

PRAISE FOR THE FIRST EDITION OF WRITE

GREAT CODE, VOLUME 1

“Today’s programmers can hardly keep up with the race against
inhumane deadlines and new technologies; therefore, they rarely have a
chance to learn the basics of computer architectures and the inner
workings of their programming languages. This book fills in the gaps. I
strongly recommend it.”
—INFORMIT.COM

“[Write Great Code] isn’t your typical ‘teach yourself to program’ book. .
. It’s relevant to all languages, and all levels of programming experience.
. . Run, don’t walk, to buy and read this book.”
—BAY AREA LARGE INSTALLATION SYSTEM ADMINISTRATORS (BAYLISA)

5/5 stars: “[Write Great Code] fills in the blanks nicely and really could
be part of a computer science degree required reading set. . . . Once this
book is read, you will have a greater understanding and appreciation for
code that is written efficiently—and you may just know enough to do
that yourself. At least you will have a great start at the art of crafting
efficient software.”
—MACCOMPANION

“Great fun to read.”
—VSJ MAGAZINE

“Write Great Code, Volume 1: Understanding the Machine should be on the
required reading list for anyone who wants to develop terrific code in
any language without having to learn assembly language.”
—WEBSERVERTALK

http://informit.com/

WRITE GREAT CODE

VOLUME 1

2ND EDITION

Understanding the Machine

by Randall Hyde

San Francisco

WRITE GREAT CODE, Volume 1: Understanding the Machine, 2nd Edition.
Copyright © 2020 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-10: 1-71850-036-X
ISBN-13: 978-1-71850-036-5

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editor: Rachel Monaghan
Developmental Editor: Athabasca Witschi
Project Editor: Dapinder Dosanjh
Cover and Interior Design: Octopod Studios
Technical Reviewer: Anthony Tribelli
Copyeditor: Rachel Monaghan
Compositor: Danielle Foster
Proofreader: James Fraleigh
Illustrator: David Van Ness

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc.
directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

The Library of Congress issued the following Cataloging-in-Publication Data for the first edition of
Volume 1:

Hyde, Randall.
 Write great code : understanding the machine / Randall Hyde.
 p. cm.
 ISBN 1-59327-003-8
1. Computer programming. 2. Computer architecture. I. Title.
 QA76.6.H94 2004
 005.1--dc22

 2003017502

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trademarked

mailto:info@nostarch.com
http://www.nostarch.com/

name, we are using the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

About the Author

Randall Hyde is the author of The Art of Assembly Language and Write
Great Code, Volumes 1, 2, and 3 (all from No Starch Press), as well as
Using 6502 Assembly Language and P-Source (Datamost). He is also the
coauthor of Microsoft Macro Assembler 6.0 Bible (The Waite Group).
Over the past 40 years, Hyde has worked as an embedded
software/hardware engineer developing instrumentation for nuclear
reactors, traffic control systems, and other consumer electronics devices.
He has also taught computer science at California State Polytechnic
University, Pomona, and at the University of California, Riverside. His
website is www.randallhyde.com/.

http://www.randallhyde.com/

About the Technical Reviewer

Tony Tribelli has more than 35 years of experience in software
development, including work on embedded device kernels and
molecular modeling. He developed video games for 10 years at Blizzard
Entertainment. He is currently a software development consultant and
privately develops applications utilizing computer vision.

BRIEF CONTENTS

Acknowledgments

Chapter 1: What You Need to Know to Write Great Code

Chapter 2: Numeric Representation

Chapter 3: Binary Arithmetic and Bit Operations

Chapter 4: Floating-Point Representation

Chapter 5: Character Representation

Chapter 6: Memory Organization and Access

Chapter 7: Composite Data Types and Memory Objects

Chapter 8: Boolean Logic and Digital Design

Chapter 9: CPU Architecture

Chapter 10: Instruction Set Architecture

Chapter 11: Memory Architecture and Organization

Chapter 12: Input and Output

Chapter 13: Computer Peripheral Buses

Chapter 14: Mass Storage Devices and Filesystems

Chapter 15: Miscellaneous Input and Output Devices

Afterword: Thinking Low-Level, Writing High-Level

Appendix A: ASCII Character Set

Glossary

Index

CONTENTS IN DETAIL

ACKNOWLEDGMENTS

1
WHAT YOU NEED TO KNOW TO WRITE GREAT CODE

1.1 The Write Great Code Series

1.2 What This Book Covers

1.3 Assumptions This Book Makes

1.4 Characteristics of Great Code

1.5 The Environment for This Book

1.6 Additional Tips

1.7 For More Information

2
NUMERIC REPRESENTATION

2.1 What Is a Number?

2.2 Numbering Systems

2.2.1 The Decimal Positional Numbering System

2.2.2 Radix (Base) Values

2.2.3 The Binary Numbering System

2.2.4 The Hexadecimal Numbering System

2.2.5 The Octal Numbering System

2.3 Numeric/String Conversions

2.4 Internal Numeric Representation

2.4.1 Bits

2.4.2 Bit Strings

2.5 Signed and Unsigned Numbers

2.6 Useful Properties of Binary Numbers

2.7 Sign Extension, Zero Extension, and Contraction

2.8 Saturation

2.9 Binary-Coded Decimal Representation

2.10 Fixed-Point Representation

2.11 Scaled Numeric Formats

2.12 Rational Representation

2.13 For More Information

3
BINARY ARITHMETIC AND BIT OPERATIONS

3.1 Arithmetic Operations on Binary and Hexadecimal Numbers

3.1.1 Adding Binary Values

3.1.2 Subtracting Binary Values

3.1.3 Multiplying Binary Values

3.1.4 Dividing Binary Values

3.2 Logical Operations on Bits

3.3 Logical Operations on Binary Numbers and Bit Strings

3.4 Useful Bit Operations

3.4.1 Testing Bits in a Bit String Using AND

3.4.2 Testing a Set of Bits for Zero/Not Zero Using AND

3.4.3 Comparing a Set of Bits Within a Binary String

3.4.4 Creating Modulo-n Counters Using AND

3.5 Shifts and Rotates

3.6 Bit Fields and Packed Data

3.7 Packing and Unpacking Data

3.8 For More Information

4
FLOATING-POINT REPRESENTATION

4.1 Introduction to Floating-Point Arithmetic

4.2 IEEE Floating-Point Formats

4.2.1 Single-Precision Floating-Point Format

4.2.2 Double-Precision Floating-Point Format

4.2.3 Extended-Precision Floating-Point Format

4.2.4 Quad-Precision Floating-Point Format

4.3 Normalization and Denormalized Values

4.4 Rounding

4.5 Special Floating-Point Values

4.6 Floating-Point Exceptions

4.7 Floating-Point Operations

4.7.1 Floating-Point Representation

4.7.2 Floating-Point Addition and Subtraction

4.7.3 Floating-Point Multiplication and Division

4.8 For More Information

5
CHARACTER REPRESENTATION

5.1 Character Data

5.1.1 The ASCII Character Set

5.1.2 The EBCDIC Character Set

5.1.3 Double-Byte Character Sets

5.1.4 The Unicode Character Set

5.1.5 Unicode Code Points

5.1.6 Unicode Code Planes

5.1.7 Surrogate Code Points

5.1.8 Glyphs, Characters, and Grapheme Clusters

5.1.9 Unicode Normals and Canonical Equivalence

5.1.10 Unicode Encodings

5.1.11 Unicode Combining Characters

5.2 Character Strings

5.2.1 Character String Formats

5.2.2 Types of Strings: Static, Pseudo-Dynamic, and Dynamic

5.2.3 Reference Counting for Strings

5.2.4 Delphi Strings

5.2.5 Custom String Formats

5.3 Character Set Data Types

5.3.1 Powerset Representation of Character Sets

5.3.2 List Representation of Character Sets

5.4 Designing Your Own Character Set

5.4.1 Designing an Efficient Character Set

5.4.2 Grouping the Character Codes for Numeric Digits

5.4.3 Grouping Alphabetic Characters

5.4.4 Comparing Alphabetic Characters

5.4.5 Grouping Other Characters

5.5 For More Information

6
MEMORY ORGANIZATION AND ACCESS

6.1 The Basic System Components

6.1.1 The System Bus

6.2 Physical Organization of Memory

6.2.1 8-Bit Data Buses

6.2.2 16-Bit Data Buses

6.2.3 32-Bit Data Buses

6.2.4 64-Bit Data Buses

6.2.5 Small Accesses on Non-80x86 Processors

6.3 Big-Endian vs. Little-Endian Organization

6.4 The System Clock

6.4.1 Memory Access and the System Clock

6.4.2 Wait States

6.4.3 Cache Memory

6.5 CPU Memory Access

6.5.1 The Direct Memory Addressing Mode

6.5.2 The Indirect Addressing Mode

6.5.3 The Indexed Addressing Mode

6.5.4 The Scaled-Index Addressing Modes

6.6 For More Information

7
COMPOSITE DATA TYPES AND MEMORY OBJECTS

7.1 Pointer Types

7.1.1 Pointer Implementation

7.1.2 Pointers and Dynamic Memory Allocation

7.1.3 Pointer Operations and Pointer Arithmetic

7.2 Arrays

7.2.1 Array Declarations

7.2.2 Array Representation in Memory

7.2.3 Accessing Elements of an Array

7.2.4 Multidimensional Arrays

7.3 Records/Structures

7.3.1 Records in Pascal/Delphi

7.3.2 Records in C/C++

7.3.3 Records in HLA

7.3.4 Records (Tuples) in Swift

7.3.5 Memory Storage of Records

7.4 Discriminant Unions

7.4.1 Unions in C/C++

7.4.2 Unions in Pascal/Delphi

7.4.3 Unions in Swift

7.4.4 Unions in HLA

7.4.5 Memory Storage of Unions

7.4.6 Other Uses of Unions

7.5 Classes

7.5.1 Inheritance

7.5.2 Class Constructors

7.5.3 Polymorphism

7.5.4 Abstract Methods and Abstract Base Classes

7.6 Classes in C++

7.6.1 Abstract Member Functions and Classes in C++

7.6.2 Multiple Inheritance in C++

7.7 Classes in Java

7.8 Classes in Swift

7.9 Protocols and Interfaces

7.10 Generics and Templates

7.11 For More Information

8
BOOLEAN LOGIC AND DIGITAL DESIGN

8.1 Boolean Algebra

8.1.1 The Boolean Operators

8.1.2 Boolean Postulates

8.1.3 Boolean Operator Precedence

8.2 Boolean Functions and Truth Tables

8.3 Function Numbers

8.4 Algebraic Manipulation of Boolean Expressions

8.5 Canonical Forms

8.5.1 Sum-of-Minterms Canonical Form and Truth Tables

8.5.2 Algebraically Derived Sum-of-Minterms Canonical Form

8.5.3 Product-of-Maxterms Canonical Form

8.6 Simplification of Boolean Functions

8.7 What Does This Have to Do with Computers, Anyway?

8.7.1 Correspondence Between Electronic Circuits and Boolean
Functions

8.7.2 Combinatorial Circuits

8.7.3 Sequential and Clocked Logic

8.8 For More Information

9
CPU ARCHITECTURE

9.1 Basic CPU Design

9.2 Decoding and Executing Instructions: Random Logic vs. Microcode

9.3 Executing Instructions, Step by Step

9.3.1 The mov Instruction

9.3.2 The add Instruction

9.3.3 The jnz Instruction

9.3.4 The loop Instruction

9.4 RISC vs. CISC: Improving Performance by Executing More, Faster,
Instructions

9.5 Parallelism: The Key to Faster Processing

9.5.1 Functional Units

9.5.2 The Prefetch Queue

9.5.3 Conditions That Hinder the Performance of the Prefetch
Queue

9.5.4 Pipelining: Overlapping the Execution of Multiple
Instructions

9.5.5 Instruction Caches: Providing Multiple Paths to Memory

9.5.6 Pipeline Hazards

9.5.7 Superscalar Operation: Executing Instructions in Parallel

9.5.8 Out-of-Order Execution

9.5.9 Register Renaming

9.5.10 VLIW Architecture

9.5.11 Parallel Processing

9.5.12 Multiprocessing

9.6 For More Information

10
INSTRUCTION SET ARCHITECTURE

10.1 The Importance of Instruction Set Design

10.2 Basic Instruction Design Goals

10.2.1 Choosing Opcode Length

10.2.2 Planning for the Future

10.2.3 Choosing Instructions

10.2.4 Assigning Opcodes to Instructions

10.3 The Y86 Hypothetical Processor

10.3.1 Y86 Limitations

10.3.2 Y86 Instructions

10.3.3 Operand Types and Addressing Modes on the Y86

10.3.4 Encoding Y86 Instructions

10.3.5 Examples of Encoding Y86 Instructions

10.3.6 Extending the Y86 Instruction Set

10.4 Encoding 80x86 Instructions

10.4.1 Encoding Instruction Operands

10.4.2 Encoding the add Instruction

10.4.3 Encoding Immediate (Constant) Operands on the x86

10.4.4 Encoding 8-, 16-, and 32-Bit Operands

10.4.5 Encoding 64-Bit Operands

10.4.6 Alternate Encodings for Instructions

10.5 Implications of Instruction Set Design to the Programmer

10.6 For More Information

11
MEMORY ARCHITECTURE AND ORGANIZATION

11.1 The Memory Hierarchy

11.2 How the Memory Hierarchy Operates

11.3 Relative Performance of Memory Subsystems

11.4 Cache Architecture

11.4.1 Direct-Mapped Cache

11.4.2 Fully Associative Cache

11.4.3 n-Way Set Associative Cache

11.4.4 Cache-Line Replacement Policies

11.4.5 Cache Write Policies

11.4.6 Cache Use and Software

11.5 NUMA and Peripheral Devices

11.6 Virtual Memory, Memory Protection, and Paging

11.7 Writing Software That Is Cognizant of the Memory Hierarchy

11.8 Runtime Memory Organization

11.8.1 Static and Dynamic Objects, Binding, and Lifetime

11.8.2 The Code, Read-Only, and Constant Sections

11.8.3 The Static Variables Section

11.8.4 The Storage Variables Section

11.8.5 The Stack Section

11.8.6 The Heap Section and Dynamic Memory Allocation

11.9 For More Information

12
INPUT AND OUTPUT

12.1 Connecting a CPU to the Outside World

12.2 Other Ways to Connect Ports to the System

12.3 I/O Mechanisms

12.3.1 Memory-Mapped I/O

12.3.2 I/O-Mapped Input/Output

12.3.3 Direct Memory Access

12.4 I/O Speed Hierarchy

12.5 System Buses and Data Transfer Rates

12.5.1 Performance of the PCI Bus

12.5.2 Performance of the ISA Bus

12.5.3 The AGP Bus

12.6 Buffering

12.7 Handshaking

12.8 Timeouts on an I/O Port

12.9 Interrupts and Polled I/O

12.10 Protected-Mode Operation and Device Drivers

12.10.1 The Device Driver Model

12.10.2 Communication with Device Drivers

12.11 For More Information

13
COMPUTER PERIPHERAL BUSES

13.1 The Small Computer System Interface

13.1.1 Limitations

13.1.2 Improvements

13.1.3 SCSI Protocol

13.1.4 SCSI Advantages

13.2 The IDE/ATA Interface

13.2.1 The SATA Interface

13.2.2 Fibre Channel

13.3 The Universal Serial Bus

13.3.1 USB Design

13.3.2 USB Performance

13.3.3 Types of USB Transmissions

13.3.4 USB-C

13.3.5 USB Device Drivers

13.4 For More Information

14
MASS STORAGE DEVICES AND FILESYSTEMS

14.1 Disk Drives

14.1.1 Floppy Disk Drives

14.1.2 Hard Drives

14.1.3 RAID Systems

14.1.4 Optical Drives

14.1.5 CD, DVD, and Blu-ray Drives

14.2 Tape Drives

14.3 Flash Storage

14.4 RAM Disks

14.5 Solid-State Drives

14.6 Hybrid Drives

14.7 Filesystems on Mass Storage Devices

14.7.1 Sequential Filesystems

14.7.2 Efficient File Allocation Strategies

14.8 Writing Software That Manipulates Data on a Mass Storage
Device

14.8.1 File Access Performance

14.8.2 Synchronous and Asynchronous I/O

14.8.3 The Implications of I/O Type

14.8.4 Memory-Mapped Files

14.9 For More Information

15
MISCELLANEOUS INPUT AND OUTPUT DEVICES

15.1 Exploring Specific PC Peripheral Devices

15.1.1 The Keyboard

15.1.2 The Standard PC Parallel Port

15.1.3 Serial Ports

15.2 Mice, Trackpads, and Other Pointing Devices

15.3 Joysticks and Game Controllers

15.4 Sound Cards

15.4.1 How Audio Interface Peripherals Produce Sound

15.4.2 The Audio and MIDI File Formats

15.4.3 Programming Audio Devices

15.5 For More Information

AFTERWORD: THINKING LOW-LEVEL, WRITING HIGH-
LEVEL

A
ASCII CHARACTER SET

GLOSSARY

INDEX

ACKNOWLEDGMENTS

Many people have read and reread every word, symbol, and punctuation
mark in this book in order to produce a better result. Kudos to the
following people for their careful work on the second edition:
development editor Athabasca Witschi, copyeditor/production editor
Rachel Monaghan, and proofreader James Fraleigh.

I would like to take the opportunity to graciously thank Anthony
Tribelli, a longtime friend, who went well beyond the call of duty when
doing a technical review of this book. He pulled every line of code out
of this book (including snippets) and compiled and ran it to make sure it
worked properly. His suggestions and opinions throughout the technical
review process have dramatically improved the quality of this work.

Of course, I would also like to thank all the countless readers over
the years who’ve emailed suggestions and corrections, many of which
have found their way into this second edition.

Thanks to all of you,
Randall Hyde

1
WHAT YOU NEED TO KNOW TO WRITE GREAT

CODE

The Write Great Code (WGC) series will teach you how to write code
you can be proud of; code that will impress other programmers, satisfy
customers, and prove popular with users; and code that people
(customers, your boss, and so on) won’t mind paying top dollar to
obtain. In general, the books in the WGC series will discuss how to
write software that achieves legendary status, eliciting the awe and
admiration of other programmers.

1.1 The Write Great Code Series

Write Great Code, Volume 1: Understanding the Machine (WGC1
hereafter) is the first of six books in the WGC series. Writing great code
requires a combination of knowledge, experience, and skill that
programmers usually obtain only after years of mistakes and discoveries.
The purpose of this series is to share with both new and experienced
programmers a few decades’ worth of observations and experience. I

hope that these books will help reduce the time and frustration it takes
to learn things “the hard way.”

This book, WGC1, fills in the low-level details that are often
skimmed over in a typical computer science or engineering curriculum.
These details are the foundation for the solutions to many problems,
and you can’t write efficient code without this information. Though I’m
attempting to keep each book independent, WGC1 might be considered
a prerequisite for the subsequent volumes in the series.

Write Great Code, Volume 2: Thinking Low-Level, Writing High-Level
(WGC2) immediately applies the knowledge from this book. WGC2 will
teach you how to analyze code written in a high-level language to
determine the quality of the machine code that a compiler would
generate for it. Optimizing compilers don’t always generate the best
machine code possible—the statements and data structures you choose
in your source files can have a big impact on the efficiency of the
compiler’s output. WGC2 will teach you how to write efficient code
without resorting to assembly language.

There are many attributes of great code besides efficiency, and the
third book in this series, Write Great Code, Volume 3: Engineering
Software (WGC3), will cover some of those. WGC3 will discuss software
development metaphors, development methologies, types of developers,
system documentation, and the Unified Modeling Language (UML).
WGC3 provides the basis for personal software engineering.

Great code begins with a great design. Write Great Code, Volume 4:
Designing Great Code (WGC4), will describe the process of analysis and
design (both structured and object-oriented). WGC4 will teach you how
to translate an initial concept into a working design for your software
systems.

Write Great Code, Volume 5: Great Coding (WGC5) will teach you how
to create source code that others can easily read and maintain, as well as
how to improve your productivity without the burden of the “busy
work” that many software engineering books discuss.

Great code works. Therefore, I’d be remiss not to include a book on
testing, debugging, and quality assurance. Few programmers properly
test their code. This generally isn’t because they find testing boring or

beneath them, but because they don’t know how to test their programs,
eradicate defects, and ensure the quality of their code. To help
overcome this problem, Write Great Code, Volume 6: Testing, Debugging,
and Quality Assurance (WGC6) will describe how to efficiently test your
applications without all the drudgery engineers normally associate with
this task.

1.2 What This Book Covers

In order to write great code, you need to know how to write efficient
code, and to write efficient code, you must understand how computer
systems execute programs and how abstractions in programming
languages map to the low-level hardware capabilities of the machine.

In the past, learning great coding techniques has required learning
assembly language. While this isn’t a bad approach, it’s overkill.
Learning assembly language involves learning two related subjects:
machine organization, and programming in assembly language. The
real benefits of learning assembly language come from the machine
organization component. Thus, this book focuses solely on machine
organization so you can learn to write great code without the overhead
of also learning assembly language.

Machine organization is a subset of computer architecture that
covers low-level data types, internal CPU organization, memory
organization and access, low-level machine operations, mass storage
organization, peripherals, and how computers communicate with the
rest of the world. This book concentrates on those parts of computer
architecture and machine organization that are visible to the
programmer or are helpful for understanding why system architects
chose a particular system design. The goal of learning machine
organization, and of this book, is not to enable you to design your own
CPU or computer system, but to equip you to make the most efficient
use of existing computer designs. Let’s do a quick run-through of the
specific topics we’ll cover.

Chapters 2, 4, and 5 deal with basic computer data representation—
how computers represent signed and unsigned integer values,

characters, strings, character sets, real values, fractional values, and
other numeric and non-numeric quantities. Without a solid grasp of
how computers represent these various data types internally, it’ll be
difficult for you to understand why some operations that use these data
types are so inefficient.

Chapter 3 discusses binary arithmetic and bit operations used by
most modern computer systems. It also offers several insights into how
you can write better code by using arithmetic and logical operations in
ways not normally taught in beginning programming courses. Learning
these kinds of standard “tricks” is part of how you become a great
programmer.

Chapter 6 introduces memory, discussing how the computer accesses
its memory and describing characteristics of memory performance. This
chapter also covers various machine code addressing modes, which CPUs
use to access different types of data structures in memory. In modern
applications, poor performance often occurs because the programmer,
unaware of the ramifications of memory access in their programs,
creates bottlenecks. Chapter 6 addresses many of these ramifications.

Chapter 7 returns to data types and representation by covering
composite data types and memory objects: pointers, arrays, records,
structures, and unions. All too often, programmers use large composite
data structures without even considering the memory and performance
impact of doing so. The low-level description of these high-level
composite data types will make clear their inherent costs, so you can use
them sparingly and wisely.

Chapter 8 discusses Boolean logic and digital design. This chapter
provides the mathematical and logical background you’ll need to
understand the design of CPUs and other computer system
components. In particular, this chapter discusses how to optimize
Boolean expressions, such as those found in common high-level
programming language statements like if and while.

Continuing the hardware discussion from Chapter 8, Chapter 9
discusses CPU architecture. A basic understanding of CPU design and
operation is essential if you want to write great code. By writing your

code in a manner consistent with how a CPU will execute it, you’ll get
much better performance using fewer system resources.

Chapter 10 discusses CPU instruction set architecture. Machine
instructions are the primitive units of execution on any CPU, and the
duration of program execution is directly determined by the number
and type of machine instructions the CPU must process. Learning how
computer architects design machine instructions can provide valuable
insight into why certain operations take longer to execute than others.
Once you understand the limitations of machine instructions and how
the CPU interprets them, you can use this information to turn
mediocre code sequences into great ones.

Chapter 11 returns to the subject of memory, covering memory
architecture and organization. This chapter is especially important for
anyone wanting to write fast code. It describes the memory hierarchy
and how to maximize the use of the cache and other fast memory
components. You’ll learn about thrashing and how to avoid low-
performance memory access in your applications.

Chapters 12 through 15 describe how computer systems
communicate with the outside world. Many peripheral (input/output)
devices operate at much lower speeds than the CPU and memory. You
could write the fastest-executing sequence of instructions possible, and
your application would still run slowly because you didn’t understand
the limitations of the I/O devices in your system. These four chapters
discuss generic I/O ports, system buses, buffering, handshaking, polling,
and interrupts. They also explain how to efficiently use many popular
PC peripheral devices, including keyboards, parallel (printer) ports,
serial ports, disk drives, tape drives, flash storage, SCSI, IDE/ATA,
USB, and sound cards.

1.3 Assumptions This Book Makes

This book was written with certain assumptions about your prior
knowledge. You’ll reap the greatest benefit from this material if your
skill set matches the following:

You should be reasonably competent in at least one modern
programming language. This includes C/C++, C#, Java, Swift,
Python, Pascal/Delphi (Object Pascal), BASIC, and assembly, as
well as languages like Ada, Modula-2, and FORTRAN.

Given a small problem description, you should be capable of
working through the design and implementation of a software
solution for that problem. A typical semester or quarter course at a
college or university (or several months’ experience on your own)
should be sufficient background for this book.

At the same time, this book is not language specific; its concepts
transcend whatever programming language(s) you’re using.
Furthermore, this book does not assume that you use or know any
particular language. To help make the examples more accessible, the
programming examples rotate among several languages. This book
explains exactly how the example code operates so that even if you’re
unfamiliar with the specific programming language, you’ll be able to
understand its operation by reading the accompanying description.

This book uses the following languages and compilers in various
examples:

C/C++: GCC, Microsoft’s Visual C++

Pascal: Embarcadero’s Delphi, Free Pascal

Assembly language: Microsoft’s MASM, HLA (High-Level
Assembly), Gas (the Gnu Assembler; on the PowerPC and ARM)

Swift 5 (Apple)

Java (v6 or later)

BASIC: Microsoft’s Visual Basic

Often, the examples appear in multiple languages, so it’s usually safe
to ignore a specific example if you don’t understand the syntax of the
language it uses.

1.4 Characteristics of Great Code

Different programmers will have different definitions for great code, so
it’s impossible to provide an all-encompassing definition that will satisfy
everyone. However, nearly everyone will agree that great code:

Uses the CPU efficiently (that is, it’s fast)

Uses memory efficiently (that is, it’s small)

Uses system resources efficiently

Is easy to read and maintain

Follows a consistent set of style guidelines

Uses an explicit design that follows established software
engineering conventions

Is easy to enhance

Is well tested and robust (that is, it works)

Is well documented

We could easily add dozens of items to this list. Some programmers,
for example, may feel that great code must be portable, must follow a
given set of programming style guidelines, or must be written in a
certain language (or not be written in a certain language). Some may feel
that great code must be written as simply as possible, while others
believe that it must be written quickly. Still others may feel that great
code is created on time and under budget.

Here is the definition this book uses:

Great code is software that is written using a consistent and
prioritized set of good software characteristics. In particular,
great code follows a set of rules that guide the decisions a
programmer makes when implementing an algorithm as
source code.

Two different programs do not have to follow the same set of rules
(that is, they need not possess the same set of characteristics) in order
for both to be great. In one environment, the priority might be
producing code that’s portable across different CPUs and operating
systems. In a different environment, efficiency (speed) might be the

primary goal, and portability might not be an issue. Neither program
would qualify as great according to the rules of the other, but as long as
the software consistently follows the guidelines established for that
particular program, you can argue that it is an example of great code.

1.5 The Environment for This Book

Although this book presents generic information, parts of the discussion
will necessarily be specific to a particular system. Because the Intel
Architecture PCs are, by far, the most common in use today, this book
will use that platform when discussing specific system-dependent
concepts.

Most of the specific examples in this book run on a late-model Intel
Architecture (including AMD) CPU under macOS, Windows, or Linux,
with a reasonable amount of RAM and other system peripherals
normally found on a late-model PC. This book attempts to stick with
standard library interfaces to the operating system (OS) wherever
possible, and it makes OS-specific calls only when the alternative is to
write “less than great” code. The concepts, if not the software itself, will
apply to Android, Chrome, iOS, Macs, Unix boxes, embedded systems,
and even mainframes, though you may need to research how to apply a
concept to your platform.

1.6 Additional Tips

No single book can completely cover everything you need to know in
order to write great code. This book, therefore, concentrates on the
areas that are most pertinent for machine organization, providing the 90
percent solution for those who are interested in writing the best
possible code. To get that last 10 percent you’ll need additional help.
Here are some suggestions:

Learn assembly language. Fluency in at least one assembly
language will fill in many missing details that you just won’t get by
learning machine organization alone. Unless you plan to use

assembly language in your software systems, you don’t have to learn
it on the platform(s) to which you’re targeting your software.
Probably your best bet is to learn 80x86 assembly language on a PC,
because there are lots of great software tools for learning Intel
Architecture assembly language (for example, HLA) that simply
don’t exist on other platforms. The point of learning assembly
language here is not to write assembly code, but to learn the
assembly paradigm. If you know 80x86 assembly language, you’ll
have a good idea of how other CPUs (such as the ARM or the IA-64
family) operate.

Study advanced computer architecture. Machine organization is a
subset of computer architecture, but space limitations prevent full
coverage of both in this book. While you may not need to know how
to design your own CPUs, studying computer architecture might
teach you something omitted here.

1.7 For More Information

Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach. 5th ed. Waltham, MA: Morgan Kaufmann,
2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

2
NUMERIC REPRESENTATION

High-level languages shield programmers from the pain of dealing with
low-level numeric representation. Writing great code, however, requires
that you understand how computers represent numbers, so that is the
focus of this chapter. Once you understand internal numeric
representation, you’ll discover efficient ways to implement many
algorithms and avoid the pitfalls associated with common programming
practices.

2.1 What Is a Number?

Having taught assembly language programming for many years, I’ve
discovered that most people don’t understand the fundamental
difference between a number and the representation of that number.
Most of the time, this confusion is harmless. However, many algorithms
depend on the internal and external representations we use for numbers
to operate correctly and efficiently. If you don’t understand the
difference between the abstract concept of a number and the
representation of that number, you’ll have trouble understanding, using,
or creating such algorithms.

A number is an intangible, abstract concept. It is an intellectual
device that we use to denote quantity. Let’s say I told you that a book
has one hundred pages. You could touch the pages—they are tangible.
You could even count those pages to verify that there are one hundred
of them. However, “one hundred” is simply an abstraction I’m applying
to the book as a way of describing its size.

The important thing to realize is that the following is not one
hundred:

100

This is nothing more than ink on paper forming certain lines and
curves (called glyphs). You might recognize this sequence of symbols as a
representation of one hundred, but this is not the actual value 100. It’s
just three symbols on this page. It isn’t even the only representation for
one hundred—consider the following, which are all different
representations of the value 100:

100 Decimal representation

C Roman numeral representation

6416 Base-16 (hexadecimal)
representation

11001002 Base-2 (binary) representation

1448 Base-8 (octal) representation

one hundred English representation

The representation of a number is (generally) some sequence of
symbols. For example, the common representation of the value one
hundred, “100,” is really a sequence of three numeric digits: the digit 1
followed by the digit 0 followed by a second 0 digit. Each of these digits
has some specific meaning, but we could have just as easily used the
sequence “64” to represent one hundred. Even the individual digits that
make up this representation of 100 are not numbers. They are numeric

digits, tools we use to represent numbers, but they are not numbers
themselves.

Now you might be wondering why you should even care whether a
sequence of symbols like “100” is the actual value one hundred or just
the representation of it. The reason is that you’ll encounter several
different sequences of symbols in a computer program that look like
numbers (that is, they look like “100”), and you don’t want to confuse
them with actual numeric values. Conversely, there are many different
representations for the value one hundred that a computer could use,
and it’s important for you to realize that they are equivalent.

2.2 Numbering Systems

A numbering system is a mechanism we use to represent numeric values.
Today, most people use the decimal (or base-10) numbering system, and
most computer systems use the binary (or base-2) numbering system.
Confusion between the two can lead to poor coding practices.

The Arabs developed the decimal numbering system we commonly
use today (this is why the 10 decimal digits are known as Arabic
numerals). The decimal system uses positional notation to represent values
with a small group of different symbols. Positional notation gives
meaning not only to the symbol itself, but also to the position of the
symbol in the sequence of symbols—a scheme that is far superior to
other, nonpositional, representations. To appreciate the difference
between a positional system and a nonpositional system, consider the
tally-slash representation of the number 25 in Figure 2-1.

Figure 2-1: Tally-slash representation of 25

The tally-slash representation uses a sequence of n marks to
represent the value n. To make the values easier to read, most people
arrange the tally marks in groups of five, as in Figure 2-1. The
advantage of the tally-slash numbering system is that it’s easy to use for

counting objects. However, the notation is bulky, and arithmetic
operations are difficult. The biggest problem with the tally-slash
representation is the amount of physical space it consumes. To represent
the value n requires an amount of space proportional to n. Therefore,
for large values of n, this notation becomes unusable.

2.2.1 The Decimal Positional Numbering System

The decimal positional numbering system represents numbers using
strings of Arabic numerals, optionally including a decimal point to
separate whole and fractional portions of the number representation.
The position of a digit in the string affects its meaning: each digit to the
left of the decimal point represents a value between 0 and 9, multiplied
by an increasing power of 10 (see Figure 2-2). The symbol immediately
to the left of the decimal point in the sequence represents a value
between 0 and 9. If there are at least two digits, the second symbol to
the left of the decimal point represents a value between 0 and 9 times
10, and so forth. To the right of the decimal point, the values decrease.

Figure 2-2: A positional numbering system

The numeric sequence 123.45 represents:

(1 × 102) + (2 × 101) + (3 × 100) + (4 × 10–1) + (5 × 10–2)

or:

100 + 20 + 3 + 0.4 + 0.05

To understand the power of the base-10 positional numbering
system, consider that, compared to the tally-slash system:

It can represent the value 10 in one-third the space.

It can represent the value 100 in about 3 percent of the space.

It can represent the value 1,000 in about 0.3 percent of the space.

As the numbers grow larger, the disparity becomes even greater.
Because of their compact and easy-to-recognize notation, positional
numbering systems are quite popular.

2.2.2 Radix (Base) Values

Humans developed the decimal numbering system because it
corresponds to the number of fingers (“digits”) on their hands.
However, decimal isn’t the only positional numbering system possible;
in fact, for most computer-based applications, it isn’t even the best
numbering system available. So, let’s take a look at how to represent
values in other numbering systems.

The decimal positional numbering system uses powers of 10 and 10
unique symbols for each digit position. Because decimal numbers use
powers of 10, we call them “base-10” numbers. By substituting a
different set of numeric digits and multiplying those digits by powers of
some base other than 10, we can devise a different numbering system.
The base, or radix, is the value that we raise to successive powers for
each digit to the left of the radix point (note that the term decimal point
applies only to decimal numbers).

As an example, we can create a base-8 (octal) numbering system using
eight symbols (0–7) and successive powers of 8. Consider the octal
number 1238 (the subscript denotes the base using standard

mathematical notation), which is equivalent to 8310:

1 × 82 + 2 × 81 + 3 × 80

or:

64 + 16 + 3

To create a base-n numbering system, you need n unique digits. The
smallest possible radix is 2 (for this scheme). For bases 2 through 10, the
convention is to use the Arabic digits 0 through n – 1 (for a base-n
system). For bases greater than 10, the convention is to use the
alphabetic digits a through z or A through Z (ignoring case) for digits
greater than 9. This scheme supports numbering systems through base
36 (10 numeric digits and 26 alphabetic digits). There’s no agreed-upon
convention for symbols beyond the 10 Arabic numeric digits and the 26
alphabetic digits. Throughout this book, we’ll deal with base-2, base-8,
and base-16 values because base 2 (binary) is the native representation
most computers use, base 8 was popular on older computer systems, and
base 16 is more compact than base 2. You’ll find that many programs
use these three bases, so it’s important to be familiar with them.

2.2.3 The Binary Numbering System

Since you’re reading this book, chances are pretty good that you’re
already familiar with the base-2, or binary, numbering system;
nevertheless, a quick review is in order. The binary numbering system
works just like the decimal numbering system, except binary uses only
the digits 0 and 1 (rather than 0–9) and uses powers of 2 (rather than
powers of 10).

Why even worry about binary? After all, almost every computer
language available allows programmers to use decimal notation
(automatically converting decimal representation to the internal binary
representation). Despite this capability, most modern computer systems
talk to I/O devices using binary, and their arithmetic circuitry operates
on binary data. Many algorithms depend upon binary representation for
correct operation. In order to write great code, then, you’ll need a
complete understanding of binary representation.

2.2.3.1 Converting Between Decimal and Binary Representation

To appreciate what the computer does for you, it’s useful to learn how
to convert between decimal and binary representations manually.

To convert a binary value to decimal, add 2i for each 1 in the binary
string, where i is the zero-based position of the binary digit. For
example, the binary value 110010102 represents:

1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

or:

128 + 64 + 8 + 2

or:

20210

Converting decimal to binary is almost as easy. Here’s an algorithm
that converts decimal representation to the corresponding binary
representation:

1. If the number is even, emit a 0. If the number is odd, emit a 1.

2. Divide the number by 2 and discard any fractional component or
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and the number is odd, insert a 1 before the
current string. If the quotient is not 0 and the number is even,
prefix your binary string with 0.

5. Go back to step 2 and repeat.

This example converts 202 to binary:

1. 202 is even, so emit a 0 and divide by 2 (101): 0

2. 101 is odd, so emit a 1 and divide by 2 (50): 10

3. 50 is even, so emit a 0 and divide by 2 (25): 010

4. 25 is odd, so emit a 1 and divide by 2 (12): 1010

5. 12 is even, so emit a 0 and divide by 2 (6): 01010

6. 6 is even, so emit a 0 and divide by 2 (3): 001010

7. 3 is odd, so emit a 1 and divide by 2 (1): 1001010

8. 1 is odd, so emit a 2 and divide by 2 (0): 11001010

9. The result is 0, so the algorithm is complete, producing 11001010.

2.2.3.2 Making Binary Numbers Easier to Read

As you can tell by the equivalent representations 20210 and 110010102,

binary representation is not as compact as decimal representation. We
need some way to make the digits, or bits, in binary numbers less bulky
and easier to read.

In the United States, most people separate every three digits with a
comma to make larger numbers easier to read. For example,
1,023,435,208 is much easier to read and comprehend than
1023435208. This book will adopt a similar convention for binary
numbers; each group of 4 binary bits will be separated with an
underscore. For example, the binary value 10101111101100102 will be

written as 1010_1111_1011_00102.

2.2.3.3 Representing Binary Values in Programming Languages

Thus far, this chapter has used the subscript notation embraced by
mathematicians to denote binary values (the lack of a subscript indicates
the decimal base). Subscripts are not generally recognized by program
text editors or programming language compilers, however, so we need
some other way to represent various bases within a standard ASCII text
file.

Generally, only assembly language compilers (“assemblers”) allow

the use of literal binary constants in a program.1 Because assemblers
vary widely, there are many different ways to represent binary literal
constants in an assembly language program. This book presents
examples using MASM and HLA, so it makes sense to adopt their
conventions.

MASM represents binary values as a sequence of binary digits (0 and
1) ending with a b or B. The binary representation for 9 would be 1001b in
a MASM source file.

HLA prefixes binary values with the percent symbol (%). To make
binary numbers more readable, HLA also allows you to insert
underscores within binary strings like so:

%11_1011_0010_1101

2.2.4 The Hexadecimal Numbering System

As noted earlier, binary number representation is verbose. Hexadecimal
representation offers two great features: it’s very compact, and it’s easy
to convert between binary and hexadecimal. Therefore, software
engineers generally use hexadecimal representation rather than binary
to make their programs more readable.

Because hexadecimal representation is base 16, each digit to the left
of the hexadecimal point represents some value times a successive power
of 16. For example, the number 123416 is equal to:

1 × 163 + 2 × 162 + 3 × 161 + 4 × 160

or:

4096 + 512 + 48 + 4

or:

466010

Hexadecimal representation uses the letters A through F for the
additional six digits it requires (above the 10 standard decimal digits, 0–
9). The following are all examples of valid hexadecimal numbers:

23416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

2.2.4.1 Representing Hexadecimal Values in Programming

Languages

One problem with hexadecimal representation is that it’s difficult to
differentiate hexadecimal values like “DEAD” from standard program
identifiers. Therefore, most programming languages use a special prefix
or suffix character to denote hexadecimal values. Here’s how you specify
literal hexadecimal constants in several popular languages:

The C, C++, C#, Java, Swift, and other C-derivative programming
languages use the prefix 0x. You’d use the character sequence 0xdead
for the hexadecimal value DEAD16.

The MASM assembler uses an h or H suffix. Because this doesn’t
completely resolve the ambiguity between certain identifiers and
literal hexadecimal constants (for example, “deadh” still looks like
an identifier to MASM), it also requires that a hexadecimal value
begin with a numeric digit. So, you would add 0 to the beginning of
the value (because a prefix of 0 does not alter the value of a numeric
representation) to get 0deadh, which unambiguously represents
DEAD16.

Visual Basic uses the &H or &h prefix. Continuing with the current
example, you’d use &Hdead to represent DEAD16 in Visual Basic.

Pascal (Delphi) uses the prefix $. So, you’d use $dead to represent
the current example in Delphi/Free Pascal.

HLA also uses the prefix $. As with binary numbers, it also allows
you to insert underscores into a hexadecimal number to make it
easier to read (for example, $FDEC_A012).

In general, this book will use the HLA/Delphi/Free Pascal format
except in examples specific to other programming languages. Because
there are several C/C++ examples in this book, you’ll frequently see the
C/C++ notation as well.

2.2.4.2 Converting Between Hexadecimal and Binary

Representations

Another reason hexadecimal notation is popular is because it’s easy to
convert between the binary and hexadecimal representations. By

memorizing the few simple rules shown in Table 2-1, you can mentally
perform this conversion.

Table 2-1: Binary/Hexadecimal Conversion Chart

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B

%1100 $C

%1101 $D

%1110 $E

%1111 $F

To convert the hexadecimal representation of a number into binary,
substitute the corresponding 4 bits for each hexadecimal digit. For
example, to convert $ABCD into the binary form %1010_1011_1100_1101,
convert each hexadecimal digit according to the values in Table 2-1:

A B C D Hexadecimal

1010 1011 1100 1101 Binary

Converting the binary representation of a number into hexadecimal
is almost as easy. First, pad the binary number with 0s to make sure it is
a multiple of 4 bits long. For example, given the binary number
1011001010, add two 0 bits to the left of the number to make it 12 bits
without changing its value: 001011001010. Next, separate the binary
value into groups of 4 bits: 0010_1100_1010. Finally, look up these
binary values in Table 2-1 and substitute the appropriate hexadecimal
digits: $2CA. As you can see, this is much simpler than converting
between decimal and binary or between decimal and hexadecimal.

2.2.5 The Octal Numbering System

Octal (base-8) representation was common in early computer systems,
so you might still see it in use now and then. Octal is great for 12-bit
and 36-bit computer systems (or any other size that is a multiple of 3),
but not particularly for computer systems whose bit size is a power of 2
(8-, 16-, 32-, and 64-bit computer systems). Nevertheless, some
programming languages allow you to specify numeric values in octal
notation, and you can still find some older Unix applications that use it.

2.2.5.1 Representing Octal Values in Programming Languages

The C programming language (and derivatives like C++ and Java),
MASM, Swift, and Visual Basic support octal representation. You
should be aware of the notation they use for octal numbers in case you
come across it in programs written in these languages.

In C, you specify the octal base by prefixing a numeric string with a
0 (zero). For example, 0123 is equivalent to the decimal value 8310

and definitely not equivalent to the decimal value 12310.

MASM uses a Q or q suffix. (Microsoft/Intel probably chose Q
because it looks like the letter O but isn’t likely to be confused with
a zero.)

Swift uses a 0o prefix. For example, 0o14 represents the decimal
value 1210.

Visual Basic uses the prefix &O (that’s the letter O, not a zero). For
example, you’d use &O123 to represent the decimal value 8310.

2.2.5.2 Converting Between Octal and Binary Representation

Converting between binary and octal is similar to converting between
binary and hexadecimal, except that you work in groups of 3 bits rather
than 4. See Table 2-2 for the list of binary and octal equivalent
representations.

Table 2-2: Binary/Octal Conversion Chart

BinaryOctal

%000 0

%001 1

%010 2

%011 3

%100 4

%101 5

%110 6

%111 7

To convert octal into binary, replace each octal digit in the number
with the corresponding 3 bits from Table 2-2. For example, when you
convert 123q into a binary value, the final result is %0_0101_0011:

1 2 3

001 010 011

To convert a binary number into octal, you break up the binary
string into groups of 3 bits (padding with 0s, as necessary) and then
replace each triad with the corresponding octal digit from Table 2-2.

To convert an octal value to hexadecimal notation, convert the octal
number to binary and then convert the binary value to hexadecimal.

2.3 Numeric/String Conversions

In this section, we’ll explore conversions from string to numeric form
and vice versa. Because most programming languages (or their libraries)
perform these conversions automatically, beginning programmers are
often unaware that they’re even taking place. For example, consider
how easy it is to convert a string to numeric form in various languages:

cin >> i; // C++
readln(i); // Pascal
let j = Int(readLine() ?? "")! // Swift
input i // BASIC
stdin.get(i); // HLA

In each of these statements, the variable i can hold some integer
number. The input from the user’s console, however, is a string of
characters. The programming language’s runtime library is responsible
for converting that string of characters to the internal binary form the
CPU requires. Note that Swift only allows you to read a string from the
standard input; you must explicitly convert that string to an integer
using the Int() constructor/type conversion function.

Unfortunately, if you have no idea of the cost of these statements,
you won’t realize how they can impact your program when performance
is critical. It’s important to understand the underlying work involved in
the conversion algorithms so you won’t frivolously use statements like
these.

NOTE

For simplicity’s sake, we’ll discuss unsigned integer values and ignore the
possibility of illegal characters and numeric overflow. Therefore, the
following algorithms slightly understate the actual work involved.

Use this algorithm to convert a string of decimal digits to an integer
value:

1. Initialize a variable with 0; this will hold the final value.

2. If there are no more digits in the string, then the algorithm is
complete, and the variable holds the numeric value.

3. Fetch the next digit (moving from left to right) from the string and
convert it from ASCII to an integer.

4. Multiply the variable by 10, and then add in the digit fetched in
step 3.

5. Return to step 2 and repeat.

Converting an integer value to a string of characters takes even more
effort:

1. Initialize a string to the empty string.

2. If the integer value is 0, output a 0, and the algorithm is complete.

3. Divide the current integer value by 10, computing the remainder
and quotient.

4. Convert the remainder (always in the range 0..92) to a character,
and insert the character at the beginning of the string.

5. If the quotient is not 0, make it the new value and repeat steps 3–5.

6. Output the characters in the string.

The particulars of these algorithms are not important. What is
important is that these steps execute once for each output character and
division is very slow. So, a simple statement like one of the following
can hide a fair amount of work from the programmer:

printf("%d", i); // C
cout << i; // C++
print i // BASIC
write(i); // Pascal
print(i) // Swift
stdout.put(i); // HLA

To write great code, you don’t need to avoid using numeric/string
conversions altogether; however, a great programmer will take care to
use them only as necessary.

Remember that these algorithms are valid only for unsigned
integers. Signed integers require a little more effort to process (though
the extra work is almost negligible). Floating-point values, however, are
far more difficult to convert between string and numeric form, so keep
that in mind when writing code that uses floating-point arithmetic.

2.4 Internal Numeric Representation

Most modern computer systems use an internal binary format to
represent values and other objects. However, most systems can only
efficiently represent binary values of a given size. In order to write great
code, you need to make sure that your programs use data objects that
the machine can represent efficiently. This section will describe how
computers physically represent values so you can design your programs
accordingly.

2.4.1 Bits

The smallest unit of data on a binary computer is a single bit. Because a
bit can represent only two different values (typically 0 or 1), you might
assume that you can’t use it for much. But in fact, there’s an infinite
number of two-item combinations you can represent with a single bit.
Here are some examples (with arbitrary binary encodings I’ve created):

Zero (0) or one (1)

False (0) or true (1)

Off (0) or on (1)

Male (0) or female (1)

Wrong (0) or right (1)

You’re not limited to representing binary data types, either (that is,
those objects that have only two distinct values). You could also use a

single bit to represent any two distinct items:

The numbers 723 (0) and 1,245 (1)

The colors red (0) and blue (1)

You could even represent two unrelated objects with a single bit. For
example, you could use the bit value 0 to represent the color red and the
bit value 1 to represent the number 3,256. You can represent any two
different values with a single bit—but only two different values.
Therefore, individual bits aren’t sufficient for most computational
needs. To overcome the limitations of a single bit, we create bit strings
from a sequence of multiple bits.

2.4.2 Bit Strings

By combining bits into a sequence, we can form binary representations
that are equivalent to other representations of numbers, like
hexadecimal and octal. Most computer systems don’t let you combine
an arbitrary number of bits, so you have to work with bit strings of
certain fixed lengths.

A nibble is a collection of 4 bits. Most computer systems don’t
provide efficient access to nibbles in memory. Notably, it takes exactly 1
nibble to represent a single hexadecimal digit.

A byte is 8 bits and is the smallest addressable data item on many
CPUs; that is, the CPU can efficiently retrieve data in groups of 8 bits
from memory. For this reason, the smallest data type that many
languages support consumes 1 byte of memory (regardless of the actual
number of bits the data type requires).

Because the byte is the smallest unit of storage on most machines,
and many languages use bytes to represent objects that require fewer
than 8 bits, we need some way of denoting individual bits within a byte.
To describe the bits within a byte, we’ll use bit numbers. As Figure 2-3
shows, bit 0 is the low-order (LO), or least significant, bit, and bit 7 is the
high-order (HO), or most significant, bit of the byte. We’ll refer to all
other bits by their number.

Figure 2-3: Bit numbering in a byte

A word is defined differently depending on the CPU: it may be a 16-
bit, 32-bit, or 64-bit object. This book adopts the 80x86 terminology
and defines a word as a collection of 16 bits. As with bytes, we’ll use bit
numbers for a word, starting with bit number 0 for the LO bit and
working our way up to bit 15, the HO bit (see Figure 2-4).

Figure 2-4: Bit numbers in a word

Notice that a word contains exactly 2 bytes. Bits 0 through 7 form
the LO byte, and bits 8 through 15 form the HO byte (see Figure 2-5).

Figure 2-5: The 2 bytes in a word

A double word (or dword) is exactly what its name implies—a pair of
words. Therefore, a double-word quantity is 32 bits long, as shown in
Figure 2-6.

Figure 2-6: Bit layout in a double word

Figure 2-7 shows that a double word comprises 2 words or 4 bytes.

Figure 2-7: Bytes and words in a double word

As noted, most CPUs efficiently handle objects up to a certain size
(typically 32 or 64 bits on contemporary systems). That doesn’t mean
you can’t work with larger objects, only that it’s less efficient to do so.
You typically won’t see programs handling numeric objects much larger
than about 128 or 256 bits. Some programming languages make 64-bit
integers available, and most languages support 64-bit floating-point
values, so for these data types we’ll use the term quad word. Finally, we’ll
use long word to describe 128-bit values; although few languages today

support them,3 this gives us some room to grow.

We can break down quad words into 2 double words, 4 words, 8
bytes, or 16 nibbles. Likewise, we can break down long words into 2
quad words, 4 double words, 8 words, or 16 bytes.

Intel 80x86 platforms also support an 80-bit type that Intel calls a
tbyte (short for “ten byte”) object. The 80x86 CPU family uses tbyte
variables to hold extended precision floating-point values and certain
binary-coded decimal (BCD) values.

In general, with an n-bit string you can represent up to 2n different
values. Table 2-3 shows the number of possible objects you can
represent with nibbles, bytes, words, double words, quad words, and
long words.

Table 2-3: Number of Values Representable with Bit Strings

Size of bit
string (in bits)

Number of possible combinations (2n)

4 16

8 256

16 65,536

32 4,294,967,296

64 18,446,744,073,709,551,616

128 340,282,366,920,938,463,463,374,607,431,768,211,456

2.5 Signed and Unsigned Numbers

The binary number 0…000004 represents 0; 0…00001 represents 1; 0…
00010 represents 2; and so on toward infinity. But what about negative
numbers? To represent signed values, most computer systems use the
two’s complement numbering system. The representation of signed
numbers places some fundamental restrictions on them, so it’s
important that you understand how signed and unsigned numbers are
represented differently in a computer system in order to use them
efficiently.

With n bits, we can represent only 2n different objects. Because
negative values are objects in their own right, we’ll have to divide these

2n combinations between negative and non-negative values. So, for
example, a byte can represent the negative values –128 through –1 and
the non-negative values 0 to 127. With a 16-bit word, we can represent
signed values in the range –32,768 to +32,767. With a 32-bit double
word, we can represent values in the range –2,147,483,648 to
+2,147,483,647. In general, with n bits we can represent the signed

values in the range –2n–1 to +2n–1 – 1.

The two’s complement system uses the HO bit as a sign bit. If the
HO bit is 0, the number is non-negative and has the usual binary
encoding; if the HO bit is 1, the number is negative and uses the two’s
complement encoding. Here are some examples using 16-bit numbers:

$8000 (%1000_0000_0000_0000) is negative because the HO bit is 1.

$100 (%0000_0001_0000_0000) is non-negative because the HO bit is 0.

$7FFF (%0111_1111_1111_1111) is non-negative.

$FFFF (%1111_1111_1111_1111) is negative.

$FFF (%0000_1111_1111_1111) is non-negative.

To negate a number, you can use the two’s complement operation as
follows:

1. Invert all the bits in the number; that is, change all the 0s to 1s and
vice versa.

2. Add 1 to the inverted result (ignoring any overflow).

If the result is negative (has its HO bit set), then this is the two’s
complement form of the non-negative value.

For example, these are the steps to compute the 8-bit equivalent of
the decimal value –5:

1. %0000_0101 5 (in binary).

2. %1111_1010 Invert all the bits.

3. %1111_1011 Add 1 to obtain –5 (in two’s complement form).

If we take –5 and negate it, the result is 5 (%0000_0101), just as we
expect:

1. %1111_1011 Two’s complement for –5.

2. %0000_0100 Invert all the bits.

3. %0000_0101 Add 1 to obtain 5 (in binary).

Let’s look at some 16-bit examples and their negations.

First, negate 32,767 ($7FFF):

1. %0111_1111_1111_1111 +32,767, the largest 16-bit positive number.

2. %1000_0000_0000_0000 Invert all the bits (8000h).

3. %1000_0000_0000_0001 Add 1 (8001h, or –32,767).

Now negate 16,384 ($4000):

1. %0100_0000_0000_0000 16,384.

2. %1011_1111_1111_1111 Invert all the bits ($BFFF).

3. %1100_0000_0000_0000 Add 1 ($C000 or –16,384).

And now negate –32,768 ($8000):

1. %1000_0000_0000_0000 –32,768, the smallest 16-bit negative number.

2. %0111_1111_1111_1111 Invert all the bits ($7FFF).

3. %1000_0000_0000_0000 Add 1 ($8000 or –32,768).

$8000 inverted becomes $7FFF, and after adding 1 we obtain $8000! Wait,
what’s going on here: –(–32,768) is –32,768? Of course not. However,
the 16-bit two’s complement numbering system cannot represent the
value +32,768. In general, you cannot negate the smallest negative value
in the two’s complement numbering system.

2.6 Useful Properties of Binary Numbers

Here are some properties of binary values that you might find useful in
your programs:

If bit position 0 of a binary (integer) value contains 1, the number is
an odd number; if this bit contains 0, then the number is even.

If the LO n bits of a binary number all contain 0, then the number

is evenly divisible by 2n.

If a binary value contains a 1 in bit position n, and 0s everywhere

else, then that number is equal to 2n.

If a binary value contains all 1s from bit position 0 up to (but not
including) bit position n, and all other bits are 0, then that value is

equal to 2n – 1.

Shifting all the bits in a number to the left by one position
multiplies the binary value by 2.

Shifting all the bits of an unsigned binary number to the right by
one position effectively divides that number by 2 (this does not
apply to signed integer values). Odd numbers are rounded down.

Multiplying two n-bit binary values together may require as many
as 2 × n bits to hold the result.

Adding or subtracting two n-bit binary values never requires more
than n + 1 bits to hold the result.

Inverting all the bits in a binary number (that is, changing all the 0s
to 1s and vice versa) is the same thing as negating (changing the
sign) of the value and then subtracting 1 from the result.

Incrementing (adding 1 to) the largest unsigned binary value for a
given number of bits always produces a value of 0.

Decrementing (subtracting 1 from) 0 always produces the largest
unsigned binary value for a given number of bits.

An n-bit value provides 2n unique combinations of those bits.

The value 2n–1 contains n bits, each containing the value 1.

It’s a good idea to memorize all the powers of 2 from 20 through 216

(see Table 2-4), as these values come up in programs all the time.

Table 2-4: Powers of 2

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1,024

11 2,048

12 4,096

13 8,192

14 16,384

15 32,768

16 65,536

2.7 Sign Extension, Zero Extension, and Contraction

With the two’s complement system, a single negative value is
represented differently depending on the size of the representation. An
8-bit signed value must be converted for use in an expression involving
a 16-bit number. This conversion and its converse—converting a 16-bit
value to 8 bits—are the sign extension and contraction operations,
respectively.

Consider the value –64. The 8-bit two’s complement value for this
number is $C0. The 16-bit equivalent is $FFC0. Clearly, these are not the
same bit pattern. Now consider the value +64. The 8- and 16-bit
versions of this value are $40 and $0040, respectively. We extend the size
of negative values differently than we extend the size of non-negative
values.

To sign-extend a value, copy the sign bit into the additional HO bits
in the new format. For example, to sign-extend an 8-bit number to a 16-
bit number, copy bit 7 of the 8-bit number into bits 8 through 15 of the
16-bit number. To sign-extend a 16-bit number to a double word, copy
bit 15 into bits 16 through 31 of the double word.

When adding a byte quantity to a word quantity, you need to sign-
extend the byte to 16 bits before adding the two numbers. Other
operations may require a sign extension to 32 bits.

Table 2-5 provides several examples of sign extension.

Table 2-5: Sign Extension Examples

8 bits 16 bits 32 bits Binary (two’s complement)

$80 $FF80 $FFFF_FF80 %1111_1111_1111_1111_1111_1111_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $FF9A $FFFF_FF9A %1111_1111_1111_1111_1111_1111_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $FFFF_8086 %1111_1111_1111_1111_1000_0000_1000_0110

Zero extension converts small unsigned values to larger unsigned
values. Zero extension is very easy—just store 0s in the HO byte(s) of
the larger operand. For example, to zero-extend the 8-bit value $82 to 16
bits, you insert a 0 for the HO byte, yielding $0082.

Further examples are listed in Table 2-6.

Table 2-6: Zero Extension Examples

8 bits 16 bits 32 bits Binary

$80 $0080 $0000_0080 %0000_0000_0000_0000_0000_0000_1000_0000

$28 $0028 $0000_0028 %0000_0000_0000_0000_0000_0000_0010_1000

$9A $009A $0000_009A %0000_0000_0000_0000_0000_0000_1001_1010

$7F $007F $0000_007F %0000_0000_0000_0000_0000_0000_0111_1111

n/a $1020 $0000_1020 %0000_0000_0000_0000_0001_0000_0010_0000

n/a $8086 $0000_8086 %0000_0000_0000_0000_1000_0000_1000_0110

Many high-level language compilers automatically handle sign and
zero extension. The following examples in C demonstrate how this
works:

signed char sbyte; // Chars in C are byte values.
short int sword; // Short integers in C are *usually* 16-bit values.
long int sdword; // Long integers in C are *usually* 32-bit values.
. . .
sword = sbyte; // Automatically sign-extends the 8-bit value to 16 bits.

sdword = sbyte; // Automatically sign-extends the 8-bit value to 32 bits.
sdword = sword; // Automatically sign-extends the 16-bit value to 32 bits.

Some languages (such as Ada or Swift) require an explicit cast from a
smaller size to a larger size. Check the reference manual for your
particular language to see if this is necessary. The advantage of a
language that requires you to provide an explicit conversion is that the
compiler never does anything behind your back. If you fail to do the
conversion yourself, the compiler emits a diagnostic message.

The important thing to realize about sign and zero extension is that
they aren’t always free. Assigning a smaller integer to a larger integer
may require more machine instructions (taking longer to execute) than
moving data between two like-sized integer variables. Therefore, you
should be careful about mixing variables of different sizes within the
same arithmetic expression or assignment statement.

Sign contraction—converting a value with some number of bits to
the same value with a fewer number of bits—is a little more
troublesome. For example, consider the value –448. As a 16-bit
hexadecimal number, its representation is $FE40. The magnitude of this
number is too large to fit into 8 bits, so you can’t sign-contract it to 8
bits.

To properly sign-contract one value to another, you must look at the
HO byte(s) that you want to discard. First, the HO bytes must all
contain either 0 or $FF. Second, the HO bit of your resulting value must
match every bit you’ve removed from the number. Here are some
examples of converting 16-bit values to 8-bit values (including a couple
of failures):

$FF80 (%1111_1111_1000_0000) can be sign-contracted to $80 (%1000_0000).

$0040 (%0000_0000_0100_0000) can be sign-contracted to $40 (%0100_0000).

$FE40 (%1111_1110_0100_0000) cannot be sign-contracted to 8 bits.

$0100 (%0000_0001_0000_0000) cannot be sign-contracted to 8 bits.

Some high-level languages, like C, will simply store the LO portion
of the expression into a smaller variable and discard the HO component
—at best, the C compiler may give you a warning about the loss of

precision that may occur. You can often quiet the compiler, but it still
doesn’t check for invalid values. Typically, you’d use code like the
following to sign-contract a value in C:

signed char sbyte; // Chars in C are byte values.
short int sword; // Short integers in C are *usually* 16-bit values.
long int sdword; // Long integers in C are *usually* 32-bit values.
. . .
sbyte = (signed char) sword;
sbyte = (signed char) sdword;
sword = (short int) sdword;

The only safe solution in C is to compare the result of the expression
to an upper- and lower-bound value before attempting to store the value
into a smaller variable. Here’s the preceding code with these checks in
place:

if(sword >= -128 && sword <= 127)
{
 sbyte = (signed char) sword;
}
else
{
 // Report appropriate error.
}

// Another way, using assertions:

assert(sword >= -128 && sword <= 127)
sbyte = (signed char) sword;

assert(sdword >= -32768 && sdword <= 32767)
sword = (short int) sdword;

This code gets pretty ugly. In C/C++, you’d probably want to turn
this into a macro (#define) or a function so your code would be a bit
more readable.

Some high-level languages (such as Free Pascal and Delphi)
automatically sign-contract values and then check the value to ensure it

fits in the destination operand.5 Such languages raise some sort of
exception (or stop the program) if a range violation occurs. To take
corrective action, you’ll either need to write some exception-handling
code or use an if statement sequence similar to the one in the C
example just given.

2.8 Saturation

You can also reduce the size of an integer value through saturation,
which is useful when you’re willing to live with a possible loss of
precision. To convert a value via saturation, you copy the LO bits of the
larger object into the smaller object. If the larger value is outside the
smaller object’s range, then you clip the larger value by setting the
smaller object to the largest (or smallest) value within the smaller value’s
range.

For example, when converting a 16-bit signed integer to an 8-bit
signed integer, if the 16-bit value is in the range –128 through +127,
you simply copy the LO byte into the 8-bit object. If the 16-bit signed
value is greater than +127, then you clip the value to +127 and store
+127 into the 8-bit object. Likewise, if the value is less than –128, you
clip the final 8-bit object to –128. Saturation works the same way when
you clip 32-bit values to smaller values.

If the larger value is outside the range of the smaller value, there will
be a loss of precision during the conversion. While clipping the value is
never desirable, sometimes it’s better than raising an exception or
otherwise rejecting the calculation. For many applications, such as audio
or video, the clipped result is still recognizable to the end user, so this is
a reasonable conversion scheme.

Many CPUs support saturation arithmetic in their special
“multimedia extension” instruction sets—for example, the
MMX/SSE/AVX instruction extensions on the Intel 80x86 processor
family. Most CPUs’ standard instruction sets, as well as most high-level
languages, do not provide direct support for saturation, but the
technique is not difficult. Consider the following Free Pascal/Delphi
code, which uses saturation to convert a 32-bit integer to a 16-bit
integer:

var
 li :longint;
 si :smallint;
 . . .
 if(li > 32767) then

 si := 32767;

 else if(li < -32768) then

 si := -32768;

 else
 si := li;

2.9 Binary-Coded Decimal Representation

The binary-coded decimal (BCD) format, as its name suggests, encodes
decimal values using a binary representation. Common general-purpose
high-level languages (like C/C++, Pascal, and Java) rarely support
decimal values. However, business-oriented programming languages
(like COBOL and many database languages) do. So, if you’re writing
code that interfaces with a database or some language that supports
decimal arithmetic, you may need to deal with BCD representation.

BCD values consist of a sequence of nibbles, with each nibble
representing a value in the range 0 to 9. (The BCD format uses only 10
of the possible 16 values represented by a nibble.) With a byte we can
represent values containing two decimal digits (0..99), as shown in
Figure 2-8. With a word, we can represent four decimal digits (0..9999).
A double word can represent up to eight decimal digits.

Figure 2-8: BCD data representation in a byte

An 8-bit BCD variable can represent values in the range 0 to 99,
while that same 8 bits, holding a binary value, could represent values in
the range 0 to 255. Likewise, a 16-bit binary value can represent values
in the range 0 to 65,535, while a 16-bit BCD value can represent only

about a sixth of those values (0..9999). Inefficient storage isn’t the only
problem with BCD, though—BCD calculations also tend to be slower
than binary calculations.

The BCD format does have two saving graces: it’s very easy to
convert BCD values between the internal numeric representation and
their decimal string representations, and it’s also very easy to encode
multidigit decimal values in hardware when using BCD—for example,
when using a set of dials, with each dial representing a single digit. For
these reasons, you’re likely to see people using BCD in embedded
systems (such as toaster ovens and alarm clocks) but rarely in general-
purpose computer software.

A few decades ago, people thought that calculations involving BCD
(or just decimal) arithmetic were more accurate than binary calculations.
Therefore, they would often perform important calculations, like those
involving monetary units, using decimal-based arithmetic. Certain
calculations can produce more accurate results in BCD, but for most
calculations, binary is more accurate. This is why most modern
computer programs represent all values (including decimal values) in a
binary form. For example, the Intel 80x86 floating-point unit (FPU)
supports a pair of instructions for loading and storing BCD values.
Internally, the FPU converts these BCD values to binary. It only uses
BCD as an external (to the FPU) data format. This approach generally
produces more accurate results.

2.10 Fixed-Point Representation

There are two ways computer systems commonly represent numbers
with fractional components: fixed-point representation and floating-
point representation.

Back in the days when CPUs didn’t support floating-point arithmetic
in hardware, fixed-point arithmetic was very popular with programmers
writing high-performance software that dealt with fractional values.
There’s less software overhead needed to support fractional values in a
fixed-point format than in floating-point. However, CPU manufacturers
added FPUs to their CPUs to support floating-point in hardware, and

today, it’s fairly rare to see someone attempt fixed-point arithmetic on a
general-purpose CPU. It’s usually more cost-effective to use the CPU’s
native floating-point format.

Although CPU manufacturers have worked hard at optimizing the
floating-point arithmetic on their systems, in certain circumstances,
carefully written assembly language programs that use fixed-point
calculations will run faster than the equivalent floating-point code.
Certain 3D gaming applications, for example, may produce faster
computations using a 16:16 (16-bit integer, 16-bit fractional) format
rather than a 32-bit floating-point format. Because there are some very
good uses for fixed-point arithmetic, this section discusses fixed-point
representation and fractional values using the fixed-point format.

NOTE

Chapter 4 will discuss the floating-point format.

As you’ve seen, positional numbering systems represent fractional
values (values between 0 and 1) by placing digits to the right of the radix
point. In the binary numbering system, each bit to the right of the
binary point represents the value 0 or 1 multiplied by some successive
negative power of 2. We represent that fractional component of a value
using sums of binary fractions. For example, the value 5.25 is
represented by the binary value 101.01. The conversion to decimal
yields:

1 × 22 + 1 × 20 + 1 × 2–2 = 4 + 1 + 0.25 = 5.25

When using a fixed-point binary format, you choose a particular bit
in the binary representation and implicitly place the binary point before
that bit. You choose the position of the binary point based on the
number of significant bits you require in the fractional portion of the
number. For example, if your values’ integer components can range
from 0 to 999, you’ll need at least 10 bits to the left of the binary point
to represent this range of values. If you require signed values, you’ll

need an extra bit for the sign. In a 32-bit fixed-point format, this leaves
either 21 or 22 bits for the fractional part, depending on whether your
value is signed.

Fixed-point numbers are a small subset of the real numbers. Because
the number of values between any two integer values is infinite, fixed-
point values cannot exactly represent every single one (doing so would
require an infinite number of bits). With fixed-point representation, we
have to approximate most of the real numbers. Consider the 8-bit fixed-
point format, which uses 6 bits for the integer portion and 2 bits for the
fractional component. The integer component can represent values in
the range 0 to 63 (or signed values in the range –32 to +31). The
fractional component can represent only four different values: 0.0, 0.25,
0.5, and 0.75. You cannot exactly represent 1.3 with this format; the best
you can do is approximate it by choosing the value closest to it (1.25).
This introduces error. You can reduce this error by adding further bits
to the right of the binary point in your fixed-point format (at the
expense of reducing the range of the integer component or adding more
bits to your fixed-point format). For example, if you move to a 16-bit
fixed-point format using an 8-bit integer and an 8-bit fractional
component, then you can approximate 1.3 using the binary value
1.01001101. The decimal equivalent is as follows:

1 + 0.25 + 0.03125 + 0.15625 + 0.00390625 = 1.30078125

Adding more bits to the fractional component of your fixed-point
number will give you a more accurate approximation of this value (the
error is only 0.00078125 using this format, compared to 0.05 in the
previous format).

