headers provide a directory that describes the actual data and
code found in the object file. The s_scnptr/PointerToRawData field contains
a file offset to where the raw binary data or code is sitting in the file, and
the s_size/SizeOfRawData field specifies the length of the section’s data. Due

80 Chapter 4

to relocation requirements, the data actually appearing in the section block
may not be an exact representation of the data that the operating system
loads into memory. This is because many instruction operand addresses
and pointer values appearing in the section may need to be patched to relo-
cate the file based on where the OS loads it into memory. The relocation
list (which is separate from the section’s data) contains offsets into the sec-
tion where the OS must patch the relocatable addresses. The OS performs
this patching when loading the section’s data from disk.

Although the bytes in a COFF section may not be an exact representa-
tion of the data in memory at runtime, the COFF format requires that all
of the bytes in the section map to the corresponding address in memory.
This allows the loader to copy the section’s data directly from the file into
sequential memory locations. The relocation operation never inserts or
deletes bytes in a section; it only changes the values of certain bytes in the
section. This requirement helps simplify the system loader and improves
application performance because the operating system doesn’t have to
move large blocks of memory around when loading the application into
memory. The drawback to this scheme is that the COFF format misses the
opportunity to compress redundant data appearing in the section’s data
area. The COFF designers felt it was more important to emphasize perfor-
mance over space in their design.

4.6.5 The Relocation Section
The relocation section in the COFF file contains the offsets to the pointers
in the COFF sections that must be relocated when the system loads those
sections’ code or data into memory.

4.6.6 Debugging and Symbolic Information
The last three sections shown in Figure 4-9 contain information that debug-
gers and linkers use. One section contains line number information that a
debugger uses to correlate lines of source code with the executable machine
code instructions. The symbol table and string table sections hold the pub-
lic and external symbols for the COFF file. Linkers use this information to
resolve external references between object modules; debuggers use this infor-
mation to display symbolic variable and function names during debugging.

N O T E This book doesn’t provide a complete description of the COFF file format, but you’ll defi-
nitely want to dig deeper into it and other object code formats (ELF, MACH-O, OMF,
and so on) if you’re interested in writing applications such as assemblers, compilers,
and linkers. To study this area further, see the references at the end of this chapter.

4.7 Executable File Formats
Most operating systems use a special file format for executable files. Often,
the executable file format is similar to the object file format, the principal
difference being that there are usually no unresolved external references in
the executable file.

Compiler Operation and Code Generation 81

In addition to machine code and binary data, executable files contain
other metadata, including debugging information, linkage information for
dynamically linked libraries, and details about how the operating system
should load different sections of the file into memory. Depending on the
CPU and OS, the executable files may also contain relocation informa-
tion so that the OS can patch absolute addresses when it loads the file into
memory. Object code files contain the same information, so it’s no surprise
that the executable file formats used by many operating systems are similar
to their object file formats.

The Executable and Linkable Format (ELF), employed by Linux, QNX,
and other Unix-like operating systems, is very typical of a combined object
file format and executable format. Indeed, the name of the format suggests
its dual nature. As another example, Microsoft’s PE file format is a straight-
forward variant of the COFF format. The similarity between the object and
executable file formats allows the OS designer to share code between the
loader (responsible for executing the program) and linker applications.
Given this similarity, there’s little reason to discuss the specific data struc-
tures found in an executable file, as doing so would largely repeat the infor-
mation from the previous sections.

However, there’s one very practical difference in the layout of these two
types of files worth mentioning. Object files are usually designed to be as
small as possible, while executable files are usually designed to load into
memory as fast as possible, even if this means that they’re larger than abso-
lutely necessary. It may seem paradoxical that a larger file could load into
memory faster than a smaller file; however, the OS might load only a small
part of the executable file into memory at one time if it supports virtual
memory. As we’ll discuss next, a well-designed executable file format can
take advantage of this fact by laying out the data and machine instructions
in the file to reduce virtual memory overhead.

4.7.1 Pages, Segments, and File Size
Virtual memory subsystems and memory protection schemes gener-
ally operate on pages in memory. A page on a typical processor is usually
between 1KB and 64KB in size. Whatever the size, a page is the smallest
unit of memory to which you can apply discrete protection features (such
as whether the data in that page is read-only, read/write, or executable).
In particular, you cannot mix read-only/executable code with read/write
data in the same page—the two must appear in separate pages in memory.
Using the 80x86 CPU family as an example, pages in memory are 4KB each.
Therefore, the minimum amount of code space and the minimum amount
of data space we can allocate to a process is 8KB if we have read/write data
and we want to place the machine instructions in read-only memory. In
fact, most programs contain several segments or sections (as you saw previ-
ously with object files) to which we can apply individual protection rights,
and each section will require a unique set of one or more pages in memory
that are not shared with any of the other sections. A typical program has
four or more sections in memory: code or text, static data, uninitialized

82 Chapter 4

data, and stack are the most common. In addition, many compilers also
generate heap segments, linkage segments, read-only segments, constant
data segments, and application-named data segments (see Figure 4-10).

High addresses

Stack

Heap

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Constants (not user accessible)

Reserved by OS (typically 128KB)Address = $0

Figure 4-10: Typical segments found in memory

Because operating systems map segments to pages, a segment will
always require some number of bytes that is a multiple of the page size.
For example, if a program has a segment that contains only a single byte
of data, that segment will still consume 4,096 bytes on an 80x86 processor.
Similarly, if an 80x86 application consists of six different segments, that
application will consume at least 24KB in memory, regardless of the num-
ber of machine instructions and data bytes the program uses and regard-
less of the executable file’s size.

Many executable file formats (such as ELF and PE/COFF) provide
an option in memory for a BSS section where a programmer can place
uninitialized static variables. Because the values are uninitialized, there is
no need to clutter the executable file with random data values for each of
these variables. Therefore, the BSS section in some executable file formats
is just a small stub that tells the OS loader the size of the BSS section. This
way, you can add new uninitialized static variables to your application with-
out affecting the executable file’s size. When you increase the amount of
BSS data, the compiler simply adjusts a value to tell the loader how many
bytes to reserve for the uninitialized variables. Were you to add those same
variables to an initialized data section, the size of the executable file would
grow with each byte of data that you added. Obviously, saving space on your
mass storage device is a good thing to do, so using BSS sections to reduce
your executable file sizes is a useful optimization.

The one thing that many people tend to forget, however, is that a BSS
section still requires main memory at runtime. Even though the execut-
able file size may be smaller, each byte of data you declare in your program
translates to 1 byte of data in memory. Some programmers have the mis-
taken impression that the executable’s file size is indicative of the amount
of memory that the program consumes. This, however, isn’t necessarily

Compiler Operation and Code Generation 83

true, as our BSS example shows. A given application’s executable file might
consist of only 600 bytes, but if that program uses four different sections,
with each section consuming a 4KB page in memory, the program will
require 16,384 bytes of memory when the OS loads it into memory. This is
because the underlying memory protection hardware requires the OS to
allocate whole pages of memory to a given process.

4.7.2 Internal Fragmentation
Another reason an executable file might be smaller than an application’s
execution memory footprint (the amount of memory the application consumes
at runtime) is internal fragmentation. Internal fragmentation occurs when you
must allocate sections of memory in fixed-sized chunks even though you
might need only a portion of each chunk (see Figure 4-11).

Section 1 Section 2 Section 3

Memory the program uses in a section

Memory unused due to internal fragmentation

Figure 4-11: Internal fragmentation

Remember that each section in memory consumes an integral number
of pages, even if that section’s data size is not a multiple of the page size.
All bytes from the last data/code byte in a section to the end of the page
holding that byte are wasted; this is internal fragmentation. Some execut-
able file formats allow you to pack each section without padding it to some
multiple of the page size. However, as you’ll soon see, there may be a per-
formance penalty for packing sections together in this fashion, so some
executable formats don’t do it.

Finally, don’t forget that an executable file’s size does not include any
data (including data objects on the heap and values placed on the CPU’s
stack) allocated dynamically at runtime. As you can see, an application can
actually consume much more memory than the executable file’s size.

Programmers commonly compete to see who can write the smallest
“Hello World” program using their favorite language. Assembly language
programmers are especially guilty of bragging about how much smaller
they can write this program in assembly than they can in C or some other
HLL. This is a fun mental challenge, but whether the program’s executable
file is 600 or 16,000 bytes long, the chances are pretty good that the pro-
gram will consume exactly the same amount of memory at runtime once
the operating system allocates four or five pages for the program’s different
sections. While writing the world’s shortest “Hello World” application might
win bragging rights, in real-world terms such an application saves almost
nothing at runtime due to internal fragmentation.

84 Chapter 4

4.7.3 Reasons to Optimize for Space
This is not to suggest that optimizing for space isn’t worthwhile. Programmers
who write great code consider all the machine resources their application
uses, and they avoid wasting those resources. However, attempting to take
this process to an extreme is a waste of effort. Once you’ve gotten a given
section below 4,096 bytes (on an 80x86 or other CPU with a 4KB page size),
additional optimizations save you nothing. Remember, the allocation granu-
larity—that is, the minimum allocation block size—is 4,096 bytes. If you
have a section with 4,097 bytes of data, it’s going to consume 8,192 bytes at
runtime. In that case, it would behoove you to reduce that section by 1 byte
(thereby saving 4,096 bytes at runtime). However, if you have a data section
that consumes 16,380 bytes, attempting to reduce its size by 4,092 bytes in
order to reduce the file size is going to be difficult unless the data organiza-
tion was very bad to begin with.

Note that most operating systems allocate disk space in clusters (or
blocks) that are often comparable to (or even larger than) the page size
for the memory management unit in the CPU. Therefore, if you shrink
an executable’s file size down to 700 bytes in an attempt to save disk space
(an admirable goal, even given the gargantuan size of modern disk drive
subsystems), the savings won’t be as great as you’d expect. That 700-byte
application, for example, is still going to consume a minimum of one block
on the disk’s surface. All you achieve by reducing your application’s code
or data size is to waste that much more space in the disk file—subject, of
course, to section/block allocation granularity.

For larger executable files, those larger than the disk block size, internal
fragmentation has less impact with respect to wasted space. If an executable
file packs the data and code sections without any wasted space between the
sections, then internal fragmentation occurs only at the end of the file, in the
very last disk block. Assuming that file sizes are random (even distribution),
then internal fragmentation will waste approximately one-half of a disk block
per file (that is, an average of 2KB per file when the disk block size is 4KB).
For a very small file, one that is less than 4KB in size, this might represent a
significant amount of the file’s space. For larger applications, however, the
wasted space becomes insignificant. So it would seem that as long as an exe-
cutable file packs all the sections of the program sequentially in the file, the
file will be as small as possible. But is this really desirable?

Assuming all things are equal, having smaller executable files is a good
thing. However, all things aren’t always equal, so sometimes creating the
smallest possible executable file isn’t really best. To understand why, recall
the earlier discussion of the operating system’s virtual memory subsystem.
When an OS loads an application into memory for execution, it doesn’t
actually have to read the entire file. Instead, the operating system’s pag-
ing system can load only those pages needed to start the application. This
usually consists of the first page of executable code, a page of memory to
hold stack-based data, and, possibly, some data pages. In theory, an appli-
cation could begin execution with as few as two or three pages of memory
and bring in the remaining pages of code and data on demand (as the

Compiler Operation and Code Generation 85

application requests the data or code found in those pages). This is known
as demand-paged memory management. In practice, most operating systems
actually preload pages for efficiency reasons (maintaining a working set
of pages in memory). However, operating systems generally don’t load the
entire executable file into memory; instead, they load various blocks as the
application requires them. As a result, the effort needed to load a page of
memory from a file can dramatically affect a program’s performance. Is
there some way, then, to organize the executable file to improve perfor-
mance when the OS uses demand-paged memory management? Yes—if you
make the file a little larger.

The trick to improving performance is to organize the executable
file’s blocks to match the memory page layout. This means that sections in
memory should be aligned on page-sized boundaries in the executable file.
It also means that disk blocks should be the size of, or a multiple of the size
of, a disk sector or block. This being the case, the virtual memory manage-
ment system can rapidly copy a single block on the disk into a single page
of memory, update any necessary relocation values, and continue program
execution. On the other hand, if a page of data is spread across two blocks
on the disk and is not aligned on a disk block boundary, the OS has to read
two blocks (rather than one) from disk into an internal buffer and then
copy the page of data from that buffer to the destination page where it
belongs. This extra work can be very time-consuming and hamper applica-
tion performance.

For this reason, some compilers will actually pad the executable file to
ensure that each section in the executable file begins on a block boundary
that the virtual memory management subsystem can map directly to a page
in memory. Compilers that employ this technique often produce much
larger executable file sizes than those that don’t. This is especially true if
the executable file contains a large amount of BSS (uninitialized) data that
a packed file format can represent very compactly.

Because some compilers produce packed files at the expense of execu-
tion time, while others produce expanded files that load and run faster,
it’s dangerous to compare the quality of compilers based on the size of the
executable files they produce. The best way to determine the quality of a
compiler’s output is by directly analyzing that output, not by using a weak
metric such as output file size.

N O T E Analyzing compiler output is the subject of the very next chapter, so if you’re interested
in the topic, keep reading.

4.8 Data and Code Alignment in an Object File
As I pointed out in WGC1, aligning data objects on an address boundary
that is “natural” for that object’s size can improve performance. It’s also
true that aligning the start of a procedure’s code or the starting instruction
of a loop on some nice boundary can improve performance. Compiler writ-
ers are well aware of this fact and will often emit padding bytes in the data or

86 Chapter 4

code stream to align data or code sequences on an appropriate boundary.
However, note that the linker is free to move sections of code around when
linking two object files to produce a single executable result.

Sections are generally aligned to a page boundary in memory. For a typi-
cal application, the text/code section will begin on a page boundary, the data
section will begin on a different page boundary, the BSS section (if it exists)
will begin on its own page boundary, and so on. However, this doesn’t imply
that each and every section associated with a section header in the object files
starts on its own page in memory. The linker program will combine sections
that have the same name into a single section in the executable file. So, for
example, if two different object files both contain a .text segment, the linker
will combine them into a single .text section in the final executable file. By
combining sections that have the same name, the linker avoids wasting a
large amount of memory to internal fragmentation.

How does the linker respect the alignment requirements of each of the
sections it combines? The answer, of course, depends on exactly what object
file format and OS you’re using, but it’s usually found in the object file
format itself. For example, in a Windows PE/COFF file the IMAGE_OPTIONAL
_HEADER32 structure contains a field named SectionAlignment. This field speci-
fies the address boundary that the linker and OS must respect when com-
bining sections and loading the section into memory. Under Windows, the
SectionAlignment field in the PE/COFF optional header will usually contain
32 or 4,096 bytes. The 4KB value, of course, will align a section to a 4KB
page boundary in memory. The alignment value of 32 was probably chosen
because this is a reasonable cache line value (see WGC1 for a discussion of
cache lines). Other values are certainly possible—an application program-
mer can usually specify section alignment values by using linker (or com-
piler) command-line parameters.

4.8.1 Choosing a Section Alignment Size
Within each section, a compiler, assembler, or other code-generation tool
can guarantee any alignment that is a submultiple of the section’s align-
ment. For example, if the section’s alignment value is 32, then alignments
of 1, 2, 4, 8, 16, and 32 are possible within that section. Larger alignment
values are not possible. If a section’s alignment value is 32 bytes, you cannot
guarantee alignment within that section on a 64-byte boundary, because
the OS or linker will respect only the section’s alignment value and it can
place that section on any boundary that is a multiple of 32 bytes. And about
half of those won’t be 64-byte boundaries.

Perhaps less obvious, but just as true, is the fact that you cannot align an
object within a section on a boundary that is not a submultiple of the section’s
alignment. For example, a section with a 32-byte alignment value will not
allow an alignment of 5 bytes. True, you could guarantee that the offset of
some object within the section would be a multiple of 5; however, if the start-
ing memory address of the section is not a multiple of 5, then the address of
the object you attempted to align might not fall on a multiple of 5 bytes. The
only solution is to pick a section alignment value that is some multiple of 5.

Compiler Operation and Code Generation 87

Because memory addresses are binary values, most language translators
and linkers limit alignment values to a power of 2 that is less than or equal
to some maximum value, usually the memory management unit’s page size.
Many languages restrict the alignment value to a small power of 2 (such as
32, 64, or 256).

4.8.2 Combining Sections
When a linker combines two sections, it has to respect the alignment values
associated with each section because the application may depend on that
alignment for correct operation. Therefore, a linker or other program that
combines sections in object files can’t simply concatenate the data for the
two sections when building the combined section.

When combining two sections, a linker might have to add padding bytes
between the sections if one or both of the lengths is not a multiple of the sec-
tions’ alignment. For example, if two sections have an alignment value of 32,
and one section is 37 bytes long and the other section is 50 bytes long, the
linker will have to add 27 bytes of padding between the first and second sec-
tions, or it will have to add 14 bytes of padding between the second section
and the first (the linker usually gets to choose in which order it places the
sections in the combined file).

The situation gets a bit more complicated if the alignment values are
not the same for the two sections. When a linker combines two sections,
it has to ensure that the alignment requests are met for the data in both
sections. If the alignment value of one section is a multiple of the other
section’s alignment value, then the linker can simply choose the larger of
the two alignment values. For example, if the alignment values are always
powers of 2 (as most linkers require), then the linker can simply choose the
larger of the two alignment values for the combined section.

If one section’s alignment value is not a multiple of the other’s, then the
only way to guarantee the alignment requirements of both sections when
combining them is to use an alignment value that is a product of the two val-
ues (or, better yet, the least common multiple of the two values). For example,
combining a section aligned on a 32-byte boundary with one aligned on a
5-byte boundary requires an alignment value of 160 bytes (5 ×	32). Because
of the complexities of combining two such sections, most linkers require sec-
tion sizes to be small powers of 2, which guarantees that the larger segment
alignment value is always a multiple of the smaller alignment value.

4.8.3 Controlling the Section Alignment
You typically use linker options to control the section alignment within
your programs. For example, with the Microsoft link.exe program, the
/ALIGN:value command-line parameter tells the linker to align all sections
in the output file to the specified boundary (which must be a power of 2).
GNU’s ld linker program lets you specify a section alignment by using the
BLOCK(value) option in a linker script file. The macOS linker (ld) provides a
-segalign value command-line option you can use to specify section align-
ment. The exact command and possible values are specific to the linker;

88 Chapter 4

however, almost every modern linker allows you to specify the section align-
ment properties. See your linker’s documentation for details.

One word of caution about setting the section alignment: more often
than not, a linker will require that all sections in a given file be aligned on
the same boundary (a power of 2). Therefore, if you have different align-
ment requirements for all your sections, then you’ll need to choose the larg-
est alignment value for all the sections in your object file.

4.8.4 Aligning Sections Within Library Modules
Section alignment can have a very big impact on the size of your execut-
able files if you use a lot of short library routines. Suppose, for example,
that you’ve specified an alignment size of 16 bytes for the sections associ-
ated with the object files appearing in a library. Each library function that
the linker processes will be placed on a 16-byte boundary. If the functions
are small (fewer than 16 bytes in length), the space between the functions
will be unused when the linker creates the final executable. This is another
form of internal fragmentation.

To understand why you would want to align the code (or data) in a sec-
tion on a given boundary, think about how cache lines work (see WGC1 for
a refresher). By aligning the start of a function on a cache line, you may be
able to slightly increase the execution speed of that function, as it may gen-
erate fewer cache misses during execution. For this reason, many program-
mers like to align all their functions at the start of a cache line. Although
the size of a cache line varies from CPU to CPU, a typical cache line is 16
to 64 bytes long, so many compilers, assemblers, and linkers will attempt to
align code and data to one of these boundaries. On the 80x86 processor,
there are some other benefits to 16-byte alignment, so many 80x86-based
tools default to a 16-byte section alignment for object files.

Consider, for example, the following short HLA (High-Level Assembly)
program, processed by Microsoft tools, that calls two relatively small library
routines:

program t;
#include("bits.hhf")

begin t;

 bits.cnt(5);
 bits.reverse32(10);

end t;

Here is the source code to the bits.cnt library module:

unit bitsUnit;

#includeonce("bits.hhf");

 // bitCount-

Compiler Operation and Code Generation 89

 //
 // Counts the number of "1" bits in a dword value.
 // This function returns the dword count value in EAX.

 procedure bits.cnt(BitsToCnt:dword); @nodisplay;

 const
 EveryOtherBit := $5555_5555;
 EveryAlternatePair := $3333_3333;
 EvenNibbles := $0f0f_0f0f;

 begin cnt;

 push(edx);
 mov(BitsToCnt, eax);
 mov(eax, edx);

 // Compute sum of each pair of bits
 // in EAX. The algorithm treats
 // each pair of bits in EAX as a
 // 2-bit number and calculates the
 // number of bits as follows (description
 // is for bits 0 and 1, but it generalizes
 // to each pair):
 //
 // EDX = BIT1 BIT0
 // EAX = 0 BIT1
 //
 // EDX-EAX = 00 if both bits were 0.
 // 01 if Bit0 = 1 and Bit1 = 0.
 // 01 if Bit0 = 0 and Bit1 = 1.
 // 10 if Bit0 = 1 and Bit1 = 1.
 //
 // Note that the result is left in EDX.

 shr(1, eax);
 and(EveryOtherBit, eax);
 sub(eax, edx);

 // Now sum up the groups of 2 bits to
 // produces sums of 4 bits. This works
 // as follows:
 //
 // EDX = bits 2,3, 6,7, 10,11, 14,15, ..., 30,31
 // in bit positions 0,1, 4,5, ..., 28,29 with
 // 0s in the other positions.
 //
 // EAX = bits 0,1, 4,5, 8,9, ... 28,29 with 0s
 // in the other positions.
 //
 // EDX + EAX produces the sums of these pairs of bits.
 // The sums consume bits 0,1,2, 4,5,6, 8,9,10, ...
 // 28,29,30
 // in EAX with the remaining bits all containing 0.

90 Chapter 4

 mov(edx, eax);
 shr(2, edx);
 and(EveryAlternatePair, eax);
 and(EveryAlternatePair, edx);
 add(edx, eax);

 // Now compute the sums of the even and odd nibbles in
 // the number. Since bits 3, 7, 11, etc. in EAX all
 // contain 0 from the above calculation, we don't need
 // to AND anything first, just shift and add the two
 // values.
 // This computes the sum of the bits in the 4 bytes
 // as four separate values in EAX (AL contains number of
 // bits in original AL, AH contains number of bits in
 // original AH, etc.)

 mov(eax, edx);
 shr(4, eax);
 add(edx, eax);
 and(EvenNibbles, eax);

 // Now for the tricky part.
 // We want to compute the sum of the 4 bytes
 // and return the result in EAX. The following
 // multiplication achieves this. It works
 // as follows:
 // (1) the $01 component leaves bits 24..31
 // in bits 24..31.
 //
 // (2) the $100 component adds bits 17..23
 // into bits 24..31.
 //
 // (3) the $1_0000 component adds bits 8..15
 // into bits 24..31.
 //
 // (4) the $1000_0000 component adds bits 0..7
 // into bits 24..31.
 //
 // Bits 0..23 are filled with garbage, but bits
 // 24..31 contain the actual sum of the bits
 // in EAX's original value. The SHR instruction
 // moves this value into bits 0..7 and zeros
 // out the HO bits of EAX.

 intmul($0101_0101, eax);
 shr(24, eax);

 pop(edx);

 end cnt;

end bitsUnit;

Compiler Operation and Code Generation 91

Here is the source code for the bits.reverse32() library function. Note
that this source file also includes the bits.reverse16() and bits.reverse8()
functions (to conserve space, the bodies of these functions do not appear
below). Although their operation is not pertinent to our discussion, note that
these functions swap the values in the HO (high-order) and LO (low-order)
bit positions. Because these three functions appear in a single source file, any
program that includes one of these functions will automatically include all
three (because of the way compilers, assemblers, and linkers work).

unit bitsUnit;

#include("bits.hhf");

 procedure bits.reverse32(BitsToReverse:dword); @nodisplay; @noframe;
 begin reverse32;

 push(ebx);
 mov([esp+8], eax);

 // Swap the bytes in the numbers:

 bswap(eax);

 // Swap the nibbles in the numbers

 mov($f0f0_f0f0, ebx);
 and(eax, ebx);
 and($0f0f_0f0f, eax);
 shr(4, ebx);
 shl(4, eax);
 or(ebx, eax);

 // Swap each pair of 2 bits in the numbers:

 mov(eax, ebx);
 shr(2, eax);
 shl(2, ebx);
 and($3333_3333, eax);
 and($cccc_cccc, ebx);
 or(ebx, eax);

 // Swap every other bit in the number:

 lea(ebx, [eax + eax]);
 shr(1, eax);
 and($5555_5555, eax);
 and($aaaa_aaaa, ebx);
 or(ebx, eax);
 pop(ebx);
 ret(4);

92 Chapter 4

 end reverse32;

 procedure bits.reverse16(BitsToReverse:word);
 @nodisplay; @noframe;
 begin reverse16;

 // Uninteresting code that is very similar to
 // that appearing in reverse32 has been snipped...

 end reverse16;

 procedure bits.reverse8(BitsToReverse:byte);
 @nodisplay; @noframe;
 begin reverse8;

 // Uninteresting code snipped...

 end reverse8;

end bitsUnit;

The Microsoft dumpbin.exe tool allows you to examine the various fields of
an .obj or .exe file. Running dumpbin with the /headers command-line option on
the bitcnt.obj and reverse.obj files (produced for the HLA standard library) tells
us that each of the sections is aligned to a 16-byte boundary. Therefore, when
the linker combines the bitcnt.obj and reverse.obj data with the sample program
given earlier, it will align the bits.cnt() function in the bitcnt.obj file on a
16-byte boundary, and the three functions in the reverse.obj file on a 16-byte
boundary. (Note that it will not align each function in the file on a 16-byte
boundary. That task is the responsibility of the tool that created the object
file, if such alignment is desired.) By using the dumpbin.exe program with
the /disasm command-line option on the executable file, you can see that
the linker has honored these alignment requests (note that an address that
is aligned on a 16-byte boundary will have a 0 in the LO hexadecimal digit):

 Address opcodes Assembly Instructions
 --------- ------------------ -----------------------------
 04001000: E9 EB 00 00 00 jmp 040010F0
 04001005: E9 57 01 00 00 jmp 04001161
 0400100A: E8 F1 00 00 00 call 04001100

; Here's where the main program starts.

 0400100F: 6A 00 push 0
 04001011: 8B EC mov ebp,esp
 04001013: 55 push ebp
 04001014: 6A 05 push 5
 04001016: E8 65 01 00 00 call 04001180
 0400101B: 6A 0A push 0Ah

Compiler Operation and Code Generation 93

 0400101D: E8 0E 00 00 00 call 04001030
 04001022: 6A 00 push 0
 04001024: FF 15 00 20 00 04 call dword ptr ds:[04002000h]

;The following INT3 instructions are used as padding in order
;to align the bits.reverse32 function (which immediately follows)
;to a 16-byte boundary:

 0400102A: CC int 3
 0400102B: CC int 3
 0400102C: CC int 3
 0400102D: CC int 3
 0400102E: CC int 3
 0400102F: CC int 3

; Here's where bits.reverse32 starts. Note that this address
; is rounded up to a 16-byte boundary.

 04001030: 53 push ebx
 04001031: 8B 44 24 08 mov eax,dword ptr [esp+8]
 04001035: 0F C8 bswap eax
 04001037: BB F0 F0 F0 F0 mov ebx,0F0F0F0F0h
 0400103C: 23 D8 and ebx,eax
 0400103E: 25 0F 0F 0F 0F and eax,0F0F0F0Fh
 04001043: C1 EB 04 shr ebx,4
 04001046: C1 E0 04 shl eax,4
 04001049: 0B C3 or eax,ebx
 0400104B: 8B D8 mov ebx,eax
 0400104D: C1 E8 02 shr eax,2
 04001050: C1 E3 02 shl ebx,2
 04001053: 25 33 33 33 33 and eax,33333333h
 04001058: 81 E3 CC CC CC CC and ebx,0CCCCCCCCh
 0400105E: 0B C3 or eax,ebx
 04001060: 8D 1C 00 lea ebx,[eax+eax]
 04001063: D1 E8 shr eax,1
 04001065: 25 55 55 55 55 and eax,55555555h
 0400106A: 81 E3 AA AA AA AA and ebx,0AAAAAAAAh
 04001070: 0B C3 or eax,ebx
 04001072: 5B pop ebx
 04001073: C2 04 00 ret 4

; Here's where bits.reverse16 begins. As this function appeared
; in the same file as bits.reverse32, and no alignment option
; was specified in the source file, HLA and the linker won't
; bother aligning this to any particular boundary. Instead, the
; code immediately follows the bits.reverse32 function
; in memory.

 04001076: 53 push ebx
 04001077: 50 push eax
 04001078: 8B 44 24 0C mov eax,dword ptr [esp+0Ch]

 .
 . ; uninteresting code for bits.reverse16 and

94 Chapter 4

 . ; bits.reverse8 was snipped

; end of bits.reverse8 code

 040010E6: 88 04 24 mov byte ptr [esp],al
 040010E9: 58 pop eax
 040010EA: C2 04 00 ret 4

; More padding bytes to align the following function (used by
; HLA exception handling) to a 16-byte boundary:

 040010ED: CC int 3
 040010EE: CC int 3
 040010EF: CC int 3

; Default exception return function (automatically generated
; by HLA):

 040010F0: B8 01 00 00 00 mov eax,1
 040010F5: C3 ret

; More padding bytes to align the internal HLA BuildExcepts
; function to a 16-byte boundary:

 040010F6: CC int 3
 040010F7: CC int 3
 040010F8: CC int 3
 040010F9: CC int 3
 040010FA: CC int 3
 040010FB: CC int 3
 040010FC: CC int 3
 040010FD: CC int 3
 040010FE: CC int 3
 040010FF: CC int 3

; HLA BuildExcepts code (automatically generated by the
; compiler):

 04001100: 58 pop eax
 04001101: 68 05 10 00 04 push 4001005h
 04001106: 55 push ebp

 .
 . ; Remainder of BuildExcepts code goes here
 . ; along with some other code and data
 .

; Padding bytes to ensure that bits.cnt is aligned
; on a 16-byte boundary:

 0400117D: CC int 3
 0400117E: CC int 3

Compiler Operation and Code Generation 95

 0400117F: CC int 3

; Here's the low-level machine code for the bits.cnt function:

 04001180: 55 push ebp
 04001181: 8B EC mov ebp,esp
 04001183: 83 E4 FC and esp,0FFFFFFFCh
 04001186: 52 push edx
 04001187: 8B 45 08 mov eax,dword ptr [ebp+8]
 0400118A: 8B D0 mov edx,eax
 0400118C: D1 E8 shr eax,1
 0400118E: 25 55 55 55 55 and eax,55555555h
 04001193: 2B D0 sub edx,eax
 04001195: 8B C2 mov eax,edx
 04001197: C1 EA 02 shr edx,2
 0400119A: 25 33 33 33 33 and eax,33333333h
 0400119F: 81 E2 33 33 33 33 and edx,33333333h
 040011A5: 03 C2 add eax,edx
 040011A7: 8B D0 mov edx,eax
 040011A9: C1 E8 04 shr eax,4
 040011AC: 03 C2 add eax,edx
 040011AE: 25 0F 0F 0F 0F and eax,0F0F0F0Fh
 040011B3: 69 C0 01 01 01 01 imul eax,eax,1010101h
 040011B9: C1 E8 18 shr eax,18h
 040011BC: 5A pop edx
 040011BD: 8B E5 mov esp,ebp
 040011BF: 5D pop ebp
 040011C0: C2 04 00 ret 4

The exact operation of this program really isn’t important (after all, it
doesn’t actually do anything useful). The takeaway is how the linker inserts
extra bytes ($cc, the int 3 instruction) before a group of one or more func-
tions appearing in a source file to ensure that they are aligned on the speci-
fied boundary.

In this particular example, the bits.cnt() function is actually 64 bytes
long, and the linker inserted only 3 bytes in order to align it to a 16-byte
boundary. This percentage of waste—the number of padding bytes com-
pared to the size of the function—is quite low. However, if you have a
large number of small functions, the wasted space can become significant
(as with the default exception handler in this example that has only two
instructions). When creating your own library modules, you’ll need to
weigh the inefficiencies of extra space for padding against the small perfor-
mance gains you’ll obtain by using aligned code.

Object code dump utilities (like dumpbin.exe) are quite useful for ana-
lyzing object code and executable files in order to determine attributes such
as section size and alignment. Linux (and most Unix-like systems) provides
the comparable objdump utility. I’ll discuss these tools in the next chapter, as
they are great for analyzing compiler output.

96 Chapter 4

4.9 How Linkers Affect Code
The limitations of object file formats such as COFF and ELF have a big
impact on the quality of code that compilers can generate. Because of how
object file formats are designed, linkers and compilers often have to inject
extra code into an executable file that wouldn’t be necessary otherwise. In
this section we’ll explore some of the problems that generic object code for-
mats like COFF and ELF inflict on the executable code.

One problem with generic object file formats like COFF and ELF is
that they were not designed to produce efficient executable files for specific
CPUs. Instead, they were created to support a wide variety of CPUs and to
make it easy to link together object modules. Unfortunately, their versatility
often prevents them from creating the best possible object files.

Perhaps the biggest problem with the COFF and ELF formats is that
relocation values in the object file must apply to 32- and 64-bit pointers in
the object code. This creates problems, for example, when an instruction
encodes a displacement or address value with less than 32 (64) bits. On
some processors, such as the 80x86, displacements smaller than 32 bits are
so small (for example, the 80x86’s 8-bit displacement) that you would never
use them to refer to code outside the current object module. However, on
some RISC processors, such as the PowerPC or ARM, displacements are
much larger (26 bits in the case of the PowerPC branch instruction). This
can lead to code kludges like the function stub generation that GCC pro-
duces for external function calls. Consider the following C program and
the PowerPC code that GCC emits for it:

#include <stdio.h>
int main(int argc)
{
 .
 .
 .
 printf
 (
 "%d %d %d %d %d ",
 .
 .
 .
);
 return(0);
}

; PowerPC assembly output from GCC:

 .
 .
 .
 ;The following sets up the
 ; call to printf and calls printf:

 addis r3,r31,ha16(LC0-L1$pb)
 la r3,lo16(LC0-L1$pb)(r3)

Compiler Operation and Code Generation 97

 lwz r4,64(r30)
 lwz r5,80(r30)
 lwz r6,1104(r30)
 lwz r7,1120(r30)
 lis r0,0x400
 ori r0,r0,1120
 lwzx r8,r30,r0
 bl L_printf$stub ; Call to printf "stub" routine.

 ;Return from main program:

 li r0,0
 mr r3,r0
 lwz r1,0(r1)
 lwz r0,8(r1)
 mtlr r0
 lmw r30,-8(r1)
 blr

; Stub, to call the external printf function.
; This code does an indirect jump to the printf
; function using the 32-bit L_printf$lazy_ptr
; pointer that the linker can modify.

 .data
 .picsymbol_stub
L_printf$stub:
 .indirect_symbol _printf
 mflr r0
 bcl 20,31,L0$_printf
L0$_printf:
 mflr r11
 addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)
 mtlr r0
 lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)
 mtctr r12
 addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)
 bctr
.data
.lazy_symbol_pointer
L_printf$lazy_ptr:
 .indirect_symbol _printf

; The following is where the compiler places a 32-bit
; pointer that the linker can fill in with the address
; of the actual printf function:

 .long dyld_stub_binding_helper

The compiler must generate the L_printf$stub stub because it doesn’t
know how far away the actual printf() routine will be when the linker adds
it to the final executable file. It’s unlikely that printf() would be sitting
outside the ±32MB range that the PowerPC’s 24-bit branch displacement
supports (extended to 26 bits), but it’s not guaranteed. If printf() is part of

98 Chapter 4

a shared library that is dynamically linked in at runtime, it very well could
be outside this range. Therefore, the compiler has to make the safe choice
and use a 32-bit displacement for the address of the printf() function.
Unfortunately, PowerPC instructions don’t support a 32-bit displacement,
because all PowerPC instructions are 32 bits long. A 32-bit displacement
would leave no room for the instruction’s opcode. Therefore, the compiler
has to store a 32-bit pointer to the printf() routine in a variable and jump
indirect through that variable. Accessing a 32-bit memory pointer on the
PowerPC takes quite a bit of code if you don’t already have the pointer’s
address in a register, hence all the extra code following the L_printf$stub label.

If the linker were able to adjust 26-bit displacements rather than just
32-bit values, there would be no need for the L_printf$stub routine or the
L_printf$lazy_ptr pointer variable. Instead, the bl L_printf$stub instruction
would be able to branch directly to the printf() routine (assuming it’s not more
than ±32MB away). Because single program files generally don’t contain
more than 32MB of machine instructions, there would rarely be the need to
go through the gymnastics this code does in order to call an external routine.

Unfortunately, there is nothing you can do about the object file format;
you’re stuck with whatever format the OS specifies (which is usually a vari-
ant of COFF or ELF on modern 32-bit and 64-bit machines). However, you
can work within those limitations.

If you expect your code to run on a CPU like the PowerPC or ARM (or
some other RISC processor) that cannot encode 32-bit displacements directly
within instructions, you can optimize by avoiding cross-module calls as much
as possible. While it’s not good programming practice to create monolithic
applications, where all the source code appears in one source file (or is pro-
cessed by a single compilation), there’s really no need to place all of your
own functions in separate source modules and compile each one separately
from the others—particularly if these routines make calls to one another. By
placing a set of common routines your code uses into a single compilation
unit (source file), you allow the compiler to optimize the calls among these
functions and avoid all the stub generation on processors like the PowerPC.
This is not a suggestion to simply move all of your external functions into a
single source file. The code is better only if the functions in a module call
one another or share other global objects. If the functions are completely
independent of one another and are called only by code external to the com-
pilation unit, then you’ve saved nothing because the compiler may still need
to generate stub routines in the external code.

4.10 For More Information
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. 2nd ed. Essex, UK: Pearson Education
Limited, 1986.

Gircys, Gintaras. Understanding and Using COFF. Sebastopol, CA: O’Reilly
Media, 1988.

Levine, John R. Linkers and Loaders. San Diego: Academic Press, 2000.

In order to write great code, you must be
able to recognize the difference between

programming language sequences that
do their job more or less adequately and those

that are great. In the context of our discussion, great
code sequences use fewer instructions, fewer machine
cycles, or less memory than mediocre code sequences.
If you’re working in assembly language, the CPU manufacturers’ data
sheets and a bit of experimentation are all it takes to determine which code
sequences are great and which are not. When working with HLLs, however,
you need some way of mapping the high-level language statements in a pro-
gram to the corresponding machine code, so that you can determine the
quality of those HLL statements. In this chapter, we’ll discuss how to:

•	 View and analyze a compiler’s machine language output so you can use
that information to write better HLL code

•	 Tell certain compilers to produce a human-readable assembly language
output file

5
T O O L S F O R A N A LY Z I N G

C O M P I L E R O U T P U T

100 Chapter 5

•	 Analyze binary object output files using tools such as dumpbin and objdump

•	 Use a disassembler to examine the machine code output a compiler
produces

•	 Use a debugger to analyze compiler output

•	 Compare two different assembly language listings for the same HLL
source file to determine which version is better

Analyzing compiler output is one of the principal skills you’ll need in
order to distinguish great machine code from merely sufficient machine
code. To analyze compiler output, you’ll need to learn a couple of things.
First, you’ll need to learn enough assembly language programming so that
you can effectively read compiler output.1 Second, you’ll need to learn how
to tell a compiler (or some other tool) to produce human-readable assembly
language output. Finally, you’ll have to learn how to correlate the assembly
instructions with the HLL code. Chapters 3 and 4 gave you the foundation
you need to read some basic assembly code. This chapter discusses how to
translate compiler output into a human-readable form. And the rest of this
book deals with analyzing that assembly code so you can generate better
machine code by wisely choosing your HLL statements.

Let’s begin with some background on compiler output and things to
keep in mind for optimization.

5.1 Background
As Chapter 4 discussed, most compilers available today emit object code
output that a linker program reads and processes in order to produce an
executable program. Because the object code file generally consists of
binary data that is not human-readable, many compilers also provide an
option to produce an assembly language version of the output code. By
activating this option, you can analyze the compiler’s output and, if neces-
sary, refine your HLL source code accordingly. Indeed, with a specific com-
piler and a thorough knowledge of its optimizations, you can write HLL
source code that compiles to machine code that’s almost as good as the best
handwritten assembly language code. Although you can’t expect such opti-
mizations to work with every compiler, this trick enables you to write good
code with one compiler that will still be able to run (though possibly less
efficiently) on other processors. This is an excellent solution for code that
needs to run as efficiently as possible on a certain class of machines but
still needs to run on other CPUs.

N O T E Keep in mind that examining compiler output may lead you to implement nonport-
able optimizations. That is, when you examine your compiler’s output you might
decide to modify your HLL source code to produce better output; however, those opti-
mizations might not carry over to a different compiler.

1. This is perhaps the most practical reason for the typical programmer to learn assembly.

Tools for Analyzing Compiler Output 101

The ability to emit assembly language output is compiler specific. Some
compilers do so by default. GCC, for example, always emits an assembly
language file (though it typically deletes that file after the compilation).
Most compilers, however, must be explicitly told to produce an assembly
language listing. Some compilers produce an assembly listing that can be
run through an assembler to produce object code. Some compilers may
only produce assembly annotation in a listing file, and that “assembly
code” is not syntax-compatible with any existing assembler. For your pur-
poses, it doesn’t matter if a real-world assembler is capable of processing
the compiler’s assembly output; you’re only going to read that output to
determine how to tweak the HLL code to produce better object code.

For those compilers that can produce assembly language output, the
readability of the assembly code varies considerably. Some compilers insert
the original HLL source code into the assembly output as comments, which
makes it easy to correlate the assembly instructions with the HLL code. Other
compilers (such as GCC) emit pure assembly language code; so, unless you’re
well versed in the particular CPU’s assembly language, analyzing the output
can be difficult.

Another problem that may affect the readability of the compiler output
is the optimization level you choose. If you disable all optimizations, it is
often easier to determine which assembly instructions correspond to the
HLL statements. Unfortunately, with the optimizations turned off, most
compilers generate low-quality code. If the purpose of viewing assembly
output from a compiler is to choose better HLL sequences, then you must
specify the same optimization level that you will use for the production
version of your application. You should never tweak your high-level code to
produce better assembly code at one optimization level and then change
the optimization level for your production code. If you do, you may wind
up doing extra work that the optimizer would normally do for you. Worse,
those manual optimizations could actually prevent the compiler from doing
a decent job when you increase its optimization level.

When you specify a higher level of optimization for a compiler, the
compiler will often move code around in the assembly output file, eliminate
code entirely, and do other code transformations that obfuscate the corre-
spondence between the high-level code and the assembly output. Still, with
a bit of practice, you can determine which machine instructions correspond
to a given statement in the HLL code.

5.2 Telling a Compiler to Produce Assembly Output
How you tell a compiler to emit an assembly language output file is specific
to the compiler. For that information, you’ll need to consult the documen-
tation for your particular compiler. This section will look at two commonly
used C/C++ compilers: GCC and Microsoft’s Visual C++.

102 Chapter 5

5.2.1 Assembly Output from GNU Compilers
To emit assembly output with the GCC compiler, you specify the ‑S option
on the command line when invoking the compiler. Here is a sample com-
mand line for GCC:

gcc ‑O2 ‑S t1.c # ‑O2 option is for optimization

When supplied to GCC, the ‑S option doesn’t actually tell the compiler
to produce an assembly output file. GCC always produces an assembly output
file. The ‑S simply tells GCC to stop all processing after it has produced an
assembly file. GCC will produce an assembly output file whose root name is
the same as the original C file (t1 in these examples) with a .s suffix (during
normal compilation, GCC deletes the .s file after assembling it).

5.2.2 Assembly Output from Visual C++
The Visual C++ compiler (VC++) uses the -FA command-line option to spec-
ify MASM-compatible assembly language output. The following is a typical
command line to VC++ to tell it to produce an assembly listing:

cl ‑O2 ‑FA t1.c

5.2.3 Example Assembly Language Output
As an example of producing assembly language output from a compiler,
consider the following C program:

#include <stdio.h>
int main(int argc, char **argv)
{
 int i;
 int j;

 i = argc;
 j = **argv;

 if(i == 2)
 {
 ++j;
 }
 else
 {
 ‑‑j;
 }

 printf("i=%d, j=%d\n", i, j);
 return 0;
}

Tools for Analyzing Compiler Output 103

The following subsections provide the compiler output for Visual C++
and GCC from this code sequence in order to highlight the differences
between their respective assembly language listings.

5.2.3.1 Visual C++ Assembly Language Output

Compiling this file with VC++ using the command line

cl ‑Fa ‑O1 t1.c

produces the following (MASM) assembly language output.

N O T E The exact meaning of each assembly language statement appearing in this output isn’t
important—yet! What’s important is seeing the difference between the syntax in this
listing and the listings for Visual C++ and Gas that appear in the following sections.

; Listing generated by Microsoft (R) Optimizing
; Compiler Version 19.00.24234.1
; This listing is manually annotated for readability.

include listing.inc

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

PUBLIC __local_stdio_printf_options
PUBLIC _vfprintf_l
PUBLIC printf
PUBLIC main
PUBLIC ??_C@_0M@MJLDLLNK@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@ ; `string'
EXTRN __acrt_iob_func:PROC
EXTRN __stdio_common_vfprintf:PROC
_DATA SEGMENT
COMM ?_OptionsStorage@?1??__local_stdio_printf_options@@9@9:QWORD
; `__local_stdio_printf_options'::`2'::_OptionsStorage
_DATA ENDS
; COMDAT pdata
pdata SEGMENT
 .
 .
 .
; COMDAT main
_TEXT SEGMENT
argc$ = 48
argv$ = 56
main PROC ; COMDAT

$LN6:
 sub rsp, 40 ; 00000028H

; if(i == 2)
;{
; ++j;

104 Chapter 5

;}
;else
;{
; ‑‑j
;}

 mov rax, QWORD PTR [rdx] ; rax (i) = *argc
 cmp ecx, 2
 movsx edx, BYTE PTR [rax] ; rdx(j) = **argv

 lea eax, DWORD PTR [rdx‑1] ; rax = ++j
 lea r8d, DWORD PTR [rdx+1] ; r8d = ‑‑j;

 mov edx, ecx ; edx = argc (argc was passed in rcx)
 cmovne r8d, eax ; eax = ‑‑j if i != 2

; printf("i=%d, j+5d\n", i, j); (i in edx, j in eax)

 lea rcx, OFFSET FLAT:??_C@_0M@MJLDLLNK@i?$DN?$CFd?0?5j?$DN?$CFd?6?$AA@
 call printf

; return 0;

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP
_TEXT ENDS
; Function compile flags: /Ogtpy
; File c:\program files (x86)\windows kits\10\include\10.0.17134.0\ucrt\stdio.h
; COMDAT printf
_TEXT SEGMENT
 .
 .
 .
 END

5.2.3.2 GCC Assembly Language Output (PowerPC)

Like Visual C++, GCC doesn’t insert the C source code into the assembly out-
put file. In GCC’s case, it’s somewhat understandable: producing assembly
output is something it always does (rather than something it does because
of a user request). By not inserting the C source code into the output file,
GCC can cut down compilation times by a small amount (because the com-
piler won’t have to write the C source code data and the assembler won’t
have to read this data). Here’s the output of GCC for a PowerPC processor
when using the command line gcc ‑O1 ‑S t1.c:

gcc ‑O1 ‑S t1.c

.data

.cstring

Tools for Analyzing Compiler Output 105

 .align 2
LC0:
 .ascii "i=%d, j=%d\12\0"
.text
 .align 2
 .globl _main
_main:
LFB1:
 mflr r0
 stw r31,‑4(r1)
LCFI0:
 stw r0,8(r1)
LCFI1:
 stwu r1,‑80(r1)
LCFI2:
 bcl 20,31,L1$pb
L1$pb:
 mflr r31
 mr r11,r3
 lwz r9,0(r4)
 lbz r0,0(r9)
 extsb r5,r0
 cmpwi cr0,r3,2
 bne+ cr0,L2
 addi r5,r5,1
 b L3
L2:
 addi r5,r5,‑1
L3:
 addis r3,r31,ha16(LC0‑L1$pb)
 la r3,lo16(LC0‑L1$pb)(r3)
 mr r4,r11
 bl L_printf$stub
 li r3,0
 lwz r0,88(r1)
 addi r1,r1,80
 mtlr r0
 lwz r31,‑4(r1)
 blr
LFE1:
.data
.picsymbol_stub
L_printf$stub:
 .indirect_symbol _printf
 mflr r0
 bcl 20,31,L0$_printf
L0$_printf:
 mflr r11
 addis r11,r11,ha16(L_printf$lazy_ptr‑L0$_printf)
 mtlr r0
 lwz r12,lo16(L_printf$lazy_ptr‑L0$_printf)(r11)
 mtctr r12
 addi r11,r11,lo16(L_printf$lazy_ptr‑L0$_printf)
 bctr
.data

106 Chapter 5

.lazy_symbol_pointer
L_printf$lazy_ptr:
 .indirect_symbol _printf
 .long dyld_stub_binding_helper
.data
.constructor
.data
.destructor
 .align 1

As you can see, the output of GCC is quite sparse. Of course, as this is
PowerPC assembly language, it’s not really practical to compare this assem-
bly output to the 80x86 output from the Visual C++ compiler.

5.2.3.3 GCC Assembly Language Output (80x86)

The following code provides the GCC compilation to x86-64 assembly code
for the t1.c source file:

 .section __TEXT,__text,regular,pure_instructions
 .macosx_version_min 10, 13
 .globl _main ## ‑‑ Begin function main
 .p2align 4, 0x90
_main: ## @main
 .cfi_startproc
BB#0:
 pushq %rbp
Lcfi0:
 .cfi_def_cfa_offset 16
Lcfi1:
 .cfi_offset %rbp, ‑16
 movq %rsp, %rbp
Lcfi2:
 .cfi_def_cfa_register %rbp
 movl %edi, %ecx
 movq (%rsi), %rax
 movsbl (%rax), %eax
 cmpl $2, %ecx
 movl $1, %esi
 movl $‑1, %edx
 cmovel %esi, %edx
 addl %eax, %edx
 leaq L_.str(%rip), %rdi
 xorl %eax, %eax
 movl %ecx, %esi
 callq _printf
 xorl %eax, %eax
 popq %rbp
 retq
 .cfi_endproc
 ## ‑‑ End function
 .section __TEXT,__cstring,cstring_literals
L_.str: ## @.str

Tools for Analyzing Compiler Output 107

 .asciz "i=%d, j=%d\n"

.subsections_via_symbols

This example should help demonstrate that the massive amount of
code that GCC emitted for the PowerPC is more a function of the machine’s
architecture than of the compiler. If you compare this to the code that
other compilers emit, you’ll discover that it is roughly equivalent.

5.2.3.4 GCC Assembly Language Output (ARMv7)

The following code provides the GCC compilation to ARMv6 assembly code
for the t1.c source file as compiled on a Raspberry Pi (running 32-bit Raspian):

..arch armv6
 .eabi_attribute 27, 3
 .eabi_attribute 28, 1
 .fpu vfp
 .eabi_attribute 20, 1
 .eabi_attribute 21, 1
 .eabi_attribute 23, 3
 .eabi_attribute 24, 1
 .eabi_attribute 25, 1
 .eabi_attribute 26, 2
 .eabi_attribute 30, 2
 .eabi_attribute 34, 1
 .eabi_attribute 18, 4
 .file "t1.c"
 .section .text.startup,"ax",%progbits
 .align 2
 .global main
 .type main, %function
main:
 @ args = 0, pretend = 0, frame = 0
 @ frame_needed = 0, uses_anonymous_args = 0
 stmfd sp!, {r3, lr}
 cmp r0, #2
 ldr r3, [r1]
 mov r1, r0
 ldr r0, .L5
 ldrb r2, [r3] @ zero_extendqisi2
 addeq r2, r2, #1
 subne r2, r2, #1
 bl printf
 mov r0, #0
 ldmfd sp!, {r3, pc}
.L6:
 .align 2
.L5:
 .word .LC0
 .size main, .‑main
 .section .rodata.str1.4,"aMS",%progbits,1
 .align 2

108 Chapter 5

.LC0:
 .ascii "i=%d, j=%d\012\000"
 .ident "GCC: (Raspbian 4.9.2‑10) 4.9.2"
 .section .note.GNU‑stack,"",%progbits

Note that the @ denotes a comment in this source code; Gas ignores
everything from the @ to the end of the line.

5.2.3.5 Swift Assembly Language Output (x86-64)

Given a Swift source file main.swift, you can request an assembly language
output file from the macOS Swift compiler using the following command:

swiftc ‑O ‑emit‑assembly main.swift ‑o result.asm

This will produce the result.asm output assembly language file. Consider
the following Swift source code:

import Foundation

var i:Int = 0;
var j:Int = 1;

 if(i == 2)
 {
 i = i + 1
 }
 else
 {
 i = i ‑ 1
 }

 print("i=\(i), j=\(j)")

Compiling this with the previous command line produces a rather long
assembly language output file; here is the main procedure from that code:

_main:
.cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset %rbp, ‑16
 movq %rsp, %rbp
 .cfi_def_cfa_register %rbp
 pushq %r15
 pushq %r14
 pushq %r13
 pushq %r12
 pushq %rbx
 pushq %rax
 .cfi_offset %rbx, ‑56
 .cfi_offset %r12, ‑48

Tools for Analyzing Compiler Output 109

 .cfi_offset %r13, ‑40
 .cfi_offset %r14, ‑32
 .cfi_offset %r15, ‑24
 movq $1, _$S6result1jSivp(%rip)
 movq $‑1, _$S6result1iSivp(%rip)
 movq _$Ss23_ContiguousArrayStorageCyypGML(%rip), %rdi
 testq %rdi, %rdi
 jne LBB0_3
 movq _$SypN@GOTPCREL(%rip), %rsi
 addq $8, %rsi
 xorl %edi, %edi
 callq _$Ss23_ContiguousArrayStorageCMa
 movq %rax, %rdi
 testq %rdx, %rdx
 jne LBB0_3
 movq %rdi, _$Ss23_ContiguousArrayStorageCyypGML(%rip)
LBB0_3:
 movabsq $8589934584, %r12
 movl 48(%rdi), %esi
 movzwl 52(%rdi), %edx
 addq $7, %rsi
 andq %r12, %rsi
 addq $32, %rsi
 orq $7, %rdx
 callq _swift_allocObject
 movq %rax, %r14
 movq _$Ss27_ContiguousArrayStorageBaseC16countAndCapacitys01_B4BodyVvpWvd@GOTPCREL(%rip), %rbx
 movq (%rbx), %r15
 movaps LCPI0_0(%rip), %xmm0
 movups %xmm0, (%r14,%r15)
 movq _$SSSN@GOTPCREL(%rip), %rax
 movq %rax, 56(%r14)
 movq _$Ss23_ContiguousArrayStorageCySSGML(%rip), %rdi
 testq %rdi, %rdi
 jne LBB0_6
 movq _$SSSN@GOTPCREL(%rip), %rsi
 xorl %edi, %edi
 callq _$Ss23_ContiguousArrayStorageCMa
 movq %rax, %rdi
 testq %rdx, %rdx
 jne LBB0_6
 movq %rdi, _$Ss23_ContiguousArrayStorageCySSGML(%rip)
 movq (%rbx), %r15
LBB0_6:
 movl 48(%rdi), %esi
 movzwl 52(%rdi), %edx
 addq $7, %rsi
 andq %r12, %rsi
 addq $80, %rsi
 orq $7, %rdx
 callq _swift_allocObject
 movq %rax, %rbx
 movaps LCPI0_1(%rip), %xmm0
 movups %xmm0, (%rbx,%r15)
 movabsq $‑2161727821137838080, %r15

110 Chapter 5

 movq %r15, %rdi
 callq _swift_bridgeObjectRetain
 movl $15721, %esi
 movq %r15, %rdi
 callq _$Ss27_toStringReadOnlyStreamableySSxs010TextOutputE0RzlFSS_Tg5Tf4x_n
 movq %rax, %r12
 movq %rdx, %r13
 movq %r15, %rdi
 callq _swift_bridgeObjectRelease
 movq %r12, 32(%rbx)
 movq %r13, 40(%rbx)
 movq _$S6result1iSivp(%rip), %rdi
 callq _$Ss26_toStringReadOnlyPrintableySSxs06CustomB11ConvertibleRzlFSi_Tg5
 movq %rax, 48(%rbx)
 movq %rdx, 56(%rbx)
 movabsq $‑2017612633061982208, %r15
 movq %r15, %rdi
 callq _swift_bridgeObjectRetain
 movl $1030365228, %esi
 movq %r15, %rdi
 callq _$Ss27_toStringReadOnlyStreamableySSxs010TextOutputE0RzlFSS_Tg5Tf4x_n
 movq %rax, %r12
 movq %rdx, %r13
 movq %r15, %rdi
 callq _swift_bridgeObjectRelease
 movq %r12, 64(%rbx)
 movq %r13, 72(%rbx)
 movq _$S6result1jSivp(%rip), %rdi
 callq _$Ss26_toStringReadOnlyPrintableySSxs06CustomB11ConvertibleRzlFSi_Tg5
 movq %rax, 80(%rbx)
 movq %rdx, 88(%rbx)
 movabsq $‑2305843009213693952, %r15
 movq %r15, %rdi
 callq _swift_bridgeObjectRetain
 xorl %esi, %esi
 movq %r15, %rdi
 callq _$Ss27_toStringReadOnlyStreamableySSxs010TextOutputE0RzlFSS_Tg5Tf4x_n
 movq %rax, %r12
 movq %rdx, %r13
 movq %r15, %rdi
 callq _swift_bridgeObjectRelease
 movq %r12, 96(%rbx)
 movq %r13, 104(%rbx)
 movq %rbx, %rdi
 callq _$SSS19stringInterpolationS2Sd_tcfCTf4nd_n
 movq %rax, 32(%r14)
 movq %rdx, 40(%r14)
 callq _$Ss5print_9separator10terminatoryypd_S2StFfA0_
 movq %rax, %r12
 movq %rdx, %r15
 callq _$Ss5print_9separator10terminatoryypd_S2StFfA1_
 movq %rax, %rbx
 movq %rdx, %rax
 movq %r14, %rdi

Tools for Analyzing Compiler Output 111

 movq %r12, %rsi
 movq %r15, %rdx
 movq %rbx, %rcx
 movq %rax, %r8
 callq _$Ss5print_9separator10terminatoryypd_S2StF
 movq %r14, %rdi
 callq _swift_release
 movq %r12, %rdi
 callq _swift_bridgeObjectRelease
 movq %rbx, %rdi
 callq _swift_bridgeObjectRelease
 xorl %eax, %eax
 addq $8, %rsp
 popq %rbx
 popq %r12
 popq %r13
 popq %r14
 popq %r15
 popq %rbp
 retq
 .cfi_endproc

As you can see, Swift doesn’t generate very optimal code compared to
C++. In fact, hundreds of additional lines of code have been omitted from
this listing to save space.

5.2.4 Assembly Output Analysis
Unless you’re well versed in assembly language programming, analyzing
assembly output can be tricky. If you’re not an assembly language program-
mer, about the best you can do is count instructions and assume that if a
compiler option (or reorganization of your HLL source code) produces fewer
instructions, the result is better. In reality, this assumption isn’t always cor-
rect. Some machine instructions (particularly on CISC processors such as the
80x86) require substantially more time to execute than others. A sequence
of three or more instructions on a processor such as the 80x86 could execute
faster than a single instruction that does the same operation. Fortunately, a
compiler is not likely to produce both of these sequences based on a reorga-
nization of your high-level source code. Therefore, you don’t usually have to
worry about such issues when examining the assembly output.

Note that some compilers will produce two different sequences if you
change the optimization level. This is because certain optimization settings
tell the compiler to favor shorter programs, while other optimization set-
tings tell the compiler to favor faster execution. The optimization setting
that favors smaller executable files will probably pick the single instruction
over the three instructions that do the same work (assuming those three
instructions compile into more code); the optimization setting that favors
speed will probably pick the faster instruction sequence.

This section uses various C/C++ compilers in its examples, but you
should remember that compilers for other languages also provide the

112 Chapter 5

ability to emit assembly code. You’ll have to check your compiler’s docu-
mentation to see if this is possible and what options you can use to produce
the assembly output. Some compilers (Visual C++, for example) provide an
integrated development environment (IDE) that you may use in place of a
command-line tool. Even though most compilers that work through an IDE
also work from the command line, you can usually specify assembly output
from within an IDE as well as from the command line. Once again, see your
compiler vendor’s documentation for details.

5.3 Using Object Code Utilities to Analyze Compiler Output
Although many compilers provide an option to emit assembly language
rather than object code, a large number of compilers do not; they can
only emit binary machine code to an object code file. Analyzing this kind
of compiler output will be a bit more work, and it’s going to require some
specialized tools. If your compiler emits object code files (such as PE/
COFF or ELF files) to be fed into a linker, you can probably find an “object
code dump” utility that will prove quite useful for analyzing the compiler’s
output. For example, Microsoft provides the dumpbin.exe program, and the
FSF/GNU dumpobj program has similar capabilities for ELF files under
Linux and other operating systems. In the following subsections, we’ll take
a look at using these two tools when analyzing compiler output.

One nice feature of working with object files is that they usually con-
tain symbolic information. That is, in addition to binary machine code, the
object file contains strings specifying identifier names that appear in the
source file (such information does not normally appear in an executable
file). Object code utilities can usually display these symbolic names within
the machine instructions that reference the memory locations associated
with these symbols. Though these object code utilities can’t automati-
cally correlate the HLL source code with the machine code, having the
symbolic information available can help you when you’re studying their
output, because it’s much easier to read names like JumpTable than memory
addresses like $401_1000.

5.3.1 The Microsoft dumpbin.exe Utility
Microsoft’s dumpbin command-line tool allows you to examine the contents
of a Microsoft PE/COFF file.2 You run the program as follows:

dumpbin options filename

The filename parameter is the name of the .obj file that you wish to
examine, and the options parameter is a set of optional command-line
arguments that specify the type of information you want to display. These
options each begin with a forward slash (/). We’ll take a look at each of the

2. Actually, dumpbin.exe is just a wrapper program for link.exe ; that is, it processes its own
command-line parameters, builds a link.exe command line, and runs the linker.

Tools for Analyzing Compiler Output 113

possible options in a moment. First, here is a listing of the possible objects
(obtained via the /? command-line option):

Microsoft (R) COFF/PE Dumper Version 14.00.24234.1
Copyright (C) Microsoft Corporation. All rights reserved.

usage: dumpbin options files

 options:

 /ALL
 /ARCHIVEMEMBERS
 /CLRHEADER
 /DEPENDENTS
 /DIRECTIVES
 /DISASM[:{BYTES|NOBYTES}]
 /ERRORREPORT:{NONE|PROMPT|QUEUE|SEND}
 /EXPORTS
 /FPO
 /HEADERS
 /IMPORTS[:filename]
 /LINENUMBERS
 /LINKERMEMBER[:{1|2}]
 /LOADCONFIG
 /NOLOGO
 /OUT:filename
 /PDATA
 /PDBPATH[:VERBOSE]
 /RANGE:vaMin[,vaMax]
 /RAWDATA[:{NONE|1|2|4|8}[,#]]
 /RELOCATIONS
 /SECTION:name
 /SUMMARY
 /SYMBOLS
 /TLS
 /UNWINDINFO

Though the primary use of dumpbin is to look at the object code a com-
piler produces, it also displays a considerable amount of interesting infor-
mation about a PE/COFF file. For more information on the meaning of
many of the dumpbin command-line options, review “Object File Formats” on
page 71 or “Executable File Formats” on page 80.

The following subsections describe several of the possible dumpbin
command-line options and provide example output for a simple “Hello
World” program written in C:

#include <stdio.h>

int main(int argc, char **argv)
{
 printf("Hello World\n");
}

114 Chapter 5

5.3.1.1 /all

The /all command-line option instructs dumpbin to display all the informa-
tion it can except for a disassembly of the code found in the object file. The
problem with this approach is that an .exe file contains all the routines from
the language’s standard library (such as the C Standard Library) that the
linker has merged into the application. When analyzing compiler output
in order to improve your application’s code, wading through all this extra
information about code outside your program can be tedious. Fortunately,
there’s an easy way to pare down the unnecessary information—run dumpbin
on your object (.obj) files rather than your executable (.exe) files. Here is the
(shortened) output that dumpbin produces for the “Hello World” example:

G:\>dumpbin /all hw.obj
Microsoft (R) COFF/PE Dumper Version 14.00.24234.1
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file hw.obj

File Type: COFF OBJECT

FILE HEADER VALUES
 8664 machine (x64)
 D number of sections
 5B2C175F time date stamp Thu Jun 21 14:23:43 2018
 466 file pointer to symbol table
 2D number of symbols
 0 size of optional header
 0 characteristics

SECTION HEADER #1
.drectve name
 0 physical address
 0 virtual address
 2F size of raw data
 21C file pointer to raw data (0000021C to 0000024A)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
 100A00 flags
 Info
 Remove
 1 byte align

Hundreds of lines deleted...

 Summary

 D .data
 70 .debug$S
 2F .drectve

Tools for Analyzing Compiler Output 115

 24 .pdata
 C2 .text$mn
 18 .xdata

This example deletes the bulk of the output from this command (to
spare you having to read a dozen or so extra pages). Try executing the /all
command yourself to see the quantity of output you get. In general, though,
use this option with care.

5.3.1.2 /disasm

The /disasm command-line option is the one of greatest interest to us. It
produces a disassembled listing of the object file. As with the /all option,
you shouldn’t try to disassemble an .exe file using dumpbin. The disassembled
listing you’ll get will be quite long, and the vast majority of the code will
probably be the listings of all the library routines your application calls. For
example, the simple “Hello World” application generates over 5,000 lines of
disassembled code. All but a small handful of those statements correspond
to library routines. Wading through that amount of code will prove over-
whelming to most people.

However, if you disassemble the hw.obj file rather than the executable
file, here’s the output you typically get:

Microsoft (R) COFF/PE Dumper Version 14.00.24234.1
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file hw.obj

File Type: COFF OBJECT

main:
 0000000000000000: 48 89 54 24 10 mov qword ptr [rsp+10h],rdx
 0000000000000005: 89 4C 24 08 mov dword ptr [rsp+8],ecx
 0000000000000009: 48 83 EC 28 sub rsp,28h
 000000000000000D: 48 8D 0D 00 00 00 lea rcx,[$SG4247]
 00
 0000000000000014: E8 00 00 00 00 call printf
 0000000000000019: 33 C0 xor eax,eax
 000000000000001B: 48 83 C4 28 add rsp,28h
 000000000000001F: C3 ret

// Uninterested code emitted by dumpbin.exe left out...

 Summary

 D .data
 70 .debug$S
 2F .drectve
 24 .pdata
 C2 .text$mn
 28 .xdata

116 Chapter 5

If you look closely at this disassembled code, you’ll find the major
problem with disassembling object files rather than executable files—most
addresses in the code are relocatable addresses, which appear as $00000000
in the object code listing. As a result, you’ll probably have a hard time figur-
ing out what the various assembly statements are doing. For example, in the
hw.obj’s disassembled listing you see the following two statements:

000000000000000D: 48 8D 0D 00 00 00 lea rcx,[$SG4247]
 00
0000000000000014: E8 00 00 00 00 call printf

The lea instruction opcode is the 3-byte sequence 48 8D 0D (which
includes an REX opcode prefix byte). The address of the "Hello World"
string is not 00 00 00 00 (the 4 bytes following the opcode); instead, it is a
relocatable address that the linker/system fills in later. If you run dumpbin on
hw.obj with the /all command-line option, you’ll notice that this file has two
relocation entries:

RELOCATIONS #4
 Symbol Symbol
 Offset Type Applied To Index Name
 ‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑
 00000010 REL32 00000000 8 $SG4247
 00000015 REL32 00000000 15 printf

The Offset column tells you the byte offset into the file where the
relocations are to be applied. In the preceding disassembly, note that the
lea instruction starts at offset $d, so the actual displacement is at offset $10.
Similarly, the call instruction begins at offset $14, so the address of the
actual routine that needs to be patched is 1 byte later, at offset $15. From
the relocation information that dumpbin outputs, you can discern the sym-
bols associated with these relocations. ($SG4247 is an internal symbol that
the C compiler generates for the "Hello World" string. And printf is, obvi-
ously, the name associated with the C printf() function.)

Cross-referencing every call and memory reference against the relocation
list may seem like a pain, but at least you get symbolic names when you do this.

Consider the first few lines of the disassembled code when you apply
the /disasm option to the hw.exe file:

0000000140001009: 48 83 EC 28 sub rsp,28h
000000014000100D: 48 8D 0D EC DF 01 lea rcx,[000000014001F000h]
 00
0000000140001014: E8 67 00 00 00 call 0000000140001080
0000000140001019: 33 C0 xor eax,eax
000000014000101B: 48 83 C4 28 add rsp,28h
000000014000101F: C3 ret

 .
 .
 .

Tools for Analyzing Compiler Output 117

Notice that the linker has filled in the addresses (relative to the load
address for the file) of the offset $SG4247 and print labels. This may seem
somewhat convenient; however, note that these labels (especially the printf
label) are no longer present in the file. When you are reading the disassem-
bled output, the absence of these labels can make it very difficult to figure
out which machine instructions correspond to HLL statements. This is yet
another reason why you should use object files rather than executable files
when running dumpbin.

If you think it’s going to be a major pain to read the disassembled
output of the dumpbin utility, don’t worry: for optimization purposes, you’re
often more interested in the code differences between two versions of
an HLL program than in figuring out what each machine instruction
does. Therefore, you can easily determine which machine instructions
are affected by a change in your code by running dumpbin on two versions
of your object files (one before the change to the HLL code and one cre-
ated afterward). For example, consider the following modification to the
“Hello World” program:

#include <stdio.h>

int main(int argc, char **argv)
{
 char *hwstr = "Hello World\n";

 printf(hwstr);
}

Here’s the disassembly output that dumpbin produces:

Microsoft (R) COFF Binary File Dumper Version 6.00.8168
 0000000140001000: 48 89 54 24 10 mov qword ptr [rsp+10h],rdx
 0000000140001005: 89 4C 24 08 mov dword ptr [rsp+8],ecx
 0000000140001009: 48 83 EC 28 sub rsp,28h
 000000014000100D: 48 8D 0D EC DF 01 lea rcx,[000000014001F000h]
 00
 0000000140001014: E8 67 00 00 00 call 0000000140001080
 0000000140001019: 33 C0 xor eax,eax
 000000014000101B: 48 83 C4 28 add rsp,28h
 000000014000101F: C3 ret

By comparing this output with the previous assembly output (either
manually or by running one of the programs based on the Unix diff util-
ity), you can see the effect of the change to your HLL source code on the
emitted machine code.

N O T E The section “Comparing Output from Two Compilations” on page 137 discusses the
merits of both comparison methods (manual and diff-based).

118 Chapter 5

5.3.1.3 /headers

The /headers option instructs dumpbin to display the COFF header files
and section header files. The /all option also prints this information, but
/header displays only the header information without all the other output.
Here’s the sample output for the “Hello World” executable file:

G:\WGC>dumpbin /headers hw.exe
Microsoft (R) COFF/PE Dumper Version 14.00.24234.1
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file hw.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
 8664 machine (x64)
 6 number of sections
 5B2C1A9F time date stamp Thu Jun 21 14:37:35 2018
 0 file pointer to symbol table
 0 number of symbols
 F0 size of optional header
 22 characteristics
 Executable
 Application can handle large (>2GB) addresses

OPTIONAL HEADER VALUES
 20B magic # (PE32+)
 14.00 linker version
 13400 size of code
 D600 size of initialized data
 0 size of uninitialized data
 1348 entry point (0000000140001348)
 1000 base of code
 140000000 image base (0000000140000000 to 0000000140024FFF)
 1000 section alignment
 200 file alignment
 6.00 operating system version
 0.00 image version
 6.00 subsystem version
 0 Win32 version
 25000 size of image
 400 size of headers
 0 checksum
 3 subsystem (Windows CUI)
 8160 DLL characteristics
 High Entropy Virtual Addresses
 Dynamic base
 NX compatible
 Terminal Server Aware
 100000 size of stack reserve

Tools for Analyzing Compiler Output 119

 1000 size of stack commit
 100000 size of heap reserve
 1000 size of heap commit
 0 loader flags
 10 number of directories
 0 [0] RVA [size] of Export Directory
 1E324 [28] RVA [size] of Import Directory
 0 [0] RVA [size] of Resource Directory
 21000 [126C] RVA [size] of Exception Directory
 0 [0] RVA [size] of Certificates Directory
 24000 [620] RVA [size] of Base Relocation Directory
 1CDA0 [1C] RVA [size] of Debug Directory
 0 [0] RVA [size] of Architecture Directory
 0 [0] RVA [size] of Global Pointer Directory
 0 [0] RVA [size] of Thread Storage Directory
 1CDC0 [94] RVA [size] of Load Configuration Directory
 0 [0] RVA [size] of Bound Import Directory
 15000 [230] RVA [size] of Import Address Table Directory
 0 [0] RVA [size] of Delay Import Directory
 0 [0] RVA [size] of COM Descriptor Directory
 0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1
 .text name
 1329A virtual size
 1000 virtual address (0000000140001000 to 0000000140014299)
 13400 size of raw data
 400 file pointer to raw data (00000400 to 000137FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
60000020 flags
 Code
 Execute Read

SECTION HEADER #2
 .rdata name
 9A9A virtual size
 15000 virtual address (0000000140015000 to 000000014001EA99)
 9C00 size of raw data
 13800 file pointer to raw data (00013800 to 0001D3FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

 Debug Directories

120 Chapter 5

 Time Type Size RVA Pointer
 ‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑
 5B2C1A9F coffgrp 2CC 0001CFC4 1B7C4

SECTION HEADER #3
 .data name
 1BA8 virtual size
 1F000 virtual address (000000014001F000 to 0000000140020BA7)
 A00 size of raw data
 1D400 file pointer to raw data (0001D400 to 0001DDFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
C0000040 flags
 Initialized Data
 Read Write

SECTION HEADER #4
 .pdata name
 126C virtual size
 21000 virtual address (0000000140021000 to 000000014002226B)
 1400 size of raw data
 1DE00 file pointer to raw data (0001DE00 to 0001F1FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

SECTION HEADER #5
 .gfids name
 D4 virtual size
 23000 virtual address (0000000140023000 to 00000001400230D3)
 200 size of raw data
 1F200 file pointer to raw data (0001F200 to 0001F3FF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations
 0 number of line numbers
40000040 flags
 Initialized Data
 Read Only

SECTION HEADER #6
 .reloc name
 620 virtual size
 24000 virtual address (0000000140024000 to 000000014002461F)
 800 size of raw data
 1F400 file pointer to raw data (0001F400 to 0001FBFF)
 0 file pointer to relocation table
 0 file pointer to line numbers
 0 number of relocations

Tools for Analyzing Compiler Output 121

 0 number of line numbers
42000040 flags
 Initialized Data
 Discardable
 Read Only

 Summary

 2000 .data
 1000 .gfids
 2000 .pdata
 A000 .rdata
 1000 .reloc
 14000 .text

Review the discussion of object file formats in Chapter 4 (see “Object
File Formats” on page 71) to make sense of the information that dumpbin
outputs when you specify the /headers option.

5.3.1.4 /imports

The /imports option lists all of the dynamic-link symbols that the operating
system must supply when the program loads into memory. This information
isn’t particularly useful for analyzing code emitted for HLL statements, so
this chapter won’t mention this option further.

5.3.1.5 /relocations

The /relocations option displays all the relocation objects in the file. This
command is quite useful because it provides a list of all the symbols for the
program and the offsets of their use in the disassembly listing. Of course,
the /all option also presents this information, but /relocations provides just
this information without anything else.

5.3.1.6 Other dumpbin.exe Command-Line Options

The dumpbin utility supports many more command-line options beyond
those this chapter describes. As noted earlier, you can get a list of all pos-
sible options by specifying /? on the command line when running dumpbin.
You can also read more online at https://docs.microsoft.com/en-us/cpp/build/
reference/dumpbin-reference?view=vs-2019/.

5.3.2 The FSF/GNU objdump Utility
If you’re running the GNU toolset on your operating system (for example,
under Linux, Mac, or BSD), then you can use the FSF/GNU objdump utility
to examine the object files produced by GCC and other GNU-compliant
tools. Here are the command-line options it supports:

Usage: objdump <option(s)> <file(s)>
Usage: objdump <option(s)> <file(s)>
Display information from object <file(s)>.

https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-reference?view=vs-2019/
https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-reference?view=vs-2019/

122 Chapter 5

 At least one of the following switches must be given:
 ‑a, ‑‑archive‑headers Display archive header information
 ‑f, ‑‑file‑headers Display the contents of the overall file header
 ‑p, ‑‑private‑headers Display object format specific file header contents
 ‑P, ‑‑private=OPT,OPT... Display object format specific contents
 ‑h, ‑‑[section‑]headers Display the contents of the section headers
 ‑x, ‑‑all‑headers Display the contents of all headers
 ‑d, ‑‑disassemble Display assembler contents of executable sections
 ‑D, ‑‑disassemble‑all Display assembler contents of all sections
 ‑S, ‑‑source Intermix source code with disassembly
 ‑s, ‑‑full‑contents Display the full contents of all sections requested
 ‑g, ‑‑debugging Display debug information in object file
 ‑e, ‑‑debugging‑tags Display debug information using ctags style
 ‑G, ‑‑stabs Display (in raw form) any STABS info in the file
 ‑W[lLiaprmfFsoRt] or
 ‑‑dwarf[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,
 =frames‑interp,=str,=loc,=Ranges,=pubtypes,
 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,
 =addr,=cu_index]
 Display DWARF info in the file
 ‑t, ‑‑syms Display the contents of the symbol table(s)
 ‑T, ‑‑dynamic‑syms Display the contents of the dynamic symbol table
 ‑r, ‑‑reloc Display the relocation entries in the file
 ‑R, ‑‑dynamic‑reloc Display the dynamic relocation entries in the file
 @<file> Read options from <file>
 ‑v, ‑‑version Display this program's version number
 ‑i, ‑‑info List object formats and architectures supported
 ‑H, ‑‑help Display this information

 The following switches are optional:
 ‑b, ‑‑target=BFDNAME Specify the target object format as BFDNAME
 ‑m, ‑‑architecture=MACHINE Specify the target architecture as MACHINE
 ‑j, ‑‑section=NAME Only display information for section NAME
 ‑M, ‑‑disassembler‑options=OPT Pass text OPT on to the disassembler
 ‑EB ‑‑endian=big Assume big endian format when disassembling
 ‑EL ‑‑endian=little Assume little endian format when disassembling
 ‑‑file‑start‑context Include context from start of file (with ‑S)
 ‑I, ‑‑include=DIR Add DIR to search list for source files
 ‑l, ‑‑line‑numbers Include line numbers and filenames in output
 ‑F, ‑‑file‑offsets Include file offsets when displaying information
 ‑C, ‑‑demangle[=STYLE] Decode mangled/processed symbol names
 The STYLE, if specified, can be `auto', `gnu',
 `lucid', `arm', `hp', `edg', `gnu‑v3', `java'
 or `gnat'
 ‑w, ‑‑wide Format output for more than 80 columns
 ‑z, ‑‑disassemble‑zeroes Do not skip blocks of zeroes when disassembling
 ‑‑start‑address=ADDR Only process data whose address is >= ADDR
 ‑‑stop‑address=ADDR Only process data whose address is <= ADDR
 ‑‑prefix‑addresses Print complete address alongside disassembly
 ‑‑[no‑]show‑raw‑insn Display hex alongside symbolic disassembly
 ‑‑insn‑width=WIDTH Display WIDTH bytes on a single line for ‑d
 ‑‑adjust‑vma=OFFSET Add OFFSET to all displayed section addresses
 ‑‑special‑syms Include special symbols in symbol dumps

Tools for Analyzing Compiler Output 123

 ‑‑prefix=PREFIX Add PREFIX to absolute paths for ‑S
 ‑‑prefix‑strip=LEVEL Strip initial directory names for ‑S
 ‑‑dwarf‑depth=N Do not display DIEs at depth N or greater
 ‑‑dwarf‑start=N Display DIEs starting with N, at the same depth
 or deeper
 ‑‑dwarf‑check Make additional dwarf internal consistency checks.

objdump: supported targets: elf64‑x86‑64 elf32‑i386 elf32‑iamcu elf32‑x86‑64 a.out‑i386‑linux
pei‑i386 pei‑x86‑64 elf64‑l1om elf64‑k1om elf64‑little elf64‑big elf32‑little elf32‑big pe‑x86‑
64 pe‑bigobj‑x86‑64 pe‑i386 plugin srec symbolsrec verilog tekhex binary ihex
objdump: supported architectures: i386 i386:x86‑64 i386:x64‑32 i8086 i386:intel i386:x86‑
64:intel i386:x64‑32:intel i386:nacl i386:x86‑64:nacl i386:x64‑32:nacl iamcu iamcu:intel l1om
l1om:intel k1om k1om:intel plugin
The following i386/x86‑64 specific disassembler options are supported for use
with the ‑M switch (multiple options should be separated by commas):
 x86‑64 Disassemble in 64bit mode
 i386 Disassemble in 32bit mode
 i8086 Disassemble in 16bit mode
 att Display instruction in AT&T syntax
 intel Display instruction in Intel syntax
 att‑mnemonic Display instruction in AT&T mnemonic
 intel‑mnemonic Display instruction in Intel mnemonic
 addr64 Assume 64bit address size
 addr32 Assume 32bit address size
 addr16 Assume 16bit address size
 data32 Assume 32bit data size
 data16 Assume 16bit data size
 suffix Always display instruction suffix in AT&T syntax
 amd64 Display instruction in AMD64 ISA
 intel64 Display instruction in Intel64 ISA
Report bugs to <http://www.sourceware.org/bugzilla/>.

Given the following m.hla source code fragment:

begin t;

 // test mem.alloc and mem.free:

 for(mov(0, ebx); ebx < 16; inc(ebx)) do

 // Allocate lots of storage:

 for(mov(0, ecx); ecx < 65536; inc(ecx)) do

 rand.range(1, 256);
 malloc(eax);
 mov(eax, ptrs[ecx*4]);

 endfor;
 .
 .
 .

124 Chapter 5

Here is some sample output produced on the 80x86, created with the Linux
command line objdump ‑S m:

 objdump ‑S m

 0804807e <_HLAMain>:
 804807e: 89 e0 mov %esp,%eax

 .
 . // Some deleted code here,
 . // that HLA automatically generated.
 .

 80480ae: bb 00 00 00 00 mov $0x0,%ebx
 80480b3: eb 2a jmp 80480df <StartFor__hla_2124>

080480b5 <for__hla_2124>:
 80480b5: b9 00 00 00 00 mov $0x0,%ecx
 80480ba: eb 1a jmp 80480d6 <StartFor__hla_2125>

080480bc <for__hla_2125>:
 80480bc: 6a 01 push $0x1
 80480be: 68 00 01 00 00 push $0x100
 80480c3: e8 64 13 00 00 call 804942c <RAND_RANGE>
 80480c8: 50 push %eax
 80480c9: e8 6f 00 00 00 call 804813d <MEM_ALLOC1>
 80480ce: 89 04 8d 68 c9 04 08 mov %eax,0x804c968(,%ecx,4)

080480d5 <continue__hla_2125>:
 80480d5: 41 inc %ecx

080480d6 <StartFor__hla_2125>:
 80480d6: 81 f9 00 00 01 00 cmp $0x10000,%ecx
 80480dc: 72 de jb 80480bc <for__hla_2125>

080480de <continue__hla_2124>:
 80480de: 43 inc %ebx

080480df <StartFor__hla_2124>:
 80480df: 83 fb 10 cmp $0x10,%ebx
 80480e2: 72 d1 jb 80480b5 <for__hla_2124>

080480e4 <QuitMain__hla_>:
 80480e4: b8 01 00 00 00 mov $0x1,%eax
 80480e9: 31 db xor %ebx,%ebx
 80480eb: cd 80 int $0x80
 8048274: bb 00 00 00 00 mov $0x0,%ebx
 8048279: e9 d5 00 00 00 jmp 8048353 <L1021_StartFor__hla_>

Tools for Analyzing Compiler Output 125

0804827e <L1021_for__hla_>:
 804827e: b9 00 00 00 00 mov $0x0,%ecx
 8048283: eb 1a jmp 804829f <L1022_StartFor__hla_>

08048285 <L1022_for__hla_>:
 8048285: 6a 01 push $0x1
 8048287: 68 00 01 00 00 push $0x100
 804828c: e8 db 15 00 00 call 804986c <RAND_RANGE>
 8048291: 50 push %eax
 8048292: e8 63 0f 00 00 call 80491fa <MEM_ALLOC>
 8048297: 89 04 8d 60 ae 04 08 mov %eax,0x804ae60(,%ecx,4)

0804829e <L1022_continue__hla_>:
 804829e: 41 inc %ecx

0804829f <L1022_StartFor__hla_>:
 804829f: 81 f9 00 00 01 00 cmp $0x10000,%ecx
 80482a5: 72 de jb 8048285 <L1022_for__hla_>

080482a7 <L1022_exitloop__hla_>:
 80482a7: b9 00 00 00 00 mov $0x0,%ecx
 80482ac: eb 0d jmp 80482bb <L1023_StartFor__hla_>

These listings are only a fragment of the total code (which is why cer-
tain labels are absent). Nevertheless, you can see how the objdump utility can
be useful for analyzing compiler output by allowing you to disassemble the
object code for a certain code fragment.

Like dumpbin, objdump can display additional information beyond the
machine code disassembly that may prove useful when you’re analyzing
compiler output. For most purposes, however, the GCC ‑S (assembly out-
put) option is the most useful. Here’s an example of a disassembly of some
C code using the objdump utility. First, the original C code:

// Original C code:

#include <stdio.h>
int main(int argc, char **argv)
{
 int i,j,k;

 j = **argv;
 k = argc;
 i = j && k;
 printf("%d\n", i);
 return 0;
}

126 Chapter 5

Here’s the Gas output (x86-64) from GCC for the C code:

 .file "t.c"
 .section .rodata
.LC0:
 .string "%d\n"
 .text
 .globl main
 .type main, @function
main:
.LFB0:
 .cfi_startproc
 pushq %rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, ‑16
 movq %rsp, %rbp
 .cfi_def_cfa_register 6
 subq $32, %rsp
 movl %edi, ‑20(%rbp)
 movq %rsi, ‑32(%rbp)
 movq ‑32(%rbp), %rax
 movq (%rax), %rax
 movzbl (%rax), %eax
 movsbl %al, %eax
 movl %eax, ‑12(%rbp)
 movl ‑20(%rbp), %eax
 movl %eax, ‑8(%rbp)
 cmpl $0, ‑12(%rbp)
 je .L2
 cmpl $0, ‑8(%rbp)
 je .L2
 movl $1, %eax
 jmp .L3
.L2:
 movl $0, %eax
.L3:
 movl %eax, ‑4(%rbp)
 movl ‑4(%rbp), %eax
 movl %eax, %esi
 movl $.LC0, %edi
 movl $0, %eax
 call printf
 movl $0, %eax
 leave
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size main, .‑main
 .ident "GCC: (Ubuntu 5.4.0‑6ubuntu1~16.04.9) 5.4.0 20160609"
 .section .note.GNU‑stack,"",@progbits

Tools for Analyzing Compiler Output 127

Now here’s the objdump disassembly of the main function:

.file "t.c"

0000000000400526 <main>:
 400526: 55 push %rbp
 400527: 48 89 e5 mov %rsp,%rbp
 40052a: 48 83 ec 20 sub $0x20,%rsp
 40052e: 89 7d ec mov %edi,‑0x14(%rbp)
 400531: 48 89 75 e0 mov %rsi,‑0x20(%rbp)
 400535: 48 8b 45 e0 mov ‑0x20(%rbp),%rax
 400539: 48 8b 00 mov (%rax),%rax
 40053c: 0f b6 00 movzbl (%rax),%eax
 40053f: 0f be c0 movsbl %al,%eax
 400542: 89 45 f4 mov %eax,‑0xc(%rbp)
 400545: 8b 45 ec mov ‑0x14(%rbp),%eax
 400548: 89 45 f8 mov %eax,‑0x8(%rbp)
 40054b: 83 7d f4 00 cmpl $0x0,‑0xc(%rbp)
 40054f: 74 0d je 40055e <main+0x38>
 400551: 83 7d f8 00 cmpl $0x0,‑0x8(%rbp)
 400555: 74 07 je 40055e <main+0x38>
 400557: b8 01 00 00 00 mov $0x1,%eax
 40055c: eb 05 jmp 400563 <main+0x3d>
 40055e: b8 00 00 00 00 mov $0x0,%eax
 400563: 89 45 fc mov %eax,‑0x4(%rbp)
 400566: 8b 45 fc mov ‑0x4(%rbp),%eax
 400569: 89 c6 mov %eax,%esi
 40056b: bf 14 06 40 00 mov $0x400614,%edi
 400570: b8 00 00 00 00 mov $0x0,%eax
 400575: e8 86 fe ff ff callq 400400 <printf@plt>
 40057a: b8 00 00 00 00 mov $0x0,%eax
 40057f: c9 leaveq
 400580: c3 retq

As you can see, the assembly code output is somewhat easier to read
than objdump’s output.

5.4 Using a Disassembler to Analyze Compiler Output
Although using an object code “dump” tool is one way to analyze compiler
output, another possible solution is to run a disassembler on the executable
file. A disassembler is a utility that translates binary machine code into
human-readable assembly language statements (“human-readable” is debat-
able, but that’s the idea, anyway). As such, it’s another tool you can use to
analyze compiler output.

There is a subtle, but important, difference between an object code
dump utility (which contains a simple disassembler) and a sophisticated
disassembler program. Object code dump utilities are automatic, but they

128 Chapter 5

can get easily confused if the object code contains tricky constructs (such
as buried data in the instruction stream). An automatic disassembler is very
convenient to use, requiring little expertise on the user’s part, but rarely
disassembles the machine code correctly. A full-blown interactive disassembler,
on the other hand, requires more training to use properly, but is capable of
disassembling tricky machine code sequences with a little help from its user.
Therefore, decent disassemblers will work in situations where a simplistic
object code dump utility will fail. Fortunately, most compilers do not always
emit the kind of tricky code that confuses object code dump utilities, so you
can sometimes get by without having to learn how to use a full-blown disas-
sembler program. Nevertheless, having a disassembler handy can be useful
in situations where a simplistic approach doesn’t work.

Several “free” disassemblers are available. The one we’ll cover in this chap-
ter is IDA7. IDA is the freeware version of IDA Pro, a very capable and power-
ful commercial disassembler system (https://www.hex-rays.com/products/ida/).

When you first run IDA, it opens the window shown in Figure 5-1.

Figure 5-1: IDA opening window

Click the New button and type in the name of the .exe or .obj file you
wish to disassemble. Once you enter an executable filename, IDA brings
up the Format dialog shown in Figure 5-2. In this dialog, you can select
the binary file type (for example, PE/COFF, PE64 executable file, or pure
binary) and the options to use when disassembling the file. IDA does a
good job of choosing reasonable default values for these options, so most
of the time you’ll just accept the defaults unless you’re working with some
weird binary files.

Tools for Analyzing Compiler Output 129

Figure 5-2: IDA executable file format dialog

Generally, IDA will figure out the appropriate file type information for
a standard disassembly, then do an “automatic” disassembly of the object
code file. To produce an assembly language output file, click OK. Here
are the first few lines of the disassembly of the t1.c file given in “Example
Assembly Language Output” on page 102:

; int __cdecl main(int argc, const char **argv, const char **envp)
main proc near
 sub rsp, 28h
 mov rax, [rdx]
 cmp ecx, 2
 movsx edx, byte ptr [rax]
 lea eax, [rdx‑1]
 lea r8d, [rdx+1]
 mov edx, ecx
 cmovnz r8d, eax
 lea rcx, aIDJD ; "i=%d, j=%d\n"
 call sub_140001040
 xor eax, eax
 add rsp, 28h
 retn
main endp

130 Chapter 5

IDA is an interactive disassembler. This means that it provides lots of com-
plex features that you can use to guide the disassembly to produce a more
reasonable assembly language output file. However, its “automatic” mode of
operation is generally all you’ll need in order to examine compiler output
files to assess their quality. For more details on IDA (freeware) or IDA Pro,
see its documentation (https://www.hex-rays.com/products/ida/support/).

5.5 Using the Java Bytecode Disassembler to Analyze
Java Output

Most Java compilers (particularly those from Oracle, Inc.) do not gener-
ate machine code directly. Instead, they generate Java bytecode (JBC),
which computer systems then execute using a JBC interpreter. To improve
performance, some Java interpreters run a just-in-time (JIT) compiler that
translates JBC into native machine code during interpretation to improve
performance (though the result is rarely as good as the machine code an
optimizing compiler generates). Unfortunately, because the Java interpreter
does this translation at runtime, it is difficult to analyze the machine code
output from the Java compiler. It is, however, possible to analyze the JBC it
produces. This can give you a better picture of what the compiler is doing
with your Java code than simply guessing. Consider the following (relatively
trivial) Java program:

public class Welcome
{
 public static void main(String[] args)
 {
 switch(5)
 {
 case 0:
 System.out.println("0");
 break;
 case 1:
 System.out.println("1");
 break;
 case 2:
 case 5:
 System.out.println("5");
 break;
 default:
 System.out.println("default");
 }
 System.out.println("Hello World");
 }
}

Typically, you can compile this program (Welcome.java) using a com-
mand line of the form:

javac Welcome.java

Tools for Analyzing Compiler Output 131

This command produces the Welcome.class JBC file. You can use the fol-
lowing command to disassemble this file (to the standard output):

javap ‑c Welcome

Note that you do not include the .class file extension on the command
line; the javap command automatically supplies it.

The javap command produces a bytecode disassembly listing similar to
the following:

Compiled from "Welcome.java"
public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: return

public static void main(java.lang.String[]);
 Code:
 0: iconst_5
 1: tableswitch{ //0 to 5
 0: 40;
 1: 51;
 2: 62;
 3: 73;
 4: 73;
 5: 62;
 default: 73 }
 40: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
 43: ldc #3; //String 0
 45: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
 48: goto 81
 51: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
 54: ldc #5; //String 1
 56: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
 59: goto 81
 62: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
 65: ldc #6; //String 5
 67: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
 70: goto 81
 73: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
 76: ldc #7; //String default
 78: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
 81: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
 84: ldc #8; //String Hello World
 86: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
 89: return

}

132 Chapter 5

You can find documentation for the JBC mnemonics and the javap Java
class file disassembler on Oracle.com (search the site for “ javap” and “Java
bytecode disassembler”). Also, the online chapters (specifically, Appendix D)
accompanying this book discuss the Java VM bytecode assembly language.

5.6 Using the IL Disassembler to Analyze Microsoft C# and
Visual Basic Output

Microsoft’s .NET language compilers do not directly emit native machine
code. Instead, they emit a special IL (intermediate language) code. This is
quite similar, in principle, to Java bytecode or UCSD p-machine code. The
.NET runtime system will compile IL executable files and run them using a
JIT compiler.

The Microsoft C# compiler is a good example of a .NET language
that works in this fashion. Compiling a simple C# program will produce
a Microsoft .exe file that you can examine with dumpbin. Unfortunately, you
can’t use dumpbin to look at the object code (IL or otherwise). Fortunately,
Microsoft supplies a utility, ildasm.exe, that you can use to disassemble the
IL byte/assembly code.

Consider the following small C# example program (Class1.cs, a slight
tweak of the ubiquitous “Hello World!” program):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Hello_World
{
 class program
 {
 static void Main(string[] args)
 {
 int i = 5;
 int j = 6;
 int k = i + j;
 Console.WriteLine("Hello World! k={0}", k);
 }
 }
}

Typing ildasm class1.exe from a command prompt brings up the win-
dow shown in Figure 5-3.

Tools for Analyzing Compiler Output 133

Figure 5-3: IL disassembler window

To view the code disassembly, double-click the S icon (next to the Main
entry). This opens a window containing the following text (comments
added for clarity):

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 25 (0x19)
 .maxstack 2
 .locals init (int32 V_0,
 int32 V_1,
 int32 V_2)
; push constant 5 on stack

 IL_0000: ldc.i4.5

; pop stack and store into i

 IL_0001: stloc.0

134 Chapter 5

; push constant 6 on stack

 IL_0002: ldc.i4.6

; pop stack and store in j

 IL_0003: stloc.1

; Push i and j onto stack:

 IL_0004: ldloc.0
 IL_0005: ldloc.1

; Add two items on stack, leave result on stack

 IL_0006: add

; Store sum into k

 IL_0007: stloc.2

; Load string onto stack (pointer to string)

 IL_0008: ldstr "Hello World! k={0}"

; Push k's value onto stack:

 IL_000d: ldloc.2
 IL_000e: box [mscorlib]System.Int32

; call writeline routine:

 IL_0013: call void [mscorlib]System.Console::WriteLine(string,
 object)
 IL_0018: ret
} // end of method program::Main

You can use the IL disassembler program for any .NET language (such
as Visual Basic and F#). See Appendix E online for details on Microsoft’s IL
assembly language.

5.7 Using a Debugger to Analyze Compiler Output
Another option you can use to analyze compiler output is a debugger pro-
gram, which usually incorporates a disassembler that you can use to view
machine instructions. Depending on the debugger you use, viewing your
compiler output this way can be either a headache or a breeze. Typically, if
you use a stand-alone debugger, you’ll find that it takes considerably more
effort to analyze your compiler output than if you use a debugger built into
a compiler’s IDE. This section looks at both approaches.

Tools for Analyzing Compiler Output 135

5.7.1 Using an IDE’s Debugger
The Microsoft Visual C++ environment provides excellent tools for analyzing
the code produced by a compilation (of course, the compiler also produces
assembly output, but we’ll ignore that fact here). To view the output using the
Visual Studio debugger, first compile your C/C++ program to an executable
file and then select Debug4Step Into from the Visual Studio Debug menu.
When the program pauses execution, select Debug4Windows4Disassembly
from the debug menu. For the t1.c program (see “Example Assembly Language
Output” on page 102), you should see a disassembly like the following (assum-
ing you’re producing 32-bit code):

‑‑‑ c:\users\rhyde\test\t\t\t.cpp ‑‑
#include "stdafx.h"
#include <stdio.h>
int main(int argc, char **argv)
{
00F61000 push ebp
00F61001 mov ebp,esp
00F61003 sub esp,8
 int i;
 int j;

 i = argc;
00F61006 mov eax,dword ptr [argc]
00F61009 mov dword ptr [i],eax
 j = **argv;
00F6100C mov ecx,dword ptr [argv]
00F6100F mov edx,dword ptr [ecx]
00F61011 movsx eax,byte ptr [edx]
00F61014 mov dword ptr [j],eax

 if (i == 2)
00F61017 cmp dword ptr [i],2
00F6101B jne main+28h (0F61028h)
 {
 ++j;
00F6101D mov ecx,dword ptr [j]
00F61020 add ecx,1
00F61023 mov dword ptr [j],ecx
 }
 else
00F61026 jmp main+31h (0F61031h)
 {
 ‑‑j;
00F61028 mov edx,dword ptr [j]
00F6102B sub edx,1
00F6102E mov dword ptr [j],edx
 }

 printf("i=%d, j=%d\n", i, j);
00F61031 mov eax,dword ptr [j]
00F61034 push eax

136 Chapter 5

00F61035 mov ecx,dword ptr [i]
00F61038 push ecx
00F61039 push 0F620F8h
00F6103E call printf (0F61090h)
00F61043 add esp,0Ch
 return 0;
00F61046 xor eax,eax
}
00F61048 mov esp,ebp
00F6104A pop ebp
00F6104B ret

Of course, because Microsoft’s Visual C++ package is already capable of
outputting an assembly language file during compilation, using the Visual
Studio integrated debugger in this manner isn’t necessary.3 However, some
compilers do not provide assembly output, and debugger output may be the
easiest way to view the machine code the compiler produces. For example,
Embarcadero’s Delphi compiler does not provide an option to produce
assembly language output. Given the massive amount of class library code
that Delphi links into an application, attempting to view the code for a
small section of your program by using a disassembler would be like trying
to find a needle in a haystack. A better solution is to use the debugger built
into the Delphi environment.

5.7.2 Using a Stand-Alone Debugger
If your compiler doesn’t provide its own debugger as part of an IDE, another
alternative is to use a separate debugger such as OllyDbg, DDD, or GDB to
disassemble your compiler’s output. Simply load the executable file into the
debugger for normal debugging operations.

Most debuggers that are not associated with a particular programming
language are machine-level debuggers that disassemble the binary machine
code into machine instructions for viewing during the debugging opera-
tion. One problem with using machine-level debuggers is that locating a
particular section of code to disassemble can be difficult. Remember, when
you load the entire executable file into a debugger, you load in all the stati-
cally linked library routines and other runtime support code that doesn’t
normally appear in the application’s source file. Searching through all
this extraneous code to find out how the compiler translates a particular
sequence of statements to machine code can be time-consuming. Some seri-
ous code sleuthing may be necessary. Fortunately, most linkers collect all
the library routines together and place them either at the beginning or end
of the executable file. Therefore, that’s generally also where you’ll find the
code associated with your application.

Debuggers come in one of three different flavors: pure machine-level
debuggers, symbolic debuggers, and source-level debuggers. Symbolic

3. The Visual C++ debugger output injects the C/C++ source code into the disassembly out-
put, an advantage over the assembly output produced by the compiler.

Tools for Analyzing Compiler Output 137

debuggers and source-level debuggers require executable files to contain
special debugging information and, therefore, the compiler must specifi-
cally include this extra information.

Pure machine-level debuggers have no access to the original source
code or symbols in the application. A pure machine-level debugger simply
disassembles the application’s machine code and displays the listing using
literal numeric constants and machine addresses. Reading through such
code is difficult, but if you understand how compilers generate code for the
HLL statements (as this book will teach you), then locating the machine
code is easier. Nevertheless, without any symbolic information to provide a
“root point” in the code, analysis can be difficult.

Symbolic debuggers use special symbol table information found in the
executable file (or a separate debugging file, in some instances) to associate
labels with functions and, possibly, variable names in your source file. This
feature makes locating sections of code within the disassembly listing much
easier. When symbolic labels identify calls to functions, it’s much easier to
see the correspondence between the disassembled code and your original
HLL source code. One thing to keep in mind, however, is that symbolic
information is available only if the application was compiled with debug-
ging mode enabled. Check your compiler’s documentation to determine
how to activate this feature for use with your debugger.

Source-level debuggers actually display the original source code associ-
ated with the file the debugger is processing. In order to see the machine
code the compiler produced, you often have to activate a special machine-
level view of the program. As with symbolic debuggers, your compiler must
produce special executable files (or auxiliary files) containing debug infor-
mation that a source-level debugger can use. Clearly, source-level debug-
gers are much easier to work with because they show the correspondence
between the original HLL source code and the disassembled machine code.

5.8 Comparing Output from Two Compilations
If you are an expert assembly language programmer and you’re well versed
in compiler design, it should be pretty easy for you to determine what changes
you’ll need to make to your HLL source code to improve the quality of the
output machine code. However, most programmers (especially those who
do not have considerable experience studying compiler output) can’t just
read a compiler’s assembly language output. They have to compare the two
sets of outputs (before and after a change) to determine which code is bet-
ter. After all, not every change you make to your HLL source files will result
in better code. Some changes will leave the machine code unaffected (in
which case, you should use the more readable and maintainable version of
the HLL source code). In other cases, you could actually make the output
machine code worse. Therefore, unless you know exactly what a compiler
is going to do when you make changes to your HLL source file, you should
do a before-and-after comparison of the compiler’s output machine code
before accepting any modifications you make.

138 Chapter 5

5.8.1 Before-and-After Comparisons with diff
Of course, the first reaction from any experienced software developer is,
“Well, if we have to compare files, we’ll just use diff!” As it turns out, a
typical diff (compute file differences) program will be useful for certain
purposes, but it won’t be universally applicable when you’re comparing two
different output files from a compiler. The problem with a program like
diff is that it works great when there are only a few differences between two
files, but it’s not so useful when the files are wildly different. For example,
consider the following C program (t.c) and two different outputs produced
by the Microsoft VC++ compiler:

extern void f(void);
int main(int argc, char **argv)
{
 int boolResult;

 switch(argc)
 {
 case 1:
 f();
 break;

 case 10:
 f();
 break;

 case 100:
 f();
 break;

 case 1000:
 f();
 break;

 case 10000:
 f();
 break;

 case 100000:
 f();
 break;

 case 1000000:
 f();
 break;

 case 10000000:
 f();
 break;

 case 100000000:
 f();
 break;

Tools for Analyzing Compiler Output 139

 case 1000000000:
 f();
 break;

 }
 return 0;
}

Here’s the assembly language output MSVC++ produces when using the
command line cl /Fa t.c (that is, when compiling without optimization):

 ; Listing generated by Microsoft (R) Optimizing Compiler Version 19.00.24234.1

include listing.inc

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

PUBLIC main
EXTRN f:PROC
pdata SEGMENT
$pdata$main DD imagerel $LN16
 DD imagerel $LN16+201
 DD imagerel $unwind$main
pdata ENDS
xdata SEGMENT
$unwind$main DD 010d01H
 DD 0620dH
xdata ENDS
; Function compile flags: /Odtp
_TEXT SEGMENT
tv64 = 32
argc$ = 64
argv$ = 72
main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 4
$LN16:
 mov QWORD PTR [rsp+16], rdx
 mov DWORD PTR [rsp+8], ecx
 sub rsp, 56 ; 00000038H
; Line 7
 mov eax, DWORD PTR argc$[rsp]
 mov DWORD PTR tv64[rsp], eax
 cmp DWORD PTR tv64[rsp], 100000 ; 000186a0H
 jg SHORT $LN15@main
 cmp DWORD PTR tv64[rsp], 100000 ; 000186a0H
 je SHORT $LN9@main
 cmp DWORD PTR tv64[rsp], 1
 je SHORT $LN4@main
 cmp DWORD PTR tv64[rsp], 10
 je SHORT $LN5@main
 cmp DWORD PTR tv64[rsp], 100 ; 00000064H
 je SHORT $LN6@main

140 Chapter 5

 cmp DWORD PTR tv64[rsp], 1000 ; 000003e8H
 je SHORT $LN7@main
 cmp DWORD PTR tv64[rsp], 10000 ; 00002710H
 je SHORT $LN8@main
 jmp SHORT $LN2@main
$LN15@main:
 cmp DWORD PTR tv64[rsp], 1000000 ; 000f4240H
 je SHORT $LN10@main
 cmp DWORD PTR tv64[rsp], 10000000 ; 00989680H
 je SHORT $LN11@main
 cmp DWORD PTR tv64[rsp], 100000000 ; 05f5e100H
 je SHORT $LN12@main
 cmp DWORD PTR tv64[rsp], 1000000000 ; 3b9aca00H
 je SHORT $LN13@main
 jmp SHORT $LN2@main
$LN4@main:
; Line 10
 call f
; Line 11
 jmp SHORT $LN2@main
$LN5@main:
; Line 14
 call f
; Line 15
 jmp SHORT $LN2@main
$LN6@main:
; Line 18
 call f
; Line 19
 jmp SHORT $LN2@main
$LN7@main:
; Line 22
 call f
; Line 23
 jmp SHORT $LN2@main
$LN8@main:
; Line 26
 call f
; Line 27
 jmp SHORT $LN2@main
$LN9@main:
; Line 30
 call f
; Line 31
 jmp SHORT $LN2@main
$LN10@main:
; Line 34
 call f
; Line 35
 jmp SHORT $LN2@main
$LN11@main:
; Line 38
 call f
; Line 39
 jmp SHORT $LN2@main

Tools for Analyzing Compiler Output 141

$LN12@main:
; Line 42
 call f
; Line 43
 jmp SHORT $LN2@main
$LN13@main:
; Line 46
 call f
$LN2@main:
; Line 50
 xor eax, eax
; Line 51
 add rsp, 56 ; 00000038H
 ret 0
main ENDP
_TEXT ENDS
END

Here’s the assembly listing we get when we compile the C program with
the command line cl /Ox /Fa t.c (/Ox enables maximum optimization for
speed in Visual C++):

 ; Listing generated by Microsoft (R) Optimizing Compiler Version 19.00.24234.1

include listing.inc

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

PUBLIC main
EXTRN f:PROC
pdata SEGMENT
$pdata$main DD imagerel $LN18
 DD imagerel $LN18+89
 DD imagerel $unwind$main
pdata ENDS
xdata SEGMENT
$unwind$main DD 010401H
 DD 04204H
xdata ENDS
; Function compile flags: /Ogtpy
_TEXT SEGMENT
argc$ = 48
argv$ = 56
main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 4
$LN18:
 sub rsp, 40 ; 00000028H
; Line 7
 cmp ecx, 100000 ; 000186a0H
 jg SHORT $LN15@main
 je SHORT $LN10@main
 sub ecx, 1

142 Chapter 5

 je SHORT $LN10@main
 sub ecx, 9
 je SHORT $LN10@main
 sub ecx, 90 ; 0000005aH
 je SHORT $LN10@main
 sub ecx, 900 ; 00000384H
 je SHORT $LN10@main
 cmp ecx, 9000 ; 00002328H
; Line 27
 jmp SHORT $LN16@main
$LN15@main:
; Line 7
 cmp ecx, 1000000 ; 000f4240H
 je SHORT $LN10@main
 cmp ecx, 10000000 ; 00989680H
 je SHORT $LN10@main
 cmp ecx, 100000000 ; 05f5e100H
 je SHORT $LN10@main
 cmp ecx, 1000000000 ; 3b9aca00H
$LN16@main:
 jne SHORT $LN2@main
$LN10@main:
; Line 34
 call f
$LN2@main:
; Line 50
 xor eax, eax
; Line 51
 add rsp, 40 ; 00000028H
 ret 0
main ENDP
_TEXT ENDS
 END

It doesn’t take a very sharp eye to notice that the two assembly language
output files are radically different. Running these two files through diff
simply produces a lot of noise; the output from diff is more difficult to
interpret than manually comparing the two assembly language output files.

A differencing program like diff (or better yet, the differencing facility
built into many advanced programming editors) works best for comparing
two different outputs for a given HLL source file to which you’ve made a
small change. In the current example, had we changed the statement case
1000: to case 1001:, then a diff of the resulting assembly file against the
original produces the following output:

50c50
< cmp eax, 1000

‑‑‑
> cmp eax, 1001

Tools for Analyzing Compiler Output 143

As long as you’re comfortable reading diff output, this isn’t too bad.
However, a better solution is to use some commercially available file com-
parison programs. Two excellent options are Beyond Compare (https://www
.scootersoftware.com/) and Araxis Merge (https://www.araxis.com/merge/).

Of course, another way to compare compiler output is manually. Set
two listings side by side (either on paper or on your monitor) and start
analyzing them. In the current C example, if we compare the two different
outputs from the C compiler (without optimization and with the /Ox opti-
mization option), we’ll discover that both versions use a binary search algo-
rithm to compare the switch value against a list of widely varying constants.
The main difference between the optimized and unoptimized versions has
to do with code duplication.

In order to properly compare two assembly listings that a compiler pro-
duces, you’ll need to learn how to interpret the machine language output
from your compilers and connect certain assembly language sequences with
the statements in your HLL code. That’s the purpose of many of the chap-
ters to come.