In a fixed-point binary numbering system, there are certain values
you can never accurately represent regardless of how many bits you add
to the fractional part of your fixed-point representation (1.3 just
happens to be such a value). This is probably the main reason why
people (mistakenly) feel that decimal arithmetic is more accurate than
binary arithmetic (particularly when working with decimal fractions like
0.1, 0.2, 0.3, and so on).

To contrast the comparative accuracy of the two systems, let’s
consider a fixed-point decimal system (using BCD representation). If we
choose a 16-bit format with 8 bits for the integer portion and 8 bits for
the fractional portion, we can represent decimal values in the range 0.0
to 99.99 with two decimal digits of precision to the right of the decimal
point. We can exactly represent values like 1.3 in this BCD notation
using a hex value like $0130 (the implicit decimal point appears between
the second and third digits in this number). As long as you use only the
fractional values 0.00 to 0.99 in your computations, this BCD
representation is more accurate than the binary fixed-point
representation (using an 8-bit fractional component).

In general, however, the binary format is more accurate. The binary
format lets you exactly represent 256 different fractional values, whereas
BCD lets you represent only 100. If you pick an arbitrary fractional
value, it’s likely the binary fixed-point representation provides a better
approximation than the decimal format (because there are over two and
a half times as many binary versus decimal fractional values). (You can
extend this comparison to larger formats: for example, with a 16-bit
fractional component, the decimal/BCD fixed-point format gives you
exactly four digits of precision; the binary format, on the other hand,
offers over six times the resolution—65,536 rather than 10,000
fractional values.) Decimal fixed-point format has the advantage only
when you regularly work with the fractional values that it can exactly
represent. In the United States, monetary computations commonly
produce these fractional values, so programmers figured the decimal
format is better for monetary computations. However, given the
accuracy most financial computations require (generally four digits to
the right of the decimal point is the minimum precision), it’s usually
better to use a binary format.

If you absolutely, positively need to exactly represent the fractional
values between 0.00 and 0.99 with at least two digits of precision, the
binary fixed-point format is not a viable solution. Fortunately, you don’t
have to use a decimal format; as you’ll soon see, there are other binary
formats that will let you exactly represent these values.

2.11 Scaled Numeric Formats

Fortunately, there’s a numeric representation that combines the exact
representation of certain decimal fractions with the precision of the
binary format. Known as the scaled numeric format, this representation is
also efficient to use and doesn’t require any special hardware.

Another advantage of the scaled numeric format is that you can
choose any base, not just decimal, for your format. For example, if
you’re working with ternary (base-3) fractions, you can multiply your
original input value by 3 (or a power of 3) and exactly represent values

like 1/3, 2/3, 4/9, 7/27, and so on—something you can’t do in either the

binary or decimal numbering systems.

To represent fractional values, you multiply your original value by
some value that converts the fractional component to a whole number.
For example, if you want to maintain two decimal digits of precision to
the right of the decimal point, multiply your values by 100 upon input.
This translates values like 1.3 to 130, which we can exactly represent
using an integer value. Assuming you do this calculation with all your
fractional values (and they have the same two digits of precision to the
right of the decimal point), you can manipulate your values using
standard integer arithmetic operations. For example, if you have the
values 1.5 and 1.3, their integer conversion produces 150 and 130. If
you add these two values, you get 280 (which corresponds to 2.8).
When you need to output these values, you divide them by 100 and
emit the quotient as the integer portion of the value and the remainder
(zero-extended to two digits, if necessary) as the fractional component.
Other than needing to write specialized input and output routines that
handle the multiplication and division by 100 (as well as dealing with
the decimal point), you’ll find that this scaled numeric scheme is almost
as easy as doing regular integer calculations.

If you scale your values as described here, you’ve limited the
maximum range of the integer portion of your numbers. For example, if
you need two decimal digits of precision to the right of your decimal
point (meaning you multiply the original value by 100), then you may

only represent (unsigned) values in the range 0 to 42,949,672 rather
than the normal range of 0 to 4,294,967,296.

When you’re doing addition or subtraction with a scaled format,
both operands must have the same scaling factor. If you’ve multiplied
the left operand by 100, you must multiply the right operand by 100 as
well. For example, if you’ve scaled the variable i10 by 10 and you’ve
scaled the variable j100 by 100, you need to either multiply i10 by 10 (to
scale it by 100) or divide j100 by 10 (to scale it down to 10) before
attempting to add or subtract these two numbers. This ensures that
both operands have the radix point in the same position (note that this
applies to literal constants as well as to variables).

In multiplication and division operations, the operands do not
require the same scaling factor prior to the operation. However, once
the operation is complete, you may need to adjust the result. Suppose
you have two values you’ve scaled by 100 to produce two digits of
precision after the decimal point, i = 25 (0.25) and j = 1 (0.01). If you
compute k = i * j using standard integer arithmetic, you’ll get 25 (25 × 1
= 25), which is interpreted as 0.25, but the result should be 0.0025. The
computation is correct; the problem is understanding how the
multiplication operator works. We’re actually computing:

(0.25 × (100)) × (0.01 × (100)) = 0.25 × 0.01 × (100 × 100) (commutative
laws allow this) = 0.0025 × (10,000) = 25

The final result actually gets scaled by 10,000 because both i and j
have been multiplied by 100; when you multiply their values, you wind
up with a value multiplied by 10,000 (100 × 100) rather than 100. To
solve this problem, you should divide the result by the scaling factor
once the computation is complete. For example, k = (i * j)/100.

The division operation suffers from a similar problem. Suppose we
have the values m = 500 (5.0) and n = 250 (2.5) and we want to compute k =
m/n. We would normally expect to get the result 200 (2.0, which is
5.0/2.5). However, here’s what we’re actually computing:

(5 × 100) / (2.5 × 100) = 500/250 = 2

At first blush this may look correct, but the result is really 0.02 after
you factor in the scaling operation. The result we need is 200 (2.0).
Division by the scaling factor eliminates the scaling factor in the final
result. Therefore, to properly compute the result, we need to compute k
= 100 * m/n.

Multiplication and division place a limit on the precision you have
available. If you have to premultiply the dividend by 100, then the
dividend must be at least 100 times smaller than the largest possible
integer value, or an overflow will occur (producing an incorrect result).
Likewise, when you’re multiplying two scaled values, the final result
must be 100 times less than the maximum integer value, or an overflow
will occur. Because of these issues, you may need to set aside additional
bits or work with small numbers when using scaled numeric
representation.

2.12 Rational Representation

One big problem with the fractional representations we’ve seen is that
they provide a close approximation, but not an exact representation, for

all rational values.6 For example, in binary or decimal you cannot

exactly represent the value 1/3. You could switch to a ternary (base-3)

numbering system and exactly represent 1/3 , but then you wouldn’t be

able to exactly represent fractional values like 1/2 or 1/10. We need a

numbering system that can represent any rational fractional value.

Rational representation uses pairs of integers to represent fractional
values. One integer represents the numerator (n) of a fraction, and the
other represents the denominator (d). The actual value is equal to n/d.
As long as n and d are “relatively prime” (that is, not both evenly
divisible by the same value), this scheme provides a good representation
for fractional values within the bounds of the integer representation
you’re using for n and d. Arithmetic is quite easy; you use the same
algorithms to add, subtract, multiply, and divide fractional values that
you learned in grade school when dealing with fractions. However,
certain operations may produce really large numerators or

denominators (to the point where you get integer overflow in these
values). Other than this problem, you can represent a wide range of
fractional values using this scheme.

2.13 For More Information

Knuth, Donald E. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

3
BINARY ARITHMETIC AND BIT OPERATIONS

As Chapter 2 explained, understanding how computers represent data in
binary is a prerequisite to writing software that works well on them. Of
equal importance is understanding how computers operate on binary
data. That’s the focus of this chapter, which explores arithmetic, logical,
and bit operations on binary data.

3.1 Arithmetic Operations on Binary and
Hexadecimal Numbers

Often, you need to manually operate on two binary (or hexadecimal)
values in order to use the result in your source code. Although there are
calculators that can compute such results, you should be able to perform
simple arithmetic operations on binary operands by hand. Hexadecimal
arithmetic is sufficiently painful that a hexadecimal calculator (or a
software-based calculator that supports hexadecimal operations, such as
the Windows calculator, or a smartphone app) belongs on every
programmer’s desk. Arithmetic operations on binary values, however,
are easier than decimal arithmetic.

Knowing how to manually compute binary arithmetic results is
essential because several important algorithms use these operations (or
variants of them). This section describes how to manually add, subtract,
multiply, and divide binary values, and how to perform various logical
operations on them.

3.1.1 Adding Binary Values

Adding two binary values is easy; there are only eight rules to learn:1

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 with carry

Carry + 0 + 0 = 1

Carry + 0 + 1 = 0 with carry

Carry + 1 + 0 = 0 with carry

Carry + 1 + 1 = 1 with carry

Once you know these eight rules, you can add any two binary values
together. Here’s a step-by-step example of binary addition:

 0101
 + 0011

Step 1: Add the LO bits (1 + 1 = 0 + carry).
 c
 0101
 + 0011

 0

Step 2: Add the carry plus the bits in bit position 1 (carry + 0 + 1 = 0 +
carry).
 c
 0101
 + 0011

 00
Step 3: Add the carry plus the bits in bit position 2 (carry + 1 + 0 = 0 +
carry).
 c
 0101

 + 0011

 000
Step 4: Add the carry plus the bits in bit position 3 (carry + 0 + 0 = 1).
 0101
 + 0011

 1000

Here are some more examples:

 1100_1101 1001_1111 0111_0111
+ 0011_1011 + 0001_0001 + 0000_1001
----------- ----------- -----------
1_0000_1000 1011_0000 1000_0000

3.1.2 Subtracting Binary Values

Like addition, binary subtraction has eight rules:

0 – 0 = 0

0 – 1 = 1 with a borrow

1 – 0 = 1

1 – 1 = 0

0 – 0 – borrow = 1 with a borrow

0 – 1 – borrow = 0 with a borrow

1 – 0 – borrow = 0

1 – 1 – borrow = 1 with a borrow

Here’s a step-by-step example of binary subtraction:

 0101
 - 0011

Step 1: Subtract the LO bits (1 – 1 = 0).
 0101
 - 0011

 0
Step 2: Subtract the bits in bit position 1 (0 – 1 = 1 + borrow).
 0101
 - 0011
 b

 10

Step 3: Subtract the borrow and the bits in bit position 2 (1 – 0 – b = 0).
 0101
 - 0011

 010
Step 4: Subtract the bits in bit position 3 (0 – 0 = 0).
 0101
 - 0011

 0010

Here are some more examples:

 1100_1101 1001_1111 0111_0111
- 0011_1011 - 0001_0001 - 0000_1001
----------- ----------- -----------
 1001_0010 1000_1110 0110_1110

3.1.3 Multiplying Binary Values

Multiplication of binary numbers is simple; it follows the same rules as
decimal multiplication involving only 0s and 1s:

0 × 0 = 0

0 × 1 = 0

1 × 0 = 0

1 × 1 = 1

Here’s a step-by-step example of binary multiplication:

 1010
 × 0101

Step 1: Multiply the LO bit of the multiplier times the multiplicand.
 1010
 × 0101

 1010 (1 × 1010)

Step 2: Multiply bit 1 of the multiplier times the multiplicand.
 1010
 × 0101

 1010 (1 × 1010)
 0000 (0 × 1010)

 01010 (partial sum)

Step 3: Multiply bit 2 of the multiplier times the multiplicand.
 1010
 × 0101

 001010 (previous partial sum)
 1010 (1 × 1010)

 110010 (partial sum)

Step 4: Multiply bit 3 of the multiplier times the multiplicand.
 1010
 × 0101

 110010 (previous partial sum)
 0000 (0 × 1010)

 0110010 (product)

3.1.4 Dividing Binary Values

Binary division uses the same (longhand) division algorithm as decimal
division. Figure 3-1 shows the steps in a decimal division problem.

Figure 3-1: Decimal division (3456/12)

This algorithm is easier in binary because at each step you don’t have
to guess how many times 12 goes into the remainder or multiply 12 by
your guess to obtain the amount to subtract. At each step in the binary
algorithm, the divisor goes into the remainder exactly zero or one times.
For example, consider the division of 27 (11011) by 3 (11) shown in
Figure 3-2.

Figure 3-2: Longhand division in binary

3.2 Logical Operations on Bits

There are four main logical operations we’ll need to perform on
hexadecimal and binary numbers: AND, OR, XOR (exclusive-or), and

NOT. In contrast to the arithmetic operations, a hexadecimal calculator
isn’t necessary to perform these operations.

The logical AND, OR, and XOR operations accept two single-bit
operands and compute the following results:

AND:
 0 and 0 = 0
 0 and 1 = 0
 1 and 0 = 0
 1 and 1 = 1

OR:
 0 or 0 = 0
 0 or 1 = 1
 1 or 0 = 1
 1 or 1 = 1

XOR:
 0 xor 0 = 0
 0 xor 1 = 1
 1 xor 0 = 1
 1 xor 1 = 0

Tables 3-1, 3-2, and 3-3 show the truth tables for the AND, OR, and
XOR operations, respectively. A truth table is just like the multiplication
tables you encountered in elementary school. The values in the left
column correspond to the left operand of the operation. The values in
the top row correspond to the right operand. The result is at the
intersection of the row and column (for a particular pair of operands).

Table 3-1: AND Truth Table

AND 0 1

0 0 0

1 0 1

Table 3-2: OR Truth Table

OR 0 1

0 0 1

1 1 1

Table 3-3: XOR Truth Table

XOR 0 1

0 0 1

1 1 0

In plain English, the logical AND operation translates as, “If the first
operand is 1 and the second operand is 1, the result is 1; otherwise the
result is 0.” We could also state this as “If either or both operands are 0,
the result is 0.” The logical AND operation is useful for forcing a 0
result. If one of the operands is 0, the result is 0 regardless of the value
of the other operand. If one of the operands contains 1, then the result
is the value of the other operand.

Colloquially, the logical OR operation is, “If the first operand or the
second operand (or both) is 1, the result is 1; otherwise the result is 0.”
This is also known as the inclusive-OR operation. If one of the operands
to the logical-OR operation is 1, the result is 1. If an operand is 0, the
result is the value of the other operand.

In English, the logical XOR operation is, “If the first or second
operand, but not both, is 1, the result is 1; otherwise, the result is 0.” If
one of the operands is a 1, the result is the inverse of the other operand.

The logical NOT operation is unary (meaning it accepts only one
operand). Table 3-4 is the truth table for the NOT operation. This
operator inverts the value of its operand.

Table 3-4: NOT Truth Table

NOT 0 1

1 0

3.3 Logical Operations on Binary Numbers and Bit
Strings

Because most programming languages manipulate groups of 8, 16, 32,
or 64 bits, we need to extend the definition of these logical operations
beyond single-bit operands to operate on a bit-by-bit (or bitwise) basis.
Given two values, a bitwise logical function operates on bit 0 from both
source operands, producing bit 0 in the result operand; it operates on
bit 1 of both operands, producing bit 1 of the result; and so on. For
example, if you want to compute the bitwise logical AND of two 8-bit
numbers, you would logically AND each pair of bits in the two
numbers:

%1011_0101
%1110_1110

%1010_0100

This bit-by-bit execution applies to the other logical operations as
well. The ability to force bits to 0 or 1 using the logical AND and OR
operations, and to invert bits using the logical XOR operation, is very
important when you’re working with strings of bits (such as binary
numbers). These operations let you selectively manipulate certain bits
within a value while leaving other bits unaffected. For example, if you
have an 8-bit binary value X and you want to guarantee that bits 4
through 7 contain 0s, AND the value X with the binary value %0000_1111.
This bitwise AND operation forces the HO 4 bits of X to 0 and leaves
the LO 4 bits of X unchanged. Likewise, you could force the LO bit of
X to 1 and invert bit number 2 of X by ORing X with %0000_0001 and then
exclusive-ORing (XORing) X with %0000_0100.

Manipulating bit strings with the logical AND, OR, and XOR
operations is known as masking. This term originates from the fact that
we can use certain values (1 for AND, 0 for OR and XOR) to “mask out”
or “mask in” certain bits in an operand while forcing other bits to 0, 1,
or their inverse.

Several languages provide operators that let you compute the bitwise
AND, OR, XOR, and NOT of their operands. The C/C++/Java/Swift
language family uses the ampersand (&) for bitwise AND, the pipe (|) for
bitwise OR, the caret (^) for bitwise XOR, and the tilde (~) for bitwise
NOT, as shown here:

// Here's a C/C++ example:

 i = j & k; // Bitwise AND
 i = j | k; // Bitwise OR
 i = j ^ k; // Bitwise XOR
 i = ~j; // Bitwise NOT

The Visual Basic and Free Pascal/Delphi languages let you use the and,
or, xor, and not operators with integer operands. From 80x86 assembly
language, you can use the AND, OR, NOT, and XOR instructions.

3.4 Useful Bit Operations

Although bit operations may seem a bit abstract, they are quite useful
for many non-obvious purposes. This section describes some of their
useful properties in various languages.

3.4.1 Testing Bits in a Bit String Using AND

You can use the bitwise AND operator to test individual bits in a bit
string to see if they are 0 or 1. If you logically AND a value with a bit
string that contains a 1 in a certain bit position, the result of the AND
will be 0 if the corresponding bit contains a 0, and nonzero if that bit
position contains 1. Consider the following C/C++ code, which checks
an integer value to see if it is odd or even by testing bit 0 of the integer:

IsOdd = (ValueToTest & 1) != 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits
0000_0000_0000_0000_0000_0000_0000_0001 // Bitwise AND with the value 1

0000_0000_0000_0000_0000_0000_0000_000x // Result of bitwise AND

The result is 0 if the LO bit of ValueToTest contains a 0 in bit position
0. The result is 1 if ValueToTest contains a 1 in bit position 1. This
calculation ignores all other bits in ValueToTest.

3.4.2 Testing a Set of Bits for Zero/Not Zero Using AND

You can also use the bitwise AND operator to see if all bits in a set are 0.
For example, one way to check if a number is evenly divisible by 16 is to
see if the LO 4 bits are all 0s. The following Free Pascal/Delphi
statement uses the bitwise AND operator to accomplish this:

IsDivisibleBy16 := (ValueToTest and $f) = 0;

In binary form, here’s what this bitwise AND operation is doing:

xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx // Assuming ValueToTest is 32 bits
0000_0000_0000_0000_0000_0000_0000_1111 // Bitwise AND with $F

0000_0000_0000_0000_0000_0000_0000_xxxx // Result of bitwise AND

The result is 0 if and only if the LO 4 bits of ValueToTest are all 0.

3.4.3 Comparing a Set of Bits Within a Binary String

The AND and OR operations are particularly useful if you need to
compare a subset of the bits in a binary value against some other value.
For example, you might want to compare two 6-bit values found in bits
0, 1, 10, 16, 24, and 31 of a pair of 32-bit values. The trick is to set all

the uninteresting bits to 0 and then compare the two results.2

Consider the following three binary values; x denotes bits whose
values we don’t care about:

%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10
%1xxxxxx0xxxxxxx1xxxxx0xxxxxxxx10
%1xxxxxx1xxxxxxx1xxxxx1xxxxxxxx11

The first and second binary values (assuming we’re interested only in
bits 31, 24, 16, 10, 1, and 0) are equal. If we compare either of the first
two values against the third value, we’ll find that they are not equal. The
third value is also greater than the first two. In C/C++ and assembly,
this is how we could compare these values:

// C/C++ example

 if((value1 & 0x81010403) == (value2 & 0x81010403))
 {
 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value2 are equal

 }

 if((value1 & 0x81010403) != (value3 & 0x81010403))
 {
 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value3 are not equal
 }

// HLA/x86 assembly example:

 mov(value1, eax); // EAX = value1
 and($8101_0403, eax); // Mask out unwanted bits in EAX
 mov(value2, edx); // EDX = value2
 and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

 if(eax = edx) then // See if the remaining bits match

 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value2 are equal

 endif;

 mov(value1, eax); // EAX = value1
 and($8101_0403, eax); // Mask out unwanted bits in EAX
 mov(value3, edx); // EDX = value2
 and($8101_0403, edx); // Mask out the same set of unwanted bits in EDX

 if(eax <> edx) then // See if the remaining bits do not match

 // Do something if bits 31, 24, 16, 10, 1, and 0 of
 // value1 and value3 are not equal

 endif;

3.4.4 Creating Modulo-n Counters Using AND

A modulo-n counter counts from 03 to some maximum value and then
resets to 0. Modulo-n counters are great for creating repeating
sequences of numbers such as 0, 1, 2, 3, 4, 5, . . . n – 1; 0, 1, 2, 3, 4, 5, . .
. n – 1; 0, 1, You can use such sequences to create circular queues
and other objects that reuse array elements upon encountering the end
of the data structure. The normal way to create a modulo-n counter is
to add 1 to the counter, divide the result by n, and then keep the
remainder. The following code examples demonstrate the
implementation of a modulo-n counter in C/C++, Pascal, and Visual
Basic:

cntr = (cntr + 1) % n; // C/C++/Java/Swift
cntr := (cntr + 1) mod n; // Pascal/Delphi

cntr = (cntr + 1) Mod n ' Visual Basic

However, division is an expensive operation, requiring far more time
to execute than addition. In general, you’ll find it more efficient to
implement modulo-n counters using a comparison rather than the
remainder operator. Here’s a Pascal example:

cntr := cntr + 1; // Pascal example
if(cntr >= n) then
 cntr := 0;

For certain special cases, when n is a power of 2, you can increment a
modulo-n counter more efficiently and conveniently using the AND
operation. To do so, increment your counter and then logically AND it

with the value x = 2m – 1 (2m – 1 contains 1s in bit positions 0..m – 1,
and 0s everywhere else). Because the AND operation is much faster than
division, AND-driven modulo-n counters are much more efficient than
those using the remainder operator. On most CPUs, using the AND
operator is quite a bit faster than using an if statement. The following
examples show how to implement a modulo-n counter for n = 32 using
the AND operation:

//Note: 0x1f = 31 = 25 – 1, so n = 32 and m = 5

 cntr = (cntr + 1) & 0x1f; // C/C++/Java/Swift example
 cntr := (cntr + 1) and $1f; // Pascal/Delphi example
 cntr = (cntr + 1) and &h1f ' Visual Basic example

The assembly language code is especially efficient:

inc(eax); // Compute (eax + 1) mod 32
and($1f, eax);

3.5 Shifts and Rotates

Another set of logical operations on bit strings are the shift and rotate
operations. These functions can be further broken down into shift lefts,
rotate lefts, shift rights, and rotate rights. These operations are very useful
in many programs.

The shift left operation moves each bit in a bit string one position to
the left, as shown in Figure 3-3. Bit 0 moves into bit position 1, the
previous value in bit position 1 moves into bit position 2, and so on.

Figure 3-3: Shift left operation (on a byte)

You might be asking two questions: “What goes into bit 0?” and
“Where does the HO bit wind up?” We’ll shift a 0 into bit 0, and the
previous value of the HO bit will be the carry out of this operation.

Several high-level languages (such as C/C++/C#, Swift, Java, and
Free Pascal/Delphi) provide a shift left operator. In the C language
family, this operator is <<. In Free Pascal/Delphi, you use the shl

operator. Here are some examples:

// C:
 cLang = d << 1; // Assigns d shifted left one position to
 // variable "cLang"
// Delphi:
 Delphi := d shl 1; // Assigns d shifted left one position to
 // variable "Delphi"

Shifting the binary representation of a number one position to the
left is equivalent to multiplying that value by 2. If you’re using a
programming language that doesn’t provide an explicit shift left
operator, you can simulate this by multiplying a binary integer value by
2. Although the multiplication operation is usually slower than the shift
left operation, most compilers are smart enough to translate a
multiplication by a constant power of 2 into a shift left operation.
Therefore, you could write code like the following in Visual Basic to do
a shift left:

vb = d * 2

A shift right operation is similar to a shift left, except we move the
data in the opposite direction. Bit 7 moves into bit 6, bit 6 moves into

bit 5, bit 5 moves into bit 4, and so on. During a shift right, we’ll move
a 0 into bit 7, and bit 0 will be the carry out of the operation (see Figure
3-4). C, C++, C#, Swift, and Java use the >> operator for a shift right
operation. Free Pascal/Delphi uses the shr operator. Most assembly
languages also provide a shift right instruction (shr on the 80x86).

Figure 3-4: The shift right operation (on a byte)

Shifting an unsigned binary value one position to the right divides
that value by 2. For example, if you shift the unsigned representation of
254 ($FE) one place to the right, you get 127 ($7F), exactly as you’d
expect. However, if you shift the 8-bit two’s complement binary
representation of –2 ($FE) one position to the right, you get 127 ($7F),
which is not correct. To divide a signed number by 2 using a shift, we
use a third shift operation, arithmetic shift right, which doesn’t modify
the value of the HO bit. Figure 3-5 shows the arithmetic shift right
operation for an 8-bit operand.

Figure 3-5: Arithmetic shift right operation (on a byte)

This generally produces the result you expect for two’s complement
signed operands. For example, if you perform the arithmetic shift right
operation on –2 ($FE), you get –1 ($FF). Note, however, that this
operation always rounds the numbers to the closest integer that is less
than or equal to the actual result. If you arithmetically shift right –1 ($FF),
the result is –1, not 0. Because –1 is less than 0, the arithmetic shift
right operation rounds toward –1. This is not a “bug” in the arithmetic
shift right operation; it just uses a different (though valid) definition of

integer division. The bottom line is that you probably won’t be able to
use a signed division operator as a substitute for arithmetic shift right in
languages that don’t support arithmetic shift right, because most integer
division operators round toward 0.

It’s rare for a high-level language to support both the logical shift
right and the arithmetic shift right. Worse still, the specifications for
certain languages leave it up to the compiler’s implementer to decide
whether to use an arithmetic shift right or a logical shift right operation.
Therefore, it’s only safe to use the shift right operator on values whose
HO bit will cause both forms of the shift right operation to produce the
same result. To guarantee that a shift right is a logical shift right or an
arithmetic shift right operation, you’ll either have to drop down into
assembly language or handle the HO bit manually. The high-level code
gets ugly really fast, so a quick inline assembly statement might be a
better solution if your program doesn’t need to be portable across
different CPUs. The following code demonstrates how to simulate a
32-bit logical shift right and arithmetic shift right in languages that
don’t guarantee the type of shift they use:

// Written in C/C++, assuming 32-bit integers, logical shift right:
 // Compute bit 30.
 Bit30 = ((ShiftThisValue & 0x80000000) != 0) ? 0x40000000 : 0;
 // Shifts bits 0..30.
 ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;
 // Merge in Bit #30.
 ShiftThisValue = ShiftThisValue | Bit30;

// Arithmetic shift right operation

 Bits3031 = ((ShiftThisValue & 0x80000000) != 0) ? 0xC0000000 : 0;
 // Shifts bits 0..30.
 ShiftThisValue = (ShiftThisValue & 0x7fffffff) >> 1;
 // Merge bits 30/31.
 ShiftThisValue = ShiftThisValue | Bits3031;

Many assembly languages also provide various rotate instructions
that circulate bits through an operand by taking the bits shifted out of
one end of the operand and shifting them into the other end. Few high-
level languages provide this operation; fortunately, you won’t need it
very often. If you do, you can synthesize this operation using the shift
operators available in your high-level language:

// Pascal/Delphi Rotate Left, 32-bit example:
// Puts bit 31 into bit 0, clears other bits.
CarryOut := (ValueToRotate shr 31);
ValueToRotate := (ValueToRotate shl 1) or CarryOut;

For more information on the type of shift and rotate operations that
are possible, consult The Art of Assembly Language (No Starch Press).

3.6 Bit Fields and Packed Data

CPUs generally operate most efficiently on byte, word, double-word

and quad-word data types,4 but occasionally you’ll need to work with a
data type whose size is something other than 8, 16, 32, or 64 bits. In
such cases, you may be able to save some memory by packing different
strings of bits together as compactly as possible, without wasting any
bits to align a particular data field on a byte or other boundary.

Consider a date of the form 04/02/01. It takes three numeric values
to represent this date: month, day, and year. Months use the values 1
through 12, which require at least 4 bits to represent. Days use the
range 1 through 31, which take 5 bits to represent. The year value,
assuming that we’re working with values in the range 0 through 99,
requires 7 bits. The total of 4 + 5 + 7 is 16 bits, or 2 bytes. We can pack
our date data into 2 bytes rather than the 3 that would be required if we
used a separate byte for each of the values. This saves 1 byte of memory
for each date stored, which could be a substantial saving if you need to
store many dates. You might arrange the bits as shown in Figure 3-6.

Figure 3-6: Short packed date format (16 bits)

MMMM represents the 4 bits that hold the month value, DDDDD the 5 bits
that hold the day, and YYYYYYY the 7 bits that hold the year. Each
collection of bits representing a data item is a bit field. We could
represent April 2, 2001, with $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101
04 02 01

Although packed values are space efficient (that is, they use little
memory), they are computationally inefficient (slow!). The reason? It
takes extra instructions to unpack the data from the various bit fields.
These extra instructions take time to execute (and additional bytes to
hold the instructions); hence, you must carefully consider whether
packed data fields will save you anything. The following sample
HLA/x86 code demonstrates packing and unpacking this 16-bit date
format.

program dateDemo;

#include("stdlib.hhf")

static

 day: uns8;
 month: uns8;
 year: uns8;
 packedDate: word;

begin dateDemo;

 stdout.put("Enter the current month, day, and year: ");
 stdin.get(month, day, year);

 // Pack the data into the following bits:
 //
 // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 // m m m m d d d d d y y y y y y y

 mov(0, ax);
 mov(ax, packedDate); // Just in case there is an error.
 if(month > 12) then
 stdout.put("Month value is too large", nl);

 elseif(month = 0) then
 stdout.put("Month value must be in the range 1..12", nl);

 elseif(day > 31) then
 stdout.put("Day value is too large", nl);

 elseif(day = 0) then
 stdout.put("Day value must be in the range 1..31", nl);

 elseif(year > 99) then
 stdout.put("Year value must be in the range 0..99", nl);

 else

 mov(month, al);
 shl(5, ax);
 or(day, al);
 shl(7, ax);
 or(year, al);
 mov(ax, packedDate);

 endif;

 // Okay, display the packed value:
 stdout.put("Packed data = $", packedDate, nl);

 // Unpack the date:
 mov(packedDate, ax);
 and($7f, al); // Retrieve the year value.
 mov(al, year);

 mov(packedDate, ax); // Retrieve the day value.
 shr(7, ax);
 and(%1_1111, al);
 mov(al, day);

 mov(packedDate, ax); // Retrieve the month value.
 rol(4, ax);
 and(%1111, al);
 mov(al, month);

 stdout.put("The date is ", month, "/", day, "/", year, nl);

end dateDemo;

Keeping in mind the Y2K5 problem, adopting a date format that
supports only a two-digit year is rather foolish. Consider the better date
format shown in Figure 3-7.

Figure 3-7: Long packed date format (32 bits)

Because there are more bits in a 32-bit variable than are needed to
hold the date, even accounting for years in the range 0 through 65,535,
this format allots a full byte for the month and day fields. An application
can manipulate these two fields as byte objects, reducing the overhead
to pack and unpack these fields on processors that support byte access.
This leaves fewer bits for the year, but 65,536 years is probably

sufficient (it’s a safe bet that your software won’t be in use 63,000 years
from now).

You could argue that this is no longer a packed date format. After all,
we needed three numeric values, two of which fit just nicely into 1 byte
each and one that should have at least 2 bytes. This “packed” date
format consumes the same 4 bytes as the unpacked version, not the
fewest bits possible. So, in this example, packed effectively means
packaged or encapsulated. By packing the data into a double-word
variable, the program can treat the date value as a single data value
rather than as three separate variables. This means that you can often
get away with a single machine instruction to operate on this data rather
than three separate instructions.

Another difference between this long packed date format and the
short date format in Figure 3-6 is that this long date format rearranges
the Year, Month, and Day fields. This allows you to easily compare two dates
using an unsigned integer comparison. Consider the following
HLA/assembly code:

mov(Date1, eax); // Assume Date1 and Date2 are double-word variables
if(eax > Date2) then // using the long packed date format.

 << do something if Date1 > Date2 >>

endif;

Had you kept the different date fields in separate variables or
organized the fields differently, you wouldn’t have been able to compare
Date1 and Date2 in such a straightforward way. Even if you don’t realize
any space savings, packing data can make certain computations more
convenient or even more efficient (contrary to what normally happens
when you pack data).

Some high-level languages provide built-in support for packed data.
For example, in C you can define structures like the following:

struct
{
 unsigned bits0_3 :4;
 unsigned bits4_11 :8;
 unsigned bits12_15 :4;
 unsigned bits16_23 :8;

 unsigned bits24_31 :8;
} packedData;

This structure specifies that each field is an unsigned object that
holds 4, 8, 4, 8, and 8 bits, respectively. The :n item after each
declaration specifies the minimum number of bits the compiler will
allocate for the given field.

Unfortunately, it isn’t possible to show how a C/C++ compiler will
allocate the values from a 32-bit double word among the fields, because
C/C++ compiler implementers are free to implement these bit fields any
way they see fit. The arrangement of the bits within the bit string is
arbitrary (for example, the compiler could allocate the bits0_3 field in
bits 28 through 31 of the ultimate object). The compiler can also inject
extra bits between fields, or use a larger number of bits for each field
(which is actually the same thing as injecting extra padding bits between
fields). Most C compilers attempt to minimize extraneous padding, but
compilers (especially on different CPUs) do vary. Therefore, C/C++
struct bit field declarations are almost guaranteed to be nonportable,
and you can’t really count on what the compiler is going to do with
those fields.

The advantage of using the compiler’s built-in data-packing
capabilities is that the compiler automatically packs and unpacks the
data for you. Given the following C/C++ code, the compiler would
automatically emit the necessary machine instructions to store and
retrieve the individual bit fields for you:

struct
{
 unsigned year :7;
 unsigned month :4;
 unsigned day :5;
} ShortDate;
 . . .
 ShortDate.day = 28;
 ShortDate.month = 2;
 ShortDate.year = 3; // 2003

3.7 Packing and Unpacking Data

The advantage of packed data types is efficient memory use. Consider
the Social Security number (SSN) used in the United States, a nine-
digit identification code in the following form (each X represents a single
decimal digit):

XXX–XX–XXXX

Encoding an SSN using three separate (32-bit) integers takes 12
bytes. That’s more than the 11 bytes needed to represent the number
using an array of characters. A better solution is to encode each field
using short (16-bit) integers. Now it takes only 6 bytes to represent the
SSN. Because the middle field in the SSN is always between 0 and 99,
we can actually shave one more byte off the size of this structure by
encoding the middle field with a single byte. Here’s a sample Free
Pascal/Delphi record structure that defines this data structure:

SSN :record

 FirstField: smallint; // smallints are 16 bits in Free Pascal/Delphi
 SecondField: byte;
 ThirdField: smallint;

end;

If we drop the hyphens in the SSN, the result is a nine-digit number.
Because we can exactly represent all nine-digit values using 30 bits, we
could encode any legal SSN using a 32-bit integer. However, some
software that manipulates SSNs may need to operate on the individual
fields. This means using expensive division, modulo, and multiplication
operators in order to extract fields from a SSN you’ve encoded in a 32-
bit integer format. Furthermore, converting SSNs to and from strings is
more complicated when you’re using the 32-bit format.

Conversely, it’s easy to insert and extract individual bit fields using
fast machine instructions, and it’s also less work to create a standard
string representation (including the hyphens) of one of these fields.
Figure 3-8 shows a straightforward implementation of the SSN packed
data type using a separate string of bits for each field (note that this
format uses 31 bits and ignores the HO bit).

Figure 3-8: SSN packed fields encoding

Fields that begin at bit position 0 in a packed data object can be
accessed most efficiently, so you should arrange the fields in your

packed data type such that the field you access most often6 begins at bit
0. If you have no idea which field you’ll access most often, assign the
fields so they begin on a byte boundary. If there are unused bits in your
packed type, spread them throughout the structure so that individual
fields begin on a byte boundary and those fields consume multiples of 8
bits.

We’ve got only one unused bit in the SSN example shown in Figure
3-8, but it turns out that we can use this extra bit to align two fields on a
byte boundary and ensure that one of those fields occupies a bit string
whose length is a multiple of 8 bits. Consider Figure 3-9, which shows a
rearranged version of our SSN data type.

Figure 3-9: A (possibly) improved encoding of the SSN

One problem with the data format in Figure 3-9 is that we can’t sort

SSNs in an intuitive way by comparing 32-bit unsigned integers.7 If you
intend to do a lot of sorting based on the entire SSN, the format in
Figure 3-8 is probably better.

If this type of sorting isn’t important to you, the format in Figure 3-9
has some advantages. This packed type actually uses 8 bits (rather than
7) to represent SecondField (along with moving SecondField down to bit
position 0); the extra bit will always contain 0. This means that
SecondField consumes bits 0 through 7 (a whole byte) and ThirdField begins
on a byte boundary (bit position 8). ThirdField doesn’t consume a

multiple of 8 bits, and FirstField doesn’t begin on a byte boundary, but
we’ve done fairly well with this encoding, considering we only had one
extra bit to play around with.

The next question is, “How do we access the fields of this packed
type?” There are two separate activities here. We need to retrieve, or
extract, the packed fields, and we need to insert data into these fields.
The AND, OR, and SHIFT operations provide the tools for this.

When operating on these fields, it’s convenient to work with three
separate variables rather than with the packed data directly. For our
SSN example, we can create the three variables—FirstField, SecondField,
and ThirdField—and then extract the actual data from the packed value
into these three variables, operate on the variables, and insert the data
from the variables back into their fields when we’re done.

To extract the SecondField data from the packed format shown in
Figure 3-9 (remember, the field aligned to bit 0 is the easiest one to
access), copy the data from the packed representation to the SecondField
variable and then mask out all but the SecondField bits using the AND
operation. Because SecondField is a 7-bit value, the mask is an integer
containing 1s in bit positions 0 through 6 and 0s everywhere else. The
following C/C++ code demonstrates how to extract this field into the
SecondField variable (assuming packedValue is a variable holding the 32-bit
packed SSN):

SecondField = packedValue & 0x7f; // 0x7f = %0111_1111

Extracting fields that are not aligned at bit 0 takes a little more work.
Consider the ThirdField entry in Figure 3-9. We can mask out all the bits
associated with the first and second fields by logically ANDing the
packed value with %_11_1111_1111_1111_0000_0000 ($3F_FF00). However, this
leaves the ThirdField value sitting in bits 8 through 21, which is not
convenient for various arithmetic operations. The solution is to shift the
masked value down 8 bits so that it’s aligned at bit 0 in our working
variable. The following Pascal/Delphi code does this:

ThirdField := (packedValue and $3fff00) shr 8;

You can also shift first and then do the logical AND operation
(though this requires a different mask, $11_1111_1111_1111 or $3FFF). Here’s
the C/C++/Swift code that extracts ThirdField using that technique:

ThirdField = (packedValue >> 8) & 0x3FFF;

To extract a field that is aligned against the HO bit, such as the first
field in our SSN packed data type, shift the HO field down so that it’s
aligned at bit 0. The logical shift right operation automatically fills in
the HO bits of the result with 0s, so no masking is necessary. The
following Pascal/Delphi code demonstrates this:

FirstField := packedValue shr 22; // Delphi's SHR is a logical shift right.

In HLA/x86 assembly language, we can easily access data at any
arbitrary byte boundary in memory. That allows us to treat both the
second and third fields as though they are aligned at bit 0 in the data
structure. In addition, because the SecondField value is an 8-bit value
(with the HO bit always containing 0), it takes only a single machine
instruction to unpack the data, as shown here:

movzx((type byte packedValue), eax);

This instruction fetches the first byte of packedValue (which is the LO
8 bits of packedValue on the 80x86) and zero-extends this value to 32 bits
in EAX (movzx stands for “move with zero extension”). The EAX register
contains the SecondField value after this instruction executes.

The ThirdField value from our packed data type isn’t an even multiple
of 8 bits long, so we’ll still need a masking operation to clear the unused
bits from the 32-bit result we produce. However, because ThirdField is
aligned on a byte (8-bit) boundary in our packed structure, we’ll be able
to avoid the shift operation that was necessary in the high-level code.
Here’s the HLA/x86 assembly code that extracts the third field from our
packedValue object:

mov((type word packedValue[1]), ax); // Extracts bytes 1 & 2
 // from packedValue.
and($3FFF, eax); // Clears all the undesired bits.

Extracting FirstField from the packedValue object in HLA/x86 assembly
code is identical to the high-level code; we’ll simply shift the upper 10
bits (which comprise FirstField) down to bit 0:

mov(packedValue, eax);
shr(22, eax);

Assuming the data you want to insert appears in some variable and
contains 0s in the unused bits, inserting a field into a packed object
requires three operations. First, if necessary, you shift the field’s data to
the left so its alignment matches the corresponding field in the packed
object. Next, clear the corresponding bits in the packed structure, then
logically OR the shifted field into the packed object. Figure 3-10 shows
the details of this operation.

Figure 3-10: Inserting ThirdField into the SSN packed type

Here’s the C/C++/Swift code that accomplishes the operation shown
in Figure 3-10:

packedValue = (packedValue & 0xFFc000FF) | (ThirdField << 8);

$FFC000FF is the hexadecimal value that corresponds to 0s in bit
positions 8 through 21 and 1s everywhere else.

3.8 For More Information

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Knuth, Donald E. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

4
FLOATING-POINT REPRESENTATION

Floating-point arithmetic is an approximation of real arithmetic that
solves the major problem with integer data types—the inability to
represent fractional values. However, the inaccuracies in this
approximation can lead to serious defects in application software. In
order to write great software that produces correct results when using
floating-point arithmetic, programmers must be aware of the machine’s
underlying numeric representation and exactly how floating-point
arithmetic approximates real arithmetic.

4.1 Introduction to Floating-Point Arithmetic

There is an infinite number of possible real values. Floating-point
representation uses a finite number of bits and, therefore, can represent
a finite number of different values. When a given floating-point format
cannot exactly represent some real value, the closest value that the
format can exactly represent is used. This section describes how the
floating-point format works so you can better understand the drawbacks
of these approximations.

Consider a couple of problems with integer and fixed-point formats.
Integers cannot represent any fractional values, and they can represent

only values in the range 0 through 2n – 1 or –2n–1 through 2n–1 – 1.
Fixed-point formats represent fractional values, but at the expense of
the range of integer values they can represent. This problem, which the
floating-point format solves, is one of dynamic range.

Consider a simple 16-bit unsigned fixed-point format that uses 8 bits
for the fractional component and 8 bits for the integer component of
the number. The integer component can represent values in the range 0
through 255, and the fractional component can represent the values 0

and fractions between 2–8 and 1 (with a resolution of about 2–8). If in a
string of calculations you need only 2 bits to represent the fractional
values 0.0, 0.25, 0.5, and 0.75, the extra 6 bits in the fractional part of
the number go to waste. Wouldn’t it be nice if we could utilize those
bits in the integer portion of the number to extend its range from 0
through 255 to 0 through 16,383? Well, that’s the basic concept behind
the floating-point representation.

In a floating-point value, the radix point (binary point) can float
between digits in the number as needed. So, in a 16-bit binary number
that needs only 2 bits of precision for the fractional component, the
binary point can float down between bits 1 and 2, leaving bits 2 through
15 for the integer portion. A floating-point format needs one additional
field to specify the position of the radix point within the number,
equivalent to the exponent in scientific notation.

Most floating-point formats use some number of bits to represent a
mantissa and a smaller number of bits to represent an exponent. The
mantissa is a base value that usually falls within a limited range (for
example, between 0 and 1). The exponent is a multiplier that, when
applied to the mantissa, produces values outside this range. The big
advantage of the mantissa/exponent configuration is that a floating-
point format can represent values across a wide range. However,
separating the number into these two parts means floating-point
formats can represent only numbers with a specific number of significant
digits. If the difference between the smallest and largest exponent is
greater than the number of significant digits in the mantissa (and it

usually is), then the floating-point format cannot exactly represent all
the integers between the smallest and largest values in the floating-point
representation.

To see the impact of limited-precision arithmetic, we’ll adopt a
simplified decimal floating-point format for our examples. Our floating-
point format will use a mantissa with three significant digits and a
decimal exponent with two digits. The mantissa and exponents are both
signed values, as shown in Figure 4-1.

Figure 4-1: Simple floating-point format

This particular floating-point representation can approximate all the

values between 0.00 and 9.99 × 1099. However, this format cannot
represent all (integer) values in this range (that would take 100 digits of
precision!). A value like 9,876,543,210 would be approximated with 9.88

× 109 (or 9.88e+9 in programming language notation, which this book
will generally use).

You cannot exactly represent as many different values with a floating-
point format as with an integer format because the floating-point
format encodes multiple representations (that is, different bit patterns)
for the same value. In the simplified decimal floating-point format
shown in Figure 4-1, for example, 1.00e + 1 and 0.10e + 2 are different
representations of the same value. Because the number of different
possible representations is finite, whenever a single value has two
possible representations, that’s one less unique value the format can
represent.

Furthermore, the floating-point format, a form of scientific notation,
complicates arithmetic somewhat. When adding and subtracting two
numbers in scientific notation, you must adjust the two values so that
their exponents are the same. For example, when adding 1.23e1 and
4.56e0, you could convert 4.56e0 to 0.456e1 and then add them. The result,
1.686e1, does not fit into the three significant digits of our current
format, so we must either round or truncate the result to three significant

digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69e1. The lack of precision (the number of
digits or bits maintained in a computation) affects the accuracy (the
correctness of the computation).

In the previous example, we were able to round the result because we
maintained four significant digits during the calculation. If our floating-
point calculation were limited to three significant digits during
computation, we would have had to truncate (throw away) the last digit
of the smaller number, obtaining 1.68e1, which is even less correct.
Therefore, to improve the accuracy, we use extra digits during the
calculation. These extra digits are known as guard digits (or guard bits in
the case of a binary format). They greatly enhance accuracy during a
long chain of computations.

The accuracy lost during a single computation usually isn’t bad.
However, the error can accumulate over a sequence of floating-point
operations and greatly affect the computation itself. For example,
suppose we add 1.23e3 and 1.00e0. Adjusting the numbers so their
exponents are the same before the addition produces 1.23e3 + 0.001e3.
The sum of these two values, even after rounding, is 1.23e3. This might
seem perfectly reasonable to you: if we can maintain only three
significant digits, adding in a small value shouldn’t affect the result.
However, suppose we add 1.00e0 to 1.23e3 10 times. The first time we add
1.00e0 to 1.23e3, we get 1.23e3. Likewise, we get this same result the
second, third, fourth . . . and tenth time. Had we added 1.00e0 to itself 10
times, then added the result (1.00e1) to 1.23e3, we would obtain a
different result, 1.24e3. This is an important rule of limited-precision
arithmetic:

The order of evaluation can affect the accuracy of the result.

Adding or subtracting numbers with relative magnitudes (that is, the
sizes of the exponents) that are similar produces better results. If you’re
performing a chain calculation involving addition and subtraction, you
should group the operations so that you can add or subtract values
whose magnitudes are close to one another before adding or subtracting
values whose magnitudes are not as close.

Another problem with addition and subtraction is false precision.
Consider the computation 1.23e0 - 1.22e0. This produces 0.01e0. Although
this is mathematically equivalent to 1.00e – 2, this latter form suggests
that the last two digits (in the thousandths and ten-thousandths place)
are both exactly 0. Unfortunately, we only have a single significant digit
after this computation, which is in the hundredths place, and some
FPUs or floating-point software packages might actually insert random
digits (or bits) into the LO positions. This brings up a second important
rule:

Whenever subtracting two numbers with the same signs or
adding two numbers with different signs, the accuracy of the
result may be less than the precision available in the floating-
point format.

Multiplication and division do not suffer from these problems,
because you don’t have to adjust the exponents before the operation; all
you need to do is add the exponents and multiply the mantissas (or
subtract the exponents and divide the mantissas). By themselves,
multiplication and division do not produce particularly poor results.
However, they exacerbate any accuracy error that already exists in a
value. For example, if you multiply 1.23e0 by 2, when you should be
multiplying 1.24e0 by 2, the result is even less accurate than it was. This
brings up a third important rule:

When performing a chain of calculations involving addition,
subtraction, multiplication, and division, perform the
multiplication and division operations first.

Often, by applying normal algebraic transformations, you can
arrange a calculation so the multiplication and division operations occur
first. For example, suppose you want to compute the following:

x × (y + z)

Normally, you would add y and z together and multiply their sum by
x. However, you’ll get a little more accuracy if you first transform the

expression to the following:

x × y + x × z

Now you can compute the result by performing the multiplications

first.1

Multiplication and division have other problems as well. When you
multiply two very large or very small numbers, overflow or underflow may
occur. The same situation occurs when you divide a small number by a
large number, or a large number by a small number. This brings up a
fourth rule:

When multiplying and dividing sets of numbers, try to
multiply and divide numbers that have the same relative
magnitudes.

Comparing floating-point numbers is very dangerous. Given the
inaccuracies inherent in any computation (including converting an input
string to a floating-point value), you should never compare two floating-
point values to see if they are equal. Different computations that
produce the same (mathematical) result may differ in their least
significant bits. For example, adding 1.31e0 and 1.69e0 should produce
3.00e0. Likewise, adding 1.50e0 and 1.50e0 should produce 3.00e0.
However, were you to compare (1.31e0 + 1.69e0) to (1.50e0 + 1.50e0), you
might find that these sums are not equal. Because two seemingly
equivalent floating-point computations will not necessarily produce
exactly equal results, a straight comparison for equality—which
succeeds if and only if all bits (or digits) in the two operands are the
same—may fail.

To test for equality between floating-point numbers, determine how
much error (or tolerance) you’ll allow in a comparison, and then check
to see if one value is within this error range of the other, like so:

if((Value1 >= (Value2 – error)) and (Value1 <= (Value2 + error)) then . . .

More efficient is to use a statement of the form:

if(abs(Value1 – Value2) <= error) then . . .

The value for error should be slightly greater than the largest amount
of error that will creep into your computations. The exact value
depends upon the particular floating-point format you use and the
magnitudes of the values you are comparing. So, the final rule is this:

When comparing two floating-point numbers for equality,
always compare the values to see if the difference between two
values is less than some small error value.

Checking two floating-point numbers for equality is a very famous
problem, one that almost every introductory programming text
discusses. The same problems with comparing for less than or greater
than, however, are not as well known. Suppose that a sequence of
floating-point calculations produces a result that is accurate only to
within ±error, even though the floating-point representation provides
better accuracy than error suggests. If you compare such a result against
some other calculation computed with less accumulated error, and those
two values are very close to each other, then comparing them for less
than or greater than may produce incorrect results.

For example, suppose that some chain of calculations in our
simplified decimal representation produces 1.25, which is accurate only
to ±0.05 (that is, the real value could be somewhere between 1.20 and
1.30), and a second chain of calculations produces 1.27, which is
accurate to the full precision of our floating-point representation (that
is, the actual value, before rounding, is somewhere between 1.265 and
1.275). Comparing the result of the first calculation (1.25) to the result
of the second calculation (1.27) finds that the first result is less than the
second. Unfortunately, given the inaccuracy of the first calculation, this
might not be true—for example, if the correct result of the first
computation is in the range 1.27 to 1.30 (exclusive).

About the only reasonable test is to see if the two values are within
the error tolerance of each other. If so, treat the values as equal (neither
is considered less than or greater than the other). If the values are not
equal within the desired error tolerance, you can compare them to see if

one value is less than or greater than the other. This is known as a
miserly approach; that is, we try to find as few values that are less than or
greater than as possible.

The other possibility is to use an eager approach, which attempts to
make the result of the comparison true as often as possible. Given two
values to compare and an error tolerance, here’s how you’d eagerly
compare the two values for less than or greater than:

if(A < (B + error)) then Eager_A_lessthan_B;
if(A > (B – error)) then Eager_A_greaterthan_B;

Don’t forget that calculations like (B + error) are subject to their own
inaccuracies, depending on the relative magnitudes of the values B and
error, and the inaccuracy of this calculation may affect the final result of
the comparison.

NOTE

Due to space limitations, this book merely touches on some major problems
that can occur when you’re using floating-point values and why you can’t
treat floating-point arithmetic like real arithmetic. For further details,
consult a good text on numerical analysis or even scientific computing. If
you’re going to be working with floating-point arithmetic, in any
language, take some time to study the effects of limited-precision
arithmetic on your computations.

4.2 IEEE Floating-Point Formats

When Intel planned to introduce a floating-point unit (FPU) for its
original 8086 microprocessor, the company was smart enough to realize
that the electrical engineers and solid-state physicists who design chips
probably didn’t have the necessary numerical analysis background to
design a good floating-point representation. So, Intel went out and
hired the best numerical analyst it could find to design a floating-point
format for its 8087 FPU. That person then hired two other experts in

the field, and the three of them (Kahan, Coonen, and Stone) designed
the KCS Floating-Point Standard. They did such a good job that the
IEEE organization used this format as the basis for the IEEE Std 754
floating-point format.

To handle a wide range of performance and accuracy requirements,
Intel actually introduced three floating-point formats: single precision,
double precision, and extended precision. The single- and double-
precision formats corresponded to C’s float and double types or
FORTRAN’s real and double precision types. Extended precision contains
16 extra bits that long chains of computations can use as guard bits
before rounding down to a double-precision value when storing the
result.

4.2.1 Single-Precision Floating-Point Format

The single-precision format uses a 24-bit mantissa and an 8-bit
exponent. The mantissa represents a value between 1.0 and just less
than 2.0. The HO bit of the mantissa is always 1 and represents a value
just to the left of the binary point. The remaining 23 mantissa bits
appear to the right of the binary point and represent the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The mantissa is always greater than or equal to 1 because of the
implied 1 bit. Even if the other mantissa bits are all 0, the implied 1 bit
always gives us the value 1. Each position to the right of the binary point
represents a value (0 or 1) times a successive negative power of 2, but
even if we had an almost infinite number of 1 bits after the binary point,
they still would not add up to 2. So, the mantissa can represent values in
the range 1.0 to just less than 2.0.

Some examples would probably be useful here. Consider the decimal
value 1.7997. Here are the steps we could go through to compute the
binary mantissa for this value:

1. Subtract 20 from 1.7997 to produce 0.7997 and
%1.00000000000000000000000.

2. Subtract 2–1 (1/2) from 0.7997 to produce 0.2997 and

%1.10000000000000000000000.

3. Subtract 2–2 (1/4) from 0.2997 to produce 0.0497 and

%1.11000000000000000000000.

4. Subtract 2–5 (1/32) from 0.0497 to produce 0.0185 and

%1.11001000000000000000000.

5. Subtract 2–6 (1/64) from 0.0185 to produce 0.00284 and

%1.11001100000000000000000.

6. Subtract 2–9 (1/512) from 0.00284 to produce 0.000871 and

%1.11001100100000000000000.

7. Subtract 2-10 (1/1,024) from 0.000871 to (approximately) produce 0

and %1.11001100110000000000000.

Although there is an infinite number of values between 1 and 2, we

can represent only 8 million (223) of them because we use a 23-bit
mantissa (the 24th bit is always 1), and therefore have only 23 bits of
precision.

The mantissa uses a one’s complement format rather than two’s
complement. This means that the 24-bit value of the mantissa is simply
an unsigned binary number, and the sign bit, in bit position 31,
determines whether that value is positive or negative. One’s
complement has the unusual property that there are two representations
for 0 (with the sign bit set or clear). Generally, this is important only to
the person designing the floating-point software or hardware system.
We’ll assume that the value 0 always has the sign bit clear.

The single-precision floating-point format is shown in Figure 4-2.

Figure 4-2: Single-precision (32-bit) floating-point format

We represent values outside the range of the mantissa by raising 2 to
the power specified by the exponent and then multiplying the result by
the mantissa. The exponent is 8 bits and uses an excess-127 format
(sometimes called bias-127 exponents). In excess-127 format, the

exponent 20 is represented by the value 127 ($7f). To convert an
exponent to excess-127 format, add 127 to the exponent value. For
example, the single-precision representation for 1.0 is $3f800000. The

mantissa is 1.0 (including the implied bit) and the exponent is 20,
encoded as 127 ($7f). The representation for 2.0 is $40000000, with the

exponent 21 encoded as 128 ($80).

The excess-127 exponent makes it easy to compare two floating-
point numbers for less than or greater than as though they were
unsigned integers, as long as we handle the sign bit (bit 31) separately. If
the signs of the two values are not equal, then the positive value (the
one with bit 31 set to 0) is greater than the value that has the HO bit set

to 1.2 If the sign bits are both 0, we use a straight unsigned binary
comparison. If the signs are both 1, we do an unsigned comparison but
invert the result (that is, we treat less than as greater than and vice
versa). On some CPUs, where a 32-bit unsigned comparison is much
faster than a 32-bit floating-point comparison, it’s probably worthwhile
to do the comparison using integer arithmetic rather than floating-point
arithmetic.

A 24-bit mantissa provides approximately 6½ decimal digits of
precision (one-half digit of precision means that the first six digits can
be in the range 0..9, but the seventh digit can only be in the range 0
through x where x < 9 and is generally close to 5). With an 8-bit excess-
127 exponent, the dynamic range of single-precision floating-point

numbers is approximately 2±128 or about 10±38.

Although single-precision floating-point numbers are perfectly
suitable for many applications, the dynamic range is unsuitable for many
financial, scientific, and other applications. Furthermore, during long
chains of computations, the limited accuracy may introduce significant
error. For serious calculations, we need a floating-point format with
more precision.

4.2.2 Double-Precision Floating-Point Format

The double-precision format helps overcome the problems of the
single-precision floating-point. Using twice the space, the double-
precision format has an 11-bit excess-1,023 exponent, a 53-bit mantissa
(including an implied HO bit of 1), and a sign bit. This provides a

dynamic range of about 10±308 and 15 to 16+ digits of precision, which
is sufficient for most applications. Double-precision floating-point
values take the form shown in Figure 4-3.

Figure 4-3: Double-precision (64-bit) floating-point format

4.2.3 Extended-Precision Floating-Point Format

To ensure accuracy during long chains of computations involving
double-precision floating-point numbers, Intel designed the extended-
precision format. The extended-precision format uses 80 bits: a 64-bit
mantissa, a 15-bit excess-16,383 exponent, and a 1-bit sign. The
mantissa does not have an implied HO bit that is always 1. The format
for the extended-precision floating-point value appears in Figure 4-4.

Figure 4-4: Extended-precision (80-bit) floating-point format

On the 80x86 FPUs, all computations use the extended-precision
form. Whenever you load a single- or double-precision value, the FPU
automatically converts it to an extended-precision value. Likewise, when
you store a single- or double-precision value to memory, the FPU
automatically rounds the value down to the appropriate size before
storing it. The extended-precision format guarantees the inclusion of a
large number of guard bits in 32- and 64-bit computations, which helps

ensure (but not guarantee) that you’ll get full 32- or 64-bit accuracy in
your computations. Some error will inevitably creep into the LO bits
because the FPUs provide no guard bits for 80-bit computations (the
FPU uses only 64 mantissa bits during 80-bit computations). While you
can’t assume that you’ll get an accurate 80-bit computation, you can
usually do better than 64 bits when using the extended-precision
format.

Non-Intel CPUs that support floating-point arithmetic generally
provide only the 32-bit and 64-bit formats. Therefore, calculations on
those CPUs may produce less accurate results than the equivalent string
of calculations on the 80x86 using 80-bit calculations. Also note that
modern x86-64 CPUs have additional floating-point hardware as part of
the SSE extensions; however, those SSE extensions support only 64-
and 32-bit floating-point calculations.

4.2.4 Quad-Precision Floating-Point Format

The original 80-bit extended-precision floating-point format was a
stopgap measure. From a “types should be consistent” point of view, the
proper extension to the 64-bit floating-point format should have been a
128-bit floating-point format. Alas, when Intel was working on floating-
point formats in the late 1970s, a quad-precision (128-bit) floating-
point format was too expensive to implement in hardware, so the 80-bit
extended-precision format became the interim compromise. Today, a
few CPUs (such as IBM’s POWER9 and later-version ARMs) are
capable of quad-precision floating-point arithmetic.

The IEEE Std 754 quad-precision floating-point format uses a single
sign bit, a 15-bit excess-16,383 biased exponent, and a 112-bit (with
implied 113th bit) mantissa (see Figure 4-5). This provides 36 decimal

digits of precision and exponents in the approximate range 10±4932.

Figure 4-5: Extended-precision (80-bit) floating-point format

4.3 Normalization and Denormalized Values

To maintain maximum precision during floating-point computations,
most computations use normalized values. A normalized floating-point
value is one whose HO mantissa bit contains 1. A floating-point
computation will be more accurate if it involves only normalized values
because the mantissa has that many fewer bits of precision available for
computation if several HO bits of the mantissa are all 0.

You can normalize almost any unnormalized value by shifting the
mantissa bits to the left and decrementing the exponent until a 1 appears

in the mantissa’s HO bit.3 Remember, the exponent is a binary
exponent. Each time you increment the exponent, you multiply the
floating-point value by 2. Likewise, whenever you decrement the
exponent, you divide the floating-point value by 2. By the same token,
shifting the mantissa to the left one bit position multiplies the floating-
point value by 2, and shifting it to the right divides the floating-point
value by 2. Therefore, shifting the mantissa to the left one position and
decrementing the exponent does not change the value of the floating-
point number (this is why, as you saw earlier, there are multiple
representations for certain numbers in the floating-point format).

Here’s an example of an unnormalized value:

0.100000 × 21

Shift the mantissa to the left one position and decrement the
exponent to normalize it:

1.000000 × 20

There are two important cases in which a floating-point number
cannot be normalized. First, 0 cannot be normalized because the
floating-point representation contains all 0 bits in the exponent and
mantissa fields. This, however, is not a problem, because we can exactly
represent 0 with a single 0 bit, and extra bits of precision are
unnecessary.

We also cannot normalize a floating-point number when we have

some HO bits in the mantissa that are 0 but the biased exponent4 is also
0 (and we can’t decrement it to normalize the mantissa). Rather than
prohibiting certain small values whose HO mantissa bits and biased
exponent are 0 (the most negative exponent possible), the IEEE

standard permits special denormalized values in these cases.5 Although
the use of denormalized values enables IEEE floating-point
computations to produce better results than if underflow occurred,
denormalized values offer fewer bits of precision.

4.4 Rounding

During a calculation, floating-point arithmetic functions may produce a
result with greater precision than the floating-point format supports
(the guard bits in the calculation maintain this extra precision). When
the calculation is complete and the code needs to store the result back
into a floating-point variable, something must be done about those extra
bits of precision. How the system uses guard bits to affect the remaining
bits is known as rounding, and how rounding is done can affect the
accuracy of the computation. Traditionally, floating-point software and
hardware use one of four different ways to round values: truncation,
rounding up, rounding down, or rounding to nearest.

Truncation is easy, but it generates the least accurate results in a
chain of computations. Few modern floating-point systems use
truncation except as a means for converting floating-point values to
integers (truncation is the standard conversion for coercing a floating-
point value to an integer).

Rounding up leaves the value alone if the guard bits are all 0, but if
the current mantissa does not exactly fit into the destination bits, then
rounding up sets the mantissa to the smallest possible larger value in the
floating-point format. Like truncation, this is not a normal rounding
mode. It is, however, useful for implementing functions like ceil(),
which rounds a floating-point value to the smallest possible larger
integer.

Rounding down is just like rounding up, except it rounds the result
to the largest possible smaller value. This may sound like truncation,
but there’s a subtle difference: truncation always rounds toward 0. For
positive numbers, truncation and rounding down do the same thing.
For negative values, truncation simply uses the existing bits in the
mantissa, whereas rounding down will add a 1 bit to the LO position if
the result was negative. This is also not a normal rounding mode, but
it’s useful for implementing functions like floor(), which rounds a
floating-point value to the largest possible smaller integer.

Rounding to nearest is the most intuitive way to process the guard
bits. If the value of the guard bits is less than half the value of the
mantissa’s LO bit, then rounding to nearest truncates the result to the
largest possible smaller value (ignoring the sign). If the guard bits
represent some value that is greater than half of the value of the LO
mantissa bit, then rounding to nearest rounds the mantissa to the
smallest possible greater value (ignoring the sign). If the guard bits
represent a value that is exactly half the value of the mantissa’s LO bit,
then the IEEE floating-point standard says that half the time it should
round up and half the time it should round down. You do this by
rounding the mantissa to the value that has a 0 in the LO bit position.
That is, if the current mantissa already has a 0 in its LO bit, you use the
current mantissa; if the current mantissa has a 1 in its LO bit, then you
add 1 to round it up to the smallest possible larger value with a 0 in the
LO bit. This scheme, mandated by the IEEE floating-point standard,
produces the best possible result when loss of precision occurs.

Here are some examples of rounding, using 24-bit mantissas, with 4
guard bits (that is, these examples round 28-bit numbers to 24-bit
numbers using the rounding to nearest algorithm):

1.000_0100_1010_0100_1001_0101_0001 -> 1.000_0100_1010_0100_1001_0101
1.000_0100_1010_0100_1001_0101_1100 -> 1.000_0100_1010_0100_1001_0110
1.000_0100_1010_0100_1001_0101_1000 -> 1.000_0100_1010_0100_1001_0110

1.000_0100_1010_0100_1001_0100_0001 -> 1.000_0100_1010_0100_1001_0100
1.000_0100_1010_0100_1001_0100_1100 -> 1.000_0100_1010_0100_1001_0101
1.000_0100_1010_0100_1001_0100_1000 -> 1.000_0100_1010_0100_1001_0100

4.5 Special Floating-Point Values

The IEEE floating-point format provides a special encoding for several
special values. In this section, we’ll look these special values, their
purpose and meaning, and their representation in the floating-point
format.

Under normal circumstances, the exponent bits of a floating-point
number do not contain all 0s or all 1s. An exponent containing all 1 or 0
bits indicates a special value.

If the exponent contains all 1s and the mantissa is nonzero
(discounting the implied bit), then the HO bit of the mantissa (again
discounting the implied bit) determines whether the value represents a
quiet not-a-number (QNaN) or a signaling not-a-number (SNaN) (see
Table 4-1). These not-a-number (NaN) results tell the system that some
serious miscalculation has taken place and that the result of the
calculation is completely undefined. QNaNs represent indeterminate
results, while SNaNs specify that an invalid operation has taken place.
Any calculation involving a NaN produces a NaN result, regardless of
the values of any other operand(s). Note that the sign bit is irrelevant
for NaNs. The binary representations of NaNs are shown in Table 4-1.

Table 4-1: Binary Representations for NaN

NaN FP format Value

SNaN 32 bits %s_11111111_0xxxx...xx

(The value of s is irrelevant
—at least one of the x bits
must be nonzero.)

SNaN 64 bits %s_1111111111_0xxxxx...x

(The value of s is irrelevant
—at least one of the x bits
must be nonzero.)

SNaN 80 bits %s_1111111111_0xxxxx...x

(The value of s is irrelevant
—at least one of the x bits

must be nonzero.)

QNaN 32 bits %s_11111111_1xxxx...xx

(The value of s is irrelevant.)

QNaN 64 bits %s_1111111111_1xxxxx...x

(The value of s is irrelevant.)

QNaN 80 bits %s_1111111111_1xxxxx...x

(The value of s is irrelevant.)

Two other special values are represented when the exponent contains
all 1 bits, and the mantissa contains all 0s. In such a case, the sign bit
determines whether the result is the representation for +infinity or –
infinity. Whenever a calculation involves infinity as one of the operands,
the result will be one of the (well-defined) values found in Table 4-2.

Table 4-2: Operations Involving Infinity

Operation Result

n / ±infinity 0

±infinity × ±infinity ±infinity

±nonzero / 0 ±infinity

infinity + infinity infinity

n + infinity infinity

n - infinity -infinity

±0 / ±0 NaN

infinity - infinity NaN

±infinity / ±infinity NaN

±infinity × 0 NaN

Finally, if the exponent bits are all 0, the sign bit indicates which of
the two special values, –0 or +0, the floating-point number represents.
Because the floating-point format uses a one’s complement notation,

there are two separate representations for 0. Note that with respect to
comparisons, arithmetic, and other operations, +0 is equal to –0.

Using Multiple Representations of Zero

The IEEE floating-point format supports both +0 and –0
(depending on the value of the sign bit), which are treated as
equivalent by arithmetic calculations and comparisons—the sign
bit is ignored. Software operating on floating-point values that
represent 0 can use the sign bit as a flag to indicate different
things. For example, you could use the sign bit to indicate that the
value is exactly 0 (with the sign bit clear) or to indicate that it is
nonzero but too small to represent with the current format (with
the sign bit set). Intel recommends using the sign bit to indicate
that 0 was produced via underflow of a negative value (with the
sign bit set) or underflow of a positive number (with the sign bit
clear). Presumably, their FPUs set the sign bit according to their
recommendations when the FPUs produce a 0 result.

4.6 Floating-Point Exceptions

The IEEE floating-point standard defines certain degenerate conditions
under which the floating-point processor (or software-implemented
floating-point code) should notify the application software. These
exceptional conditions include the following:

Invalid operation

Division by zero

Denormalized operand

Numeric overflow

Numeric underflow

Inexact result

Of these, inexact result is the least serious, because most floating-
point calculations will produce an inexact result. A denormalized
operand also isn’t too serious (though this exception indicates that your
calculation may be less accurate as a result of less available precision).
The other exceptions indicate a more serious problem, and you
shouldn’t ignore them.

How the computer system notifies your application of these
exceptions depends on the CPU/FPU, operating system, and
programming language, so we can’t really go into how you might
handle these exceptions. Generally, though, you can use the exception
handling facilities in your programming language to trap these
conditions as they occur. Note that most computer systems won’t notify
you when one of the exceptional conditions exists unless you explicitly
set up a notification.

4.7 Floating-Point Operations

Although most modern CPUs support an FPU that does floating-point
arithmetic in hardware, it’s worthwhile to develop a set of software
floating-point arithmetic routines to get a solid feel for what’s involved.
Generally, you’d use assembly language to write the math functions
because speed is a primary design goal for a floating-point package.
However, because here we’re writing a floating-point package simply to
get a clearer picture of the process, we’ll opt for code that is easy to
write, read, and understand.

As it turns out, floating-point addition and subtraction are easy to do
in a high-level language like C/C++ or Pascal, so we’ll implement these
functions in these languages. Floating-point multiplication and division
are easier to do in assembly language than in a high-level language, so
we’ll write those routines using High-Level Assembly (HLA).

4.7.1 Floating-Point Representation

This section will use the IEEE 32-bit single-precision floating-point
format (shown earlier in Figure 4-2), which uses a one’s complement

representation for signed values. This means that the sign bit (bit 31)
contains a 1 if the number is negative and a 0 if the number is positive.
The exponent is an 8-bit excess-127 exponent sitting in bits 23 through
30, and the mantissa is a 24-bit value with an implied HO bit of 1.
Because of the implied HO bit, this format does not support
denormalized values.

4.7.2 Floating-Point Addition and Subtraction

Addition and subtraction use essentially the same code. After all,
computing X - Y is equivalent to computing X + (- Y). If we can add a
negative number to some other value, then we can also perform
subtraction by first negating some number and then adding it to
another value. And because the IEEE floating-point format uses the
one’s complement representation, negating a value is trivial—we just
invert the sign bit.

Because we’re using the standard IEEE 32-bit single-precision
floating-point format, we could theoretically get away with using the
C/C++ float data type (assuming the underlying C/C++ compiler also
uses this format, as most do on modern machines). However, you’ll
soon see that when doing floating-point calculations in software, we
need to manipulate various fields within the floating-point format as bit
strings and integer values. Therefore, it’s more convenient to use a 32-
bit unsigned integer type to hold the bit representation for our floating-
point values. To avoid confusing our real values with actual integer
values in a program, we’ll define the following real data type, which
assumes that unsigned longs are 32-bit values in your implementation of
C/C++ (this section assumes the uint32_t type achieves that, which is
something like typedef unsigned long uint32_t), and declare all our real
variables using this type:

typedef uint32_t real;

One advantage of using the same floating-point format that C/C++
uses for float values is that we can assign floating-point literal constants
to our real variables, and we can perform other floating-point
operations such as input and output using existing library routines.

However, one potential problem is that C/C++ will attempt to
automatically convert between integer and floating-point formats if we
use a real variable in a floating-point expression (remember, as far as
C/C++ is concerned, real is just an unsigned long integer value). This
means that we need to tell the compiler to treat the bit patterns found
in our real variables as though they were float objects.

A simple type coercion like (float) realVariable won’t work. The
C/C++ compiler will emit code to convert the integer it believes
realVariable contains into the equivalent floating-point value. However,
we want the C/C++ compiler to treat the bit pattern it finds in
realVariable as a float without doing any conversion. The following
C/C++ macro is a sneaky way to do this:

#define asreal(x) (*((float *) &x))

This macro requires a single parameter that must be a real variable.
The result is a variable that the compiler believes is a float variable.

Now that we have our float variable, we’ll develop two C/C++
functions to compute floating-point addition and subtraction: fpadd()
and fpsub(). These two functions each take three parameters: the left and
right operands of the operator and a pointer to a destination where
these functions will store their result. The prototypes for these
functions are the following:

void fpadd(real left, real right, real *dest);
void fpsub(real left, real right, real *dest);

The fpsub() function negates the right operand and calls the fpadd()
function. Here’s the code for the fpsub() function:

void fpsub(real left, real right, real *dest)
{
 right = right ^ 0x80000000; // Invert the sign bit of the right operand.
 fpadd(left, right, dest); // Let fpadd do the real work.
}

The fpadd() function is where all the real work is done. To make
fpadd() a little easier to understand and maintain, we’ll decompose it into
several different functions that help with various tasks. In an actual

software floating-point library routine, you wouldn’t do this
decomposition, because the extra subroutine calls would be a little
slower; however, we’re developing fpadd() for educational purposes, and
besides, if you need high-performance floating-point addition, you’ll
probably use a hardware FPU rather than a software implementation.

The IEEE floating-point formats are good examples of packed data
types. As you’ve seen in previous chapters, packed data types are great
for reducing storage requirements for a data type, but not so much
when you need to use the packed fields in actual calculations.
Therefore, one of the first things our floating-point functions will do is
unpack the sign, exponent, and mantissa fields from the floating-point
representation.

The first unpacking function, extractSign(), extracts the sign bit (bit
31) from our packed floating-point representation and returns the value
0 (for positive numbers) or 1 (for negative numbers).

inline int extractSign(real from)
{
 return(from >> 31);
}

This code could have also extracted the sign bit using this (possibly
more efficient) expression:

(from & 0x80000000) != 0

However, shifting bit 31 down to bit 0 is, arguably, easier to
understand.

The next utility function, extractExponent(), unpacks the exponent
from bits 23 through 30 in the packed real format. It does this by
shifting the real value to the right by 23 bits, masking out the sign bit,
and converting the excess-127 exponent to a two’s complement format
(by subtracting 127).

inline int extractExponent(real from)
{
 return ((from >> 23) & 0xff) - 127;
}

Next is the extractMantissa() function, which extracts the mantissa
from the real value. To extract the mantissa, we must mask out the
exponent and sign bits and then insert the implied HO bit of 1. The
only catch is that we must return 0 if the entire value is 0.

inline int extractMantissa(real from)
{
 if((from & 0x7fffffff) == 0) return 0;
 return ((from & 0x7FFFFF) | 0x800000);
}

As you learned earlier, whenever adding or subtracting two values
using scientific notation (which the IEEE floating-point format uses),
you must first adjust the two values so that they have the same
exponent. For example, to add the two decimal (base-10) numbers
1.2345e3 and 8.7654e1, we must first adjust one or the other so that their
exponents are the same. We can reduce the exponent of the first
number by shifting the decimal point to the right. For example, the
following values are all equivalent to 1.2345e3:

12.345e2 123.45e1 1234.5 12345e-1

Likewise, we can increase the value of an exponent by shifting the
decimal point to the left. The following values are all equal to 8.7654e1:

0.87654e2 0.087654e3 0.0087654e4

For floating-point addition and subtraction involving binary
numbers, we can make the binary exponents the same by shifting the
mantissa one position to the left and decrementing the exponent, or by
shifting the mantissa one position to the right and incrementing the
exponent.

Shifting the mantissa bits to the right means that we reduce the
precision of our number (because the bits wind up going off the LO end
of the mantissa). To maintain as much accuracy as possible in our
calculations, we shouldn’t truncate the bits we shift out of the mantissa,
but rather round the result to the nearest value we can represent with
the remaining mantissa bits. These are the IEEE rules for rounding, in
order:

1. Truncate the result if the last bit shifted out was a 0.

2. Increment the mantissa by 1 if the last bit shifted out was a 1 and
there was at least one bit set to 1 in all the other bits that were

shifted out.6

3. If the last bit we shifted out was a 1, and all the other bits were 0s,
then round the resulting mantissa up by 1 if the mantissa’s LO bit
contains a 1.

Shifting the mantissa and rounding it is a relatively complex
operation, and it will occur a couple of times in the floating-point
addition code. Therefore, it’s another candidate for a utility function.
Here’s the C/C++ code that implements this function, shiftAndRound():

void shiftAndRound(uint32_t *valToShift, int bitsToShift)
{
 // Masks is used to mask out bits to check for a "sticky" bit.
 static unsigned masks[24] =
 {
 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f,
 0xff, 0x1ff, 0x3ff, 0x7ff, 0xfff, 0x1fff, 0x3fff, 0x7fff,
 0xffff, 0x1ffff, 0x3ffff, 0x7ffff, 0xfffff, 0x1fffff, 0x3fffff,
 0x7fffff
 };

 // HOmasks: Masks out the HO bit of the value masked by the masks entry.
 static unsigned HOmasks[24] =
 {
 0,
 1, 2, 4, 0x8, 0x10, 0x20, 0x40, 0x80,
 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000,
 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000, 0x400000
 };

 // shiftedOut: Holds the value that will be shifted out of a mantissa
 // during the denormalization operation (used to round a denormalized
 // value).
 int shiftedOut;

 assert(bitsToShift <= 23);

 // Okay, first grab the bits we're going to shift out (so we can determine
 // how to round this value after the shift).
 shiftedOut = *valToShift & masks[bitsToShift];

 // Shift the value to the right the specified number of bits.
 // Note: bit 31 is always 0, so it doesn't matter if the C
 // compiler does a logical shift right or an arithmetic shift right.
 *valToShift = *valToShift >> bitsToShift;

 // If necessary, round the value:

 if(shiftedOut > HOmasks[bitsToShift])
 {
 // If the bits we shifted out are greater than 1/2 the LO bit, then
 // round the value up by 1.

 *valToShift = *valToShift + 1;
 }
 else if(shiftedOut == HOmasks[bitsToShift])
 {
 // If the bits we shifted out are exactly 1/2 of the LO bit's value,
 // then round the value to the nearest number whose LO bit is 0.

 *valToShift = *valToShift + (*valToShift & 1);
 }
 // else
 // We round the value down to the previous value. The current
 // value is already truncated (rounded down), so we don't have to do
 // anything.
}

The “trick” in this code is that it uses a couple of lookup tables, masks
and HOmasks, to extract those bits that the mantissa will use from the shift
right operation. The masks table entries contain 1 bits (set bits) in the
positions that will be lost during the shift. The HOmasks table entries
contain a single set bit in the position specified by the index into the
table; that is, the entry at index 0 contains a 1 in bit position 0, the entry
at index 1 contains a 1 in bit position 1, and so on. This code selects an
entry from each of these tables based on the number of mantissa bits it
needs to shift to the right.

If the original mantissa value, logically ANDed with the appropriate
entry in masks, is greater than the corresponding entry in HOmasks, then the
shiftAndRound() function rounds the shifted mantissa to the next greater
value. If the ANDed mantissa value is equal to the corresponding HOmasks
element, this code rounds the shifted mantissa value according to its LO
bit (note that the expression (*valToShift & 1) produces 1 if the mantissa’s
LO bit is 1, and it produces 0 otherwise). Finally, if the ANDed mantissa
value is less than the entry from the HOmasks table, then this code doesn’t
have to do anything because the mantissa is already rounded down.

Once we’ve adjusted one of the values so that the exponents of both
operands are the same, the next step in the addition algorithm is to
compare the signs of the values. If the signs of the two operands are the

same, we add their mantissas (using a standard integer add operation). If
the signs differ, we have to subtract, rather than add, the mantissas.
Because floating-point values use one’s complement representation, and
standard integer arithmetic uses two’s complement, we cannot simply
subtract the negative value from the positive value. Instead, we have to
subtract the smaller value from the larger value and determine the sign
of the result based on the signs and magnitudes of the original
operands. Table 4-3 describes how to accomplish this.

Table 4-3: Dealing with Operands That Have Different Signs

Left sign Right sign Left
mantissa >
right
mantissa?

Compute
mantissa as

Result

sign is

– + Yes LeftMantissa -
RightMantissa

–

+ – Yes LeftMantissa -
RightMantissa

+

– + No RightMantissa -
LeftMantissa

+

+ – No RightMantissa -
LeftMantissa

–

Whenever you’re adding or subtracting two 24-bit numbers, it’s
possible to produce a result that requires 25 bits (in fact, this is common
when you’re dealing with normalized values). Immediately after an
addition or subtraction, the floating-point code has to check the result
to see if overflow has occurred. If so, it needs to shift the mantissa right
by 1 bit, round the result, and then increment the exponent. After
completing this step, all that remains is to pack the resulting sign,
exponent, and mantissa fields into the 32-bit IEEE floating-point
format. The following packFP() function is responsible for packing the
sign, exponent, and mantissa fields into the 32-bit floating-point format:

inline real packFP(int sign, int exponent, int mantissa)
{
 return
 (real)
 (
 (sign << 31)
 | ((exponent + 127) << 23)
 | (mantissa & 0x7fffff)
);
}

Note that this function works for normalized values, denormalized
values, and zero, but does not work for NaNs and infinities.

With the utility routines out of the way, take a look at the fpadd()
function, which adds two floating-point values, producing a 32-bit real
result:

void fpadd(real left, real right, real *dest)
{
 // The following variables hold the fields associated with the
 // left operand:
 int Lexponent;
 uint32_t Lmantissa;
 int Lsign;

 // The following variables hold the fields associated with the
 // right operand:
 int Rexponent;
 uint32_t Rmantissa;
 int Rsign;

 // The following variables hold the separate fields of the result:
 int Dexponent;
 uint32_t Dmantissa;
 int Dsign;

 // Extract the fields so that they're easy to work with:
 Lexponent = extractExponent(left);
 Lmantissa = extractMantissa(left);
 Lsign = extractSign(left);

 Rexponent = extractExponent(right);
 Rmantissa = extractMantissa(right);
 Rsign = extractSign(right);

 // Code to handle special operands (infinity and NaNs):

 if(Lexponent == 127)
 {
 if(Lmantissa == 0)
 {

 // If the left operand is infinity, then the result
 // depends upon the value of the right operand.

 if(Rexponent == 127)
 {
 // If the exponent is all 1 bits (127 after unbiasing)
 // then the mantissa determines if we have an infinity value
 // (zero mantissa), a QNaN (mantissa = 0x800000), or a SNaN
 // (nonzero mantissa not equal to 0x800000).

 if(Rmantissa == 0) // Do we have infinity?
 {
 // infinity + infinity = infinity
 // -infinity - infinity = -infinity
 // -infinity + infinity = NaN
 // infinity - infinity = NaN

 if(Lsign == Rsign)
 {
 *dest = right;
 }
 else
 {
 *dest = 0x7fC00000; // +QNaN
 }
 }
 else // Rmantissa is nonzero, so it's a NaN
 {
 *dest = right; // Right is a NaN, propagate it.
 }
 }

 }
 else // Lmantissa is nonzero, Lexponent is all 1s.
 {
 // If the left operand is some NaN, then the result will
 // also be the same NaN.

 *dest = left;
 }

 // We've already calculated the result, so just return.
 return;

 }
 else if(Rexponent == 127)
 {
 // Two case: right is either a NaN (in which case we need to
 // propagate the NaN regardless of left's value) or it is
 // +/– infinity. Because left is a "normal" number, we'll also
 // wind up propagating the infinity because any normal number
 // plus infinity is infinity.

 *dest = right; // Right is a NaN, so propagate it.
 return;
 }

 // Okay, we've got two actual floating-point values. Let's add them
 // together. First, we have to "denormalize" one of the operands if
 // their exponents aren't the same (when adding or subtracting values,
 // the exponents must be the same).
 //
 // Algorithm: choose the value with the smaller exponent. Shift its
 // mantissa to the right the number of bits specified by the difference
 // between the two exponents.

 Dexponent = Rexponent;
 if(Rexponent > Lexponent)
 {
 shiftAndRound(&Lmantissa, (Rexponent - Lexponent));
 }
 else if(Rexponent < Lexponent)
 {
 shiftAndRound(&Rmantissa, (Lexponent - Rexponent));
 Dexponent = Lexponent;
 }

 // Okay, add the mantissas. There is one catch: if the signs are opposite
 // then we've actually got to subtract one value from the other (because
 // the FP format is one's complement, we'll subtract the larger mantissa
 // from the smaller and set the destination sign according to a
 // combination of the original sign values and the largest mantissa).

 if(Rsign ^ Lsign)
 {
 // Signs are different, so we must subtract one value from the other.

 if(Lmantissa > Rmantissa)
 {
 // The left value is greater, so the result inherits the
 // sign of the left operand.

 Dmantissa = Lmantissa - Rmantissa;
 Dsign = Lsign;
 }
 else
 {
 // The right value is greater, so the result inherits the
 // sign of the right operand.

 Dmantissa = Rmantissa - Lmantissa;
 Dsign = Rsign;
 }

 }
 else
 {
 // Signs are the same, so add the values:

 Dsign = Lsign;
 Dmantissa = Lmantissa + Rmantissa;
 }

 // Normalize the result here.

 //
 // Note that during addition/subtraction, overflow of 1 bit is possible.
 // Deal with that possibility here (if overflow occurred, shift the
 // mantissa to the right one position and adjust for this by incrementing
 // the exponent). Note that this code returns infinity if overflow occurs
 // when incrementing the exponent (infinity is a value with an exponent
 // of $FF);

 if(Dmantissa >= 0x1000000)
 {
 // Never more than 1 extra bit when doing addition/subtraction.
 // Note that by virtue of the floating-point format we're using,
 // the maximum value we can produce via addition or subtraction is
 // a mantissa value of 0x1fffffe. Therefore, when we round this
 // value it will not produce an overflow into the 25th bit.

 shiftAndRound(&Dmantissa, 1); // Move result into 24 bits.
 ++Dexponent; // Shift operation did a div by 2,
 // this counteracts the effect of
 // the shift (incrementing exponent
 // multiplies the value by 2).
 }
 else
 {
 // If the HO bit is clear, normalize the result
 // by shifting bits up and simultaneously decrementing
 // the exponent. We will treat 0 as a special case
 // because it's a common enough result.

 if(Dmantissa != 0)
 {

 // The while loop multiplies the mantissa by 2 (via a shift
 // left) and then divides the whole number by 2 (by
 // decrementing the exponent. This continues until the HO bit of
 // Dmantissa is set or the exponent becomes -127 (0 in the
 // biased-127 form). If Dexponent drops down to -128, then we've
 // got a denormalized number and we can stop.

 while((Dmantissa < 0x800000) && (Dexponent > -127))
 {
 Dmantissa = Dmantissa << 1;
 --Dexponent;
 }

 }
 else
 {
 // If the mantissa went to 0, clear everything else, too.

 Dsign = 0;
 Dexponent = 0;
 }
 }

 // Reconstruct the result and store it away:

 *dest = packFP(Dsign, Dexponent, Dmantissa);

}

To conclude this discussion of the software implementation of the
fpadd() and fsub() functions, here’s a C main() function demonstrating
their use:

// A simple main program that does some trivial tests on fpadd and fpsub.

int main(int argc, char **argv)
{
 real l, r, d;

 asreal(l) = 1.0;

 asreal(r) = 2.0;

 fpadd(l, r, &d);
 printf("dest = %x\n", d);
 printf("dest = %12E\n", asreal(d));

 l = d;
 asreal(r) = 4.0;
 fpsub(l, r, &d);
 printf("dest2 = %x\n", d);
 printf("dest2 = %12E\n", asreal(d));
}

Here’s the output produced by compiling with Microsoft Visual C++
(and defining uint32_t as an unsigned long):

l = 3f800000
l = 1.000000E+00
r = 40000000
r = 2.000000E+00
dest = 40400000
dest = 3.000000E+00
dest2 = bf800000
dest2 = -1.000000E+00

4.7.3 Floating-Point Multiplication and Division

Most software floating-point libraries are actually written in hand-
optimized assembly language, not in a high-level language (HLL). As
the previous section shows, it’s possible to write floating-point routines
in an HLL and, particularly in the case of single-precision floating-
point addition and subtraction, you could write the code efficiently.

Given the right library routines, you could also write the floating-point
multiplication and division routines in an HLL. However, because their
implementation is actually easier in assembly language, this section
presents an HLA implementation of the single-precision floating-point
multiplication and division algorithms.

The HLA code in this section implements two functions, fpmul() and
fpdiv(), that have the following prototypes:

procedure fpmul(left:real32; right:real32); @returns("eax");
procedure fpdiv(left:real32; right:real32); @returns("eax");

Beyond the fact that this code is written in assembly language rather
than C, it differs in two main ways from the code in the previous
section. First, it uses the built-in real32 data type rather than creating a
new data type for the real values, because we can easily coerce any 32-
bit memory object to real32 or dword in assembly language. Second, these
prototypes support only two parameters; there is no destination
parameter. These functions simply return the real32 result in the EAX

register.7

4.7.3.1 Floating-Point Multiplication

Whenever you multiply two values in scientific notation, you compute
the result sign, exponent, and mantissa as follows:

The result sign is the exclusive-OR of the operand signs. That is,
the result is positive if both operand signs were the same, and the
result sign is negative if the operand signs were different.

The result exponent is the sum of the operands’ exponents.

The result mantissa is the integer (fixed-point) product of the two
operand mantissas.

There are a few additional rules that affect the floating-point
multiplication algorithm that are a direct result of the IEEE floating-
point format:

If either, or both, of the operands are 0, the result is 0 (this is a
special case because the representation for 0 is special).

If either operand is infinity, the result is infinity.

If either operand is a NaN, the result is that same NaN.

The fpmul() procedure begins by checking if either of the operands is
0. If so, the function immediately returns 0.0 to the caller. Next, the
fpmul() code checks for NaN or infinity values in the left and right
operands. If it finds one of these values, it returns that same value to the
caller.

If both of the fpmul() operands are reasonable floating-point values,
then the fpmul() code extracts the sign, exponent, and mantissa fields of
the packed floating-point value. Actually, extract isn’t the correct term
here; isolate is a better description. Here’s the code that isolates the sign
bits of the two operands and computes the result sign:

mov((type dword left), ebx); // Result sign is the XOR of the
xor((type dword right), ebx); // operand signs.
and($8000_0000, ebx); // Keep only the sign bit.

This code exclusive-ORs the two operands and then masks out bits 0
through 30, leaving only the result sign value in bit 31 of the EBX
register. This procedure doesn’t bother moving the sign bit down to bit
0 (as you’d normally do when unpacking data), because it would just
have to move this bit back to bit 31 when it repacks the floating-point
value later.

To process the exponent, fpmul() isolates bits 23 through 30 and
operates on the exponent in place. When multiplying two values using
scientific notation, you must add the values of the exponents together.
However, you must subtract 127 from the exponent’s sum, since adding
excess-127 exponents ends up adding the bias twice. The following code
isolates the exponent bits, adjusts for the extra bias, and adds the
exponents together:

mov((type dword left), ecx); // Exponent goes into bits 23..30
and($7f80_0000, ecx); // of ECX; mask these bits.
sub(126 << 23, ecx); // Eliminate the bias of 127 and multiply by 2

mov((type dword right), eax);
and($7f80_0000, eax);

// For multiplication, we need to add the exponents:

add(eax, ecx); // Exponent value is now in bits
 // 23..30 of ECX.

First, notice that this code subtracts 126 rather than 127. The reason
is that later we’ll need to double the result of the multiplication of the
mantissas. Subtracting 126 rather than 127 does this multiplication by 2
implicitly (saving an instruction later on).

If the sum of the exponents with add(eax, ecx) in the preceding code is
too large to fit into 8 bits, there will be a carry out of bit 30 into bit 31
of ECX, which will set the 80x86 overflow flag. If overflow occurs on a
multiplication, our code will return infinity as the result.

If overflow does not occur, then the fpmul() procedure needs to set
the implied HO bit of the two mantissa values. The following code
handles this chore, strips out all the exponent and sign bits from the
mantissas, and left-justifies the mantissa bits up against bit position 31
in EAX and EDX.

mov((type dword left), eax);
mov((type dword right), edx);

// If we don't have a 0 value, then set the implied HO bit of the mantissa:

if(eax <> 0) then

 or($80_0000, eax); // Set the implied bit to 1.

endif;
shl(8, eax); // Moves mantissa to bits 8..31 and removes sign/exp.

// Repeat this for the right operand.

if(edx <> 0) then

 or($80_0000, edx);

endif;
shl(8, edx);

Once the mantissas are shifted to bit 31 in EAX and EDX, we
multiply using the 80x86 mul() instruction:

mul(edx);

This instruction computes the 64-bit product of EAX and EDX,
leaving the result in EDX:EAX (the HO double word is in EDX, and
the LO double word is in EAX). Because the product of any two n-bit
integers could require as many as 2×n bits, the mul() instruction
computes EDX:EAX = EAX×EDX. Left-justifying the mantissas in
EAX and EDX before doing the multiplication ensures the mantissa of
the product winds up in bits 7 through 30 of EDX. We actually need
them in bit positions 8 through 31 of EDX—that’s why earlier this code
subtracted only 126, rather than 127, when adjusting for the excess-127
value (this multiplies the result by 2, which is equivalent to shifting the
bits left one position). As these numbers were normalized prior to the
multiplication, bit 30 of EDX will contain a 1 after the multiplication
unless the result is 0. The 32-bit IEEE real format does not support
denormalized values, so we don’t have to worry about this case when
using 32-bit floating-point values.

Because the mantissas are 24 bits each, the product of the mantissas
could have as many as 48 significant bits. Our result mantissa can hold
only 24 bits, so we need to round the value to produce a 24-bit result
(using the IEEE rounding algorithm — see “Rounding” on page 71).
Here’s the code that rounds the value in EDX to 24 significant bits (in
positions 8..31):

test($80, edx); // Clears zero flag if bit 7 of EDX = 1.
if(@nz) then

 add($FFFF_FFFF, eax); // Sets carry if EAX <> 0.
 adc($7f, dl); // Sets carry if DL:EAX > $80_0000_0000.
 if(@c) then

 // If DL:EAX > $80_0000_0000 then round the mantissa
 // up by adding 1 to bit position 8:

 add(1 << 8, edx);

 else // DL:EAX = $80_0000_0000

 // We need to round to the value that has a 0
 // in bit position 0 of the mantissa (bit #8 of EDX):

 test(8, edx); // Clears zero flag if bit #8 contains a 1.
 if(@nz) then

 add(1 << 8, edx); // Adds a 1 starting at bit position 8.

 // If there was an overflow, renormalize:

 if(@c) then

 rcr(1, edx); // Shift overflow (in carry) back into EDX.
 inc(ecx); // Shift did a divide by 2. Fix that.

 endif;

 endif;

 endif;

endif;

The number may need to be renormalized after rounding. If the
mantissa contains all 1 bits and needs to be rounded up, this will
produce an overflow out of the HO bit of the mantissa. The rcr() and
inc() instructions at the end of this code sequence put the overflow bit
back into the mantissa if overflow occurs.

The only thing left to do after this is pack the destination sign,
exponent, and mantissa into the 32-bit EAX register. The following
code does this:

shr(8, edx); // Move mantissa into bits 0..23.
and($7f_ffff, edx); // Clear the implied bit.
lea(eax, [edx+ecx]); // Merge mantissa and exponent into EAX.
or(ebx, eax); // Merge in the sign.

The only tricky thing in this code is the use of the lea() (load
effective address) instruction to compute the sum of EDX (the mantissa)
and ECX (the exponent) and move the result to EAX all with a single
instruction.

4.7.3.2 Floating-Point Division

Floating-point division is a little bit more involved than multiplication
because the IEEE floating-point standard says many things about
degenerate conditions that can occur during division. We’re not going
to discuss all the code that handles those conditions here. Instead, see

the discussion of the conditions for fpmul() earlier, and check out the
complete code listing for fdiv() later in this section.

Assuming we have reasonable numbers to divide, the division
algorithm first computes the result sign using the same algorithm (and
code) as for multiplying. When dividing two values using scientific
notation, we have to subtract their exponents. In contrast to the
multiplication algorithm, here it’s more convenient to truly unpack the
exponents for the two division operands and convert them from excess-
127 to two’s complement form. Here’s the code that does this:

mov((type dword left), ecx); // Exponent comes from bits 23..30.
shr(23, ecx);
and($ff, ecx); // Mask out the sign bit (in bit 8).

mov((type dword right), eax);
shr(23, eax);
and($ff, eax);

// Eliminate the bias from the exponents:

sub(127, ecx);
sub(127, eax);

// For division, we need to subtract the exponents:

sub(eax, ecx); // Leaves result exponent in ECX.

The 80x86 div() instruction absolutely, positively requires the
quotient to fit into 32 bits. If this condition is not true, the CPU may
abort the operation with a divide exception. As long as the HO bit of
the divisor contains a 1 and the HO 2 bits of the dividend contain %01,
we won’t get a division error. Here’s the code that prepares the operands
prior to the division operation:

mov (type dword left), edx);
if(edx <> 0) then

 or($80_0000, edx); // Set the implied bit to 1 in the left operand.
 shl(8, edx);

endif;
mov((type dword right), edi);
if(edi <> 0) then

 or($80_0000, edi); // Set the implied bit to 1 in the right operand.
 shl(8, edi);

else

 // Division by zero error, here.

endif;

The next step is to actually do the division. As noted earlier, in order
to prevent a division error, we have to shift the dividend 1 bit to the
right (to set the HO 2 bits to %01), as follows:

xor(eax, eax); // EAX := 0;
shr(1, edx); // Shift EDX:EAX to the right 1 bit to
rcr(1, eax); // prevent a division error.
div(edi); // Compute EAX = EDX:EAX / EDI.

Once the div() instruction executes, the quotient is sitting in the HO
24 bits of EAX, and the remainder is in AL:EDX. We now need to
normalize and round the result. Rounding is a little easier because
AL:EDX contains the remainder after the division; if we need to round
down, it will contain a value less than $80:0000_0000 (that is, the 80x86 AL
register contains $80 and EDX contains 0); if we need to round up, it will
contain a value greater than $80:0000_; and if we need to round to the
nearest value, it will contain exactly $80:0000_0000.

Here’s the code that does this:

test($80, al); // See if the bit just below the LO bit of the
if(@nz) then // mantissa contains a 0 or 1.

 // Okay, the bit just below the LO bit of our mantissa contains a 1.
 // If all other bits below the mantissa and this bit contain 0s,
 // we have to round to the nearest mantissa value whose LO bit is 0.

 test($7f, al); // Clears zero flag if bits 0..6 <> 0.
 if(@nz || edx <> 0) then // If bits 0..6 in AL are 0 and EDX
 // is 0.

 // We need to round up:

 add($100, eax); // Mantissa starts in bit #8);
 if(@c) then // Carry set if mantissa overflows.

 // If there was an overflow, renormalize.

 rcr(1, eax);
 inc(ecx);

 endif;

 else

 // The bits below the mantissa are exactly 1/2 the value
 // of the LO mantissa bit. So we need to round to the value
 // that has a LO mantissa bit of 0:

 test($100, eax);
 if(@nz) then

 add($100, eax);
 if(@c) then

 // If there was an overflow, renormalize.

 rcr(1, eax); // Put overflow bit back into EAX.
 inc(ecx); // Adjust exponent accordingly.

 endif;

 endif;

 endif;

endif;

The last step in fpdiv is to add the bias back into the exponent (and
verify that overflow doesn’t occur) and then pack the quotient’s sign,
exponent, and mantissa fields into the 32-bit floating-point format.
Here’s the code that does this:

if((type int32 ecx) > 127) then

 mov($ff-127, ecx); // Set exponent value for infinity
 xor(eax, eax); // because we just had overflow.

elseif((type int32 ecx) < -128) then

 mov(-127, ecx); // Return 0 for underflow (note that
 xor(eax, eax); // next we add 127 to ECX).

endif;
add(127, ecx); // Add the bias back in.
shl(23, ecx); // Move the exponent to bits 23..30.

// Okay, assemble the final real32 value:

shr(8, eax); // Move mantissa into bits 0..23.
and($7f_ffff, eax); // Clear the implied bit.
or(ecx, eax); // Merge mantissa and exponent into EAX.
or(ebx, eax); // Merge in the sign.

Whew! This has been a lot of code. However, going through all of it
just to see how floating-point operations work has hopefully given you
an appreciation of exactly what an FPU does for you.

4.8 For More Information

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

———. “Webster: The Place on the Internet to Learn Assembly.”
http://plantation-productions.com/Webster/index.html.

Knuth, Donald E. The Art of Computer Programming, Volume 2:
Seminumerical Algorithms. 3rd ed. Boston: Addison-Wesley, 1998.

http://plantation-productions.com/Webster/index.html

5
CHARACTER REPRESENTATION

Although computers are famous for their “number-crunching” capabilities,
the truth is that most computer systems process character data far more
often than numbers. The term character refers to a human- or machine-
readable symbol that is typically a non-numeric entity. In general, a
character is any symbol that you can type on a keyboard or show on a video
display. In addition to alphabetic characters, character data includes
punctuation marks, numeric digits, spaces, tabs, carriage returns (the
ENTER key), other control characters, and other special symbols.

This chapter looks at how to represent characters, strings, and character
sets within a computer system. It also discusses various operations on these
data types.

5.1 Character Data

Most computer systems use a 1-byte or multibyte binary sequence to
encode the various characters. Windows, macOS, and Linux fall into this
category, using the ASCII or Unicode character sets, whose members can
all be represented with 1- or multibyte binary sequences. The EBCDIC
character set, in use on IBM mainframes and minicomputers, is another
example of a single-byte character code.

This chapter will discuss all three of these character sets and their
internal representations, as well as how to create your own character sets.

5.1.1 The ASCII Character Set

The ASCII (American Standard Code for Information Interchange)
character set maps 128 characters to the unsigned integer values 0 through
127 ($0 through $7F). Although the exact mapping of characters to numeric
values is arbitrary and unimportant, a standardized mapping allows you to
communicate between programs and peripheral devices. The standard
ASCII codes are useful because nearly everyone uses them. If you use the
ASCII code 65 to represent the character A, for example, you can be
confident that some peripheral device (such as a printer) will correctly
interpret this value as an A.

Because the ASCII character set provides only 128 different characters,
you might be wondering: “What do we do with the additional 128 values
($80..$FF) that we can represent with a byte?” One option is to ignore those
extra values, and that’s the primary approach of this book. Another
possibility is to extend the ASCII character set by an additional 128
characters. Of course, unless you can get everyone to agree upon a

particular extension of the character set1 (a difficult task indeed), the whole
purpose of having a standardized character set will be defeated.

Despite some major shortcomings, such as the inability to represent all
characters and alphabets in use today, ASCII data is the standard for data
interchange across computer systems and programs. Most programs can
accept ASCII data, and most programs can produce it. Because you’ll
probably be dealing with ASCII characters in your programs, it would be
wise to study the layout of the character set and memorize a few key ASCII
codes (such as those for 0, A, and a).

NOTE

Table A-1 in Appendix A lists all the characters in the standard ASCII
character set.

The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes $0 through $1F (0 through 31), form a

special set of nonprinting characters called the control characters. As their
name implies, these characters perform various printer and display control
operations rather than displaying symbols. Examples of control characters
include the carriage return, which positions the cursor at the beginning of

the current line of characters;2 line feed, which moves the cursor down one
line on the output device; and backspace, which moves the cursor back one
position to the left. Unfortunately, because there’s very little
standardization among output devices, different control characters perform
different operations on different output devices. To find out exactly how a
particular control character affects a certain device, consult the device’s
manual.

The second group of 32 ASCII character codes comprises various
punctuation symbols, special characters, and the numeric digits. The most
notable characters in this group include the space character (ASCII code
$20) and the numeric digits (ASCII codes $30..$39).

The third group of 32 ASCII characters contains the uppercase
alphabetic characters. The ASCII codes for the characters A through Z lie
in the range $41 through $5A. Because there are only 26 different alphabetic
characters, the remaining six codes hold various special symbols.

The fourth and final group of 32 ASCII character codes represents the
lowercase alphabetic symbols, five additional special symbols, and another
control character (delete). The lowercase character symbols use the ASCII
codes $61 through $7A. If you convert the codes for the upper- and lowercase
characters to binary, you’ll notice that the uppercase symbols differ from
their lowercase equivalents in exactly one bit position. For example,
consider the character codes for E and e in Figure 5-1.

Figure 5-1: ASCII codes for E and e

These two codes differ only in bit 5. Uppercase alphabetic characters
always contain a 0 in bit 5; lowercase alphabetic characters always contain a
1 in bit 5. To quickly convert an alphabetic character between upper- and
lowercase, simply invert bit 5. To force an uppercase character to
lowercase, set bit 5 to 1. Likewise, you can force a lowercase character to
uppercase by setting bit 5 to 0.

Bits 5 and 6 determine the character’s group (see Table 5-1). Therefore,
you can convert any upper- or lowercase (or special) character to its
corresponding control character by setting bits 5 and 6 to 0 (for example, A
becomes CTRL-A when you set bits 5 and 6 to 0; that is, 0x41 becomes 0x01).

Table 5-1: ASCII Character Groups Determined by Bits 5 and 6

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and
punctuation

1 0 Uppercase and special

1 1 Lowercase and special

Bits 5 and 6 aren’t the only bits that encode useful information.
Consider, for a moment, the ASCII codes of the numeric digit characters
in Table 5-2. The decimal representations of these ASCII codes are not
very enlightening. However, the hexadecimal representation reveals
something very important—the LO nibble is the binary equivalent of the
represented number. By stripping away (setting to 0) the HO nibble of the
ASCII code, you obtain the binary representation of that digit. Conversely,
you can convert a binary value in the range 0 through 9 to its ASCII
character representation by simply setting the HO nibble to %0011, or the
decimal value 3. You can use the logical AND operation to force the HO
bits to 0; likewise, you can use the logical OR operation to force the HO
bits to %0011. For more information on string-to-numeric conversions, see
Chapter 2.

Table 5-2: ASCII Codes for the Numeric Digits

Character Decimal Hexadecimal

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39

Despite the fact that it is a “standard,” simply encoding your data using
ASCII characters does not guarantee compatibility across systems. An A on
one machine is most likely an A on another system; but, of the 32 control
codes in the first group of ASCII codes, plus the delete code in the last
group, only 4 control codes are commonly supported by most devices and
applications—backspace (BS), tab, carriage return (CR), and line feed (LF).
Worse still, different machines often use these “supported” control codes
in different ways. End-of-line is a particularly troublesome example.
Windows, MS-DOS, CP/M, and other systems mark end-of-line by the
two-character sequence CR/LF. The original Apple Macintosh OS and
many other systems mark end-of-line by a single CR character. Linux,
BeOS, macOS, and other Unix systems mark end-of-line with a single LF
character.

Exchanging simple text files between different systems can be an
exercise in frustration. Even if you use standard ASCII characters in all
your files, you still need to convert the data when exchanging files between
systems. Fortunately, many text editors automatically handle files with
different line endings (many available freeware utilities will also do this
conversion for you). If you have to do this in your own software, simply
copy all characters except the end-of-line sequence from one file to

another, and then emit the new end-of-line sequence whenever you
encounter an old end-of-line sequence in the input file.

5.1.2 The EBCDIC Character Set

Although the ASCII character set is, unquestionably, the most popular
character representation, it’s certainly not the only one available. For
example, IBM uses the EBCDIC code on many of its mainframe and mini-
computer lines. However, you’ll rarely encounter it on personal computer
systems, so we’ll consider it only briefly in this book.

EBCDIC (pronounced “Eb-suh-dic”) stands for Extended Binary Coded
Decimal Interchange Code. If you’re wondering whether there was an
unextended version of this character code, the answer is yes. Earlier IBM
systems and keypunch machines used BCDIC (Binary Coded Decimal
Interchange Code), a character set based on punched cards and decimal
representation (for IBM’s older decimal machines).

BCDIC existed long before modern digital computers; it was born on
old-fashioned IBM keypunches and tabulator machines. EBCDIC
extended that encoding to provide a character set for IBM’s computers.
However, EBCDIC inherited several traits from BCDIC that seem strange
in the context of modern computers. For example, the encodings of the
alphabetic characters are not contiguous. Originally, the alphabetic
characters probably did have a sequential encoding; however, when IBM
expanded the character set, it used some binary combinations that aren’t
present in the BCD format (like %1010..%1111). These binary values appear
between two otherwise sequential BCD values, which explains why certain
character sequences (such as the alphabetic characters) aren’t contiguous in
the EBCDIC encoding.

EBCDIC is not a single character set; rather, it is a family of character
sets. While the EBCDIC character sets have a common core (for example,
the encodings for the alphabetic characters are usually the same), different
versions, known as code pages, have different encodings for punctuation and
special characters. Because of the limited number of encodings available in
a single byte, different code pages reuse some of the character encodings
for their own special set of characters. So, if you’re given a file that
contains EBCDIC characters and someone asks you to translate it to
ASCII, you’ll quickly discover that it’s not a trivial task.

Because of the weirdness of the EBCDIC character set, many common
algorithms that work well on ASCII characters simply don’t work with
EBCDIC. However, keep in mind that EBCDIC functional equivalents
exist for most ASCII characters. Check out the IBM literature for more
details.

5.1.3 Double-Byte Character Sets

Because a byte can represent a maximum of 256 characters, some computer
systems use double-byte character sets (DBCSs) to represent more than 256
characters. DBCSs do not encode every character using 16 bits; instead,
they use a single byte for most character encodings and use double-byte
codes only for certain characters.

A typical double-byte character set uses the standard ASCII character
set along with several additional characters in the range $80 through $FF.
Certain values in this range are used as extension codes that tell the
software that a second byte immediately follows. Each extension byte
allows the DBCS to support another 256 different character codes. With
three extension values, for example, the DBCS can support up to 1,021
different characters: 256 characters for each of the extension bytes, and 253
(256 – 3) characters for the standard single-byte set (we subtract 3 because
the three extension byte values each consume one of the 256 combinations,
and they don’t count as characters).

Back in the days when terminals and computers used memory-mapped
character displays, double-byte character sets weren’t very practical.
Hardware character generators really want each character to be the same
size, and they want to process a limited number of characters. However, as
bitmapped displays with software character generators became prevalent
(such as Windows, Macintosh, Unix/XWindows machines, tablets, and
smartphones), it became possible to process DBCSs.

Although DBCSs can compactly represent a large number of characters,
more computing resources are required to process text in a DBCS format.
For example, determining the length of a zero-terminated string
containing DBCS characters (typical in the C/C++ languages) can be
considerable work. Some characters in the string consume 2 bytes, while
most others consume only 1 byte, so a string length function has to scan
the string byte-by-byte to locate any extension values indicating that a

single character consumes 2 bytes. This process more than doubles the
time a high-performance string length function takes to execute.

Worse still, many common algorithms used to manipulate string data
fail when applied to DBCSs. For example, a common C/C++ trick to step
through characters in a string is to either increment or decrement a pointer
to the string using expressions like ++ptrChar or --ptrChar. This won’t work
with DBCSs. While someone using a DBCS probably has a set of standard
C library routines that work on DBCSs, it’s also quite likely that other
character functions they or others have written don’t work properly with
the extended characters.

The other big problem with DBCSs is the lack of consistent standard.
Different DBCSs use the same exact encoding for different characters. For
these reasons, if you need a standardized character set that supports more
than 256 characters, you’re far better off using the Unicode character set.

5.1.4 The Unicode Character Set

A few decades back, engineers at Aldus, NeXT, Sun, Apple Computer,
IBM, Microsoft, the Research Library Group, and Xerox realized that their
new computer systems with bitmaps and user-selectable fonts could display
far more than 256 different characters at one time. At the time, DBCSs
were the most common solution, but—as just noted—they had a couple of
compatibility problems. So, the engineers sought a different route.

The solution they came up with was the Unicode character set. The
engineers who originally developed Unicode chose a 2-byte character size.
Like DBCSs, this approach still required special library code (existing
single-byte string functions would not always work with double-byte
characters), but other than changing the size of a character, most existing
string algorithms would still work with 2-byte characters. The Unicode
definition included all of the (known/living) character sets at the time,
giving each character a unique encoding, to avoid the consistency problems
that plagued differing DBCSs.

The original Unicode standard used a 16-bit word to represent each
character. Therefore, Unicode supported up to 65,536 different character
codes—a huge advance over the 256 possible codes that are representable
with an 8-bit byte. Furthermore, Unicode is upward compatible from

ASCII. If the HO 9 bits3 of a Unicode character’s binary representation

contain 0, then the LO 7 bits use the standard ASCII code. If the HO 9 bits
contain some nonzero value, then the 16 bits form an extended character
code (extended from ASCII, that is). If you’re wondering why so many
different character codes are necessary, note that, at the time, certain Asian
character sets contained 4,096 characters. The Unicode character set even
provided a set of codes you could use to create an application-defined
character set. Approximately half of the 65,536 possible character codes
have been defined, and the remaining character encodings are reserved for
future expansion.

Today, Unicode is a universal character set, long replacing ASCII and
older DBCSs. All modern operating systems (including macOS, Windows,
Linux, iOS, Android, and Unix), web browsers, and most modern
applications provide Unicode support. Unicode Consortium, a nonprofit
corporation, maintains the Unicode standard. By maintaining the standard,
Unicode, Inc. (https://home.unicode.org/), helps guarantee that a character
you write on one system will display as you expect on a different system or
application.

5.1.5 Unicode Code Points

Alas, as well thought-out as the original Unicode standard was, it couldn’t
have anticipated the explosion in characters that would occur. Emojis,
astrological symbols, arrows, pointers, and a wide variety of symbols
introduced for the internet, mobile devices, and web browsers have greatly
expanded the Unicode symbol repertoire (along with a desire to support
historic, obsolete, and rare scripts). In 1996, systems engineers discovered
that 65,536 symbols were insufficient. Rather than require 3 or 4 bytes for
each Unicode character, those in charge of the Unicode definition gave up
on trying to create a fixed-size representation of characters and allowed for
opaque (and multiple) encodings of Unicode characters. Today, Unicode
defines 1,112,064 code points, far exceeding the 2-byte capacity originally
set aside for Unicode characters.

A Unicode code point is simply an integer value that Unicode associates
with a particular character symbol; you can think of it as the Unicode
equivalent of the ASCII code for a character. The convention for Unicode
code points is to specify the value in hexadecimal with a U+ prefix; for
example, U+0041 is the Unicode code point for the letter A.

https://home.unicode.org/

NOTE

See
https://en.wikipedia.org/wiki/Unicode#General_Category_property for
more details on code points.

5.1.6 Unicode Code Planes

Because of its history, blocks of 65,536 characters are special in Unicode—
they are known as a multilingual plane. The first multilingual plane, U+000000
to U+00FFFF, roughly corresponds to the original 16-bit Unicode definition;
the Unicode standard calls this the Basic Multilingual Plane (BMP). Planes 1
(U+010000 to U+01FFFF), 2 (U+020000 to U+02FFFF), and 14 (U+0E0000 to U+0EFFFF) are
supplementary planes. Unicode reserves planes 3 through 13 for future
expansion and planes 15 and 16 for user-defined character sets.

The Unicode standard defines code points in the range U+000000 to
U+10FFFF. Note that 0x10ffff is 1,114,111, which is where most of the
1,112,064 characters in the Unicode character set come from; the
remaining 2,048 code points are reserved for use as surrogates, which are
Unicode extensions. Unicode scalar, another term you might hear, is a value
from the set of all Unicode code points except the 2,048 surrogate code
points. The HO two hexadecimal digits of the six-digit code point value
specify the multilingual plane. Why 17 planes? The reason, as you’ll see in
a moment, is that Unicode uses special multiword entries to encode code
points beyond U+FFFF. Each of the two possible extensions encodes 10 bits,
for a total of 20 bits; 20 bits gives you 16 multilingual planes, which, plus
the original BMP, produces 17 multilingual planes. This is also why code
points fall in the range U+000000 to U+10FFFF: it takes 21 bits to encode the 16
multilingual planes plus the BMP.

5.1.7 Surrogate Code Points

As noted earlier, Unicode began life as a 16-bit (2-byte) character set
encoding. When it became apparent that 16 bits were insufficient to handle
all the possible characters that existed at the time, an expansion was
necessary. As of Unicode v2.0, the Unicode, Inc., organization extended
the definition of Unicode to include multiword characters. Now Unicode

https://en.wikipedia.org/wiki/Unicode#General_Category_property

uses surrogate code points (U+D800 through U+DFFF) to encode values larger
than U+FFFF. Figure 5-2 shows the encoding.

Figure 5-2: Surrogate code point encoding for Unicode planes 1–16

Note that the two words (unit 1/high surrogate and unit 2/low
surrogate) always appear together. The unit 1 value (with HO bits %110110)
specifies the upper 10 bits (b10..b19) of the Unicode scalar, and the unit 2

value (with HO bits %110111) specifies the lower 10 bits (b0..b9) of the

Unicode scalar. Therefore, the value of bits b16 through b19 plus 1 specifies

Unicode plane 1 through 16. Bits b0 through b15 specify the Unicode scalar

value within the plane.

Note that surrogate codes appear only in the BMP. None of the other
multilingual planes contain surrogate codes. Bits b0 through b19, extracted

from the unit 1 and 2 values, always specify a Unicode scalar value (even if
the values fall in the range U+D800 through U+DFFF).

5.1.8 Glyphs, Characters, and Grapheme Clusters

Each Unicode code point has a unique name. For example, U+0045 has the
name “LATIN CAPITAL LETTER A.” Note that the symbol A is not the
name of the character. A is a glyph—a series of strokes (one horizontal and
two slanted strokes) that a device draws in order to represent the character.

There are many different glyphs for the single Unicode character
“LATIN CAPITAL LETTER A.” For example, a Times Roman letter A
and a Times Roman Italic letter A have different glyphs, but Unicode
doesn’t differentiate between them (or between A characters in any two

different fonts). The character “LATIN CAPITAL LETTER A” remains
U+0045 regardless of the font or style you use to draw it.

As an interesting side note, if you have access to the Swift programming
language, you can print the name of any Unicode character using the
following code:

import Foundation
let charToPrintName :String = "A" // Print name of this character

let unicodeName =
 String(charToPrintName).applyingTransform(
 StringTransform(rawValue: "Any-Name"),
 reverse: false
)! // Forced unwrapping is legit here because it always succeeds.
print(unicodeName)

Output from program:
\N{LATIN CAPITAL LETTER A}

So, what exactly is a character in Unicode? Unicode scalars are Unicode
characters, but there’s a difference between what you’d normally call a
character and the definition of a scalar. For example, is © one character or
two? Consider the following Swift code:

import Foundation
let eAccent :String = "e\u{301}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

"\u{301}" is the Swift syntax for specifying a Unicode scalar value within
a string; in this particular case 301 is the hexadecimal code for the combining
acute accent character.

The first print statement:

print(eAccent)

prints the character (producing © on the output, as we expect).

The second print statement prints the number of characters Swift
determines are present in the string:

print("eAccent.count=\(eAccent.count)")

This prints 1 to the standard output.

The third print statement prints the number of elements (UTF-16

elements4) in the string:

print("eAccent.utf16.count=\(eAccent.utf16.count)")

This prints 2 on the standard output, because the string holds two words of
UTF-16 data.

So, again, is this one character or two? Internally (assuming UTF-16
encoding), the computer sets aside 4 bytes of memory for this single

character (two 16-bit Unicode scalar values).5 On the screen, however, the
output takes only one character position and looks like a single character to
the user. When this character appears within a text editor and the cursor is
immediately to the right of the character, the user expects that pressing the
backspace key will delete it. From the user’s perspective, then, this is a
single character (as Swift reports when you print the count attribute of the
string).

In Unicode, however, a character is largely equivalent to a code point.
This is not what people normally think of as a character. In Unicode
terminology, a grapheme cluster is what people commonly call a character—
it’s a sequence of one or more Unicode code points that combine to form a
single language element (that is, a single character). So, when we talk about
characters with respect to symbols that an application displays to an end
user, we’re really talking about grapheme clusters.

Grapheme clusters can make life miserable for software developers.
Consider the following Swift code (a modification of the earlier example):

import Foundation
let eAccent :String = "e\u{301}\u{301}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

This code produces the same © and 1 outputs from the first two print
statements. The following produces ©:

print(eAccent)

and this print statement produces 1.

print("eAccent.count=\(eAccent.count)")

However, the third print statement:

print("eAccent.utf16.count=\(eAccent.utf16.count)")

displays 3 rather than 2 (as in the original example).

There are definitely three Unicode scalar values in this string (U+0065,
U+0301, and U+0301). When printing, the operating system combines the e and
the two acute accent combining characters to form the single character ©
and then outputs the character to the standard output device. Swift is smart
enough to know that this combination creates a single output symbol on
the display, so printing the result of the count attribute continues to output
1. However, there are (undeniably) three Unicode code points in this
string, so printing utf16.count produces 3 on output.

5.1.9 Unicode Normals and Canonical Equivalence

The Unicode character © actually existed on personal computers long
before Unicode came along. It’s part of the original IBM PC character set
and also part of the Latin-1 character set (used, for example, on old DEC
terminals). As it turns out, Unicode uses the Latin-1 character set for the
code points in the range U+00A0 to U+00FF, and U+00E9 just happens to
correspond to the © character. Therefore, we can modify the earlier
program as follows:

import Foundation
let eAccent :String = "\u{E9}"
print(eAccent)
print("eAccent.count=\(eAccent.count)")
print("eAccent.utf16.count=\(eAccent.utf16.count)")

The outputs from this program are:

©
1
1

Ouch! Three different strings all producing © but containing a different
number of code points. Imagine how this complicates programming strings
containing Unicode characters. For example, if you have the following
three strings (Swift syntax) and you try to compare them, what will the
result be?

let eAccent1 :String = "\u{E9}"
let eAccent2 :String = "e\u{301}"
let eAccent3 :String = "e\u{301}\u{301}"

To the user, all three strings look the same on the screen. However, they
clearly contain different values. If you compare them to see if they are
equal, will the result be true or false?

Ultimately, that depends upon whose string libraries you’re using. Most
current string libraries would return false if you compared these strings for
equality. Interestingly enough, Swift will claim that eAccent1 is equal to
eAccent2, but it isn’t smart enough to report that eAccent1 is equal to eAccent3
or that eAccent2 is equal to eAccent3—despite the fact that it displays the same
symbol for all three strings. Many languages’ string libraries simply report
that all three strings are unequal.

The three Unicode/Swift strings "\{E9}", "e\{301}", and "e\{301}\{301}" all
produce the same output on the display; therefore, they are canonically
equivalent according to the Unicode standard. Some string libraries won’t
report any of these strings as being equivalent, however. Others, like the
one for Swift, will handle small canonical equivalences (such as "\{E9}" ==

"e\{301}") but not arbitrary sequences that should be equivalent.6

Unicode defines normal forms for Unicode strings. One aspect of normal
form is to replace canonically equivalent sequences with an equivalent
sequence—for example, replace "e\u{309}" by "\u{E9}" or replace "\u{E9}" by
"e\u{309}" (usually, the shorter form is preferable). Some Unicode sequences
allow multiple combining characters. Often, the order of the combining
characters is irrelevant to producing the desired grapheme cluster.
However, it’s easier to compare two such strings if the combining
characters are in a specified order. Normalizing Unicode strings may also
produce results whose combining characters always appear in a fixed order
(thereby improving efficiency of string comparisons).

5.1.10 Unicode Encodings

As of Unicode v2.0, the standard supports a 21-bit character space capable
of handling over a million characters (though most of the code points
remain reserved for future use). Rather than use a fixed-size 3-byte (or
worse, 4-byte) encoding to allow the larger character set, Unicode, Inc.,

allows different encodings—UTF-32, UTF-16, and UTF-8—each with its

own advantages and disadvantages.7

UTF-32 uses 32-bit integers to hold Unicode scalars. The advantage to
this scheme is that a 32-bit integer can represent every Unicode scalar
value (which requires only 21 bits). Programs that require random access to
characters in strings—without having to search for surrogate pairs—and
other constant-time operations are (mostly) possible with UTF-32. The
obvious drawback to UTF-32 is that each Unicode scalar value requires 4
bytes of storage—twice that of the original Unicode definition and four
times that of ASCII characters. It may seem that using two or four times as
much storage (over ASCII and the original Unicode) is a small price to pay.
After all, modern machines have several orders of magnitude more storage
than they did when Unicode first appeared. However, that extra storage
has a huge impact on performance, because those additional bytes quickly
consume cache storage. Furthermore, modern string processing libraries
often operate on character strings 8 bytes at a time (on 64-bit machines).
With ASCII characters, that means a given string function can process up
to eight characters concurrently; with UTF-32, that same string function
can operate on only two characters concurrently. As a result, the UTF-32
version will run four times slower than the ASCII version. Ultimately, even
Unicode scalar values are insufficient to represent all Unicode characters
(that is, many Unicode characters require a sequence of Unicode scalars),
so using UTF-32 doesn’t solve the problem.

The second encoding format the Unicode supports is UTF-16. As the
name suggests, UTF-16 uses 16-bit (unsigned) integers to represent
Unicode values. To handle scalar values greater than 0xFFFF, UTF-16 uses
the surrogate pair scheme to represent values in the range 0x010000 to
0x10FFFF (see “Surrogate Code Points” on page 102). Because the vast
majority of useful characters fit into 16 bits, most UTF-16 characters
require only 2 bytes. For those rare cases where surrogates are necessary,
UTF-16 requires 2 words (32 bits) to represent the character.

The last encoding, and unquestionably the most popular, is UTF-8.
The UTF-8 encoding is forward compatible from the ASCII character set.
In particular, all ASCII characters have a single-byte representation (their
original ASCII code, where the HO bit of the byte containing the
character contains a 0 bit). If the UTF-8 HO bit is 1, then UTF-8 requires

between 1 and 3 additional bytes to represent the Unicode code point.
Table 5-3 provides the UTF-8 encoding schema.

Table 5-3: UTF Encoding

Bytes Bits for
code
point

First
code
point

Last
code
point

Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+00 U+7F 0xxxxxxx

2 11 U+80 U+7FF 110xxxxx 10xxxxxx

3 16 U+800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The “xxx . . .” bits are the Unicode code point bits. For multibyte
sequences, byte 1 contains the HO bits, byte 2 contains the next HO bits
(LO bits compared to byte 1), and so on. For example, the 2-byte sequence
(%11011111, %10000001) corresponds to the Unicode scalar %0000_0111_1100_0001
(U+07C1).

UTF-8 encoding is probably the most common encoding in use. Most
web pages use it. Most C standard library string functions will operate on
UTF-8 text without modification (although some C standard library
functions can produce malformed UTF-8 strings if the programmer isn’t
careful with them).

Different languages and operating systems use different encodings as
their default. For example, macOS and Windows tend to use UTF-16
encoding, whereas most Unix systems use UTF-8. Some variants of
Python use UTF-32 as their native character format. By and large, though,
most programming languages use UTF-8 because they can continue to use
older ASCII-based character processing libraries to process UTF-8
characters. Apple’s Swift is one of the first programming languages that
attempts to do Unicode right (though there is a huge performance hit for
doing so).

5.1.11 Unicode Combining Characters

Although UTF-8 and UTF-16 encodings are much more compact than
UTF-32, the CPU overhead and algorithmic complexities of dealing with
multibyte (or multiword) characters sets complicates their use, introducing
bugs and performance issues. Despite the issues of wasting memory
(especially in the cache), why not simply define characters as 32-bit entities
and be done with it? This seems like it would simplify string processing
algorithms, improving performance and reducing the likelihood of defects
in the code.

The problem with this theory is that you cannot represent all possible
grapheme clusters with only 21 bits (or even 32 bits) of storage. Many
grapheme clusters consist of several concatenated Unicode code points.
Here’s an example from Chris Eidhof and Ole Begemann’s Advanced Swift
(CreateSpace, 2017):

let chars: [Character] = [
 "\u{1ECD}\u{300}",
 "\u{F2}\u{323}",
 "\u{6F}\u{323}\u{300}",
 "\u{6F}\u{300}\u{323}"
]

Each of these Unicode grapheme clusters produces an identical
character: an ó with a dot underneath the character (this is a character from
the Yoruba character set). The character sequence (U+1ECD, U+300) is an o with
a dot under it followed by a combining acute. The character sequence (U+F2,
U+323) is an ó followed by a combining dot. The character sequence (U+6F,
U+323, U+300) is an o followed by a combining dot, followed by a combining
acute. Finally, the character sequence (U+6F, U+300, U+323) is an o followed by a
combining acute, followed by a combining dot. All four strings produce the
same output. Indeed, the Swift string comparisons treat all four strings as
equal:

print("\u{1ECD} + \u{300} = \u{1ECD}\u{300}")
print("\u{F2} + \u{323} = \u{F2}\u{323}")
print("\u{6F} + \u{323} + \u{300} = \u{6F}\u{323}\u{300}")
print("\u{6F} + \u{300} + \u{323} = \u{6F}\u{300}\u{323}")
print(chars[0] == chars[1]) // Outputs true
print(chars[0] == chars[2]) // Outputs true
print(chars[0] == chars[3]) // Outputs true
print(chars[1] == chars[2]) // Outputs true
print(chars[1] == chars[3]) // Outputs true
print(chars[2] == chars[3]) // Outputs true

Note that there is not a single Unicode scalar value that will produce
this character. You must combine at least two Unicode scalars (or as many
as three) to produce this grapheme cluster on the output device. Even if
you used UTF-32 encoding, it would still require two (32-bit) scalars to
produce this particular output.

Emojis present another challenge that can’t be solved using UTF-32.
Consider the Unicode scalar U+1F471. This prints an emoji of a person with
blond hair. If we add a skin color modifier to this, we obtain (U+1F471,
U+1F3FF), which produces a person with a dark skin tone (and blond hair). In
both cases we have a single character displaying on the screen. The first
example uses a single Unicode scalar value, but the second example
requires two. There is no way to encode this with a single UTF-32 value.

The bottom line is that certain Unicode grapheme clusters will require
multiple scalars, no matter how many bits we assign to the scalar (it’s
possible to combine 30 or 40 scalars into a single grapheme cluster, for
example). That means we’re stuck dealing with multiword sequences to
represent a single “character” regardless of how hard we try to avoid it.
This is why UTF-32 has never really taken off. It doesn’t solve the
problem of random access into a string of Unicode characters. If you’ve got
to deal with normalizing and combining Unicode scalars, it’s more efficient
to use UTF-8 or UTF-16 encodings.

Again, most languages and operating systems today support Unicode in
one form or another (typically using UTF-8 or UTF-16 encoding).
Despite the obvious problems with dealing with multibyte character sets,
modern programs need to deal with Unicode strings rather than simple
ASCII strings. Swift, which is almost “pure Unicode,” doesn’t even offer
much in the way of standard ASCII character support.

5.2 Character Strings

After integers, character strings are probably the most common type in use
in modern programs. In general, a character string is a sequence of
characters with two main attributes: a length and the character data.

Character strings may also possess other attributes, such as the
maximum length allowable for that particular variable or a reference count
specifying how many different string variables refer to the same character

string. We’ll look at these attributes and how programs can use them in
this section, which describes various string formats and some of the
possible string operations.

5.2.1 Character String Formats

Different languages use different data structures to represent strings. Some
string formats use less memory, others allow faster processing, some are
more convenient to use, and still others provide additional functionality for
the programmer and operating system. To help you better understand the
reasoning behind the design of character strings, let’s look at some
common string representations popularized by various high-level
languages.

5.2.1.1 Zero-Terminated Strings

Without question, zero-terminated strings are the most common string
representation in use today, because this is the native string format for C,
C++, and several other languages. In addition, you’ll find zero-terminated
strings in programs written in languages that don’t have a specific native
string format, such as assembly language.

A zero-terminated ASCII string is a sequence containing zero or more
8-bit character codes ending with a byte containing 0 (or, in the case of
UTF-16, a sequence containing zero or more 16-bit character codes and
ending with a 16-bit word containing 0). For example, in C/C++, the
ASCII string "abc" requires 4 bytes: 1 byte for each of the three characters
a, b, and c, and a 0 byte.

Zero-terminated strings have a few advantages over other string
formats:

Zero-terminated strings can represent strings of any practical length
with only one byte of overhead (2 bytes in UTF-16, 4 in UTF-32).

Given the popularity of the C/C++ programming languages, high-
performance string processing libraries are available that work well
with zero-terminated strings.

Zero-terminated strings are easy to implement. As far as the C and
C++ languages are concerned, strings are just arrays of characters.
That’s probably why C’s designers chose this format in the first place

—so they wouldn’t have to clutter up the language with string
operators.

You can easily represent zero-terminated strings in any language able
to create an array of characters.

However, zero-terminated strings also have disadvantages that mean
they are not always the best choice for representing character string data:

String functions that need to know the length of a string before
working on the string data often aren’t very efficient when operating
on zero-terminated strings. The only reasonable way to compute the
length of a zero-terminated string is to scan the string from the
beginning to the end. The longer your strings are, the slower this
function runs, so the zero-terminated string format isn’t the best
choice if you need to process long strings.

Although it’s a minor problem, you cannot easily represent the
character code 0 (such as the NUL character in ASCII and Unicode)
with the zero-terminated string format.

Zero-terminated strings don’t contain any information that tells you
how long the string can grow beyond the terminating 0 byte.
Therefore, some string functions, like concatenation, can only extend
the length of an existing string variable and check for overflow if the
caller explicitly passes the maximum length.

5.2.1.2 Length-Prefixed Strings

A second string format, length-prefixed strings, overcomes some of the
problems with zero-terminated strings. Length-prefixed strings are
common in languages like Pascal; they generally consist of a single byte
that specifies the length of the string, followed by zero or more 8-bit
character codes. In a length-prefixed scheme, the string "abc" consists of 4
bytes: the length byte ($03), followed by a, b, and c.

Length-prefixed strings solve two of the problems associated with zero-
terminated strings: they allow you to represent the NUL character, and
string operations are more efficient. Another advantage to length-prefixed
strings is that the length is usually located at position 0 in the string (if we
view the string as an array of characters), so the first character of the string

begins at index 1 in the array representation of the string. For many string
functions, having a 1-based index into the character data is much more
convenient than a 0-based index (which zero-terminated strings use).

The principal drawback of length-prefixed strings that they are limited
to a maximum of 255 characters in length (assuming a 1-byte length
prefix). You can remove this limitation by using a 2- or 4-byte length value,
but doing so increases the amount of overhead data from 1 to 2 or 4 bytes.

5.2.1.3 Seven-Bit Strings

The 7-bit string format is an interesting option that works for 7-bit
encodings like ASCII. It uses the (normally unused) higher-order bit of the
characters in the string to indicate the end of the string. All but the last
character code in the string has its HO bit clear, and the last character in
the string has its HO bit set.

This 7-bit string format has several disadvantages:

You have to scan the entire string in order to determine the length of
the string.

You cannot have zero-length strings.

Few languages provide literal string constants for 7-bit strings.

You’re limited to a maximum of 128 character codes, though this is
fine when you’re using plain ASCII.

However, a big advantage of 7-bit strings is that they don’t require any
overhead bytes to encode the length. Assembly language (using a macro to
create literal string constants) is probably the best language to use when
dealing with 7-bit strings. Because the benefit of 7-bit strings is that they’re
compact and assembly language programmers tend to worry most about
compactness, this is a good match. Here’s an HLA macro that converts a
literal string constant to a 7-bit string:

#macro sbs(s);

 // Grab all but the last character of the string:

 (@substr(s, 0, @length(s) – 1) +

 // Concatenate the last character with its HO bit set:

 char(uns8(char(@substr(s, @length(s) – 1, 1))) | $80))

#endmacro
 . . .
byte sbs("Hello World");

5.2.1.4 HLA Strings

As long as you’re not too concerned about a few extra bytes of overhead
per string, you can create a string format that combines the advantages of
both length-prefixed and zero-terminated strings without their respective
disadvantages. The High-Level Assembly language has done this with its

native string format.8

The biggest drawback to the HLA character string format is the

amount of overhead required for each string: 9 bytes per string,9 which can
be significant, percentage-wise, if you’re in a memory-constrained
environment and you process many small strings.

The HLA string format uses a 4-byte length prefix, allowing character
strings to be just over four billion characters long (obviously, this is far
more than any practical HLA application will use). HLA also appends a 0
byte to the character string data. The additional 4 bytes of overhead
contain the maximum legal length for that string. Having this extra field
allows HLA string functions to check for string overflow, if necessary. In
memory, HLA strings take the form shown in Figure 5-3.

Figure 5-3: HLA string format

The 4 bytes immediately before the first character of the string contain
the current string length. The 4 bytes preceding the current string length
contain the maximum string length. Immediately following the character
data is a 0 byte. Finally, HLA always ensures that the string data structure’s
length is a multiple of 4 bytes long (for performance reasons), so there may
be up to 3 additional bytes of padding at the end of the object in memory.
(Note that the string in Figure 5-3 requires only 1 byte of padding to
ensure that the data structure is a multiple of 4 bytes in length.)

HLA string variables are pointers that contain the byte address of the
first character in the string. To access the length fields, you load the value

of the string pointer into a 32-bit register, then access the Length field at
offset –4 from the base register and the MaxLength field at offset –8 from the
base register. Here’s an example:

static
 s :string := "Hello World";
 . . .
 mov(s, esi); // Move the address of 'H' in "Hello World"
 // into esi.
 mov([esi-4], ecx); // Puts length of string (11 for "Hello World")
 // into ECX.
 . . .
 mov(s, esi);
 cmp(eax, [esi-8]); // See if value in EAX exceeds the maximum
 // string length.
 ja StringOverflow;

As read-only objects, HLA strings are compatible with zero-terminated
strings. For example, if you have a function written in C that’s expecting
you to pass it a zero-terminated string, you can call that function and pass
it an HLA string variable, like this:

someCFunc(hlaStringVar);

The only catch is that the C function must not make any changes to the
string that would affect its length (because the C code won’t update the
Length field of the HLA string). Of course, you can always call a C strlen()
function upon returning to update the length field yourself, but generally,
it’s best not to pass HLA strings to a function that modifies zero-
terminated strings.