5.9 For More Information
Your compiler’s manual is the first place to look when you’re trying to figure
out how to view the machine code the compiler produces. Many compilers
produce assembly language output as an option, and that’s the best way to
view code output. If your compiler does not provide this option, a debug-
ging tool built into the compiler’s IDE (if available) is another good choice.
See the documentation for your IDE or compiler for details.

Tools like objdump and dumpbin are also useful for examining compiler
output. Check the Microsoft, FSF/GNU, or Apple LLVM documentation for
details on using these programs. If you decide to use an external debugger,
such as OllyDbg or GDB, check out the software’s user documentation, or
visit the author’s support web page (for example, http://www.ollydbg.de/ for
the OllyDbg debugger).

6
C O N S T A N T S A N D

H I G H ‑ L E V E L L A N G U A G E S

Some programmers may not realize it,
but many CPUs do not treat constant

and variable data identically at the machine
code level. Most CPUs provide a special imme-

diate addressing mode that allows a language translator
to embed a constant value directly into a machine
instruction rather than storing it in a memory location and accessing it as a
variable. However, the CPU’s ability to represent constant data efficiently var-
ies by CPU and, in fact, by the type of the data. By understanding how a CPU
treats constant data at the machine code level, you can choose appropriate ways
to represent constants in your HLL source code to produce smaller and faster
executable programs. To that end, this chapter discusses the following topics:

•	 How to use literal constants properly to improve the efficiency of
your programs

•	 The difference between a literal constant and a manifest constant

•	 How compilers process compile-time constant expressions to reduce
program size and avoid runtime calculations

146 Chapter 6

•	 The difference between a compile-time constant and read-only data
kept in memory

•	 How compilers represent noninteger constants, such as enumerated data
types, Boolean data types, floating-point constants, and string constants

•	 How compilers represent composite data type constants, such as array
constants and record/struct constants

By the time you finish this chapter, you should have a clear understand-
ing of how various constants can affect the efficiency of the machine code
your compiler produces.

N O T E If you’ve already read WGC1, you may just want to skim through this chapter, which
for the sake of completeness repeats some of the information from Chapters 6 and 7 of
that volume.

6.1 Literal Constants and Program Efficiency
High-level programming languages and most modern CPUs allow you to
specify constant values just about anywhere you can legally read the value
of a memory variable. Consider the following Visual Basic and HLA state-
ments, which assign the constant 1000 to the variable i:

i = 1000

mov(1000, i);

The 80x86, like most CPUs, actually encodes the constant represen-
tation for 1,000 directly into the machine instruction. This provides a
compact and efficient way to work with constants at the machine level.
Therefore, statements that use literal constants in this manner are often
more efficient that those that assign constant values to a variable and then
reference that variable later in the code. Consider the following Visual
Basic code sequence:

oneThousand = 1000
 .
 .
 .
x = x + oneThousand 'Using "oneThousand" rather than
 ' a literal constant.
y = y + 1000 'Using a literal constant.

Now consider the 80x86 assembly code you would probably write for
these last two statements. For the first statement, we must use two instructions
because we can’t add the value of one memory location directly to another:

mov(oneThousand, eax); // x = x + oneThousand
add(eax, x);

Constants and High‑Level Languages 147

But we can add a constant to a memory location, so the second Visual
Basic statement translates to a single machine instruction:

add(1000, y); // y = y + 1000

As you can see, using a literal constant, rather than a variable, is more
efficient. This is not to suggest, however, that every processor operates
more efficiently using literal constants, or that every CPU operates more
efficiently no matter the value of the constant. Some very old CPUs don’t
provide the ability to embed literal constants within a machine instruction
at all; and many RISC processors, such as the ARM, do so only for smaller
8-, 12-, or 16-bit constants.1 Even those CPUs that allow you to load any
integer constant may not support literal floating-point constants—the ubiq-
uitous 80x86 processor being one example. Few CPUs provide the ability to
encode large data structures (such as an array, record, or string) as part of
a machine instruction. For example, consider the following C code:

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv, char **envp)
{
 int i,j,k;

 i = 1;
 j = 16000;
 k = 100000;
 printf("%d, %d, %d\n", i, j, k);

}

Its compilation to PowerPC assembly by the GCC compiler looks like
this (edited to remove the nonrelevant code):

L1$pb:
 mflr r31
 stw r3,120(r30)
 stw r4,124(r30)
 stw r5,128(r30)

; The following two instructions copy the value 1 into the variable "i"

 li r0,1
 stw r0,64(r30)

; The following two instructions copy the value 16,000 into the variable "j"

 li r0,16000
 stw r0,68(r30)

1. Even the 80x86 limits immediate constants to 32 bits.

148 Chapter 6

; It takes three instructions to copy the value 100,000 into variable "k"

 lis r0,0x1
 ori r0,r0,34464
 stw r0,72(r30)

; The following code sets up and calls the printf function:

 addis r3,r31,ha16(LC0-L1$pb)
 la r3,lo16(LC0-L1$pb)(r3)
 lwz r4,64(r30)
 lwz r5,68(r30)
 lwz r6,72(r30)
 bl L_printf$stub
 mr r3,r0
 lwz r1,0(r1)
 lwz r0,8(r1)
 mtlr r0
 lmw r30,-8(r1)
 blr

The PowerPC CPU allows only 16-bit immediate constants in a single
instruction. In order to load a larger value into a register, the program has
to first use the lis instruction to load the higher-order (HO) 16 bits of a
32-bit register and then use the ori instruction to merge in the lower-order
(LO) 16 bits. The exact operation of these instructions isn’t too important.
What’s notable is that the compiler emits three instructions for large con-
stants, and only two for smaller constants. Therefore, using 16-bit constant
values on the PowerPC produces shorter and faster machine code.

The compilation of this C code to ARMv7 assembly by the GCC com-
piler looks like this (edited to remove the nonrelevant code):

.LC0:
 .ascii "i=%d, j=%d, k=%d\012\000"
 .text
 .align 2
 .global main
 .type main, %function
main:
 @ args = 0, pretend = 0, frame = 24
 @ frame_needed = 1, uses_anonymous_args = 0
 stmfd sp!, {fp, lr}
 add fp, sp, #4
 sub sp, sp, #24
 str r0, [fp, #-24]
 str r1, [fp, #-28]

; Store 1 into 'i' variable:

 mov r3, #1
 str r3, [fp, #-8]

Constants and High‑Level Languages 149

@ Store 16000 into 'j' variable:

 mov r3, #16000
 str r3, [fp, #-12]

@ Store 100,000 (constant appears in memory) into 'k' variable:

 ldr r3, .L3
 str r3, [fp, #-16]

@ Fetch the values and print them:

 ldr r0, .L3+4
 ldr r1, [fp, #-8]
 ldr r2, [fp, #-12]
 ldr r3, [fp, #-16]
 bl printf
 mov r3, #0
 mov r0, r3
 sub sp, fp, #4
 @ sp needed
 ldmfd sp!, {fp, pc}
.L4:

@ constant value for k appears in memory:

 .align 2
.L3:
 .word 100000
 .word .LC0

The ARM CPU allows only 16-bit immediate constants in a single instruc-
tion. In order to load a larger value into a register, the compiler places the
constant into a memory location and loads the constant from memory.

Even though CISC processors like the 80x86 can usually encode any
integer constant (up to 32 bits) in a single instruction, this doesn’t mean
that the program’s efficiency is independent of the sizes of the constants
you use in your programs. CISC processors often use different encodings
for machine instructions that have large or small immediate operands,
allowing the program to use less memory for smaller constants. For exam-
ple, consider the following two 80x86/HLA machine instructions:

add(5, ebx);
add(500_000, ebx);

On the 80x86 an assembler can encode the first instruction in 3 bytes:
2 bytes for the opcode and addressing mode information, and 1 byte to hold
the small immediate constant 5. The second instruction, on the other hand,
requires 6 bytes to encode: 2 bytes for the opcode and addressing mode
information, and 4 bytes to hold the constant 500_000. Certainly the second
instruction is larger, and in some cases it may even run a little slower.

150 Chapter 6

6.2 Binding Times
What exactly is a constant? Obviously, from an HLL perspective, a constant
is some sort of entity whose value doesn’t change (that is, remains constant).
However, there is more to the definition. For example, consider the follow-
ing Pascal constant declaration:

const someConstant:integer = 5;

In the code following this declaration,2 you can use the name someConstant
in place of the value 5. But what about before this declaration? How about
outside the scope to which this declaration belongs? Clearly the value of
someConstant can change upon the compiler processing this declaration. So
the notion that a constant’s “value doesn’t change” doesn’t exactly apply here.

The real concern here isn’t where the program associates a value with
someConstant but when. Binding is the technical name for creating associa-
tions between attributes (such as the name, value, and scope) of some
object. For example, the earlier Pascal example binds the value 5 to the
name someConstant. Binding time—when the binding (association) occurs—
can happen at several different points:

•	 At language definition time. This refers to when the language designer(s)
define the language. The constants true and false in many languages
are good examples.

•	 During compilation. The Pascal someConstant declaration in this section is
a good example.

•	 During the linking phase. An example of this might be a constant that
specifies the size of the object code (machine instructions) in a pro-
gram. The program cannot compute this size any earlier than during
the link phase, when the linker pulls in all the object code modules and
combines them together.

•	 During program loading (into memory). A good example of load time bind-
ing would be associating the address of an object in memory (such as
a variable or machine instruction) with some pointer constant. On
many systems, the operating system relocates the code when it loads
it into memory, so the program can only determine absolute memory
addresses after loading.

•	 During program execution. Some bindings can occur only while the pro-
gram is running. For example, when you assign the value of some (com-
puted) arithmetic expression to a variable, the binding of the value to
the variable occurs during execution.

Dynamic bindings are those that occur during program execution. Static
bindings are those that occur at any other time. Chapter 7 will take another
look at binding (see “What Is a Variable?” on page 180).

2.Specifically, in the code within the scope of this declaration.

Constants and High‑Level Languages 151

6.3 Literal Constants vs. Manifest Constants
A manifest constant is a constant value associated with—that is, bound
to—a symbolic name. A language translator can directly substitute the
value everywhere the name appears within the source code, producing
easy-to-read and easily maintained programs. The proper use of manifest
constants is a good indication of professionally written code.

Declaring manifest constants is simple in many programming languages:

•	 Pascal programmers use the const section.

•	 HLA programmers can use the const or the val declaration sections.

•	 C/C++ programmers can use the #define macro facility.

This Pascal code fragment demonstrates an appropriate use of manifest
constants in a program:

const
 maxIndex = 9;

var
 a :array[0..maxIndex] of integer;
 .
 .
 .
 for i := 0 to maxIndex do
 a[i] := 0;

This code is much easier to read and maintain than code that uses lit-
eral constants. By changing a single statement in this program (the maxIndex
constant declaration) and recompiling the source file, you can easily set the
number of elements and the program will continue to function properly.

Because the compiler substitutes the literal numeric constant in place
of the symbolic name for the manifest constant, there is no performance
penalty for using manifest constants. Given that they improve the readabil-
ity of your programs without any loss in efficiency, manifest constants are
an important component of great code. Use them.

6.4 Constant Expressions
Many compilers support the use of constant expressions, which are expres-
sions that can be evaluated during compilation. The component values of
a constant expression are all known at compile time, so the compiler can
evaluate the expression and substitute its value during compilation rather
than computing it at runtime. As with manifest constants, constant expres-
sions enable you to write more easily readable and maintainable code, with-
out any runtime efficiency loss.

152 Chapter 6

For example, consider the following C code:

#define smArraySize 128
#define bigArraySize (smArraySize*8)
 .
 .
 .
char name[smArraySize];
int values[bigArraySize];

These two array declarations expand to the following:

char name[128];
int values[(smArraySize * 8)];

The C preprocessor further expands this to:

char name[128];
int values[(128 * 8)];

Although the C language definition supports constant expressions, this
feature is not available in every language, so you’ll need to check the lan-
guage reference manual for your particular compiler. The Pascal language
definition, for example, says nothing about constant expressions. Some
Pascal implementations support them, but others do not.

Modern optimizing compilers are capable of computing constant
subexpressions within arithmetic expressions at compile time (known
as constant folding; see “Common Compiler Optimizations” on page 63),
thereby saving the expense of computing fixed values at runtime. Consider
the following Pascal code:

var
 i :integer;
 .
 .
 .
 i := j + (5*2-3);

Any decent Pascal implementation will recognize that the subexpres-
sion 5*2–3 is a constant expression, compute the value for this expression
(7) during compilation, and substitute that value at compile time. In other
words, a good Pascal compiler generally emits machine code that is equiva-
lent to the following statement:

i := j + 7;

If your particular compiler fully supports constant expressions, you can
use this feature to write better source code. It may seem paradoxical, but
writing out a full expression at some point in your program can sometimes
make that particular piece of code easier to read and understand; someone

Constants and High‑Level Languages 153

reading your code can see exactly how you calculated a value, rather than
having to figure out how you arrived at some “magic” number. For example,
in the context of an invoicing or timesheet routine, the expression 5*2–3
might describe the computation “two persons working for five hours, minus
three person-hours provided for the job” better than the literal constant 7.

The following sample C code, and the PowerPC output produced by the
GCC compiler, demonstrates constant expression optimization in action:

#include <stdio.h>
int main(int argc, char **argv, char **envp)
{
 int j;

 j = argc+2*5+1;
 printf("%d %d\n", j, argc);

}

Here’s the GCC output (PowerPC assembly language):

_main:
 mflr r0
 mr r4,r3 // Register r3 holds the ARGC value upon entry
 bcl 20,31,L1$pb
L1$pb:
 mr r5,r4 // R5 now contains the ARGC value.
 mflr r10
 addi r4,r4,11 // R4 contains argc+ 2*5+1
 // (i.e., argc+11)
 mtlr r0 // Code that calls the printf function.
 addis r3,r10,ha16(LC0-L1$pb)
 la r3,lo16(LC0-L1$pb)(r3)
 b L_printf$stub

As you can see, GCC has replaced the constant expression 2*5+1 with
the constant 11.

Making your code more readable is definitely a good thing to do and a
major part of writing great code. Keep in mind, however, that some compil-
ers may not support the use of constant expressions, instead emitting code
to compute the constant value at runtime. Obviously, this will affect the
size and execution speed of your resulting program. Knowing what your
compiler can do will help you decide whether to use constant expressions or
precompute expressions to increase efficiency at the cost of readability.

6.5 Manifest Constants vs. Read-Only Memory Objects
C/C++ programmers may have noticed that the previous section did not
discuss the use of the C/C++ const declaration. This is because symbolic
names (hereafter symbols) you declare in a C/C++ const statement aren’t
necessarily manifest constants. That is, C/C++ does not always substitute

154 Chapter 6

the value for a symbol wherever it appears in a source file. Instead, a C/C++
compiler might store that const value in memory and then reference the
const object as it would a static (read-only) variable. The only difference,
then, between that const object and a static variable is that the C/C++ com-
piler doesn’t allow you to assign a value to const at runtime.

C/C++ sometimes treats constants you declare in const statements as
static variables for a very good reason—it allows you to create within a func-
tion local constants whose value can change each time that function exe-
cutes (although while the function is executing, the value remains fixed).
This is why you can’t always use such a “constant” within a const in C/C++
and expect the C/C++ compiler to precompute its value.

Most C++ compilers will accept this:

const int arraySize = 128;
 .
 .
 .
int anArray[arraySize];

They will not, however, accept this sequence:

const int arraySizes[2] = {128,256}; // This is legal
const int arraySize = arraySizes[0]; // This is also legal

int array[arraySize]; // This is not legal

arraySize and arraySizes are both constants. Yet the C++ compiler won’t
allow you to use the arraySizes constant, or anything based on it, as an array
bound. This is because arraySizes[0] is actually a runtime memory loca-
tion and, therefore, arraySize must also be a runtime memory location. In
theory, you’d think the compiler would be smart enough to figure out that
arraySize is computable at compile time and just substitute that value (128).
The C++ language, however, doesn’t allow this.

6.6 Swift let Statements
In the Swift programming language, you can create constants using the let
statement. For example:

let someConstant = 5

However, the value is bound to the constant’s name at runtime (that
is, this is a dynamic binding). The expression on the right-hand side of the
assignment operator (=) doesn’t have to be a constant expression; it can be
an arbitrary expression involving variables and other nonconstant compo-
nents. Every time the program executes this statement (such as in a loop),
the program could bind a different value to someConstant.

The Swift let statement doesn’t truly define constants in the traditional
sense; rather, it lets you create “write-once” variables. In other words, within

Constants and High‑Level Languages 155

the scope of the symbol you define using the let statement, you can initial-
ize the name with a value only once. Note that if you leave and re-enter
the name’s scope, the value is destroyed (upon exiting the scope) and you
can bind a new (possibly different) value to the name upon re-entering the
scope. Unlike, say, the const int declaration in C++, let statements do not
allow you to allocate storage for the object in read-only memory.

6.7 Enumerated Types
Well-written programs often use a set of names to represent real-world
quantities that don’t have an explicit numeric representation. An example
of such a set of names might be various display technologies, like crt, lcd,
led, and plasma. Even though the real world doesn’t associate numeric values
with these concepts, you must encode the values numerically if you’re going
to efficiently represent them in a computer system. The internal represen-
tation for each symbol is generally arbitrary, as long as the value we assign
is unique. Many computer languages provide an enumerated data type that
automatically associates a unique value with each name in a list. By using
enumerated data types in your programs, you can assign meaningful names
to your data rather than using “magic” numbers such as 0, 1, 2, and so on.

For example, in early versions of the C language, you would create a
sequence of identifiers, each with a unique value, as follows:

/*
 Define a set of symbols representing the
 different display technologies
*/

#define crt 0
#define lcd (crt+1)
#define led (lcd+1)
#define plasma (led+1)

By assigning values that are consecutive, you ensure that each is unique.
Another advantage to this approach is that it orders the values. That is, crt
< lcd < led < plasma. Unfortunately, creating manifest constants this way is
laborious and error-prone.

Fortunately, in most languages enumerated constants can solve this
problem. To “enumerate” means to number, and this is exactly what the
compiler does—it numbers each constant, thereby handling the bookkeep-
ing details of assigning values to enumerated constants.

Most modern programming languages provide support for declaring
enumerated types and constants. Here are some examples from C/C++,
Pascal, Swift, and HLA:

enum displays {crt, lcd, led, plasma, oled }; // C++
type displays = (crt, lcd, led, plasma, oled); // Pascal
type displays :enum{crt, lcd, led, plasma, oled }; // HLA

156 Chapter 6

// Swift example:
enum Displays
{
 case crt
 case lcd
 case led
 case plasma
 case oled
}

These four examples internally associate 0 with crt, 1 with lcd, 2 with
led, 3 with plasma, and 4 with oled. Again, the exact internal representation
is irrelevant (as long as each value is unique) because the value’s only pur-
pose is to differentiate the enumerated objects.

Most languages assign monotonically increasing values (that is, each suc-
cessive value is greater than all previous values) to symbols in an enumer-
ated list. Therefore, these examples have the following relationships:

crt < lcd < led < plasma < oled

Don’t let this give you the impression that all enumerated constants
appearing in a single program have a unique internal representation,
though. Most compilers assign a value of 0 to the first item in an enumera-
tion list you create, a value of 1 to the second, and so on. For example, con-
sider the following Pascal type declarations:

type
 colors = (red, green, blue);
 fasteners = (bolt, nut, screw, rivet);

Most Pascal compilers would use the value 0 as the internal represen-
tation for both red and bolt; 1 for green and nut; and so on. In languages
(like Pascal and Swift) that enforce type checking, you generally can’t use
symbols of type colors and fasteners in the same expression. Therefore, the
fact that these symbols share the same internal representation isn’t an issue
because the compiler’s type-checking facilities preclude any possible confu-
sion. Some languages, like C/C++ and assembly, do not provide strong type
checking, however, and so this kind of confusion can occur. In those lan-
guages, it is the programmer’s responsibility to avoid mixing different types
of enumeration constants.

Most compilers allocate the smallest unit of memory the CPU can
efficiently access in order to represent an enumerated type. Because most
enumerated type declarations define fewer than 256 symbols, compilers on
machines that can efficiently access byte data will usually allocate a byte
for any variable with an enumerated data type. Compilers on many RISC
machines can allocate a 32-bit word (or more) simply because it’s faster
to access such blocks of data. The exact representation is language and
compiler/implementation dependent, so check your compiler’s reference
manual for the details.

Constants and High‑Level Languages 157

6.8 Boolean Constants
Many high-level programming languages provide Boolean, or logical, con-
stants to represent the values true and false. Because there are only two
possible Boolean values, their representation requires only a single bit.
However, because most CPUs do not allow you to allocate a single bit of
storage, most programming languages use a whole byte or even a larger
object to represent a Boolean value. What happens to any leftover bits in
a Boolean object? Unfortunately, the answer varies by language.

Many languages treat the Boolean data type as an enumerated type.
For example, in Pascal, the Boolean type is defined this way:

type
 boolean = (false, true);

This declaration associates the internal value 0 with false and 1 with
true. This association has a couple of desirable attributes:

•	 Most of the Boolean functions and operators behave as expected—for
example, (true and true) = true, (true and false) = false, and so on.

•	 When you compare the two values, false is less than true—an intui-
tive result.

Unfortunately, associating 0 with false and 1 with true isn’t always the
best solution. Here are some reasons why:

•	 Certain Boolean operations, applied to a bit string, do not produce
expected results. For example, you might expect (not false) to be equal
to true. However, if you store a Boolean variable in an 8-bit object, then
(not false) is equal to $FF, which is not equal to true (1).

•	 Many CPUs provide instructions that easily test for 0 or nonzero after
an operation; few CPUs provide an implicit test for 1.

Many languages, such as C, C++, C#, and Java, treat 0 as false and any-
thing else as true. This has a couple of advantages:

•	 CPUs that provide easy checks for 0 and nonzero can easily test a
Boolean result.

•	 The 0/nonzero representation is valid regardless of the size of the
object holding a Boolean variable.

Unfortunately, this scheme also has some drawbacks:

•	 Many bitwise logical operations produce incorrect results when applied
to 0 and nonzero Boolean values. For example $A5 (true/nonzero) AND
$5A (true/nonzero) is equal to 0 (false). Logically ANDing true and true
should not produce false. Similarly, (NOT $A5) produces $5A. Generally,
you’d expect (NOT true) to produce false rather than true ($5A).

158 Chapter 6

•	 When a bit string is treated as a two’s-complement signed-integer value,
it’s possible for certain values of true to be less than zero (for example,
the 8-bit value $FF is equivalent to -1). So, in some cases, the intuitive
result that false is less than true may not be correct.

Unless you are working in assembly language (where you get to define
the values for true and false), you’ll have to live with whatever scheme your
HLL uses to represent Boolean values, as explained in its language refer-
ence manual.

Knowing how your language represents true and false can help you
write high-level source code that produces better machine code. For exam-
ple, suppose you are writing C/C++ code. In these languages, false is 0 and
true is anything else. Consider the following statement in C:

int i, j, k;
 .
 .
 .
 i = j && k;

The machine code produced for this assignment statement by many com-
pilers is absolutely horrid. It often looks like the following (Visual C++ output):

; Line 8
 cmp DWORD PTR j$[rsp], 0
 je SHORT $LN3@main
 cmp DWORD PTR k$[rsp], 0
 je SHORT $LN3@main
 mov DWORD PTR tv74[rsp], 1
 jmp SHORT $LN4@main
$LN3@main:
 mov DWORD PTR tv74[rsp], 0
$LN4@main:
 mov eax, DWORD PTR tv74[rsp]
 mov DWORD PTR i$[rsp], eax
;

Now, suppose that you always ensure that you use the values 0 for false
and 1 for true (with no possibility of any other value). Under these condi-
tions, you could write the previous statement this way:

i = j & k; /* Notice the bitwise AND operator */

Here’s the code that Visual C++ generates for the preceding statement:

; Line 8
 mov eax, DWORD PTR k$[rsp]
 mov ecx, DWORD PTR j$[rsp]
 and ecx, eax
 mov DWORD PTR i$[rsp], ecx

Constants and High‑Level Languages 159

As you can see, this code is significantly better. Provided that you always
use 1 for true and 0 for false, you can get away with using the bitwise AND (&)
and OR (|) operators in place of the logical operators.3 As noted earlier, you
can’t get consistent results using the bitwise NOT operator; you can, however,
do the following to produce correct results for a logical NOT operation:

i = ~j & 1; /* "~" is C's bitwise not operator */

This short sequence inverts all the bits in j and then clears all bits
except bit 0.

The bottom line is that you should be intimately aware of how your
particular compiler represents Boolean constants. If you’re given a choice
(such as any nonzero value), then you can pick appropriate values for true
and false to help your compiler emit better code.

6.9 Floating-Point Constants
Floating-point constants are special cases on most computer architectures.
Because floating-point representations can consume a large number of bits,
few CPUs provide an immediate addressing mode to load an arbitrary con-
stant into a floating-point register. This is true even for small (32-bit) floating-
point constants. It is even true on many CISC processors such as the 80x86.
Therefore, compilers often have to place floating-point constants in memory
and then have the program read them from memory, just as though they
were variables. Consider, for example, the following C program:

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv, char **envp)
{
 static int j;
 static double i = 1.0;
 static double a[8] = {0,1,2,3,4,5,6,7};

 j = 0;
 a[j] = i+1.0;

}

Now consider the PowerPC code that GCC generates for this program
with the -O2 option:

.lcomm _j.0,4,2

.data

3. You can’t always get away with using the bitwise operators; any logic that depends on short-
circuit evaluation, which the bitwise operators don’t support, will have to use the standard &&
and || operators.

160 Chapter 6

// This is the variable i.
// As it is a static object, GCC emits the data directly
// for the variable in memory. Note that "1072693248" is
// the HO 32-bits of the double-precision floating-point
// value 1.0, 0 is the LO 32-bits of this value (in integer
// form).

 .align 3
_i.1:
 .long 1072693248
 .long 0

// Here is the "a" array. Each pair of double words below
// holds one element of the array. The funny integer values
// are the integer (bitwise) representation of the values
// 0.0, 1.0, 2.0, 3.0, ..., 7.0.

 .align 3
_a.2:
 .long 0
 .long 0
 .long 1072693248
 .long 0
 .long 1073741824
 .long 0
 .long 1074266112
 .long 0
 .long 1074790400
 .long 0
 .long 1075052544
 .long 0
 .long 1075314688
 .long 0
 .long 1075576832
 .long 0

// The following is a memory location that GCC uses to represent
// the literal constant 1.0. Note that these 64 bits match the
// same value as a[1] in the _a.2 array. GCC uses this memory
// location whenever it needs the constant 1.0 in the program.

.literal8
 .align 3
LC0:
 .long 1072693248
 .long 0

// Here's the start of the main program:

.text
 .align 2
 .globl _main
_main:

Constants and High‑Level Languages 161

// This code sets up the static pointer register (R10), used to
// access the static variables in this program.

 mflr r0
 bcl 20,31,L1$pb
L1$pb:
 mflr r10
 mtlr r0

 // Load floating-point register F13 with the value
 // in variable "i":

 addis r9,r10,ha16(_i.1-L1$pb) // Point R9 at i
 li r0,0
 lfd f13,lo16(_i.1-L1$pb)(r9) // Load F13 with i's value.

 // Load floating-point register F0 with the constant 1.0
 // (which is held in "variable" LC0:

 addis r9,r10,ha16(LC0-L1$pb) // Load R9 with the
 // address of LC0
 lfd f0,lo16(LC0-L1$pb)(r9) // Load F0 with the value
 // of LC0 (1.0).

 addis r9,r10,ha16(_j.0-L1$pb) // Load R9 with j's address
 stw r0,lo16(_j.0-L1$pb)(r9) // Store a zero into j.

 addis r9,r10,ha16(_a.2-L1$pb) // Load a[j]'s address into R9

 fadd f13,f13,f0 // Compute i+1.0

 stfd f13,lo16(_a.2-L1$pb)(r9) // Store sum into a[j]
 blr // Return to caller

Because the PowerPC processor is a RISC CPU, the code that GCC gen-
erates for this simple sequence is rather convoluted. For comparison with
a CISC equivalent, consider the following HLA code for the 80x86; it is a
line-by-line translation of the C code:

program main;
static
 j:int32;
 i:real64 := 1.0;
 a:real64[8] := [0,1,2,3,4,5,6,7];

readonly
 OnePointZero : real64 := 1.0;

begin main;

 mov(0, j); // j=0;

 // push i onto the floating-point stack

162 Chapter 6

 fld(i);

 // push the value 1.0 onto the floating-point stack

 fld(OnePointZero);

 // pop i and 1.0, add them, push sum onto the FP stack

 fadd();

 // use j as an index

 mov(j, ebx);

 // Pop item off FP stack and store into a[j].

 fstp(a[ebx*8]);

end main;

This code is much easier to follow than the PowerPC code (this is one
advantage of CISC code over RISC code). Note that like the PowerPC, the
80x86 does not support an immediate addressing mode for most floating-
point operands. Therefore, as on the PowerPC, you have to place a copy of
the constant 1.0 in some memory location and access that memory location
whenever you want to work with the value 1.0.4

Because most modern CPUs do not support an immediate addressing
mode for all floating-point constants, using such constants in your pro-
grams is equivalent to accessing variables initialized with those constants.
Don’t forget that accessing memory can be very slow if the locations you’re
referencing are not in the data cache. Accordingly, using floating-point con-
stants can be very slow compared with accessing integer or other constant
values that fit within a register.

Note that some CPUs do allow you to encode certain floating-point
immediate constants as part of the instruction’s opcode. The 80x86, for
example, has a special “load zero” instruction that loads 0.0 onto the floating-
point stack. The ARM processor also provides an instruction that allows you
to load certain floating-point constants into a CPU floating-point register
(see “The vmov Instructions” in Appendix C online).

On 32-bit processors, a CPU can often do simple 32-bit floating-point
operations using integer registers and the immediate addressing mode. For
example, you can easily assign a 32-bit single-precision floating-point value
to a variable by loading a 32-bit integer register with the bit pattern for that

4. Actually, HLA does allow you to specify an instruction like fld(1.0);. However, this is not
a real CPU instruction. HLA will simply create a constant for you in the read-only data sec-
tion and load a copy of that value from memory when you execute the fld instruction. Also
note that 0.0 and 1.0 are special cases on the x86; you can use the fldz (0.0) and fld1 instruc-
tions to load these common immediate constants.

Constants and High‑Level Languages 163

number and then storing the integer register into the floating-point vari-
able. Consider the following code:

#include <stdlib.h>
#include <stdio.h>
int main(int argc, char **argv, char **envp)
{

 static float i;

 i = 1.0;

}

Here’s the PowerPC code that GCC generates for this sequence:

.lcomm _i.0,4,2 // Allocate storage for float variable i

.text
 .align 2
 .globl _main
_main:

 // Set up the static data pointer in R10:

 mflr r0
 bcl 20,31,L1$pb
L1$pb:
 mflr r10
 mtlr r0

 // Load the address of i into R9:

 addis r9,r10,ha16(_i.0-L1$pb)

 // Load R0 with the floating-point representation of 1.0
 // (note that 1.0 is equal to 0x3f800000):

 lis r0,0x3f80 // Puts 0x3f80 in HO 16 bits, 0 in LO bits

 // Store 1.0 into variable i:

 stw r0,lo16(_i.0-L1$pb)(r9)

 // Return to whomever called this code:

 blr

164 Chapter 6

The 80x86, being a CISC processor, makes this task trivial in assembly
language. Here’s the HLA code that does the same job:

program main;
static
 i:real32;
begin main;

 mov($3f800_0000, i); // i = 1.0;

end main;

Simple assignments of single-precision floating-point constants to
floating-point variables can often use a CPU’s immediate addressing
mode, sparing the program the expense of accessing memory (whose
data might not be in the cache). Unfortunately, compilers don’t always take
advantage of this trick for assigning a floating-point constant to a double-
precision variable. GCC on the PowerPC or ARM, for example, reverts to
keeping a copy of the constant in memory and copying that memory loca-
tion’s value when assigning the constant to a floating-point variable.

Most optimizing compilers are smart enough to maintain a table of con-
stants they’ve created in memory. Therefore, if you reference the constant
2.0 (or any other floating-point constant) multiple times in your source file,
the compiler will allocate only one memory object for that constant. Keep
in mind, however, that this optimization works only within the same source
file. If you reference the same constant value but in different source files,
the compiler will probably create multiple copies of that constant.

It’s certainly true that having multiple copies of the data wastes storage,
but given the amount of memory in most modern systems, that’s a minor
concern. A bigger problem is that the program usually accesses these con-
stants in a random fashion, so they’re rarely sitting in cache and, in fact,
they often evict some other more frequently used data from cache.

One solution to this problem is to manage the floating-point “constants”
yourself. Because these constants are effectively variables as far as the program
is concerned, you can take charge of this process and place the floating-
point constants you’ll need in initialized static variables. For example:

#include <stdlib.h>
#include <stdio.h>

static double OnePointZero_c = 1.0;

int main(int argc, char **argv, char **envp)
{
 static double i;

 i = OnePointZero_c;
}

Constants and High‑Level Languages 165

In this example, of course you gain absolutely nothing by treating the
floating-point constants as static variables. However, in more complex situa-
tions where you have several floating-point constants, you can analyze your
program to determine which constants you access often and place the vari-
ables for those constants at adjacent memory locations. Because of the way
most CPUs handle spatial locality of reference (see WGC1), when you access
one of these constant objects, the cache line will be filled with the values of
the adjacent objects as well. Therefore, when you access those other objects
within a short period of time, it’s likely that their values will be in the cache.
Another advantage to managing these constants yourself is that you can
create a global set of constants that you can reference from different com-
pilation units (source files), so the program accesses only a single memory
object for a given constant rather the multiple memory objects (one for
each compilation unit). Compilers generally aren’t smart enough to make
decisions like this concerning your data.

6.10 String Constants
Like floating-point constants, string constants cannot be processed effi-
ciently by most compilers (even if they are literal or manifest constants).
Understanding when you should use manifest constants and when you
should replace them with memory references can help you guide the com-
piler to produce better machine code. For example, most CPUs are not
capable of encoding a string constant as part of an instruction. Using a
manifest string constant may actually make your program less efficient.
Consider the following C code:

#define strConst "A string constant"
 .
 .
 .
 printf("string: %s\n", strConst);
 .
 .
 .
 sptr = strConst;
 .
 .
 .
 result = strcmp(s, strConst);
 .
 .
 .

166 Chapter 6

The compiler (actually, the C preprocessor) expands the macro strConst
to the string literal "A string constant" everywhere the identifier strConst
appears in the source file, so this code is actually equivalent to:

 .
 .
 .
printf("string: %s\n", "A string constant");
 .
 .
 .
sptr = "A string constant";
 .
 .
 .
result = strcmp(s, "A string constant");

The problem with this code is that the same string constant appears at
different places throughout the program. In C/C++, the compiler places the
string constant in memory and substitutes a pointer to the string. A nonopti-
mizing compiler might wind up making three separate copies of the string in
memory, which wastes space because the data is exactly the same in all three
cases. (Remember that we’re talking about constant strings here.)

Compiler writers discovered this problem a few decades ago and modified
their compilers to keep track of the strings in a given source file. If a program
used the same string literal two or more times, the compiler wouldn’t allocate
storage for a second copy of the string. Instead, it would simply use the address
of the earlier string. This optimization (constant folding) could reduce the
size of the code if the same string appeared throughout a source file.

Unfortunately, constant folding doesn’t always work properly. One
problem is that many older C programs assign a string literal constant to
a character pointer variable and then proceed to change the characters in
that literal string. For example:

sptr = "A String Constant";
 .
 .
 .
*(sptr+2) = 's';
 .
 .
 .
/* The following displays "string: 'a string Constant'" */

printf("string: '%s'\n", sptr);
 .
 .
 .
/* This prints "a string Constant"! */

printf("A String Constant");

Constants and High‑Level Languages 167

Compilers that reuse the same string constant fail if the user stores
data into the string object, as this code demonstrates. Although this is bad
programming practice, it occurred frequently enough in older C programs
that compiler vendors couldn’t use the same storage for multiple copies of
the same string literal. Even if the compiler vendor were to place the string
literal constant into write-protected memory to prevent this problem, there
are other semantic issues that this optimization raises. Consider the follow-
ing C/C++ code:

sptr1 = "A String Constant";
sptr2 = "A String Constant";
s1EQs2 = sptr1 == sptr2;

Will s1EQs2 contain true (1) or false (0) after executing this instruction
sequence? In programs written before C compilers had good optimizers avail-
able, this sequence of statements would leave false in s1EQs2. This was because
the compiler created two different copies of the same string data and placed
those strings at different addresses in memory (so the addresses the program
assigns to sptr1 and sptr2 would be different). In a later compiler that kept
only a single copy of the string data in memory, this code sequence would leave
true sitting in s1EQs2 because both sptr1 and sptr2 would be pointing at the
same memory address. This difference exists regardless of whether or not the
string data appears in write-protected memory.

To solve this dilemma, many compiler vendors provide a compiler option
to enable programmers to determine whether the compiler should emit a
single copy of each string or one copy for each occurrence of the string. If
you don’t write data into string literal constants or compare their addresses, you
can select this option to reduce the size of your programs. If you have old
code that requires separate copies of the string data (hopefully, you won’t
write new code that requires this), you can enable this option.

Unfortunately, many programmers are completely unaware of this
option, and the default condition on some compilers is generally to make
multiple copies of the string data. If you’re using C/C++ or some other
language that manipulates strings via pointers to the character data, inves-
tigate whether the compiler provides an option to merge identical strings
and, if so, activate that feature in your compiler.

If your C/C++ compiler does not offer this string-merging optimiza-
tion, you can implement it manually. To do so, just create a char array vari-
able in your program and initialize it with the address of the string. Then
use the name of that array variable exactly as you would a manifest constant
throughout your program. For example:

char strconst[] = "A String Constant";
 .
 .
 .
 sptr = strconst;
 .
 .

168 Chapter 6

 .
 printf(strconst);
 .
 .
 .
 if(strcmp(string, strconst) == 0)
 {
 .
 .
 .
 }

This code will maintain only a single copy of the string literal constant
in memory, even if the compiler doesn’t directly support the optimization.
Actually, even if your compiler does directly support this optimization,
there are several good reasons why you should use this trick rather than
relying on your compiler to do the work for you.

•	 In the future you might have to port your code to a different compiler
that doesn’t support this optimization.

•	 By handling the optimization manually, you don’t have to worry about it.

•	 By using a pointer variable rather than a string literal constant, you
have the option of easily changing the string whose address this pointer
contains under program control.

•	 In the future you might want to modify the program to switch (natural)
languages under program control.

•	 You can easily share the string between multiple files.

This string optimization discussion assumes that your programming
language manipulates strings by reference (that is, by using a pointer to the
actual string data). Although this is certainly true for C/C++ programs, it is
not true of all languages. Pascal implementations that support strings (such
as Free Pascal) typically manipulate them by value rather than by reference.
Any time you assign a string value to a string variable, the compiler makes a
copy of the string data and places that copy in the storage reserved for the
string variable. This copying process can be expensive and is unnecessary
if your program never changes the data in the string variable. Worse still, if
the (Pascal) program assigns a string literal to a string variable, the pro-
gram will have two copies of the string floating around (the string literal
constant in memory and the copy that the program made for the string
variable). If the program never again changes the string (which is not at all
uncommon), it will waste memory by maintaining two copies of the string
when one would suffice. These reasons (space and speed) are probably why
Borland went to a much more sophisticated string format when they created
Delphi 4.0, abandoning the string format in earlier versions of Delphi.5

5. “Abandoning” is probably too strong a word here. Borland (Delphi’s originator) continued
to support the old format by using a different name for the short string data type.

Constants and High‑Level Languages 169

Swift also treats strings as value objects. This means that, in the worst case,
it will make a copy of a string literal whenever you assign that string literal to
a string variable. However, Swift implements an optimization known as copy-
on-write. Whenever you assign one string object to another, Swift just copies
a pointer. Therefore, if multiple strings have been assigned the same value,
Swift will use the same string data in memory for all the copies. When you
modify some portion of the string, Swift will make a copy of the string prior
to the modification (hence the name “copy-on-write”) so that other string
objects referencing the original string data are not affected by the change.

6.11 Composite Data Type Constants
Many languages support other composite constant types (such as arrays,
structures/records, and sets) in addition to strings. Usually, the languages
use these constants to statically initialize variables prior to the program’s
execution. For example, consider the following C/C++ code:

static int arrayOfInts[8] = {1,2,3,4,5,6,7,8};

Note that arrayOfInts is not a constant. Rather, it is the initializer that
constitutes the array constant—that is, {1,2,3,4,5,6,7,8}. In the executable
file, most C compilers simply overlay the eight integers at the address associ-
ated with arrayOfInts with these eight numeric values.

For example, here’s what GCC emits for this variable:

LC0: // LC0 is the internal label associated
 // with arrayOfInts
 .long 1
 .long 2
 .long 3
 .long 4
 .long 5
 .long 6
 .long 7
 .long 8

There is no extra space consumed to hold the constant data, assuming
that arrayOfInts is a static object in C.

The rules change, however, if the variable you’re initializing is not a
statically allocated object. Consider the following short C sequence:

int f()
{
 int arrayOfInts[8] = {1,2,3,4,5,6,7,8};
 .
 .
 .
} // end f

170 Chapter 6

In this example, arrayOfInts is an automatic variable, meaning that the
program allocates storage on the stack for the variable each time the pro-
gram calls function f(). For this reason, the compiler cannot simply initial-
ize the array with the constant data when the program loads into memory.
The arrayOfInts object could actually lie at a different address on each acti-
vation of the function. To obey the semantics of the C programming lan-
guage, the compiler will have to make a copy of the array constant and then
physically copy that constant data into the arrayOfInts variable whenever
the program calls the function. Using an array constant this way consumes
extra space (to hold a copy of the array constant) and extra time (to copy
the data). Sometimes the semantics of your algorithm requires a fresh copy
of the data upon each new activation of the function f(). However, you
need to recognize when this is necessary (and when the extra space and
time are warranted) rather than blowing memory and CPU cycles.

If your program doesn’t modify the array’s data, you can use a static object
that the compiler can initialize once when it loads the program into memory:

int f()
{
 static int arrayOfInts[8] = {1,2,3,4,5,6,7,8};
 .
 .
 .
} // end f

The C/C++ languages also support struct constants. The same space
and speed considerations we’ve seen for arrays when initializing automatic
variables also apply to struct constants.

Embarcadero’s Delphi programming language also supports structured
constants, though the term “constant” is a bit misleading here. Embarcadero
calls them typed constants, and you declare them in the Delphi const section
like this:

const
 ary: array[0..7] of integer = (1,2,3,4,5,6,7,8);

Although the declaration appears in a Delphi const section, Delphi
actually treats it as a variable declaration. It’s an unfortunate design
choice, but for a programmer who wants to create structured constants,
this mechanism works fine. As with the C/C++ examples in this section, it’s
important to remember that the constant in this example is actually the
(1,2,3,4,5,6,7,8) object, not the ary variable.

Delphi (along with most modern Pascals, such as Free Pascal) supports
several other composite constant types as well. Set constants are good exam-
ples. Whenever you create a set of objects, the Pascal compiler generally ini-
tializes some memory location with a powerset (bitmap) representation of the
set’s data. Wherever you refer to that set constant in your program, the Pascal
compiler generates a memory reference to the set’s constant data in memory.

Constants and High‑Level Languages 171

Swift also supports composite data type constants for arrays, tuples, dic-
tionaries, structs/classes, and other data types. For example, the following
let statement creates an array constant with eight elements:

let someArray = [1,2,3,4,11,12,13,14]

6.12 Constants Don’t Change
In theory, values bound to a constant don’t change (Swift’s let statement
being the obvious exception). In modern systems, compilers that place
constants in memory often put them in write-protected memory regions to
force an exception if an inadvertent write occurs. Of course, few programs
can be written using only read-only (or write-once) objects. Most programs
require the ability to change the values of objects (variables) they manipu-
late. That is the subject of the next chapter.

6.13 For More Information
Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:

Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

———. Write Great Code, Volume 1: Understanding the Machine. 2nd ed.
San Francisco: No Starch Press, 2020.

This chapter explores the low-level
implementation of variables found in

high-level languages. Although assembly
language programmers usually have a good

feel for the connection between variables and memory
locations, HLLs add sufficient abstraction to obscure
this relationship. We’ll cover the following topics:

•	 The runtime memory organization typical for most compilers

•	 How the compiler breaks up memory into different sections and places
variables into each

•	 The attributes that differentiate variables from other objects

•	 The difference between static, automatic, and dynamic variables

•	 How compilers organize automatic variables in a stack frame

•	 The primitive data types that hardware provides for variables

•	 How machine instructions encode the address of a variable

7
V A R I A B L E S I N A

H I G H ‑ L E V E L L A N G U A G E

174 Chapter 7

When you finish reading this chapter, you should have a good under-
standing of how to declare variables in your program to use the least amount
of memory and produce fast-running code.

7.1 Runtime Memory Organization
As Chapter 4 discussed, operating systems (like macOS, Linux, or Windows)
put different types of data into different sections (or segments) of main mem-
ory. Although it’s possible to control the memory organization by running a
linker and specifying various command-line parameters, by default Windows
loads a typical program into memory using an organization like the one
shown in Figure 7-1 (macOS and Linux are similar, although they rearrange
some of the sections).

High addresses

Address = $0
Stack

Heap

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Constants (not user accessible)

Reserved by OS (typically 128KB)

Figure 7-1: Typical runtime memory organization for Windows

The operating system reserves the lowest memory addresses. Generally,
your application cannot access data (or execute instructions) at the low-
est addresses in memory. One reason the OS reserves this space is to help
detect NULL pointer references. Programmers often initialize pointers with
NULL (0) to indicate that the pointer is not valid. Should you attempt to access
memory location 0 under such an OS, the OS will generate a general protec-
tion fault to indicate that it’s an invalid memory location.

The remaining seven sections of memory hold different types of data
associated with your program: the stack, the heap, the code, constants, read-
only data, static (initialized) variables, and storage (uninitialized) variables.

Most of the time, a given application can live with the default layouts
chosen for these sections by the compiler and linker/loader. In some
cases, however, knowing the memory layout can help you develop shorter
programs. For example, because the code section is usually read-only, you
might be able to combine the code, constant, and read-only data sections
into a single section, thereby saving any padding space that the compiler/
linker may place between these sections. Although for large applications

Variables in a High‑Level Language 175

this is probably insignificant, for small programs it can have a big impact on
the size of the executable.

Next we’ll discuss each of these sections in detail.

7.1.1 The Code, Constant, and Read-Only Sections
The code (or text) section in memory contains the machine instructions
for a program. Your compiler translates each statement you write into a
sequence of one or more byte values (machine instruction opcodes). The
CPU interprets these opcode values during program execution.

Most compilers also attach a program’s read-only data and constant
pool (constant table) sections to the code section because, like the code
instructions, the read-only data is already write-protected. However, it is
perfectly possible under Windows, macOS, Linux, and many other operat-
ing systems to create a separate section in the executable file and mark it as
read-only. As a result, some compilers do support a separate read-only data
section, and some compilers even create a different section (the constant
pool) for the constants that the compiler emits. These sections contain ini-
tialized data, tables, and other objects that the program should not change
during program execution.

Many compilers generate multiple code sections and leave it up to the
linker to combine them into a single code segment prior to execution. To
understand why, consider the following short Pascal code fragment:

if(SomeBooleanExpression) then begin

 << Some code that executes 99.9% of the time >>

end
else begin

 << Some code that executes 0.01% of the time >>

end;

Without worrying about how it does so, assume that the compiler can
figure out that the then section of this if statement executes far more often
than the else section. An assembly programmer, wanting to write the fastest
possible code, might encode this sequence as follows:

 << evaluate Boolean expression, leave true/false in EAX >>
 test(eax, eax);
 jz exprWasFalse;
 << Some code that executes 99.9% of the time >>
rtnLabel:
 << Code normally following the last END in the
 Pascal example >>
 .
 .
 .

176 Chapter 7

// somewhere else in the code, not in the direct execution path
// of the above:

exprWasFalse:
 << Some code that executes 0.1% of the time >>

 jmp rtnLabel;

This assembly code might seem a bit convoluted, but keep in mind
that any control transfer instruction is probably going to consume a lot of
time because of pipelined operation on modern CPUs (see Chapter 9
of WGC1 for the details). Code that executes without branching (or that
falls straight through) executes the fastest. In the previous example, the
common case falls straight through 99.9 percent of the time. The rare case
winds up executing two branches (one to transfer to the else section and
one to return to the normal control flow). But because this code rarely
executes, it can afford to take longer to do so.

Many compilers use a little trick to move sections of code around like
this in the machine code they generate—they emit the code sequentially,
but place the else code in a separate section. The following MASM code
demonstrates this technique:

 << evaluate Boolean expression, leave true/false in EAX >>
 test eax, eax
 jz exprWasFalse
 << Some code that executes 99.9% of the time >>
alternateCode segment

exprWasFalse:
 << Some code that executes 0.1% of the time >>

 jmp rtnLabel;
alternateCode ends

rtnLabel:
 << Code normally following the last END in the Pascal example >>

Even though the else section code appears to immediately follow the
then section’s code, placing it in a different segment tells the assembler/
linker to move this code and combine it with other code in the alternateCode
segment. This little trick, because it relies upon the assembler or linker to
move the code, can simplify HLL compilers. (GCC, for example, uses this
approach to move code around in the assembly language file it emits.) As a
result, you will see this trick being used on occasion and can expect some
compilers to produce multiple code segments.

Variables in a High‑Level Language 177

7.1.2 The Static Variables Section
Many languages provide the ability to initialize a global variable during the
compilation phase. For example, in C/C++ you could use statements like
the following to provide initial values for these static objects:

static int i = 10;
static char ch[] = { 'a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler places these initial values
in the executable file. When you execute the application, the OS loads
the portion of the executable file that contains these static variables into
memory so that the values appear at the addresses associated with those
variables. Therefore, when the program in this example first begins execu-
tion, i and ch will have these values bound to them.

The static section is often called the DATA or _DATA segment in the assem-
bly listings that most compilers produce. As an example, consider the fol-
lowing C code fragment:

#include <stdlib.h>
#include <stdio.h>

static char *c = "";
static int i = 2;
static int j = 1;
static double array[4] = {0.0, 1.0, 2.0, 3.0};

int main(void)
{

 .
 .
 .

Here’s the MASM assembly code that the Visual C++ compiler emits for
those declarations:

_DATA SEGMENT
?c@@3PEADEA DQ FLAT:$SG6912 ; c
?i@@3HA DD 02H ; i
?j@@3HA DD 01H ; j
?array@@3PANA DQ 00000000000000000r ; 0 ; array
 DQ 03ff0000000000000r ; 1
 DQ 04000000000000000r ; 2
 DQ 04008000000000000r ; 3
_DATA ENDS

As you can see, the Visual C++ compiler places these variables in the
_DATA segment.

178 Chapter 7

7.1.3 The Storage Variables Section
Most operating systems zero out memory prior to program execution.
Therefore, if an initial value of 0 is suitable, you don’t need to waste any disk
space with the static object’s initial value. Generally, however, compilers treat
uninitialized variables in a static section as though you’ve initialized them
with 0, which consumes disk space. Some operating systems provide another
section type, the storage variables section (also known as the BSS section), to
avoid this wasted disk space.

This section is where compilers typically store static objects that don’t
have an explicit initial value. BSS, as noted in Chapter 4, stands for “block
started by a symbol,” which is an old assembly language term describing a
pseudo-opcode you would use to allocate storage for an uninitialized static
array. In modern operating systems like Windows and Linux, the compiler/
linker puts all uninitialized variables into a BSS section that simply tells
the OS how many bytes to set aside for that section. When the OS loads the
program into memory, it reserves sufficient memory for all the objects in
the BSS section and fills this range of memory with zeros. Note that the BSS
section in the executable file doesn’t contain any actual data, so programs
that declare large uninitialized static arrays in a BSS section will consume
less disk space. The following is the C/C++ example from the previous sec-
tion, modified to remove the initializers so that the compiler will place the
variables in the BSS section:

#include <stdlib.h>
#include <stdio.h>

static char *c;
static int i;
static int j;
static double array[4];

int main(void)
{
 .
 .
 .

Here is the Visual C++ output:

_BSS SEGMENT
?c@@3PEADEA DQ 01H DUP (?) ; c
?i@@3HA DD 01H DUP (?) ; i
?j@@3HA DD 01H DUP (?) ; j
?array@@3PANA DQ 04H DUP (?) ; array
_BSS ENDS

Variables in a High‑Level Language 179

Not all compilers use a BSS section. Many Microsoft languages and
linkers, for example, simply combine the uninitialized objects with the
static/read-only data section and explicitly give them an initial value of
0. Although Microsoft claims that this scheme is faster, it certainly makes
executable files larger if your code has large, uninitialized arrays (because
each byte of the array winds up in the executable file—something that
would not happen if the compiler placed the array in a BSS section). Note,
however, that this is a default condition and you can change it by setting the
appropriate linker flags.

7.1.4 The Stack Section
The stack is a data structure that expands and contracts in response to pro-
cedure invocations and returns, among other things. At runtime, the system
places all automatic variables (nonstatic local variables), subroutine param-
eters, temporary values, and other objects in the stack section of memory in
a special data structure called the activation record (which is aptly named, as
the system creates it when a subroutine first begins execution and deallocates
it when the subroutine returns to its caller). Therefore, the stack section in
memory is very busy.

Many CPUs implement the stack using a special-purpose register
called the stack pointer. Other CPUs (particularly some RISC CPUs) don’t
provide an explicit stack pointer, instead using a general-purpose register
for stack implementation. If a CPU provides a stack pointer, we say that
the CPU supports a hardware stack ; if it uses a general-purpose register,
then we say that it uses a software-implemented stack. The 80x86 is a good
example of a CPU that provides a hardware stack, and the PowerPC fam-
ily is a good example of a CPU family with a software-implemented stack
(most PowerPC programs use R1 as the stack pointer register). The ARM
CPU supports a pseudo–hardware stack; it assigns one of the general-
purpose registers as the hardware stack pointer but still requires an applica-
tion to explicitly maintain the stack. Systems that provide hardware stacks
can generally manipulate data on the stack using fewer instructions than
systems with a software-implemented stack. On the other hand, RISC CPU
designers who’ve chosen to use a software stack implementation feel that
the presence of a hardware stack actually slows down all instructions the
CPU executes. In theory, you could argue that the RISC designers are right;
in practice, the 80x86 family includes some of the fastest CPUs around, pro-
viding ample proof that having a hardware stack doesn’t necessarily mean
you’ll wind up with a slow CPU.

7.1.5 The Heap Section and Dynamic Memory Allocation
Although simple programs may need only static and automatic variables,
sophisticated programs need to be able to allocate and deallocate stor-
age dynamically under program control. In the C and HLA languages,
you would use the malloc() and free() functions for this purpose. C++
provides the new and delete (and std::unique_ptr) operators. Pascal uses

180 Chapter 7

new and dispose. Java and Swift use new (deallocation is automatic in these
languages). Other languages provide comparable routines. These memory
allocation routines have a few things in common:

•	 They let the programmer request how many bytes of storage to allocate
(either by explicitly specifying the number of bytes to allocate or by
specifying some data type whose size is known).

•	 They return a pointer to the newly allocated storage (that is, the address
of that storage).

•	 They provide a facility for returning the storage space to the system
once it is no longer needed so the system can reuse it in a future alloca-
tion call.

Dynamic memory allocation takes place in a section of memory known
as the heap. Generally, an application refers to data on the heap using
pointer variables, either implicitly or explicitly; some languages, like Java
and Swift, implicitly use pointers behind the scenes. Thus, these objects in
heap memory are usually referred to as anonymous variables because they are
referred to by their memory address (via pointers) rather than by a name.

The OS and application create the heap section in memory after the
program begins execution; the heap is never a part of the executable file.
Generally, the OS and language runtime libraries maintain the heap for
an application. Despite the variations in memory management implemen-
tations, it’s a good idea for you to have a basic idea of how heap allocation
and deallocation operate, because using them inappropriately will have a
very negative impact on your application performance.

7.2 What Is a Variable?
If you consider the word variable, it’s obvious that it describes something that
varies. But exactly what is it that varies? Most programmers would say that it’s
the value that can vary during program execution. In fact, though, there are
several things that can vary, so before defining a variable explicitly, we’ll dis-
cuss some characteristics that variables (and other objects) may possess.

7.2.1 Attributes
An attribute is some feature that is associated with an object. For example,
common attributes of a variable include its name, its memory address, its
size (in bytes), its runtime value, and a data type associated with that value.
Different objects may have different sets of attributes. For example, a data
type is an object that has attributes such as a name and size, but it won’t
usually have a value or memory location associated with it. A constant can
have attributes such as a value and a data type, but it doesn’t have a memory
location and it might not have a name (for example, if it’s a literal con-
stant). A variable may possess all of these attributes. Indeed, the attribute
list usually determines whether an object is a constant, data type, variable,
or something else.

Variables in a High‑Level Language 181

7.2.2 Binding
Binding, introduced in Chapter 6, is the process of associating an attribute
with an object. For example, when a value is assigned to a variable, the
value is bound to that variable at the point of the assignment. This bond
remains until some other value is bound to the variable (via another assign-
ment operation). Likewise, if you allocate memory for a variable while the
program is running, the variable is bound to the memory address at that
point. The variable and address are bound until you associate a different
address with the variable. Binding needn’t occur at runtime. For example,
values are bound to constant objects during compilation, and these bonds
cannot change while the program is running. Similarly, addresses are bound
to some variables at compile time, and those memory addresses cannot
change during program execution (see “Binding Times” on page 150 for
more details).

7.2.3 Static Objects
Static objects have an attribute bound to them prior to the application’s exe-
cution. Constants are good examples of static objects; they have the same
value bound to them throughout program execution.1 Global (program-
level) variables in programming languages like Pascal, C/C++, and Ada
are also examples of static objects because they have the same memory
address bound to them throughout the program’s lifetime. The system
binds attributes to a static object before the program begins execution
(usually during compilation, linking, or even loading, though it is possible
to bind values even earlier).

7.2.4 Dynamic Objects
Dynamic objects have some attribute bound to them during program execu-
tion. While it is running, the program may choose to change that attribute
(dynamically). Dynamic attributes usually cannot be determined at compile
time. Examples of dynamic attributes include values bound to variables at
runtime and memory addresses bound to certain variables at runtime (for
example, via a malloc() or other memory allocation function call).

7.2.5 Scope
The scope of an identifier is the section of the program where the identifier’s
name is bound to the object. Because names in most compiled languages
exist only during compilation, scope is usually a static attribute (although
in some languages it can be dynamic, as I’ll explain shortly). By controlling
where a name is bound to an object, you can reuse that name elsewhere in
the program.

Most modern programming languages (such as C/C++/C#, Java, Pascal,
Swift, and Ada) support the concept of local and global variables. A local

1. Swift constants defined with the let statement are an exception to this rule.

182 Chapter 7

variable’s name is bound to a particular object only within a given section of
a program (for example, within a particular function). Outside the scope
of that object, the name can be bound to a different object. This allows
a global and a local object to share the same name without any ambigu-
ity. This may seem potentially confusing, but being able to reuse variable
names like i or j throughout a project can spare you from having to dream
up equally meaningless unique variable names for loop indexes and other
uses in the program. The scope of the object’s declaration determines
where the name applies to a given object.

In interpretive languages, where the interpreter maintains the identi-
fier names during program execution, scope can be a dynamic attribute.
For example, in various versions of the BASIC programming language, dim
is an executable statement. Before you execute dim, the name you define
might have a completely different meaning than it does after you execute
dim. SNOBOL4 is another language that supports dynamic scope. Still, most
programming languages avoid dynamic scope because using it can result in
difficult-to-understand programs.

Technically, scope can apply to any attribute, not just names, but this book
will use the term only in contexts where a name is bound to a given variable.

7.2.6 Lifetime
The lifetime of an attribute extends from the point when you first bind an
attribute to an object to the point you break that bond, perhaps by binding a
different attribute to the object. If the program associates some attribute with
an object and never breaks that bond, the lifetime of the attribute is from the
point of association to the point the program terminates. For example, the
lifetime of a variable is from the time you first allocate memory for the vari-
able to the moment you deallocate that variable’s storage. Because a program
binds static objects prior to execution (and static attributes do not change
during program execution), the lifetime of a static object extends from when
the program begins execution to when it terminates.

7.2.7 Variable Definition
To return to the question that started this section, we can now define vari-
able as an object that can have a value bound to it dynamically. That is, the
program can change the variable’s value attribute at runtime. Note the
operative word can. It is necessary only for the program to be able to change
a variable’s value at runtime; it doesn’t have to do so for the object to be
considered a variable.

While dynamic binding of a value to an object is the defining attribute
of a variable, other attributes may be dynamic or static. For example, the
memory address of a variable can be statically bound to the variable at com-
pile time or dynamically bound at runtime. Likewise, variables in some lan-
guages have dynamic types that change during program execution, while
other variables have static types that remain fixed over an application’s
execution. Only the binding of the value determines whether the object
is a variable or something else (such as a constant).

Variables in a High‑Level Language 183

7.3 Variable Storage
Values must be stored in and retrieved from memory.2 To do this, a com-
piler must bind a variable to one or more memory locations. The variable’s
type determines the amount of storage it requires. Character variables
may require as little as a single byte of storage, while large arrays or records
can require thousands, millions, or more. To associate a variable with some
memory, a compiler (or runtime system) binds the address of that memory
location to that variable. When a variable requires two or more memory
locations, the system usually binds the address of the first memory location
to the variable and assumes that the contiguous locations following that
address are also bound to the variable at runtime.

Three types of bindings are possible between variables and memory
locations: static binding, pseudo-static (automatic) binding, and dynamic
binding. Variables are generally classified as static, automatic, or dynamic
based upon how they are bound to their memory locations.

7.3.1 Static Binding and Static Variables
Static binding occurs prior to runtime, at one of four possible times: at
language design time, at compile time, at link time, or when the system
loads the application into memory (but prior to execution). Binding at
language design time is not all that common, but it does occur in some
languages (especially assembly languages). Binding at compile time is
common in assemblers and compilers that directly produce executable
code. Binding at link time is fairly common (for example, some Windows
compilers do this). Binding at load time, when the OS copies the execut-
able into memory, is probably the most common for static variables. We’ll
look at each possibility in turn.

7.3.1.1 Binding at Language Design Time

An address can be assigned at language design time when a language designer
associates a language-defined variable with a specific hardware address (for
example, an I/O device or a special kind of memory), and that address never
changes in any program. Such objects are common in embedded systems
and rarely found in applications on general-purpose computer systems. For
example, on an 8051 microcontroller, many C compilers and assemblers auto-
matically associate certain names with fixed locations in the 128 bytes of data
space found on the CPU. CPU register references in assembly language are
good examples of variables bound to some location at language design time.

7.3.1.2 Binding at Compile Time

An address can be assigned at compile time when the compiler knows the
memory region where it can place static variables at runtime. Generally,

2. Technically, you can store values in machine registers, too. We’ll consider machine regis-
ters a special form of memory for the sake of this discussion.

184 Chapter 7

such compilers generate absolute machine code that must be loaded at
a specific address in memory prior to execution. Most modern compil-
ers generate relocatable code and, therefore, don’t fall into this category.
Nevertheless, lower-end compilers, high-speed student compilers, and com-
pilers for embedded systems often use this binding technique.

7.3.1.3 Binding at Link Time

Certain linkers and related tools can link together various relocatable object
modules of an application and create an absolute load module. So, while the
compiler produces relocatable code, the linker binds memory addresses to
the variables (and machine instructions). Usually, the programmer specifies
(via command-line parameters or a linker script file) the base address of all
the static variables in the program; the linker will bind the static variables
to consecutive addresses starting at the base address. Programmers who are
placing their applications in read-only memory (ROM), such as a BIOS (Basic
Input/Output System) ROM for a PC, often employ this scheme.

7.3.1.4 Binding at Load Time

The most common form of static binding occurs at load time. Executable
formats such as Microsoft’s PE/COFF and Linux’s ELF usually embed relo-
cation information in the executable file. The OS, when it loads the applica-
tion into memory, decides where to place the block of static variable objects
and then patches all the addresses within instructions that reference those
static objects. This allows the loader (for example, the OS) to assign a dif-
ferent address to a static object each time it loads it into memory.

7.3.1.5 Static Variable Binding

A static variable has a memory address bound to it prior to program execu-
tion, and enjoys a couple of advantages over other variable types. Because
the compiler knows a static variable’s address prior to runtime, it can often
use an absolute addressing mode or some other simple addressing mode to
access that variable. Static variable access is often more efficient than other
variable accesses because it doesn’t require any additional setup.3

Another benefit of static variables is that they retain any value bound
to them until you explicitly bind another value or until the program ter-
minates. This means that static variables retain values while other events
(such as procedure activation and deactivation) occur. Different threads
in a multi threaded application can also share data using static variables.

Static variables also have a few disadvantages worth mentioning. First
of all, because the lifetime of a static variable matches that of the program,

3. At least, on an 80x86 CPU or some other CPU that supports absolute addresses. Most RISC
processors do not support absolute addressing, so the program must set up a static frame
pointer or global frame register when it first begins execution, but it only has to do so once,
so we can ignore the associated performance issues.

Variables in a High‑Level Language 185

it consumes memory the entire time the program is running. This is true
even if the program no longer requires the value held by the static object.

Another disadvantage to static variables (particularly when using the
absolute addressing mode) is that the entire absolute address must usually
be encoded as part of the instruction, which makes the instruction much
larger. Indeed, on most RISC processors an absolute addressing mode
isn’t even available because you cannot encode an absolute address in a
single instruction.

Finally, code that uses static objects is not reentrant (meaning two
threads or processes can concurrently execute the same code sequence);
this means more effort is required to use that code in a multithreaded envi-
ronment (where two copies of a section of code could be executing simul-
taneously, both accessing the same static object). However, multithreaded
operation introduces a lot of complexity that is beyond the scope of this
chapter, so we’ll ignore this issue for now.

N O T E See any good textbook on operating system design or concurrent programming for
more details concerning the use of static objects. Foundations of Multithreaded,
Parallel, and Distributed Programming by Gregory R. Andrews (Addison-
Wesley, 1999) is a good place to start.

The following example demonstrates the use of static variables in a C
program and shows the 80x86 code that the Visual C++ compiler generates
to access them:

#include <stdio.h>

static int i = 5;
static int j = 6;

int main(int argc, char **argv)
{

 i = j + 3;
 j = i + 2;
 printf("%d %d\n", i, j);
 return 0;
}

; The following are the memory declarations
; for the 'i' and 'j' variables. Note that
; these are declared in the global '_DATA'
; section.

_DATA SEGMENT
i DD 05H
j DD 06H
$SG6835 DB '%d %d', 0aH, 00H
_DATA ENDS

186 Chapter 7

main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 8
;
; int main(int argc, char **argv)
; {
$LN3:
 mov QWORD PTR [rsp+16], rdx
 mov DWORD PTR [rsp+8], ecx
 sub rsp, 40 ; 00000028H
; Line 10
;
; i = j + 3;
;
; Load the EAX register with the
; current value of the global j
; variable using the displacement-only
; addressing mode, add three to the
; value, and store back into 'i':

 mov eax, DWORD PTR j
 add eax, 3
 mov DWORD PTR i, eax

; Line 11
;
; j = i + 2;
;
 mov eax, DWORD PTR i
 add eax, 2
 mov DWORD PTR j, eax

; Line 12
; Load i, j, and format string into appropriate registers
; and call printf:

 mov r8d, DWORD PTR j
 mov edx, DWORD PTR i
 lea rcx, OFFSET FLAT:$SG6835
 call printf
; Line 13
;
; RETURN 0

 xor eax, eax
; Line 14
 add rsp, 40 ; 00000028H
 ret 0
main ENDP
_TEXT ENDS

As the comments point out, the assembly language code the compiler
emits uses the displacement-only addressing mode to access all the static
variables.

Variables in a High‑Level Language 187

7.3.2 Pseudo-Static Binding and Automatic Variables
Automatic variables have an address bound to them when a procedure or
other block of code begins execution. The program releases that storage
when the block or procedure completes execution. We call these objects
automatic variables because the runtime code automatically allocates and
deallocates storage for them, as needed.

In most programming languages, automatic variables use a combination
of static and dynamic binding known as pseudo-static binding. The compiler
assigns an offset from a base address to a variable name during compilation.
At runtime the offset always remains fixed, but the base address can vary.
For example, a procedure or function allocates storage for a block of local
variables (the activation record, introduced earlier in the chapter) and then
accesses the local variables at fixed offsets from the start of that block of
storage. Although the program cannot determine the final memory address
of the variable until runtime, the compiler can select an offset that never
changes during program execution, hence the name pseudo-static.

Some programming languages use the term local variables in place of
automatic variables. A local variable’s name is statically bound to a given
procedure or block (that is, the scope of the name is limited to that proce-
dure or block of code). Therefore, local is a static attribute in this context.
It’s easy to see why the terms local variable and automatic variable are often
confused. In some programming languages, such as Pascal, local variables
are always automatic variables and vice versa. Nonetheless, always keep in
mind that local is a static attribute and automatic is a dynamic one.4

Automatic variables have a couple of important advantages. First, they
consume storage only while the procedure or block containing them is exe-
cuting. This allows multiple blocks and procedures to share the same pool
of memory for their automatic variable needs. Although some extra code
must execute in order to manage automatic variables (in the activation
record), this requires only a few machine instructions on most CPUs and
has to be done only once for each procedure/block entry and exit. While
in certain circumstances, the cost can be significant, the extra time and
space needed to set up and tear down the activation record is usually incon-
sequential. Another advantage of automatic variables is that they often use
a base-plus-offset addressing mode, where the base of the activation record is
kept in a register and the offsets into the activation record are small—often
256 bytes or fewer. Therefore, CPUs don’t have to encode a full 32-bit (for
example) address as part of the machine instruction—just an 8-bit (or
other small) displacement, yielding shorter instructions. It’s also worth not-
ing that automatic variables are “thread-safe” and code that uses automatic
variables can be reentrant. This is because each thread maintains its own
stack space (or similar data structure) where compilers maintain automatic

4. Some languages, such as C/C++, allow you to declare local static variables. Such variables
have a local name whose scope is limited to the function in which you declare them, but have
a lifetime that equals the execution of the entire program.

188 Chapter 7

variables; therefore, each thread will have its own copy of any automatic
variables the program uses.

Automatic variables do have some disadvantages, though. If you want
to initialize an automatic variable, you have to use machine instructions to
do so. You can’t initialize an automatic variable, as you can static variables,
when the program loads into memory. Also, any values maintained in
automatic variables are lost whenever you exit the block or procedure
containing them. As noted, automatic variables require a small amount
of overhead; some machine instructions must execute in order to build
and destroy the activation record containing those variables.

Here’s a short C example that uses automatic variables and the 80x86
assembly code that the Microsoft Visual C++ compiler produces for it:

#include <stdio.h>

int main(int argc, char **argv)
{

 int i;
 int j;

 j = 1;
 i = j + 3;
 j = i + 2;
 printf("%d %d\n", i, j);
 return 0;
}

; Data emitted for the string constant
; in the printf function call:

CONST SEGMENT
$SG6917 DB '%d %d', 0aH, 00H
CONST ENDS

PUBLIC _main
EXTRN _printf:NEAR
; Function compile flags: /Ods

_TEXT SEGMENT
j$ = 32
i$ = 36
argc$ = 64
argv$ = 72
main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 5
$LN3:
 mov QWORD PTR [rsp+16], rdx
 mov DWORD PTR [rsp+8], ecx

Variables in a High‑Level Language 189

 sub rsp, 56 ; 00000038H
; Line 10
 mov DWORD PTR j$[rsp], 1
; Line 11
 mov eax, DWORD PTR j$[rsp]
 add eax, 3
 mov DWORD PTR i$[rsp], eax
; Line 12
 mov eax, DWORD PTR i$[rsp]
 add eax, 2
 mov DWORD PTR j$[rsp], eax
; Line 13
 mov r8d, DWORD PTR j$[rsp]
 mov edx, DWORD PTR i$[rsp]
 lea rcx, OFFSET FLAT:$SG6917
 call printf
; Line 14
 xor eax, eax
; Line 15
 add rsp, 56 ; 00000038H
 ret 0
main ENDP
_TEXT ENDS

Note that when accessing automatic variables, the assembly code uses a
base-plus-displacement addressing mode (for example, j$[rsp]). This addressing
mode is often shorter than the displacement-only or RIP-relative address-
ing mode that static variables use (assuming, of course, that the offset to the
automatic object is within 127 bytes of the base address held in RSP).5

7.3.3 Dynamic Binding and Dynamic Variables
A dynamic variable has storage bound to it at runtime. In some languages,
the application programmer is completely responsible for binding addresses
to dynamic objects; in other languages, the runtime system automatically
allocates and deallocates storage for a dynamic variable.

Dynamic variables are generally allocated on the heap via a memory
allocation function such as malloc() or new() (or std::unique_ptr). The com-
piler has no way of determining the runtime address of a dynamic object,
so the program must always refer to a dynamic object indirectly—that is, by
using a pointer.

The big advantage to dynamic variables is that the application controls
their lifetimes. Dynamic variables consume storage only as long as neces-
sary, and the runtime system can reclaim that storage when the variable
no longer requires it. Unlike automatic variables, the lifetime of a dynamic

5. Visual C++ would normally use RBP as the base register (pointing at the activation record).
In this particular example, Visual C++ was able to determine that it could optimize out
setting up the RBP register and access local variables using the RSP register as the base
pointer register.

190 Chapter 7

variable is not tied to the lifetime of some other object, such as a procedure
or code block entry and exit. Memory is bound to a dynamic variable at
the point the variable first needs it, and can be released when the variable
no longer needs it. For variables that require considerable storage, then,
dynamic allocation can make efficient use of memory.

Another advantage to dynamic variables is that most code references
dynamic objects using a pointer. If that pointer value is already sitting in
a CPU register, the program can usually reference that data using a short
machine instruction, requiring no extra bits to encode an offset or address.

Dynamic variables have several disadvantages as well. First, some stor-
age overhead is often necessary to maintain them. Static and automatic
objects usually don’t require extra storage; the runtime system, on the
other hand, often requires some number of bytes to keep track of each
dynamic variable in the system. This overhead ranges anywhere from 4 or
8 bytes to many dozens of bytes (in an extreme case) and keeps track of
things like the current memory address of the object, the size of the object,
and its type. If you’re allocating small objects, like integers or characters,
the amount of storage required for bookkeeping purposes could exceed the
storage required for the actual data. Also, since most languages reference
dynamic objects using pointer variables, those pointers require some addi-
tional storage above and beyond the actual storage for the dynamic data.

Another problem with dynamic variables is performance. Because
dynamic data is usually found in memory, the CPU has to access memory
(which is slower than cached memory) on nearly every dynamic variable
access. Even worse, accessing dynamic data often requires two memory
accesses—one to fetch the pointer’s value and one to fetch the dynamic data,
indirectly through the pointer. Managing the heap, where the runtime system
keeps the dynamic data, can also impact performance. Whenever an applica-
tion requests storage for a dynamic object, the runtime system has to search
for a contiguous block of free memory large enough to satisfy the request.
This search operation can be computationally expensive, depending on the
heap’s organization (which affects the amount of overhead storage associated
with each dynamic variable). Furthermore, when releasing a dynamic object,
the runtime system may need to execute some code in order to free up that
storage for use by other dynamic objects. These runtime heap allocation and
deallocation operations are usually far more expensive than allocating and
deallocating a block of automatic variables during procedure entry/exit.

Another consideration with dynamic variables is that some languages
(such as Pascal and C/C++6) require the application programmer to explic-
itly allocate and deallocate storage for dynamic variables. Without automatic
allocation and deallocation, defects due to human error can creep into the
code. This is why languages such as C#, Java, and Swift attempt to handle
dynamic allocation automatically, even though this process can be slower.

6. Modern versions of C++ provide automatic deallocation when you’re using smart pointers.

Variables in a High‑Level Language 191

Here’s a short example in C that demonstrates the kind of code that the
Microsoft Visual C++ compiler generates in order to access dynamic objects
allocated with malloc().

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv)
{

 int *i;
 int *j;

 i = (int *) malloc(sizeof(int));
 j = (int *) malloc(sizeof(int));
 *i = 1;
 *j = 2;
 printf("%d %d\n", *i, *j);
 free(i);
 free(j);
 return 0;
}

Here’s the machine code the compiler generates, including (manually
inserted) comments that describe the extra work needed to access dynami-
cally allocated objects:

_DATA SEGMENT
$SG6837 DB '%d %d', 0aH, 00H
_DATA ENDS
PUBLIC _main
_TEXT SEGMENT
i$ = 32
j$ = 40
argc$ = 64
argv$ = 72
main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 7 // Construct the activation record
$LN3:
 mov QWORD PTR [rsp+16], rdx
 mov DWORD PTR [rsp+8], ecx
 sub rsp, 56 ; 00000038H

; Line 13
; Call malloc and store the returned
; pointer value into the i variable:

 mov ecx, 4
 call malloc
 mov QWORD PTR i$[rsp], rax

192 Chapter 7

; Line 14
; Call malloc and store the returned
; pointer value into the j variable:

 mov ecx, 4
 call malloc
 mov QWORD PTR j$[rsp], rax

; Line 15
; Store 1 into the dynamic variable pointed
; at by i. Note that this requires two
; instructions.

 mov rax, QWORD PTR i$[rsp]
 mov DWORD PTR [rax], 1

; Line 16
; Store 2 into the dynamic variable pointed
; at by j. This also requires two instructions.

 mov rax, QWORD PTR j$[rsp]
 mov DWORD PTR [rax], 2

; Line 17
; Call printf to print the dynamic variables'
; values:

 mov rax, QWORD PTR j$[rsp]
 mov r8d, DWORD PTR [rax]
 mov rax, QWORD PTR i$[rsp]
 mov edx, DWORD PTR [rax]
 lea rcx, OFFSET FLAT:$SG6837
 call printf

; Line 18
; Free the two variables
;
 mov rcx, QWORD PTR i$[rsp]
 call free
; Line 19
 mov rcx, QWORD PTR j$[rsp]
 call free

; Line 20
; Return a function result of zero:
 xor eax, eax
; Line 21
 add rsp, 56 ; 00000038H
 ret 0
main ENDP
_TEXT ENDS
END

As you can see, accessing dynamically allocated variables via a pointer
requires a lot of extra work.

Variables in a High‑Level Language 193

7.4 Common Primitive Data Types
Computer data always has a data type attribute that describes how the pro-
gram interprets that data. The data type also determines the size (in bytes)
of the data in memory. Data types can be divided into two categories: primi-
tive data types, which the CPU can hold in a CPU register and operate upon
directly, and composite data types, which are composed of smaller primitive data
types. In the following sections we’ll review (from WGC1) the primitive data
types found on most modern CPUs, and in the next chapter I’ll begin dis-
cussing composite data types.

7.4.1 Integer Variables
Most programming languages provide some mechanism for storing inte-
ger values in memory variables. In general, a programming language uses
either unsigned binary representation, two’s-complement representation, or
binary-coded decimal representation (or a combination of these) to repre-
sent integer values.

Perhaps the most fundamental property of an integer variable in a pro-
gramming language is the number of bits allocated to represent that integer
value. In most modern programming languages, the number of bits used to
represent an integer value is usually 8, 16, 32, 64, or some other power of two.
Many languages provide only a single size for representing integers, but some
languages let you select from several different sizes. You choose the size based
on the range of values you want to represent, the amount of memory you
want the variable to consume, and the performance of arithmetic operations
involving that value. Table 7-1 lists some common sizes and ranges for various
signed, unsigned, and decimal integer variables.

Not all languages support all of these different sizes (indeed, to support
all of them in the same program, you’d probably have to use assembly lan-
guage). As noted earlier, some languages provide only a single size, which is
usually the processor’s native integer size (that is, the size of a CPU general-
purpose integer register).

Languages that do provide multiple integer sizes often don’t give you
an explicit selection of sizes from which to choose. For example, the C pro-
gramming language provides up to five different integer sizes: char (which
is always 1 byte), short, int, long, and long long. With the exception of the
char type, C does not specify the sizes of these integer types other than
to state that short integers are less than or equal to int objects in size, int
objects are less than or equal to long integers in size, and long integers are
less than or equal to long long integers in size. (In fact, all four could be the
same size.) C programs that depend on integers being a certain size may
fail when compiled with different compilers that don’t use the same sizes as
the original compiler.

N O T E C99 and C++11 include types of exact sizes: int8_t, int16_t, int32_t, int64_t,
and so on.

194 Chapter 7

Table 7-1: Common Integer Sizes and Their Ranges

Size,
in bits

Representation Unsigned range

8 Unsigned 0..255

Signed -128..+127

Decimal 0..99

16 Unsigned 0..65,536

Signed -32768..+32,767

Decimal 0..9999

32 Unsigned 0..4,294,967,295

Signed -2,147,483,648..+2,147,483,647

Decimal 0..99999999

64 Unsigned 0..18,466,744,073,709,551,615

Signed -9,223,372,036,854,775,808..
+9,223,372,036,854,775,807

Decimal 0..9999999999999999

128 Unsigned 0..340,282,366,920,938,463,563,374,607,431,768,211,455

Signed -170,141,183,460,469,231,731,687,303,715,884,105,728..
+170,141,183,460,469,231,731,687,303,715,884,105,727

Decimal 0..99999999999999999999999999999999

While it may seem inconvenient that various programming languages
avoid specifying an exact size for an integer variable, keep in mind that this
ambiguity is intentional. When you declare an “integer” variable in a given
programming language, the language leaves it up to the compiler’s imple-
menter to choose the best size for that integer, based on performance and
other considerations. The definition of “best” may change based on the CPU
for which the compiler generates code. For example, a compiler for a 16-bit
processor may choose to implement 16-bit integers because the CPU pro-
cesses them most efficiently. A compiler for a 32-bit processor, however, may
choose to implement 32-bit integers (for the same reason). Languages that
specify the exact size of various integer formats (such as Java) can suffer as
processor technology evolves and it becomes more efficient to process larger
data objects. For example, when the world switched from 16-bit processors to
32-bit processors in general-purpose computer systems, it was actually faster
to do 32-bit arithmetic on most of the newer processors. Therefore, compiler
writers redefined integer to mean “32-bit integer” in order to maximize the
performance of programs employing integer arithmetic.

Some programming languages provide support for unsigned integer
variables as well as signed integers. At first glance, it might seem that the
whole purpose behind supporting unsigned integers is to provide twice
the number of positive values when negative values aren’t required. In fact,
there are many other reasons great programmers might choose unsigned
over signed integers when writing efficient code.

Variables in a High‑Level Language 195

The Swift programming language gives you explicit control over the
size of integers. Swift provides 8-bit (signed) integers (Int8), 16-bit integers
(Int16), 32-bit integers (Int32), and 64-bit integers (Int64). Swift also pro-
vides an Int type that’s either 32 bits or 64 bits depending on the native
(most efficient) integer format for the underlying CPU. Swift further pro-
vides 8-bit unsigned integers (UInt8), 16-bit unsigned integers (UInt16),
32-bit unsigned integers (UInt32), 64-bit unsigned integers (UInt64), and a
generic UInt type whose size is determined by the native CPU size.

On some CPUs, unsigned integer multiplication and division are faster
than their signed counterparts. You can compare values within the range
0..n more efficiently using unsigned integers rather than signed integers
(the unsigned case requires only a single comparison against n); this is
especially important when checking bounds of array indices where the
array’s element index begins at 0.

Many programming languages allow you to include variables of differ-
ent sizes within the same arithmetic expression. The compiler automatically
sign-extends or zero-extends operands to the larger size within an expres-
sion as needed to compute the final result. The problem with this automatic
conversion is that it hides the fact that extra work is required to process the
expression, and the expressions themselves don’t explicitly show this. An
assignment statement such as:

x = y + z - t;

could be a short sequence of machine instructions if the operands are all
the same size, or it could require some additional instructions if the oper-
ands have different sizes. For example, consider the following C code:

#include <stdio.h>

static char c;
static short s;
static long l;

static long a;
static long b;
static long d;

int main(int argc, char **argv)
{

 l = l + s + c;
 printf("%ld %hd %hhd\n", l, s, c);

 a = a + b + d;
 printf("%ld %ld %ld\n", a, b, d);

 return 0;
}

196 Chapter 7

Compiling it with the Visual C++ compiler gives the following two
assembly language sequences for the two assignment statements:

; l = l + s + c;
;
 movsx eax, WORD PTR s
 mov ecx, DWORD PTR l
 add ecx, eax
 mov eax, ecx
 movsx ecx, BYTE PTR c
 add eax, ecx
 mov DWORD PTR l, eax
;
; a = a + b + d;
;
 mov eax, DWORD PTR b
 mov ecx, DWORD PTR a
 add ecx, eax
 mov eax, ecx
 add eax, DWORD PTR d
 mov DWORD PTR a, eax

As you can see, the statement that operates on variables whose sizes are
all the same uses fewer instructions than the one that mixes operand sizes
in the expression.

When using different-sized integers in an expression, it’s also important
to note that not all CPUs support all operand sizes equally efficiently. While it
makes sense that using an integer size larger than the CPU’s general-purpose
integer registers will produce inefficient code, it might not be quite as obvious
that using smaller integer values can be inefficient as well. Many RISC CPUs
work only on operands that are exactly the same size as the general-purpose
registers. Smaller operands must first be zero-extended or sign-extended to
the size of a general-purpose register prior to any calculations involving those
values. Even on CISC processors, such as the 80x86, that have hardware sup-
port for different sizes of integers, using certain sizes can be more expensive.
For example, under 32-bit operating systems, instructions that manipulate
16-bit operands require an extra opcode prefix byte and are therefore larger
than instructions that operate on 8-bit or 32-bit operands.

7.4.2 Floating-Point/Real Variables
Like integers, many HLLs provide multiple floating-point variable sizes.
Most languages provide at least two different sizes: a 32-bit single-precision
floating-point format and a 64-bit double-precision floating-point format,
based on the IEEE 754 floating-point standard. A few languages provide 80-bit
floating-point variables (Swift is a good example), based on Intel’s 80-bit
extended-precision floating-point format, but that usage is increasingly
rare. The later ARM processors support quad-precision floating-point arith-
metic (128-bit); some variants of GCC support a _float128 type that uses
quad-precision arithmetic.

Variables in a High‑Level Language 197

Different floating-point formats trade off space and performance for
precision. Calculations involving smaller floating-point formats are usually
quicker than calculations involving the larger formats. However, you give up
precision to achieve improved performance and size savings (see Chapter 4
of WGC1 for the details).

As with expressions involving integer arithmetic, you should avoid mix-
ing different-sized floating-point operands in an expression. The CPU (or
FPU) must convert all floating-point values to the same format before using
them. This can involve additional instructions (consuming more memory)
and additional time. Therefore, you should try to use the same floating-
point types throughout an expression wherever possible.

Conversion between integer and floating-point formats is another expen-
sive operation you should avoid. Modern HLLs attempt to keep variables’
values in registers as much as possible. Unfortunately, on some modern CPUs
it’s impossible to move data between the integer and floating-point regis-
ters without first copying that data to memory (which is expensive, because
memory is slow). Furthermore, conversion between integer and floating-point
numbers often involves several specialized instructions, all of which consume
time and memory. Whenever possible, avoid these conversions.

7.4.3 Character Variables
Standard character data in most modern HLLs consumes 1 byte per char-
acter. On CPUs that support byte addressing, such as the Intel 80x86 pro-
cessor, a compiler can reserve a single byte of storage for each character
variable and efficiently access that character variable in memory. Some
RISC CPUs, however, cannot access data in memory except in 32-bit chunks
(or another size other than 8 bits).

For CPUs that cannot address individual bytes in memory, HLL compil-
ers usually reserve 32 bits for a character variable and use only the LO byte of
that double-word variable for the character data. Because few programs have
a large number of scalar character variables,7 the amount of space wasted is
hardly an issue in most systems. However, if you have an unpacked array of
characters, then the wasted space can become significant. We’ll return to this
issue in Chapter 8.

Modern programming languages support the Unicode character set.
Unicode characters can require between 1 and 4 bytes of memory to hold
the character’s data value (depending on the underlying encoding, such
as UTF-8, UTF-16, or UTF-32). As time passes, Unicode will likely replace
the ASCII character set for most character- and string-oriented operations
except in those programs that require high-performance random access to
characters within strings (where Unicode performance suffers).

7.4.4 Boolean Variables
A Boolean variable requires only a single bit to represent the two values
true or false. HLLs usually reserve the smallest amount of memory possible

7. Scalar, in this context, means “not an array of characters.”

198 Chapter 7

for these variables (a byte on machines that support byte addressing, and
a larger amount of memory on those CPUs that can address only 16-bit,
32-bit, or 64-bit memory values). However, this isn’t always the case. Some
languages (like FORTRAN) allow you to create multibyte Boolean variables
(for example, the FORTRAN LOGICAL*4 data type).

Some languages (early versions of C/C++, for example) don’t support
an explicit Boolean data type. Instead, they use an integer data type to rep-
resent Boolean values. Those C/C++ implementations use 0 and nonzero to
represent false and true, respectively. In such languages, you get to choose
the size of your Boolean variables by choosing the size of the integer you use
to hold them. For example, in a typical older 32-bit implementation of the
C/C++ languages, you can define 1-byte, 2-byte, or 4-byte Boolean values as
shown in Table 7-2.8

Table 7-2: Defining Boolean Value Sizes

C integer data type Size of Boolean object

char 1 byte
short int 2 bytes
long int 4 bytes

Some languages, under certain circumstances, use only a single bit of
storage for a Boolean variable when that variable is a field of a record or an
element of an array. We’ll return to this discussion in Chapters 8–11 when
considering composite data structures.

7.5 Variable Addresses and High-Level Languages
The organization, class, and type of variables in your programs can affect
the efficiency of the code that a compiler produces. Additionally, issues
like the order of declaration, the size of the object, and the placement of
the object in memory can have a big impact on the running time of your
programs. This section describes how you can organize your variable decla-
rations to produce efficient code.

As for immediate constants encoded in machine instructions, many
CPUs provide specialized addressing modes that access memory more effi-
ciently than other, more general, addressing modes. Just as you can reduce
the size and improve the speed of your programs by carefully selecting the
constants you use, you can make your programs more efficient by care-
fully choosing how you declare variables. Whereas with constants you’re
primarily concerned with their values, with variables you must consider the
address in memory where the compiler places them.

8. Assuming, of course, that your C/C++ compiler uses 16-bit integers for short integers and
32-bit integers for long integers.

Variables in a High‑Level Language 199

The 80x86 is a typical example of a CISC processor that provides mul-
tiple address sizes. When running on a modern 32- or 64-bit operating sys-
tem like macOS, Linux, or Windows, the 80x86 CPU supports three address
sizes: 0 bit, 8 bit, and 32 bit. The 80x86 uses 0-bit displacements for register-
indirect addressing modes. We’ll ignore the 0-bit displacement addressing
mode for now because 80x86 compilers generally don’t use it to access vari-
ables you explicitly declare in your code. The 8-bit and 32-bit displacement
addressing modes are the more interesting ones for the current discussion.

7.5.1 Allocating Storage for Global and Static Variables
The 32-bit displacement is, perhaps, the easiest to understand. Variables
you declare in your program, which the compiler allocates in memory
rather than in a register, have to appear somewhere in memory. On most
32-bit processors, the address bus is 32 bits wide, so it takes a 32-bit address
to access a variable at an arbitrary location in memory. An instruction that
encodes this 32-bit address can access any memory variable. The 80x86
provides the displacement-only addressing mode, whose effective address is
exactly the 32-bit constant embedded in the instruction.

A problem with 32-bit addresses (one that gets even worse as we move
to 64-bit processors with a 64-bit address) is that the address winds up con-
suming the largest portion of the instruction’s encoding. Certain forms of
the displacement-only addressing mode on the 80x86, for example, have a
1-byte opcode and a 4-byte address. Therefore, 80 percent of the instruc-
tion’s size is consumed by the address. Were the 64-bit variants of the 80x86
(x86-64) to actually encode a 64-bit absolute address as part of the instruc-
tion, the instruction would be 9 bytes long and consume nearly 90 percent
of the instruction’s bytes. To avoid this, the x86-64 modified the displace-
ment-only addressing mode. It no longer encodes the absolute address in
memory as part of the instruction; instead, it encodes a signed 32-bit offset
(±2 billion bytes) into the instruction.

On typical RISC processors, the situation is even worse. Because the
instructions are uniformly 32 bits long on typical RISC CPUs, you can-
not encode a 32-bit address as part of the instruction. In order to access a
variable at an arbitrary 32- or 64-bit address in memory, you need to load
the 32- or 64-bit address of that variable into a register and then use the
register-indirect addressing mode to access it. For a 32-bit address, this
could require three 32-bit instructions, as Figure 7-2 demonstrates; that’s
expensive in terms of both speed and space. It gets even more expensive
with 64-bit addresses.

Because RISC CPUs don’t run horribly slower than CISC processors,
compilers rarely generate code this bad. In reality, programs running on
RISC CPUs often keep base addresses to blocks of objects in registers, so they
can efficiently access variables in those blocks using short offsets from the
base register. But how do compilers deal with arbitrary addresses in memory?

200 Chapter 7

32-bit address
32-bit-wide
instructions

1.

2.

3.
1. Load immediate constant
 into the HO word of a
 register.
2. Load immediate constant
 into the LO word of a
 register.
3. Load memory value indirect
 from register loaded in (1,2).

Figure 7-2: RISC CPU access of an absolute address

7.5.2 Using Automatic Variables to Reduce Offset Sizes
One way to avoid large instruction sizes with large displacements is to use
an addressing mode with a smaller displacement. The 80x86 (and x86-64),
for example, provide an 8-bit displacement form for the base-plus-indexed
addressing mode. This form allows you to access data at an offset of –128
through +127 bytes around a base address contained in a register. RISC
processors have similar features, although the number of displacement bits
is usually larger, allowing a greater range of addresses.

By pointing a register at some base address in memory and placing your
variables near that base address, you can use the shorter forms of these
instructions so your program will be smaller and run faster. This isn’t too
difficult if you’re working in assembly language and you have direct access
to the CPU’s registers. However, if you’re working in an HLL you may not
have direct access to the CPU’s registers, and even if you did, you prob-
ably couldn’t convince the compiler to allocate your variables at convenient
addresses. How do you take advantage of this small-displacement addressing
mode in your HLL programs? The answer is that you don’t explicitly specify
the use of this addressing mode; the compiler does it for you automatically.

Consider the following trivial function in Pascal:

function trivial(i:integer; j:integer):integer;
var
 k:integer;
begin

 k := i + j;
 trivial := k;

end;

Upon entry into this function, the compiled code constructs an activa-
tion record (sometimes called a stack frame). An activation record, as you
saw earlier in the chapter, is a data structure in memory where the system
keeps the local data associated with a function or procedure. The activation

Variables in a High‑Level Language 201

record includes parameter data, automatic variables, the return address,
temporary variables that the compiler allocates, and machine state infor-
mation (for example, saved register values). The runtime system allocates
storage for an activation record on the fly and, in fact, two different calls
to the procedure or function may place the activation record at different
addresses in memory. In order to access the data in an activation record,
most HLLs point a register (usually called the frame pointer) at the activa-
tion record, and then the procedure or function references automatic
variables and parameters at some offset from this frame pointer. Unless you
have many automatic variables and parameters, or your automatic variables
and parameters are quite large, these variables generally appear in memory
at an offset near the base address. This means that the CPU can use a small
offset when referencing variables near the base address held in the frame
pointer. In the Pascal example given earlier, parameters i and j and the
local variable k would most likely be within a few bytes of the frame point-
er’s address, so the compiler can encode these instructions using a small
displacement rather than a large displacement. If your compiler allocates
local variables and parameters in an activation record, all you have to do is
arrange your variables in the activation record so that they appear near its
base address. But how do you do that?

Construction of an activation record begins in the code that calls a
procedure. The caller places the parameter data (if any) in the activation
record. Then the execution of an assembly language call (or equivalent)
instruction adds the return address to the activation record. At this point,
construction of the activation record continues within the procedure itself.
The procedure copies the register values and other important state infor-
mation and then makes room in the activation record for local variables.
The procedure must also update the frame-pointer register (such as EBP
on the 80x86, or RBP on the x86-64) so that it points at the base address of
the activation record.

To see what a typical activation record looks like, consider the following
HLA procedure declaration:

procedure ARDemo(i:uns32; j:int32; k:dword); @nodisplay;
var
 a:int32;
 r:real32;
 c:char;
 b:boolean;
 w:word;
begin ARDemo;
 .
 .
 .
end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it builds the
activation record by pushing the data for the parameters onto the stack in
the order they appear in the parameter list, from left to right. Therefore, the

202 Chapter 7

calling code first pushes the value for the i parameter, then for the j param-
eter, and finally for the k parameter. After pushing the parameters, the pro-
gram calls the ARDemo procedure. Immediately upon entry into the procedure,
the stack contains these four items, arranged as shown in Figure 7-3, assum-
ing the stack grows from high-memory addresses to low-memory addresses
(as it does on most processors).

Previous
stack

contents

Stack pointerReturn address

k’s value

j’s value

i’s value

Figure 7-3: Stack organization immediately upon entry into ARDemo

The first few instructions in ARDemo push the current value of the frame-
pointer register (such as EBP on the 32-bit 80x86, or RBP on the x86-64)
onto the stack and then copy the value of the stack pointer (ESP/RSP on
the 80x86/x86-64) into the frame pointer. Next, the code drops the stack
pointer down in memory to make room for the local variables. This pro-
duces the stack organization shown in Figure 7-4 on the 80x86 CPU.

To access objects in the activation record, you must use offsets from the
frame-pointer register (EBP in Figure 7-4) to the desired object.

Previous
stack

contents

ESP

i’s value

j’s value

k’s value

Return address

Old EBP value EBP

a

r

c
b
w

Figure 7-4: Activation record for ARDemo (32-bit 80x86)

Variables in a High‑Level Language 203

The two items of immediate interest are the parameters and the local
variables. As Figure 7-5 shows, you can access the parameters at positive
offsets from the frame-pointer register, and the local variables at nega-
tive offsets from the frame-pointer register.

Previous
stack

contents

i’s value

j’s value

k’s value

Return address

Old EBP value EBP

a

r

c
b
w

+0

–4

–8
–9
–10
–12

+4

+8

+12

+16

Offset from EBP

Figure 7-5: Offsets of objects in the ARDemo activation
record on the 32-bit 80x86

Intel specifically reserves the EBP/RBP (base-pointer register) to point
at the base of the activation record. Therefore, compilers typically use this
register as the frame-pointer register when allocating activation records on
the stack. Some compilers instead attempt to use the 80x86 ESP/RSP (stack
pointer) register to point to the activation record because this reduces the
number of instructions in the program. Whether the compiler uses EBP/
RBP, ESP/RSP, or some other register as the frame pointer, the bottom line
is that the compiler typically points some register at the activation record,
and most of the local variables and parameters are near the activation
record’s base address.

As you can see in Figure 7-5, all the local variables and parameters
in the ARDemo procedure are within 127 bytes of the frame-pointer register
(EBP). This means that on the 80x86 CPU, an instruction that references
one of these variables or parameters will be able to encode the offset from
EBP using a single byte. As mentioned earlier, because of the way the pro-
gram builds the activation record, parameters appear at positive offsets
from the frame-pointer register, and local variables appear at negative off-
sets from the frame-pointer register.

204 Chapter 7

For procedures that have only a few parameters and local variables, the
CPU will be able to access all parameters and local variables using a small
offset (that is, 8 bits on the 80x86, some possibly larger value on various
RISC processors). Consider, however, the following C/C++ function:

int BigLocals(int i, int j)
{
 int array[256];
 int k;
 .
 .
 .
}

The activation record for this function on the 32-bit 80x86 appears in
Figure 7-6.

Previous
stack

contents

i’s value

j’s value

Return address

Old EBP value EBP

array

k

+0

–1,024
–1,028

+4

+8

+12

Offset from EBP

Figure 7-6: Activation record for BigLocals() function

N O T E One difference between this activation record and the ones for the Pascal and HLA
functions is that C pushes its parameters on the stack in the reverse order (that is, it
pushes the last parameter first and the first parameter last). This difference, however,
does not impact our discussion at all.

The important thing to note in Figure 7-6 is that the local variables
array and k have large negative offsets. With offsets of –1,024 and –1,028, the
displacements from EBP to array and k are well outside the range that the
compiler can encode into a single byte on the 80x86. Therefore, the com-
piler has no choice but to encode these displacements using a 32-bit value.
Of course, this makes accessing these local variables in the function quite a
bit more expensive.

Nothing can be done about the array variable in this example (no mat-
ter where you put it, the offset to the base address of the array will be at
least 1,024 bytes from the activation record’s base address). However, con-
sider the activation record in Figure 7-7.

Variables in a High‑Level Language 205

Previous
stack

contents

i’s value

j’s value

Return address

Old EBP value EBP

array –1,028

k

+0

–4

+4

+8

+12

Offset from EBP

Figure 7-7: Another possible activation record layout
for the BigLocals() function

The compiler has rearranged the local variables in this activation record.
Although it still takes a 32-bit displacement to access the array variable, access-
ing k now uses an 8-bit displacement (on the 32-bit 80x86) because k’s offset
is –4. You can produce these offsets with the following code:

int BigLocals(int i, int j);
{
 int k;
 int array[256];
 .
 .
 .
}

In theory, rearranging the order of the variables in the activation
record isn’t terribly difficult for a compiler to do, so you’d expect the com-
piler to make this modification so that it can access as many local variables
as possible using small displacements. In practice, not all compilers actually
do this optimization, for various technical and practical reasons (specifi-
cally, it can break some poorly written code that makes assumptions about
the placement of variables in the activation record).

If you want to ensure that the maximum number of local variables in
your procedure have the smallest possible displacements, the solution is
trivial: declare all your 1-byte variables first, your 2-byte variables second,
your 4-byte variables next, and so on, up to the largest local variable in your
function. Generally, though, you’re probably more interested in reducing
the size of the maximum number of instructions in your function rather
than reducing the size of the offsets required by the maximum number
of variables in your function. For example, if you have 128 1-byte variables
and you declare these variables first, you’ll need only a 1-byte displacement
if you access them. However, if you never access these variables, the fact that
they have a 1-byte displacement rather than a 4-byte displacement saves you
nothing. The only time you save any space is when you actually access that
variable’s value in memory via some machine instruction that uses a 1-byte

206 Chapter 7

rather than a 4-byte displacement. Therefore, to reduce your function’s
object code size, you want to maximize the number of instructions that use
a small displacement. If you refer to a 100-byte array far more often than
any other variable in your function, you’re probably better off declaring
that array first, even if it leaves only 28 bytes of storage (on the 80x86) for
other variables that will use the shorter displacement.

RISC processors typically use a signed 12-bit or 16-bit offset to access
fields of the activation record. Thus, you have more latitude with your
declarations when using a RISC chip (which is good, because when you do
exceed the 12-bit or 16-bit limitation, accessing a local variable gets really
expensive). Unless you’re declaring one or more arrays that consume more
than 2,048 (12 bits) or 32,768 bytes (combined), the typical compiler for a
RISC chip will generate decent code.

This same argument applies to parameters as well as local variables.
However, it’s rare to find code passing a large data structure (by value) to
a function because of the expense involved.

7.5.3 Allocating Storage for Intermediate Variables
Intermediate variables are local to one procedure/function but global to
another. You’ll find them in block-structured languages—like Free Pascal,
Delphi, Ada, Modula-2, Swift, and HLA—that support nested procedures.
Consider the following example program in Swift:

import Cocoa
import Foundation

var globalVariable = 2

func procOne()
{
 var intermediateVariable = 2;

 func procTwo()
 {
 let localVariable =
 intermediateVariable + globalVariable
 print(localVariable)
 }
 procTwo()
}

procOne()

Note that nested procedures can access variables found in the main
program (that is, global variables) as well as variables found in procedures
containing the nested procedure (that is, the intermediate variables). As
you’ve seen, local variable access is inexpensive compared to global vari-
able access (because you always have to use a larger offset to access global
objects within a procedure). Intermediate variable access, as is done in the
procTwo procedure, is expensive. The difference between local and global

Variables in a High‑Level Language 207

variable accesses is the size of the offset/displacement coded into the
instruction, with local variables typically using a shorter offset than is pos-
sible for global objects. Intermediate accesses, on the other hand, typically
require several machine instructions. This makes the instruction sequence
that accesses an intermediate variable several times slower and several times
larger than accessing a local (or even global) variable.

The problem with using intermediate variables is that the compiler must
maintain either a linked list of activation records or a table of pointers to the
activation records (a display) in order to reference intermediate objects. To
access an intermediate variable, the procTwo procedure must either follow a
chain of links (there would be only one link in this example) or do a table
lookup in order to get a pointer to procOne’s activation record. Worse still,
maintaining the display of this linked list of pointers isn’t exactly cheap. The
work needed to maintain these objects has to be done on every procedure/
function entry and exit, even when the procedure or function doesn’t access
any intermediate variables on a particular call. Although there are, arguably,
some software engineering benefits to using intermediate variables (having
to do with information hiding) versus a global variable, keep in mind that
accessing intermediate objects is expensive.

7.5.4 Allocating Storage for Dynamic Variables and Pointers
Pointer access in an HLL provides another opportunity for optimization
in your code. Pointers can be expensive to use but, under certain circum-
stances, they can actually make your programs more efficient by reducing
displacement sizes.

A pointer is simply a memory variable whose value is the address of some
other memory object (therefore, pointers are the same size as an address on
the machine). Because most modern CPUs support indirection only via a
machine register, indirectly accessing an object is typically a two-step process:
first the code has to load the value of the pointer variable into a register, and
then it has to refer (indirectly) to the object through that register.

Consider the following C/C++ code fragment:

int *pi;
 .
 .
 .
i = *pi; // Assume pi is initialized with a
 // reasonable address at this point.

Here is the corresponding 80x86/HLA assembly code:

pi: pointer to int32;
 .
 .
 .
mov(pi, ebx); // Again, assume pi has
mov([ebx], eax); // been properly initialized
mov(eax, i);

208 Chapter 7

Had pi been a regular variable rather than pointer object, this code
could have dispensed with the mov([ebx], eax); instruction and simply moved
pi directly into eax. Therefore, the use of this pointer variable has both
increased the program’s size and reduced the execution speed by inserting
an extra instruction into the code sequence that the compiler generates.

However, if you indirectly refer to an object several times in close suc-
cession, the compiler may be able to reuse the pointer value it has loaded
into the register, amortizing the cost of the extra instruction across several
different instructions. Consider the following C/C++ code sequence:

int *pi;
 .
 . // Assume code in this area
 . // initializes pi appropriately.
 .
*pi = i;
*pi = *pi + 2;
*pi = *pi + *pi;
printf("pi = %d\n", *pi);

Here’s the corresponding 80x86/HLA code:

pi: pointer to int32;
 .
 . // Assume code in this area
 . // initializes pi appropriately.
 .
// Extra instruction that we need to initialize EBX

mov(pi, ebx);

mov(i, eax);
mov(eax, [ebx]); // This code can clearly be optimized,
mov([ebx], eax); // but we'll ignore that fact for the
add(2, eax); // sake of the discussion here.
mov(eax, [ebx]);
mov([ebx], eax);
add([ebx], eax);
mov(eax [ebx]);
stdout.put("pi = ", (type int32 [ebx]), nl);

This code loads the actual pointer value into EBX only once. From that
point forward, the code will simply use the pointer value contained in EBX
to reference the object at which pi is pointing. Of course, any compiler that
can do this optimization can probably eliminate five redundant memory
loads and stores from this assembly language sequence, but let’s assume
they’re not redundant for the time being. Because the code didn’t have to
reload EBX with the value of pi every time it wanted to access the object
at which pi points, there’s only one instruction of overhead (mov(pi, ebx);)
amortized across six instructions. That’s not too bad at all.

Variables in a High‑Level Language 209

Indeed, you could make a good argument that this code is more optimal
than accessing a local or global variable directly. An instruction of the form

mov([ebx],eax);

encodes a 0-bit displacement. Therefore, this move instruction is only 2 bytes
long rather than 3, 5, or even 6 bytes long. If pi is a local variable, it’s quite
possible that the original instruction that copies pi into EBX is only 3 bytes
long (a 2-byte opcode and a 1-byte displacement). Because instructions of
the form mov([ebx],eax); are only 2 bytes long, it only takes three instruc-
tions to “break even” on the byte count using indirection rather than an
8-bit displacement. After the third instruction that references whatever pi
points at, the code involving the pointer is actually shorter.

You can even use indirection to provide efficient access to a block of
global variables. As noted earlier, the compiler generally cannot determine
the address of a global object while it’s compiling your program. Therefore,
it has to assume the worst case and allow for the largest possible displace-
ment/offset when generating machine code to access a global variable. Of
course, you’ve just seen that you can reduce the size of the displacement
value from 32 bits down to 0 bits by using a pointer to the object rather
than accessing the object directly. Therefore, you could take the address of
the global object (with the C/C++ & operator, for example) and then use
indirection to access the variable. The problem with this approach is that it
requires a register (a precious commodity on any processor, but especially
on the 32-bit 80x86, which has only six general-purpose registers to utilize).
If you access the same variable many times in rapid succession, this 0-bit dis-
placement trick can make your code more efficient. However, it’s somewhat
rare to access the same variable repeatedly in a short sequence of code with-
out also needing to access several other variables. This means the compiler
may have to flush the pointer from the register and reload the pointer value
later, reducing the efficiency of this approach. If you’re working on a RISC
chip or x86-64 with many registers, you can probably employ this trick to
your advantage. On a processor with a limited number of registers, though,
you won’t be able to employ it as often.

7.5.5 Using Records/Structures to Reduce Instruction Offset Sizes
There’s also a trick you can use to access several variables with a single
pointer: put all those variables into a structure and then use the structure’s
address. By accessing the fields of the structure via the pointer, you can get
away with using smaller instructions to access the objects. This works almost
exactly as you’ve seen for activation records (indeed, activation records are,
literally, records that the program references indirectly via the frame-pointer
register). About the only difference between accessing objects indirectly in a
user-defined record/structure and accessing objects in the activation record
is that most compilers won’t let you refer to fields in a user structure/record
using negative offsets. Therefore, you’re limited to about half the number of
bytes that are normally accessible in an activation record. For example, on

210 Chapter 7

the 80x86 you can access the object at offset 0 from a pointer using a 0-bit dis-
placement and objects at offsets 1 through +127 using a single-byte displace-
ment. Consider the following C/C++ example that uses this trick:

typedef struct
{
 int i;
 int j;
 char *s;
 char name[20];
 short t;
} vars;

static vars v;
vars *pv = &v; // Initialize pv with the address of v.
 .
 .
 .
 pv->i = 0;
 pv->j = 5;
 pv->s = pv->name;
 pv->t = 0;
 strcpy(pv->name, "Write Great Code!");
 .
 .
 .

A well-designed compiler will load the value of pv into a register exactly
once for this code fragment. Because all the fields of the vars structure are
within 127 bytes of the base address of the structure in memory, an 80x86
compiler can emit a sequence of instructions that require only 1-byte off-
sets, even though the v variable itself is a static/global object. Note, by the
way, that the first field in the vars structure is special. Because this is at off-
set 0 in the structure, you can use a 0-bit displacement when accessing this
field. Therefore, it’s a good idea to put your most-often-referenced field first
in a structure if you’re going to refer to that structure indirectly.