5.2.1.5 Descriptor-Based Strings

The string formats we’ve considered up to this point have kept the
attribute information (that is, the lengths and terminating bytes) for a
string in memory along with the character data. A slightly more flexible
scheme is to maintain such information in a record structure, known as a
descriptor, that also contains a pointer to the character data. Consider the
following Pascal/Delphi data structure:

type
 dString :record
 curLength :integer;
 strData :^char;
 end;

Note that this data structure does not hold the actual character data.
Instead, the strData pointer contains the address of the first character of the
string. The curLength field specifies the current length of the string. You
could add any other fields you like to this record, like a maximum length
field, though a maximum length isn’t usually necessary because most string
formats employing a descriptor are dynamic (as the next section will
discuss). Most string formats employing a descriptor just maintain the
Length field.

An interesting attribute of a descriptor-based string system is that the
actual character data associated with a string could be part of a larger
string. Because there are no length or terminating bytes within the actual
character data, it’s possible to have the character data for two strings
overlap (see Figure 5-4).

Figure 5-4: Overlapping strings using descriptors

In this example, there are two strings—"Hello World" and "World"—that
overlap. This can save memory and make certain functions, like substring(),
very efficient. Of course, when strings overlap like this, you can’t modify
the string data because that could wipe out part of some other string.

5.2.1.6 Java Strings

Java uses a descriptor-based string form. The actual String data type (that is,
the structure/class that defines the internal representation of a Java string)
is opaque, which means you really aren’t supposed to know about or mess
with it. It’s a very bad idea to attempt to manipulate Java strings other than
via the Java String API, because the Java standard has changed their
internal representation on a couple of occasions.

For example, Java originally defined the String type as a descriptor with
four items: a pointer to an array of 16-bit (original) Unicode characters (no

extension beyond 16 bits), a count field, an offset field, and a hash code
field. The offset and count fields allowed efficient substring operations,
since all substrings into a larger string would share the same array of
characters. Unfortunately, this format produced memory leaks in some
degenerate cases, so Java’s designers changed the format and eliminated
these fields. If you had code that used the offset and count fields (again, a
bad idea), your code was broken by this change.

Java also switched from the original Unicode 2-byte definition to UTF-
16 encoding once it became apparent that 16-bit characters were
insufficient. However, after a bit of research into a wide variety of Java
programs on the internet, Oracle (Java’s owner) discovered that most
programs use only the Latin-1 character set (basically, ASCII). In Oracle’s
own words:

Data from different applications suggests that strings are a major
component of Java heap usage and that most java.lang.String

objects contain only Latin-1 characters. Such characters require
only one byte of storage. As a result, half of the space in the
internal character arrays of java.lang.String objects are not used.
The compact strings feature, introduced in Java SE 9, reduces the
memory footprint, and reduces garbage collection activity.

This change was largely transparent to Java users and their programs.
Oracle added a new field to the String descriptor to specify whether the
encoding was UTF-16 or Latin-1. Once again, if your programs depended
on the internal representation, they broke.

Always assume that Java Strings are proper Unicode strings (typically
using UTF-16 encoding). Java does not try to hide the ugliness of
multiword characters. As a Java programmer, you must be aware of the
difference between the number of characters, code points, and grapheme
clusters in a string. Java provides functions—for example, String.length(),
String.codePointCount(), and BreakIterator.getCharacterInstance()—to compute all
these values for you, but your code must explicitly call them.

5.2.1.7 Swift Strings

Like Java, the Swift programming language uses Unicode characters in its
strings. Swift 4.x and earlier used a UTF-16 encoding, which is native to

macOS (on which Apple developed Swift); with Swift v5.0, Apple switched
to UTF-8 as the native encoding for Swift strings. As with Java, Swift’s
String type is opaque, so you shouldn’t attempt to mess with (or otherwise
use) its internal representation.

5.2.1.8 C# Strings

The C# programming language uses UTF-16 encoding for characters in
its strings. As with Java and Swift, C#’s string type is opaque and you
shouldn’t attempt to mess with (or otherwise use) its internal
representation. That being said, the Microsoft documentation does claim
that C# strings are an array of (Unicode) characters.

5.2.1.9 Python Strings

The Python programming language originally used UCS-2 (original 16-bit
Unicode, BMP-only) encoding for strings. Then Python was modified to
support UTF-16 or UTF-32 encodings (the language was compiled in
“narrow” or “wide” versions for 16- or 32-bit characters). Today, modern
versions of Python use a special string format that tracks the characters in
strings and stores them as ASCII, UTF-8, UTF-16, or UTF-32, based on
the most compact representation. You can’t really access the internal string
representation directly within Python, so the caveats of opaque types aren’t
relevant.

5.2.2 Types of Strings: Static, Pseudo-Dynamic, and Dynamic

Based on the various string formats covered thus far, we can now define
three string types according to when the system allocates storage for the
string. There are static, pseudo-dynamic, and dynamic strings.

5.2.2.1 Static Strings

Pure static strings are those whose maximum size a programmer chooses
when writing the program. Pascal strings and Delphi “short” strings fall
into this category. Arrays of characters that you use to hold zero-
terminated strings in C/C++ also fall into this category. Consider the
following declaration in Pascal:

(* Pascal static string example *)

var pascalString :string(255); // Max length will always be 255 characters.

And here’s an example in C/C++:

// C/C++ static string example:

char cString[256]; // Max length will always be 255 characters
 // (plus 0 byte).

While the program is running, there’s no way to increase the maximum
sizes of these static strings. Nor is there any way to reduce the storage they
will use; these string objects will consume 256 bytes at runtime, period.
One advantage to pure static strings is that the compiler can determine
their maximum length at compile time and implicitly pass this information
to a string function so it can test for bounds violations at runtime.

5.2.2.2 Pseudo-Dynamic Strings

A pseudo-dynamic string is one whose length the system sets at runtime by
calling a memory management function like malloc() to allocate storage for
it. However, once the system allocates storage for the string, the maximum

length of the string is fixed. HLA strings generally fall into this category.10

An HLA programmer typically calls the stralloc() function to allocate
storage for a string variable, after which that particular string object has a

fixed length that cannot change.11

5.2.2.3 Dynamic Strings

Dynamic string systems, which typically use a descriptor-based format,
automatically allocate sufficient storage for a string object whenever you
create a new string or otherwise do something that affects an existing
string. Operations like string assignment and substring are relatively trivial
in dynamic string systems—generally they copy only the string descriptor
data, so these operations are fast. However, as noted in the section
“Descriptor-Based Strings” on page 114, when using strings this way, you
cannot store data back into a string object, because it could modify data
that is part of other string objects in the system.

The solution to this problem is to use the copy-on-write technique.
Whenever a string function needs to change characters in a dynamic string,
the function first makes a copy of the string and then makes the necessary

modifications to that copy. Research suggests that copy-on-write semantics
can improve the performance of many typical applications, because
operations like string assignment and substring extraction (which is just a
partial string assignment) are far more common than the modification of
character data within strings. The only drawback to this approach is that
after several modifications to string data in memory, there may be sections
of the string heap area that contain character data that’s no longer in use.
To avoid a memory leak, dynamic string systems employing copy on write
usually provide garbage collection code, which scans the string heap area
looking for stale character data in order to recover that memory for other
purposes. Unfortunately, depending on the algorithms in use, garbage
collection can be quite slow.

5.2.3 Reference Counting for Strings

Consider the case where you have two string descriptors (or pointers)
pointing at the same string data in memory. Clearly, you can’t deallocate
(that is, reuse for a different purpose) the storage associated with one
pointer while the program is still using the other pointer to access the same
data. One common solution is to make the programmer responsible for
keeping track of such details. Unfortunately, as applications become more
complex, this approach often leads to dangling pointers, memory leaks, and
other pointer-related problems in the software. A better solution is to allow
the programmer to deallocate the storage for the character data in the
string and to have the actual deallocation process hold off until the
programmer releases the last pointer referencing that data. To accomplish
this, a string system can use reference counters, which track the pointers
and their associated data.

A reference counter is an integer that counts the number of pointers that
reference a string’s character data in memory. Every time you assign the
address of the string to some pointer, you increment the reference counter
by 1. Likewise, whenever you wish to deallocate the storage associated with
the character data for the string, you decrement the reference counter.
Deallocation of the storage for the character data doesn’t happen until the
reference counter decrements to 0.

Reference counting works great when the language handles the details
of string assignment automatically for you. If you try to implement

reference counting manually, you must be sure to always increment the
reference counter when you assign a string pointer to some other pointer
variable. The best way to do this is to never assign pointers directly, but
rather to handle all string assignments via some function (or macro) call
that updates the reference counters in addition to copying the pointer data.
If your code fails to update the reference counter properly, you’ll wind up
with dangling pointers or memory leaks.

5.2.4 Delphi Strings

Although Delphi provides a “short string” format that is compatible with
the length-prefixed strings in earlier versions of Delphi, later versions of
Delphi (4.0 and later) use dynamic strings. While this string format is
unpublished (and, therefore, subject to change), indications are that
Delphi’s string format is very similar to HLA’s. Delphi uses a zero-
terminated sequence of characters with a leading string length and a
reference counter (rather than a maximum length as HLA uses). Figure 5-5
shows the layout of a Delphi string in memory.

Figure 5-5: Delphi string data format

As with HLA, Delphi string variables are pointers that point to the first
character of the actual string data. To access the length and reference
counter fields, the Delphi string routines use a negative offset of – 4 and –8
from the character data’s base address. However, because this string format
is not published, applications should never access the length or reference
counter fields directly. Delphi provides a length function that extracts the
string length for you, and there’s really no need for your applications to
access the reference counter field because the Delphi string functions
maintain it automatically.

5.2.5 Custom String Formats

Typically, you’ll use the string format your language provides, unless you
have special requirements. If that’s the case, you’ll find that most languages
provide user-defined data-structuring capabilities that enable you to create
your own custom string formats.

Note that the language will probably insist on a single string format for
literal string constants. However, you can usually write a short conversion
function that will translate the literal strings in your language to whatever
format you choose.

5.3 Character Set Data Types

Like strings, character set data types (or just character sets) are a composite
data type built upon the character data type. A character set is a
mathematical set of characters. Membership in a set is a binary relation: a
character is either in the set or not, and you can’t have multiple copies of
the same character in a character set. Furthermore, the concept of
sequence (whether one character comes before another, as in a string) is
foreign to a character set. If two characters are members of a set, their
order in the set is irrelevant.

Table 5-4 lists some common operations that applications perform on
character sets.

Table 5-4: Common Character Set Functions

Function/operator Description

Membership (in) Checks to see if a character is a
member of a character set (returns
true/false).

Intersection Returns the intersection of two
character sets (that is, the set of
characters that are members of both
sets).

Union Returns the union of two character
sets (that is, all the characters that
are members of either set or both
sets).

Difference Returns the difference of two sets
(that is, those characters in one set
that are not in the other).

Extraction Extracts a single character from a set.

Subset Returns true if one character set is a
subset of another.

Proper subset Returns true if one character set is a
proper subset of another.

Superset Returns true if one character set is a
superset of another.

Proper superset Returns true if one character set is a
proper superset of another.

Equality Returns true if one character set is
equal to another.

Inequality Returns true if one character set is
not equal to another.

5.3.1 Powerset Representation of Character Sets

There are many different ways to represent character sets. Several
languages implement them using an array of Boolean values (one Boolean
value for each possible character code). Each Boolean value determines
whether its corresponding character is (true) or is not (false) a member of
the character set. To conserve memory, most character set implementations
allocate only a single bit for each character in the set; therefore, they
consume 16 bytes (128 bits) of memory when supporting 128 characters, or
32 bytes (256 bits) when supporting up to 256 possible characters. This
representation of a character set is known as a powerset.

The HLA language uses an array of 16 bytes to represent the 128
possible ASCII characters, which is organized in memory as shown in
Figure 5-6.

Figure 5-6: HLA character set representation

Bit 0 of byte 0 corresponds to ASCII code 0 (the NUL character). If this
bit is 1, then the character set contains the NUL character; if this bit is 0,
then the character set does not contain the NUL character. Likewise, bit 1
of byte 8 corresponds to ASCII code 65, an uppercase A. Bit 65 will contain
a 1 if A is a current member of the character set, and 0 if it is not.

Pascal (for example, Delphi) uses a similar scheme to represent
character sets. Delphi allows up to 256 characters in a character set, so
Delphi character sets consume 256 bits (or 32 bytes) of memory.

While there are other ways to implement character sets, this bit vector
(array) implementation makes it very easy to perform set operations like
union, intersection, difference comparison, and membership tests.

5.3.2 List Representation of Character Sets

Sometimes a powerset bitmap just isn’t the right representation for a
character set. For example, if your sets are always very small (no more than
three or four members), using 16 or 32 bytes to represent each of them can
be overkill. In this case, you’d be better off using a character string to

represent a list of characters.12 If you rarely have more than a few
characters in a set, scanning through a string to locate a particular
character is probably efficient enough for most applications. Likewise, if
your character set has a large number of possible characters, then the
powerset representation could become huge (for example, implementing
the original Unicode UCS-2 character set as a powerset would require
8,192 bytes of memory, even if there was only a single character in the set).
In this situation, a list or character string representation could be more
appropriate than a powerset, as you don’t need to reserve memory for all
possible members of the set (only those that are actually present).

5.4 Designing Your Own Character Set

Very little is sacred about the ASCII, EBCDIC, and Unicode character
sets. Their primary advantage is that they are international standards to
which many systems adhere. If you stick with one of these standards,
chances are good you’ll be able to exchange information with other people,
which is what these codes were designed for.

However, they were not designed to make various character
computations easy. ASCII and EBCDIC were developed with now-
antiquated hardware in mind—mechanical teletypewriters’ keyboards and
punched-card systems, respectively. Given that such equipment is found
mainly in museums today, the layout of the codes in these character sets
has almost no benefit in modern computer systems. If we could design our
own character sets today, they’d be considerably different from ASCII or
EBCDIC. They’d probably be based on modern keyboards (so they’d
include codes for common keys, like LEFT ARROW, RIGHT ARROW, page up,
and page down). They’d also be laid out to make various common
computations a whole lot easier.

Although the ASCII and EBCDIC character sets are not going away
any time soon, there’s nothing stopping you from defining your own
application-specific character set. Of course, such a set is, well, application-
specific, and you won’t be able to share text files containing characters
encoded in your custom character set with applications that are ignorant of
your private encoding. But it’s fairly easy to translate between different
character sets using a lookup table, so you can convert between your
application’s internal character set and an external character set (like
ASCII) when performing I/O operations. Assuming you pick a reasonable
encoding that makes your programs more efficient overall, the loss of
efficiency during I/O can be worthwhile. But how do you choose an
encoding?

The first question you have to ask yourself is, “How many characters do
I want to support in my character set?” Obviously, the number of
characters you choose will directly affect the size of your character data. An
easy choice is 256 possible characters, because bytes are the most common
primitive data type that software uses to represent character data. Keep in
mind, however, that if you don’t really need 256 characters, you probably
shouldn’t try to define that many in your character set. For example, if you
can get by with 128, or even 64, characters in your custom character set,
then “text files” you create with it will compress better. Likewise, data
transmissions using it will be faster if you only have to transmit 6 or 7 bits
for each character instead of 8. If you need more than 256 characters,
you’ll have to weigh the advantages and disadvantages of using multiple
code pages, double-byte character sets, or 16-bit characters. And keep in
mind that Unicode provides support for user-defined characters. So, if you

need more than 256 characters in your character set, you might consider
inserting it into Unicode to remain “somewhat standard” with the rest of
the world.

In this section, we’ll define a character set containing 128 characters
using an 8-bit byte. For the most part, we’ll simply rearrange the codes in
the ASCII character set to make them more convenient for several
calculations, and we’ll rename a few of the control codes so they make
sense on modern systems instead of the old mainframes and teletypes for
which they were created. We’ll also add a few new characters beyond those
defined by the ASCII standard. Again, the main purpose of this exercise is
to make various computations more efficient, not create new characters.
We’ll call this the HyCode character set.

NOTE

This point bears repeating: the use of HyCode in this chapter is not an attempt
to create some new character set standard. It’s simply a demonstration of how
you can create a custom, application-specific character set to improve your
programs.

5.4.1 Designing an Efficient Character Set

We should think about several things when designing a new character set.
For example, do we need to be able to represent strings of characters using
an existing string format? This can influence the encoding of our strings—
if you want to use function libraries that operate on zero-terminated
strings, then you need to reserve encoding 0 in your custom character set
for use as an end-of-string marker. Keep in mind, however, that a fair
number of string functions won’t work with your new character set, no
matter what you do. Functions like stricmp() work only if you use the same
representation for alphabetic characters as ASCII (or some other common
character set). Therefore, you shouldn’t feel hampered by the requirements
of some particular string representation, because you’re going to have to
write many of your own string functions to process your custom characters
anyway. The HyCode character set doesn’t reserve code 0 for an end-of-
string marker, and that’s okay because zero-terminated strings are not very
efficient.

If you look at programs that use character functions, you’ll see that
certain functions occur frequently, such as:

Check a character to see if it is a digit.

Convert a digit character to its numeric equivalent.

Convert a numeric digit to its character equivalent.

Check a character to see if it is alphabetic.

Check a character to see if it is a lowercase character.

Check a character to see if it is an uppercase character.

Compare two characters (or strings) using a case-insensitive
comparison.

Sort a set of alphabetic strings (case-sensitive and case-insensitive
sorting).

Check a character to see if it is alphanumeric.

Check a character to see if it is legal in an identifier.

Check a character to see if it is a common arithmetic or logical
operator.

Check a character to see if it is a bracketing character (that is, one of (,
), [,], {, }, <, or >).

Check a character to see if it is a punctuation character.

Check a character to see if it is a whitespace character (such as a space,
tab, or newline).

Check a character to see if it is a cursor control character.

Check a character to see if it is a scroll control key (such as PGUP,
PGDN, HOME, and END).

Check a character to see if it is a function key.

We’ll design the HyCode character set to make these types of
operations as efficient and easy as possible. One huge improvement we can
make over the ASCII character set is to assign contiguous character codes
to characters belonging to the same type, such as alphabetic characters and
control characters, so we can do any of the preceding tests by using a pair
of comparisons. For example, it would be nice if we could determine that a
particular character is some sort of punctuation mark by comparing against
two values that represent upper and lower bounds of the entire range of

such characters, which we can’t do in ASCII because the punctuation
marks are spread throughout the character set. While it’s not possible to
satisfy every conceivable range comparison this way, we can design our
character set to accommodate the most common tests with as few
comparisons as possible.

5.4.2 Grouping the Character Codes for Numeric Digits

We can achieve the first three functions in the previous list by reserving the
character codes 0 through 9 for the characters 0 through 9. First, by using a
single unsigned comparison to check if a character code is less than or
equal to 9, we can see if a character is a digit. Next, converting between
characters and their numeric representations is trivial, because the
character code and the numeric representation are one and the same.

5.4.3 Grouping Alphabetic Characters

The ASCII character set, though nowhere near as bad as EBCDIC, just
isn’t well designed for dealing with alphabetic character tests and
operations. Here are some problems with ASCII that we’ll solve with
HyCode:

The alphabetic characters lie in two disjoint ranges. Tests for an
alphabetic character require four comparisons.

The lowercase characters have ASCII codes that are greater than the
uppercase characters. If we’re going to do a case-sensitive comparison,
it’s more intuitive to treat lowercase characters as being less than
uppercase characters.

All lowercase characters have a greater value than any individual
uppercase character. This leads to counterintuitive results, such as a
being greater than B.

HyCode solves these problems in a couple of interesting ways. First,
HyCode uses encodings $4C through $7F to represent the 52 alphabetic
characters. Because HyCode uses only 128 character codes ($00..$7F), the
alphabetic codes consume the last 52 character codes. This means that we
can test a character to see if it is alphabetic by comparing whether the code

is greater than or equal to $4C. In a high-level language, you’d write the
comparison like this:

if(c >= 76) . . .

Or, if your compiler supports the HyCode character set, like this:

if(c >= 'a') . . .

In assembly language, you could use a pair of instructions like the
following:

 cmp(al, 76);
 jnae NotAlphabetic;

 // Execute these statements if it's alphabetic

NotAlphabetic:

HyCode interleaves the lowercase and uppercase characters (that is, the
sequential encodings are for the characters a, A, b, B, c, C, and so on). This
makes sorting and comparing strings very easy, regardless of whether
you’re doing a case-sensitive or case-insensitive search. The interleaving
uses the LO bit of the character code to determine whether the character
code is lowercase (LO bit is 0) or uppercase (LO bit is 1). HyCode uses the
following encodings for alphabetic characters:

a:76, A:77, b:78, B:79, c:80, C:81, . . . y:124, Y:125, z:126, Z:127

Checking for an uppercase or lowercase alphabetic using HyCode is
more work than checking whether a character is alphabetic, but in
assembly it’s still less work than the equivalent ASCII comparison. To test a
character to see if it’s a member of a single case, you need two comparisons
—first to see if it’s alphabetic, then to determine its case. In C/C++ you can
use statements like the following:

if((c >= 76) && (c & 1))
{
 // execute this code if it's an uppercase character
}

if((c >= 76) && !(c & 1))
{
 // execute this code if it's a lowercase character
}

The subexpression (c & 1) evaluates true (1) if the LO bit of c is 1,
meaning we have an uppercase character if c is alphabetic. Likewise, !(c &
1) evaluates true if the LO bit of c is 0, meaning we have a lowercase
character. If you’re working in 80x86 assembly language, you can test a
character to see if it’s uppercase or lowercase by using three machine
instructions:

// Note: ROR(1, AL) maps lowercase to the range $26..$3F (38..63)
// and uppercase to $A6..$BF (166..191). Note that all other characters
// get mapped to smaller values within these ranges.

 ror(1, al);
 cmp(al, $26);
 jnae NotLower; // Note: must be an unsigned branch!

 // Code that deals with a lowercase character.

NotLower:

// For uppercase, note that the ROR creates codes in the range $A8..$BF which
// are negative (8-bit) values. They also happen to be the *most* negative
// numbers that ROR will produce from the HyCode character set.

 ror(1, al);
 cmp(al, $a6);
 jge NotUpper; // Note: must be a signed branch!

 // Code that deals with an uppercase character.

NotUpper:

Very few languages provide the equivalent of an ror() operation, and
only a few allow you to (easily) treat character values as signed and
unsigned within the same code sequence. Therefore, this sequence is
probably limited to assembly language programs.

5.4.4 Comparing Alphabetic Characters

The HyCode grouping of alphabetic characters means that lexicographical
ordering (“dictionary ordering”) is almost free. Sorting your strings by
comparing the HyCode character values gives you lexicographical order,
because HyCode defines the following relations on the alphabetic
characters:

a < A < b < B < c < C < d < D < . . . < w < W < x < X < y < Y < z < Z

This is exactly the relationship you want for lexicographical ordering,
and it’s also the one most people would intuitively expect. To do a case-
insensitive comparison, you simply mask out the LO bits (or force them
both to 1) of the alphabetic characters.

To see the benefit of the HyCode character set when doing case-
insensitive comparisons, let’s first take a look at what the standard case-
insensitive character comparison would look like in C/C++ for two ASCII
characters:

if(toupper(c) == toupper(d))
{
 // do code that handles c==d using a case-insensitive comparison.
}

This code doesn’t look too bad, but consider what the toupper() function

(or, usually, macro) expands to:13

#define toupper(ch) ((ch >= 'a' && ch <= 'z') ? ch & 0x5f : ch)

With this macro, you wind up with the following once the C
preprocessor expands the previous if statement:

if
(
 ((c >= 'a' && c <= 'z') ? c & 0x5f : c)
 == ((d >= 'a' && d <= 'z') ? d & 0x5f : d)
)
{
 // do code that handles c==d using a case-insensitive comparison.
}

This expands to 80x86 code similar to this:

 // assume c is in cl and d is in dl.

 cmp(cl, 'a'); // See if c is in the range 'a'..'z'
 jb NotLower;
 cmp(cl, 'z');
 ja NotLower;
 and($5f, cl); // Convert lowercase char in cl to uppercase.
NotLower:

 cmp(dl, 'a'); // See if d is in the range 'a'..'z'
 jb NotLower2;
 cmp(dl, 'z');
 ja NotLower2;
 and($5f, dl); // Convert lowercase char in dl to uppercase.
NotLower2:

 cmp(cl, dl); // Compare the (now uppercase if alphabetic)
 // chars.
 jne NotEqual; // Skip the code that handles c==d if they're
 // not equal.
 // do code that handles c==d using a case-insensitive comparison.
NotEqual:

In HyCode, case-insensitive comparisons are much simpler. Here’s what
the HLA assembly code would look like:

// Check to see if CL is alphabetic. No need to check DL as the comparison
// will always fail if DL is nonalphabetic.

 cmp(cl, 76); // If CL < 76 ('a') then it's not alphabetic
 jb TestEqual; // and there is no way the two chars are equal
 // (even ignoring case).

 or(1, cl); // CL is alpha, force it to uppercase.
 or(1, dl); // DL may or may not be alpha. Force to
 // uppercase if it is.

TestEqual:
 cmp(cl, dl); // Compare the uppercase versions of the chars.
 jne NotEqual; // Bail out if they're not equal.

TheyreEqual:
 // do code that handles c==d using a case-insensitive comparison.

NotEqual:

As you can see, the HyCode sequence uses half the instructions for a
case-insensitive comparison of two characters.

5.4.5 Grouping Other Characters

Because alphabetic characters are at one end of the character code range
and numeric characters are at the other, it takes two comparisons to check
a character to see if it’s alphanumeric (which is still better than the four
comparisons necessary in ASCII). Here’s the Pascal/Delphi code you’d use
to see if a character is alphanumeric:

if(ch < chr(10) or ch >= chr(76)) then . . .

Several programs (beyond compilers) need to efficiently process strings
of characters that represent program identifiers. Most languages allow
alphanumeric characters in identifiers, and, as you just saw, we can check a
character to see if it’s alphanumeric using only two comparisons.

Many languages also allow underscores within identifiers, and some
languages, such as MASM, allow other characters like the “at” character (@)
and dollar sign ($) to appear within identifiers. Therefore, by assigning the
underscore character the value 75, and by assigning the $ and @ characters
the respective codes 73 and 74, we can still test for an identifier character
using only two comparisons.

For similar reasons, HyCode groups together the cursor control keys,
the whitespace characters, the bracketing characters (parentheses, brackets,
braces, and angle brackets), the arithmetic operators, the punctuation
characters, and so on. Table 5-5 lists the complete HyCode character set. If
you study the numeric codes assigned to each character, you’ll see that they
allow for efficient computation of most of the character operations
described earlier.

Table 5-5: The HyCode Character Set

Binary HexDecimalCharacter Binary HexDecimalCharacter

0000_0000 00 0 0 0001_1110 1E 30 End

0000_0001 01 1 1 0001_1111 1F 31 Home

0000_0010 02 2 2 0010_0000 20 32 PgDn

0000_0011 03 3 3 0010_0001 21 33 PgUp

0000_0100 04 4 4 0010_0010 22 34 Left

0000_0101 05 5 5 0010_0011 23 35 Right

0000_0110 06 6 6 0010_0100 24 36 Up

0000_0111 07 7 7 0010_0101 25 37 Down/linefeed

0000_1000 08 8 8 0010_0110 26 38 Nonbreaking
space

0000_1001 09 9 9 0010_0111 27 39 Paragraph

0000_1010 0A 10 Keypad 0010_1000 28 40 Carriage
return

0000_1011 0B 11 Cursor 0010_1001 29 41 Newline/enter

0000_1100 0C 12 Function 0010_1010 2A 42 Tab

0000_1101 0D 13 Alt 0010_1011 2B 43 Space

Binary HexDecimalCharacter Binary HexDecimalCharacter

0000_1110 0E 14 Control 0010_1100 2C 44 (

0000_1111 0F 15 Command 0010_1101 2D 45)

0001_0000 10 16 Len 0010_1110 2E 46 [

0001_0001 11 17 Len128 0010_1111 2F 47]

0001_0010 12 18 Bin128 0011_0000 30 48 {

0001_0011 13 19 Eos 0011_0001 31 49 }

0001_0100 14 20 Eof 0011_0010 32 50 <

0001_0101 15 21 Sentinel 0011_0011 33 51 >

0001_0110 16 22 Break/interrupt 0011_0100 34 52 =

0001_0111 17 23 Escape/cancel 0011_0101 35 53 ^

0001_1000 18 24 Pause 0011_0110 36 54 |

0001_1001 19 25 Bell 0011_0111 37 55 &

0001_1010 1A 26 Back tab 0011_1000 38 56 -

0001_1011 1B 27 Backspace 0011_1001 39 57 +

0001_1100 1C 28 Delete

0001_1101 1D 29 Insert

0011_1010 3A 58 * 0101_1101 5D 93 I

0011_1011 3B 59 / 0101_1110 5E 94 j

0011_1100 3C 60 % 0101_1111 5F 95 J

0011_1101 3D 61 ~ 0110_0000 60 96 k

0011_1110 3E 62 ! 0110_0001 61 97 K

0011_1111 3F 63 ? 0110_0010 62 98 l

0100_0000 40 64 , 0110_0011 63 99 L

0100_0001 41 65 . 0110_0100 64 100 m

0100_0010 42 66 : 0110_0101 65 101 M

0100_0011 43 67 ; 0110_0110 66 102 n

0100_0100 44 68 " 0110_0111 67 103 N

Binary HexDecimalCharacter Binary HexDecimalCharacter

0100_0101 45 69 ' 0110_1000 68 104 o

0100_0110 46 70 ` 0110_1001 69 105 O

0100_0111 47 71 \ 0110_1010 6A 106 p

0100_1000 48 72 # 0110_1011 6B 107 P

0100_1001 49 73 $ 0110_1100 6C 108 q

0100_1010 4A 74 @ 0110_1101 6D 109 Q

0100_1011 4B 75 _ 0110_1110 6E 110 r

0100_1100 4C 76 a 0110_1111 6F 111 R

0100_1101 4D 77 A 0111_0000 70 112 s

0100_1110 4E 78 b 0111_0001 71 113 S

0100_1111 4F 79 B 0111_0010 72 114 t

0101_0000 50 80 c 0111_0011 73 115 T

0101_0001 51 81 C 0111_0100 74 116 u

0101_0010 52 82 d 0111_0101 75 117 U

0101_0011 53 83 D 0111_0110 76 118 v

0101_0100 54 84 e 0111_0111 77 119 V

0101_0101 55 85 E 0111_1000 78 120 w

0101_0110 56 86 f 0111_1001 79 121 W

0101_0111 57 87 F 0111_1010 7A 122 x

0101_1000 58 88 g 0111_1011 7B 123 X

0101_1001 59 89 G 0111_1100 7C 124 y

0101_1010 5A 90 h 0111_1101 7D 125 Y

0101_1011 5B 91 H 0111_1110 7E 126 z

0101_1100 5C 92 i 0111_1111 7F 127 Z

5.5 For More Information

Hyde, Randall. “HLA Standard Library Reference Manual.” n.d.
http://www.plantation-productions.com/Webster/HighLevelAsm/HLADoc/ or
https://bit.ly/2W5G1or.

IBM. “ASCII and EBCDIC Character Sets.” n.d. https://ibm.co/33aPn3t.

Unicode, Inc. “Unicode Technical Site.” Last updated March 4, 2020.
https://www.unicode.org/.

http://www.plantation-productions.com/Webster/HighLevelAsm/HLADoc/
https://bit.ly/2W5G1or
https://ibm.co/33aPn3t
https://www.unicode.org/

6
MEMORY ORGANIZATION AND ACCESS

This chapter describes the basic components of a computer system: the
CPU, memory, I/O, and the bus that connects them. We’ll begin by
discussing bus organization and memory organization. These two
hardware components may have as large a performance impact on your
software as the CPU’s speed. Understanding memory performance
characteristics, data locality, and cache operation can help you design
software that runs as fast as possible.

6.1 The Basic System Components

The basic operational design of a computer system is called its
architecture. John von Neumann, a pioneer in computer design, is
credited with the principal architecture in use today. For example, the
80x86 family uses the von Neumann architecture (VNA). A typical VNA
has three major components: the central processing unit (CPU), memory,
and input/output (I/O), as shown in Figure 6-1.

Figure 6-1: Typical von Neumann machine

In VNA machines, like the 80x86 systems, all computations occur
within the CPU. Data and machine instructions reside in memory until
the CPU requires them, at which point the system transfers the data
into the CPU. To the CPU, most I/O devices look like memory; the
major difference between them is that I/O devices are generally located
in the outside world, whereas memory is located within the same
machine.

6.1.1 The System Bus

The system bus connects the various components of a VNA machine. A
bus is a collection of wires on which electrical signals pass between
system components. Most CPUs have three major buses: the data bus,
the address bus, and the control bus. These buses vary from processor to
processor, but each bus carries comparable information on most CPUs.
For example, the data buses on the Pentium and 80386 have different
implementations, but both variants carry data between the processor,
I/O, and memory.

6.1.1.1 The Data Bus

CPUs use the data bus to shuttle data between the various components
in a computer system. The size of this bus varies widely among CPUs.
Indeed, bus size (or width) is one of the main attributes that defines the
“size” of the processor.

Most modern, general-purpose CPUs (such as those in PCs) employ
a 32-bit-wide or, more commonly, 64-bit-wide data bus. Some
processors use 8-bit or 16-bit data buses, and there may well be some
CPUs with 128-bit data buses by the time you read this.

You’ll often hear the terms 8-, 16-, 32-, or 64-bit processor. Processor
size is determined by whichever value is smaller: the number of data
lines on the processor or the size of the largest general-purpose integer
register. For example, older Intel 80x86 CPUs all have 64-bit buses but
only 32-bit general-purpose integer registers, so they’re classified as 32-
bit processors. The AMD (and newer Intel) x86-64 processors support
64-bit integer registers and a 64-bit bus, so they’re 64-bit processors.

Although the 80x86 family members with 8-, 16-, 32-, and 64-bit
data buses can process data blocks up to the bit width of the bus, they
can also access smaller memory units of 8, 16, or 32 bits. Therefore,
anything you can do with a small data bus can be done with a larger data
bus as well; the larger data bus, however, may access memory faster and
can access larger chunks of data in one memory operation. You’ll read
about the exact nature of these memory accesses a little later in this
chapter.

6.1.1.2 The Address Bus

The data bus on an 80x86 family processor transfers information
between a particular memory location or I/O device and the CPU.
Which memory location or I/O device is where the address bus comes
in. The system designer assigns each memory location and I/O device a
unique memory address. When the software wants to access a particular
memory location or I/O device, it places the corresponding address on
the address bus. Circuitry within the device checks the address and, if it

matches, transfers data. All other memory locations ignore the request
on the address bus.

With a single address bus line, a processor can access exactly two
unique addresses: 0 and 1. With n address lines, the processor can access

2n unique addresses (because there are 2n unique values in an n-bit
binary number). The number of bits on the address bus determines the
maximum number of addressable memory and I/O locations. Early
80x86 processors, for example, provided only 20 lines on the address

bus. Therefore, they could access only up to 1,048,576 (or 220) memory
locations. Larger address buses can access more memory (see Table 6-
1).

Table 6-1: 80x86 Addressing Capabilities

Processor Address bus size Maximum addressable
memory

8088, 8086, 80186,
80188

20 1,048,576 (1MB)

80286, 80386sx 24 16,777,216 (16MB)

80386dx 32 4,294,976,296 (4GB)

80486, Pentium 32 4,294,976,296 (4GB)

Pentium Pro, II, III,
IV

36 68,719,476,736 (64GB)

Core, i3, i5, i7, i9 ≥ 40 ≥1,099,511,627,776
(≥1TB)

Newer processors will support larger address buses. Many other
processors (such as ARM and IA-64) already provide much larger
addresses buses and, in fact, support addresses up to 64 bits in the
software.

A 64-bit address range is truly infinite as far as memory is concerned.

No one will ever put 264 bytes of memory into a computer system and
feel that they need more. Of course, people have made claims like this

in the past. A few years ago, no one ever thought a computer would
need 1GB of memory, yet computers with 64GB of memory (or more)

are very common today. However, 264 is effectively infinity for one
simple reason—it’s physically impossible to build that much memory

based on estimates of the current size (about 286 different elementary
particles) of the universe. Unless you can attach 1 byte of memory to
every elementary particle on the planet, you won’t even come close to

approaching 264 bytes of memory on a given computer system. Then
again, maybe we really will use whole planets as computer systems one
day, as Douglas Adams predicted in The Hitchhiker’s Guide to the Galaxy.
Who knows?

While the newer 64-bit processors have an internal 64-bit address
space, they rarely bring out 64 address lines on the chip. This is because
pins are a precious commodity on large CPUs, and it doesn’t make
sense to bring out extra address pins that will never be used. Currently,
40- to 52-bit address buses are the upper limit. In the distant future, this
may expand a bit, but it’s hard to imagine the need for, or even
possibility of, a physical 64-bit address bus.

On modern processors, CPU manufacturers are building memory
controllers directly onto the CPU. Instead of having a traditional
address and data bus to which you connect arbitrary memory devices,
newer CPUs contain specialized buses intended to talk to very specific
dynamic random-access memory (DRAM) modules. A typical CPU’s
memory controller connects to only a certain number of DRAM
modules; thus, the maximum DRAM you can easily connect to a CPU is
a function of the memory control built into the CPU rather than the
size of the external address bus. This is why some older laptops have a
16MB or 32MB maximum memory limitation even though they have

64-bit CPUs.1

6.1.1.3 The Control Bus

The control bus is an eclectic collection of signals that control how the
processor communicates with the rest of the system. To understand its
importance, consider the data bus for a moment. The CPU uses the

data bus to move data between itself and memory. The system uses two
lines on the control bus, read and write, to determine the data flow
direction (CPU to memory, or memory to CPU). So, when the CPU
wants to write data to memory, it asserts (places a signal on) the write
control line. When the CPU wants to read data from memory, it asserts
the read control line.

Although the exact composition of the control bus varies among
processors, some control lines—like the system clock lines, interrupt
lines, status lines, and byte enable lines—are common to all processors.
The byte enable lines appear on the control bus of some CPUs that
support byte-addressable memory. These control lines allow 16-, 32-,
and 64-bit processors to deal with smaller chunks of data by
communicating the size of the accompanying data. Additional details
appear in the sections “16-Bit Data Buses” on page 138 and “32-Bit
Data Buses” on page 140.

On the 80x86 family of processors, the control bus also contains a
signal that helps distinguish between address spaces. The 80x86 family,
unlike many other processors, provides two distinct address spaces: one
for memory and one for I/O. However, it has only one physical address
bus, shared between I/O and memory, so additional control lines decide
which component the address is intended for. When these signals are
active, the I/O devices use the address on the LO 16 bits of the address
bus. When they’re inactive, the I/O devices ignore them, and the
memory subsystem takes over at that point.

6.2 Physical Organization of Memory

A typical CPU addresses a maximum of 2n different memory locations,
where n is the number of bits on the address bus (most computer
systems built around 80x86 family CPUs do not include the maximum
addressable amount of memory). But what exactly is a memory location?
The 80x86, as an example, supports byte-addressable memory. Therefore,
the basic memory unit is a byte. With address buses containing 20, 24,
32, 36, or 40 address lines, the 80x86 processors can address 1MB,
16MB, 4GB, 64GB, or 1TB of memory, respectively. Some CPU

families do not provide byte-addressable memory; instead, they
commonly address memory only in double-word or even quad-word
chunks. However, because of the vast amount of software that assumes
memory is byte-addressable (such as all those C/C++ programs out
there), even CPUs that don’t support byte-addressable memory in
hardware still use byte addresses and simulate byte addressing in
software. We’ll return to this topic shortly.

Think of memory as an array of bytes. The address of the first byte is

0 and the address of the last byte is 2n – 1. For a CPU with a 20-bit
address bus, the following pseudo-Pascal array declaration is a good
approximation of memory:

Memory: array [0..1048575] of byte; // 1MB address space (20 bits)

To execute the equivalent of the Pascal statement Memory [125] := 0;
the CPU places the value 0 on the data bus, places the address 125 on the
address bus, and asserts the write line on the control bus, as shown in
Figure 6-2.

Figure 6-2: Memory write operation

To execute the equivalent of CPU := Memory [125]; the CPU places the
address 125 on the address bus, asserts the read line on the control bus,
and then reads the resulting data from the data bus (see Figure 6-3).

Figure 6-3: Memory read operation

This discussion applies only when the processor is accessing a single
byte in memory. What happens when it accesses a word or a double
word? Because memory consists of an array of bytes, how can we
possibly deal with values larger than 8 bits?

Different computer systems have different solutions to this problem.
The 80x86 family stores the LO byte of a word at the address specified
and the HO byte at the next location. Therefore, a word consumes two
consecutive memory addresses (as you would expect, because a word
consists of 2 bytes). Similarly, a double word consumes four consecutive
memory locations.

The address for a word or a double word is the address of its LO
byte. The remaining bytes follow this LO byte, with the HO byte
appearing at the address of the word plus 1 or the address of the double
word plus 3 (see Figure 6-4).

It is quite possible for byte, word, and double-word values to overlap
in memory. For example, in Figure 6-4, you could have a word variable
beginning at address 193, a byte variable at address 194, and a double-
word value beginning at address 192. Bytes, words, and double words
may begin at any valid address in memory. We’ll soon see, however, that
starting larger objects at an arbitrary address is not a good idea.

Figure 6-4: Byte, word, and double-word storage in memory (on an 80x86)

6.2.1 8-Bit Data Buses

A processor with an 8-bit bus (like the old 8088 CPU) can transfer 8
bits of data at a time. Because each memory address corresponds to an
8-bit byte, an 8-bit bus turns out to be the most convenient architecture
(from the hardware perspective), as Figure 6-5 shows.

Figure 6-5: An 8-bit CPU <–> memory interface

The term byte-addressable memory array means that the CPU can
address memory in chunks as small as a single byte. It also means that
this is the smallest unit of memory you can access at once with the
processor. That is, if the processor wants to access a 4-bit value, it must
read 8 bits and then ignore the extra 4 bits.

Byte addressability does not imply that the CPU can access 8 bits
starting at any arbitrary bit boundary. When you specify address 125 in
memory, you get the entire 8 bits at that address—nothing less, nothing
more. Addresses are integers; you cannot specify, for example, address
125.5 to fetch fewer than 8 bits or to fetch a byte straddling two byte
addresses.

Although CPUs with an 8-bit data bus conveniently manipulate byte
values, they can also manipulate word and double-word values.
However, this requires multiple memory operations, because these
processors can move only 8 bits of data at once. Loading a word
requires two memory operations; loading a double word requires four
memory operations.

6.2.2 16-Bit Data Buses

Some CPUs (such as the 8086, the 80286, and variants of the ARM
processor family) have a 16-bit data bus. This allows these processors to

access twice as much memory in the same amount of time as their 8-bit
counterparts. These processors organize memory into two banks: an
“even” bank and an “odd” bank (see Figure 6-6).

Figure 6-6: Byte addressing in word memory

Figure 6-7 illustrates the data bus connection to the CPU. In this
figure, the data bus lines D0 through D7 transfer the LO byte of the
word, while bus lines D8 through D15 transfer the HO byte of the
word.

The 16-bit members of the 80x86 family can load a word from any
arbitrary address. As mentioned earlier, the processor fetches the LO
byte of the value from the address specified and the HO byte from the
next consecutive address. However, this creates a subtle problem. What
happens when you access a word that begins on an odd address?
Suppose you want to read a word from location 125. The LO byte of
the word comes from location 125 and the HO byte of the word comes
from location 126. It turns out that there are actually two problems with
this approach.

Figure 6-7: A 16-bit processor memory organization

As you can see in Figure 6-7, data bus lines 8 through 15 (the HO
byte) connect to the odd bank, and data bus lines 0 through 7 (the LO
byte) connect to the even bank. Accessing memory location 125 will
transfer data to the CPU on lines D8 through D15 of the data bus,
placing the data in the HO byte, yet we need this in the LO byte!
Fortunately, the 80x86 CPUs automatically recognize and handle this
situation.

The second problem is even more obscure. When accessing words,
we’re really accessing two separate bytes, each of which has its own byte
address. So, what address appears on the address bus? The 16-bit 80x86
CPUs always place even addresses on the bus. Bytes at even addresses
always appear on data lines D0 through D7, and bytes at odd addresses
always appear on data lines D8 through D15. If you access a word at an
even address, the CPU can bring in the entire 16-bit chunk in one
memory operation. Likewise, if you access a single byte, the CPU
activates the appropriate bank (using a byte-enable control line) and
transfers that byte on the appropriate data lines for its address.

But what happens when the CPU accesses a word at an odd address,
like the example given earlier? The CPU can’t place address 125 on the
address bus and read the 16 bits from memory. There are no odd
addresses coming out of a 16-bit 80x86 CPU—they’re always even.
Therefore, if you try to put 125 on the address bus, 124 is what will
actually appear there. Were you to read the 16 bits at this address, you
would get the word at addresses 124 (LO byte) and 125 (HO byte)—not
what you’d expect. Accessing a word at an odd address requires two
memory operations (just as with the 8-bit bus on the 8088/80188). First,
the CPU must read the byte at address 125, and then the byte at address
126. Second, it needs to swap the positions of these bytes internally
because both entered the CPU on the wrong half of the data bus.

Fortunately, the 16-bit 80x86 CPUs hide these details from you.
Your programs can access words at any address and the CPU will
properly access and swap (if necessary) the data in memory. However,
because of the two operations it requires, accessing words at odd
addresses on a 16-bit processor is slower than accessing words at even
addresses. By carefully arranging how you use memory, you can
improve the speed of your programs on these CPUs.

6.2.3 32-Bit Data Buses

Accessing 32-bit quantities always takes at least two memory operations
on the 16-bit processors. To access a 32-bit quantity at an odd address, a
16-bit processor may require three memory operations.

The 80x86 processors with a 32-bit data bus, such as the Pentium
and Core processors, use four banks of memory connected to the 32-bit
data bus (see Figure 6-8).

Figure 6-8: 32-bit processor memory interface

With a 32-bit memory interface, the 80x86 CPU can access any
single byte with one memory operation. With a 16-bit memory
interface, the address placed on the address bus is always an even
number; and with a 32-bit memory interface, it’s always some multiple
of 4. Using various byte-enable control lines, the CPU can select which
of the 4 bytes at that address the software wants to access. As with the
16-bit processor, the CPU will automatically rearrange bytes as
necessary.

A 32-bit CPU can also access a word at most memory addresses
using a single memory operation, though word accesses at certain
addresses will take two memory operations (see Figure 6-9). This is the
same problem we encountered with the 16-bit processor attempting to
retrieve a word with an odd address, except it occurs half as often—only
when the address divided by 4 leaves a remainder of 3.

Figure 6-9: Accessing a word on a 32-bit processor at (address mod 4) = 3

A 32-bit CPU can access a double word in a single memory
operation only if the address of that value is evenly divisible by 4. If not,
the CPU may require two memory operations.

Once again, the 80x86 CPU handles all this automatically. However,
there’s a performance benefit to proper data alignment. Generally, the
LO byte of word values should always be placed at even addresses, and
the LO byte of double-word values should always be placed at addresses
that are evenly divisible by 4.

6.2.4 64-Bit Data Buses

The Pentium and later processors, like Intel i-Series, provide a 64-bit
data bus and special cache memory that reduces the impact of
nonaligned data access. Although there may still be a penalty for
accessing data at an inappropriate address, modern x86 CPUs suffer
from the problem less frequently than the earlier CPUs. We’ll look at
the details in “Cache Memory” on page 151.

6.2.5 Small Accesses on Non-80x86 Processors

Although the 80x86 processor is not the only processor that will let you
access a byte, word, or double-word object at an arbitrary byte address,
most processors created in the past 30 years do not allow it. For
example, the 68000 processor found in the original Apple Macintosh
system would allow you to access a byte at any address, but raised an

exception if you attempted to access a word at an odd address.2 Many
processors require that you access an object at an address that is a
multiple of the object’s size, or they’ll raise an exception.

Most RISC processors, including those found in modern
smartphones and tablets (typically ARM processors), do not allow you

to access byte and word objects at all. Most RISC CPUs require that all
data accesses be the same size as the data bus (or general-purpose
integer register size, whichever is smaller). This is generally a double-
word (32-bit) or quad-word (64-bit) access. If you want to access bytes
or words on such a machine, you have to treat them as packed fields and
use the shift and mask techniques to extract or insert byte and word data
in a double word. Although it’s nearly impossible to avoid byte accesses
in software that does any character and string processing, if you expect
your software to run efficiently on various modern RISC CPUs, you
should avoid word data types (and the performance penalty for
accessing them) in favor of double words.

6.3 Big-Endian vs. Little-Endian Organization

Earlier, you read that the 80x86 CPU family stores the LO byte of a
word or double-word value at a particular address in memory and the
successive HO bytes at successively higher addresses. Now we’ll look in
more depth at how different processors store multibyte objects in byte-
addressable memory.

Almost every CPU whose “bit size” is some power of 2 (8, 16, 32, 64,
and so on) numbers the bits and nibbles as shown in the previous
chapters. There are some exceptions, but they are rare, and most of the
time they represent a notational change, not a functional change
(meaning you can safely ignore the difference). Once you start dealing
with objects larger than 8 bits, however, things become more
complicated. Different CPUs organize the bytes in a multibyte object
differently.

Consider the layout of the bytes in a double word on an 80x86 CPU
(see Figure 6-10). The LO byte, which contributes the smallest
component of a binary number, sits in bit positions 0 through 7 and
appears at the lowest address in memory. It seems reasonable that the
bits that contribute the least would be located at the lowest address in
memory.

Figure 6-10: Byte layout in a double word on the 80x86 processor

This is not the only possible organization, however. Some CPUs
reverse the memory addresses of all the bytes in a double word, using
the organization shown in Figure 6-11.

Figure 6-11: Alternate byte layout in a double word

The original Apple Macintosh (68000 and PowerPC) and most non-
80x86 Unix boxes use the data organization shown in Figure 6-11. Even
on 80x86 systems, certain protocols (such as network transmissions)
specify this data organization. Therefore, this isn’t some rare and
esoteric convention; it’s quite common, and not something you can
ignore if you work on PCs.

The byte organization that Intel uses is whimsically known as the
little-endian byte organization. The alternate form is known as big-endian
byte organization.

NOTE

These terms come from Jonathan Swift’s Gulliver’s Travels; the
Lilliputians were arguing over whether one should open an egg by cracking
it on the little end or the big end—a parody of the arguments the Catholics
and Protestants were having over their respective doctrines when Swift was
writing.

The time for arguing over which format is superior was back before
there were several different CPUs created using different endianness.
Today, that argument is irrelevant. Regardless of which format is better
or worse, we have to deal with the fact that different CPUs sport
different endianness, and we have to take care when writing software if
we want our programs to run on both types of processors.

We encounter the big-endian versus little-endian problem when we
try to pass binary data between two computers. For example, the
double-word binary representation of 256 on a little-endian machine
has the following byte values:

LO byte: 0
Byte #1: 1
Byte #2: 0
HO byte: 0

If you assemble these 4 bytes on a little-endian machine, their layout
takes this form:

Byte: 3 2 1 0
256: 0 0 1 0 (each digit represents an 8-bit value)

On a big-endian machine, however, the layout takes the following
form:

Byte: 3 2 1 0
256: 0 1 0 0 (each digit represents an 8-bit value)

This means that if you take a 32-bit value from one of these
machines and attempt to use it on the other machine (with a different
endianness), you won’t get correct results. For example, if you take a
big-endian version of the value 256 and interpret it as little-endian,
you’ll discover that it has a 1 in bit position 16, and a little-endian
machine will think that the value is actually 65,536 (that is,
%1_0000_0000_0000_0000).

When you’re exchanging data between two different machines, the
best solution is to convert your values to some canonical form and then
convert the canonical form back to the local format if the local and
canonical formats are not the same. Exactly what constitutes a

“canonical” format depends, usually, on the transmission medium. For
example, when you are transmitting data across networks, the canonical
form is usually big-endian because TCP/IP and some other network
protocols use the big-endian format. When you’re transmitting data
across the Universal Serial Bus (USB), the canonical format is little-
endian. Of course, if you control the software on both ends, the choice
of canonical form is arbitrary; still, you should attempt to use the
appropriate form for the transmission medium to avoid confusion down
the road.

To convert between the endian forms, you must do a mirror-image
swap of the bytes in the object: first swap the bytes at opposite ends of
the binary number, and then work your way toward the middle of the
object, swapping pairs of bytes as you go along. For example, to convert
between the big-endian and little-endian format within a double word,
you’d first swap bytes 0 and 3, then you’d swap bytes 1 and 2 (see Figure
6-12).

Figure 6-12: Endian conversion in a double word

For word values, all you need to do is swap the HO and LO bytes to
change the endianness. For quad-word values, you need to swap bytes 0
and 7, 1 and 6, 2 and 5, and 3 and 4. Because very little software deals
with 128-bit integers, you probably won’t need to worry about long-
word endianness conversion, but the concept is the same if you do.

Note that the endianness conversion process is reflexive; that is, the
same algorithm that converts big-endian to little-endian also converts

little-endian to big-endian. If you run the algorithm twice, you wind up
with the data in the original format.

Even if you’re not writing software that exchanges data between two
computers, the issue of endianness may arise. Some programs assemble
larger objects from discrete bytes by assigning those bytes to specific
positions within the larger value. If the software puts the LO byte into
bit positions 0 through 7 (little-endian format) on a big-endian
machine, the program will not produce correct results. Therefore, if the
software needs to run on different CPUs that have different byte
organizations, it will have to determine the endianness of the machine
it’s running on and adjust how it assembles larger objects from bytes
accordingly.

To illustrate how to build larger objects from discrete bytes, we’ll
start with a short example that demonstrates how you could assemble a
32-bit object from 4 individual bytes. The most common way to do this
is to create a discriminant union structure that contains a 32-bit object
and a 4-byte array.

NOTE

Many languages, but not all, support the discriminant union data type. For
example, in Pascal, you would instead use a case variant record. See your
language reference manual for details.

Unions are similar to records or structures except the compiler
allocates the storage for each field of the union at the same address in
memory. Consider the following two declarations from the C
programming language:

struct
{
 short unsigned i; // Assume shorts require 16 bits.
 short unsigned u;
 long unsigned r; // Assume longs require 32 bits.
} RECORDvar;

union
{

 short unsigned i;
 short unsigned u;
 long unsigned r;
} UNIONvar;

As Figure 6-13 shows, the RECORDvar object consumes 8 bytes in
memory, and the fields do not share their memory with any other fields
(that is, each field starts at a different offset from the base address of the
record). The UNIONvar object, on the other hand, overlays all the fields in
the union in the same memory locations. Therefore, writing a value to
the i field of the union also overwrites the value of the u field as well as 2
bytes of the r field (whether they are the LO or HO bytes depends
entirely on the endianness of the CPU).

Figure 6-13: Layout of a union versus a record (struct) in memory

In the C programming language, you can use this behavior to access
the individual bytes of a 32-bit object. Consider the following union
declaration in C:

union
{
 unsigned long bits32; /* This assumes that C uses 32 bits for
 unsigned long */
 unsigned char bytes[4];
} theValue;

This creates the data type shown in Figure 6-14 on a little-endian
machine, and the structure shown in Figure 6-15 on a big-endian
machine.

Figure 6-14: A C union on a little-endian machine

Figure 6-15: A C union on a big-endian machine

To assemble a 32-bit object from 4 discrete bytes on a little-endian
machine, you’d use code like the following:

theValue.bytes[0] = byte0;
theValue.bytes[1] = byte1;
theValue.bytes[2] = byte2;
theValue.bytes[3] = byte3;

This code functions properly because C allocates the first byte of an
array at the lowest address in memory (corresponding to bits 0..7 in the
theValue.bits32 object on a little-endian machine); the second byte of the
array follows (bits 8..15), then the third (bits 16..23), and finally the HO
byte (occupying the highest address in memory, corresponding to bits
24..31).

However, on a big-endian machine, this code won’t work properly
because theValue.bytes[0] corresponds to bits 24 through 31 of the 32-bit
value rather than bits 0 through 7. To assemble this 32-bit value
properly on a big-endian system, you’d need to use code like the
following:

theValue.bytes[0] = byte3;
theValue.bytes[1] = byte2;
theValue.bytes[2] = byte1;
theValue.bytes[3] = byte0;

But how do you determine if your code is running on a little-endian
or big-endian machine? This is actually a simple task. Consider the
following C code:

theValue.bytes[0] = 0;
theValue.bytes[1] = 1;
theValue.bytes[2] = 0;
theValue.bytes[3] = 0;
isLittleEndian = theValue.bits32 == 256;

On a big-endian machine, this code sequence will store the value 1
into bit 16, producing a 32-bit value that is definitely not equal to 256,
whereas on a little-endian machine this code will store the value 1 into
bit 8, producing a 32-bit value equal to 256. Therefore, you can test the
isLittleEndian variable to determine whether the current machine is
little-endian (true) or big-endian (false).

6.4 The System Clock

Although modern computers are quite fast and getting faster all the
time, they still require time to accomplish even the smallest tasks. On
von Neumann machines, most operations are serialized, which means

that the computer executes commands in a prescribed order.3 It
wouldn’t do, in the following code sequence, to execute the Pascal
statement I := I * 5 + 2; before the statement I := J; finishes:

I := J;
I := I * 5 + 2;

These operations do not occur instantaneously. Moving a copy of J
into I takes a certain amount of time. Likewise, multiplying I by 5 and
then adding 2 and storing the result back into I takes time.

To execute statements in the proper order, the processor relies on
the system clock, which serves as the timing standard within the system.
To understand why certain operations take longer than others, you must
first understand how the system clock functions.

The system clock is an electrical signal on the control bus that
alternates between 0 and 1 periodically (see Figure 6-16). All activity

within the CPU is synchronized with the edges (rising or falling) of this
clock signal.

Figure 6-16: The system clock

The rate at which the system clock alternates between 0 and 1 is the
system clock frequency, and the time it takes for the system clock to switch
from 0 to 1 and back to 0 is the clock period or clock cycle. On most
modern systems, the system clock frequency exceeds several billion
cycles per second. A typical Pentium IV chip, circa 2004, runs at speeds
of three billion cycles per second or faster. Hertz (Hz) is the unit
corresponding to one cycle per second, so the aforementioned Pentium
chip runs at between 3,000 and 4,000 million hertz, or 3,000 to 4,000
megahertz (MHz), or 3 to 4 gigahertz (GHz, or one billion cycles per
second). Typical frequencies for 80x86 parts range from 5 MHz up to
several gigahertz and beyond.

The clock period is the reciprocal of the clock frequency. For
example, a 1 MHz (MHz or one million cycles per second) clock would

have a clock period of 1 microsecond (one millionth of a second, µs4). A
CPU running at 1 GHz would have a clock period of one nanosecond
(ns), or one billionth of a second. Clock periods are usually expressed in
microseconds or nanoseconds.

To ensure synchronization, most CPUs start an operation on either
the falling edge (when the clock goes from 1 to 0) or the rising edge (when
the clock goes from 0 to 1). The system clock spends most of its time at
either 0 or 1 and very little time switching between the two. Therefore,
a clock edge is the perfect synchronization point.

Because all CPU operations are synchronized with the clock, the
CPU cannot perform tasks any faster than the clock runs. However, just

because a CPU is running at some clock frequency doesn’t mean that it
executes that many operations each second. Many operations take
multiple clock cycles to complete, so the CPU often performs
operations at a significantly slower rate.

6.4.1 Memory Access and the System Clock

Memory access is an operation that is synchronized with the system
clock; that is, memory access occurs no more than once every clock
cycle. On some older processors, it takes several clock cycles to access a
memory location. The memory access time is the number of clock cycles
between a memory request (read or write) and when the memory
operation completes. This is an important value, because longer
memory access times result in lower performance.

Modern CPUs are much faster than memory devices, so systems
built around these CPUs often use a second clock, the bus clock, which is
some fraction of the CPU speed. For example, typical processors in the
100 MHz to 4 GHz range can use 1600 MHz, 800 MHz, 500 MHz,
400 MHz, 133 MHz, 100 MHz, or 66 MHz bus clocks (a given CPU
generally supports several different bus speeds, and the exact range it
supports depends upon that CPU).

When reading from memory, the memory access time is the time
between when the CPU places an address on the address bus and the
time when the CPU takes the data off the data bus. On typical 80x86
CPUs with a one-cycle memory access time, the timing of a read
operation looks something like Figure 6-17. The timing of writing data
to memory is similar (see Figure 6-18).

Figure 6-17: A typical memory read cycle

Figure 6-18: A typical memory write cycle

The CPU doesn’t wait for memory. The access time is specified by
the bus clock frequency. If the memory subsystem doesn’t work fast
enough to keep up with the CPU’s expected access time, the CPU will
read garbage data on a memory read operation and will not properly
store the data on a memory write. This will surely cause the system to
fail.

Memory devices have various ratings, but the two major ones are
capacity and speed. Typical dynamic RAM (random access memory)
devices have capacities of 16GB (or more) and speeds of 0.1 to 100 ns. A
typical 4 GHz Intel system uses 1600 MHz (1.6 GHz, or 0.625 ns)
memory devices.

Now, I just said that the memory speed must match the bus speed or
the system will fail. At 4 GHz the clock period is roughly 0.25 ns. So

how can a system designer get away with using 0.625 ns memory? The
answer is wait states.

6.4.2 Wait States

A wait state is an extra clock cycle that gives a device additional time to
respond to the CPU. For example, a 100 MHz Pentium system has a 10
ns clock period, implying that you need 10 ns memory. In fact, you need
even faster memory devices because in many computer systems there’s
additional decoding and buffering logic between the CPU and memory,
and this circuitry introduces its own delays. In Figure 6-19, you can see
that buffering and decoding costs the system an additional 10 ns. If the
CPU needs the data back in 10 ns, the memory must respond in 0 ns
(which is impossible).

Figure 6-19: Decoding and buffer delays

If cost-effective memory won’t work with a fast processor, how do
companies manage to sell fast PCs? One part of the answer is the wait
state. For example, if you have a 100 MHz processor with a memory
cycle time of 10 ns and you lose 2 ns to buffering and decoding, you’ll

need 8 ns memory. What if your system can only support 20 ns
memory, though? By adding wait states to extend the memory cycle to
20 ns, you can solve this problem.

Almost every general-purpose CPU in existence provides a pin
(whose signal appears on the control bus) that allows you to insert wait
states. If necessary, the memory address decoding circuitry asserts this
signal to give the memory sufficient access time (see Figure 6-20).

Figure 6-20: Inserting a wait state into a memory read operation

From the system performance point of view, wait states are not a
good thing. As long as the CPU is waiting for data from memory, it
can’t operate on that data. Adding a wait state typically doubles (or worse,
on some systems) the amount of time required to access memory.
Running with a wait state on every memory access is almost like cutting
the processor clock frequency in half. You’ll get less work done in the
same amount of time.

However, we’re not doomed to slow execution because of added wait
states. There are several tricks hardware designers can employ to
achieve zero wait states most of the time. The most common is the use
of cache (pronounced “cash”) memory.

6.4.3 Cache Memory

A typical program tends to access the same memory locations repeatedly
(known as temporal locality of reference), and to access adjacent memory
locations (spatial locality of reference). Both forms of locality occur in the
following Pascal code segment:

for i := 0 to 10 do
 A [i] := 0;

There are two occurrences each of spatial and temporal locality of
reference within this loop. Let’s consider the obvious ones first.

In this Pascal code, the program references the variable i several
times. The for loop compares i against 10 to see if the loop is complete.
It also increments i by 1 at the bottom of the loop. The assignment
statement also uses i as an array index. This shows temporal locality of
reference in action.

The loop itself zeros out the elements of array A by writing a 0 to the
first location in A, then to the second location in A, and so on. Because
Pascal stores the elements of A in consecutive memory locations, each
loop iteration accesses adjacent memory locations. This shows spatial
locality of reference.

What about the second occurrences of temporal and spatial locality?
Machine instructions also reside in memory, and the CPU fetches these
instructions sequentially from memory and executes them repeatedly,
once for each loop iteration.

If you look at the execution profile of a typical program, you’ll
probably discover that the program executes less than half the
statements. Generally, a program might use only 10 to 20 percent of the
memory allotted to it. At any given time, a 1MB program might access
only 4KB to 8KB of data and code. So, if you paid an outrageous sum of
money for expensive zero-wait-state RAM, you’d be using only a tiny
fraction of it at any given time. Wouldn’t it be nice if you could buy a
small amount of fast RAM and dynamically reassign its addresses as the
program executes? This is exactly what cache memory does for you.

Cache memory is a small amount of very fast memory that sits
between the CPU and main memory. Unlike in normal memory, the
bytes within a cache do not have fixed addresses. Cache memory can

dynamically reassign addresses, which allows the system to keep
recently accessed values in the cache. Addresses that the CPU has never
accessed, or hasn’t accessed in some time, remain in main (slow)
memory. Because most memory accesses are to recently accessed
variables (or to locations near a recently accessed location), the data
generally appears in cache memory.

A cache hit occurs whenever the CPU accesses memory and finds the
data in the cache. In such a case, the CPU can usually access data with
zero wait states. A cache miss occurs if the data cannot be found in the
cache. In that case, the CPU has to read the data from main memory,
incurring a performance loss. To take advantage of temporal locality of
reference, the CPU copies data into the cache whenever it accesses an
address that’s not present in the cache. Because the system will likely
access that address shortly, it can save wait states on future accesses by
having that data in the cache.

Cache memory does not eliminate the need for wait states. Although
a program may spend considerable time executing code in one area of
memory, eventually it will call a procedure or wander off to some
section of code outside cache memory. When that happens, the CPU
has to go to main memory to fetch the data. Because main memory is
slow, this will require the insertion of wait states. However, once the
CPU accesses the data, it will be available in the cache for future use.

We’ve discussed how cache memory handles the temporal aspects of
memory access, but not the spatial aspects. Caching memory locations
when you access them won’t speed up the program if you constantly access
consecutive locations that you’ve never accessed before. To solve this
problem, when a cache miss occurs, most caching systems will read
several consecutive bytes of main memory (which engineers call a cache
line). For example, 80x86 CPUs read between 16 and 64 bytes upon a
cache miss. Most memory chips available today have special modes that
let you quickly access several consecutive memory locations on the chip.
The cache exploits this capability to reduce the average number of wait
states needed to access sequential memory locations. Although reading
16 bytes on each cache miss is expensive if you access only a few bytes in

the corresponding cache line, cache memory systems work quite well in
the average case.

The ratio of cache hits to misses increases with the size (in bytes) of
the cache memory subsystem. The 80486 CPU, for example, has 8,192
bytes of on-chip cache. Intel claims to get an 80 to 95 percent hit rate
with this cache (meaning 80 to 95 percent of the time the CPU finds
the data in the cache). This sounds very impressive, but let’s play around
with the numbers a little bit. Suppose we pick the 80 percent figure.
This means that one out of every five memory accesses, on average, will
not be in the cache. If you have a 50 MHz processor (20 ns period) and
a 90 ns memory access time, four out of five memory accesses require
only 20 ns (one clock cycle) because they are in the cache, and the fifth
will require about four wait states (20 ns for a normal memory access
plus 80 additional ns, or four wait states, to get at least 90 ns). However,
the cache always reads 16 consecutive bytes (4 double words) from
memory. Most 80486-era memory subsystems let you read consecutive
addresses in about 40 ns after accessing the first location. Therefore, the
80486 will require an additional six clock cycles to read the remaining 3
double words, for a total of 220 ns. This corresponds to 11 clock cycles
(at 20 ns each), which is one normal memory cycle plus 10 wait states.

Altogether, the system will require 15 clock cycles to access five
memory locations, or 3 clock cycles per access, on average. That’s
equivalent to two wait states added to every memory access. Doesn’t
sound so impressive, does it? It gets even worse as you move up to faster
processors and the difference in speed between the CPU and memory
increases.

To improve the hit ratio, you can add more cache memory. Alas, you
can’t pull an Intel i9 chip apart and solder more cache onto the chip.
However, modern Intel CPUs have a significantly larger cache than the
80486 and operate with fewer average wait states. This improves the
cache hit ratio. For example, increasing the hit ratio from 80 percent to
90 percent lets you access 10 memory locations in 20 cycles. This
reduces the average number of wait states per memory access to one
wait state—a substantial improvement.

Another way to improve performance is to build a two-level (L2)
caching system. Many Intel CPUs work in this fashion. The first level is
the on-chip 8,192-byte cache. The next level, between the on-chip
cache and main memory, is a secondary cache (see Figure 6-21). On
newer processors, the first- and second-level caches generally appear in
the same packaging as the CPU. This allows the CPU designers to
build a higher-performance CPU/memory interface, allowing the CPU
to move data between caches and the CPU (as well as main memory)
much more rapidly.

Figure 6-21: A two-level caching system

A typical on-CPU secondary cache contains anywhere from 32,768
bytes to over 2MB of memory.

Secondary cache generally does not operate at zero wait states. The
circuitry to support that much fast memory would be very expensive, so
most system designers use slower memory, which requires one or two
wait states. This is still much faster than main memory. Combined with
the existing on-chip L1 cache, you can get better performance from the
system with a L2 caching system.

Today, many CPUs incorporate a three-level (L3) cache. Though the
performance improvement afforded by an L3 cache is nowhere near
what you get with an L1 or L2 cache subsystem, L3 cache subsystems

can be quite large (usually several megabytes5) and work well for large
systems with gigabytes of main memory. For programs that manipulate
considerable data yet exhibit locality of reference, an L3 caching
subsystem can be very effective.