Using indirection in your code does come at a cost. On a limited-register
CPU such as the 32-bit 80x86, using this approach will tie up a register for a
while, and that may effectively cause the compiler to generate worse code. If
the compiler must constantly reload the register with the address of the struc-
ture in memory, the savings from this technique evaporate rather quickly.
Tricks such as this one vary in effectiveness across different processors (and
different compilers for the same processor), so be sure to look at the code
your compiler generates to verify that a trick is actually saving rather than
costing you something.

7.5.6 Storing Variables in Machine Registers
While we’re on the subject of registers, it’s worthwhile to point out one
other 0-bit displacement way to access variables in your programs: by
keeping them in machine registers. Machine registers are always the most

Variables in a High‑Level Language 211

efficient place to store variables and parameters. Unfortunately, only in
assembly language and, to a limited extent, C/C++, do you have any control
over whether the compiler should keep a variable or parameter in a register.
In some respects, this is not bad. Good compilers do a much better job of
register allocation than the casual programmer does. However, an expert
programmer can do a better job of register allocation than a compiler,
because the expert programmer understands the data the program will be
processing and the frequency of access to a particular memory location.
(And of course, the expert programmer can first look at what the compiler
is doing, whereas the compiler doesn’t have the benefit of seeing what the
programmer has done.)

Some languages, such as Delphi, provide limited support for programmer-
directed register allocation. In particular, the Delphi compiler allows you
to tell it to pass the first three (ordinal) parameters for a function or pro-
cedure in the EAX, EDX, and ECX registers. This option is known as the
fastcall calling convention, and several C/C++ compilers support it as well.

In Delphi and certain other languages, opting for the fastcall param-
eter passing convention is the only control you get. The C/C++ language,
however, provides the register keyword, a storage specifier (much like the
const, static, and auto keywords) that tells the compiler that the program-
mer expects to use the variable frequently so the compiler should attempt
to keep it in a register. Note that the compiler can also choose to ignore the
register keyword (in which case it reserves variable storage using automatic
allocation). Many compilers ignore the register keyword altogether because
the compiler’s authors assume, somewhat arrogantly, that they can do a
better job of register allocation than any programmer. Of course, on some
register-starved machines such as the 32-bit 80x86, there are so few regis-
ters to work with that it might not even be possible to allocate a variable to
a register throughout the execution of some function. Nevertheless, some
compilers do respect the programmer’s wishes and will allocate a few vari-
ables in registers if you request that they do so.

Most RISC compilers reserve several registers for passing parameters
and several registers for local variables. Therefore, it’s a good idea (if possi-
ble) to place the parameters you access most frequently first in the parame-
ter declaration because they’re probably the ones the compiler would allocate
in a register.9 The same is true for local variable declarations. Always declare
frequently used local variables first, because many compilers may allocate
those (ordinal) variables in registers.

One problem with compiler register allocation is that it is static. That
is, the compiler determines which variables to place in registers based on
an analysis of your source code during compilation, not during runtime.
Compilers often make assumptions (which are usually correct) like “this
function references variable xyz far more often than any other variable, so
it’s a good candidate for a register variable.” Indeed, by placing the variable
in a register, the compiler will certainly reduce the size of the program.

9. Many optimizing compilers are smart enough to choose which variables they keep in regis-
ters based on how the program uses those variables.

212 Chapter 7

However, it could also be the case that all those references to xyz sit in code
that rarely, if ever, executes. Although the compiler might save some space
(by emitting smaller instructions to access registers rather than memory),
the code won’t run appreciably faster. After all, if the code rarely or never
executes, then making that code run faster does not contribute much to
the program’s execution time. On the other hand, it’s also quite possible
to bury a single reference to some variable in a deeply nested loop that
executes many times. With only one reference in the entire function, the
compiler’s optimizer may overlook the fact that the executing program
references the variable frequently. Although compilers have gotten smarter
about handling variables inside loops, the fact is, no compiler can predict
how many times an arbitrary loop will execute at runtime. Human beings
are much better at predicting this sort of behavior (or, at least, measuring it
with a profiler) and thus are best positioned to make good decisions about
variable allocation in registers.

7.6 Variable Alignment in Memory
On many processors (particularly RISC), there is another efficiency con-
cern you must take into consideration. Many modern processors will not
let you access data at an arbitrary address in memory. Instead, all accesses
must take place on some native boundary (usually 4 bytes) that the CPU
supports.10 Even when a CISC processor allows memory accesses at arbitrary
byte boundaries, it’s often more efficient to access primitive objects (bytes,
words, and double words) on a boundary that is a multiple of the object’s
size (see Figure 7-8).

Address n +
(n is divisible by 4)

0 2 3 41 5 76 8 9 10 11

Double words

Words

Bytes

On many CPUs, memory objects must
start at an address that is a multiple of
the object’s size.

Figure 7-8: Variable alignment in memory

If the CPU supports unaligned accesses—that is, if the CPU allows
you to access a memory object on a boundary that is not a multiple of the
object’s primitive size—then you should be able to pack the variables into
the activation record. This way, you would obtain the maximum number
of variables having a short offset. However, because unaligned accesses are

10. The PowerPC supports unaligned memory access, albeit with reduced performance.
Earlier versions of the ARM (earlier than ARMv6-A) did not allow unaligned memory
accesses at all.

Variables in a High‑Level Language 213

sometimes slower than aligned accesses, many optimizing compilers insert
padding bytes into the activation record in order to ensure that all variables
are aligned on a reasonable boundary for their native size (see Figure 7-9).
This trades off slightly better performance for a slightly larger program.

char oneByte ;
short twoBytes ;
char oneByte2 ;
int fourBytes ;

Activation record produced
by a typical C compiler

oneByte

twoBytes

oneByte2

fourBytes

Offset

–1

–2

–4

–8

Padding bytes

Figure 7-9: Padding bytes in an activation record

However, if you put all your double-word declarations first, your word
declarations second, your byte declarations third, and your array/structure
declarations last, you can improve both the speed and size of your code. The
compiler usually ensures that the first local variable you declare appears at
a reasonable boundary (typically a double-word boundary). By declaring all
your double-word variables first, you ensure that they all appear at an address
that is a multiple of 4 (because compilers usually allocate adjacent variables
in your declarations in adjacent locations in memory). The first word-sized
object you declare will also appear at an address that is a multiple of 4—and
that means its address is also a multiple of 2 (which is best for word accesses).
By declaring all your word variables together, you ensure that each one
appears at an address that is a multiple of 2. On processors that allow byte
access to memory, the placement of the byte variables (with respect to effi-
ciently accessing the byte data) is irrelevant. By declaring all your local byte
variables last in a procedure or function, you generally ensure that such dec-
larations do not impact the performance of the double-word and word vari-
ables you also use in the function. Figure 7-10 shows what a typical activation
record will look like if you declare your variables as in the following function:

int someFunction(void)
{
 int d1; // Assume ints are 32-bit objects
 int d2;

214 Chapter 7

 int d3;
 short w1; // Assume shorts are 16-bit objects
 short w2;
 char b1; // Assume chars are 8-bit objects
 char b2;
 char b3;
 .
 .
 .
} // end someFunction

Previous
stack

contents

Return address

Old EBP value EBP+0

–4

+4

+8

Offset from EBP

Parameters

d1

d2

d3

w1

w2

b1

b2

b3

–8

–12

–16

–17

–14

–18

–19

Figure 7-10: Aligned variables in an activation record
(32-bit 80x86)

Note how all the double-word variables (d1, d2, and d3) begin at addresses
that are multiples of 4 (–4, –8, and –12). Also, notice how all the word-sized
variables (w1 and w2) begin at addresses that are multiples of 2 (–14 and –16).
The byte variables (b1, b2, and b3) begin at arbitrary addresses in memory
(both even and odd addresses).

Now consider the following function, which has arbitrary (unordered)
variable declarations, and the corresponding activation record shown in
Figure 7-11:

int someFunction2(void)
{
 char b1; // Assume chars are 8-bit objects
 int d1; // Assume ints are 32-bit objects
 short w1; // Assume shorts are 16-bit objects
 int d2;
 short w2;

Variables in a High‑Level Language 215

 char b2;
 int d3;
 char b3;
 .
 .
 .
} // end someFunction2

Previous
stack

contents

Return address

Old EBP value EBP+0

–1

+4

+8

Offset from EBP

Parameters

–5

–7

–13
–14

–11

–18

–19

d1

d2

d3

w1

w2

b1

b2

b3

Figure 7-11: Unaligned variables in an activation
record (32-bit 80x86)

As you can see, every variable except the byte variables appears at an
address that is inappropriate for the object. On processors that allow mem-
ory accesses at arbitrary addresses, it may take more time to access a vari-
able that is not aligned on an appropriate address boundary.

Some processors don’t allow a program to access an object at an unaligned
address. Most RISC processors, for example, can’t access memory except
at 32-bit address boundaries. To access a short or byte value, some RISC
processors require the software to read a 32-bit value and extract the 16-bit
or 8-bit value (that is, the CPU forces the software to treat bytes and words
as packed data). The extra instructions and memory accesses needed to
pack and unpack this data reduce the speed of memory access by a consid-
erable amount (two or more instructions—usually more—may be needed
to fetch a byte or word from memory). Writing data to memory is even
worse because the CPU must first fetch the data from memory, merge the
new data with the old data, and then write the result back to memory.
Therefore, most RISC compilers won’t create an activation record similar
to the one in Figure 7-11. Instead, they’ll add padding bytes so that every

216 Chapter 7

memory object begins at an address boundary that is a multiple of 4 bytes
(see Figure 7-12).

Previous
stack

contents

Return address

Old EBP value EBP+0

–4

+4

+8

Offset from EBP

d1

d2

d3

w1

w2

b1

b2

Parameters

b3

–8

–12

–20
–24

–16

–28

–32

Padding bytes

Figure 7-12: RISC compilers force aligned access by
adding padding bytes.

Notice in Figure 7-12 that all of the variables are at addresses that are
multiples of 32 bits. Therefore, a RISC processor has no problems access-
ing any of these variables. The cost, of course, is that the activation record is
quite a bit larger (the local variables consume 32 bytes rather than 19 bytes).

Although the example in Figure 7-12 is typical for 32-bit RISC-based
compilers, that’s not to suggest that compilers for CISC CPUs don’t do this
as well. Many compilers for the 80x86, for example, also build this activa-
tion record in order to improve the performance of the code the compiler
generates. Although declaring your variables in a misaligned fashion may
not slow down your code on a CISC CPU, it may use additional memory.

Of course, if you work in assembly language, it’s generally up to you
to declare your variables in a manner that is appropriate or efficient for
your particular processor. In HLA (on the 80x86), for example, the follow-
ing two procedure declarations result in the activation records shown in
Figures 7-10, 7-11, and 7-12.

procedure someFunction; @nodisplay; @noalignstack;
var
 d1 :dword;
 d2 :dword;
 d3 :dword;
 w1 :word;

Variables in a High‑Level Language 217

 w2 :word;
 b1 :byte;
 b2 :byte;
 b3 :byte;
begin someFunction;
 .
 .
 .
end someFunction;

procedure someFunction2; @nodisplay; @noalignstack;
var
 b1 :byte;
 d1 :dword;
 w1 :word;
 d2 :dword;
 w2 :word;
 b2 :byte;
 d3 :dword;
 b3 :byte;
begin someFunction2;
 .
 .
 .
end someFunction2;

procedure someFunction3; @nodisplay; @noalignstack;
var
 // HLA align directive forces alignment of the next declaration.

 align(4);
 b1 :byte;
 align(4);
 d1 :dword;
 align(4);
 w1 :word;
 align(4);
 d2 :dword;
 align(4);
 w2 :word;
 align(4);
 b2 :byte;
 align(4);
 d3 :dword;
 align(4);
 b3 :byte;
begin someFunction3;
 .
 .
 .
end someFunction3;

218 Chapter 7

HLA procedures someFunction and someFunction3 will produce the fastest-
running code on any 80x86 processor because all variables are aligned on
an appropriate boundary; HLA procedures someFunction and someFunction2
will produce the most compact activation records on an 80x86 CPU, because
there is no padding between variables in the activation record. If you’re
working in assembly language on a RISC CPU, you’ll probably want to
choose the equivalent of someFunction or someFunction3 to make it easier to
access the variables in memory.

7.6.1 Records and Alignment
Records/structures in HLLs also have alignment issues that should con-
cern you. Recently, CPU manufacturers have been promoting application
binary interface (ABI) standards to promote interoperability between differ-
ent programming languages and their implementations. Although not all
languages and compilers adhere to these suggestions, many of the newer
compilers do. Among other things, these ABI specifications describe how
the compilers should organize fields within a record or structure object in
memory. Although the rules vary by CPU, one that applies to most ABIs is
that a compiler should align a record/structure field at an offset that is a
multiple of the object’s size. If two adjacent fields in the record or structure
have different sizes, and the placement of the first field in the structure
would cause the second field to appear at an offset that is not a multiple of
that second field’s native size, then the compiler will insert some padding
bytes to push the second field to a higher offset that is appropriate for that
second object’s size.

In actual practice, ABIs for different CPUs and OSes have minor differ-
ences based on the CPUs’ ability to access objects at different addresses in
memory. Intel, for example, suggests that compiler writers align bytes at any
offset, words at even offsets, and everything else at offsets that are a mul-
tiple of 4. Some ABIs recommend placing 64-bit objects at 8-byte boundar-
ies within a record. The x86-64 SSE and AVX instructions require 16- and
32-byte alignment for 128-bit and 256-bit data values. Some CPUs, which
have a difficult time accessing objects smaller than 32 bits, may suggest a
minimum alignment of 32 bits for all objects in a record/structure. The
rules vary depending on the CPU and whether the manufacturer wants to
promote faster-executing code (the usual case) or smaller data structures.

If you are writing code for a single CPU (such as an Intel-based PC)
with a single compiler, learn that compiler’s rules for padding fields and
adjust your declarations for maximum performance and minimal waste.
However, if you ever need to compile your code using several different com-
pilers, particularly compilers for several different CPUs, following one set
of rules will work fine on one machine and produce less efficient code on
several others. Fortunately, there are some rules that can help reduce the
inefficiencies created by recompiling for a different ABI.

From a performance/memory usage standpoint, the best solution is
the same rule we saw earlier for activation records: when declaring fields

Variables in a High‑Level Language 219

in a record, group all like-sized objects together and put all the larger (sca-
lar) objects first and the smaller objects last in the record/structure. This
scheme produces the least amount of waste (padding bytes) and provides
the highest performance across most of the existing ABIs. The only draw-
back to this approach is that you have to organize the fields by their native
size rather than by their logical relationship to one another. However,
because all fields of a record/structure are logically related insofar as they
are all members of that same record/structure, this problem isn’t as bad as
employing this organization for all of a particular function’s local variables.

Many programmers try to add padding fields themselves to a structure.
For example, the following type of code is common in the Linux kernel and
other bits and pieces of overly hacked software:

 typedef struct IveAligned
{
 char byteValue;
 char padding0[3];
 int dwordValue;
 short wordValue;
 char padding1[2];
 unsigned long dwordValue2;
 .
 .
 .
};

The padding0 and padding1 fields in this structure were added to manu-
ally align the dwordValue and dwordValue2 fields at offsets that are even mul-
tiples of 4.

While this padding is not unreasonable, if you’re using a compiler
that doesn’t automatically align the fields, remember that an attempt
to compile this code on a different machine can produce unexpected
results. For example, if a compiler aligns all fields on a 32-bit boundary,
regardless of size, then this structure declaration will consume two extra
double words to hold the two paddingX arrays. This winds up wasting space
for no good reason. Keep this fact in mind if you decide to manually add
the padding fields.

Many compilers that automatically align fields in a structure provide
an option to turn off this feature. This is particularly true for compilers
generating code for CPUs where the alignment is optional and the com-
piler does it only to achieve a slight performance boost. If you’re going to
manually add padding fields to your record/structure, you need to specify
this option so that the compiler doesn’t realign the fields after you’ve
manually aligned them.

In theory, a compiler is free to rearrange the offsets of local variables
within an activation record. However, it would be extremely rare for a com-
piler to rearrange the fields of a user-defined record or structure. Too many
external programs and data structures depend on the fields of a record

220 Chapter 7

appearing in the same order as they are declared. This is particularly true
when passing record/structure data between code written in two separate
languages (for example, when calling a function written in assembly lan-
guage) or when dumping record data directly to a disk file.

In assembly language, the amount of effort needed to align fields varies
from pure manual labor to a rich set of features capable of automatically
handling almost any ABI. Some (low-end) assemblers don’t even provide
record or structure data types. In such systems, the assembly program-
mer has to manually specify the offsets into a record structure (typically
by declaring, as constants, the numeric offsets into the structure). Other
assemblers (for example, NASM) provide macros that automatically gener-
ate the equates for you. In these systems, the programmer has to manually
provide padding fields to align certain fields on a given boundary. Some
assemblers, such as MASM, provide simple alignment facilities. You may
specify the value 1, 2, or 4 when declaring a struct in MASM and the assem-
bler will align all fields on either the alignment value you specify or at an
offset that is a multiple of the object’s size, whichever is smaller, by automat-
ically adding padding bytes to the structure. Also, note that MASM adds a
sufficient number of padding bytes to the end of the structure so that the
whole structure’s length is a multiple of the alignment size. Consider the
following struct declaration in MASM:

Student struct 2
score word ? ; offset:0
id byte ? ; offset 2 + 1 byte of padding
year dword ? ; offset 4
id2 byte ? ; offset:8
Student ends

In this example, MASM will add an extra byte of padding to the end of
the structure so that its length is a multiple of 2 bytes.

MASM also lets you control the alignment of individual fields within a
structure by using the align directive. The following structure declaration is
equivalent to the current example (note the absence of the alignment value
operand in the struct operand field):

Student struct
score word ? ; offset:0
id byte ? ; offset 2
 align 2 ; Injects 1 byte of padding.
year dword ? ; offset 4
id2 byte ? ; offset:8
 align 2 ; Adds 1 byte of padding to the end of the struct.
Student ends

The default field alignment for MASM structures is unaligned. That is,
a field begins at the next available offset within the structure, regardless of
the field’s (and the previous field’s) size.

Variables in a High‑Level Language 221

The High-Level Assembly (HLA) language probably provides the great-
est control (both automatic and manual) over record field alignment. As with
MASM, the default record alignment is unaligned. Also as with MASM, you
can use HLA’s align directive to manually align fields in an HLA record. The
following is the HLA version of the previous MASM example:

type
 Student :record
 score :word;
 id :byte;
 align(2);
 year :dword;
 id2 :byte;
 align(2);
 endrecord;

HLA also lets you specify an automatic alignment for all fields in a
record. For example:

type
 Student :record[2] // This tells HLA to align all
 // fields on a word boundary
 score :word;
 id :byte;
 year :dword;
 id2 :byte;
 endrecord;

There is a subtle difference between this HLA record and the earlier
MASM structure (with automatic alignment). Remember, when you specify
a directive of the form Student struct 2, MASM aligns all fields on a bound-
ary that is a multiple of 2 or a multiple of the object’s size, whichever is smaller.
HLA, on the other hand, will always align all fields on a 2-byte boundary
using this declaration, even if the field is a byte.

The ability to force field alignment to a minimum size is a nice feature
if you’re working with data structures generated on a different machine (or
compiler) that forces this kind of alignment. However, this type of align-
ment can unnecessarily waste space in a record for certain declarations if
you only want the fields to be aligned on their natural boundaries (which
is what MASM does). Fortunately, HLA provides another syntax for record
declarations that lets you specify both the maximum and minimum align-
ment that HLA will apply to a field:

recordID: record[maxAlign : minAlign]
 <<fields>>
endrecord;

The maxAlign item specifies the largest alignment that HLA will use
within the record. HLA will align any object whose native size is larger

222 Chapter 7

than maxAlign on a boundary of maxAlign bytes. Similarly, HLA will align any
object whose size is smaller than minAlign on a boundary of at least minAlign
bytes. HLA will align objects whose native size is between minAlign and maxAlign
on a boundary that is a multiple of that object’s size. The following HLA
and MASM record/structure declarations are equivalent:

Here’s the MASM code:

Student struct 4
score word ? ; offset:0
id byte ? ; offset 2

 ; 1 byte of padding appears here

year dword ? ; offset 4
id2 byte ? ; offset:8

 ; 3 padding bytes appear here

courses dword ? ; offset:12
Student ends

Here’s the HLA code:

type
 // Align on 4-byte offset, or object's size, whichever
 // is the smaller of the two. Also, make sure that the
 // entire record is a multiple of 4 bytes long.

 Student :record[4:1]
 score :word;
 id :byte;
 year :dword;
 id2 :byte;
 courses :dword;
 endrecord;

Although few HLLs provide facilities within the language’s design to
control the alignment of fields within records (or other data structures),
many compilers provide extensions to those languages, in the form of com-
piler pragmas, that let programmers specify default variable and field align-
ment. Because few languages have standards for this, you’ll have to check
your particular compiler’s reference manual (note that C++11 is one of the
few languages that provides alignment support). Although such extensions
are nonstandard, they are often quite useful, especially when you’re link-
ing code compiled by different languages or trying to squeeze the last bit of
performance out of a system.

Variables in a High‑Level Language 223

7.7 For More Information
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. 2nd ed. Essex, UK: Pearson Education
Limited, 1986.

Barrett, William, and John Couch. Compiler Construction: Theory and Practice.
Chicago: SRA, 1986.

Dershem, Herbert, and Michael Jipping. Programming Languages, Structures
and Models. Belmont, CA: Wadsworth, 1990.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Fraser, Christopher, and David Hansen. A Retargetable C Compiler: Design and
Implementation. Boston: Addison-Wesley Professional, 1995.

Ghezzi, Carlo, and Jehdi Jazayeri. Programming Language Concepts. 3rd ed.
New York: Wiley, 2008.

Hoxey, Steve, Faraydon Karim, Bill Hay, and Hank Warren, eds. The PowerPC
Compiler Writer’s Guide. Palo Alto, CA: Warthman Associates for IBM, 1996.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Intel. “Intel 64 and IA-32 Architectures Software Developer Manuals.”
Updated November 11, 2019. https://software.intel.com/en-us/articles/intel-sdm.

Ledgard, Henry, and Michael Marcotty. The Programming Language
Landscape. Chicago: SRA, 1986.

Louden, Kenneth C. Compiler Construction: Principles and Practice. Boston:
Cengage, 1997.

Louden, Kenneth C., and Kenneth A. Lambert. Programming Languages:
Principles and Practice. 3rd ed. Boston: Course Technology, 2012.

Parsons, Thomas W. Introduction to Compiler Construction. New York:
W. H. Freeman, 1992.

Pratt, Terrence W., and Marvin V. Zelkowitz. Programming Languages, Design
and Implementation. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.

Sebesta, Robert. Concepts of Programming Languages. 11th ed. Boston:
Pearson, 2016.

High-level language abstractions hide
how the machine deals with composite

data types (a complex data type composed
of smaller data objects). Although these abstrac-

tions are often convenient, if you don’t understand
the details behind them you might inadvertently use
a construct that generates unnecessary code or runs slower than need be.
In this chapter, we’ll take a look at one of the most important composite
data types: the array. We’ll consider the following topics:

•	 The definition of an array

•	 How to declare arrays in various languages

•	 How arrays are represented in memory

•	 Accessing elements of arrays

•	 Declaring, representing, and accessing multidimensional arrays

•	 Row-major and column-major multidimensional array access

8
A R R A Y D A T A T Y P E S

226 Chapter 8

•	 Dynamic versus static arrays

•	 How using arrays can impact the performance and size of your
applications

Arrays are very common in modern applications, so you should have a
solid understanding of how programs implement and use them in memory
in order to write great code. This chapter will give you the foundation you
need to use arrays more efficiently in your programs.

8.1 Arrays
Arrays are one of the most common composite (or aggregate) data types, yet
few programmers fully grasp how they operate. Once they understand how
arrays work at the machine level, programmers frequently view them from a
completely different perspective.

Abstractly, an array is an aggregate data type whose members (elements)
are all of the same type. To select a member from the array, you specify the
member’s array index with an integer (or with some value whose underlying
representation is an integer, such as character, enumerated, and Boolean
types). In this chapter, we’ll assume that all of the integer indices of an array
are numerically contiguous. That is, if both x and y are valid indices of the
array, and if x < y, then all i such that x < i < y are also valid indices. We’ll also
typically assume that array elements occupy contiguous locations in memory,
although this is not required by the general definition of an array. An array
with five elements appears in memory as shown in Figure 8-1.

Low memory
addresses

High memory
addressesBase address of A

A[0] A[1] A[2] A[3] A[4]

Figure 8-1: Array layout in memory

The base address of an array is the address of its first element that occupies
the lowest memory location. The second array element directly follows the first
in memory, the third element follows the second, and so on. Note that the indi-
ces do not have to start at 0; they can start with any number as long as they
are contiguous. However, discussing array access is easier if the first index is
0, so arrays in this chapter begin at index 0 unless otherwise indicated.

Whenever you apply the indexing operator to an array, the result is the
unique array element specified by that index. For example, A[i] chooses the
ith element from array A.

8.1.1 Array Declarations
Array declarations are very similar across many high-level languages
(HLLs). This section presents examples in several languages.

Array Data Types 227

8.1.1.1 Declaring Arrays in C, C++, and Java

C, C++, and Java all let you declare an array by specifying the total number
of elements. The syntax for an array declaration in these languages is:

data_type array_name [number_of_elements];

Here are some sample C/C++ array declarations:

char CharArray[128];
int intArray[8];
unsigned char ByteArray[10];
int *PtrArray[4];

If you declare these arrays as automatic variables, C/C++ initializes
them with whatever bit patterns happen to exist in memory. If, on the other
hand, you declare these arrays as static objects, C/C++ initializes each array
element with 0. If you want to initialize an array yourself, you can use the
following C/C++ syntax:

data_type array_name[number_of_elements] = {element_list};

Here’s a typical example:

int intArray[8] = {0,1,2,3,4,5,6,7};

The C/C++ compiler stores these initial array values in the object code
file, and the operating system will load these values into the memory loca-
tions associated with intArray when it loads the program into memory. To
see how this works, consider the following short C/C++ program:

#include <stdio.h>
static int intArray[8] = {1,2,3,4,5,6,7,8};
static int array2[8];

int main(int argc, char **argv)
{
 int i;
 for(i=0; i<8; ++i)
 {
 array2[i] = intArray[i];
 }
 for(i=7; i>= 0; --i)
 {
 printf("%d\n", array2[i]);
 }
 return 0;
}

228 Chapter 8

Microsoft’s Visual C++ compiler emits the following 80x86 assembly
code for the two array declarations:

_DATA SEGMENT
intArray DD 01H
 DD 02H
 DD 03H
 DD 04H
 DD 05H
 DD 06H
 DD 07H
 DD 08H
$SG6842 DB '%d', 0aH, 00H
_DATA ENDS
_BSS SEGMENT
_array2 DD 08H DUP (?)
_BSS ENDS

Each DD (“define double word”) statement reserves 4 bytes of storage, and
the operand specifies their initial value when the OS loads the program into
memory. The intArray declaration appears in the _DATA segment, which in the
Microsoft memory model can contain initialized data. The array2 variable, on
the other hand, is declared inside the _BSS segment, where MSVC++ places
uninitialized variables (the ? character in the operand field tells the assem-
bler that the data is uninitialized; the 8 dup (?) operand tells the assembler to
duplicate the declaration eight times). When the OS loads the _BSS segment
into memory, it simply zeros out all the memory associated with that segment.
In both the initialized and uninitialized cases, the compiler allocates all eight
elements of these arrays in sequential memory locations.

8.1.1.2 Declaring Arrays in HLA

HLA’s array declaration syntax takes the following form, which is semanti-
cally equivalent to the C/C++ declaration:

array_name : data_type [number_of_elements];

Here are some examples of HLA array declarations that allocate stor-
age for uninitialized arrays (the second example assumes you have defined
the integer data type in a type section of the HLA program):

static

 // Character array with elements 0..127.

 CharArray: char[128];

 // "integer" array with elements 0..7.

 IntArray: integer[8];

Array Data Types 229

 // Byte array with elements 0..9.

 ByteArray: byte[10];

 // Double word array with elements 0..3.

 PtrArray: dword[4];

You can also initialize the array elements using declarations like the
following:

RealArray: real32[8] :=
 [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0];

IntegerAry: integer[8] :=
 [8, 9, 10, 11, 12, 13, 14, 15];

Both of these definitions create arrays with eight elements. The first
definition initializes each 4-byte real32 array element with one of the values
in the range 0.0..7.0. The second declaration initializes each integer array
element with one of the values in the range 8..15.

8.1.1.3 Declaring Arrays in Pascal/Delphi

Pascal/Delphi uses the following syntax to declare an array:

array_name : array[lower_bound..upper_bound] of data_type;

As in the previous examples, array_name is the identifier and data_type
is the type of each element in this array. In Pascal/Delphi (unlike C/C++,
Java, and HLA) you specify the upper and lower bounds of the array rather
than the array’s size. The following are typical array declarations in Pascal:

type
 ptrToChar = ^char;
var
 CharArray: array[0..127] of char; // 128 elements
 IntArray: array[0..7] of integer; // 8 elements
 ByteArray: array[0..9] of char; // 10 elements
 PtrArray: array[0..3] of ptrToChar; // 4 elements

Although these Pascal examples start their indices at 0, Pascal does not
require it. The following is a perfectly valid array declaration in Pascal:

var
 ProfitsByYear : array[1998..2028] of real; // 31 elements

The program that declares this array would use indices 1998..2028 when
accessing elements of this array, not 0..30.

230 Chapter 8

Many Pascal compilers provide a very useful feature to help you locate
defects in your programs. Whenever you access an element of an array,
these compilers automatically insert code that will verify that the array
index is within the bounds specified by the declaration. This extra code will
stop the program if the index is out of range. For example, if an index into
ProfitsByYear is outside the range 1998..2028, the program will abort with
an error.1

8.1.1.4 Declaring Arrays in Swift

Array declarations in Swift are a bit different from those of other C-based
languages. Swift array declarations take one of the following two (equiva-
lent) forms:

var data_type array_name = Array<element_type>()
var data_type array_name = [element_type]()

Unlike in other languages, arrays in Swift are purely dynamic. You
don’t normally specify the number of elements when you first create the
array; instead, you add elements to the array as needed using functions like
append(). If you want to predeclare an array with some number of elements,
you can use a special array constructor form as follows:

var data_type array_name = Array<element_type>(repeating: initial_value, count: elements)

In this example, initial_value is a value of type element_type and elements
is the number of elements to create in the array. For example, the following
Swift code creates two arrays of 100 Int values, each initialized to 0:

var intArray = Array<Int>(repeating: 0, count: 100)
var intArray2 = [Int](repeating: 0, count: 100)

Note that you can still extend the size of this array (for example, by
using the append() function); because Swift arrays are dynamic, their size
can grow or shrink at runtime.

It is also possible to create a Swift array with initial values:

var intArray = [1, 2, 3]
var strArray = ["str1", "str2", "str3"]

Swift, like Pascal, checks the validity of array indices at runtime. Swift will
raise an exception if you attempt to access an array element that doesn’t exist.

1. Many Pascal compilers provide an option to turn off the bounds-checking feature once
your program is fully tested; doing so improves the efficiency of the resulting program.

Array Data Types 231

8.1.1.5 Declaring Arrays with Noninteger Index Values

Generally, array indices are integer values, although some languages allow
other ordinal types (data types that use an underlying integer representa-
tion). For example, Pascal allows char and boolean array indices. In Pascal,
it’s perfectly reasonable and useful to declare an array as follows:

alphaCnt : array['A'..'Z'] of integer;

You access elements of alphaCnt using a character expression as the
array index. For example, consider the following Pascal code, which initial-
izes each element of alphaCnt to 0:

for ch := 'A' to 'Z' do
 alphaCnt[ch] := 0;

Assembly language and C/C++ treat most ordinal values as special
instances of integer values, so they are legal array indices. Most implemen-
tations of BASIC allow a floating-point number as an array index, although
BASIC always truncates the value to an integer before using it as an index.

N O T E BASIC allows you to use floating-point values as array indices because the original
language did not provide support for integer expressions; it provided only real and
string values.

8.1.2 Array Representation in Memory
Abstractly, an array is a collection of variables that you access using an
index. Semantically, you can define an array any way you please, as long as
it maps distinct indices to distinct objects in memory and always maps the
same index to the same object. In practice, however, most languages utilize
a few common algorithms that provide efficient access to the array data.

The most common implementation of arrays is to store elements in con-
secutive memory locations. As noted earlier, most programming languages
store the first element of an array at a low memory address and then store
the following elements in successively higher memory locations.

Consider the following C program:

#include <stdio.h>

static char array[8] = {0,1,2,3,4,5,6,7};

int main(void)
{

 printf("%d\n", array[0]);
}

232 Chapter 8

Here is the corresponding PowerPC assembly code that GCC emits for it:

 .align 2
_array:
 .byte 0 ; Note that the assembler stores the byte
 .byte 1 ; values on successive lines into
 .byte 2 ; contiguous memory locations.
 .byte 3
 .byte 4
 .byte 5
 .byte 6
 .byte 7

The number of bytes an array consumes is the number of elements mul-
tiplied by the number of bytes per element. In the previous example, each
array element is a single byte, so the array consumes the same number of
bytes as it has elements. However, for arrays with larger elements, the entire
array size (in bytes) is correspondingly larger. Consider the following C code:

#include <stdio.h>

static int array[8] = {0,0,0,0,0,0,0,1};

int main(void)
{
 printf("%d\n", array[0]);
}

Here’s the corresponding GCC assembly language output:

 .align 2
_array:
 .long 0
 .long 0
 .long 0
 .long 0
 .long 0
 .long 0
 .long 0
 .long 1

Many languages also add a few bytes of padding at the end of an array
so that the array’s total length will be a multiple of a convenient value like
2 or 4 (making it easy to compute indices into the array using shifts or to add
extra padding bytes for the next object in memory; see Chapter 3 of WGC1
for details). However, a program must not count on those extra padding
bytes, because they may or may not be present. Some compilers always put
them in, others never do, and still others put them in depending on the
type of object that immediately follows the array in memory.

Many optimizing compilers try to start an array at a memory address
that is a multiple of a common size like 2, 4, or 8 bytes. Effectively, this adds

Array Data Types 233

padding bytes before the beginning of the array or, if you prefer to think of
it this way, after the previous object in memory (see Figure 8-2).

}

Array of 8 double-word objects in memory

Single-byte object at an address
that is a multiple of 4 in memory

Three bytes of padding the compiler adds to make
sure the array is aligned on a double-word boundary

Figure 8-2: Adding padding bytes before an array

On machines that do not support byte-addressable memory, compil-
ers that attempt to place the first element of an array on an easily accessed
boundary will allocate storage for an array on whatever boundary the machine
supports. In the previous example, notice that the .align 2 directive precedes
the _array declaration. In Gas syntax, the .align directive tells the assembler
to adjust the memory address of the next object declared in the source file
so that it starts at an address that is a multiple of some power (specified by
.align’s operand) of 2. In this example, .align 2 tells the assembler to align
the first element of _array on an address boundary that is a multiple of 4
(that is, 22).

If the size of each array element is less than the minimum-sized mem-
ory object the CPU supports, the compiler implementer has two options:

1. Allocate the smallest accessible memory object for each element of
the array.

2. Pack multiple array elements into a single memory cell.

Option 1 has the advantage of being fast, but it wastes memory because
each array element carries some extra storage that it doesn’t need. The
following C example allocates storage for an array whose element size is
5 bytes, where each element is a structure object consisting of a 4-byte long
object and a 1-byte char object (we’ll look at C structures in Chapter 11).

#include <stdio.h>

typedef struct
{
 long a;
 char b;
} FiveBytes;

static FiveBytes shortArray[2] = {{2,3}, {4,5}};

234 Chapter 8

int main(void)
{
 printf("%ld\n", shortArray[0].a);
}

When GCC compiles this code to run on a PowerPC processor, which
requires double-word alignment for long objects, the compiler automatically
inserts 3 bytes of padding between each element:

.data
 .align 2 ; Ensure that _shortArray begins on an
 ; address boundary that is a multiple
 ; of 4.
_shortArray:
 .long 2 ; shortArray[0].a
 .byte 3 ; shortArray[0].b
 .space 3 ; Padding, to align next element to 4 bytes
 .long 4 ; shortArray[1].a
 .byte 5 ; shortArray[1].b
 .space 3 ; Padding, at end of array.

Option 2 is compact but slower, as it requires extra instructions to
pack and unpack data when accessing array elements. Compilers on such
machines often provide an option that lets you specify whether you want
the data packed or unpacked so you can choose between space and speed.

Keep in mind that if you’re working on a byte-addressable machine
(like the 80x86), then you probably don’t have to worry about this issue.
However, if you’re using an HLL and your code might run on a different
machine at some point in the future, you should choose an array organiza-
tion that is efficient on all machines (that is, an organization that pads each
element of the array with extra bytes).

8.1.3 Swift Array Implementation
Although the examples so far have included arrays in Swift, Swift arrays have
a different implementation. First of all, Swift arrays are an opaque type2 based
on struct objects, rather than just a collection of elements in memory. Swift
doesn’t guarantee that array elements appear in continuous memory locations;
thus, you can’t assume that object elements and certain other element types
in a Swift array are stored contiguously. As a workaround, Swift provides the
ContiguousArray type specification. To guarantee that array elements appear
in contiguous memory locations, you can specify ContiguousArray rather than
Array when declaring array variables in Swift, like so:

var data_type array_name = ContiguousArray<element_type>()

The internal implementation of a Swift array is a structure containing
a count (current number of array elements), a capacity (current number

2. Opaque types have an implementation that is not visible to the programmer.

Array Data Types 235

of allocated array elements), and a pointer to the storage holding the array
elements. Because Swift arrays are an opaque type, this implementation
could change at any time; however, somewhere in the structure there will
be a pointer to the actual array data in memory.

Swift allocates storage for arrays dynamically, which means you’ll
never see the array storage embedded in the object code file that the Swift
compiler produces (unless the Swift language definition changes to sup-
port statically allocated arrays). You can increase the size of an array by
appending elements to it, but if you attempt to extend it beyond its current
capacity, the Swift runtime system may need to dynamically relocate an
array object. For performance reasons, Swift uses an exponential alloca-
tion scheme: whenever you append a value to an array that would exceed
its capacity, the Swift runtime system will allocate twice (or some other
constant) as much storage as the current capacity, copy the data from the
current array buffer to the new buffer, and then point the array’s internal
pointer at the new block. One important aspect of this process is that you
can never assume that the pointer to the array’s data remains static or that
the array’s data remains in the same buffer location in memory—at differ-
ent points in time, the array could appear in different locations in memory.

8.1.4 Accessing Elements of an Array
If you allocate all the storage for an array in contiguous memory loca-
tions, and the first index of the array is 0, then accessing an element of
a one-dimensional array is simple. You can compute the address of any
given element of an array using the following formula:

Element_Address = Base_Address + index * Element_Size

Element_Size is the number of bytes that each array element occupies.
Therefore, if the array contains elements of type byte, the Element_Size field
is 1 and the math is very easy. If each element of the array is a word (or other
2-byte type), then Element_Size is 2, and so on. Consider the following Pascal
array declaration:

var SixteenInts : array[0..15] of integer;

To access an element of the SixteenInts array on a byte-addressable
machine, assuming 4-byte integers, you’d use this calculation:

Element_Address = AddressOf(SixteenInts) + index * 4

In HLA assembly language (where you’d have to do this calculation
manually rather than having the compiler do it for you), you could use code
like this to access array element SixteenInts[index]:

mov(index, ebx);
mov(SixteenInts[ebx*4], eax);

236 Chapter 8

To see this in action, consider the following Pascal/Delphi program
and the resulting 32-bit 80x86 code (which I obtained by disassembling the
.exe output from the Delphi compiler and pasting the result back into the
original Pascal code):

program x(input,output);
var
 i :integer;
 sixteenInts :array[0..15] of integer;

 function changei(i:integer):integer;
 begin
 changei := 15 - i;
 end;

 // changei proc near
 // mov edx, 0Fh
 // sub edx, eax
 // mov eax, edx
 // retn
 // changei endp

begin

 for i:= 0 to 15 do
 sixteenInts[changei(i)] := i;

 // xor ebx, ebx
 //
 // loc_403AA7:
 // mov eax, ebx
 // call changei
 //
 // Note the use of the scaled-index addressing mode
 // to multiply the array index by 4 prior to accessing
 // elements of the array:
 //
 // mov ds:sixteenInts[eax*4], ebx
 // inc ebx
 // cmp ebx, 10h
 // jnz short loc_403AA7

end.

As in the HLA example, the Delphi compiler uses the 80x86 scaled-
index addressing mode to multiply the index into the array by the element
size (4 bytes). The 80x86 provides four different scaling values for the
scaled-index addressing mode: 1, 2, 4, or 8 bytes. If the array’s element size
is not one of these four values, the machine code must explicitly multiply
the index by the array element’s size. The following Delphi/Pascal code
(and corresponding 80x86 code from the disassembly) demonstrates this
process using a record that has 9 bytes of active data (Delphi rounds this up

Array Data Types 237

to the next multiple of 4 bytes, so it actually allocates 12 bytes for each ele-
ment of the array of records):

program x(input,output);
type
 NineBytes=
 record
 FourBytes :integer;
 FourMoreBytes :integer;
 OneByte :char;
 end;

var
 i :integer;
 NineByteArray :array[0..15] of NineBytes;

 function changei(i:integer):integer;
 begin
 changei := 15 - i;
 end;

 // changei proc near
 // mov edx, 0Fh
 // sub edx, eax
 // mov eax, edx
 // retn
 // changei endp

begin

 for i:= 0 to 15 do
 NineByteArray[changei(i)].FourBytes := i;

// xor ebx, ebx
//
// loc_403AA7:
// mov eax, ebx
// call changei
//
// // Compute EAX = EAX * 3
//
// lea eax, [eax+eax*2]
//
// // Actual index used is index*12 ((EAX*3) * 4)
//
// mov ds:NineByteArray[eax*4], ebx
// inc ebx
// cmp ebx, 10h
// jnz short loc_403AA7

end.

238 Chapter 8

Microsoft’s C/C++ compilers emit comparable code (also allocating
12 bytes for each element of the array of records).

8.1.5 Padding vs. Packing
These Pascal examples reiterate an important point: compilers generally
pad each array element to a multiple of 4 bytes, or whatever size is most con-
venient for the machine’s architecture, to improve access to array elements
(and record fields) by ensuring that they are always aligned on a reasonable
memory boundary. Some compilers give you the option of eliminating the
padding at the end of each array element, so that successive array elements
immediately follow the previous element in memory. In Pascal/Delphi, for
example, you can achieve this by using the packed keyword:

program x(input,output);

// Note the use of the "packed" keyword.
// This tells Delphi to pack each record
// into 9 consecutive bytes, without
// any padding at the end of the record.

type
 NineBytes=
 packed record
 FourBytes :integer;
 FourMoreBytes :integer;
 OneByte :char;
 end;

var
 i :integer;
 NineByteArray :array[0..15] of NineBytes;

 function changei(i:integer):integer;
 begin
 changei := 15 - i;
 end;

 // changei proc near
 // mov edx, 0Fh
 // sub edx, eax
 // mov eax, edx
 // retn
 // changei endp

begin

 for i:= 0 to 15 do
 NineByteArray[changei(i)].FourBytes := i;

Array Data Types 239

// xor ebx, ebx
//
// loc_403AA7:
// mov eax, ebx
// call changei
//
// // Compute index (eax) = index * 9
// // (computed as index = index + index*8):
//
// lea eax, [eax+eax*8]
//
// mov ds:NineBytes[eax], ebx
// inc ebx
// cmp ebx, 10h
// jnz short loc_403AA7

end.

The packed reserved word is just a hint to a Pascal compiler. A generic
Pascal compiler can choose to ignore it; the Pascal standard does not make
any explicit claims about its impact on a compiler’s code generation. Delphi
uses the packed keyword to tell the compiler to pack array (and record) ele-
ments on a byte boundary rather than a 4-byte boundary. Other Pascal
compilers actually use this keyword to align objects on bit boundaries.

N O T E See your compiler’s documentation for more information about the packed keyword.

Few other languages provide a way, within the generic language defi-
nition, to pack data into a given boundary. In the C/C++ languages, for
example, many compilers provide pragmas or command-line switches to
control array element padding, but these facilities are almost always specific
to a particular compiler.

In general, choosing between packed and padded array elements (when
you have a choice) is usually a tradeoff between speed and space. Packing
lets you save a small amount of space for each array element at the cost of
slower access to it (for example, when accessing a dword object at an odd
address in memory). Furthermore, computing the index into an array
whose element size is not a convenient multiple of 2 (or, better yet, a power
of 2) can require more instructions, which also slows down programs that
access elements of such arrays.

Of course, some machine architectures don’t allow misaligned data
access, so if you’re writing portable code that must compile and run on
different CPUs, you shouldn’t count on the fact that array elements can be
tightly packed into memory. Some compilers may not give you this option.

Before closing this discussion, it’s worthwhile to emphasize that the
best array element sizes are those that are some power of 2. Generally, it
takes only a single instruction to multiply any array index by a power of 2
(that single instruction is a shift-left instruction). Consider the following

240 Chapter 8

C program and the assembly output produced by Borland’s C++ compiler,
which uses arrays that have 32-byte elements:

typedef struct
{
 double EightBytes;
 double EightMoreBytes;
 float SixteenBytes[4];
} PowerOfTwoBytes;

int i;
PowerOfTwoBytes ThirtyTwoBytes[16];

int changei(int i)
{
 return 15 - i;
}

int main(int argc, char **argv)
{
 for(i=0; i<16; ++i)
 {
 ThirtyTwoBytes[changei(i)].EightBytes = 0.0;
 }

 // @5:
 // push ebx
 // call _changei
 // pop ecx // Remove parameter
 //
 // Multiply index (in EAX) by 32.
 // Note that (eax << 5) = eax * 32
 //
 // shl eax,5
 //
 // 8 bytes of zeros are the coding for
 // (double) 0.0:
 //
 // xor edx,edx
 // mov dword ptr [eax+_ThirtyTwoBytes],edx
 // mov dword ptr [eax+_ThirtyTwoBytes+4],edx
 //
 // Finish up the for loop here:
 //
 // inc dword ptr [esi] ;ESI points at i.
 // @6:
 // mov ebx,dword ptr [esi]
 // cmp ebx,16
 // jl short @5

 return 0;
}

Array Data Types 241

As you can see, the Borland C++ compiler emits a shl instruction to
multiply the index by 32.

8.1.6 Multidimensional Arrays
A multidimensional array is one that lets you select an element of the array
using two or more independent index values. A classic example is a two-
dimensional data structure (matrix) that tracks product sales versus date.
One index into the table could be the date, while the other index could be
the product’s identification (some integer designation). The element of the
array selected by these two indices would be the total sales of that product
on a given date. A three-dimensional extension of this example could be
sales of products by date and by country. Again, a combination of product
value, date value, and country value would address an element in the array
to give you the sales of that product within that country on the specified date.

Most CPUs can easily handle one-dimensional arrays using an indexed
addressing mode. Unfortunately, there is no magic addressing mode that
lets you easily access the elements of multidimensional arrays. That’s going
to take some work and several machine instructions.

8.1.6.1 Declaring Multidimensional Arrays

An “m by n” array has m × n elements and requires m × n × Element_Size bytes
of storage. With one-dimensional arrays, the syntax is very similar among
HLLs. However, their syntax starts to differ with multidimensional arrays.

In C, C++, and Java, you use the following syntax to declare a multidi-
mensional array:

data_type array_name [dim1][dim2]...[dimn];

For example, here’s a three-dimensional array declaration in C/C++:

int threeDInts[4][2][8];

This example creates an array with 64 elements organized with a depth
of 4 by 2 rows by 8 columns. Assuming each int object requires 4 bytes, this
array consumes 256 bytes of storage.

Pascal’s syntax supports two equivalent ways of declaring multidimen-
sional arrays. The following example demonstrates both:

var
 threeDInts:
 array[0..3] of array[0..1] of array[0..7] of integer;

 threeDInts2: array[0..3, 0..1, 0..7] of integer;

The first Pascal declaration is technically an array of arrays, whereas the
second declaration is a standard multidimensional array.

242 Chapter 8

Semantically, there are only two major differences in the way different
languages handle multidimensional arrays: whether the array declaration
specifies the overall size of each array dimension or the upper and lower
bounds; and whether the starting index is 0, 1, or a user-specified value.

8.1.6.2 Declaring Swift Multidimensional Arrays

Swift doesn’t support a native multidimensional array, but rather an array
of arrays. For most programming languages, where an array object is strictly
the sequence of array elements in memory, an array of arrays and a multi-
dimensional array are the same thing (see the Pascal examples given ear-
lier). However, Swift uses descriptor (struct-based) objects to specify an
array. Like string descriptors, Swift arrays consist of a data structure that
contains various fields (such as capacity, current size, and a pointer to data;
see “Swift Array Implementation” on page 234 for more details). When
you create an array of arrays, you’re actually creating an array of these
descriptors, with each pointing at a subarray. Consider the following (equiv-
alent) Swift array-of-arrays declarations and sample program:

import Foundation

var a1 = [[Int]]()
var a2 = ContiguousArray<Array<Int>>()
a1.append([1,2,3])
a1.append([4,5,6])
a2.append([1,2,3])
a2.append([4,5,6])

print(a1)
print(a2)
print(a1[0])
print(a1[0][1])

Running this program produces the following output:

[[1, 2, 3], [4, 5, 6]]
[[1, 2, 3], [4, 5, 6]]
[1, 2, 3]
2

This is reasonable—for two-dimensional arrays you’d expect this type
of output. However, internally, a1 and a2 are one-dimensional arrays with
two elements each. Those two elements are array descriptors that them-
selves point at arrays (each containing three elements in this example). It is
unlikely that the six array elements associated with a2 will appear in contig-
uous memory locations, even though a2 is a contiguous array type. The two
array descriptors held in a2 may appear in contiguous memory locations,
but that doesn’t necessarily carry over to the six data elements at which they
collectively point.

Array Data Types 243

Because Swift allocates array storage dynamically, the rows in a two-
dimensional array could have differing element counts. Consider the fol-
lowing modification to the previous Swift program:

import Foundation

var a2 = ContiguousArray<Array<Int>>()
a2.append([1,2,3])
a2.append([4,5])

print(a2)
print(a2[0])
print(a2[0][1])

Running this program produces the following output:

[[1, 2, 3], [4, 5]]
[1, 2, 3]
2

Notice how the two rows in the a2 array have different sizes. This could be
useful or a source of defects, depending on what you’re trying to accomplish.

One way to get standard multidimensional array storage in Swift is
to declare a one-dimensional ContiguousArray with sufficient elements for
all the elements of the multidimensional array. Then use the row-major
(or column-major) functionality to compute the index into the array (see
“Implementing Row-Major Ordering” on page 244 and “Implementing
Column-Major Ordering” on page 247).

8.1.6.3 Mapping Multidimensional Array Elements to Memory

Now that you’ve seen how arrays are declared, you need to know how to
implement them in memory. The first challenge is storing a multidimen-
sional object into a one-dimensional memory space.

Consider a Pascal array of the following form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four characters.
You need to map each of the 16 bytes in this array to each of the 16 contigu-
ous bytes in main memory. Figure 8-3 shows one way to do this.

You can map positions within the array grid to memory addresses in
different ways, as long as you adhere to two rules:

•	 No two entries in the array can occupy the same memory location.

•	 Each element in the array always maps to the same memory location.

Therefore, what you really need is a function with two input parameters
(one for a row and one for a column value) that produces an offset into a
contiguous block of 16 memory locations.

244 Chapter 8

0

1

2

3

Memory

0 1 2 3

Figure 8-3: Mapping a 4×4 array to sequential
memory locations

Now, any old function that satisfies these two constraints will work fine.
However, what you really want is a mapping function that can compute effi-
ciently at runtime and works for arrays with any number of dimensions and
any bounds on those dimensions. While there are numerous options that
fit this bill, most HLLs use one of two organizations: row-major ordering and
column-major ordering.

8.1.6.4 Implementing Row-Major Ordering

Row-major ordering assigns array elements to successive memory locations
by moving across the rows and then down the columns. Figure 8-4 demon-
strates this mapping for A[col,row].

0

1

2

3

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

A:array [0..3,0..3] of char;

0 1 2 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 8-4: Row-major ordering for a 4×4 array

Array Data Types 245

Row-major ordering is the method employed by most high-level program-
ming languages, including Pascal, C/C++/C#, Java, Ada, and Modula-2. It
is very easy to implement and easy to use in machine language. The conver-
sion from a two-dimensional structure to a linear sequence is very intuitive.
Figure 8-5 provides another view of row-major ordering for a 4×4 array.

Low addresses High addresses

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 8-5: Another view of row-major ordering for a 4x4 array

The function that converts the set of multidimensional array indices
into a single offset is a slight modification of the formula for computing the
address of an element of a one-dimensional array. The generic formula to
compute the offset into a two-dimensional row-major-ordered array given
an access of the form:

array[colindex][rowindex]

is:

Element_Address =
 Base_Address +
 (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array (A[0]
[0] in this case), and Element_Size is the size of an individual element of the
array in bytes. Row_size is the number of elements in one row of the array (4,
in this case, because each row has four elements). Assuming Element_Size is 1
and row_size is 4, this formula computes the offsets shown in Table 8-1 from
the base address.

For a three-dimensional array, the formula to compute the offset into
memory is only slightly more complex. Consider a C/C++ array declaration
given as follows:

someType array[depth_size][col_size][row_size];

246 Chapter 8

Table 8-1: Offsets for Two-Dimensional Row-Major-Ordered Array

Column index Row index Offset into array

0 0 0

0 1 1

0 2 2

0 3 3

1 0 4

1 1 5

1 2 6

1 3 7

2 0 8

2 1 9

2 2 10

2 3 11

3 0 12

3 1 13

3 2 14

3 3 15

If you have an array access similar to array[depth_index] [col_index]
[row_index], then the computation that yields the offset into memory is:

Address =
 Base +
 ((depth_index * col_size + col_index) *
 row_size + row_index) * Element_Size

Again, Element_Size is the size, in bytes, of a single array element.
For a four-dimensional array, declared in C/C++ as:

 type A[bounds0] [bounds1] [bounds2] [bounds3];

the formula for computing the address of an array element when accessing
element A[i][j][k][m] is:

Address =
 Base +
 (((i * bounds1 + j) * bounds2 + k) * bounds3 + m) *
 Element_Size

If you have an n-dimensional array declared in C/C++ as follows:

dataType array[bn-1][bn-2]...[b0];

Array Data Types 247

and you want to access the following element of this array:

array[an-1][an-2]...[a1][a0]

then you can compute the address of a particular array element using the
following algorithm:

Address := an-1
for i := n-2 downto 0 do
 Address := Address * bi + ai
Address := Base_Address + Address * Element_Size

It would be very rare for a compiler to actually execute such a loop in
order to compute an array index. There’s usually a small number of dimen-
sions and the compiler will unroll the loop, thereby avoiding the overhead
of the loop control instructions.

8.1.6.5 Implementing Column-Major Ordering

Column-major ordering, the other common array element address func-
tion, is used by FORTRAN, OpenGL, and various dialects of BASIC (such
as older versions of Microsoft BASIC) to index arrays. A column-major-
ordered array (accessing A[col,row]) is organized as shown in Figure 8-6.

0

1

2

3

Memory

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3

A:array [0..3,0..3] of char;

Figure 8-6: Column-major ordering

The formula for computing the address of an array element when using
column-major ordering is very similar to that for row-major ordering. The
difference is that you reverse the order of the index and size variables in

248 Chapter 8

the computation. That is, rather than working from the leftmost index
to the rightmost, you operate on the indices from the rightmost toward
the leftmost.

For a two-dimensional column-major array:

Element_Address =
 Base_Address +
 (rowindex * col_size + colindex) *
 Element_Size

For a three-dimensional column-major array:

Element_Address =
 Base_Address +
 ((rowindex * col_size + colindex) *
 depth_size + depthindex) *
 Element_Size

And so on. Other than using these new formulas, accessing elements of
an array using column-major ordering is identical to accessing arrays using
row-major ordering.

8.1.6.6 Accessing Elements of a Multidimensional Array

It’s so easy to access an element of a multidimensional array in an HLL that
many programmers do so without considering the associated costs. In this
section, to give you a clearer picture of these costs, we’ll look at some of
the assembly language sequences compilers commonly generate to access
elements of a multidimensional array. Because arrays are one of the more
common data structures found in modern applications, and multidimen-
sional arrays are also quite common, compiler designers have put a lot of
work into ensuring that they compute array indices as efficiently as possible.
Given a declaration such as:

int ThreeDInts[8][2][4];

and an array reference like the following:

ThreeDInts[i][j][k] = n;

accessing the array element (using row-major ordering) requires computing
the following:

Element_Address =
 Base_Address +
 ((i * col_size + j) * // col_size = 2
 row_size + k) * // row_size = 4
 Element_Size

Array Data Types 249

In brute-force assembly code, this might be:

intmul(2, i, ebx); // EBX = 2*i
add(j, ebx); // EBX = 2*i + j
intmul(4, ebx); // EBX = (2*i + j)*4
add(k, ebx); // EBX = (2*i + j)*4 + k
mov(n, eax);
mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n; assumes 4-byte ints

In practice, however, compiler authors avoid using the 80x86 intmul
(imul) instruction because it is slow. Many different machine idioms can be
used to simulate multiplication using a short sequence of addition, shift,
and “load effective address” instructions. Most optimizing compilers use
sequences that compute the array element address rather than the brute-
force code that uses a multiply instruction.

Consider the following C program, which initializes the 16 elements of
a 4×4 array:

int i, j;
int TwoByTwo[4][4];

int main(int argc, char **argv)
{
 for(j=0; j<4; ++j)
 {
 for(i=0; i<4; ++i)
 {
 TwoByTwo[i][j] = i+j;
 }
 }
 return 0;
}

Now consider the assembly code that the Borland C++ v5.0 compiler
(an old compiler) emits for the for loop in this example:

 mov ecx,offset _i
 mov ebx,offset _j
 ;
 ; {
 ; for(j=0; j<4; ++j)
 ;
?live1@16: ; ECX = &i, EBX = &j
 xor eax,eax
 mov dword ptr [ebx],eax ;i = 0
 jmp short @3
 ;
 ; {
 ; for(i=0; i<4; ++i)
 ;

250 Chapter 8

@2:
 xor edx,edx
 mov dword ptr [ecx],edx ; j = 0

; Compute the index to the start of the
; current column of the array as
; base(TwoByTwo) + eax*4. Leave this
; "column base address" in EDX:

 mov eax,dword ptr [ebx]
 lea edx,dword ptr [_TwoByTwo+4*eax]
 jmp short @5
 ;
 ; {
 ; TwoByTwo[i][j] = i+j;
 ;
?live1@48: ; EAX = @temp0, EDX = @temp1, ECX = &i, EBX = &j
@4:

;
 mov esi,eax ; Compute i+j
 add esi,dword ptr [ebx] ; EBX points at j's value

 shl eax,4 ; Multiply row index by 16

; Store the sum (held in ESI) into the specified array element.
; Note that EDX contains the base address plus the column
; offset into the array. EAX contains the row offset into the
; array. Their sum produces the address of the desired array
; element.

 mov dword ptr [edx+eax],esi ; Store sum into element

 inc dword ptr [ecx] ; increment i by 1
@5:
 mov eax,dword ptr [ecx] ; Fetch i's value
 cmp eax,4 ; Is i less than 4?
 jl short @4 ; If so, repeat inner loop
 inc dword ptr [ebx] ; Increment j by 1
@3:
 cmp dword ptr [ebx],4 ; Is j less than 4?
 jl short @2 ; If so, repeat outer loop.
 ;

 .
 .
 .
; Storage for the 4x4 (x4 bytes) two-dimensional array:
; Total = 4*4*4 = 64 bytes:

 align 4
_TwoByTwo label dword
 db 64 dup(?)

Array Data Types 251

In this example, the computation rowIndex * 4 + columnIndex is handled
by the following four instructions (which also store away the array element):

; EDX = base address + columnIndex * 4

 mov eax,dword ptr [ebx]
 lea edx,dword ptr [_TwoByTwo+4*eax]
 .
 .
 .
; EAX = rowIndex, ESI = i+j

 shl eax,4 ; Multiply row index by 16
 mov dword ptr [edx+eax],esi ; Store sum into element

Note that this code sequence used the scaled-index addressing mode
(along with the lea instruction) and the shl instruction to do the necessary
multiplications. Because multiplication tends to be an expensive operation,
most compilers avoid using it when calculating indices into multidimen-
sional arrays. Nevertheless, by comparing this code against the examples
given for one-dimensional array access, you can see that two-dimensional
array access is a bit more expensive in terms of the number of machine
instructions you must use to compute the index into the array.

Three-dimensional array access is even costlier than two-dimensional
array access. Here is a C/C++ program that initializes the elements of a
three-dimensional array:

#include <stdlib.h>
int i, j, k;
int ThreeByThree[3][3][3];

int main(int argc, char **argv)
{
 for(j=0; j<3; ++j)
 {
 for(i=0; i<3; ++i)
 {
 for(k=0; k<3; ++k)
 {
 // Initialize the 27 array elements
 // with a set of random values:

 ThreeByThree[i][j][k] = rand();
 }
 }
 }
 return 0;
}

252 Chapter 8

And here’s the 32-bit 80x86 assembly language output that the
Microsoft Visual C++ compiler produces:

; Line 9
 mov DWORD PTR j, 0 // for(j = 0;...;...)
 jmp SHORT $LN4@main

$LN2@main:
 mov eax, DWORD PTR j // for(...;...;++j)
 inc eax
 mov DWORD PTR j, eax

$LN4@main:
 cmp DWORD PTR j, 4 // for(...;j<4;...)
 jge $LN3@main

; Line 11
 mov DWORD PTR i, 0 // for(i=0;...;...)
 jmp SHORT $LN7@main

$LN5@main:
 mov eax, DWORD PTR i // for(...;...;++i)
 inc eax
 mov DWORD PTR i, eax

$LN7@main:
 cmp DWORD PTR i, 4 // for(...;i<4;...)
 jge SHORT $LN6@main

; Line 13
 mov DWORD PTR k, 0 // for(k=0;...;...)
 jmp SHORT $LN10@main

$LN8@main:
 mov eax, DWORD PTR k // for(...;...;++k)
 inc eax
 mov DWORD PTR k, eax

$LN10@main:
 cmp DWORD PTR k, 3 // for(...; k<3;...)
 jge SHORT $LN9@main

; Line 18
 call rand
 movsxd rcx, DWORD PTR i // Index =((((i*3 + j) * 3 + k) * 4)
 imul rcx, rcx, 36 // 00000024H
 lea rdx, OFFSET FLAT:ThreeByThree
 add rdx, rcx
 mov rcx, rdx
 movsxd rdx, DWORD PTR j
 imul rdx, rdx, 12
 add rcx, rdx
 movsxd rdx, DWORD PTR k

Array Data Types 253

// ThreeByThree[i][j][k] = rand();

 mov DWORD PTR [rcx+rdx*4], eax

; Line 19
 jmp SHORT $LN8@main // End of for(k = 0; k<3; ++k)
$LN9@main:
; Line 20
 jmp SHORT $LN5@main // End of for(i = 0; i<4; ++i)
$LN6@main:
; Line 21
 jmp $LN2@main // End of for(j = 0; j<4; ++j)
$LN3@main:

If you’re interested, you can write your own short HLL programs
and analyze the assembly code emitted for n-dimensional arrays (n being
greater than or equal to 4).

The choice of column-major or row-major array ordering is generally
dictated by your compiler, if not by the programming language definition.
No compiler I’m aware of will let you choose which array ordering you pre-
fer on an array-by-array basis (or even across a whole program, for that mat-
ter). However, there’s really no need to do this, as you can easily simulate
either storage mechanism by simply changing the definitions of “rows” and
“columns” in your programs.

Consider the following C/C++ array declaration:

int array[NumRows][NumCols];

Normally, you’d access an element of this array using a reference like this:

element = array[rowIndex][colIndex]

If you increment through all the column index values for each row
index value (which you also increment), you’ll access sequential memory
locations when accessing elements of this array. That is, the following C for
loop initializes sequential locations in memory with 0:

for(row=0; row<NumRows; ++row)
{
 for(col=0; col<NumCols; ++col)
 {
 array[row][col] = 0;
 }
}

If NumRow and NumCols are the same value, then accessing the array ele-
ments in column-major rather than row-major order is trivial. Simply swap
the indices in the previous code fragment to obtain:

for(row=0; row<NumRows; ++row)
{

254 Chapter 8

 for(col=0; col<NumCols; ++col)
 {
 array[col][row] = 0;
 }
}

If NumCols and NumRows are not the same value, you’ll have to manually
compute the index into the column-major array and allocate the storage in
a one-dimensional array, as follows:

int columnMajor[NumCols * NumRows]; // Allocate storage
 .
 .
 .
for(row=0; row<NumRows; ++row)
{
 for(col=0; col<NumCols; ++col)
 {
 columnMajor[col*NumRows + row] = 0;
 }
}

Swift users who want a true multidimensional array implementation
(not an array-of-arrays implementation) will need to allocate storage for
the whole array as a single ContiguousArray type and then compute the
indices into the array manually:

import Foundation

// Create a 3-D array[4][4][4]:

var a1 = ContiguousArray<Int>(repeating:0, count:4*4*4)

for var i in 0...3
{
 for var j in 0...3
 {
 for var k in 0...3
 {
 a1[(i*4+j)*4 + k] = (i*4+j)*4 + k
 }
 }
}
print(a1)

Here’s the output from this program:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63]

Array Data Types 255

Although it’s possible to access arrays using a column-major organization
if your application requires it, you should exercise extreme caution when
accessing arrays in a manner other than the language’s default scheme. Many
optimizing compilers are smart enough to recognize when you’re accessing
arrays in the default manner, and they generate far better code in those cir-
cumstances. Indeed, the examples presented so far have explicitly accessed
arrays in uncommon ways in order to thwart the compilers’ optimizers.
Consider the following C code and the Visual C++ output (with optimiza-
tion enabled):

#include <stdlib.h>
int i, j, k;
int ThreeByThreeByThree[3][3][3];

int main(int argc, char **argv)
{
 // The important difference to note here is how
 // the loops are arranged with the indices i, j, and k
 // used so that i changes the slowest and k changes
 // most rapidly (corresponding to row-major ordering).

 for(i=0; i<3; ++i)
 {
 for(j=0; j<3; ++j)
 {
 for(k=0; k<3; ++k)
 {
 ThreeByThreeByThree[i][j][k] = 0;
 }
 }
 }
 return 0;
}

Here’s the Visual C++ assembly language output for the for loops in the
previous code. In particular, note how the compiler substituted an 80x86
stosd instruction in place of the three loops:

 push edi
;
; The following code zeros out the 27 (3*3*3) elements
; of the ThreeByThreeByThree array.

 mov ecx, 27 ; 0000001bH
 xor eax, eax
 mov edi, OFFSET FLAT:_ThreeByThreeByThree
 rep stosd

If you rearrange your indices so that you’re not storing zeros into con-
secutive memory locations, Visual C++ will not compile to the stosd instruc-
tion. Even if the end result is the zeroing of the entire array, the compiler
believes that the semantics of stosd are different. (Imagine two threads in

256 Chapter 8

a program that are both reading and writing ThreeByThreeByThree array ele-
ments concurrently; the program’s behavior could be different based on
the order of the writes to the array.)

In addition to compiler semantics, there are also good hardware rea-
sons not to change the default array ordering. Modern CPU performance
is highly dependent on the effectiveness of the CPU’s cache. Because cache
performance depends on the temporal and spatial locality of the data in
the cache, you must be careful not to access data in a way that disturbs
locality. In particular, accessing array elements in a manner that is inconsis-
tent with their storage order will dramatically impact spatial locality and in
turn hurt performance. The moral of the story: adopt the compiler’s array
organization unless you really know what you’re doing.

8.1.6.7 Improving Array Access Efficiency in Your Applications

Follow these rules when using arrays in your applications:

•	 Never use a multidimensional array when a one-dimensional array will
work. This is not to suggest that you should simulate multidimensional
arrays by manually computing a row-major (or column-major) index
into a one-dimensional array, but if you can express an algorithm
using a one-dimensional array rather than a multidimensional array,
you should.

•	 When you must use multidimensional arrays in your application, try
to use array bounds that are powers of 2 or, at least, multiples of 4.
Compilers can compute indices into such arrays much more efficiently
than arrays with arbitrary bound values.

•	 When accessing elements of a multidimensional array, try to do so in a
manner than supports sequential memory access. For row-major-ordered
arrays, this implies sequencing through the rightmost index the fastest
and the leftmost index the slowest (and vice versa for column-major
ordered arrays).

•	 If your language supports operations on entire rows or columns (or
other large pieces of the array) with a single operation, use those
facilities rather than accessing individual elements using nested loops.
Often, the loop overhead, amortized over each array element you
access, is greater than the cost of the index calculation and element
access. This is particularly important when the array operation is the
only thing happening in the loop(s).

•	 Always keep in mind the issues of spatial and temporal locality when
accessing array elements. Accessing a large number of array elements in
a random (or non–cache-friendly) fashion can cause thrashing in the
cache and virtual memory subsystem.3

3. See WGC1 for a discussion of thrashing.

Array Data Types 257

The last point is particularly important. Consider the following
HLA program:

program slow;
#include ("stdlib.hhf")
begin slow;

 // A dynamically allocated array accessed as follows:
 // array [12][1000][1000]

 malloc(12_000_000); // Allocate 12,000,000 bytes
 mov(eax, esi);

 // Initialize each byte of the array to 0:

 for(mov(0, ecx); ecx < 1000; inc(ecx)) do

 for(mov(0, edx); edx < 1000; inc(edx)) do

 for(mov(0, ebx); ebx < 12; inc(ebx)) do

 // Compute the index into the array
 // as EBX*1_000_000 + EDX*1_000 + ECX

 intmul(1_000_000, ebx, eax);
 intmul(1_000, edx, edi);
 add(edi, eax);
 add(ecx, eax);
 mov(0, (type byte [esi+eax]));

 endfor;

 endfor;

 endfor;

end slow;

Simply swapping the loops around—so that the EBX loop is the outer-
most loop and the ECX loop is the innermost loop—can make this program
run up to 10 times faster. The reason is that the program, as currently writ-
ten, accesses an array stored in row-major order nonsequentially. Changing
the rightmost index (ECX) most frequently and the leftmost index (EBX)
least frequently, then, means this program will access memory sequentially.
This allows the cache to work better, which dramatically improves program
performance.

8.1.7 Dynamic vs. Static Arrays
Some languages allow you to declare arrays whose size isn’t known until the
program is running. Such arrays are quite useful, because many programs
cannot predict how much space they will need for a data structure until
they receive input from a user. For example, consider a program that reads

258 Chapter 8

a text file from disk, line by line, into an array of strings. Until the program
actually reads the file and counts the number of lines, it doesn’t know how
many elements it will need for the array of strings. When writing the pro-
gram, the programmer had no way of knowing how large the array would
need to be.

Languages that provide support for such arrays generally call them
dynamic arrays. This section explores the issues surrounding them and their
counterpart, static arrays. A good place to start is with some definitions:

Static array (or pure static array)
An array whose size the program knows during compilation. This
means the compiler/linker/operating system can allocate storage for
the array before the program begins execution.

Pseudo-static array
An array whose size is known to the compiler, but for which the pro-
gram doesn’t actually allocate storage until runtime. Automatic vari-
ables (that is, nonstatic local variables in a function or procedure) are
good examples of pseudo-static objects. The compiler knows their exact
size while compiling the program, but the program doesn’t actually
allocate storage for them in memory until the function or procedure
containing the declaration executes.

Pseudo-dynamic array
An array whose size the compiler cannot determine prior to program
execution. Typically, the program determines the size of the array at
runtime as a result of user input or as part of some other calculation.
Once the program allocates storage for a pseudo-dynamic array, how-
ever, the size of the array remains fixed until the program either ter-
minates or deallocates storage for that array. In particular, you cannot
change the size of a pseudo-dynamic array to add or delete selected ele-
ments without deallocating the storage for the whole array.

Dynamic array (or pure dynamic array)
An array whose size the compiler cannot determine until the program
runs and, in fact, cannot even be sure of once it creates the array. A
program may change the size of a dynamic array at any time, adding or
deleting elements, without affecting the values already present in the
array (of course, if you delete some array elements, their values are lost).

N O T E Static and pseudo-static arrays are examples of the static and automatic objects dis-
cussed previously in this book. See Chapter 7 for a review.

8.1.7.1 One-Dimensional Pseudo-Dynamic Arrays

Most languages that claim support for dynamic arrays actually support
pseudo-dynamic arrays. That is, you may specify the size of an array when
you first create it, but once you’ve done so, you can’t easily change the

Array Data Types 259

array’s size without first deallocating the original storage for the array.
Consider the following Visual Basic statement:

dim dynamicArray[i * 2]

Assuming i is an integer variable that you’ve assigned some value prior to
this statement’s execution, upon encountering this statement Visual Basic will
create an array with i×2 elements. In languages that do support (pseudo-)
dynamic arrays, array declarations are usually executable statements, whereas
in languages that don’t support dynamic arrays, such as C and Pascal, they
are not. They are simply declarations that the compiler processes for book-
keeping reasons, but for which the compiler generates no machine code.

Although standard C/C++ does not support pseudo-dynamic arrays,
the GNU C/C++ implementation does. Therefore, it’s legal to write a func-
tion like the following in GNU C/C++:

void usesPDArray(int aSize)
{
 int array[aSize];
 .
 .
 .
} /* end of function usesPDArray */

Of course, if you use this feature in GCC, you’ll only be able to compile
your programs with GCC.4 That’s why you won’t see many C/C++ program-
mers using this type of code in their programs.

If you’re using a language like C/C++ that doesn’t support pseudo-
dynamic arrays, but does provide a generic memory allocation function,
then you can easily create arrays that act just like one-dimensional pseudo-
dynamic arrays. This is particularly easy in languages that don’t check the
range of array indices, like C/C++. Consider the following code:

void usesPDArray(int aSize)
{
 int *array;

 array = (int *) malloc(aSize * sizeof(int));
 .
 .
 .
 free(array);

} /* end of function usesPDArray */

One issue with using a memory allocation function like malloc() is that
you must remember to explicitly free the storage prior to returning from
the function (as the free() call does in this case). Some versions of the C

4. As it turns out, Clang on the Mac also supports this feature.

260 Chapter 8

standard library include a talloc() function that allocates dynamic storage
on the stack. Calls to talloc() are much faster than calls to malloc() and
free(), and talloc() automatically frees up the storage when you return.

8.1.7.2 Multidimensional Pseudo-Dynamic Arrays

If you want to create multidimensional pseudo-dynamic arrays, that’s
another problem altogether. With a one-dimensional pseudo-dynamic
array, the program really doesn’t need to keep track of the array bounds for
any reason but to verify that the array index is valid. For multidimensional
arrays, however, the program must maintain additional information about
the upper and lower bounds of each dimension of the array; the program
needs that size information to compute the offset of an array element from
a list of array indices, as you saw earlier in the chapter. So, in addition to
maintaining a pointer containing the address of the base element of the
array, programs using pseudo-dynamic arrays must also keep track of the
array bounds.5 This collection of information—the base address, number
of dimensions, and bounds for each dimension—is known as a dope vector.
In a language like HLA, C/C++, or Pascal, you’d typically create a struct or
record to maintain the dope vector (see Chapter 11 for more information
about structs and records). Here’s an example of a dope vector you might
create for a two-dimensional integer array using HLA:

type
 dopeVector2D :
 record
 ptrToArray :pointer to int32;
 bounds :uns32[2];
 endrecord;

Here’s the HLA code you would use to read the bounds of a two-
dimensional array from the user and allocate storage for the pseudo-
dynamic array using this dope vector:

var
 pdArray :dopeVector2D;
 .
 .
 .
stdout.put("Enter array dimension #1:");
stdin.get(pdArray.bounds[0]);
stdout.put("Enter array dimension #2:");
stdin.get(pdArray.bounds[4]); //Remember, '4' is a
 // byte offset into bounds.

5. Technically, the code doesn’t need to maintain the size of the last array dimension if the
program doesn’t check the validity of array indices applied to the array. In general, however,
most languages that support pseudo-dynamic arrays maintain all the information.

Array Data Types 261

// To allocate storage for the array, we must
// allocate bounds[0]*bounds[4]*4 bytes:

mov(pdArray.bounds[0], eax);

// bounds[0]*bounds[4] -> EAX

intmul(pdArray.bounds[4], eax);

// EAX := EAX * 4 (4=size of int32).

shl(2, eax);

// Allocate the bytes for the array.

malloc(eax);

// Save away base address.

mov(eax, pdArray.ptrToArray);

This example emphasizes that the program must compute the size
of the array as the product of the array dimensions and the element size.
When processing static arrays, the compiler can compute this product dur-
ing compilation. When working with dynamic arrays, however, the compiler
must emit machine instructions to compute this product at runtime, which
means your program will be slightly larger and slightly slower than if you
had used a static array.

If a language doesn’t directly support pseudo-dynamic arrays, you’ll
have to translate a list of indices into a single offset using the row-major
function (or something comparable). This is true in HLLs as well as assem-
bly language. Consider the following C++ example, which uses row-major
ordering to access an element of a pseudo-dynamic array:

typedef struct
{
 int *ptrtoArray;
 int bounds[2];
} dopeVector2D;

dopeVector2D pdArray;
 .
 .
 .
 // Allocate storage for the pseudo-dynamic array:

 cout << "Enter array dimension #1:";
 cin >> pdArray.bounds[0];
 cout << "Enter array dimension #2:" ;
 cin >> pdArray.bounds[1];
 pdArray.ptrtoArray =
 new int[pdArray.bounds[0] * pdArray.bounds[1]];

262 Chapter 8

 .
 .
 .
 // Set all the elements of this dynamic array to
 // successive integer values:

 k = 0;
 for(i=0; i < pdArray.bounds[0]; ++i)
 {
 for(j=0; j < pdArray.bounds[1]; ++j)
 {
 // Use row-major ordering to access
 // element [i][j]:

 *(pdArray.ptrtoArray + i*pdArray.bounds[1] + j) = k;
 ++k;
 }
 }

As for one-dimensional pseudo-dynamic arrays, memory allocation and
deallocation can be more expensive than the actual array access—particu-
larly if you allocate and deallocate many small arrays.

A big problem with multidimensional dynamic arrays is that the com-
piler doesn’t know the array bounds at compile time, so it can’t generate
array access code that’s as efficient as what’s possible for pseudo-static and
static arrays. As an example, consider the following C code:

#include <stdlib.h>

int main(int argc, char **argv)
{

 // Allocate storage for a 3x3x3 dynamic array:

 int *iptr = (int*) malloc(3*3*3 *4);
 int depthIndex;
 int rowIndex;
 int colIndex;

 // A pseudo-static 3x3x3 array for comparison:

 int ssArray[3][3][3];

 // The following nested for loops initialize all
 // the elements of the dynamic 3x3x3 array with
 // zeros:

 for(depthIndex=0; depthIndex<3; ++depthIndex)
 {
 for(rowIndex=0; rowIndex<3; ++rowIndex)
 {
 for(colIndex=0; colIndex<3; ++colIndex)
 {

Array Data Types 263

 iptr
 [
 // Row-major order computation:

 ((depthIndex*3) + rowIndex)*3
 + colIndex

] = 0;
 }
 }
 }

 // The following three nested loops are comparable
 // to the above, but they initialize the elements
 // of a pseudo-static array. Because the compiler
 // knows the array bounds at compile time, it can
 // generate better code for this sequence.

 for(depthIndex=0; depthIndex<3; ++depthIndex)
 {
 for(rowIndex=0; rowIndex<3; ++rowIndex)
 {
 for(colIndex=0; colIndex<3; ++colIndex)
 {
 ssArray[depthIndex][rowIndex][colIndex] = 0;
 }
 }
 }

 return 0;
}

Here’s the pertinent portion of the PowerPC code that GCC emits for
this C program (manually annotated). The important thing to notice here
is that the dynamic array code is forced to use an expensive multiply instruc-
tion, whereas the pseudo-static array code doesn’t need this instruction.

 .section __TEXT,__text,regular,pure_instructions

_main:

// Allocate storage for local variables
// (192 bytes, includes the ssArray,
// loop control variables, other stuff,
// and padding to 64 bytes):

 mflr r0
 stw r0,8(r1)
 stwu r1,-192(r1)

// Allocate 108 bytes of storage for
// the 3x3x3 array of 4-byte ints.
// This call to malloc leaves the
// pointer to the array in R3.

264 Chapter 8

 li r3,108
 bl L_malloc$stub

 li r8,0 // R8= depthIndex
 li r0,0

 // R10 counts off the number of
 // elements in rows we've processed:

 li r10,0

// Top of the outermost for loop

L16:
 // Compute the number of bytes
 // from the beginning of the
 // array to the start of the
 // row we are about to process.
 // Each row contains 12 bytes and
 // R10 contains the number of rows
 // processed so far. The product
 // of 12 by R10 gives us the number
 // of bytes to the start of the
 // current row. This value is put
 // into R9:

 mulli r9,r10,12

 li r11,0 // R11 = rowIndex

// Top of the middle for loop

L15:
 li r6,3 // R6/CTR = colIndex

 // R3 is the base address of the array.
 // R9 is the index to the start of the
 // current row, computed by the MULLI
 // instruction, above. R2 will now
 // contain the base address of the
 // current row in the array.

 add r2,r9,r3

 // CTR = 3

 mtctr r6

 // Repeat the following loop
 // once for each element in
 // the current row of the array:

L45:
 stw r0,0(r2) // Zero out current element
 addi r2,r2,4 // Move on to next element

Array Data Types 265

 bdnz L45 // Repeat loop CTR times

 addi r11,r11,1 // Bump up RowIndex by 1
 addi r9,r9,12 // Index of next row in array
 cmpwi cr7,r11,2 // Repeat for RowIndex=0..2
 ble+ cr7,L15

 addi r8,r8,1 // Bump up depthIndex by 1
 addi r10,r10,3 // Bump up element cnt by 3
 cmpwi cr7,r8,2 // Repeat for depthIndex=0..2
 ble+ cr7,L16

///
//
// Here's the code that initializes the pseudo-static
// array:

 li r8,0 // DepthIndex = 0
 addi r10,r1,64 // Compute base address of ssArray
 li r0,0
 li r7,0 // R7 is index to current row
L31:
 li r11,0 // RowIndex = 0
 slwi r9,r7,2 // Convert row/int index to
 // row/byte index (int_index*4)
L30:
 li r6,3 // # iterations for colIndex
 add r2,r9,r10 // Base+row_index = row address
 mtctr r6 // CTR = 3

// Repeat innermost loop three times:

L44:
 stw r0,0(r2) // Zero out current element
 addi r2,r2,4 // Bump up to next element
 bdnz L44 // Repeat CTR times

 addi r11,r11,1 // Bump up RowIndex by 1
 addi r9,r9,12 // R9=Adrs of start of next row
 cmpwi cr7,r11,2 // Repeat until RowIndex >=3
 ble+ cr7,L30

 addi r8,r8,1 // Bump up depthIndex by 1
 addi r7,r7,9 // Index of next depth in array
 cmpwi cr7,r8,2
 ble+ cr7,L31

 lwz r0,200(r1)
 li r3,0
 addi r1,r1,192
 mtlr r0
 blr

266 Chapter 8

Different compilers and different optimization levels handle dynamic
and pseudo-static array access in different ways. Some compilers generate
the same code for both sequences, but many do not. The bottom line is that
multidimensional dynamic array access is never faster than pseudo-static multi-
dimensional array access, and it is sometimes slower.

8.1.7.3 Pure Dynamic Arrays

Pure dynamic arrays are even more difficult to manage. You’ll rarely find
them outside of very high-level languages like APL, SNOBOL4, LISP, and
Prolog. The one notable exception is Swift, whose arrays are pure dynamic
arrays. Most languages that support pure dynamic arrays don’t force you to
explicitly declare or allocate storage for an array. Instead, you just use ele-
ments of an array, and if an element isn’t currently present in the array, the
language automatically creates it for you. So, what happens if you currently
have an array with elements 0 through 9 and you decide to use element 100?
Well, the result is language dependent. Some languages that support pure
dynamic arrays will automatically create array elements 10..100 and initial-
ize elements 10..99 with 0 (or some other default value). Other languages
may allocate only element 100 and keep track of the fact that the other ele-
ments are not yet present in the array. Regardless, the extra bookkeeping
necessary for each access to the array can be quite expensive. That’s why
languages that support pure dynamic arrays aren’t more popular—they
tend to execute programs slowly.

If you’re using a language that supports dynamic arrays, keep in mind
the costs associated with array access in that language. If you’re using a
language that doesn’t support dynamic arrays, but does support memory
allocation/deallocation (for example, C/C++, Java, or assembly), you can
implement dynamic arrays yourself. You’ll be painfully aware of the costs
of using such an array, because you’ll probably have to write all the code
that manipulates its elements, although that’s not an altogether bad thing.
If you’re using C++, you can even overload the array index operator ([])
to hide the complexity of dynamic array element access. Generally, though,
programmers who need the true semantics of dynamic arrays will usually
choose a language that directly supports them. Again, if you choose to go
this route, just be mindful of the costs.

8.2 For More Information
Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:

Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Knuth, Donald. The Art of Computer Programming, Volume I: Fundamental
Algorithms. 3rd ed. Boston: Addison-Wesley Professional, 1997.

Pointers are the data type equivalent
of a goto statement. Used carelessly, they

can turn a robust and efficient program
into a buggy and inefficient junk pile. Unlike

goto statements, however, pointers can be difficult to
avoid in many common programming languages.
There are no “pointers considered harmful” papers in academic journals
like Dijkstra’s “Go To Statement Considered Harmful” letter.1 Many lan-
guages, like Java and Swift, attempt to restrict pointers, but several popular
languages still use them, so great programmers need to be able to deal with
them. To that end, this chapter will discuss:

•	 The memory representation of pointers

•	 How high-level languages implement pointers

1. Edgar Dijkstra, “Go To Statement Considered Harmful,” Communications of the ACM 11,
no. 3 (1968).

9
P O I N T E R D A T A T Y P E S

268 Chapter 9

•	 Dynamic memory allocation and its relationship to pointers

•	 Pointer arithmetic

•	 How memory allocators work

•	 Garbage collection

•	 Common pointer problems

By understanding the low-level implementation and use of pointers,
you’ll be able to write high-level code that is more efficient, safer, and more
readable. This chapter will provide the information you need to use point-
ers appropriately and avoid the problems normally associated with them.

9.1 The Definition of a Pointer
A pointer is simply a variable whose value refers to some other object.
High-level languages like Pascal and C/C++ hide the simplicity of pointers
behind a wall of abstraction. HLL programmers generally rely on the high
degree of abstraction provided by the language because they don’t want to
know what’s going on behind the scenes. They just want a “black box” that
produces predictable results. In the case of pointers, though, the abstrac-
tion may be too effective; pointers seem intimidating and opaque to many
programmers. Well, fear not! Pointers are actually easy to deal with.

To understand how pointers work, I’ll use the array data type as an
example. Consider the following array declaration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is easy to understand.
M is an array of 1,024 integers, indexed from M[0] to M[1023]. Each array ele-
ment can hold an independent integer value. In other words, this array
gives you 1,024 different integer variables, each of which you access via an
array index (the variable’s sequential position within the array) rather than
by name.

The statement M[0] := 100; stores the value 100 into the first element of
the array M. Now consider the following two statements:

i := 0; (* assume "i" is an integer variable *)
M [i] := 100;

These two statements do the same thing as M[0] := 100;. In fact, you
can use any integer expression producing a value in the range 0..1023 as
an index into this array. The following statements still perform the same
operation as our earlier statements:

i := 5; (* assume all variables are integers*)
j := 10;
k := 50;
m [i*j-k] := 100;

Pointer Data Types 269

But now look at the following statements:

M [1] := 0;
M [M [1]] := 100;

At first glance, these statements might seem confusing; however, they
perform the same operation as in the previous examples. The first state-
ment stores 0 into array element M[1]. The second statement fetches the
value of M[1], which is 0, and uses that value to determine where to store
the value 100.

If you think this example is reasonable—perhaps bizarre, but usable
nonetheless—then you’ll have no problems with pointers, because M[1] is a
pointer! Well, not really, but if you were to change M to “memory” and treat
each element of this array as a separate memory location, then it would
meet the definition of a pointer—that is, a memory variable whose value
is the address of some other memory object.

9.2 Pointer Implementation in High-Level Languages
Although most languages implement pointers using memory addresses, a
pointer is actually an abstraction of a memory address. Therefore, a lan-
guage could define a pointer using any mechanism that maps the value of
the pointer to the address of some object in memory. Some implementa-
tions of Pascal, for example, use offsets from a fixed memory address as
pointer values. Some languages (including dynamic languages like Lisp)
might actually implement pointers by using double indirection; that is, the
pointer object contains the address of some memory variable whose value
is the address of the object to access. This approach may seem somewhat
convoluted, but it offers certain advantages in a complex memory manage-
ment system, making it easier and more efficient to reuse blocks of memory.
However, for simplicity’s sake we’ll assume that, as defined earlier, a pointer
is a variable whose value is the address of some other object in memory.
This is a safe assumption for many of the high-performance HLLs you’re
likely to encounter, such as C, C++, and Delphi.

You can indirectly access an object using a pointer with two 80x86
machine instructions, as follows:

mov(PointerVariable, ebx); // Load pointer variable into a register.
mov([ebx], eax); // Use register-indirect mode to access data.

Now consider the double-indirect pointer implementation described
earlier. Access to data via double indirection is less efficient than the straight
pointer implementation because it takes an extra machine instruction to
fetch the data from memory. This isn’t obvious even in an HLL like C/C++
or Pascal, where using double indirection is explicit:

i = **cDblPtr;
i := pDblPtr^^;

270 Chapter 9

This is syntactically similar to single indirection. In assembly language,
however, you’ll see the extra work involved:

mov(hDblPtr, ebx); // Get the pointer to a pointer
mov([ebx], ebx); // Get the pointer to the value
mov([ebx], eax); // Get the value

Contrast this with the two earlier assembly instructions to access an object
using single indirection. Because double indirection requires 50 percent
more code (and twice as many slow memory accesses) than single indirec-
tion, you can see why many languages implement pointers using single indi-
rection. To verify this, consider the machine code produced by a couple of
different compilers when processing the following C code:

static int i;
static int j;
static int *cSnglPtr;
static int **cDblPtr;

int main(void)
{
 .
 .
 .
 j = *cSnglPtr;
 i = **cDblPtr;
 .
 .
 .

Here’s the GCC output for the PowerPC processor:

; j = *cSnglPtr;

 addis r11,r31,ha16(_j-L1$pb)
 la r11,lo16(_j-L1$pb)(r11)
 addis r9,r31,ha16(_cSnglPtr-L1$pb)
 la r9,lo16(_cSnglPtr-L1$pb)(r9)
 lwz r9,0(r9) // Get the ptr into register R9
 lwz r0,0(r9) // Get the data at the pointer
 stw r0,0(r11) // Store into j

; i = **cDblPtr;
;
; Begin by getting the address of cDblPtr into R9:

 addis r11,r31,ha16(_i-L1$pb)
 la r11,lo16(_i-L1$pb)(r11)
 addis r9,r31,ha16(_cDblPtr-L1$pb)
 la r9,lo16(_cDblPtr-L1$pb)(r9)

 lwz r9,0(r9) // Get the dbl ptr into R9
 lwz r9,0(r9) // Get the ptr into R9

Pointer Data Types 271

 lwz r0,0(r9) // Get the value into R9
 stw r0,0(r11) // Store value into i

As you can see in this PowerPC example, fetching the value using
double indirection takes one more instruction than it does using single
indirection. Of course, the total number of instructions is rather large here,
so this extra instruction doesn’t contribute as much to the execution time
as it does on the 80x86 where fewer instructions are involved. Consider the
following GCC code output for the 32-bit 80x86:

; j = *cSnglPtr;

 movl cSnglPtr, %eax
 movl (%eax), %eax
 movl %eax, j

; i = **cDblPtr;

 movl cDblPtr, %eax
 movl (%eax), %eax
 movl (%eax), %eax
 movl %eax, i

As we saw with the PowerPC code, double indirection requires extra
machine instructions, so programs using double indirection will be larger
and slower.

Notice that the PowerPC instruction sequences are twice as long as the
80x86 instruction sequences.2 One positive way of viewing this is that double
indirection has less of an impact on the execution time of the PowerPC code
than it does on the 80x86 code. That is, the extra instruction represents only
13 percent of the total in the PowerPC code, versus 25 percent of the total in
the 80x86 code.3 This brief example should demonstrate that execution time
and code space are not processor independent. Bad coding practices (such
as using double indirection when it’s not required) can have more impact on
some processors than others.

9.3 Pointers and Dynamic Memory Allocation
Pointers typically reference anonymous variables that you allocate on the
heap using memory allocation/deallocation functions like malloc()/free(),
new()/dispose(), and new()/delete() (std::make_unique in C++17). Objects that
you allocate on the heap are known as anonymous variables because you refer

2. This, by the way, is not a general rule concerning PowerPC versus 80x86 code. Memory refer-
ences on the PowerPC are very costly; that’s why the PowerPC code here is so long. However, the
PowerPC has four times as many registers, so in real applications the code isn’t always larger.

3. Keep in mind, however, that memory accesses are very slow if the data is not sitting in the
cache. In that case, the majority of the time spent in this code will be waiting for memory, not
executing instructions, so—all other things being equal—the two code sequences will have
more comparable execution times.

272 Chapter 9

to them by their address rather than by name. While the pointer variable
may have a name, that name applies to the pointer’s data (an address), not
the object referenced by this address.

N O T E The heap, as Chapter 7 explained, is a region in memory reserved for dynamic
storage allocation.

Dynamic languages handle memory allocation and deallocation opera-
tions in a transparent, automatic fashion. The application simply uses the
dynamic data and leaves it up to the runtime system to allocate memory
as needed and reuse storage for a different purpose when it is no longer
needed. Without the need to explicitly allocate and deallocate memory
for pointer variables, applications written in dynamic languages (such as
AWK or Perl) are usually much easier to program and often contain far
fewer errors. But this comes at the cost of efficiency, as they often run much
slower than programs written in other languages. Conversely, traditional
languages (such as C/C++) that require programmers to explicitly manage
memory often produce more efficient applications, although the memory
management code is prone to a higher percentage of defects due to its addi-
tional complexity.

9.4 Pointer Operations and Pointer Arithmetic
Most HLLs that provide a pointer data type let you assign addresses to
pointer variables, compare pointer values for equality or inequality, and
indirectly reference an object via a pointer. Some languages also allow
additional operations, as you’ll see in this section.

Many programming languages enable you to do limited arithmetic
with pointers. At the very least, these languages allow you to add an integer
constant to, or subtract one from, a pointer. To understand the purpose of
these two arithmetic operations, recall the syntax of the malloc() function
in the C standard library:

ptrVar = malloc(bytes_to_allocate);

The parameter you pass malloc() specifies the number of bytes of stor-
age to allocate. A good C programmer generally supplies an expression like
sizeof(int) as this parameter. The sizeof() function returns the number of
bytes needed by its single parameter. Therefore, sizeof(int) tells malloc() to
allocate at least enough storage for an int variable. Now consider the follow-
ing call to malloc():

ptrVar = malloc(sizeof(int) * 8); // An array of 8 integers

If the size of an integer is 4 bytes, this call to malloc() will allocate stor-
age for 32 bytes, at consecutive addresses in memory (see Figure 9-1).

Pointer Data Types 273

Low heap
addresses

High heap
addresses

Pointer (address) that malloc(sizeof(int) * 8) returns

32 bytes (8 ints)

Figure 9-1: Memory allocation via malloc(sizeof(int) * 8)

The pointer that malloc() returns contains the address of the first integer
in this set, so the C program can directly access only the very first of these
eight integers. To access the individual addresses of the other seven inte-
gers, you need to add an integer offset to that base address. On machines
that support byte-addressable memory (such as the 80x86), the address of
each successive integer in memory is the address of the previous integer
plus the integer size. For example, if a call to the C standard library malloc()
routine returns the memory address $0300_1000, then the eight integers that
malloc() allocates will reside at the memory addresses shown in Table 9-1.

Table 9-1: Integer Addresses Allocated for Base Address $0300_1000

Integer Memory address

First $0300_1000..$0300_1003

Second $0300_1004..$0300..1007

Third $0300_1008..$0300_100b

Fourth $0300_100c..$0300_100f

Fifth $0300_1010..$0300_1013

Sixth $0300_1014..$0300..1017

Seventh $0300_1018..$0300_101b

Eighth $0300_101c..$0300_101f

9.4.1 Adding an Integer to a Pointer
Because the eight integers in the previous section are exactly 4 bytes apart,
you add 4 to the address of the first integer to obtain the address of the
second integer. Likewise, the address of the third integer is the address of
the second integer plus 4 bytes, and so on. In assembly language, you could
access these eight integers using code like the following:

// malloc returns storage for eight
// int32 objects in EAX.

malloc(@size(int32) * 8);

mov(0, ecx);
mov(ecx, [eax]); // Zero out the 32 bytes
mov(ecx, [eax+4]); // (4 bytes at a time).

274 Chapter 9

mov(ecx, [eax+8]);
mov(ecx, [eax+12]);
mov(ecx, [eax+16]);
mov(ecx, [eax+20]);
mov(ecx, [eax+24]);
mov(ecx, [eax+28]);

Notice the use of the 80x86 indexed addressing mode to access the
eight integers that malloc() allocates. The EAX register maintains the base
(first) address of the eight integers that this code allocates, and the con-
stant in the addressing mode of the mov() instruction indicates the offset of
the specific integer from this base address.

Most CPUs use byte addresses for memory objects. Therefore, when a
program allocates multiple copies of some n-byte object in memory, the
objects won’t begin at consecutive memory addresses; instead, they’ll appear
in memory at addresses that are n bytes apart. Some machines, however,
don’t allow a program to access memory at any arbitrary address; they require
it to access data on address boundaries that are a multiple of a word, a double
word, or even a quad word. Any attempt to access memory on some other
boundary will raise an exception and potentially halt the application. If an
HLL supports pointer arithmetic, it must take this fact into consideration and
provide a generic pointer arithmetic scheme that’s portable across different
CPU architectures. The most common solution that HLLs use when adding
an integer offset to a pointer is to multiply that offset by the size of the object
that the pointer references. That is, if you have a pointer p to a 16-byte object
in memory, then p + 1 points 16 bytes beyond where p points. Likewise, p + 2
points 32 bytes beyond the address contained in p. As long as the size of the
data object is a multiple of the required alignment size (which the compiler
can enforce by adding padding bytes, if necessary), this scheme avoids prob-
lems on architectures that require aligned data access. Consider, for example,
the following C/C++ code:

int *intPtr;
 .
 .
 .
 // Allocate storage for eight integers:

 intPtr = malloc(sizeof(int) * 8);

 // Initialize each of these integer values:

 *(intPtr+0) = 0;
 *(intPtr+1) = 1;
 *(intPtr+2) = 2;
 *(intPtr+3) = 3;
 *(intPtr+4) = 4;
 *(intPtr+5) = 5;
 *(intPtr+6) = 6;
 *(intPtr+7) = 7;

Pointer Data Types 275

This example demonstrates how C/C++ uses pointer arithmetic to spec-
ify an integer-sized offset from the base pointer address.

It’s important to note that the addition operator only makes sense
between a pointer and an integer value. For example, in C/C++ you can indi-
rectly access objects in memory using an expression like *(p + i) (where p is a
pointer to an object and i is an integer value). It doesn’t make sense to add
two pointers together. Similarly, it isn’t logical to add other data types with a
pointer—for example, adding a floating-point value to a pointer. (What does
it mean to reference the data at some base address plus 1.5612?) Operations
on pointers involving strings, characters, and other data types don’t make
much sense, either. Integers (signed and unsigned) are the only reasonable
values to add to a pointer.

On the other hand, not only can you add an integer to a pointer, but
you can also add a pointer to an integer and the result is still a pointer
(both p + i and i + p are legal). This is because addition is commutative—
the order of the operands does not affect the result.

9.4.2 Subtracting an Integer from a Pointer
Subtracting an integer from a pointer references a memory location imme-
diately before the base address held in the pointer. However, subtraction is
not commutative, and subtracting a pointer from an integer is not a legal
operation (p - i is legal, but i - p is not).

In C/C++, *(p - i) accesses the ith object immediately before the object
at which p points. In 80x86 assembly language, as in assembly on many pro-
cessors, you can also specify a negative constant offset when using an indexed
addressing mode. For example:

mov([ebx-4], eax);

Keep in mind, 80x86 assembly language uses byte offsets, not object off-
sets (as C/C++ does). Therefore, this statement loads into EAX the double
word in memory immediately preceding the memory address in EBX.

9.4.3 Subtracting a Pointer from a Pointer
In contrast to addition, it makes sense to subtract the value of one pointer
variable from another. Consider the following C/C++ code, which proceeds
through a string of characters looking for the first e character that follows
the first a that it finds (you could use the result of such a calculation, for
example, to extract a substring):

int distance;
char *aPtr;
char *ePtr;
 .
 .
 .
aPtr = someString; // Get ptr to start of string in aPtr.

276 Chapter 9

// While we're not at the end of the string
// and the current char isn't 'a':

while(*aPtr != '\0' && *aPtr != 'a')
{
 // Move on to the next character pointed at by aPtr.

 aPtr = aPtr + 1;
}

// while we're not at the end of the string
// and the current character isn't 'e'
//
// Start at the 'a' char (or end of string if no 'a').

ePtr = aPtr;
while(*ePtr != '\0' && *ePtr != 'e')
{
 // Move on to the next character pointed at by aPtr.
 ePtr = ePtr + 1;
}

// Now compute the number of characters between
// the 'a' and the 'e' (counting the 'a' but not
// counting the 'e'):

distance = (ePtr - aPtr);

Subtracting one pointer from the other produces the number of data
objects that exist between them (in this case, ePtr and aPtr point at char-
acters, so this subtraction produces the number of characters, or bytes if
1-byte characters, between the two pointers).

The subtraction of two pointer values makes sense only if they both ref-
erence the same data structure (for example, an array, string, or record) in
memory. Although assembly language will allow you to subtract two point-
ers that point at completely different objects in memory, their difference
will probably have very little meaning.

For pointer subtraction in C/C++, the base types of the two pointers
must be identical (that is, the two pointers must contain the address of two
objects whose types are identical). This restriction exists because pointer
subtraction in C/C++ produces the number of objects, not the number of
bytes, between the two pointers. Computing the number of objects between
a byte in memory and a double word in memory wouldn’t make any sense.
The result would be neither a byte count nor a double-word count.

The subtraction of two pointers can return a negative number if the
left pointer operand is at a lower memory address than the right pointer
operand. Depending on your language and its implementation, you might
need to take the absolute value of the result if you’re interested only in the
distance between the two pointers and you don’t care which pointer con-
tains the greater address.

Pointer Data Types 277

9.4.4 Comparing Pointers
Comparisons are another set of operations that make sense for pointers.
Almost every language that supports pointers allows you to compare two
pointers to see whether or not they are equal. A pointer comparison tells
you whether the pointers reference the same object in memory. Some lan-
guages (such as assembly and C/C++) also let you compare two pointers to
see if one pointer is less than or greater than the other. Like subtracting
two pointers, comparing two pointers makes sense only if they have the
same base type and point into the same data structure. If one pointer is
less than another, this tells you that the pointer references an object within
the data structure that appears before the object whose address the second
pointer contains. The converse is true for the greater-than comparison.
This short example in C demonstrates pointer comparison:

#include <stdio.h>

int iArray[256];
int *ltPtr;
int *gtPtr;

int main(int argc, char **argv)
{
 int lt;
 int gt;

 // Put the address of the "argc" element
 // of iArray into ltPtr. This is done
 // so that the optimizer doesn't completely
 // eliminate the following code (as would
 // happen if we just specified a constant
 // index):

 ltPtr = &iArray[argc];

 // Put the address of the eighth array
 // element into gtPtr.

 gtPtr = &iArray[7];

 // Assuming you don't type seven or more
 // command-line parameters when running
 // this program, the following two
 // assignments should set lt and gt to 1.

 lt = ltPtr < gtPtr;
 gt = gtPtr > ltPtr;
 printf("lt:%d, gt:%d\n", lt, gt);
 return 0;
}

278 Chapter 9

At the (x86-64) machine language level, addresses are simply 64-bit
quantities, so the machine code can compare these pointers as though
they’re 64-bit integer values. Here’s the x86-64 assembly code that Visual
C++ emits for this example:

;
; Grab ARGC (passed to the program in rcx), use
; it as an index into iArray (4 bytes per element,
; hence the "*4" in the scaled-index addressing mode),
; compute the address of this array element (using the
; LEA -- load effective address -- instruction), and
; store the resulting address into ltPtr:
; Line 24
 movsxd rax, ecx ; rax=rcx
; Line 37
 xor edx, edx ;edx = 0
 mov r8d, edx ;Initialize boolean result w/false
 lea rcx, OFFSET FLAT:iArray ;rcx = base address of iArray
 lea rcx, QWORD PTR [rcx+rax*4] ;rcx = &iArray[argc]

 lea rax, OFFSET FLAT:iArray+28 ;rax=&iArray[7] (7*4 = 28)
 mov QWORD PTR ltPtr, rcx ;ltPtr = &iArray[argc]
 cmp rax, rcx ;carry flag = !(ltPtr < gtPtr)
 mov QWORD PTR gtPtr, rax ;gtPtr = &iArray[7]
 seta r8b ;r8b = ltPtr < gtPtr (which is !gtPtr > ltPtr)
 cmp rcx, rax ;Carry flag = !(gtPtr > ltPtr)
; Line 38
 lea rcx, OFFSET FLAT:??_C@_0O@KJKFINNE@lt?3?$CFd?0?5gt?3?$CFd?6?$AA@
 setb dl ;dl = !(ltPtr < gtPtr) (which is !(gtPtr > ltPtr)
 call printf
;

Other than the trickery behind computing true (1) or false (0) after
comparing the two addresses, this code is a very straightforward compila-
tion to machine code.

9.4.5 Using Logical AND/OR Operations with Pointers
On byte-addressable machines, it makes sense to logically AND an address
with a bit string value, because masking off the low-order (LO) bits in an
address is an easy way to align it on a boundary that is a power of 2. For
example, if the 32-bit 80x86 EBX register contains an arbitrary address, the
following assembly language statement rounds the pointer in EBX down to
an address that is a multiple of 4 bytes:

and($FFFF_FFFC, ebx);

This operation is very useful when you want to ensure that memory
is accessed on a nice memory boundary. For example, suppose you have a
memory allocation function that can return a pointer to a block of memory
that begins at an arbitrary byte boundary. To ensure that the data structure

Pointer Data Types 279

the pointer points to begins on a double word (dword) boundary, you can
use assembly code like the following:

// # of bytes to allocate

mov(nBytes, eax);

// Provide a "cushion" for rounding.

add(3, eax);

// Allocate the memory (returns pointer in EAX).

malloc(eax);

// Round up to the next higher dword, if not dword-aligned.

add(3, eax);

// Make the address a multiple of 4.

and($ffff_fffc, eax);

This code allocates an extra 3 bytes when calling malloc() so that it can
add 0, 1, 2, or 3 to the address that malloc() returns in order to align the
object on a dword address. On return from malloc(), the code adds 3 to the
address and, if it wasn’t already a multiple of 4, the address will cross the
next dword boundary. Using the AND instruction reduces the address back
to the previous dword boundary (either the next dword boundary, or the orig-
inal address if it was already dword-aligned).

9.4.6 Using Other Operations with Pointers
Beyond addition, subtraction, comparison, and possibly AND or OR opera-
tions, very few arithmetic operations make sense with pointer operands.
What does it mean to multiply a pointer by some integer value (or another
pointer)? What does division of pointers mean? What do you get when you
shift a pointer to the left by one bit position? You could make up some sort
of definition for these operations, but considering the original arithmetic
definitions, these operations just aren’t reasonable for pointers.

Several languages (including C/C++ and Pascal) restrict other pointer
operations. There are several good reasons for limiting what a programmer
can do with a pointer, such as:

•	 Code involving pointers is notoriously difficult to optimize. By limiting
the number of pointer operations, the compiler can make assumptions
about the code that it could not otherwise. This allows the compiler (in
theory) to produce better machine code.

•	 Code containing pointer manipulations is more likely to be defective.
Limiting programmers’ options in this area helps prevent pointer
abuse, and leads to more robust code.

280 Chapter 9

N O T E The section “Common Pointer Problems” on page 286 describes the most serious of
these errors and ways to avoid them in your code.

•	 Some pointer operations—particularly certain arithmetic operations—
are not portable across CPU architectures. For example, on some seg-
mented architectures (such as the original 16-bit 80x86), subtracting
the values of two pointers may not produce an expected result.

•	 The proper use of pointers can help create efficient programs, but the
converse is also true: the improper use of pointers can destroy program
efficiency. By limiting the number of pointer operations it supports, a
language can prevent the kinds of code inefficiencies that often result
from the gratuitous use of pointers.

The major problem with these justifications for limiting pointer opera-
tions is that most exist to protect programmers from themselves, and
indeed, many programmers (especially beginners) benefit from the disci-
pline these restrictions enforce. However, for careful programmers who do
not abuse pointers, these restrictions may eliminate some opportunities for
writing great code. Therefore, languages that provide a rich set of pointer
operations, like C/C++ and assembly, are popular with advanced program-
mers who prefer absolute control over the use of pointers in their programs.

9.5 A Simple Memory Allocator Example
To demonstrate the performance and memory costs of using dynamically
allocated memory and pointers to it, this section presents a simple memory
allocation/deallocation system. By considering the operations associated
with memory allocation and deallocation, you’ll be more aware of their
costs and better equipped to use them in an appropriate way.

An extremely simple (and fast) memory allocation scheme would main-
tain a single variable that forms a pointer into the heap region of memory.
Whenever a memory allocation request comes along, the system makes a copy
of this heap pointer to return to the application. The heap management rou-
tines add the size of the memory request to the address held in the pointer
variable and verify that the memory request won’t try to use more memory
than is available in the heap. (Some memory managers return an error indi-
cation, like a NULL pointer, when the memory request is too great; others raise
an exception.) The problem with this simple memory management scheme is
that it wastes memory because there’s no garbage collection mechanism for the
application to free the memory so it can be reused later. Garbage collection is
one of the main purposes of a heap management system.

The only catch is that supporting garbage collection requires some
overhead. The memory management code will need to be more sophisti-
cated, will take longer to execute, and will require some additional memory
to maintain the internal data structures the heap management system uses.
Consider an easy implementation of a heap manager that supports garbage
collection on a 32-bit system. This simple system maintains a (linked) list of

Pointer Data Types 281

free memory blocks. Each free memory block in the list requires two dword
values: one specifying the size of the free block, and the other containing the
address of the next free block in the list (that is, the link); see Figure 9-2.

L
I
N
K

S
I
Z
E

Free/unused memory

Memory in use

Free memory list

Figure 9-2: Heap management using a list of free memory blocks

The system initializes the heap with a NULL link pointer, and the size
field contains the size of the heap’s entire free space. When a memory allo-
cation request comes along, the heap manager searches through the list to
find a free block with enough memory to satisfy the request. This search
process is one of the defining characteristics of a heap manager. Some com-
mon search algorithms are first-fit search and best-fit search. A first-fit search,
as its name suggests, scans the list of blocks until it finds the first block
of memory large enough to satisfy the allocation request. A best-fit search
scans the entire list and finds the smallest block large enough to satisfy the
request. The advantage of the best-fit algorithm is that it tends to preserve
larger blocks better than the first-fit algorithm, so the system is still able
to satisfy larger subsequent allocation requests when they arrive. The first-
fit algorithm, on the other hand, just grabs the first suitably large block it
finds, even if there’s a smaller block that would suffice, which may limit the
system’s ability to handle future large memory requests.

That said, the first-fit algorithm does have a couple of advantages over
the best-fit algorithm. The most obvious is that it is usually faster. The
best-fit algorithm has to scan through every block in the free block list in
order to find the smallest one large enough to satisfy the allocation request
(unless, of course, it finds a perfectly sized block along the way). The first-fit
algorithm, on the other hand, can stop once it finds a block large enough
to satisfy the request.

Another advantage to the first-fit algorithm is that it tends to suffer less
from a degenerate condition known as external fragmentation. Fragmentation
occurs after a long sequence of allocation and deallocation requests.

282 Chapter 9

Remember, when the heap manager satisfies a memory allocation request, it
usually creates two blocks of memory: one in-use block for the request, and
one free block that contains the remaining bytes from the original block
(assuming the request did not exactly match the block size). After operat-
ing for a while, the best-fit algorithm may have produced lots of leftover
blocks of memory that are too small to satisfy an average memory request,
making them effectively unusable. As these small fragments accumulate
throughout the heap, they can end up consuming a fair amount of memory.
This can lead to a situation where the heap doesn’t have a sufficiently large
block to satisfy a memory allocation request even though there is enough
total free memory available (spread throughout the heap). See Figure 9-3
for an example of this condition.

Free/unused memory

Memory in use
Desired allocation size

Figure 9-3: Memory fragmentation

There are other memory allocation strategies in addition to the first-fit
and best-fit search algorithms. Some of these execute faster, some have less
memory overhead, some are easy to understand (and some are very com-
plex), some produce less fragmentation, and some can combine and use
noncontiguous blocks of free memory. Memory/heap management is one
of the more heavily studied subjects in computer science, and there’s a con-
siderable amount of literature explaining the benefits of one scheme over
another. For more information on memory allocation strategies, check out
a good book on OS design.

9.6 Garbage Collection
Memory allocation is only half of the story. As mentioned earlier, the
heap manager also has to provide a call that allows an application to free
memory it no longer needs for future reuse—a process known as garbage
collection. In C and HLA, for example, an application accomplishes this
by calling the free() function. At first blush, free() might seem to be a very
simple function to write. All it has to do is append the previously allocated
and now unused block to the end of the free list, right? The problem with
this trivial implementation of free() is that it almost guarantees that the
heap will become fragmented and unusable in very short order. Consider
the situation in Figure 9-4.

If free() simply takes the block to be freed and appends it to the free
list, the memory organization in Figure 9-4 produces three free blocks.
However, because these three blocks are contiguous, the heap manager
should really combine them into a single free block, so that it will be able
to satisfy a larger request. Unfortunately, this operation would require it

Pointer Data Types 283

to scan the free block list to determine if there are any free blocks adja-
cent to the block the system is freeing. While you could come up with a
data structure that makes it easier to combine adjacent free blocks, such
schemes generally add 8 or more bytes of overhead with each block on the
heap. Whether this is a reasonable tradeoff depends on the average size of
a memory allocation. If the applications that use the heap manager tend
to allocate small objects, the extra overhead for each memory block could
wind up consuming a large percentage of the heap space. However, if most
allocations are large, the few bytes of overhead won’t matter much.

Free/unused memory

Memory in useBlock to be freed

Figure 9-4: Freeing a memory block

9.7 The OS and Memory Allocation
The performance of the algorithms and data structures used by the heap
manager is only one piece of the performance puzzle. The heap manager
ultimately needs to request blocks of memory from the operating system. At
one extreme, the OS handles all memory allocation requests directly. At the
other extreme, the heap manager is a runtime library routine that links with
your application, first requesting large blocks of memory from the OS and then
doling out pieces of them as allocation requests arrive from the application.

The problem with making direct memory allocation requests to the
operating system is that OS API calls are often very slow. This is because
they generally involve switching between kernel mode and user mode on
the CPU (which is not fast). Therefore, a heap manager that the OS imple-
ments directly will not perform well if your application makes frequent calls
to the memory allocation and deallocation routines.

Because of the high overhead of an OS call, most languages implement
their own versions of the malloc() and free() functions within their runtime
library. On the very first memory allocation, the malloc() routine requests
a large block of memory from the OS, and the application’s malloc() and
free() routines manage this block of memory themselves. If an allocation
request comes along that the malloc() function cannot fulfill in the block it
originally created, malloc() will request another large block (generally much
larger than the request) from the OS and add that block to the end of its
free list. Because the application’s malloc() and free() routines call the OS
only occasionally, the application doesn’t suffer the performance hit associ-
ated with frequent OS calls.

However, keep in mind that this procedure is very implementation- and
language-specific; it’s dangerous to assume that malloc() and free() are
relatively efficient when writing software that requires high-performance
components. The only portable way to ensure a high-performance heap

284 Chapter 9

manager is to develop your own application-specific set of allocation/deal-
location routines. Writing such routines is beyond the scope of this book
(and most standard heap management functions perform well for a typical
program), but you should know you have this option.

9.8 Heap Memory Overhead
A heap manager often exhibits two types of overhead: performance (speed)
and memory (space). Until now, this discussion has mainly dealt with the
performance aspects, but now we’ll turn our attention to memory.

Each block the system allocates requires some amount of overhead
beyond the storage the application requests; at the very least, this overhead
is a few bytes to keep track of the block’s size. Fancier (higher-performance)
schemes may require additional bytes, but typically the overhead is between
8 and 64 bytes. The heap manager can keep this information in a separate
internal table, or it can attach the block size and other memory manage-
ment information directly to the block it allocates.

Saving this information in an internal table has a couple of advantages.
First, it is difficult for the application to accidentally overwrite the informa-
tion stored there; attaching the data to the heap memory blocks themselves
doesn’t provide as much protection against this possibility. Second, putting
memory management information in an internal data structure allows the
memory manager to easily determine if a given pointer is valid (that is, points
at some block of memory that the heap manager believes it has allocated).

The advantage of attaching the control information directly to each
block that the heap manager allocates is that it’s very easy to locate this
information, whereas storing the information in an internal table might
require a search operation.

Another issue that affects the overhead associated with the heap man-
ager is the allocation granularity—the minimum number of bytes the heap
manager supports. Although most heap managers allow you to request an
allocation as small as 1 byte, they may actually allocate some minimum
number of bytes greater than 1. Generally, the engineer designing the
memory allocation functions chooses a granularity guaranteeing that any
object allocated on the heap will begin at a reasonably aligned memory
address for that object. Thus, most heap managers allocate memory blocks
on a 4-, 8-, or 16-byte boundary. For performance reasons, many heap man-
agers begin each allocation on a cache line boundary, usually 16, 32, or
64 bytes. Whatever the granularity, if the application requests some number
of bytes that is less than or not a multiple of the heap manager’s granular-
ity, the heap manager will allocate extra bytes of storage (see Figure 9-5).
This amount varies by heap manager (and possibly even by version of a spe-
cific heap manager), so programmers should never assume that their appli-
cation has more memory available than they request; if they’re tempted to
do so, they should request more memory upfront.

The extra memory the heap manager allocates results in another form of
fragmentation called internal fragmentation (also shown in Figure 9-5). Like

Pointer Data Types 285

external fragmentation, internal fragmentation produces small amounts
of leftover memory throughout the system that cannot satisfy future alloca-
tion requests. Assuming random-sized memory allocations, the average
amount of internal fragmentation that occurs on each allocation is one-half
the granularity size. Fortunately, the granularity size is quite small for most
memory managers (typically 16 bytes or less), so after thousands and thou-
sands of memory allocations you’ll lose only a couple dozen or so kilobytes
to internal fragmentation.

Free/unused memory (internal fragmentation)

Memory in use
Allocation granularity

Unusable memory (internal fragmentation)

Figure 9-5: Allocation granularity and internal fragmentation

Between the costs associated with allocation granularity and the memory
control information, a typical memory request may require between 8 and
64 bytes plus whatever the application requests. If you’re making large mem-
ory allocation requests (hundreds or thousands of bytes), the overhead bytes
won’t consume a large percentage of memory on the heap. However, if you
allocate lots of small objects, the memory consumed by internal fragmenta-
tion and memory control information may represent a significant portion of
your heap area. For example, consider a simple memory manager that always
allocates blocks of data on 4-byte boundaries and requires a single 4-byte
length value that it attaches to each allocation request for memory storage.
This means that the minimum amount of storage the heap manager requires
for each allocation is 8 bytes. If you make a series of malloc() calls to allocate
a single byte, the application won’t be able to use almost 88 percent of the
memory it allocates. Even if you allocate 4-byte values on each allocation
request, the heap manager consumes two-thirds of the memory for overhead
purposes. However, if your average allocation is a block of 256 bytes, the over-
head requires only about 2 percent of the total memory allocation. In short,
the larger your allocation request, the less impact the control information
and internal fragmentation will have on your heap.

Many software engineering studies in computer science journals have
found that memory allocation/deallocation requests cause a significant loss
of performance. In such studies, the authors often obtained performance
improvements of 100 percent or better by simply implementing their own
simplified, application-specific, memory management algorithms rather
than calling the standard runtime library or OS kernel memory allocation
code. Hopefully, this section has made you aware of this potential problem
in your own code.

286 Chapter 9

9.9 Common Pointer Problems
Programmers make six common mistakes when using pointers. Some of
these mistakes immediately stop a program with a diagnostic message.
Others are subtler, yielding incorrect results without otherwise reporting
an error. Still others simply negatively affect the program’s performance.
Great programmers are always aware of the risks of using pointers and
avoid these mistakes:

•	 Using an uninitialized pointer

•	 Using a pointer that contains an illegal value such as NULL

•	 Continuing to use storage after it has been freed

•	 Failing to free storage once the program is done using it

•	 Accessing indirect data using the wrong data type

•	 Performing invalid pointer operations

9.9.1 Using an Uninitialized Pointer
Using a pointer variable before you’ve assigned a valid memory address
to the pointer is a very common error. Beginning programmers often
don’t realize that declaring a pointer variable reserves storage only for the
pointer itself, not for the data that the pointer references. The following
short C/C++ program demonstrates this problem:

int main()
{
 static int *pointer;

 *pointer = 0;
}

Although static variables you declare are, technically, initialized with 0
(that is, NULL), static initialization doesn’t initialize the pointer with a valid
address. Therefore, when this program executes, the variable pointer won’t
contain a valid address, and the program will fail. To avoid this problem,
ensure that all pointer variables contain a valid address prior to dereferenc-
ing those pointers. For example:

int main()
{
 static int i;

 static int *pointer = &i;

 *pointer = 0;
}

Pointer Data Types 287

Of course, there’s no such thing as a truly uninitialized variable on
most CPUs. Variables are initialized in two different ways:

•	 The programmer explicitly gives them an initial value.

•	 They inherit whatever bit pattern happens to be in memory when the
system binds storage to them.

Much of the time, garbage bit patterns laying around in memory don’t
correspond to a valid memory address. Attempting to dereference such an
invalid pointer (that is, to access the data in memory at which it points)
raises a Memory Access Violation exception, if your OS is capable of trap-
ping this exception.

Sometimes, however, those random bits in memory just happen to
correspond to a valid memory location you can access. In this situation,
the CPU accesses the specified memory location without aborting the pro-
gram. A novice programmer might think that accessing random memory is
preferable to aborting a program. However, ignoring the error is far worse
because your defective program continues to run without alerting you. If
you store data using an uninitialized pointer, you may very well overwrite
the values of other important variables in memory. This can produce some
problems that are very difficult to locate.

9.9.2 Using a Pointer That Contains an Illegal Value
The second common mistake programmers make with pointers is assigning
them invalid values (“invalid” in the sense of not containing the address of
an actual object in memory). This can be considered a more general case
of the first problem; without initialization, the garbage bits in memory sup-
ply the invalid address. The effects are the same. If you attempt to derefer-
ence a pointer containing an invalid address, you will either get a Memory
Access Violation exception or access an unexpected memory location. Take
care when dereferencing a pointer variable and make sure that you’ve
assigned a valid address to the pointer before using it.

9.9.3 Continuing to Use Storage After It Has Been Freed
The third mistake is known as the dangling pointer problem. To understand it,
consider the following Pascal code fragment:

(* Allocate storage for a new object of type p *)

new(p);

(* Use the pointer *)

p^ := 0;
 .
 . (* Code that uses the storage associated with p *)
 .

288 Chapter 9

(* free the storage associated with pointer p *)

dispose(p);

 .
 . (* Code that doesn't reference p *)
 .
(* Dangling pointer *)

p^ := 5;

This program allocates some storage and saves the address of that stor-
age in the p variable. The code uses the storage for a while and then frees it,
returning it to the system for other uses. Note that calling dispose() doesn’t
change any data in the allocated memory. It doesn’t change the value of p
in any way; p still points at the block of memory allocated earlier by new().
However, calling dispose() does tell the system that the program no longer
needs this block of memory so that the system can use the memory for
other purposes. The dispose() function cannot enforce the fact that you’ll
never access this data again, however. You’re simply promising that you
won’t. Of course, this code fragment breaks that promise: the last statement
stores the value 5 at the address pointed to by p in memory.

The biggest problem with dangling pointers is that sometimes you can
get away with using them, so you won’t immediately know there’s a prob-
lem. As long as the system doesn’t reuse the storage you’ve freed, using a
dangling pointer produces no ill effects in your program. However, with
each additional call to new(), the system may decide to reuse the memory
released by that previous call to dispose(). When it does reuse the memory,
any subsequent attempt to dereference the dangling pointer may produce
some unintended consequences. The problems can include reading data
that has been overwritten, overwriting the new data, and (in the worst case)
overwriting system heap management pointers (which will probably cause
your program to crash). The solution is clear: never use a pointer value
once you free the storage associated with that pointer.

9.9.4 Failing to Free Storage After Using It
Of all these mistakes, failing to free allocated storage probably has the least
impact on the proper operation of your program. The following C code
fragment demonstrates this problem:

// Pointer to storage in "ptr" variable.

ptr = malloc(256);
 .
 . // Code that doesn't free "ptr"
 .
ptr = malloc(512);

// At this point, there is no way to reference the
// original block of 256 bytes allocated by malloc.

Pointer Data Types 289

In this example, the program allocates 256 bytes of storage and ref-
erences this storage using the ptr variable. Later, the program allocates
another block of 512 bytes and overwrites the value in ptr with the address
of this new block. The former address value in ptr is lost. And because
the program has overwritten this former value, there’s no way to pass
the address of the first 256 bytes to the free() function. As a result, these
256 bytes of memory are no longer available to your program.

While making 256 bytes of memory inaccessible to your program might
not seem like a big deal, imagine that this code executes within a loop. With
each iteration of the loop, the program loses another 256 bytes of memory.
After a sufficient number of repetitions, the program exhausts the memory
available on the heap. This problem is often called a memory leak because
the effect is as if the memory bits were leaking out of your computer during
program execution.

Memory leaks are less of a problem than dangling pointers. Indeed,
there are only two problems with memory leaks:

•	 The danger of running out of heap space (which, ultimately, may cause
the program to abort, though this is rare)

•	 Performance problems due to virtual memory page swapping (thrashing)

Nevertheless, freeing all of the storage you allocate is a good habit
to develop.

N O T E When your program quits, the OS will reclaim all of the storage, including the data
lost via memory leaks. Therefore, memory lost via a leak is lost only to your program,
not the whole system.

9.9.5 Accessing Indirect Data Using the Wrong Data Type
Another problem with pointers is that their lack of type-safe access makes
it easy to accidentally use the wrong data type. Some languages, like assem-
bly, cannot and do not enforce pointer type checking. Others, like C/C++,
make it very easy to override the type of the object a pointer references. For
example, consider the following C/C++ program fragment:

char *pc;
 .
 .
 .
pc = malloc(sizeof(char));
 .
 .
 .
// Typecast pc to be a pointer to an integer
// rather than a pointer to a character:

*((int *) pc) = 5000;

290 Chapter 9

Generally, if you attempt to assign the value 5000 to the object pointed
to by pc, the compiler will complain bitterly. The value 5000 won’t fit in the
amount of storage associated with a character (char) object, which is 1 byte.
This example, however, uses type casting (or coercion) to tell the compiler that
pc really contains a pointer to an integer rather than a pointer to a charac-
ter. Therefore, the compiler will assume that this assignment is legal.

However, if pc doesn’t actually point at an integer object, the last state-
ment in this sequence can be disastrous. Characters are 1 byte long, and
integers are usually larger. If the integer is larger than 1 byte, this assign-
ment will overwrite some number of bytes beyond the 1 byte of storage that
malloc() allocated. Whether or not this is catastrophic depends upon what
data immediately follows the character object in memory.

9.9.6 Performing Illegal Operations on Pointers
The last category of common pointer mistakes has to do with operations on
the pointers themselves. Arbitrary pointer arithmetic can lead to a pointer
that points outside the range of the data originally allocated. By doing
some crazy arithmetic, you can even modify a pointer so that it doesn’t
point at a correct object. Consider the following (really nasty) C code:

int i [4] = {1,2,3,4};
int *p = &i[0];
 .
 .
 .
 p = (int *)((char *)p + 1);
 *p = 5;

This example casts p as a pointer to a char. Then it adds 1 to the value in p.
As the compiler thinks that p is pointing at a character (because of the cast),
it actually adds the value 1 to the address held in p. The last instruction in this
sequence stores the value 5 into the memory address pointed at by p, which is
now 1 byte into the 4 bytes set aside for the i[0] element. On some machines,
this will cause a fault; on others, it will store a bizarre value into i[0] and i[1].

Comparing two pointers for less than or greater than when the two
pointers do not point to the same object (typically an array or struct) is
another example of an illegal operation on a pointer, as is casting a pointer
as an integer and assigning an integer value to that pointer, which can pro-
duce unexpected results.

9.10 Pointers in Modern Languages
Because of the problems described in the previous section, modern HLLs
(like Java, C#, Swift, and C++11/C++14) try to eliminate manual memory
allocation and deallocation. These languages let you create new objects on
the heap (typically using a new() function) but don’t provide any facilities
for explicitly deallocating that storage. Instead, the language’s runtime
system tracks memory usage and automatically recovers the storage, via

Pointer Data Types 291

garbage collection, once the program is no longer using it. This eliminates
most (but not all) of the problems with uninitialized and dangling pointers.
It also lowers the likelihood of memory leaks. These new languages dramat-
ically reduce the number of problems related to errant pointer use.

Of course, ceding control over memory allocation and deallocation
introduces some problems of its own. In particular, you give up the ability
to control the memory allocation lifetime. Now, the runtime system deter-
mines when to garbage-collect unused data, so large chunks of data could
still be reserved for some time after you’ve finished using them.

9.11 Managed Pointers
Some programming languages provide very limited pointer capabilities. For
example, standard Pascal allows only a few operations on pointers: assign-
ment (copy), comparison (for equality/inequality), and dereferencing. It
does not support pointer arithmetic, meaning many types of mistakes with
pointers are impossible.4 At the other extreme is C/C++, which allows dif-
ferent arithmetic operations on pointers that make the language very pow-
erful but introduce the likelihood of defects in the code.

Modern language systems (for example, C# and the Microsoft
Common Language Runtime system) introduce managed pointers, which
allow various arithmetic operations on pointers, providing greater flex-
ibility than a language like standard Pascal, but with restrictions that help
avoid many common pointer pitfalls. For example, in these languages you
cannot add an arbitrary integer to an arbitrary pointer (as is possible in C/
C++). If you want to add an integer to a pointer and obtain a legal result,
the pointer must contain the address of an array object (or other collec-
tion of like elements in memory). Furthermore, the integer’s value must be
limited to a value that does not exceed the size of the data type (that is, the
runtime system enforces array bounds checking).

While using managed pointers won’t eliminate all pointer problems, it
does prevent wiping out data outside the range of a data object referenced by
a pointer. It also helps prevent security issues in software, such as attempts to
break into a system by providing illegal offsets in pointer arithmetic.

9.12 For More Information
Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:

Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Oualline, Steve. How Not to Program in C++. San Francisco: No Starch
Press, 2003.

4. However, most real-world Pascal compilers provide extensions that allow pointer arithme-
tic, so Pascal has all the same issues with pointers as C/C++.

After integers, character strings are prob-
ably the most commonly used data type

in modern programs; after arrays, they’re
the second most commonly used composite data

type. A string is a sequence of objects. Most often, the
term string describes a sequence of character values,
but it’s also possible to have strings of integers, real values, Boolean values,
and so on (for example, I’ve already discussed bit strings in this book and
in WGC1). In this chapter, though, we’ll stick to character strings.

In general, a character string possesses two main attributes: a length
and some character data. Character strings can also possess other attributes,
such as the maximum length allowable for that particular variable or a refer-
ence count specifying how many different string variables refer to the same
character string. We’ll look at these attributes and how programs can use
them, as well as the various string formats and possible string operations.
Specifically, this chapter discusses the following topics:

•	 Character string formats including zero-terminated strings, length-
prefixed strings, HLA strings, and 7-bit strings

10
S T R I N G D A T A T Y P E S

294 Chapter 10

•	 When to use (and when not to use) standard library string processing
functions

•	 Static, pseudo-dynamic, and dynamic strings

•	 Reference counting and strings

•	 Unicode and UTF-8/UTF-16/UTF-32 character data in strings

String manipulation consumes a fair amount of CPU time in today’s
applications. Therefore, it’s important to understand how programming
languages represent and operate on character strings if you want to write
code that manipulates strings efficiently. This chapter provides the basic
information you’ll need to do so.

10.1 Character String Formats
Different languages use different data structures to represent strings.
Some string formats use less memory, others allow faster processing, some
are more convenient to use, some are easy for compiler writers to imple-
ment, and some provide additional functionality for the programmer and
operating system.

Although their internal representations vary, all string formats have
one thing in common: the character data. This is a sequence of 0 or more
bytes (the term sequence implies that the order of the characters is impor-
tant). How a program references this sequence of characters varies by for-
mat. In some string formats, the sequence of characters is kept in an array;
in other string formats the program maintains a pointer to the sequence of
characters elsewhere in memory.

All character string formats share the length attribute; however,
they use several different ways to represent the length of a string. Some
string formats use a special sentinel character to mark the end of the string.
Other formats precede the character data with a numeric value that
specifies the number of characters in the sequence. Still others encode
the length as a numeric value in a variable that is not connected to the
character sequence. Some character string formats use a special bit (set
or cleared) to mark the end of a string. Finally, some string formats use
a combination of these methods. How a particular string format deter-
mines the length of a string can have a big impact on the performance of
the functions that manipulate those strings. It can also affect how much
extra storage is needed to represent string data.

Some string formats provide additional attributes, such as a maximum
length and reference count values, that certain string functions can use to
operate on string data more efficiently. These extra attributes are optional
insofar as they aren’t strictly necessary to define a string value. They do,
however, allow string manipulation functions to provide certain tests for
correctness or to work more efficiently than they would otherwise.

To help you better understand the reasoning behind the design of char-
acter strings, let’s look at some common string representations popularized
by various languages.

String Data Types 295

10.1.1 Zero-Terminated Strings
Without question, zero-terminated strings (see Figure 10-1) are probably the
most common string representation in use today, because this is the native
string format for C, C++, and several other languages. In addition, you’ll
find zero-terminated strings used in programs written in languages that
don’t have a specific native string format, such as assembly language.

S t r i n g #0

Character data
Zero-terminating byte

Figure 10-1: Zero-terminated string format

A zero-terminated ASCII string, also called an ASCIIz string or a zstring,
is a sequence containing zero or more 8-bit character codes and ending
with a byte containing 0—or, in the case of Unicode (UTF-16), a sequence
containing zero or more 16-bit character codes and ending with a 16-bit
word containing 0. For UTF-32 strings, each item in the string is 32 bits
(4 bytes) wide, ending with a 32-bit 0 value. For example, in C/C++, the
ASCIIz string "abc" requires 4 bytes: 1 byte for each of the three characters
a, b, and c, followed by a 0 byte.

Zero-terminated strings have a few advantages over other string formats:

•	 Zero-terminated strings can represent strings of any practical length
with only 1 byte of overhead (2 bytes in UTF-16, 4 in UTF-32).

•	 Given the popularity of the C/C++ programming languages, high-
performance string processing libraries are available that work well
with zero-terminated strings.

•	 Zero-terminated strings are easy to implement. Indeed, except for deal-
ing with string literal constants, the C/C++ programming languages
don’t provide native string support. As far as those languages are con-
cerned, strings are just arrays of characters. That’s probably why C’s
designers chose this format in the first place—so they wouldn’t have to
clutter up the language with string operators.

•	 You can easily represent zero-terminated strings in any language that
provides the ability to create an array of characters.

However, zero-terminated strings also have disadvantages that mean
they are not always the best choice for representing character string data:

•	 String functions often aren’t very efficient when operating on zero-
terminated strings. Many string operations need to know the length of
the string before working on the string data. The only reasonable way
to compute the length of a zero-terminated string is to scan the string
from the beginning to the end. The longer your strings are, the slower

296 Chapter 10

this function runs, so the zero-terminated string format isn’t the best
choice if you need to process long strings.

•	 Although it’s a minor problem, you cannot easily represent the charac-
ter code 0 (such as the NUL character in ASCII and Unicode) with the
zero-terminated string format.

•	 Zero-terminated strings don’t contain any information that tells you
how long the string can grow beyond the terminating 0 byte. Therefore,
some string functions, like concatenation, can only extend the length
of an existing string variable and check for overflow if the caller explic-
itly passes the maximum length.

As noted, one nice feature of zero-terminated strings is that you can
easily implement them using pointers and arrays of characters. Consider
the following C/C++ statement:

someCharPtrVar = "Hello World";

Here’s the code the Borland C++ v5.0 compiler generates for this
statement:

; char *someCharPtrVar;
 ; someCharPtrVar = "Hello World";
 ;
@1:
; "offset" means "take the address of" and "s@" is
; the compiler-generated label where the string
; "Hello World" can be found.

 mov eax,offset s@
 .
 .
 .
_DATA segment dword public use32 'DATA'
; s@+0:
 ; Zero-terminated sequence of characters
 ; emitted for the literal string "Hello World":

s@ label byte
 db "Hello World",0

 ; s@+12:
 db "%s",0
 align 4
_DATA ends

The Borland C++ compiler simply emits the literal string "Hello World"
to the global data segment in memory and then loads the someCharPtrVar
variable with the address of the first character of this string literal in the data
segment. From that point forward, the program can refer to the string
data indirectly via this pointer. This is a very convenient scheme from the
compiler writer’s point of view.

String Data Types 297

When using zero-terminated strings in a language like C, C++, Python,
or any of a dozen other languages that have adopted C’s string format, you
can improve the performance of your string-handling code sequences by
keeping a few points in mind:

•	 Try to use the language’s runtime library functions rather than attempt-
ing to code comparable functions yourself. Most compiler vendors pro-
vide highly optimized versions of their string functions that will probably
run many times faster than code you would write yourself.

•	 Once you’ve computed the length of a string by scanning the entire
string, save that length for future use (rather than recomputing it every
time you need it).

•	 Avoid copying string data from one string variable to another. Doing so
is one of the more expensive operations (after length computation) in
applications using zero-terminated strings.

The following subsections discuss each point in turn.

10.1.1.1 When to Use C Standard Library String Functions

Some programmers are skeptical that someone else could write faster or
higher-quality code. But when it comes to standard library functions, you
should avoid the temptation to replace them with code of your own choos-
ing. Unless the library code you’re considering is especially bad, chances
are you won’t come close to duplicating its efficiency. This is especially true
for string functions that handle zero-terminated strings in languages like
C and C++. There are three main reasons why standard libraries generally
perform better than code you write yourself: experience, maturity, and
inline substitution.

The typical programmer who writes compiler runtime libraries has a
lot of experience with string-handling functions. Although in the past new
compilers were often accompanied by notoriously inefficient libraries, over
time compiler programmers have gained considerable experience writing
those library routines and have figured out how to deliver well-written string-
handling functions. Unless you’ve spent considerable time writing those same
types of routines, it’s highly unlikely that your code will perform as well as
theirs. Many compiler vendors purchase their standard library code from a
third party that specializes in writing library code, so now, even if the com-
piler you’re using is fairly new, it may have a good library. Few commercial
compilers today contain horribly inefficient library code. For the most part,
only research or “hobby” compilers contain library code so bad that you can
easily write something better. Consider a simple example—the C standard
library strlen() (string length) function. Here’s a typical implementation of
strlen() that an inexperienced programmer might write:

#include <stdlib.h>
#include <stdio.h>

298 Chapter 10

int myStrlen(char *s)
{
 char *start;

 start = s;
 while(*s != 0)
 {
 ++s;
 }
 return s - start;
}

int main(int argc, char **argv)
{

 printf("myStrlen = %d", myStrlen("Hello World"));
 return 0;
}

The 80x86 machine code that Microsoft’s Visual C++ compiler gener-
ates for myStrlen() is probably what any assembly programmer would expect:

myStrlen PROC ; COMDAT
; File c:\users\rhyde\test\t\t\t.cpp
; Line 10 // Pointer to string (s) is passed in RCX register.
 cmp BYTE PTR [rcx], 0 // Is *s = 0?
 mov rax, rcx // Save ptr to start of string to compute length
 je SHORT $LN3@myStrlen // Bail if we hit the end of the string
$LL2@myStrlen:
; Line 12
 inc rcx // Move on to next char in string
 cmp BYTE PTR [rcx], 0 // Hit the 0 byte yet?
 jne SHORT $LL2@myStrlen // If not, repeat loop
$LN3@myStrlen:
; Line 14
 sub rcx, rax // Compute length of string.
 mov eax, ecx // Return function result in EAX.
; Line 15
 ret 0
myStrlen ENDP

No doubt, an experienced assembly language programmer could rear-
range these particular instructions to speed them up a bit. Indeed, even
an average 80x86 assembly language programmer could point out that
the 80x86 scasb instruction does most of the work in this code sequence.
Although this code is fairly short and easy to understand, by no means will
it run as fast as possible. An expert assembly language programmer might
note that this loop repeats one iteration for each character in the string
and accesses the characters in memory 1 byte at a time, and might improve

String Data Types 299

upon it by unrolling1 the loop and processing more than one character per
loop iteration. For example, consider the following HLA standard library
zstr.len() function, which computes the length of a zero-terminated string
by processing four characters at a time:

unit stringUnit;

#include("strings.hhf");

/***/
/* */
/* zlen- */
/* */
/* Returns the current length of the z-string passed as a parm. */
/* */
/***/

procedure zstr.len(zstr:zstring); @noframe;
const
 zstrp :text := "[esp+8]";

begin len;

 push(esi);
 mov(zstrp, esi);

 // We need to get ESI dword-aligned before proceeding.
 // If the LO 2 bits of ESI contain 0s, then
 // the address in ESI is a multiple of 4. If they
 // are not both 0, then we need to check the 1,
 // 2, or 3 bytes starting at ESI to see if they
 // contain a zero-terminator byte.

 test(3, esi);
 jz ESIisAligned;

 cmp((type char [esi]), #0);
 je SetESI;
 inc(esi);
 test(3, esi);
 jz ESIisAligned;

 cmp((type char [esi]), #0);
 je SetESI;
 inc(esi);
 test(3, esi);
 jz ESIisAligned;

 cmp((type char [esi]), #0);

1. Unrolling is an optimization technique that speeds up execution time by eliminating loop
control instructions and loop test instructions.

300 Chapter 10

 je SetESI;
 inc(esi); // After this, ESI is aligned.

 ESIisAligned:
 sub(32, esi); // To counteract add immediately below.
 ZeroLoop:
 add(32, esi); // Skip chars this loop just processed.
 ZeroLoop2:
 mov([esi], eax); // Get next four chars into EAX.
 and($7f7f7f7f, eax); // Clear HO bit (note:$80->$00!)
 sub($01010101, eax); // $00 and $80->$FF, all others have pos val.
 and($80808080, eax); // Test all HO bits. If any are set, then
 jnz MightBeZero0; // we've got a $00 or $80 byte.

 mov([esi+4], eax); // The following are all inline expansions
 and($7f7f7f7f, eax); // of the above (we'll process 32 bytes on
 sub($01010101, eax); // each iteration of this loop).
 and($80808080, eax);
 jnz MightBeZero4;

 mov([esi+8], eax);
 and($7f7f7f7f, eax);
 sub($01010101, eax);
 and($80808080, eax);
 jnz MightBeZero8;

 mov([esi+12], eax);
 and($7f7f7f7f, eax);
 sub($01010101, eax);
 and($80808080, eax);
 jnz MightBeZero12;

 mov([esi+16], eax);
 and($7f7f7f7f, eax);
 sub($01010101, eax);
 and($80808080, eax);
 jnz MightBeZero16;

 mov([esi+20], eax);
 and($7f7f7f7f, eax);
 sub($01010101, eax);
 and($80808080, eax);
 jnz MightBeZero20;

 mov([esi+24], eax);
 and($7f7f7f7f, eax);
 sub($01010101, eax);
 and($80808080, eax);
 jnz MightBeZero24;

 mov([esi+28], eax);
 and($7f7f7f7f, eax);
 sub($01010101, eax);
 and($80808080, eax);

String Data Types 301

 jz ZeroLoop;

 // The following code handles the case where we found a $80
 // or a $00 byte. We need to determine whether it was a 0
 // byte and the exact position of the 0 byte. If it was a
 // $80 byte, then we've got to continue processing characters
 // in the string.

 // Okay, we've found a $00 or $80 byte in positions
 // 28..31. Check for the location of the 0 byte, if any.

 add(28, esi);
 jmp MightBeZero0;

 // If we get to this point, we've found a 0 byte in
 // positions 4..7:

 MightBeZero4:
 add(4, esi);
 jmp MightBeZero0;

 // If we get to this point, we've found a 0 byte in
 // positions 8..11:

 MightBeZero8:
 add(8, esi);
 jmp MightBeZero0;

 // If we get to this point, we've found a 0 byte in
 // positions 12..15:

 MightBeZero12:
 add(12, esi);
 jmp MightBeZero0;

 // If we get to this point, we've found a 0 byte in
 // positions 16..19:

 MightBeZero16:
 add(16, esi);
 jmp MightBeZero0;

 // If we get to this point, we've found a 0 byte in
 // positions 20..23:

 MightBeZero20:
 add(20, esi);
 jmp MightBeZero0;

 // If we get to this point, we've found a 0 byte in
 // positions 24..27:

 MightBeZero24:
 add(24, esi);

302 Chapter 10

 // If we get to this point, we've found a 0 byte in
 // positions 0..3 or we've branched here from one of the
 // above conditions

 MightBeZero0:
 mov([esi], eax); // Get the original 4 bytes.
 cmp(al, 0); // See if the first byte contained 0.
 je SetESI;
 cmp(ah, 0); // See if the second byte contained 0.
 je SetESI1;
 test($FF_0000, eax); // See if byte #2 contained a 0.
 je SetESI2;
 test($FF00_0000, eax); // See if the HO byte contained 0.
 je SetESI3;

 // Well, it must have been a $80 byte we encountered.
 // (Fortunately, they are rare in ASCII strings, so all this
 // extra computation rarely occurs). Jump back into the 0
 // loop and continue processing.

 add(4, esi); // Skip bytes we just processed.
 jmp ZeroLoop2; // Don't bother adding 32 in the ZeroLoop!

 // The following computes the length of the string by subtracting
 // the current ESI value from the original value and then adding
 // 0, 1, 2, or 3, depending on where we branched out
 // of the MightBeZero0 sequence above.

 SetESI3:
 sub(zstrp, esi); // Compute length
 lea(eax, [esi+3]); // +3 since it was in the HO byte.
 pop(esi);
 ret(4);

 SetESI2:
 sub(zstrp, esi); // Compute length
 lea(eax, [esi+2]); // +2 since zero was in byte #2
 pop(esi);
 ret(4);

 SetESI1:
 sub(zstrp, esi); // Compute length
 lea(eax, [esi+1]); // +1 since zero was in byte #1
 pop(esi);
 ret(4);

 SetESI:
 mov(esi, eax);
 sub(zstrp, eax); // Compute length. No extra addition since
 pop(esi); // 0 was in LO byte.
 ret(_parms_);

end len;
end stringUnit;

String Data Types 303

Even though this function is much longer and more complex than the
simple example given earlier, it runs faster because it processes four char-
acters per loop iteration rather than one, which means it executes far fewer
loop iterations. Also, this code reduces loop overhead by unrolling eight
copies of the loop (that is, expanding eight copies of the loop body inline),
which saves the execution of 87 percent of the loop control instructions. As
a result, this code runs anywhere from two to six times faster than the code
given earlier; the exact savings depend upon the length of the string.2

The second reason to avoid writing your own library functions is the
maturity of the code. Most popular optimizing compilers available today
have been around for a while. During this time, the compiler vendors have
used their routines, determined where the bottlenecks lie, and optimized
their code. When you write your own version of a standard library string-
handling function, you probably won’t have comparable time to dedicate to
optimizing it—you’ve got your entire application to worry about. Because of
project time constraints, you’ll likely never go back and rewrite that string
function to improve its performance. Even if there’s a slight performance
advantage to your routine now, the compiler vendor may very well update
their library in the future, and you could take advantage of those improve-
ments by simply relinking the updated code with your project. However, if
you write the library code yourself, it will never improve unless you explic-
itly update it yourself. Most people are too busy working on new projects
to go back and clean up their old code, so the likelihood of improving self-
written string functions in the future is quite low.

The third reason for using standard library string functions in a lan-
guage like C or C++ is the most important: inline expansion. Many compil-
ers recognize certain standard library function names and expand them
inline to efficient machine code in place of the function call. This inline
expansion can be many times faster than an explicit function call, espe-
cially if the function call contains several parameters. As a simple example,
consider the following (almost trivial) C program:

#include <string.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 char localStr[256];

 strcpy(localStr, "Hello World");
 printf(localStr);
 return 0;
}

2. It’s worth pointing out that this code is not an exact replacement for the simplistic C code
given in this section. The HLA code assumes that all strings are padded to a multiple of
4 bytes in length (a reasonable assumption in HLA). This isn’t necessarily true for standard
C strings. Also, this is far from being as efficient as it could be. Newer CPUs with SSE4.1
extensions can use certain SSE instructions to execute this operation even faster.

304 Chapter 10

The corresponding 64-bit x86-64 assembly code that Visual C++ pro-
duces is quite interesting:

; Storage for the literal string appearing in the
; strcpy invocation:

_DATA SEGMENT
$SG6874 DB 'Hello World', 00H
_DATA ENDS

_TEXT SEGMENT
localStr$ = 32
__$ArrayPad$ = 288
argc$ = 320
argv$ = 328
main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 6
$LN4:
 sub rsp, 312 ; 00000138H
 mov rax, QWORD PTR __security_cookie
 xor rax, rsp
 mov QWORD PTR __$ArrayPad$[rsp], rax
; Line 9
 movsd xmm0, QWORD PTR $SG6874
; Line 10
 lea rcx, QWORD PTR localStr$[rsp]
 mov eax, DWORD PTR $SG6874+8
 movsd QWORD PTR localStr$[rsp], xmm0
 mov DWORD PTR localStr$[rsp+8], eax
 call printf
; Line 11
 xor eax, eax
; Line 12
 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 call __security_check_cookie
 add rsp, 312 ; 00000138H
 ret 0
main ENDP
_TEXT ENDS

The compiler recognizes what’s going on and substitutes four inline
instructions that copy the 12 bytes of the string from the literal constant
in memory to the localStr variable (specifically, it copies 8 bytes using the
XMM0 register and 4 bytes using the EAX register; note that this code uses
RCX to pass the address of localStr to the printf() function). The overhead
of a call and return to an actual strcpy() function will be more expensive
than this (and that’s without considering the work needed to copy the
string data). This example demonstrates quite well why you should usually
call standard library functions rather than writing your own “optimized”
functions to do the same job.

String Data Types 305

10.1.1.2 When Not to Use Standard Library Functions

Although, as you’ve seen, it’s usually better to call a standard library routine
rather than writing your own version, there are some special situations when
you should not rely on one or more library functions in the standard library.

Library functions work great when they perform exactly the function you
need—no more and no less. One area where programmers get into trouble is
when they misuse a library function and call it to do something that it wasn’t
really intended to do, or they need only part of the functionality it provides.
For example, consider the C standard library strcspn() function:

size_t strcspn(char *source, char *cset);

This function returns the number of characters in the source string up
to the first character it finds that also appears in the cset string. It’s not at
all uncommon to see calls to this function that look like this:

len = strcspn(SomeString, "a");

The intent here is to return the number of characters in SomeString
before the first occurrence of an a character in that string. That is, it
attempts to do something like the following:

len = 0;
while
(
 SomeString[len] != '\0'
 && SomeString[len] != 'a'
){
 ++len;
}

Unfortunately, the call to the strcspn() function is probably a lot slower
than this simple while loop implementation. That’s because strcspn() actu-
ally does a lot more work than search for a single character within a string.
It looks for any character from a set of characters within the source string.
The generic implementation of this function might be something like:

len = 0;
for(;;) // Infinite loop
{
 ch = SomeString[len];
 if(ch == '\0') break;
 for(i=0; i<strlen(cset); ++i)
 {
 if(ch == cset[i]) break;
 }
 if(ch == cset[i]) break;
 ++len;
}

306 Chapter 10

With a little analysis (and noting that we have a pair of nested loops
here), it’s clear that this code is slower than the code given earlier, even
if you pass in a cset string containing a single character. This is a classic
example of calling a function that is more general than you need, because
it searches for any of several termination characters rather than the special
case of a single terminating character. When a function does exactly what
you want, using the standard library’s version of it is a good idea. However,
when it does more than you need, using the standard library function can
be expensive, and it’s better to write your own version.

10.1.1.3 Why to Avoid Length Recomputing Data

The last example in the previous section demonstrates a common C pro-
gramming mistake. Consider the coded fragment:

for(i=0; i<strlen(cset); ++i)
{
 if(ch == cset[i]) break;
}

On each iteration of this loop, the code tests the loop index to see
if it is less than the length of the cset string. But because the loop body
does not modify the cset string (and because, presumably, this is not a
multithreaded application with another thread modifying the cset string),
there’s really no need to recompute the string length on each iteration of
this loop. Look at the code that the Microsoft Visual C++ 32-bit compiler
emits for this code fragment:

; Line 10
 mov DWORD PTR i$1[rsp], 0 ;for(i = 0;...;...)
 jmp SHORT $LN4@main

$LN2@main:
 mov eax, DWORD PTR i$1[rsp] ;for(...;...;++i)
 inc eax
 mov DWORD PTR i$1[rsp], eax

$LN4@main: ;for(...; i < strlen(localStr);...)
 movsxd rax, DWORD PTR i$1[rsp]
 mov QWORD PTR tv65[rsp], rax
 lea rcx, QWORD PTR localStr$[rsp]
 call strlen
 mov rcx, QWORD PTR tv65[rsp]
 cmp rcx, rax
 jae SHORT $LN3@main
; Line 12
 movsx eax, BYTE PTR ch$[rsp]
 movsxd rcx, DWORD PTR i$1[rsp]
 movsx ecx, BYTE PTR localStr$[rsp+rcx]
 cmp eax, ecx
 jne SHORT $LN5@main
 jmp SHORT $LN3@main

String Data Types 307

$LN5@main:
; Line 13
 jmp SHORT $LN2@main
$LN3@main:

Again, the machine code recalculates the string’s length on every itera-
tion of the innermost for loop, but because the cset string’s length never
changes, this is totally unnecessary. We can easily rectify this problem by
rewriting the code fragment this way:

slen = strlen(cset);
len = 0;
for(;;) // Infinite loop
{
 ch = SomeString[len];
 if(ch == '\0') break;
 for(i=0; i<slen; ++i)
 {
 if(ch == cset[i]) break;
 }
 if(ch == cset[i]) break;
 ++len;
}

On the plus side, recent versions of Microsoft’s VC++ compiler will rec-
ognize this situation if you have optimizations turned on. As VC++ deter-
mines that the string length is a loop-invariant calculation (that is, its value
does not change from one loop iteration to the next), VC++ will move the
call to strlen() out of the loop. Unfortunately, VC++ can’t catch this in every
situation. For example, if you call some function that VC++ doesn’t know
about and you pass it the address of localStr as a (non-const) parameter,
VC++ will have to assume that the string’s length could change (even if it
doesn’t) and it won’t be able to move the strlen() call out of the loop.

A fair number of string operations require the string’s length before they
can execute. Consider the strdup() function commonly found in many C
libraries.3 The following code is a common implementation of this function:

char *strdup(char *src)
{
 char *result;

 result = malloc(strlen(src) + 1);
 assert(result != NULL); // Check malloc check
 strcpy(result, src);
 return result;
}

3. The strdup() function is not defined in the original C standard library, but it’s very com-
mon for vendors to include it as an extension to the C standard library.

308 Chapter 10

Fundamentally, nothing is wrong with this implementation of strdup().
If you know absolutely nothing about the string object you’re passing as
a parameter, then you must compute the string’s length so you know how
much memory to allocate for a copy of that string. Consider, however, the
following code sequence that calls strdup():

len = strlen(someStr);
if(len == 0)
{
 newStr = NULL;
}
else
{
 newStr = strdup(someStr);
}

The problem here is that you wind up calling strlen() twice: once for
the explicit call to strlen() in this code fragment, and once for the call
buried in the strdup() function. Worse, it isn’t obvious that you’re calling
strlen() twice, so it’s not even clear that you’re wasting CPU cycles in this
code. This is another example of calling a function that is more general
than you need, causing the program to recompute the string’s length (an
inefficient process). One solution is to provide a less general version of
strdup(), say strduplen(), that lets you pass it the length of the string you’ve
already computed. You could implement strduplen() as follows:

char *strduplen(char *src, size_t len)
{
 char *result;

 // Allocate storage for new string:

 result = malloc(len + 1);
 assert(result != NULL);

 // Copy the source string and
 // 0 byte to the new string:

 memcpy(result, src, len+1);
 return result;
}

Notice the use of memcpy() rather than strcpy() (or, better yet, strncpy()).
Again, we already know the length of the string, so there’s no need to
execute any code looking for the 0 terminating byte (as both strcpy() and
strncpy() will do). Of course, this function implementation assumes that the
caller passes the correct length, but that’s a standard C assumption for most
string and array operations.

String Data Types 309

10.1.1.4 Why to Avoid Copying Data

Copying strings, especially long strings, can be a time-consuming pro-
cess on a computer. Most programs maintain string data in memory, and
memory is much slower than the CPU (often by an order of magnitude or
more). Although cache memory can help mitigate this problem, process-
ing a lot of string data can eliminate other data from the cache and lead
to thrashing problems if you don’t frequently reuse all the string data you
move through the cache. It’s not always possible to avoid moving string
data around, but many programs needlessly copy data, and that can ham-
per program performance.

A better solution is to pass around pointers to zero-terminated strings
rather than copying those strings from string variable to string variable.
Pointers to zero-terminated strings can fit in registers and don’t consume
much memory when you use memory variables to hold them. Therefore,
passing pointers has far less impact on cache and CPU performance than
copying string data among string variables.

As you’ve seen in this section, zero-terminated string functions are gen-
erally less efficient than functions that manipulate other types of strings.
Furthermore, programs that utilize zero-terminated strings tend to make
mistakes, such as calling strlen() multiple times or abusing generic func-
tions to achieve specific goals. Fortunately, designing and using a more effi-
cient string format is easy enough in languages whose native string format
is the zero-terminated string.

10.1.2 Length-Prefixed Strings
A second common string format, length-prefixed strings, overcomes some of the
problems with zero-terminated strings. Length-prefixed strings are common
in languages like Pascal; they generally consist of a single byte that specifies
the length of the string, followed by zero or more 8-bit character codes (see
Figure 10-2). In a length-prefixed scheme, the string "String" would consist of
4 bytes: the length byte (6), followed by the characters S, t, r, i, n, and g.

S t r i n g#6

Character data
Length prefix byte

Figure 10-2: Length-prefixed string format

Length-prefixed strings solve two of the problems associated with zero-
terminated strings:

•	 NUL characters can be represented in length-prefixed strings.

•	 String operations are more efficient.

310 Chapter 10

Another advantage to length-prefixed strings is that the length is usu-
ally located at position 0 in the string (if we view the string as an array of
characters), so the first character of the string begins at index 1 in the array
representation of the string. For many string functions, having a 1-based
index into the character data is much more convenient than a 0-based index
(which zero-terminated strings use).

Length-prefixed strings do suffer from their own drawbacks, the prin-
cipal one being that they’re limited to a maximum of 255 characters in
length (assuming a 1-byte length prefix). You can remove this limitation by
using a 2- or 4-byte length value, but doing so increases the amount of over-
head data from 1 to 2 or 4 bytes. It also changes the starting index of the
string from 1 to either 2 or 4, eliminating the 1-based index feature. While
there are ways to overcome this problem, they entail even more overhead.

Many string functions are much more efficient with length-prefixed
strings. Obviously, computing the length of a string is a trivial operation—it’s
just a memory access—but other string functions that ultimately need the
string’s length (such as concatenation and assignment) are usually more effi-
cient than similar functions for zero-terminated strings. Furthermore, you
don’t have to worry about recomputing the string’s length every time you call
a string function that is built into the language’s standard library.

Despite these advantages, don’t get the impression that programs using
length-prefixed string functions are always going to be efficient. You can still
waste many CPU cycles by needlessly copying data. As with zero-terminated
strings, if you use only a subset of a string function’s capabilities, you can
waste lots of CPU cycles performing unnecessary tasks.

When using length-prefixed string functions, keep the following points
in mind:

•	 Try to use the language’s runtime library functions rather than attempt-
ing to code comparable functions yourself. Most compiler vendors pro-
vide highly optimized versions of their string functions that will probably
run many times faster than code you would write yourself.

•	 Although computing the string length when using the length-prefixed
string format is fairly trivial, many (Pascal) compilers actually emit a
function call to extract the length value from the string’s data. The func-
tion call and return is far more expensive than retrieving the length
value from a variable. So, once you compute the string’s length, con-
sider saving that length in a local variable if you intend to use that value
again. Of course, if a compiler is smart enough to replace a call to the
length function with a simple data fetch from the string’s data struc-
ture, this “optimization” won’t buy you much.

•	 Avoid copying string data from one string variable to another. Doing
so is one of the more expensive operations in programs using length-
prefixed strings. Passing around pointers to strings has the same ben-
efit as for zero-terminated strings.

String Data Types 311

10.1.3 Seven-Bit Strings
The 7-bit string format is an interesting option that works for 7-bit encodings
like ASCII. It uses the (normally unused) higher-order bit of the characters
in the string to indicate the end of the string. All but the last character
code in the string has its HO bit clear, and the last character in the string
has its HO bit set (see Figure 10-3).

Character code with HO bit clear

Character code with HO bit set

S t r i n g

Figure 10-3: Seven-bit string format

This 7-bit string format has several disadvantages:

•	 You have to scan the entire string in order to determine the length of
the string.

•	 You cannot have zero-length strings in this format.

•	 Few languages provide literal string constants for 7-bit strings.

•	 You’re limited to a maximum of 128 character codes, although this is
fine when you are using plain ASCII.

However, the big advantage of 7-bit strings is that they don’t require any
overhead bytes to encode the length. Assembly language (using a macro to
create literal string constants) is probably the best language to use when
dealing with 7-bit strings. Because the benefit of 7-bit strings is that they’re
compact and assembly language programmers tend to worry most about
compactness, this is a good match. Here’s an HLA macro that converts a
literal string constant to a 7-bit string:

#macro sbs(s);

 // Grab all but the last character of the string:

 (@substr(s, 0, @length(s) - 1) +

 // Concatenate the last character
 // with its HO bit set:

 char
 (
 uns8
 (
 char(@substr(s, @length(s) - 1, 1))
) | $80
)
)

312 Chapter 10

#endmacro
 .
 .
 .
byte sbs("Hello World");

Because few languages provide support for 7-bit strings, the first sug-
gestion that applied to zero-terminated and length-prefixed strings doesn’t
apply to 7-bit strings: you’ll probably have to write your own string-handling
functions. Computing lengths and copying data are expensive operations
even with 7-bit strings, however, so these two suggestions still apply:

•	 Once you’ve computed the length of a string by scanning the entire
string, save that length for future use (rather than recomputing it every
time you need it).

•	 Avoid copying string data from one string variable to another. Doing so
is one of the more expensive operations in programs using 7-bit strings.

10.1.4 HLA Strings
As long as you’re not too concerned about a few extra bytes of overhead per
string, you can create a string format that combines the advantages of both
length-prefixed and zero-terminated strings without their respective disad-
vantages. The High-Level Assembly language has done this with its native
string format.4

The biggest drawback to the HLA character string format is the amount of
overhead required for each string (which can be significant, percentage-wise,
if you’re in a memory-constrained environment and you process many small
strings). HLA strings contain a length prefix and a zero-terminating byte, as
well as some other information, totaling 9 bytes of overhead per string.5

The HLA string format uses a 4-byte length prefix, allowing character
strings to be just over 4 billion characters long (far more than any practi-
cal application will use). HLA also appends a 0 byte to the character string
data, so HLA strings are compatible with string functions that reference
(but do not change the length of) zero-terminated strings. The remaining
4 bytes of overhead in an HLA string contain the maximum legal length for
that string (plus a 0 terminating byte). Having this extra field allows HLA
string functions to check for string overflow, if necessary. In memory, HLA
strings take the form shown in Figure 10-4.

Max length Length #0S t r i n g

Figure 10-4: HLA string format

4. Note that HLA is an assembly language, so it’s perfectly possible—and easy in fact—to sup-
port any reasonable string format. HLA’s native string format is what it uses for literal string
constants, and what most of the routines in the HLA standard library support.

5. Actually, because of memory alignment restrictions, there can be up to 12 bytes of over-
head, depending on the string.

String Data Types 313

The 4 bytes immediately before the first character of the string contain
the current string length. The 4 bytes preceding the current string length
contain the maximum string length. Immediately following the character
data is a 0 byte. Finally, HLA always ensures that the string data structure’s
length is a multiple of 4 bytes for performance reasons, so there may be up
to 3 additional bytes of padding at the end of the object in memory. (Note
that the string shown in Figure 10-4 requires only 1 byte of padding to
ensure that the data structure is a multiple of 4 bytes in length.)

HLA string variables are actually pointers that contain the byte address
of the first character in the string. To access the length fields, you load the
value of the string pointer into a 32-bit register, then access the length field
at offset –4 from the register and the maximum length field at offset –8
from the register. Here’s an example:

static
 s :string := "Hello World";
 .
 .
 .
// Move the address of 'H' in
// "Hello World" into esi.

mov(s, esi);

// Puts length of string
// (11 for "Hello World") into ECX.

mov([esi-4], ecx);
 .
 .
 .
mov(s, esi);

// See if value in ECX exceeds the
// maximum string length.

cmp(ecx, [esi-8]);
jae StringOverflow;

As noted earlier, the amount of memory reserved to hold an HLA
string’s character data (including the 0 byte) is always a multiple of 4 bytes.
Therefore, it’s always guaranteed that you can move data from one HLA
string to another by copying double words rather than individual bytes.
This allows string copy routines to run up to four times faster, because you
execute one-fourth the number of loop iterations copying a string of double
words as you would copying the string a byte at a time. For example, here’s
the highly modified version of the pertinent code in the HLA str.cpy()
function that copies one string to another:

// Get the source string pointer into ESI,
// and the destination pointer into EDI.

314 Chapter 10

 mov(dest, edi);
 mov(src, esi);

 // Get the length of the source string
 // and make sure that the source string
 // will fit in the destination string.

 mov([esi-4], ecx);

 // Save as the length of the destination string.

 mov(ecx, [edi-4]);

 // Add 1 byte to the length so we will
 // copy the 0 byte. Also compute the
 // number of dwords to copy (rather than bytes).
 // Then copy the data.

 add(4, ecx); // Adds one, after division by 4.
 shr(2, ecx); // Divides length by 4
 rep.movsd(); // Moves length/4 dwords

The HLA str.cpy() function also checks for string overflows and NULL
pointer references (for clarity, that code does not appear in this example).
However, the takeaway here is that HLA copies the strings as double words
in order to improve performance.

One nice thing about HLA string variables is that (as read-only objects)
HLA strings are compatible with zero-terminated strings. For example, if
you have a function written in C or some other language that expects you
to pass a zero-terminated string to it, you can call that function and pass
an HLA string variable to it, like this:

someCFunc(hlaStringVar);

The only catch is that the C function must not make any changes to
the string that would affect its length (because the C code won’t update the
Length field of the HLA string). Of course, you can always call a C strlen()
function upon returning to update the length field yourself, but gener-
ally, it’s best not to pass HLA strings to a function that modifies zero-
terminated strings.

The comments on length-prefixed strings generally apply to HLA
strings, specifically:

•	 Try to use the HLA standard library functions rather than attempting
to code comparable functions yourself. While you might want to check
out the library function’s source code (available with HLA), most of the
string functions do a good job on generic string data.

•	 Although, in theory, you shouldn’t count on the explicit length field
appearing in the HLA string data format, most programs simply grab
the length from the 4 bytes immediately preceding the string data, so

String Data Types 315

there’s generally no need to save the length. Careful HLA program-
mers will actually call the str.len() function in the HLA standard
library and simply save this value in a local variable for future use.
However, accessing the length directly is probably safe.

•	 Avoid copying string data from one string variable to another. Doing so is
one of the more expensive operations in programs using HLA strings.

10.1.5 Descriptor-Based Strings
The string formats we’ve considered up to this point have kept the attri-
bute information (that is, the lengths and terminating bytes) for a string
in memory along with the character data. A slightly more flexible scheme
is to maintain such information in a record structure, known as a descriptor,
that also contains a pointer to the character data. Consider the following
Pascal/Delphi data structure (see Figure 10-5):

type
 dString = record
 curLength :integer;
 strData :^char;
 end;

6Length

Pointer to data

Descriptor
record

S t r i n g

Figure 10-5: String descriptors

Note that this data structure does not hold the actual character data.
Instead, the strData pointer contains the address of the first character of the
string. The curLength field specifies the current length of the string. You could
add any other fields you like to this record, such as a maximum length field,
although a maximum length isn’t usually necessary because most string for-
mats employing a descriptor are dynamic (as the next section will discuss).

An interesting attribute of a descriptor-based string system is that the
actual character data associated with a string could be part of a larger string.
Because no length or terminating bytes are in the actual character data, it’s
possible to have the character data for two strings overlap (see Figure 10-6).

H e l l o W o r l d

11 5

Descriptor #1 Descriptor #2

Figure 10-6: Overlapping strings using descriptors

316 Chapter 10

This example shows two strings—"Hello World" and "World"—that over-
lap. This can save memory and make certain functions, like substring(), very
efficient. Of course, when strings overlap as these do, you can’t modify the
string data because that could wipe out part of some other string.

The suggestions given for other string formats don’t apply as strongly
to descriptor-based strings. Certainly, if standard libraries are available,
you should call those functions because they’re probably more efficient
than the ones you would write yourself. There is no need to save the length,
because extracting the length field from the string’s descriptor is usually a
minor task. Also, many descriptor-based string systems use copy on write (see
WGC1 and the section “Dynamic Strings” on page 317) to reduce string
copy overhead. In a string descriptor system, you should avoid making
changes to a string, because the copy-on-write semantics generally require
the system to make a complete copy of the string whenever you change a
single character (something that isn’t necessary with other string formats).

10.2 Static, Pseudo-Dynamic, and Dynamic Strings
Having covered the various string data formats, it’s time to consider where
to store string data in memory. Strings can be classified according to when
and where the system allocates storage for them. There are three catego-
ries: static strings, pseudo-dynamic strings, and dynamic strings.

10.2.1 Static Strings
Pure static strings are those whose maximum size a programmer chooses
when writing the program. Pascal strings and Delphi short strings fall into
this category. Arrays of characters that you use to hold zero-terminated
strings in C/C++ also fall into this category, as do fixed-length arrays of
characters. Consider the following declaration in Pascal:

(* Pascal static string example *)

var
 //Max length will always be 255 characters.

 pascalString :string[255];

And here’s an example in C/C++:

// C/C++ static string example:

//Max length will always be 255 characters (plus 0 byte).

char cString[256];

While the program is running, there’s no way to increase the maximum
sizes of these static strings. Nor is there any way to reduce the storage they
will use; these string objects will consume 256 bytes at runtime, period.

String Data Types 317

One advantage to pure static strings is that the compiler can determine
their maximum length at compile time and implicitly pass this information
to a string function so it can test for bounds violations at runtime.

10.2.2 Pseudo-Dynamic Strings
A pseudo-dynamic string is one whose length the system sets at runtime by
calling a memory management function like malloc() to allocate storage for
it. However, once the system allocates storage for the string, the maximum
length of the string is fixed. HLA strings generally fall into this category.6
An HLA programmer typically calls the stralloc() function to allocate stor-
age for a string variable, after which that particular string object has a fixed
length that cannot change.7

10.2.3 Dynamic Strings
Dynamic string systems, which typically use a descriptor-based format,
automatically allocate sufficient storage for a string object whenever you
create a new string or otherwise do something that affects an existing
string. Operations like string assignment and substring extraction are rela-
tively trivial in dynamic string systems—generally they copy only the string
descriptor data, so these operations are fast. However, as noted in the sec-
tion “Descriptor-Based Strings” on page 315, when using strings this way,
you cannot store data back into a string object, because it could modify
data that is part of other string objects in the system.

The solution to this problem is to use the copy-on-write technique.
Whenever a string function needs to change characters in a dynamic string,
the function first makes a copy of the string and then makes the necessary
modifications to that copy. Research suggests that copy-on-write seman-
tics can improve the performance of many typical applications, because
operations like string assignment and substring extraction (which is just a
partial string assignment) are far more common than the modification of
character data within strings. The only drawback to this approach is that
after several modifications to string data in memory, there may be sections
of the string heap area that contain character data that’s no longer in use.
To avoid a memory leak, dynamic string systems employing copy on write
usually provide garbage collection code, which scans the string heap area
looking for stale character data in order to recover that memory for other
purposes. Unfortunately, depending on the algorithms in use, garbage col-
lection can be quite slow.

N O T E See Chapter 9 for more information on memory leaks and garbage collection.

6. Though, being assembly language, it’s possible to create static strings and pure dynamic
strings in HLA as well.

7. Actually, you could call strrealloc() to change the size of an HLA string, but dynamic
string systems generally do this automatically. Existing HLA string functions will not do this
for you if they detect a string overflow.

318 Chapter 10

10.3 Reference Counting for Strings
Consider the case where you have two string descriptors (or pointers)
pointing at the same string data in memory. Clearly, you can’t deallocate
the storage associated with one pointer while the program is still using the
other pointer to access the same data. One common solution is to make the
programmer responsible for keeping track of such details. Unfortunately, as
applications become more complex, this approach often leads to dangling
pointers, memory leaks, and other pointer-related problems in the software.
A better solution is to allow the programmer to deallocate the storage for
the character data in the string and to have the actual deallocation process
hold off until the programmer releases the last pointer referencing that
data. To accomplish this, a string system can use reference counters, which
track the pointers and their associated data.

A reference counter is an integer that counts the number of pointers
that reference a string’s character data in memory. Every time you assign
the address of the string to some pointer, you increment the reference
counter by 1. Likewise, whenever you want to deallocate the storage associ-
ated with the character data for the string, you decrement the reference
counter. Deallocation of the storage for the actual character data doesn’t
happen until the reference counter decrements to 0.

Reference counting works great when the language handles the details
of string assignment automatically for you. If you try to implement reference
counting manually, you must be sure to always increment the reference coun-
ter when you assign a string pointer to some other pointer variable. The best
way to do this is to never assign pointers directly, but rather handle all string
assignments via some function (or macro) call that updates the reference
counters in addition to copying the pointer data. If your code fails to update
the reference counter properly, you’ll wind up with dangling pointers or
memory leaks.

10.4 Delphi Strings
Although Delphi provides a “short string” format that is compatible with
the length-prefixed strings in earlier versions of Delphi and Turbo Pascal,
later versions of Delphi (v4.0 and later) use dynamic strings for their native
string format. While this string format is unpublished (and, therefore, sub-
ject to change), indications are that Delphi’s string format is very similar to
HLA’s. Delphi uses a zero-terminated sequence of characters with a leading
string length and a reference counter (rather than a maximum length as
HLA uses). Figure 10-7 shows the layout of a Delphi string in memory.

Ref count Length #0S t r i n g

Figure 10-7: Delphi string data format

As with HLA, Delphi string variables are pointers holding the address
of the first character of the actual string data. To access the length and

String Data Types 319

reference counter fields, the Delphi string routines use a negative offset of
–4 and –8 from the character data’s base address. However, because this
string format is not published, applications should never access the length
or reference counter fields directly (for example, these fields could be
64-bit values one day). Delphi provides a length function that extracts the
string length for you, and there’s really no need for your applications to
access the reference counter field because the Delphi string functions main-
tain it automatically.

10.5 Using Strings in a High-Level Language
Strings are a very common data type in high-level programming languages.
Because applications often make extensive use of string data, many HLLs
provide libraries with lots of complex string manipulation routines that hide
considerable complexity from the programmer. Unfortunately, it’s easy to
forget the amount of work involved in a typical string operation when you
execute a statement like this:

aLengthPrefixedString := 'Hello World';

In a typical Pascal implementation, this assignment statement calls a
function that winds up copying each character from the string literal to the
storage reserved for the aLengthPrefixedString variable. That is, this state-
ment roughly expands to the following:

(* Copy the characters in the string *)

 for i:= 1 to length(HelloWorldLiteralString) do begin

 aLengthPrefixedString[i] :=
 HelloWorldLiteralString[i];

 end;

 (* Set the string's length *)

 aLengthPrefixedString[0] :=
 char(length(HelloWorldLiteralString));

This code doesn’t even include the overhead of the procedure call,
return, and parameter passing. As noted throughout the chapter, copying
string data is one of the more expensive operations programs commonly
do. This is why many HLLs have switched to dynamic strings and copy-on-
write semantics—string assignments are far more efficient when you copy
only a pointer rather than all of the character data. This is not to suggest
that copy on write is always better, but for many string operations—such as
assignment, substring, and other operations that do not change the string’s
character data—it can be very efficient.

320 Chapter 10

Although few programming languages give you the option of choos-
ing which string format you want to use, many do let you create pointers to
strings, so you can manually support copy on write. If you’re willing to write
your own string-handling functions, you can create some very efficient pro-
grams by avoiding the use of your language’s built-in string-handling capa-
bilities. For example, the substring operation in C is usually handled by the
strncpy() function and is often implemented like so:8

char *
strncpy(char* dest, char *src, int max)
{
 char *result = dest;
 while(max > 0)
 {
 *dest = *src++;
 if(*dest++ == '\0') break;
 --max;
 }
 return result;
}

A typical “substring” operation might use strncpy() as follows:

strncpy(substring, fullString + start, length);
substring[length] = '\0';

where substring is the destination string object, fullString is the source
string, start is the starting index of the substring to copy, and length is the
length of the substring to copy.

If you create a descriptor-based string format in C using a struct, simi-
lar to the HLA record in “Descriptor-Based Strings” on page 315, you
could do a substring operation with the following two statements in C:

// Assumption: ".strData" field is char*

 substring.strData = fullString.strData + start;
 substring.curLength = length;

This code executes much faster than the strncpy() version.
Sometimes, a particular programming language won’t provide access

to the underlying string data representation it supports, and you’ll have to
live with the performance loss, switch languages, or write your own string-
handling code in assembly language. Generally, though, there are alter-
natives to copying string data in your applications, such as using a string
descriptor as in the example just given.

8. Most real-world strncpy() routines are often more efficient than this example. In fact, many
are written in assembly language, but we’ll ignore that here.

String Data Types 321

10.6 Unicode Character Data in Strings
Up to this point, we’ve assumed that each character in a string consumes
exactly 1 byte of storage. We’ve also assumed the use of the 7-bit ASCII
character set when discussing the character data appearing in a string.
Traditionally, this has been the way programming languages have repre-
sented a string’s character data. Today, however, the ASCII character set is
too limited for worldwide use, and several new character sets have risen in
popularity, including the Unicode variants: UTF-8, UTF-16, UTF-32, and
UTF-7. Because these character formats can have a big impact on the effi-
ciency of string functions that operate upon them, we’ll spend some time
covering them.

10.6.1 The Unicode Character Set
A few decades back, engineers at Aldus, NeXT, Sun, Apple Computer, IBM,
Microsoft, the Research Library Group, and Xerox realized that their new
computer systems with bitmaps and user-selectable fonts could display far
more than 256 different characters at one time. At the time, double-byte
character sets (DBCSs) were the most common solution. DBCSs had a couple
of issues, however. First, as they were typically variable-length encodings,
DBCSs required special library code; common character/string algorithms
that depended upon fixed-length character encodings would not work
properly with them. Second, there was no consistent standard—different
DBCSs used the same encoding for different characters. So, wanting to
avoid these compatibility problems, the engineers sought a different route.

The solution they came up with was the Unicode character set. The engi-
neers who originally developed Unicode chose a 2-byte character size. Like
DBCSs, this approach still required special library code (existing single-byte
string functions would not always work with 2-byte characters), but other
than changing the size of a character, most existing string algorithms would
still work with 2-byte characters. The Unicode definition included all of the
(known/living) character sets at the time, giving each character a unique
encoding, to avoid the consistency problems that plagued differing DBCSs.

The original Unicode standard used a 16-bit word to represent each
character. Therefore, Unicode supported up to 65,536 different character
codes—a huge advance over the 256 possible codes that are representable
with an 8-bit byte. Furthermore, Unicode is upward compatible from ASCII.
If the HO 9 bits9 of a Unicode character’s binary representation contain 0,
then the LO 7 bits use the standard ASCII code. If the HO 9 bits contain
some nonzero value, then the 16 bits form an extended character code
(extended from ASCII, that is). If you’re wondering why so many different
character codes are necessary, note that, at the time, certain Asian character
sets contained 4,096 characters. The Unicode character set even provided
a set of codes you could use to create an application-defined character set.

9. ASCII is a 7-bit code. If the HO 9 bits of a 16-bit Unicode value are all 0, the remaining
7 bits are an ASCII encoding for a character.

322 Chapter 10

Approximately half of the 65,536 possible character codes have been defined,
and the remaining character encodings are reserved for future expansion.

Today, Unicode is a universal character set, long replacing ASCII and older
DBCSs. All modern operating systems (including macOS, Windows, Linux,
iOS, Android, and Unix), web browsers, and most modern applications provide
Unicode support. Unicode Consortium, a nonprofit corporation, maintains
the Unicode standard. By maintaining the standard, Unicode, Inc. (https://
home.unicode.org), helps guarantee that a character you write on one system
will display as you expect on a different system or application.

10.6.2 Unicode Code Points
Alas, as well thought-out as the original Unicode standard was, it couldn’t
have anticipated the explosion in characters that would occur. Emojis,
astrological symbols, arrows, pointers, and a wide variety of symbols intro-
duced for the internet, mobile devices, and web browsers have greatly
expanded the Unicode symbol repertoire (along with a desire to support
historic, obsolete, and rare scripts). In 1996, systems engineers discovered
that 65,536 symbols were insufficient. Rather than require 3 or 4 bytes for
each Unicode character, those in charge of the Unicode definition gave up
on trying to create a fixed-size representation of characters and allowed for
opaque (and multiple) encodings of Unicode characters. Today, Unicode
defines 1,112,064 code points, far exceeding the 2-byte capacity originally
set aside for Unicode characters.

A Unicode code point is simply an integer value that Unicode associates
with a particular character symbol; you can think of it as the Unicode equiva-
lent of the ASCII code for a character. The convention for Unicode code
points is to specify the value in hexadecimal with a U+ prefix; for example,
U+0041 is the Unicode code point for the letter A.

N O T E See https://en.wikipedia.org/wiki/Unicode#General_Category_property for
more details on code points.

10.6.3 Unicode Code Planes
Because of its history, blocks of 65,536 characters are special in Unicode—
they are known as a multilingual plane. The first multilingual plane, U+000000
to U+00FFFF, roughly corresponds to the original 16-bit Unicode definition;
the Unicode standard calls this the Basic Multilingual Plane (BMP). Planes 1
(U+010000 to U+01FFFF), 2 (U+020000 to U+02FFFF), and 14 (U+0E0000 to U+0EFFFF)
are supplementary planes. Unicode reserves planes 3 through 13 for future
expansion and planes 15 and 16 for user-defined character sets.

The Unicode standard defines code points in the range U+000000
to U+10FFFF. Note that 0x10ffff is 1,114,111, which is where most of the
1,112,064 characters in the Unicode character set come from; the remain-
ing 2,048 code points are reserved for use as surrogates, which are Unicode
extensions. Unicode scalar is another term you might hear; this is a value
from the set of all Unicode code points except the 2,048 surrogate code
points. The HO two hexadecimal digits of the six-digit code point value

String Data Types 323

specify the multilingual plane. Why 17 planes? The reason, as you’ll see in
a moment, is that Unicode uses special multiword entries to encode code
points beyond U+FFFF. Each of the two possible extensions encodes 10 bits,
for a total of 20 bits; 20 bits gives you 16 multilingual planes, which, plus
the original BMP, produces 17 multilingual planes. This is also why code
points fall in the range U+000000 to U+10FFFF: it takes 21 bits to encode the
16 multilingual planes plus the BMP.

10.6.4 Surrogate Code Points
As noted earlier, Unicode began life as a 16-bit (2-byte) character set encod-
ing. When it became apparent that 16 bits were insufficient to handle all
the possible characters that existed at the time, an expansion was necessary.
As of Unicode v2.0, the Unicode, Inc., organization extended the definition
of Unicode to include multiword characters. Now Unicode uses surrogate
code points (U+D800 through U+DFFF) to encode values larger than U+FFFF.
Figure 10-8 shows the encoding.

1 1 1 10 0

Unit 1

b
19

b
18

b
17

b
16

b
15

b
14

b
13

b
12

b
11

b
10

1 1 1 10 1

Unit 2

b
9

b
8

b
7

b
6

b
5

b
4

b
3

b
2

b
1

b
0

Figure 10-8: Surrogate code point encoding for Unicode planes 1 through 16

Note that the two words (unit 1/high surrogate and unit 2/low surro-
gate) always appear together. The unit 1 value (with HO bits %110110) speci-
fies the upper 10 bits (b10..b19) of the Unicode scalar, and the unit 2 value
(with HO bits %110111) specifies the lower 10 bits (b0..b9) of the Unicode
scalar. Therefore, the value of bits b16..b19 plus 1 specifies Unicode plane 1
through 16. Bits b0..b15 specify the Unicode scalar value within the plane.

Note that surrogate codes only appear in the BMP. None of the other
multilingual planes contain surrogate codes. Bits b0..b19 extracted from the
unit 1 and 2 values always specify a Unicode scalar value (even if the values
fall in the range U+D800 through U+DFFF).

10.6.5 Glyphs, Characters, and Grapheme Clusters
Each Unicode code point has a unique name. For example, U+0045 has the
name “LATIN CAPITAL LETTER A.” Note that the symbol A is not the name
of the character. A is a glyph—a series of strokes (one horizontal and two
slanted strokes) that a device draws in order to represent the character.

There are many different glyphs for the single Unicode character
“LATIN CAPITAL LETTER A.” For example, a Times Roman A and a
Times Roman Italic A have different glyphs, but Unicode doesn’t differenti-
ate between them (or between the A character in any two different fonts).

324 Chapter 10

The character “LATIN CAPITAL LETTER A” remains U+0045 regardless of
the font or style you use to draw it.

As an interesting side note, if you have access to the Swift programming
language, you can print the name of any Unicode character using the fol-
lowing code:

import Foundation
let charToPrintName :String = "A" // Print name of this character

let unicodeName =
 String(charToPrintName).applyingTransform(
 StringTransform(rawValue: "Any-Name"),
 reverse: false
)! // Forced unwrapping is legit here because it always succeeds.
print(unicodeName)

Output from program:
\N{LATIN CAPITAL LETTER A}

So, what exactly is a character in Unicode? Unicode scalars are Unicode
characters, but there’s a difference between what you’d normally call a
character and the definition of a Unicode character (scalar). For example,
is é one character or two? Consider the following Swift code:

import Foundation
let eAccent :String = "e\u{301}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

 "\u{301}" is the Swift syntax for specifying a Unicode scalar value
within a string; in this particular case 301 is the hexadecimal code for the
combining acute accent character.

The first print statement:

print(eAccent)

prints the character (producing é on the output, as we expect).
The second print statement prints the number of characters Swift deter-

mines are present in the string:

print("eAccent.count=\(eAccent.count)")

This prints 1 to the standard output.
The third print statement prints the number of elements (UTF-16 ele-

ments10) in the string:

print("eAccent.utf16.count=\(eAccent.utf16.count)")

10. See “Unicode Encodings” on page 327 for a discussion of UTF-16 encoding.

String Data Types 325

This prints 2 on the standard output, because the string holds 2 words
of UTF-16 data.

So, again, is this one character or two? Internally (assuming UTF-16
encoding), the computer sets aside 4 bytes of memory for this single charac-
ter (two 16-bit Unicode scalar values).11 On the screen, however, the output
takes only one character position and looks like a single character to the
user. When this character appears within a text editor and the cursor is
immediately to the right of the character, the user expects that pressing the
backspace key will delete it. From the user’s perspective, then, this is a single
character (as Swift reports when you print the count attribute of the string).

In Unicode, however, a character is largely equivalent to a code point.
This is not what people normally think of as a character. In Unicode ter-
minology, a grapheme cluster is what people normally call a character—it’s
a sequence of one or more Unicode code points that combine to form a
single language element (that is, a single character). So, when we talk about
characters with respect to symbols that an application displays to an end
user, we’re really talking about grapheme clusters.

Grapheme clusters can make life miserable for software developers.
Consider the following Swift code (a modification of the earlier example):

import Foundation
let eAccent :String = "e\u{301}\u{301}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

This code produces the same é and 1 outputs from the first two print
statements. The following produces é:

print(eAccent)

and this print statement produces 1.

print("eAccent.count=\(eAccent.count)")

However, the third print statement:

print("eAccent.utf16.count=\(eAccent.utf16.count)")

displays 3 rather than 2 (as in the original example).
There are definitely three Unicode scalar values in this string (U+0065,

U+0301, and U+0301). When printing, the operating system combines the e
and the two acute accent combining characters to form the single charac-
ter é and then outputs the character to the standard output device. Swift is
smart enough to know that this combination creates a single output symbol
on the display, so printing the result of the count attribute continues to

11. Swift 5 switches the preferred encoding of strings from UTF-16 to UTF-8; see
https://swift.org/blog/utf8-string/.

326 Chapter 10

output 1. However, there are (undeniably) three Unicode code points in
this string, so printing utf16.count produces 3 on output.

10.6.6 Unicode Normals and Canonical Equivalence
The Unicode character é actually existed on personal computers long
before Unicode came along. It’s part of the original IBM PC character set
and also part of the Latin-1 character set (used, for example, on old DEC
terminals). As it turns out, Unicode uses the Latin-1 character set for the
code points in the range U+00A0 to U+00FF, and U+00E9 just happens to corre-
spond to the é character. Therefore, we can modify the earlier program as
follows:

import Foundation
let eAccent :String = "\u{E9}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

And here are the outputs from this program:

é
1
1

Ouch! Three different strings all producing é but containing a different
number of code points. Imagine how this complicates programming strings
containing Unicode characters. For example, if you have the following three
strings (Swift syntax) and you try to compare them, what will the result be?

let eAccent1 :String = "\u{E9}"
let eAccent2 :String = "e\u{301}"
let eAccent3 :String = "e\u{301}\u{301}"

To the user, all three strings look the same on the screen. However,
they clearly contain different values. If you compare them to see if they are
equal, will the result be true or false?

Ultimately, that depends upon whose string libraries you’re using. Most
current string libraries would return false if you compared these strings
for equality. Interestingly enough, Swift will claim that eAccent1 is equal to
eAccent2, but it isn’t smart enough to report that eAccent1 is equal to eAccent3
or that eAccent2 is equal to eAccent3—despite the fact that it displays the
same symbol for all three strings. Many languages’ string libraries simply
report that all three strings are unequal.

The three Unicode/Swift strings "\u{E9}", "e\u{301}", and "e\u{301}\u{301}"
all produce the same output on the display. Therefore, they are canonically
equivalent according to the Unicode standard. Some string libraries won’t
report any of these strings as being equivalent. Some, like the one accom-
panying Swift, will handle small canonical equivalences (such as "\u{E9}" ==
"e\u{301}") but not arbitrary sequences that should be equivalent (probably

String Data Types 327

a good balance of correctness versus efficiency; it can be computationally
expensive to handle all the weird cases that won’t normally happen, such as
"e\u{301}\u{301}").

Unicode defines normal forms for Unicode strings. One aspect of nor-
mal form is to replace canonically equivalent sequences with an equivalent
sequence—for example, replace "e\u{309}" by "\u{E9}" or replace "\u{E9}"
by "e\u{309}" (usually, the shorter form is preferable). Some Unicode
sequences allow multiple combining characters. Often, the order of the
combining characters is irrelevant to producing the desired grapheme
cluster. However, it’s easier to compare two such strings if the combining
characters are in a specified order. Normalizing Unicode strings may also
produce results whose combining characters always appear in a fixed order
(thereby improving efficiency of string comparisons).

10.6.7 Unicode Encodings
As of Unicode v2.0, the standard supports a 21-bit character space capable
of handling over a million characters (though most of the code points
remain reserved for future use). Rather than use a fixed-size 3-byte (or
worse, 4-byte) encoding to allow the larger character set, Unicode, Inc.,
allows different encodings—UTF-32, UTF-16, and UTF-8—each with its
own advantages and disadvantages.12

UTF-32 uses 32-bit integers to hold Unicode scalars. The advantage
to this scheme is that a 32-bit integer can represent every Unicode scalar
value (which requires only 21 bits). Programs that require random access
to characters in strings—without having to search for surrogate pairs—and
other constant-time operations are (mostly) possible when using UTF-32.
The obvious drawback to UTF-32 is that each Unicode scalar value requires
4 bytes of storage—twice that of the original Unicode definition and four
times that of ASCII characters. It may seem that using two or four times as
much storage (over ASCII and the original Unicode) is a small price to pay.
After all, modern machines have several orders of magnitude more storage
than they did when Unicode first appeared. However, that extra storage
has a huge impact on performance, because those additional bytes quickly
consume cache storage. Furthermore, modern string processing libraries
often operate on character strings 8 bytes at a time (on 64-bit machines).
With ASCII characters, that means a given string function can process up
to eight characters concurrently; with UTF-32, that same string function
can operate on only two characters concurrently. As a result, the UTF-32
version will run four times slower than the ASCII version. Ultimately, even
Unicode scalar values are insufficient to represent all Unicode characters
(that is, many Unicode characters require a sequence of Unicode scalars),
so using UTF-32 doesn’t solve the problem.

The second encoding format the Unicode supports is UTF-16. As
the name suggests, UTF-16 uses 16-bit (unsigned) integers to represent
Unicode values. To handle scalar values greater than 0xFFFF, UTF-16 uses

12. UTF stands for Unicode Transformational Format.

328 Chapter 10

the surrogate pair scheme to represent values in the range 0x010000 to
0x10FFFF (see “Surrogate Code Points” on page 323). Because the vast
majority of useful characters fit into 16 bits, most UTF-16 characters
require only 2 bytes. For those rare cases where surrogates are necessary,
UTF-16 requires 2 words (32 bits) to represent the character.

The last encoding, and unquestionably the most popular, is UTF-8.
The UTF-8 encoding is forward compatible from the ASCII character set.
In particular, all ASCII characters have a single-byte representation (their
original ASCII code, where the HO bit of the byte containing the character
contains a 0 bit). If the UTF-8 HO bit is 1, then UTF-8 requires between 1
and 3 additional bytes to represent the Unicode code point. Table 10-1 pro-
vides the UTF-8 encoding schema.

Table 10-1: UTF Encoding

Bytes Bits for
code point

First code
point

Last code
point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+00 U+7F 0xxxxxxx

2 11 U+80 U+7FF 110xxxxx 10xxxxxx

3 16 U+800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The “xxx . . . ” bits are the Unicode code point bits. For multibyte sequences,
Byte 1 contains the HO bits, Byte 2 contains the next HO bits (LO bits com-
pared to byte 1), and so on. For example, the 2-byte sequence (%11011111,
%10000001) corresponds to the Unicode scalar %0000_0111_1100_0001 (U+07C1).

UTF-8 encoding is probably the most common encoding in use. Most
web pages use it. Most C standard library string functions will operate on
UTF-8 text without modification (although some C standard library func-
tions can produce malformed UTF-8 strings if the programmer isn’t careful
with them).

Different languages and operating systems use different encodings
as their default. For example, macOS and Windows tend to use UTF-16
encoding, whereas most Unix systems use UTF-8. Some variants of Python
use UTF-32 as their native character format. By and large, though, most
programming languages use UTF-8 because they can continue to use older
ASCII-based character processing libraries to process UTF-8 characters.
Apple’s Swift is one of the first programming languages that attempts to do
Unicode right (though there is a huge performance hit for doing so).

10.6.8 Unicode Combining Characters
Although UTF-8 and UTF-16 encodings are much more compact than
UTF-32, the CPU overhead and algorithmic complexities of dealing with
multi byte (or multiword) characters sets complicates their use (introduc-
ing bugs and performance issues). Despite the issues of wasting memory
(especially in the cache), why not simply define characters as 32-bit entities
and be done with it? This seems like it would simplify string processing

String Data Types 329

algorithms, improving performance and reducing the likelihood of defects
in the code.

The problem with this theory is that you cannot represent all pos-
sible grapheme clusters with only 21 bits (or even 32 bits) of storage. Many
grapheme clusters consist of several concatenated Unicode code points.
Here’s an example from Chris Eidhof and Ole Begemann’s Advanced Swift
(CreateSpace, 2017):

let chars: [Character] = [
 "\u{1ECD}\u{300}",
 "\u{F2}\u{323}",
 "\u{6F}\u{323}\u{300}",
 "\u{6F}\u{300}\u{323}"
]

Each of these Unicode grapheme clusters produces an identical charac-
ter: an ó with a dot underneath the character (this is a character from the
Yoruba character set). The character sequence (U+1ECD, U+300) is an o with a
dot under it followed by a combining acute. The character sequence (U+F2,
U+323) is an ó followed by a combining dot. The character sequence (U+6F,
U+323, U+300) is an o followed by a combining dot, followed by a combining
acute. Finally, the character sequence (U+6F, U+300, U+323) is an o followed by
a combining acute, followed by a combining dot. All four strings produce
the same output. Indeed, the Swift string comparisons treat all four strings
as equal:

print("\u{1ECD} + \u{300} = \u{1ECD}\u{300}")
print("\u{F2} + \u{323} = \u{F2}\u{323}")
print("\u{6F} + \u{323} + \u{300} = \u{6F}\u{323}\u{300}")
print("\u{6F} + \u{300} + \u{323} = \u{6F}\u{300}\u{323}")
print(chars[0] == chars[1]) // Outputs true
print(chars[0] == chars[2]) // Outputs true
print(chars[0] == chars[3]) // Outputs true
print(chars[1] == chars[2]) // Outputs true
print(chars[1] == chars[3]) // Outputs true
print(chars[2] == chars[3]) // Outputs true

Note that there is not a single Unicode scalar value that will produce
this character. You must combine at least two Unicode scalars (or as many
as three) to produce this grapheme cluster on the output device. Even if
you used UTF-32 encoding, it would still require two (32-bit) scalars to pro-
duce this particular output.

Emojis present another challenge that can’t be solved using UTF-32.
Consider the Unicode scalar U+1F471. This prints an emoji of a person
with blond hair. If we add a skin color modifier to this, we obtain (U+1F471,
U+1F3FF), which produces a person with a dark skin tone (and blond hair).
In both cases we have a single character displaying on the screen. The
first example uses a single Unicode scalar value, but the second example
requires two. There is no way to encode this with a single UTF-32 value.

330 Chapter 10

The bottom line is that certain Unicode grapheme clusters will
require multiple scalars, no matter how many bits we assign to the scalar
(it’s possible to combine 30 or 40 scalars into a single grapheme cluster,
for example). That means we’re stuck dealing with multiword sequences
to represent a single “character” regardless of how hard we try to avoid it.
This is why UTF-32 has never really taken off. It doesn’t solve the problem
of random access into a string of Unicode characters. If you’ve got to deal
with normalizing and combining Unicode scalars, it’s more efficient to use
UTF-8 or UTF-16 encodings.

Again, most languages and operating systems today support Unicode in
one form or another (typically using UTF-8 or UTF-16 encoding). Despite
the obvious problems with dealing with multibyte character sets, modern
programs need to deal with Unicode strings rather than simple ASCII
strings. Swift, which is almost “pure Unicode,” doesn’t even offer much in
the way of standard ASCII character support.

10.7 Unicode String Functions and Performance
Unicode strings have one fundamental problem: because Unicode is a
multibyte character set, the number of bytes in a character string is not
equal to the number of characters (or, more importantly, the number of
glyphs) in the string. Unfortunately, the only way to determine the length
of a string is to scan all bytes in the string (from the beginning to the end)
and count those characters. In this respect, the performance of a Unicode
string length function will be proportional to the size of the string, just as it
is for zero-terminated strings.

Worse still, the only way to compute the index of a character position
in a string (that is, the offset in bytes from the beginning of the string) is
to scan from the beginning of the string and count off the desired number
of characters. Even zero-terminated (ASCII) strings don’t suffer from this
problem. In Unicode, functions like substring or insert/delete characters in
a string can be very expensive.

The Swift standard library’s string function performance suffers as a
result of the language’s Unicode purity. Swift programmers have to exercise
caution when processing strings because operations that would normally be
fast in C/C++ or other languages can be a source of performance problems
in Swift’s Unicode environment.

10.8 For More Information
Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:

No Starch Press, 2010.

———. Write Great Code, Volume 1: Understanding the Machine. 2nd ed.
San Francisco: No Starch Press, 2020.

Records, unions, and classes are popu-
lar composite data types found in

many modern programming languages.
Incorrectly used, these data types can have a

very negative impact on the performance of your soft-
ware. Correctly used, however, they can actually
improve the performance of your applications (compared with using alter-
native data structures). In this chapter we’ll explore how you can make the
most of these data types to maximize the efficiency of your programs. The
topics this chapter covers include:

•	 Definitions for the record, union, and class data types

•	 Declaration syntax for records, unions, and classes in various languages

•	 Record variables and instantiation

•	 Compile-time initialization of records

•	 Memory representation of record, union, and class data

•	 Using records to improve runtime memory performance

11
R E C O R D, U N I O N , A N D

C L A S S D A T A T Y P E S

332 Chapter 11

•	 Dynamic record types

•	 Namespaces

•	 Variant data types and their implementation as a union

•	 Virtual method tables for classes and their implementation

•	 Inheritance and polymorphism in classes

•	 The performance cost associated with classes and objects

Before we get into the details of how you can implement these data
types to produce code that is more efficient, easier to read, and easier to
maintain, let’s begin with some definitions.

11.1 Records
The Pascal record and the C/C++ structure are terms used to describe com-
parable composite data structures. Language design textbooks sometimes
refer to these types as Cartesian products or tuples. The Pascal terminology
is probably best, because it avoids confusion with the term data structure, so
we’ll use record here. Regardless of what you call them, records are a great
tool for organizing your application data, and a good understanding of how
languages implement them will help you write more efficient code.

An array is homogeneous, meaning that its elements are all of the same
type. A record, on the other hand, is heterogeneous—its elements can have
differing types. The purpose of a record is to let you encapsulate logically
related values into a single object.

Arrays let you select a particular element via an integer index. With
records, you must select an element, known as a field, by the field’s name.
Each of the field names within the record must be unique; that is, you can’t
use the same name more than once in the same record. However, all field
names are local to their record, so you may reuse those names elsewhere in
the program.1

11.1.1 Declaring Records in Various Languages
Before discussing how various languages implement record data types, we’ll
take a quick look at the declaration syntax for some of them, including
Pascal, C/C++/C#, Swift, and HLA.

11.1.1.1 Record Declarations in Pascal/Delphi

Here’s a typical record declaration for a student data type in Pascal/Delphi:

type
 student =
 record
 Name: string [64];

1. Technically, nested records may reuse field names internally, but those are different record
structures, so the basic rule remains true.

Record, Union, and Class Data Types 333

 Major: smallint; // 2-byte integer in Delphi
 SSN: string[11];
 Mid1: smallint;
 Mid2: smallint;
 Final: smallint;
 Homework: smallint;
 Projects: smallint;
 end;

A record declaration consists of the keyword record, followed by a
sequence of field declarations, and ending with the keyword end. The field
declarations are syntactically identical to variable declarations in the
Pascal language.

Many Pascal compilers allocate all of the fields in contiguous memory
locations. This means that Pascal will reserve the first 65 bytes for the name,2
the next 2 bytes hold the major code, the next 12 bytes the Social Security
number, and so on.

11.1.1.2 Record Declarations in C/C++

Here’s the same declaration in C/C++:

typedef
 struct
 {
 // Room for a 64-character zero-terminated string:

 char Name[65];

 // Typically a 2-byte integer in C/C++:

 short Major;

 // Room for an 11-character zero-terminated string:

 char SSN[12];

 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects;

 } student;

Record (structure) declarations in C/C++ begin with the keyword typedef
followed by the struct keyword, a set of field declarations enclosed by a pair of
braces, and a structure name. As with Pascal, most C/C++ compilers assign
memory offsets to the fields in the order of their declaration in the record.

2. Pascal strings usually require an extra byte, in addition to all the characters in the string,
to encode the length.

334 Chapter 11

11.1.1.3 Record Declarations in C#

C# structure declarations are very similar to C/C++:

struct student
 {
 // Room for a 64-character zero-terminated string:

 public char[] Name;

 // Typically a 2-byte integer in C/C++:

 public short Major;

 // Room for an 11-character zero-terminated string:

 public char[] SSN;

 public short Mid1;
 public short Mid2;
 public short Final;
 public short Homework;
 public short Projects;

 };

Record (structure) declarations in C# begin with the keyword struct,
a structure name, and a set of field declarations enclosed by a pair of braces.
As with Pascal, most C# compilers assign memory offsets to the fields in the
order of their declaration in the record.

This example defines the Name and SSN fields as arrays of characters in
order to match the other record declaration examples in this chapter. In an
actual C# program you’d probably want to use the string data type rather
than an array of characters for these fields. However, keep in mind that C#
uses dynamically allocated arrays; thus, the memory layout for the C# struc-
ture will differ from those for C/C++, Pascal, and HLA.

11.1.1.4 Record Declarations in Java

Java doesn’t support a pure record, but class declarations with only data
members serve the same purpose (see the section “Class Declarations in C#
and Java” on page 366).

11.1.1.5 Record Declarations in HLA

In HLA, you can create record types using the record/endrecord declaration.
You would encode the record from the previous sections as follows:

type
 student:
 record
 sName: char[65];
 Major: int16;

Record, Union, and Class Data Types 335

 SSN: char[12];
 Mid1: int16;
 Mid2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

As you can see, the HLA declaration is very similar to the Pascal declara-
tion. Note that, to stay consistent with the Pascal declaration, this example
uses character arrays rather than strings for the sName and SSN (Social Security
number) fields. In a typical HLA record declaration, you’d probably use a
string type for at least the sName field (keeping in mind that a string variable
is only a 4-byte pointer).

11.1.1.6 Record (Tuple) Declarations in Swift

Although Swift does not support the concept of a record, you can simulate
one using a Swift tuple. Tuples are a useful construct for creating a compos-
ite/aggregate data type without the overhead of a class. (Note, however,
that Swift does not store record/tuple elements in memory in the same
manner as other programming languages.)

A Swift tuple is simply a list of values. Syntactically, a tuple takes the fol-
lowing form:

(value1, value2, ..., valuen)

The types of the values within the tuple don’t have to be identical.
Swift typically uses tuples to return multiple values from functions.

Consider the following short Swift code fragment:

func returns3Ints()->(Int, Int, Int)
{
 return(1, 2, 3)
}
var (r1, r2, r3) = returns3Ints();
print(r1, r2, r3)

The returns3Ints function returns three values (1, 2, and 3). The statement

var (r1, r2, r3) = returns3Ints();

stores those three integer values into r1, r2, and r3, respectively.
You can also assign tuples to a single variable and access “fields” of the

tuple using integer indexes as the field names:

let rTuple = ("a", "b", "c")
print(rTuple.0, rTuple.1, rTuple.2) // Prints "a b c"

336 Chapter 11

Using field names like .0 is inadvisable, as it results in hard-to-maintain
code. You can create records out of tuples, but referring to the fields using
integer indices is rarely suitable in real-world programs.

Fortunately, Swift allows you to assign labels to tuple fields and refer to
those fields by the label name rather than an integer index, via the typealias
keyword:

typealias record = (field1:Int, field2:Int, field3:Float64)

var r = record(1, 2, 3.0)
print(r.field1, r.field2, r.field3) // prints "1 2 3.0"

Keep in mind that the storage of the tuple in memory might not map
to the same layout as a record or structure in other languages. Like arrays
in Swift, tuples are an opaque type, without a guaranteed definition of how
Swift will store them in memory.

11.1.2 Instantiating a Record
Generally, a record declaration does not reserve storage for a record object;
instead, it specifies a data type that you can use as a template when declar-
ing record variables. Instantiation refers to this process of using a record
template, or type, to create a record variable.

Consider the HLA type declaration for student from the previous section.
This type declaration doesn’t allocate any storage for a record variable; it
simply provides the structure for the record object to use. To create an actual
student variable, you must set aside some storage for the record variable,
either at compile time or at runtime. In HLA, you can set aside storage for
a student object at compile time by using variable declarations such as:

var
 automaticStudent :student;

static
 staticStudent :student;

The var declaration tells HLA to reserve sufficient storage for a student
object in the current activation record when the program enters the current
procedure. The static statement tells HLA to reserve sufficient storage for a
student object in the static data section; this is done at compilation time.

You can also allocate storage for a record object dynamically using
memory allocation functions. For example, in the C language you can use
malloc()to allocate storage for a student object like so:

student *ptrToStudent;
 .
 .
 .
 ptrToStudent = malloc(sizeof(student));

Record, Union, and Class Data Types 337

A record is simply a collection of (otherwise) unrelated variables. So
why not just create separate variables? In C, for example, why not just write:

// Room for a 64-character zero-terminated string:

char someStudent_Name[65];

// Typically a 2-byte integer in C/C++:

short someStudent_Major;

// Room for an 11-character zero-terminated string:

char someStudent_SSN[12];

short someStudent_Mid1;
short someStudent_Mid2;
short someStudent_Final;
short someStudent_Homework;
short someStudent_Projects;

There are several reasons why this approach isn’t ideal. On the software
engineering side of things, there are maintenance issues to consider. For
example, what happens if you create several sets of student variables and then
decide you want to add a field? Now you’ve got to go back and edit every set of
declarations you’ve created—not a pretty sight. With structure/record decla-
rations, however, you only need to make one change to the type declaration,
and all the variable declarations automatically get the new field. Also, con-
sider what happens if you want to create an array of student objects.

Software engineering issues aside, collecting disparate fields into a
record is a good idea for efficiency reasons. Many compilers allow you
to treat a whole record as a single object for the purposes of assignment,
parameter passing, and so on. In Pascal, for example, if you have two vari-
ables, s1 and s2, of type student, you can assign all the values of one student
object to the other with a single assignment statement like this:

s2 := s1;

Not only is this more convenient than assigning the individual fields,
but the compiler can often generate better code by using a block move
operation. Consider the following C++ code and the associated x86 assem-
bly language output:

#include <stdio.h>

// A good-sized but otherwise arbitrary structure that
// demonstrates how a C++ compiler can handle structure
// assignments.

typedef struct
{

338 Chapter 11

 int x;
 int y;
 char *z;
 int a[16];
}aStruct;

int main(int argc, char **argv)
{
 static aStruct s1;
 aStruct s2;
 int i;

 // Give s1 some nonzero values so
 // that the optimizer doesn't simply
 // substitute zeros everywhere fields
 // of s1 are referenced:

 s1.x = 5;
 s1.y = argc;
 s1.z = *argv;

 // Do a whole structure assignment
 // (legal in C++!)

 s2 = s1;

 // Make an arbitrary change to S2
 // so that the compiler's optimizer
 // won't eliminate the code to build
 // s2 and just use s1 because s1 and
 // s2 have the same values.

 s2.a[2] = 2;

 // The following loop exists, once again,
 // to thwart the optimizer from eliminating
 // s2 from the code:

 for(i=0; i<16; ++i)
 {
 printf("%d\n", s2.a[i]);
 }

 // Now demonstrate a field-by-field assignment
 // so we can see the code the compiler generates:

 s1.y = s2.y;
 s1.x = s2.x;
 s1.z = s2.z;
 for(i=0; i<16; ++i)
 {
 s1.a[i] = s2.a[i];
 }
 for(i=0; i<16; ++i)

Record, Union, and Class Data Types 339

 {
 printf("%d\n", s2.a[i]);
 }
 return 0;
}

Here’s the relevant portion of the x86-64 assembly code that Microsoft’s
Visual C++ compiler produces (with the /O2 optimization option):

; Storage for the s1 array in the BSS segment:

_BSS SEGMENT
?s1@?1??main@@9@9 DB 050H DUP (?) ; `main'::`2'::s1
_BSS ENDS
;
s2$1$ = 32
s2$2$ = 48
s2$3$ = 64
s2$ = 80
__$ArrayPad$ = 160
argc$ = 192
argv$ = 200

; Note: on entry to main, rcx = argc, rdx = argv

main PROC ; COMDAT
; File c:\users\rhyde\test\t\t\t.cpp
; Line 20
$LN27:
 mov r11, rsp
 mov QWORD PTR [r11+24], rbx
 push rdi
;
; Allocate storage for the local variables
; (including s2):

 sub rsp, 176 ; 000000b0H
 mov rax, QWORD PTR __security_cookie
 xor rax, rsp
 mov QWORD PTR __$ArrayPad$[rsp], rax

 xor ebx, ebx ; ebx = 0
 mov edi, ebx ; edi = 0

 ; s1.z = *argv
 mov rax, QWORD PTR [rdx] ;rax = *argv
 mov QWORD PTR ?s1@?1??main@@9@9+8, rax

 ; s1.x = 5
 mov DWORD PTR ?s1@?1??main@@9@9, 5

 ;s1.y = argc
 mov DWORD PTR ?s1@?1??main@@9@9+4, ecx

340 Chapter 11

; s2 = s1;
;
; xmm1=s1.a[0..1]
 movaps xmm1, XMMWORD PTR ?s1@?1??main@@9@9+16
 movaps XMMWORD PTR s2$[rsp+16], xmm1 ;s2.a[0..1] = xmm1
 movaps xmm0, XMMWORD PTR ?s1@?1??main@@9@9
 movaps XMMWORD PTR s2$[rsp], xmm0
 movaps xmm0, XMMWORD PTR ?s1@?1??main@@9@9+32
 movaps XMMWORD PTR s2$[rsp+32], xmm0
 movups XMMWORD PTR s2$1$[rsp], xmm0
 movaps xmm0, XMMWORD PTR ?s1@?1??main@@9@9+48
 movaps XMMWORD PTR [r11-56], xmm0
 movups XMMWORD PTR s2$2$[rsp], xmm0
 movaps xmm0, XMMWORD PTR ?s1@?1??main@@9@9+64
 movaps XMMWORD PTR [r11-40], xmm0
 movups XMMWORD PTR s2$3$[rsp], xmm0

 ; s2.a[2] = 2

 mov DWORD PTR s2$[rsp+24], 2
 npad 14

; for (i = 0; i<16; ++i)
; {

$LL4@main:
; Line 53
 mov edx, DWORD PTR s2$[rsp+rdi*4+16]
 lea rcx, OFFSET FLAT:??_C@_03PMGGPEJJ@?$CFd?6?$AA@
 call printf
 inc rdi
 cmp rdi, 16
 jl SHORT $LL4@main

.; } //endfor

; Line 59 // s1.y = s2.y
 mov eax, DWORD PTR s2$[rsp+4]
 mov DWORD PTR ?s1@?1??main@@9@9+4, eax

 ;s1.x = s2.x
 mov eax, DWORD PTR s2$[rsp]
 mov DWORD PTR ?s1@?1??main@@9@9, eax

 ; s1.z = s2.z
 mov rax, QWORD PTR s2$[rsp+8]
 mov QWORD PTR ?s1@?1??main@@9@9+8, rax

; for (i = 0; i<16; ++i)
; {
; printf("%d\n", s2.a[i]);
; }

Record, Union, and Class Data Types 341

; Line 64
 movups xmm1, XMMWORD PTR s2$1$[rsp]
 movaps xmm0, XMMWORD PTR s2$[rsp+16]
 movups XMMWORD PTR ?s1@?1??main@@9@9+32, xmm1
 movups xmm1, XMMWORD PTR s2$3$[rsp]
 movups XMMWORD PTR ?s1@?1??main@@9@9+16, xmm0
 movups xmm0, XMMWORD PTR s2$2$[rsp]
 movups XMMWORD PTR ?s1@?1??main@@9@9+64, xmm1
 movups XMMWORD PTR ?s1@?1??main@@9@9+48, xmm0
 npad 7

$LL10@main:
; Line 68
 mov edx, DWORD PTR s2$[rsp+rbx*4+16]
 lea rcx, OFFSET FLAT:??_C@_03PMGGPEJJ@?$CFd?6?$AA@
 call printf
 inc rbx
 cmp rbx, 16
 jl SHORT $LL10@main

; Return 0
; Line 70
 xor eax, eax
; Line 71
 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 call __security_check_cookie
 mov rbx, QWORD PTR [rsp+208]
 add rsp, 176 ; 000000b0H
 pop rdi
 ret 0
main ENDP

The important thing to note in this example is that the Visual C++
compiler emits a sequence of movaps and movups instructions whenever you
assign whole structures. However, it may degenerate to a sequence of indi-
vidual mov instructions for each of the fields when you do a field-by-field
assignment of two structures. Likewise, if you had not encapsulated all the
fields into a structure, then assigning the variables associated with your
“structure” via a block copy operation wouldn’t have been possible.

Combining fields together into a record has many advantages, including:

•	 It is much easier to maintain the record structure (that is, add, remove,
rename, and change fields).

•	 Compilers can do additional type and semantic checking on records,
thereby helping catch logic errors in your programs when you use a
record improperly.

•	 Compilers can treat records as monolithic objects, generating more
efficient code (for example, movsd and movaps instructions) than they can
when working with individual field variables.

342 Chapter 11

•	 Most compilers respect the order of declaration in a record, allocating
successive fields to consecutive memory locations. This is important
when interfacing data structures from two different languages. There
is no guarantee for the organization of separate variables in memory
in most languages.

•	 You can use records to improve cache memory performance and reduce
virtual memory thrashing (as you’ll soon see).

•	 Records can contain pointer fields that contain the address of other
(like-typed) record objects. This isn’t possible when you use bulk vari-
ables in memory.

You’ll see some other advantages of records in the following sections.

11.1.3 Initializing Record Data at Compile Time
Some languages—for example, C/C++ and HLA—allow you to initialize
record variables at compile time. For static objects, this spares your applica-
tion the code and time needed to manually initialize each field of a record.
For example, consider the following C code, which provides initializers for
both static and automatic structure variables:

#include <stdlib.h>

// Arbitrary structure that consumes a nontrival
// amount of space:

typedef struct
{
 int x;
 int y;
 char *z;
 int a[4];
}initStruct;

// The following exists just to thwart
// the optimizer and make it think that
// all the fields of the structure are
// needed.

extern void thwartOpt(initStruct *i);

int main(int argc, char **argv)
{
 static initStruct staticStruct = {1,2,"Hello", {3,4,5,6}};
 initStruct autoStruct = {7,8,"World", {9,10,11,12}};

 thwartOpt(&staticStruct);
 thwartOpt(&autoStruct);
 return 0;

}

Record, Union, and Class Data Types 343

When compiled with Visual C++ using the /O2 and /Fa command-line
options, this example emits the following x86-64 machine code (edited
manually to eliminate irrelevant output):

; Static structure declaration.
; Note how each of the fields is
; initialized with the initial values
; specified in the C source file:

; String used in static initStruct:

CONST SEGMENT
??_C@_05COLMCDPH@Hello?$AA@ DB 'Hello', 00H ; `string'
CONST ENDS

_DATA SEGMENT
; `main'::`2'::staticStruct
?staticStruct@?1??main@@9@9 DD 01H ;x field
 DD 02H ;y field
 DQ FLAT:??_C@_05COLMCDPH@Hello?$AA@ ; z field
 DD 03H ;a[0] field
 DD 04H ;a[1] field
 DD 05H ;a[2] field
 DD 06H ;a[3] field
_DATA ENDS

; String used to initialize autoStruct:

CONST SEGMENT
??_C@_05MFLOHCHP@World?$AA@ DB 'World', 00H ; `string'
CONST ENDS
;
_TEXT SEGMENT
autoStruct$ = 32
__$ArrayPad$ = 64
argc$ = 96
argv$ = 104
main PROC ; COMDAT
; File c:\users\rhyde\test\t\t\t.cpp
; Line 26
$LN9: ;Main program startup code:
 sub rsp, 88 ; 00000058H
 mov rax, QWORD PTR __security_cookie
 xor rax, rsp
 mov QWORD PTR __$ArrayPad$[rsp], rax

; Line 28
;
; Initialize autoStruct:

 lea rax, OFFSET FLAT:??_C@_05MFLOHCHP@World?$AA@
 mov DWORD PTR autoStruct$[rsp], 7 ;autoStruct.x
 mov QWORD PTR autoStruct$[rsp+8], rax
 mov DWORD PTR autoStruct$[rsp+4], 8 ;autoStruct.y

344 Chapter 11

 lea rcx, QWORD PTR autoStruct$[rsp+16] ;autoStruct.a
 mov eax, 9
 lea edx, QWORD PTR [rax-5] ;edx = 4
$LL3@main:
; autoStruct.a[0] = 9, 10, 11, 12 (this is a loop)
 mov DWORD PTR [rcx], eax
 inc eax

; point RCX at next element of autoStruct.a
 lea rcx, QWORD PTR [rcx+4]
 sub rdx, 1
 jne SHORT $LL3@main

; Line 30
; thwartOpt(&staticStruct);

 lea rcx, OFFSET FLAT:?staticStruct@?1??main@@9@9
 call thwartOpt

; Line 31
; thwartOpt(&autoStruct);

 lea rcx, QWORD PTR autoStruct$[rsp]
 call thwartOpt
; Line 32
; Return 0
 xor eax, eax ;EAX = 0
; Line 34
 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 call __security_check_cookie
 add rsp, 88 ; 00000058H
 ret 0
main ENDP
_TEXT ENDS
 END

Look carefully at the machine code the compiler emits for the initial-
ization of the autoStruct variable. In contrast to static initialization, the com-
piler cannot initialize memory at compile time because it doesn’t know the
addresses of the various fields of the automatic record that the system allo-
cates at runtime. Unfortunately, this particular compiler generates a field-
by-field sequence of assignments to initialize the fields of the structure.
While this is relatively fast, it can consume quite a bit of memory, especially
if you’ve got a large structure. If you want to reduce the size of the auto-
matic structure variable initialization, one possibility is to create an initial-
ized static structure and assign it to the automatic variable upon each entry
into the function in which you’ve declared the automatic variable. Consider
the following C++ and 80x86 assembly code:

#include <stdlib.h>
typedef struct
{

Record, Union, and Class Data Types 345

 int x;
 int y;
 char *z;
 int a[4];
}initStruct;

// The following exists just to thwart
// the optimizer and make it think that
// all the fields of the structure are
// needed.

extern void thwartOpt(initStruct *i);

int main(int argc, char **argv)
{
 static initStruct staticStruct = {1,2,"Hello", {3,4,5,6}};

 // initAuto is a "readonly" structure used to initialize
 // autoStruct upon entry into this function:

 static initStruct initAuto = {7,8,"World", {9,10,11,12}};

 // Allocate autoStruct on the stack and assign the initial
 // values kept in initAuto to this new structure:

 initStruct autoStruct = initAuto;

 thwartOpt(&staticStruct);
 thwartOpt(&autoStruct);
 return 0;

}

Here’s the corresponding x86-64 assembly code that Visual C++ emits:

; Static initialized data for the staticStruct structure:

_DATA SEGMENT

; Initialized data for staticStruct:

?staticStruct@?1??main@@9@9 DD 01H ;
`main'::`2'::staticStruct
 DD 02H
 DQ FLAT:??_C@_05COLMCDPH@Hello?$AA@
 DD 03H
 DD 04H
 DD 05H
 DD 06H

; Initialization data to be copied to autoStruct:

?initAuto@?1??main@@9@9 DD 07H ;
`main'::`2'::initAuto

346 Chapter 11

 DD 08H
 DQ FLAT:??_C@_05MFLOHCHP@World?$AA@
 DD 09H
 DD 0aH
 DD 0bH
 DD 0cH
_DATA ENDS

_TEXT SEGMENT
autoStruct$ = 32
__$ArrayPad$ = 64
argc$ = 96
argv$ = 104
main PROC ; COMDAT
; File c:\users\rhyde\test\t\t\t.cpp
; Line 23
$LN4:
; Main startup code:

 sub rsp, 88 ; 00000058H
 mov rax, QWORD PTR __security_cookie
 xor rax, rsp
 mov QWORD PTR __$ArrayPad$[rsp], rax
; Line 34
; Initialize autoStruct by copying the data from the static
; initializer to the automatic variable:

 movups xmm0, XMMWORD PTR ?initAuto@?1??main@@9@9
 movups xmm1, XMMWORD PTR ?initAuto@?1??main@@9@9+16
 movups XMMWORD PTR autoStruct$[rsp], xmm0
 movups XMMWORD PTR autoStruct$[rsp+16], xmm1

; thwartOpt(&staticStruct);

 lea rcx, OFFSET FLAT:?staticStruct@?1??main@@9@9
 call thwartOpt ; Arg is passed in RCX.