6.5 CPU Memory Access

Most CPUs have two or three different ways to access memory. The
most common memory addressing modes modern CPUs support are direct,
indirect, and indexed. A few CPUs (like the 80x86) support additional
addressing modes like scaled-index, while some RISC CPUs support only
indirect access to memory. Having additional memory addressing
modes makes memory access more flexible. Sometimes a particular
addressing mode will allow you to access data in a complex data
structure with a single instruction, where otherwise two or more
instructions would be required.

RISC processors can often take three to five instructions to do what
a single 80x86 instruction does. However, this does not mean that an
80x86 program will run three to five times faster. Don’t forget that
access to memory is very slow, usually requiring wait states. Whereas
the 80x86 frequently accesses memory, RISC processors rarely do.
Therefore, that RISC processor can probably execute the first four
instructions, which do not access memory at all, while the single 80x86
instruction, which does access memory, is spinning on some wait states.
In the fifth instruction the RISC CPU might access memory and incur
wait states of its own. If both processors execute an average of one
instruction per clock cycle and have to insert 30 wait states for a main
memory access, we’re talking about 31 clock cycles (80x86) versus 35
clock cycles (RISC), only about a 12 percent difference.

Choosing an appropriate addressing mode often enables an
application to compute the same result with fewer instructions and with
fewer memory accesses, thus improving performance. Therefore, if you
want to write fast and compact code, it’s important to understand how
an application can use the different addressing modes a CPU provides.

6.5.1 The Direct Memory Addressing Mode

The direct addressing mode encodes a variable’s memory address as part
of the actual machine instruction that accesses the variable. On the
80x86, direct addresses are 32-bit values appended to the instruction’s
encoding. Generally, a program uses the direct addressing mode to
access global static variables. Here’s an example in HLA assembly
language:

static
 i:dword;
 . . .
 mov(eax, i); // Store EAX's value into the i variable.

When you’re accessing variables whose memory address is known
prior to the program’s execution, the direct addressing mode is ideal.
With a single instruction, you can reference the memory location
associated with the variable. On those CPUs that don’t support a direct
addressing mode, you may need an extra instruction (or more) to load a
register with the variable’s memory address prior to accessing that
variable.

6.5.2 The Indirect Addressing Mode

The indirect addressing mode typically uses a register to hold a memory
address (there are a few CPUs that use memory locations to hold the
indirect address, but this form of indirect addressing is rare in modern
CPUs).

There are a couple of advantages of the indirect addressing mode
over the direct addressing mode. First, you can modify the value of an
indirect address (the value being held in a register) at runtime. Second,
encoding which register specifies the indirect address takes far fewer
bits than encoding a 32-bit (or 64-bit) direct address, so the instructions
are smaller. One disadvantage is that it may take one or more
instructions to load a register with an address before you can access that
address.

The following HLA sequence uses an 80x86 indirect addressing
mode (brackets around the register name denote the use of indirect

addressing):

static
 byteArray: byte[16];
 . . .
 lea(ebx, byteArray); // Loads EBX register with the address
 // of byteArray.
 mov([ebx], al); // Loads byteArray[0] into AL.
 inc(ebx); // Point EBX at the next byte in memory
 // (byteArray[1]).
 mov([ebx], ah); // Loads byteArray[1] into AH.

The indirect addressing mode is useful for many operations, such as
accessing objects referenced by a pointer variable.

6.5.3 The Indexed Addressing Mode

The indexed addressing mode combines the direct and indirect
addressing modes. Specifically, the machine instructions using this
addressing mode encode both an offset (direct address) and a register in
the bits that make up the instruction. At runtime, the CPU computes
the sum of these two address components to create an effective address.
This addressing mode is great for accessing array elements and for
indirect access to objects like structures and records. Though the
instruction encoding is usually larger than for the indirect addressing
mode, the indexed addressing mode has the advantage that you can
specify an address directly within an instruction without having to use a
separate instruction to load the address into a register.

Here’s a typical example of an HLA sequence that uses an 80x86
indexed addressing mode:

static
 byteArray: byte[16];
 . . .
 mov(0, ebx); // Initialize an index into the array.
 while(ebx < 16) do

 mov(0, byteArray[ebx]); // Zeros out byteArray[ebx].
 inc(ebx); // EBX := EBX +1, move on to the
 // next array element.

 endwhile;

The byteArray[ebx] instruction in this short program demonstrates the
indexed addressing mode. The effective address is the address of the
byteArray variable plus the current value in the EBX register.

To avoid wasting space encoding a 32-bit or 64-bit address into every
instruction that uses an indexed addressing mode, many CPUs provide a
shorter form that encodes an 8-bit or 16-bit offset as part of the
instruction. When using this smaller form, the register provides the
base address of the object in memory, and the offset provides a fixed
displacement into that data structure in memory. This is useful, for
example, for accessing fields of a record or structure in memory via a
pointer to that structure. The earlier HLA example encodes the address
of byteArray using a 4-byte address. Compare that with the following use
of the indexed addressing mode:

lea(ebx, byteArray); // Loads the address of byteArray into EBX.
 . . .
mov(al, [ebx+2]); // Stores al into byteArray[2]

This last instruction encodes the displacement value using a single
byte (rather than 4 bytes); hence, the instruction is shorter and more
efficient.

6.5.4 The Scaled-Index Addressing Modes

The scaled-index addressing mode, available on several CPUs, provides
two facilities above and beyond the indexed addressing mode:

The ability to use two registers (plus an offset) to compute the
effective address

The ability to multiply one of those two registers’ values by a
constant (typically 1, 2, 4, or 8) prior to computing the effective
address.

This addressing mode is especially useful for accessing elements of
arrays whose element sizes match one of the scaling constants (see the
discussion of arrays in Chapter 7 for the reasons).

The 80x86 provides a scaled-index addressing mode that takes one of
several forms, as shown in the following HLA statements:

mov([ebx+ecx*1], al); // EBX is base address, ecx is index.
mov(wordArray[ecx*2], ax); // wordArray is base address, ecx is index.
mov(dwordArray[ebx+ecx*4], eax); // Effective address is combination
 // of offset(dwordArray)+ebx+(ecx*4).

6.6 For More Information

Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Patterson, David A., and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. 5th ed. Waltham, MA:
Elsevier, 2014.

NOTE

Chapter 11 in this book provides additional information about cache
memory and memory architecture.

7
COMPOSITE DATA TYPES AND MEMORY

OBJECTS

Composite data types are composed of other, more primitive, types.
Examples include pointers, arrays, records or structures, tuples, and
unions. Many high-level languages (HLLs) provide syntactical
abstractions for these composite data types that make them easy to
declare and use, while hiding their underlying complexities.

Though the costs of using these composite data types are not
terrible, a programmer who doesn’t understand them can easily
introduce inefficiencies into an application. This chapter provides an
overview of those costs to better enable you to write great code.

7.1 Pointer Types

A pointer is a variable whose value refers to some other object. High-
level languages like Pascal and C/C++ hide the simplicity of pointers
behind a wall of abstraction. This added complexity can be intimidating
if you don’t understand what’s going on behind the scenes. However, a
little knowledge will go a long way toward easing your mind.

Let’s start with something simple: an array. Consider the following
array declaration in Pascal:

M: array [0..1023] of integer;

M is an array with 1,024 integers in it, indexed from M[0] to M[1023].
Each array element can hold an integer value that is independent of the
others. In other words, this array gives you 1,024 different integer
variables, each of which you access via array index rather than by name.

The statement M[0]:=100 stores the value 100 into the first element of
the array M. Now consider the following two statements:

i := 0; (* assume i is an integer variable *)
M [i] := 100;

These two statements do the same thing as M[0]:=100;. You can use
any integer expression in the range 0 through 1023 as an index of this
array. The following statements still perform the same operation as the
earlier statement:

i := 5; (* assume all variables are integers*)
j := 10;
k := 50;
m [i * j - k] := 100;

But how about the following?

M [1] := 0;
M [M [1]] := 100;

Whoa! Now that takes a few moments to digest. However, if you
take it slowly, you’ll realize that these two instructions perform the same
operation as before. The first statement stores 0 into array element M[1].
The second statement fetches the value of M[1], which is 0, and uses that
value to determine where it stores the value 100.

If you’re willing to accept this example as reasonable—perhaps
bizarre, but usable nonetheless—then you’ll have no problems with
pointers, because M[1] is a pointer! Well, not really, but if you were to
change M to “memory” and treat each element of this array as a separate
memory location, then this meets the definition of a pointer—that is, a

memory variable whose value is the address of some other memory
object.

7.1.1 Pointer Implementation

Although most languages implement pointers using memory addresses,
a pointer is actually an abstraction of a memory address. Therefore, a
language could define a pointer using any mechanism that maps the
value of the pointer to the address of some object in memory. Some
implementations of Pascal, for example, use offsets from some fixed
memory address as pointer values. Some languages (including dynamic
languages like LISP) implement pointers by using double indirection; that
is, the pointer object contains the address of some memory variable
whose value is the address of the object to be accessed. This approach
may seem convoluted, but it offers certain advantages in a complex
memory management system. However, for simplicity’s sake, this
chapter will assume that, as defined earlier, a pointer is a variable whose
value is the address of some other object in memory.

As you’ve seen in examples from previous chapters, you can
indirectly access an object using a pointer with two 32-bit 80x86
machine instructions (or with a similar sequence on other CPUs), as
follows:

mov(PointerVariable, ebx); // Load the pointer variable into a register.
mov([ebx], eax); // Use register indirect mode to access data.

Access to data via double indirection is less efficient than the straight
pointer implementation because it takes an extra machine instruction to
fetch the data from memory. This isn’t obvious in an HLL like C/C++
or Pascal, where you’d use double indirection as follows:

i = **cDblPtr; // C/C++
i := ^^pDblPtr; (* Pascal *)

This looks very similar to single indirection. In assembly language,
however, you’ll see the extra work involved:

mov(hDblPtr, ebx); // Get the pointer to a pointer.
mov([ebx], ebx); // Get the pointer to the value.

mov([ebx], eax); // Get the value.

Contrast this with the two earlier assembly instructions needed to
access an object using single indirection. Because double indirection
requires 50 percent more code than single indirection, many languages
implement pointers using single indirection.

7.1.2 Pointers and Dynamic Memory Allocation

Pointers typically reference anonymous variables that you allocate on
the heap (a region in memory reserved for dynamic storage allocation)
using memory allocation/deallocation functions like malloc()/free() in C,
new()/dispose() in Pascal, and new()/delete() in C++ (note, however, that
C++11 and later prefer std::unique_ptr and std_shared_ptr for memory
allocation, with automatic memory deallocation). Java, Swift, C++11
(and later) and other more modern languages only provide a function
equivalent to new(). These languages handle deallocation automatically
via garbage collection.

Objects you allocate on the heap are known as anonymous variables
because you refer to them by their address rather than by a name. And
because the allocation functions return the address of an object on the
heap, you typically store the function’s return result into a pointer
variable. While the pointer variable may have a name, that name applies
to the pointer’s data (an address), not the object referenced by this
address.

7.1.3 Pointer Operations and Pointer Arithmetic

Most languages that provide the pointer data type let you assign
addresses to pointer variables, compare pointer values for equality or
inequality, and indirectly reference an object via a pointer. Some
languages allow additional operations, as you’ll see in this section.

Many languages enable you to do limited arithmetic with pointers.
At the very least, these languages provide the ability to add an integer
constant to, or subtract one from, a pointer. To understand the purpose
of these two arithmetic operations, note the syntax of the malloc()

function in the C standard library:

ptrVar = malloc(bytes_to_allocate);

The parameter you pass malloc() specifies the number of bytes of
storage to allocate. A good C programmer generally supplies an
expression like sizeof(int) as this parameter. The sizeof() function
returns the number of bytes needed by its single parameter. Therefore,
sizeof(int) tells malloc() to allocate at least enough storage for an int
variable. Now consider the following call to malloc():

ptrVar = malloc(sizeof(int) * 8);

If the size of an integer is 4 bytes, this call to malloc() will allocate
storage for 32 bytes, at consecutive addresses in memory (see Figure 7-
1).

Figure 7-1: Memory allocation with malloc(sizeof(int) * 8)

The pointer that malloc() returns contains the address of the first
integer in this set, so the C program can directly access only the very
first of these eight integers. To access the individual addresses of the
other seven integers, you need to add an integer offset to that base
address. On machines that support byte-addressable memory (such as
the 80x86), the address of each successive integer in memory is the
address of the previous integer plus the integer’s size. For example, if a
call to the C standard library malloc() routine returns the memory
address $0300_1000, then the eight integers that malloc() allocates will
reside at the memory addresses shown in Table 7-1.

Table 7-1: Integer Addresses Allocated for Base Address $0300_1000

Integer Memory addresses

0 $0300_1000..$0300_1003

1 $0300_1004..$0300_1007

2 $0300_1008..$0300_100b

3 $0300_100c..$0300_100f

4 $0300_1010..$0300_1013

5 $0300_1014..$0300_1017

6 $0300_1018..$0300_101b

7 $0300_101c..$0300_101f

7.1.3.1 Adding an Integer to a Pointer

Because these integers described in the preceding section are exactly 4
bytes apart, we add 4 to the address of the first integer to obtain the
address of the second integer; add 4 to the address of the second integer
to get the address of the third integer; and so on. In assembly language,
we could access these eight integers using the following code:

malloc(@size(int32) * 8); // Returns storage for eight int32 objects.
 // EAX points at this storage.
mov(0, ecx);
mov(ecx, [eax]); // Zero out the 32 bytes (4 bytes
mov(ecx, [eax+4]); // at a time).
mov(ecx, [eax+8]);
mov(ecx, [eax+12]);
mov(ecx, [eax+16]);
mov(ecx, [eax+20]);
mov(ecx, [eax+24]);
mov(ecx, [eax+28]);

Notice the use of the 80x86 indexed addressing mode to access the
eight integers that malloc() allocates. The EAX register maintains the
base (first) address of the eight integers that this code allocates, and the
constant in the addressing mode of the mov() instructions selects the
offset of the specific integer from this base address.

Most CPUs use byte addresses for memory objects. Therefore, when
a program allocates multiple copies of some n-byte object in memory,
the objects won’t begin at consecutive memory addresses; instead,
they’ll appear in memory at addresses that are n bytes apart. Some
machines, however, don’t allow a program to access memory at an

arbitrary address in memory; rather, they require it to access data on
address boundaries that are a multiple of a word, a double word, or even
a quad word. Any attempt to access memory on some other boundary
will raise an exception and potentially halt the application. If an HLL
supports pointer arithmetic, it must account for this fact and provide a
generic pointer arithmetic scheme that’s portable across many different
CPU architectures. The most common solution that HLLs use when
adding an integer offset to a pointer is to multiply that offset by the size
of the object that the pointer references. That is, if you’ve got a pointer
p to a 16-byte object in memory, then p + 1 points 16 bytes beyond the
address where p points. Likewise, p + 2 points 32 bytes beyond that
address. As long as the size of the data object is a multiple of the
required alignment size (which the compiler can enforce by adding
padding bytes, if necessary), this scheme avoids problems on those
architectures that require aligned data access.

Note that the addition operator only makes sense between a pointer
and an integer value. For example, in C/C++ you can indirectly access
objects in memory using an expression like *(p + i) (where p is a pointer
to an object and i is an integer value). It doesn’t make sense to add two
pointers together, or to add other data types to a pointer. For example,
adding a floating-point value to a pointer isn’t logical. (What would it
mean to reference the data at some base address plus 1.5612?) Integers
—signed and unsigned—are the only reasonable values to add to a
pointer.

On the other hand, not only can you add an integer to a pointer, but
you can also add a pointer to an integer and the result is still a pointer
(both p + i and i + p are legal). This is because addition is commutative—
the order of the operands does not affect the result.

7.1.3.2 Subtracting an Integer from a Pointer

Subtracting an integer from a pointer references a memory location
immediately before the address held in the pointer. However,
subtraction is not commutative, and subtracting a pointer from an
integer is not a legal operation (p - i is legal, but i - p is not).

In C/C++ *(p - i) accesses the ith object immediately before the
object at which p points. In 80x86 assembly language, as in assembly on
many processors, you can also specify a negative constant offset when
using an indexed addressing mode. For example:

mov([ebx-4], eax);

Keep in mind that 80x86 assembly language uses byte offsets, not
object offsets (as C/C++ does). Therefore, this statement loads into
EAX the double word in memory immediately preceding the memory
address in EBX.

7.1.3.3 Subtracting a Pointer from a Pointer

In contrast to addition, it makes sense to subtract the value of one
pointer variable from another. Consider the following C/C++ code,
which proceeds through a string of characters looking for the first e
character that follows the first a that it finds:

int distance;
char *aPtr;
char *ePtr;
 . . .
aPtr = someString; // Get ptr to start of string in aPtr.

// While we're not at the end of the string and the current
// char isn't 'a':

while(*aPtr != '\0' && *aPtr != 'a')
{
 aPtr = aPtr + 1; // Move on to the next character pointed
 // at by aPtr.
}

// While we're not at the end of the string and the current
// character isn't 'e':
ePtr = aPtr; // Start at the 'a' char (or end of string
 // if no 'a').
while(*ePtr != '\0' && *ePtr != 'a')
{
 ePtr = ePtr + 1; // Move on to the next character pointed at by aPtr.
}

// Now compute the number of characters between the 'a' and the 'e'
// (counting the 'a' but not counting the 'e'):

distance = (ePtr - aPtr);

Subtracting one pointer from the other produces the number of data
objects that exist between them (in this case, ePtr and aPtr point at
characters, so the subtraction result produces the number of characters,
or bytes, between the two pointers).

The subtraction of two pointer values makes sense only if they both
reference the same data structure (for example, pointing at characters
within the same string, as in this C/C++ example) in memory. Although
C/C++ (and certainly assembly language) will allow you to subtract two
pointers that point at completely different objects in memory, the result
will probably have very little meaning.

For pointer subtraction in C/C++, the base types of the two pointers
must be identical (that is, the two pointers must contain the addresses of
two objects whose types are identical). This restriction exists because
pointer subtraction in C/C++ produces the number of objects, not the
number of bytes, between the two pointers. It wouldn’t make any sense
to compute the number of objects between a byte in memory and a
double word in memory; would you be counting the number of bytes or
the number of double words? In assembly language you can get away
with this (and the result is always the number of bytes between the two
pointers), but it still doesn’t make much sense semantically.

The subtraction of two pointers could return a negative number if
the left pointer operand is at a lower memory address than the right
pointer operand. Depending on your language and its implementation,
you may need to take the absolute value of the result if you’re interested
only in the distance between the two pointers and you don’t care which
pointer contains the greater address.

7.1.3.4 Comparing Pointers

Almost every language that supports pointers will let you compare two
pointers to see whether or not they are equal. Comparing two pointers
will tell you whether they reference the same object in memory. Some
languages (such as assembly and C/C++) will also let you compare two
pointers to see if one pointer is less than or greater than the other. Such
a comparison only makes sense, however, if both pointers have the same
base type and contain the address of some object within the same data

structure (such as an array, string, or record). If you find that one
pointer is less than the other, this tells you that it references an object
within the data structure that appears before the object referenced by
the second pointer. The converse is true for the greater-than
comparison.

7.2 Arrays

After strings, arrays are probably the most common composite (or
aggregate) data type. Abstractly, an array is an aggregate data type whose
members (elements) are all of the same type. You select a member from
the array by specifying its array index with an integer (or with some
value whose underlying representation is an integer, such as character,
enumerated, and Boolean types). In this chapter, we’ll assume that the
integer indices of an array are numerically contiguous (though this is
not required). That is, if both x and y are valid indices of the array, and if
x < y, then all i such that x < i < y are also valid indices. We’ll also assume
that array elements occupy contiguous locations in memory. Therefore,
an array with five elements will appear in memory as shown in Figure 7-
2.

Figure 7-2: Array layout in memory

The base address of an array is the address of its first element and
occupies the lowest memory location. The second array element
directly follows the first in memory, the third element follows the
second, and so on. There is no requirement that the indices start at 0;
they can start with any number as long as they’re contiguous. However,
we’ll begin arrays at index 0 unless there’s a good reason to do
otherwise.

Whenever you apply the indexing operator to an array, the result is
the array element specified by that index. For example, A[i] chooses the
ith element from array A.

7.2.1 Array Declarations

Array declarations are very similar across many HLLs. C, C++, and Java
all let you declare an array by specifying the total number of elements in
it. The syntax for an array declaration in these languages is as follows:

data_type array_name [number_of_elements];

Here are some sample C/C++ array declarations:

char CharArray[128];
int intArray[8];
unsigned char ByteArray[10];
int *PtrArray[4];

If you declare these arrays as automatic variables, then C/C++
“initializes” them with whatever bit patterns exist in memory. If, on the
other hand, you declare these arrays as static objects, then C/C++ zeros
out each array element. If you want to initialize an array yourself, you
can use the following C/C++ syntax:

data_type array_name[number_of_elements] = {element_list};

Here’s a typical example:

int intArray[8] = {0,1,2,3,4,5,6,7};

Swift array declarations are a bit different from other C-based
languages. Swift array declarations take one of the following two
(equivalent) forms:

var array_name = Array<element_type>()
var array_name = [element_type]()

Unlike other languages, arrays in Swift are purely dynamic. You
don’t normally specify the number of elements when you first create the
array; instead, you add elements to the array as needed using functions

like append() or insert(). If you want to predeclare an array with some
number of elements, you use this special array constructor form:

var array_name = Array<element_type>(repeating: initial_value, count: elements)

In this example, initial_value is a value of type element_type and elements
is the number of array elements to create in the array. For example, the
following Swift code creates two arrays of 100 Int values, each initialized
to 0:

var intArray = Array<Int>(repeating: 0, count: 100)
var intArray2 = [Int](repeating: 0, count: 100)

You can still extend the size of this array (for example, by using the
append() function); because Swift arrays are dynamic, their size can grow
or shrink at runtime.

Swift arrays can be created with initial values, as these examples
demonstrate:

var intArray = [1, 2, 3]
var strArray = ["str1", "str2", "str3"]

C# arrays are also dynamic objects; though their syntax is slightly
different from Swift, the concept is the same:

type[] array_name = new type[elements];

Here, type is the data type (for example, double or int), array_name is the
array variable name, and elements is the number of elements to allocate in
the array.

You can also initialize C# arrays in a declaration as follows (other
syntaxes are possible; this is just a simple example):

int[] intArray = {1, 2, 3};
string[] strArray = {"str1", "str2", "str3"};

The array declaration syntax in HLA (High-Level Assembly) takes
the following form, which is semantically equivalent to the C/C++
declaration:

array_name : data_type [number_of_elements];

Here are some examples of HLA array declarations that allocate
storage for uninitialized arrays (the second example assumes that you
have defined the integer data type in a type section of the HLA program):

static

 CharArray: char[128]; // Character array with elements
 // 0..127.
 IntArray: integer[8]; // Integer array with elements 0..7.
 ByteArray: byte[10]; // Byte array with elements 0..9.
 PtrArray: dword[4]; // Double-word array with elements 0..3.

You can also initialize the array elements using declarations like the
following:

RealArray: real32[8] := [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0];
IntegerAry: integer[8] := [8, 9, 10, 11, 12, 13, 14, 15];

Both of these definitions create arrays with eight elements. The first
definition initializes each 4-byte real32 array element with one of the
values in the range 0.0 through 7.0. The second declaration initializes
each integer array element with one of the values in the range 8 through
15.

Pascal/Delphi uses the following syntax to declare an array:

array_name : array[lower_bound..upper_bound] of data_type;

As in the previous examples, array_name is the identifier, and data_type is
the type of each element in this array. Unlike C/C++, Java, Swift, and
HLA, in Free Pascal/Delphi you specify the upper and lower bounds of
the array rather than the array’s size. The following are typical array
declarations in Pascal:

type
 ptrToChar = ^char;
var
 CharArray: array[0..127] of char; // 128 elements
 IntArray: array[0..7] of integer; // 8 elements
 ByteArray: array[0..9] of char; // 10 elements
 PtrArray: array[0..3] of ptrToChar; // 4 elements

Although these Pascal examples start their indices at 0, Pascal does
not require it. The following Pascal array declaration is also perfectly
valid:

var
 ProfitsByYear : array[1998..2039] of real; // 42 elements

The program that declares this array would use indices 1998 through
2039 when accessing elements of this array, not 0 through 41.

Many Pascal compilers provide a very useful feature to help you
locate defects in your programs. Whenever you access an element of an
array, these compilers automatically insert code that will verify that the
array index is within the bounds specified by the declaration. This extra
code will stop the program if the index is out of range. For example, if
an index into ProfitsByYear is outside the range 1998 through 2039, the

program will abort with an error.1

Generally, array indices are integer values, though some languages
allow other ordinal types (data types that use an underlying integer
representation). For example, Pascal allows char and boolean array indices.
In Pascal, it’s perfectly reasonable and useful to declare an array as
follows:

alphaCnt : array['A'..'Z'] of integer;

You access elements of alphaCnt using a character expression as the
array index. For example, consider the following Pascal code, which
initializes each element of alphaCnt to 0 (assuming ch:char appears in the
var section):

for ch := 'A' to 'Z' do
 alphaCnt[ch] := 0;

Assembly language and C/C++ treat most ordinal values as special
instances of integer values, so they are legal array indices. Most
implementations of BASIC allow a floating-point number as an array
index, though BASIC always truncates the value to an integer before

using it as an index.2

7.2.2 Array Representation in Memory

Abstractly, an array is a collection of variables that you access using an
index. Semantically, we can define an array any way we please, as long as
it maps distinct indices to distinct objects in memory and always maps
the same index to the same object. In practice, however, most languages
use a few common algorithms that provide efficient access to the array
data.

The number of bytes of storage an array consumes is the product of
the number of elements multiplied by the number of bytes per element
in the array. Many languages also add a few bytes of padding at the end
of the array so that the total length of the array is an even multiple of a
nice value like 4 or 8 (on a 32- or 64-bit machine, a compiler may
append bytes to the array in order to extend its length to some multiple
of the machine’s word size). However, a program must not depend on
these extra padding bytes, because they may or may not be present.
Some compilers always put them in, some never do, and still others put
them in depending on the type of object that immediately follows the
array in memory.

Many optimizing compilers attempt to start an array at a memory
address that is an even multiple of some common size like 2, 4, or 8
bytes. Effectively, this adds padding bytes before the beginning of the
array or, if you prefer to think of it this way, after the previous object in
memory (see Figure 7-3).

Figure 7-3: Adding padding bytes before an array

On machines that do not support byte-addressable memory,
compilers that attempt to place the first element of an array on an easily
accessed boundary will allocate storage for an array on whatever
boundary the machine supports. If the size of each array element is less
than the minimum size memory object the CPU supports, the compiler
implementer has two options:

Allocate the smallest accessible memory object for each element of
the array.

Pack multiple array elements into a single memory cell.

The first option has the advantage of being fast, but it wastes
memory because each array element carries along some extra storage
that it doesn’t need. The second option is compact but slower, as it
requires extra instructions to pack and unpack data when accessing array
elements. Compilers on such machines often let you specify whether
you want the data packed or unpacked so you can choose between space
and speed.

If you’re working on a byte-addressable machine (like the 80x86),
you probably don’t have to worry about this issue. However, if you’re
using an HLL and your code might wind up running on a different
machine in the future, you should choose an array organization that is
efficient on all machines.

7.2.3 Accessing Elements of an Array

If you allocate all the storage for an array in contiguous memory
locations, and the first index of the array is 0, then accessing an element
of a one-dimensional array is simple. You can compute the address of
any given element of an array using the following formula:

Element_Address = Base_Address + index * Element_Size

Element_Size is the number of bytes that each array element occupies.
Thus, if each array element is of type byte, the Element_Size field is 1 and
the computation is very simple. If each element is a word (or another 2-
byte type), then Element_Size is 2, and so on.

Consider the following Pascal array declaration:

var SixteenInts : array[0..15] of integer;

To access an element of the SixteenInts on a byte-addressable
machine, assuming 4-byte integers, you’d use this calculation:

Element_Address = AddressOf(SixteenInts) + index * 4

In assembly language (where you would actually have to do this
calculation manually rather than having the compiler do it for you),
you’d use code like the following to access array element
SixteenInts[index]:

mov(index, ebx);
mov(SixteenInts[ebx*4], eax);

7.2.4 Multidimensional Arrays

Most CPUs can easily handle one-dimensional arrays. Unfortunately,
though, there’s no magic addressing mode that lets you easily access
elements of multidimensional arrays. That takes some work and several
machine instructions.

Before discussing how to declare or access multidimensional arrays,
let’s look at how to implement them in memory. The first challenge is
figuring out how to store a multidimensional object in a one-
dimensional memory space.

Consider for a moment a Pascal array of the following form:

A:array[0..3,0..3] of char;

This array contains 16 bytes organized as four rows of four
characters. We need to map each of the 16 bytes in this array to each of
the 16 contiguous bytes in main memory. Figure 7-4 shows one way to
do this.

Figure 7-4: Mapping a 4×4 array to sequential memory locations

The actual mapping is not important as long as it adheres to two
rules:

No two entries in the array can occupy the same memory
location(s).

Each element in the array must always map to the same memory
location.

Therefore, you need a function with two input parameters—one for
a row and one for a column value—that produces an offset into a
contiguous block of 16 memory locations. Any function that satisfies
these two constraints will work fine. However, what you really want is a
mapping function that computes efficiently at runtime and works for
arrays with any number of dimensions and any bounds on those
dimensions. While there are numerous functions that fit this bill, there
are two categories that most HLLs use: row-major ordering and column-
major ordering.

Before I actually describe row- and column-major ordering, let’s go
over some terminology. The term row index describes a numeric index
into a row; that is, if a single row were treated as a one-dimensional
array, the row index would be the index into that array. Column index has
a similar meaning; if a single column were treated as a one-dimensional
array, the column index would be the index into that array. If you look
back at Figure 7-4, the numbers 0, 1, 2, and 3 above each column are
the column numbers, and those same values to the left of the rows are the
row numbers. It’s easy to get confused with this terminology because the
column number is the same value as the row index; that is, the column
number is equivalent to an index into any one of the four rows.
Similarly, a row number is the same value as a column index. This book uses
the terms row index and column index, but note that other authors may
use the terms row and column to mean row number and column number.

7.2.4.1 Row-Major Ordering

Row-major ordering assigns array elements to successive memory
locations by moving across a row and then down the columns. Figure 7-
5 demonstrates this mapping.

Figure 7-5: Row-major ordering

Row-major ordering is the method employed by most high-level
programming languages, including Pascal, C/C++, Java, C#, Ada, and
Modula-2. This organization is very easy to implement and easy to use
in machine language. The conversion from a two-dimensional structure
to a linear sequence is very intuitive. Figure 7-6 provides another view
of the ordering of a 4×4 array.

Figure 7-6: Another view of row-major ordering for a 4×4 array

The function that converts the set of multidimensional array indices
into a single offset is a slight modification of the formula for computing
the address of an element of a one-dimensional array. The formula to
compute the offset for a 4×4 two-dimensional row-major-ordered array
given an access of this form:

A[colindex][rowindex]

is as follows:

Element_Address = Base_Address + (colindex * row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the array’s first element (A[0][0]
in this case) and Element_Size is the size of an individual element of the
array, in bytes. row_size is the number of elements in one row of the array
(4, in this case, because each row has four elements). Assuming
Element_Size is 1, this formula computes the offsets shown in Table 7-2
from the base address.

Table 7-2: Offsets for Two-Dimensional Row-Major-Ordered Array

Column indexRow index Offset into array

0 0 0

0 1 1

Column indexRow index Offset into array

0 2 2

0 3 3

1 0 4

1 1 5

1 2 6

1 3 7

2 0 8

2 1 9

2 2 10

2 3 11

3 0 12

3 1 13

3 2 14

3 3 15

The following C/C++ code access sequential memory locations in a
row-major-ordered array:

for(int col=0; col < 4; ++col)
{
 for(int row=0; row < 4; ++row)
 {
 A[col][row] = 0;
 }
}

For a three-dimensional array, the formula to compute the offset
into memory is only slightly more complex. Consider the following
C/C++ array declaration:

someType A[depth_size][col_size][row_size];

If you have an array access similar to A[depth_index][col_index]

[row_index], then the computation that yields the offset into memory is:

Address =
Base + ((depth_index * col_size + col_index) * row_size + row_index) *
Element_Size

Again, Element_Size is the size, in bytes, of a single array element.

If you’ve got an n-dimensional array declared in C/C++ as follows:

dataType A[bn-1][bn-2]...[b0];

and you wish to access the following element of this array:

A[an-1][an-2]...[a1][a0]

then you can compute the address of a particular array element using
the following algorithm:

Address := an-1
for i := n-2 downto 0 do
 Address := Address * bi + ai
Address := Base_Address + Address * Element_Size

7.2.4.2 Column-Major Ordering

Column-major ordering, the other common array element address
function, is used by FORTRAN and various dialects of BASIC (such as
older versions of Microsoft BASIC) to index arrays. A column-major-
ordered array is organized as shown in Figure 7-7.

Figure 7-7: Column-major ordering

The formula for computing the address of an array element when
using column-major ordering is very similar to that for row-major
ordering. The difference is that you reverse the order of the index and
size variables in the computation. That is, rather than working from the
leftmost index to the rightmost, you operate from right to left.

For a two-dimensional column-major array, the formula is as follows:

Element_Address =
 Base_Address + (rowindex * col_size + colindex) * Element_Size

For a three-dimensional column-major array, the formula is the
following:

Element_Address =
 Base_Address +
 ((rowindex * col_size + colindex) * depth_size + depthindex) *
Element_Size

And so on. Other than using these new formulas, accessing elements
of an array using column-major ordering is identical to accessing arrays
using row-major ordering.

7.2.4.3 Declaring Multidimensional Arrays

An “m × n” array has m × n elements and requires m × n × Element_Size bytes
of storage. To allocate storage for an array, you must reserve this
amount of memory. With one-dimensional arrays, the syntax is very
similar among the different HLLs. However, their syntax starts to
diverge with multidimensional arrays.

In C, C++, and Java, you use the following syntax to declare a
multidimensional array:

data_type array_name [dim1][dim2] . . . [dimn];

For example, here’s a three-dimensional array declaration in C/C++:

int threeDInts[4][2][8];

This example creates an array with 64 elements organized with a
depth of 4 by 2 rows by 8 columns. Assuming each int object requires 4
bytes, this array consumes 256 bytes of storage.

Pascal’s syntax supports two equivalent ways of declaring
multidimensional arrays:

var
 threeDInts : array[0..3] of array[0..1] of array[0..7] of integer;
 threeDInts2 : array[0..3, 0..1, 0..7] of integer;

C# uses the following syntax to define multidimensional arrays:

type [,]array_name = new type [dim1,dim2] ;
type [,,]array_name = new type [dim1,dim2,dim3] ;
type [,,,]array_name = new type [dim1,dim2,dim3,dim4] ;
etc.

Semantically, there are only two major differences among different
languages. The first is whether the array declaration specifies the overall

size of each array dimension or the upper and lower bounds. The
second is whether the starting index is 0, 1, or a user-specified value.

Swift doesn’t really support multidimensional arrays in the
traditional sense. It allows you to create arrays of arrays (of arrays . . .),
which can provide the same functionality as multidimensional arrays,
but behave in subtly different ways. See “Swift Array Implementation”
on page 179 for more details.

7.2.4.4 Accessing Elements of a Multidimensional Array

It’s so easy to access an element of a multidimensional array in an HLL
that many programmers do so without considering the associated costs.
In this section, to give you a clearer picture of those costs, we’ll look at
some of the assembly language sequences you’ll need to access elements
of a multidimensional array.

Consider again the C/C++ declaration of the ThreeDInts array from the
previous section:

int ThreeDInts[4][2][8];

In C/C++, if you wanted to set element [i][j][k] of this array to n,
you’d probably use the following statement:

ThreeDInts[i][j][k] = n;

This statement, however, hides a great deal of complexity. Recall the
formula needed to access an element of a three-dimensional array:

Element_Address =
 Base_Address +
 ((rowindex * col_size + colindex) * depth_size + depthindex) *
 Element_Size

The ThreeDInts example does not avoid this calculation, it only hides it
from you. The machine code that the C/C++ compiler generates is
similar to the following:

intmul(2, i, ebx); // EBX = 2 * i
add(j, ebx); // EBX = 2 * i + j
intmul(8, ebx); // EBX = (2 * i + j) * 8

add(k, ebx); // EBX = (2 * i + j) * 8 + k
mov(n, eax);
mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n

Actually, ThreeDInts is special. The sizes of all the array dimensions are
nice powers of 2. This means that the CPU can use shifts instead of
multiplication instructions to multiply EBX by 2 and by 4 in this
example. Because shifts are often faster than multiplication, a decent
C/C++ compiler will generate the following code:

mov(i, ebx);
shl(1, ebx); // EBX = 2 * i
add(j, ebx); // EBX = 2 * i + j
shl(3, ebx); // EBX = (2 * i + j) * 8
add(k, ebx); // EBX = (2 * i + j) * 8 + k
mov(n, eax);
mov(eax, ThreeDInts[ebx*4]); // ThreeDInts[i][j][k] = n

Note that a compiler can use this faster code only if an array
dimension is a power of 2; this is why many programmers attempt to
declare arrays with those dimensions. Of course, if you must declare
extra elements in the array to achieve this goal, you may wind up
wasting space (especially with higher-dimensional arrays) to achieve
only a small increase in speed.

For example, if you need a 10×10 array and you’re using row-major
ordering, you could create a 10×16 array to allow the use of a shift (by
4) instruction rather than a multiply (by 10) instruction. When using
column-major ordering, you’d probably want to declare a 16×10 array
to achieve the same effect, since row-major calculation doesn’t use the
size of the first dimension when calculating an offset into an array, and
column-major calculation doesn’t use the size of the second dimension
when calculating an offset. In either case, however, the array would
wind up having 160 elements instead of 100 elements. Only you can
decide if this extra space is worth the minor improvement in speed.

7.2.4.5 Swift Array Implementation

Swift arrays are different from those found in many other languages.
First of all, Swift arrays are an opaque type based on struct objects
(rather than just a collection of elements in memory). Swift doesn’t

guarantee that array elements appear in continuous memory locations.
However, the language provides the following ContiguousArray type
specification, which guarantees they’ll appear in contiguous memory
locations (as in C/C++ and other languages):

var array_name = ContiguousArray<element_type>()

So far, so good. With contiguous arrays, the storage of the actual
array data matches other languages. However, when you start declaring
multidimensional arrays, the similarity ends. As noted earlier, Swift
doesn’t actually have multidimensional arrays; instead, it supports arrays
of arrays.

For most programming languages, where an array object is strictly
the sequence of array elements in memory, an array of arrays and a
multidimensional array are the same thing. However, Swift uses
descriptor (struct-based) objects to specify an array. Like string
descriptors, Swift arrays consist of a data structure containing various
fields (like the current number of array elements and one or more
pointers to the actual array data).

When you create an array of arrays, you’re actually creating an array
of these descriptors, with each pointing at a subarray. Consider the
following two (equivalent) Swift array-of-arrays declarations (a1 and a2)
and sample program:

import Foundation

var a1 = [[Int]]()

var a2 = ContiguousArray<Array<Int>>()
a1.append([1,2,3])
a1.append([4,5,6])
a2.append([1,2,3])
a2.append([4,5,6])

print(a1)
print(a2)
print(a1[0])
print(a1[0][1])

Running this program produces the following output:

[[1, 2, 3], [4, 5, 6]]
[[1, 2, 3], [4, 5, 6]]
[1, 2, 3]
2

For two-dimensional arrays you would expect this type of output.
However, internally, a1 and a2 are one-dimensional arrays with two
elements each. Those two elements are array descriptors that
themselves point at arrays, each containing three elements.

It is unlikely that the six array elements associated with a2 will appear
in contiguous memory locations, even though a2 is a ContiguousArray type.
The two array descriptors held in a2 may appear in contiguous memory
locations, but that doesn’t necessarily carry over to the six data elements
at which they collectively point.

Because Swift allocates arrays dynamically, the rows in a two-
dimensional array could have differing element counts. Consider the
following modification to the previous Swift program:

import Foundation

var a2 = ContiguousArray<Array<Int>>()
a2.append([1,2,3])
a2.append([4,5])

print(a2)
print(a2[0])
print(a2[0][1])

Running this program produces the following output:

[[[1, 2, 3], [4, 5]]
[1, 2, 3]
2

The two rows in the a2 array have differing sizes. This could be
useful or a source of defects, depending on what you’re trying to
accomplish.

One way to get standard multidimensional array storage in Swift is
to declare a one-dimensional ContiguousArray with sufficient elements for
all the elements of the multidimensional array. Then use the row-major

(or column-major) functionality, without the element size operand, to
compute the index into the array.

7.3 Records/Structures

Another major composite data structure is the Pascal record or C/C++
structure. The Pascal terminology is probably better, as it avoids
confusion with the term data structure, so we’ll generally use record here.

An array is homogeneous, meaning that its elements are all of the same
type. A record, on the other hand, is heterogeneous—its elements can
have differing types. The purpose of a record is to let you encapsulate
logically related values into a single object.

Arrays let you select a particular element via an integer index. With
records, you must select an element, known as a field, by the field’s
name. Each of the field names within the record must be unique; that is,
you can’t use the same field name two or more times in the same record.
However, all field names are local to their record, and you can reuse
those names elsewhere in the program.

7.3.1 Records in Pascal/Delphi

Here’s a typical record declaration for a Student data type in
Pascal/Delphi:

type
 Student =
 record
 Name: string (64);
 Major: smallint; // 2-byte integer in Delphi
 SSN: string (11);
 Mid1: smallint;
 Midt: smallint;
 Final: smallint;
 Homework: smallint;
 Projects: smallint;
 end;

Many Pascal compilers allocate all of the fields in contiguous
memory locations. This means that Pascal will reserve the first 65 bytes

for the name,3 the next 2 bytes for the major code, the next 12 bytes for
the Social Security number, and so on.

7.3.2 Records in C/C++

Here’s the same declaration in C/C++:

typedef
 struct
 {
 char Name[65]; // Room for a 64-character zero-terminated string.
 short Major; // Typically a 2-byte integer in C/C++
 char SSN[12]; // Room for an 11-character zero-terminated string.
 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects
 } Student;

Because C++ structures are actually a specialized form of the class
declaration, they behave differently from C structures and may include
extra data in memory that is not present in the C variant. (This is why
the memory storage for structures in C++ may be different; see
“Memory Storage of Records” on page 184). There are also differences
in namespaces and other minor distinctions between C and C++
structures.

As it turns out, though, you can tell C++ to compile a true C struct
definition using the extern "C" block as follows:

extern "C"
{
 struct
 {
 char Name[65]; // Room for a 64-character zero-terminated string.
 short Major; // Typically a 2-byte integer in C/C++
 char SSN[12]; // Room for an 11-character zero-terminated string.
 short Mid1;
 short Mid2;
 short Final;
 short Homework;
 short Projects;
 } Student;
}

NOTE

Java doesn’t support anything corresponding to the C struct—it supports
only classes (see “Classes” on page 192).

7.3.3 Records in HLA

In HLA, you can also create structure types using the record/endrecord
declaration. For example, you would encode the record from the
previous sections as follows:

type
 Student:
 record
 Name: char[65]; // Room for a 64-character
 // zero-terminated string.
 Major: int16;
 SSN: char[12]; // Room for an 11-character
 // zero-terminated string.
 Mid1: int16;
 Mid2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

As you can see, the HLA declaration is very similar to the Pascal
declaration. To stay consistent with the Pascal declaration, this example
uses character arrays rather than strings for the Name and SSN (Social
Security number) fields. In a typical HLA record declaration, you’d
probably use a string type for at least the Name field (keeping in mind that
a string variable is a 4-byte pointer).

7.3.4 Records (Tuples) in Swift

Although Swift doesn’t support the concept of a record, you can
simulate one using a Swift tuple. While Swift does not store record
(tuple) elements in memory in the same way as other programming
languages (see “Memory Storage of Records” on page 184), tuples are a
useful construct if you want to create a composite/aggregate data type
without the overhead of a class.

A Swift tuple is simply a list of values in the following form:

(value1, value2, ..., valuen)

The types of the values within the tuple don’t need to be identical.

Swift typically uses tuples to return multiple values from functions.
Consider the following short Swift code fragment:

func returns3Ints()->(Int, Int, Int)
{
 return(1, 2, 3)
}
var (r1, r2, r3) = returns3Ints();
print(r1, r2, r3)

The returns3Ints() function returns three values (1, 2, and 3). The
following statement stores those three integer values into r1, r2, and r3,
respectively:

var (r1, r2, r3) = returns3Ints();

You can also assign tuples to a single variable and access “fields” of
the tuple using integer indices as the field names:

let rTuple = ("a", "b", "c")
print(rTuple.0, rTuple.1, rTuple.2) // Prints "a b c"

Of course, using field names like .0 results in very hard-to-maintain
code. While you could create records out of tuples, referring to the
fields by an integer index is rarely suitable in real-world programs.

Fortunately, Swift allows you to assign each tuple field a label, which
you can then use instead of an integer index to refer to the field.
Consider the following Swift code fragment:

typealias record = (field1:Int, field2:Int, field3:Float64)

var r = record(1, 2, 3.0)
print(r.field1, r.field2, r.field3) // prints "1 2 3.0"

Using Swift tuples this way is the syntactical equivalent of using a
Pascal or HLA record (or a C structure). Keep in mind, however, that
the storage of the tuple in memory might not map to the same layout as
a record or structure in these other languages. Like arrays in Swift,

tuples are an opaque type, without a guaranteed definition for how Swift
will store them in memory.

7.3.5 Memory Storage of Records

The following Pascal example demonstrates a typical Student variable
declaration:

var
 John: Student;

Given the earlier declaration for the Pascal Student data type, this
allocates 81 bytes of storage laid out in memory as shown in Figure 7-8.

Figure 7-8: Student data structure storage in memory

If the label John corresponds to the base address of this record, then the
Name field is at offset John+0, the Major field is at offset John+65, the SSN field is
at offset John+67, and so on.

Most programming languages let you refer to a record field by its
name rather than by its numeric offset into the record. The typical
syntax for field access uses the dot operator to select a field from a record
variable. Given the variable John from the previous example, here’s how
you could access various fields in this record:

John.Mid1 = 80; // C/C++ example
John.Final := 93; (* Pascal example *)
mov(75, John.Projects); // HLA example

Figure 7-8 suggests that all fields of a record appear in memory in
the order of their declaration, and this is usually the case in practice. In
theory, though, a compiler can freely place the fields anywhere in

memory that it chooses. The first field usually appears at the lowest
address in the record, the second field appears at the next highest
address, the third field follows the second field in memory, and so on.

Figure 7-8 also suggests that compilers pack the fields into adjacent
memory locations with no gaps between them. While this is true for
many languages, it’s certainly not the most common memory
organization for a record. For performance reasons, most compilers
actually align the fields of a record on appropriate memory boundaries.
The exact details vary by language, compiler implementation, and CPU,
but a typical compiler places fields at an offset within the record’s
storage area that is “natural” for that particular field’s data type. On the
80x86, for example, compilers that follow the Intel ABI (application
binary interface) allocate 1-byte objects at any offset within the record,
words only at even offsets, and double-word or larger objects on
double-word boundaries. Although not all 80x86 compilers support the
Intel ABI, most do, which allows records to be shared among functions
and procedures written in different languages on the 80x86. Other CPU
manufacturers provide their own ABI for their processors, and
programs that adhere to an ABI can share binary data at runtime with
other programs that adhere to the same ABI.

In addition to aligning the fields of a record at reasonable offset
boundaries, most compilers also ensure that the length of the entire
record is a multiple of 2, 4, 8, or even 16 bytes. As mentioned earlier in
the chapter, they accomplish this by appending padding bytes to fill out
the record’s size. This ensures that the record’s length is an even
multiple of the size of the largest scalar (noncomposite data type) object
in the record or the CPU’s optimal alignment size, whichever is smaller.
For example, if a record has fields whose lengths are 1, 2, 4, 8, and 10
bytes, then an 80x86 compiler generally will pad the record’s length so
that it is an even multiple of 8. This allows you to create an array of
records and be assured that each record in the array starts at a
reasonable address in memory.

Although some CPUs don’t allow access to objects in memory at
misaligned addresses, many compilers allow you to disable the
automatic alignment of fields within a record. Generally, the compiler

has an option you can use to globally disable this feature. Many
compilers also provide a pragma or a packed keyword that lets you turn off
field alignment on a record-by-record basis. Disabling the automatic
field alignment feature may save some memory by eliminating the
padding bytes between the fields and at the end of the record (again,
provided that field misalignment is acceptable on your CPU). However,
the program may run a little bit slower when it needs to access
misaligned values in memory.

One reason to use a packed record is to gain manual control over the
alignment of the record’s fields. For example, suppose you have a couple
of functions written in two different languages, and both functions need
to access some data in a record. Suppose also that the two compilers for
these functions do not use the same field alignment algorithm. A record
declaration like the following (in Pascal) may not be compatible with
the way both functions access the record data:

type
 aRecord: record
 bField : byte; (* assume Pascal compiler supports a byte type *)
 wField : word; (* assume Pascal compiler supports a word type *)
 dField : dword; (* assume Pascal compiler supports a double-word type *)
 end; (* record *)

The problem here is that the first compiler could use the offsets 0, 2,
and 4 for the bField, wField, and dField fields, respectively, while the
second compiler might use offsets 0, 4, and 8.

Suppose, however, that the first compiler allows you to specify the
packed keyword before the record keyword, causing the compiler to store
each field immediately following the previous one. Although using the
packed keyword doesn’t make the records compatible with both
functions, it does allow you to manually add padding fields to the record
declaration, as follows:

type
 aRecord: packed record
 bField :byte;
 padding0 :array[0..2] of byte; (* add padding to dword align wField *)
 wField :word;
 padding1 :word; (* add padding to dword align dField *)
 dField :dword;
 end; (* record *)

Adding padding manually can make code maintenance a real chore.
However, if incompatible compilers need to share data, it’s a trick worth
knowing. For the exact details on packed records, consult your
language’s reference manual.

7.4 Discriminant Unions

A discriminant union (or just union) is very similar to a record. Like
records, unions have fields that you access using dot notation. In many
languages, the only syntactical difference between records and unions is
the use of the keyword union rather than record. Semantically, however,
there’s a big difference between them. In a record, each field has its own
offset from the base address of the record, and the fields do not overlap.
In a union, however, all fields have the same offset, 0, and all the fields
of the union overlap. As a result, the size of a record is the sum of the
sizes of all the fields (plus, possibly, some padding bytes), whereas a
union’s size is the size of its largest field (plus, possibly, some padding
bytes at the end).

Because the fields of a union overlap, you might think it’s of little use
in a real-world program. After all, if the fields all overlap, then changing
the value of one field changes the values of all the others as well. This
means that union fields are mutually exclusive—that is, you can use only
one at a time. While it’s true that this makes unions less generally
applicable than records, they still have many uses.

7.4.1 Unions in C/C++

Here’s an example of a union declaration in C/C++:

typedef union
{
 unsigned int i;
 float r;
 unsigned char c[4];

} unionType;

Assuming the C/C++ compiler allocates 4 bytes for unsigned
integers, the size of a unionType object will be 4 bytes (because all three
fields are 4-byte objects).

NOTE

Unfortunately, Java doesn’t support discriminant unions due to the safety
issues involved. You can implement some features of discriminant unions
using subclassing, but Java does not support explicitly sharing memory
locations among different variables.

7.4.2 Unions in Pascal/Delphi

Pascal/Delphi use case-variant records to create a discriminant union.
The syntax for a case-variant record is as follows:

type
 typeName =
 record
 <<nonvariant/union record fields go here>>
 case tag of
 const1:(field_declaration);
 const2:(field_declaration);
 .
 .
 .
 constn:(field_declaration) (* no semicolon follows
 the last field *)

 end;

In this example, tag is either a type identifier (such as boolean, char, or
some user-defined type) or a field declaration of the form identifier:type.
If the tag item takes this latter form, then identifier becomes another
field of the record, not a member of the variant section (those
declarations following the case), and has the specified type. In addition,
the Pascal compiler could generate code that raises an exception
whenever the application attempts to access any of the variant fields
except the one specified by the value of the tag field. In practice, though,
almost no Pascal compilers do this check. Still, keep in mind that the

Pascal language standard suggests that compilers should do it, so some
compilers out there might.

Here’s an example of two different case-variant record declarations
in Pascal:

type
 noTagRecord=
 record
 someField: integer;
 case boolean of
 true:(i:integer);
 false:(b:array[0..3] of char)
 end; (* record *)

 hasTagRecord=
 record
 case which:0..2 of
 0:(i:integer);
 1:(r:real);
 2:(c:array[0..3] of char)
 end; (* record *)

As you can see in the hasTagRecord union, a Pascal case-variant record
does not require any normal record fields. This is true even if you do
not have a tag field.

7.4.3 Unions in Swift

Swift does not directly support the concept of a discriminant union.
Unlike Java, however, Swift does provide an alternative—equivalent to
Pascal’s case-variant record—that supports the safe use of unions:
enumerated data types.

Consider the following Swift enumeration definition:

enum EnumType
{
 case a
 case b
 case c
}

let et = EnumType.b
print(et) // prints "b" on standard output

So far, this is just an enumerated data type that has nothing to do
with unions. However, we can attach a value (actually, a tuple of values)

to each case in an enumerated data type. Consider the following Swift
program, which demonstrates enum associated values:

import Foundation

enum EnumType
{
 case isInt(Int)
 case isReal(Double)
 case isString(String)
}

func printEnumType(_ et:EnumType)
{
 switch(et)
 {
 case .isInt(let i):
 print(i)
 case .isReal(let r):
 print(r)
 case .isString(let s):
 print(s)
 }
}

let etI = EnumType.isInt(5)
let etF = EnumType.isReal(5.0)
let etS = EnumType.isString("Five")

print(etI, etF, etS)
printEnumType(etI)
printEnumType(etF)
printEnumType(etS)

This program produces the following output:

isInt(5) isReal(5.0) isString("Five")
5
5.0
Five

A variable of type EnumType takes on one of the enumeration values
isInt, isReal, or isString (these are the three constants of type EnumType). In
addition to whatever internal encoding Swift chooses for these three
constants (probably 0, 1, and 2, though their actual values are irrelevant),
Swift associates an integer value with isInt, a 64-bit double-precision
floating-point value with isReal, and a string value with isString. The
three let statements assign the appropriate values to EnumType variables; as

you can see, to assign the value you include it in parentheses after the
constant’s name. You can then extract the value using a switch statement.

7.4.4 Unions in HLA

HLA supports unions as well; here’s a typical union declaration:

type
 unionType:
 union
 i: int32;
 r: real32;
 c: char[4];
 endunion;

7.4.5 Memory Storage of Unions

As noted previously, the big difference between a union and a record is
the fact that records allocate storage for each field at different offsets,
whereas unions overlay all of the fields at the same offset in memory.
For example, consider the following HLA record and union
declarations:

type
 numericRec:
 record
 i: int32;
 u: uns32;
 r: real64;
 endrecord;
 numericUnion:
 union
 i: int32;
 u: uns32;
 r: real64;
 endunion;

If you declare a variable, n, of type numericRec, you access the fields as
n.i, n.u, and n.r, exactly as though you had declared the n variable to be
type numericUnion. However, the size of a numericRec object is 16 bytes,
because the record contains two double-word fields and a quad-word
(real64) field. The size of a numericUnion variable, though, is 8 bytes. Figure
7-9 shows the memory arrangement of the i, u, and r fields in both the
record and union.

Figure 7-9: Layout of a union versus a record variable

Note that Swift enum types are opaque. They may not store the
associated values from each enumeration case in the same memory
address—and even if they currently do, there’s no guarantee they will in
future versions of Swift.

7.4.6 Other Uses of Unions

In addition to conserving memory, another common reason why
programmers use unions is to create aliases in their code. An alias is a
second name for some memory object. Although aliases are often a
source of confusion in a program and should be used sparingly,
sometimes it’s convenient to use them. For example, in some section of
your program you might need to constantly use type coercion to refer
to a particular object. To avoid this, you could use a union variable with
each field representing one of the different types you want to use for the
object. Consider the following HLA code fragment:

type
 CharOrUns:
 union
 c:char;
 u:uns32;
 endunion;

static
 v:CharOrUns;

With a declaration like this, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the LO byte of this
uns32 variable as a character, you can do so by simply accessing the v.c
variable as follows:

mov(eax, v.u);
stdout.put("v, as a character, is '", v.c, "'" nl);

Another common practice is to use unions to disassemble a larger
object into its constituent bytes. Consider the following C/C++ code
fragment:

typedef union
{
 unsigned int u;
 unsigned char bytes[4];
} asBytes;

asBytes composite;
 .
 .
 .
 composite.u = 1234567890;
 printf
 (
 "HO byte of composite.u is %u, LO byte is %u\n",
 composite.u[3],
 composite.u[0]
);

Although composing and decomposing data types this way is a useful
trick to employ every now and then, keep in mind that this code isn’t
portable. The HO and LO bytes of a multibyte object appear at
different addresses on big-endian versus little-endian machines. As a
result, this code fragment works fine on little-endian machines, but fails
to display the correct bytes on big-endian CPUs. Any time you use
unions to decompose larger objects, you should be aware of this
limitation. Still, this trick is usually much more efficient than using shift
lefts, shift rights, and AND operations, so you’ll see it used quite a bit.

NOTE

Swift’s type safety system does not allow you to access a collection of bits as
different types using discriminant unions. If you really want to convert one

type to another by raw bit assignment, you can use the Swift unsafeBitCast()
function. See the Swift standard library documentation for more details.

7.5 Classes

At first glance, classes in a programming language like C++, Object
Pascal, or Swift look like they are simple extensions to records (or
structures) and should have a similar memory organization. Indeed,
most programming languages do organize class data fields in memory
very similarly to records and structures. The compiler lays out the fields
in sequential memory locations as it encounters them in a class
declaration. However, classes have several additional features that you
won’t find in pure record and structures; specifically, member functions
(functions declared inside a class), inheritance, and polymorphism have
a big impact on how compilers implement class objects in memory.

Consider the following HLA structure and HLA class declarations:

type
 student: record
 sName: char[65];
 Major: int16;
 SSN: char[12];
 Midterm1: int16;
 Midterm2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;
 endrecord;

 student2: class
 var
 sName: char[65];
 Major: int16;
 SSN: char[12];
 Midterm1: int16;
 Midterm2: int16;
 Final: int16;
 Homework: int16;
 Projects: int16;

 method setName(source:string);
 method getName(dest:string);
 procedure create; // Constructor for class
 endclass;

As with records, HLA allocates storage for all var fields in a class
sequentially. Indeed, if a class consists only of var data fields, its memory
representation is nearly identical to that of a corresponding record
declaration (see Figures 7-10 and 7-11).

Figure 7-10: Layout of the HLA student record

Figure 7-11: Layout of the HLA student2 class

As you can see from these figures, the difference is the presence of
the VMT pointer field at the beginning of the student2 class data. VMT,
which stands for virtual method table, is a pointer to an array of pointers

to the methods (functions) associated with the class.4 In the student2
example, the VMT field would point at a table containing two 32-bit
pointers—one pointing at the setName() method and one pointing at the
getName() method. When a program calls one of the virtual methods
setName() or getName() in this class, it does not call them directly at their
address in memory. Instead, it fetches the address of the VMT from the
object in memory, uses that pointer to fetch the specific method address
(setName() will likely be at the first index into the VMT and getName() at
the second), and then use the fetched address to call the method
indirectly.

7.5.1 Inheritance

Obtaining the method address from the VMT is a lot of work. Why
would the compiled code do this rather than calling the method
directly? The reason is because of a pair of magical features that classes
and objects support: inheritance and polymorphism. Consider the
following HLA class declaration:

type
 student3: class inherits(student2)
 var
 extraTime: int16; // Extra time allotted for exams
 override method setName;
 override procedure create;
 endclass;

The student3 class inherits all the data fields and methods from the
student2 class (as specified by the inherits clause in the class declaration)
and then defines a new data field, extraTime, that allots extra time, in
minutes, for the student during examinations. The student3 declaration
also defines a new method, setName(), that replaces the original setName()
method in the student2 class (it also defines an overridden create

procedure, but we’ll ignore this for now). The memory layout for a
student3 object appears in Figure 7-12.

Figure 7-12: Layout of the HLA student3 class

In memory, the difference between the student2 and student3 objects is
the extra 2 bytes at the end of the student3 data structure and the value
held by the VMT field. For student2 objects the VMT field points at the
VMT for the student2 class (there is only one actual student2 VMT in
memory, and all student2 objects contain a pointer to it). If we have a pair
of student2 objects named John and Joan, their VMT fields will both

contain the address of the same VMT in memory, which has the
information shown in Table 7-3.

Table 7-3: VMT Entries for student2 VMT

Offset5 Entry

0 (bytes) Pointer to the (student2) setName()
method

4 (bytes) Pointer to the getName() method

Now consider the case where we have a student3 object in memory
(let’s name it Jenny). The memory layout for Jenny is similar to that of John
and Joan (see Figures 7-11 and 7-12). However, whereas the VMT fields
in John and Joan both contain the same value (a pointer to the student2
VMT), the VMT field for the Jenny object will point at the student3
VMT (see Table 7-4).

Table 7-4: VMT Entries for student3 VMT

Offset Entry

0 (bytes) Pointer to the (student3) setName()
method

4 (bytes) Pointer to the getName() method

Although the student3 VMT looks almost identical to the student2
VMT, there is one critical difference: the first entry in Table 7-3 points
at the student2 setName() method, whereas the first entry in Table 7-4
points at the student3 setName() method.

Adding fields inherited from a base class to another class must be done
carefully. Remember, an important attribute of a class that inherits fields
from a base class is that you can use a pointer to the base class to access
its fields, even if the pointer contains the address of some other class
(that inherits the fields from the base class). Consider the following
classes:

type
 tBaseClass: class
 var
 i:uns32;
 j:uns32;
 r:real32;

 method mBase;
 endclass;

 tChildClassA: class inherits(tBaseClass)
 var
 c:char;
 b:boolean;
 w:word;

 method mA;
 endclass;

 tChildClassB: class inherits(tBaseClass)
 var
 d:dword;
 c:char;
 a:byte[3];

 endclass;

Because both tChildClassA and tChildClassB inherit the fields of
tBaseClass, these two child classes include the i, j, and r fields as well as
their own specific fields.

For inheritance to work properly, the i, j, and r fields must appear at
the same offsets in all child classes as they do in tBaseClass. This way, an
instruction of the form mov((type tBaseClass [ebx]).i, eax); will correctly
access the i field even if EBX points at an object of type tChildClassA or
tChildClassB. Figure 7-13 shows the layout of the child and base classes.

Note that the new fields in the two child classes bear no relation to
one another, even if they have the same name (for example, the c fields
in the two child classes do not lie at the same offset). Although the two
child classes share the fields they inherit from their common base class,
any new fields they add are unique and separate. Two fields in different
classes share the same offset only by coincidence if those fields are not
inherited from a common base class.

All classes (even those that aren’t related to one another) place the
pointer to the VMT at the same offset within the object (typically offset
0). There is a single VMT associated with each class in a program; even

when classes inherit fields from some base class, their VMT (generally)
differs from the base class’s VMT. Figure 7-14 shows how objects of
type tBaseClass, tChildClassA, and tChildClassB point at their specific VMTs.

Figure 7-13: Layout of base and child classes in memory

Figure 7-14: VMT references from objects

Whenever a child class inherits fields from some base class, the child
class’s VMT also inherits entries from the base class’s VMT. For
example, the VMT for the class tBaseClass contains only a single entry—
a pointer to the method tBaseClass.mBase(). The VMT for the class
tChildClassA contains two entries: pointers to tBaseClass.mBase() and
tChildClassA.mA(). Because tChildClassB doesn’t define any new methods or
iterators, its VMT contains only a single entry: a pointer to the
tBaseClass.mBase() method. Note that tChildClassB’s VMT is identical to
tBaseclass’s table. Nevertheless, HLA produces two distinct VMTs.
Figure 7-15 shows this relationship.

Figure 7-15: Layout of base and child classes in memory

7.5.2 Class Constructors

Before you can actually call any methods in a VMT, you have to make
sure that the table is actually present in memory (holding the addresses
of the methods defined in a class), and you also have to initialize the
VMT pointer field in every class you create. If you’re using an HLL
(such as C++, C#, Java, or Swift), the compiler will automatically
generate the VMTs for you when you compile the class definitions. As
for initializing the VMT pointer field in the object itself, that’s usually
handled by the default constructor (object initialization function) for
each class. All this work is hidden from an HLL programmer. That’s
why these class examples are using HLA—in assembly language (even a
high-level assembly language), very little is hidden from you. With
HLA examples, then, you get to see exactly how objects work and the
cost of using them.

To begin with, HLA does not automatically create the VMTs for
you. You must explicitly declare them in your code for each class you
define. For the student2 and student3 examples, you can declare them as
follows:

readonly
 VMT(student2);
 VMT(student3);

Technically, these don’t have to appear in a readonly section (they
could also appear in an HLA static section); however, you’ll never
change the VMT values, so this section is a good place to declare them.

The VMT declarations in this example define two symbols you can
access in the HLA program: student2._VMT_ and student3._VMT_. These
symbols correspond to the address of the first entry in each VMT.

Somewhere in your code (typically in the constructor procedure), you
need to initialize the VMT field of the object with the address of the
VMT for the associated class. The HLA convention for the class
constructors appears in the following code:

procedure student2.create; @noframe;
begin create;
 push(eax);

 // ESI will contain NULL if this is called as "student2.create();"
 // ESI will not be NULL if you call create from an object reference,
 // such as "John.create();" (in which case ESI will point at the object,
 // John in this case).

 if(esi == NULL) then

 // If a class call, allocate storage for the object
 // on the heap.

 mov(malloc(@size(student2)), esi);

 endif;
 mov(&student2._VMT_, this._pVMT_);

 // If you're going to initialize other fields of the class, do that here.

 pop(eax);
 ret();

end create;

procedure student3.create; @noframe;
begin create;

 push(eax);
 if(esi == NULL) then

 mov(malloc(@size(student3)), esi);

 endif;

 // Must call the base constructor to do any class initialization
 // it requires.

 (type student2 [esi]).create(); // Must call the base class constructor.

 // Might want to initialize any student3-specific fields (such
 // as extra time) here:

 // student2.create filled in the VMT pointer with the address of the
 // student2 VMT. It really needs to point at the student3 VMT.
 // Fix that here.

 mov(&student3._VMT_, this._pVMT_);

 pop(eax);
 ret();

end create;

student2.create() and student3.create() are class procedures (also known as
static class methods or functions in some languages). The main point to
class procedures is that the code calls them directly, not indirectly (that
is, through the VMT). So, if you call John.create() or Joan.create(), you’re
always going to call the student2.create() class procedure. Likewise, if you
call Jenny.create()—or any student3 variable’s create constructor—you’ll
always be calling the student3.create() procedure.

The two statements:

mov(&student2._VMT_, this._pVMT_);

mov(&student3._VMT_, this._pVMT_);

copy the address of the VMT (for the given class) into the VMT
pointer field (this._pVMT_) in the objects being created.

Note the following statement in the student3.create() constructor:

(type student2 [esi]).create(); // Must call the base class constructor.

Upon arriving at this point, the 80x86 ESI register contains a pointer to
a student3 object. The text (type student2 [esi]) typecasts this to a student2
pointer. This winds up calling the parent class’s constructor (in order to
initialize any fields in the base class).

Finally, consider the following code:

var
 John :pointer to student2;
 Joan :pointer to student2;
 Jenny :pointer to student3;
 .
 .
 .
 student2.create(); // Equivalent to calling "new student2"
 // in other languages.
 mov(esi, John); // Save pointer to new student2
 // object in John
 student2.create();
 mov(esi, Joan);

 student3.create();
 mov(esi, Jenny);

If you look at the _pVMT_ entries in the John and Joan objects, you’ll find
that they contain the address of the VMT for the student2 class.
Likewise, the _pVMT_ field of the Jenny object contains the address of the
VMT for the student3 class.

7.5.3 Polymorphism

If you have an HLA student2 variable (that is, a variable that contains a
pointer to a student2 object in memory), you can call the setName() method
for that object using the following HLA code:

John.setName("John");
Joan.setName("Joan");

These particular calls are examples of high-level activity taking place
in HLA. The machine code that the HLA compiler emits for the first of
these statements looks something like the following:

mov(John, esi);
mov((type student2 [esi])._pVMT_, edi);
call([edi+0]); // Note: the offset of the setName method in the VMT is
0.

Here’s what this code is doing:

1. The first line copies the address held in the John pointer into the
ESI register. This is because most indirect accesses on the 80x86
take place in a register, not in memory variables.

2. The VMT pointer is a field in the student2 object structure. The
code needs to obtain the pointer to the setName() method, held in
the VMT. The _pVMT_ field of the object (which is in memory) holds
the address of the VMT. Once again, we must load this into a
register to access that data indirectly. The program copies the
VMT pointer into the 80x86 EDI register.

3. The VMT (at which EDI now points) contains two entries. The
first entry (offset 0) contains the address of the student2.setName()
method; the second entry (offset 4) contains the address of the

student2.getName() method. Because we want to call the
student2.setName() method, the third instruction in this sequence calls
the method at the address held in the memory location pointed at
by [edi+0].