; thwartOpt(&autoStruct);

 lea rcx, QWORD PTR autoStruct$[rsp]
 call thwartOpt

; Return 0;
 xor eax, eax
; Line 40
 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 call __security_check_cookie
 add rsp, 88 ; 00000058H
 ret 0
main ENDP
_TEXT ENDS
 END

Record, Union, and Class Data Types 347

As you can see in this assembly code, it takes only a four-instruction
sequence to copy the data from the statically initialized record into the
automatically allocated record. This code is quite a bit shorter. Note, how-
ever, that it isn’t necessarily faster. Copying data from one structure to
another involves memory-to-memory moves, which can be quite slow if all
the memory locations are not currently cached. Moving immediate con-
stants directly to the individual fields is often faster, though it may take
many instructions to accomplish this.

This example should remind you that if you attach an initializer to an
automatic variable, the compiler will have to emit some code to handle that
initialization at runtime. Unless your variables need to be reinitialized on
each entry to your function, consider using static record objects instead.

11.1.4 Storing Records in Memory
The following Pascal example demonstrates a typical student record variable
declaration:

var
 John: student;

Given the earlier declaration for the Pascal student data type, this allo-
cates 81 bytes of storage laid out in memory as shown in Figure 11-1. If the
label John corresponds to the base address of this record, then the Name field
is at offset John+0, the Major field is at offset John+65, the SSN field is at offset
John+67, and so on.

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid2
(2 bytes)

Figure 11-1: Student data structure storage in memory

Most programming languages let you refer to a record field by its name
rather than by its numeric offset into the record (indeed, only a few low-end
assemblers require that you reference fields by numeric offset; it’s safe to
say that such assemblers don’t really support records). The typical syntax
for a field access uses the dot operator to select a field from a record variable.
Given the variable John from the previous example, here’s how you could
access various fields in this record:

John.Mid1 = 80; // C/C++ example
John.Final := 93; (* Pascal example *)
mov(75, John.Projects); // HLA example

348 Chapter 11

Figure 11-1 suggests that all fields of a record appear in memory in the
order of their declaration, and this is usually the case (although in theory,
a compiler can freely place the fields anywhere in memory that it chooses).
The first field usually appears at the lowest address in the record, the sec-
ond field appears at the next-highest address, the third field follows the
second field in memory, and so on.

Figure 11-1 also suggests that compilers pack the fields into adjacent
memory locations with no gaps between the fields. While this is true for
many languages, it’s certainly not the most common memory organization
for a record. For performance reasons, most compilers align the fields of a
record on appropriate memory boundaries. The exact details vary by lan-
guage, compiler implementation, and CPU, but a typical compiler places
fields at an offset within the record’s storage area that is “natural” for that
particular field’s data type. On the 80x86, for example, compilers that fol-
low the Intel ABI (application binary interface) allocate single-byte objects
at any offset within the record, words only at even offsets, and double word
or larger objects on double word boundaries. Although not all 80x86 com-
pilers support the Intel ABI, most do, which allows records to be shared
among functions and procedures written in different languages on the
80x86. Other CPU manufacturers provide their own ABI for their proces-
sors, and programs that adhere to an ABI can share binary data at runtime
with other programs that adhere to the same ABI.

In addition to aligning the fields of a record at reasonable offset bound-
aries, most compilers also ensure that the length of the entire record is a
multiple of 2, 4, 8, or 16 bytes. As you’ve seen in previous chapters, they
accomplish this by adding padding bytes at the end of the record to fill out
the record’s size. This ensures that the record’s length is a multiple of the
largest scalar (nonarray/nonrecord) object in the record.3 For example, if a
record has fields whose lengths are 1, 2, 4, and 8 bytes long, then an 80x86
compiler will generally pad the record’s length so that it is a multiple of
8. This allows you to create an array of records and be assured that each
record in the array starts at a reasonable address in memory.

Although some CPUs don’t allow access to objects in memory at mis-
aligned addresses, many compilers allow you to disable the automatic align-
ment of fields within a record. Generally, the compiler will have an option
you can use to globally disable this feature. Many of these compilers also
provide a pragma, alignas, or packed keyword that lets you turn off field align-
ment on a record-by-record basis. Disabling the automatic field alignment
feature may allow you to save some memory by eliminating the padding
bytes between the fields (and at the end of the record)—again, provided
that field misalignment is acceptable on your CPU. The cost, of course,
is that the program may run a little more slowly when it needs to access
misaligned values in memory.

One reason to use a packed record is to gain manual control over the
alignment of the record’s fields. For example, suppose you have a couple of

3. Or a multiple of the CPU’s maximum boundary size, if it is smaller than the size of the larg-
est field in the record.

Record, Union, and Class Data Types 349

functions written in two different languages, and both of these functions
need to access some data in a record. Further, suppose that the two com-
pilers for these functions do not use the same field alignment algorithm.
A record declaration like the following (in Pascal) may not be compatible
with the way both functions access the record data:

type
 aRecord = record

 (* assume Pascal compiler supports a
 ** byte, word, and dword type
 *)

 bField : byte;
 wField : word;
 dField : dword;

 end; (* record *)

The problem here is that the first compiler could use the offsets 0, 2,
and 4 for the bField, wField, and dField fields, respectively, while the second
compiler might use offsets 0, 4, and 8.

Suppose, however, that the first compiler allows you to specify the packed
keyword before the record keyword, causing the compiler to store each field
immediately following the previous one. Although using the packed keyword
doesn’t make the records compatible with both functions, it does allow you
to manually add padding fields to the record declaration, as follows:

type
 aRecord = packed record
 bField :byte; (* Offset 0 *)

 (* add padding to dword align wField *)

 padding0 :array[0..2] of byte;

 wField :word; (* offset 4 *)

 (* add padding to dword align dField *)

 padding1 :word;

 dField :dword; (* offset 8 *)

 end; (* record *)

Manually adding padding can make maintaining your code a real
chore. However, if incompatible compilers need to share data, it’s a trick
worth knowing. For the exact details on packed records, consult your lan-
guage’s reference manual.

350 Chapter 11

11.1.5 Using Records to Improve Memory Performance
For someone who wants to write great code, records provide an important
benefit: the ability to control variable placement in memory. This capability
enables you to better control cache usage by those variables, which in turn
can help you write code that executes much faster.

Consider, for a moment, the following C global/static variable declarations:

int i;
int j = 5;
int cnt = 0;
char a = 'a';
char b;

You might think that the compiler would allocate storage for these
variables in consecutive memory locations. However, few (if any) languages
guarantee this. C certainly doesn’t and, in fact, C compilers like Microsoft’s
Visual C++ compiler don’t allocate these variables in sequential memory
locations. Consider the Visual C++ assembly language output for the pre-
ceding variable declarations:

PUBLIC j
PUBLIC cnt
PUBLIC a
_DATA SEGMENT
COMM i:DWORD
_DATA ENDS
_BSS SEGMENT
cnt DD 01H DUP (?)
_BSS ENDS
_DATA SEGMENT
COMM b:BYTE
_DATA ENDS
_DATA SEGMENT
j DD 05H
a DB 061H
_DATA ENDS

Even if you don’t understand the purpose of all the directives here, it’s
clear that Visual C++ has rearranged all the variable declarations in memory.
Therefore, you cannot count on adjacent declarations in your source file
yielding adjacent storage cells in memory. Indeed, there is nothing to stop
the compiler from allocating one or more variables in a machine register.

You might be wondering why you’d be concerned about the placement
of variables in memory. After all, one of the main reasons for using named
variables as an abstraction for memory is to avoid having to think about low-
level memory allocation strategies. There are times, however, when being
able to control variable placement in memory is important. For example, if
you want to maximize program performance, you should try to place sets of
variables that you access together in adjacent memory locations. This way,
those variables will tend to sit in the same cache line, and you won’t pay a

Record, Union, and Class Data Types 351

heavy latency cost for accessing variables not currently held in the cache.
Furthermore, by placing variables you use together adjacent to one another
in memory, you’ll use fewer cache lines and, therefore, have less thrashing.

Universally, programming languages that support the traditional
notion of records maintain the fields of their records in adjacent memory
locations; therefore, if you have some reason to keep different variables
in adjacent memory locations (so that they share cache lines as much as
possible), putting your variables into a record is a reasonable approach.
However, the key word here is traditional—if your language uses a dynamic
record type, you’ll need a different approach.

11.1.6 Working with Dynamic Record Types and Databases
Some dynamic languages employ a dynamic type system, and object types
can change at runtime. We’ll explore dynamic types a little later in this
chapter, but suffice it to say that if your language uses a dynamic type
record structure, then all bets are off concerning the placement of fields in
memory. Chances are pretty good that the fields will not be sitting in adja-
cent memory locations. Then again, if you’re using a dynamic language, the
fact that you’re sacrificing a little performance because you’re not getting
maximal benefit from your cache will be the least of your worries.

A classic example of a dynamic record is the data you read from a
database engine. The engine itself has no preconceived (that is, compile
time) notion of what structure the database records will take. Instead, the
database itself provides metadata that tells the database the record struc-
ture. The database engine reads this metadata from the database, uses it
to organize the field data into a single record, and then returns this data to
the database application. In a dynamic language, the actual field data is
typically spread out across memory, and the database application references
that data indirectly.

Of course, if you’re using a dynamic language, you have much greater
concerns about performance than the placement or organization of your
record fields in memory. Dynamic languages, such as database engines,
execute many instructions processing the metadata (or otherwise determin-
ing the type of their data operands), so losing a few cycles to cache thrashing
here and there is unlikely to matter much. For more information about the
overhead associated with a dynamic typing system, see “Variant Types” on
page 356.

11.2 Discriminant Unions
A discriminant union (or just union) is very similar to a record. A discrimi-
nant is something that distinguishes or separates items in a quantity. In the
case of a discriminant union, it means that different field names are used
to distinguish the various ways that a given memory location’s data type can
be interpreted.

Like records, unions in typical languages that support them have fields
that you access using dot notation. In fact, in many languages, about the

352 Chapter 11

only syntactical difference between records and unions is the use of the key-
word union rather than record or struct. Semantically, however, there’s a big
difference between a record and a union. In a record, each field has its own
offset from the base address of the record, and the fields do not overlap. In
a union, however, all fields have the same offset, 0, and all the fields of the
union overlap. As a result, the size of a record is the sum of the sizes of all
the fields (plus, possibly, some padding bytes), whereas a union’s size is the
size of its largest field (plus, possibly, some padding bytes at the end).

Because the fields of a union overlap, changing the value of one field
changes the values of all the other fields as well. This typically means that the
use of a union’s field is mutually exclusive—that is, you can use only one field
at any given time. As a result, unions aren’t as generally applicable as records,
but they still have many uses. As you’ll see later in this chapter, you can use
unions to save memory by reusing memory for different values, to coerce data
types, and to create variant data types. For the most part, though, programs
use unions to share memory between different variable objects whose use
never overlaps (that is, the variables’ use is mutually exclusive).

For example, imagine that you have a 32-bit double word variable, and
you find yourself constantly extracting out the LO or the HO 16-bit word.
In most HLLs, this would require a 32-bit read and then an AND operation
to mask out the unwanted word. If that wasn’t enough, if you want the HO
word, you have to then shift the result to the right 16 bits. With a union,
you can overlay the 32-bit double word and a two-element 16-bit word array
and access the words directly. You’ll see how to do this in “Using Unions in
Other Ways” on page 355.

11.2.1 Declaring Unions in Various Languages
The C/C++, Pascal, and HLA languages provide discriminant union type
declarations. The Java language doesn’t provide the equivalent of a union.
Swift has a special version of the Enum declaration that provides variant
record capabilities, but it does not store members of such declarations at
the same address in memory. So, for the purposes of this discussion, we’ll
assume Swift doesn’t provide union declarations.

11.2.1.1 Union Declarations in C/C++

Here’s an example of a union declaration in C/C++:

typedef union
{
 unsigned int i;
 float r;
 unsigned char c[4];

} unionType;

Assuming the C/C++ compiler in use allocates 4 bytes for unsigned
integers, the size of a unionType object will be 4 bytes (because all three
fields are 4-byte objects).

Record, Union, and Class Data Types 353

11.2.1.2 Union Declarations in Pascal/Delphi

Pascal and Delphi use case-variant records to create a discriminant union.
The syntax for a case-variant record is as follows:

type
 typeName =
 record

 <<nonvariant/union record fields go here>>

 case tag of
 const1:(field_declaration);
 const2:(field_declaration);
 .
 .
 .
 constn:(field_declaration)

 end;

The tag item can be either a type identifier (such as boolean, char, or some
user-defined type), or it can be a field declaration of the form identifier:type.
If it takes the latter form, then identifier becomes another field of the record
(and not a member of the variant section) and has the specified type. In addi-
tion, the Pascal compiler could generate code that raises an exception when-
ever the application attempts to access any of the variant fields except the one
allowed by the value of the tag field. In practice, almost no Pascal compilers
do this check. Still, keep in mind that the Pascal language standard suggests
that compilers should do it, so some compilers might.

Here’s an example of two different case-variant record declarations
in Pascal:

type
 noTagRecord=
 record
 someField: integer;
 case boolean of
 true:(i:integer);
 false:(b:array[0..3] of char)
 end; (* record *)

 hasTagRecord=
 record
 case which:0..2 of
 0:(i:integer);
 1:(r:real);
 2:(c:array[0..3] of char)
 end; (* record *)

354 Chapter 11

As you can see in the hasTagRecord union, a Pascal case-variant record
does not require any normal record fields. This is true even if you do not
have a tag field.

11.2.1.3 Union Declarations in HLA

HLA supports unions as well. Here’s a typical union declaration in HLA:

type
 unionType:
 union
 i: int32;
 r: real32;
 c: char[4];
 endunion;

11.2.2 Storing Unions in Memory
Remember that the big difference between a union and a record is the
fact that records allocate storage for each field at different offsets, whereas
unions overlay each of the fields at the same offset in memory. For example,
consider the following HLA record and union declarations:

type
 numericRec:
 record
 i: int32;
 u: uns32;
 r: real64;
 endrecord;

 numericUnion:
 union
 i: int32;
 u: uns32;
 r: real64;
 endunion;

If you declare a variable, say n, of type numericRec, you access the fields
as n.i, n.u, and n.r, exactly as though you had declared the n variable to
be type numericUnion. However, the size of a numericRec object is 16 bytes,
because the record contains two double word fields and a quad word
(real64) field. The size of a numericUnion variable, however, is 8 bytes.
Figure 11-2 shows the memory arrangement of the i, u, and r fields in
both the record and union.

Record, Union, and Class Data Types 355

i u r

r

i, u

Offset 0 Offset 8 Offset 16

Union variable

Record variable

Figure 11-2: Layout of a union versus a record variable

11.2.3 Using Unions in Other Ways
In addition to conserving memory, programmers often use unions to create
aliases in their code. An alias is a different name for the same memory
object. Although aliases are often a source of confusion in a program and
should be used sparingly, sometimes using them is convenient. For example,
in some section of your program you might need to constantly use type
coercion to refer to a particular object. To avoid this, you could use a union
variable with each field representing one of the different types you want to
use for the object. Consider the following HLA code fragment:

type
 CharOrUns:
 union
 c:char;
 u:uns32;
 endunion;

static
 v:CharOrUns;

With a declaration like this one, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the LO byte of this uns32
variable as a character, you can do so by simply accessing the v.c variable,
as follows:

mov(eax, v.u);
stdout.put("v, as a character, is '", v.c, "'" nl);

Another common practice is to use unions to disassemble a larger object
into its constituent bytes. Consider the following C/C++ code fragment:

typedef union
{
 unsigned int u;
 unsigned char bytes[4];

356 Chapter 11

} asBytes;

asBytes composite;
 .
 .
 .
 composite.u = 1234567890;
 printf
 (
 "HO byte of composite.u is %u, LO byte is %u\n",
 composite.bytes[3],
 composite.bytes[0]
);

Although composing and decomposing data types this way is a use-
ful trick to employ every now and then, keep in mind that this code isn’t
portable. The HO and LO bytes of a multibyte object appear at different
addresses on big endian versus little endian machines. As a result, this
code fragment works fine on little endian machines, but fails to display the
correct bytes on big endian CPUs. Any time you use unions to decompose
larger objects, you should be aware of this limitation. Still, this trick is usu-
ally much more efficient than using shift lefts, shift rights, and AND opera-
tions, so you’ll see it used quite a bit.

11.3 Variant Types
A variant object has a dynamic type—that is, the object’s type can vary at
runtime. This spares the programmer from having to decide on a data type
when designing the program and allows the end user to enter whatever data
they like as the program operates. Programs written in a dynamically typed
language are typically far more compact than languages written in a tradi-
tional statically typed language. This makes dynamically typed languages
very popular for rapid prototyping, interpretive, and very high-level lan-
guages. A few mainstream languages (including Visual Basic and Delphi)
also support variant types. In this section, we’ll look at how compilers imple-
ment variant types and discuss the efficiency costs associated with them.

To implement a variant type, most languages use a union to reserve
storage for all the different types the variant object supports. This means
that a variant object will consume at least as much space as the largest prim-
itive data type it supports. In addition to the storage required to keep its
value, the variant object will also need storage to keep track of its current
type. If the language allows variants to assume an array type, even more
storage may be necessary to specify how many elements are in the array (or
the bounds on each dimension, if the language allows multidimensional
variant arrays). The bottom line is that a variant consumes a fair amount
of memory, even if the actual data consumes only a single byte.

Record, Union, and Class Data Types 357

Perhaps the best way to illustrate how a variant data type works is
to implement one manually. Consider the following Delphi case-variant
record declaration:

type
 dataTypes =
 (
 vBoolean, paBoolean, vChar, paChar,
 vInteger, paInteger, vReal, paReal,
 vString, paString
);

 varType =
 record
 elements : integer;
 case theType: dataTypes of
 vBoolean: (b:boolean);
 paBoolean: (pb:array[0..0] of ^boolean);
 vChar: (c:char);
 paChar: (pc:array [0..0] of ^char);
 vInteger: (i:integer);
 paInteger: (pi:array[0..0] of ^integer);
 vReal: (r:real);
 paReal: (pr:array[0..0] of ^real);
 vString: (s:string[255]);
 paString: (ps:array[0..0] of ^string[255])
 end;

In this record, elements will contain the number of elements in the
array if the object is a single-dimensional array (this particular data struc-
ture does not support multidimensional arrays). If, on the other hand, the
object is a scalar variable, then the elements value will be irrelevant. The
theType field specifies the current type of the object. If this field contains
one of the enumerated constants vBoolean, vChar, vInteger, vReal, or vString,
the object is a scalar variable; if it contains one of the constants paBoolean,
paChar, paInteger, paReal, or paString, then the object is a single-dimensional
array of the specified type.

The fields in the case-variant section of the Pascal record hold the vari-
ant’s value if it is a scalar object, or they hold a pointer to an array of objects
if the variant is an array object. Technically, Pascal requires that you specify
the bounds of the array in its declaration. But fortunately, Delphi lets you
turn off bounds checking (as well as allowing you to allocate memory for an
array of arbitrary size), hence the dummy array bounds in this example.

Manipulating two variant objects that have the same type is easy. For
example, suppose you want to add two variant values together. First, you’d
determine the current type of both objects and whether the addition opera-
tion even makes sense for the data types.4 Once you’ve decided that the

4. For example, you can’t add two Boolean values together.

358 Chapter 11

addition operation is reasonable, it’s easy enough to use a case (or switch)
statement based on the tag field of the two variant types:

// Handle the addition operation:

// Load variable theType with either left.theType
// or right.theType (which, presumably, contain
// the same value at this point).

case(theType) of

 vBoolean: writeln("Cannot add two Boolean values!");
 vChar: writeln("Cannot add two character values!");
 vString: writeln("Cannot add two string values!");
 vInteger: intResult := left.vInteger + right.vInteger;
 vReal: realResult := left.vReal + right.vReal;
 paBoolean: writeln("Cannot add two Boolean arrays!");
 paChar: writeln("Cannot add two character arrays!");
 paInteger: writeln("Cannot add two integer arrays!");
 paReal: writeln("Cannot add two real arrays!");
 paString: writeln("Cannot add two Boolean arrays!");

end;

If the left and right operands are not the same type, then the operation
is a bit more complex. Some mixed-type operations are legal. For example,
adding an integer operand and a real operand together is reasonable (it
produces a real type result in most languages). Other operations may be
legal only if the values of the operands can be added. For example, it’s
reasonable to add a string and an integer together if the string happens to
contain a string of digits that could be converted to an integer prior to the
addition (likewise for string and real operands). What is needed here is a
two-dimensional case/switch statement. Unfortunately, outside of assembly
language, you won’t find such a creature.5 However, you can simulate one
easily enough by nesting case/switch statements:

case(left.theType) of

 vInteger:
 case(right.theType) of
 vInteger:
 (* code to handle integer + integer operands *)
 vReal:
 (* code to handle integer + real operands *)
 vBoolean:
 (* code to handle integer + boolean operands *)
 vChar:
 (* code to handle integer + char operands *)

5. You won’t really find it in assembly language, either, but you can easily write assembly code
that does the same thing as a two-dimensional case/switch statement.

Record, Union, and Class Data Types 359

 vString:
 (* code to handle integer + string operands *)
 paInteger:
 (* code to handle integer + intArray operands *)
 paReal:
 (* code to handle integer + realArray operands *)
 paBoolean:
 (* code to handle integer + booleanArray operands *)
 paChar:
 (* code to handle integer + charArray operands *)
 paString:
 (* code to handle integer + stringArray operands *)
 end;

 vReal:
 case(right.theType) of
 (* cases for each of the right operand types
 REAL + type *)
 end;

 Boolean:
 case(right.theType) of
 (* cases for each of the right operand types:
 BOOLEAN + type *)
 end;

 vChar:
 case(right.theType) of
 (* cases for each of the right operand types:
 CHAR + type *)
 end;

 vString:
 case(right.theType) of
 (* cases for each of the right operand types:
 STRING + type *)
 end;

 paInteger:
 case(right.theType) of
 (* cases for each of the right operand types:
 intArray + type *)
 end;

 paReal:
 case(right.theType) of
 (* cases for each of the right operand types:
 realArray + type *)
 end;

 paBoolean:
 case(right.theType) of
 (* cases for each of the right operand types:
 booleanArray + type *)
 end;

360 Chapter 11

 paChar:
 case(right.theType) of
 (* cases for each of the right operand types:
 charArray + type *)
 end;

 paString:
 case(right.theType) of
 (* cases for each of the right operand types:
 stringArray + type *)
 end;

end;

Once you expand all the code alluded to in these comments, you’ll have
quite a few statements. And this is just for one operator! Obviously, it takes
considerable work to implement all the basic arithmetic, string, character,
and Boolean operations—and expanding this code inline whenever you
need to add two variant values together is out of the question. Generally,
you’d write a function like vAdd() that would accept two variant parameters
and produce a variant result (or raise some sort of exception if the addition
of the operands is illegal).

The takeaway here is not that the code to do variant addition is
long—the real problem is performance. It’s not at all unreasonable to
expect a variant addition operation to require dozens, if not hundreds,
of machine instructions to accomplish. By contrast, it takes only two or
three machine instructions to add two integer or floating-point values
together. Therefore, you can expect operations involving variant objects
to run approximately one to two orders of magnitude slower than the
standard operations. This, in fact, is one of the major reasons why “type-
less” languages (usually very high-level languages) are so slow. When you
truly need a variant type, the performance is often just as good (or even
better) than the alternative code you’d have to write to get around using
one. However, if you’re using variant objects to hold values whose type you
know when you first write the program, you’ll pay a heavy performance
penalty for not using typed objects.

In object-oriented languages such as C++, Java, Swift, and Delphi
(Object Pascal), there’s a better solution for variant calculations: inheri-
tance and polymorphism. A big problem with the union/switch statement
version is that it can be a major pain to extend the variant type by adding
a new type to it. For example, suppose you want to add a new complex data
type supporting complex numbers. You’d have to locate every function
you’ve written (typically one for each operator) and add a new case to the
switch statement. This can be a maintenance nightmare (especially if you
don’t have access to the original source code). However, by using objects,
you can create a new class (such as ComplexNumber) that overrides the existing
base class (perhaps Numeric) without having to modify any of the existing
code (for other numeric types and operations). For more information on
this method, see Write Great Code, Volume 4: Designing Great Code.

Record, Union, and Class Data Types 361

11.4 Namespaces
As your programs become larger, and particularly as these large programs
use third-party software libraries to reduce development time, it becomes
increasingly likely that name conflicts will arise in your source files. A name
conflict occurs when you want to use a specific identifier at one point in your
program, but that name is already in use elsewhere (for example, in a library
you’re using). At some point in a very large project, you may dream up a new
name to resolve a naming conflict only to discover that the new name is also
already in use. Software engineers call this namespace pollution. Like environ-
mental pollution, the problem is easy to live with when it’s small and local-
ized. As your programs get larger, however, dealing with the fact that “all the
good identifiers are already used up” is a real challenge.

At first blush, it might seem that this problem is exaggerated; after all,
a programmer can always think of a different name. However, program-
mers who write great code often adhere to certain naming conventions so
that their source code is consistent and easy to read (I’ll come back to this
subject in Write Great Code, Volume 5: Great Coding). Constantly devising new
names, even if they aren’t all that bad, tends to produce inconsistencies in
the source code that make programs harder to read. It would be nice to
choose whatever name you like for your identifiers and not have to worry
about conflicts with other code or libraries. Enter namespaces.

A namespace is a mechanism by which you can associate a set of identi-
fiers with a namespace identifier. In many respects, a namespace is like a
record declaration. Indeed, you can use a record (or struct) declaration as a
poor man’s namespace in languages that don’t support namespaces directly
(with a few major restrictions). For example, consider the following Pascal
variable declarations:

var
 myNameSpace:
 record
 i: integer;
 j: integer;
 name: string[64];
 date: string[10];
 grayCode: integer;
 end;

 yourNameSpace:
 record
 i: integer;
 j: integer;
 profits: real;
 weekday: integer;
 end;

As you can see, the i and j fields in these two records are distinct vari-
ables. There will never be a naming conflict because the program must

362 Chapter 11

qualify these two field names with the record variable name. That is, you
refer to these variables using the following names:

myNameSpace.i, myNameSpace.j,
yourNameSpace.i, yourNameSpace.j

The record variable that prefixes the fields uniquely identifies each
of these field names. This is clear to anyone who has ever written code
that uses a record or structure. Therefore, in languages that don’t support
namespaces, you can use records (or classes) in their place.

There is one major problem with creating namespaces by using records
or structures, though: many languages let you declare only variables within
a record. Namespace declarations (like those available in C++ and HLA)
specifically allow you to include other types of objects as well. In HLA, for
example, a namespace declaration takes the following form:

namespace nsIdentifier;

 << constant, type, variable, procedure,
 and other declarations >>

end nsIdentifier;

A class declaration (if available in your chosen language) can overcome
some of these problems. At the very least, most languages allow procedure
or function declarations within a class, but many allow constant and type
declarations as well.

Namespaces are a declaration section unto themselves. In particular,
they do not have to go in a var or static (or any other) section. You can
create constants, types, variables, static objects, procedures, and so on, all
within a namespace.

To access namespace objects in HLA, you use the familiar dot notation
that records, classes, and unions use. To access a name in a C++ namespace,
you use the :: operator.

As long as the namespace identifier is unique and all the fields within
the namespace are unique to that namespace, you won’t have any problems.
By carefully partitioning a project into various namespaces, you can easily
avoid most of the problems that occur because of namespace pollution.

Another interesting aspect to namespaces is that they are extensible.
For example, consider the following declarations in C++:

namespace aNS
{
 int i;
 int j;
}

int i; // Outside the namespace, so this is unique.
int j; // ditto.

Record, Union, and Class Data Types 363

namespace aNS
{
 int k;
}

This example code is perfectly legal. The second declaration of aNS
does not conflict with the first: it extends the aNS namespace to include
identifier aNS::k as well as aNS::i and aNS::j. This feature is very handy when,
for example, you want to extend a set of library routines and header files
without modifying the original header files for that library (assuming the
library names all appear within a namespace).

From an implementation point of view, there’s really no difference between
a namespace and a set of declarations appearing outside a namespace. The
compiler typically deals with both types of declarations in a nearly identical
fashion, with the only difference being that the program prefixes all objects
located within the namespace with the namespace’s identifier.

11.5 Classes and Objects
The class data type is the bedrock of modern object-oriented programming
(OOP). In most OOP languages, the class is closely related to the record
or structure. However, unlike records (which have a surprisingly uniform
implementation across most languages), class implementations tend to vary.
Nevertheless, many contemporary OOP languages achieve their results using
similar approaches, so this section demonstrates a few concrete examples
from C++, Java, Swift, HLA, and Delphi (Object Pascal). Users of other lan-
guages will find their languages work similarly.

11.5.1 Classes vs. Objects
Many programmers confuse the terms class and object. A class is a data type;
it is a template for how the compiler organizes memory with respect to the
class’s fields. An object is an instantiation of a class—that is, an object is a
variable of some class type that has memory allocated to hold the data asso-
ciated with the class’s fields. For a given class, there is only one class defini-
tion. You may, however, have several objects (variables) of that class type.

11.5.2 Simple Class Declarations in C++
Classes and structures are syntactically and semantically similar in C++.
Indeed, there is only one syntactical difference between them: the use of
the class keyword versus the struct keyword. Consider the following two
valid type declarations in C++:

struct student
{

364 Chapter 11

 // Room for a 64-character zero-terminated string:

 char Name[65];

 // Typically a 2-byte integer in C/C++:

 short Major;

 // Room for an 11-character zero-terminated string:

 char SSN[12];

 // Each of the following is typically a 2-byte integer

 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects;
};

class myClass
{
public:

// Room for a 64-character zero-terminated string:

 char Name[65];

 // Typically a 2-byte integer in C/C++:

 short Major;

 // Room for an 11-character zero-terminated string:

 char SSN[12];

 // Each of the following is typically a 2-byte integer

 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects;
};

Although these two data structures contain the same fields, and you
would access those fields the same way, their memory implementation is
slightly different. A typical memory layout for the structure appears in
Figure 11-3, which can be compared with the memory layout for the class
shown in Figure 11-4. (Figure 11-3 is the same as Figure 11-1, but appears
here for easy comparison with Figure 11-4.)

Record, Union, and Class Data Types 365

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid2
(2 bytes)

Figure 11-3: The student structure storage in memory

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Mid1
(2 bytes)

Final
(2 bytes)

Homework
(2 bytes)

Projects
(2 bytes)

John

Mid2
(2 bytes)

VMT
pointer

(4 bytes)

Figure 11-4: The student class storage in memory

The VMT pointer is a field that appears if the class contains any class
member functions (aka methods). Some C++ compilers do not emit a VMT
pointer field if there are no member functions, in which case the class and
struct objects will have the same layout in memory.

N O T E VMT stands for virtual method table and will be discussed further in the section
“Virtual Method Tables” on page 367.

Although a C++ class declaration could contain only data fields, classes
generally contain member function definitions as well as data members. In
the myClass example, you might have the following member functions:

class myClass
{
public:

// Room for a 64-character zero-terminated string:

 char Name[65];

 // Typically a 2-byte integer in C/C++:

 short Major;

 // Room for an 11-character zero-terminated string:

 char SSN[12];

 // Each of the following is typically a 2-byte integer

 short Mid1;
 short Mid2;

366 Chapter 11

 short Final;
 short Homework;
 short Projects;

 // Member functions:

 double computeGrade(void);
 double testAverage(void);
};

The computeGrade() function might compute the total grade in the
course (based on relative weights attached to the midterms, final, home-
work, and project scores). The testAverage() function might return the aver-
age of all the test scores.

11.5.3 Class Declarations in C# and Java
C# and Java classes look very similar to C/C++ class declarations. Here’s a
sample C# class declaration (which also works for Java):

class student
{
 // Room for a 64-character zero-terminated string:

 public char[] Name;

 // Typically a 2-byte integer in C/C++:

 public short Major;

 // Room for an 11-character zero terminated string:

 public char[] SSN;

 public short Mid1;
 public short Mid2;
 public short Final;
 public short Homework;
 public short Projects;

 public double computeGrade()
 {
 return Mid1 * 0.15 + Mid2 * 0.15 + Final *
 0.2 + Homework * 0.25 + Projects * 0.25;
 }
 public double testAverage()
 {
 return (Mid1 + Mid2 + Final) / 3.0;
 }
 };

Record, Union, and Class Data Types 367

11.5.4 Class Declarations in Delphi (Object Pascal)
Delphi (Object Pascal) classes look very similar to Pascal records. Classes
use the class keyword instead of record, and you can include function proto-
type declarations in the class.

type
 student =
 class
 Name: string [64];
 Major: smallint; // 2-byte integer in Delphi
 SSN: string[11];
 Mid1: smallint;
 Mid2: smallint;
 Final: smallint;
 Homework: smallint;
 Projects: smallint;

 function computeGrade:real;
 function testAverage:real;
 end;

11.5.5 Class Declarations in HLA
HLA classes look very similar to HLA records. Classes use the class keyword
instead of record, and you can include function (method) prototype decla-
rations in the class.

type
 student:
 class
 var
 sName: char[65];
 Major: int16;
 SSN: char[12];
 Mid1: int16;
 Mid2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;

 method computeGrade;
 method testAverage;

 endclass;

11.5.6 Virtual Method Tables
As you saw in Figures 11-3 and 11-4, the difference between the class defini-
tion and the structure definition is that the former contains a VMT field.
VMT, which stands for virtual method table, is an array of pointers to all the
member functions, or methods, within an object’s class. Virtual methods

368 Chapter 11

(virtual member functions in C++) are special class-related functions that
you declare as fields in the class. In the current student example, the class
doesn’t actually have any virtual methods, so most C++ compilers would
eliminate the VMT field, but some OOP languages will still allocate storage
for the VMT pointer within the class.

Here’s a little C++ class that actually has a virtual member function
and, therefore, also has a VMT:

class myclass
{
 public:
 int a;
 int b;
 virtual int f(void);
};

When C++ calls a standard function, it directly calls that function.
Virtual member functions are another story, as you can see in Figure 11-5.

VMT

field1

field2

...

SomeObject

Virtual function #1

Virtual function #2

...

Virtual function #m

fieldn

Figure 11-5: A virtual method table in C++

Calling a virtual member function requires two indirect accesses. First,
the program has to fetch the VMT pointer from the class object and use
that to indirectly fetch a particular virtual function address from the VMT.
Then the program has to make an indirect call to the virtual member func-
tion via the pointer it retrieved from the VMT. As an example, consider the
following C++ function:

#include <stdlib.h>

// A C++ class with two trivial
// member functions (so the VMT
// will have two entries).

class myclass
{
 public:
 int a;
 int b;
 virtual int f(void);

Record, Union, and Class Data Types 369

 virtual int g(void);
};

// Some trivial member functions.
// We're really only interested
// in looking at the calls, so
// these functions will suffice
// for now.

int myclass::f(void)
{
 return b;
}

int myclass::g(void)
{
 return a;
}

// A main function that creates
// a new instance of myclass and
// then calls the two member functions

int main(int argc, char **argv)
{
 myclass *c;

 // Create a new object:

 c = new myclass;

 // Call both member functions:

 c->a = c->f() + c->g();
 return 0;

}

Here’s the corresponding x86-64 assembly code that Visual C++ generates:

; Here is the VMT for myclass. It contains
; three entries:
; a pointer to the constructor for myclass,
; a pointer to the myclass::f member function,
; and a pointer to the myclass::g member function.

CONST SEGMENT
??_7myclass@@6B@ DQ FLAT:??_R4myclass@@6B@ ; myclass::`vftable'
 DQ FLAT:?f@myclass@@UEAAHXZ
 DQ FLAT:?g@myclass@@UEAAHXZ
CONST ENDS
;

370 Chapter 11

 .
 .
 .
;
; Allocate storage for a new instance of myclass:
; 16 = two 4-byte ints plus 8-byte VMT pointer
 mov ecx, 16

 call ??2@YAPEAX_K@Z ; operator new
 mov rdi, rax ; Save pointer to allocated object
 test rax, rax ; Did NEW FAIL (returning NULL)?
 je SHORT $LN3@main

; Initialize VMT field with the address of the VMT:

 lea rax, OFFSET FLAT:??_7myclass@@6B@
 mov QWORD PTR [rdi], rax
 jmp SHORT $LN4@main
$LN3@main:
 xor edi, edi ; For failure, put NULL in EDI

; At this point, RDI contains the "THIS" pointer
; that refers to the object in question. In this
; particular code sequence, "THIS" is the address
; of the object whose storage we allocated above.

; Get the VMT into RAX (first indirect access
; needed to make a virtual member function call)

 mov rax, QWORD PTR [rdi]

 mov rcx, rdi ; Pass THIS in RCX
 call QWORD PTR [rax+8] ; Call c->f()
 mov ebx, eax ; Save function result

 mov rdx, QWORD PTR [rdi] ; Load VMT into RDX
 mov rcx, rdi ; Pass THIS in RCX
 call QWORD PTR [rdx] ; Call c->g()

; Compute sum of function results:

 add ebx, eax
 mov DWORD PTR [rdi+8], ebx ; Save sum in c->a

This example amply demonstrates why object-oriented programs gen-
erally run a little more slowly than standard procedural programs: extra
indirection when calling virtual methods. C++ attempts to address this
inefficiency by providing static member functions, but they lose many of the
benefits of virtual member functions that make object-oriented program-
ming possible.

Record, Union, and Class Data Types 371

11.5.7 Abstract Methods
Some languages (such as C++) allow you to declare abstract methods within a
class. An abstract method declaration tells the compiler that you will not be
supplying the actual code for that method. Instead, you’re promising that
some derived class will provide the method’s implementation. Here’s a ver-
sion of myclass that has an abstract method:

class myclass
{
public:
 int a;
 int b;
 virtual int f(void);
 virtual int g(void);
 virtual int h(void) = 0;
};

Why the strange syntax? It doesn’t really make sense to assign 0 to a
virtual function. Why not just use an abstract keyword (rather than virtual)
like most other languages do? These are good questions. The answer prob-
ably has a lot to do with the fact that a 0 (NULL pointer) was being placed in
the VMT entry for the abstract function. In modern versions of C++, com-
piler implementers typically place the address of some function that gener-
ates an appropriate runtime message (like cannot call an abstract method)
here, rather than a NULL pointer. The following code snippet shows the
Visual C++ VMT for this version of myclass:

CONST SEGMENT
??_7myclass@@6B@ DQ FLAT:??_R4myclass@@6B@ ; myclass::`vftable'
 DQ FLAT:?f@myclass@@UEAAHXZ
 DQ FLAT:?g@myclass@@UEAAHXZ
 DQ FLAT:_purecall
CONST ENDS

The _purecall entry corresponds to the abstract function h(). This is the
name of the subroutine that handles illegal calls to abstract functions. When
you override an abstract function, the C++ compiler replaces the pointer in
the VMT to the _purecall function with the address of the overriding func-
tion (just as it would replace the address of any overridden function).

11.5.8 Sharing VMTs
For a given class there is only one copy of the VMT in memory. This is a
static object, so all objects of a given class type share the same VMT. This is
reasonable, because all objects of the same class type have exactly the same
member functions (see Figure 11-6).

372 Chapter 11

Object1

Object2

Object3

VMT

Figure 11-6: Objects sharing the same VMT
(note that objects are all the same class type)

Because the addresses in a VMT never change during program execu-
tion, most languages place the VMT in a constant (write-protected) section
in memory. In the previous example, the compiler places the myclass VMT in
the CONST segment.

11.5.9 Inheritance in Classes
Inheritance is one of the fundamental concepts behind object-oriented
programming. The basic idea is that a class inherits, or copies, all the fields
from some existing class and then possibly expands the number of fields in
the new class data type. For example, suppose you created a data type point
that describes a point in the planar (two-dimensional) space. The class for
this point might look like the following:

class point
{
 public:
 float x;
 float y;

 virtual float distance(void);
};

The distance() member function would probably compute the distance
from the origin (0,0) to the coordinate specified by the (x,y) fields of the
object.

Here’s a typical implementation of this member function:

float point::distance(void)
{
 return sqrt(x*x + y*y);
}

Record, Union, and Class Data Types 373

Inheritance allows you to extend an existing class by adding new fields
or replacing existing fields. For example, suppose you want to extend the
two-dimensional point definition to a third spatial dimension. You can eas-
ily do this with the following C++ class definition:

class point3D :public point
{
 public:
 float z;

 virtual void rotate(float angle1, float angle2);
};

The point3D class inherits the x and y fields, as well as the distance()
member function. (Of course, distance() does not compute the proper
result for a point in three-dimensional space, but I’ll address that in a
moment.) By “inherits,” I mean that point3D objects locate their x and y
fields at exactly the same offsets as point objects do (see Figure 11-7).

VMT

x

VMT

x

y

z

Derived (child) classes locate their inherited fields
at the same offsets as those fields in the base class.

point point3D

y

Figure 11-7: Inheritance in classes

As you might have noticed, there were actually two items added to the
point3D class—a new data field, z, and a new member function, rotate(). In
Figure 11-7, you can see that adding the rotate() virtual member function
has had no impact at all on the layout of a point3D object. This is because
virtual member functions’ addresses appear in the VMT, not in the object
itself. Although both point and point3D contain a field named VMT, these fields
do not point at the same table in memory. Every class has its own unique VMT,
which, as previously defined, consists of an array of pointers to all of the mem-
ber functions (inherited or explicitly declared) for the class (see Figure 11-8).

distance()

point

distance()

rotate()

point3D

+0

Offset

+4

Figure 11-8: VMTs for inherited classes (assuming 32-bit pointers)

374 Chapter 11

All the objects for a given class share the same VMT, but this is not
true for objects of different classes. Because point and point3D are different
classes, their objects’ VMT fields will point at different VMTs in memory.
(See Figure 11-9.)

p1
VMT point

p2

VMT point3D

p3

point p1;
point p2;
point p3;

 point3D t1;

 point3D t2;

t1

t2

VMT pointer

Figure 11-9: VMT access

One problem with the point3D definition given thus far is that it inherits
the distance() function from the point class. By default, if a class inherits
member functions from some other class, the entries in the VMT corre-
sponding to those inherited functions will point at the functions associated
with the base class. If you have an object pointer variable of type point3D,
let’s say p3D, and you invoke the member function p3D->distance(), you will
not get a correct result. Because point3D inherits the distance() function
from class point, p3->distance() will compute the distance to the projection
of (x,y,z) onto the two-dimensional plane rather than the correct value
on the three-dimensional plane. In C++ you can overcome this problem by
overloading the inherited function and writing a new, point3D-specific mem-
ber function like so:

class point3D :public point
{
 public:
 float z;

 virtual float distance(void);
 virtual void rotate(float angle1, float angle2);
};

Record, Union, and Class Data Types 375

float point3D::distance(void)
{
 return sqrt(x*x + y*y + z*z);
}

Creating an overloaded member function does not change the layout
of the class’s data or the layout of the point3D VMT. The only change this
function evokes is that the C++ compiler initializes the distance() entry in
the point3D VMT with the address of the point3D::distance() function rather
than the address of the point::distance() function.

11.5.10 Polymorphism in Classes
In addition to inheritance and overloading, polymorphism is the other anchor
upon which object-oriented programming is based. Polymorphism, which
literally means “many-faced” (or, translated a little better, “many forms” or
“many shapes”), describes how a single instance of a function call in your pro-
gram, such as x->distance(), could wind up calling different functions (in
the examples from the previous section, this could be the point::distance()
or point3D::distance() function). What makes this possible is the fact that
C++ relaxes its type-checking facilities a bit when dealing with derived
(inherited) classes.

Let’s look at an example. Normally, a C++ compiler will generate an
error if you try to do the following:

float f;
int *i;
 .
 .
 .
i = &f; // C++ isn't going to allow this.

C++ does not allow you to assign the address of some object to a pointer
whose base type doesn’t exactly match the object’s type—with one major
exception. C++ relaxes this restriction so you can assign the address of some
object to a pointer as long as the pointer’s base type either matches or is an
ancestor of the object’s type (an ancestor class is one from which some other
class type is derived, directly or indirectly, via inheritance). That means the
following code is legal:

point *p;
point3D *t;
point *generic;

 p = new point;
 t = new point3D;
 .
 .
 .
 generic = t;

376 Chapter 11

If you’re wondering how this could be legitimate, take another look at
Figure 11-7. If generic’s base type is point, then the C++ compiler will allow
access to a VMT at offset 0 in the object, an x field at offset 4 (8 on 64-bit
machines) in the object, and a y field at offset 8 (16) in the object. Similarly,
any attempt to invoke the distance() member function will access the func-
tion pointer at offset 0 into the VMT pointed at by the object’s VMT field. If
generic points at an object of type point, all of these requirements are satis-
fied. This is also true if generic points at any derived class of point (that is,
any class that inherits the fields from point). None of the extra fields in the
derived class (point3D) will be accessible via the generic pointer, but that’s to
be expected because generic’s base class is point.

A crucial thing to note, however, is that when you invoke the distance()
member function, you’re calling the one pointed at by the point3D VMT,
not the one pointed at by the point VMT. This fact is the basis for poly-
morphism in an OOP language such as C++. The code a compiler emits is
exactly the same code it would emit if generic contained the address of an
object of type point. All of the “magic” occurs because the compiler allows
the programmer to load the address of a point3D object into generic.

11.5.11 Multiple Inheritance (in C++)
C++ is one of the few modern programming languages that support multiple
inheritance, whereby a class can inherit the data and member functions from
multiple classes. Consider the following C++ code fragment:

class a
{
 public:
 int i;
 virtual void setI(int i) { this->i = i; }
};

class b
{
 public:
 int j;
 virtual void setJ(int j) { this->j = j; }
};

class c : public a, public b
{
 public:
 int k;
 virtual void setK(int k) { this->k = k; }
};

In this example, class c inherits all the information from classes a and
b. In memory, a typical C++ compiler will create an object like that shown in
Figure 11-10.

Record, Union, and Class Data Types 377

VMT i VMTb j k

Base address of c object

Figure 11-10: Multiple inheritance memory layout

The VMT pointer entry points at a typical VMT containing the addresses
of the setI(), setJ(), and setK() methods, as shown in Figure 11-11. If you call
the setI() method, the compiler will generate code that loads the this pointer
with the address of the VMT pointer entry in the object (the base address of
the c object in Figure 11-10). Upon entry into setI(), the system believes that
this is pointing at an object of type a. In particular, the this.VMT field points
at a VMT whose first (and, as far as type a is concerned, only) entry is the
address of the setI() method. Likewise, at offset (this+8) in memory (as the
VMT pointer is 8 bytes, assuming 64-bit pointers), the setI() method will
find the i data value. As far as setI() is concerned, this is pointing at a class
type a object (even though it’s actually pointing at a type c object).

VMT

Virtual Method Table

i VMTb

&setI() &setJ() &setK()

j k

Base address
for this when
calling a or c
objects

Base address
for this when
calling b
objects

Figure 11-11: Multiple inheritance this values

When you call the setK() method, the system also passes the base
address of the c object. Of course, setK() is expecting a type c object and
this is pointing at a type c object, so all the offsets into the object are
exactly as setK() expects. Note that objects of type c (and methods in the
c class) will normally ignore the VMT2 pointer field in the c object.

The problem occurs when the program attempts to call the setJ()
method. Because setJ() belongs to class b, it expects this to hold the
address of a VMT pointer pointing at a VMT for class b. It also expects
to find data field j at offset (this+8). Were we to pass the c object’s this
pointer to setJ(), accessing (this+8) would reference the i data field, not j.
Furthermore, were a class b method to make a call to another method in
class b (such as setJ() making a recursive call to itself), the VMT pointer
would be wrong—it points at a VMT with a pointer to setI() at offset 0,
whereas class b expects it to point at a VMT with a pointer to setJ() at

378 Chapter 11

offset 0. To resolve this issue, a typical C++ compiler will insert an extra
VMT pointer into the c object immediately prior to the j data field. It will
initialize this second VMT field to point into the c VMT at the location
where the class b method pointers begin (see Figure 11-11). When calling
a method in class b, the compiler will emit code that initializes the this
pointer with the address of this second VMT pointer (rather than pointing
at the beginning of c-type object in memory). Now, upon entry to a class
b method—such as setJ()—this will point at a legitimate VMT pointer for
class b, and the j data field will appear at the offset (this+8) that class b
methods expect.

11.6 Protocols and Interfaces
Java and Swift don’t support multiple inheritance, because it has some logi-
cal problems. The classic example is the “diamond lattice” data structure.
This occurs when two classes (say, b and c) both inherit information from
the same class (say, a), and then a fourth class (say, d) inherits from both
b and c. As a result, d inherits the data from a twice—once through b and
once through c. This can create some consistency problems.

Although multiple inheritance can lead to some weird problems like
this, there’s no question that being able to inherit from multiple locations is
often useful. Thus, the solution in languages like Java and Swift is to allow a
class to inherit methods/functions from multiple parents but allow inheri-
tance from only a single ancestor class. This avoids most of the problems
with multiple inheritance (specifically, an ambiguous choice of inherited
data fields) while allowing programmers to include methods from various
sources. Java calls such extensions interfaces, and Swift calls them protocols.

Here’s an example of a couple Swift protocol declarations and a class
supporting that protocol:

protocol someProtocol
{
 func doSomething()->Void;
 func doSomethingElse() ->Void;
}
protocol anotherProtocol
{
 func doThis()->Void;
 func doThat() ->Void;
}

class supportsProtocols: someProtocol, anotherProtocol
{
 var i:Int = 0;
 func doSomething()->Void
 {
 // appropriate function body
 }
 func doSomethingElse()->Void

Record, Union, and Class Data Types 379

 {
 // appropriate function body
 }
 func doThis()->Void
 {
 // appropriate function body
 }
 func doThat()->Void
 {
 // appropriate function body
 }

}

Swift protocols don’t supply any functions. Instead, a class that supports
a protocol promises to provide an implementation of the functions the
protocol(s) specify. In the preceding example, the supportsProtocols class is
responsible for supplying all functions required by the protocols it supports.
Effectively, protocols are like abstract classes containing only abstract meth-
ods—the inheriting class must provide actual implementations for all the
abstract methods.

Here’s the previous example coded in Java and demonstrating its com-
parable mechanism, the interface:

interface someInterface
{
 void doSomething();
 void doSomethingElse();
}
interface anotherInterface
{
 void doThis();
 void doThat();
}

class supportsInterfaces implements someInterface, anotherInterface
{
 int i;
 public void doSomething()
 {
 // appropriate function body
 }
 public void doSomethingElse()
 {
 // appropriate function body
 }
 public void doThis()
 {
 // appropriate function body
 }
 public void doThat()
 {

380 Chapter 11

 // appropriate function body
 }

}

Interfaces/protocols behave somewhat like base class types in Java and
Swift. If you instantiate a class object and assign that instance to a variable
that is an interface/protocol type, you can execute the supported member
functions for that interface/protocol. Consider the following Java example:

someInterface some = new supportsInterfaces();

// We can call the member functions defined for someInterface:

some.doSomething();
some.doSomethingElse();

// Note that it is illegal to try and call doThis or doThat
// (or access the i data field)
// using the "some" variable.

Here’s a comparable example in Swift:

import Foundation

protocol a
{
 func b()->Void;
 func c()->Void;
}

protocol d
{
 func e()->Void;
 func f()->Void;
}
class g : a, d
{
 var i:Int = 0;

 func b()->Void {print("b")}
 func c()->Void {print("c")}
 func e()->Void {print("e")}
 func f()->Void {print("f")}

 func local()->Void {print("local to g")}
}

var x:a = g()
x.b()
x.c()

Record, Union, and Class Data Types 381

The implementation of a protocol or interface is quite simple—it’s just
a pointer to a VMT that contains the addresses of the functions declared
in that protocol/interface. So, the data structure for the Swift g class in the
previous example would have three VMT pointers in it: one for protocol a,
one for protocol d, and one for the class g (holding a pointer to the local()
function). Figure 11-12 shows the class and VMT layout.

VMT ptr
a ptr
d ptr
i

Ptr to b

VMT

Ptr to c
Ptr to d
Ptr to e

Ptr to local

Class g:

Figure 11-12: Multiple inheritance memory layout

In Figure 11-12 the VMT pointer for class g contains the address of the
entire VMT. There are two entries in the class that contain pointers to the
VMTs for protocol a and protocol d. As the VMT for class g also contains
pointers to the functions belonging to these protocols, there’s no need to
create a separate VMT for these two protocols; instead, the aPtr and dPtr
fields can point to the corresponding entries within class g’s VMT.

When the assignment var x:a = g() occurs in the previous example,
the Swift code will load variable x with the aPtr pointer held in the g object.
Therefore, the calls to x.b() and x.c() work just like a normal method call—
the system uses the pointer held in x to reference the VMT and then it calls
b or c by indexing the appropriate amount into the VMT. Had x been of
type d rather than a, then the assignment var x:d = g() would have loaded
x with the address of the d protocol VMT (pointed at by dPtr). Calls to d and
e would happen at offsets 0 and 8 (64-bit pointers) into the d VMT.

11.7 Classes, Objects, and Performance
As you’ve seen in this chapter, the direct cost associated with object-oriented
programming isn’t terribly significant. Calls to member functions (meth-
ods) are a bit more expensive because of double indirection; however, that’s
a small price to pay for the flexibility OOP gives you. The extra instructions
and memory accesses will probably cost only about 10 percent of your appli-
cation’s total performance. Some languages, such as C++ and HLA, support
the notion of a static member function that allows direct calls to member func-
tions when polymorphism is unnecessary.

The big problem that object-oriented programmers sometimes face is
taking things to an extreme. Rather than directly accessing the fields of an
object, they write accessor functions to read and write those field values.
Unless the compiler does a very good job of inlining such accessor func-
tions, the cost of accessing the object’s fields increases by about an order
of magnitude. In other words, application performance can actually suffer

382 Chapter 11

when OOP paradigms are overused. There may be good reasons for doing
things the “object-oriented way” (such as using accessor functions to access
all fields of an object), but keep in mind that these costs add up rather
quickly. Unless you absolutely need the facilities provided by OOP tech-
niques, your programs may wind up running considerably slower (and tak-
ing up a whole lot more space) than necessary.

Swift is a good example of object-oriented programming taken to an
extreme. Anyone who has compared the performance of compiled Swift
code against an equivalent C++ program knows that Swift is much slower.
Largely, this is because Swift makes objects out of everything (and con-
stantly checks their types and bounds at runtime). The result is that it can
take hundreds of machine instructions in Swift to do the same task as a
half-dozen machine instructions produced by an optimizing C++ compiler.

Another common problem with many object-oriented programs is over-
generalization. This can occur when a programmer uses a lot of class librar-
ies, extending classes through inheritance in order to solve some problem
with as little programming effort as possible. While saving programming
effort is generally a good idea, extending class libraries can lead to situa-
tions where you need some minor task done and you call a library routine
that does everything you want. The problem is that in object-oriented
systems, library routines tend to be highly layered. That is, you need some
work done, so you invoke some member function from a class you’ve inher-
ited. That function probably does a little bit of work on the data you pass it
and then it calls a member function in a class that it inherits. And then that
function massages the data a bit and calls a member function it inherits,
and so on down the line. Before too long, the CPU spends more time call-
ing and returning from functions than it does doing any useful work. While
this same situation could occur in standard (non-OOP) libraries, it’s far
more common in object-oriented applications.

Carefully designed object-oriented programs needn’t run significantly
slower than comparable procedural programs. Just be careful not to make a
lot of expensive function calls to do trivial tasks.

11.8 For More Information
Dershem, Herbert, and Michael Jipping. Programming Languages, Structures

and Models. Belmont, CA: Wadsworth, 1990.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Ghezzi, Carlo, and Jehdi Jazayeri. Programming Language Concepts. 3rd ed.
New York: Wiley, 2008.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Knuth, Donald. The Art of Computer Programming, Volume I: Fundamental
Algorithms. 3rd ed. Boston: Addison-Wesley Professional, 1997.

Record, Union, and Class Data Types 383

Ledgard, Henry, and Michael Marcotty. The Programming Language
Landscape. Chicago: SRA, 1986.

Louden, Kenneth C., and Kenneth A. Lambert. Programming Languages,
Principles and Practice. 3rd ed. Boston: Course Technology, 2012.

Pratt, Terrence W., and Marvin V. Zelkowitz. Programming Languages, Design
and Implementation. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.

Sebesta, Robert. Concepts of Programming Languages. 11th ed. Boston:
Pearson, 2016.

One of the major advantages that high-
level languages provide over low-level

languages is the use of algebraic arithme-
tic and logical expressions (hereafter, “arithme-

tic expressions”). HLL arithmetic expressions are an
order of magnitude more readable than the sequence
of machine instructions the compiler produces. However, the conversion
process from arithmetic expressions into machine code is also one of the
more difficult transformations to do efficiently, and a fair percentage of a
typical compiler’s optimization phase is dedicated to handling it. Because
of the difficulty with translation, this is one area where you can help the
compiler. This chapter will describe:

•	 How computer architecture affects the computation of arithmetic
expressions

•	 The optimization of arithmetic expressions

12
A R I T H M E T I C A N D L O G I C A L

E X P R E S S I O N S

386 Chapter 12

•	 Side effects of arithmetic expressions

•	 Sequence points in arithmetic expressions

•	 Order of evaluation in arithmetic expressions

•	 Short-circuit and complete evaluation of arithmetic expressions

•	 The computational cost of arithmetic expressions

Armed with this information, you’ll be able to write more efficient and
more robust applications.

12.1 Arithmetic Expressions and Computer Architecture
With respect to arithmetic expressions, we can classify traditional computer
architectures into three basic types: stack-based machines, register-based
machines, and accumulator-based machines. The major difference between
these architectural types has to do with where the CPUs keep the operands
for the arithmetic operations. Once the CPU fetches the data from these
operands, the data is passed along to the arithmetic and logical unit, where
the actual arithmetic or logical calculation occurs.1 We’ll explore each of
these architectures in the following sections.

12.1.1 Stack-Based Machines
Stack-based machines use memory for most calculations, employing a
data structure called the stack in memory to hold all operands and results.
Computer systems with a stack architecture offer some important advan-
tages over other architectures:

•	 The instructions are often smaller in stack architectures because the
instructions generally don’t have to specify any operands.

•	 It is usually easier to write compilers for stack architectures than
for other machines because converting arithmetic expressions to a
sequence of stack operations is very easy.

•	 Temporary variables are rarely needed in a stack architecture, because
the stack itself serves that purpose.

Unfortunately, stack machines also suffer from some serious disadvantages:

•	 Almost every instruction references memory (which is slow on modern
machines). Though caches can help mitigate this problem, memory
performance is still a major problem on stack machines.

1. All calculations are logical in nature. Even arithmetic operations such as addition and
subtraction are “logical” in the sense that the CPU computes their result based on a series
of Boolean expressions. For our purposes, therefore, “logical expression” and “arithmetic
expression” are synonymous. See WGC1 for more details concerning Boolean expressions
and low-level arithmetic.

Arithmetic and Logical Expressions 387

•	 Even though conversion from HLLs to a stack machine is very easy,
there’s less opportunity for optimization than there is with other
architectures.

•	 Because stack machines are constantly accessing the same data ele-
ments (that is, data on the top of the stack), pipelining and instruction
parallelism is difficult to achieve.

N O T E See WGC1 for details on pipelining and instruction parallelism.

With a stack you generally do one of three things: push new data onto
it, pop data from it, or operate on the data that is currently sitting on the
top of stack (and possibly the data immediately below that, or next on stack).

12.1.1.1 Basic Stack Machine Organization

A typical stack machine maintains a couple of registers inside the CPU
(see Figure 12-1). In particular, you can expect to find a program counter
register (like the 80x86’s RIP register) and a stack pointer register (like the
80x86 RSP register).

Stack-based CPU

Stack pointer

Program counter .
.
.

Memory

Figure 12-1: Typical stack machine architecture

The stack pointer register contains the memory address of the current
top of stack (TOS) element in memory. The CPU increments or decrements
the stack pointer register whenever a program places data onto the stack or
removes data from the stack. On some architectures the stack expands from
higher memory locations to lower memory locations; on other architec-
tures, the stack grows from lower memory locations toward higher memory
locations. Fundamentally, the direction of stack growth is irrelevant; all
it really determines is whether the machine decrements the stack pointer
register when placing data on the stack (if the stack grows toward lower
memory addresses) or increments the stack pointer register (when the stack
grows toward higher memory addresses).

388 Chapter 12

12.1.1.2 The push Instruction

To place data on the stack, you typically use the machine instruction push.
This instruction generally takes a single operand that specifies the value to
push onto the stack, like so:

push memory or constant operand

Here are a couple of concrete examples:

push 10 ; Pushes the constant 10 onto the stack
push mem ; Pushes the contents of memory location mem

A push operation typically increases the value of the stack pointer register
by the size of its operand in bytes and then copies that operand to the mem-
ory location the stack pointer now specifies. For example, Figures 12-2 and
12-3 illustrate what the stack looks like before and after a push 10 operation.

Stack pointer

Memory

Previous
Stack
Data

Figure 12-2: Before a push 10 operation

Stack pointer

Memory

Previous
Stack
Data

10

Figure 12-3: After a push 10 operation

12.1.1.3 The pop Instruction

To remove a data item from the top of a stack, you use a pop or pull instruc-
tion. (This book will use pop; just be aware that some architectures use pull
instead.) A typical pop instruction might look as follows:

pop memory location

N O T E You cannot pop data into a constant. The pop operand must be a memory location.

The pop instruction makes a copy of the data pointed at by the stack
pointer and stores it into the destination memory location. Then it

Arithmetic and Logical Expressions 389

decrements (or increments) the stack pointer register to point at the next
lower item on the stack, or next on stack (NOS); see Figures 12-4 and 12-5.

Stack pointer

Memory

Previous
Stack
Data

10

Figure 12-4: Before a pop mem operation

Stack pointer

Memory

Previous
Stack
Data

10

10mem

Figure 12-5: After a pop mem operation

Note that the value in stack memory that the pop instruction removes
from the stack is still physically present in memory above the new TOS.
However, the next time the program pushes data onto the stack, it will
overwrite this value with the new value.

12.1.1.4 Arithmetic Operations on a Stack Machine

The arithmetic and logical instructions found on a stack machine gener-
ally do not allow any operands. This is why stack machines are often called
zero-address machines; the arithmetic instructions themselves do not encode
any operand addresses. For example, consider an add instruction on a typi-
cal stack machine. This instruction will pop two values from the stack (TOS
and NOS), compute their sum, and push the result back onto the stack (see
Figures 12-6 and 12-7).

Stack pointer

Memory

Previous
Stack
Data

10

25

Figure 12-6: Before an add operation

390 Chapter 12

Stack pointer

Memory

Previous
Stack
Data

35

25

Figure 12-7: After an add operation

Because arithmetic expressions are recursive in nature, and recursion
requires a stack for proper implementation, it’s no surprise that convert-
ing arithmetic expressions to a sequence of stack machine instructions is
relatively simple. Arithmetic expressions found in common programming
languages use an infix notation, where the operator appears between two
operands. For example, a + b and c - d are examples of infix notation
because the operators (+ and -) appear between the operands ([a, b] and
[c, d]). Before you can do the conversion to stack machine instructions,
you must convert these infix expressions into postfix notation (also known as
reverse polish notation), where the operator immediately follows the operands
to which it applies. For example, the infix expressions a + b and c – d would
have the corresponding postfix forms a b + and c d –, respectively.

Once you have an expression in postfix form, converting it to a
sequence of stack machine instructions is very easy. You simply emit a push
instruction for each operand and the corresponding arithmetic instruction
for the operators. For example, a b + becomes:

push a
push b
add

and c d - becomes:

push c
push d
sub

assuming, of course, that add adds the top two items on the stack and sub
subtracts the TOS from the value immediately below it on the stack.

12.1.1.5 Real-World Stack Machines

A big advantage of the stack architecture is that it’s easy to write a compiler
for such a machine. It’s also very easy to write an emulator for a stack-based
machine. For these reasons, stack architectures are popular in virtual machines
(VMs) such as the Java Virtual Machine, the UCSD Pascal p-machine, and
the Microsoft Visual Basic, C#, and F# CIL. Although a few real-world stack-
based CPUs do exist, such as a hardware implementation of the Java VM,
they’re not very popular because of the performance limitations of memory
access. Nonetheless, understanding the basics of a stack architecture is

Arithmetic and Logical Expressions 391

important, because many compilers translate HLL source code into a stack-
based form prior to emitting actual machine code. Indeed, in the worst
(though rare) case, compilers are forced to emit code that emulates a stack-
based machine when compiling complex arithmetic expressions.

12.1.2 Accumulator-Based Machines
The simplicity of a stack machine instruction sequence hides an enormous
amount of complexity. Consider the following stack-based instruction from
the previous section:

add

This instruction looks simple, but it actually specifies a large number
of operations:

•	 Fetch an operand from the memory location pointed to by the
stack pointer.

•	 Send the stack pointer’s value to the ALU (arithmetic/logical unit).

•	 Instruct the ALU to decrement the stack pointer’s value just sent to it.

•	 Route the ALU’s value back to the stack pointer.

•	 Fetch the operand from the memory location pointed to by the
stack pointer.

•	 Send the values from the previous step and the first step to the ALU.

•	 Instruct the ALU to add those values.

•	 Store the sum away in the memory location pointed to by the
stack pointer.

The organization of a typical stack machine prevents many parallel
operations that are possible with pipelining (see WGC1 for more details on
pipelining). So stack architectures are hit twice: typical instructions require
many steps to complete, and those steps are difficult to execute in parallel
with other operations.

One big problem with the stack architecture is that it goes to memory
for just about everything. For example, if you simply want to compute the
sum of two variables and store this result in a third variable, you have to
fetch the two variables and write them to the stack (four memory opera-
tions); then you have to fetch the two values from the stack, add them, and
write their sum back to the stack (three memory operations); and finally,
you have to pop the item from the stack and store the result into the des-
tination memory location (two memory operations). That’s a total of nine
memory operations. When memory access is slow, this is an expensive way
to compute the sum of two numbers.

One way to avoid this large number of memory accesses is to provide
a general-purpose arithmetic register within the CPU. This is the idea
behind an accumulator-based machine: you provide a single accumulator
register, where the CPU computes temporary results rather than computing

392 Chapter 12

temporary values in memory (on the stack). Accumulator-based machines
are also known as one-address or single-address machines, because most instruc-
tions that operate on two operands use the accumulator as the default desti-
nation operand for the computation and require a single memory or constant
operand to use as the source operand. A typical example of an accumulator
machine is the 6502, which includes the following instructions:

LDA constant or memory ; Load accumulator register
STA memory ; Store accumulator register
ADD constant or memory ; Add operand to accumulator
SUB constant or memory ; Subtract operand from accumulator

Because one-address instructions require an operand that isn’t present
in many of the zero-address instructions, individual instructions found on
an accumulator-based machine tend to be larger than those found on a typ-
ical stack-based machine (because you have to encode the operand address
as part of the instruction; see WGC1 for details). However, programs are
often smaller because fewer instructions are needed to do the same thing.
Suppose, for example, you want to compute x = y + z. On a stack machine,
you might use an instruction sequence like the following:

push y
push z
add
pop x

On an accumulator machine, you’d probably use a sequence like this:

lda y
add z
sta x

Assuming that the push and pop instructions are roughly the same size as
the accumulator machine’s lda, add, and sta instructions (a safe assumption),
it’s clear that the stack machine’s instruction sequence is actually longer,
because it requires more instructions. Even ignoring the extra instruction
on the stack machine, the accumulator machine will probably execute the
code faster, because it requires only three memory accesses (to fetch y and z
and to store x), compared with the nine memory accesses the stack machine
will require. Furthermore, the accumulator machine doesn’t waste any time
manipulating the stack pointer register during computation.

Even though accumulator-based machines generally have higher per-
formance than stack-based machines (for reasons you’ve just seen), they’re
not without their own problems. Having only one general-purpose register
available for arithmetic operations creates a bottleneck in the system, result-
ing in data hazards. Many calculations produce temporary results that the
application must write to memory in order to compute other components of
the expression. This leads to extra memory accesses that could be avoided
if the CPU provided additional accumulator registers. Thus, most modern

Arithmetic and Logical Expressions 393

general-purpose CPUs do not use an accumulator-based architecture, but
instead provide a large number of general-purpose registers.

N O T E See WGC1 for a discussion of data hazards.

Accumulator-based architectures were popular in early computer systems
when the manufacturing process limited the number of features within
the CPU, but today you rarely see them outside of low-cost embedded
microcontrollers.

12.1.3 Register-Based Machines
Of the three architectures discussed in this chapter, register-based machines
are the most prevalent today because they offer the highest performance. By pro-
viding a fair number of on-CPU registers, this architecture spares the CPU from
expensive memory accesses during the computation of complex expressions.

In theory, a register-based machine could have as few as two general-
purpose (arithmetic-capable) registers. In practice, about the only machines
that fall into this category are the Motorola 680x processors, which most
people consider to be a special case of the accumulator architecture with
two separate accumulators. Register machines generally contain at least
eight “general-purpose” registers (this number isn’t arbitrary; it’s the num-
ber of general-purpose registers found on the 80x86 CPU, the 8080 CPU,
and the Z80 CPU, which are probably the minimalist examples of what a
computer architect would call a “register-based” machine).

Although some register-based machines (such as the 32-bit 80x86)
have a small number of registers available, a general principle is “the more,
the better.” Typical RISC machines, such as the PowerPC and ARM, have
at least 16 general-purpose registers and often at least 32 registers. Intel’s
Itanium processor, for example, provides 128 general-purpose integer regis-
ters. IBM’s CELL processor provides 128 registers in each of the processing
units found on the device (each processing unit is a mini-CPU capable of
certain operations); a typical CELL processor contains eight such process-
ing units along with a PowerPC CPU core.

The main reason for having as many general-purpose registers as
possible is to avoid memory access. In an accumulator-based machine, the
accumulator is a transient register used for calculations, but you can’t keep
a variable’s value there for long periods of time, because you’ll need the
accumulator for other purposes. In a register machine with a large number
of registers, it’s possible to keep certain (often-used) variables in registers so
you don’t have to access memory at all when using those variables. Consider
the assignment statement x := y+z;. On a register-based machine (such as the
80x86), we could compute this result using the following HLA code:

// Note: Assume x is held in EBX, y is held in ECX,
// and z is held in EDX:

mov(ecx, ebx);
add(edx, ebx);

394 Chapter 12

Only two instructions and no memory accesses (for the variables) are
required here. This is quite a bit more efficient than the accumulator- or
stack-based architectures. From this example, you can see why the register-
based architecture has become prevalent in modern computer systems.

As you’ll see in the following sections, register machines are often
described as either two-address machines or three-address machines,
depending on the particular CPU’s architecture.

12.1.4 Typical Forms of Arithmetic Expressions
Computer architects have studied typical source files extensively, and one
thing they’ve discovered is that a large percentage of assignment statements
take one of the following forms:

var = var2;
var = constant;
var = op var2;
var = var op var2;
var = var2 op var3;

Although other assignments do exist, the set of statements in a pro-
gram that takes one of these forms is generally larger than any other group
of assignment statements. Therefore, computer architects usually optimize
their CPUs to efficiently handle these forms.

12.1.5 Three-Address Architectures
Many machines use a three-address architecture. This means that an arithmetic
statement supports three operands: two source operands and a destination
operand. For example, most RISC CPUs offer an add instruction that will add
together the values of two operands and store the result into a third operand:

add source1, source2, dest

On such architectures, the operands are usually machine registers (or
small constants), so typically you’d write this instruction as follows (assum-
ing you use the names R0, R1, . . . , Rn to denote registers):

add r0, r1, r2 ; computes r2 := r0 + r1

Because RISC compilers attempt to keep variables in registers, this
single instruction handles the last assignment statement given in the pre-
vious section:

var = var2 op var3;

Arithmetic and Logical Expressions 395

Handling an assignment of the form:

var = var op var2;

is also relatively easy—just use the destination register as one of the source
operands, like so:

add r0, r1, r0 ; computes r0 := r0 + r1

The drawback to a three-address architecture is that you must encode
all three operands into each instruction that supports three operands. This
is why three-operand instructions generally operate only upon register
operands. Encoding three separate memory addresses can be quite expen-
sive—just ask any VAX programmer. The DEC VAX computer system is a
good example of a three-address CISC machine.

12.1.6 Two-Address Architectures
The 80x86 architecture is known as a two-address machine. In this architec-
ture, one of the source operands is also the destination operand. Consider
the following 80x86/HLA add instruction:

add(ebx, eax); ; computes eax := eax + ebx;

Two-address machines, such as the 80x86, can handle the first four
forms of the assignment statement given earlier with a single instruction.
The last form, however, requires two or more instructions and a temporary
register. For example, to compute:

var1 = var2 + var3;

you’d need to use the following code (assuming var2 and var3 are memory
variables and the compiler is keeping var1 in the EAX register):

mov(var2, eax);
add(var3, eax); //Result (var1) is in EAX.

12.1.7 Architectural Differences and Your Code
One-address, two-address, and three-address architectures have the follow-
ing hierarchy:

1Address 2Address 3Address

396 Chapter 12

That is, two-address machines are capable of doing anything a one-
address machine can do, and three-address machines are capable of any-
thing one-address or two-address machines can do. The proof is very simple:2

•	 To show that a two-address machine is capable of doing anything a
one-address machine can do, simply choose one register on the two-
address machine and use it as the “accumulator” when simulating a
one-address architecture.

•	 To show that a three-address machine is capable of anything a two-
address machine can do, simply use the same register for one of the
source operands and the destination operand, thereby limiting yourself
to two registers (operands/addresses) for all operations.

Given this hierarchy, you might think that if you limit the code you
write so that it runs well on a one-address machine, you’ll get good results
on all machines. In reality, most general-purpose CPUs available today are
two- or three-address machines, so writing your code to favor a one-address
machine may limit the optimizations that are possible on a two- or three-
address machine. Furthermore, optimization quality varies so widely among
compilers that backing up an assertion like this would be very difficult. You
should probably try to create expressions that take one of the five forms
given earlier (in “Typical Forms of Arithmetic Expressions” on page 394)
if you want your compiler to produce the best possible code. Because most
modern programs run on two- or three-address machines, the remainder
of this chapter assumes that environment.

12.1.8 Complex Expressions
Once your expressions get more complex than the five forms given earlier,
the compiler will have to generate a sequence of two or more instructions to
evaluate them. When compiling the code, most compilers internally trans-
late a complex expression into a sequence of “three-address statements”
that are semantically equivalent to it, as in the following example:

// complex = (a + b) * (c - d) - e/f;

temp1 = a + b;
temp2 = c - d;
temp1 = temp1 * temp2;
temp2 = e / f;
complex = temp1 - temp2;

2. Technically, completing this proof would require showing that you can do things with a
two-address machine that cannot be done with a one-address machine, and that you can do
things with a three-address machine that cannot be done with a two-address machine. I’ll
leave that as an exercise for readers. It’s still a fairly simple proof.

Arithmetic and Logical Expressions 397

As you can see, these five statements are semantically equivalent to the
complex expression appearing in the comment. The major difference in
the computation is the introduction of two temporary values (temp1 and
temp2). Most compilers will attempt to use machine registers to maintain
these temporary values.

Because the compiler internally translates a complex instruction into
a sequence of three-address statements, you may wonder if you can help it
by converting complex expressions into three-address statements yourself.
Well, it depends on your compiler. For many (good) compilers, breaking a
complex calculation into smaller pieces may, in fact, thwart the compiler’s
ability to optimize certain sequences. So, when it comes to arithmetic expres-
sions, most of the time you should do your job (write the code as clearly as
possible) and let the compiler do its job (optimize the result). However, if
you can specify a calculation using a form that naturally converts to a two-
address or three-address form, by all means do so. At the very least, it will
have no effect on the code the compiler generates. At best, under some spe-
cial circumstances, it could help the compiler produce better code. Either
way, the resulting code will probably be easier to read and maintain if it is
less complex.

12.2 Optimization of Arithmetic Statements
Because HLL compilers were originally designed to let programmers use
algebraic-like expressions in their source code, this is one area in computer
science that has been well researched. Most modern compilers that provide
a reasonable optimizer do a decent job of translating arithmetic expressions
into machine code. You can usually assume that the compiler you’re using
doesn’t need a whole lot of help with optimizing arithmetic expressions
(and if it does, you might consider switching to a better compiler instead of
trying to manually optimize the code).

To help you appreciate the job the compiler is doing for you, this sec-
tion discusses some of the typical optimizations you can expect from mod-
ern optimizing compilers. By understanding what a (decent) compiler does,
you can avoid hand-optimizing those things that it is capable of handling.

12.2.1 Constant Folding
Constant folding is an optimization that computes the value of constant
expressions or subexpressions at compile time rather than emitting code to
compute their result at runtime. For example, a Pascal compiler that sup-
ports this optimization would translate a statement of the form i := 5 + 6;
to i := 11; prior to generating machine code for the statement. This saves it
from emitting an add instruction that would have to execute at runtime. As
another example, suppose you want to allocate an array containing 16MB of
storage. One way to do this is as follows:

char bigArray[16777216]; // 16 MB of storage

398 Chapter 12

The only problem with this approach is that 16,777,216 is a magic num-
ber. It represents the value 224 and not some other arbitrary value. Now con-
sider the following C/C++ declaration:

char bigArray[16*1024*1024]; // 16 MB of storage

Most programmers realize that 1,024 times 1,024 is a binary million,
and 16 times this value corresponds to 16 mega-somethings. Yes, you need
to recognize that the subexpression 16*1024*1024 is equivalent to 16,777,216.
But this pattern is easier to recognize as 16MB (at least, when used within
a character array) than 16777216 (or was it 16777214?). In both cases the
amount of storage the compiler allocates is exactly the same, but the second
case is, arguably, more readable. Hence, it is better code.3

Variable declarations aren’t the only place a compiler can use this
optimization. Any arithmetic expression (or subexpression) containing
constant operands is a candidate for constant folding. Therefore, if you can
write an arithmetic expression more clearly by using constant expressions
rather than computing the results by hand, you should definitely go for the
more readable version and leave it up to the compiler to handle the con-
stant calculation at compile time. If your compiler doesn’t support constant
folding, you can certainly simulate it by performing all constant calcula-
tions manually. However, you should do this only as a last resort. Finding a
better compiler is almost always a better choice.

Some good optimizing compilers may take extreme steps when folding
constants. For example, some compilers with a sufficiently high optimiza-
tion level enabled will replace certain function calls, with constant param-
eters, to the corresponding constant value. For example, a compiler might
translate a C/C++ statement of the form sineR = sin(0); to sineR = 0; during
compilation (as the sine of zero radians is 0). This type of constant folding,
however, is not all that common, and you usually have to enable a special
compiler mode to get it.

If you ever have any questions about whether your particular compiler
supports constant folding, have the compiler generate an assembly listing
and look at its output (or view the disassembled output with a debugger).
Here’s a trivial case written in C/C++ (compiled with Visual C++):

#include <stdio.h>
int main(int argc, char **argv)
{
 int i = 16 * 1024 * 1024;
 printf("%d\n", i);
 return 0;
}

3. Of course, using a manifest constant identifier in place of a numeric expression is probably
a better solution here. However, at some point or another you need to actually define the con-
stant value. Using 16*1024*1024 in the definition is better than 16777216.

Arithmetic and Logical Expressions 399

// Assembly output for sequence above (optimizations turned off!)

 mov DWORD PTR i$[rsp], 16777216 ; 01000000H

 mov edx, DWORD PTR i$[rsp]
 lea rcx, OFFSET FLAT:$SG7883
 call printf

Here’s a comparable program written in Java:

public class Welcome
{
 public static void main(String[] args)
 {
 int i = 16 * 1024 * 1024;
 System.out.println(i);
 }
}

// JBC generated by the compiler:

javap -c Welcome
Compiled from "Welcome.java"
public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0

 ; //Method java/lang/Object."<init>":()V
 1: invokespecial #1

 4: return

public static void main(java.lang.String[]);
 Code:
 0: ldc #2; //int 16777216
 2: istore_1

 ; //Field java/lang/System.out:Ljava/io/PrintStream;
 3: getstatic #3

 6: iload_1

 ; //Method java/io/PrintStream.println:(I)V
 7: invokevirtual #4 10: return

}

Note that the ldc #2 instruction pushes a constant from a constant pool
onto the stack. The comment attached to this bytecode instruction explains
that the Java compiler converted 16*1024*1024 into a single constant 16777216.
Java performs the constant folding at compile time rather than computing
this product at runtime.

400 Chapter 12

Here’s the comparable program in Swift, along with the assembly code
emitted for the relevant portion4 of the main program:

import Foundation

var i:Int = 16*1024*1024
print("i=\(i)")

// code produced by
// "xcrun -sdk macosx
// swiftc -O -emit-assembly main.swift -o result.asm"

 movq $16777216, _$S6result1iSivp(%rip)

As you can see, Swift also supports the constant folding optimization.

12.2.2 Constant Propagation
Constant propagation is an optimization a compiler uses to replace a vari-
able access by a constant value if the compiler determines that it’s possible.
For example, a compiler that supports constant propagation will make the
following optimization:

// original code:

 variable = 1234;
 result = f(variable);

// code after constant propagation optimization

 variable = 1234;
 result = f(1234);

In object code, manipulating immediate constants is often more effi-
cient than manipulating variables; therefore, constant propagation often
produces much better code. In some cases, constant propagation also allows
the compiler to eliminate certain variables and statements altogether (in
this example, the compiler could remove variable = 1234; if there are no
later references to the variable object in the source code).

In some cases, well-written compilers can do some outrageous optimiza-
tions involving constant folding. Consider the following C code:

#include <stdio.h>
static int rtn3(void)
{
 return 3;
}

4. Swift generates considerable extra code that has no bearing on the question of whether the
language performs constant folding, so that extra code does not appear here.

Arithmetic and Logical Expressions 401

int main(void)
{
 printf("%d", rtn3() + 2);
 return(0);
}

Here’s the 80x86 output that GCC produces with the -O3 (maximum)
optimization option:

.LC0:
 .string "%d"
 .text
 .p2align 2,,3
.globl main
 .type main,@function
main:
 ; Build main's activation record:

 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 andl $-16, %esp
 subl $8, %esp

 ; Print the result of "rtn3()+5":

 pushl $5 ; Via constant propagation/folding!
 pushl $.LC0
 call printf
 xorl %eax, %eax
 leave
 ret

A quick glance shows that the rtn3() function is nowhere to be found.
With the -O3 command-line option enabled, GCC figured out that rtn3()
simply returns a constant, so it propagates that constant return result every-
where you call rtn3(). In the case of the printf() function call, the combina-
tion of constant propagation and constant folding yielded a single constant,
5, that the code passes on to the printf() function.

As with constant folding, if your compiler doesn’t support constant
propagation you can simulate it manually, but only as a last resort. Again,
finding a better compiler is almost always a better choice.

You can turn on the compiler’s assembly language output to determine
if your compiler support constant propagation. For example, here is Visual
C++’s output (with the /O2 optimization level turned on):

#include <stdio.h>

int f(int a)
{

402 Chapter 12

 return a + 1;
}

int main(int argc, char **argv)
{
 int i = 16 * 1024 * 1024;
 int j = f(i);
 printf("%d\n", j);
}

// Assembly language output for the above code:

main PROC ; COMDAT

$LN6:
 sub rsp, 40 ; 00000028H

 mov edx, 16777217 ; 01000001H
 lea rcx, OFFSET FLAT:??_C@_02DPKJAMEF@?$CFd?$AA@
 call printf

 xor eax, eax
 add rsp, 40 ; 00000028H
 ret 0
main ENDP

As you can see, Visual C++ also eliminated the f() function as well
as the i and j variables. It computed the function result (i+1) at compile
time and substituted the constant 16777217 (16*1024*1024 + 1) for all the
computations.

Here’s an example using Java:

public class Welcome
{
 public static int f(int a) { return a+1;}
 public static void main(String[] args)
 {
 int i = 16 * 1024 * 1024;
 int j = f(i);
 int k = i+1;
 System.out.println(j);
 System.out.println(k);
 }
}

// JBC emitted for this Java source code:

javap -c Welcome
Compiled from "Welcome.java"

Arithmetic and Logical Expressions 403

public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0

 ; //Method java/lang/Object."<init>":()V
 1: invokespecial #1
 4: return

public static int f(int);
 Code:
 0: iload_0
 1: iconst_1
 2: iadd
 3: ireturn

public static void main(java.lang.String[]);
 Code:
 0: ldc #2; //int 16777216
 2: istore_1
 3: iload_1
 4: invokestatic #3; //Method f:(I)I
 7: istore_2
 8: iload_1
 9: iconst_1
 10: iadd
 11: istore_3

 ; //Field java/lang/System.out:Ljava/io/PrintStream;
 12: getstatic #4
 15: iload_2

 ; //Method java/io/PrintStream.println:(I)V
 16: invokevirtual #5

 ; //Field java/lang/System.out:Ljava/io/PrintStream;
 19: getstatic #4
 22: iload_3

 ; //Method java/io/PrintStream.println:(I)V
 23: invokevirtual #5
 26: return

}

A quick review of this Java bytecode shows that the Java compiler (java
version "1.6.0_65") does not support the constant propagation optimization.
Not only did it not eliminate the f() function, but it also doesn’t eliminate
variables i and j, and it passes the value of i to function f() rather than
passing the appropriate constant. One could argue that Java’s bytecode
interpretation dramatically affects performance, so a simple optimization
such as constant propagation won’t impact performance that much.

404 Chapter 12

Here’s the comparable program written in Swift, with the compiler’s
assembly output:

import Foundation

func f(_ a:Int) -> Int
{
 return a + 1
}
let i:Int = 16*1024*1024
let j = f(i)
print("i=\(i), j=\(j)")

// Assembly output via the command:
// xcrun -sdk macosx swiftc -O -emit-assembly main.swift -o result.asm

 movq $16777216, _$S6result1iSivp(%rip)
 movq $16777217, _$S6result1jSivp(%rip)
 .
 . // Lots of code that has nothing to do with the Swift source
 .
 movl $16777216, %edi
 callq _$Ss26_toStringReadOnlyPrintableySSxs06CustomB11ConvertibleRzlFSi_Tg5
 .
 .
 .
 movl $16777217, %edi
 callq _$Ss26_toStringReadOnlyPrintableySSxs06CustomB11ConvertibleRzlFSi_Tg5

The Swift compiler generates a tremendous amount of code in support
of its runtime system, so you can hardly call Swift an optimizing compiler.
That being said, the assembly code that it does generate demonstrates that
Swift supports the constant propagation optimization. It eliminates the
function f() and propagates the constants resulting from the calculations
into the calls that print the values of i and j. It doesn’t eliminate i and j
(probably because of some consistency issues regarding the runtime sys-
tem), but it does propagate the constants through the compiled code.

Given the excessive amount of code that the Swift compiler generates,
it’s questionable whether this optimization is worthwhile. However, even
with all the extra code (too much to print here, so feel free to look at it
yourself), the output still runs faster than interpreted Java code.

12.2.3 Dead Code Elimination
Dead code elimination is the removal of the object code associated with a
particular source code statement if the program never again uses the result
of that statement. Often, this is a result of a programming error. (After
all, why would someone compute a value and not use it?) If a compiler
encounters dead code in the source file, it may warn you to check the logic
of your code. In some cases, however, earlier optimizations can produce
dead code. For example, the constant propagation for the value variable

Arithmetic and Logical Expressions 405

in the earlier example could result in the statement variable = 1234; being
dead. Compilers that support dead code elimination will quietly remove the
object code for this statement from the object file.

As an example of dead code elimination, consider the following C pro-
gram and its corresponding assembly code:

static int rtn3(void)
{
 return 3;
}

int main(void)
{
 int i = rtn3() + 2;

 // Note that this program
 // never again uses the value of i.

 return(0);
}

Here’s the 32-bit 80x86 code GCC emits when supplied the -O3 command-
line option:

.file "t.c"
 .text
 .p2align 2,,3
.globl main
 .type main,@function
main:
 ; Build main's activation record:

 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 andl $-16, %esp

 ; Notice that there is no
 ; assignment to i here.

 ; Return 0 as main's function result.

 xorl %eax, %eax
 leave
 ret

Now consider the 80x86 output from GCC when optimization is
not enabled:

.file "t.c"
 .text
 .type rtn3,@function
rtn3:

406 Chapter 12

 pushl %ebp
 movl %esp, %ebp
 movl $3, %eax
 leave
 ret
.Lfe1:
 .size rtn3,.Lfe1-rtn3
.globl main
 .type main,@function
main:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 andl $-16, %esp
 movl $0, %eax
 subl %eax, %esp

 ; Note the call and computation:

 call rtn3
 addl $2, %eax
 movl %eax, -4(%ebp)

 ; Return 0 as the function result.

 movl $0, %eax
 leave
 ret

In fact, one of the main reasons that program examples throughout
this book call a function like printf() to display various values is to explicitly
use those values to prevent dead code elimination from erasing the code
we’re examining from the assembly output file. If you remove the final
printf() from the C program in many of these examples, most of the assem-
bly code will disappear because of dead code elimination.

Here’s the output from the previous C++ code from Visual C++:

; Listing generated by Microsoft (R) Optimizing Compiler Version 19.00.24234.1

include listing.inc

INCLUDELIB LIBCMT
INCLUDELIB OLDNAMES

PUBLIC main
; Function compile flags: /Ogtpy
; File c:\users\rhyde\test\t\t\t.cpp
_TEXT SEGMENT
main PROC

 xor eax, eax

 ret 0

Arithmetic and Logical Expressions 407

main ENDP
_TEXT ENDS
; Function compile flags: /Ogtpy
; File c:\users\rhyde\test\t\t\t.cpp
_TEXT SEGMENT
rtn3 PROC

 mov eax, 3

 ret 0
rtn3 ENDP
_TEXT ENDS
END

Unlike GCC, Visual C++ did not eliminate the rtn3() function.
However, it did remove the assignment to i—and the call to rtn3()—in
the main program.

Here’s the equivalent Java program and the JBC output:

public class Welcome
{
 public static int rtn3() { return 3;}
 public static void main(String[] args)
 {
 int i = rtn3();
 }
}

// JBC output:

public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0

 ; //Method java/lang/Object."<init>":()V
 1: invokespecial #1
 4: return

public static int rtn3();
 Code:
 0: iconst_3
 1: ireturn

public static void main(java.lang.String[]);
 Code:
 0: invokestatic #2; //Method rtn3:()I
 3: istore_1
 4: return

}

408 Chapter 12

At first blush, it looks like Java does not support dead code elimina-
tion. However, the problem might be that our example code doesn’t trig-
ger this optimization in the compiler. Let’s try something more obvious to
the compiler:

public class Welcome
{
 public static int rtn3() { return 3;}
 public static void main(String[] args)
 {
 if(false)
 { int i = rtn3();
 }
 }
}

// Here's the output bytecode:

Compiled from "Welcome.java"
public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0

 ; //Method java/lang/Object."<init>":()V
 1: invokespecial #1
 4: return

public static int rtn3();
 Code:
 0: iconst_3
 1: ireturn

public static void main(java.lang.String[]);
 Code:
 0: return

}

Now we’ve given the Java compiler something it can chew on. The main
program eliminates the call to rtn3() and the assignment to i. The optimi-
zation isn’t quite as smart as GCC’s or Visual C++’s optimization, but (at
least) for some cases, it works. Unfortunately, without constant propagation,
Java misses many opportunities for dead code elimination.

Here’s the equivalent Swift code for the earlier example:

import Foundation

func rtn3() -> Int
{
 return 3
}
let i:Int = rtn3()

Arithmetic and Logical Expressions 409

// Assembly language output:

_main:
 pushq %rbp
 movq %rsp, %rbp
 movq $3, _$S6result1iSivp(%rip)
 xorl %eax, %eax
 popq %rbp
 retq

 .private_extern _$S6result4rtn3SiyF
 .globl _$S6result4rtn3SiyF
 .p2align 4, 0x90
_$S6result4rtn3SiyF:
 pushq %rbp
 movq %rsp, %rbp
 movl $3, %eax
 popq %rbp
 retq

Note that Swift (at least for this example) does not support dead code
elimination. However, let’s try the same thing we did with Java. Consider
the following code:

import Foundation

func rtn3() -> Int
{
 return 3
}
if false
{
 let i:Int = rtn3()
}

// Assembly output

_main:
 pushq %rbp
 movq %rsp, %rbp
 xorl %eax, %eax
 popq %rbp
 retq

 .private_extern _$S6result4rtn3SiyF
 .globl _$S6result4rtn3SiyF
 .p2align 4, 0x90
_$S6result4rtn3SiyF:
 pushq %rbp
 movq %rsp, %rbp
 movl $3, %eax
 popq %rbp
 retq

410 Chapter 12

Compiling this code produces a list of warnings about the dead code,
but the output demonstrates that Swift does support dead code elimination.
Furthermore, because Swift supports constant propagation as well, it won’t
miss as many opportunities for dead code elimination as Java (though Swift
will need to mature a bit more before it catches up to GCC or Visual C++).

12.2.4 Common Subexpression Elimination
Often, a portion of some expressions—a subexpression—may appear else-
where in the current function. If there are no changes to the values of the
variables appearing in the subexpression, the program doesn’t need to
compute its value twice. Instead, it can save the subexpression’s value on
the first evaluation and then use that value everywhere the subexpression
appears again. For example, consider the following Pascal code:

complex := (a + b) * (c - d) - (e div f);
lessSo := (a + b) - (e div f);
quotient := e div f;

A decent compiler might translate these to the following sequence of
three-address statements:

temp1 := a + b;
temp2 := c - d;
temp3 := e div f;
complex := temp1 * temp2;
complex := complex - temp3;
lessSo := temp1 - temp3;
quotient := temp3;

Although the former statements use the subexpression (a + b) twice
and the subexpression (e div f) three times, the three-address code
sequence computes these subexpressions only once and uses their values
when the common subexpressions appear later.

As another example, consider the following C/C++ code:

#include <stdio.h>

static int i, j, k, m, n;
static int expr1, expr2, expr3;

extern int someFunc(void);

int main(void)
{
 // The following is a trick to
 // confuse the optimizer. When we call
 // an external function, the optimizer
 // knows nothing about the value this
 // function returns, so it cannot optimize
 // the values away. This is done to demonstrate
 // the optimizations that this example is

Arithmetic and Logical Expressions 411

 // trying to show (that is, the compiler
 // would normally optimize away everything
 // and we wouldn't see the code the optimizer
 // would produce in a real-world example without
 // the following trick).

 i = someFunc();
 j = someFunc();
 k = someFunc();
 m = someFunc();
 n = someFunc();

 expr1 = (i+j) * (k*m+n);
 expr2 = (i+j);
 expr3 = (k*m+n);

 printf("%d %d %d", expr1, expr2, expr3);
 return(0);
}

Here’s the 32-bit 80x86 assembly file that GCC generates (with the -O3
option) for the preceding C code:

.file "t.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "%d %d %d"
 .text
 .p2align 2,,3
.globl main
 .type main,@function
main:
 ; Build the activation record:

 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 andl $-16, %esp

 ; Initialize i, j, k, m, and n:

 call someFunc
 movl %eax, i
 call someFunc
 movl %eax, j
 call someFunc
 movl %eax, k
 call someFunc
 movl %eax, m
 call someFunc ;n's value is in EAX.

 ; Compute EDX = k*m+n
 ; and ECX = i+j

412 Chapter 12

 movl m, %edx
 movl j, %ecx
 imull k, %edx
 addl %eax, %edx
 addl i, %ecx

 ; EDX is expr3, so push it
 ; on the stack for printf

 pushl %edx

 ; Save away n's value:

 movl %eax, n
 movl %ecx, %eax

 ; ECX is expr2, so push it onto
 ; the stack for printf:

 pushl %ecx

 ; expr1 is the product of the
 ; two subexpressions (currently
 ; held in EDX and EAX), so compute
 ; their product and push the result
 ; for printf.

 imull %edx, %eax
 pushl %eax

 ; Push the address of the format string
 ; for printf:

 pushl $.LC0

 ; Save the variable's values and then
 ; call printf to print the values

 movl %eax, expr1
 movl %ecx, expr2
 movl %edx, expr3
 call printf

 ; Return 0 as the main function's result:

 xorl %eax, %eax
 leave
 ret

Note how the compiler maintains the results of the common sub-
expressions in various registers (see the comments in the assembly output
for details).

Arithmetic and Logical Expressions 413

Here’s the (64-bit) output from Visual C++:

_TEXT SEGMENT
main PROC

$LN4:
 sub rsp, 40 ; 00000028H

 call someFunc
 mov DWORD PTR i, eax

 call someFunc
 mov DWORD PTR j, eax

 call someFunc
 mov DWORD PTR k, eax

 call someFunc
 mov DWORD PTR m, eax

 call someFunc

 mov r9d, DWORD PTR m

 lea rcx, OFFSET FLAT:$SG7892
 imul r9d, DWORD PTR k
 mov r8d, DWORD PTR j
 add r8d, DWORD PTR i
 mov edx, r8d
 mov DWORD PTR n, eax
 mov DWORD PTR expr2, r8d
 add r9d, eax
 imul edx, r9d
 mov DWORD PTR expr3, r9d
 mov DWORD PTR expr1, edx
 call printf

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP
_TEXT ENDS

Because of the extra registers available on the x86-64, Visual C++ was
able to keep all the temporaries in registers and did an even better job of
reusing precomputed values for common subexpressions.

If the compiler you’re using doesn’t support common subexpression
optimizations (you can determine this by examining the assembly output),
chances are pretty good that its optimizer is subpar, and you should con-
sider using a different compiler. However, in the meantime, you can always

414 Chapter 12

explicitly code this optimization yourself. Consider this version of the for-
mer C code, which manually computes common subexpressions:

#include <stdio.h>

static int i, j, k, m, n;
static int expr1, expr2, expr3;
static int ijExpr, kmnExpr;

extern int someFunc(void);

int main(void)
{
 // The following is a trick to
 // confuse the optimizer. By calling
 // an external function, the optimizer
 // knows nothing about the value this
 // function returns, so it cannot optimize
 // the values away because of constant propagation.

 i = someFunc();
 j = someFunc();
 k = someFunc();
 m = someFunc();
 n = someFunc();

 ijExpr = i+j;
 kmnExpr = (k*m+n);
 expr1 = ijExpr * kmnExpr;
 expr2 = ijExpr;
 expr3 = kmnExpr;

 printf("%d %d %d", expr1, expr2, expr3);
 return(0);
}

Of course, there was no reason to create the ijExpr and kmnExpr vari-
ables, as we could have simply used the expr2 and expr3 variables for this
purpose. However, this code was written to make the changes to the origi-
nal program as obvious as possible.

Here’s the similar Java code:

public class Welcome
{
 public static int someFunc() { return 1;}
 public static void main(String[] args)
 {
 int i = someFunc();
 int j = someFunc();
 int k = someFunc();
 int m = someFunc();
 int n = someFunc();

Arithmetic and Logical Expressions 415

 int expr1 = (i + j) * (k*m + n);
 int expr2 = (i + j);
 int expr3 = (k*m + n);
 }
}

// JBC output

public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0

 ; //Method java/lang/Object."<init>":()V
 1: invokespecial #1
 4: return

public static int someFunc();
 Code:
 0: iconst_1
 1: ireturn

public static void main(java.lang.String[]);
 Code:
 0: invokestatic #2; //Method someFunc:()I
 3: istore_1
 4: invokestatic #2; //Method someFunc:()I
 7: istore_2
 8: invokestatic #2; //Method someFunc:()I
 11: istore_3
 12: invokestatic #2; //Method someFunc:()I
 15: istore 4
 17: invokestatic #2; //Method someFunc:()I
 20: istore 5
; iexpr1 = (i + j) * (k*m + n);
 22: iload_1
 23: iload_2
 24: iadd
 25: iload_3
 26: iload 4
 28: imul
 29: iload 5
 31: iadd
 32: imul
 33: istore 6
; iexpr2 = (i+j)
 35: iload_1
 36: iload_2
 37: iadd
 38: istore 7
; iexpr3 = (k*m + n)
 40: iload_3
 41: iload 4
 43: imul
 44: iload 5

416 Chapter 12

 46: iadd
 47: istore 8
 49: return

}

Notice that Java does not optimize common subexpressions; instead, it
recomputes the subexpressions each time it encounters them. Therefore,
you should manually compute the values of common subexpressions when
writing Java code.

Here’s a variant of the current example in Swift (along with the assem-
bly output):

import Foundation

func someFunc() -> UInt32
{
 return arc4random_uniform(100)
}
let i = someFunc()
let j = someFunc()
let k = someFunc()
let m = someFunc()
let n = someFunc()

let expr1 = (i+j) * (k*m+n)
let expr2 = (i+j)
let expr3 = (k*m+n)
print("\(expr1), \(expr2), \(expr3)")

// Assembly output for the above expressions:

; Code for the function calls:

 movl $0x64, %edi
 callq arc4random_uniform
 movl %eax, %ebx ; EBX = i
 movl %ebx, _$S6result1is6UInt32Vvp(%rip)
 callq _arc4random
 movl %eax, %r12d ; R12d = j
 movl %r12d, _$S6result1js6UInt32Vvp(%rip)
 callq _arc4random
 movl %eax, %r14d ; R14d = k
 movl %r14d, _$S6result1ks6UInt32Vvp(%rip)
 callq _arc4random
 movl %eax, %r15d ; R15d = m
 movl %r15d, _$S6result1ms6UInt32Vvp(%rip)
 callq _arc4random
 movl %eax, %esi ; ESI = n
 movl %esi, _$S6result1ns6UInt32Vvp(%rip)

; Code for the expressions:

 addl %r12d, %ebx ; R12d = i + j (which is expr2)

Arithmetic and Logical Expressions 417

 jb LBB0_11 ; Branch if overflow occurs

 movl %r14d, %eax ;
 mull %r15d
 movl %eax, %ecx ; ECX = k*m
 jo LBB0_12 ; Bail if overflow
 addl %esi, %ecx ; ECX = k*m + n (which is expr3)
 jb LBB0_13 ; Bail if overflow

 movl %ebx, %eax
 mull %ecx ; expr1 = (i+j) * (k*m+n)
 jo LBB0_14 ; Bail if overflow
 movl %eax, _$S6result5expr1s6UInt32Vvp(%rip)
 movl %ebx, _$S6result5expr2s6UInt32Vvp(%rip)
 movl %ecx, _$S6result5expr3s6UInt32Vvp(%rip)

If you carefully read through this code, you can see the Swift compiler
properly optimizes away the common subexpressions and computes each
subexpression only once.

12.2.5 Strength Reduction
Often, the CPU can directly compute some value using a different opera-
tor than the source code specifies, thereby replacing a more complex (or
stronger) instruction with a simpler instruction. For example, a shift opera-
tion can implement multiplication or division by a constant that is a power
of 2, and certain modulo (remainder) operations are possible using a bit-
wise and instruction (the shift and and instructions generally execute much
faster than multiply and divide instructions). Most compiler optimizers are
good at recognizing such operations and replacing the more expensive
computation with a less expensive sequence of machine instructions. To see
strength reduction in action, consider this C code and the 80x86 GCC out-
put that follows it:

#include <stdio.h>

unsigned i, j, k, m, n;

extern unsigned someFunc(void);
extern void preventOptimization(unsigned arg1, ...);

int main(void)
{
 // The following is a trick to
 // confuse the optimizer. By calling
 // an external function, the optimizer
 // knows nothing about the value this
 // function returns, so it cannot optimize
 // the values away.

 i = someFunc();
 j = i * 2;
 k = i % 32;

418 Chapter 12

 m = i / 4;
 n = i * 8;

 // The following call to "preventOptimization" is done
 // to trick the compiler into believing the above results
 // are used somewhere (GCC will eliminate all the code
 // above if you don't actually use the computed result,
 // and that would defeat the purpose of this example).

 preventOptimization(i,j,k,m,n);
 return(0);
}

Here’s the resulting 80x86 code generated by GCC:

.file "t.c"
 .text
 .p2align 2,,3
.globl main
 .type main,@function
main:
 ; Build main's activation record:

 pushl %ebp
 movl %esp, %ebp
 pushl %esi
 pushl %ebx
 andl $-16, %esp

 ; Get i's value into EAX:

 call someFunc

 ; compute i*8 using the scaled-
 ; indexed addressing mode and
 ; the LEA instruction (leave
 ; n's value in EDX):

 leal 0(,%eax,8), %edx

 ; Adjust stack for call to
 ; preventOptimization:

 subl $12, %esp

 movl %eax, %ecx ; ECX = i
 pushl %edx ; Push n for call
 movl %eax, %ebx ; Save i in k
 shrl $2, %ecx ; ECX = i/4 (m)
 pushl %ecx ; Push m for call

 andl $31, %ebx ; EBX = i % 32
 leal (%eax,%eax), %esi ;j=i*2

Arithmetic and Logical Expressions 419

 pushl %ebx ; Push k for call
 pushl %esi ; Push j for call
 pushl %eax ; Push i for call
 movl %eax, i ; Save values in memory
 movl %esi, j ; variables.
 movl %ebx, k
 movl %ecx, m
 movl %edx, n
 call preventOptimization

 ; Clean up the stack and return
 ; 0 as main's result:

 leal -8(%ebp), %esp
 popl %ebx
 xorl %eax, %eax
 popl %esi
 leave
 ret
.Lfe1:
 .size main,.Lfe1-main
 .comm i,4,4
 .comm j,4,4
 .comm k,4,4
 .comm m,4,4
 .comm n,4,4

In this 80x86 code, note that GCC never emitted a multiplication or
division instruction, even though the C code used these two operators
extensively. GCC replaced each of these (expensive) operations with less
expensive address calculations, shifts, and logical AND operations.

This C example declared its variables as unsigned rather than as int.
There’s a very good reason for this modification: strength reduction pro-
duces more efficient code for certain unsigned operands than it does
for signed operands. This is a very important point: if you have a choice
between using either signed or unsigned integer operands, always try to use
unsigned values, because compilers can often generate better code when
processing unsigned operands. To see the difference, here’s the previous C
code rewritten using signed integers, followed by GCC’s 80x86 output:

#include <stdio.h>

int i, j, k, m, n;

extern int someFunc(void);
extern void preventOptimization(int arg1, ...);

int main(void)
{
 // The following is a trick to
 // confuse the optimizer. By calling
 // an external function, the optimizer
 // knows nothing about the value this

420 Chapter 12

 // function returns, so it cannot optimize
 // the values away. That is, this prevents
 // constant propagation from computing all
 // the following values at compile time.

 i = someFunc();
 j = i * 2;
 k = i % 32;
 m = i / 4;
 n = i * 8;

 // The following call to "preventOptimization"
 // prevents dead code elimination of all the
 // preceding statements.

 preventOptimization(i,j,k,m,n);
 return(0);
}

Here is GCC’s (32-bit) 80x86 assembly output for this C code:

.file "t.c"
 .text
 .p2align 2,,3
 .globl main
 .type main,@function
main:
 ; Build main's activation record:

 pushl %ebp
 movl %esp, %ebp
 pushl %esi
 pushl %ebx
 andl $-16, %esp

 ; Call someFunc to get i's value:

 call someFunc
 leal (%eax,%eax), %esi ; j = i * 2
 testl %eax, %eax ; Test i's sign
 movl %eax, %ecx
 movl %eax, i
 movl %esi, j
 js .L4

; Here's the code we execute if i is non-negative:

.L2:
 andl $-32, %eax ; MOD operation
 movl %ecx, %ebx
 subl %eax, %ebx
 testl %ecx, %ecx ; Test i's sign
 movl %ebx, k
 movl %ecx, %eax

Arithmetic and Logical Expressions 421

 js .L5
.L3:
 subl $12, %esp
 movl %eax, %edx
 leal 0(,%ecx,8), %eax ; i*8
 pushl %eax
 sarl $2, %edx ; Signed div by 4
 pushl %edx
 pushl %ebx
 pushl %esi
 pushl %ecx
 movl %eax, n
 movl %edx, m
 call preventOptimization
 leal -8(%ebp), %esp
 popl %ebx
 xorl %eax, %eax
 popl %esi
 leave
 ret
 .p2align 2,,3

; For signed division by 4,
; using a sarl operation, we need
; to add 3 to i's value if i was
; negative.

.L5:
 leal 3(%ecx), %eax
 jmp .L3
 .p2align 2,,3

; For signed % operation, we need to
; first add 31 to i's value if it was
; negative to begin with:

.L4:
 leal 31(%eax), %eax
 jmp .L2

The difference in these two coding examples demonstrates why you
should opt for unsigned integers (over signed integers) whenever you don’t
absolutely need to deal with negative numbers.

Attempting strength reduction manually is risky. While certain opera-
tions (like division) are almost always slower than others (like shifting to
the right) on most CPUs, many strength reduction optimizations are not
portable across CPUs. That is, substituting a left shift operation for mul-
tiplication may not always produce faster code when you compile for dif-
ferent CPUs. Some older C programs contain manual strength reductions
that were originally added to improve performance. Today, those strength
reductions can actually cause the programs to run slower than they should.
Be very careful about incorporating strength reductions directly into your
HLL code—this is one area where you should let the compiler do its job.