As you can see, this is quite a bit more work than calling
student.setName() directly. Why do we go through all this effort? After all,
we know that John and Joan are both student2 objects. We also know that
Jenny is a student3 object. So, we ought to be able to call the
student2.setName() or student3.setName() methods directly. That would take
only one machine instruction, which is both faster and shorter.

The reason for all this extra work is to support polymorphism.
Suppose we declare a generic student2 object:

var student:pointer to student2;

What happens when we assign the value of Jenny to student and call
student.setName()? Well, the code sequence is identical to that for the call
for John given earlier. That is, the code loads the pointer held in student
into the ESI register, copies the _pVMT_ field into the EDI register, and
then jumps indirectly through the first entry of the VMT (which points
at the setName() method). There is, however, one major difference
between this example and the previous: in this case, student is pointing at
a student3 object in memory. So, when the code loads the address of the
VMT into the EDI register, EDI is actually pointing at the student3
VMT, not the student2 VMT (as was the case when we used the John
pointer). Therefore, when the program calls the setName() method, it’s
actually calling the student3.setName() method, not the student2.setName()
method. This behavior is the basis for polymorphism in modern object-
oriented programming languages.

7.5.4 Abstract Methods and Abstract Base Classes

An abstract base class exists solely to supply a set of common fields to its
derived classes. You never declare variables whose type is an abstract
base class; you always use one of the derived classes. An abstract base
class is a template for creating other classes, nothing more.

The only difference in syntax between a standard base class and an
abstract base class is the presence of at least one abstract method
declaration. An abstract method is a special method that does not have an
actual implementation in the abstract base class. Any attempt to call that
method will raise an exception. If you’re wondering what possible good
an abstract method could be, keep reading.

Suppose you want to create a set of classes to hold numeric values.
One class could represent unsigned integers, another class could
represent signed integers, a third could implement BCD values, and a
fourth could support real64 values. While you could create four separate
classes that function independently of one another, doing so passes up
an opportunity to make this set of classes more convenient to use. To
understand why, consider the following HLA class declarations:

type
 uint: class
 var
 TheValue: dword;

 method put;
 << Other methods for this class >>
 endclass;

 sint: class
 var
 TheValue: dword;

 method put;
 << Other methods for this class >>
 endclass;

 r64: class
 var
 TheValue: real64;

 method put;
 << Other methods for this class >>
 endclass;

The implementation of these classes is not unreasonable. They have
fields for the data, and they have a put() method that, presumably, writes
the data to the standard output device. They probably have other
methods and procedures to implement various operations on the data.
There are, however, two problems with these classes, one minor and

one major, both occurring because these classes do not inherit any fields
from a common base class.

The minor problem is that you have to repeat the declaration of
several common fields in these classes. For example, the put() method is

declared in each class.6 The major problem is that this approach is not
generic—that is, you can’t create a generic pointer to a “numeric” object
and perform operations like addition, subtraction, and output on that
value (regardless of the underlying numeric representation).

We can easily solve these two problems by turning the previous class
declarations into a set of derived classes. The following code
demonstrates an easy way to do this:

type
 numeric: class
 method put;
 << Other common methods shared by all the classes >>
 endclass;

 uint: class inherits(numeric)
 var
 TheValue: dword;

 override method put;
 << Other methods for this class >>
 endclass;

 sint: class inherits(numeric)
 var
 TheValue: dword;

 override method put;
 << Other methods for this class >>
 endclass;

 r64: class inherits(numeric)
 var
 TheValue: real64;

 override method put;
 << Other methods for this class >>
endclass;

First, by making the put() method inherit from numeric, this code
encourages the derived classes to always use the name put(), which
makes the program easier to maintain. Second, because this example
uses derived classes, it’s possible to create a pointer to the numeric type

and load that pointer with the address of a uint, sint, or r64 object. The
pointer can invoke the methods found in the numeric class to do functions
like addition, subtraction, or numeric output. Therefore, the application
that uses this pointer doesn’t need to know the exact data type; it deals
with numeric values only in a generic fashion.

One problem with this scheme is that it’s possible to declare and use
variables of type numeric. Unfortunately, such numeric variables aren’t
capable of representing any type of number (notice that the data storage
for the numeric fields actually appears in the derived classes). Worse,
because you’ve declared the put() method in the numeric class, you
actually have to write some code to implement that method even
though you should never really call it; the actual implementation should
occur only in the derived classes. While you could write a dummy
method that prints an error message (or, better yet, raises an exception),
you shouldn’t have to resort to that. Fortunately, there’s no reason to do
so—if you use abstract methods.

The HLA abstract keyword, when it follows a method declaration,
tells HLA that you aren’t going to provide an implementation of the
method for this class. Instead, all derived classes are responsible for
providing a concrete implementation for the abstract method. HLA will
raise an exception if you attempt to call an abstract method directly.
The following code modifies the numeric class to convert put() to an
abstract method:

type
 numeric: class
 method put; abstract;
 << Other common methods shared by all the classes >>
 endclass;

An abstract base class has at least one abstract method. But you don’t
have to make all methods abstract in an abstract base class; it’s perfectly
legal to declare some standard methods (and, of course, provide their
implementation) within it.

Abstract method declarations provide a mechanism by which a base
class can specify some generic methods that the derived classes must
implement. If the derived classes don’t provide concrete

implementations of all abstract methods, that makes them abstract base
classes themselves.

A little earlier, you read that you should never create variables whose
type is an abstract base class. Remember, if you attempt to execute an
abstract method, the program will immediately raise an exception to
complain about this illegal method call.

7.6 Classes in C++

Up to this point, all the examples of classes and objects have used HLA.
That made sense because the discussion concerned the low-level
implementation of classes, which is something HLA illustrates well.
However, you may not ever use HLA in a program you write. So now
we’ll look at how high-level languages implement classes and objects. As
C++ was one of the earliest HLLs to support classes, we’ll start with it.

Here’s a variant of the student2 class in C++:

class student2
{
 private:
 char Name[65];
 short Major;
 char SSN[12];
 short Midterm1;
 short Midterm2;
 short Final;
 short Homework;
 short Projects;

 protected:
 virtual void clearGrades();

 public:
 student2();
 ~student2();

 virtual void getName(char *name_p, int maxLen);
 virtual void setName(const char *name_p);
};

The first major difference from HLA’s classes is the presence of the
private, protected, and public keywords. C++ and other HLLs make a
concerted effort to support encapsulation (information hiding), and these

three keywords are one of the main tools C++ uses to enforce it. Scope,
privacy, and encapsulation are syntactical issues that are useful for
software engineering constructs, but they really don’t impact the
implementation of classes and objects in memory. Thus, since this book’s
focus is implementation, we’ll leave further discussion of encapsulation
for WGC4 and WGC5.

The layout of the C++ student2 object in memory will be very similar
to the HLA variant (of course, different compilers could lay things out
differently, but the basic idea of data fields and the VMT still applies).

Here’s an example of inheritance in C++:

class student3 : public student2
{
 public:
 short extraTime;
 virtual void setName(char *name_p, int maxLen);
 student3();
 ~student3();
};

Structures and classes are almost identical in C++. The main
difference between the two is that the default visibility at the beginning
of a class is private, whereas the default visibility for struct is public. So,
we could rewrite the student3 class as follows:

struct student3 : public student2
{
 short extraTime;
 virtual void setName(char *name_p, int maxLen);
 student3();
 ~student3();
};

7.6.1 Abstract Member Functions and Classes in C++

C++ has an especially weird way of declaring abstract member functions
—you place “= 0;” after the function definition in the class, like so:

struct absClass
{
 int someDataField;
 virtual void absFunc(void) = 0;
};

As with HLA, if a class contains at least one abstract function, the
class is an abstract class. Note that abstract functions must also be
virtual, as they must be overridden in some derived class to be useful.

7.6.2 Multiple Inheritance in C++

C++ is one of the few modern programming languages that supports
multiple inheritance; that is, a class can inherit the data and member
functions from multiple classes. Consider the following C++ code
fragment:

class a
{
 public:
 int i;
 virtual void setI(int i) { this->i = i; }
};

class b
{
 public:
 int j;
 virtual void setJ(int j) { this->j = j; }
};

class c : public a, public b
{
 public:
 int k;
 virtual void setK(int k) { this->k = k; }
};

In this example, class c inherits all the information from classes a and
b. In memory, a typical C++ compiler will create an object like that
shown in Figure 7-16.

Figure 7-16: Multiple inheritance memory layout

The VMT pointer entry points at a typical VMT containing the
addresses of the setI(), setJ(), and setK() methods (as shown in Figure 7-
17). If you call the setI() method, the compiler will generate code that
loads the this pointer with the address of the VMT pointer entry in the
object (the base address of the c object in Figure 7-16). Upon entry into
setI(), the system believes that this is pointing at an object of type a. In
particular, the this.VMT field points at a VMT whose first (and, as far as
type a is concerned, only) entry is the address of the setI() method.
Likewise, at offset (this+4) in memory (as the VMT pointer is 4 bytes), the
setI() method will find the i data value. As far as the setI() method is
concerned, this is pointing at a class type a object (even though it’s
actually pointing at a type c object).

Figure 7-17: Multiple inheritance this values

When you call the setK() method, the system also passes the base
address of the c object. Of course, setK() is expecting a type c object and
this is pointing at a type c object, so all the offsets into the object are
exactly as setK() expects. Note that objects of type c (and methods in the
c class) will normally ignore the VMT2 pointer field in the c object.

The problem occurs when the program attempts to call the setJ()
method. Because setJ() belongs to class b, it expects this to hold the
address of a VMT pointer pointing at a VMT for class b. It also expects

to find data field j at offset (this+4). Were we to pass the c object’s this
pointer to setJ(), accessing (this+4) would reference the i data field, not
j. Furthermore, were a class b method to make a call to another method
in class b (such as setJ() making a recursive call to itself), the VMT
pointer would be wrong—it points at a VMT with a pointer to setI() at
offset 0, whereas class b expects it to point at a VMT with a pointer to
setJ() at offset 0. To resolve this issue, a typical C++ compiler will insert
an extra VMT pointer into the c object immediately prior to the j data
field. It will initialize this second VMT field to point into the c VMT at
the location where the class b method pointers begin (see Figure 7-17).
When calling a method in class b, the compiler will emit code that
initializes the this pointer with the address of this second VMT pointer
(rather than pointing at the beginning of c-type object in memory).
Now, upon entry to a class b method—such as setJ()—this will point at a
legitimate VMT pointer for class b, and the j data field will appear at
the offset (this+4) that class b methods expect.

7.7 Classes in Java

Java, as a C-based language, has class definitions that are somewhat
similar to C++ (though Java doesn’t support multiple inheritance and
has a more rational way of declaring abstract methods). Here’s a sample
set of Java class declarations to give you a sense of how they work:

public abstract class a
{
 int i;
 abstract void setI(int i);
};

public class b extends a
{
 int j;
 void setI(int i)
 {
 this.i = i;
 }

 void setJ(int j)
 {
 this.j = j;

 }
};

7.8 Classes in Swift

Swift is also a member of the C language tree. Like C++, Swift allows
you to declare classes using the class or struct keyword. Unlike C++,
Swift structures and classes are different things. A Swift structure is
somewhat like a C++ class variable, whereas a Swift class is similar to a
C++ pointer to an object. In Swift terminology, structures are value
objects and classes are reference objects. Basically, when you create a
structure object, Swift allocates sufficient memory for the entire object

and binds that storage to the variable.7 Like Java, Swift doesn’t support
multiple inheritance; only single inheritance is legal. Also note that
Swift doesn’t support abstract member functions or classes. Here’s an
example of a pair of Swift classes:

class a
{
 var i: Int;
 init(i:Int)
 {
 self.i = i;
 }
 func setI(i :Int)
 {
 self.i = i;
 }
};

class b : a
{
 var j: Int = 0;
 override func setI(i :Int)
 {
 self.i = I;
 }
 func setJ(j:Int)
 {
 self.j = j;
 }
};

In Swift, all member functions are virtual by default. Also, the init()
function is Swift’s constructor. Destructors have the name deinit().

7.9 Protocols and Interfaces

Java and Swift don’t support multiple inheritance, because it has some
logical problems. The classic example is the “diamond lattice” data
structure. This occurs when two classes (say, b and c) both inherit
information from the same class (say, a) and then a fourth class (say, d)
inherits from both b and c. As a result, d inherits the data from a twice—
once through b and once through c.

Although multiple inheritance can lead to some weird problems like
this, there’s no question that being able to inherit from multiple
locations is often useful. Thus, the solution in languages such as Java
and Swift is to allow a class to inherit methods or functions from
multiple sources but to inherit data fields from only a single ancestor
class. This avoids most of the problems with multiple inheritance
(specifically, an ambiguous choice of inherited data fields) while
allowing programmers to include methods from various sources. Java
calls such extensions interfaces, and Swift calls them protocols.

Here’s an example of a couple of Swift protocol declarations and a
class supporting that protocol:

protocol someProtocol
{
 func doSomething()->Void;
 func doSomethingElse() ->Void;
}
protocol anotherProtocol
{
 func doThis()->Void;
 func doThat()->Void;
}

class supportsProtocols: someProtocol, anotherProtocol
{
 var i:Int = 0;
 func doSomething()->Void
 {
 // appropriate function body
 }
 func doSomethingElse()->Void
 {
 // appropriate function body
 }
 func doThis()->Void
 {
 // appropriate function body

 }
 func doThat()->Void
 {
 // appropriate function body
 }}
}

Swift protocols don’t supply any functions. Instead, a class that
supports a protocol promises to provide an implementation of the
functions the protocol(s) specify. In the preceding example, the
supportsProtocols class is responsible for supplying all functions required
by the protocols it supports. Effectively, protocols are like abstract
classes containing only abstract methods—the inheriting class must
provide actual implementations for all the abstract methods.

Here’s the previous example coded in Java and demonstrating its
comparable mechanism, the interface:

class InterfaceDemo {
 interface someInterface
 {
 public void doSomething();
 public void doSomethingElse();
 }
 interface anotherInterface
 {
 public void doThis();
 public void doThat();
 }

 class supportsInterfaces implements someInterface, anotherInterface
 {
 int i;
 public void doSomething()
 {
 // appropriate function body
 }
 public void doSomethingElse()
 {
 // appropriate function body
 }
 public void doThis()
 {
 // appropriate function body
 }
 public void doThat()
 {
 // appropriate function body
 }
 }

 public static void main(String[] args) {

 System.out.println("InterfaceDemo");
 }
}

Interfaces and protocols behave somewhat like base class types in
Java and Swift. If you instantiate a class object and assign that instance
to a variable that is an interface/protocol type, you can execute the
supported member functions for that interface or protocol. Consider
the following Java example:

someInterface some = new supportsInterfaces();

// We can call the member functions defined for someInterface:

some.doSomething();
some.doSomethingElse();

// Note that it is illegal to try and call doThis
// or doThat (or access the i data field) using
// the "some" variable.

Here’s a comparable example in Swift:

import Foundation

protocol a
{
 func b()->Void;
 func c()->Void;
}

protocol d
{
 func e()->Void;
 func f()->Void;
}
class g : a, d
{
 var i:Int = 0;

 func b()->Void {print("b")}
 func c()->Void {print("c")}
 func e()->Void {print("e")}
 func f()->Void {print("f")}

 func local()->Void {print("local to g")}
}

var x:a = g()
x.b()
x.c()

You implement a protocol or interface using a pointer to a VMT that
contains the addresses of the functions declared in that protocol or
interface. So, the data structure for the Swift g class in the previous
example would have three VMT pointers in it—one for protocol a, one
for protocol d, and one for the class g (holding a pointer to the local()
function).

When you create a variable whose type is a protocol/interface (x in
the previous example), the variable holds the VMT pointer for that
protocol. In the current example, the assignment of g() to the x variable
actually just copies the VMT pointer for protocol a into x. Then, when
the code executes x.b and x.c, it obtains the addresses of the actual
functions from the VMT.

7.10 Generics and Templates

Although classes and objects allow software engineers to extend their
systems in ways that aren’t possible without object-oriented
programming, objects don’t provide a completely generic solution.
Generics, first introduced by the ML programming language in 1973 and
popularized by the Ada programming language, provide the key missing
feature to extensibility that plain object-oriented programming was
missing. Today, most modern programming languages—C++
(templates), Swift, Java, HLA (via macros), and Delphi—support some
form of generic programming. In the generic programming style, you
develop algorithms that operate on arbitrary data types to be defined in
the future, and supply the actual data type immediately prior to using
the generic type.

The classic example is a linked list. It’s very easy to write a simple,
singly linked list class—say, to manage a list of integers. However, after
creating your list of integers, you decide you need a list of doubles. A
quick copy-and-paste operation (plus changing the node type from int
to double), and you’ve got a class that handles linked lists of double
values. Oh wait, now you want a list of strings? Another cut-and-paste
operation, and you’ve got lists of strings. Now you need a list of objects?

Okay, yet another cut-and-paste. . . . You get the idea. Before too long,
you’ve created a half-dozen different list classes and, whoops, you
discover a bug in the original implementation. Now you get to go back
and correct that bug in every list class you’ve created. Good luck with
that, if you’ve used the list implementation in several different projects
(you’ve just discovered why “cut and paste” programming is not
considered great code).

Generics (C++ templates) come to the rescue. With a generic class
definition, you specify only the algorithms (methods/member functions)
that manipulate the list; you don’t worry about the node type. You fill in
the node type when you declare an object of the generic class type. To
create integer, double, string, or object lists, you simply provide the type
you want to the generic list class, and that’s it. Should you discover a
bug in the original (generic) implementation, all you do is fix the defect
once and recompile your code; everywhere you’ve used the generic
type, the compilation applies the correction.

Here’s a C++ node and list definition:

template< class T >
class node {
 public:
 T data;
 private:
 node< T > *next;
};

template< class T >
class list {
 public:
 int isEmpty();
 void append(T data);
 T remove();
 list() {
 listEnd = new node< T >();
 listEnd->next = listEnd;
 }
 private:
 node< T >* listEnd;
};

The <T> sequence in this C++ code is a parameterized type. This means
that you’ll supply a type and the compiler will substitute that type
everywhere it sees T in the template. So, in the preceding code, if you

supply int as the parameter type, the C++ compiler will substitute int for
every instance of T. To create a list of integers and doubles, you could
use the following C++ code:

#include <iostream>
#include <list>
using namespace std;

int main(void) {
 list< int > integerList;
 list< double > doubleList;

 integerList.push_back(25);
 integerList.push_back(0);
 doubleList.push_back(1.2);
 doubleList.push_back(3.14);

 cout << "integerList.size() " << integerList.size() << endl;
 cout << "doubleList.size() " << doubleList.size() << endl;

 return 0;
}
 doubleList.add(3.14);

The easiest way to implement generics is by using macros. When a
compiler sees a declaration such as list <int> integerList; it expands the
associated template code, substituting int for T throughout the
expansion.

Because template expansion can generate a massive amount of code,
modern compilers try to optimize the process wherever possible. For
example, if you declare two variables like so:

list <int> iList1;
list <int> iList2;

there’s really no need to create two separate list classes, both of type int.
Clearly, the template expansions would be identical, so any decent
compiler would use the same class definition for both declarations.

Even smarter compilers would recognize that some functions, like
remove(), don’t really care about the underlying node data type. The basic
removal operation is the same for all data types; as the list data type uses
a pointer for the node data, there’s no reason to generate different
remove() functions for each type. With polymorphism, a single remove()

member function would work fine. Recognizing this requires a little
more sophistication on the compiler’s part, but it’s certainly doable.

Ultimately, however, template/generic expansion is a macro
expansion process. Anything else that happens is simply an optimization
by the compiler.

7.11 For More Information

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Knuth, Donald. The Art of Computer Programming, Volume I:
Fundamental Algorithms. 3rd ed. Boston: Addison-Wesley
Professional, 1997.

8
BOOLEAN LOGIC AND DIGITAL DESIGN

Boolean logic is the basis of computation in modern computer systems.
You can represent any algorithm, or any electronic computer circuit,
using a system of Boolean equations. To fully understand how software
operates, then, you need to understand basic Boolean logic and digital
design.

This material is especially important to those who want to design
electronic circuits or write software that controls them. Even if you
don’t plan to do this, you can use your knowledge of Boolean logic to
optimize your software. Many high-level languages process Boolean
expressions, such as those that control an if statement or while loop.
Understanding Boolean logic provides the tools you need to optimize
your Boolean expressions and improve the performance of HLL code.

This chapter covers the following subjects, which will aid you when
you attempt to optimize Boolean expressions:

Boolean algebra, Boolean operators, and Boolean functions

An introduction to Boolean postulates and theorems

Truth tables and Boolean function optimization

Canonical forms

Electronic circuits and their Boolean function counterparts

Although a detailed knowledge of Boolean algebra and digital circuit
design isn’t necessary if you simply want to write typical programs,
familiarity with these topics will help answer why CPU manufacturers
implement instructions in certain ways—questions that will
undoubtedly arise as we begin looking at the CPU’s low-level
implementation.

8.1 Boolean Algebra

Boolean algebra is a deductive mathematical system. A binary operator (°)
accepts a pair of Boolean inputs and produces a single Boolean value.
For example, the Boolean AND operator accepts two Boolean inputs
and produces a single Boolean output (the logical AND of the two
inputs).

8.1.1 The Boolean Operators

For our purposes, we will base Boolean algebra on the following set of
values and operators:

The two possible values in the Boolean system are 0 and 1. Often,
we call these values false and true, respectively.

The • symbol represents the logical AND operation. A • B is the
operation of logically ANDing the Boolean values A and B, also
known as the product of A and B. For single-letter variable names,
this text drops the • symbol; therefore, AB also represents the
logical AND of the variables A and B.

The + (plus sign) represents the logical OR operation. A + B is the
result of logically ORing the Boolean values A and B. We also call
this the sum of A and B.

Logical complement, logical negation, and NOT are all names for
the same unary operator. This chapter will use the ' (prime symbol)
to denote logical negation. A' denotes the logical NOT of A.

8.1.2 Boolean Postulates

Every algebraic system follows a certain set of initial assumptions, or
postulates. You can deduce additional rules, theorems, and other
properties of the system from this basic set of postulates. Boolean
algebra employs the following postulates:

Closure A Boolean system is closed with respect to a particular binary
operator if, for every pair of Boolean values, it produces only a
Boolean result.

Commutativity A binary operator ° is commutative if A ° B = B ° A
for all possible Boolean values A and B.

Associativity A binary operator ° is associative if (A ° B) ° C = A ° (B °
C) for all Boolean values A, B, and C.

Distribution Two binary operators ° and % are distributive if A ° (B
% C) = (A ° B) % (A ° C) for all Boolean values A, B, and C.

Identity A Boolean value I is said to be the identity element with
respect to some binary operator ° if A ° I = A for all Boolean values
A.

Inverse A Boolean value I is said to be the inverse element with
respect to some binary operator ° if A ° I = B and B ° A (that is, B is
the opposite value of A in a Boolean system) for all Boolean values A
and B.

When applied to the Boolean operators, the preceding postulates
produce the following set of Boolean postulates:

P1 Boolean algebra is closed under the AND, OR, and NOT
operations.

P2 The identity element of AND (•) is 1, and the identity element
of OR (+) is 0. There’s no identity element for logical NOT (').

P3 The • and + operators are commutative.

P4 • and + are distributive with respect to each other. That is, A •
(B + C) = (A • B) + (A • C) and A + (B • C) = (A + B) • (A + C).

P5 • and + are both associative. That is, (A • B) • C = A • (B • C)
and (A + B) + C = A + (B + C).

P6 For every value A there exists a value A' such that A • A' = 0 and
A + A' = 1. This value is the logical complement (or NOT) of A.

You can prove all other theorems in Boolean algebra using this set of
Boolean postulates. This chapter won’t go into the formal proofs of the
following theorems, but familiarity with them will be useful:

Th1 A + A = A

Th2 A • A = A

Th3 A + 0 = A

Th4 A • 1 = A

Th5 A • 0 = 0

Th6 A + 1 = 1

Th7 (A + B)' = A' • B'

Th8 (A • B)' = A' + B'

Th9 A + A • B = A

Th10 A • (A + B) = A

Th11 A + A'B = A + B

Th12 A' • (A + B') = A'B'

Th13 AB + AB' = A

Th14 (A' + B') • (A' + B) = A'

Th15 A + A' = 1

Th16 A • A' = 0

NOTE

Theorems 7 and 8 are called DeMorgan’s Theorems after the
mathematician who discovered them.

An important principle in the Boolean algebra system is duality. Each
pair, theorems 1 and 2, theorems 3 and 4, and so on, forms a dual. Any
valid expression you can create using the postulates and theorems of
Boolean algebra remains valid if you interchange the operators and
constants appearing in the expression. Specifically, if you exchange the •
and + operators and swap the 0 and 1 values in an expression, the
resulting expression will obey all the rules of Boolean algebra. This does
not mean the dual expression computes the same values, only that both
expressions are legal in the Boolean algebra system.

8.1.3 Boolean Operator Precedence

If several different Boolean operators appear within a single Boolean
expression, the result of the expression depends on the precedence of the
operators. The following Boolean operators are ordered from highest
precedence to lowest:

Parentheses

Logical NOT

Logical AND

Logical OR

The logical AND and OR operators are left associative. This means
that if two operators with the same precedence appear between three
operands, you must evaluate the expressions from left to right. The
logical NOT operation is right associative, although it would produce the
same result using either left or right associativity because it is a unary
operator having only a single operand.

8.2 Boolean Functions and Truth Tables

A Boolean expression is a sequence of 0s, 1s, and literals separated by
Boolean operators. A Boolean literal is a primed (negated) or unprimed
variable name, and all variable names are a single alphabetic character. A
Boolean function is a specific Boolean expression; we generally give
Boolean functions the name F with a possible subscript. For example,
consider the following Boolean function:

F0 = AB + C

This function computes the logical AND of A and B and then
logically ORs this result with C. If A = 1, B = 0, and C = 1, then F0

returns 1 (1 • 0 + 1 = 1).

You can also represent a Boolean function with a truth table. The
truth tables for the logical AND and OR functions are shown in Tables
8-1 and 8-2, respectively.

Table 8-1: AND Truth Table

AND 0 1

0 0 0

1 0 1

Table 8-2: OR Truth Table

OR 0 1

0 0 1

1 1 1

For binary operators and two input variables, this truth table format
is very intuitive and convenient. However, for functions involving more
than two variables, it doesn’t work well.

Table 8-3 shows another way to represent truth tables. This format
has several advantages—it is easier to fill in the table, it supports three
or more variables, and it provides a compact representation for two or
more functions.

Table 8-3: Truth Table Format for a Function of Three Variables

C B A F = ABC F = AB +

C

F = A +

BC

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 0 0

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

Although you can create an infinite variety of Boolean functions,
they are not all unique. For example, F = A and F = AA are two different
functions. By theorem 2, however, it’s easy to show that these two
functions produce exactly the same result no matter what input value
you supply for A. As it turns out, if you fix the number of input
variables, there’s a finite number of unique Boolean functions possible.
For example, there are 16 unique Boolean functions with two input
variables, and there are 256 possible Boolean functions with three input

variables. Given n input variables, there are 22n
 unique Boolean

functions (2 raised to 2 raised to the nth power). With two input
variables, there are 222 or 16 different functions. With three input
variables, there are 223 or 256 possible functions. Four input variables
have 224 or 216 or 65,536 unique Boolean functions.

When working with only 16 Boolean functions (two input variables),
we can name each unique function (see Table 8-4).

Table 8-4: Common Names for Boolean Functions of Two Variables

Function number1 Function name Description

0 Zero (clear) Always returns 0
regardless of A and B
input values.

1 Logical NOR (NOT (A OR B)) = (A +
B)'

2 Inhibition (AB') Inhibition = AB' (A
AND not B). Also
equivalent to A > B or B
< A.

3 NOT B Ignores A and returns
B'.

4 Inhibition (BA') Inhibition = BA' (B
AND not A). Also
equivalent to B > A or A
< B.

5 NOT A Returns A' and ignores
B.

6 Exclusive-OR (XOR) A ⊕ B. Equivalent to A
≠ B.

7 Logical NAND (NOT (A AND B)) = (A
• B)'

8 Logical AND A • B = (A AND B)

9 Equivalence (exclusive-
NOR)

(A = B). Also known as
exclusive-NOR (not
exclusive-OR).

10 A Copy A. Returns the
value of A and ignores
B’s value.

11 Implication, B implies A A + B'. (If B then A.)

Equivalent to B ≥ A.

12 B Copy B. Returns the
value of B and ignores
A’s value.

13 Implication, A implies B B + A'. (If A then B.)
Equivalent to A ≥ B.

14 Logical OR A + B. Returns A OR B.

15 One (set) Always returns 1
regardless of A and B
input values.

8.3 Function Numbers

Beyond two input variables, there are too many functions to provide a
specific name for each. Even when referring to functions with two input
variables, we’ll refer to the function’s number rather than its name. For
example, F8 denotes the logical AND of A and B for a two-input

function, and F14 denotes the logical OR operation. Of course, for

functions with more than two input variables, the question is, “How do
we determine a function’s number?” For example, what is the
corresponding number for the function F = AB + C ? We compute the
answer by looking at the function’s truth table. If we treat the values for
A, B, and C as bits in a binary number with C being the HO bit and A
being the LO bit, they produce the binary strings that correspond to
numbers in the range 0 through 7. Associated with each of these binary
strings is the function result, either 0 or 1. If we construct a binary
number by placing the function result of each combination of the A, B,
and C input values into the bit position specified by the binary string of
the A, B, and C bits, the resulting binary number will be the
corresponding function number. If this doesn’t make sense, an example
will help clear it up. Consider the truth table for F = AB + C (see Table
8-5).

Table 8-5: Truth Table for F = AB + C

C B A F = AB + C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

The input variables C, B, and A combine to form binary number
sequences in the range %000 through %111 (0 through 7). If we use these
values to denote bit numbers in an 8-bit value (CBA = %111 specifies bit 7,
CBA = %110 specifies bit 6, and so on), we can determine the function
number by placing at each of these bit positions the result of F = AB +
C, for the corresponding combination of C, B, and A values:

CBA: 7 6 5 4 3 2 1 0
F = AB + C: 1 1 1 1 1 0 0 0

Now, if we treat this bit string as a binary number, it produces the
function number $F8, or 248. We usually denote function numbers in

decimal. This also provides insight into why there are 22n
 different

functions given n input variables: if you have n input variables, there are
2n different variable value combinations, and thus 2n bits in the
function’s binary number. If you have m bits, there are 2m different
possible arrangements of those bits. Therefore, for n input variables

there are m = 2n possible bits and 2m or 22n
 possible functions.

8.4 Algebraic Manipulation of Boolean Expressions

You can transform one Boolean expression into an equivalent expression
by applying the postulates and theorems of Boolean algebra. This is
important if you want to convert a given expression to a canonical form
(see the next section) or if you want to minimize the number of literals
or terms in an expression. (A literal is a primed or unprimed variable,
and a term is a variable or a product—logical AND—of several different
literals.) Electrical circuits often consist of individual components that
implement each literal or term, so minimizing the number of literals
and terms in an expression allows a circuit designer to use fewer
electrical components and, therefore, to reduce the monetary cost of the
system.

Unfortunately, there are no fixed rules you can apply to optimize a
given expression. Much like constructing mathematical proofs, an
individual’s ability to easily do these transformations is usually a matter
of experience. Nevertheless, a few examples show the possibilities:

ab + ab' + a'b = a(b + b') + a'b By P4
 = a • 1 + a'b By P5
 = a + a'b By Th4
 = a + b By Th11

(a'b + a'b' + b')' = (a'(b + b') + b')' By P4
 = (a'• 1 + b')' By P5
 = (a' + b') By Th4
 = ((ab)')' By Th8
 = ab By definition of not

b(a + c) + ab' + bc' + c = ba + bc + ab' + bc' + c By P4
 = a(b + b') + b(c + c') + c By P4
 = a • 1 + b • 1 + c By P5
 = a + b + c By Th4

8.5 Canonical Forms

Each Boolean function has an infinite number of equivalent logic
expressions. To help eliminate confusion, logic designers generally
specify a Boolean function using a canonical, or standardized, form. For
each different Boolean function, we can choose a single canonical
representation from a defined set.

There are several ways to define a set of canonical representations
for all the possible Boolean functions of n variables. Within each
canonical set, a single expression describes each Boolean function in the
system so all of the functions in the set are unique. We’ll discuss two
canonical systems in this chapter—the sum of minterms and the product of
maxterms—but we’ll employ only the first. Using the duality principle,
we can convert between these two systems.

As mentioned earlier, a term is either a single literal or a product
(logical AND) of several different literals. For example, if you have two
variables, A and B, there are eight possible terms: A, B, A', B', A'B', A'B,
AB', and AB. For three variables, we have 26 different terms: A, B, C,
A', B', C', A'B', A'B, AB', AB, A'C', A'C, AC', AC, B'C', B'C, BC', BC,
A'B'C', AB'C', A'BC', ABC', A'B'C, AB'C, A'BC, and ABC. As the
number of variables increases, the number of terms increases
dramatically. A minterm is a product containing exactly n literals, where
n is the number of input variables. For example, the minterms for the
two variables A and B are A'B', AB', A'B, and AB. Likewise, the
minterms for three variables A, B, and C are A'B'C', AB'C', A'BC',
ABC', A'B'C, AB'C, A'BC, and ABC. In general, there are 2n minterms
for n variables. The set of possible minterms is easy to generate because
they correspond to the sequence of binary numbers (see Table 8-6).

Table 8-6: Generating Minterms from Binary Numbers

Binary equivalent (CBA)Minterm

000 A'B'C'

001 AB'C'

010 A'BC'

011 ABC'

100 A'B'C

101 AB'C

110 A'BC

111 ABC

We can derive the canonical form for any Boolean function using a
sum (logical OR) of minterms. Given F248 = AB + C, the equivalent

canonical form is ABC + A'BC + AB'C + A'B'C + ABC'. Algebraically, we
can show that the canonical form is equivalent to AB + C as follows:

ABC + A'BC + AB'C + A'B'C + ABC' = BC(A + A') + B'C(A + A') + ABC' By P4
 = BC • 1 + B'C • 1 + ABC' By Th15
 = C(B + B') + ABC' By P4
 = C + ABC' By Th15 &
Th4
 = C + AB By Th11

Obviously, the canonical form is not optimal. However, it’s very easy
to generate the truth table for a function from the canonical form. It’s
also very easy to generate the sum-of-minterms canonical form equation
from the truth table.

8.5.1 Sum-of-Minterms Canonical Form and Truth Tables

To build the truth table from the sum-of-minterms canonical form,
follow these steps:

1. Convert minterms to binary equivalents by substituting a 1 for
unprimed variables and a 0 for primed variables, like so:

F248 = CBA + CBA' + CB'A + CB'A' + C' BA
 = 111 + 110 + 101 + 100 + 011

2. Place a 1 in the function column for the appropriate minterm
entries:

C B A F = AB + C

0 0 0

0 0 1

0 1 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

3. Finally, place the number 0 in the function column for the
remaining entries:

C B A F = AB + C

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Going in the other direction, to generate a logic function from a
truth table, follow these steps:

1. Locate all the entries in the truth table with a function result of 1.
In this table, these are the last five entries. The number of table
entries containing 1s determines the number of minterms in the
canonical equation.

2. Generate the individual minterms by substituting A, B, or C for 1s
and A', B', or C' for 0s. In this example, the result of F248 is 1 when

CBA equals 111, 110, 101, 100, or 011. Therefore, F248 = CBA +

CBA' + CB'A + CB'A' + C'AB.

3. Optionally rearrange the terms within the minterms, and rearrange
the minterms within the overall function. This works because the
logical OR and logical AND operations are both commutative.

This process works equally well for any number of variables, as with
the truth table in Table 8-7 for the function F53,504 = ABCD + A'BCD +

A'B'CD + A'B'C'D.

Table 8-7: Truth Table for F53,504

D C B A F = ABCD +

A'BCD +

A'B'CD +

A'B'C'D

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

Perhaps the easiest way to generate the canonical form of a Boolean
function is to first generate the truth table for it and then build the

canonical form from the truth table. In fact, we’ll use this technique
when converting between the two canonical forms.

8.5.2 Algebraically Derived Sum-of-Minterms Canonical Form

To generate the sum-of-minterms canonical form algebraically, we use
the distributive law and theorem 15 (A + A' = 1). Consider F248 = AB +

C. This function contains two terms, AB and C, but they are not
minterms. We can convert the first term to a sum of minterms as
follows:

AB = AB • 1 By Th4
 = AB • (C + C') By Th15
 = ABC + ABC' By distributive law
 = CBA + C'BA By associative law

Similarly, we can convert the second term in F248 to a sum of

minterms as follows:

C = C • 1 By Th4
 = C • (A + A') By Th15
 = CA + CA' By distributive law
 = CA • 1 + CA' • 1 By Th4
 = CA • (B + B') + CA' • (B + B') By Th15
 = CAB + CAB' + CA'B + CA'B' By distributive law
 = CBA + CBA' + CB'A + CB'A' By associative law

The last step (rearranging the terms) in these two conversions is
optional. To obtain the final canonical form for F248, we sum the results

from these two conversions:

F248 = (CBA + C'BA) + (CBA + CBA' + CB'A + CB'A')

 = CBA + CBA' + CB'A + CB'A' + C'BA

8.5.3 Product-of-Maxterms Canonical Form

Another canonical form is the products of maxterms. A maxterm is the
sum (logical OR) of all input variables, primed or unprimed. For
example, consider the following logic function, G, of three variables in
product-of-maxterms form:

G = (A + B + C) • (A' + B + C) • (A + B' + C)

As with the sum-of-minterms form, there’s exactly one product of
maxterms for each possible logic function. For every product-of-
maxterms form, there’s an equivalent sum-of-minterms form. In fact,
the function G in this example is equivalent to the earlier sum-of-
minterms form of F248:

F248 = CBA + CBA' + CB'A + CB'A' + C'BA = AB + C

To generate a truth table from the product of maxterms, you use the
duality principle; that is, swap AND for OR and 0s for 1s (and vice
versa). Therefore, to build the truth table, you’d first swap primed and
nonprimed literals. In G, this would yield:

G = (A' + B' + C') • (A + B' + C') • (A' + B + C')

The next step is to swap the logical OR and logical AND operators,
which produces the following:

G = A'B'C' + AB'C' + A'BC'

Finally, you need to swap all 0s and 1s. This means that for each of
the minterms listed previously, you need to store 0s into the function
column of the truth table, and then fill in the rest of the truth table’s
function column with 1s. This will place a 0 in rows 0, 1, and 2 in the
truth table. Filling the remaining entries with 1s produces F248.

You can easily convert between these two canonical forms by
generating the truth table for one form and working backward to
produce the other form. Consider the function of two variables, F7 = A

+ B. The sum-of-minterms form is F7 = A'B + AB' + AB. The truth table

is shown in Table 8-8.

Table 8-8: OR Truth Table for Two Variables

A B F7

0 0 0

1 0 1

0 1 1

1 1 1

Working backward to get the product of maxterms, we first locate all
entries in the truth table that have a 0 result. The entry with A and B
both equal to 0 is the only entry with a 0 result. This gives us the first
step of G = A' B'. However, we still need to invert all the variables to
obtain G = AB. By the duality principle, we also need to swap the logical
OR and logical AND operators, obtaining G = A + B. This is the
canonical product of maxterms form.

8.6 Simplification of Boolean Functions

Because there’s an infinite variety of Boolean functions of n variables,
but a finite number of unique ones, you might wonder if there is some
method that will simplify a given Boolean function to produce the
optimal form—that is, the expression containing the fewest number of
operators. An optimal form must exist for all logic functions, but we
don’t use it for the canonical form for two reasons. First, although it’s
easy to convert between the truth table forms and the canonical form,
it’s not as easy to generate the optimal form from a truth table. Second,
there may be several optimal forms for a single function.

You can attempt to produce the optimal form using algebraic
transformations, but there’s no guarantee you’ll arrive at the best result.
There are two methods that will always reduce a given Boolean function
to its optimal form: the mapping method and the prime implicants
method. This book covers the mapping method.

Using the mapping method to manually optimize Boolean functions
is practical only for functions of two, three, or four variables. It’s doable
but cumbersome for functions of five or six variables. For more than six
variables, you should write a program.

The first step in the mapping method is to build a special two-
dimensional truth table for the function (see Figure 8-1). Take a careful
look at these truth tables. They do not use the same forms shown earlier

in this chapter. In particular, the progression of the 2-bit values is 00,
01, 11, 10, not 00, 01, 10, 11. This is very important! If you organize
the truth tables in a binary sequence, the mapping optimization method
will not work properly. We’ll call this a truth map to distinguish it from
the standard truth table.2

Figure 8-1: Two-, three-, and four-variable truth maps

Assuming your Boolean function is already in sum-of-minterms
canonical form, insert 1s for each of the truth map cells corresponding
to one of the minterms in the function. Place 0s everywhere else. For
example, consider the function of three variables F = C'B'A + C'BA' +
C'BA + CB'A' + CB'A + CBA' + CBA. Figure 8-2 shows the truth map for
this function.

Figure 8-2: A truth map for F = C'B'A + C'BA' + C'BA + CB'A' + CB'A + CBA' + CBA

The next step is to draw outlines around rectangular groups of 1s.
The rectangles you enclose must have sides whose lengths are powers of
2. For functions with three variables, the rectangles can have sides
whose lengths are 1, 2, and 4. The set of rectangles you draw must
surround all cells containing 1s in the truth map. The trick is to draw all
possible rectangles unless a rectangle would be completely enclosed
within another, but also draw the fewest number of rectangles. Note
that the rectangles may overlap as long as one rectangle does not
completely enclose the other. In the truth map in Figure 8-3, there are
three such rectangles.

Figure 8-3: Surrounding rectangular groups of 1s in a truth map

Each rectangle represents a term in the simplified Boolean function.
Therefore, the simplified Boolean function will contain only three
terms. You build each term by eliminating any variables whose primed
and unprimed forms both appear within the rectangle (because the
positive and negative variants cancel each other out). The long skinny
rectangle in Figure 8-3 is sitting in the row where C = 1 contains both A
and B in primed and unprimed forms. Therefore, we can eliminate both
A and B from the term. Because the rectangle sits in the C = 1 region,
this rectangle represents the single literal C.

The light gray square in Figure 8-3 includes C, C', B, B', and A.
Therefore, it represents the single term A. Likewise, the dark gray
square in Figure 8-3 contains C, C', A, A', and B, so it represents the
single term B.

The final, optimal, function is the sum (logical OR) of the terms
represented by the three squares, or F = A + B + C. You do not have to
consider the remaining squares containing 0s.

A truth map forms a torus (a doughnut shape). The right edge of the
map wraps around to the left edge, and vice versa. Likewise, the top
edge wraps around to the bottom edge. This introduces additional
possibilities for drawing rectangles around groups of 1s in a map.
Consider the Boolean function F = C'B'A' + C'BA' + CB'A' + CBA'.
Figure 8-4 shows the truth map for this function.

Figure 8-4: Truth map for F = C'B'A' + C'BA' + CB'A + CBA'

At first glance, you might think that the minimum number of
rectangles is two, as shown in Figure 8-5.

Figure 8-5: First attempt at surrounding rectangles formed by 1s

However, because the truth map is a continuous object with the right
side and left sides connected, we can actually form a single, square
rectangle, as Figure 8-6 shows.

Figure 8-6: Correct rectangle for the function

Why does it matter if we have one rectangle or two in the truth
map? The larger the rectangles are, the more terms they will eliminate.
The fewer rectangles that we have, then, the fewer terms will appear in
the final Boolean function.

The example in Figure 8-5 with two rectangles generates a function
with two terms. The rectangle on the left eliminates the C variable,
leaving A'B' as its term. The rectangle on the right also eliminates the C
variable, leaving the term BA'. Therefore, this truth map would produce
the equation F = A'B' + A'B. We know this is not optimal (see theorem
13).

Now consider the truth map in Figure 8-6. Here we have a single
rectangle, so our Boolean function will have only a single term. Because
this rectangle includes both C and C', and also B and B', the only term
left is A'. This Boolean function, therefore, reduces to F = A'.

There are only two types of truth maps that the mapping method
cannot handle properly: a truth map that contains all 0s or a truth map
that contains all 1s. These two cases correspond to the Boolean
functions F = 0 and F = 1 (that is, the function number is 0 or 2n – 1).
When you see either of these truth maps, you’ll know how to optimally
represent the function.

When optimizing Boolean functions using the mapping method,
remember that you always want to pick the largest rectangles whose
sides’ lengths are powers of 2. You must do this even for overlapping
rectangles (unless one rectangle encloses another). Consider the
Boolean function F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA.
This produces the truth map in Figure 8-7.

Figure 8-7: Truth map for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

The initial temptation is to create one of the sets of rectangles found
in Figure 8-8. However, the correct mapping appears in Figure 8-9.

Figure 8-8: Obvious choices for rectangles

Figure 8-9: Correct set of rectangles for F = C'B'A' + C'BA' + CB'A' + C'AB + CBA' + CBA

All three mappings will produce a Boolean function with two terms.
However, the first two will produce the expressions F = B + A'B' and F =
AB + A'. The third form produces F = B + A'. This last form is the
optimized one (see theorems 11 and 12).

Truth maps you create for functions of four variables are even
trickier; there are many places rectangles can hide from you along the
edges, as you can see in Figure 8-10. This list of patterns doesn’t even
begin to cover all of them! For example, the diagrams in Figure 8-10
show none of the 1×2 rectangles.

Figure 8-10: Partial pattern list for a 4×4 truth map

This final example demonstrates optimizing a function of four
variables. The function is F = D'C'B'A' + D'C'B'A + D'C'BA + D'C'BA' +
D'CB'A + D'CBA + DCB'A + DCBA + DC'B'A' + DC'BA', and its truth
map appears in Figure 8-11.

Figure 8-11: Truth map for F = D'C'B'A' + D'C'B'A + D'C'BA + D'C'BA' + D'CB'A + D'CBA +

DCB'A + DCBA + DC'B'A' + DC'BA'

Figure 8-12 shows the two possible sets of maximal rectangles for
this function, each producing three terms.

Figure 8-12: Two combinations yielding three terms

The rectangle formed by the four corners, common to both maps in
Figure 8-12, contains B, B', D, and D', so we can eliminate those terms.
The remaining terms contained within the rectangle are C' and A', so
this rectangle represents the term C'A'.

The rectangle formed by the middle four squares, also in both
combinations, includes the terms A, B, B', C, D, and D'. Eliminating B,
B', D, and D', we obtain CA.

Combination 1 has a third term represented by the top row. This
term includes the variables A, A', B, B', C', and D'. We can eliminate A,
A', B, and B'. This leaves the term C'D'. Therefore, the function
represented by the upper truth map is F = C'A' + CA + C'D'.

Combination 2 has a third term represented by the top/middle four
squares. This rectangle subsumes the variables A, B, B', C, C', and D'.
We can eliminate B, B', C, and C', leaving the term AD. Therefore, the
function represented by the lower truth map is F = C'A' + CA + AD'.

Both functions are equivalent; both are optimal (remember, there’s
no guarantee of a unique optimal solution). Either will suffice for our
purposes: implementing Boolean functions using the fewest circuit
components.

8.7 What Does This Have to Do with Computers,
Anyway?

Any program you can write, you can also specify as a sequence of
Boolean equations. This means that any algorithm you can implement
in software, you can also implement directly in hardware—there is a
one-to-one relationship between the set of all Boolean functions and
the set of all electronic circuits. Electrical engineers, who design CPUs
and other computer-related circuits, have to be intimately familiar with
this material.

Because it’s easier to specify a solution to a programming problem
using languages like Pascal, C, or even assembly language than it is to
specify the solution using Boolean equations, it’s unlikely that you
would ever implement an entire program using a set of state machines
and other logic circuitry. However, a hardware solution can be orders of
magnitude faster than an equivalent software solution, and some time-
critical operations require a hardware solution.

It is also possible to implement all hardware functions in software.
This is important, because many operations you’d normally implement
in hardware are much cheaper to implement using software on a
microprocessor. Indeed, one of the primary uses of assembly language
on modern systems is to inexpensively replace a complex electronic
circuit. Often, you can replace many tens or hundreds of dollars of
electronic components with a single $2 microcomputer chip
programmed to perform the equivalent function.

The whole field of embedded systems (computer systems embedded in
other products) deals with this problem. For example, most microwave
ovens, TV sets, video games, CD players, and other consumer devices
contain one or more complete computer systems whose sole purpose is
to replace a complex hardware design. Engineers use computers for this
purpose because they are less expensive and easier to design with than
traditional electronic circuitry.

To write software that reads switches (input variables) and turns on
motors, LEDs, or lights, or that locks or unlocks a door, you need to
understand Boolean functions and how to implement them in software.

8.7.1 Correspondence Between Electronic Circuits and Boolean

Functions

For any Boolean function, you can design an equivalent electronic
circuit and vice versa. We can construct any electronic circuit using the
AND, OR, and NOT Boolean operators, which correspond to the
AND, OR, and inverter (NOT) circuits (see Figure 8-13). These
symbols are standard electronic symbols appearing in schematic diagrams.
(To learn more about electronic schematic diagrams, check out any
book on electronic design.)

Figure 8-13: AND, OR, and inverter (NOT) gates

The lines to the left of each gate, with the A and B labels, correspond
to a logic function input; the line to the right of each diagram
corresponds to the function’s output.

An electronic circuit is a combination of gates that implement some set
of Boolean functions. Consider the Boolean function F = AB + B. You
can implement this function using an AND gate and an OR gate.
Simply connect the two input variables (A and B) to the inputs of the
AND gate, connect the output of the AND gate to one of the inputs of
the OR gate, and connect the B input variable to the other OR input.

Now you have an electronic (hardware) circuit that implements this
function.

However, you actually need only a single gate type—the NAND
(NOT AND) gate—to implement any electronic circuit (see Figure 8-
14). The NAND gate tests its two inputs (A and B) and outputs false if
both inputs are true; it outputs true if both inputs are false. You could
construct the NAND circuit from an AND gate and an inverter.
However, from a transistor/hardware perspective, the NAND gate is
actually simpler to construct than an AND gate; therefore, NAND
gates (such as the 7400 IC) are very common.

Figure 8-14: The NAND gate

We can construct any Boolean function using only NAND gates
because we can build an inverter (NOT), an AND gate, and an OR gate
from NAND gates.3 Building an inverter is easy; just connect the two
inputs together (see Figure 8-15).

Figure 8-15: Inverter built from a NAND gate

After building an inverter, we can build an AND gate by inverting
the output of a NAND gate, because NOT (NOT (A AND B)) is
equivalent to A AND B (see Figure 8-16). It takes two NAND gates to
construct a single AND gate (no one said that circuits constructed only
with NAND gates are optimal, only that they’re possible).

Figure 8-16: Constructing an AND gate from two NAND gates

The remaining gate is the logical-OR gate. We can construct an OR
gate from NAND gates by applying DeMorgan’s Theorems.

(A or B)' = A' and B' DeMorgan's Theorem.
A or B = (A' and B')' Invert both sides of the equation.
A or B = A' nand B' Definition of NAND operation.

Applying these transformations produces the circuit shown in Figure
8-17.

Figure 8-17: Constructing an OR gate from NAND gates

NAND gates are generally less expensive to build than other gates,
and it’s much easier to build up complex circuits from the same basic
building blocks than it is to construct an integrated circuit using
different basic gates.

8.7.2 Combinatorial Circuits

A computer’s CPU is built from combinatorial circuits, which are systems
containing basic Boolean operations (AND, OR, NOT), some inputs,
and a set of outputs. A combinatorial circuit often implements several
different Boolean functions, with each output corresponding to an
individual logic function.

NOTE

It is very important that you remember that each output represents a
different Boolean function.

8.7.2.1 Combining Addition Circuits

You can implement addition using Boolean functions. Suppose you have
two 1-bit numbers, A and B. You can produce the 1-bit sum and the 1-
bit carry of this addition using these two Boolean functions:

S = AB' + A'B Sum of A and B.
C = AB Carry from addition of A and B.

These two Boolean functions implement a half adder, so called
because it adds 2 bits together but cannot add in a carry from a previous
operation. Note that S = 1 if A or B is 1, S = 0 if A and B are both 0 or 1
(both 1 produces a carry, which is what the C = AB expression
produces).

A full adder adds three 1-bit inputs (2 bits plus a carry from a
previous addition) and produces two outputs: the sum and the carry.
These are the two logic equations for a full adder:

S = A'B'Cin + A'BCin' + AB'Cin' + ABCin
Cout = AB + ACin + BCin

Although these equations produce only a single-bit result (plus a
carry), it’s easy to construct an n-bit sum by combining adder circuits
(see Figure 8-18).

Figure 8-18: Building an n-bit adder using half and full adders

The two n-bit inputs, A and B, are passed into the adder bit-by-bit,
with the LO bits input as A0 and B0, and so on up to HO bits An–1 and

Bn–1. S0 is the LO bit of the sum, up to Sn–1, and the final carry indicates

whether the addition overflowed n bits.

8.7.2.2 Using Seven-Segment LED Decoders

Another common combinatorial circuit is the seven-segment decoder.
Among the more important circuits in computer system design, decoder
circuits enable the computer to recognize (or decode) a string of bits.

The seven-segment decoder circuit accepts an input of 4 bits and
determines which segments to illuminate on a seven-segment LED
display. Because a seven-segment display contains seven output values
(one for each segment), there are seven logic functions associated with it
(segments 0 through 6). See Figure 8-19 for the segment assignments.
Figure 8-20 shows the active segments for each of the 10 decimal
values.

Figure 8-19: Seven-segment display

Figure 8-20: Seven-segment values for 0 through 9

The four inputs to each of these seven Boolean functions are the 4
bits from a binary number in the range 0 through 9. Let D be the HO
bit of this number and A be the LO bit. Each segment’s logic function
should produce a 1 (segment on) for all binary number inputs that have
that segment illuminated in Figure 8-20. For example, S4 (segment 4)

should be illuminated for numbers 0, 2, 6, and 8, which correspond to
the binary values 0000, 0010, 0110, and 1000. For each of the binary
values that illuminates a segment, you will have one minterm in the
logic equation:

S4 = D'C'B'A' + D'C'BA' + D'CBA' + DC'B'A'

S0 (segment 0), as a second example, is on for the numbers 0, 2, 3, 5,

6, 7, 8, and 9, which correspond to the binary values 0000, 0010, 0011,
0101, 0110, 0111, 1000, and 1001. Therefore, the logic function for S0

is as follows:

S0 = D'C'B'A' + D'C'BA' + D'C'BA + D'CB'A + D'CBA' + D'CBA + DC'B'A' + DC'B'A

8.7.2.3 Decoding Memory Addresses

A decoder is also commonly used in memory expansion. For example,
suppose a system designer wishes to install four (identical) 256MB
memory modules in a system to bring the total to 1GB of RAM. Each
of these 256MB memory modules has 28 address lines (A0..A27),

assuming each memory module is 8 bits wide (228 × 8 bits is 256MB).4

Unfortunately, if the system designer hooked up those four memory
modules to the CPU’s address bus, each module would respond to the
same addresses on the bus. Pandemonium would result. To correct this
problem, each memory module needs to respond to a different set of
addresses appearing on the full address bus (with a module address
appearing on the LO 28 bits of the address bus). By adding a chip-select
line to each of the memory modules, and using a two-input, four-output
decoder circuit, we can use the chip select lines A28 and A29 to specify

the HO 2 bits of the (now effectively 30-bit) memory address. See
Figure 8-21 for the details.

Figure 8-21: Adding four 256MB memory modules to a system

The two- to four-line decoder circuit in Figure 8-21 incorporates
four different logic functions: one function for each of the outputs.
Each combination of the input bits will activate a single chip-select line,
and deactivate the other three. Assuming the inputs are A and B (A =
A28 and B = A29), the four output functions are as follows:

Q0 = A'B'

Q1 = AB'

Q2 = A'B

Q3 = AB

Following standard electronic circuit notation, these equations use Q
to denote an output.

Note that most circuit designers use active low logic for decoders and
chip enables. This means that they enable a circuit when a low-input
value (0) is supplied and disable the circuit when a high-input value (1) is
supplied. Real-world decoding circuits would likely use the following
sums of maxterms functions:

Q0 = A + B

Q1 = A' + B

Q2 = A + B'

Q3 = A' + B'

8.7.2.4 Decoding Machine Instructions

Decoding circuits are also used to decode machine instructions. We’ll
cover this subject in much greater depth in Chapters 9 and 10, but a
simple example is in order here.

Most modern computer systems represent machine instructions
using binary values in memory. To execute an instruction, the CPU
fetches the instruction’s binary value from memory, decodes it using
decoder circuitry, and then does the appropriate work. To see how this
is done, let’s create a fictional CPU with a very simple instruction set.
Figure 8-22 provides the instruction format (all the numeric codes that
correspond to the various instructions) for our CPU. Within the 1-byte

operation code (opcode), 3 bits (iii) represent the instruction, 2 bits (ss)
the source operand, and 2 bits the destination operand (dd).

Figure 8-22: Instruction (opcode) format for a very simple CPU

To determine the 8-bit opcode for a given instruction, look up each
component of the instruction in the tables in Figure 8-22 and substitute
the corresponding bit values.

Let’s pick mov(eax, ebx); as our simple example. To convert this
instruction to its numeric equivalent, mov is encoded as 000, eax is encoded
as 00, and ebx is encoded as 01. Assemble these three fields into the
opcode byte (a packed data type), to obtain the bit value: %00000001.
Therefore, the numeric value $1 is the value for the mov(eax, ebx);

instruction (see Figure 8-23).

Figure 8-23: Encoding the mov(eax, ebx); instruction

A typical decoder circuit for this example appears in Figure 8-24.
The circuit uses three separate decoders to decode the individual fields
of the opcode. This is much less complex than creating a single 7- to
128-line decoder to decode the entire opcode.

Figure 8-24: Decoding simple machine instructions

The circuit in Figure 8-24 tells you which instruction and what
operands a given opcode specifies. To actually execute this instruction,
you must supply additional circuitry to select the source and destination
operands from an array of registers and act accordingly upon those
operands. Such circuitry is beyond the scope of this chapter, so we’ll
save the juicy details for later.

8.7.3 Sequential and Clocked Logic

One major problem with combinatorial logic is that it is memoryless. In
theory, all logic function outputs depend only on the current inputs.
Any change in the input values immediately appears on the outputs.5

Unfortunately, computers need the ability to remember the results of
past computations. This is the domain of sequential, or clocked, logic.

8.7.3.1 The Set/Reset Flip-Flop

A memory cell is an electronic circuit that remembers an input value after
the removal of that input value. The most basic memory unit is the
set/reset (S/R) flip-flop. You can construct an S/R flip-flop memory cell
using two NAND gates, as shown in Figure 8-25. In this diagram, the
outputs of the two NAND gates are recirculated to one of the inputs of
the other NAND gate.

Figure 8-25: Set/reset flip-flop constructed from NAND gates

The S and R inputs are normally high, or 1. If you toggle the S input
by temporarily setting its value to 0 and then bringing it back to 1, the Q
output is set to 1. Likewise, if you toggle the R input from 1 to 0 and
back to 1, this resets the Q output to 0. Q' outputs the opposite of Q.

If both S and R are 1, then the Q output depends upon the original
value of Q itself. That is, whatever Q happens to be, the top NAND
gate continues to output that same value. If Q was originally 1, then the
bottom NAND gate receives two inputs of 1 (both Q and R), and the
bottom NAND gate produces an output of 0 (Q'). As a result, the two

inputs to the top NAND gate are 0 and 1, and the top NAND gate
produces an output of 1, matching the original value for Q.

On the other hand, if the original value of Q was 0, then the inputs to
the bottom NAND gate are Q = 0 and R = 1, and the output of this
bottom NAND gate is 1. As a result, the inputs to the top NAND gate
are S = 1 and Q' = 1. This produces a 0 output, the original value of Q.

Now suppose Q is 0, S is 0, and R is 1. This sets the two inputs to the
top NAND gate to 1 and 0, forcing the output (Q) to 1. Returning S to
the high state does not change the output at all, because the value of Q'
is 1. You will obtain this same result if Q is 1, S is 0, and R is 1. Again, this
produces a Q output value of 1, and again this value remains 1 even
when S switches from 0 to 1. To overcome this and produce a Q output
of 1, you must toggle the S input. The same idea applies to the R input,
except that toggling it forces the Q output to 0 rather than to 1.

There is one catch to this circuit. It does not operate properly if you
set both the S and R inputs to 0 simultaneously. This forces both the Q
and Q' outputs to 1 (which is logically inconsistent). Whichever input
remains 0 the longest determines the final state of the flip-flop. A flip-
flop operating in this mode is said to be unstable.

Table 8-9 lists all the output configurations for an S/R flip-flop based
on the current inputs and the previous output values.

Table 8-9: S/R Flip-Flop Output States Based on Current Inputs and Previous Outputs

Previous Q Previous Q’ S input R input Q output Q’
output

x6 x 0 (1 > 0 >
1)

1 1 0

x x 1 0 (1 > 0 >
1)

0 1

x x 0 0 1 17

0 1 1 1 0 1

1 0 1 1 1 0

8.7.3.2 The D Flip-Flop

The only problem with the S/R flip-flop is that to be able to remember
either a 0 or a 1 value, you must have two different inputs. A memory
cell would be more valuable to us if we could specify the data value to
remember with one input value and supply a second clock input value to
latch the data input value.8 This type of flip-flop, the D flip-flop (D
stands for data), uses the circuit in Figure 8-26.

Figure 8-26: Implementing a D flip-flop with NAND gates

Assuming you fix the Q and Q' outputs to either 0/1 or 1/0, sending a
clock pulse that goes from 0 to 1 and back to 0 will copy the D input to the
Q output (and set Q' to the inverse of Q). To see how this works, note
that the right half of the circuit diagram in Figure 8-26 is an S/R flip-
flop. If the data input is 1 while the clock line is high, this places a 0 on
the S input of the S/R flip-flop (and a 1 on the R input). Conversely, if
the data input is 0 while the clock line is high, this places a 0 on the R
input (and a 1 on the S input) of the S/R flip-flop, thus clearing the S/R
flip-flop’s output. Whenever the clock input is low, both the S and R
input are high, and the outputs of the S/R flip-flop do not change.

Although remembering a single bit is often important, in most
computer systems you want to remember a group of bits. You can do this
by combining several D flip-flops in parallel. Concatenating flip-flops to
store an n-bit value forms a register. The electronic schematic in Figure
8-27 shows how to build an 8-bit register from a set of D flip-flops.

Figure 8-27: An 8-bit register implemented with eight D flip-flops

Note that the eight D flip-flops in Figure 8-27 use a common clock
line. This diagram does not show the Q' outputs on the flip-flops
because they are rarely required in a register.

D flip-flops are useful for building many sequential circuits beyond
simple registers. For example, you can build a shift register that shifts the
bits one position to the left on each clock pulse. A 4-bit shift register
appears in Figure 8-28.

Figure 8-28: A 4-bit shift register built from D flip-flops

You can even build a counter that counts the number of times the
clock toggles from 1 to 0 and back to 1 using flip-flops. The circuit in
Figure 8-29 implements a 4-bit counter using D flip-flops.

Figure 8-29: A 4-bit counter built from D flip-flops

Surprisingly, you can build an entire CPU with combinatorial
circuits and only a few additional sequential circuits. For example, you
can build a simple state machine known as a sequencer by combining a
counter and a decoder, as shown in Figure 8-30.

Figure 8-30: A simple 16-state sequencer

For each cycle of the clock in Figure 8-30, this sequencer activates
one of its output lines. Those lines, in turn, may control other circuits.
By “firing” those other circuits on each of the 16 output lines of the
decoder, we can control the order in which the circuits accomplish their
tasks. This is essential in a CPU, as we often need to control the
sequence of various operations. For example, it wouldn’t be a good
thing if the add(eax, ebx); instruction stored the result into EBX before
fetching the source operand from EAX (or EBX). A simple sequencer

can tell the CPU when to fetch the first operand, when to fetch the
second operand, when to add them together, and when to store the
result. However, we’re getting a little ahead of ourselves—we’ll discuss
this in detail in the next two chapters.

8.8 For More Information

Horowitz, Paul, and Winfield Hill. The Art of Electronics. 3rd ed.
Cambridge, UK: Cambridge University Press, 2015.

NOTE

This chapter is not, by any means, a complete treatment of Boolean algebra
and digital design. If you’re interested in learning more, consult one of the
dozens of books on this subject.

9
CPU ARCHITECTURE

Without question, the design of the central processing unit (CPU) has
the greatest impact on the performance of your software. To execute a
particular instruction (or command), a CPU requires a certain amount
of electronic circuitry specific to that instruction. As you increase the
number of instructions the CPU can support, you also increase the
CPU’s complexity and the amount of circuitry, or logic gates, needed to
execute them. Therefore, to keep the number of logic gates and the
associated costs reasonably small, CPU designers must restrict the
number and complexity of the instructions the CPU can execute. This
is known as the CPU’s instruction set.

This chapter, and the next, discusses the design of CPUs and their
instruction sets—information that is absolutely crucial for writing high-
performance software.

9.1 Basic CPU Design

Programs in early computer systems were often hardwired into the
circuitry. That is, the computer’s wiring determined exactly what
algorithm the computer would execute. The computer had to be

rewired in order to solve a different problem. This was a difficult task,
something that only electrical engineers were able to do.

Thus, the next advance in computer design was the programmable
computer system, in which a computer operator could easily “rewire”
the computer using a panel of sockets and plug wires known as a patch
board. A computer program consisted of rows of sockets, with each row
representing one operation (instruction) during the program’s
execution. To execute an instruction, the programmer inserted a wire
into its corresponding socket (see Figure 9-1).

Figure 9-1: Patch board programming

The number of possible instructions was limited by how many
sockets could fit on each row. CPU designers quickly realized that with
a small amount of additional logic circuitry, they could reduce the
number of sockets required for specifying n different instructions from
n sockets to log2(n) sockets. They did this by assigning a unique binary

number to each instruction (for example, Figure 9-2 shows how to
represent eight instructions using only 3 bits).

Figure 9-2: Encoding instructions

The example in Figure 9-2 requires eight logic functions to decode
the A, B, and C bits on the patch board, but the extra circuitry (a single
three- to eight-line decoder) is worth the cost, because it reduces the
total number of sockets from eight to three for each instruction.

Many CPU instructions require operands. For example, the mov

instruction moves data from one location in the computer to another,
such as from one register to another, and therefore requires a source
operand and a destination operand. The operands were encoded as part
of the machine instruction, with sockets corresponding to the source
and destination. Figure 9-3 shows one possible combination of sockets
to handle a mov instruction.

Figure 9-3: Encoding instructions with source and destination fields

The mov instruction would move data from the source register to the
destination register, the add instruction would add the value of the
source register to the destination register, and so on. This scheme
allowed the encoding of 128 different instructions with just seven
sockets per instruction.

As noted earlier, a big problem with patch-board programming was
that a program’s functionality was limited by the number of sockets
available on the machine. Early computer designers recognized a
relationship between the sockets on the patch board and bits in
memory. They realized they could store the binary equivalent of a
machine instruction in main memory, fetch that binary number when
the CPU wanted to execute the instruction, and then load it into a
special register to decode the instruction. Known as the stored program
computer, this invention was another major advance in computer design.

The trick was to add more circuitry, called the control unit (CU), to
the CPU. The control unit uses a special register, the instruction pointer,
to hold the address of an instruction’s binary numeric code (also known
as an operation code or opcode). The control unit fetches the instruction’s
opcode from memory and places it in the instruction decoding register
for execution. After executing the instruction, the control unit
increments the instruction pointer and fetches the next instruction from
memory for execution.

9.2 Decoding and Executing Instructions: Random
Logic vs. Microcode

Once the control unit fetches an instruction from memory, traditional
CPUs use two common approaches to execute the instruction: random
logic (hardwired) and microcode (emulation). The 80x86 family, for
example, uses both of these techniques.

The random logic1 or hardwired approach uses decoders, latches,
counters, and other hardware logic devices to operate on the opcode
data. Random logic is fast but poses a circuitry design challenge; for
CPUs with large and complex instruction sets, it’s difficult to properly
lay out the logic so that related circuits are close to one another in the
two-dimensional space of the chip.

CPUs based on microcode contain a small, very fast execution unit
(circuitry responsible for executing a particular function), known as a
microengine, that uses the binary opcode to select a set of instructions
from the microcode bank. This microcode executes one
microinstruction per clock cycle, and the sequence of microinstructions
executes all the steps to perform whatever calculations are necessary for
that instruction.

Although this microengine itself is fast, it must fetch its instructions
from the microcode ROM (read-only memory). Therefore, if memory
technology is slower than the execution logic, the micro-engine must
run at the same speed as the microcode ROM, which in turn limits the
speed at which the CPU can run.

The random logic approach decreases the time to execute an
opcode’s instruction, provided that typical CPU speeds are faster than
memory speeds, but that doesn’t mean it’s necessarily faster than the
microcode approach. Random logic often includes a sequencer that
steps through several states (one state per clock cycle). Whether you use
up clock cycles executing microinstructions or stepping through a
random logic state machine, you’re still burning up time.

Which approach is better for CPU design depends entirely on the
current state of memory technology. If memory technology is faster
than CPU technology, the microcode approach probably makes more
sense. If memory technology is slower than CPU technology, random
logic tends to execute machine instructions more quickly.

9.3 Executing Instructions, Step by Step

Regardless of which approach the CPU uses, you need to understand
how a CPU executes individual machine instructions. To that end, we’ll
consider four representative 80x86 instructions—mov, add, loop, and jnz
(jump if not zero)—to give you a sense of how a CPU executes all the
instructions in its instruction set.

As you saw earlier, the mov instruction copies data from a source
operand to a destination operand. The add instruction adds the value of
its source operand to its destination operand. loop and jnz are conditional
jump instructions—they test some condition and, if it’s true, they jump
to some other instruction in memory; if it’s false, they continue with the
next instruction. The jnz instruction tests a Boolean variable within the
CPU known as the zero flag and either transfers control to the target
instruction (the instruction to jump to) if the zero flag contains 0, or
continues with the next instruction if the zero flag contains 1. The
program indicates the address of the target instruction by specifying the
distance, in bytes, between it and the jnz instruction in memory.

The loop instruction decrements the value of the ECX register and, if
the resulting value does not contain 0, transfers control to a target
instruction. This is a good example of a complex instruction set computer
(CISC) instruction because it does more than one operation:

1. It subtracts 1 from ECX.

2. It does a conditional jump if ECX does not contain 0.

That is, loop is roughly equivalent to the following instruction
sequence:

sub(1, ecx); // On the 80x86, the sub instruction sets the zero flag
jnz SomeLabel; // the result of the subtraction is 0.

To execute the mov, add, jnz, and loop instructions, the CPU has to
execute a number of different operations. Each operation requires a
finite amount of time to execute, and the time required to execute the
entire instruction generally amounts to one clock cycle per operation or
stage (step) that the CPU executes. Obviously, the more stages needed
for an instruction, the slower it will run. Because they have many
execution stages, complex instructions generally run slower than simple
instructions.

Although 80x86 CPUs differ and don’t necessarily execute the exact
same steps, their sequence of operations is similar. This section presents
some possible sequences, all starting with the same three execution
stages:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP (extended instruction pointer) register with the
address of the byte following the opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

9.3.1 The mov Instruction

A decoded 32-bit 80x86 mov(srcReg, destReg); instruction might use the
following (additional) execution stages:

1. Fetch the data from the source register (srcReg).

2. Store the fetched value into the destination register (destReg).

The mov(srcReg, destMem); instruction could use the following execution
stages:

1. Fetch the displacement associated with the memory operand from
the memory location immediately following the opcode.

2. Update EIP to point at the first byte beyond the operand that
follows the opcode.

3. Compute the effective address of the destination memory location,
if the mov instruction uses a complex addressing mode (for example,
the indexed addressing mode).

4. Fetch the data from srcReg.

5. Store the fetched value into the destination memory location.

A mov(srcMem, destReg); instruction is very similar, simply swapping the
register access for the memory access in these steps.

The mov(constant, destReg); instruction could use the following
execution stages:

1. Fetch the constant associated with the source operand from the
memory location immediately following the opcode.

2. Update EIP to point at the first byte beyond the constant that
follows the opcode.

3. Store the constant value into the destination register.

Assuming each stage requires one clock cycle for execution, this
sequence (including the three common stages) will require six clock
cycles to execute.

The mov(constant, destMem); instruction could use the following
execution stages:

1. Fetch the displacement associated with the memory operand from
the memory location immediately following the opcode.

2. Update EIP to point at the first byte beyond the operand that
follows the opcode.

3. Fetch the constant operand’s value from the memory location
immediately following the displacement associated with the
memory operand.

4. Update EIP to point at the first byte beyond the constant.

5. Compute the effective address of the destination memory location,
if the mov instruction uses a complex addressing mode (for example,
the indexed addressing mode).

6. Store the constant value into the destination memory location.

9.3.2 The add Instruction

The add instruction is a little more complex. Here’s a typical set of
operations (beyond the common set) that the decoded add(srcReg,

destReg); instruction must complete:

1. Fetch the value of the source register and send it to the arithmetic
logical unit (ALU), which handles arithmetic on the CPU.

2. Fetch the value of the destination register operand and send it to
the ALU.

3. Instruct the ALU to add the values.

4. Store the result back into the destination register operand.

5. Update the flags register with the result of the addition operation.

NOTE

The flags register, also known as the condition-codes register or
program-status word, is an array of Boolean variables in the CPU that
tracks whether the previous instruction produced an overflow, a zero result,
a negative result, or other such condition.

If the source operand is a memory location instead of a register, and
the add instruction takes the form add(srcMem, destReg);, then the
instruction sequence is slightly more complicated:

1. Fetch the displacement associated with the memory operand from
the memory location immediately following the opcode.

2. Update EIP to point at the first byte beyond the operand that
follows the opcode.

3. Compute the effective address of the source memory location, if
the add instruction uses a complex addressing mode (for example,
the indexed addressing mode).

4. Fetch the source operand’s data from memory and send it to the
ALU.

5. Fetch the value of the destination register operand and send it to
the ALU.

6. Instruct the ALU to add the values.

7. Store the result back into the destination register operand.

8. Update the flags register with the result of the addition operation.

If the source operand is a constant and the destination operand is a
register, the add instruction takes the form add(constant, destReg); and the
CPU might deal with it as follows:

1. Fetch the constant operand that immediately follows the opcode in
memory and send it to the ALU.

2. Update EIP to point at the first byte beyond the constant that
follows the opcode.

3. Fetch the value of the destination register operand and send it to
the ALU.

4. Instruct the ALU to add the values.

5. Store the result back into the destination register operand.

6. Update the flags register with the result of the addition operation.

This instruction sequence requires nine cycles to complete.

If the source operand is a constant, and the destination operand is a
memory location, then the add instruction takes the form add(constant,
destMem); and the sequence is slightly more complicated:

1. Fetch the displacement associated with the memory operand from
memory immediately following the opcode.

2. Update EIP to point at the first byte beyond the operand that
follows the opcode.

3. Compute the effective address of the destination memory location,
if the add instruction uses a complex addressing mode (for example,
the indexed addressing mode).

4. Fetch the constant operand that immediately follows the memory
operand’s displacement value and send it to the ALU.

5. Fetch the destination operand’s data from memory and send it to
the ALU.

6. Update EIP to point at the first byte beyond the constant that
follows the memory operand.

7. Instruct the ALU to add the values.

8. Store the result back into the destination memory operand.

9. Update the flags register with the result of the addition operation.

This instruction sequence requires 11 or 12 cycles to complete,
depending on whether the effective address computation is necessary.

9.3.3 The jnz Instruction

Because the 80x86 jnz instruction does not allow different types of
operands, it needs only one sequence of steps. The jnz label; instruction
might use the following additional execution stages once decoded:

1. Fetch the displacement value (the jump distance) and send it to the
ALU.

2. Update the EIP register to hold the address of the instruction
following the displacement operand.

3. Test the zero flag to see if it is clear (that is, if it contains 0).

4. If the zero flag was clear, copy the value in EIP to the ALU.

5. If the zero flag was clear, instruct the ALU to add the displacement
and EIP values.

6. If the zero flag was clear, copy the result of the addition back to the
EIP.

Notice how the jnz instruction requires fewer steps, and thus runs in
fewer clock cycles, if the jump is not taken. This is very typical for

conditional jump instructions.

9.3.4 The loop Instruction

Because the 80x86 loop instruction does not allow different types of
operands, it needs only one sequence of steps. The decoded 80x86 loop

instruction might use an execution sequence like the following:2

1. Fetch the value of the ECX register and send it to the ALU.

2. Instruct the ALU to decrement this value.

3. Send the result back to the ECX register. Set a special internal flag
if this result is nonzero.

4. Fetch the displacement value (the jump distance) following the
opcode in memory and send it to the ALU.

5. Update the EIP register with the address of the instruction
following the displacement operand.

6. Test the special internal flag to see if ECX was nonzero.

7. If the flag was set (that is, it contains 1), copy the value in EIP to
the ALU.

8. If the flag was set, instruct the ALU to add the displacement and
EIP values.

9. If the flag was set, copy the result of the addition back to the EIP
register.

As with the jnz instruction, note that the loop instruction executes
more rapidly if the branch is not taken, and the CPU continues
execution with the instruction that immediately follows the loop

instruction.

9.4 RISC vs. CISC: Improving Performance by
Executing More, Faster, Instructions

Early microprocessors (including the 80x86 and its predecessors) are
examples of complex instruction set computers (CISCs). At the time these

CPUs were created, the thinking was that having each instruction do
more work made programs run faster because they executed fewer
instructions (as CPUs with less complex instructions had to execute
more instructions to do the same amount of work). The Digital
Equipment Corporation (DEC) PDP-11 and its successor, the VAX,
epitomized this design philosophy.

In the early 1980s, computer architecture researchers discovered that
this complexity came at a huge cost. All the hardware necessary to
support these complex instructions wound up constraining the overall
clock speed of the CPU. Experiments with the VAX 11-780
minicomputer demonstrated that programs executing multiple, simple,
instructions were faster than those executing fewer, more complex,
instructions. Those researchers hypothesized that if they stripped the
instruction set down to the bare essentials, using only simple
instructions, they could boost the hardware’s performance (by
increasing the clock speed). They called this new architecture reduced

instruction set computer (RISC).3 So began the great “RISC versus CISC”
debate: which architecture was really better?

On paper, at least, RISC CPUs looked better. In practice, they ran at
slower clock speeds, because existing CISC designs had a huge head
start (as their designers had had many more years to optimize them). By
the time RISC CPU designs had matured enough to run at higher clock
speeds, the CISC designs had evolved, taking advantage of the RISC
research. Today, the 80x86 CISC CPU is still the high-performance
king. RISC CPUs found a different niche: they tend to be more power
efficient than CISC processors, so they typically wind up in portable
and low-power designs (such as cell phones and tablets).

Though the 80x86 (a CISC CPU) remains the performance leader,
it’s still possible to write programs with a larger number of simple 80x86
instructions that run faster than those with fewer, more complex 80x86
instructions. 80x86 designers have kept these legacy instructions around
to allow you to execute older software that still contains them. Newer
compilers, however, avoid these legacy instructions to produce faster-
running code.

Nevertheless, one important takeaway from RISC research is that
the execution time of each instruction is largely dependent upon the
amount of work it does. The more internal operations an instruction
requires, the longer it will take to execute. In addition to improving
execution time by reducing the number of internal operations, RISC
also prioritized internal operations that could execute concurrently—
that is, in parallel.

9.5 Parallelism: The Key to Faster Processing

If we can reduce the amount of time it takes for a CPU to execute the
individual instructions in its instruction set, an application containing a
sequence of those instructions will also run faster than it otherwise
would.

An early goal of the RISC processors was to execute one instruction
per clock cycle, on average. However, even if a RISC instruction is
simplified, its actual execution still requires multiple steps. So how
could the processors achieve this goal? The answer is parallelism.

Consider the following steps for a mov(srcReg, destReg); instruction:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the data from srcReg.

5. Store the fetched value into the destination register (destReg).

The CPU must fetch the instruction’s opcode from memory before
it updates the EIP register instruction with the address of the byte
beyond the opcode, decode the opcode before it knows to fetch the
value of the source register, and fetch the value of the source register
before it can store the fetched value in the destination register.

All but one of the stages in the execution of this mov instruction are
serial. That is, the CPU must execute one stage before proceeding to

the next. The exception is step 2, updating the EIP register. Although
this stage must follow the first stage, none of the following stages
depend upon it. We could execute this step concurrently with any of the
others, and it wouldn’t affect the operation of the mov instruction. By
doing two of the stages in parallel, then, we can reduce this instruction’s
execution time by one clock cycle. The following sequence illustrates
one possible concurrent execution:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies.

3. Fetch the data from srcReg and update the EIP register with the
address of the byte following the opcode.

4. Store the fetched value into the destination register (destReg).

Although the remaining stages in the mov(srcReg, destReg); instruction
must be serialized, other forms of the mov instruction offer similar
opportunities to save cycles by executing stages concurrently. For
example, consider the 80x86 mov([ebx+disp], eax); instruction:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the displacement value for use in calculating the effective
address of the source operand.

5. Update EIP to point at the first byte after the displacement value in
memory.

6. Compute the effective address of the source operand.

7. Fetch the value of the source operand’s data from memory.

8. Store the result into the destination register operand.

Once again, we can overlap the execution of several stages in this
instruction. In the following example, we reduce the number of steps
from eight to six by overlapping both updates of EIP with two other
operations:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies,
and update the EIP register with the address of the byte following
the opcode.

3. Fetch the displacement value for use in calculating the effective
address of the source operand.

4. Compute the effective address of the source operand, and update
EIP to point at the first byte after the displacement value in
memory.

5. Fetch the value of the source operand’s data from memory.

6. Store the result into the destination register operand.

As a last example, consider the add(constant, [ebx+disp]); instruction. Its
serial execution looks like this:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register with the address of the byte following the
opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the displacement value from the memory location
immediately following the opcode.

5. Update EIP to point at the first byte beyond the displacement
operand that follows the opcode.

6. Compute the effective address of the second operand.

7. Fetch the constant operand that immediately follows the
displacement value in memory and send it to the ALU.

8. Fetch the destination operand’s data from memory and send it to
the ALU.

9. Update EIP to point at the first byte beyond the constant that
follows the displacement operand.

10. Instruct the ALU to add the values.

11. Store the result back into the destination (second) operand.

12. Update the flags register with the result of the addition operation.

We can overlap several stages in this instruction because they don’t
depend on the result of their immediate predecessor:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies
and update the EIP register with the address of the byte following
the opcode.

3. Fetch the displacement value from the memory location
immediately following the opcode.

4. Update EIP to point at the first byte beyond the displacement
operand that follows the opcode and compute the effective address
of the memory operand (ebx+disp).

5. Fetch the constant operand that immediately follows the
displacement value and send it to the ALU.

6. Fetch the destination operand’s data from memory and send it to
the ALU.

7. Instruct the ALU to add the values and update EIP to point at the
first byte beyond the constant value.

8. Store the result back into the second operand and update the flags
register with the result of the addition operation.

Although it might seem like the CPU could fetch the constant and
the memory operand in the same stage because their values do not
depend upon each other, it can’t do this (yet!) because it has only a
single data bus, and both values are coming from memory. In the next
section you’ll see how we can overcome this problem.

By overlapping various execution stages, we’ve substantially reduced
the number of steps, and consequently the number of clock cycles, that
these instructions need to complete execution. This is a major key to
improving CPU performance without cranking up the chip’s clock
speed. However, there’s only so much to be gained from this approach
alone, because instruction execution is still serialized. Starting with the
next section, we’ll see how to overlap the execution of adjacent
instructions in order to save additional cycles.

9.5.1 Functional Units

As you’ve seen in the add instruction, the steps for adding two values and
then storing their sum can’t be done concurrently, because you can’t
store the sum until after you’ve computed it. Furthermore, there are
some resources that the CPU can’t share between steps in an
instruction. There is only one data bus, and the CPU can’t fetch an
instruction’s opcode while it is trying to store data to memory. In
addition, many of the steps that make up the execution of an instruction
share functional units in the CPU.

Functional units are groups of logic that perform a common
operation, such as the arithmetic logical unit and the control unit. A
functional unit can do only one operation at a time; you can’t do two
operations concurrently that use the same functional unit. To design a
CPU that executes several stages in parallel, we must arrange those
stages to reduce potential conflicts, or add extra logic so that two (or
more) operations can occur simultaneously by executing in different
functional units.

Consider again the steps that a mov(srcMem, destReg); instruction might
require:

1. Fetch the instruction’s opcode from memory.

2. Update the EIP register to hold the address of the displacement
value following the opcode.

3. Decode the instruction’s opcode to see what instruction it specifies.

4. Fetch the displacement value from memory to compute the source
operand’s effective address.

5. Update the EIP register to hold the address of the byte beyond the
displacement value.

6. Compute the effective address of the source operand.

7. Fetch the value of the source operand.

8. Store the fetched value into the destination register.

The first operation uses the value of the EIP register, so we can’t
overlap it with the subsequent step, which adjusts the value in EIP. In

addition, the first operation uses the bus to fetch the instruction opcode
from memory, and because every step that follows this one depends
upon this opcode, it’s unlikely that we’ll be able to overlap it with any
other.

The second and third operations don’t share any functional units,
and the third operation doesn’t depend upon the value of the EIP
register, which is modified in the second step. Therefore, we can modify
the control unit so that it combines these steps, adjusting the EIP
register at the same time that it decodes the instruction. This will shave
one cycle off the execution of the mov instruction.

The third and fourth steps, which decode the instruction’s opcode
and fetch the displacement value, don’t look like they can be done in
parallel, because you must decode the instruction’s opcode to determine
whether the CPU needs to fetch a displacement operand from memory.
However, we can design the CPU to fetch the displacement anyway so
that it’s available if we need it.

Of course, there’s no way to overlap the execution of steps 7 and 8
because the CPU must fetch the value before storing it away.

By combining all the steps that are possible, we might obtain the
following sequence for a mov instruction:

1. Fetch the instruction’s opcode from memory.

2. Decode the instruction’s opcode to see what instruction it specifies,
and update the EIP register to hold the address of the displacement
value following the opcode.

3. Fetch the displacement value from memory to compute the source
operand’s effective address, and update the EIP register to hold the
address of the byte beyond the displacement value.

4. Compute the effective address of the source operand.

5. Fetch the value of the source operand from memory.

6. Store the fetched value into the destination register.

By adding a small amount of logic to the CPU, we’ve shaved one or
two cycles off the execution of the mov instruction. This simple

optimization works with most of the other instructions as well.

Now consider the loop instruction, which has several steps that use
the ALU. If the CPU has only a single ALU, it must execute these steps
sequentially. However, if the CPU has multiple ALUs (that is, multiple
functional units), it can execute some of these steps in parallel. For
example, the CPU could decrement the value in the ECX register
(using the ALU) at the same time it updates the EIP value. Note that
the loop instruction also uses the ALU to compare the decremented
ECX value against 0 (to determine if it should branch). However, there’s
a data dependency between incrementing ECX and comparing it with 0;
therefore, the CPU can’t perform both of these operations at the same
time.

9.5.2 The Prefetch Queue

Now that we’ve looked at some simple optimization techniques,
consider what happens when the mov instruction executes on a CPU with
a 32-bit data bus. If the mov instruction fetches an 8-bit displacement
value from memory, the CPU may wind up fetching an additional 3
bytes along with the displacement value (the 32-bit data bus lets us fetch
4 bytes in a single bus cycle). The second byte on the data bus is actually
the opcode of the next instruction. If we could save this opcode until the
execution of the next instruction, we could shave a cycle off its
execution time because it wouldn’t have to fetch the same opcode byte
again.

9.5.2.1 Using Unused Bus Cycles

There are still more improvements we can make. While the mov

instruction is executing, the CPU isn’t accessing memory on every clock
cycle. For example, while data is being stored into the destination
register, the bus is idle. When the bus is idle, we can prefetch and save
the instruction opcode and operands of the next instruction.

The hardware that does this is the prefetch queue. Figure 9-4 shows
the internal organization of a CPU with a prefetch queue.

Figure 9-4: CPU design with a prefetch queue

The bus interface unit (BIU), as its name implies, controls access to
the address and data buses. The BIU acts as a “traffic cop” and handles
simultaneous requests for bus access by different modules, such as the
execution unit and the prefetch queue. Whenever some component
inside the CPU wishes to access main memory, it sends this request to
the BIU.

Whenever the execution unit is not using the BIU, the BIU can fetch
additional bytes from the memory that holds the machine instructions
and store them in the prefetch queue. Then, whenever the CPU needs
an instruction opcode or operand value, it grabs the next available byte
from the prefetch queue. Because the BIU grabs multiple bytes at a time
from memory, and because, per clock cycle, the CPU generally
consumes fewer bytes from the prefetch queue than are available,
instructions will normally be sitting in the prefetch queue for the CPU’s
use.

However, there’s no guarantee that all instructions and operands will
be sitting in the prefetch queue when we need them. For example,
consider the 80x86 jnz Label; instruction. If the 2-byte form of the
instruction appears at locations 400 and 401 in memory, the prefetch

queue may contain the bytes at addresses 402, 403, 404, 405, 406, 407,
and so on. If jnz transfers control to Label at target address 480, the bytes
at addresses 402, 403, 404, and so on, won’t be of any use to the CPU.
The system will have to pause for a moment to fetch the data at address
480 before it can go on. Most of the time, the CPU fetches sequential
values from memory, though, so having the data in the prefetch queue
saves time.

9.5.2.2 Overlapping Instructions

Another improvement we can make is to overlap the processes of
decoding the next instruction’s opcode and executing the last step of the
previous instruction. After the CPU processes the operand, the next
available byte in the prefetch queue is an opcode, which the CPU can
decode because the instruction decoder is idle while the CPU executes
the steps of the current instruction. Of course, if the current instruction
modifies the EIP register, the time the CPU spends on the decoding
operation goes to waste; however, because it occurs in parallel with
other operations of the current instruction, this decoding doesn’t slow
down the system (though it does require extra circuitry).

9.5.2.3 Summarizing Background Prefetch Events

Our instruction execution sequence now assumes that the following
CPU prefetch events are occurring (concurrently) in the background:

1. If the prefetch queue is not full (generally it can hold between 8
and 32 bytes, depending on the processor) and the BIU is idle on
the current clock cycle, fetch the next double word located at the
address found in the EIP register at the beginning of the clock
cycle.

2. If the instruction decoder is idle and the current instruction does
not require an instruction operand, the CPU should begin
decoding the opcode at the front of the prefetch queue. If the
current instruction requires an instruction operand, then the CPU
begins decoding the byte just beyond that operand in the prefetch
queue.

Now let’s reconsider our mov(srcreg, destreg); instruction. Because
we’ve added the prefetch queue and the BIU, we can overlap the fetch
and decode stages of this instruction with specific stages of the previous
instruction to get the following steps:

1. Fetch and decode the instruction; this is overlapped with the
previous instruction.

2. Fetch the source register and update the EIP register with the
address of the next instruction.

3. Store the fetched value into the destination register.

The instruction execution timings in this example assume that the
opcode is present in the prefetch queue and that the CPU has already
decoded it. If either is not true, additional cycles will be necessary to
fetch the opcode from memory and decode the instruction.

9.5.3 Conditions That Hinder the Performance of the Prefetch

Queue

When they transfer control to the target location, jump and conditional
jump instructions are slower than other instructions, because the CPU
can’t overlap the processes of fetching and decoding the opcode for the
next instruction with the process of executing a jump instruction that
transfers control. It may take several cycles after the execution of a jump
instruction for the prefetch queue to reload.

NOTE

If you want to write fast code, avoid jumping around in your program as
much as possible.

Conditional jump instructions invalidate the prefetch queue only if
they actually transfer control to the target location. If the jump
condition is false, execution continues with the next instruction and the
values in the prefetch queue remain valid. Therefore, while writing the

program, if you can determine which jump condition occurs most
frequently, you should arrange your program so that the most common
condition causes the program to continue with the next instruction
rather than jump to a separate location.

In addition, instruction size (in bytes) can affect the performance of
the prefetch queue. The larger the instruction, the faster the CPU will
empty the prefetch queue. Instructions involving constants and memory
operands tend to be the largest. If you execute a sequence of these
instructions in a row, the CPU may end up having to wait because it is
removing instructions from the prefetch queue faster than the BIU is
copying data to the prefetch queue. So, whenever possible, try to use
shorter instructions.

Finally, prefetch queues work best when you have a wide data bus.
The 16-bit 8086 processor runs much faster than the 8-bit 8088 because
it can keep the prefetch queue full with fewer bus accesses. Don’t forget,
the CPU needs to use the bus for other purposes. Instructions that
access memory compete with the prefetch queue for access to the bus. If
you have a sequence of instructions that all access memory, the prefetch
queue may quickly empty, and once that happens, the CPU must wait
for the BIU to fetch new opcodes from memory before it can continue
executing instructions.

9.5.4 Pipelining: Overlapping the Execution of Multiple

Instructions

Executing instructions in parallel using a BIU and an execution unit is a
special case of pipelining. Most modern processors incorporate
pipelining to improve performance. With just a few exceptions,
pipelining allows us to execute one instruction per clock cycle.

The advantage of the prefetch queue is that it lets the CPU overlap
the processes of fetching and decoding the instruction opcode with the
execution of other instructions. Assuming you’re willing to add
hardware, you can execute almost all operations in parallel. That is the
idea behind pipelining.

Pipelined operation improves an application’s average performance
by executing several instructions concurrently. However, as you saw
with the prefetch queue, certain instructions (and combinations thereof)
fare better than others in a pipelined system. By understanding how
pipelined operation works, you can organize your applications to run
faster.

9.5.4.1 A Typical Pipeline

Consider the steps necessary to do a generic operation, with each step
taking one clock cycle:

1. Fetch the instruction’s opcode from memory.

2. Decode the opcode and, if required, prefetch a displacement
operand, a constant operand, or both.

3. If required, compute the effective address for a memory operand
(for example, [ebx+disp]).

4. If required, fetch the value of any memory operand and/or register.

5. Compute the result.

6. Store the result into the destination register.

Assuming you’re willing to pay for some extra silicon, you can build
a little miniprocessor to handle each step. The organization would look
something like Figure 9-5.

Figure 9-5: A pipelined implementation of instruction execution

In stage 4, the CPU fetches both the source and destination
operands. You can set this up by putting multiple data paths inside the

CPU (such as from the registers to the ALU) and ensuring that no two
operands ever compete for simultaneous use of the data bus (that is,
there are no memory-to-memory operations).

If you design a separate piece of hardware for each stage in the
pipeline in Figure 9-5, almost all of them can take place in parallel. Of
course, you can’t fetch and decode the opcode for more than one
instruction at the same time, but you can fetch the opcode of the next
instruction while decoding the current instruction’s opcode. If you have
an n-stage pipeline, you will usually have n instructions executing
concurrently. Figure 9-6 shows pipelining in operation. T1, T2, T3,
and so on, represent consecutive “ticks” (time = 1, time = 2, and so on)
of the system clock.

Figure 9-6: Instruction execution in a pipeline

At time T = T1, the CPU fetches the opcode byte for the first
instruction. At T = T2, the CPU begins decoding the opcode for the
first instruction, and, in parallel, it fetches a block of bytes from the
prefetch queue in the event that the first instruction has an operand.
Also in parallel with the decoding of the first instruction, the CPU
instructs the BIU to fetch the opcode of the second instruction because
the first instruction no longer needs that circuitry.

Note that there is a minor conflict here. The CPU is attempting to
fetch the next byte from the prefetch queue for use as an operand; at the
same time, it is fetching operand data from the prefetch queue for use as
an opcode. How can it do both at once? You’ll see the solution shortly.

At time T = T3, the CPU computes the address of any memory
operand if the first instruction accesses memory. If the first instruction
doesn’t access memory, the CPU does nothing. During T3, the CPU
also decodes the opcode of the second instruction and fetches any

operands in the second instruction. Finally, the CPU also fetches the
opcode for the third instruction. With each advancing tick of the clock,
another execution stage of each instruction in the pipeline completes,
and the CPU fetches the opcode of yet another instruction from
memory.

This process continues until, at T = T6, the CPU completes the
execution of the first instruction, computes the result for the second,
and fetches the opcode for the sixth instruction in the pipeline. The
important thing to note is that after T = T5, the CPU completes an
instruction on every clock cycle. Once the CPU fills the pipeline, it
completes one instruction on each cycle. This is true even if there are
complex addressing modes to be computed, memory operands to fetch,
or other operations that consume cycles on a nonpipelined processor.
All you need to do is add more stages to the pipeline, and you can still
effectively process each instruction in one clock cycle.

Now back to the small conflict in the pipeline organization I
mentioned earlier. At T = T2, for example, the CPU attempts to
prefetch a block of bytes containing any operands of the first
instruction, and at the same time it fetches the opcode of the second
instruction. Until the CPU decodes the first instruction, it doesn’t know
how many operands the instruction requires or their length. Moreover,
until it determines that information, the CPU doesn’t know what byte
to fetch as the opcode of the second instruction. So how can the
pipeline fetch the opcode of the next instruction in parallel with any
address operands of the current instruction?

One solution is to disallow this simultaneous operation in order to
avoid the potential data hazard. If an instruction has an address or
constant operand, we can simply delay the start of the next instruction.
Unfortunately, many instructions have these additional operands, so this
approach will substantially hinder the CPU’s execution speed.

The second solution is to throw a lot more hardware at the problem.
Operand and constant sizes usually come in 1-, 2-, and 4-byte lengths.
Therefore, if we actually fetch the bytes in memory that are located at
offsets 1, 3, and 5 bytes beyond the current opcode we are decoding,
one of them will probably contain the opcode of the next instruction.

Once we are through decoding the current instruction, we know how
many bytes it consumes, and, therefore, we know the offset of the next
opcode. We can use a simple data selector circuit to choose which of the
three candidate opcode bytes we want to use.

In practice, we actually have to select the next opcode byte from
more than three candidates because 80x86 instructions come in many
different lengths. For example, a mov instruction that copies a 32-bit
constant to a memory location can be 10 or more bytes long. Moreover,
instructions vary in length from 1 to 15 bytes. And some opcodes on the
80x86 are longer than 1 byte, so the CPU may have to fetch multiple
bytes in order to properly decode the current instruction. However, by
throwing more hardware at the problem, we can decode the current
opcode at the same time we’re fetching the next.

9.5.4.2 Stalls in a Pipeline

Unfortunately, the scenario presented in the previous section is a little
too simplistic. There are two problems that our simple pipeline ignores:
competition between instructions for access to the bus (known as bus
contention), and nonsequential instruction execution. Both problems may
increase the average execution time of the instructions in the pipeline.
By understanding how the pipeline works, you can write your software
to avoid these pitfalls and improve the performance of your
applications.

Bus contention can occur whenever an instruction needs to access an
item in memory. For example, if a mov(reg, mem); instruction needs to
store data in memory and a mov(mem, reg); instruction needs to fetch data
from memory, contention for the address and data bus may develop
because the CPU will be trying to do both operations simultaneously.

One simplistic way to handle bus contention is through a pipeline
stall. The CPU, when faced with contention for the bus, gives priority
to the instruction farthest along in the pipeline. This stalls the later
instruction in the pipeline, and it takes two cycles to execute that
instruction (see Figure 9-7).

Figure 9-7: A pipeline stall

There are many other cases of bus contention. For example, fetching
operands for an instruction requires access to the prefetch queue at the
same time that the CPU needs to access it to fetch the opcode of the
next instruction. Given the simple pipelining scheme that we’ve
outlined so far, it’s unlikely that most instructions would execute at one
clock (cycle) per instruction (CPI).

As another example of a pipeline stall, consider what happens when
an instruction modifies the value in the EIP register. For example, the jnz
instruction might change the value in the EIP register if it transfers
control to its target label, which implies that the next set of instructions
to be executed does not immediately follow the jnz instruction. By the
time the instruction jnz label; completes execution (assuming the zero
flag is clear so that the branch is taken), we’ve already started five other
instructions and we’re only one clock cycle away from completing the
first of these. The CPU must not execute those instructions, or it will
compute improper results.

The only reasonable solution is to flush the entire pipeline and begin
fetching opcodes anew. However, doing so causes a severe execution
time penalty. It will take the length of the pipeline (six cycles in our
example) before the next instruction completes execution. The longer
the pipeline is, the more you can accomplish per cycle in the system, but
the slower a program will run if it jumps around quite a bit.

Unfortunately, you can’t control the number of stages in the pipeline,4

but you can control the number of transfer instructions in your
programs, so it’s best to keep these to a minimum in a pipelined system.

9.5.5 Instruction Caches: Providing Multiple Paths to Memory

System designers can resolve many problems with bus contention
through the intelligent use of the prefetch queue and the cache memory
subsystem. As you’ve seen, they can design the prefetch queue to buffer
data from the instruction stream. However, they can also use a separate
instruction cache (apart from the data cache) to hold machine
instructions. As a programmer, you have no control over how your
CPU’s instruction cache is organized, but knowing how it operates
might prompt you to use certain instruction sequences that would
otherwise create stalls.

Suppose the CPU has two separate memory spaces, one for
instructions and one for data, each with its own bus. This is called the
Harvard architecture because the first such machine was built at Harvard
University. On a Harvard machine, there’s no contention for the bus;
the BIU can continue to fetch opcodes on the instruction bus while
accessing memory on the data/memory bus (see Figure 9-8).

Figure 9-8: A typical Harvard machine

In the real world, there are very few true Harvard machines. The
extra pins needed on the processor to support two physically separate
buses increase the cost of the processor and introduce many other
engineering problems. However, microprocessor designers have
discovered that they can obtain many of the benefits of the Harvard
architecture with few of its disadvantages by using separate on-chip
caches for data and instructions. Advanced CPUs use an internal
Harvard architecture and an external von Neumann architecture. Figure
9-9 shows the structure of the 80x86 with separate data and instruction
caches.

Figure 9-9: Using separate code and data caches

Each path between the sections inside the CPU represents an
independent bus, and data can flow on all paths concurrently. This
means that the prefetch queue can pull instruction opcodes from the
instruction cache while the execution unit is writing data to the data
cache. However, it’s not always possible, even with a cache, to avoid bus
contention. In the arrangement with two separate caches, the BIU still
has to use the data/address bus to fetch opcodes from memory
whenever they are not located in the instruction cache. Likewise, the
data cache still has to buffer data from memory on occasion.

Although you can’t control the presence, size, or type of cache on a
CPU, you must be aware of how the cache operates in order to write
the best programs. On-chip, level-one (L1) instruction caches are
generally quite small (between 4KB and 64KB on typical CPUs)
compared to the size of main memory. Therefore, the shorter your

instructions, the more of them will fit in the cache (tired of “shorter
instructions” yet?). The more instructions you have in the cache, the
less often bus contention will occur. Likewise, using registers to hold
temporary results places less strain on the data cache, so it doesn’t need
to flush data to memory or retrieve data from memory quite so often.

9.5.6 Pipeline Hazards

There is another problem with using a pipeline: hazards. There are two
types of hazards: control hazards and data hazards. We’ve actually
discussed control hazards already, although we didn’t refer to them by
name. A control hazard occurs whenever the CPU branches to some
new location in memory and consequently has to flush from the pipeline
the instructions that are in various stages of execution. A data hazard
occurs when two instructions attempt to access the same memory
location out of sequence.

Let’s take a look at data hazards using the execution profile for the
following instruction sequence:

mov(SomeVar, ebx);
mov([ebx], eax);

When these two instructions execute, the pipeline will look
something like Figure 9-10.

Figure 9-10: A data hazard

These two instructions attempt to fetch the 32-bit value whose
address is held in the SomeVar pointer variable. However, this sequence of
instructions won’t work properly! The second instruction accesses the value
in EBX before the first instruction copies the address of memory
location SomeVar into EBX (T5 and T6 in Figure 9-10).

CISC processors, like the 80x86, handle hazards automatically.
(Some RISC chips do not, and if you tried this sequence on certain
RISC chips, you would store an incorrect value in EAX.) In order to
handle the data hazard in this example, CISC processors stall the
pipeline to synchronize the two instructions. The actual execution
would look something like Figure 9-11.

Figure 9-11: How a CISC CPU handles a data hazard

By delaying the second instruction by two clock cycles, the CPU
guarantees that the load instruction will load EAX with the value at the
proper address. Unfortunately, the mov([ebx], eax); instruction now
executes in three clock cycles rather than one. However, requiring two
extra clock cycles is better than producing incorrect results.

Fortunately, you (or your compiler) can reduce the impact that
hazards have on program execution speed within your software. A data
hazard occurs when the source operand of one instruction was a
destination operand of a previous instruction. There’s nothing wrong
with loading EBX from SomeVar and then loading EAX from [EBX] (that
is, the double-word memory location pointed at by EBX), as long as they
don’t occur one right after the other. Suppose the code sequence had been:

mov(2000, ecx);
mov(SomeVar, ebx);
mov([ebx], eax);

We could reduce the effect of the hazard in this code sequence by
simply rearranging the instructions, as follows:

mov(SomeVar, ebx);
mov(2000, ecx);
mov([ebx], eax);

Now the mov([ebx], eax); instruction requires only one additional
clock cycle. By inserting yet another instruction between the mov(SomeVar,
ebx); and the mov([ebx], eax); instructions, you can eliminate the effects of
the hazard altogether (of course, the inserted instruction must not
modify the values in the EAX and EBX registers).

On a pipelined processor, the order of instructions in a program may
dramatically affect the program’s performance. If you’re writing
assembly code, always look for possible hazards and eliminate them
wherever possible by rearranging your instruction sequences. If you’re
using a compiler, choose one that properly handles instruction ordering.

9.5.7 Superscalar Operation: Executing Instructions in Parallel

With the pipelined architecture shown so far, we could achieve, at best,
execution times of one CPI. Is it possible to execute instructions faster
than this? At first you might think, “Of course not—we can do at most
one operation per clock cycle, so there’s no way we can execute more
than one instruction per clock cycle.” Keep in mind, however, that a
single instruction is not a single operation. In the examples presented
earlier, each instruction took between six and eight operations to
complete. By adding seven or eight separate units to the CPU, we could
effectively execute these eight operations in one clock cycle, yielding
one CPI. If we add more hardware and execute, say, 16 operations at
once, can we achieve 0.5 CPI? The answer is a qualified yes. A CPU
that includes this additional hardware is a superscalar CPU, and it can
execute more than one instruction during a single clock cycle. The
80x86 family began supporting superscalar execution with the
introduction of the Pentium processor.

A superscalar CPU has several execution units (see Figure 9-12). If it
encounters in the prefetch queue two or more instructions that it can
execute independently, it will do so.

Figure 9-12: A CPU that supports superscalar operation

There are a couple of advantages to going superscalar. Suppose you
have the following instructions in the instruction stream:

mov(1000, eax);
mov(2000, ebx);

If there are no other problems or hazards in the surrounding code,
and all 6 bytes for these two instructions are currently in the prefetch
queue, there’s no reason why the CPU can’t fetch and execute both
instructions in parallel. All it takes is extra silicon on the CPU chip to
implement two execution units.

Besides speeding up independent instructions, a superscalar CPU
can also speed up program sequences that have hazards. One limitation
of normal CPUs is that once a hazard occurs, the offending instruction
will completely stall the pipeline. Every instruction that follows the
stalled instruction will also have to wait for the CPU to synchronize the

execution of the offending instructions. With a superscalar CPU,
however, instructions following the hazard may continue execution
through the pipeline as long as they don’t have hazards of their own.
This alleviates (though it does not eliminate) some of the need for
careful instruction scheduling.

The way you write software for a superscalar CPU can dramatically
affect its performance. First and foremost is that rule you’re probably
sick of by now: use short instructions. The shorter your instructions, the
more instructions the CPU can fetch in a single operation and,
therefore, the more likely the CPU will execute faster than one CPI.
Most superscalar CPUs do not completely duplicate the execution unit.
There might be multiple ALUs, floating-point units, and so on, which
means that certain instruction sequences can execute very quickly, while
others won’t. You have to study the exact composition of your CPU to
decide which instruction sequences produce the best performance.

9.5.8 Out-of-Order Execution

In a standard superscalar CPU, it is the programmer’s (or compiler’s)
responsibility to arrange the instructions to avoid hazards and pipeline
stalls. Fancier CPUs can actually remove some of this burden and
improve performance by automatically rescheduling instructions while
the program executes. To understand how this is possible, consider the
following instruction sequence:

mov(SomeVar, ebx);
mov([ebx], eax);
mov(2000, ecx);

There’s a data hazard between the first and second instructions. The
second instruction must delay until the first instruction completes
execution. This introduces a pipeline stall and increases the running
time of the program. Typically, the stall affects every instruction that
follows. However, the third instruction’s execution does not depend on
the result from either of the first two instructions. Therefore, there’s no
reason to stall the execution of the mov(2000, ecx); instruction. It can
continue executing while the second instruction waits for the first to

complete. This technique is called out-of-order execution because the
CPU can execute instructions prior to the completion of instructions
appearing previously in the code stream.

Keep in mind that the CPU can execute instructions out of sequence
only if doing so produces exactly the same results as sequential
execution. While there are many little technical issues that make this
feature more difficult than it seems, with enough engineering effort you
can implement it.

9.5.9 Register Renaming

One problem that hampers the effectiveness of superscalar operation on
the 80x86 CPU is its limited number of general-purpose registers.
Suppose, for example, that the CPU had four different pipelines and,
therefore, was capable of executing four instructions simultaneously.
Presuming no conflicts existed among these instructions and they could
all execute simultaneously, it would still be very difficult to actually
achieve four instructions per clock cycle because most instructions
operate on two register operands. For four instructions to execute
concurrently, you’d need eight different registers: four destination
registers and four source registers (none of the destination registers
could double as source registers of other instructions). CPUs that have
lots of registers can handle this task quite easily, but the limited register
set of the 80x86 makes this difficult. Fortunately, there’s a trick to
alleviate part of the problem: register renaming.

Register renaming is a sneaky way to give a CPU more registers than
it actually has. Programmers won’t have direct access to these extra
registers, but the CPU can use them to prevent hazards in certain cases.
For example, consider the following short instruction sequence:

mov(0, eax);
mov(eax, i);
mov(50, eax);
mov(eax, j);

There’s a data hazard between the first and second instructions as
well as between the third and fourth instructions. Out-of-order
execution in a superscalar CPU would normally allow the first and third

instructions to execute concurrently, and then the second and fourth
instructions could execute concurrently. However, there’s also a data
hazard between the first and third instructions because they use the
same register. The programmer could have easily solved this problem
by using a different register (say, EBX) for the third and fourth
instructions. However, let’s assume that the programmer was unable to
do this because all the other registers were holding important values. Is
this sequence doomed to executing in four cycles on a superscalar CPU
that should require only two?

One advanced trick a CPU can employ is to create a bank of
registers for each of the general-purpose registers on the CPU. That is,
rather than having a single EAX register, the CPU could support an
array of EAX registers; let’s call these registers EAX[0], EAX[1],
EAX[2], and so on. Similarly, you could have an array of each of the
other registers: EBX[0] through EBX[n], ECX[0] through ECX[n], and
so on. The instruction set doesn’t permit the programmer to select one
of these specific register array elements for a given instruction, but the
CPU can automatically choose among them if doing so wouldn’t change
the overall computation and could speed up program execution. This is
known as register renaming. For example, consider the following
sequence (with register array elements automatically chosen by the
CPU):

mov(0, eax[0]);
mov(eax[0], i);
mov(50, eax[1]);
mov(eax[1], j);

Because EAX[0] and EAX[1] are different registers, the CPU can
execute the first and third instructions concurrently. Likewise, the CPU
can execute the second and fourth instructions concurrently.

Although this is a simple example, and different CPUs implement
register renaming in many different ways, you can see how the CPU can
use this technique to improve performance.

9.5.10 VLIW Architecture

Superscalar operation attempts to schedule, in hardware, the execution
of multiple instructions simultaneously. Another technique, which Intel
is using in its IA-64 architecture, involves very long instruction words
(VLIW). In a VLIW computer system, the CPU fetches a large block of
bytes (41 bits in the case of the IA-64 Itanium CPU) and decodes and
executes it all at once. This block of bytes usually contains two or more
instructions (three in the case of the IA-64). VLIW computing requires
the programmer or compiler to properly schedule the instructions in
each block so that there are no hazards or other conflicts, but if all goes
well, the CPU can execute three or more instructions per clock cycle.

9.5.11 Parallel Processing

Most techniques for improving CPU performance via architectural
advances involve the parallel execution of instructions. If programmers
are aware of the underlying architecture, they can write code that runs
faster, but these architectural advances often improve performance
significantly even if programmers do not write special code to take
advantage of them.

The only problem with ignoring the underlying architecture is that
there’s only so much the hardware can do to parallelize a program that
requires sequential execution for proper operation. To truly produce a
parallel program, the programmer must specifically write parallel code,
though, of course, this requires architectural support from the CPU.
This section and the next touch on the types of support a CPU can
provide.

Common CPUs use what’s known as the single instruction, single data
(SISD) model. This means that the CPU executes one instruction at a

time, and that instruction operates on a single piece of data.5 Two
common parallel models are the single instruction, multiple data (SIMD)
and multiple instruction, multiple data (MIMD) models. Many modern
CPUs, including the 80x86, include limited support for these parallel-
execution models, providing a hybrid SISD/SIMD/MIMD architecture.

In the SIMD model, the CPU executes a single instruction stream,
just like the pure SISD model, but operates on multiple pieces of data
concurrently. For example, consider the 80x86 add instruction. This is a

SISD instruction that operates on (that is, produces) a single piece of
data. True, the instruction fetches values from two source operands, but
the end result is that the add instruction stores a sum into only a single
destination operand. An SIMD version of add, on the other hand, would
compute several sums simultaneously. The 80x86 MMX and SIMD
instruction extensions, the ARM’s Neon instructions, and the
PowerPC’s AltiVec instructions, operate in exactly this fashion. With
the paddb MMX instruction, for example, you can add up to eight
separate pairs of values with the execution of a single instruction. Here’s
an example of this instruction:

paddb(mm0, mm1);

Although this instruction appears to have only two operands (like a
typical SISD add instruction on the 80x86), the MMX registers (MM0
and MM1) actually hold eight independent byte values (the MMX
registers are 64 bits wide but are treated as eight 8-bit values).

Unless you have an algorithm that can take advantage of SIMD
instructions, they’re not that useful. Fortunately, high-speed 3D
graphics and multimedia applications benefit greatly from these SIMD
(and MMX) instructions, so their inclusion in the 80x86 CPU offers a
huge performance boost for these important applications.

The MIMD model uses multiple instructions, operating on multiple
pieces of data (usually with one instruction per data object, though one
of these instructions could also operate on multiple data items). These
multiple instructions execute independently of one another, so it’s very
rare that a single program (or, more specifically, a single thread of
execution) would use the MIMD model. However, if you have a
multiprogramming environment with multiple programs attempting to
execute concurrently, the MIMD model does allow each of those
programs to execute its own code stream simultaneously. This type of
parallel system is called a multiprocessor system.

9.5.12 Multiprocessing

Pipelining, superscalar operation, out-of-order execution, and VLIW
designs are all techniques that CPU designers use in order to execute
several operations in parallel. These techniques support fine-grained
parallelism and are useful for speeding up adjacent instructions in a
computer system. If adding more functional units increases parallelism,
what would happen if you added another CPU to the system? This
approach, known as multiprocessing, can improve system performance,
though not as uniformly as other techniques.

Multiprocessing doesn’t help a program’s performance unless that
program is specifically written for use on a multiprocessor system. If
you build a system with two CPUs, those CPUs cannot trade off
executing alternate instructions within a single program. It is very
expensive, time-wise, to switch the execution of a program’s instructions
from one processor to another. Therefore, multiprocessor systems are
effective only with an operating system that executes multiple processes
or threads concurrently. To differentiate this type of parallelism from
that afforded by pipelining and superscalar operation, we’ll call this
coarse-grained parallelism.

Adding multiple processors to a system is not as simple as wiring two
or more processors to the motherboard. To understand why this is so,
consider two separate programs running on separate processors in a
multiprocessor system. These two processors communicate with each
other by writing to a block of shared physical memory. When CPU 1
writes to this block of memory it caches the data locally and might not
actually write the data to physical memory for some time. If CPU 2
attempts to simultaneously read this block of shared memory, it winds
up reading the old data out of main memory (or its local cache) rather
than reading the updated data that CPU 1 wrote to its local cache. This
is known as the cache-coherency problem. In order for these two functions
to operate properly, the two CPUs must notify each other whenever
they make changes to shared objects, so the other CPU can update its
own locally cached copy.

Multiprocessing is an area where the RISC CPUs have a big
advantage over Intel’s CPUs. While Intel 80x86 systems reach a point of
diminishing returns at around 32 processors, Sun SPARC and other

RISC processors easily support 64-CPU systems (with more arriving, it
seems, every day). This is why large databases and large web server
systems tend to use expensive Unix-based RISC systems rather than
80x86 systems.

Newer versions of the Intel i-series and Xeon processors support a
hybrid form of multiprocessing known as hyperthreading. The idea
behind hyperthreading is deceptively simple—in a typical superscalar
processor it’s rare for an instruction sequence to utilize all the CPU’s
functional units on each clock cycle. Rather than allow those functional
units to go unused, the CPU can run two separate threads of execution
concurrently and keep all the functional units occupied. This allows a
single CPU to effectively do the work of 1.5 CPUs in a typical
multiprocessor system.

9.6 For More Information

Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

NOTE

One subject missing from this chapter is the design of the CPU’s actual
instruction set. That is the subject of the next chapter.

10
INSTRUCTION SET ARCHITECTURE

This chapter discusses the implementation of a CPU’s instruction set.
Although the choice of a given instruction set is usually beyond a
software engineer’s control, understanding the decisions a hardware
design engineer has to make when designing a CPU’s instruction set can
definitely help you write better code.

CPU instruction sets contain several tradeoffs based on assumptions
that computer architects make about the way software engineers write
code. If the machine instructions you choose match those assumptions,
your code will probably run faster and require fewer machine resources.
Conversely, if your code violates the assumptions, chances are pretty
good it won’t perform as well as it otherwise could.

Although studying the instruction set may seem like a task suited
only to assembly language programmers, even high-level language
programmers can benefit from doing so. After all, every HLL statement
maps to some sequence of machine instructions, and the general
concepts of instruction set design are portable across architectures.
Even if you never intend to write software using assembly language, it’s
important to understand how the underlying machine instructions work
and how they were designed.

10.1 The Importance of Instruction Set Design

While features like caches, pipelining, and superscalar implementation
can all be grafted onto a CPU long after the original design is obsolete,
it’s very difficult to change the instruction set once a CPU is in
production and people are writing software using it. Therefore,
instruction set design requires very careful consideration; the designer
must get the instruction set architecture (ISA) correct from the start of the
design cycle.

You might assume that the “kitchen sink” approach to instruction set
design—in which you include every instruction you can dream up—is
best. However, instruction set design is the epitome of compromise
management. Why can’t we have it all? Well, in the real world there are
some nasty realities that prevent this:

Silicon real estate The first nasty reality is that each feature
requires some number of transistors on the CPU’s silicon die (chip),
so CPU designers have a “silicon budget”—a finite number of
transistors to work with. There simply aren’t enough transistors to
support putting every possible feature on a CPU. The original 8086
processor, for example, had a silicon budget of fewer than 30,000
transistors. The 1999 Pentium III processor had a budget of over 9
million transistors. The 2019 AWS Graviton2 (ARM) CPU has over

30 billion transistors.1 These three budgets reflect the differences in
semiconductor technology from 1978 to today.

Cost Although it’s possible to use billions of transistors on a CPU
today, the more transistors used, the more expensive the CPU. For
example, at the beginning of 2018, Intel i7 processors using billions
of transistors cost hundreds of dollars, whereas contemporary CPUs
with 30,000 transistors cost less than a dollar.

Expandability It’s very difficult to anticipate all the features people
will want. For example, Intel’s MMX and SIMD instruction
enhancements were added to make multimedia programming more
practical on the Pentium processor. Back in 1978, when Intel created
the first 8086 processor, very few people could have predicted the

need for these instructions. A CPU designer must allow for making
extensions to the instruction set in future members of the CPU
family to accommodate currently unanticipated needs.

Legacy support for old instructions This nasty reality is almost
the opposite of expandability. Often, an instruction that the CPU
designer feels is important now turns out to be less useful than
expected. For example, the loop and enter instructions on the 80x86
CPU see very little use in modern high-performance programs. It’s
commonly the case that programs never use some of the instructions
in a CPU adopting the kitchen sink approach. Unfortunately, once
an instruction is added to the instruction set, it has to be supported
in all future versions of the processor, unless few enough programs
use the instruction that CPU designers are willing to let those
programs break.

Complexity A CPU designer must consider the assembly
programmers and compiler writers who will be using the chip. A
CPU employing the kitchen sink approach might appeal to someone
who’s already familiar with that CPU, but no one else will want to
learn an overly complex system.

These problems with the kitchen sink approach all have a common
solution: design a simple instruction set for the first version of the CPU,
and leave room for later expansion. This is one of the main reasons the
80x86 has proven to be so popular and long-lived. Intel started with a
relatively simple CPU and figured out how to extend the instruction set
over the years to accommodate new features.

10.2 Basic Instruction Design Goals

The efficiency of your programs largely depends upon the instructions
that they use. Short instructions use very little memory and often
execute rapidly, but they can’t tackle big tasks. Larger instructions can
handle more complex tasks, with a single instruction often doing the
work of several short instructions, but they may consume excessive

memory or require many machine cycles to execute. To enable software
engineers to write the best possible code, computer architects must
strike a balance between the two.

In a typical CPU, the computer encodes instructions as numeric
values (operation codes, or opcodes) and stores them in memory.
Encoding these instructions is one of the major tasks in instruction set
design, requiring careful thought. Instructions must each have a unique
opcode, so the CPU can differentiate them. With an n-bit number,

there are 2n different possible opcodes, so to encode m instructions
requires at least log2(m) bits. The main point to keep in mind is that the

size of individual CPU instructions is dependent on the total number of
instructions that the CPU supports.

Encoding opcodes is a little more involved than assigning a unique
numeric value to each instruction. As the previous chapter discussed,
decoding each instruction and executing the specified task requires
actual circuitry. With a 7-bit opcode, we could encode 128 different
instructions. To decode each of these 128 instructions requires a 7- to
128-line decoder—an expensive piece of circuitry. However, assuming
that the instruction opcodes contain certain (binary) patterns, a single
large decoder can often be replaced by several smaller, less expensive
ones.

If an instruction set contains 128 unrelated instructions, there’s little
you can do other than decode the entire bit string for each instruction.
However, in most architectures the instructions fall into categories. On
the 80x86 CPUs, for example, mov(eax, ebx); and mov(ecx, edx); have
different opcodes, because they’re different instructions, but they’re
obviously related in that they both move data from one register to
another. The only difference is their source and destination operands.
Thus, CPU designers could encode instructions like mov with a subopcode,
and then they could encode the instruction’s operands using other bit
fields within the opcode.

For example, given an instruction set with only eight instructions,
each with two operands, and each operand having only one of four
possible values, we could encode the instructions using three packed
fields containing 3, 2, and 2 bits, respectively (see Figure 10-1).

Figure 10-1: Separating an opcode into several fields to simplify decoding

This encoding needs only three simple decoders to determine what
the CPU should do. While this is a basic example, it demonstrates one
very important facet of instruction set design: opcodes should be easy to
decode. The easiest way to simplify the opcode is to construct it using
several different bit fields. The smaller these bit fields are, the easier it
will be for the hardware to decode and execute the instruction.

The CPU designer’s goal, then, is to assign an appropriate number
of bits to the opcode’s instruction field and to its operand fields.

Choosing more bits for the instruction field lets the opcode encode
more instructions, just as choosing more bits for the operand fields lets
the opcode specify a larger number of operands (often memory

locations or registers). You might think that when encoding 2n different
instructions using n bits, you’d have very little leeway in choosing the

size of the instruction. It’s going to take n bits to encode those 2n

instructions; you can’t do it with any fewer. It is possible, however, to
use more than n bits. This might seem wasteful, but sometimes it’s
advantageous. Again, picking an appropriate instruction size is one of
the more important aspects of instruction set design.

10.2.1 Choosing Opcode Length

Opcode length isn’t arbitrary. Assuming that a CPU is capable of
reading bytes from memory, the opcode will probably have to be some
multiple of 8 bits long. If the CPU is not capable of reading bytes from
memory (most RISC CPUs read memory only in 32- or 64-bit chunks),
the opcode will be the same size as the smallest object the CPU can
read from memory at one time. Any attempt to shrink the opcode size
below this limit is futile. In this chapter, we’ll work with the first case:
opcodes that must have a length that is a multiple of 8 bits.

Another point to consider is the size of an instruction’s operands.
Some CPU designers include all operands in their opcode. Other CPU
designers don’t count operands like immediate constants or address
displacements as part of the opcode, and this is the approach we’ll take.

An 8-bit opcode can encode only 256 different instructions. Even if
we don’t count instruction operands as part of the opcode, having only
256 different instructions is a stringent limit. Though CPUs with 8-bit
opcodes exist, modern processors tend to have far more than 256
different instructions. Because opcodes must have a length that is a
multiple of 8 bits, the next smallest possible opcode size is 16 bits. A 2-
byte opcode can encode up to 65,536 different instructions, though the
instructions will be larger.

When reducing instruction size is an important design goal, CPU
designers often employ data compression theory. The first step is to

analyze programs written for a typical CPU and count how many times
each instruction occurs over a large number of applications. The second
step is to create a list of these instructions, sorted by their frequency of
use. Next, the designer assigns the 1-byte opcodes to the most
frequently used instructions; 2-byte opcodes to the next most frequently
used instructions; and opcodes of 3 or more bytes to the rarely used
instructions. Although this scheme requires opcodes with a maximum
size of 3 or more bytes, most of the actual instructions in a program will
use 1- or 2-byte opcodes. The average opcode length will be somewhere
between 1 and 2 bytes (let’s say 1.5 bytes), and a typical program will be
shorter than had all the instructions employed a 2-byte opcode (see
Figure 10-2).

Figure 10-2: Encoding instructions using a variable-length opcode

Although using variable-length instructions allows us to create
smaller programs, it comes at a price. First, decoding variable-length
instructions is a bit more complicated than decoding fixed-length
instructions. Before decoding a particular instruction field, the CPU
must first decode the instruction’s size, which consumes time. This may
affect the CPU’s overall performance by introducing delays in the
decoding step, which in turn limits the CPU’s maximum clock speed
(because those delays stretch out a single clock period, thus reducing the
CPU’s clock frequency). Variable-length instructions also make
decoding multiple instructions in a pipeline difficult, because the CPU
can’t easily determine the instruction boundaries in the prefetch queue.

For these reasons and others, most popular RISC architectures avoid
variable-length instructions. However, in this chapter, we’ll study a
variable-length approach, because saving memory is an admirable goal.

10.2.2 Planning for the Future

Before actually choosing the instructions to implement in a CPU,
designers must plan for the future. As explained earlier, the need for
new instructions will undoubtedly arise after the initial design, so it’s
wise to reserve some opcodes specifically for expansion purposes. Given
the instruction opcode format in Figure 10-2, it might not be a bad idea
to reserve one block of 64 1-byte opcodes, half (4,096) of the 2-byte
opcodes, and half (1,048,576) of the 3-byte opcodes for future use.
Giving up 64 of the very valuable 1-byte opcodes may seem extravagant,
but history suggests that such foresight is rewarded.

10.2.3 Choosing Instructions

The next step is to choose the instructions to implement. Even if nearly
half the instructions have been reserved for future expansion, that
doesn’t mean that all the remaining opcodes must be used to implement

instructions. A designer can leave a number of these instructions
unimplemented, effectively reserving them for the future as well. The
right approach is not to use up the opcodes as quickly as possible, but
rather to produce a consistent and complete instruction set given the
design compromises. It’s much easier to add an instruction later than it
is to remove one, so, for the first go-round, it’s generally better to go
with a simpler design.

First, choose some generic instruction types. Early in the design
process it’s important to limit your choices to very common
instructions. Other processors’ instruction sets are probably the best
place to look for suggestions. For example, most processors have the
following:

Data movement instructions (such as mov)

Arithmetic and logical instructions (such as add, sub, and, or, not)

Comparison instructions

Conditional jump instructions (generally used after the comparison
instructions)

Input/output instructions

Other miscellaneous instructions

The initial instruction set should comprise a reasonable number of
instructions that will allow programmers to write efficient programs,
without exceeding the silicon budget or violating other design
constraints. This requires CPU designers to make strategic decisions
based on careful research, experimentation, and simulation.

10.2.4 Assigning Opcodes to Instructions

After choosing the initial instructions, the CPU designer assigns
opcodes to them. The first step in this process is to group the
instructions according to the characteristics they share. For example, an
add instruction probably supports the exact same set of operands as the
sub instruction, so it makes sense to group these two instructions
together. On the other hand, the not and neg instructions each generally

require only a single operand. Therefore, it makes sense to put these
two instructions in the same group, but one separate from the add and
sub group.

Once all the instructions are grouped, the next step is to encode
them. A typical encoding scheme uses some bits to select the group,
some to select a particular instruction from that group, and some to
encode the operand types (such as registers, memory locations, and
constants). The number of bits needed to encode all this information
can have a direct impact on the instruction’s size, regardless of how
often the instruction is used. For example, suppose 2 bits are needed to
select an instruction’s group, 4 bits to select the instruction within that
group, and 6 bits to specify the instruction’s operand types. In this case,
the instructions are not going to fit into an 8-bit opcode. On the other
hand, if all we need is to push one of eight different registers onto the
stack, 4 bits will be enough to specify the push instruction group, and 3
bits will be enough to specify the register.

Encoding instruction operands with a minimal amount of space is
always a problem, because many instructions allow a large number of
operands. For example, the generic 32-bit 80x86 mov instruction allows

two operands and requires a 2-byte opcode.2 However, Intel noticed
that mov(disp, eax); and mov(eax, disp); occur frequently in programs, so it
created a special 1-byte version of these instructions to reduce their size
and, consequently, the size of programs that use them. Intel did not
remove the 2-byte versions of these instructions, though: there are two
different instructions that store EAX into memory and two different
instructions that load EAX from memory. A compiler or assembler will
always emit the shorter versions of each pair of instructions.

Intel made an important tradeoff with the mov instruction: it gave up
an extra opcode in order to provide a shorter version of one variant of
each instruction. Actually, Intel uses this trick all over the place to create
shorter and easier-to-decode instructions. Back in 1978, creating
redundant instructions to reduce program size was a good compromise
given the cost of memory. Today, however, a CPU designer would
probably use those redundant opcodes for different purposes.

10.3 The Y86 Hypothetical Processor

Because of enhancements made to the 80x86 processor family over
time, Intel’s design goals in 1978, and the evolution of computer
architecture, the encoding of 80x86 instructions is very complex and
somewhat illogical. In short, the 80x86 is not a good introductory
example of instruction set design. To work around this, we’ll discuss
instruction set design in two stages: first, we’ll develop a trivial
instruction set for the Y86, a hypothetical processor that is a small
subset of the 80x86, and then we’ll expand our discussion to the full
80x86 instruction set.

10.3.1 Y86 Limitations

The hypothetical Y86 processor is a very stripped-down version of the
80x86 CPUs. It supports only:

One operand size: 16 bits. This simplification frees us from having
to encode the operand size as part of the opcode (thereby reducing
the total number of opcodes we’ll need).

Four 16-bit registers: AX, BX, CX, and DX. This lets us encode
register operands with only 2 bits (versus the 3 bits the 80x86
family requires to encode eight registers).

A 16-bit address bus with a maximum of 65,536 bytes of
addressable memory.

These simplifications, plus a very limited instruction set, will allow
us to encode all Y86 instructions using a 1-byte opcode and a 2-byte
displacement/offset when applicable.

10.3.2 Y86 Instructions

Including both forms of the mov instruction, the Y86 CPU still provides
only 18 basic instructions. Seven of these instructions have two
operands, eight have one operand, and five have no operands at all. The
instructions are mov (two forms), add, sub, cmp, and, or, not, je, jne, jb, jbe, ja,
jae, jmp, get, put, and halt.

10.3.2.1 The mov Instruction

The mov instruction comes in two forms, merged into the same
instruction class:

mov(reg/memory/constant, reg);
mov(reg, memory);

In these forms, reg is either register ax, bx, cx, or dx; memory is an
operand specifying a memory location; and constant is a numeric
constant using hexadecimal notation.

10.3.2.2 Arithmetic and Logical Instructions

The arithmetic and logical instructions are as follows:

add(reg/memory/constant, reg);
sub(reg/memory/constant, reg);
cmp(reg/memory/constant, reg);
and(reg/memory/constant, reg);
or(reg/memory/constant, reg);

not(reg/memory);

The add instruction adds the value of the first operand to the value of
the second, storing the sum in the second operand. The sub instruction
subtracts the value of the first operand from the value of the second,
storing the difference in the second operand. The cmp instruction
compares the value of the first operand against the value of the second
and saves the result of the comparison for use by the conditional jump
instructions (described in the next section). The and and or instructions
compute bitwise logical operations between their two operands and
store the result in the second operand. The not instruction appears
separately because it supports only a single operand. not is the bitwise
logical operation that inverts the bits of its single memory or register
operand.

10.3.2.3 Control Transfer Instructions

The control transfer instructions interrupt the execution of instructions
stored in sequential memory locations and transfer control to

instructions stored at some other point in memory. They do this either
unconditionally, or conditionally based upon the result from a cmp

instruction. These are the control transfer instructions:

ja dest; // Jump if above (i.e., greater than)
jae dest; // Jump if above or equal (i.e., greater than or equal to)
jb dest; // Jump if below (i.e., less than)
jbe dest; // Jump if below or equal (i.e., less than or equal to)
je dest; // Jump if equal
jne dest; // Jump if not equal

jmp dest; // Unconditional jump

The first six instructions (ja, jae, jb, jbe, je, and jne) let you check the
result of the previous cmp instruction—that is, the result of the

comparison of that instruction’s first and second operands.3 For
example, if you compare the AX and BX registers with a cmp(ax, bx);
instruction and then execute the ja instruction, the Y86 CPU will jump
to the specified destination location if AX is greater than BX. If AX is
not greater than BX, control will fall through to the next instruction in
the program. In contrast to the first six instructions, the jmp instruction
unconditionally transfers control to the instruction at the destination
address.

10.3.2.4 Miscellaneous Instructions

The Y86 supports three instructions that do not have any operands:

get; // Read an integer value into the AX register
put; // Display the value in the AX register
halt; // Terminate the program

The get and put instructions let you read and write integer values: get
prompts the user for a hexadecimal value and then stores that value into
the AX register; put displays the value of the AX register in hexadecimal
format. The halt instruction terminates program execution.

10.3.3 Operand Types and Addressing Modes on the Y86

Before assigning opcodes, we need to look at the operands these
instructions support. The 18 Y86 instructions use five different operand

types: registers, constants, and three memory-addressing modes (the
indirect addressing mode, the indexed addressing mode, and the direct
addressing mode). See Chapter 6 for more details on these addressing
modes.

10.3.4 Encoding Y86 Instructions

Because a real CPU uses logic circuitry to decode the opcodes and act
appropriately on them, it’s not a good idea to arbitrarily assign opcodes
to machine instructions. Instead, a typical CPU opcode uses a certain
number of bits to denote the instruction class (such as mov, add, and sub),
and a certain number of bits to encode each operand.

A typical Y86 instruction takes the form shown in Figure 10-3.

Figure 10-3: Basic Y86 instruction encoding

The basic instruction is either 1 or 3 bytes long, and its opcode
consists of a single byte containing three fields. The first field,
consisting of the HO 3 bits, defines the instruction, and these 3 bits
provide eight possible combinations. As there are 18 different Y86
instructions, we’ll have to pull some tricks to handle the remaining 10
instructions.

10.3.4.1 Eight Generic Y86 Instructions

As you can see in Figure 10-3, seven of the eight basic opcodes encode
the or, and, cmp, sub, and add instructions, as well as both versions of the mov

instruction. The eighth, 000, is an expansion opcode. This special
instruction class, which we’ll return to shortly, provides a mechanism
that allows us to expand the set of available instructions.

To determine the full opcode for a particular instruction, you simply
select the appropriate bits for the iii, rr, and mmm fields (identified in
Figure 10-3). The rr field contains the destination register (except for
the version of the mov instruction whose iii field is 111), and the mmm field
encodes the source register. For example, to encode the mov(bx, ax);

instruction you would select iii = 110 (mov(reg, reg);), rr = 00 (ax), and mmm =
001 (bx). This produces the 1-byte instruction %11000001, or $c0.

Some Y86 instructions are larger than 1 byte. To illustrate why this is
necessary, take, for example, the instruction mov([1000], ax);, which loads
the AX register with the value stored at memory location $1000. The
encoding for the opcode is %11000110, or $c6. However, the encoding for
the mov([2000], ax); instruction is also $c6. Clearly these two instructions
do different things: one loads the AX register from memory location
$1000, while the other loads the AX register from memory location $2000.

In order to differentiate between instructions that encode an address
using the [xxxx] or [xxxx+bx] addressing modes, or to encode a constant
using the immediate addressing mode, you must append the 16-bit
address or constant to the instruction’s opcode. Within this 16-bit
address or constant, the LO byte follows the opcode in memory and the
HO byte follows the LO byte. So, the 3-byte encoding for mov([1000],
ax); would be $c6, $00, $10, and the 3-byte encoding for mov([2000], ax);
would be $c6, $00, $20.

10.3.4.2 The Special Expansion Opcode

The special opcode in Figure 10-3 allows the Y86 CPU to expand the
set of available instructions that can be encoded using a single byte.
This opcode handles several zero- and one-operand instructions, as
shown in Figures 10-4 and 10-5.

Figure 10-4 shows the encodings of four one-operand instruction
classes. The first 2-bit encoding for the rr field, %00, further expands the
instruction set by providing a way to encode the zero-operand

instructions shown in Figure 10-5. Five of these instructions are illegal
instruction opcodes; the three valid opcodes are the halt instruction,
which terminates program execution; the get instruction, which reads a
hexadecimal value from the user and stores it in the AX register; and the
put instruction, which outputs the value in the AX register.

Figure 10-4: Single-operand instruction encodings (iii = %000)

Figure 10-5: Zero-operand instruction encodings (iii = %000 and rr = %00)

The second 2-bit encoding for the rr field, %01, is also part of an
expansion opcode that provides all the Y86 jump instructions (see
Figure 10-6). The third rr field encoding, %10, is for the not instruction.

The fourth rr field encoding is currently unassigned. Any attempt to
execute an opcode with an iii field encoding of %000 and an rr field
encoding of %11 will halt the processor with an illegal instruction error.
As previously discussed, CPU designers often reserve unassigned
opcodes like this one so they can extend the instruction set in the future
(as Intel did when moving from the 80286 processor to the 80386 or
from the 32-bit x86 processors to the 64-bit x86-64 processors).