422 Chapter 12

12.2.6 Induction
In many expressions, particularly those appearing within a loop, the value
of one variable in the expression is completely dependent on some other
variable. As an example, consider the following for loop in Pascal:

for i := 0 to 15 do begin

 j := i * 2;
 vector[j] := j;
 vector[j+1] := j + 1;

end;

A compiler’s optimizer may recognize that j is completely dependent on
the value of i and rewrite this code as follows:

ij := 0; {ij is the combination of i and j from
 the previous code}
while(ij < 32) do begin

 vector[ij] := ij;
 vector[ij+1] := ij + 1;
 ij := ij + 2;

end;

This optimization saves some work in the loop (specifically, the compu-
tation of j := i * 2).

As another example, consider the following C code and the MASM out-
put that Microsoft’s Visual C++ compiler produces:

extern unsigned vector[32];

extern void someFunc(unsigned v[]);
extern void preventOptimization(int arg1, ...);

int main(void)
{

 unsigned i, j;

 // "Initialize" vector (or, at least,
 // make the compiler believe this is
 // what's going on):

 someFunc(vector);

 // For loop to demonstrate induction:

 for(i=0; i<16; ++i)
 {

Arithmetic and Logical Expressions 423

 j = i * 2;
 vector[j] = j;
 vector[j+1] = j+1;
 }

 // The following prevents dead code elimination
 // of the former calculations:

 preventOptimization(vector[0], vector[15]);
 return(0);
}

Here’s the MASM (32-bit 80x86) output from Visual C++:

_main PROC

 push OFFSET _vector
 call _someFunc
 add esp, 4
 xor edx, edx

 xor eax, eax
$LL4@main:

 lea ecx, DWORD PTR [edx+1] ; ECX = j+1
 mov DWORD PTR _vector[eax], edx ; EDX = j
 mov DWORD PTR _vector[eax+4], ecx

; Each time through the loop, bump j up by 2 (i*2)

 add edx, 2

; Add 8 to index into vector, as we are filling two elements
; on each loop.

 add eax, 8

; Repeat until we reach the end of the array.

 cmp eax, 128 ; 00000080H
 jb SHORT $LL4@main

 push DWORD PTR _vector+60
 push DWORD PTR _vector
 call _preventOptimization
 add esp, 8

 xor eax, eax

 ret 0
_main ENDP
_TEXT ENDS

424 Chapter 12

As you can see in this MASM output, the Visual C++ compiler recog-
nizes that i is not used in this loop. There are no calculations involving i,
and it’s completely optimized away. Furthermore, there’s no j = i * 2 com-
putation. Instead, the compiler uses induction to determine that j increases
by 2 on each iteration, and emits the code to do this rather than computing
the value of j value from i. Finally, note that the compiler doesn’t index
into the vector array. Instead, it marches a pointer through the array on
each iteration of the loop—once again using induction to produce a faster
and shorter code sequence than you’d get without this optimization.

As for common subexpressions, you can manually incorporate induc-
tion optimization into your programs. The result is almost always harder to
read and understand, but if your compiler’s optimizer fails to produce good
machine code in a section of your program, manual optimization is always
an option.

Here’s the Java variation of this example and the JBC output:

public class Welcome
{
 public static void main(String[] args)
 {
 int[] vector = new int[32];
 int j;
 for (int i = 0; i<16; ++i)
 {
 j = i * 2;
 vector[j] = j;
 vector[j + 1] = j + 1;
 }
 }
}

// JBC:

Compiled from "Welcome.java"
public class Welcome extends java.lang.Object{
public Welcome();
 Code:
 0: aload_0

 ; //Method java/lang/Object."<init>":()V
 1: invokespecial #1
 4: return

public static void main(java.lang.String[]);
 Code:
; Create vector array:

 0: bipush 16
 2: newarray int
 4: astore_1

; i = 0 -- for(int i=0;...;...)

Arithmetic and Logical Expressions 425

 5: iconst_0
 6: istore_3

; If i >= 16, exit loop -- for(...;i<16;...)

 7: iload_3
 8: bipush 16
 10: if_icmpge 35

; j = i * 2

 13: iload_3
 14: iconst_2
 15: imul
 16: istore_2

; vector[j] = j

 17: aload_1
 18: iload_2
 19: iload_2
 20: iastore

; vector[j+1] = j + 1

 21: aload_1
 22: iload_2
 23: iconst_1
 24: iadd
 25: iload_2
 26: iconst_1
 27: iadd
 28: iastore

; Next iteration of loop -- for(...;...; ++i)

 29: iinc 3, 1
 32: goto 7

; exit program here.

 35: return

}

It’s probably obvious that Java doesn’t optimize this code at all. If you
want better code, you’ll have to manually optimize it:

for (j = 0; j < 32; j = j + 2)
{
 vector[j] = j;
 vector[j + 1] = j + 1;
}

426 Chapter 12

 Code:
; Create array:

 0: bipush 16
 2: newarray int
 4: astore_1

; for(int j = 0;...;...)

 5: iconst_0
 6: istore_2

; if j >= 32, bail -- for(...;j<32;...)

 7: iload_2
 8: bipush 32
 10: if_icmpge 32

; vector[j] = j

 13: aload_1
 14: iload_2
 15: iload_2
 16: iastore

; vector[j + 1] = j + 1

 17: aload_1
 18: iload_2
 19: iconst_1
 20: iadd
 21: iload_2
 22: iconst_1
 23: iadd
 24: iastore

; j += 2 -- for(...;...; j += 2)

 25: iload_2
 26: iconst_2
 27: iadd
 28: istore_2
 29: goto 7

 32: return

As you can see, Java isn’t the best language choice if you’re interested
in producing optimized runtime code. Perhaps Java’s authors felt that as a
result of the interpreted bytecode execution, there was no real reason to
try to optimize the compiler’s output, or perhaps they felt that optimization
was the JIT compiler’s responsibility.

Arithmetic and Logical Expressions 427

12.2.7 Loop Invariants
The optimizations shown so far have all been techniques a compiler can use
to improve code that is already well written. Handling loop invariants, by
contrast, is a compiler optimization for fixing bad code. A loop invariant is
an expression that does not change on each iteration of some loop. The fol-
lowing Visual Basic code demonstrates a trivial loop-invariant calculation:

i = 5
for j = 1 to 10
 k = i*2
next j

The value of k does not change during the loop’s execution. Once the
loop completes execution, k’s value is exactly the same as if the calculation
of k had been moved before or after the loop. For example:

i = 5
k = i * 2
for j = 1 to 10
next j
rem At this point, k will contain the same
rem value as in the previous example

The difference between these two code fragments, of course, is that
the second example computes the value k = i * 2 only once rather than on
each iteration of the loop.

Many compilers’ optimizers will spot a loop-invariant calculation and
use code motion to move it outside the loop. As an example of this operation,
consider the following C program and its corresponding output:

extern unsigned someFunc(void);
extern void preventOptimization(unsigned arg1, ...);

int main(void)
{
 unsigned i, j, k, m;

 k = someFunc();
 m = k;
 for(i = 0; i < k; ++i)
 {
 j = k + 2; // Loop-invariant calculation
 m += j + i;
 }
 preventOptimization(m, j, k, i);
 return(0);
}

428 Chapter 12

Here’s the 80x86 MASM code emitted by Visual C++:

_main PROC NEAR ; COMDAT
; File t.c
; Line 5
 push ecx
 push esi
; Line 8
 call _someFunc
; Line 10
 xor ecx, ecx ; i = 0
 test eax, eax ; see if k == 0
 mov edx, eax ; m = k
 jbe SHORT $L108
 push edi

; Line 12
; Compute j = k + 2, but only execute this
; once (code was moved out of the loop):

 lea esi, DWORD PTR [eax+2] ; j = k + 2

; Here's the loop the above code was moved
; out of:

$L99:
; Line 13
 ; m(edi) = j(esi) + i(ecx)

 lea edi, DWORD PTR [esi+ecx]
 add edx, edi

 ; ++i
 inc ecx

 ; While i < k, repeat:

 cmp ecx, eax
 jb SHORT $L99

 pop edi
; Line 15
;
; This is the code after the loop body:

 push ecx
 push eax
 push esi
 push edx
 call _preventOptimization
 add esp, 16 ; 00000010H
; Line 16
 xor eax, eax
 pop esi

Arithmetic and Logical Expressions 429

; Line 17
 pop ecx
 ret 0
$L108:
; Line 10
 mov esi, DWORD PTR _j$[esp+8]
; Line 15
 push ecx
 push eax
 push esi
 push edx
 call _preventOptimization
 add esp, 16 ; 00000010H
; Line 16
 xor eax, eax
 pop esi
; Line 17
 pop ecx
 ret 0
_main ENDP

As you can see by reading the comments in the assembly code, the loop-
invariant expression j = k + 2 was moved out of the loop and executed
prior to the start of the loop’s code, saving some execution time on each
iteration of the loop.

Unlike most optimizations, which you should leave up to the compiler
if possible, you should move all loop-invariant calculations out of a loop
unless there’s a justifiable reason for leaving them there. Loop-invariant
calculations raise questions for someone reading your code (“Isn’t this sup-
posed to change in the loop?”), because their presence actually makes the
code harder to read and understand. If you want to leave the invariant code
in the loop for some reason, be sure to comment your justification for any-
one looking at your code later.

12.2.8 Optimizers and Programmers
HLL programmers fall into three groups based on their understanding of
these compiler optimizations:

•	 The first group is unaware of how compiler optimizations work, and
they write their code without considering the effect that their code
organization will have on the optimizer.

•	 The second group understands how compiler optimizations work, so
they write their code to be more readable. They assume that the opti-
mizer will handle issues such as converting multiplication and division
to shifts (where appropriate) and preprocessing constant expressions.
This second group places a fair amount of faith in the compiler’s ability
to correctly optimize their code.

430 Chapter 12

•	 The third group is also aware of the general types of optimizations that
compilers can do, but they don’t trust the compilers to do the optimiza-
tion for them. Instead, they manually incorporate those optimizations
into their code.

Interestingly enough, compiler optimizers are actually designed for the
first group of programmers, those who are ignorant of how the compiler
operates. Therefore, a good compiler will usually produce roughly the same
quality of code for all three types of programmers (at least with respect
to arithmetic expressions). This is particularly true when you compile the
same program across different compilers. However, keep in mind that this
assertion is valid only for compilers that have decent optimization capabili-
ties. If you have to compile your code on a large number of compilers and
you can’t be confident that all of them have good optimizers, manual opti-
mization may be one way to achieve consistently good performance across
all compilers.

Of course, the real question is, “Which compilers are good, and which
are not?” It would be nice to provide a table or chart in this book that
describes the optimization capabilities of all the different compilers you
might encounter, but unfortunately, the rankings change as compiler
vendors improve their products, so anything printed here would rapidly
become obsolete.5 Fortunately, there are several websites that try to keep
up-to-date comparisons of compilers.

12.3 Side Effects in Arithmetic Expressions
You’ll definitely want to give a compiler some guidance with respect to
side effects that may occur in an expression. If you don’t understand how
compilers deal with side effects in arithmetic expressions, you might write
code that doesn’t always produce correct results, particularly when moving
source code between different compilers. Wanting to write the fastest or the
smallest possible code is all well and good, but if it doesn’t produce the cor-
rect answer any optimizations you make on the code are all for naught.

A side effect is any modification to the global state of a program outside
the immediate result a piece of code is producing. The primary purpose
of an arithmetic expression is to produce the expression’s result. Any other
change to the system’s state in an expression is a side effect. The C, C++,
C#, Java, Swift, and other C-based languages are especially guilty of allow-
ing side effects in an arithmetic expression. For example, consider the fol-
lowing C code fragment:

i = i + *pi++ + (j = 2) * --k

5. Indeed, for the second edition of this book I had to replace many of the assembly output
listings from the compilers.

Arithmetic and Logical Expressions 431

This expression exhibits four separate side effects:

•	 The decrement of k at the end of the expression

•	 The assignment to j prior to using j’s value

•	 The increment of the pointer pi after dereferencing pi

•	 The assignment to i6

Although few non–C-based languages provide as many ways to create
side effects in arithmetic expressions as C does, most languages do allow
you to create side effects within an expression via a function call. Side
effects in functions are useful, for example, when you need to return more
than a single value as a function result in languages that don’t directly sup-
port this capability. Consider the following Pascal code fragment:

var
 k:integer;
 m:integer;
 n:integer;

function hasSideEffect(i:integer; var j:integer):integer;
begin

 k := k + 1;
 hasSideEffect := i + j;
 j := i;

end;
 .
 .
 .
 m := hasSideEffect(5, n);

In this example, the call to the hasSideEffect() function produces two
different side effects:

•	 The modification of the global variable k.

•	 The modification of the pass-by-reference parameter j (the actual
parameter is n in this code fragment).

The real purpose of the function is to compute its return result. Any
modification of global values or reference parameters constitutes a side
effect of that function; hence, invoking that function within an expres-
sion produces side effects. Any language that allows you to modify global
values (either directly or through parameters) from a function is capable
of producing side effects within an expression; this concept is not limited
to Pascal programs.

6. Generally, if we converted this expression to a stand-alone statement by placing a semicolon
after it, we’d consider the assignment to i to be the purpose of the statement, not a side effect.

432 Chapter 12

The problem with side effects in an expression is that most languages
do not guarantee the order of evaluation of the components that make up
an expression. Many novice programmers incorrectly assume that when
they write an expression such as the following:

i := f(x) + g(x);

the compiler will emit code that first calls function f() and then calls func-
tion g(). Very few programming languages, however, require this order of
execution. That is, some compilers will indeed call f(), then g(), and add
their return results together. Other compilers, however, will call g() first,
then f(), and compute the sum of the function return results. That is, the
compiler could translate this expression into either of the following simpli-
fied code sequences before actually generating native machine code:

{ Conversion #1 for "i := f(x) + g(x);" }

 temp1 := f(x);
 temp2 := g(x);
 i := temp1 + temp2;

{ Conversion #2 for "i := f(x) + g(x);" }

 temp1 := g(x);
 temp2 := f(x);
 i := temp2 + temp1;

These two different function call sequences could produce completely
different results if f() or g() produces a side effect. For example, if func-
tion f() modifies the value of the x parameter you pass to it, the preceding
sequence could produce different results.

Note that issues such as precedence, associativity, and commutativity
have no bearing on whether the compiler evaluates one subcomponent of
an expression before another.

For example, consider the following arithmetic expression and several
possible intermediate forms for the expression:

 j := f(x) - g(x) * h(x);

{ Conversion #1 for this expression: }

 temp1 := f(x);
 temp2 := g(x);
 temp3 := h(x);
 temp4 := temp2 * temp3
 j := temp1 - temp4;

{ Conversion #2 for this expression: }

 temp2 := g(x);
 temp3 := h(x);

Arithmetic and Logical Expressions 433

 temp1 := f(x);
 temp4 := temp2 * temp3
 j := temp1 - temp4;

{ Conversion #3 for this expression: }

 temp3 := h(x);
 temp1 := f(x);
 temp2 := g(x);
 temp4 := temp2 * temp3
 j := temp1 - temp4;

Other combinations are also possible.
The specifications for most programming languages explicitly leave the

order of evaluation undefined. This may seem somewhat bizarre, but there’s
a good reason for it: sometimes the compiler can produce better machine
code by rearranging the order in which it evaluates certain subexpressions
within an expression. Any attempt by the language designer to force a par-
ticular order of evaluation on a compiler’s implementer, therefore, could
limit the range of optimizations possible.

There are, of course, certain rules that most languages do enforce.
Probably the most common rule is that all side effects within an expression
will occur prior to the completion of that statement’s execution. For example,
if the function f() modifies the global variable x, then the following state-
ments will always print the value of x after f() modifies it:

i := f(x);
writeln("x=", x);

Another rule you can count on is that the assignment to a variable on
the left-hand side of an assignment statement does not occur prior to the
use of that same variable on the right-hand side of the expression. That is,
the following code won’t store the result of the expression into variable n
until it uses the previous value of n within the expression:

n := f(x) + g(x) - n;

Because the order of the production of side effects within an expres-
sion is undefined in most languages, the result of the following code is gen-
erally undefined (in Pascal):

function incN:integer;
begin
 incN := n;
 n := n + 1;
end;
 .
 .
 .
 n := 2;
 writeln(incN + n*2);

434 Chapter 12

The compiler is free to call the incN() function first (so n will contain
3 prior to executing the subexpression n * 2), or it can compute n * 2 first
and then call the incN() function. As a result, one compilation of this state-
ment could produce the output 8, while a different compilation might
produce 6. In both cases, n would contain 3 after the writeln statement is
executed, but the order of computation of the expression in the writeln
statement could vary.

Don’t make the mistake of thinking you can run some experiments to
determine the order of evaluation. At the very best, such experiments will
tell you only the order a particular compiler uses. A different compiler may
well compute subexpressions in a different order. In fact, the same compiler
might also compute the components of a subexpression differently based
on the context of that subexpression. This means that a compiler might
compute the result using one ordering at one point in the program and
using a different ordering somewhere else in the same program. This is why
it’s dangerous to “determine” the ordering your particular compiler uses
and rely on that ordering. Even if the compiler is consistent in the order it
uses to compute side effects, the compiler vendor could change the order-
ing in a later version. If you must depend upon the order of evaluation, first
break the expression down into a sequence of simpler statements whose
computational order you can control. For example, if you really need to
have your program call f() before g() in this statement:

i := f(x) + g(x);

then you should write the code this way:

temp1 := f(x);
temp2 := g(x);
i := temp1 + temp2;

If you must control the order of evaluation within an expression, take
special care to ensure that all side effects are computed at the appropriate
time. To do this, you need to learn about sequence points.

12.4 Containing Side Effects: Sequence Points
As noted earlier, most languages guarantee that the computation of side
effects completes before certain points, known as sequence points, in your
program’s execution. For example, almost every language guarantees that
all side effects will be computed by the time the statement containing the
expression completes execution. The end of a statement is an example of
a sequence point.

Arithmetic and Logical Expressions 435

The C programming language provides several important sequence
points within expressions, in addition to the semicolon at the end of a state-
ment. C defines sequence points between each of the following operators:

expression1, expression2 (comma operator in an expression)
expression1 && expression2 (logical AND operator)
expression1 || expression2 (logical OR operator)
expression1 ? expression2 : expression3 (conditional expression operator)

In these examples, C7 guarantees that all side effects in expression1 are
completed before the computation of expression2 or expression3. Note that for
the conditional expression, C evaluates only one of expression2 or expression3
so the side effects of only one of these subexpressions ever occurs on a given
execution of the conditional expression. Similarly, short-circuit evaluation
may cause only expression1 to evaluate in the && and || operations. So, take
care when using the last three forms.

To understand how side effects and sequence points can affect the
operation of your program, consider the following example in C:

int array[6] = {0, 0, 0, 0, 0, 0};
int i;
 .
 .
 .
i = 0;
array[i] = i++;

Note that C does not define a sequence point across the assignment
operator. Therefore, the language makes no guarantees about the value
of the expression i it uses as an index. The compiler can choose to use the
value of i before or after indexing into array. That the ++ operator is a post-
increment operation implies only that i++ returns the value of i prior to the
increment; it doesn’t guarantee that the compiler will use the pre-increment
value of i anywhere else in the expression. The bottom line is that the last
statement in this example could be semantically equivalent to either of the
following statements:

 array[0] = i++;
-or-
 array[1] = i++;

The C language definition allows either form; it doesn’t require the first
form simply because the array index appears in the expression before the
post-increment operator.

7. Modern C++ compilers generally provide the same sequence points as C, although the
original C++ standard did not define any sequence points.

436 Chapter 12

To control the assignment to array in this example, you have to ensure
that no part of the expression depends upon the side effects of some other
part of the expression. That is, you cannot both use the value of i at one
point in the expression and apply the post-increment operator to i in
another part of the expression, unless there is a sequence point between
the two uses. Because there’s no such sequence point in this statement, the
result is undefined by the C language standard.

To guarantee that a side effect occurs at an appropriate point, you must
have a sequence point between two subexpressions. For example, if you’d
like to use the value of i prior to the increment as the index into the array,
you could write the following code:

array [i] = i; //<-semicolon marks a sequence point.
++i;

To use the value of i after the increment operation as the array index,
you could use code such as the following:

++i; //<-semicolon marks a sequence point.
array[i] = i-1;

Note, by the way, that a decent compiler won’t increment i and then
compute i - 1. It will recognize the symmetry here, grab the value of i
prior to the increment, and use that value as the index into array. This is
an example of where someone who is familiar with typical compiler optimi-
zations could take advantage of this knowledge to write code that is more
readable. A programmer who inherently mistrusts compilers and their abil-
ity to optimize well might write code like this:

j=i++; //<-semicolon marks a sequence point.
array[i] = j;

An important distinction is that a sequence point does not specify
exactly when a computation will take place, only that it will happen before
crossing the sequence point. The side effect could have been computed
much earlier in the code, at any point between the previous sequence point
and the current one. Another takeaway is that sequence points do not force
the compiler to complete some computations between a pair of sequence
points if that computation does not produce any side effects. Eliminating
common subexpressions, for example, would be a far less useful optimiza-
tion if the compiler could only use the result of common subexpression
computations between sequence points. The compiler is free to compute
the result of a subexpression as far ahead as necessary as long as that sub-
expression produces no side effects. Similarly, a compiler can compute the
result of a subexpression as late as it cares to, as long as that result doesn’t
become part of a side effect.

Because statement endings (that is, semicolons) are a sequence point
in most languages, one way to control the computation of side effects
is to manually break a complex expression down into a sequence of

Arithmetic and Logical Expressions 437

three-address-like statements. For example, rather than relying on the
Pascal compiler to translate an earlier example into three-address code
using its own rules, you can explicitly write the code using whichever set
of semantics you prefer:

{ Statement with an undefined result in Pascal }

 i := f(x) + g(x);

{ Corresponding statement with well-defined semantics }

 temp1 := f(x);
 temp2 := g(x);
 i := temp1 + temp2;

{ Another version, also with well-defined but different semantics }

 temp1 := g(x);
 temp2 := f(x);
 i := temp2 + temp1;

Again, operator precedence and associativity do not control when a
computation takes place in an expression. Even though addition is left asso-
ciative, the compiler may compute the value of the addition operator’s right
operand before it computes the value of the addition operator’s left operand.
Precedence and associativity control how the compiler arranges the computa-
tion to produce the result. They do not control when the program computes
the subcomponents of the expression. As long as the final computation pro-
duces the results expected based on precedence and associativity, the compiler
is free to compute the subcomponents in any order and at any time it pleases.

Thus far, this section has implied that a compiler always computes the
value of an assignment statement and completes that assignment (and any
other side effects) upon encountering the semicolon at the end of the state-
ment. Strictly speaking, this isn’t true. What many compilers do is ensure
that all side effects occur between a sequence point and the next reference
to the object changed by the side effect. For example, consider the follow-
ing two statements:

j = i++;
k = m*n + 2;

Although the first statement in this code fragment has a side effect,
some compilers might compute the value (or portions thereof) of the
second statement before completing the execution of the first statement.
Many compilers will rearrange various machine instructions to avoid data
hazards and other execution dependencies in the code that might hamper
performance (for details on data hazards, see WGC1). The semicolon sitting
between these two statements does not guarantee that all computations for
the first statement are complete before the CPU begins any new computa-
tion; it guarantees only that the program computes any side effects that

438 Chapter 12

precede the semicolon before executing any code that depends on them.
Because the second statement does not depend upon the values of j or i,
the compiler is free to start computing the second assignment prior to com-
pleting the first statement.

Sequence points act as barriers. A code sequence must complete its exe-
cution before any subsequent code affected by the side effect can execute.
A compiler cannot compute the value of a side effect before executing all
the code up to the previous sequence point in the program. Consider the
following two code fragments:

// Code fragment #1:

 i = j + k;
 m = ++k;

// Code fragment #2:

 i = j + k;
 m = ++n;

In code fragment 1, the compiler must not rearrange the code so that it
produces the side effect ++k prior to using k in the previous statement. The
end-of-statement sequence point guarantees that the first statement in this
example uses the value of k prior to any side effects produced in subsequent
statements. In code fragment 2, however, the result of the side effect that
++n produces does not affect anything in the i = j + k; statement, so the
compiler is free to move the ++n operation into the code that computes i’s
value if doing so is more convenient or efficient.

12.5 Avoiding Problems Caused by Side Effects
Because it’s often difficult to see the impact of side effects in your code,
it’s a good idea to try to limit your program’s exposure to problems with
side effects. Of course, the best way to do this is to eliminate side effects
altogether in your programs. Unfortunately, that isn’t a realistic option.
Many algorithms depend upon side effects for proper operation (functions
returning multiple results via reference parameters or even global variables
are good examples). You can, however, reduce unintended consequences of
side effects by observing a few simple rules:

•	 Avoid placing side effects in Boolean expressions within program flow
control statements such as if, while, and do..until.

•	 If a side effect exists on the right side of an assignment operator, try
moving the side effect into its own statement before or after the assign-
ment (depending on whether the assignment statement uses the value
of the object before or after it applies the side effect).

•	 Avoid multiple assignments in the same statement; break them into
separate statements.

Arithmetic and Logical Expressions 439

•	 Avoid calling more than one function (that might produce a side
effect) in the same expression.

•	 Avoid modifications to global objects (such as side effects) when writing
functions.

•	 Always document side effects thoroughly. For functions, you should
note the side effect in the function’s documentation, as well as on every
call to that function.

12.6 Forcing a Particular Order of Evaluation
As noted earlier, operator precedence and associativity do not control when
a compiler may compute subexpressions. For example, if X, Y, and Z are each
subexpressions (which could be anything from a single constant or variable
reference to a complex expression in and of themselves), then an expres-
sion of the form X / Y * Z does not imply that the compiler computes the
value for X before it computes the value for Y and Z. In fact, the compiler is
free to compute the value for Z first, then Y, and finally X. Operator prece-
dence and associativity require only that the compiler must compute the
value of X and Y (in any order) before computing X/Y, and must compute
the value of the subexpression X/Y before computing (X / Y) * Z. Of course,
compilers can transform expressions via applicable algebraic transforma-
tions, but they’re generally careful about doing so, because not all standard
algebraic transformations apply in limited-precision arithmetic.

Although compilers can compute subexpressions in any order they
choose (which is why side effects can create obscure problems), they usually
avoid rearranging the order of actual computations. For example, math-
ematically, the following two expressions are equivalent following the stan-
dard rules of algebra (versus limited-precision computer arithmetic):

X / Y * Z
Z * X / Y

In standard mathematics, this identity exists because the multiplication
operator is commutative ; that is, A × B is equal to B × A. Indeed, these two
expressions will generally produce the same result as long as they are com-
puted as follows:

(X / Y) * Z
Z * (X / Y)

The parentheses are used here not to show precedence, but to group
calculations that the CPU must perform as a unit. That is, the statements
are equivalent to:

A = X / Y;
B = Z
C = A * B
D = B * A

440 Chapter 12

In most algebraic systems, C and D should have the same value. To under-
stand why C and D may not be equivalent, consider what happens when X, Y,
and Z are all integer objects with the values 5, 2, and 3, respectively:

 X / Y * Z
= 5 / 2 * 3
= 2 * 3
= 6

 Z * X / Y
= 3 * 5 / 2
= 15 / 2
= 7

Again, this is why compilers are careful about algebraically rearrang-
ing expressions. Most programmers realize that X * (Y / Z) is not the same
thing as (X * Y) / Z. Most compilers realize this too. In theory, a compiler
should translate an expression of the form X * Y / Z as though it were (X * Y)
/ Z, because the multiplication and division operators have the same pre-
cedence and are left associative. However, good programmers never rely on
the rules of associativity to guarantee this. Although most compilers will cor-
rectly translate this expression as intended, the next engineer who comes
along might not realize what’s going on. Therefore, explicitly including the
parentheses to clarify the intended evaluation is a good idea. Better still,
treat integer truncation as a side effect and break the expression down
into its constituent computations (using three-address-like expressions)
to ensure the proper order of evaluation.

Integer arithmetic obviously obeys its own rules, and those of real alge-
bra don’t always apply. However, don’t assume that floating-point arithmetic
doesn’t suffer from the same set of problems. Any time you’re doing limited-
precision arithmetic involving the possibility of rounding, truncation, over-
flow, or underflow—as is the case with floating-point arithmetic—standard
real-arithmetic algebraic transformations may not be legal. In other words,
applying arbitrary real-arithmetic transformations to a floating-point
expression can introduce inaccuracies in the computation. Therefore, a
good compiler won’t perform these types of transformations on real expres-
sions. Unfortunately, some compilers do apply the rules of real arithmetic
to floating-point operations. Most of the time, the results they produce are
reasonably correct (within the limitations of the floating-point representa-
tion); in some special cases, however, they’re particularly bad.

In general, if you must control the order of evaluation and when the pro-
gram computes subcomponents of an expression, your only choice is to use
assembly language. Subject to minor issues, such as out-of-order instruction
execution, you can specify exactly when your software will compute various
components of an expression when implementing the expression in assem-
bly code. For very accurate computations, when the order of evaluation can
affect the results you obtain, assembly language may be the safest approach.
Although fewer programmers are capable of reading and understanding it,

Arithmetic and Logical Expressions 441

there’s no question that it allows you to exactly specify the semantics of an
arithmetic expression—what you read is what you get without any modifica-
tion by the assembler. This simply isn’t true for most HLL systems.

12.7 Short-Circuit Evaluation
For certain arithmetic and logical operators, if one component of the
expression has a certain value, the value for the whole expression is auto-
matically known regardless of the values of the expression’s remaining
components. A classic example is the multiplication operator. If you have
an expression A * B and you know that either A or B is 0, there’s no need to
compute the other component, because the result is already 0. If the cost
of computing the subexpressions is expensive relative to the cost of a com-
parison, then a program can save some time by testing the first component
to determine if it needs to bother computing the second component. This
optimization is known as short-circuit evaluation because the program skips
over (“short-circuits” in electronics terminology) computing the remainder
of the expression.

Although a couple of arithmetic operations could employ short-circuit
evaluation, the cost of checking for the optimization is usually more expen-
sive than just completing the computation. Multiplication, for example,
could use short-circuit evaluation to avoid multiplication by zero, as just
described. However, in real programs, multiplication by zero occurs so
infrequently that the cost of the comparison against zero in all the other
cases generally overwhelms any savings achieved by avoiding multiplication
by zero. For this reason, you’ll rarely see a language system that supports
short-circuit evaluation for arithmetic operations.

12.7.1 Using Short-Circuit Evaluation with Boolean Expressions
One type of expression that can benefit from short-circuit evaluation is a
Boolean/logical expression. Boolean expressions are good candidates for
short-circuit evaluation for three reasons:

•	 Boolean expressions produce only two results, true and false; therefore,
it’s highly likely (50/50 chance, assuming random distribution) that
one of the short-circuit “trigger” values will appear.

•	 Boolean expressions tend to be complex.

•	 Boolean expressions occur frequently in programs.

Because of these characteristics, you’ll find that many compilers use
short-circuit evaluation when processing Boolean expressions.

Consider the following two C statements:

A = B && C;
D = E || F;

442 Chapter 12

Note that if B is false, then A will be false regardless of C’s value.
Similarly, if E is true, then D will be true regardless of F’s value. We can,
therefore, compute the values for A and D as follows:

A = B;
if(A)
{
 A = C;
}

D = E;
if(!D)
{
 D = F;
}

Now this might seem like a whole lot of extra work (it’s certainly more
typing!), but if C and F represent complex Boolean expressions, then this
code sequence could possibly run much faster if B is usually false and E is
usually true. Of course, if your compiler fully supports short-circuit evalu-
ation, you’d never type this code; the compiler would generate the equiva-
lent code for you.

By the way, the converse of short-circuit evaluation is complete Boolean
evaluation. In complete Boolean evaluation, the compiler emits code that
always computes each subcomponent of a Boolean expression. Some
languages (such as C, C++, C#, Swift, and Java) specify the use of short-
circuit evaluation. A few languages (such as Ada) let the programmer
specify whether to use short-circuit or complete Boolean evaluation. Most
languages (such as Pascal) don’t define whether expressions will use short-
circuit or complete Boolean evaluation—the language leaves the choice up
to the implementer. Indeed, the same compiler could use complete Boolean
evaluation for one instance of an expression and use short-circuit evalua-
tion for another occurrence of that same expression in the same program.
Unless you’re using a language that strictly defines the type of Boolean eval-
uation, you’ll have to check with your specific compiler’s documentation
to determine how it processes Boolean expressions. (Remember to avoid
compiler-specific mechanisms if there’s a chance you’ll have to compile
your code with a different compiler in the future.)

Look again at the expansions of the earlier Boolean expressions. It
should be clear that the program won’t evaluate C and F if A is false and D is
true. Therefore, the left-hand side of a conjunction (&&) or disjunction (||)
operator can act as a gate, preventing the execution of the right-hand side
of the expression. This is an important point and, indeed, many algorithms
depend on this property for correct operation. Consider the following (very
common) C statement:

if(ptr != NULL && *ptr != '\0')
{
 << process current character pointed at by ptr >>
}

Arithmetic and Logical Expressions 443

This example could fail if it used complete Boolean evaluation.
Consider the case where the ptr variable contains NULL. With short-circuit
evaluation the program will not compute the subexpression *ptr != '\0';
because it realizes the result is always false. As a result, control immediately
transfers to the first statement beyond the ending brace in this if statement.
Consider, however, what would happen if this compiler utilized complete
Boolean evaluation instead. After determining that ptr contains NULL, the
program would still attempt to dereference ptr. Unfortunately, this attempt
would probably produce a runtime error. Therefore, complete Boolean
evaluation would cause this program to fail, even though it dutifully checks
to make sure that access via pointer is legal.

Another semantic difference between complete and short-circuit Boolean
evaluation has to do with side effects. In particular, if a subexpression does
not execute because of short-circuit evaluation, then that subexpression
doesn’t produce any side effects. This behavior is incredibly useful but inher-
ently dangerous. It is useful insofar as some algorithms absolutely depend
upon short-circuit evaluation. It is dangerous because some algorithms also
expect all the side effects to occur, even if the expression evaluates to false
at some point. As an example, consider the following bizarre (but absolutely
legal) C statement, which advances a “cursor” pointer to the next 8-byte
boundary in a string or the end of the string (whichever comes first):

*++ptr && *++ptr && *++ptr && *++ptr && *++ptr && *++ptr && *++ptr && *++ptr;

This statement begins by incrementing a pointer and then fetching a
byte from memory (pointed to by ptr). If the byte fetched was 0, execution
of this expression/statement immediately stops, as the entire expression
evaluates to false at that point. If the character fetched is not 0, the pro-
cess repeats up to seven more times. At the end of this sequence, either ptr
points at a 0 byte or it points 8 bytes beyond the original position. The trick
here is that the expression immediately terminates upon reaching the end
of the string rather than mindlessly skipping beyond that point.

Of course, there are complementary examples that demonstrate desir-
able behavior when side effects occur in Boolean expressions involving com-
plete Boolean evaluation. The important thing to note is that no one scheme
is correct or incorrect; it all depends on context. In different situations, a
given algorithm may require the use of short-circuit Boolean evaluation or
complete Boolean evaluation to produce correct results. If the definition of
the language you’re using doesn’t explicitly specify which scheme to use, or
you want to use the other one (such as complete Boolean evaluation in C),
then you have to write your code such that it forces the evaluation scheme
you prefer.

12.7.2 Forcing Short-Circuit or Complete Boolean Evaluation
Forcing complete Boolean evaluation in a language where short-circuit
evaluation is used (or may be used) is relatively easy. All you have to do
is break the expression into individual statements, place the result of
each subexpression into a variable, and then apply the conjunction and

444 Chapter 12

disjunction operators to these temporary variables. For example, consider
the following conversion:

// Complex expression:

if((a < f(x)) && (b != g(y)) || predicate(a + b))
{
 <<stmts to execute if this expression is true>>
}

// Translation to a form that uses complete Boolean evaluation:

temp1 = a < f(x);
temp2 = b != g(y);
temp3 = predicate(a + b);
if(temp1 && temp2 || temp3)
{
 <<stmts to execute if this expression is true>>
}

The Boolean expression within the if statement still uses short-circuit
evaluation. However, because this code evaluates the subexpressions prior
to the if statement, this code ensures that all of the side effects produced
by the f(), g(), and predicate() functions will occur.

Suppose you want to go the other way. That is, what if your language
supports only complete Boolean evaluation (or doesn’t specify the evalua-
tion type), and you want to force short-circuit evaluation? This direction is
a little more work than the converse, but it’s still not difficult.

Consider the following Pascal code:8

if(((a < f(x)) and (b <> g(y))) or predicate(a + b)) then begin

 <<stmts to execute if the expression is true>>

end; (*if*)

To force short-circuit Boolean evaluation, you need to test the value of
the first subexpression, and, only if it evaluates to true, evaluate the second
subexpression (and the conjunction of the two expressions). You can do
this with the following code:

boolResult := a < f(x);
if(boolResult) then
 boolResult := b <> g(y);

if(not boolResult) then
 boolResult := predicate(a+b);

8. The standard definition for Pascal doesn’t specify whether the compiler uses complete
or short-circuit Boolean evaluation. Most Pascal compilers, however, implement complete
Boolean evaluation.

Arithmetic and Logical Expressions 445

if(boolResult) then begin

 <<stmts to execute if the if's expression is true>>

end; (*if*)

This code simulates short-circuit evaluation by using if statements to
block (or force) execution of the g() and predicate() functions based on the
current state of the Boolean expression (kept in the boolResult variable).

Converting an expression to force short-circuit evaluation or complete
Boolean evaluation looks as though it requires far more code than the
original forms. If you’re concerned about the efficiency of this translation,
relax. Internally, the compiler translates those Boolean expressions to
three-address code that is similar to the translation that you did manually.

12.7.3 Comparing Short-Circuit and Complete Boolean Evaluation Efficiency
While you might have inferred from the preceding discussion that complete
Boolean evaluation and short-circuit evaluation have equivalent efficien-
cies, that’s not the case. If you’re processing complex Boolean expressions
or the cost of some of your subexpressions is rather high, then short-circuit
evaluation is generally faster than complete Boolean evaluation. As to
which form produces less object code, they’re roughly equivalent, and the
exact difference will depend entirely upon the expression you’re evaluating.

To understand the efficiency issues surrounding complete versus short-
circuit Boolean evaluation, look at the following HLA code, which imple-
ments this Boolean expression using both forms:9

// Complex expression:

 // if((a < f(x)) && (b != g(y)) || predicate(a+b))
 // {
 // <<stmts to execute if the if's expression is true>>
 // }
 //
 // Translation to a form that uses complete
 // Boolean evaluation:
 //
 // temp1 = a < f(x);
 // temp2 = b != g(y);
 // temp3 = predicate(a + b);
 // if(temp1 && temp2 || temp3)
 // {
 // <<stmts to execute if the expression evaluates true>>
 // }
 //
 //

9. HLA supports an if statement with short-circuit Boolean evaluation, but we won’t use it here
because the purpose of this exercise is to avoid the high-level abstractions of an if statement.

446 Chapter 12

 // Translation into 80x86 assembly language code,
 // assuming all variables and return results are
 // unsigned 32-bit integers:

 f(x); // Assume f returns its result in EAX
 cmp(a, eax); // Compare a with f(x)'s return result.
 setb(bl); // bl = a < f(x)
 g(y); // Assume g returns its result in EAX
 cmp(b, eax); // Compare b with g(y)'s return result
 setne(bh); // bh = b != g(y)
 mov(a, eax); // Compute a + b to pass along to the
 add(b, eax); // predicate function.
 predicate(eax);// al holds predicate's result (0/1)
 and(bh, bl); // bl = temp1 && temp2
 or(bl, al); // al = (temp1 && temp2) || temp3
 jz skipStmts; // 0 if false, not 0 if true.

 <<stmts to execute if the condition is true>>

skipStmts:

Here’s the same expression using short-circuit Boolean evaluation:

 // if((a < f(x)) && (b != g(y)) || predicate(a+b))
 // {
 // <<stmts to execute if the if's expression evaluates true>>
 // }

 f(x);
 cmp(a, eax);
 jnb TryOR; // If a is not less than f(x), try the OR clause
 g(y);
 cmp(b, eax);
 jne DoStmts // If b is not equal g(y) (and a < f(x)), then do the body.

TryOR:
 mov(a, eax);
 add(b, eax);
 predicate(eax);
 test(eax, eax); // EAX = 0?
 jz SkipStmts;

DoStmts:
 <<stmts to execute if the condition is true>>
SkipStmts:

As you can see by simply counting statements, the version using short-
circuit evaluation is slightly shorter (11 instructions versus 12). However, the
short-circuit version will probably run much faster because half the time
the code will evaluate only two of the three expressions. This code evalu-
ates all three subexpressions only when the first subexpression, a < f(x),
evaluates to true and the second expression, b != g(y), evaluates to false. If
the outcomes of these Boolean expressions are equally probable, this code

Arithmetic and Logical Expressions 447

will test all three subexpressions 25 percent of the time. The remainder of
the time it has to test only two subexpressions (50 percent of the time it will
test a < f(x) and predicate(a + b), 25 percent of the time it will test a < f(x)
and b != g(y), and the remaining 25 percent of the time it will need to test
all three conditions).

The interesting thing to note about these two assembly language
sequences is that complete Boolean evaluation tends to maintain the state
of the expression (true or false) in an actual variable, whereas short-circuit
evaluation maintains the current state of the expression by the program’s
position in the code. Take another look at the short-circuit example. Note
that it does not maintain the Boolean results from each of the subexpres-
sions anywhere other than the position in the code. For example, if you get
to the TryOR label in this code, you know that the subexpression involving
conjunction (logical AND) is false. Likewise, if the program executes the
call to g(y), you know that the first subexpression in the example, a < f(x),
has evaluated to true. When you make it to the DoStmts label, you know that
the entire expression has evaluated to true.

If the execution time for the f(), g(), and predicate() functions is roughly
the same in the current example, you can greatly improve the code’s perfor-
mance with a nearly trivial modification:

 // if(predicate(a + b) || (a < f(x)) && (b != g(y)))
 // {
 // <<stmts to execute if the expression evaluates true>>
 // }

 mov(a, eax);
 add(b, eax);
 predicate(eax);
 test(eax, eax); // EAX = true (not zero)?
 jnz DoStmts;

 f(x);
 cmp(a, eax);
 jnb SkipStmts; // If a >= f(x), try the OR clause
 g(y);
 cmp(b, eax);
 je SkipStmts; // If b != g(y) then do the body.

DoStmts:
 <<stmts to execute if the condition is true>>
SkipStmts:

Again, if you assume that the outcome of each subexpression is random
and evenly distributed (that is, there is a 50/50 chance that each subexpres-
sion produces true), then this code will, on average, run about 50 percent
faster than the previous version. Why? Moving the test for predicate() to the
beginning of the code fragment means the code can now determine with
one test whether it needs to execute the body. Because 50 percent of the
time predicate() returns true, you can determine if you’re going to execute
the loop body with a single test about half the time. In the earlier example,

448 Chapter 12

it always took at least two tests to determine if we were going to execute the
loop body.

The two assumptions here (that the Boolean expressions are equally
likely to produce true or false and that the costs of computing each sub-
expression are equal) rarely hold in practice. However, this means that
you have an even greater opportunity to optimize your code, not less. For
example, if the cost of calling the predicate() function is high (relative to
the computation of the remainder of the expression), then you’ll want to
arrange the expression so that it calls predicate() only when it absolutely
must. Conversely, if the cost of calling predicate() is low compared to the
cost of computing the other subexpressions, then you’ll want to call it first.
The situation for the f() and g() functions is similar. Because the logical
AND operation is commutative, the following two expressions are semanti-
cally equivalent (in the absence of side effects):

a < f(x) && b != g(y)
b != g(y) && a < f(x)

When the compiler uses short-circuit evaluation, the first expression
executes faster than the second if the cost of calling function f() is less than
the cost of calling function g(). Conversely, if calling f() is more expensive
than calling g(), then the second expression usually executes faster.

Another factor that affects the performance of short-circuit Boolean
expression evaluation is the likelihood that a given Boolean expression will
return the same value on each call. Consider the following two templates:

expr1 && expr2
expr3 || expr4

When working with conjunctions, try to place the expression that is
more likely to return true on the right-hand side of the conjunction opera-
tor (&&). Remember, for the logical AND operation, if the first operand is
false, a Boolean system employing short-circuit evaluation will not bother
to evaluate the second operand. For performance reasons, you want to
place the operand that is most likely to return false on the left-hand side
of the expression. This will avoid the computation of the second operand
more often than had you reversed the operands.

The situation is reversed for disjunction (||). In this case, you’d arrange
your operands so that expr3 is more likely to return true than expr4. By orga-
nizing your disjunction operations this way, you’ll skip the execution of the
right-hand expression more often than if you had swapped the operands.

You cannot arbitrarily reorder Boolean expression operands if those
expressions produce side effects, because the proper computation of
those side effects may depend upon the exact order of the subexpressions.
Rearranging the subexpressions may cause a side effect to happen that
wouldn’t otherwise occur. Keep this in mind when you’re trying to improve
performance by rearranging operands in a Boolean expression.

Arithmetic and Logical Expressions 449

12.8 The Relative Cost of Arithmetic Operations
Most algorithm analysis methodologies use a simplifying assumption that
all operations take the same amount of time.10 This assumption is rarely
correct, because some arithmetic operations are two orders of magnitude
slower than other computations. For example, a simple integer addition
operation is often much faster than an integer multiplication. Similarly,
integer operations are usually much faster than the corresponding floating-
point operations. For algorithm analysis purposes, it may be okay to ignore
the fact that one operation may be n times faster than some other opera-
tion. For someone interested in writing great code, however, knowing which
operators are the most efficient is important, especially when you have the
option of choosing among them.

Unfortunately, we can’t create a table of operators that lists their rela-
tive speeds. The performance of a given arithmetic operator will vary by
CPU. Even within the same CPU family, you see a wide variance in perfor-
mance for the same arithmetic operation. For example, shift and rotate
operations are relatively fast on a Pentium III (relative, say, to an addition
operation). On a Pentium 4, however, they’re considerably slower. These
operations were faster on later Intel CPUs. So an operator such as the C/
C++ << or >> can be fast or slow, relative to an addition operation, depend-
ing upon which CPU it executes.

That said, I can provide some general guidelines. For example, on most
CPUs the addition operation is one of the most efficient arithmetic and
logical operations around; few CPUs support faster arithmetic or logical
operations than addition. Therefore, it’s useful to group various operations
into classes based on their performance relative to an operation like addi-
tion (see Table 12-1 for an example).

Table 12-1: Relative Performances of Arithmetic Operations (Guidelines)

Relative performance Operations

Fastest Integer addition, subtraction, negation, logical AND, logical
OR, logical XOR, logical NOT, and comparisons

Logical shifts

Logical rotates

Multiplication

Division

Floating-point comparisons and negation

Floating-point addition and subtraction

Floating-point multiplication

Slowest Floating-point division

10. Actually, to be technically correct, these methodologies assume that different arithmetic
operations vary by a constant amount and that they ignore constant multiplicative differences.

450 Chapter 12

The estimates in Table 12-1 are not accurate for all CPUs, but they pro-
vide a “first approximation” from which you can work until you gain more
experience with a particular processor. On many processors you’ll find any-
where between two and three orders of magnitude difference in the perfor-
mances between the fastest and slowest operations. In particular, division
tends to be quite slow on most processors (floating-point division is even
slower). Multiplication is usually slower than addition, but again, the exact
variance differs greatly between processors.

If you absolutely need to do floating-point division, there’s little you can
do to improve your application’s performance by using a different opera-
tion (although, in some cases, it is faster to multiply by the reciprocal).
However, note that you can compute many integer arithmetic calculations
using different algorithms. For example, a left shift is often less expensive
than multiplication by 2. While most compilers automatically handle such
“operator conversions” for you, compilers aren’t omniscient and can’t always
figure out the best way to calculate some result. However, if you manually
do the “operator conversion” yourself, you don’t have to rely on the com-
piler to get this right for you.

12.9 For More Information
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. 2nd ed. Essex, UK: Pearson Education
Limited, 1986.

Barrett, William, and John Couch. Compiler Construction: Theory and Practice.
Chicago: SRA, 1986.

Fraser, Christopher, and David Hansen. A Retargetable C Compiler: Design and
Implementation. Boston: Addison-Wesley Professional, 1995.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Louden, Kenneth C. Compiler Construction: Principles and Practice. Boston:
Cengage, 1997.

Parsons, Thomas W. Introduction to Compiler Construction. New York: W. H.
Freeman, 1992.

Willus.com. “Willus.com’s 2011 Win32/64 C Compiler Benchmarks.” Last
updated April 8, 2012. https://www.willus.com/ccomp_benchmark2.shtml.

Control structures are the bread and
butter of high-level language (HLL) pro-

gramming. The ability to make decisions
based on the evaluation of stated conditions is

fundamental to practically every kind of automation
that computers provide. The translation of HLL control
structures into machine code has, perhaps, the largest impact on program
performance and size. As you’ll see in this chapter, knowing which control
structures to use in a given situation is the key to writing great code. In par-
ticular, this chapter describes the machine implementation of control struc-
tures related to decision making and unconditional flow, including:

•	 if statements

•	 switch or case statements

•	 goto and related statements

The following two chapters will expand this discussion to loop control
structures and procedure/function calls and returns.

13
C O N T R O L S T R U C T U R E S A N D
P R O G R A M M A T I C D E C I S I O N S

452 Chapter 13

13.1 How Control Structures Affect a Program’s Efficiency
A fair percentage of the machine instructions in a program control the exe-
cution path through that program. Because control transfer instructions
often flush the instruction pipeline (see WGC1), they tend to be slower than
instructions that perform simple calculations. To produce efficient programs,
you should reduce the number of control transfer instructions or, if that’s
not possible, choose the fastest ones.

The exact set of instructions that CPUs use to control program flow var-
ies across processors. Nevertheless, many CPUs (including the five families
covered in this book) control program flow using the “compare-and-jump”
paradigm. That is, after a compare or another instruction that modifies the
CPU flags, a conditional jump instruction transfers control to another loca-
tion based on the CPU flag settings. Some CPUs can do all this with a single
instruction, while others require two, three, or more. Some CPUs allow you to
compare two values for a large range of different conditions, whereas others
allow only a few tests. Regardless of the mechanism, HLL statements that
map to a given sequence on one CPU will map to a comparable sequence
on a second CPU. Therefore, if you understand the basic conversion for one
CPU, you’ll have a good idea how the compiler works across all CPUs.

13.2 Introduction to Low-Level Control Structures
Most CPUs use a two-step process to make a programmatic decision. First,
the program compares two values and saves the result of the comparison in
a machine register or flag. Then the program tests that result and, based
on what it learns, transfers control to one of two locations. With little more
than this compare and conditional branch sequence, it is possible to synthesize
most of the major HLL control structures.

Even within the compare and conditional branch paradigm, CPUs
commonly implement conditional code sequences using two different
approaches. One technique, especially common on stack-based architec-
tures (such as the UCSD p-machine, Java Virtual Machine, and Microsoft
CLR), is to have different forms of the compare instruction that test for spe-
cific conditions. For example, you might have compare if equal, compare if not
equal, compare if less than, compare if greater than, and so on. The result of each
is a Boolean value. Then a pair of conditional branch instructions, branch
if true and branch if false, can test the result of the comparison and transfer
control to the appropriate location. Some of these VMs might actually
merge the compare and branch instructions into “compare and branch”
instructions (one for each condition to test). Despite using fewer instruc-
tions, the end result is exactly the same.

The second, and historically more popular, approach is for the CPU’s
instruction set to contain a single comparison instruction that sets (or
clears) several bits in the CPU’s program status or flags register. Then the
program uses one of several more specific conditional branch instruc-
tions to transfer control to some other location. These conditional branch
instructions might have names such as jump if equal, jump if not equal, jump if

Control Structures and Programmatic Decisions 453

less than, or jump if greater than. Because this “compare and jump” technique
is the one the 80x86, ARM, and PowerPC use, that’s also the approach this
chapter’s examples use; however, it’s easy to convert them to the multiple
comparisons/jump true/jump false paradigm.

The 32-bit variants of the ARM processor introduce a third technique:
conditional execution. Most instructions (not just the branches) on the
32-bit ARM provide this option. For example, the addeq instruction adds two
values if and only if the result of the previous comparison (or other opera-
tion) has set the zero flag. See “Conditional Suffixes for Instructions” in
Appendix C online for more details.

Conditional branches are typically two-way branches. That is, they
transfer control to one location in the program if the condition they’re test-
ing is true and to a different location if the condition is false. To reduce the
size of the instruction, the conditional branches on most CPUs encode the
address of only one of the two possible branch locations, and they use an
implied address for the opposite condition. Specifically, most conditional
branches transfer control to some target location if the condition is true and
fall through to the next instruction if the condition is false. For example,
consider the following 80x86 je (jump if equal) instruction sequence:

// Compare the value in EAX to the value in EBX

 cmp(eax, ebx);

// Branch to label EAXequalsEBX if EAX==EBX

 je EAXequalsEBX;

 mov(4, ebx); // Drop down here if EAX != EBX
 .
 .
 .
EAXequalsEBX:

This instruction sequence begins by comparing the value in the
EAX register against the value in EBX (the cmp instruction); this sets the
condition-code bits in the 80x86 EFLAGS register. In particular, this instruc-
tion sets the 80x86 zero flag to 1 if the value in EAX is equal to the value
in EBX. The je instruction tests the zero flag to see if it is set, and if so,
transfers control to the machine instruction immediately following the
EAXequalsEBX label. If the value in EAX is not equal to EBX, then the cmp
instruction clears the zero flag and the je instruction falls through to the
mov instruction rather than transferring control to the destination label.

Certain machine instructions that access data can be smaller (and
faster) if the memory location the machine instruction accesses is near
the base address of the activation record containing that variable. This
rule also applies to conditional jump instructions. The 80x86 provides two
forms of the conditional jump instructions. One form is only 2 bytes long
(1 byte for an opcode and 1 byte for a signed displacement in the range
–128 through +127). The other form is 6 bytes long (2 bytes for the opcode

454 Chapter 13

and 4 bytes for a signed displacement in the range –2 billion through +2 bil-
lion). The displacement value specifies how far (in bytes) the program must
jump to reach the target location. To transfer control to a nearby location,
the program can use the short form of the branch. Because 80x86 instruc-
tions are between 1 and 15 bytes long (typically around 3 or 4 bytes long),
the short forms of the conditional jump instructions can usually skip over
about 32 to 40 machine instructions. Once the target location is out of the
±127-byte range, the 6-byte version of these conditional jump instructions
extends the range to ±2 billion bytes around the current instruction. If
you’re interested in writing the most efficient code, then, you’ll want to use
the 2-byte form as often as possible.

Branching is an expensive operation in a modern (pipelined) CPU
because a branch may require the CPU to flush the pipeline and reload
it (see WGC1 for more details). Conditional branches incur this cost only
if the branch is taken; if the conditional branch instruction falls through
to the next instruction, the CPU will continue to use the instructions
found in the pipeline without flushing them. Therefore, on many systems
the branch that falls through to the next instruction is faster than the branch that
is taken. Note, however, that some CPUs (like the 80x86, PowerPC, and
ARM) support a branch prediction feature that tells the CPU to begin fetch-
ing instructions for the pipeline from the branch’s target location rather
than from the instructions that immediately follow the conditional jump.
Unfortunately, branch prediction algorithms vary from processor to proces-
sor (even within the 80x86 CPU family), so it’s difficult to predict, in gen-
eral, how branch prediction will affect your HLL code. It’s probably safest
to assume, unless you’re writing code for a specific processor, that falling
through to the next instruction is more efficient than taking the jump.

Although the compare and conditional branch paradigm is the most
common control structure found in machine code programs, there are
other ways to transfer control to another location in memory based on
some computed result. Without question, the indirect jump (especially via
a table of addresses) is the most common alternative form. Consider the
following 32-bit 80x86 jmp instruction:

readonly
 jmpTable: dword[4] := [&label1, &label2, &label3, &label4];
 .
 .
 .
 jmp(jmpTable[ebx*4]);

This jmp instruction fetches the double-word value at the index speci-
fied by the value in EBX in the jmpTable array. That is, the instruction trans-
fers control to one of four different locations based upon the value (0..3)
in EBX. For example, if EBX contains 0, then the jmp instruction fetches
the double word at index 0 in jmpTable (the address of the instruction pre-
fixed by label1). Likewise, if EBX contains 2, then this jmp instruction
fetches the third double word from this table (the address of label3 in the

Control Structures and Programmatic Decisions 455

program). This is roughly equivalent to, but usually shorter than, the fol-
lowing sequence of instructions:

cmp(ebx, 0);
je label1;
cmp(ebx, 1);
je label2;
cmp(ebx, 2);
je label3;
cmp(ebx, 3);
je label4;

// Results are undefined if EBX <> 0, 1, 2, or 3

A few other conditional control transfer mechanisms are available on
various CPUs, but these two mechanisms (compare and conditional branch
and indirect jump) are the ones most HLL compilers use to implement
standard control structures in the HLL.

13.3 The goto Statement
The goto statement is, perhaps, the most fundamental low-level control
structure. Since the wave of “structured programming” in the late 1960s
and 1970s, its use in HLL code has diminished. Indeed, some modern
high-level programming languages (for example, Java and Swift) don’t even
provide an unstructured goto statement. Even in those languages where
one is available, programming style guidelines usually restrict its use to
special circumstances. Combined with the fact that student programmers
have been religiously taught to avoid them in their programs since the mid
1970s, it’s now rare to find many goto statements in a modern program.
From a readability point of view, this is a good thing (check out some 1960s-
era FORTRAN programs to get an idea of how hard to read code can be
when it’s peppered with goto statements). Nevertheless, some programmers
believe that they can achieve higher efficiency by using goto statements in
their code. While this is sometimes true, the gains are rarely worth the loss
of readability that ultimately occurs.

One of the big efficiency arguments for goto is that it helps avoid dupli-
cate code. Consider the following simple C/C++ example:

if(a == b || c < d)
{
 << execute some number of statements >>

 if(x == y)
 {
 << execute some statements if x == y >>
 }
 else
 {
 << execute some statements if x != y >>

456 Chapter 13

 }
}
else
{
 << execute the same sequence of statements
 that the code executes if x!= y in the
 previous else section >>
}

Programmers looking for ways to make their programs more efficient
will immediately notice all the duplicated code and might be tempted to
rewrite the example as follows:

if(a == b || c < d)
{
 << execute some number of statements >>

 if(x != y) goto DuplicatedCode;

 << execute some statements if x == y >>
}
else
{
DuplicatedCode:
 << execute the same sequence of statements
 if x != y or the original
 Boolean expression is false >>
}

There are, of course, several software engineering problems with this
code, including the fact that it is a bit harder to read, modify, and maintain
than the original example. (You could argue that it’s actually a little easier to
maintain, because you no longer have duplicated code and you only have
to fix defects in the common code at one spot.) However, there’s no deny-
ing that there’s less code in this example. Or is there?

The optimizers in many modern compilers actually look for code
sequences like the first example and generate code that’s identical to what
you’d expect for the second example. Therefore, a good compiler avoids gen-
erating duplicate machine code even when the source file contains duplica-
tion, as in the first example.

Consider the following C/C++ example:

#include <stdio.h>

static int a;
static int b;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

Control Structures and Programmatic Decisions 457

int main(void)
{
 if(a==f(x))
 {
 if(b==g(y))
 {
 a=0;
 }
 else
 {
 printf("%d %d\n", a, b);
 a=1;
 b=0;
 }
 }
 else
 {
 printf("%d %d\n", a, b);
 a=1;
 b=0;
 }

 return(0);
}

Here’s the compilation of the if sequence to PowerPC code by GCC:

 ; f(x):

 lwz r3,0(r9)
 bl L_f$stub

 ; Compute a==f(x), jump to L2 if false

 lwz r4,0(r30)
 cmpw cr0,r4,r3
 bne+ cr0,L2

 ; g(y):

 addis r9,r31,ha16(L_ynon_lazy_ptr-L1pb)
 addis r29,r31,ha16(_b-L1$pb)
 lwz r9,lo16(L_ynon_lazy_ptr-L1pb)(r9)
 la r29,lo16(_b-L1$pb)(r29)
 lwz r3,0(r9)
 bl L_g$stub

 ; Compute b==g(y), jump to L3 if false:

 lwz r5,0(r29)
 cmpw cr0,r5,r3
 bne- cr0,L3

 ; a=0

458 Chapter 13

 li r0,0
 stw r0,0(r30)
 b L5

 ; Set up a and b parameters if
 ; a==f(x) but b!=g(y):

L3:
 lwz r4,0(r30)
 addis r3,r31,ha16(LC0-L1$pb)
 b L6

 ; Set up parameters if a!=f(x):
L2:
 addis r29,r31,ha16(_b-L1$pb)
 addis r3,r31,ha16(LC0-L1$pb)
 la r29,lo16(_b-L1$pb)(r29)
 lwz r5,0(r29)

 ; Common code shared by both
 ; ELSE sections:
L6:
 la r3,lo16(LC0-L1$pb)(r3) ; Call printf
 bl L_printf$stub
 li r9,1 ; a=1
 li r0,0 ; b=0
 stw r9,0(r30) ; Store a
 stw r0,0(r29) ; Store b
L5:

Of course, not every compiler has an optimizer that will recognize the
duplicated code. So, if you want to write a program that compiles to effi-
cient machine code regardless of the compiler, you might be tempted to use
the version of the code that employs the goto statement. Indeed, you could
make a strong software engineering argument that having duplicate code
in a source file makes the program harder to read and harder to maintain.
(If you fix a defect in one copy of the code, chances are that you’ll forget to
correct the defect in the other copies of the code.) While this is definitely
true, if you make changes to the code at the target label, it’s not immedi-
ately obvious that the change is appropriate for each and every section of
code that jumps to the target label. And it’s not immediately obvious how
many different goto statements transfer control to the same target label
when you’re reading through the source code.

The traditional software engineering approach is to put the common
code into a procedure or function and simply call that function. However,
the overhead of a function call and return can be rather large (especially
if there isn’t much duplicated code), so from a performance point of view,
that approach may not be satisfactory. For short sequences of common
code, creating a macro or an inline function is probably the best solution.
To complicate the issue, you might need a change that affects only one
instance of the duplicated code (that is, it would no longer be a duplicate).

Control Structures and Programmatic Decisions 459

The bottom line is that using a goto statement to gain efficiency in this man-
ner should be your last resort.

Another common use for goto statements is for exceptional conditions.
When you find yourself nested deeply in several statements and you encoun-
ter a situation where you need to exit all those statements, the common
consensus is that a goto is acceptable if restructuring the code wouldn’t
make it more readable. However, jumps out of nested blocks may thwart the
optimizer’s ability to generate decent code for the entire procedure or func-
tion. The use of the goto statement may save a few bytes or processor cycles
in the code it immediately affects, but it could have detrimental effects on
the rest of the function, resulting in less efficient code overall. So, take care
when inserting goto statements into your code—they can make your source
code harder to read, and might wind up making it less efficient as well.

For what it’s worth, there’s a programming trick you can use to solve the
original problem. Consider the following modification to the code:

switch(a == b || c < d)
{
 case 1:
 << execute some number of statements >>

 if(x == y)
 {
 << execute some statements if x == y >>
 break;
 }
 // Fall through if x != y

 case 0:

 << execute some statements if x!= y or
 if !(a == b || c < d) >>

}

Of course, this is tricky code, and tricky code isn’t usually great code.
However, it does have the benefit of avoiding duplication of source code
in your program.

13.3.1 Restricted Forms of the goto Statement
In an effort to support structured goto-less programming, many program-
ming languages have added restricted forms of the goto statement that allow
a programmer to immediately exit a control structure such as a loop or a
procedure/function. Typical statements include break and exit, which jump
out of an enclosing loop; continue, cycle, and next, which restart an enclos-
ing loop; and return and exit, which immediately return from an enclosing
procedure or function. These statements are more structured than a stan-
dard goto because the programmer doesn’t choose the destination; instead,
control transfers to a fixed location based upon whatever control statement
(or function or procedure) encloses the statement.

460 Chapter 13

Almost every one of these statements compiles into a single jmp instruc-
tion. Those that jump out of a loop (such as break) compile into a single jmp
instruction that transfers control to the first statement beyond the bottom
of the loop. Those that restart a loop (for example, continue, next, or cycle)
compile into a single jmp instruction that transfers control to the loop termi-
nation test (in the case of while or repeat..until/do..while) or to the top of
the loop (in the case of most other loops).

However, just because these statements typically compile to a single jmp
instruction doesn’t mean they’re efficient to use. Even ignoring the fact that
a jmp can be somewhat expensive (because it forces the CPU to flush the
instruction pipeline), statements that branch out of a loop can have a seri-
ous impact on the compiler’s optimizer, dramatically reducing the oppor-
tunity to generate high-quality code. Therefore, you should attempt to use
these statements as sparingly as possible.

13.4 The if Statement
Perhaps the most basic high-level control structure is the if statement.
Indeed, with nothing more than an if and a goto statement, you can
(semantically) implement all other control structures.1 We’ll revisit this
point when discussing other control structures, but for now we’ll look at
how a typical compiler converts an if statement into machine code.

To implement a simple if statement that compares two values and
executes the body if the condition is true, you can use a single compare
and conditional branch instruction. Consider the following Pascal if
statement:

if(EAX = EBX) then begin

 writeln('EAX is equal to EBX');
 i := i + 1;

end;

Here’s the conversion to 80x86/HLA code:

 cmp(EAX, EBX);
 jne skipIfBody;
 stdout.put("EAX is equal to EBX", nl);
 inc(i);
skipIfBody:

In the Pascal source code, the body of the if statement executes if the
value of EAX is equal to EBX. In the resulting assembly code, the program
compares EAX with EBX and then, if EAX does not equal EBX, branches
over the statements that correspond to the if statement’s body. This is the

1. Doing so isn’t a good idea for reasons of maintainability, but it’s certainly possible.

Control Structures and Programmatic Decisions 461

“boilerplate” conversion of an HLL if statement into machine code: test
some condition and, if it’s false, branch over the if statement’s body.

The implementation of an if..then..else statement is only slightly more
complicated than the basic if statement. An if..then..else statement typi-
cally employs syntax and semantics such as the following:

if(some_boolean_expression) then

 << Statements to execute if the expression is true >>

else

 << Statements to execute if the expression is false >>

endif

Implementing this code sequence in machine code requires only a
single machine instruction beyond what a simple if statement requires.
Consider this example C/C++ code:

if(EAX == EBX)
{
 printf("EAX is equal to EBX\n");
 ++i;
}
else
{
 printf("EAX is not equal to EBX\n");
}

Here is the conversion to 80x86 assembly language code:

 cmp(EAX, EBX); // See if EAX == EBX
 jne doElse; // Branch around "then" code
 stdout.put("EAX is equal to EBX", nl);
 inc(i);
 jmp skipElseBody; // Skip over "else" section.

// if they are not equal.

doElse:
 stdout.put("EAX is not equal to EBX", nl);

skipElseBody:

There are two things to note about this code. First, if the condition
evaluates to false, the code transfers to the first statement of the else block
rather than the first statement following the (entire) if statement. The sec-
ond thing to note is the jmp instruction at the end of the true clause skips
the else block.

Some languages, including HLA, support an elseif clause in their
if statement to evaluate a second condition if the first one fails. This is a

462 Chapter 13

straightforward extension of the code generation of the if statement I’ve
shown. Consider the following HLA if..elseif..else..endif statements:

if(EAX = EBX) then

 stdout.put("EAX is equal to EBX" nl);
 inc(i);

elseif(EAX = ECX) then

 stdout.put("EAX is equal to ECX" nl);

else

 stdout.put("EAX is not equal to EBX or ECX" nl);

endif;

And here’s the conversion to pure 80x86/HLA assembly language code:

// Test to see if EAX = EBX

 cmp(eax, ebx);
 jne tryElseif; // Skip "then" section if equal

 // Start of the "then" section

 stdout.put("EAX is equal to EBX", nl);
 inc(i);
 jmp skipElseBody // End of "then" section, skip
 // over the elseif clause.
tryElseif:
 cmp(eax, ecx); // ELSEIF test for EAX = ECX
 jne doElse; // Skip "then" clause if not equal

 // elseif "then" clause

 stdout.put("EAX is equal to ECX", nl);
 jmp skipElseBody; // Skip over the "else" section

doElse: // else clause begins here
 stdout.put("EAX is not equal to EBX or ECX", nl);

skipElseBody:

The translation of the elseif clause is very straightforward; the machine
code for it is identical to an if statement. What’s noteworthy here is how
the compiler emits a jmp instruction at the end of the if..then clause to skip
around the Boolean test emitted for the elseif clause.

Control Structures and Programmatic Decisions 463

13.4.1 Improving the Efficiency of Certain if/else Statements
From an efficiency point of view, it’s important to note that there’s no path
through the if..else statement that doesn’t involve a transfer of control
(unlike the simple if statement, which simply falls through if the condi-
tional expression is true). As this chapter has pointed out, branches are bad
because they often flush the CPU’s instruction pipeline, which takes several
CPU cycles to refill. If both outcomes of the Boolean expression (true and
false) are equally likely, there’s little you can do to improve the code’s per-
formance by rearranging the if..else statement. For most if statements,
however, one outcome is often more likely—perhaps much more likely—
than the other. Assembly coders who understand the likelihood of one com-
parison over another will often encode their if..else statements as follows:

// if(eax == ebx) then
// //<likely case>
// stdout.put("EAX is equal to EBX", nl);
// else
// // unlikely case
// stdout.put("EAX is not equal to EBX" nl);
// endif;

 cmp(EAX, EBX);
 jne goDoElse;
 stdout.put("EAX is equal to EBX", nl);
backFromElse:
 .
 .
 .
// Somewhere else in the code (not in the direct path of the above):

goDoElse:
 stdout.put("EAX is not equal to EBX", nl);
 jmp backFromElse

Note that in the most common case (where the expression evaluates
to true), the code falls through to the then section, which then falls straight
through to the code that follows the entire if statement. Therefore, if the
Boolean expression (eax == ebx) is true most of the time, this code executes
straight through without any branches. In the rare case, when EAX does
not equal EBX, the program actually has to execute two branches: one to
transfer control to the section of code that handles the else clause, and
one to return control to the first statement following the if. As long as this
occurs less than half of the time, the software sees an overall performance
boost. You can achieve this same result in an HLL such as C using goto state-
ments. For example:

if(eax != ebx) goto doElseStuff;

 // << body of the if statement goes here>>
 // (statements between then and else)

464 Chapter 13

endOfIF:
// << statements following the if..endif statement >>
 .
 .
 .
// Somewhere outside the direct execution path of the above

doElseStuff:
 << Code to do if the expression is false >>
 goto endOfIF;

Of course, the drawback to this scheme is that it produces spaghetti code
that becomes unreadable once you add more than a few of these kludges.
Assembly language programmers get away with this because most assembly
language code is, by definition, spaghetti code.2 For HLL code, however,
this programming style is generally unacceptable, and you should use it
only when necessary. (See “The goto Statement” on page 455.)

The following generic if statement is common in programs written in
HLLs such as C:

if(eax == ebx)
{
 // Set i to some value along this execution path.

 i = j+5;
}
else
{
 // Set i to a different value along this path

 i = 0;
}

Here’s the conversion of this C code into 80x86/HLA assembly code:

 cmp(eax, ebx);
 jne doElse;
 mov(j, edx);
 add(5, edx);
 mov(edx, i);
 jmp ifDone;

doElse:
 mov(0, i);
ifDone:

2. Although it is quite easy to write structured code with an assembler such as HLA.

Control Structures and Programmatic Decisions 465

As you’ve seen in previous examples, the if..then..else statement con-
version to assembly language requires two control transfer instructions:

•	 The jne instruction that tests the comparison between EAX and EBX

•	 The unconditional jmp instruction that skips over the else section of the
if statement

Regardless of which path the program takes (through the then or the
else section), the CPU executes a slow branch instruction that winds up
flushing the instruction pipeline. Consider the following code, which does
not have this problem:

i = 0;
if(eax == ebx)
{
 i = j + 5;
}

Here is its conversion to pure 80x86/HLA assembly code:

 mov(0, i);
 cmp(eax, ebx);
 jne skipIf;
 mov(j, edx);
 add(5, edx);
 mov(edx, i);
skipIf:

As you can see, if the expression evaluates to true, the CPU executes
no control transfer statements at all. Yes, the CPU executes an extra mov
instruction whose result is immediately overwritten (so the execution of
the first mov instruction is wasted); however, the execution of this extra
mov instruction happens much more rapidly than the execution of the jmp
instruction. This trick is a prime example of why it’s a good idea to know
some assembly language code (and know how compilers generate machine
code from high-level code). It’s not at all obvious that the second sequence
is better than the first. Beginning programmers, in fact, would probably
believe it to be inferior because the program “wastes” an assignment to i
when the expression evaluates to true (and no such assignment is made in
the first version). This is one reason why this chapter exists—to make sure
you understand the costs associated with using high-level control structures.

13.4.2 Forcing Complete Boolean Evaluation in an if Statement
Because complete Boolean evaluation and short-circuit Boolean evalu-
ation can produce different results (see “Short-Circuit Evaluation” on
page 441), there are times when you’ll need to force your code to use one
form or the other when computing the result of a Boolean expression.

466 Chapter 13

The general way to force complete Boolean evaluation is to evaluate
each subcomponent of the expression and store the subresult into tem-
porary variables. Then you can combine the temporary results after their
computation to produce the complete result. For example, consider the fol-
lowing Pascal code fragment:

if((i < g(y)) and (k > f(x))) then begin

 i := 0;

end;

Because Pascal doesn’t guarantee complete Boolean evaluation, func-
tion f() might not be called in this expression—if i is less than g(y)—and
thus any side effects produced by the call to f() might not occur. (See “Side
Effects in Arithmetic Expressions” on page 430.) If the logic of the appli-
cation depends on any side effects produced by the calls to f() and g(), then
you must ensure that the application calls both functions. Note that simply
swapping the two subexpressions around the AND operator is insufficient
to solve this problem; with that change, the application might not call g().

One way to solve this problem is to compute the Boolean results of the
two subexpressions using separate assignment statements and then com-
pute the logical AND of the two results within the if expression:

lexpr := i < g(y);
rexpr := k > f(x);
if(lexpr AND rexpr) then begin

 i := 0;

end;

Don’t be too concerned about the efficiency loss that could result from
using these temporary variables. Any compiler that provides optimization
facilities will put these values into registers and not bother using actual
memory locations. Consider the following variant of the previous Pascal
program written in C and compiled with the Visual C++ compiler:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 int lExpr;

Control Structures and Programmatic Decisions 467

 int rExpr;

 lExpr = i < g(y);
 rExpr = k > f(x);
 if(lExpr && rExpr)
 {
 printf("Hello");
 }

 return(0);
}

Here’s the conversion to 32-bit MASM code by the Visual C++ compiler
(a few instructions have been rearranged to make their intent clearer):

main PROC

$LN7:
 mov QWORD PTR [rsp+8], rbx
 push rdi
 sub rsp, 32 ; 00000020H

; eax = g(y)
 mov ecx, DWORD PTR y
 call g
; ebx (lExpr) = i < g(y)
 xor edi, edi
 cmp DWORD PTR i, eax
 mov ebx, edi ; ebx = 0
 setl bl ;if i < g(y), set EBX to 1.

; eax = f(x)
 mov ecx, DWORD PTR x
 call f

; EDI = k > f(x)

 cmp DWORD PTR k, eax
 setg dil ; Sets EDI to 1 if k > f(x)

; See if lExpr is false:

 test ebx, ebx
 je SHORT $LN4@main

; See if rExpr is false:

 test edi, edi
 je SHORT $LN4@main

; "then" section of the if statement:

 lea rcx, OFFSET FLAT:$SG7893
 call printf

468 Chapter 13

$LN4@main:

; return(0);
 xor eax, eax

 mov rbx, QWORD PTR [rsp+48]
 add rsp, 32 ; 00000020H
 pop rdi
 ret 0
main ENDP

If you scan the assembly code, you’ll see that this code fragment always
executes the calls to both f() and g(). Contrast this with the following C
code and assembly output:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 if(i < g(y) && k > f(x))
 {
 printf("Hello");
 }

 return(0);
}

Here’s the MASM assembly output:

main PROC

$LN7:
 sub rsp, 40 ; 00000028H

; if (!(i < g(y))) then bail on the rest of the code:

 mov ecx, DWORD PTR y
 call g
 cmp DWORD PTR i, eax
 jge SHORT $LN4@main

; if (!(k > f(x))) then skip printf:

 mov ecx, DWORD PTR x
 call f
 cmp DWORD PTR k, eax

Control Structures and Programmatic Decisions 469

 jle SHORT $LN4@main

; Here's the body of the if statement.

 lea rcx, OFFSET FLAT:$SG7891
 call printf
$LN4@main:

; return 0
 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP

In C, you can use another trick to force complete Boolean evalua-
tion in any Boolean expression. The C bitwise operators do not support
short-circuit Boolean evaluation. If your subexpressions in a Boolean
expression always produce 0 or 1, the bitwise Boolean conjunction and
disjunction operators (that is, & and |) produce identical results to the
logical Boolean operators (&& and ||). Consider the following C code
and the MASM code that the Visual C++ compiler produces:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 if(i < g(y) & k > f(x))
 {
 printf("Hello");
 }
 return(0);
}

Here’s the MASM code emitted by Visual C++:

main PROC

$LN6:
 mov QWORD PTR [rsp+8], rbx
 push rdi
 sub rsp, 32 ; 00000020H

 mov ecx, DWORD PTR x
 call f

470 Chapter 13

 mov ecx, DWORD PTR y
 xor edi, edi
 cmp DWORD PTR k, eax
 mov ebx, edi
 setg bl
 call g
 cmp DWORD PTR i, eax
 setl dil
 test edi, ebx
 je SHORT $LN4@main

 lea rcx, OFFSET FLAT:$SG7891
 call printf
$LN4@main:

 xor eax, eax

 mov rbx, QWORD PTR [rsp+48]
 add rsp, 32 ; 00000020H
 pop rdi
 ret 0
main ENDP

Note how the use of the bitwise operators produces comparable code to
the earlier sequence that used temporary variables. This creates less clutter
in your original C source file.

Do keep in mind, however, that C’s bitwise operators produce the same
results as the logical operators only if the operands are 0 and 1. Fortunately,
you can use a little C trick here: just write !!(expr), and if the expression’s
value is zero or nonzero, C will convert the result to 0 or 1. To see this in
action, consider the following C/C++ code fragment:

#include <stdlib.h>
#include <math.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 int boolResult;

 boolResult = !!argc;
 printf("!!(argc) = %d\n", boolResult);
 return 0;
}

Here’s the 80x86 assembly code that Microsoft’s Visual C++ compiler
produces for this short program:

main PROC
$LN4:
 sub rsp, 40 ; 00000028H

 xor edx, edx ; EDX = 0

Control Structures and Programmatic Decisions 471

 test ecx, ecx ; System passes ARGC in ECX register
 setne dl ; If ECX==0, sets EDX=1, else EDX=0

 lea rcx, OFFSET FLAT:$SG7886 ; Zero flag unchanged!
 call printf ; printf parm1 in RCX, parm2 in EDX

; Return 0;
 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP

As you can see in the 80x86 assembly output, only three machine instruc-
tions (involving no expensive branches) are needed to convert zero/non-
zero to 0/1.

13.4.3 Forcing Short-Circuit Evaluation in an if Statement
Although it’s useful to be able to force complete Boolean evaluation on
occasion, needing to force short-circuit evaluation is probably more com-
mon. Consider the following Pascal statement:

if((ptrVar <> NIL) AND (ptrVar^ < 0)) then begin

 ptrVar^ := 0;

end;

The Pascal language definition leaves it up to the compiler writer to
decide whether to use complete Boolean evaluation or short-circuit evalu-
ation. In fact, the writer is free to use both schemes as desired. Thus, it’s
quite possible that the same compiler could use complete Boolean evalua-
tion for the previous statement in one section of the code and short-circuit
evaluation in another.

You can see that this Boolean expression will fail if ptrVar contains the
NIL pointer value and if the compiler uses complete Boolean evaluation.
The only way to get this statement to work properly is by using short-circuit
Boolean evaluation.

Simulating short-circuit Boolean evaluation with the AND operator is
actually quite simple. All you have to do is create a pair of nested if state-
ments and place each subexpression in each one. For example, you could
guarantee short-circuit Boolean evaluation in the current Pascal example
by rewriting it as follows:

if(ptrVar <> NIL) then begin

 if(ptrVar^ < 0) then begin

 ptrVar^ := 0;

472 Chapter 13

 end;

end;

This statement is semantically identical to the previous one. It should
be clear that the second subexpression will not execute if the first expres-
sion evaluates to false. Even though this approach clutters up the source
file a bit, it does guarantee short-circuit evaluation regardless of whether
the compiler supports that scheme.

Handling the logical-OR operation is a little more difficult. Guaranteeing
that the right operand of a logical-OR does not execute if the left operand
evaluates to true requires an extra test. Consider the following C code
(remember that C supports short-circuit evaluation by default):

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 if(i < g(y) || k > f(x))
 {
 printf("Hello");
 }

 return(0);
}

Here’s the machine code that the Microsoft Visual C++ compiler
produces:

main PROC

$LN8:
 sub rsp, 40 ; 00000028H

 mov ecx, DWORD PTR y
 call g
 cmp DWORD PTR i, eax
 jl SHORT $LN3@main
 mov ecx, DWORD PTR x
 call f
 cmp DWORD PTR k, eax
 jle SHORT $LN6@main
$LN3@main:

 lea rcx, OFFSET FLAT:$SG6880

Control Structures and Programmatic Decisions 473

 call printf
$LN6@main:

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP
_TEXT ENDS

Here’s a version of the C program that implements short-circuit evalu-
ation without relying on the C compiler to do so (not that this is necessary
for C, as its language definition guarantees short-circuit evaluation, but you
could use this approach in any language):

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 int temp;

 // Compute left subexpression and
 // save.

 temp = i < g(y);

 // If the left subexpression
 // evaluates to false, then try
 // the right subexpression.

 if(!temp)
 {
 temp = k > f(x);
 }

 // If either subexpression evaluates
 // to true, then print "Hello"

 if(temp)
 {
 printf("Hello");
 }

 return(0);
}

474 Chapter 13

Here’s the corresponding MASM code emitted by the Microsoft Visual
C++ compiler:

main PROC

$LN9:
 sub rsp, 40 ; 00000028H

 mov ecx, DWORD PTR y
 call g
 xor ecx, ecx
 cmp DWORD PTR i, eax
 setl cl
 test ecx, ecx

 jne SHORT $LN7@main

 mov ecx, DWORD PTR x
 call f
 xor ecx, ecx
 cmp DWORD PTR k, eax
 setg cl
 test ecx, ecx

 je SHORT $LN5@main
$LN7@main:

 lea rcx, OFFSET FLAT:$SG6881
 call printf
$LN5@main:

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP

As you can see, the code the compiler emits for the second version of
the routine, which manually forces short-circuit evaluation, isn’t quite as
good as that emitted by the C compiler for the first example. However, if
you need the semantics for short-circuit evaluation so the program will exe-
cute correctly, you’ll have to live with possibly less efficient code than you’d
get if the compiler supported this scheme directly.

If speed, minimal size, and short-circuit evaluation are all necessary,
and you’re willing to sacrifice a little readability and maintainability in
your code to achieve them, then you can destructure the code and create
something comparable to what the C compiler produces using short-circuit
evaluation. Consider the following C code and the resulting output:

#include <stdio.h>

static int i;

Control Structures and Programmatic Decisions 475

static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 if(i < g(y)) goto IntoIF;
 if(k > f(x))
 {
 IntoIF:

 printf("Hello");
 }

 return(0);
}

Here’s the MASM output from Visual C++:

main PROC

$LN8:
 sub rsp, 40 ; 00000028H

 mov ecx, DWORD PTR y
 call g
 cmp DWORD PTR i, eax
 jl SHORT $IntoIF$9

 mov ecx, DWORD PTR x
 call f
 cmp DWORD PTR k, eax
 jle SHORT $LN6@main
$IntoIF$9:

 lea rcx, OFFSET FLAT:$SG6881
 call printf
$LN6@main:

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP

If you compare this code to the MASM output for the original C
example (which relies on short-circuit evaluation), you’ll see that this
code is just as efficient. This is a classic example of why there was consid-
erable resistance to structured programming in the 1970s among some

476 Chapter 13

programmers—sometimes it leads to less efficient code. Of course, read-
ability and maintainability are usually more important than a few bytes or
machine cycles. But never forget that if performance is paramount for a small
section of code, destructuring that code can improve efficiency in some spe-
cial cases.

13.5 The switch/case Statement
The switch (or case) high-level control statement is another conditional
statement found in HLLs. As you’ve seen, an if statement tests a Boolean
expression and executes one of two different paths in the code based on
the result of the expression. A switch/case statement, on the other hand,
can branch to one of several different points in the code based on the
result of an ordinal (integer) expression. The following examples demon-
strate the switch and case statements in C/C++, Pascal, and HLA. First, the
C/C++ switch statement:

switch(expression)
{
 case 0:
 << statements to execute if the
 expression evaluates to 0 >>
 break;

 case 1:
 << statements to execute if the
 expression evaluates to 1 >>
 break;

 case 2:
 << statements to execute if the
 expression evaluates to 2>>
 break;

 <<etc>>

 default:
 << statements to execute if the expression is
 not equal to any of these cases >>
}

Java and Swift provide a similar syntax to C/C++ for the switch
statement, although Swift’s version has many additional features. We’ll
explore some of those additional features in the section “The Swift switch
Statement” on page 500.

Here’s an example of a Pascal case statement:

case (expression) of
 0: begin
 << statements to execute if the

Control Structures and Programmatic Decisions 477

 expression evaluates to 0 >>
 end;

 1: begin
 << statements to execute if the
 expression evaluates to 1 >>
 end;

 2: begin
 << statements to execute if the
 expression evaluates to 2>>
 end;

 <<etc>>

 else
 << statements to execute if
 REG32 is not equal to any of these cases >>

end; (* case *)

And finally, here’s the HLA switch statement:

switch(REG32)

 case(0)
 << statements to execute if
 REG32 contains 0 >>

 case(1)
 << statements to execute
 REG32 contains 1 >>

 case(2)
 << statements to execute if
 REG32 contains 2>>

 <<etc>>

 default
 << statements to execute if
 REG32 is not equal to any of these cases >>

endswitch;

As you can tell by these examples, these statements all share a
similar syntax.

13.5.1 Semantics of a switch/case Statement
Most beginning programming classes and textbooks teach the semantics of
the switch/case statement by comparing it with a chain of if..else..if state-
ments; this introduces the switch/case statement using a concept the student

478 Chapter 13

already understands. Unfortunately, this approach can be misleading. To
see why, consider the following code, which an introductory Pascal pro-
gramming book might claim is equivalent to our Pascal case statement:

if(expression = 0) then begin

 << statements to execute if expression is 0 >>

end
else if(expression = 1) then begin

 << statements to execute if expression is 1 >>

end
else if(expression = 2) then begin

 << statements to execute if expression is 2 >>

end
else
 << statements to execute if expression is not 1 or 2 >>

end;

Although this particular sequence will achieve the same result as the case
statement, there are several fundamental differences between the if..then..
elseif sequence and the Pascal case implementation. First, the case labels in
a case statement must all be constants, but in an if..then..elseif chain you
can actually compare variables and other nonconstant values against the con-
trol variable. Another limitation of the switch/case statement is that you can
compare only the value of a single expression against a set of constants; you
cannot compare one expression against a constant for one case and a sepa-
rate expression against a second constant, as you can with an if..then..elseif
chain. The reason for these limitations will become clear in a moment, but
the takeaway here is that an if..then..elseif chain is semantically different
from—and more powerful than—a switch/case statement.

13.5.2 Jump Tables vs. Chained Comparisons
Although it is arguably more readable and convenient than an if..then..
elseif chain, the switch/case statement was originally added to HLLs for
efficiency, not readability or convenience. Consider an if..then..elseif
chain with 10 separate expressions to test. If all the cases are mutually
exclusive and equally likely, then on average the program will execute five
comparisons before encountering an expression that evaluates to true. In
assembly language, it’s possible to transfer control to one of several dif-
ferent locations in a fixed amount of time, independent of the number
of cases, by using a table lookup and an indirect jump. Effectively, such
code uses the value of the switch/case expression as an index into a table
of addresses and then jumps (indirectly) to the statement specified by the
table entry. When you have more than three or four cases, this scheme

Control Structures and Programmatic Decisions 479

is typically faster and consumes less memory than the corresponding
if..then..elseif chain. Consider the following simple implementation of a
switch/case statement in assembly language:

// Conversion of
// switch(i)
// { case 0:...case 1:...case 2:...case 3:...}
// into assembly

static
 jmpTable: dword[4] :=
 [&label0, &label1, &label2, &label3];
 .
 .
 .
 // jmps to address specified by jmpTable[i]

 mov(i, eax);
 jmp(jmpTable[eax*4]);

label0:
 << code to execute if i = 0 >>
 jmp switchDone;

label1:
 << code to execute if i = 1 >>
 jmp switchDone;

label2:
 << code to execute if i = 2 >>
 jmp switchDone;

label3:
 << code to execute if i = 3 >>

switchDone:
 << Code that follows the switch statement >>

To see how this code operates, we’ll step through it one instruction at a
time. The jmpTable declaration defines an array of four double-word point-
ers, one pointer for each case in our switch statement emulation. Entry 0
in the array holds the address of the statement to jump to when the switch
expression evaluates to 0, entry 1 contains the address of the statement to
execute when the switch expression evaluates to 1, and so on. Note that the
array must have one element whose index matches each of the possible
cases in the switch statement (0 through 3 in this particular example).

The first machine instruction in this example loads the value of the
switch expression (variable i’s value) into the EAX register. Because this
code uses the switch expression’s value as an index into the jmpTable array,
this value must be an ordinal (integer) value in an 80x86 32-bit register.
The next instruction (jmp) does the real work of the switch statement emu-
lation: it jumps to the address specified by the entry in the jmpTable array,

480 Chapter 13

indexed by EAX. If EAX contains 0 upon execution of this jmp statement,
the program fetches the double word from jmpTable[0] and transfers con-
trol to that address; this is the address of the first instruction following the
label0 label in the program code. If EAX contains 1, then the jmp instruc-
tion fetches the double word at address jmpTable + 4 in memory (note that
the *4 scaled-index addressing mode is used in this code; see “Indexed
Addressing Mode” on page 34 for more details). Likewise, if EAX con-
tains 2 or 3, then the jmp instruction transfers control to the double-word
address held at jmpTable + 8 or jmpTable + 12 (respectively). Because the
jmpTable array is initialized with the addresses of label0, label1, label2,
and label3, at respective offsets 0, 4, 8, and 12, this particular indirect jmp
instruction will transfer control to the statement at the label corresponding
to i’s value (label0, label1, label2, or label3, respectively).

The first point of interest about this switch statement emulation is that it
requires only two machine instructions (and a jump table) to transfer con-
trol to any of the four possible cases. Contrast this with an if..then..elseif
implementation, which requires at least two machine instructions for each
case. Indeed, as you add more cases to the if..then..elseif implementation,
the number of compare and conditional branch instructions increases,
yet the number of machine instructions for the jump table implementation
remains fixed at two (even though the size of the jump table increases by
one entry for each case). Accordingly, the if..then..elseif implementation
gets progressively slower as you add more cases, while the jump table imple-
mentation takes a constant amount of time to execute (regardless of the
number of cases). Assuming your HLL compiler uses a jump table imple-
mentation for switch statements, a switch statement will typically be much
faster than an if..then..elseif sequence if there are a large number of cases.

The jump table implementation of switch statements does have a couple
of drawbacks, though. First, because the jump table is an array in memory,
and accessing (noncached) memory can be slow, accessing the jump table
array could possibly impair system performance.

Another downside is that you must have one entry in the table for every
possible case between the largest and the smallest case values, including
those values for which you haven’t actually supplied an explicit case. In the
example up to this point, this hasn’t been an issue because the case values
started with 0 and were contiguous through 3. However, consider the follow-
ing Pascal case statement:

case(i) of

 0: begin
 << statements to execute if i = 0 >>
 end;

 1: begin
 << statements to execute if i = 1 >>
 end;

Control Structures and Programmatic Decisions 481

 5: begin
 << statements to execute if i = 5 >>
 end;

 8: begin
 << statements to execute if i = 8 >>
 end;

end; (* case *)

We can’t implement this case statement with a jump table containing four
entries. If the value of i were 0 or 1, then it would fetch the correct address.
However, for case 5, the index into the jump table would be 20 (5 × 4), not
the third (2 x 4 = 8) entry in the jump table. If the jump table contained
only four entries (16 bytes), indexing into the jump table using the value 20
would grab an address beyond the end of the table and likely crash the appli-
cation. This is exactly why in the original definition of Pascal, the results were
undefined if the program supplied a case value that wasn’t present in the set
of labels for a particular case statement.

To solve this problem in assembly language, you must make sure
there are entries for each of the possible case labels as well as all values in
between them. In the current example, the jump table would need nine
entries to handle all the possible case values, 0 through 8:

// Conversion of
// switch(i)
// { case 0:...case 1:...case 5:...case 8:}
// into assembly

static
 jmpTable: dword[9] :=
 [
 &label0, &label1, &switchDone,
 &switchDone, &switchDone,
 &label5, &switchDone, &switchDone,
 &label8
];
 .
 .
 .
 // jumps to address specified by jmpTable[i]

 mov(i, eax);
 jmp(jmpTable[eax*4]);

label0:
 << code to execute if i = 0 >>
 jmp switchDone;

label1:
 << code to execute if i = 1 >>
 jmp switchDone;

482 Chapter 13

label5:
 << code to execute if i = 5 >>
 jmp switchDone;

label8:
 << code to execute if i = 8 >>

switchDone:
 << Code that follows the switch statement >>

Notice that if i is equal to 2, 3, 4, 6, or 7, then this code transfers control
to the first statement beyond the switch statement (the standard semantics
for C’s switch statement and the case statement in most modern variants
of Pascal). Of course, C will also transfer control to this point in the code
if the switch/case expression value is greater than the largest case value.
Most compilers implement this feature with a comparison and conditional
branch immediately before the indirect jump. For example:

// Conversion of
// switch(i)
// { case 0:...case 1:...case 5:...case 8:}
// into assembly, that automatically
// handles values greater than 8.

static
 jmpTable: dword[9] :=
 [
 &label0, &label1, &switchDone,
 &switchDone, &switchDone,
 &label5, &switchDone, &switchDone,
 &label8
];
 .
 .
 .
 // Check to see if the value is outside the range
 // of values allowed by this switch/case stmt.

 mov(i, eax);
 cmp(eax, 8);
 ja switchDone;

 // jmps to address specified by jmpTable[i]

 jmp(jmpTable[eax*4]);

 .
 .
 .

switchDone:
 << Code that follows the switch statement >>

Control Structures and Programmatic Decisions 483

You may have noticed another assumption that this code is making—
that the case values start at 0. Modifying the code to handle an arbitrary
range of case values is simple. Consider the following example:

// Conversion of
// switch(i)
// { case 10:...case 11:...case 12:...case 15:...case 16:}
// into assembly, that automatically handles values
// greater than 16 and values less than 10.

static
 jmpTable: dword[7] :=
 [
 &label10, &label11, &label12,
 &switchDone, &switchDone,
 &label15, &label16
];
 .
 .
 .
 // Check to see if the value is outside the
 // range 10..16.

 mov(i, eax);
 cmp(eax, 10);
 jb switchDone;
 cmp(eax, 16);
 ja switchDone;

 // The "- 10*4" part of the following expression
 // adjusts for the fact that EAX starts at 10
 // rather than 0, but we still need a zero-based
 // index into our array.

 jmp(jmpTable[eax*4 - 10*4]);

 .
 .
 .

switchDone:
 << Code that follows the switch statement >>

There are two differences between this example and the previous one.
First, this example compares the value in EAX against the range 10..16
and, if the value falls outside this range, branches to the switchDone label (in
other words, there is no case label for the value in EAX). Second, the jmpTable
index has been modified to be [eax*4 – 10*4]. Arrays at the machine level
always begin at index 0; the “- 10*4” component of this expression adjusts
for the fact that EAX actually contains a value starting at 10 rather than 0.
Effectively, this expression makes jmpTable start 40 bytes earlier in memory
than its declaration states. Because EAX is always 10 or greater (40 bytes
or greater because of the eax*4 component), this code begins accessing the

484 Chapter 13

table at its declared beginning location. Note that HLA subtracts this offset
from the address of jmpTable; the CPU doesn’t actually perform this subtrac-
tion at runtime. Hence, there is no additional efficiency loss to create this
zero-based index.

Notice that a fully generalized switch/case statement actually requires
six instructions to implement: the original two instructions plus four
instructions to test the range.3 This, plus the fact that an indirect jump is
slightly more expensive to execute than a conditional branch, is why the
break-even point for a switch/case statement (versus an if..then..elseif
chain) is around three to four cases.

As mentioned earlier, one serious drawback to the jump table imple-
mentation of the switch/case statement is the fact that you must have one
table entry for every possible value between the smallest case and the larg-
est case. Consider the following C/C++ switch statement:

switch(i)
{
 case 0:
 << statements to execute if i == 0 >>
 break;

 case 1:
 << statements to execute if i == 1 >>
 break;

 case 10:
 << statements to execute if i == 10 >>
 break;

 case 100:
 << statements to execute if i == 100 >>
 break;

 case 1000:
 << statements to execute if i == 1000 >>
 break;

 case 10000:
 << statements to execute if i == 10000 >>
 break;
}

If the C/C++ compiler implements this switch statement using a jump
table, that table will require 10,001 entries (that is, 40,004 bytes of memory
on a 32-bit processor). That’s quite a chunk of memory for such a simple
statement! Although the wide separation of the cases has a major effect
on memory usage, it has only a minor effect on the execution speed of the
switch statement. The program executes the same four instructions it would

3. Actually, with a little assembly language trickery, a good programmer or compiler can
reduce this from four to three machine instructions (with only a single branch).

Control Structures and Programmatic Decisions 485

execute if the values were all contiguous (only four instructions are neces-
sary because the case values start at 0, so there’s no need to check the switch
expression against a lower bound). Indeed, the only reason there’s a per-
formance difference at all is because of the effects of the table size on the
cache (it’s less likely you will find a particular table entry in the cache when
the table is large). Speed issues aside, the memory usage by the jump table
is difficult to justify for most applications. Therefore, if your particular
compiler emits a jump table for all switch/case statements (which you can
determine by looking at the code it produces), you should be careful about
creating switch/case statements whose cases are widely separated.

13.5.3 Other Implementations of switch/case
Because of the issue with jump table sizes, some HLL compilers do not imple-
ment switch/case statements using jump tables. Some compilers will simply
convert a switch/case statement into the corresponding if..then..elseif chain
(Swift falls into this category). Obviously, such compilers tend to produce
low-quality code (from a speed point of view) whenever a jump table would
be appropriate. Many modern compilers are relatively smart about their code
generation. They’ll determine the number of cases in a switch/case statement
as well as the spread of the case values. Then the compiler will choose a jump
table or if..then..elseif implementation based on some threshold criteria
(code size versus speed). Some compilers might even use a combination of
the techniques. For example, consider the following Pascal case statement:

case(i) of
 0: begin
 << statements to execute if i = 0 >>
 end;

 1: begin
 << statements to execute if i = 1 >>
 end;

 2: begin
 << statements to execute if i = 2 >>
 end;

 3: begin
 << statements to execute if i = 3 >>
 end;

 4: begin
 << statements to execute if i = 4 >>
 end;

 1000: begin
 << statements to execute if i = 1000 >>
 end;
end; (* case *)

486 Chapter 13

A good compiler will recognize that the majority of the cases work well
in a jump table, with the exception of only one (or a few) cases. It will trans-
late this code to a sequence of instructions that combine the if..then and
jump table implementation. For example:

 mov(i, eax);
 cmp(eax, 4);
 ja try1000;
 jmp(jmpTable[eax*4]);
 .
 .
 .
try1000:
 cmp(eax, 1000);
 jne switchDone;
 << code to do if i = 1000 >>
switchDone:

Although the switch/case statement was originally created to allow the
use of an efficient jump table transfer mechanism in an HLL, there are few
language definitions that require a specific implementation for a control
structure. Therefore, unless you stick with a specific compiler and you know
how that compiler generates code under all circumstances, there’s abso-
lutely no guarantee that your switch/case statements will compile to a jump
table, an if..then..elseif chain, some combination of the two, or something
else entirely. For example, consider the following short C program and the
resulting assembly output:

extern void f(void);
extern void g(void);
extern void h(void);
int main(int argc, char **argv)
{
 int boolResult;

 switch(argc)
 {
 case 1:
 f();
 break;

 case 2:
 g();
 break;

 case 10:
 h();
 break;

 case 11:
 f();
 break;

Control Structures and Programmatic Decisions 487

 }
 return 0;
}

Here’s the 80x86 output from the (older) Borland C++ v5.0 compiler:

_main proc near
?live1@0:
 ;
 ; int main(int argc, char **argv)
 ;
@1:
 push ebp
 mov ebp,esp
 ;
 ; {
 ; int boolResult;
 ;
 ; switch(argc)
 ;

; Is argc == 1?

 mov eax,dword ptr [ebp+8]
 dec eax
 je short @7

; Is argc == 2?

 dec eax
 je short @6

; Is argc == 10?

 sub eax,8
 je short @5

; Is argc == 11?

 dec eax
 je short @4

; If none of the above

 jmp short @2
 ;
 ; {
 ; case 1:
 ; f();
 ;
@7:
 call _f
 ;
 ; break;
 ;

488 Chapter 13

 jmp short @8
 ;
 ;
 ; case 2:
 ; g();
 ;
@6:
 call _g
 ;
 ; break;
 ;
 jmp short @8
 ;
 ;
 ; case 10:
 ; h();
 ;
@5:
 call _h
 ;
 ; break;
 ;
 jmp short @8
 ;
 ;
 ; case 11:
 ; f();
 ;
@4:
 call _f
 ;
 ; break;
 ;
 ; }
 ; return 0;
 ;
@2:
@8:
 xor eax,eax
 ;
 ; }
 ;
@10:
@9:
 pop ebp
 ret
_main endp

As you can see at the beginning of the main program, this code com-
pares the value in argc against the four values (1, 2, 10, and 11) sequentially.
For a switch statement as small as this one, this isn’t a bad implementation.

Control Structures and Programmatic Decisions 489

When there are a fair number of cases and a jump table would be too
large, many modern optimizing compilers generate a binary search tree to
test the cases. For example, consider the following C program and the cor-
responding output:

#include <stdio.h>

extern void f(void);
int main(int argc, char **argv)
{
 int boolResult;

 switch(argc)
 {
 case 1:
 f();
 break;

 case 10:
 f();
 break;

 case 100:
 f();
 break;

 case 1000:
 f();
 break;

 case 10000:
 f();
 break;

 case 100000:
 f();
 break;

 case 1000000:
 f();
 break;

 case 10000000:
 f();
 break;

 case 100000000:
 f();
 break;

 case 1000000000:
 f();
 break;

490 Chapter 13

 }
 return 0;
}

Here’s the 64-bit MASM output from the Visual C++ compiler. Note
how Microsoft’s compiler generates a partial binary search through each of
the 10 cases:

main PROC

$LN18:
 sub rsp, 40 ; 00000028H

; >+ 100,000?
 cmp ecx, 100000 ; 000186a0H
 jg SHORT $LN15@main
 je SHORT $LN10@main

; handle cases where argc is less than 100,000
;
; Check for argc = 1

 sub ecx, 1
 je SHORT $LN10@main

; check for argc = 10

 sub ecx, 9
 je SHORT $LN10@main

;check for argc = 100

 sub ecx, 90 ; 0000005aH
 je SHORT $LN10@main

; check for argc = 1000

 sub ecx, 900 ; 00000384H
 je SHORT $LN10@main

; check for argc = 1000
 cmp ecx, 9000 ; 00002328H

 jmp SHORT $LN16@main
$LN15@main:

; Check for argc = 100,000

 cmp ecx, 1000000 ; 000f4240H
 je SHORT $LN10@main

; check for argc = 1,000,000
 cmp ecx, 10000000 ; 00989680H
 je SHORT $LN10@main

Control Structures and Programmatic Decisions 491

; check for argc = 10,000,000
 cmp ecx, 100000000 ; 05f5e100H
 je SHORT $LN10@main

; check for argc = 100,000,000

 cmp ecx, 1000000000 ; 3b9aca00H
$LN16@main:
 jne SHORT $LN2@main
$LN10@main:

 call f
$LN2@main:

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP

Interestingly enough, when compiling to 32-bit code, Visual C++ pro-
duces a true binary search. Here’s the MASM32 output from the 32-bit ver-
sion of Visual C++:

_main PROC

 mov eax, DWORD PTR _argc$[esp-4] ; argc is passed on stack in 32-bit code

; Start with >100,000, = 100,000, or < 100,000

 cmp eax, 100000 ; 000186a0H
 jg SHORT $LN15@main ; Go if >100,000
 je SHORT $LN4@main ; Match if equal

; Handle cases where argc < 100,000
;
; Divide it into >100 and < 100

 cmp eax, 100 ; 00000064H
 jg SHORT $LN16@main ; Branch if > 100
 je SHORT $LN4@main ; = 100

; Down here if < 100

 sub eax, 1
 je SHORT $LN4@main ; branch if it was 1

 sub eax, 9 ; Test for 10
 jmp SHORT $LN18@main

; Come down here if >100 and <100,000

492 Chapter 13

$LN16@main:

 cmp eax, 1000 ; 000003e8H
 je SHORT $LN4@main ; Branch if 1000
 cmp eax, 10000 ; 00002710H
 jmp SHORT $LN18@main ; Handle =10,000 or not in range

; Handle > 100,000 here.

$LN15@main:
 cmp eax, 100000000 ; 05f5e100H
 jg SHORT $LN17@main ; > 100,000,000
 je SHORT $LN4@main ; = 100,000

; Handle < 100,000,000 and > 100,000 here:

 cmp eax, 1000000 ; 000f4240H
 je SHORT $LN4@main ; =1,000,000
 cmp eax, 10000000 ; 00989680H

 jmp SHORT $LN18@main ; Handle 10,000,000 or not in range

; Handle > 100,000,000 here
$LN17@main:
; check for 1,000,000,000
 cmp eax, 1000000000 ; 3b9aca00H
$LN18@main:
 jne SHORT $LN2@main
$LN4@main:

 call _f
$LN2@main:

 xor eax, eax

 ret 0
_main ENDP

Some compilers, especially those for some microcontroller devices, gen-
erate a table of 2-tuples (paired records/structures), with one element of the
tuple being the value of the case and the second element being the address
to jump to if the value matches. Then the compiler emits a loop that scans
through this little table searching for the current switch/case expression
value. If this is a linear search, this implementation is even slower than the
if..then..elseif chain. If the compiler emits a binary search, the code may
be faster than an if..then.elseif chain but probably not as fast as a jump
table implementation.

Here’s a Java example of a switch statement, along with the Java byte-
code the compiler produces:

public class Welcome
{
 public static void f(){}

Control Structures and Programmatic Decisions 493

 public static void main(String[] args)
 {
 int i = 10;
 switch (i)
 {
 case 1:
 f();
 break;

 case 10:
 f();
 break;

 case 100:
 f();
 break;

 case 1000:
 f();
 break;

 case 10000:
 f();
 break;

 case 100000:
 f();
 break;

 case 1000000:
 f();
 break;

 case 10000000:
 f();
 break;

 case 100000000:
 f();
 break;

 case 1000000000:
 f();
 break;

 }
 }
}

// JBC output:

Compiled from "Welcome.java"
public class Welcome extends java.lang.Object{
public Welcome();

494 Chapter 13

 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: return

public static void f();
 Code:
 0: return

public static void main(java.lang.String[]);
 Code:
 0: bipush 10
 2: istore_1
 3: iload_1
 4: lookupswitch{ //10
 1: 96;
 10: 102;
 100: 108;
 1000: 114;
 10000: 120;
 100000: 126;
 1000000: 132;
 10000000: 138;
 100000000: 144;
 1000000000: 150;
 default: 153 }
 96: invokestatic #2; //Method f:()V
 99: goto 153
 102: invokestatic #2; //Method f:()V
 105: goto 153
 108: invokestatic #2; //Method f:()V
 111: goto 153
 114: invokestatic #2; //Method f:()V
 117: goto 153
 120: invokestatic #2; //Method f:()V
 123: goto 153
 126: invokestatic #2; //Method f:()V
 129: goto 153
 132: invokestatic #2; //Method f:()V
 135: goto 153
 138: invokestatic #2; //Method f:()V
 141: goto 153
 144: invokestatic #2; //Method f:()V
 147: goto 153
 150: invokestatic #2; //Method f:()V
 153: return

}

The lookupswitch bytecode instruction contains a table of 2-tuples. As
described earlier, the first value of the tuple is the case value, and the sec-
ond is the target address where the code transfers on a match. Presumably,
the bytecode interpreter does a binary search on these values rather than a
linear search (one would hope!). Notice that the Java compiler generates a

Control Structures and Programmatic Decisions 495

separate call to method f() for each of the cases; it doesn’t optimize them
to a single call as GCC and Visual C++ do.

N O T E Java also has a tableswitch VM instruction that executes a table-driven switch oper-
ation. The Java compiler chooses between the tableswitch and lookupswitch instruc-
tions based on the density of the case values.

Sometimes, compilers resort to some code tricks to generate marginally
better code under certain circumstances. Consider again the short switch
statement that led the Borland compiler to produce a linear search:

switch(argc)
 {
 case 1:
 f();
 break;

 case 2:
 g();
 break;

 case 10:
 h();
 break;

 case 11:
 f();
 break;

 }

Here’s the code that the Microsoft Visual C++ 32-bit compiler generates
for this switch statement:

; File t.c
; Line 13
;
; Use ARGC as an index into the $L1240 table,
; which returns an offset into the $L1241 table:

 mov eax, DWORD PTR _argc$[esp-4]
 dec eax ; --argc, 1=0, 2=1, 10=9, 11=10
 cmp eax, 10 ; Out of range of cases?
 ja SHORT $L1229
 xor ecx, ecx
 mov cl, BYTE PTR $L1240[eax]
 jmp DWORD PTR $L1241[ecx*4]

 npad 3
$L1241:
 DD $L1232 ; cases that call f
 DD $L1233 ; cases that call g

496 Chapter 13

 DD $L1234 ; cases that call h
 DD $L1229 ; Default case

$L1240:
 DB 0 ; case 1 calls f
 DB 1 ; case 2 calls g
 DB 3 ; default
 DB 3 ; default
 DB 3 ; default
 DB 3 ; default
 DB 3 ; default
 DB 3 ; default
 DB 3 ; default
 DB 2 ; case 10 calls h
 DB 0 ; case 11 calls f

; Here is the code for the various cases:

$L1233:
; Line 19
 call _g
; Line 31
 xor eax, eax
; Line 32
 ret 0

$L1234:
; Line 23
 call _h
; Line 31
 xor eax, eax
; Line 32
 ret 0

$L1232:
; Line 27
 call _f
$L1229:
; Line 31
 xor eax, eax
; Line 32
 ret 0

The trick in this 80x86 code is that Visual C++ first does a table lookup
to make an argc value in the range 1..11 to a value in the range 0..3 (which
corresponds to the three different code bodies appearing in the cases, plus
a default case). This code is shorter than a jump table, with the correspond-
ing double-word entries mapping to the default case, although it’s a little
slower than a jump table because it needs to access two different tables in
memory. (As for how the speed of this code compares with a binary search
or linear search, that research is left to you; the answer will probably vary

Control Structures and Programmatic Decisions 497

by processor.) Note, however, that when producing 64-bit code, Visual C++
reverts to the linear search:

main PROC

$LN12:
 sub rsp, 40 ; 00000028H

; ARGC is passed in ECX

 sub ecx, 1
 je SHORT $LN4@main ; case 1
 sub ecx, 1
 je SHORT $LN5@main ; case 2
 sub ecx, 8
 je SHORT $LN6@main ; case 10
 cmp ecx, 1
 jne SHORT $LN10@main ; case 11
$LN4@main:

 call f
$LN10@main:

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
$LN6@main:

 call h

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
$LN5@main:

 call g

 xor eax, eax

 add rsp, 40 ; 00000028H
 ret 0
main ENDP

Few compilers give you the option of explicitly specifying how the
compiler will translate a specific switch/case statement. For example, if
you really want the switch statement with cases 0, 1, 10, 100, 1,000, and
10,000 given earlier to generate a jump table, you’ll have to write the code
in assembly language or use a specific compiler whose code generation
traits you understand. Any HLL code you’ve written that depends on the

498 Chapter 13

compiler generating a jump table won’t be portable to other compilers,
however, because few languages specify the actual machine code implemen-
tation of high-level control structures.

Of course, you don’t have to totally rely on the compiler to generate
decent code for a switch/case statement. Assuming your compiler uses the
jump table implementation for all switch/case statements, you can help it
produce better code when modifications to your HLL source code would
generate a huge jump table. For example, consider the switch statement
given earlier with the cases 0, 1, 2, 3, 4, and 1,000. If your compiler gener-
ates a jump table with 1,001 entries (consuming a little more than 4KB of
memory), you can improve its output by writing the following Pascal code:

if(i = 1000) then begin

 << statements to execute if i = 1000 >>

end
else begin

 case(i) of
 0: begin
 << statements to execute if i = 0 >>
 end;

 1: begin
 << statements to execute if i = 1 >>
 end;

 2: begin
 << statements to execute if i = 2 >>
 end;

 3: begin
 << statements to execute if i = 3 >>
 end;

 4: begin
 << statements to execute if i = 4 >>
 end;
 end; (* case *)
end; (* if *)

By handling case value 1000 outside the switch statement, the compiler
can produce a short jump table for the main cases, which are contiguous.

Another possibility (which is arguably easier to read) is the following
C/C++ code:

switch(i)
{
 case 0:
 << statements to execute if i == 0 >>

Control Structures and Programmatic Decisions 499

 break;

 case 1:
 << statements to execute if i == 1 >>
 break;

 case 2:
 << statements to execute if i == 2 >>
 break;

 case 3:
 << statements to execute if i == 3 >>
 break;

 case 4:
 << statements to execute if i == 4 >>
 break;

 default:
 if(i == 1000)
 {
 << statements to execute if i == 1000 >>
 }
 else
 {
 << Statements to execute if none of the cases match >>
 }
}

What makes this example slightly easier to read is that the code for
the case when i is equal to 1000 has been moved into the switch statement
(thanks to the default clause), so it doesn’t appear to be separate from all
the tests taking place in the switch.

Some compilers simply won’t generate a jump table for a switch/case
statement. If you’re using such a compiler and you want to generate a jump
table, there’s little you can do—short of dropping into assembly language
or using nonstandard C extensions.

Although jump table implementations of switch/case statements are
generally efficient when you have a fair number of cases and they’re all
equally likely, remember that an if..then..elseif chain can be faster if one
or two cases are far more likely than the others. For example, if a variable
has the value 15 more than half the time, the value 20 about a quarter of
the time, and one of several different values the remaining 25 percent of the
time, it’s probably more efficient to implement the multiway test using an
if..then..elseif chain (or a combination of if..then..elseif and a switch/case
statement). By testing the most common case(s) first, you can often reduce
the average time the multiway statement needs to execute. For example:

if(i == 15)
{

500 Chapter 13

 // If i = 15 better than 50% of the time,
 // then we only execute a single test
 // better than 50% of the time:
}
else if(i == 20)
{
 // if i == 20 better than 25% of the time,
 // then we only execute one or
 // two comparisons 75% of the time.
}
else if etc....

If i is equal to 15 more often than not, then most of the time this code
sequence will execute the body of the first if statement after executing only
two instructions. Even in the best switch statement implementation, you’re
going to need more instructions than this.

13.5.4 The Swift switch Statement
Swift’s switch statement is semantically different from most other languages.
There are four major differences between Swift’s switch and the typical
C/C++ switch or Pascal case statement:

•	 Swift’s switch provides a special where clause that lets you apply a condi-
tional to a switch.

•	 Swift’s switch allows you to use the same value in more than one case
statement (differentiated by the where clause).

•	 Swift’s switch allows the use of nonintegral/ordinal data types, such as
tuples, strings, and sets, as the selection value (with appropriately typed
case values).

•	 Swift’s switch statement supports pattern matching for case values.

Check out the Swift language reference manual for more details.
The purpose of this section is not to provide the syntax and semantics
of the Swift switch, but rather to discuss how Swift’s design affects its
implementation.

Because it allows arbitrary types as the switch selector value, there’s no
way that Swift could use a jump table to implement the switch statement. A
jump table implementation requires an ordinal value (something you can
represent as an integer) that the compiler can use as an index into the jump
table. A string selector, for example, couldn’t be used as an index into an
array. Furthermore, Swift allows you to specify the same case value twice,4
creating a consistency problem with the same jump table entry mapping to
two separate sections of code (which is impossible for a jump table).

4. If you supply two identical cases, you would normally use the where clause to differentiate
between the two. If there is no where clause, or if the two where clauses both evaluate true,
Switch executes the first case it encounters.

Control Structures and Programmatic Decisions 501

Given the design of the Swift switch statement, then, the only solu-
tion is a linear search (effectively, the switch statement is equivalent to a
chain of if..else if..else if..etc. statements). The bottom line is that
there is no performance benefit to using the switch statement over a set
of if statements.

13.5.5 Compiler Output for switch Statements
Before you run off to help your compiler produce better code for switch
statements, you might want to examine the actual code it produces. This
chapter has described several of the techniques that various compilers use
for implementing switch/case statements at the machine code level, but
there are several additional implementations that this book could not cover.
Although you can’t assume that a compiler will always generate the same
code for a switch/case statement, observing its output can help you see the
different implementations that compiler authors use.

13.6 For More Information
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. 2nd ed. Essex, UK: Pearson Education
Limited, 1986.

Barrett, William, and John Couch. Compiler Construction: Theory and Practice.
Chicago: SRA, 1986.

Dershem, Herbert, and Michael Jipping. Programming Languages, Structures
and Models. Belmont, CA: Wadsworth, 1990.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Fraser, Christopher, and David Hansen. A Retargetable C Compiler: Design and
Implementation. Boston: Addison-Wesley Professional, 1995.

Ghezzi, Carlo, and Jehdi Jazayeri. Programming Language Concepts. 3rd ed.
New York: Wiley, 2008.

Hoxey, Steve, Faraydon Karim, Bill Hay, and Hank Warren, eds. The
PowerPC Compiler Writer’s Guide. Palo Alto, CA: Warthman Associates
for IBM, 1996.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco: No
Starch Press, 2010.

Intel. “Intel 64 and IA-32 Architectures Software Developer Manuals.”
Updated November 11, 2019. https://software.intel.com/en-us/articles/intel-sdm.

Ledgard, Henry, and Michael Marcotty. The Programming Language
Landscape. Chicago: SRA, 1986.

Louden, Kenneth C. Compiler Construction: Principles and Practice. Boston:
Cengage, 1997.

502 Chapter 13

Louden, Kenneth C., and Kenneth A. Lambert. Programming Languages:
Principles and Practice. 3rd ed. Boston: Course Technology, 2012.

Parsons, Thomas W. Introduction to Compiler Construction. New York: W. H.
Freeman, 1992.

Pratt, Terrence W., and Marvin V. Zelkowitz. Programming Languages, Design
and Implementation. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.

Sebesta, Robert. Concepts of Programming Languages. 11th ed. Boston:
Pearson, 2016.

Most programs spend the majority of
their time executing machine instruc-

tions within a loop. Therefore, if you want
to improve your applications’ execution speed,

first you should see if you can improve the perfor-
mance of the loops in your code. This chapter will
describe the following varieties of loops:

•	 while loops

•	 repeat..until/do..while loops

•	 forever (infinite) loops

•	 for (definite) loops

14
I T E R A T I V E C O N T R O L S T R U C T U R E S

504 Chapter 14

14.1 The while Loop
The while loop is perhaps the most general-purpose iterative statement that
HLLs provide, so compilers generally work hard at emitting optimal code
for it. The while loop tests a Boolean expression at the top of the loop body
and, if the expression evaluates to true, executes the loop body. When the
loop body completes execution, control transfers back to the test and the
process repeats. When the Boolean control expression evaluates to false,
the program transfers control to the first statement beyond the loop’s body.
This means that if the Boolean expression evaluates to false when the pro-
gram first encounters the while statement, the program immediately skips
over all statements in the loop body without executing any of them. The
following example demonstrates a Pascal while loop:

while(a < b) do begin

 << Statements to execute if a is less than b.
 Presumably, these statements modify the value
 of either a or b so that this loop ultimately
 terminates. >>

end; (* while *)
<< statements that execute when a is not less than b >>

You can easily simulate a while loop in an HLL by using an if statement
and a goto statement. Consider the following C/C++ while loop and the
semantically equivalent code using an if and a goto:

// while loop:

while(x < y)
{
 arr[x] = y;
 ++x;
}

// Conversion to an if and a goto:

whlLabel:
if(x < y)
{
 arr[x] = y;
 ++x;
 goto whlLabel;
}

Assume for the sake of this example that x is less than y when the if/
goto combination first executes. This being true, the body of the loop (the
then portion of the if statement) executes. At the bottom of the loop body,
the goto statement transfers control back to just before the if statement.
This means that the code will test the expression again, just as the while

Iterative Control Structures 505

loop does. Whenever the if expression evaluates to false, control will trans-
fer to the first statement after the if (which transfers control beyond the
goto statement in this code).

Although the if/goto arrangement is semantically identical to the while
loop, that’s not to suggest that the if/goto scheme presented here is more
efficient than what a typical compiler would generate. It’s not. The follow-
ing assembly code shows what you’d get from a mediocre compiler for the
previous while loop:

 // while(x < y)

whlLabel:
 mov(x, eax);
 cmp(eax, y);
 jnl exitWhile; // jump to exitWhile label if
 // x is not less than y

 mov(y, edx);
 mov(edx, arr[eax*4]);
 inc(x);
 jmp whlLabel;
exitWhile:

A decent compiler will improve upon this slightly by using a technique
known as code movement (or expression rotation). Consider this slightly more
efficient implementation of the previous while loop:

// while(x < y)

 // Skip over the while loop's body.

 jmp testExpr;

whlLabel:
 // This is the body of the while loop (same as
 // before, except moved up a few instructions).

 mov(y, edx);
 mov(edx, arr[eax*4]);
 inc(x);

// Here is where we test the expression to
// determine if we should repeat the loop body.

testExpr:
 mov(x, eax);
 cmp(eax, y);
 jl whlLabel; // Transfer control to loop body if x < y.

This example has exactly the same number of machine instructions as
the previous example, but the test for loop termination has been moved
to the bottom of the loop. To preserve the semantics of a while loop (so that

506 Chapter 14

we don’t execute the loop body if the expression evaluates to false upon
first encountering the loop), the first statement in this sequence is a jmp
statement that transfers control down to the code that tests the loop termi-
nation expression. If that test evaluates to true, the program transfers con-
trol to the body of the while loop (immediately after whlLabel).

Although this code has the same number of statements as the previ-
ous example, there’s a subtle difference between the two implementations.
In this latter example, the initial jmp instruction executes only once—the
very first time the loop executes. For each iteration thereafter, the code
skips the execution of this statement. In the original example, the corre-
sponding jmp statement is at the bottom of the loop’s body, and it executes
on each iteration of the loop. Therefore, if the loop body executes more
than once, the second version runs faster (on the other hand, if the while
loop rarely executes the loop body even once, then the first version is
slightly more efficient). If your compiler does not generate the best code
for a while statement, consider getting a different compiler. As Chapter 13
discussed, attempting to write optimal code in an HLL by using if and goto
statements will produce difficult-to-read spaghetti code and, more often
than not, goto statements in your code will actually impair the compiler’s
ability to produce decent output.

N O T E When this chapter discusses the repeat..until/do..while loop, you’ll see an alterna-
tive to the if..goto scheme that will produce more structured code that the compiler
may be able to handle. Still, if your compiler cannot make a simple transformation
like this one, chances are the efficiency of the compiled while loops is among the least
of your problems.

Compilers that do a decent job of optimizing while loops typically make
certain assumptions about the loop, the biggest one being that the loop
has exactly one entry point and one exit point. Many languages provide
statements allowing the premature exit of a loop (for example, break, as
discussed in “Restricted Forms of the goto Statement” on page 459). Of
course, many languages provide some form of the goto statement that will
allow you to enter or exit the loop at an arbitrary point. However, keep in
mind that using such statements, while probably legal, may severely affect
the compiler’s ability to optimize the code. So use them with caution.1 The
while loop is one area where you should let the compiler do its job rather
than trying to optimize the code yourself (actually, this applies for all loops,
as compilers generally do a good job of optimizing loops).

14.1.1 Forcing Complete Boolean Evaluation in a while Loop
The execution of a while statement depends upon the semantics of Boolean
expression evaluation. As with the if statement, sometimes the correct
execution of a while loop depends upon whether the Boolean expression

1. It is a paradox that many programmers use multiple entries or exits within a loop in an effort to
optimize their code, yet their hard work often destroys the very thing they are trying to achieve.

Iterative Control Structures 507

uses complete evaluation or short-circuit evaluation. This section describes
ways to force a while loop to use full Boolean evaluation, and the following
section will demonstrate ways to force short-circuit evaluation.

At first blush, you might guess that forcing complete Boolean evaluation
in a while loop is done the same way as in an if statement. However, if you
look back at the solutions given for the if statement (see “Forcing Complete
Boolean Evaluation in an if Statement” on page 465), you’ll realize that the
approaches we used for the if statement (nesting ifs and temporary calcula-
tions) won’t work for a while statement. We need a different approach.

14.1.1.1 Using Functions the Easy but Inefficient Way

One easy way to force complete Boolean evaluation is to write a function that
computes the result of the Boolean expression and use complete Boolean
evaluation within that function. The following C code implements this idea:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

/*
** Complete Boolean evaluation
** for the expression:
** i < g(y) || k > f(x)
*/

int func(void)
{
 int temp;
 int temp2;

 temp = i < g(y);
 temp2 = k > f(x);
 return temp || temp2;
}

int main(void)
{
 /*
 ** The following while loop
 ** uses complete Boolean evaluation
 */

 while(func())
 {

508 Chapter 14

 IntoIF:

 printf("Hello");
 }

 return(0);
}

Here’s the code that GCC (x86) emits for this C code (with a little
cleanup to remove superfluous lines):

func:
.LFB0:
 pushq %rbp
 movq %rsp, %rbp
 subq $16, %rsp
 movl y(%rip), %eax
 movl %eax, %edi
 call g
 movl %eax, %edx
 movl i(%rip), %eax
 cmpl %eax, %edx
 setg %al
 movzbl %al, %eax
 movl %eax, -8(%rbp)
 movl x(%rip), %eax
 movl %eax, %edi
 call f
 movl %eax, %edx
 movl k(%rip), %eax
 cmpl %eax, %edx
 setl %al
 movzbl %al, %eax
 movl %eax, -4(%rbp)
 cmpl $0, -8(%rbp)
 jne .L2
 cmpl $0, -4(%rbp)
 je .L3
.L2:
 movl $1, %eax
 jmp .L4
.L3:
 movl $0, %eax
.L4:
 leave
 ret
.LFE0:
 .size func, .-func
 .section .rodata
.LC0:
 .string "Hello"
 .text
 .globl main
 .type main, @function

Iterative Control Structures 509

main:
.LFB1:
 pushq %rbp
 movq %rsp, %rbp
 jmp .L7
.L8:
 movl $.LC0, %edi
 movl $0, %eax
 call printf
.L7:
 call func
 testl %eax, %eax
 jne .L8
 movl $0, %eax
 popq %rbp
 ret

As the assembly code demonstrates, the problem with this approach
is that this code must make a function call and return (both of which are
slow operations) in order to compute the value of the expression. For many
expressions, the overhead of the call and return is more expensive than the
actual computation of the expression’s value.

14.1.1.2 Using Inline Functions

The previous approach definitely doesn’t yield the greatest code you could
obtain, in terms of either space or speed. If your compiler supports inline
functions, you can produce a much better result by inlining func() in this
example:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

inline int func(void)
{
 int temp;
 int temp2;

 temp = i < g(y);
 temp2 = k > f(x);
 return temp || temp2;
}

int main(void)
{

510 Chapter 14

 while(func())
 {
 IntoIF:

 printf("Hello");
 }

 return(0);
}

Here’s the conversion to (32-bit) x86 Gas assembly by the GCC compiler:

main:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 pushl %ecx
 andl $-16, %esp
 .p2align 2,,3
.L2:
 subl $12, %esp

; while(i < g(y) || k > f(x))
;
; Compute g(y) into %EAX:

 pushl y
 call g
 popl %edx
 xorl %ebx, %ebx
 pushl x

; See if i < g(y) and leave Boolean result
; in %EBX:

 cmpl %eax, i
 setl %bl

; Compute f(x) and leave result in %EAX:

 call f ; Note that we call f, even if the
 addl $16, %esp ; above evaluates to true

; Compute k > f(x), leaving the result in %EAX.

 cmpl %eax, k
 setg %al

; Compute the logical OR of the above two expressions.

 xorl %edx, %edx
 testl %ebx, %ebx
 movzbl %al, %eax
 jne .L6

Iterative Control Structures 511

 testl %eax, %eax
 je .L7
.L6:
 movl $1, %edx
.L7:
 testl %edx, %edx
 je .L10
.L8:

; Loop body:

 subl $12, %esp
 pushl $.LC0
 call printf
 addl $16, %esp
 jmp .L2
.L10:
 xorl %eax, %eax
 movl -4(%ebp), %ebx
 leave
 ret

As this example demonstrates, GCC compiles the function directly into
the while loop’s test, sparing this program the overhead associated with the
function call and return.

14.1.1.3 Using Bitwise Logical Operations

In the C programming language, which supports Boolean operations on
bits (also known as bitwise logical operations), you can use the same trick
employed for the if statement to force complete Boolean evaluation—just
use the bitwise operators. In the special case where the left and right oper-
ands of the && or || operators are always 0 or 1, you can use code like the fol-
lowing to force complete Boolean evaluation:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 // Use "|" rather than "||"
 // to force complete Boolean
 // evaluation here.

 while(i < g(y) | k > f(x))
 {

512 Chapter 14

 printf("Hello");
 }

 return(0);
}

Here’s the assembly code that Borland C++ generates for this C
source code:

_main proc near
?live1@0:
 ;
 ; int main(void)
 ;
@1:
 push ebx
 jmp short @3 ; Skip to expr test.
 ;
 ; {
 ; while(i < g(y) | k > f(x))
 ; {
 ; printf("Hello");
 ;
@2:
 ; Loop body.

 push offset s@
 call _printf
 pop ecx

; Here's where the test of the expression
; begins:

@3:
 ; Compute "i < g(y)" into ebx:

 mov eax,dword ptr [_y]
 push eax
 call _g
 pop ecx
 cmp eax,dword ptr [_i]
 setg bl
 and ebx,1

 ; Compute "k > f(x)" into EDX:

 mov eax,dword ptr [_x]
 push eax
 call _f
 pop ecx
 cmp eax,dword ptr [_k]
 setl dl
 and edx,1

Iterative Control Structures 513

 ; Compute the logical OR of
 ; the two results above:

 or ebx,edx

 ; Repeat loop body if true:

 jne short @2
 ;
 ; }
 ;
 ; return(0);
 ;
 xor eax,eax
 ;
 ; }
 ;
@5:
@4:
 pop ebx
 ret
_main endp

As you can see in this 80x86 output, the compiler generates semanti-
cally equivalent code when using the bitwise logical operators. Just keep in
mind that this code is valid only if you use 0 and 1 for the Boolean values
false and true, respectively.

14.1.1.4 Using Unstructured Code

If you don’t have inline function capability or if bitwise logical operators
aren’t available, you can use unstructured code to force complete Boolean
evaluation as a last resort. The basic idea is to create an infinite loop and
then write code to explicitly exit the loop if the condition fails. Generally,
you’d use a goto statement (or a limited form of the goto statement like C’s
break or continue statements) to control loop termination. Consider the fol-
lowing example in C:

#include <stdio.h>

static int i;
static int k;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 int temp;
 int temp2;

514 Chapter 14

 for(;;) //Infinite loop in C/C++
 {
 temp = i < g(y);
 temp2 = k > f(x);
 if(!temp && !temp2) break;
 printf("Hello");
 }

 return(0);
}

By using an infinite loop with an explicit break, we were able to com-
pute the two components of the Boolean expression using separate C state-
ments (hence, forcing the compiler to execute both subexpressions). Here’s
the code that the MSVC++ compiler produces:

main PROC
; File c:\users\rhyde\test\t\t\t.cpp
; Line 16
$LN9:
 sub rsp, 56 ; 00000038H

; Infinite loop jumps here:

$LN2@main:
; Line 21
;
; temp = i < g(y);
;
 mov ecx, DWORD PTR ?y@@3HA ; y
 call ?g@@YAHH@Z ; g

; compute i < g(y) and leave result in eax:

 cmp DWORD PTR ?i@@3HA, eax
 jge SHORT $LN5@main
 mov DWORD PTR tv67[rsp], 1
 jmp SHORT $LN6@main
$LN5@main:
 mov DWORD PTR tv67[rsp], 0

$LN6@main:

; temp2 = k > f(x);

 mov ecx, DWORD PTR ?x@@3HA ; x
 call ?f@@YAHH@Z ; f

; compute k > f(x) and leave result in eax:

 cmp DWORD PTR ?k@@3HA, eax
 jle SHORT $LN7@main

Iterative Control Structures 515

 mov DWORD PTR tv71[rsp], 1
 jmp SHORT $LN8@main
$LN7@main:
 mov DWORD PTR tv71[rsp], 0
$LN8@main:

; if(!temp && !temp2) break;

 or ecx, eax
 mov eax, ecx
 test eax, eax
 je SHORT $LN3@main
; Line 23
 lea rcx, OFFSET FLAT:$SG6924
 call printf

; Jump back to beginning of for(;;) loop.
;
; Line 24
 jmp SHORT $LN2@main

$LN3@main:
; Line 26
 xor eax, eax
; Line 27
 add rsp, 56 ; 00000038H
 ret 0
main ENDP

As you can see, this program always evaluates both parts of the original
Boolean expression (that is, you get complete Boolean evaluation).

You should be careful using unstructured code in this way. Not only is
the result harder to read, but it’s difficult to coerce the compiler into pro-
ducing the code you want. Furthermore, code sequences that produce good
code on one compiler won’t produce comparable code on other compilers.

If your particular language doesn’t support a statement like break, you
can always use a goto statement to break out of the loop and achieve the
same result. Although injecting gotos into your code isn’t a great idea, in
some cases it’s your only option.

14.1.2 Forcing Short-Circuit Boolean Evaluation in a while Loop
Sometimes you need to guarantee short-circuit evaluation of the Boolean
expression in a while statement even if the language (such as BASIC or Pascal)
doesn’t implement that scheme. For the if statement, you can force short-
circuit evaluation by rearranging the way you compute the loop-control
expression in your program. Unlike in the if statement, you can’t use
nested while statements or preface your while loop with other statements
to force short-circuit evaluation, but it’s still possible to do in most program-
ming languages.

516 Chapter 14

Consider the following C code fragment:

while(ptr != NULL && ptr->data != 0)
{
 << loop body >>
 ptr = ptr->Next; // Step through a linked list.
}

This code could fail if C didn’t guarantee short-circuit evaluation of the
Boolean expression.

As with forcing complete Boolean evaluation, the easiest approach in
a language like Pascal is to write a function that computes and returns the
Boolean result using short-circuit Boolean evaluation. However, this scheme
is relatively slow because of the high overhead of a function call. Consider
the following Pascal example:2

program shortcircuit;
{$APPTYPE CONSOLE}
uses SysUtils;
var
 ptr :Pchar;

 function shortCir(thePtr:Pchar):boolean;
 begin

 shortCir := false;
 if(thePtr <> NIL) then begin

 shortCir := thePtr^ <> #0;

 end; //if

 end; // shortCircuit

begin

 ptr := 'Hello world';
 while(shortCir(ptr)) do begin

 write(ptr^);
 inc(ptr);

 end; // while
 writeln;

end.

2. Delphi enables you to choose short-circuit or complete Boolean evaluation, so you wouldn’t
need to use this scheme with Delphi in reality. However, Delphi will compile this code, hence
the use of its compiler for this example (though Free Pascal also works).

Iterative Control Structures 517

And now consider this 80x86 assembly code produced by Borland’s
Delphi compiler (and disassembled with IDAPro):

; function shortCir(thePtr:Pchar):boolean
;
; Note: thePtr is passed into this function in
; the EAX register.

sub_408570 proc near

 ; EDX holds function return
 ; result (assume false).
 ;
 ; shortCir := false;

 xor edx, edx

 ; if(thePtr <> NIL) then begin

 test eax, eax
 jz short loc_40857C ; branch if NIL

 ; shortCir := thePtr^ <> #0;

 cmp byte ptr [eax], 0
 setnz dl ; DL = 1 if not #0

loc_40857C:

 ; Return result in EAX:

 mov eax, edx
 retn
sub_408570 endp

; Main program (pertinent section):
;
; Load EBX with the address of the global "ptr" variable and
; then enter the "while" loop (Delphi moves the test for the
; while loop to the physical end of the loop's body):

 mov ebx, offset loc_408628
 jmp short loc_408617
; --

loc_408600:
 ; Print the current character whose address
 ; "ptr" contains:

 mov eax, ds:off_4092EC ; ptr pointer
 mov dl, [ebx] ; fetch char
 call sub_404523 ; print char

518 Chapter 14

 call sub_404391
 call sub_402600

 inc ebx ; inc(ptr)

; while(shortCir(ptr)) do ...

loc_408617:
 mov eax, ebx ; Pass ptr in EAX
 call sub_408570 ; shortCir
 test al, al ; Returns true/false
 jnz short loc_408600 ; branch if true

The sub_408570 procedure contains the function that will compute the
short-circuit Boolean evaluation of an expression similar to the one appear-
ing in the earlier C code. As you can see, the code that dereferences thePtr
never executes if thePtr contains NIL (0).

If a function call is out of the question, then about the only reason-
able solution is to use an unstructured approach. The following is a Pascal
version of the while loop in the earlier C code that forces short-circuit
Boolean evaluation:

 while(true) do begin

 if(ptr = NIL) then goto 2;
 if(ptr^.data = 0) then goto 2;
 << loop body >>
 ptr := ptr^.Next;

 end;
2:

Again, producing unstructured code, like the code in this example, is
something you should do only as a last resort. But if the language (or com-
piler) you’re using doesn’t guarantee short-circuit evaluation and you need
those semantics, unstructured code or inefficient code (using a function
call) might be the only solution.

14.2 The repeat..until (do..until/do..while) Loop
Another common loop that appears in most modern programming lan-
guages is repeat..until. This loop tests for its terminating condition at the
bottom of the loop. This means that the loop’s body always executes at least
once, even if the Boolean control expression evaluates to false on the first
iteration of the loop. Although the repeat..until loop is a little less broadly
applicable than the while loop, and you won’t use it anywhere near as often,
there are many situations where the repeat..until loop is the best choice of
control structure for the job. Perhaps the classic example is reading input

Iterative Control Structures 519

from the user until the user inputs a certain value. The following Pascal
code fragment is very typical:

repeat

 write('Enter a value (negative quits): ');
 readln(i);
 // do something with i's value

until(i < 0);

This loop always executes the body once. This, of course, is necessary
because you must execute the loop’s body to read the user-entered value,
which the program checks to determine when loop execution is complete.

The repeat..until loop terminates when its Boolean control expression
evaluates to true (rather than false, as for the while loop), as implied by the
word until. Note, however, that this is a minor syntactical issue; the C/C++/
Java/Swift languages (and many languages that share a C heritage) provide
a do..while loop that repeats execution of the loop’s body as long as the
loop condition evaluates to true. From an efficiency point of view, there’s
absolutely no difference between these two loops, and you can easily con-
vert one loop termination condition to the other by using your language’s
logical NOT operator. The following examples demonstrate the syntax of
the Pascal, HLA, and C/C++ repeat..until and do..while loops. Here’s the
Pascal repeat..until loop example:

repeat

 (* Read a raw character from the "input" file, which in this case is the keyboard *)

 ch := rawInput(input);

 (* Save the character away. *)

 inputArray[i] := ch;
 i := i + 1;

 (* Repeat until the user hits the enter key *)

until(ch = chr(13));

Now here’s the C/C++ do..while version of the same loop:

do
{
 /* Read a raw character from the "input" file, which in this case is the keyboard */

 ch = getKbd();

 /* Save the character away. */

520 Chapter 14

 inputArray[i++] = ch;

 /* Repeat until the user hits the enter key */
}
while(ch != '\r');

And here is the HLA repeat..until loop:

repeat

 // Read a character from the standard input device.

 stdin.getc();

 // Save the character away.

 mov(al, inputArray[ebx]);
 inc(ebx);

 // Repeat until the user hits the enter key.

until(al = stdio.cr);

Converting the repeat..until (or do..while) loop into assembly language
is relatively easy and straightforward. All the compiler needs to do is substi-
tute code for the Boolean loop control expression and branch back to the
beginning of the loop’s body if the expression evaluates affirmative (false
for repeat..until or true for do..while). Here’s the straightforward pure
assembly implementation of the earlier HLA repeat..until loop (compilers
for C/C++ and Pascal would generate nearly identical code for the other
examples):

rptLoop:

 // Read a character from the standard input.

 call stdin.getc;

 // Store away the character.

 mov(al, inputArray[ebx]);
 inc(ebx);

 // Repeat the loop if the user did not hit
 // the enter key.

 cmp(al, stdio.cr);
 jne rptLoop;

As you can see, the code that a typical compiler generates for a
repeat..until (or do..while) loop is usually a bit more efficient than the
code you’ll get for a regular while loop. Thus, you should consider using

Iterative Control Structures 521

the repeat..until/do..while form if semantically possible. In many programs,
the Boolean control expression always evaluates to true on the first iteration
of some loop constructs. For example, it’s not that uncommon to find a loop
like the following in an application:

i = 0;
while(i < 100)
{
 printf("i: %d\n", i);
 i = i * 2 + 1;
 if(i < 50)
 {
 i += j;
 }
}

This while loop is easily converted to a do..while loop as follows:

i = 0;
do
{
 printf("i: %d\n", i);
 i = i * 2 + 1;
 if(i < 50)
 {
 i += j;
 }
} while(i < 100);

This conversion is possible because we know that i’s initial value (0) is
less than 100, so the loop’s body always executes at least once.

As you’ve seen, you can help the compiler generate better code by using
the more appropriate repeat..until/do..while loop rather than a regular
while loop. Keep in mind, however, that the efficiency gain is small, so make
sure you’re not sacrificing readability or maintainability by doing so. Always
use the most logically appropriate loop construct. If the body of the loop
always executes at least once, you should use a repeat..until/do..while loop,
even if a while loop would work equally well.

14.2.1 Forcing Complete Boolean Evaluation in a repeat..until Loop
Because the test for loop termination occurs at the bottom of the loop on
a repeat..until (or do..while) loop, you force complete Boolean evaluation
for it, similarly to how you do for an if statement. Consider the following
C/C++ code:

extern int x;
extern int y;
extern int f(int);
extern int g(int);
extern int a;

522 Chapter 14

extern int b;
int main(void)
{

 do
 {
 ++a;
 --b;
 }while(a < f(x) && b > g(y));

 return(0);
}

Here’s the GCC output for the PowerPC (using short-circuit evaluation,
which is standard for C) for the do..while loop:

L2:
 // ++a
 // --b

 lwz r9,0(r30) ; get a
 lwz r11,0(r29) ; get b
 addi r9,r9,-1 ; --a
 lwz r3,0(r27) ; Set up x parm for f
 stw r9,0(r30) ; store back into a
 addi r11,r11,1 ; ++b
 stw r11,0(r29) ; store back into b

 ; compute f(x)

 bl L_f$stub ; call f, result to R3

 ; is a >= f(x)? If so, quit loop

 lwz r0,0(r29) ; get a
 cmpw cr0,r0,r3 ; Compare a with f's value
 bge- cr0,L3

 lwz r3,0(r28) ; Set up y parm for g
 bl L_g$stub ; call g

 lwz r0,0(r30) ; get b
 cmpw cr0,r0,r3 ; Compare b with g's value
 bgt+ cr0,L2 ; Repeat if b > g's value
L3:

This program skips over the test for b > g(y) to label L3 if the expression
a < f(x) is false (that is, if a >= f(x)).

To force complete Boolean evaluation in this situation, our C source
code needs to compute the subcomponents of the Boolean expression just

Iterative Control Structures 523

prior to the while clause (keeping the results of the subexpressions in tem-
porary variables) and then test only the results in the while clause:

static int a;
static int b;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 int temp1;
 int temp2;

 do
 {
 ++a;
 --b;
 temp1 = a < f(x);
 temp2 = b > g(y);
 }while(temp1 && temp2);

 return(0);
}

Here’s the conversion to PowerPC code by GCC:

L2:
 lwz r9,0(r30) ; r9 = b
 li r28,1 ; temp1 = true
 lwz r11,0(r29) ; r11 = a
 addi r9,r9,-1 ; --b
 lwz r3,0(r26) ; r3 = x (set up f's parm)
 stw r9,0(r30) ; Save b
 addi r11,r11,1 ; ++a
 stw r11,0(r29) ; Save a
 bl L_f$stub ; Call f
 lwz r0,0(r29) ; Fetch a
 cmpw cr0,r0,r3 ; Compute temp1 = a < f(x)
 blt- cr0,L5 ; Leave temp1 true if a < f(x)
 li r28,0 ; temp1 = false
L5:
 lwz r3,0(r27) ; r3 = y, set up g's parm
 bl L_g$stub ; Call g
 li r9,1 ; temp2 = true
 lwz r0,0(r30) ; Fetch b
 cmpw cr0,r0,r3 ; Compute b > g(y)
 bgt- cr0,L4 ; Leave temp2 true if b > g(y)
 li r9,0 ; Else set temp2 false
L4:

524 Chapter 14

 ; Here's the actual termination test in
 ; the while clause:

 cmpwi cr0,r28,0
 beq- cr0,L3
 cmpwi cr0,r9,0
 bne+ cr0,L2
L3:

Of course, the actual Boolean expression (temp1 && temp2) still uses short-
circuit evaluation, but only for the temporary variables created. The loop
computes both of the original subexpressions regardless of the result of
the first one.

14.2.2 Forcing Short-Circuit Boolean Evaluation in a repeat..until Loop
If your programming language provides a facility to break out of a repeat..
until loop, such as C’s break statement, then forcing short-circuit evaluation
is fairly easy. Consider the C do..while loop from the previous section that
forces complete Boolean evaluation:

do
{
 ++a;
 --b;
 temp1 = a < f(x);
 temp2 = b > g(y);

}while(temp1 && temp2);

The following shows one way to convert this code so that it evaluates the
termination expression using short-circuit Boolean evaluation:

static int a;
static int b;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 do
 {
 ++a;
 --b;

 if(!(a < f(x))) break;
 } while(b > g(y));

 return(0);
}

Iterative Control Structures 525

Here’s the code that GCC emits for the PowerPC for the do..while loop
in this code sequence:

L2:
 lwz r9,0(r30) ; r9 = b
 lwz r11,0(r29) ; r11 = a
 addi r9,r9,-1 ; --b
 lwz r3,0(r27) ; Set up f(x) parm
 stw r9,0(r30) ; Save b
 addi r11,r11,1 ; ++a
 stw r11,0(r29) ; Save a
 bl L_f$stub ; Call f

 ; break if !(a < f(x)):

 lwz r0,0(r29)
 cmpw cr0,r0,r3
 bge- cr0,L3

 ; while(b > g(y)):

 lwz r3,0(r28) ; Set up y parm
 bl L_g$stub ; Call g
 lwz r0,0(r30) ; Compute b > g(y)
 cmpw cr0,r0,r3
 bgt+ cr0,L2 ; Branch if true
L3:

If a is greater than or equal to the value that f(x) returns, this code
immediately breaks out of the loop (at label L3) without testing to see if b is
greater than the value g(y) returns. Hence, this code simulates short-circuit
Boolean evaluation of the C/C++ expression a < f(x) && b > g(y).

If the compiler you’re using doesn’t support a statement equivalent to
C/C++’s break statement, you’ll have to use slightly more sophisticated logic.
Here’s one way to do that:

static int a;
static int b;

extern int x;
extern int y;
extern int f(int);
extern int g(int);

int main(void)
{
 int temp;

 do
 {
 ++a;
 --b;

526 Chapter 14

 temp = a < f(x);
 if(temp)
 {
 temp = b > g(y);
 };
 }while(temp);

 return(0);
}

And here’s the PowerPC code that GCC produces for this example:

L2:
 lwz r9,0(r30) ; r9 = b
 lwz r11,0(r29) ; r11 = a
 addi r9,r9,-1 ; --b
 lwz r3,0(r27) ; Set up f(x) parm
 stw r9,0(r30) ; Save b
 addi r11,r11,1 ; ++a
 stw r11,0(r29) ; Save a
 bl L_f$stub ; Call f
 li r9,1 ; Assume temp is true
 lwz r0,0(r29) ; Set temp false if
 cmpw cr0,r0,r3 ; a < f(x)
 blt- cr0,L5
 li r9,0
L5:
 cmpwi cr0,r9,0 ; If !(a < f(x)) then bail
 beq- cr0,L10 ; on the do..while loop
 lwz r3,0(r28) ; Compute temp = b > f(y)
 bl L_g$stub ; using a code sequence
 li r9,1 ; that is comparable to
 lwz r0,0(r30) ; the above.
 cmpw cr0,r0,r3
 bgt- cr0,L9
 li r9,0
L9:
 ; Test the while termination expression:

 cmpwi cr0,r9,0
 bne+ cr0,L2
L10:

Although these examples have been using the conjunction operation
(logical AND), using the disjunction operator (logical OR) is just as easy.
To close off this section, consider this Pascal sequence and its conversion:

repeat

 a := a + 1;
 b := b - 1;

until((a < f(x)) OR (b > g(y)));

Iterative Control Structures 527

Here’s the conversion to force complete Boolean evaluation:

repeat

 a := a + 1;
 b := b - 1;
 temp := a < f(x);
 if(not temp) then begin

 temp := b > g(y);

 end;
until(temp);

Here’s the code that Borland’s Delphi produces for the two loops
(assuming you select complete Boolean evaluation in the compiler’s options):

; repeat
;
; a := a + 1;
; b := b - 1;
;
; until((a < f(x)) or (b > g(y)));

loc_4085F8:
 inc ebx ; a := a + 1;
 dec esi ; b := b - 1;
 mov eax, [edi] ; EDI points at x
 call locret_408570
 cmp ebx, eax ; Set AL to 1 if
 setl al ; a < f(x)
 push eax ; Save Boolean result.

 mov eax, ds:dword_409288 ; y
 call locret_408574 ; g(6)

 cmp esi, eax ; Set AL to 1 if
 setnle al ; b > g(y)
 pop edx ; Retrieve last value.
 or dl, al ; Compute their OR
 jz short loc_4085F8 ; Repeat if false.

; repeat
;
; a := a + 1;
; b := b - 1;
; temp := a < f(x);
; if(not temp) then begin
;
; temp := b > g(y);
;
; end;
;
; until(temp);

528 Chapter 14

loc_40861B:
 inc ebx ; a := a + 1;
 dec esi ; b := b - 1;
 mov eax, [edi] ; Fetch x
 call locret_408570 ; call f
 cmp ebx, eax ; is a < f(x)?
 setl al ; Set AL to 1 if so.

 ; If the result of the above calculation is
 ; true, then don't bother with the second
 ; test (that is, short-circuit evaluation)

 test al, al
 jnz short loc_40863C

 ; Now check to see if b > g(y)

 mov eax, ds:dword_409288
 call locret_408574

 ; Set AL = 1 if b > g(y):

 cmp esi, eax
 setnle al

; Repeat loop if both conditions were false:

loc_40863C:
 test al, al
 jz short loc_40861B

The code that the Delphi compiler generates for this forced short-
circuit evaluation is nowhere near as good as the code it would generate if
you allowed it to do this job for you. Here’s the Delphi code with the com-
plete Boolean evaluation option unselected (that is, instructing Delphi to use
short-circuit evaluation):

loc_4085F8:
 inc ebx
 dec esi
 mov eax, [edi]
 call nullsub_1 ;f
 cmp ebx, eax
 jl short loc_408613
 mov eax, ds:dword_409288
 call nullsub_2 ;g
 cmp esi, eax
 jle short loc_4085F8

While this trick is useful for forcing short-circuit evaluation when the
compiler does not support it, this latter Delphi example reiterates that you
should use the compiler’s facilities if at all possible—you’ll generally get bet-
ter machine code.

Iterative Control Structures 529

14.3 The forever..endfor Loop
The while loop tests for loop termination at the beginning (top) of the
loop. The repeat..until loop tests for loop termination at the end (bottom)
of the loop. The only place left to test for loop termination is somewhere
in the middle of the loop’s body. The forever..endfor loop, along with some
special loop termination statements, handles this case.

Most modern programming languages provide a while loop and a
repeat..until loop (or their equivalents). Interestingly enough, only a few
modern imperative programming languages provide an explicit forever..
endfor loop.3 This is especially surprising because the forever..endfor loop
(along with a loop termination test) is actually the most general of the
three forms. You can easily synthesize a while loop or a repeat..until loop
from a single forever..endfor loop.

Fortunately, it’s easy to create a simple forever..endfor loop in any
language that provides a while loop or a repeat..until/do..while loop. All
you need do is supply a Boolean control expression that always evaluates
to false for repeat..until or true for do..while. In Pascal, for example, you
could use code such as the following:

const
 forever = true;
 .
 .
 .
 while(forever) do begin

 << code to execute in an infinite loop >>

 end;

The big problem with standard Pascal is that it doesn’t provide a mech-
anism (other than a generic goto statement) for explicitly breaking out of a
loop. Fortunately, many modern Pascals, like Delphi and Free Pascal, pro-
vide a statement like break to immediately exit the current loop.

Although the C/C++ language does not provide an explicit statement
that creates a forever loop, the syntactically bizarre for(;;) statement has
served this purpose since the very first C compiler was written. Therefore,
C/C++ programmers can create a forever..endfor loop as follows:

for(;;)
{
 << code to execute in an infinite loop >>
}

3. Ada provides one, as do C and C++ (the for(;;) loop).

530 Chapter 14

C/C++ programmers can use C’s break statement (along with an if state-
ment) to place a loop termination condition in the middle of a loop, like so:

for(;;)
{
 << Code to execute (at least once)
 prior to the termination test >>

 if(termination_expression) break;

 << Code to execute after the loop termination test >>
}

The HLA language provides an explicit (high-level) forever..endfor
statement (along with a break and a breakif statement) that lets you termi-
nate the loop somewhere in the middle. This HLA forever..endfor loop tests
for loop termination in the middle of the loop:

forever

 << Code to execute (at least once) prior to
 the termination test >>

 breakif(termination_expression);

 << Code to execute after the loop termination test >>

endfor;

Converting a forever..endfor loop into pure assembly language is trivial—
all you need is a single jmp instruction that can transfer control from the
bottom of the loop back to the top of the loop. The implementation of the
break statement is just as simple: it’s just a jump (or conditional jump) to the
first statement following the loop. The following two code fragments dem-
onstrate an HLA forever..endfor loop (along with a breakif) and the corre-
sponding “pure” assembly code:

// High-level forever statement in HLA:

forever

 stdout.put
 (
 "Enter an unsigned integer less than five:"
);
 stdin.get(u);
 breakif(u < 5);
 stdout.put
 (
 "Error: the value must be between zero and five" nl
);

Iterative Control Structures 531

endfor;

// Low-level coding of the forever loop in HLA:

foreverLabel:
 stdout.put
 (
 "Enter an unsigned integer less than five:"
);
 stdin.get(u);
 cmp(u, 5);
 jbe endForeverLabel;
 stdout.put
 (
 "Error: the value must be between zero and five" nl
);
 jmp foreverLabel;

endForeverLabel:

Of course, you can also rotate this code to create a slightly more effi-
cient version:

// Low-level coding of the forever loop in HLA
// using code rotation:

jmp foreverEnter;
foreverLabel:
 stdout.put
 (
 "Error: the value must be between zero and five"
 nl
);
 foreverEnter:
 stdout.put
 (
 "Enter an unsigned integer less "
 "than five:"
);
 stdin.get(u);
 cmp(u, 5);
 ja foreverLabel;

If the language you’re using doesn’t support a forever..endfor loop,
any decent compiler will convert a while(true) statement into a single jump
instruction. If your compiler doesn’t do so, then it does a poor job of opti-
mization, and any attempts to manually optimize the code are a lost cause.
For reasons you’ll soon see, you shouldn’t try to create the forever..endfor
loop using a goto statement.

532 Chapter 14

14.3.1 Forcing Complete Boolean Evaluation in a forever Loop
Because you exit from a forever loop using an if statement, the techniques
for forcing complete Boolean evaluation when exiting a forever loop are the
same as for an if statement. See “Forcing Complete Boolean Evaluation in
an if Statement” on page 465 for details.

14.3.2 Forcing Short-Circuit Boolean Evaluation in a forever Loop
Likewise, because you exit from a forever loop using an if statement, the
techniques for forcing short-circuit Boolean evaluation when exiting a forever
loop are the same as for a repeat..until statement. See “Forcing Short-Circuit
Boolean Evaluation in a repeat..until Loop” on page 524 for details.

14.4 The Definite Loop (for Loops)
The forever..endfor loop is an infinite loop (assuming you don’t break out of
it via a break statement). The while and repeat..until loops are examples
of indefinite loops because, in general, the program cannot determine how
many iterations they will execute when it first encounters them. For a definite
loop, on the other hand, the program can determine exactly how many itera-
tions the loop will repeat prior to executing the first statement of the loop’s
body. A good example of a definite loop in a traditional HLL is Pascal’s for
loop, which uses the following syntax:

for variable := expr1 to expr2 do
 statement

which iterates over the range expr1..expr2 if expr1 is less than or equal to
expr2, or

for variable := expr1 downto expr2 do
 statement

which iterates over the range expr1..expr2 if expr1 is greater than or equal to
expr2. Here’s a typical example of a Pascal for loop:

for i := 1 to 10 do
 writeln('hello world');

This loop always executes exactly 10 times; hence, it’s a definite loop.
However, this doesn’t imply that a compiler has to be able to determine the
number of loop iterations at compile time. Definite loops also allow the use
of expressions that force the program to determine the number of itera-
tions at runtime. For example:

write('Enter an integer:');
readln(cnt);
for i := 1 to cnt do
 writeln('Hello World');

Iterative Control Structures 533

The Pascal compiler cannot determine the number of iterations this loop
will execute. In fact, because the number of iterations is dependent upon
user input, it could vary each time this loop executes in a single execution of
the enclosing program. However, the program can determine exactly how
many iterations the loop will execute, indicated by the value in the cnt vari-
able, whenever it encounters this loop. Note that Pascal (like most languages
that support definite loops) expressly forbids code such as the following:

for i := 1 to j do begin

 << some statements >>
 i := <<some value>>;
 << some other statements >>

end;

You are not allowed to change the value of the loop control variable
during the execution of the loop’s body. In this example, should you try to
change the for loop’s control variable, a high-quality Pascal compiler will
detect that attempt and report an error. Also, a definite loop computes the
starting and ending values only once. Therefore, if the for loop modifies a
variable that appears as the second expression, it does not reevaluate the
expression on each iteration of the loop. For example, if the body of the for
loop in the previous example modifies the value of j, this will not affect the
number of loop iterations.4

Definite loops have certain special properties that allow a (good) com-
piler to generate better machine code. In particular, because the compiler
can determine how many iterations the loop will execute prior to execut-
ing the first statement of the loop’s body, the compiler can often dispense
with complex tests for loop termination and simply decrement a register
down to 0 to control the number of loop iterations. The compiler can also
use induction to optimize access to the loop control variable in a definite
loop (see the description of induction in “Optimization of Arithmetic
Statements” on page 397).

C/C++/Java users should note that the for loop in these languages is
not a true definite loop; rather, it is a special case of the indefinite while
loop. Most good C/C++ compilers will attempt to determine if a for loop
is a definite loop and, if so, they’ll generate decent code. You can help your
compiler by following these guidelines:

•	 Your C/C++ for loops should use the same semantics as the definite
(for) loops in languages such as Pascal. That is, the for loop should
initialize a single loop control variable, test for loop termination when
that value is less than or greater than some ending value, and incre-
ment or decrement the loop control variable by 1.

4. Of course, some compilers might actually recompute this on each iteration, but the Pascal
language standard doesn’t require this; indeed, the standard suggests that these values
shouldn’t change during the execution of the loop body.

534 Chapter 14

•	 Your C/C++ for loops should not modify the value of the loop control
variable within the loop.

•	 The test for loop termination remains static over the execution of the
loop’s body. That is, the loop body should not be able to change the
termination condition (which, by definition, would make the loop an
indefinite loop). For example, if the loop termination condition is
i < j, the loop body should not modify the value of i or j.

•	 The loop body does not pass the loop control variable or any variable
appearing in the loop termination condition by reference to a function
if that function modifies the actual parameter.

14.5 For More Information
“For More Information” on page 501 applies to this chapter as well. Please
see that section for more details.

Since the beginning of the structured
programming revolution in the 1970s,

subroutines (procedures and functions)
have been one of the primary tools software

engineers use to organize, modularize, and otherwise
structure their programs. Because procedure and
function calls are used so frequently in code, CPU manufacturers have
attempted to make them as efficient as possible. Nevertheless, these calls—
and their associated returns—have costs that many programmers don’t con-
sider when creating functions, and using them inappropriately can greatly
increase a program’s size and execution time. This chapter discusses those
costs and how to avoid them, covering the following subjects:

•	 Function and procedure calls

•	 Macros and inline functions

•	 Parameter passing and calling conventions

•	 Activation records and local variables

15
F U N C T I O N S A N D P R O C E D U R E S

536 Chapter 15

•	 Parameter-passing mechanisms

•	 Function return results

By understanding these topics, you can avoid the efficiency pitfalls
that are common in modern programs that make heavy use of procedures
and functions.

15.1 Simple Function and Procedure Calls
Let’s begin with some definitions. A function is a section of code that com-
putes and returns some value—the function result. A procedure (or void func-
tion, in C/C++/Java/Swift terminology) simply accomplishes some action.
Function calls generally appear within an arithmetic or logical expression,
while procedure calls look like statements in the programming language.
For the purpose of this discussion, you can generally assume that a proce-
dure call and a function call are the same, and use the terms function and
procedure interchangeably. For the most part, a compiler implements proce-
dure and function calls identically.

N O T E Functions and procedures do have some differences, however. Namely, there are some
efficiency issues related to function results, which we’ll consider in “Function Return
Values” on page 590.

With most CPUs, you invoke procedures via an instruction similar to
the 80x86 call (branch and link on the ARM and PowerPC) and return to the
caller using the ret (return) instruction. The call instruction performs
three discrete operations:

1. It determines the address of the instruction to execute upon returning
from the procedure (this is usually the instruction immediately follow-
ing call).

2. It saves this address (commonly known as the return address or link
address) into a known location.

3. It transfers control (via a jump mechanism) to the first instruction of
the procedure.

Execution starts with the first instruction of the procedure and contin-
ues until the CPU encounters a ret instruction, which fetches the return
address and transfers control to the machine instruction at that address.
Consider the following C function:

#include <stdio.h>

void func(void)
{
 return;
}

Functions and Procedures 537

int main(void)
{
 func();
 return(0);
}

Here’s the conversion to PowerPC code by GCC:

_func:
 ; Set up activation record for function.
 ; Note R1 is used as the stack pointer by
 ; the PowerPC ABI (application binary
 ; interface, defined by IBM).

 stmw r30,-8(r1)
 stwu r1,-48(r1)
 mr r30,r1

 ; Clean up activation record prior to the return

 lwz r1,0(r1)
 lmw r30,-8(r1)

 ; Return to caller (branch to address
 ; in the link register):

 blr

_main:
 ; Save return address from
 ; main program (so we can
 ; return to the OS):

 mflr r0
 stmw r30,-8(r1) ; Preserve r30/31
 stw r0,8(r1) ; Save rtn adrs
 stwu r1,-80(r1) ; Update stack for func()
 mr r30,r1 ; Set up frame pointer

 ; Call func:

 bl _func

 ; Return 0 as the main
 ; function result:

 li r0,0
 mr r3,r0
 lwz r1,0(r1)
 lwz r0,8(r1)
 mtlr r0
 lmw r30,-8(r1)
 blr

538 Chapter 15

Here’s the 32-bit ARM version of this source code compiled by GCC:

func:
 @ args = 0, pretend = 0, frame = 0
 @ frame_needed = 1, uses_anonymous_args = 0
 @ link register save eliminated.

 str fp, [sp, #-4]! @ Save frame pointer on stack
 add fp, sp, #0
 nop
 add sp, fp, #0
 @ sp needed
 ldr fp, [sp], #4 @ Load FP from stack.
 bx lr @ Return from subroutine

main:
 @ args = 0, pretend = 0, frame = 0
 @ frame_needed = 1, uses_anonymous_args = 0

 push {fp, lr} @ Save FP and return address

 add fp, sp, #4 @ Set up FP
 bl func @ Call func
 mov r3, #0 @ main return value = 0
 mov r0, r3

 @ Note that popping PC returns to Linux
 pop {fp, pc}

And here’s the conversion of the same source code to 80x86 code
by GCC:

func:
.LFB0:
 pushq %rbp
 movq %rsp, %rbp
 nop
 popq %rbp
 ret

main:
.LFB1:
 pushq %rbp
 movq %rsp, %rbp
 call func
 movl $0, %eax
 popq %rbp
 ret

As you can see, the 80x86, ARM, and PowerPC devote consider-
able effort to building and managing activation records (see “The Stack
Section” on page 179). The important things to see in these two assembly

Functions and Procedures 539

language sequences are the bl _func and blr instructions in the PowerPC
code; bl func and bx lr instructions in the ARM code; and the call func and
ret instructions in the 80x86 code. These are the instructions that call the
function and return from it.

15.1.1 Return Address Storage
But where, exactly, does the CPU store the return address? In the absence
of recursion and certain other program control constructs, the CPU could
store the return address in any location that is large enough to hold the
address and that will still contain that address when the procedure returns
to its caller. For example, the program could choose to store the return
address in a machine register (in which case the return operation would
consist of an indirect jump to the address contained in that register). One
problem with using registers, however, is that CPUs generally have a limited
number of them. This means every register that holds a return address
is unavailable for other purposes. For this reason, on CPUs that save the
return address in a register, the applications usually move the return
address to memory so they can reuse that register.

Consider the PowerPC and ARM bl (branch and link) instruction. This
instruction transfers control to the target address specified by its operand
and copies the address of the instruction following bl into the LINK regis-
ter. Inside a procedure, if no code modifies the value of the LINK register,
the procedure can return to its caller by executing a PowerPC blr (branch
to LINK register) or ARM bx (branch and exchange) instruction. In our
trivial example, the func() function does not execute any code that modi-
fies the value of the LINK register, so this is exactly how func() returns to
its caller. However, if this function had used the LINK register for some
other purpose, it would have been the procedure’s responsibility to save the
return address so that it could restore the value prior to returning via a blr
instruction at the end of the function call.

A more common place to keep return addresses is in memory. Although
accessing memory on most modern processors is much slower than access-
ing a CPU register, keeping return addresses in memory allows a program
to have a large number of nested procedure calls. Most CPUs actually use
a stack to hold return addresses. For example, the 80x86 call instruction
pushes the return address onto a stack data structure in memory, and the ret
instruction pops this return address off the stack. Using a stack of memory
locations to hold return addresses offers several advantages:

•	 Stacks, because of their last-in, first-out (LIFO) organization, fully sup-
port nested procedure calls and returns as well as recursive procedure
calls and returns.

•	 Stacks are memory efficient because they reuse the same memory loca-
tions for different procedure return addresses (rather than requiring a
separate memory location to hold each procedure’s return address).

540 Chapter 15

•	 Even though stack access is slower than register access, the CPU can
generally access memory locations on the stack faster than separate
return addresses elsewhere, because the CPU frequently accesses the
stack and the stack contents tend to remain in the cache.

•	 As discussed in Chapter 7, stacks are also great places to store activation
records (such as parameters, local variables, and other procedure state
information).

Using a stack also incurs a few penalties, though. Most importantly, main-
taining a stack generally requires dedicating a CPU register to keep track of
it in memory. This could be a register that the CPU explicitly dedicates for
this purpose (for example, the RSP register on the x86-64 or R14/SP on the
ARM) or a general-purpose register on a CPU that doesn’t provide explicit
hardware stack support (for example, applications running on the PowerPC
processor family typically use R1 for this purpose).

On CPUs that provide a hardware stack implementation and a call/ret
instruction pair, making a procedure call is easy. As shown earlier in the
80x86 GCC example output, the program simply executes a call instruction
to transfer control to the beginning of the procedure and then executes a
ret instruction to return from the procedure.

The PowerPC/ARM approach, using a “branch and link” instruction
might seem less efficient than the call/ret mechanism. While it’s certainly
true that the “branch and link” approach requires a little more code, it isn’t
so clear that it’s slower than the call/ret approach. A call instruction is a
complex instruction (accomplishing several independent tasks with a single
instruction) and, as a result, typically requires several CPU clock cycles to
execute. The execution of the ret instruction is similar. Whether the extra
overhead is costlier than maintaining a software stack varies by CPU and
compiler. However, a “branch and link” instruction and an indirect jump
through the link address, without the overhead of maintaining the software
stack, is usually faster than the corresponding call/ret instruction pair. If a
procedure doesn’t call any other procedures and can maintain parameters
and local variables in machine registers, it’s possible to skip the software
stack maintenance instructions altogether. For example, the call to func() in
the previous example is probably more efficient on the PowerPC and ARM
than on the 80x86, because func() doesn’t need to save the LINK register’s
value into memory—it simply leaves that value in LINK throughout the
execution of the function.

Because many procedures are short and have few parameters and
local variables, a good RISC compiler can often dispense with the software
stack maintenance entirely. Therefore, for many common procedures,
this RISC approach is faster than the CISC (call/ret) approach; however,
that’s not to imply that it’s always better. The brief example in this section
is a very special case. In our simple demonstration program, the function
that this code calls—via the bl instruction—is near the bl instruction. In
a complete application, func() might be very far away, and the compiler
wouldn’t be able to encode the target address as part of the instruction.
That’s because RISC processors (like the PowerPC and ARM) must encode

Functions and Procedures 541

their entire instruction within a single 32-bit value (which must include
both the opcode and the displacement to the function). If func() is farther
away than can be encoded in the remaining displacement bits (24, in the
case of the PowerPC and ARM bl instructions), the compiler has to emit a
sequence of instructions that will compute the address of the target rou-
tine and indirectly transfer control through that address. Most of the time,
this shouldn’t be a problem. After all, few programs are so large that the
functions would be outside this range (64MB, in the case of the PowerPC,
±32MB for the ARM). However, there’s a very common case where GCC
(and other compilers, presumably) must generate this type of code: when
the compiler doesn’t know the target address of the function, because it’s
an external symbol that the linker must merge in after compilation is com-
plete. Because the compiler doesn’t know where the routine will be sitting
in memory (and also because most linkers work only with 32-bit addresses,
not 24-bit displacement fields), the compiler must assume that the func-
tion’s address is out of range and emit the long version of the function call.
Consider the following slight modification to the earlier example:

#include <stdio.h>

extern void func(void);

int main(void)
{
 func();

 return(0);
}

This code declares func() as an external function. Now look at the
PowerPC code that GCC produces and compare it with the earlier code:

.text
 .align 2
 .globl _main
_main:
 ; Set up main's activation record:

 mflr r0
 stw r0,8(r1)
 stwu r1,-80(r1)

 ; Call a "stub" routine that will
 ; do the real call to func():

 bl L_func$stub

 ; Return 0 as Main's function
 ; result:

 lwz r0,88(r1)
 li r3,0

542 Chapter 15

 addi r1,r1,80
 mtlr r0
 blr

; The following is a stub that calls the
; real func() function, wherever it is in
; memory.

 .data
 .picsymbol_stub
L_func$stub:
 .indirect_symbol _func

 ; Begin by saving the LINK register
 ; value in R0 so we can restore it
 ; later.

 mflr r0

 ; The following code sequence gets
 ; the address of the L_func$lazy_ptr
 ; pointer object into R12:

 bcl 20,31,L0$_func ; R11<-adrs(L0$func)
L0$_func:
 mflr r11
 addis r11,r11,ha16(L_func$lazy_ptr-L0$_func)

 ; Restore the LINK register (used by the
 ; preceding code) from R0:

 mtlr r0

 ; Compute the address of func() and move it
 ; into the PowerPC COUNT register:

 lwz r12,lo16(L_func$lazy_ptr-L0$_func)(r11)
 mtctr r12

 ; Set up R11 with an environment pointer:

 addi r11,r11,lo16(L_func$lazy_ptr-L0$_func)

 ; Branch to address held in the COUNT
 ; register (that is, to func):

 bctr

; The linker will initialize the following
; dword (.long) value with the address of
; the actual func() function:

 .data
 .lazy_symbol_pointer

Functions and Procedures 543

L_func$lazy_ptr:
 .indirect_symbol _func
 .long dyld_stub_binding_helper

This code effectively winds up calling two functions in order to call
func(). First, it calls a stub function (L_func$stub), which then transfers con-
trol to the actual func() routine. Clearly there is considerable overhead
here. Without actually benchmarking the PowerPC code against the 80x86
code, it’s probably a safe bet that the 80x86 solution is a bit more efficient.
(The 80x86 version of the GCC compiler emits the same code for the main
program as in the earlier example, even when compiling in the external ref-
erence.) You’ll soon see that the PowerPC also generates stub functions for
things other than external functions. Therefore, the CISC solution often
is more efficient than the RISC solution (presumably, RISC CPUs make up
the difference in performance in other areas).

The Microsoft CLR also provides generic call and return functionality.
Consider the following C# program with a static function f():

using System;

namespace Calls_f
{
 class program
 {
 static void f()
 {
 return;
 }
 static void Main(string[] args)
 {
 f();
 }
 }
}

Here’s the CIL code that the Microsoft C# compiler emits for functions
f() and Main():

.method private hidebysig static void f() cil managed
{
 // Code size 4 (0x4)
 .maxstack 8
 IL_0000: nop
 IL_0001: br.s IL_0003
 IL_0003: ret
} // end of method program::f

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 8 (0x8)

544 Chapter 15

 .maxstack 8
 IL_0000: nop
 IL_0001: call void Calls_f.program::f()
 IL_0006: nop
 IL_0007: ret
} // end of method program::Main

As one last example, here’s a comparable Java program:

public class Calls_f
{
 public static void f()
 {
 return;
 }

 public static void main(String[] args)
 {
 f();
 }
}

Here’s the Java bytecode (JBC) output:

Compiled from "Calls_f.java"
public class Calls_f extends java.lang.Object{
public Calls_f();
 Code:
 0: aload_0
 //call Method java/lang/Object."<init>":()
 1: invokespecial #1;
 4: return

public static void f();
 Code:
 0: return

public static void main(java.lang.String[]);
 Code:
 0: invokestatic #2; //Method f:()
 3: return

}

Note that the Microsoft CLR and Java VM both have several variants of
call and invoke instructions. These simple examples demonstrate calls to
static methods.

15.1.2 Other Sources of Overhead
Of course, a typical procedure call and return involve overhead beyond
the execution of the actual procedure call and return instructions. Prior
to calling the procedure, the calling code must compute and pass any

Functions and Procedures 545

parameters to it. Upon entry into the procedure, the calling code may also
need to complete the construction of the activation record (that is, allocate
space for local variables). The costs of these operations vary by CPU and
compiler. For example, if the calling code can pass parameters in registers
rather than on the stack (or some other memory location), this is usually
more efficient. Similarly, if the procedure can keep all its local variables in
registers rather than in the activation record on the stack, accessing those
local variables is much more efficient. This is one area where RISC proces-
sors have a considerable advantage over CISC processors. A typical RISC
compiler can reserve several registers for passing parameters and local vari-
ables. (RISC processors typically have 16, 32, or more general-purpose reg-
isters, so setting aside several registers for this purpose is not outrageous.)
For procedures that don’t call any other procedures (discussed in the next
section), there’s no need to preserve these register values, so parameter
and local variable access is very efficient. Even on CPUs with a limited num-
ber of registers (such as the 32-bit 80x86), it’s still possible to pass a small
number of parameters, or maintain a few local variables, in registers. Many
80x86 compilers, for example, will keep up to three values (parameters or
local variables) in the registers. Clearly, though, the RISC processors have
an advantage here.1

Armed with this knowledge, along with the background on activation
records and stack frames from earlier in this book (see “The Stack Section”
on page 179), we can now discuss how to write procedures and functions
that operate as efficiently as possible. The exact rules are highly dependent
upon your CPU and the compiler you’re using, but some of the concepts
are generic enough to apply to all programs. The following sections assume
that you’re writing for an 80x86 or ARM CPU (as most of the world’s soft-
ware runs on one of these two CPUs).

15.2 Leaf Functions and Procedures
Compilers can often generate better code for leaf procedures and func-
tions—that is, those that don’t call other procedures or functions. The
metaphor comes from a graphical representation of procedure/function
invocations known as a call tree. A call tree consists of a set of circles (nodes)
that represent the functions and procedures in a program. An arrow from
one node to another implies that the first node contains a call to the sec-
ond. Figure 15-1 illustrates a typical call tree.

In this example, the main program directly calls procedure prc1()
and functions fnc1() and fnc2(). Function fnc1() directly calls procedure
prc2(). Function fnc2() directly calls procedures prc2() and prc3() as well

1. The 80x86’s saving grace is that the CPU runs so much faster than typical RISC devices,
so it can afford to execute a few more instructions or execute instructions that take multiple
clock cycles, and it will still run faster than contemporary RISC CPUs. This is a paradox
because the whole purpose of RISC design in the first place was to create a CPU that could
run at a higher clock frequency, even if it took more instructions to accomplish the same
thing as a CISC CPU.

546 Chapter 15

as function fnc3(). The leaf procedures and functions in this call tree are
prc1(), prc2(), fnc3(), and prc3(), which do not call any other procedures
or functions.

main()

fnc1() fnc2()

fnc3()

prc1()

prc2() prc3()

Figure 15-1: A call tree

Working with leaf procedures and functions has an advantage: they do
not need to save parameters passed to them in registers or preserve the values
of local variables they maintain in registers. For example, if main() passes two
parameters to fnc1() in the EAX and EDX registers, and fnc1() passes a dif-
ferent pair of parameters to prc2() in EAX and EDX, then fnc1() must first
save the values it found in EAX and EDX before calling prc2(). The prc2()
procedure, on the other hand, doesn’t have to save the values in EAX and
EDX prior to some procedure or function call, because it doesn’t make such
calls. In a similar vein, if fnc1() allocates any local variables in registers,
then it will need to preserve those registers across a call to prc2(), because
prc2() can use the registers for its own purposes. By contrast, if prc2() uses
a register for a local variable, it never has to preserve the variable’s value,
because it never calls any subroutines. Therefore, good compilers tend to
generate better code for leaf procedures and functions because they don’t
have to preserve the register values.

One way to flatten the call tree is to take the code associated with proce-
dures and functions in interior nodes and inline it into functions higher in
the call tree. In Figure 15-1, for example, if it is practical to move the code
for fnc1() into main(), you don’t need to save and restore registers (among
other operations). However, be sure you’re not sacrificing readability and
maintainability when flattening the call tree. You want to avoid writing
procedures and functions that simply call other procedures and functions
without doing any work on their own, but you don’t want to destroy the
modularity of your application’s design by expanding function and proce-
dure calls throughout your code.

Functions and Procedures 547

You’ve already seen that having a leaf function is handy when you’re
using a RISC processor, like the PowerPC or ARM, that uses a “branch and
link” instruction to make a subroutine call. The PowerPC and ARM LINK
registers are good examples of registers that you have to preserve across
procedure calls. Because a leaf procedure does not (normally) modify the
value in the LINK register, no extra code is necessary in a leaf procedure
to preserve that register’s value. To see the benefits of calling leaf functions
on a RISC CPU, consider the following C code:

void g(void)
{
 return;
}

void f(void)
{
 g();
 g();
 return;
}

int main(void)
{
 f();
 return(0);
}

GCC emits the following PowerPC assembly code:

; g's function code:

_g:
 ; Set up g's environment
 ; (set up activation record):

 stmw r30,-8(r1)
 stwu r1,-48(r1)
 mr r30,r1

 ; Tear down the activation
 ; record.

 lwz r1,0(r1)
 lmw r30,-8(r1)

 ; Return to caller via LINK:

 blr

; f's function code:

_f:

548 Chapter 15

 ; Set up activation record,
 ; including saving the value
 ; of the LINK register:

 mflr r0 ; R0 = LINK
 stmw r30,-8(r1)
 stw r0,8(r1) ; Save LINK
 stwu r1,-80(r1)
 mr r30,r1

 ; Call g (twice):

 bl _g
 bl _g

 ; Restore LINK from the
 ; activation record and
 ; then clean up activation
 ; record:

 lwz r1,0(r1)
 lwz r0,8(r1) ; R0 = saved adrs
 mtlr r0 ; LINK = RO
 lmw r30,-8(r1)

 ; Return to main function:

 blr

; Main function code:

_main:
 ; Save main's return
 ; address into main's
 ; activation record:

 mflr r0
 stmw r30,-8(r1)
 stw r0,8(r1)
 stwu r1,-80(r1)
 mr r30,r1

 ; Call the f function:

 bl _f

 ; Return 0 to whomever
 ; called main:

 li r0,0
 mr r3,r0
 lwz r1,0(r1)
 lwz r0,8(r1) ; Move saved return
 mtlr r0 ; address to LINK
 lmw r30,-8(r1)

Functions and Procedures 549

 ; Return to caller:

 blr

There’s an important difference between the implementations of the
f() and g() functions in this PowerPC code—f() has to preserve the value
of the LINK register, whereas g() does not. Not only does this involve extra
instructions, but it also involves accessing memory, which can be slow.

Another advantage to using leaf procedures, which isn’t obvious from the
call tree, is that constructing their activation record requires less work. On
the 80x86, for example, a good compiler doesn’t have to preserve the value
of the EBP register, load EBP with the activation record address, and then
restore the original value by accessing local objects via the stack pointer reg-
ister (ESP). On RISC processors, which maintain the stack manually, the sav-
ings can be significant. For such procedures, the overhead of the procedure
call and return and activation record maintenance is greater than the actual
work done by the procedure. Therefore, eliminating the activation record
maintenance code could nearly double the speed of the procedure. For these
and other reasons, you should try to keep your call trees as shallow as pos-
sible. The more leaf procedures your program uses, the more efficient it may
become when you compile it with a decent compiler.

15.3 Macros and Inline Functions
One offshoot of the structured programming revolution was that computer
programmers were taught to write small, modular, and logically coherent
functions.2 A function that is logically coherent does one thing well. All
of the statements in such a procedure or function are dedicated to doing
the task at hand without producing any side computations or doing any
extraneous operations. Years of software engineering research indicate that
decomposing a problem into small components, and then implementing
those, produces programs that are easier to read, maintain, and modify.
Unfortunately, it’s easy to get carried away with this process and produce
functions like the following Pascal example:

function sum(a:integer; b:integer):integer;
begin

 (* returns sum of a & b as function result *)

 sum := a + b;

end;
 .
 .
 .
sum(aParam, bParam);

2. WGC, Volume 4: Great Design, covers this subject in greater detail.

550 Chapter 15

On the 80x86, it would probably take about three instructions to com-
pute the sum of two values and store that sum into a memory variable.
For example:

mov(aParam, eax);
add(bParam, eax);
mov(eax, destVariable);

Contrast this with the code necessary to simply call the function sum():

push(aParam);
push(bParam);
call sum;

Within the procedure sum (assuming a mediocre compiler), you might
expect to find code like the following HLA sequence:

// Construct the activation record

push(ebp);
mov(esp, ebp);

// Get aParam's value

mov([ebp+12], eax);

// Compute their sum and return in EAX

add([ebp+8], eax);

// Restore EBP's value

pop(ebp);

// Return to caller, cleaning up
// the activation record.

ret(8);

As you can see, using a function takes three times as many instructions
to compute the sum of these two objects as the straight-line (no function
call) code. Worse still, these nine instructions are generally slower than the
three that make up the inline code. The inline code could run 5 to 10 times
faster than the code with the function call.

The one redeeming quality about the overhead associated with a
function or procedure call is that it’s fixed. It takes the same number of
instructions to set up the parameters and the activation record whether
the procedure or function body contains 1 or 1,000 machine instructions.
Although the overhead of a procedure call is huge when the procedure’s

Functions and Procedures 551

body is small, it’s inconsequential when the procedure’s body is large.
Therefore, to reduce the impact of procedure/function call overhead in
your programs, try to place larger procedures and functions and write
shorter sequences as inline code.

Finding the optimum balance between the benefits of modular structure
and the cost of too-frequent procedure calls can be difficult. Unfortunately,
good program design often prevents us from increasing the size of our
procedures and functions enough that the overhead of the call and return
becomes insignificant. Sure, we could combine several functions and pro-
cedure calls into a single procedure or function, but this would violate sev-
eral rules of programming style, and great code usually avoids such tactics.
(One problem with the resulting programs is that few people can figure out
how they work in order to optimize them.) However, if you can’t sufficiently
lower the overhead of a procedure’s body by increasing the procedure’s
size, you can still improve overall performance by reducing the overhead in
other ways. As you’ve seen, one option is to use leaf procedures and func-
tions. Good compilers emit fewer instructions for leaf nodes in the call tree,
thereby reducing the call/return overhead. However, if the procedure’s
body is short, you need a way to completely eliminate the procedure call/
return overhead. Some languages accomplish this with macros.

A pure macro expands the body of a procedure or function in place of
its invocation. Because there’s no call/return to code elsewhere in the pro-
gram, a macro expansion avoids the overhead associated with those instruc-
tions. Furthermore, macros also save considerable expense by using textual
substitution for parameters rather than pushing the parameter data onto
the stack or moving it into registers. The drawback to a macro is that the
compiler expands the macro’s body for each invocation of the macro. If the
macro body is large and you invoke it in many different places, the execut-
able program can grow by a fair amount. Macros represent the classic time/
space tradeoff: faster code at the expense of greater size. For this reason,
you should use macros only to replace procedures and functions that have
a small number of statements (say, between one and five), except in some
rare cases where speed is paramount.

A few languages (like C/C++) provide inline functions and procedures,
which are a cross between a true function (or procedure) and a pure macro.
Most languages that support inline functions and procedures do not guar-
antee that the compiler will expand the code inline. Inline expansion, or a
call to an actual function in memory, is done at the compiler’s discretion.
Most compilers won’t expand an inline function if its body is too large or if
it has an excessive number of parameters. Furthermore, unlike pure mac-
ros, which don’t have any associated procedure call overhead, inline func-
tions may still need to build an activation record in order to handle local
variables, temporaries, and other requirements. Thus, even if the compiler
does expand such a function inline, there may still be some overhead that
you wouldn’t get with a pure macro.

552 Chapter 15

To see the result of function inlining, consider the following C source
file prepared for compilation by Microsoft Visual C++:

#include <stdio.h>

// Make geti and getj external functions
// to thwart constant propagation so we
// can see the effects of the following
// code.

extern int geti(void);
extern int getj(void);

// Inline function demonstration. Note
// that "_inline" is the legacy MSVC++ "C" way
// of specifying an inline function (the
// actual "inline" keyword was a C++/C99 feature,
// which this code avoids in order to make
// the assembly output a little more readable).
//
//
// "inlineFunc" is a simple inline function
// that demonstrates how the C/C++ compiler
// does a simple inline macro expansion of
// the function:

_inline int inlineFunc(int a, int b)
{
 return a + b;
}

_inline int ilf2(int a, int b)
{
 // Declare some variable that will require
 // an activation record to be built (that is,
 // register allocation won't be sufficient):

 int m;
 int c[4];
 int d;

 // Make sure we use the "c" array so that
 // the optimizer doesn't ignore its
 // declaration:

 for(m = 0; m < 4; ++m)
 {
 c[m] = geti();
 }
 d = getj();
 for(m = 0; m < 4; ++m)
 {
 d += c[m];
 }

Functions and Procedures 553

 // Return a result to the calling program:

 return (a + d) - b;
}

int main(int argc, char **argv)
{
 int i;
 int j;
 int sum;
 int result;

 i = geti();
 j = getj();
 sum = inlineFunc(i, j);
 result = ilf2(i, j);
 printf("i+j=%d, result=%d\n", sum, result);
 return 0;
}

Here’s the MASM-compatible assembly language code that MSVC emits
when you specify a C compilation (versus a C++ compilation, which pro-
duces messier output):

_main PROC NEAR
main PROC
;
; Create the activation record:
;
$LN6:
 mov QWORD PTR [rsp+8], rbx
 push rdi
 sub rsp, 32 ; 00000020H
; Line 66
;
; i = geti();
;
 call ?geti@@YAHXZ ; geti -- returns result in EAX
 mov edi, eax ; Save i in edi

; Line 67
;
; j = getj();
;
 call ?getj@@YAHXZ ; getj -- Returns result in EAX
; Line 69
;
; Inline expansion of inlineFunc()
;
 mov edx, eax ; Pass j in EDX
 mov ecx, edi ; Pass i in ECX

554 Chapter 15

 mov ebx, eax ; Use EBX as "sum" local
 call ?ilf2@@YAHHH@Z ; ilf2

; Computes sum = i+j (inline)

 lea edx, DWORD PTR [rbx+rdi]

; Line 70
;
; Call to printf function:

 mov r8d, eax
 lea rcx, OFFSET FLAT:??_C@_0BD@INCDFJPK@i?$CLj?$DN?$CFd?0?5result?$DN?$CFd?6?$AA@
 call printf
; Line 72
;
; Return from main function
;
 mov rbx, QWORD PTR [rsp+48]
 xor eax, eax
 add rsp, 32 ; 00000020H
 pop rdi
 ret 0
main ENDP

?ilf2@@YAHHH@Z PROC ; ilf2, COMDAT
; File v:\t.cpp
; Line 30
$LN24:
 mov QWORD PTR [rsp+8], rbx
 mov QWORD PTR [rsp+16], rsi
 push rdi
 sub rsp, 64 ; 00000040H
;
; Extra code to help prevent hacks from messing with
; stack data (clears array data to prevent observing old
; memory data).

 mov rax, QWORD PTR __security_cookie
 xor rax, rsp
 mov QWORD PTR __$ArrayPad$[rsp], rax
 mov edi, edx
 mov esi, ecx
; Line 43
; Loop to fill "v" array:
;
 xor ebx, ebx
$LL4@ilf2:
; Line 45
 call ?geti@@YAHXZ ; geti
 mov DWORD PTR c$[rsp+rbx*4], eax
 inc rbx
 cmp rbx, 4

Functions and Procedures 555

 jl SHORT $LL4@ilf2

; Line 47
;
; d = getj();
;
 call ?getj@@YAHXZ ; getj
; Line 50
;
; Second for loop is unrolled and expanded inline:
;
; d += c[m];

 mov r8d, DWORD PTR c$[rsp+8]
 add r8d, DWORD PTR c$[rsp+12]
 add r8d, DWORD PTR c$[rsp]
 add r8d, DWORD PTR c$[rsp+4]
;
; return (a+d) - b
;
 add eax, r8d
; Line 55
 sub eax, edi
 add eax, esi
; Line 56
;
; Verify code did not mess with stack before leaving
; (array overflow):
;
 mov rcx, QWORD PTR __$ArrayPad$[rsp]
 xor rcx, rsp
 call __security_check_cookie
 mov rbx, QWORD PTR [rsp+80]
 mov rsi, QWORD PTR [rsp+88]
 add rsp, 64 ; 00000040H
 pop rdi
 ret 0
?ilf2@@YAHHH@Z ENDP ; ilf2

?inlineFunc@@YAHHH@Z PROC ; inlineFunc, COMDAT
; File v:\t.cpp
; Line 26
 lea eax, DWORD PTR [rcx+rdx]
; Line 27
 ret 0
?inlineFunc@@YAHHH@Z ENDP ; inlineFunc

As you can see in this assembly output, there are no function calls to
the inlineFunc() function. Instead, the compiler expanded this function in
place in the main() function, at the point where the main program calls it.
Although the ilf2() function was also declared inline, the compiler refused
to expand it inline and treated it like a normal function (probably because
of its size).

556 Chapter 15

15.4 Passing Parameters to a Function or Procedure
The number and type of parameters can also have a big impact on the
efficiency of the code a compiler generates for your procedures and func-
tions. Simply put, the more parameter data you pass, the more expensive
the procedure or function call becomes. Often, programmers call generic
functions (or design generic functions) that require you to pass several
optional parameters whose values the function won’t use. This scheme can
make functions more generally applicable to different applications, but—as
you’ll see in this section—there’s a cost associated with that generality, so
you might want to consider using a version of the function specific to your
application if space or speed is an issue.

The parameter-passing mechanism (for example, pass-by-reference or
pass-by-value) also has an impact on the overhead associated with a proce-
dure call and return. Some languages allow you to pass large data objects
by value. (Pascal lets you pass strings, arrays, and records by value, and C/
C++ allows you to pass structures by value; other languages vary depending
on their design.) Whenever you pass a large data object by value, the com-
piler must emit machine code that makes a copy of that data into the pro-
cedure’s activation record. This can be time-consuming (especially when
copying large arrays or structures). Furthermore, large objects probably
won’t fit in the CPU’s register set, so accessing such data within a procedure
or function is expensive. It’s usually more efficient to pass large data objects
such as arrays and structures by reference than by value. The extra cost of
accessing the data indirectly is usually saved many times over by not having
to copy the data into the activation record. Consider the following C code,
which passes a large structure by value to a C function:

#include <stdio.h>

typedef struct
{
 int array[256];
} a_t;

void f(a_t a)
{
 a.array[0] = 0;
 return;
}

int main(void)
{
 a_t b;

 f(b);
 return(0);
}

Functions and Procedures 557

Here’s the PowerPC code that GCC emits:

_f:
 li r0,0 ; To set a.array[0] = 0

 ; Note: the PowerPC ABI passes the
 ; first eight dwords of data in
 ; R3..R10. We need to put that
 ; data back into the memory array
 ; here:

 stw r4,28(r1)
 stw r5,32(r1)
 stw r6,36(r1)
 stw r7,40(r1)
 stw r8,44(r1)
 stw r9,48(r1)
 stw r10,52(r1)

 ; Okay, store 0 into a.array[0]:

 stw r0,24(r1)

 ; Return to caller:

 blr

; main function:

_main:

 ; Set up main's activation record:

 mflr r0
 li r5,992
 stw r0,8(r1)

 ; Allocate storage for a:

 stwu r1,-2096(r1)

 ; Copy all but the first
 ; eight dwords to the
 ; activation record for f:

 addi r3,r1,56
 addi r4,r1,1088
 bl L_memcpy$stub

 ; Load the first eight dwords
 ; into registers (as per the
 ; PowerPC ABI):

 lwz r9,1080(r1)
 lwz r3,1056(r1)

558 Chapter 15

 lwz r10,1084(r1)
 lwz r4,1060(r1)
 lwz r5,1064(r1)
 lwz r6,1068(r1)
 lwz r7,1072(r1)
 lwz r8,1076(r1)

 ; Call the f function:

 bl _f

 ; Clean up the activation record
 ; and return 0 to main's caller:

 lwz r0,2104(r1)
 li r3,0
 addi r1,r1,2096
 mtlr r0
 blr

; Stub function that copies the structure
; data to the activation record for the
; main function (this calls the C standard
; library memcpy function to do the actual copy):

 .data
 .picsymbol_stub
L_memcpy$stub:
 .indirect_symbol _memcpy
 mflr r0
 bcl 20,31,L0$_memcpy
L0$_memcpy:
 mflr r11
 addis r11,r11,ha16(L_memcpy$lazy_ptr-L0$_memcpy)
 mtlr r0
 lwz r12,lo16(L_memcpy$lazy_ptr-L0$_memcpy)(r11)
 mtctr r12
 addi r11,r11,lo16(L_memcpy$lazy_ptr-L0$_memcpy)
 bctr
.data
.lazy_symbol_pointer
L_memcpy$lazy_ptr:
 .indirect_symbol _memcpy
 .long dyld_stub_binding_helper

As you can see, the call to function f() calls memcpy to transfer a copy of
the data from the main() function’s local array to the f() function’s activa-
tion record. Again, copying memory is a slow process, and this code amply
demonstrates that you should avoid passing large objects by value. Consider
the same code when you pass the structure by reference:

#include <stdio.h>

typedef struct

Functions and Procedures 559

{
 int array[256];
} a_t;

void f(a_t *a)
{
 a->array[0] = 0;
 return;
}

int main(void)
{
 a_t b;

 f(&b);
 return(0);
}

Here’s the conversion of this C source code to 32-bit ARM assembly
by GCC:

f:
 @ Build activation record:

 str fp, [sp, #-4]! @ Push old FP on stack
 add fp, sp, #0 @ FP = SP
 sub sp, sp, #12 @ Reserve storage for locals
 str r0, [fp, #-8] @ Save pointer to 'a'
 ldr r3, [fp, #-8] @ r3 = a

 @ a->array[0] = 0;

 mov r2, #0
 str r2, [r3]
 nop

 @ Remove locals from stack.

 add sp, fp, #0

 @ Pop FP from stack:

 ldr fp, [sp], #4

 @ Return to main function:

 bx lr

main:
 @ Save Linux return address and FP:

 push {fp, lr}

560 Chapter 15

 @ Set up activation record:

 add fp, sp, #4
 sub sp, sp, #1024 @ Reserve storage for b
 sub r3, fp, #1024 @ R3 = &b
 sub r3, r3, #4

 mov r0, r3 @ Pass &b to f in R0
 bl f @ Call f

 @ Return 0 result to Linux:

 mov r3, #0
 mov r0, r3
 sub sp, fp, #4 @ Clean up stack frame
 pop {fp, pc} @ Returns to Linux

Depending on your CPU and compiler, it may be slightly more efficient
to pass small (scalar) data objects by value rather than by reference. For
example, if you’re using an 80x86 compiler that passes parameters on the
stack, you’ll need two instructions to pass a memory object by reference, but
only a single instruction to pass that same object by value. So, although try-
ing to pass large objects by reference is a good idea, the reverse is generally
true for small objects. However, this is not a hard and fast rule; its validity
varies based on the CPU and compiler you’re using.

Some programmers may feel that it’s more efficient to pass data to a
procedure or function via global variables. After all, if the data is already
sitting in a global variable that’s accessible to the procedure or function, a
call to that procedure or function won’t require any extra instructions to
pass the data to the subroutine, therefore reducing the call overhead. While
this seems like a big win, keep in mind that compilers have a difficult time
optimizing programs that make excessive use of global variables. Although
using globals may reduce the function/procedure call overhead, it may also
prevent the compiler from handling other optimizations that would have
been otherwise possible. Here’s a simple example using Microsoft Visual
C++ that demonstrates this problem:

#include <stdio.h>

// Make geti an external function
// to thwart constant propagation so we
// can see the effects of the following
// code.

extern int geti(void);

// globalValue is a global variable that
// we use to pass data to the "usesGlobal"
// function:

int globalValue = 0;

Functions and Procedures 561

// Inline function demonstration. Note
// that "_inline" is the legacy MSVC++ "C" way
// of specifying an inline function (the
// actual "inline" keyword is a C99/C++ feature,
// which this code avoids in order to make
// the assembly output a little more readable).

_inline int usesGlobal(int plusThis)
{
 return globalValue+plusThis;
}

_inline int usesParm(int plusThis, int globalValue)
{
 return globalValue+plusThis;
}

int main(int argc, char **argv)
{
 int i;
 int sumLocal;
 int sumGlobal;

 // Note: the call to geti in between setting globalValue
 // and calling usesGlobal is intentional. The compiler
 // doesn't know that geti doesn't modify the value of
 // globalValue (and neither do we, frankly), and so
 // the compiler cannot use constant propagation here.

 globalValue = 1;
 i = geti();
 sumGlobal = usesGlobal(5);

 // If we pass the "globalValue" as a parameter rather
 // than setting a global variable, then the compiler
 // can optimize the code away:

 sumLocal = usesParm(5, 1);
 printf("sumGlobal=%d, sumLocal=%d\n", sumGlobal, sumLocal);
 return 0;
}

Here’s the 32-bit MASM source code (with manual annotations) that
the MSVC++ compiler generates for this code:

_main PROC NEAR

; globalValue = 1;

 mov DWORD PTR _globalValue, 1

; i = geti();

562 Chapter 15

;
; Note that because of dead code elimination,
; MSVC++ doesn't actually store the result
; away into i, but it must still call geti()
; because geti() could produce side effects
; (such as modifying globalValue's value).

 call _geti

; sumGlobal = usesGlobal(5);
;
; Expanded inline to:
;
; globalValue+plusThis

 mov eax, DWORD PTR _globalValue
 add eax, 5 ; plusThis = 5

; The compiler uses constant propagation
; to compute:
; sumLocal = usesParm(5, 1);
; at compile time. The result is 6, which
; the compiler directly passes to print here:

 push 6

; Here's the result for the usesGlobal expansion,
; computed above:

 push eax
 push OFFSET FLAT:formatString ; 'string'
 call _printf
 add esp, 12 ; Remove printf parameters

; return 0;

 xor eax, eax
 ret 0
_main ENDP
_TEXT ENDS
 END

As you can see, the compiler’s ability to optimize around global vari-
ables can be easily thwarted by the presence of some seemingly unrelated
code. In this example, the compiler cannot determine that the call to the
external geti() function doesn’t modify the value of the globalValue vari-
able. Therefore, the compiler can’t assume that globalValue still has the
value 1 when it computes the inline function result for usesGlobal(). Exercise
extreme caution when using global variables to communicate information
between a procedure or function and its caller. Code that’s unrelated to the
task at hand (such as the call to geti(), which probably doesn’t affect global
Value’s value) can prevent the compiler from optimizing code that uses
global variables.

Functions and Procedures 563

15.5 Activation Records and the Stack
Because of how a stack works, the last procedure activation record the soft-
ware creates will be the first activation record that the system deallocates.
Since activation records hold procedure parameters and local variables,
a last-in, first-out (LIFO) organization is a very intuitive way of implement-
ing activation records. To see how it works, consider the following (trivial)
Pascal program:

program ActivationRecordDemo;

 procedure C;
 begin

 (* Stack Snapshot here *)

 end;

 procedure B;
 begin

 C;

 end;

 procedure A;
 begin

 B;

 end;

begin (* Main program *)

 A;

end.

Figure 15-2 shows the stack layout as this program executes.
When the program begins execution, it first creates an activation

record for the main program. The main program calls the A procedure
(j). Upon entry into the A procedure, the code completes the construc-
tion of the activation record for A, effectively pushing it onto the stack.
Once inside procedure A, the code calls procedure B (k). Note that A is still
active while the code calls B, so A’s activation record remains on the stack.
Upon entry into B, the system builds B’s activation record and pushes it onto
the top of the stack (l). Once inside B, the code calls procedure C, and C
builds its activation record on the stack and arrives at the comment (* Stack
snapshot here *) (m).

564 Chapter 15

Stack
pointer

Call procedure A

Activation record just pushed onto stack

Unused stack memory

Previous stack contents

A A A

B B

C

Call procedure B Call procedure C At the comment
(* Stack Snapshot here *)

4

Stack
pointer

Stack
pointer

Stack
pointer

1 2 3

Figure 15-2: Stack layout after three nested procedure calls

Because procedures keep their local variables and parameter values
in their activation record, the lifetime of these variables extends from the
point the system first creates the activation record until the system deallo-
cates it when the procedure returns to its caller. In Figure 15-2, notice that
A’s activation record remains on the stack during the execution of the B and
C procedures. Therefore, the lifetime of A’s parameters and local variables
completely brackets the lifetimes of B’s and C’s activation records.

Now consider the following C/C++ code with a recursive function:

void recursive(int cnt)
{
 if(cnt != 0)
 {
 recursive(cnt - 1);
 }
}

int main(int argc, char **argv)
{
 recursive(2);
}

This program calls the recursive() function three times before it begins
returning (the main program calls recursive() once with the parameter value
2, and recursive() calls itself twice with the parameter values 1 and 0). Because
each recursive call to recursive() pushes another activation record before the
current call returns, when this program finally hits the if statement in this
code with cnt equal to 0, the stack looks something like Figure 15-3.

Functions and Procedures 565

Activation record just pushed onto stack

Unused stack memory

Previous stack contents

Call procedure A

A(2) A(2) A(2)

A(1) A(1)

A(0)

Call procedure A Call procedure A At the if statement
after the third call

Stack
pointer

Stack
pointer

Stack
pointer

Stack
pointer

1 2 43

Figure 15-3: Stack layout after three recursive procedure calls

Because each procedure invocation has a separate activation record, each
activation of the procedure will have its own copy of the parameters and local
variables. While the code for a procedure or function is executing, it will
access only those local variables and parameters in the activation record it
has most recently created,3 thereby preserving the values from previous calls.

15.5.1 Breaking Down the Activation Record
Now that you’ve seen how procedures manipulate activation records on the
stack, it’s time to take a look at the internal composition of a typical activa-
tion record. In this section we’ll use a typical activation record layout that
you’ll see when executing code on an 80x86. Although different languages,
different compilers, and different CPUs lay out the activation record differ-
ently, these differences, if they exist at all, will be minor.

The 80x86 maintains the stack and activation records using two regis-
ters: ESP/RSP (the stack pointer) and EBP/RBP (the frame pointer, which
Intel calls the base pointer). The ESP/RSP register points at the current
top of stack, and the EBP register points at the base address of an activa-
tion record.4 A procedure can access objects within its activation record by
using the indexed addressing mode (see “Indexed Addressing Mode” on
page 34) and supplying a positive or negative offset from the value in the
EBP/RBP register. Generally, a procedure allocates memory storage for

3. The only exception is when a procedure recursively calls itself and passes one of its local
variables or parameters by reference to the new invocation.

4. Some people call activation records stack frames, which is where the phrase frame pointer
comes from. Intel chose the name base pointer for the EBP register because it points at the
base address of the stack frame.

566 Chapter 15

local variables at negative offsets from EBP/RBP’s value, and for param-
eters at positive offsets from EBP/RBP. Consider the following Pascal proce-
dure, which has both parameters and local variables:

procedure HasBoth(i:integer; j:integer; k:integer);
var
 a :integer;
 r :integer;
 c :char;
 b :char;
 w :smallint; (* smallints are 16 bits *)
begin
 .
 .
 .
end;

Figure 15-4 shows a typical activation record for this Pascal procedure
(remember that the stack grows toward lower memory on the 32-bit 80x86).

Previous
stack

contents

i’s value

j’s value

k’s value

Return address

Old EBP value EBP

a

r

c
b
w

+0

–4

–8
–9
–10
–12

+4

+8

+12

+16

Offset from EBP

Figure 15-4: A typical activation record

When you see the term base associated with a memory object, you might
think that the base address is the lowest address of that object in memory.
However, there’s no such requirement. The base address is simply the address
in memory on which you base the offsets to particular fields of that object.
As this activation record demonstrates, 80x86 activation record base addresses
are actually in the middle of the record.

The activation record is constructed in two phases. The first phase
begins when the code calling the procedure pushes the parameters for the
call onto the stack. For example, consider the following call to HasBoth() in
the previous example:

HasBoth(5, x, y + 2);

Functions and Procedures 567

Here’s the HLA/x86 assembly code that might correspond to this call:

pushd(5);
push(x);
mov(y, eax);
add(2, eax);
push(eax);
call HasBoth;

The three push instructions in this code sequence build the first three
double words of the activation record, and the call instruction pushes a
return address onto the stack, creating the fourth double word in the activa-
tion record. After the call, execution continues in the HasBoth() procedure
itself, where the program continues to build the activation record.

The first few instructions of the HasBoth() procedure are responsible for
finishing the construction of the activation record. Immediately upon entry
into HasBoth(), the stack takes the form shown in Figure 15-5.5

Previous
stack

contents

i’s value

j’s value

k’s value

Return address ESP+0

+4

+8

+12

Offset from ESP

Figure 15-5: Activation record upon entry to HasBoth()

The first thing the procedure’s code should do is to preserve the value in
the 80x86 EBP register. On entry, EBP probably points at the base address
of the caller’s activation record. On exit from HasBoth(), EBP needs to contain
its original value. Therefore, upon entry, HasBoth() needs to push the current
value of EBP on the stack in order to preserve EBP’s value. Next, the HasBoth()
procedure needs to change EBP so that it points at the base address of the
HasBoth() activation record. The following HLA/x86 code takes care of
these two operations:

// Preserve caller's base address.

 push(ebp);

 // ESP points at the value we just saved. Use its address
 // as the activation record's base address.

 mov(esp, ebp);

5. On the x86-64 CPU, the offsets will be slightly different because certain objects (such as
the return address) are 64-bit entities rather than 32-bit entities.

568 Chapter 15

Finally, the code at the beginning of HasBoth() needs to allocate storage
for its local (automatic) variables. As you saw in Figure 15-4, those variables
sit below the frame pointer in the activation record. To prevent future pushes
from wiping out the values in those local variables, the code has to set ESP to
the address of the last double word of local variables in the activation record.
To accomplish this, it simply subtracts the number of bytes of local variables
from ESP via the following machine instruction:

sub(12, esp);

The standard entry sequence for a procedure like HasBoth() consists of
the three machine instructions just considered—push(ebp);, mov(esp, ebp);,
and sub(12, esp);—which complete the construction of the activation
record inside the procedure. Just before returning, the Pascal procedure
is responsible for deallocating the storage associated with the activation
record. The standard exit sequence usually takes the following form (in
HLA) for a Pascal procedure:

// Deallocates the local variables
// by copying EBP to ESP.

mov(ebp, esp);

// Restore original EBP value.

pop(ebp);

// Pops return address and
// 12 parameter bytes (3 dwords)

ret(12);

The first instruction deallocates storage for the local variables shown in
Figure 15-4. Note that EBP is pointing at the old value of EBP; this value is
stored at the memory address just above all the local variables. By copying
the value in EBP to ESP, we move the stack pointer past all the local vari-
ables, effectively deallocating them. Now, the stack pointer points at the old
value of EBP on the stack; therefore, the pop instruction in this sequence
restores EBP’s original value and leaves ESP pointing at the return address
on the stack. The ret instruction in the standard exit sequence does two
things: it pops the return address from the stack (and, of course, trans-
fers control to this address), and it removes 12 bytes of parameters from
the stack. Because HasBoth() has three double-word parameters, popping
12 bytes from the stack removes those parameters.

15.5.2 Assigning Offsets to Local Variables
This HasBoth() example allocates local (automatic) variables in the order the
compiler encounters them. A typical compiler maintains a current offset (the
initial value of which will be 0) into the activation record for local variables.

Functions and Procedures 569

Whenever the compiler encounters a local variable, it subtracts the vari-
able’s size from the current offset and then uses the result as the offset of
the local variable (from EBP/RBP) in the activation record. For example,
upon encountering the declaration for variable a, the compiler subtracts
the size of a (4 bytes, assuming a is a 32-bit integer) from the current offset
(0) and uses the result (–4) as the offset for a. Next, the compiler encoun-
ters variable r (which is also 4 bytes), sets the current offset to –8, and
assigns this offset to r. This process repeats for each of the local variables
in the procedure.

Although this is a typical way that compilers assign offsets to local vari-
ables, most languages give compiler implementers free rein to allocate local
objects as they see fit. A compiler can rearrange the objects in the activa-
tion record if doing so is more convenient. This means you should avoid
designing algorithms that depend on the previously mentioned allocation
scheme, because some compilers do it differently.

Many compilers try to ensure that all local variables you declare have
an offset that is a multiple of the object’s size. For example, suppose you
have the following two declarations in a C function:

char c;
int i;

Normally, you’d expect that the compiler would attach an offset like –1
to the c variable and –5 to the (4-byte) int variable i. However, some CPUs
(such as RISC CPUs) require the compiler to allocate double-word objects
on a double-word boundary. Even on CPUs that don’t require this (for
example, the 80x86), it may be faster to access a double-word variable if
the compiler aligns it on a double-word boundary. For this reason (and as
previous chapters have described), many compilers automatically add pad-
ding bytes between local variables so that each variable resides at a natural
offset in the activation record. In general, bytes may appear at any offset,
words are happiest on even address boundaries, and double words should
have a memory address that is a multiple of 4.

Although an optimizing compiler might automatically handle this
alignment for you, that comes with a cost—those extra padding bytes. As
explained earlier, compilers are usually free to rearrange the variables in
an activation record, but they don’t always do so. Therefore, if you inter-
twine the definitions for several byte, word, double-word, and other-sized
objects in your local variable declarations, the compiler may wind up insert-
ing several bytes of padding into the activation record. You can minimize
this problem by attempting to group as many like-sized objects together
as is reasonable in your procedures and functions. Consider the following
C/C++ code on a 32-bit machine:

char c0;
int i0;
char c1;
int i1;
char c2;

570 Chapter 15

int i2;
char c3;
int i3;

An optimizing compiler may elect to insert 3 bytes of padding between
each of these character variables and the (4-byte) integer variable that imme-
diately follows. This means that the preceding code will have about 12 bytes
of wasted space (3 bytes for each of the character variables). Now consider
the following declarations in the same C code:

char c0;
char c1;
char c2;
char c3;
int i0;
int i1;
int i2;
int i3;

In this example, the compiler won’t emit any extra padding bytes to
the code. Why? Because characters (being 1 byte each) may begin at any
address in memory.6 Therefore, the compiler can place these character
variables at offsets –1, –2, –3, and –4 within the activation record. Because
the last character variable appears at an address that is a multiple of 4, the
compiler doesn’t need to insert any padding bytes between c3 and i0 (i0 will
naturally appear at offset –8 in the preceding declarations).

As you can see, arranging your declarations so that all like-sized objects
are next to one another can help your compiler produce better code. Don’t
take this suggestion to an extreme, though. If a rearrangement would make
your program more difficult to read or maintain, you should carefully con-
sider whether it’s worthwhile in your program.

15.5.3 Associating Offsets with Parameters
As noted, compilers are given considerable leeway with respect to how they
assign offsets to local (automatic) variables within a procedure. As long as
the compiler uses these offsets consistently, the exact allocation algorithm
it applies is almost irrelevant; in fact, it could use a different allocation
scheme in different procedures of the same program. However, a compiler
doesn’t have free rein when assigning offsets to parameters. It has to live
with certain restrictions, because other code outside the procedure accesses
those parameters. Specifically, the procedure and the calling code must
agree on the layout of the parameters in the activation record so the calling
code can build the parameter list. Note that the calling code might not be
in the same source file, or even in the same programming language, as the
procedure. To ensure interoperability between a procedure and whatever

6. Keep in mind that on some RISC machines, accessing individual bytes in memory can be
more expensive than double words. This means that a RISC compiler might allocate 4 (or
even 8) bytes for each character variable.

Functions and Procedures 571

code calls that procedure, then, compilers must adhere to certain calling
conventions. This section will explore the three common calling conventions
for Pascal/Delphi and C/C++.

15.5.3.1 The Pascal Calling Convention

In Pascal (including Delphi) the standard parameter-passing convention is
to push the parameters on the stack in the order of their appearance in the
parameter list. Consider the following call to the HasBoth() procedure from
the earlier example:

HasBoth(5, x, y + 2);

The following assembly code implements this call:

// Push the value for parameter i:

pushd(5);

// Push x's value for parameter j:

push(x);

// Compute y + 2 in EAX and push this as the value
// for parameter k:

mov(y, eax);
add(2, eax);
push(eax);

// Call the HasBoth procedure with these
// three parameter values:

call HasBoth;

When assigning offsets to a procedure’s formal parameters, the com-
piler assigns the highest offset to the first parameter and the lowest offset to
the last parameter. Because the old value of EBP is at offset 0 in the activa-
tion record and the return address is at offset 4, the last parameter in the
activation record (when using the Pascal calling convention on the 80x86
CPU) will reside at offset 8 from EBP. Looking back at Figure 15-4, you can
see that parameter k is at offset +8, parameter j is at offset +12, and param-
eter i (the first parameter) is at offset +16 in the activation record.

The Pascal calling convention also stipulates that it is the procedure’s
responsibility to remove the parameters the caller pushes when the proce-
dure returns to its caller. As you saw earlier, the 80x86 CPU provides a vari-
ant of the ret instruction that lets you specify how many bytes of parameters
to remove from the stack upon return. Therefore, a procedure that uses
the Pascal calling convention will typically supply the number of parameter
bytes as an operand to the ret instruction when returning to its caller.

572 Chapter 15

15.5.3.2 The C Calling Convention

The C/C++/Java languages employ another very popular calling conven-
tion, generally known as the cdecl calling convention (or, simply, the C calling
convention). There are two major differences between the C and Pascal call-
ing conventions. First, calls to functions in C must push their parameters
on the stack in the reverse order. That is, the first parameter must appear
at the lowest address on the stack (assuming the stack grows downward),
and the last parameter must appear at the highest address in memory. The
second difference is that C requires the caller, rather than the function, to
remove all parameters from the stack.

Consider the following version of HasBoth() written in C instead of Pascal:

void HasBoth(int i, int j, int k)
{
 int a;
 int r;
 char c;
 char b;
 short w; /* assumption: short ints are 16 bits */
 .
 .
 .
}

Figure 15-6 provides the layout for a typical HasBoth activation record
(written in C on a 32-bit 80x86 processor).

Previous
stack

contents
k’s value

j’s value

i’s value

Return address

Old EBP value EBP

a

r

c
b
w

+0

–4

–8
–9
–10
–12

+4

+8

+12

+16

Offset from EBP

ESP

Figure 15-6: HasBoth() activation record in C

Looking closely, you’ll see the difference between this figure and
Figure 15-4. The positions of the i and k variables are reversed in this activa-
tion record (it’s only a coincidence that j appears at the same offset in both).

Because the C calling convention reverses the order of the parameters
and it’s the caller’s responsibility to remove all parameter values from the

Functions and Procedures 573

stack, the calling sequence for HasBoth() is a little different in C than in
Pascal. Consider the following call to HasBoth():

HasBoth(5, x, y + 2);

Here’s the HLA assembly code for this call:

// Compute y + 2 in EAX and push this
// as the value for parameter k

mov(y, eax);
add(2, eax);
push(eax);

// Push x's value for parameter j

push(x);

// Push the value for parameter i

pushd(5);

// Call the HasBoth procedure with
// these three parameter values

call HasBoth;

// Remove parameters from the stack.

add(12, esp);

As a result of using the C calling convention, this code differs in two ways
from the assembly code for the Pascal implementation. First, this example
pushes the values of the actual parameters in the opposite order of the Pascal
code; that is, it first computes y+2 and pushes that value, then it pushes x, and
finally it pushes the value 5. The second difference is the inclusion of the
add(12,esp); instruction immediately after the call. This instruction removes
12 bytes of parameters from the stack upon return. The return from HasBoth()
will use only the ret instruction, not the ret n instruction.

15.5.3.3 Conventions for Passing Parameters in Registers

As you’ve seen in these examples, passing parameters on the stack between
two procedures or functions requires a fair amount of code. Good assembly
language programmers have long known that it’s better to pass param-
eters in registers. Therefore, several 80x86 compilers following Intel’s ABI
(application binary interface) rules may attempt to pass as many as three
parameters in the EAX, EDX, and ECX registers.7 Most RISC processors

7. The number of parameters chosen, three, is not arbitrary. Studies in software engineering
strongly suggest that most user-written procedures have three or fewer parameters.

574 Chapter 15

specifically set aside a set of registers for passing parameters between
functions and procedures. See “Registers to the Rescue” on page 585 for
more information.

Most CPUs require that the stack pointer remain aligned on some rea-
sonable boundary (for example, a double-word boundary), and CPUs that
don’t absolutely require this may still benefit from it. Furthermore, many
CPUs (the 80x86 included) can’t easily push certain small-sized objects, like
bytes, onto the stack. Therefore, most compilers reserve a minimum num-
ber of bytes for a parameter (typically 4), regardless of its actual size. As an
example, consider the following HLA procedure fragment:

procedure OneByteParm(b:byte); @nodisplay;
 // local variable declarations
begin OneByteParm;
 .
 .
 .
end OneByteParm;

The activation record for this procedure appears in Figure 15-7.

Previous stack contents

Return address

ESP

EBP
Old EBP value

Local variables

b’s current value EBP + 8
EBP + 9
EBP + 10
EBP + 11

Unused bytes

Figure 15-7: OneByteParm() activation record

As you can see, the HLA compiler reserves 4 bytes for the b parameter
even though b is only a single-byte variable. This extra padding ensures that
the ESP register will remain aligned on a double-word boundary.8 We can
easily push the value of b onto the stack in the code that calls OneByteParm()
using a 4-byte push instruction.9

Even if your program could access the extra bytes of padding associated
with the b parameter, doing so is never a good idea. Unless you’ve explic-
itly pushed the parameter onto the stack (for example, using assembly

8. Assuming, of course, it was so aligned prior to appearance of the b parameter on the stack.

9. The 80x86 does not directly support 1-byte pushes onto the stack, so if the compiler
reserved only 1 byte of storage for this parameter, it would take several machine instructions
in order to simulate that 1-byte push.

Functions and Procedures 575

language code), there’s no guarantee about the data values that appear in
the padding bytes. In particular, they may not contain 0. Nor should your
code assume that the padding is present or that the compiler pads such
variables out to 4 bytes. Some 16-bit processors may require only a single
byte of padding. Some 64-bit processors may require 7 bytes of padding.
Some compilers on the 80x86 may use 1 byte of padding, while others use
3 bytes. Unless you’re willing to live with code that only one compiler can
compile (and code that could break when the next version of the compiler
comes along), it’s best to ignore these padding bytes.

15.5.4 Accessing Parameters and Local Variables
Once a subroutine sets up the activation record, accessing local (automatic)
variables and parameters is easy. The machine code simply uses the indexed
addressing mode to access such objects. Consider again the activation record
in Figure 15-4. The variables in the HasBoth() procedure have the offsets
found in Table 15-1.

Table 15-1: Offsets to Local Variables and Parameters in HasBoth() (Pascal Version)

Variable Offset Addressing mode example

i +16 mov([ebp+16], eax);

j +12 mov([ebp+12], eax);

k +8 mov([ebp+8], eax);

a –4 mov([ebp-4], eax);

r –8 mov([ebp-8], eax);

c –9 mov([ebp-9], al);

b –10 mov([ebp-10], al);

w –12 mov([ebp-12], ax);

The compiler allocates static local variables in a procedure at a fixed
address in memory. Static variables do not appear in the activation record,
so the CPU accesses static objects using the direct addressing mode.10 As
Chapter 3 discussed, in 80x86 assembly language instructions that use
the direct addressing mode need to encode the full 32-bit address as part
of the machine instruction. Therefore, instructions that use the direct
addressing mode are usually at least 5 bytes long (and often longer). On
the 80x86, if the offset from EBP is –128 through +127, then a compiler can
encode an instruction of the form [ebp + constant] in as few as 2 or 3 bytes.
Such instructions will be more efficient than those that encode a full 32-bit
address. The same principle applies on other processors, even if those CPUs
provide different addressing modes, address sizes, and so on. Specifically,

10. Assuming the object is a scalar object. If it is an array, for example, the machine code may
use the indexed addressing mode to access elements of the static array.

576 Chapter 15

accessing local variables whose offset is relatively small is generally more
efficient than accessing static variables or variables with larger offsets.

Because most compilers allocate offsets for local (automatic) variables
as the compiler encounters them, the first 128 bytes of local variables will be
the ones with the shortest offsets (at least, on the 80x86; this value may
be different for other processors).

Consider the following two sets of local variable declarations (presum-
ably appearing with some C function):

// Declaration set #1:

char string[256];
int i;
int j;
char c;

Here’s a second version of these declarations:

// Declaration set #2

int i;
int j;
char c;
char string[256];

Although these two declaration sections are semantically identical,
there is a big difference in the code a compiler for the 32-bit 80x86 gener-
ates to access these variables. In the first declaration, the variable string
appears at offset –256 within the activation record, i appears at offset –260,
j appears at offset –264, and c appears at offset –265. Because these offsets
are outside the range –128 through +127, the compiler will have to emit
machine instructions that encode a 4-byte offset constant rather than a
1-byte constant. Accordingly, the code associated with these declarations
will be larger and may run slower.

Now consider the second declaration. In this example the programmer
declares the scalar (non-array) objects first. Therefore, the variables have
the following offsets: i at –4, j at –8, c at –9, and string at –265. This turns
out to be the optimal configuration for these variables (i, j, and c will use
1-byte offsets; string will require a 4-byte offset).

This example demonstrates another rule you should try to follow when
declaring local (automatic) variables: declare smaller, scalar objects first
within a procedure, followed by all the arrays, structures/records, and other
large objects.

As explained in “Associating Offsets with Parameters” on page 570,
if you declare several local objects with differing sizes adjacent to one
another, the compiler may need to insert padding bytes to keep the larger
objects aligned at an appropriate memory address. While worrying about
a few wasted bytes here and there may seem ridiculous on machines with a
gigabyte (or more) of RAM, those few padding bytes could be just enough

Functions and Procedures 577

to push the offsets of certain local variables beyond –128, causing the com-
piler to emit 4-byte offsets rather than 1-byte offsets for those variables.
This is one more reason you should try to declare like-sized local variables
adjacent to one another.

On RISC processors, such as the PowerPC or ARM, the range of possible
offsets is usually much greater than ±128. This is a good thing, because
once you exceed the range of the activation record offset that a RISC CPU
can encode directly into an instruction, parameter and local variable access
gets very expensive. Consider the following C program:

#include <stdio.h>
int main(int argc, char **argv)
{
 int a;
 int b[256];
 int c;
 int d[16*1024*1024];
 int e;
 int f;

 a = argc;
 b[0] = argc + argc;
 b[255] = a + b[0];
 c = argc + b[1];
 d[0] = argc + a;
 d[4095] = argc + b[255];
 e = a + c;
 printf
 (
 "%d %d %d %d %d ",
 a,
 b[0],
 c,
 d[0],
 e
);
 return(0);
}

Here’s the PowerPC assembly output from GCC:

.data
 .cstring
 .align 2
 LC0:
 .ascii "%d %d %d %d %d \0"
 .text

; main function:

 .align 2
 .globl _main

578 Chapter 15

_main:
 ; Set up main's activation record:

 mflr r0
 stmw r30,-8(r1)
 stw r0,8(r1)
 lis r0,0xfbff
 ori r0,r0,64384
 stwux r1,r1,r0
 mr r30,r1
 bcl 20,31,L1$pb
L1$pb:
 mflr r31

 ; The following allocates
 ; 16MB of storage on the
 ; stack (R30 is the stack
 ; pointer here).

 addis r9,r30,0x400
 stw r3,1176(r9)

 ; Fetch the value of argc
 ; into the R0 register:

 addis r11,r30,0x400
 lwz r0,1176(r11)
 stw r0,64(r30) ; a = argc

 ; Fetch the value of argc
 ; into r9

 addis r11,r30,0x400
 lwz r9,1176(r11)

 ; Fetch the value of argc
 ; into R0:

 addis r11,r30,0x400
 lwz r0,1176(r11)

 ; Compute argc + argc and
 ; store it into b[0]:

 add r0,r9,r0
 stw r0,80(r30)

 ; Add a + b[0] and
 ; store into c:

 lwz r9,64(r30)
 lwz r0,80(r30)
 add r0,r9,r0
 stw r0,1100(r30)

Functions and Procedures 579

 ; Get argc's value, add in
 ; b[1], and store into c:

 addis r11,r30,0x400
 lwz r9,1176(r11)
 lwz r0,84(r30)
 add r0,r9,r0
 stw r0,1104(r30)

 ; Compute argc + a and
 ; store into d[0]:

 addis r11,r30,0x400
 lwz r9,1176(r11)
 lwz r0,64(r30)
 add r0,r9,r0
 stw r0,1120(r30)

 ; Compute argc + b[255] and
 ; store into d[4095]:

 addis r11,r30,0x400
 lwz r9,1176(r11)
 lwz r0,1100(r30)
 add r0,r9,r0
 stw r0,17500(r30)

 ; Compute argc + b[255]:

 lwz r9,64(r30)
 lwz r0,1104(r30)
 add r9,r9,r0

; **
 ; Okay, here's where it starts
 ; to get ugly. We need to compute
 ; the address of e so we can store
 ; the result currently held in r9
 ; into e. But e's offset exceeds
 ; what we can encode into a single
 ; instruction, so we have to use
 ; the following sequence rather
 ; than a single instruction.

 lis r0,0x400
 ori r0,r0,1120
 stwx r9,r30,r0

; **
 ; The following sets up the
 ; call to printf and calls printf:

 addis r3,r31,ha16(LC0-L1$pb)
 la r3,lo16(LC0-L1$pb)(r3)
 lwz r4,64(r30)

580 Chapter 15

 lwz r5,80(r30)
 lwz r6,1104(r30)
 lwz r7,1120(r30)
 lis r0,0x400
 ori r0,r0,1120
 lwzx r8,r30,r0
 bl L_printf$stub
 li r0,0
 mr r3,r0
 lwz r1,0(r1)
 lwz r0,8(r1)
 mtlr r0
 lmw r30,-8(r1)
 blr

; Stub, to call the external printf function:

 .data
 .picsymbol_stub
L_printf$stub:
 .indirect_symbol _printf
 mflr r0
 bcl 20,31,L0$_printf
L0$_printf:
 mflr r11
 addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)
 mtlr r0
 lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)
 mtctr r12
 addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)
 bctr
.data
.lazy_symbol_pointer
L_printf$lazy_ptr:
 .indirect_symbol _printf
 .long dyld_stub_binding_helper

This compilation was done under GCC without optimization to show
what happens when your activation record grows to the point you can no
longer encode activation record offsets into the instruction.

To encode the address of e, whose offset is too large, we need these
three instructions:

lis r0,0x400
ori r0,r0,1120
stwx r9,r30,r0

instead of a single instruction that stores R0 into the a variable, such as:

stw r0,64(r30) ; a = argc

Functions and Procedures 581

While two extra instructions in a program of this size might seem
insignificant, keep in mind that the compiler will generate these extra
instructions for each such access. If you frequently access a local variable
with a huge offset, the compiler may generate a significant number of extra
instructions throughout your function or procedure.

Of course, in a standard application running on a RISC, this prob-
lem seldom occurs because we rarely allocate local storage beyond the
range that a single instruction can encode. Also, RISC compilers gener-
ally allocate scalar (non-array/non-structure) objects in registers rather
than blindly allocating them at the next memory address in the activation
record. For example, if you turn on GCC’s optimization with the -O2 com-
mand-line switch, you’ll get the following PowerPC output:

.globl _main
_main:

; Build main's activation record:

 mflr r0
 stw r31,-4(r1)
 stw r0,8(r1)
 bcl 20,31,L1$pb
L1$pb:
 ; Compute values, set up parameters,
 ; and call printf:

 lis r0,0xfbff
 slwi r9,r3,1
 ori r0,r0,64432
 mflr r31
 stwux r1,r1,r0
 add r11,r3,r9
 mr r4,r3
 mr r0,r3
 lwz r6,68(r1)
 add r0,r0,r11 ;c = argc + b[1]
 stw r0,17468(r1)
 mr r5,r9
 add r6,r3,r6
 stw r9,64(r1)
 addis r3,r31,ha16(LC0-L1$pb)
 stw r11,1084(r1)
 stw r9,1088(r1)
 la r3,lo16(LC0-L1$pb)(r3)
 mr r7,r9
 add r8,r4,r6
 bl L_printf$stub

; Clean up main's activation
; record and return 0:

 lwz r1,0(r1)
 li r3,0

582 Chapter 15

 lwz r0,8(r1)
 lwz r31,-4(r1)
 mtlr r0
 blr

One thing that you’ll notice in this version with optimization enabled
is that GCC did not allocate variables in the activation record as they were
encountered. Instead, it placed most of the objects in registers (even array
elements). Keep in mind that an optimizing compiler may very well rear-
range all the local variables you declare.

The ARM processor has similar limitations based on the size of the instruc-
tion opcode (32 bits). Here’s the (unoptimized) ARM output from GCC:

.LC0:
 .ascii "%d %d %d %d %d \000"

main:

 @ Set up activation record

 push {fp, lr}
 add fp, sp, #4

 @ Reserve storage for locals.
 @ (2 instructions due to instruction
 @ size limitations).

 add sp, sp, #-67108864
 sub sp, sp, #1056

 @ Store argc (passed in R0)
 @ into a. Three additions
 @ (-67108864, 4, and -1044)
 @ are needed because of ARM
 @ 32-bit instruction encoding
 @ limitations

 add r3, fp, #-67108864
 sub r3, r3, #4
 str r0, [r3, #-1044]

 @ a = argc

 add r3, fp, #-67108864
 sub r3, r3, #4
 ldr r3, [r3, #-1044] @ r3 = argc
 str r3, [fp, #-8] @ a = argc

 @ b[0] = argc + argc

 add r3, fp, #-67108864
 sub r3, r3, #4
 ldr r2, [r3, #-1044] @ R2 = argc

Functions and Procedures 583

 ldr r3, [r3, #-1044] @ R3 = argc
 add r3, r2, r3 @ R3 = argc + argc
 str r3, [fp, #-1040] @ b[0] = argc+argc

 ldr r2, [fp, #-1040] @ R2 = b[0]
 ldr r3, [fp, #-8] @ R3 = a
 add r3, r2, r3 @ a + b[0]
 str r3, [fp, #-20] @ b[255] = a +b[0]

 ldr r2, [fp, #-1036] @ R2 = b[1]
 add r3, fp, #-67108864
 sub r3, r3, #4
 ldr r3, [r3, #-1044] @ R3 = argc
 add r3, r2, r3 @ argc + b[1]
 str r3, [fp, #-12] @ c = argc + b[1]

 add r3, fp, #-67108864
 sub r3, r3, #4
 ldr r2, [r3, #-1044] @ R2 = argc
 ldr r3, [fp, #-8] @ R3 = a
 add r3, r2, r3 @ R3 = argc + a
 add r2, fp, #-67108864
 sub r2, r2, #4
 str r3, [r2, #-1036] @ d[0] = argc + a

 ldr r2, [fp, #-20] @ R2 = b[255]
 add r3, fp, #-67108864
 sub r3, r3, #4
 ldr r3, [r3, #-1044] @ R3 = argc
 add r3, r2, r3 @ R3 = argc + b[255]
 add r2, fp, #-67108864
 sub r2, r2, #4
 add r2, r2, #12288
 str r3, [r2, #3056] @ d[4095] = argc + b[255]

 ldr r2, [fp, #-8] @ R2 = a
 ldr r3, [fp, #-12] @ R3 = c
 add r3, r2, r3 @ R3 = a + c
 str r3, [fp, #-16] @ e = a + c

 @ printf function call:

 ldr r1, [fp, #-1040]
 add r3, fp, #-67108864
 sub r3, r3, #4
 ldr r3, [r3, #-1036]
 ldr r2, [fp, #-16]
 str r2, [sp, #4]
 str r3, [sp]
 ldr r3, [fp, #-12]
 mov r2, r1
 ldr r1, [fp, #-8]
 ldr r0, .L3
 bl printf

584 Chapter 15

 @ return to Linux from function
 mov r3, #0
 mov r0, r3
 sub sp, fp, #4

 pop {fp, pc}

.L3:
 .word .LC0

While this is arguably better than the PowerPC code, there’s still consid-
erable ugliness in the address computations because the ARM CPU cannot
encode 32-bit constants as part of the instruction opcode. To understand
why GCC emits such bizarre constants to compute offsets into the activation
record, see the discussion of the ARM immediate operands in the section
“The Immediate Addressing Mode” in Appendix C online.

If you find the optimized PowerPC or ARM code a bit hard to follow,
consider the following 80x86 GCC output for the same C program:

.file "t.c"
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "%d %d %d %d %d "
 .text
 .p2align 2,,3
 .globl main
 .type main,@function
main:
 ; Build main's activation record:

 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $67109892, %esp

 ; Fetch ARGC into ECX:

 movl 8(%ebp), %ecx

 ; EDX = 2*argc:

 leal (%ecx,%ecx), %edx

 ; EAX = a (ECX) + b[0] (EDX):

 leal (%edx,%ecx), %eax

 ; c (ebx) = argc (ecx) + b[1]:

 movl %ecx, %ebx
 addl -1028(%ebp), %ebx
 movl %eax, -12(%ebp)

Functions and Procedures 585

 ; Align stack for printf call:

 andl $-16, %esp

 ;d[0] (eax) = argc (ecx) + a (eax);

 leal (%eax,%ecx), %eax

 ; Make room for printf parameters:

 subl $8, %esp
 movl %eax, -67093516(%ebp)

 ; e = a + c

 leal (%ebx,%ecx), %eax

 pushl %eax ;e
 pushl %edx ;d[0]
 pushl %ebx ;c
 pushl %edx ;b[0]
 pushl %ecx ;a
 pushl $.LC0
 movl %edx, -1032(%ebp)
 movl %edx, -67109896(%ebp)
 call printf
 xorl %eax, %eax
 movl -4(%ebp), %ebx
 leave
 ret

Of course, the 80x86 doesn’t have as many registers to use for passing
parameters and holding local variables, so the 80x86 code has to allocate
more locals in the activation record. Also, the 80x86 provides an offset
range of –128 to +127 bytes only around the EBP register, so a larger num-
ber of instructions have to use the 4-byte offset rather than the 1-byte off-
set. Fortunately, the 80x86 does allow you to encode a full 32-bit address as
part of the instructions that access memory, so you don’t have to execute
multiple instructions in order to access a variable stored a long distance
away from where EBP points in the stack frame.

15.5.5 Registers to the Rescue
As the examples in the previous section demonstrate, RISC code suffers
greatly when it has to deal with parameters and local variables whose offsets
are not easy to represent within the confines of the instruction opcode. In
real code, however, the situation is not so dire. Compilers are smart enough
to use machine registers to pass parameters and hold local variables provid-
ing immediate access to those values. This dramatically reduces the num-
ber of instructions in typical functions.

586 Chapter 15

Consider the (register-starved) 32-bit 80x86 CPU. As there are only
eight general-purpose registers, two of which (ESP and EBP) have spe-
cial purposes that limit their use, there aren’t a lot of registers available
for passing parameters or holding local variables. Typical C compilers
use EAX, ECX, and EDX to pass up to three parameters to a function.
Functions return their result in the EAX register. The function must pre-
serve the values of any other registers (EBX, ESI, EDI, and EBP) it uses.
It’s fortunate that memory access to local variables and parameters inside
the function is very efficient—given the limited register set, the 32-bit
80x86 will need to use memory often for this purpose.

For most applications, the largest architectural improvement to
the 64-bit x86-64 over the 32-bit 80x86 was not 64-bit registers (or even
addresses), but that the x86-64 added eight new general-purpose registers
and eight new XMM registers that compilers could use for passing param-
eters and holding local variables. The Intel/AMD ABI for the x86-64 allows
a compiler to pass up to six different arguments in registers to a function
(without the caller explicitly saving those register values before using
them). Table 15-2 lists the available registers.

Table 15-2: Ix86-64 Argument Passing via Registers

Register Usage

RDI 1st argument

RSI 2nd argument

RDX 3rd argument

RCX 4th argument

R8 5th argument

R9 6th argument

XMM0–XMM7 Used to pass floating-point arguments

R10 Can be used to pass static chain pointer

RAX Used to pass argument count if there are
a variable number of parameters

The 32-bit ARM (A32) ABI specifies up to four arguments appearing
in registers R0 through R3. As the A64 architecture has twice as many reg-
isters (32), the A64 ABI is a bit more generous, passing up to eight 64-bit
integer/pointer arguments in R0 through R7 and up to eight additional
floating-point parameters in V0 through V7.

The PowerPC ABI, which has 32 general-purpose registers, sets aside
R3 through R10 to pass up to eight arguments to a function. It also sets
aside the F1 through F8 floating-point registers to pass floating-point argu-
ments to a function.

In addition to setting aside registers to hold function arguments, the
various ABIs typically define various registers that a function can use to
hold local variables or temporary values (without explicitly preserving the

Functions and Procedures 587

values held in those registers upon entry to the function). For example,
the Windows ABI sets aside R11, XMM8 through XMM15, MMX0 through
MMX7, the FPU registers, and RAX for temporary/local use. The ARM
A32 ABI sets aside R4 through R8 and R10 through R11 for use as locals.
The A64 ABI sets aside R9 through R15 for locals and temporaries. The
PowerPC sets aside R14 through R30 and F14 through F31 for local vari-
ables. Once a compiler exhausts the registers the ABI defines for argument
passing, most ABIs expect the calling code to pass additional parameters on
the stack. Similarly, once a function uses all the registers set aside for local
variables, additional local variable allocation occurs on the stack.

Of course, a compiler can use other registers for local and temporary
values as well as those set aside by the CPU’s or OS’s ABI. However, it’s the
compiler’s responsibility to preserve those register values across the func-
tion call.

N O T E An ABI is a convention, not a requirement by the underlying OS or hardware.
Compiler writers (and assembly language programmers) who stick to a given ABI can
expect that their object code modules will be able to interact with code written in other
languages that adhere to that ABI. However, nothing stops a compiler writer from
using whatever mechanism they choose.

15.5.6 Java VM and Microsoft CLR Parameters and Locals
Because the Java VM and Microsoft CLR are both virtual stack machines,
programs compiled to those two architectures always push function argu-
ments onto the stack. Beyond that, the two virtual machine architectures
diverge. The reason for the divergence is that the Java VM’s design supports
efficient interpretation of Java bytecodes with JIT compilation improving
performance as needed. The Microsoft CLR, on the other hand, does not
support interpretation; instead, the CLR code (CIL) design supports effi-
cient JIT compilation to optimized machine code.

The Java VM is a traditional stack architecture, with parameters, locals,
and temporaries sitting on the stack. Other than the fact that there are no
registers to use for such objects, Java’s memory organization is very similar
to that of the 80x86/x86-64, PowerPC, and ARM CPUs. During JIT com-
pilation, it can be difficult to figure out which values on the stack can be
moved into registers and which local variables the Java compiler allocates
on the stack can be allocated in registers. Optimizing such stack allocations
to use registers can be very time-consuming, so it’s doubtful that the Java
JIT compiler does this while the application is running (as doing so would
greatly diminish the application’s runtime performance).

Microsoft’s CLR operates under a different philosophy. CIL is always
JIT-compiled into native machine code. Furthermore, Microsoft’s intent is
to have the JIT compiler produce optimized native machine code. While the
JIT compiler rarely does as good a job as a traditional C/C++ compiler, it
generally does a much better job than the Java JIT compiler. This is because
the Microsoft CLR definition explicitly singles out parameter argument and

588 Chapter 15

local variable memory accesses. When the JIT compiler sees these special
instructions, it can allocate those variables to registers rather than memory
locations. As a result, CLR JIT-compiled code is often shorter and faster
than Java VM JIT-compiled code (especially on RISC architectures).

15.6 Parameter-Passing Mechanisms
Most high-level languages provide at least two mechanisms for passing actual
parameter data to a subroutine: pass-by-value and pass-by-reference.11
In languages like Visual Basic, Pascal, and C++, declaring and using both
types of parameters is so easy that a programmer may conclude that there’s
little difference in efficiency between the two mechanisms. That’s a myth
this section intends to dispel.

N O T E There are other parameter-passing mechanisms besides pass-by-value and pass-by-
reference. FORTRAN and HLA, for example, support a mechanism known as pass-
by-value/result (or pass-by-value/returned). Ada and HLA support pass-by-result.
HLA and Algol support pass-by-name. This book won’t discuss these alternative
parameter-passing mechanisms further, because you probably won’t see them very
often. If you’d like more information, consult a good book on programming language
design or the HLA documentation.

15.6.1 Pass-by-Value
Pass-by-value is the easiest parameter-passing mechanism to understand.
The code that calls a procedure makes a copy of the parameter’s data and
passes this copy to the procedure. For small values, passing a parameter by
value generally requires little more than a push instruction (or, when pass-
ing parameters in the registers, an instruction that moves the value into a
register). Therefore, this mechanism is often very efficient.

One big advantage of pass-by-value parameters is that the CPU treats
them just like a local variable within the activation record. Because you’ll
rarely have more than 120 bytes of parameter data that you pass to a pro-
cedure, CPUs that provide a shortened displacement with the indexed
addressing mode will be able to access most parameter values using a
shorter (and, therefore, more efficient) instruction.

The one case where passing a parameter by value can be inefficient is
when you need to pass a large data structure, such as an array or record.
The calling code needs to make a byte-for-byte copy of the actual parame-
ter into the procedure’s activation record, as you saw in an earlier example.
This can be a very slow process, say, if you decide to pass a million-element
array to a subroutine by value. Therefore, you should avoid passing large
objects by value unless absolutely necessary.

11. C allows only pass-by-value, but it lets you take an address of some object so that you can
easily simulate pass-by-reference. C++ fully supports pass-by-reference parameters.

Functions and Procedures 589

15.6.2 Pass-by-Reference
The pass-by-reference mechanism passes the address of an object rather
than its value. This has a couple of distinct advantages over pass-by-value.
First, regardless of the parameter’s size, pass-by-reference parameters
always consume the same amount of memory—the size of a pointer (which
typically fits in a machine register). Second, pass-by-reference parameters
allow you to modify the value of the actual parameter—which is impossible
with pass-by-value parameters.

Pass-by-reference parameters are not without their drawbacks, though.
Usually, accessing a reference parameter within a procedure is more
expensive than accessing a value parameter, because the subroutine needs
to dereference that address on each access of the object. This generally
involves loading a register with the pointer in order to dereference the
pointer using a register indirect addressing mode.

For example, consider the following Pascal code:

procedure RefValue
 (
 var dest:integer;
 var passedByRef:integer;
 passedByValue:integer
);
begin

 dest := passedByRef + passedByValue;

end;

Here’s the equivalent HLA/x86 assembly code:

procedure RefValue
(
var dest:int32;
var passedByRef:int32;
 passedByValue:int32
); @noframe;
begin RefValue;

 // Standard entry sequence (needed because of @noframe).
 // Set up base pointer.
 // Note: don't need SUB(nn,esp) because
 // we don't have any local variables.

 push(ebp);
 mov(esp, ebp);

 // Get pointer to actual value.

 mov(passedByRef, edx);

 // Fetch value pointed at by passedByRef.

590 Chapter 15

 mov([edx], eax);

 // Add in the value parameter.

 add(passedByValue, eax);

 // Get address of destination reference parameter.

 mov(dest, edx);

 // Store sum away into dest.

 mov(eax, [edx]);

 // Exit sequence doesn't need to deallocate any local
 // variables because there are none.

 pop(ebp);
 ret(12);

end RefValue;

Notice that this code requires two more instructions than a version that
uses pass-by-value—specifically, the two instructions that load the addresses
of dest and passedByRef into the EDX register. In general, only a single instruc-
tion is needed to access the value of a pass-by-value parameter. However, two
instructions are needed to manipulate the value of a parameter when you
pass it by reference (one instruction to fetch the address, and one to manip-
ulate the data at that address). So, unless you need the semantics of pass-by-
reference, try to use pass-by-value instead.

The issues with pass-by-reference tend to diminish when your CPU has
lots of available registers that it can use to maintain the pointer values. In
that situation, the CPU can use a single instruction to fetch or store a value
via a pointer maintained in the register.

15.7 Function Return Values
Most HLLs return function results in one or more CPU registers. Exactly
which register the compiler uses depends on the data type, CPU, and com-
piler. For the most part, however, functions return their results in registers
(assuming the return data fits in a machine register).

On the 32-bit 80x86, most functions that return ordinal (integer) values
return their function results in the AL, AX, or EAX register. Functions
that return 64-bit values (long long int) generally return the function result
in the EDX:EAX register pair (with EDX containing the HO double word
of the 64-bit value). On 64-bit variants of the 80x86 family, 64-bit compilers
return 64-bit results in the RAX register. On the PowerPC, most compilers
follow the IBM ABI and return 8-, 16-, and 32-bit values in the R3 register.

Functions and Procedures 591

Compilers for the 32-bit versions of the PowerPC return 64-bit ordinal
values in the R4:R3 register pair (with R4 containing the HO word of the
function result). Presumably, compilers running on 64-bit variants of the
PowerPC can return 64-bit ordinal results directly in R3.

Generally, compilers return floating-point results in one of the CPU’s
(or FPU’s) floating-point registers. On 32-bit variants of the 80x86 CPU
family, most compilers return a floating-point result in the 80-bit ST0
floating-point register. Although the 64-bit versions of the 80x86 family
also provide the same FPU registers as the 32-bit members, some operating
systems, such as Windows64, typically use one of the SSE registers (XMM0)
to return floating-point values. PowerPC systems generally return floating-
point function results in the F1 floating-point register. Other CPUs return
floating-point results in comparable locations.

Some languages allow a function to return a nonscalar (aggregate)
value. The exact mechanism that compilers use to return large function
return results varies from compiler to compiler. However, a typical solution
is to pass a function the address of some storage where the function can
place the return result. As an example, consider the following short C++
program whose func() function returns a structure object:

#include <stdio.h>

typedef struct
{
 int a;
 char b;
 short c;
 char d;
} s_t;

s_t func(void)
{
 s_t s;

 s.a = 0;
 s.b = 1;
 s.c = 2;
 s.d = 3;
 return s;
}

int main(void)
{
 s_t t;

 t = func();
 printf("%d %d", t.a, func().a);
 return(0);
}

592 Chapter 15

Here’s the PowerPC code that GCC emits for this C++ program:

.text
 .align 2
 .globl _func

; func() -- Note: upon entry, this
; code assumes that R3
; points at the storage
; to hold the return result.

_func:
 li r0,1
 li r9,2
 stb r0,-28(r1) ; s.b = 1
 li r0,3
 stb r0,-24(r1) ; s.d = 3
 sth r9,-26(r1) ; s.c = 2
 li r9,0 ; s.a = 0

 ; Okay, set up the return
 ; result.

 lwz r0,-24(r1) ; r0 = d::c
 stw r9,0(r3) ; result.a = s.a
 stw r0,8(r3) ; result.d/c = s.d/c
 lwz r9,-28(r1)
 stw r9,4(r3) ; result.b = s.b
 blr

 .data
 .cstring
 .align 2
LC0:
 .ascii "%d %d\0"
 .text
 .align 2
 .globl _main
_main:
 mflr r0
 stw r31,-4(r1)
 stw r0,8(r1)
 bcl 20,31,L1$pb
L1$pb:
 ; Allocate storage for t and
 ; temporary storage for second
 ; call to func:

 stwu r1,-112(r1)

 ; Restore LINK from above:

 mflr r31

Functions and Procedures 593

 ; Get pointer to destination
 ; storage (t) into R3 and call func:

 addi r3,r1,64
 bl _func

 ; Compute "func().a"

 addi r3,r1,80
 bl _func

 ; Get t.a and func().a values
 ; and print them:

 lwz r4,64(r1)
 lwz r5,80(r1)
 addis r3,r31,ha16(LC0-L1$pb)
 la r3,lo16(LC0-L1$pb)(r3)
 bl L_printf$stub
 lwz r0,120(r1)
 addi r1,r1,112
 li r3,0
 mtlr r0
 lwz r31,-4(r1)
 blr

; stub for printf function:

 .data
 .picsymbol_stub
L_printf$stub:
 .indirect_symbol _printf
 mflr r0
 bcl 20,31,L0$_printf
L0$_printf:
 mflr r11
 addis r11,r11,ha16(L_printf$lazy_ptr-L0$_printf)
 mtlr r0
 lwz r12,lo16(L_printf$lazy_ptr-L0$_printf)(r11)
 mtctr r12
 addi r11,r11,lo16(L_printf$lazy_ptr-L0$_printf)
 bctr
 .data
 .lazy_symbol_pointer
L_printf$lazy_ptr:
 .indirect_symbol _printf
 .long dyld_stub_binding_helper

Here’s the 32-bit 80x86 code that GCC emits for this same function:

.file "t.c"
 .text
 .p2align 2,,3
 .globl func

594 Chapter 15

 .type func,@function

; On entry, assume that the address
; of the storage that will hold the
; function's return result is passed
; on the stack immediately above the
; return address.

func:
 pushl %ebp
 movl %esp, %ebp
 subl $24, %esp ; Allocate storage for s.

 movl 8(%ebp), %eax ; Get address of result
 movb $1, -20(%ebp) ; s.b = 1
 movw $2, -18(%ebp) ; s.c = 2
 movb $3, -16(%ebp) ; s.d = 3
 movl $0, (%eax) ; result.a = 0;
 movl -20(%ebp), %edx ; Copy the rest of s
 movl %edx, 4(%eax) ; to the storage for
 movl -16(%ebp), %edx ; the return result.
 movl %edx, 8(%eax)
 leave
 ret $4
.Lfe1:
 .size func,.Lfe1-func
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "%d %d"

 .text
 .p2align 2,,3
 .globl main
 .type main,@function
main:
 pushl %ebp
 movl %esp, %ebp
 subl $40, %esp ; Allocate storage for
 andl $-16, %esp ; t and temp result.

 ; Pass the address of t to func:

 leal -24(%ebp), %eax
 subl $12, %esp
 pushl %eax
 call func

 ; Pass the address of some temporary storage
 ; to func:

 leal -40(%ebp), %eax
 pushl %eax
 call func

Functions and Procedures 595

 ; Remove junk from stack:

 popl %eax
 popl %edx

 ; Call printf to print the two values:

 pushl -40(%ebp)
 pushl -24(%ebp)
 pushl $.LC0
 call printf
 xorl %eax, %eax
 leave
 ret

The takeaway from these 80x86 and PowerPC examples is that func-
tions returning large objects often copy the function result data just prior
to returning. This extra copying can take considerable time, especially if
the return result is large. Instead of returning a large structure as a func-
tion result, as shown here, it’s usually better to explicitly pass a pointer to
some destination storage to a function that returns a large result and then
let the function do whatever copying is necessary. This often saves some
time and code. Consider the following C code, which implements this policy:

#include <stdio.h>

typedef struct
{
 int a;
 char b;
 short c;
 char d;
} s_t;

void func(s_t *s)
{
 s->a = 0;
 s->b = 1;
 s->c = 2;
 s->d = 3;
 return;
}

int main(void)
{
 s_t s,t;

 func(&s);
 func(&t);
 printf("%d %d", s.a, t.a);
 return(0);
}

596 Chapter 15

Here’s the conversion to 80x86 code by GCC:

 .file "t.c"
 .text
 .p2align 2,,3
 .globl func
 .type func,@function
func:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %eax
 movl $0, (%eax) ; s->a = 0
 movb $1, 4(%eax) ; s->b = 1
 movw $2, 6(%eax) ; s->c = 2
 movb $3, 8(%eax) ; s->d = 3
 leave
 ret
.Lfe1:
 .size func,.Lfe1-func
 .section .rodata.str1.1,"aMS",@progbits,1
.LC0:
 .string "%d %d"
 .text
 .p2align 2,,3
 .globl main
 .type main,@function
main:
 ; Build activation record and allocate
 ; storage for s and t:

 pushl %ebp
 movl %esp, %ebp
 subl $40, %esp
 andl $-16, %esp
 subl $12, %esp

 ; Pass address of s to func and
 ; call func:

 leal -24(%ebp), %eax
 pushl %eax
 call func

 ; Pass address of t to func and
 ; call func:

 leal -40(%ebp), %eax
 movl %eax, (%esp)
 call func

 ; Remove junk from stack:

 addl $12, %esp

Functions and Procedures 597

 ; Print the results:

 pushl -40(%ebp)
 pushl -24(%ebp)
 pushl $.LC0
 call printf
 xorl %eax, %eax
 leave
 ret

As you can see, this approach is more efficient because the code doesn’t
have to copy the data twice, once to a local copy of the data and once to the
final destination variable.

15.8 For More Information
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:

Principles, Techniques, and Tools. 2nd ed. Essex, UK: Pearson Education
Limited, 1986.

Barrett, William, and John Couch. Compiler Construction: Theory and Practice.
Chicago: SRA, 1986.

Dershem, Herbert, and Michael Jipping. Programming Languages, Structures
and Models. Belmont, CA: Wadsworth, 1990.

Duntemann, Jeff. Assembly Language Step-by-Step. 3rd ed. Indianapolis:
Wiley, 2009.

Fraser, Christopher, and David Hansen. A Retargetable C Compiler: Design and
Implementation. Boston: Addison-Wesley Professional, 1995.

Ghezzi, Carlo, and Jehdi Jazayeri. Programming Language Concepts. 3rd ed.
New York: Wiley, 2008.

Hoxey, Steve, Faraydon Karim, Bill Hay, and Hank Warren, eds. The
PowerPC Compiler Writer’s Guide. Palo Alto, CA: Warthman Associates
for IBM, 1996.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

———. “Webster: The Place on the Internet to Learn Assembly.” http://
plantation-productions.com/Webster/index.html.

Intel. “Intel 64 and IA-32 Architectures Software Developer Manuals.”
Updated November 11, 2019. https://software.intel.com/en-us/articles
/intel-sdm.

Ledgard, Henry, and Michael Marcotty. The Programming Language
Landscape. Chicago: SRA, 1986.

Louden, Kenneth C. Compiler Construction: Principles and Practice. Boston:
Cengage, 1997.

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

598 Chapter 15

Louden, Kenneth C., and Kenneth A. Lambert. Programming Languages:
Principles and Practice. 3rd ed. Boston: Course Technology, 2012.

Parsons, Thomas W. Introduction to Compiler Construction. New York: W. H.
Freeman, 1992.

Pratt, Terrence W., and Marvin V. Zelkowitz. Programming Languages, Design
and Implementation. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.

Sebesta, Robert. Concepts of Programming Languages. 11th ed. Boston:
Pearson, 2016.

A F T E R W O R D :
E N G I N E E R I N G S O F T W A R E

The goal of this volume was to help you
consider the impact of your high-level cod-

ing techniques on the resulting machine
code generated by the compiler. Unless you

understand the cost tradeoffs of statements and data
structures in your HLL programs, you won’t be able
to produce efficient programs consistently. And if you want to write great
code, you can’t write inefficient programs. To that end, the first two books
of this series, Understanding the Machine and Thinking Low-Level, Writing High-
Level, have addressed efficiency concerns facing modern programmers.
However, as noted in Chapter 1, efficiency isn’t the only attribute of great
code. Thus, the next volume, Engineering Software, will change direction and
discuss some of the other attributes.

Specifically, Volume 3 begins discussing the personal software engi-
neering aspects of programming. The software engineering field focuses
primarily on the management of large software systems. Personal software
engineering, on the other hand, covers those topics germane to writing

600 Afterword: Engineering Software

great code at a personal level—craftsmanship, art, and pride in one’s work.
So, in Engineering Software, we’ll consider those aspects through discussions
on software development metaphors, software developer metaphors, and
system documentation, among other topics.

Congratulations on your progress thus far toward writing great code.
See you in Volume 3.

Glossary 601

A
A32 32-bit ARM CPUs.

A64 ARMv8 and later architecture CPUs
that support 64-bit registers and operations.

ABI Application binary interface

Activation record A section of memory
associated with a subroutine/function invo-
cation that includes a return address, func-
tion arguments, local variables, and other
function-related information.

Ahead-of-time compilation Translation
of a machine-independent bytecode into
native machine code prior to execution.

Allocation granularity (memory manager)
The minimum-sized block a memory alloca-
tor will allocate for a storage request.

AOT Ahead of time. See Ahead-of-time
compilation.

Attribute A feature associated with some
object. Examples include the object’s name,
type, memory address, and value.

B
Basic block A sequence of machine instruc-
tions into and out of which there are no
branches except at the beginning and end
of the sequence.

Basic multilingual plane The first group
of 65,536 Unicode code points (U+0000 to
U+CFFF and U+E000 to U+FFFF).

Binding The process of associating an
attribute (such as a name, type, value, or
address) with some object.

BMP See Basic multilingual plane.

BSS Block started by a symbol (uninitial-
ized data section in an object code file).

C
Call tree A graphical diagram of all the
calls in a program, or rooted at a particular
function in an application. Arrows coming
out of the root node represent calls made
by the function/procedure depicted by that
root node. These arrows point at the func-
tions called by the node. Each such node
may contain calls of its own to other nodes
(represented by arrows leaving the calling
node). Technically, a call tree is, more gen-
erally, a call graph because (indirect) recur-
sive calls could result in arrows to higher
nodes in the call tree.

Calling convention The sequence of
machine instructions that pass parameters
to and invoke the execution of a function/
procedure.

Canonical equivalence Two different
sequences (such as strings) are canonically
equivalent if they produce the same char-
acter on an output device. If two strings are
canonically equivalent, comparing them for
equality should produce true even if they
have different bytes in their sequences.

CIL Common Intermediate Language
(Microsoft .NET)

G L O S S A R Y

602 Glossary

CISC Complex instruction set computer

CLI Common Language Infrastructure
(Microsoft)

CLR Common Language Runtime
(Microsoft .NET)

CLS Common Language Specification

Code motion An optimization technique
whereby a compiler moves a section of code
to some other location where it will execute
more efficiently (for example, moving loop-
invariant code outside of a loop).

Code plane A set of up to 65,536 different
Unicode characters.

Code point A numeric value (in the range
0–65,535) representing a Unicode char-
acter (scalar) or a surrogate code point
(Unicode character set expansion).

COFF Common Object File Format

Column-major ordering A mechanism
for storing elements of a multidimen-
sional array in memory where consecutive
memory locations hold elements whose first
index changes more rapidly than the other
indices into the array.

Common subexpression elimination
A compiler optimization that preserves the
value of some (sub)expression for later use
to avoid recomputing the expression’s value.

Complete Boolean evaluation Evaluating
all components of a Boolean expression,
even if some subcomponents will not affect
the final value of the computation.

CTS Common Type System

D
Dangling pointers Pointers that an appli-
cation continues to use after the application
has freed them and made their allocated
memory available for other use.

DBCS Double-byte character set

Dead code elimination A compiler opti-
mization that removes all code from an
object module that can never execute.

DFA Data flow analysis. Also Deterministic
Finite-state Automata.

Display A data structure (typically in an
activation record) that provides pointers to
access intermediate variables appearing in
nested procedures and functions.

Dope vector An array of integers that
specifies the bounds of a dynamically allo-
cated array.

E
ECMA European Computer
Manufacturers Association

ELF Executable and Linkable File format

Enumerated data type A data type whose
(constant) values are a list of symbolic
names to which the system associates a
unique numeric value (enumerate means
to count or to list).

F
Filter programs Programs that read a file,
process its input, and produce an output
file based on that input.

FSF Free Software Foundation

G
Gas GNU Assembler

Glyph A set of strokes that draw a single
character on an output device.

GNU Gnu’s Not Unix

Glossary 603

Grapheme cluster A sequence of one
or more Unicode code points that define
a single character (glyph). A sequence of
Unicode code points that produce a single
item most people would recognize as a
stand-alone character on an output device.

H
Heap A special memory area where a
language’s runtime system allocates and
deallocates storage for dynamic variables.

HLA High-Level Assembly language

HLL High-level language

HO High order

I
I/O Input/output

IDE Integrated development environment

IL Intermediate Language (Microsoft)

ILAsm Intermediate Language Assembly.
The assembly language syntax for the
Microsoft CLR.

Indirect recursion A function is indirectly
recursive if it calls some other function
(which can call some other function, and so
on) that ultimately calls the original func-
tion before returning to that function.

Inline function A function whose body a
compiler expands in place at the point of
the function invocation rather than emit-
ting a call to the function.

J
JBC Java bytecode

JIT Just in time (compilation)

L
Leaf procedures and functions
Procedures/functions that do not call
any other procedures or functions (that
is, they are “leaf” nodes in a call tree).
See also call tree.

LIFO Last-in, first-out (organization of a
stack data structure).

LINK register Holds a function return
address upon entry into a function
(PowerPC). See also LR.

LO Low-order

Local variables Those variables whose
scope is limited to a sequence of statements
associated with some block of code (usually
a function or procedure).

Loop invariant A calculation occurring
inside a loop whose value does not change
on each iteration of the loop.

LR Link register (on the ARM CPU).
Holds a function’s return address upon
entry into the function.

M
Macro A body of text that a compiler sub-
stitutes in place of the macro invocation in
some source code.

Managed pointers Pointers that have
certain restrictions placed on their opera-
tions to help eliminate common problems
that occur with unmanaged pointers
(that is, those that allow arbitrary pointer
operations).

Manifest constant A constant value associ-
ated with a symbolic name. Upon encoun-
tering the symbolic name, the compiler
directly replaces it with the constant value.

MASM Microsoft Assembler

604 Glossary

Memory leak Continuously allocating
memory without ever freeing that memory,
even if it is never again used. Such memory
becomes inaccessible to the system.

Metadata Data in a file that describes
other data in the file.

MSIL Microsoft Intermediate Language

MSVC Microsoft Visual C (++)

Multiple inheritance The ability for a
class to inherit attributes (data fields) and
behaviors (methods/functions) from mul-
tiple parent classes.

N
Namespace pollution Having so many
names in a given scope that the name you
want to give a new object is already in use
elsewhere in your program, potentially lead-
ing to a name conflict.

NaN Not a number (floating-point result)

NASM Netwide assembler

Next on stack The value immediately
below the top of stack. See also NOS.

NOS Next on stack

O
One-address machine See single-address
machine.

Opaque data type A data type whose
internal implementation is not visible to
the programmer.

Opcode prefix byte A special machine
instruction value that modifies the opera-
tion of the instruction immediately follow-
ing. For example, on the 80x86, an opcode
size prefix byte could specify a different
memory/register operand size for the fol-
lowing instruction.

P
PC Personal computer

PE/COFF Portable executable, common
object file format (Microsoft)

Plain vanilla text An ASCII or Unicode
text file that contains only textual informa-
tion, without any special formatting.

R
Recursion A call to a function from that
function itself. See also indirect recursion.

RISC Reduced instruction set computer

Row-major ordering A mechanism for
storing elements of a multidimensional
array in memory where consecutive mem-
ory locations hold elements whose last
index changes more rapidly than the other
indices into the array.

S
SBC Single-board computer

Sentinel A special value that marks some
boundary of a data sequence—for example,
a zero-terminating byte at the end of a
string of characters.

Sequence point The point in a computa-
tion where a compiler guarantees that all
previous side effects have been computed/
completed.

Short-circuit evaluation Ignoring certain
parts of a computation that won’t affect the
overall results of that computation.

Side effect A result from some computa-
tion that is not the primary intended result
of that computation. Typically, this involves
the modification of values (variables) or
other program state beyond the primary
intent of the calculation.

Glossary 605

SIMD Single-instruction, multiple data
(instructions for a CPU).

Single-address machine CPUs whose
arithmetic and logical instructions have a
single operand. This is usually an accumu-
lator-based architecture.

Spaghetti code Code containing lots of
control transfer (goto) statements that make
it difficult to determine the flow of control
in the program.

Stack frame See activation record.

Stack-based machine A CPU that per-
forms all calculations on a hardware stack
(rather than using machine registers).

Static binding Binding (associating attri-
butes with an object) that occurs prior to
the execution of a program.

Straight-line code A sequence of instruc-
tions that contain no branches, condition-
als, function calls, or anything else that
causes a transfer of control.

Surrogate code points Special Unicode
values that expand the character set beyond
65,536 characters (expansion beyond
16 bits).

T
TASM Turbo assembler (Borland,
Embarcadero)

Thrashing Constantly loading values that
are not present in the cache (or in a memory
page, versus present in virtual storage).
Loading data into the cache (or a memory
page) may evict data that the application will
soon access, leading to even more thrashing.

Three-address machines CPUs whose
arithmetic instructions typically have three
operands: a destination and two source
operands. Most three-address machines are
register-based machines.

Tokenized Data that has had words or
other lexemes replaced by numeric (typi-
cally single-byte) “token” values.

TOS Top of stack

Tuple A list of associated data values. In
Swift, a tuple is roughly equivalent to a list
of values.

Two-address machines CPUs whose
arithmetic instructions typically have
two operands: a destination and a source
operand (the destination operand doubles
as a source operand). Most two-address
machines are register-based machines.

U
Unicode A universal standardized charac-
ter set that supports most known characters.

Unicode normalization Adjusting canoni-
cally equivalent Unicode strings so that they
have the same (minimal) code points, orga-
nized in the same order.

Unrolling (loops) Expanding the
code appearing in a loop, once for each
iteration of the (fixed iterations) loop.
Improves performance by eliminating loop
overhead code.

UTF Universal Transformation Format;
an encoding scheme for Unicode (UTF-8,
UTF-16, and UTF-32 are the three standard
Unicode encoding schemes).

V
VB Visual BASIC

VC++ Visual C++ (Microsoft)

VFP Vector floating-point (ARM
instructions).

VHLL Very high-level language

VM Virtual machine

606 Glossary

W
WGC1 Write Great Code, Volume 1:
Understanding the Machine

X
x86-64 64-bit variant of the AMD/Intel
80x86 CPU.

Z
Zero-address machine A CPU whose
arithmetic and logical instructions do not
specify any operands. Typically, this is a
stack machine architecture.

Write Great Code, Volume 2: Thinking Low-Level, Writing High-Level, includes
supplementary materials online at https://nostarch.com/writegreatcode2_2/
and http://www.writegreatcode.com/. Among other resources, these five appen-
dixes are published in electronic form so they can be easily updated and
downloaded:

•	 Appendix A: The Minimal x86 Instruction Set

•	 Appendix B: PowerPC Assembly for the HLL Programmer

•	 Appendix C: ARM Assembly for the HLL Programmer

•	 Appendix D: Java Bytecode Assembly for the HLL Programmer

•	 Appendix E: CIL Assembly for the HLL Programmer

O N L I N E A P P E N D I X E S

http://www.writegreatcode.com/

I N D E X

Symbols and Numbers
#-prefix for HLA character

constants, 25
$-prefix notation for hexadecimal

constants, 24
%-prefix notation for binary

constants, 23
-FA command-line option (Microsoft

Visual C++), 102
-O, -O2, and -O3 compiler options, 65
-S (GCC and Borland C++ command-

line option), 102
.align declaration (Gas), 233
.byte declaration (Gas), 41
.data section in an object code file, 78
.endr declaration (Gas), 41
.equ declaration (Gas), 27
.long declaration (Gas), 43
.rept declaration (Gas), 41
.text section in an object code file, 78
/ALIGN option (Microsoft linker), 87
/ALL command-line option to

dumpbin, 114
/DISASM command-line option to

dumpbin, 92, 115
/HEADERS command-line option to

dumpbin, 92, 118
/IMPORTS command-line option to

dumpbin, 121
/RELOCATIONS command-line option to

dumpbin, 121
= operator (MASM), 28
& (address-of) operator in C/C++, 209
? compile-time operator (HLA), 27
\ escape sequence in Gas string

constants, 26
_DATA section in memory, 177
_float128 data type, 196
0b-prefix notation for binary

constants, 23
0x-prefix notation for hexadecimal

constants, 24

2-tuple Switch implementation,
492–499

7-bit strings, 311
advantages, 311
assembly language macro

implementation, 311
disadvantages, 311

8-bit registers, 20
16-bit registers, 20
32-bit data declarations

(80x86 assembly), 43
32-bit registers, 20
64-bit registers on the x86-64 CPU, 21
80-bit floating-point variables, 196
80x86

8-bit registers, 20
16-bit registers, 20
64-bit registers, 21
ABI (application binary

interface), 348
addressing modes, 28
AH register, 20
AL register, 20
architecture, 19
assembly language, 17
auxiliary carry flag, 21
AX register, 20
BH register, 20
BL register, 20
BP register, 20
BX register, 20
calculations involving registers, 19
call instruction, 536
carry flag, 21
CH register, 20
CL register, 20
cmp instruction, 453
conditional jump instructions, 453
condition codes, 21
CX register, 20
DH register, 20
direct addressing mode, 30
direction flag, 21

610 Index

80x86 (continued)
DI register, 20
displacement-only memory

addressing mode, 30
DL register, 20
DX register, 20
EBP register, 20

as a frame-pointer register, 565
effective address, 34
EFLAGS register, 21
general-purpose registers, 21
immediate addressing mode, 30
immediate operands, 28
indexed addressing mode, , 34
indirect access via a pointer, 271
interrupt disable flag, 21
je instruction, 453
jne instruction, 465
memory operands, 28
mov instruction, 28
optimizations, 18
overflow flag, 21
overlapping registers, 20
parity flag, 21
RAX register, 20
RBP register, 20

as a frame-pointer register, 565
RBX register, 20
RCX register, 20
RDI register, 20
RDX register, 20
register addressing modes, 28
register-indirect addressing

mode, 32
register operands, 28
registers, 20
ret instruction, 536
RSI register, 20
RSP register, 20
segment registers, 20
short offsets to local variables, 576
sign flag, 21
SI register, 20
SP register, 20
standard entry sequence for a

procedure, 568
standard exit sequence for a

procedure, 568
sub instruction, 14
zero flag, 21

8051 microcontrollers, 183
8080 CPU, 393

A
ABI (application binary interface),

218, 348, 586
absolute addressing mode, 184
abstract methods, 371
abstract optimization levels, 4
abstract syntax tree (AST), 55
abstract view of a pointer, 269
accessing an object using a pointer, 269
accessing byte variables in assembly

language, 41
accessing elements of three- and four-

dimensional arrays, 245
accessing elements of an array, 235
accessing elements of multidimensional

arrays, 248
accessing indirect data using the wrong

data type, 286, 289
accessing intermediate variables, 206
accessing local variables, 575
accessing parameters, 575
accumulator-based machines, 391
accumulator register, 391
activation records, 179, 200, 535, 540,

545, 563, 565
base addresses, 566
construction, 566

Ada (programming language),
xxiii, 181

add instruction on a stack machine, 391
adding an integer to a pointer, 273, 275
adding padding fields to a record, 219
adding two variant objects, 357
address binding, 181
address bus, 19
addressing mode, 28
AddressOfEntryPoint field in a

COFF file, 76
address zero in memory, 174
advantages of 7-bit strings, 311
advantages of zero-terminated

strings, 295
aggregate (composite) data structure

function return values, 591
aggregate data types, 226
AH register, 20
AL register, 20
aliases, 355
align directive

in HLA, 221
in MASM, 220

aligned data access, 274

Index 611

aligning an address on a boundary that
is a power of 2, 278

aligning data objects to improve
performance, 85

aligning fields in a record/structure,
218, 348

aligning memory allocation
requests, 278

aligning procedure code on a
boundary, 85

aligning the stack pointer on some
reasonable boundary, 574

allocating local variables
efficiently, 203
in registers, 546

allocating objects in contiguous
memory, 274

allocating storage
for an array, 272
for local variables, 568
for a record/structure, 336

allocation
granularity, 84, 284
overhead for a memory allocation

request, 285
alternate implementations of a

switch/case statement, 486
ALU (arithmetic/logical unit), 391
AMD ABI, 586
analyzing compiler output, 99

to produce efficient code, 68
with object-code utilities, 112

AND/OR, pointers and, 278
anonymous variables, 180, 271
a.out file format, 77
APL (programming language), 266
apostrophes in an HLA character

constant, 25
application binary interface (ABI),

218, 348, 586
application memory consumption, 5
application memory management, 283
application-specific memory

managers, 284
Arduino, xxiii
arithmetic expressions, 386
arithmetic/logical unit, 391
arithmetic operations

cost of, 449–450
on a stack machine, 389

ARM
bl instruction, 539, 541
bx instruction, 539

ARM ABI, 586
arrays, 226

accessing elements of an array, 235
alignment in memory, 232
in activation record and impact on

efficiency, 204
alignment in memory, 233
base address, 226
bounds checking, 230
of characters (as strings), 316
column-major ordering, 244, 247
constants, 169
data types, 225
declarations, 226

in Swift, 230
dope vectors, 260
dynamic arrays, 257, 258, 266
elements, 226
element size, 235
four-dimensional arrays, 246
implementation in Swift, 234
improving access efficiency, 256
indexes, 226

in BASIC, 231
initialization in Swift, 230
memory utilization by an array, 232
multidimensional array access, 248
multidimensional arrays, 241
multidimensional pseudo-static

arrays, 260
passed by value to a function/

procedure, 588
pseudo-dynamic arrays, 258
pseudo-static arrays, 258
representation in memory, 231
row-major ordering, 244
size of an array, 261
static arrays, 257
in Swift, 230
three-dimensional arrays, 245

Art of Assembly Language, 8, 171, 291,
266, 292, 330, 16, 45, 382

ASCIIz string, 295
assembler syntax, 18
assembly language, 1, 5

80x86, 17
as compiler output, 69
operand sizes, 43
output from a compiler, 69, 100
programming paradigm, 14

assigning offsets to local variables, 568
associating offsets with parameters, 570

612 Index

AST (abstract syntax tree), 55
attributes

for a token, 54
of variables and other program

objects, 180
automatic binding, 183
automatic disassemblers, 128
automatic memory deallocation, 190
automatic variables, 170, 187
automatic variables and offset sizes, 200
auxiliary carry flag (80x86), 21
avoiding problems caused by side

effects, 438
AWK (programming language), 272
AX register, 20

B
base addresses, 566

of an allocated memory region, 273
of an array, 226, 274
of a record, 347

base of an activation record, 203
BaseOfCode field in a COFF file, 77
BaseOfData file in a COFF file, 77
base pointer register, 565
BASIC (programming language), xxiii

dynamic scoping and, 182
interpreters, 49

basic blocks, 58, 59
benchmarks, 4
best-fit memory allocation, 281
best size of an integer, 194
BH register, 20
big endian issues when using

unions, 356
binary-coded decimal

representation, 193
binary constants, 30
binary literal constants, 23

Gas, 23
HLA, 23
MASM, 23

binary numbering system, xxiii
binary search, 4
binding, 150

attributes to objects, 181
at compile time, 150, 183
at language design time, 150, 183
at link time, 150, 183
at load time, 150, 183
objects dynamically, 181

at run/execution time, 150
a value to an object, 181
values dynamically, 182
variable addresses at link time, 184
variable addresses at load time, 184

BIOS ROM, 184
bits.cnt() function, 95
bits.reverse8() library function, 91
bits.reverse16 library function, 91
bits.reverse32() library function, 91
bit strings, 293
bitwise logical operations, 158, 511
BL register, 20
bl (branch and link) instruction

(ARM and PowerPC), 539
BLOCK alignment option, 87
block started by a symbol (BSS)

section, 82, 178
blr (branch to link register) PowerPC

subroutine return
instruction, 539

BMP (Basic Multilingual Plane), 322
Boolean constants, 157
Boolean expression short-circuit

evaluation, 441
Boolean strings, 293
Boolean value representation, 157
Boolean variables, 197
bounds checking of array indexes, 230
BP register, 20
branches, 453
branch if true/false instructions, 452
branch prediction, 454
branch then link versus calling a

procedure, 540
break-even point for a switch/case

versus if/elseif statement
sequence, 478

breakif statement, 530
breaking down a problem to convert it

to assembly language, 16
break statement, 530
bsize field in a COFF file, 76
BSS (block started by a symbol)

section, 82
in a COFF file, 76
in a program, 178

b-suffix notation for binary constants, 23
BX register, 20
bx (branch and exchange) ARM

return from subroutine
instruction, 539

Index 613

byte data on the 80x86, 39
byte declarations (MASM), 40
byte-addressable memory, 233, 273, 278
bytecode engine (Java), 51

C
C/C++ (programming languages),

xxiii, 181
array declarations, 227
array initializers, 169
structs/records, 333
switch statement, 476
unions, 352

C calling convention, 572
C code as compiler output, 67
C-- language, 68
C++ const declarations, 153
C++ namespaces, 362
C# dynamic memory allocation, 190
C# structs/records, 334
cache lines, 86, 88, 165
calculations on the 80x86 CPU, 19
calling conventions, 535

for procedures, 571
call instruction (x86), 540
call trees, 545
canonical equivalence (Unicode), 326
carry flag (80x86), 21
Cartesian product (record data

type), 332
case statements, 476

versus if statements, 478
case-based algorithms in

optimization, 57
case-variant records in Pascal and

Delphi, 353
cdecl (C) calling convention, 572
central processing unit, 19
CH register, 20
char size in C/C++, 193
character constants, 22
character literal constants

Gas, 26
HLA, 25
MASM, 26

character names (Unicode), 323
character string formats, 294
character strings, 293
character variables, 197
Characteristics field in a COFF file,

74, 78, 79

characteristics of great code, xx
choosing unsigned over signed

integers, 194
CIL (Common Intermediate

Language), 56, 390
CIL disassembler, 132
CISC (complex instruction set

computer), 14, 18, 199, 216,
395, 540, 543, 545

CL register, 20
class declarations in C++, 363
class instantiation, 363
classes, 363
CLR (Common Language Runtime),

56, 587
clusters on the disk, 84
cmp instruction, 453
code alignment and linkers, 86
code generation, 47
code motion/movement, 64, 176,

427, 505
code planes (Unicode), 322
code points (Unicode), 322
code sections

in memory, 81
in a program, 175

CODE section in an object-code file, 78
coercion and pointers, 290
COFF

AddressOfEntryPoint field, 76
BaseOfCode field, 77
BaseOfData field, 77
bsize field, 76
Characteristics field, 74, 78, 79
column-major ordering, 244, 247
data_start field, 77
dsize field, 76
entry field, 76
f_flags field, 74
f_magic field, 73
f_nscns field, 74, 77
f_opthdr field, 74, 77
f_symptr field, 74
f_timdat field, 74
file header, 72
format, 70
headers, 118
Machine field, 73
Magic field, 76
MajorLinkerVersion field, 76
MinorLinkerVersion field, 76
Name field, 78

614 Index

COFF (continued)
NumberOfLinenumbers field, 79
NumberOfRelocations field, 79
NumberOfSections field, 74, 77
object files, 47
optional header, 74
PhysicalAddress field, 79
PointerToLinenumbers field, 79
PointerToRawData field, 79
PointerToRelocations field, 79
PointerToSymbolTable field, 74
SectionAlignment field, 86
section headers, 77
s_flags field, 78, 79
SizeOfCode field, 76
SizeOfInitializedData field, 76
SizeOfOptionalHeader field, 74, 77
SizeOfRawData field, 79
SizeOfUninitializedData field, 76
s_lnnoptr field, 79
s_name field, 78
s_nlnno field, 79
s_nreloc field, 79
s_paddr field, 79
s_relptr field, 79
s_scnptr field, 79
s_size field, 79
s_vaddr field, 79
sections, 79
symbol table, 74
text_start field, 77
TimeDateStamp field, 74
tsize field, 76
VirtualAddress field, 79
VirtualSize field, 79
vstamp field, 76

column-major ordering, 244
combined object module and

executable formats, 81
combining characters (Unicode), 328

acute accent character (Unicode), 324
combining sections, 175

combining two sections with
different alignment
values, 87

in an object file, 87
command-line options to control

optimization, 65
Common Intermediate Language

(CIL), 56, 390
Common Language Runtime (CLR),

56, 587

common subexpression elimination,
55, 63, 410–415

compare and conditional branch
sequences, 452

comparing pointers, 272, 277
comparing strings and string

constants, 167
compile-time binding, 181, 183
compile-time constant expressions, 145
compile-time constant versus read-only

data, 146
compilers, 50

benchmarks, 4
compiler construction theory, 7
defects, 64
operation, 47
optimizations, 63
output, 67
output analysis with a debugger, 134
performance, 2

compiling source code to assembly
language, 51

complete Boolean evaluation, 442, 465,
506, 521, 532

forcing, 443
complex instruction set computer

(CISC), 14, 18, 199, 216,
395, 540, 543, 545

composite data types, 193, 225, 226,
331, 332

constants, 146, 169, 171
as function return results, 591

computer architecture, 8
computer language processors, 49
computing the number of memory

objects between two
pointers, 275

condition codes, 15, 21, 453
conditional branch sequences, 452
conditional jump instructions, 15
conditional statements, 476
conjunction operator, 526
const section in an HLA program, 27
constant folding, 63, 166, 397–399
constant pool section, 175
constant propagation, 63, 400–404
constant section in memory, 175
constant table section, 175
constants, 145, 27

array constants, 169
Boolean constants, 157
C/C++ array initializers, 169

Index 615

C++ const declarations, 153
cache effects, 164
comparing string constants, 167
compiler options to merge

strings, 167
composite data type constants,

169, 171
constant expressions, 151
encoding in machine

instructions, 146
efficiency of, 149

enumerated constants, 155
expressions, 151
floating-point, 147, 159
immediate addressing mode, 145
large data structures, 147
literal and manifest constants, 151
logical constants, 157
magic numbers, 153
manifest, 151
manually merging string

constants, 167
optimization, 152

of string constants, 166
PowerPC limitations, 148
read-only memory objects, 153
size limitations on various CPUs, 147
string constants, 165
string merging, 166
struct and record constants, 170
Swift, 154
tables of constants, 164
typed constants in Delphi, 170
using variables to maintain a

constant pool, 164
Visual Basic, 146

constructing an activation record,
201, 566

ContiguousArray type in Swift, 234
continuing to use storage after it has

been freed, 287
control bus, 19
control flow paths, 61
control structures versus

computations, 452
controlling compiler optimization, 64
conversions

between integer and floating-point
formats, 197

of high-level control structures to
machine code, 451

of if statements to assembly
language, 460

of a repeat..until (or do..while)
loop into assembly
language, 520

postfix notation to stack machine
instructions, 390

copying memory, 558
copying string data, 168, 319
copy on write, 169, 316, 317, 319
correlating assembly instructions with

HLL code, 101
cost of arithmetic operations, 449–450
cost of interpretation, 51
counting references to a string, 318
CPU

addresses, 19
communication with memory, 19
role of, 19

cross-compilers, 55
CX register, 20

D
dangling pointers, 287, 318
data bus, 19
data flow

analysis, 58
through a compiler, 53

data hazards, 392
DATA section

in memory, 177
in an object code file, 78
in a program, 177

data segment size in a COFF field, 76
data_start field in a COFF file, 77
DBCS, 321
db declaration (MASM), 40
dd declaration (MASM), 43
dead code elimination, 63, 404–409
deallocating storage for local

variables, 568
debuggers and compiler output, 68, 69

analysis, 134
debugging information in a

COFF file, 80
decimal constants, 30
decimal literal constants, 23
declaration order of local variables (to

reduce instruction size), 205
declaring arrays in memory, 226

616 Index

declaring data in assembly language, 39
declaring manifest constants, 151
declaring multidimensional arrays in

Swift, 242
decomposing a problem, 549
definite loops (for loops), 532
delete()

memory allocation function, 271
memory deallocation operator

(C++), 179
Delphi, 7

array declarations, 229
Pascal string formats and, 168
records/structures, 332
short strings, 316
strings, 318
unions (case-variant records), 353
variant types, 356

demand-paged memory
management, 85

dependent values within an
expression, 64

dereferencing invalid pointers, 287
descriptor-based strings, 315
descriptors, 315
destination operand for a mov

instruction, 28
detab program, 49
detokenization of a source file, 49
DH register, 20
DI register, 20
diff program, comparing compiler

output and, 117
direct addressing mode, 30
direction flag (80x86), 21
disadvantages of HLA strings, 312
disadvantages of 7-bit strings, 311
disadvantages of zero-terminated

strings, 295
disassembled listings of object files, 115
disassemblers, 127
disassembling large objects using

unions, 355
disassembling object code, 70
discriminant unions, 351
disjunction operator, 526
displacement-only addressing mode

(80x86), 30, 199
display (pointers to activation

records), 207
dispose() function, 271, 288

in Pascal, 180

division by a constant, 63
DL register, 20
documented code, xx
dope vectors, 260
double-byte character sets, 321
double indirection and pointers, 269
double-word data on the 80x86, 39
do..until/do..while statements, 518
do..while loops, 503
dsize field in a COFF file, 76
dumpbin (Microsoft COFF file dump

utility), 92, 95, 112
/all command-line option, 114
/disasm command-line option, 115
/headers command-line option, 118
/imports command-line option, 121
/relocations command-line

option, 121
dumpobj program, 112
duplicated code, goto statements

and, 456
dw declaration (MASM), 42
dword declaration

HLA, 43
MASM, 43

DX register, 20
dynamic arrays, 257, 258
dynamic attributes, 181
dynamic binding, 150, 183, 189
dynamic languages, 272
dynamic memory allocation, 179, 271
dynamic objects, 181
dynamic scoping in SNOBOL4, 182
dynamic strings, 315, 316, 317
dynamic types, 356
dynamic variables, 189

overhead, 190
storage allocation, 207

dynamically allocated memory, 280
dynamically binding values to an

object, 182

E
EBP as a frame-pointer register

(80x86), 201, 565
effective addresses (80x86), 34
efficiency

of different integer sizes, 196
global variables and, 560
great code and, xx
of if..else statements, 463

Index 617

of length-prefixed strings, 310
of switch/case statements, 478

EFLAGS register, 21, 22, 453
ELF (Executable and Linkable Format

files), 47, 81, 184
else clause in an if statement, 461
elseif clause in an if statement, 461
emitting assembly language as

compiler output, 69
emitting executable files as compiler

output, 71
emitting HLL code as compiler output,

67, 68
emitting object files as compiler

output, 70
encoding constants into a machine

instruction, 146
encoding string constants in machine

code, 165
enhanceable code, xx
entab program, 49
entry field in a COFF file, 76
enum (C/C++), 155
enumerated constant

representation, 156
enumerated data types, 155
equ (equates) in a Gas file, 28
escape sequence (\) in Gas string

constants, 26
ESP/RSP as a frame pointer, 203
executable files as compiler output, 71
executable file sizes and BSS

sections, 82
Executable and Linkable Format (ELF)

files, 47, 81, 184
execution memory footprint, 83
execution path through a program, 452
execution time of an application, 5
exponential growth of paths through

a program, 60
expression rotation (optimization), 505
extended precision floating-point

format, 196
external fragmentation, 285

in a memory manager, 281
extra code injected into a program by a

linker, 96

F
f_flags (UNIX COFF header field), 74
f_magic (UNIX COFF header field), 73

f_nscns (UNIX COFF header field),
74, 77

f_opthdr (UNIX COFF header field),
74, 77

f_symptr (UNIX COFF header field), 74
f_timdat (UNIX COFF header field), 74
failing to free allocated storage

(memory leaks), 286, 288
false, 157, 197
FASM assembler, 19
fast code, xx
fastcall calling convention, 211
field alignment (in records)

algorithms used by compilers, 349
in HLA, 221

field declarations in a record, 333
fields in a record/structure, 332
file header (COFF), 72
file types that programming

languages use, 48
filter programs and source files, 48
first-fit memory allocation, 281
flags register, 21, 452
flattening a call tree, 546
floating point

assignments using integer
registers, 162

constants, 147, 159
literal constants, 26
representation as integer

constants, 159
values as array indexes, 231
variables, 196

flow graphs, 61
flushing the instruction pipeline, 452
footprint, execution memory, 83
for (definite) loops, 503, 532
for(\;\;) statement (C/C++), 529
forcing complete Boolean evaluation,

465, 506, 521, 532
in a while loop using unstructured

code, 513
using bitwise logical operations, 511

forcing a particular order of
evaluation, 439

forcing short-circuit Boolean
evaluation, 443, 471, 532

in a repeat..until loop, 524
in a while loop, 515

forever..endfor loops, 529
forever (infinite) loops, 503

618 Index

FORTRAN (programming
language), xxiii

logical variables, 198
frame-pointer register, 201, 209, 565
free() memory allocation function,

179, 271, 282, 283
Free Pascal, 7
Free Software Foundation, 19
freeing memory blocks on the heap, 281
full optimization, 59
functions, 535

alignment in memory, 88
calls to functions, 536
parameters, 556
procedure calls and, 535
return values, 536, 590

G
garbage collection (memory

management), 280, 282, 317
Gas (Gnu assembler), 7, 18

.align declaration, 233

.byte declaration, 41

.endr declaration, 41

.equ declaration, 27

.int declaration, 42

.long declaration, 43

.rept declaration, 41
binary constants, 23
character literal constants, 26
constant declarations, 27
data declarations, 41
direct addressing mode, 32
displacement-only addressing

mode, 32
equates, 28
floating-point literal constants, 26
hexadecimal literal constants, 24
indexed addressing mode, 36, 37
mov instruction, 29
operand sizes, 45
register-indirect addressing

mode, 34
register names (80x86), 29
scaled-index addressing modes, 38
string literal constants, 26

GCC (Gnu C Compiler), 4, 7
assembly language output

(command-line option), 102
C compiler assembly output, 104
support for pseudo-dynamic

arrays, 259

general protection fault, 174
general-purpose registers, 20

80x86, 21
global constant sets, 165
global variables, 181, 206

efficiency and, 560
glyphs (Unicode), 323
GNU assembler. See Gas
GNU C Compiler. See GCC
goals of optimization, 56
GoAsm assembler, 19
goto statements, 455
granularity of memory allocation, 284
grapheme clusters (Unicode), 323, 325
great code, xx

defined, xix

H
h-suffix notation for hexadecimal

constants, 25
hand-optimized assembly code, 2, 101
hardware stacks, 179
headers in a COFF file, 118
heap

allocation, 189
management systems, 280
memory allocation, 271
memory overhead, 284
memory storage, 190
section, 179

heuristics in optimization, 57
hexadecimal constants, 30
hexadecimal literal constants, 24

Gas, 24
HLA, 24
MASM, 25

hexadecimal numbering system, xxiii
high-level assemblers, 11
High-Level Assembly (HLA) language,

7, 19
array declarations, 228
binary constants, 23
character literal constants, 25
constant declarations, 27
const section, 27
data declarations, 39
decimal literal constants, 24
direct addressing mode, 31
displacement-only addressing

mode, 31
dword declarations, 43

Index 619

floating-point literal constants, 26
hexadecimal literal constants, 24
indexed addressing mode, 35
initialized data, 40
manifest symbolic constants, 27
mov instruction, 28
namespaces, 362
operand sizes, 44
records/structures, 334
register indirect addressing

mode, 33
scaled-index addressing modes, 37
string literal constants, 25
strings, 312
subinstruction, 15
type coercion, 44
underscores in literal constants, 24
unions, 354
val section, 27

HLL (high-level language), xxii, 2
code as compiler output, 67

hypothetical machine languages, 51

I
IDA disassembler, 128
IDE (integrated development

environment), 112
IEEE 754 floating-point standard, 196
if and goto emulation of a while

statement, 504
if statements, 460

basic blocks, 59
versus switch/case statements,

5, 478
IL (Intermediate Language), 390
IL disassembler, 132
illegal pointer values, 286, 287
immediate addressing mode, 145

80x86, 30
immediate operands on the 80x86, 28
impact of procedure/function call

overhead in programs, 551
imperative (procedural) programming

languages, xxiii
implementation

of arrays in Swift, 234
of control structures with an if and

a goto, 460
of a forever..endfor loop, 529
of pointers, 269

of a variant type, 356
of a while statement, 504
of a repeat..until loop, 519

improving array access efficiency, 256
improving the efficiency of if/else

statements, 463
incremental compilers, 50
indefinite loops, 532
indexed addressing mode (80x86), 34
indexing into a column-major ordered

array, 248
indirect jumps, 454
indirectly accessing an object, 269
induction, 64, 422–426
inefficiency, xx
infix notation, 390
initialized data in memory, 175, 177
initializing arrays in Swift, 230
initializing pointers with NULL, 174
inline assembly language, 70
inline functions and complete Boolean

evaluation, 509, 513
inline functions and procedures, 551
input/output, 19
instantiating a class, 363
instruction pipelines, 452
integer size conversion, 195
integer strings, 293
integer variables, 193
integrated development environment

(IDE), 112
Intel/AMD ABI, 586
Intel Architecture CPUs, xxiiii
interactive disassemblers, 128, 130
intermediate code generation, 55

phase of a compiler, 52
Intermediate Language (IL), 18
intermediate variables, 206
internal fragmentation, 83, 284

linkers and, 86
internal representation of enumerated

data, 156
interpreted code and program

performance, 3
interpreted virtual machine code, 51
interpreters, 47, 48, 50
interrupt disable flag, 21
int integer size in C/C++, 193
intractability of optimization , 58
I/O, 19

device addresses and variables, 183

620 Index

J
Java (programming language),

xxiii, 3, 51
Java bytecode (JBC), 18
Java bytecode disassembler, 130
Java bytecode engine, 51
Java structures/records, 334
Java Virtual Machine, 390, 452
JBC (Java bytecode), 18
je instruction, 453
JIT (just-in-time) compilation, 18, 51
JIT compiler for Java, 130
jne instruction, 465
just-in-time (JIT) compilation, 18, 51

K
kernel mode (CPU), 283

L
language design time binding, 183
last-in, first-out (LIFO) organization,

539, 563
Latin-1 character set, 326
layout of parameters in a procedure’s

activation record, 570
leaf functions and procedures, 545
learning assembly language, 2
least common multiple, 87
length-prefixed strings, 309

advantages, 309
disadvantages, 310
implementation, 309

levels of abstraction (optimization), 4
lexemes, 49, 53
lexer, 53
lexical analysis, 50, 54

phase of a compiler, 52
lexical analyzer, 53
lexical items in a source file, 53
library modules, 70, 88
lifetime of an attribute, 182
Lifetime of parameters and local

variables, 564
LIFO (last-in, first-out) organization,

539, 563
linear search, 4
line number information in a

COFF file, 79
link address, 536

LINK register (PowerPC and ARM),
539, 540, 547

link-time binding of variable
addresses, 184

linker/loader programs, 48, 70
linkers, effect on code, 96
Linux kernel development, 4
lis instruction (PowerPC), 148
LISP (programming language),

266, 269
LIST command in BASIC, 49
literal constants, 54, 146, 22
little endian issues when using

unions, 356
load-time binding of variable

addresses, 184
loader programs, 48
local variables, 181, 187, 535, 540, 564,

566, 568
accessing, 575

LOGICAL*4 variables in FORTRAN, 198
logical AND/OR, pointers and, 278
logical constants, 157
logical-OR operation in a Boolean

expression, 472
logically coherent functions, 549
long integer size in C/C++, 193
long long integer size in C/C++, 193
loop control variables in a for loop, 533
loop-invariant calculations, 64, 427
loop invariants, 427–429
low memory addresses in the address

space, 174
low-level control structures, 452

M
Machine (Windows COFF header

field), 73
machine idiosyncrasies, 67
machine language, 5
machine-level debuggers, 137
macros, inline functions and, 535, 549
Magic (COFF optional file header

field), 76
maintainable code, xx
MajorLinkerVersion field in a

COFF file, 76
malloc() function, 179, 189, 191,

271, 283
string data allocation, and 317

managed pointers, 291

Index 621

manifest constants, , 145, 27
versus read-only memory

objects, 153
manual optimization, 4
manually merging string constants, 167
mapping array indexes to addresses, 243
mapping executable file blocks to

memory, 85
MASM, 7

= operator, 28
[] operator, 35
binary constants, 23
character literal constants, 26
constant declarations, 28
data declarations, 40
db declarations, 40
dd/dword declarations, 43
direct addressing mode, 32
dw declaration, 42
equ directive, 28
floating-point literal constants, 26
hexadecimal literal constants, 25
initialized data, 40
mov instruction, 29
operand sizes, 44
register-indirect addressing

mode, 33
register names, 29
scaled-index addressing modes, 38
type coercion, 45
word declaration, 42

MASM assembler, 18
MASM struct field alignment, 220
maximum field alignment for a record

in HLA, 221
maximum section alignment values, 87
memcpy, 558
memory, 19

addresses and pointers, 269
allocation, 271, 280

for Boolean values, 157
for enumerated types, 156
granularity, 284
search algorithms, 281
under an OS, 283

application-specific heap
management functions, 284

best-fit algorithm in a memory
allocator, 281

consumption by static variables, 185
control information in a heap

block, 284

efficiency of a stack, 539
footprint, 83
failing to free storage, 286
first-fit algorithm in a memory

allocator, 281
garbage collection in a memory

allocator, 282
granularity of memory

allocation, 284
heap memory allocation

overhead, 284
internal fragmentation, 284
leaks, 289, 317, 318
management, 85
operands on the 80x86, 28
performance of memory allocation

calls, 283
problems with pointers, 286
memory protection rights, 81
requirements of a switch/case

statement, 484
storage

of records, 347
of unions, 354

tracking memory use in a heap
manager, 284

usage of great code, xx
using internal tables to track

heap use, 284
memory access violation exception, 287
merging BSS and DATA sections in a

COFF file, 77
merging paths of two basic blocks, 60
Microsoft

Common Intermediate Language
(CIL), 390

Common Language Runtime
(CLR), 56

Intermediate Language (IL), 18
link.exe alignment options, 87
MASM assembler, 7
Visual Basic, 7
Visual C++, 7

compiler, 102
compiler optimization

options, 65
minimum field alignment in an HLA

record, 221
MinorLinkerVersion field in a

COFF file, 76
modifying a loop control variable in a

for loop, 533

622 Index

Modula-2 (programming
language), xxiii

modular structure, 551
monotonically increasing, 156
moving code during optimization,

64, 427
mov instruction, 28

80x86, 28
MSIL disassembler, 132
multidimensional arrays, 241, 248

in Swift, 242
multidimensional pseudo-dynamic

arrays, 260
multiplication by a constant, 63
multithreaded applications, 184

N
name conflicts, 361
Name field in a COFF file, 78
named constants, 27
namespace pollution, 361
namespaces, 361

in C++, 362
in HLA, 362

NASM assembler, 19
native code generation phase (of a

compiler), 52, 67
natural address boundaries, 85
natural offsets in an activation

record, 569
nested procedures, 206
new() memory allocation function,

189, 271
in C++ and Pascal, 179

NIL, 471
nodes in a call tree, 545
non-numeric constants, 155
nonportable optimizations, 100
nonscalar function return results, 591
normal forms (Unicode), 326, 327

normalization, 326
NOT operator, 519
NP-Complete problems, 57
NULL pointer references, 174
NumberOfLinenumbers field in a

COFF file, 79
NumberOfRelocations field in a

COFF file, 79
NumberOfSections field in a COFF

file, 74, 77
numeric constants, 22

O
objdump command-line options, 121
objdump utility, 95

for GNU/Gas/GCC code, 121
object files, 48, 67

as compiler output, 70
sections and memory

consumption, 83
object layout for multiple

inheritance, 376
objects, 363
OllyDbg, 136
one-address machines, 392
one-dimensional pseudo-dynamic

arrays, 258
opcode prefix byte (on 80x86) for

operand sizes, 196
operand sizes in assembly language, 43

ambiguity (80x86 assembly
language), 44

optimization, 47, 58
80x86, 18
of arithmetic statements, 397
of code involving pointers, 279
common subexpression

elimination, 410–416
of constant expressions, 152
constant folding, 397–399
constant propagation, 400–404
control, 64

via command-line options, 65
dead code elimination, 404–409
induction, 422–426
levels, 4

for compilers, 101
loop invariants, 427–429
optimizing compilers, 2, 6
optimizing for space, 65, 84
optimizing for speed, 65
phase of a compiler, 52
strength reduction, 417–421
of strings by a compiler, 166
of a while statement, 506

optional header in a COFF file, 74
OR, pointers and, 278
order of evaluation, forcing, 439
ordinal data types, 231
organization of fields in a record/

structure, 348
ori instruction (PowerPC), 148
OS API calls, 283

Index 623

OS memory allocation, 283
OS system call overhead, 283
out-of-order instruction execution, 440
overflow flag (80x86), 21
overhead

of call and return sequences, 544
of garbage collection, 280
of memory allocation, 285

overlapping fields in a union, 352
overlapping registers on the 80x86, 20
overlapping strings, 316
overloading, 374

P
packed keyword, 348

packed records and, 349
in Pascal, 238

padding bytes, 85, 87, 213, 232, 274,
348, 569, 575

pages in virtual memory, 81
parameter offsets, 570
parameter passing and calling

conventions, 535
parameter-passing mechanisms, 588
parameters, 540
parity flag (80x86), 21
parsers, 53, 54
Pascal (programming language),

xxiii, 181
calling convention, 571
case statement, 476
complete Boolean evaluation

and, 466
Delphi string formats and, 168
Delphi unions (case-variant

records) and, 353
Pascal/Delphi array

declarations, 229
records/structures, 332
short-circuit Boolean evaluation

and, 471
strings, 309, 316

pass-by-name, 588
pass-by-reference, 588, 589

parameters, 556
pass-by-value, 588

arrays, 588
parameters, 556
result, 588
returned, 588

passing parameters
in registers, 211, 545, 573
to a function or procedure, 556
to a procedure or function, 16

patched addresses in an object code
file, 80

PE/COFF, 184
performance loss due to memory

allocation, 285
performance of 80x86 vs PowerPC

when using indirection, 271
performance of OS API calls, 283
Perl (programming language), 272
phases of a compiler, 52
PhysicalAddress field in a COFF file, 79
pipeline flush, 452
plain vanilla text, 48
pointers, 180, 207

adding an integer to, 273
address assignment in byte-

addressable memory, 273
allocating a block of storage, 272
AND operations on, 278
arithmetic, 272, 273
base addresses (of an allocated

block), 273
coercion, 290
comparing, 277
continuing to use storage after it

has been freed, 287
dangling pointer problem, 287
data types, 267
definition, 268
dereferencing uninitialized

pointers, 287
double indirection, 269, 270
failing to free allocated storage, 288
illegal pointer values, 286, 287
implementing, 269
limiting pointer operations, 280
logical operations on, 278
malloc() function, 272
memory addresses, 269
memory leaks, 286, 289
negative results after a pointer

subtraction, 276
offsets from a fixed address in

memory (implementation
of a pointer), 269

operations on, 272, 279
optimizing code involving, 279

624 Index

pointers (continued)
OR operations on, 278
Pascal pointers, 268
problems with, 286
program efficiency concerns when

using, 280
sizeof() function, 272
subtracting an integer from, 275
subtracting a pointer from, 275
subtraction rules (pointer

subtraction), 276
type casting, 290
type-safe access, 289
uninitialized, 286
using storage after it has been

freed, 286
PointerToLinenumbers field in a

COFF file, 79
PointerToRawData field in a

COFF file, 79
PointerToRelocations field in a

COFF file, 79
PointerToSymbolTable (Windows

COFF header field), 74
popping data from a stack, 388
popping return addresses off the

stack, 539
portability of bytecode interpreters, 51
portable code, xx
postfix notation, 390
Power Macintosh, xxiii
PowerPC

ABI, 586
bl instruction, 539, 541
blr instruction, 539
CPU, xxiii
indirect access via a pointer, 271
lis instruction, 148
ori instruction, 148
stack pointer, 179

pragma, 348
preserving register values in a leaf

procedure/function, 546
primitive data types, 193
problem decomposition, 549
problem with optimizing compilers, 3
problems caused by side effects,

avoiding, 438
procedural programming languages, xxiii
procedures, 535

calls, 536
parameters, 556

producing assembly output from a
compiler, 100, 101

program status register, 452
programming language source files, 48
programming paradigm (assembly

language), 14
Prolog (programming language), 266
protection rights (memory), 81
pseudo-dynamic arrays, 258, 260

in GCC, 259
pseudo-dynamic strings, 316, 317
pseudo-static arrays, 258
pseudo-static (automatic) binding, 183

of variables, 187
pull operation on a stack, 388
pure dynamic arrays, 258, 266
pure interpreters, 49, 54
pure macros, 551
pure static arrays, 258
pure static strings, 316
pushing data onto a stack, 387, 388
pushing return addresses onto a

stack, 539
putting BSS variables in the DATA

section, 179
Python (programming language), xxiii

Q
quad-precision floating-point, 196
quotes in an HLA string, 25

R
Raspberry Pi, xxiii
RAX register, 20
RBP register, 20

as a frame-pointer register (80x86),
201, 565

RBX register, 20
RCX register, 20
RDI register, 20
RDX register, 20
readable code, xx
read-only memory objects as

constants, 153
read-only section in memory, 175
real (floating-point) strings, 293
real variables, 196
real32/real4 data on the 80x86, 39
real64/real8 data on the 80x86, 39
real80/real10 data on the 80x86, 39

Index 625

record field alignment, 218
in HLA, 221

records
alignment of fields in a record, 348
base address, 347
C#, 334
C/C++, 333
definition, 332
dot operator (field selector), 347
fields, 332
HLA, 334
Java, 334
organization of fields in a

record/structure, 348
Pascal/Delphi, 332
passed by value to a

procedure/function, 588
record/struct field alignment in an

assembly language, 220
recursion, 539
recursive functions and activation

records, 564
reduced instruction set computer

(RISC), xxiii, 18, 199,
540, 543, 545

reducible flow graphs, 61
reducing variable offset sizes by using

a pointer, 209
reentrant code, 185
reference counters (for strings), 318
register addressing modes on the

80x86, 28
register keyword in C/C++, 211
register names in Gas (80x86), 29
register operands on the 80x86, 28
register-indirect addressing mode

(80x86), 32
registers, 19

calculations on the 80x86 and, 19
variables, 210

relocation
object files and, 79, 80, 116
relocation list in a COFF file, 80
relocation sections in a

COFF file, 80
repeat..until loops, 503
repeat..until statements, 518
representing Boolean values, 157
representing arrays in memory, 231
ret instruction, 536

x86, 540

return address, 536, 567
storage, 539

return from ARM subroutine (bx), 539
return from PowerPC subroutine, 539
returning function results in

registers, 590
returning nonscalar (aggregate) values

as function results, 591
reverse polish notation, 390
RISC. See reduced instruction

set computer
robust code, xx
row-major ordering, 244
RSI register, 20
RSP register, 20
rules for the subtraction of two pointer

values, 276
runtime binding, 181
runtime dynamic memory

allocation, 190
runtime memory consumption, 83
runtime memory organization, 173, 174

S
s_flags field in a COFF file, 78, 79
s_lnnoptr field in a COFF file, 79
s_name field in a COFF file, 78
s_nlnno field in a COFF file, 79
s_nreloc field in a COFF file, 79
s_paddr field in a COFF file, 79
s_relptr field in a COFF file, 79
s_scnptr field in a COFF file, 79
s_size field in a COFF file, 79
s_vaddr field in a COFF file, 79
safe optimizations, 65
scaled-index addressing modes

(80x86), 37
scanners, 53
scope, 181
searching for a particular routine in

a disassembly listing of an
object file, 136

section alignment and library
modules, 88

SectionAlignment field in a
COFF file, 86

section alignment sizes, 86
section headers in a COFF file, 74, 77,

79, 118
sections, 81, 174
segalign linker option (macOS), 87

626 Index

segment registers, 20
segments, 81, 174
selecting a member of an array, 226
semantic correctness of a program, 54
semantic equivalence, 6
sentinel characters (making the end of

a string), 294
sequence points, 434–438
set constants, 170
shallow call trees, 549
short displacements to local variables

on the 80x86, 576
short integer type in C/C++, 193
short strings, 316
short-circuit Boolean evaluation,

465, 471, 532
in a repeat..until loop, 524
in a while loop, 515

short-circuit evaluation, 441–448
SI register, 20
side effects, 430, 434

results (guaranteed completion), 434
signed integer variables, 194
sign-extension, 195
sign flag (80x86), 21
simulating a while loop, 504
single-address machines, 392
single-board computers (SBCs), xxiii
single indirection, 270
size of an array, 261
size of an integer variable, 193
size of a procedure call on the

PowerPC, 541
SizeOfCode field in a COFF file, 76
sizeof() function (C/C++), 272
SizeOfInitializedData field in a

COFF file, 76
SizeOfOptionalHeader field in a

COFF file, 77
SizeOfOptionalHeader (Windows

COFF header field), 74
SizeOfRawData field in a COFF file, 79
SizeOfUninitializedData field in a

COFF file, 76
SNOBOL4 (programming language),

182, 266
software engineering conventions and

great code, xx
software-implemented stack, 179
source files, 48
source-level debuggers, 137

source operand to a mov instruction
(80x86), 28

SP register, 20
space optimization, 65
spaghetti code, 464
spatial locality of reference, 165
specialized source file formats, 49
speed optimization, 65
ST0 floating-point register (80x86), 591
stack access versus register access, 540
stack frames, 200, 565
stack pointer, 565
stack section in memory, 179
stack-based CPU architectures, 452
stack-based machines, 386
stack-pointer registers, 179, 387, 540
stacking up activation records, 563
stacks, 539
stale character data, 317
standard exit sequence for a

procedure, 568
starting address of an executable

program in a COFF file, 76
static arrays, 257, 258
static bindings, 150, 183
static data sections in a program, 177
static initial values, 177
static local variable allocation, 575
static member functions, 370, 381
static objects, 181
static strings, 316
static variables, 183

static variable address binding, 184
statically linked library routines and

disassembly, 136
std::make_unique() memory allocation

function, 271
std::unique_ptr memory() allocation

function, 179, 189
storage allocation, 199

for dynamic variables, 207
for intermediate variables, 206

storage of variables, 183
straight-line code, 550
stralloc() function, 317
strength reduction, 63, 417–421
strings

7-bit strings, 311
assignment, 317
C/C++ strings, 295
character data, 293
Delphi strings, 318

Index 627

descriptor-based strings, 315
dynamic strings, 317
formats, 294
HLA strings, 312

implementation, 312
zero-terminated strings and, 314

length of, 293
length-prefixed strings, 309
manipulating by reference and by

value, 168
maximum length, 293
merging

by compilers, 166
optimization, 167

pseudo-dynamic strings, 317
reference counters, 293, 318
static strings, 316
string constants, 22

in 80x86 assembly language, 25
manual merging, 167

string data types, 293
string literal constants

Gas, 26
HLA, 25

zero-terminated strings, 295
strncpy() function, 320
STRUCT assembler directive, 334
struct constants, 170
struct/record field alignment in an

assembly language, 220
structure field alignment, 218
structures

alignment of fields in a record, 348
base address, 347
C#, 334
C/C++, 333
definition, 332
dot operator (field selector), 347
fields, 332
HLA, 334
Java, 334
memory storage, 347
organization of fields in a record/

structure, 348
Pascal/Delphi, 332

style guidelines, xx
subexpressions, 63, 410
substring operation, 317, 320
subtracting an integer from a

pointer, 275
subtracting a pointer from a pointer, 275

subtract instructions in assembly
language, 14

superoptimizers, 57
superscalar CPU optimization, 67
surrogate code points (Unicode), 323
Swift (programming language), xxiii

arrays, 230
implementation, 234
initialization, 230

assembly language output, 108
constants, 154
ContiguousArray type, 234
let statement, 154
multidimensional arrays, 242
records (tuples), 335
strings and copy-on-write, 169
switch statement, 476, 500
switch/case statements, 476

alternate implementations, 486
switch implementation using 2-tuples,

492–499
switch statements versus if

statements, 478
symbolic constants, 27, 30
symbolic debuggers, 137
symbolic information in a COFF file, 80
symbol table information in an object

code file, 137
syntax analysis phase of a compiler, 52
system resources and great code, xx

T
table data in memory, 175
tables of constants, 164
tag fields in a case variant record, 353
TByte data on the 80x86, 39
tested code, xx
text sections in an executable file, 81
text sections in a program, 175
text_start field in a COFF file, 77
textual substitution for parameters, 551
thread-safe code, 187
three-address architecture, 394
TimeDateStamp (Windows COFF header

field), 74
time required to optimize a program

(NP-Completeness), 57
time/space tradeoff for macros, 551
tokenized representation of a source

file, 48

628 Index

tokens, 53
attributes, 54
composition, 53
in a source file, 48
token streams, 54

top of the stack, 387
tracking changes to variables through a

basic block, 60
tracking memory use in a heap

manager, 284
transfer of control at the machine

level, 452
translation from source code to

machine code, 50
true (Boolean value), 157, 197
tsize field in a COFF file, 76
tuples (Swift), 335
two-address architectures, 394, 395
two-way branches, 453
two’s complement representation of

integer variables, 193
type casting and pointers, 290
type checking of enumerated

constants, 156
type coercion (HLA/MASM), 44
type-safe access via pointers, 289
typed constants in Delphi, 170
typeless languages, 360
types of strings, 316

U
unaligned variable access, 212, 215
underscores

in binary literal constants, 23
in decimal literal constants, 24
in hexadecimal constants, 24

Unicode, 321–330
character names, 323
character set, 197
code planes, 322
code points, 322
combining characters, 328
encodings, 327
multilingual planes, 323
surrogate code points, 323
UTF-8, 328
UTF-16, 327
UTF-32, 327

uninitialized data section in a
COFF file, 76

uninitialized data sections in
memory, 178

uninitialized pointers, 286
uninitialized static variables in

memory, 82
unions, 351

aliases and unions, 355
case-variant records in

Pascal/Delphi, 353
C/C++ unions, 352
Delphi unions (case-variant

records), 353
disassembling large objects with

unions, 355
endian issues, 356
HLA unions, 354
memory storage of unions, 354
offsets of fields in a union, 352
overlapping fields, 352
Pascal/Delphi unions (case-variant

records), 353
tag fields in a case variant

record, 353
Universal Transformational Format

(UTF), 327
Unix, xxiii
unsigned integer variables, 194
user mode (CPU), 283
uses of unions, 355
using allocated storage after it has

been freed, 286
using bitwise logical operations

to improve code
generation, 158

using a debugger to analyze compiler
output, 134

using a disassembler to analyze
compiler output, 127

using function calls to force
short-circuit Boolean
evaluation, 516

using inline functions to force
complete Boolean
evaluation in a while
loop, 509

using integer operations to operate on
floating-point data, 159

using object code utilities to analyze
compiler output, 112

UTF-8 encoding, 328
UTF-16 encoding, 327
UTF-32 encoding, 327

Index 629

V
val section in an HLA program, 27
value binding, 181
variable alignment in memory, 212
variables, 173, 182

addresses, 198
alignment in memory, 212
allocation for global and static

variables, 199
automatic variables, 187

memory consumption, 187
offset sizes and, 200

in basic blocks, 60
Boolean variables, 197
character variables, 197
dynamic variables, 189
efficient access using short

offsets, 198
floating-point variables, 196
FORTRAN LOGICAL variables, 198
global variables, 206
integer size and efficiency, 196
integer variables, 193
intermediate variables, 206
ordering variable declarations for

efficiency, 213
overhead for dynamic variable

storage, 190
pseudo-static binding of

variables, 187
real variables, 196
signed integer variables, 194
size of an integer variable, 193
static binding, 183
static variable memory

consumption, 185
static variables, 183
storage, 183
type, 183
unsigned integer variables, 194

variant types, 356
VC++ optimizations, 65
VC++ (Visual C++), 102
version number of a COFF format, 76
VHLL (very high-level language), 68
VirtualAddress field in a COFF file,

78, 79
virtual (hypothetical) machine

language, 51
virtual machine (VM), 18, 390
virtual member functions, 368
virtual method table (VMT), 367

VirtualSize field in a COFF file, 78, 79
Visual Basic (VB) (programming

language), 7, 14
arrays, 259
variant types, 356

Visual C++, 7
assembly language output

(command-line option), 102
compiler, 102

Visual Studio debugger, 135
VM (virtual machine), 18, 390
VMT (virtual method table), 367
void() function in C/C++, 536
Von Neumann architecture, 19
vstamp field in a COFF file, 76

W
while loops, 503, 504

conversion to an if and a goto, 504
with complete Boolean

evaluation, 506
Windows runtime memory

organization, 174
word count program, 49
Word data on the 80x86, 39
word declaration (MASM), 42
working set, 85
worst-case performance of an

optimizer, 57

X
x86-64 64-bit registers, 21

Z
Z80 CPU, 393
zero address referenced by NULL, 174
zero extension, 195
zero flag (80x86), 21
zero/nonzero Boolean

representation, 157
zero/one Boolean representation, 157
zero-address machines, 389
zero-bit displacements in an

instruction, 209
zero-terminated strings, 295

advantages, 295
disadvantages, 295
implementation, 296

zstring string, 295

RESOURCES
Visit https://nostarch.com/writegreatcode2_2/ for resources, errata, and more
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
SaleS@noStarCh.CoM

web:
www.noStarCh.CoM

More no-nonsense books from NO STARCH PRESS

WRITE GREAT CODE, VOLUME 1,
2ND EDITION
Understanding the Machine
by ranDall hyDe

june 2020, 472 pp., $49.95
iSbn: 978-1-71850-036-5

WRITE GREAT CODE, VOLUME 3
Engineering Software
by ranDall hyDe

july 2020, 360 pp., $49.95
iSbn 978-1-59327-979-0

EFFECTIVE C
An Introduction to Professional
C Programming
by robert C. SeaCorD

july 2020, 272 pp., $59.95
iSbn 978-1-71850-104-1

THE RUST PROGRAMMING
LANGUAGE
(Covers Rust 2018)
by Steve klabnik anD
Carol niCholS

auguSt 2019, 560 pp., $39.95
iSbn 978-1-71850-044-0

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based Introduction
to Programming
by eriC MattheS

May 2019, 544 pp., $39.95
iSbn 978-1-59327-928-8

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
by jonathan e. Steinhart

auguSt 2019, 504 pp., $44.95
iSbn 978-1-59327-970-7

https://nostarch.com/writegreatcode2_2/

SHELVE IN:
COM

PUTERS/PROGRAM
M

ING

$49.95 ($65.95 CDN)

N O P R I O R
K N O W L E D G E

O F A S S E M B L Y
L A N G U A G E

R E Q U I R E D !

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

G E T B E T T E R
R E S U L T S F R O M
Y O U R S O U R C E

C O D E

G E T B E T T E R
R E S U L T S F R O M
Y O U R S O U R C E

C O D E

G E T B E T T E R
R E S U L T S F R O M
Y O U R S O U R C E

C O D E

G E T B E T T E R
R E S U L T S F R O M
Y O U R S O U R C E

C O D E

NEW COVERAGE OF:

• Programming languages like Swift and Java

• Code generation on modern 64-bit CPUs

• ARM processors on mobile phones and tablets

• Stack-based architectures like the Java Virtual
Machine

• Modern language systems like the Microsoft
Common Language Runtime

Today’s programming languages offer productivity and
portability, but also make it easy to write sloppy code that
isn’t optimized for a compiler. Thinking Low-Level, Writing
High-Level will teach you to craft source code that results
in good machine code once it’s run through a compiler.

You’ll learn:

• How to analyze the output of a compiler to verify that
your code generates good machine code

• The types of machine code statements that compilers
generate for common control structures, so you can
choose the best statements when writing HLL code

• Enough assembly language to read compiler output

• How compilers convert various constant and variable
objects into machine data

With an understanding of how compilers work, you’ll
be able to write source code that they can translate into
elegant machine code.

A B O U T T H E A U T H O R

Randall Hyde is the author of The Art of Assembly
Language and the three volume Write Great Code
series (all No Starch Press). He is also the co-author of
The Waite Group’s MASM 6.0 Bible. He has written
for Dr. Dobb’s Journal and Byte, and professional and
academic journals.

	Brief Contents
	Contents In Detail
	Acknowledgments
	Introduction
	Performance Characteristics of Great Code
	The Goal of This Book
	Chapter Organization
	Assumptions and Prerequisites
	The Environment for This Book
	For More Information

	Chapter 1: Thinking Low-Level, Writing High-Level
	Misconceptions About Compiler Quality
	Why Learning Assembly Language Is Still a Good Idea
	Why Learning Assembly Language Isn’t Absolutely Necessary
	Thinking Low-Level
	Compilers Are Only as Good as the Source Code You Feed Them
	How to Help the Compiler Produce Better Machine Code
	How to Think in Assembly While Writing HLL Code

	Writing High-Level
	Language-Neutral Approach
	Additional Tips
	For More Information

	Chapter 2: Shouldn’t You Learn Assembly Language?
	Benefits and Roadblocks to Learning Assembly Language
	How This Book Can Help
	High-Level Assemblers to the Rescue
	High-Level Assembly Language
	Thinking High-Level, Writing Low-Level
	The Assembly Programming Paradigm (Thinking Low-Level)
	For More Information

	Chapter 3: 80x86 Assembly for the HLL Programmer
	Learning One Assembly Language Is Good, Learning More Is Better
	80x86 Assembly Syntaxes
	Basic 80x86 Architecture
	Registers
	80x86 32-Bit General-Purpose Registers
	The 80x86 EFLAGS Register

	Literal Constants
	Binary Literal Constants
	Decimal Literal Constants
	Hexadecimal Literal Constants
	Character and String Literal Constants
	Floating-Point Literal Constants

	Manifest (Symbolic) Constants in Assembly Language
	Manifest Constants in HLA
	Manifest Constants in Gas
	Manifest Constants in MASM

	80x86 Addressing Modes
	80x86 Register Addressing Modes
	Immediate Addressing Mode
	Displacement-Only Memory Addressing Mode
	RIP-Relative Addressing Mode
	Register Indirect Addressing Mode
	Indexed Addressing Mode
	Scaled-Index Addressing Modes

	Declaring Data in Assembly Language
	Data Declarations in HLA
	Data Declarations in MASM
	Data Declarations in Gas

	Specifying Operand Sizes in Assembly Language
	Type Coercion in HLA
	Type Coercion in MASM
	Type Coercion in Gas

	For More Information

	Chapter 4: Compiler Operation and Code Generation
	File Types That Programming Languages Use
	Source Files
	Tokenized Source Files
	Specialized Source Files

	Types of Computer Language Processors
	Pure Interpreters
	Interpreters
	Compilers
	Incremental Compilers

	The Translation Process
	Scanning (Lexical Analysis)
	Parsing (Syntax Analysis)
	Intermediate Code Generation
	Optimization
	Compiler Benchmarking
	Native Code Generation

	Compiler Output
	Emitting HLL Code as Compiler Output
	Emitting Assembly Language as Compiler Output
	Emitting Object Files as Compiler Output
	Emitting Executable Files as Compiler Output

	Object File Formats
	The COFF File Header
	The COFF Optional Header
	COFF Section Headers
	COFF Sections
	The Relocation Section
	Debugging and Symbolic Information

	Executable File Formats
	Pages, Segments, and File Size
	Internal Fragmentation
	Reasons to Optimize for Space

	Data and Code Alignment in an Object File
	Choosing a Section Alignment Size
	Combining Sections
	Controlling the Section Alignment
	Aligning Sections Within Library Modules

	How Linkers Affect Code
	For More Information

	Chapter 5: Tools for Analyzing Compiler Output
	Background
	Telling a Compiler to Produce Assembly Output
	Assembly Output from GNU Compilers
	Assembly Output from Visual C++
	Example Assembly Language Output
	Assembly Output Analysis

	Using Object Code Utilities to Analyze Compiler Output
	The Microsoft dumpbin.exe Utility
	The FSF/GNU objdump Utility

	Using a Disassembler to Analyze Compiler Output
	Using the Java Bytecode Disassembler to Analyze Java Output
	Using the IL Disassembler to Analyze Microsoft C# and Visual Basic Output
	Using a Debugger to Analyze Compiler Output
	Using an IDE’s Debugger
	Using a Stand-Alone Debugger

	Comparing Output from Two Compilations
	Before-and-After Comparisons with diff

	For More Information

	Chapter 6: Constants and High‑Level Languages
	Literal Constants and Program Efficiency
	Binding Times
	Literal Constants vs. Manifest Constants
	Constant Expressions
	Manifest Constants vs. Read-Only Memory Objects
	Swift let Statements
	Enumerated Types
	Boolean Constants
	Floating-Point Constants
	String Constants
	Composite Data Type Constants
	Constants Don’t Change
	For More Information

	Chapter 7: Variables in a High‑Level Language
	Runtime Memory Organization
	The Code, Constant, and Read-Only Sections
	The Static Variables Section
	The Storage Variables Section
	The Stack Section
	The Heap Section and Dynamic Memory Allocation

	What Is a Variable?
	Attributes
	Binding
	Static Objects
	Dynamic Objects
	Scope
	Lifetime
	Variable Definition

	Variable Storage
	Static Binding and Static Variables
	Pseudo-Static Binding and Automatic Variables
	Dynamic Binding and Dynamic Variables

	Common Primitive Data Types
	Integer Variables
	Floating-Point/Real Variables
	Character Variables
	Boolean Variables

	Variable Addresses and High-Level Languages
	Allocating Storage for Global and Static Variables
	Using Automatic Variables to Reduce Offset Sizes
	Allocating Storage for Intermediate Variables
	Allocating Storage for Dynamic Variables and Pointers
	Using Records/Structures to Reduce Instruction Offset Sizes
	Storing Variables in Machine Registers

	Variable Alignment in Memory
	Records and Alignment

	For More Information

	Chapter 8: Array Data Types
	Arrays
	Array Declarations
	Array Representation in Memory
	Swift Array Implementation
	Accessing Elements of an Array
	Padding vs. Packing
	Multidimensional Arrays
	Dynamic vs. Static Arrays

	For More Information

	Chapter 9: Pointer Data Types
	The Definition of a Pointer
	Pointer Implementation in High-Level Languages
	Pointers and Dynamic Memory Allocation
	Pointer Operations and Pointer Arithmetic
	Adding an Integer to a Pointer
	Subtracting an Integer from a Pointer
	Subtracting a Pointer from a Pointer
	Comparing Pointers
	Using Logical AND/OR Operations with Pointers
	Using Other Operations with Pointers

	A Simple Memory Allocator Example
	Garbage Collection
	The OS and Memory Allocation
	Heap Memory Overhead
	Common Pointer Problems
	Using an Uninitialized Pointer
	Using a Pointer That Contains an Illegal Value
	Continuing to Use Storage After It Has Been Freed
	Failing to Free Storage After Using It
	Accessing Indirect Data Using the Wrong Data Type
	Performing Illegal Operations on Pointers

	Pointers in Modern Languages
	Managed Pointers
	For More Information

	Chapter 10: String Data Types
	Character String Formats
	Zero-Terminated Strings
	Length-Prefixed Strings
	Seven-Bit Strings
	HLA Strings
	Descriptor-Based Strings

	Static, Pseudo-Dynamic, and Dynamic Strings
	Static Strings
	Pseudo-Dynamic Strings
	Dynamic Strings

	Reference Counting for Strings
	Delphi Strings
	Using Strings in a High-Level Language
	Unicode Character Data in Strings
	The Unicode Character Set
	Unicode Code Points
	Unicode Code Planes
	Surrogate Code Points
	Glyphs, Characters, and Grapheme Clusters
	Unicode Normals and Canonical Equivalence
	Unicode Encodings
	Unicode Combining Characters

	Unicode String Functions and Performance
	For More Information

	Chapter 11: Record, Union, and Class Data Types
	Records
	Declaring Records in Various Languages
	Instantiating a Record
	Initializing Record Data at Compile Time
	Storing Records in Memory
	Using Records to Improve Memory Performance
	Working with Dynamic Record Types and Databases

	Discriminant Unions
	Declaring Unions in Various Languages
	Storing Unions in Memory
	Using Unions in Other Ways

	Variant Types
	Namespaces
	Classes and Objects
	Classes vs. Objects
	Simple Class Declarations in C++
	Class Declarations in C# and Java
	Class Declarations in Delphi (Object Pascal)
	Class Declarations in HLA
	Virtual Method Tables
	Abstract Methods
	Sharing VMTs
	Inheritance in Classes
	Polymorphism in Classes
	Multiple Inheritance (in C++)

	Protocols and Interfaces
	Classes, Objects, and Performance
	For More Information

	Chapter 12: Arithmetic and Logical Expressions
	Arithmetic Expressions and Computer Architecture
	Stack-Based Machines
	Accumulator-Based Machines
	Register-Based Machines
	Typical Forms of Arithmetic Expressions
	Three-Address Architectures
	Two-Address Architectures
	Architectural Differences and Your Code
	Complex Expressions

	Optimization of Arithmetic Statements
	Constant Folding
	Constant Propagation
	Dead Code Elimination
	Common Subexpression Elimination
	Strength Reduction
	Induction
	Loop Invariants
	Optimizers and Programmers

	Side Effects in Arithmetic Expressions
	Containing Side Effects: Sequence Points
	Avoiding Problems Caused by Side Effects
	Forcing a Particular Order of Evaluation
	Short-Circuit Evaluation
	Using Short-Circuit Evaluation with Boolean Expressions
	Forcing Short-Circuit or Complete Boolean Evaluation
	Comparing Short-Circuit and Complete Boolean Evaluation Efficiency

	The Relative Cost of Arithmetic Operations
	For More Information

	Chapter 13: Control Structures and Programmatic Decisions
	How Control Structures Affect a Program’s Efficiency
	Introduction to Low-Level Control Structures
	The goto Statement
	Restricted Forms of the goto Statement

	The if Statement
	Improving the Efficiency of Certain if/else Statements
	Forcing Complete Boolean Evaluation in an if Statement
	Forcing Short-Circuit Evaluation in an if Statement

	The switch/case Statement
	Semantics of a switch/case Statement
	Jump Tables vs. Chained Comparisons
	Other Implementations of switch/case
	The Swift switch Statement
	Compiler Output for switch Statements

	For More Information

	Chapter 14: Iterative Control Structures
	The while Loop
	Forcing Complete Boolean Evaluation in a while Loop
	Forcing Short-Circuit Boolean Evaluation in a while Loop

	The repeat..until (do..until/do..while) Loop
	Forcing Complete Boolean Evaluation in a repeat..until Loop
	Forcing Short-Circuit Boolean Evaluation in a repeat..until Loop

	The forever..endfor Loop
	Forcing Complete Boolean Evaluation in a forever Loop
	Forcing Short-Circuit Boolean Evaluation in a forever Loop

	The Definite Loop (for Loops)
	For More Information

	Chapter 15: Functions and Procedures
	Simple Function and Procedure Calls
	Return Address Storage
	Other Sources of Overhead

	Leaf Functions and Procedures
	Macros and Inline Functions
	Passing Parameters to a Function or Procedure
	Activation Records and the Stack
	Breaking Down the Activation Record
	Assigning Offsets to Local Variables
	Associating Offsets with Parameters
	Accessing Parameters and Local Variables
	Registers to the Rescue
	Java VM and Microsoft CLR Parameters and Locals

	Parameter-Passing Mechanisms
	Pass-by-Value
	Pass-by-Reference

	Function Return Values
	For More Information

	Afterword: Engineering Software
	Glossary
	Online Appendixes
	Index