The seven jump instructions in the Y86 instruction set all take the
form jxx address;. The jmp instruction copies the 16-bit address value that
follows the opcode into the instruction pointer register, causing the
CPU to fetch the next instruction from the target address of the jmp.
The remaining six instructions—ja, jae, jb, jbe, je, and jne—test some
condition and, if it is true, copy the address value into the instruction
pointer register. The eighth opcode, %00001111, is another illegal opcode.
These encodings are shown in Figure 10-6.

Figure 10-6: Jump instruction encodings

10.3.5 Examples of Encoding Y86 Instructions

The Y86 processor does not execute instructions as human-readable
strings of characters like mov(ax, bx);. Instead, it fetches instructions as
bit patterns, such as $c1, from memory, then decodes and executes those
bit patterns. Human-readable instructions like mov(ax, bx); and add(5, cx);
must first be converted into binary representation, or machine code. This
section will explore this conversion.

10.3.5.1 The add Instruction

We’ll start our conversion with a very simple example, the add(cx, dx);
instruction. Once you’ve chosen the instruction, you look it up in one of
the opcode figures from the previous section. The add instruction is in
the first group (see Figure 10-3) and has an iii field of %101. The source
operand is cx, so the mmm field is %010. The destination operand is dx, so the
rr field is %11. Merging these bits produces the opcode %10111010, or $ba
(see Figure 10-7).

Figure 10-7: Encoding the add(cx, dx); instruction

Now consider the add(5, ax) instruction. Because it has an immediate
source operand (a constant), the mmm field will be %111 (see Figure 10-3).
The destination register operand is ax (%00), and the instruction class
field is %101, so the full opcode becomes %10100111, or $a7. However, we’re
not finished yet. We also have to include the 16-bit constant $0005 as
part of the instruction, with the LO byte of the constant following the
opcode, and the HO byte of the constant following its LO byte, because
the bytes are arranged in little-endian order. So, the sequence of bytes
in memory, from lowest address to highest address, is $a7, $05, $00 (see
Figure 10-8).

Figure 10-8: Encoding the add(5, ax); instruction

The add([2ff+bx], cx) instruction also contains a 16-bit constant that is
the displacement portion of the indexed addressing mode. To encode
this instruction, we use the following field values: iii = %101, rr = %10, and

mmm = %101. This produces the opcode byte %10110101, or $b5. The complete
instruction also requires the constant $2ff, so the full instruction is the
3-byte sequence $b5, $ff, $02 (see Figure 10-9).

Figure 10-9: Encoding the add([$2ff+bx], cx); instruction

Now consider add([1000], ax). This instruction adds the 16-bit
contents of memory locations $1000 and $1001 to the value in the AX
register. Once again, iii = %101 for the add instruction. The destination
register is ax, so rr = %00. Finally, the addressing mode is the
displacement-only addressing mode, so mmm = %110. This forms the
opcode %10100110, or $a6. The complete instruction is 3 bytes long,
because it must also encode the displacement (address) of the memory
location in the 2 bytes following the opcode. Therefore, the complete
3-byte sequence is $a6, $00, $10 (see Figure 10-10).

Figure 10-10: Encoding the add([1000], ax); instruction

The last addressing mode to consider is the register indirect
addressing mode, [bx]. The add([bx],bx) instruction uses the following
encoded values: mmm = %101, rr = %01 (bx), and mmm = %100 ([bx]). Because the
value in the BX register completely specifies the memory address,
there’s no need to attach a displacement field to the instruction’s
encoding. Hence, this instruction is only 1 byte long (see Figure 10-11).

Figure 10-11: Encoding the add([bx], bx); instruction

You use a similar approach to encode the sub, cmp, and, and or

instructions. The only difference between encoding these instructions
and the add instruction is the value you use for the iii field in the
opcode.

10.3.5.2 The mov Instruction

The Y86 mov instruction is special, because it comes in two forms. The
only difference between the encoding of the add instruction and the
encoding of the mov instruction’s first form (iii = %110) is the iii field.
This form of mov copies either a constant or data from the register or
memory address specified by the mmm field into the destination register
specified by the rr field.

The second form of the mov instruction (iii = %111) copies data from
the source register specified by the rr field to a destination memory
location specified by the mmm field. In this form of the mov instruction, the
source and destination meanings of the rr and mmm fields are reversed: rr
is the source field and mmm is the destination field. Another difference
between the two forms of mov is that in its second form, the mmm field may
contain only the values %100 ([bx]), %101 ([disp+bx]), and %110 ([disp]). The
destination values can’t be any of the registers encoded by mmm field
values in the range %000 through %011 or a constant encoded by an mmm
field of %111. These encodings are illegal because the first form of the mov
handles cases with a register destination, and because storing data into a
constant doesn’t make any sense.

10.3.5.3 The not Instruction

The not instruction is the only instruction with a single memory/register
operand that the Y86 processor supports. It has the following syntax:

not(reg);

or:

not(address);

where address represents one of the memory addressing modes ([bx],
[disp+bx], or [disp]). You may not specify a constant operand for the not
instruction.

Because not has only a single operand, it needs only the mmm field to
encode that operand. An iii field of %000 and an rr field of %10 identify
the not instruction. In fact, whenever the iii field contains 0, the CPU
knows that it has to decode bits beyond the iii field to identify the
instruction. In this case, the rr field specifies whether we’ve encoded not
or one of the other specially encoded instructions.

To encode an instruction like not(ax), specify %000 for the iii field and
%10 for the rr field, then encode the mmm field the same way you would
encode it for the add instruction. Because mmm = %000 for AX, not(ax) would
be encoded as %00010000, or $10 (see Figure 10-12).

Figure 10-12: Encoding the not(AX); instruction

The not instruction does not allow an immediate, or constant,
operand, so the opcode %00010111 ($17) is an illegal opcode.

10.3.5.4 The Jump Instructions

The Y86 jump instructions also use the special encoding, meaning that
the iii field for jump instructions is always %000. These instructions are
always 3 bytes long. The first byte, the opcode, specifies which jump
instruction to execute, and the next 2 bytes specify the address in
memory to which the CPU transfers control (if the condition is met, in

the case of the conditional jumps). There are seven different Y86 jump
instructions, six conditional jumps, and one unconditional jump, jmp. All
seven of these instructions set iii = %000 and rr = %01, so they differ only
by their mmm fields. The eighth possible opcode, with an mmm field value of
%111, is an illegal opcode (see Figure 10-6).

Encoding these instructions is relatively straightforward. Picking the
instruction you want to encode completely determines the opcode. The
opcode values fall in the range $08 through $0e ($0f is the illegal opcode).

The only field that requires some thought is the 16-bit operand that
follows the opcode. This field holds the address of the target instruction
to which the unconditional jump always transfers, and to which the
conditional jumps transfer if the transfer condition is true. To properly
encode this 16-bit operand, you must know the address of the opcode
byte of the target instruction. If you’ve already converted the target
instruction to binary form and stored it into memory, you’re all set—
just specify the target instruction’s address as the sole operand of the
jump instruction. On the other hand, if you haven’t yet written,
converted, and placed the target instruction into memory, knowing its
address would seem to require a bit of divination. Fortunately, you can
figure it out by computing the lengths of all the instructions between
the current jump instruction you’re encoding and the target instruction
—but unfortunately, this is an arduous task.

The best way to calculate the distance is to write all your instructions
down on paper, compute their lengths (which is easy, because all
instructions are either 1 or 3 bytes long depending on whether they
have a 16-bit operand), and then assign an appropriate address to each
instruction. Once you’ve done this, you’ll know the starting address for
each instruction, and you can put target address operands into your
jump instructions as you encode them.

10.3.5.5 The Zero-Operand Instructions

The remaining instructions, the zero-operand instructions, are the
easiest to encode. Because they have no operands, they are always 1 byte
long. These instructions always have iii = %000 and rr = %00, and mmm
specifies the particular instruction opcode (see Figure 10-5). Note that

the Y86 CPU leaves five of these instructions undefined (so we can use
these opcodes for future expansion).

10.3.6 Extending the Y86 Instruction Set

The Y86 CPU is a trivial CPU, suitable only for demonstrating how to
encode machine instructions. However, as with any good CPU, the Y86
design allows for expansion by adding new instructions.

You can extend the number of instructions in a CPU’s instruction set
by using either undefined or illegal opcodes. So, because the Y86 CPU
has several illegal and undefined opcodes, we’ll use them to expand the
instruction set.

Using undefined opcodes to define new instructions works best when
there are undefined bit patterns within an opcode group, and the new
instruction you want to add falls into that same group. For example, the
opcode %00011mmm falls into the same group as the not instruction, which
also has an iii field value of %000. If you decided that you really needed a
neg (negate) instruction, using the %00011mmm opcode makes sense because
you’d probably expect neg to use the same syntax as the not instruction.
Likewise, if you want to add a zero-operand instruction to the
instruction set, Y86 has five undefined zero-operand instructions for
you to choose from (%0000000..%00000100; see Figure 10-5). You’d just
appropriate one of these opcodes and assign your instruction to it.

Unfortunately, the Y86 CPU doesn’t have many illegal opcodes
available. For example, if you wanted to add the shl (shift left), shr (shift
right), rol (rotate left), and ror (rotate right) instructions as single-
operand instructions, there’s not enough space within the group of
single-operand instruction opcodes to do so (only %00011mmm is currently
open). Likewise, there are no two-operand opcodes open, so if you
wanted to add an xor (exclusive OR) instruction or some other two-
operand instruction, you’d be out of luck.

A common way to handle this dilemma, and one the Intel designers
have employed, is to use one of the undefined opcodes as a prefix
opcode byte. For example, the opcode $ff is illegal (it corresponds to a

mov(dx, constant) instruction), but we can use it as a special prefix byte to

further expand the instruction set (see Figure 10-13).4

Figure 10-13: Using a prefix byte to extend the instruction set

Whenever the CPU encounters a prefix byte in memory, it reads and
decodes the next byte in memory as the actual opcode. However, it
doesn’t treat the second byte as it would a standard opcode that did not
follow a prefix byte. Instead, it allows the CPU designer to create a
completely new opcode scheme, independent of the original instruction
set. A single-expansion opcode byte allows CPU designers to add up to
256 more instructions to the instruction set. For even more
instructions, designers can use additional illegal opcode bytes (in the
original instruction set) to add still more expansion opcodes, each with
its own independent instruction set; or they can follow the opcode
expansion prefix byte with a 2-byte opcode (yielding up to 65,536 new
instructions); or they can execute any other scheme they can dream up.

Of course, one big drawback of this approach is that it increases the
size of the new instructions by 1 byte, because each instruction now
requires the prefix byte as part of the opcode. This also increases the
cost of the circuitry (since decoding prefix bytes and multiple
instruction sets is fairly complex), so you don’t want to use this scheme
for the basic instruction set. Nevertheless, it is a good way to expand the
instruction set when you’ve run out of opcodes.

10.4 Encoding 80x86 Instructions

The Y86 processor is simple to understand; we can easily encode
instructions by hand for it, and it’s a great vehicle for learning how to
assign opcodes. It’s also a purely hypothetical device intended only as a

teaching tool. So, it’s time to take a look at the machine instruction
format for a real CPU: the 80x86. After all, the programs you write will
run on a real CPU, so to fully appreciate what your compilers are doing
with your code—so you can choose the best statements and data
structures when writing that code—you need to understand how real
instructions are encoded.

Even if you’re using a different CPU, studying the 80x86 instruction
encoding is helpful. They don’t call the 80x86 a complex instruction set
computer (CISC) chip for nothing. Although more complex instruction
encodings do exist, no one would challenge the assertion that it’s one of
the more complex instruction sets in common use today. Therefore,
exploring it will provide valuable insight into the operation of other
real-world CPUs.

The generic 80x86 32-bit instruction takes the form shown in Figure

10-14.5

Figure 10-14: 80x86 32-bit instruction encoding

NOTE

Although this diagram seems to imply that instructions can be up to 16
bytes long, 15 bytes is actually the limit.

The prefix bytes are not the same as the opcode expansion prefix
byte that we discussed in the previous section. Instead, the 80x86 prefix
bytes modify the behavior of existing instructions. An instruction may
have a maximum of four prefix bytes attached to it, but the 80x86
supports more than four different prefix values. The behaviors of many
prefix bytes are mutually exclusive, and the results of an instruction will
be undefined if you prepend a pair of mutually exclusive prefix bytes to
it. We’ll take a look at a couple of these prefix bytes in a moment.

The (32-bit) 80x86 supports two basic opcode sizes: a standard 1-
byte opcode and a 2-byte opcode consisting of a $0f opcode expansion
prefix byte and a second byte specifying the actual instruction. One way
to think of this opcode expansion prefix byte is as an 8-bit extension of
the iii field in the Y86 encoding. This enables the encoding of up to
512 different instruction classes, although the 80x86 doesn’t yet use
them all. In reality, various instruction classes use certain bits in this
opcode expansion prefix byte for decidedly non-instruction-class
purposes. For example, consider the add instruction opcode shown in
Figure 10-15.

Bit 1 (d) specifies the direction of the transfer. If this bit is 0, then the
destination operand is a memory location, such as in add(al, [ebx]);. If
this bit is 1, the destination operand is a register, as in add([ebx], al);.

Figure 10-15: 80x86 add opcode

Bit 0 (s) specifies the size of the operands the add instruction operates
upon. There’s a problem here, however. The 32-bit 80x86 family

supports up to three different operand sizes: 8-bit operands, 16-bit
operands, and 32-bit operands. With a single size bit, the instruction
can encode only two of these three different sizes. In 32-bit operating
systems, the vast majority of operands are either 8 bits or 32 bits, so the
80x86 CPU uses the size bit in the opcode to encode those sizes. For
16-bit operands, which occur less frequently than 8-bit or 32-bit
operands, Intel uses a special opcode prefix byte to specify the size. As
long as instructions that have 16-bit operands occur less than one out of
every eight instructions (which is generally the case), this is more
compact than adding another bit to the instruction’s size. Using a size
prefix byte allowed Intel’s designers to extend the number of operand
sizes without having to change the instruction encoding inherited from
the original 16-bit processors in this CPU family.

Note that the AMD/Intel 64-bit architectures go even crazier with
opcode prefix bytes. However, the CPU operates in a special 64-bit
mode; effectively, the 64-bit 80x86 CPUs (often called the X86-64
CPUs) have two completely different instruction sets, each with its own
encoding. The X86-64 CPUs can switch between 64- and 32-bit modes
to handle programs written in either of the different instruction sets.
The encoding in this chapter covers the 32-bit variant; see the Intel or
AMD documentation for details on the 64-bit version.

10.4.1 Encoding Instruction Operands

The mod-reg-r/m byte (see Figure 10-14) provides the encoding for
instruction operands by specifying the base addressing mode used to
access them as well as their size. This byte contains the fields shown in
Figure 10-16.

Figure 10-16: mod-reg-r/m byte

The reg field almost always specifies an 80x86 register. However,
depending on the instruction, the register specified by reg can be either
the source or the destination operand. To distinguish between the two,
many instructions’ upcodes include the d (direction) field, which
contains a value of 0 when reg is the source and a value of 1 when it’s the
destination operand.

This field uses the 3-bit register encodings found in Table 10-1. As
just discussed, the size bit in the instruction’s opcode indicates whether
the reg field specifies an 8- or 32-bit register (when operating under a
modern, 32-bit operating system). To make the reg field specify a 16-bit
register, you must set the size bit in the opcode to 1, as well as adding an
extra prefix byte.

Table 10-1: reg Field Encodings

reg value Register if data
size is 8 bits

Register if data
size is 16 bits

Register if data
size is 32 bits

%000 al ax eax

%001 cl cx ecx

%010 dl dx edx

%011 bl bx ebx

%100 ah sp esp

%101 ch bp ebp

%110 dh si esi

%111 bh di edi

With the d bit in the opcode of a two-operand instruction indicating
whether the reg field contains the source or destination operand, the mod
and r/m fields together specify the other of the two operands. In the case
of a single-operand instruction like not or neg, the reg field contains an
opcode extension, and mod and r/m combine to specify the only operand.
The operand addressing modes specified by the mod and r/m fields are
listed in Tables 10-2 and 10-3.

Table 10-2: mod Field Encodings

mod Description

%00 Specifies register-indirect addressing mode (with two
exceptions: scaled-index [sib] addressing modes with no
displacement operand when r/m = %100; and displacement-
only addressing mode when r/m = %101).

%01 Specifies that a 1-byte signed displacement follows the
addressing mode byte(s).

%10 Specifies that a 1-byte signed displacement follows the
addressing mode byte(s).

%11 Specifies direct register access.

Table 10-3: mod-r/m Encodings

mod r/m Addressing mode

%00 %000 [eax]

%01 %000 [eax+disp8]

%10 %000 [eax+disp32]

%11 %000 al, ax, or eax

%00 %001 [ecx]

%01 %001 [ecx+disp8]

%10 %001 [ecx+disp32]

%11 %001 cl, cx, or ecx

%00 %010 [edx]

%01 %010 [edx+disp8]

%10 %010 [edx+disp32]

%11 %010 dl, dx, or edx

%00 %011 [ebx]

%01 %011 [ebx+disp8]

%10 %011 [ebx+disp32]

%11 %011 bl, bx, or ebx

%00 %100 Scaled-index (sib) mode

%01 %100 sib + disp8 mode

%10 %100 sib + disp32 mode

%11 %100 ah, sp, or esp

%00 %101 Displacement-only
mode (32-bit
displacement)

%01 %101 [ebp+disp8]

%10 %101 [ebp+disp32]

%11 %101 ch, bp, or ebp

%00 %110 [esi]

%01 %110 [esi+disp8]

%10 %110 [esi+disp32]

%11 %110 dh, si, or esi

%00 %111 [edi]

%01 %111 [edi+disp8]

%10 %111 [edi+disp32]

%11 %111 bh, di, or edi

There are a couple of interesting things to note about Tables 10-2
and 10-3. First, there are two different forms of the [reg+disp] addressing
modes: one form with an 8-bit displacement and one form with a 32-bit
displacement. Addressing modes whose displacement falls in the range –
128 through +127 require only a single byte after the opcode to encode

the displacement. Instructions with a displacement that falls within this
range will be shorter and sometimes faster than instructions whose
displacement values are not within this range and thus require 4 bytes
after the opcode.

The second thing to note is that there is no [ebp] addressing mode. If
you look at the entry in Table 10-3 where this addressing mode logically
belongs (where r/m is %101 and mod is %00), you’ll find that its slot is
occupied by the 32-bit displacement-only addressing mode. The basic
encoding scheme for addressing modes didn’t allow for a displacement-
only addressing mode, so Intel “stole” the encoding for [ebp] and used
that for the displacement-only mode. Fortunately, anything you can do
with the [ebp] addressing mode you can also do with the [ebp+disp8]

addressing mode by setting the 8-bit displacement to 0. While such an
instruction is a bit longer than it would otherwise need to be if the [ebp]
addressing mode existed, the same capabilities are still there. Intel
wisely chose to replace this particular register-indirect addressing mode,
anticipating that programmers would use it less often than the other
register-indirect addressing modes.

Another thing you’ll notice missing from this table are addressing
modes of the form [esp], [esp+disp8], and [esp+disp32]. Intel’s designers

borrowed the encodings for these three addressing modes to support
the scaled-index addressing modes they added to their 32-bit processors in
the 80x86 family.

If r/m = %100 and mod = %00, this specifies an addressing mode of the
form [reg132+reg232*n]. This scaled-index addressing mode computes the

final address in memory as the sum of reg2 multiplied by n (n = 1, 2, 4, or

8) and reg1. Programs most often use this addressing mode when reg1 is a

pointer holding the base address of an array of bytes (n = 1), words (n =
2), double words (n = 4), or quad words (n = 8), and reg2 holds the index

into that array.

If r/m = %100 and mod = %01, this specifies an addressing mode of the
form [reg132+reg232*n+disp8]. This scaled-index addressing mode computes

the final address in memory as the sum of reg2 multiplied by n (n = 1, 2, 4,

or 8), reg1, and the 8-bit signed displacement (sign-extended to 32 bits).

Programs most often use this addressing mode when reg1 is a pointer

holding the base address of an array of records, reg2 holds the index into

that array, and disp8 provides the offset to a desired field in the record.

If r/m = %100 and mod = %10, this specifies an addressing mode of the
form [reg132+reg232*n+disp32]. This scaled-index addressing mode

computes the final address in memory as the sum of reg2 multiplied by n

(n = 1, 2, 4, or 8), reg1, and the 32-bit signed displacement. Programs most

often use this addressing mode to index into static arrays of bytes,
words, double words, or quad words.

If values corresponding to one of the sib modes appear in the mod and
r/m fields, the addressing mode is a scaled-index addressing mode with a
second byte (the sib) following the mod-reg-r/m byte, though don’t forget
that the mod field still specifies a displacement size of 0, 1, or 4 bytes.
Figure 10-17 shows the layout of this extra sib, and Tables 10-4, 10-5,
and 10-6 explain the values for each of the sib fields.

Figure 10-17: The sib (scaled-index byte) layout

Table 10-4: Scale Values

Scale value Index * scale value

%00 Index * 1

%01 Index * 2

%10 Index * 4

%11 Index * 8

Table 10-5: Register Values for sib Encoding

Index valueRegister

%000 EAX

%001 ECX

%010 EDX

%011 EBX

%100 Illegal

%101 EBP

%110 ESI

%111 EDI

Table 10-6: Base Register Values for sib Encoding

Base value Register

%000 EAX

%001 ECX

%010 EDX

%011 EBX

%100 ESP

%101 Displacement only if mod = %00, EBP
if mod = %01 or %10

%110 ESI

%111 EDI

The mod-reg-r/m and sib bytes are complex and convoluted, no
question about that. The reason is that Intel reused its 16-bit addressing
circuitry when it switched to the 32-bit format rather than simply
abandoning it at that point. There were good hardware reasons for
retaining it, but the result is a complex scheme for specifying addressing
modes. As you can imagine, things got even worse when Intel and AMD
developed the x86-64 architecture.

Note that if the r/m field of the mod-reg-r/m byte contains %100 and mod
does not contain %11, the addressing mode is a sib mode rather than the
expected [esp], [esp+disp8], or [esp+disp32] mode. In this case the compiler

or assembler will emit an extra sib byte immediately following the mod-
reg-r/m byte. Table 10-7 lists the various combinations of legal scaled-
index addressing modes on the 80x86.

In each of the addressing modes listed in Table 10-7, the mod field of
the mod-reg-r/m byte specifies the size of the displacement (0, 1, or 4
bytes). The base and index fields of the sib specify the base and index
registers, respectively. Note that this addressing mode does not allow
the use of ESP as an index register. Presumably, Intel left this particular
mode undefined to allow for extending the addressing modes to 3 bytes
in a future version of the CPU, although doing so seems a bit extreme.

Just as the mod-reg-r/m encoding replaced the [ebp] addressing mode
with a displacement-only mode, the sib addressing format replaces the
[ebp+index*scale] mode with a displacement-plus index mode (that is, no
base register). If it turns out that you really need to use the
[ebp+index*scale] addressing mode, you’ll have to use the
[disp8+ebp+index*scale] mode instead, specifying a 1-byte displacement

value of 0.

Table 10-7: The Scaled-Index Addressing Modes

mod Index Legal scaled-index

addressing modes6

%00

Base ° %101

%000 [base32+eax*n]

%001 [base32+ecx*n]

%010 [base32+edx*n]

%011 [base32+ebx*n]

%100 n/a7

%101 [base32+ebp*n]

%110 [base32+esi*n]

%111 [base32+edi*n]

%00

Base = %1018

%000 [disp32+eax*n]

%001 [disp32+ecx*n]

%010 [disp32+edx*n]

%011 [disp32+ebx*n]

%100 n/a

%101 [disp32+ebp*n]

%110 [disp32+esi*n]

%111 [disp32+edi*n]

%01 %000 [disp8+base32+eax*n]

%001 [disp8+base32+ecx*n]

%010 [disp8+base32+edx*n]

%011 [disp8+base32+ebx*n]

%100 n/a

%101 [disp8+base32+ebp*n]

%110 [disp8+base32+esi*n]

%111 [disp8+base32+edi*n]

%10 %000 [disp32+base32+eax*n]

%001 [disp32+base32+ecx*n]

%010 [disp32+base32+edx*n]

%011 [disp32+base32+ebx*n]

%100 n/a

%101 [disp32+base32+ebp*n]

%110 [disp32+base32+esi*n]

%111 [disp32+base32+edi*n]

10.4.2 Encoding the add Instruction

To help you figure out how to encode an instruction using this complex
scheme, let’s look at an example of the 80x86 add instruction using
various addressing modes. The add opcode is either $00, $01, $02, or $03,
depending on its direction and size bits (see Figure 10-15). Figures 10-
18 through 10-25 show how to encode various forms of the add

instruction using different addressing modes.

Figure 10-18: Encoding the add(al, cl); instruction

There is an interesting side effect of the mod-reg-r/m organization and
direction bit: some instructions have two different legal opcodes. For
example, we could also encode the add(al, cl); instruction shown in
Figure 10-18 as $02, $c8 by reversing the positions of the AL and CL
registers in the reg and r/m fields and then setting the d bit (bit 1) in the
opcode to 1. This applies to all instructions with two register operands
and a direction bit, such as the add(eax, ecx); instruction in Figure 10-19,
which can also be encoded as $03, $c8.

Figure 10-19: Encoding the add(eax, ecx); instruction

Figure 10-20: Encoding the add(disp, edx); instruction

Figure 10-21: Encoding the add([ebx], edi); instruction

Figure 10-22: Encoding the add([esi+disp8], eax); instruction

Figure 10-23: Encoding the add([ebp+disp32], ebx); instruction

Figure 10-24: Encoding the add([disp32+eax*1], ebp); instruction

Figure 10-25: Encoding the add([ebx+edi*4], ecx); instruction

10.4.3 Encoding Immediate (Constant) Operands on the x86

You may have noticed that the mod-reg-r/m and sib bytes don’t contain any
bit combinations you can use to specify that an instruction contains an
immediate operand. The 80x86 uses a completely different opcode to
specify an immediate operand. Figure 10-26 shows the basic encoding
for an add immediate instruction.

Figure 10-26: Encoding an add immediate instruction

There are three major differences between the encoding of the add
immediate instruction and the standard add instruction. First, and most
important, the opcode has a 1 in the HO bit position. This tells the
CPU that the instruction has an immediate constant. This change
alone, however, does not tell the CPU that it must execute an add
instruction, as you’ll see shortly.

The second difference is that there’s no direction bit in the opcode.
This makes sense because you cannot specify a constant as a destination
operand. Therefore, the destination operand is always the location
specified by the mod and r/m bits in the mod-reg-r/m field.

In place of the direction bit, the opcode has a sign-extension (x) bit.
For 8-bit operands, the CPU ignores the sign-extension bit. For 16-bit
and 32-bit operands, the sign-extension bit specifies the size of the
constant following the add instruction. If the sign-extension bit contains
0, the constant is already the same size as the operand (either 16 or 32
bits). If the sign-extension bit contains 1, the constant is a signed 8-bit
value, and the CPU sign-extends this value to the appropriate size
before adding it to the operand. This little trick often makes programs
much shorter, because you commonly add small constants to 16- or 32-
bit destination operands.

The third difference between the add immediate and the standard add
instruction is the meaning of the reg field in the mod-reg-r/m byte. Because
the instruction implies that the source operand is a constant, and the
mod-r/m fields specify the destination operand, the instruction does not
need to use the reg field to specify an operand. Instead, the 80x86 CPU
uses these 3 bits as an opcode extension. For the add immediate
instruction, these 3 bits must contain 0, and another bit pattern would
correspond to a different instruction.

When a constant is added to a memory location, any displacement
associated with that memory location immediately precedes the
constant data in the instruction sequence.

10.4.4 Encoding 8-, 16-, and 32-Bit Operands

When designing the 8086, Intel used one opcode bit (s) to specify
whether the operand sizes were 8 or 16 bits. Later, when it extended the
80x86 architecture to 32 bits with the introduction of the 80386, Intel
had a problem: with this single operand size bit, it could encode only
two sizes, but it needed to encode three (8, 16, and 32 bits). To solve
this problem, Intel used an operand-size prefix byte.

Intel studied its instruction set and concluded that in a 32-bit
environment, programs were likely to use 8-bit and 32-bit operands far
more often than 16-bit operands. Therefore, it decided to let the size
bit (s) in the opcode select between 8- and 32-bit operands, as described
in the previous sections. Although modern 32-bit programs don’t use
16-bit operands very often, they do need them now and then. So, Intel
lets you prefix a 32-bit instruction with the operand-size prefix byte,
whose value is $66, and this prefix byte tells the CPU that the operands
contain 16-bit data rather than 32-bit data.

You do not have to explicitly add an operand-size prefix byte to your
16-bit instructions; the assembler or compiler takes care of this
automatically for you. However, do keep in mind that whenever you use
a 16-bit object in a 32-bit program, the instruction is 1 byte longer
because of the prefix value. Therefore, you should be careful about
using 16-bit instructions if size and, to a lesser extent, speed are
important.

10.4.5 Encoding 64-Bit Operands

When running in 64-bit mode, Intel and AMD x84-64 processors use
special opcode prefix bytes to specify 64-bit registers. There are 16
REX opcode bytes that handle 64-bit operands and addressing modes.
Because there weren’t 16 single-byte opcodes available, AMD (who
designed the instruction set) chose to repurpose 16 existing opcodes
(the 1-byte opcode variants for the inc(reg) and dec(reg) instructions).
There are still 2-byte variants of these instructions, so rather than
eliminating the instructions altogether, AMD just removed the 1-byte
versions. However, standard 32-bit code (a lot of which certainly uses
those 1-byte increment and decrement instructions) can no longer run
on the 64-bit model. That’s why AMD and Intel introduced new 32-bit

and 64-bit operation modes—so the CPUs could run both older 32-bit
code and newer 64-bit code on the same piece of silicon.

10.4.6 Alternate Encodings for Instructions

As noted earlier in this chapter, one of Intel’s primary design goals for
the 80x86 was to create an instruction set that allowed programmers to
write very short programs in order to save memory, which was precious
at the time. One way Intel did this was to create alternative encodings of
some very commonly used instructions. These alternative instructions
were shorter than their standard counterparts, and Intel hoped that
programmers would make extensive use of the shorter versions, thereby
creating shorter programs.

A good example of these alternative instructions are the add(constant,
accumulator); instructions, where the accumulator is al, ax, or eax. The
80x86 provides 1-byte opcodes for add(constant, al); and add(constant,

eax);, which are $04 and $05, respectively. With a 1-byte opcode and no
mod-reg-r/m byte, these instructions are 1 byte shorter than their standard
add immediate counterparts. The add(constant, ax); instruction requires an
operand-size prefix, so its opcode is effectively 2 bytes. However, this is
still 1 byte shorter than the corresponding standard add immediate.

You don’t have to specify anything special to use these instructions.
Any decent assembler or compiler will automatically choose the shortest
possible instruction it can use when translating your source code into
machine code. However, you should note that Intel provides alternative
encodings only for the accumulator registers. Therefore, if you have a
choice of several instructions to use and the accumulator registers are
among these choices, the AL, AX, and EAX registers are often your best
bet. However, this option is usually available only to assembly language
programmers.

10.5 Implications of Instruction Set Design to the
Programmer

Only by knowing the computer’s architecture and, in particular, how the
CPU encodes machine instructions, can you make the most efficient use
of the machine’s instructions. By studying instruction set design, you
can gain a clear understanding of the following:

Why some instructions are shorter than others

Why some instructions are faster than others

Which constant values the CPU can handle efficiently

Whether constants are more efficient than memory locations

Why certain arithmetic and logical operations are more efficient
than others

Which types of arithmetic expressions are more easily translated
into machine code than other types

Why code is less efficient if it transfers control over a large distance
in the object code

. . . and so on.

By studying instruction set design, you become more aware of the
implications of the code you write (even in an HLL) in terms of
efficient operation on the CPU. Armed with this knowledge, you’ll be
better equipped to write great code.

10.6 For More Information

Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

Intel. “Intel® 64 and IA-32 Architectures Software Developer
Manuals.” Last updated November 11, 2019.
https://software.intel.com/en-us/articles/intel-sdm/.

https://software.intel.com/en-us/articles/intel-sdm/

11
MEMORY ARCHITECTURE AND

ORGANIZATION

This chapter discusses memory hierarchy—the different types and
performance levels of memory found in computer systems. Although
programmers often treat all forms of memory as though they are
equivalent, using memory improperly can have a negative impact on
performance. In this chapter you’ll see how to make the best use of the
memory hierarchy within your programs.

11.1 The Memory Hierarchy

Most modern programs benefit by having a large amount of very fast
memory. Unfortunately, as a memory device gets larger, it tends to be
slower. For example, cache memories are very fast, but they are also
small and expensive. Main memory is inexpensive and large, but it is
slow, requiring wait states. The memory hierarchy provides a way to
compare the cost and performance of different types of memory. Figure
11-1 shows one variant of the memory hierarchy.

Figure 11-1: The memory hierarchy

At the top level of the memory hierarchy are the CPU’s general-
purpose registers. Registers provide the fastest access to data possible on
the CPU. The register file is also the smallest memory object in the
hierarchy (for example, the 32-bit 80x86 has just eight general-purpose
registers, and the x86-64 variants have up to 16 general-purpose
registers). Because it is impossible to add more registers to a CPU, they
are also the most expensive memory locations. Even if we count the
FPU, MMX/AltiVec/Neon, SSE/SIMD, AVX/2/-512, and other CPU
registers in this portion of the memory hierarchy, it does not change the
fact that CPUs have a very limited number of registers, and the cost per
byte of register memory is quite high.

Working our way down, the level-one (L1) cache system is the next
highest performance subsystem in the memory hierarchy. As with

registers, the CPU manufacturer usually provides the L1 cache on the
chip, and you cannot expand it. Its size is usually small, typically
between 4KB and 32KB, though this is much larger than the register
memory available on the CPU chip. Although the L1 cache size is fixed
on the CPU, the cost per cache byte is much lower than the cost per
register byte, because the cache contains more storage than is available
in all the registers combined, and the system designer’s cost for both
memory types equals the price of the CPU.

Level-two (L2) cache is present on some CPUs, but not all. For
example, Intel i3, i5, i7, and i9 CPUs include an L2 cache as part of
their package, but some of Intel’s older Celeron chips do not. The L2
cache is generally much larger than the L1 cache (for example, 256KB
to 1MB as compared with 4KB to 32KB). On CPUs with a built-in L2
cache, the cache is not expandable. It still costs less than the L1 cache,
because we amortize the cost of the CPU across all the bytes in the two
caches, and the L2 cache is larger.

Level-three (L3) cache is present on all but the oldest Intel processors.
The L3 cache is larger still than the L2 cache (typically 8MB on later
Intel chips).

The main-memory subsystem comes below the L3 (or L2, if there is
no L3) cache system in the memory hierarchy. Main memory is the
general-purpose, relatively low-cost memory—typically DRAM or
something similarly inexpensive—found in most computer systems.
However, there are many differences in main-memory technology that
result in variations in speed. The main-memory types include standard
DRAM, synchronous DRAM (SDRAM), double data rate DRAM
(DDRAM), DDR3, DDR4, and so on. Generally, you won’t find a
mixture of these technologies in the same computer system.

Below main memory is the NUMA memory subsystem. NUMA,
which stands for Non-Uniform Memory Access, is a bit of a misnomer.
The term implies that different types of memory have different access
times, which describes the entire memory hierarchy; in Figure 11-1,
however, it refers to blocks of memory that are electronically similar to
main memory but, for one reason or another, operate significantly
slower. A good example of NUMA is the memory on a video (or

graphics) card. Another example is flash memory, which has
significantly slower access and transfer times than standard
semiconductor RAM. Other peripheral devices that provide a block of
memory to be shared between the CPU and the peripheral usually have
slow access times as well.

Most modern computer systems implement a virtual memory scheme
that simulates main memory using a mass storage disk drive. A virtual
memory subsystem is responsible for transparently copying data
between the disk and main memory as programs need it. While disks
are significantly slower than main memory, the cost per bit is also three
orders of magnitude lower for disks. Therefore, it’s far less expensive to
keep data on magnetic storage or on a solid-state drive (SSD) than in
main memory.

File storage memory also uses disk media to store program data.
However, whereas the virtual memory subsystem is responsible for
transferring data between disk (or SSD) and main memory as programs
require, it is the program’s responsibility to store and retrieve file
storage data. In many instances, it’s a bit slower to use file storage
memory than it is to use virtual memory, which is why file storage

memory is lower in the memory hierarchy.1

Next comes network storage. At this level in the memory hierarchy,
programs keep data on a different memory system that connects to the
computer system via a network. Network storage can be virtual
memory, file storage memory, or distributed shared memory (DSM),
where processes running on different computer systems share data
stored in a common block of memory and communicate changes to that
block across the network.

Virtual memory, file storage, and network storage are examples of
online memory subsystems. Memory access within these memory
subsystems is slower than accessing main memory. However, when a
program requests data from one of these three online memory
subsystems, the memory device will respond to the request as quickly as
its hardware allows. This is not true for the remaining levels in the
memory hierarchy.

The near-line and offline storage subsystems may not be ready to
respond immediately to a program’s request for data. An offline storage
system keeps its data in electronic form (usually magnetic or optical) but
on storage media that are not necessarily connected to the computer
system that needs the data. Examples of offline storage include magnetic
tapes, unattached external disk drives, disk cartridges, optical disks, USB
memory sticks, SD cards, and floppy diskettes. When a program needs
to access data stored offline, it must stop and wait for someone or
something to mount the appropriate media on the computer system.
This delay can be quite long (perhaps the computer operator decided to
take a coffee break?).

Near-line storage uses the same types of media as offline storage, but
rather than requiring an external source to mount the media before its
data is available for access, the near-line storage system holds the media
in a special robotic jukebox device that can automatically mount the
desired media when a program requests it.

Hardcopy storage is simply a printout, in one form or another, of
data. If a program requests some data, and that data exists only in
hardcopy form, someone will have to manually enter the data into the
computer. Paper or other hardcopy media is probably the least
expensive form of memory, at least for certain data types.

11.2 How the Memory Hierarchy Operates

The whole point of the memory hierarchy is to allow reasonably fast
access to a large amount of memory. If only a little memory were
necessary, we’d use fast static RAM (the circuitry that cache memory
uses) for everything. If speed wasn’t an issue, we’d use virtual memory
for everything. The memory hierarchy enables us to take advantage of
the principles of spatial locality of reference and temporality of reference to
move frequently referenced data into fast memory and leave rarely
referenced data in slower memory. Unfortunately, during the course of
a program’s execution, the sets of oft-used and seldom-used data
change. We can’t simply distribute our data throughout the various
levels of the memory hierarchy when the program starts and then leave

the data alone as the program executes. Instead, the different memory
subsystems need to be able to accommodate changes in spatial locality
or temporality of reference during the program’s execution by
dynamically moving data between subsystems.

Moving data between the registers and memory is strictly a program
function. The program loads data into registers and stores register data
into memory using machine instructions like mov. It is the programmer’s
or compiler’s responsibility to keep heavily referenced data in the
registers as long as possible; the CPU will not automatically place data
in general-purpose registers in order to achieve higher performance.

Programs explicitly control access to registers, main memory, and
those memory-hierarchy subsystems only at the file storage level and
below. Programs are largely unaware of the memory hierarchy between
the register level and main memory. In particular, cache access and
virtual memory operations are generally transparent to the program;
that is, access to these levels of the memory hierarchy usually occurs
without any intervention on a program’s part. Programs simply access
main memory, and the hardware and operating system take care of the
rest.

Of course, if a program always accesses main memory, it will run
slowly, because modern DRAM main-memory subsystems are much
slower than the CPU. The job of the cache memory subsystems and of
the CPU’s cache controller is to move data between main memory and
the L1, L2, and L3 caches so that the CPU can quickly access oft-
requested data. Likewise, it is the virtual memory subsystem’s
responsibility to move oft-requested data from hard disk to main
memory (if even faster access is needed, the caching subsystem will then
move the data from main memory to cache).

With few exceptions, most memory subsystem accesses take place
transparently between one level of the memory hierarchy and the level
immediately below or above it. For example, the CPU rarely accesses
main memory directly. Instead, when the CPU requests data from
memory, the L1 cache subsystem takes over. If the requested data is in
the cache, the L1 cache subsystem returns the data to the CPU, and
that concludes the memory access. If the requested data isn’t present in

the L1 cache, the L1 cache subsystem passes the request down to the L2
cache subsystem. If the L2 cache subsystem has the data, it returns this
data to the L1 cache, which then returns the data to the CPU. Requests
for the same data in the near future will be fulfilled by the L1 cache
rather than the L2 cache, because the L1 cache now has a copy of the
data. After the L2 cache, the L3 cache kicks in.

If none of the L1, L2, or L3 cache subsystems have a copy of the
data, the request goes to main memory. If the data is found in main
memory, the main-memory subsystem passes it to the L3 cache, which
then passes it to the L2 cache, which then passes it to the L1 cache,
which then passes it to the CPU. Once again, the data is now in the L1
cache, so any requests for this data in the near future will be fulfilled by
the L1 cache.

If the data is not present in main memory but exists in virtual
memory on some storage device, the operating system takes over, reads
the data from disk or some other device (such as a network storage
server), and passes the data to the main-memory subsystem. Main
memory then passes the data through the caches to the CPU as
previously described.

Because of spatial locality and temporality, the largest percentage of
memory accesses takes place in the L1 cache subsystem. The next
largest percentage of accesses takes place in the L2 cache subsystem.
After that, the L3 cache system handles most accesses. The most
infrequent accesses take place in virtual memory.

11.3 Relative Performance of Memory Subsystems

Looking again at Figure 11-1, notice that the speed of the various
memory hierarchy levels increases as you go up. Exactly how much
faster is each successive level in the memory hierarchy? The short
answer is that the speed gradient isn’t uniform. The speed difference
between any two contiguous levels ranges from “almost no difference”
to “four orders of magnitude.”

Registers are, unquestionably, the best place to store data you need
to access quickly. Accessing a register never requires any extra time, and
most machine instructions that access data can access register data.
Furthermore, instructions that access memory often require extra bytes
(displacement bytes) as part of the instruction encoding. This makes
instructions longer and, often, slower.

Intel’s instruction timing tables for the 80x86 claim that an
instruction like mov(someVar, ecx); should run as fast as an instruction like
mov(ebx, ecx);. However, if you read the fine print, you’ll find that Intel
makes this claim based on several assumptions about the former
instruction. First, it assumes that someVar’s value is present in the L1
cache memory. If it is not, the cache controller has to look in the L2
cache, in the L3 cache, in main memory, or, worse, on disk in the virtual
memory subsystem. All of a sudden, an instruction that should execute
in 0.25 nanoseconds on a 4 GHz processor (that is, in one clock cycle)
requires several milliseconds to execute. That’s a difference of over six
orders of magnitude. It’s true that future accesses of this variable will
take place in just one clock cycle because it will subsequently be stored
in the L1 cache. But even if you access someVar’s value one million times
while it’s still in the cache, the average time of each access will still be
about two cycles because of how long it takes to access someVar the very
first time.

Granted, the likelihood that some variable will be located on disk in
the virtual memory subsystem is quite low. However, there’s still a
difference in performance of a couple orders of magnitude between the
L1 cache subsystem and the main-memory subsystem. Therefore, if the
program has to retrieve the data from main memory, 999 memory
accesses later, you’re still paying an average cost of two clock cycles to
access data that Intel’s documentation claims should take one cycle.

The difference in speed between the L1, L2, and L3 cache systems
isn’t so dramatic unless the secondary or tertiary cache is not packaged
together on the CPU. On a 4 GHz processor, the L1 cache must
respond within 0.25 nanoseconds if the cache operates with zero wait
states (some processors actually introduce wait states in L1 cache
accesses, but CPU designers try to avoid this). Accessing data in the L2

cache is always slower than in the L1 cache, and always includes the
equivalent of at least one wait state, and probably more.

There are several reasons why L2 cache accesses are slower than L1
accesses. First, it takes the CPU time to determine that the data it’s
seeking is not in the L1 cache. By the time it does that, the memory
access cycle is nearly complete, and there’s no time to access the data in
the L2 cache. Secondly, the circuitry of the L2 cache may be slower
than the circuitry of the L1 cache in order to make the L2 cache less
expensive. Third, L2 caches are usually 16 to 64 times larger than L1
caches, and larger memory subsystems tend to be slower than smaller
ones. All this amounts to additional wait states for accessing data in the
L2 cache. As noted earlier, the L2 cache can be as much as one order of
magnitude slower than the L1 cache. The same situation occurs when
you have to access data in the L3 cache.

The L1, L2, and L3 caches also differ in the amount of data the
system fetches when there is a cache miss (see Chapter 6). When the
CPU fetches data from or writes data to the L1 cache, it generally
fetches or writes only the data requested. If you execute a mov(al, memory);
instruction, the CPU writes only a single byte to the cache. Likewise, if
you execute the mov(mem32, eax); instruction, the CPU reads exactly 32
bits from the L1 cache. However, access to memory subsystems below
the L1 cache does not work in small chunks like this. Usually, memory
subsystems move blocks of data, or cache lines, whenever accessing lower
levels of the memory hierarchy. For example, if you execute the
mov(mem32, eax); instruction, and mem32’s value is not in the L1 cache, the
cache controller doesn’t simply read mem32’s 32 bits from the L2 cache,
assuming that it’s present there. Instead, the cache controller will
actually read a whole block of bytes (generally 16, 32, or 64 bytes,
depending on the particular processor) from the L2 cache. The hope is
that the program exhibits spatial locality so that reading a block of bytes
will speed up future accesses to adjacent objects in memory.
Unfortunately, the mov(mem32, eax); instruction doesn’t complete until the
L1 cache reads the entire cache line from the L2 cache. This excess
time is known as latency. If the program does not access memory objects
adjacent to mem32 in the future, this latency is lost time.

A similar performance gulf separates the L2 and L3 caches and L3
and main memory. Main memory is typically one order of magnitude
slower than the L3 cache; L3 accesses are much slower than L2 access.
To speed up access to adjacent memory objects, the L3 cache reads data
from main memory in cache lines. Likewise, L2 cache reads cache lines
from L3.

Standard DRAM is two to three orders of magnitude faster than
SSD storage (which is an order of magnitude faster than hard drives,
which is why hard disks often have their own DRAM-based caches). To
overcome this, there’s usually a difference of two to three orders of
magnitude in size between the L3 cache and the main memory so that
the difference in speed between disk and main memory matches that
between the main memory and the L3 cache. (Balancing performance
characteristics in the memory hierarchy is a goal to strive for in order to
effectively use the different types of memory.)

We won’t consider the performance of the other memory-hierarchy
subsystems in this chapter, as they are more or less under programmer
control. Because their access is not automatic, very little can be said
about how frequently a program will access them. However, in Chapter
12 we’ll look at some considerations for these storage devices.

11.4 Cache Architecture

Up to this point, we have treated the cache as a magical place that
automatically stores data when we need it, perhaps fetching new data as
the CPU requires it. But how exactly does the cache do this? And what
happens when it is full and the CPU is requesting additional data that’s
not there? In this section, we’ll look at the internal cache organization
and try to answer these two questions, along with a few others.

Programs access only a small amount of data at a given time, and a
cache that is sized accordingly will improve their performance.
Unfortunately, the data that programs want rarely sits in contiguous
memory locations—it’s usually spread out all over the address space.
Therefore, cache design has to account for the fact that the cache must
map data objects at widely varying addresses in memory.

As noted in the previous section, cache memory is not organized in a
single group of bytes. Instead, it’s usually organized in blocks of cache
lines, with each line containing some number of bytes (typically a small
power of 2 like 16, 32, or 64), as shown in Figure 11-2.

Figure 11-2: Possible organization of an 8KB cache

We can attach a different noncontiguous address to each of the cache
lines. Cache line 0 might correspond to addresses $10000 through $1000F,
and cache line 1 might correspond to addresses $21400 through $2140F.
Generally, if a cache line is n bytes long, it will hold n bytes from main
memory that fall on an n-byte boundary. In the example in Figure 11-2,
the cache lines are 16 bytes long, so a cache line holds blocks of 16 bytes
whose addresses fall on 16-byte boundaries in main memory (in other
words, the LO 4 bits of the address of the first byte in the cache line are
always 0).

When the cache controller reads a cache line from a lower level in
the memory hierarchy, where does the data go in the cache? The answer
is determined by the caching scheme in use. There are three different
caching schemes: direct-mapped cache, fully associative cache, and n-
way set associative cache.

11.4.1 Direct-Mapped Cache

In a direct-mapped cache (also known as the one-way set associative cache), a
particular block of main memory is always loaded into—mapped to—
the exact same cache line, determined by a small number of bits in the

data block’s memory address. Figure 11-3 shows how a cache controller
could select the appropriate cache line for an 8KB cache with 512 16-
byte cache lines and a 32-bit main-memory address.

Figure 11-3: Selecting a cache line in a direct-mapped cache

A cache with 512 cache lines requires 9 bits to select one of the cache

lines (29 = 512). In this example, bits 4 through 12 of the address
determine which cache line to use (assuming we number the cache lines
from 0 to 511), while bits 0 through 3 determine the particular byte
within the 16-byte cache line.

The direct-mapped caching scheme is very easy to implement.
Extracting 9 (or some other number of) bits from the memory address
and using the result as an index into the array of cache lines is trivial and
fast, though this design may not make effective use of all the cache
memory.

For example, the caching scheme in Figure 11-3 maps address 0 to
cache line 0. It also maps addresses $2000 (8KB), $4000 (16KB), $6000
(24KB), $8000 (32KB), and every other address that is a multiple of 8
kilobytes to cache line 0. This means that if a program is constantly
accessing data at addresses that are multiples of 8KB and not accessing
any other locations, the system will use only cache line 0, leaving all the

other cache lines unused. In this extreme case, the cache is effectively
limited to the size of one cache line, and each time the CPU requests
data at an address that is mapped to, but not present in, cache line 0, it
has to go down to a lower level in the memory hierarchy to access that
data.

11.4.2 Fully Associative Cache

In a fully associative cache subsystem, the cache controller can place a
block of bytes in any one of the cache lines present in the cache
memory. While this is the most flexible cache system, the extra circuitry
to achieve full associativity is expensive and, worse, can slow down the
memory subsystem. Most L1 and L2 caches are not fully associative for
this reason.

11.4.3 n-Way Set Associative Cache

If a fully associative cache is too complex, too slow, and too expensive to
implement, but a direct-mapped cache is too inefficient, an n-way set
associative cache is a compromise between the two. In an n-way set
associative cache, the cache is broken up into sets of n cache lines. The
CPU determines the particular set to use based on some subset of the
memory address bits, just as in the direct-mapping scheme, and the
cache controller uses a fully associative mapping algorithm to determine
which one of the n cache lines within the set to use.

For example, an 8KB two-way set associative cache subsystem with
16-byte cache lines organizes the cache into 256 cache-line sets with
two cache lines each. Eight bits from the memory address determine
which one of these 256 different sets will contain the data. Once the
cache-line set is determined, the cache controller maps the block of
bytes to one of the two cache lines within the set (see Figure 11-4). This
means two different memory addresses located on 8KB boundaries
(addresses having the same value in bits 4 through 11) can both appear
simultaneously in the cache. However, a conflict will occur if you
attempt to access a third memory location at an address that is an even
multiple of 8KB.

Figure 11-4: A two-way set associative cache

A four-way set associative cache puts four associative cache lines in
each cache-line set. In an 8KB cache like the one in Figure 11-4, a four-
way set associative caching scheme would have 128 cache-line sets with
four cache lines each. This would allow the cache to maintain up to four
different blocks of data without a conflict, each of which would map to
the same cache line in a direct-mapped cache.

A two- or four-way set associative cache is much better than a direct-
mapped cache and considerably less complex than a fully associative
cache. The more cache lines we have in each cache-line set, the closer
we come to creating a fully associative cache, with all the attendant
problems of complexity and speed. Most cache designs are direct-
mapped, two-way set associative, or four-way set associative. The
various members of the 80x86 family make use of all three.

Matching the Caching Scheme to the Access Type

Despite its downsides, the direct-mapped cache is, in fact, very
effective for data that you access sequentially rather than
randomly. Because the CPU typically executes machine
instructions sequentially, instruction bytes can be stored very
effectively in a direct-mapped cache. However, programs tend to
access data more randomly than they access code, so data is better
stored in a twoway or four-way set associative cache.

Because of these different access patterns, many CPU designers
use separate caches for data and machine instruction bytes—for
example, an 8KB data cache and an 8KB instruction cache rather
than a single 16KB unified cache. The advantage of this approach
is that each cache can use the caching scheme that‛s most
appropriate for the particular values it will store. The drawback is
that the two caches are now each half the size of a unified cache,
which may cause more cache misses than would occur with a
unified cache. The choice of an appropriate cache organization is a
difficult one, beyond the scope of this book, and can be made only
after you‛ve analyzed many programs running on the target
processor.

11.4.4 Cache-Line Replacement Policies

Thus far, we’ve answered the question, “Where do we put a block of
data in the cache?” Now we turn to the equally important question,
“What happens if a cache line isn’t available when we want to put a
block of data in it?”

For a direct-mapped cache architecture, the cache controller simply
replaces whatever data was formerly in the cache line with the new data.
Any subsequent reference to the old data will result in a cache miss, and
the cache controller will have to restore that old data to the cache by
replacing whatever data is in that line.

For a two-way set associative cache, the replacement algorithm is a
bit more complex. As you’ve seen, whenever the CPU references a
memory location, the cache controller uses some subset of the address’s
bits to determine the cache-line set that should be used to store the
data. Then, using some fancy circuitry, the cache controller determines
whether the data is already present in one of the two cache lines in the
destination set. If the data isn’t there, the CPU has to retrieve it from
memory, and the controller has to pick one of the two lines to use. If
either or both of the cache lines are currently unused, the controller
picks an unused line. However, if both cache lines are currently in use,
the controller must pick one of them and replace its data with the new
data.

The controller cannot predict the cache line whose data will be
referenced first and replace the other cache line, but it can use the
principle of temporality: if a memory location has been referenced
recently, it’s likely to be referenced again in the very near future. This
implies the following corollary: if a memory location hasn’t been
accessed in a while, it’s likely to be a long time before the CPU accesses
it again. Therefore, many cache controllers use the least recently used
(LRU) algorithm.

An LRU policy is easy to implement in a two-way set associative
cache system, using a single bit for each set of two cache lines.
Whenever the CPU accesses one of the two cache lines this bit is set to
0, and whenever the CPU accesses the other cache line, this bit is set to
1. Then, when a replacement is necessary, the cache controller replaces
the LRU cache line, indicated by the inverse of this bit.

For four-way (and greater) set associative caches, maintaining the
LRU information is a bit more difficult, which is one reason the
circuitry for such caches is more complex. Because of the complications
LRU might introduce, other replacement policies are sometimes used
instead. Two of them, first-in, first-out (FIFO) and random, are easier to
implement than LRU, but they have their own problems. A full
discussion of their pros and cons is beyond the scope of this book, but
you can find more information in a text on computer architecture or
operating systems.

11.4.5 Cache Write Policies

What happens when the CPU writes data to memory? The simple
answer, and the one that results in the quickest operation, is that the
CPU writes the data to the cache. However, what happens when the
cache-line data is subsequently replaced by data that is read from
memory? If the modified contents of the cache line are not written to
main memory, they will be lost. The next time the CPU attempts to
access that data, it will reload the cache line with the old data.

Clearly, any data written to the cache must ultimately be written to
main memory as well. Caches use two common write policies: write-
through and write-back.

The write-through policy states that any time data is written to the
cache, the cache immediately turns around and writes a copy of that
cache line to main memory. The CPU does not have to halt while the
cache controller writes the data from cache to main memory. So, unless
the CPU needs to access main memory shortly after the write occurs,
this operation takes place in parallel with the program’s execution.
Because the write-through policy updates main memory with the new
value as soon as possible, it is a better policy to use when two different
CPUs are communicating through shared memory.

Still, a write operation takes some time, during which it’s likely that a
CPU will want to access main memory, so this policy may not be a
high-performance solution. Worse, suppose the CPU reads from and
writes to the memory location several times in succession. With a write-
through policy in place, the CPU will saturate the bus with cache-line
writes, and this will significantly hamper the program’s performance.

With the write-back policy, writes to the cache are not immediately
written to main memory; instead, the cache controller updates main
memory later. This scheme tends to be higher performance, because
several writes to the same cache line within a short time period won’t
generate multiple writes to main memory.

To determine which cache lines must be written back to main
memory, the cache controller usually maintains a dirty bit within each
one. The cache system sets this bit whenever it writes data to the cache.

At some later time, the cache controller checks the dirty bit to
determine if it must write the cache line to memory. For example,
whenever the cache controller replaces a cache line with other data
from memory, it first checks the dirty bit, and if that bit is set, the
controller writes that cache line to memory before going through with
the cache-line replacement. Note that this increases the latency time
during a cache-line replacement. This latency could be reduced if the
cache controller were able to write dirty cache lines to main memory
while no other bus access was occurring. Some systems provide this
functionality, and others do not for economic reasons.

11.4.6 Cache Use and Software

A cache subsystem is not a panacea for slow memory access, and can in
fact actually hurt an application’s performance. In order for a cache
system to be effective, software must be written with the cache behavior
in mind. Particularly, good software must exhibit either spatial or
temporal locality of reference—which the software designer
accomplishes by placing oft-used variables adjacent in memory so they
tend to fall into the same cache lines—and avoid data structures and
access patterns that force the cache to frequently replace cache lines.

Suppose that an application accesses data at several different
addresses that the cache controller would map to the same cache line.
With each access, the cache controller must read in a new cache line
(possibly flushing the old one back to memory if it is dirty). As a result,
each memory access incurs the latency cost of retrieving a cache line
from main memory. This degenerate case, known as thrashing, can slow
down the program by one to two orders of magnitude, depending on
the speed of main memory and the size of a cache line. We’ll take
another look at thrashing a little later in this chapter.

A benefit of the cache subsystem on modern 80x86 CPUs is that it
automatically handles many misaligned data references. Remember,
there’s a performance penalty for accessing words or double-word
objects at an address that is not an even multiple of that object’s size. By
providing some fancy logic, Intel’s designers have eliminated this

penalty as long as the data object is located completely within a cache
line. However, if the object crosses a cache line, the penalty still applies.

11.5 NUMA and Peripheral Devices

Although most of the RAM in a system is based on high-speed DRAM
interfaced directly with the processor’s bus, not all memory is connected
to the CPU this way. Sometimes a large block of RAM is part of a
peripheral device—for example, a video card, network interface card, or
USB controller—and you communicate with that device by writing data
to its RAM. Unfortunately, the access time to the RAM on these
peripheral devices is often much slower than the access time to main
memory. In this section, we’ll use the video card as an example,
although NUMA performance applies to other devices and memory
technologies as well.

A typical video card interfaces with a CPU through a Peripheral
Component Interconnect Express (PCI-e) bus inside the computer system.
Though 16-lane PCI-e buses are fast, memory access is still much
faster. Game programmers long ago discovered that manipulating a
copy of the screen data in main memory and writing that data to the
video card RAM only periodically (typically once every 1/60 of a second
during video retrace, to avoid flicker) is much faster than writing
directly to the video card every time you want to make a change.

Caches and the virtual memory subsystem operate transparently
(that is, applications are unaware of the underlying operations taking
place), but NUMA memory does not, so programs that write to NUMA
devices must minimize the number of accesses whenever possible (for
example, by using an offscreen bitmap to hold temporary results). If
you’re actually storing and retrieving data on a NUMA device, like a
flash memory card, you must explicitly cache the data yourself.

11.6 Virtual Memory, Memory Protection, and
Paging

In a modern operating system such as Android, iOS, Linux, macOS, or
Windows, it is very common to have several different programs running
concurrently in memory. This presents several problems:

How do you keep the programs from interfering with one another’s
memory?

If two programs both expect to load a value into memory at address
$1000, how can you load both values and execute both programs at
the same time?

What happens if the computer has 64GB of memory, and you
decide to load and execute three different applications, two of
which require 32GB and one that requires 16GB (not to mention
the memory that the OS requires for its own purposes)?

The answers to all these questions lie in the virtual memory
subsystem that modern processors support.

Virtual memory on CPUs such as the 80x86 gives each process its

own 32-bit address space.2 This means that address $1000 in one
program is physically different from address $1000 in a separate program.
The CPU achieves this sleight of hand by mapping the virtual addresses
used by programs to different physical addresses in actual memory. The
virtual address and the physical address don’t have to be the same, and
usually they aren’t. For example, program 1’s virtual address $1000 might
actually correspond to physical address $215000, while program 2’s virtual
address $1000 might correspond to physical memory address $300000. The
CPU accomplishes this using paging.

The concept behind paging is quite simple. First, you break up
memory into blocks of bytes called pages. A page in main memory is
comparable to a cache line in a cache subsystem, although pages are
usually much larger than cache lines. For example, the 32-bit 80x86
CPUs use a page size of 4,096 bytes; 64-bit variants allow larger page
sizes.

For each page, you use a lookup table to map the HO bits of a virtual
address to the HO bits of the physical address in memory, and you use
the LO bits of the virtual address as an index into that page. For

example, with a 4,096-byte page, you’d use the LO 12 bits of the virtual
address as the offset (0..4095) within the page, and the upper 20 bits as
an index into a lookup table that returns the actual upper 20 bits of the
physical address (see Figure 11-5).

Figure 11-5: Translating a virtual address to a physical address

A 20-bit index into the page table would require over one million
entries in the page table. If each entry is a 32-bit value, the page table
would be 4MB long—larger than many of the programs that would run
in memory! However, by using a multilevel page table, you can easily
create a page table for most small programs that is only 8KB long. The
details are unimportant here. Just rest assured that you don’t need a
4MB page table unless your program consumes the entire 4GB address
space.

If you study Figure 11-5 for a few moments, you’ll probably discover
one problem with using a page table—it requires two separate memory
accesses in order to retrieve the data stored at a single physical address
in memory: one to fetch a value from the page table, and one to read
from or write to the desired memory location. To prevent cluttering the

data or instruction cache with page-table entries, which increases the
number of cache misses for data and instruction requests, the page table
uses its own cache, known as the translation lookaside buffer (TLB). This
cache typically has 64 to 512 entries on modern Intel processors—
enough to handle a fair amount of memory without a miss. Because a
program typically works with less data than this at any given time, most
page-table accesses come from the cache rather than main memory.

As noted, each entry in the page table contains 32 bits, even though
the system really only needs 20 bits to remap each virtual address to a
physical address. Intel, on the 80x86, uses some of the remaining 12 bits
to provide memory protection information:

One bit marks whether a page is read/write or read-only.

One bit determines whether you can execute code on that page.

A number of bits determine whether the application can access that
page or if only the operating system can do so.

A number of bits determine if the CPU has written to the page but
hasn’t yet written to the physical memory address corresponding to
it (that is, whether the page is “dirty” or not, and whether the CPU
has accessed the page recently).

One bit determines whether the page is actually present in physical
memory or if it exists on secondary storage somewhere.

Your applications do not have access to the page table (reading and
writing the page table is the operating system’s responsibility), so they
cannot modify these bits. However, some operating systems provide
functions you can call if you want to change certain bits in the page
table (for example, Windows allows you to set a page to read-only).

Beyond remapping memory so multiple programs can coexist in
main memory, paging also provides a mechanism whereby the operating
system can move infrequently used pages to secondary storage. Locality
of reference applies not only to cache lines but to pages in main
memory as well. At any given time, a program will access only a small
percentage of the pages in main memory that contain data and
instruction bytes; this set of pages is known as the working set. Although

the working set varies slowly over time, for small periods of time it
remains constant. Therefore, there’s little need for the remainder of the
program to consume valuable main-memory storage that some other
process could be using. If the operating system can save the currently
unused pages to disk, the main memory they would consume is available
for other programs that need it.

Of course, the problem with moving data out of main memory is that
eventually the program might actually need it. If you attempt to access a
page of memory, and the page-table bit tells the memory management
unit (MMU) that the page isn’t present in main memory, the CPU
interrupts the program and passes control to the operating system. The
operating system reads the corresponding page of data from the disk
drive and copies it to some available page in main memory. This process
is nearly identical to the process used by a fully associative cache
subsystem, except that accessing the disk is much slower than accessing
main memory. In fact, you can think of main memory as a fully
associative write-back cache with 4,096-byte cache lines, which caches
the data that is stored on the disk drive. Placement and replacement
policies and other behaviors are very similar for caches and main
memory.

NOTE

For more information on how the operating system swaps pages between
main memory and secondary storage, consult a textbook on operating system
design.

Because each program has a separate page table, and programs
themselves don’t have access to the page tables, programs cannot
interfere with one another’s operation. That is, a program cannot
change its page tables in order to access data found in another process’s
address space. If your program crashes by overwriting itself, it cannot
crash other programs at the same time. This is a big benefit of a paging
memory system.

If two programs want to cooperate and share data, they can do so by
placing that data in a memory area that they share. All they have to do is
tell the operating system that they want to share some pages of memory.
The operating system returns to each process a pointer to some
segment of memory whose physical address is the same for both
processes. Under Windows, you can achieve this by using memory-
mapped files; see the operating system documentation for more details.
macOS and Linux also support memory-mapped files as well as some
special shared-memory operations; again, see the OS documentation for
more details.

Although this discussion applies specifically to the 80x86 CPU,
multilevel paging systems are common on other CPUs as well. Page
sizes tend to vary from about 1KB to 4MB, depending on the CPU. For
CPUs that support an address space larger than 4GB, some CPUs use
an inverted page table or a three-level page table. Although the details are
beyond the scope of this chapter, the basic principle remains the same:
the CPU moves data between main memory and the disk in order to
keep oft-accessed data in main memory as much of the time as possible.
These other page-table schemes are good at reducing the size of the
page table when an application uses only a fraction of the available
memory space.

Thrashing

Thrashing is a degenerate case that can cause the overall system
performance to drop to the speed of a lower level in the memory
hierarchy, like main memory or, worse yet, the disk drive. There
are two primary causes of thrashing:

Insufficient memory at a given level in the memory hierarchy
to properly contain the programs’ working sets of cache lines
or pages

A program that does not exhibit locality of reference

If there is insufficient memory to hold a working set of pages or
cache lines, the memory system will constantly be replacing one
block of data in the cache or main memory with another block of
data from main memory or the disk. As a result, the system winds
up operating at the speed of the slower memory in the memory
hierarchy. A common example of thrashing occurs with virtual
memory. A user may have several applications running at the same
time, and the sum total of the memory required by these
programs’ working sets is greater than all of the physical memory
available to the programs. As a result, when the operating system
switches between the applications it has to copy each application’s
data, and possibly program instructions, to and from disk. Because
switching between programs is often much faster than retrieving
data from the disk, this slows the programs down tremendously.

As already discussed, if the program does not exhibit locality of
reference and the lower memory subsystems are not fully
associative, thrashing can occur even if there is free memory at the
current level in the memory hierarchy. To revisit our earlier
example, suppose an 8KB L1 caching system uses a direct-mapped
cache with 512 16-byte cache lines. If a program references data
objects 8KB apart on every access, the system will have to replace
the same line in the cache over and over again with the data from
main memory. This occurs even though the other 511 cache lines
are currently unused.

To reduce thrashing when insufficient memory is the problem,
you can simply add memory. If that’s not an option, you can try to
run fewer processes concurrently or modify your program so that
it references less memory over a given period. To reduce thrashing
when locality of reference is the culprit, you should restructure
your program and its data structures so its memory references are
physically closer.

11.7 Writing Software That Is Cognizant of the
Memory Hierarchy

Software that is aware of memory performance behavior can run much
faster than software that is not. Although a system’s caching and paging
facilities may perform reasonably well for typical programs, it’s easy to
write software that would run faster even if the caching system were not
present. The best software is written to take maximum advantage of the
memory hierarchy.

A classic example of a bad design is the following loop, which
initializes a two-dimensional array of integer values:

int array[256][256];
 . . .
 for(i=0; i<256; ++i)
 for(j=0; j<256; ++j)
 array[j][i] = i*j;

Believe it or not, that code runs much slower on a modern CPU than
the following sequence:

int array[256][256];
 . . .
 for(i=0; i<256; ++i)
 for(j=0; j<256; ++j)
 array[i][j] = i*j;

The only difference between the two code sequences is that the i and
j indices are swapped when accessing elements of the array. This minor
modification can be responsible for a one or two order of magnitude
difference in their respective runtimes! To understand why, remember
that the C programming language uses row-major ordering for two-
dimensional arrays in memory. That means the second code sequence
accesses sequential locations in memory, exhibiting spatial locality of
reference. The first code sequence, however, accesses array elements in
the following order:

array[0][0]
array[1][0]
array[2][0]
array[3][0]

 . . .
array[254][0]
array[255][0]
array[0][1]
array[1][1]
array[2][1]
 . . .

If integers are 4 bytes each, then this sequence will access the
double-word values at offsets 0; 1,024; 2,048; 3,072; and so on, from the
base address of the array, which are distinctly not sequential. Most likely,
this code will load only n integers into an n-way set associative cache
and then immediately cause thrashing thereafter, as each subsequent
array element has to be copied from the cache into main memory to
prevent that data from being overwritten.

The second code sequence does not exhibit thrashing. Assuming 64-
byte cache lines, the second code sequence will store 16 integer values
into the same cache line before having to load another cache line from
main memory, replacing an existing one. As a result, this second code
sequence spreads out the cost of retrieving the cache line from memory
over 16 memory accesses rather than over a single access, as occurs with
the first code sequence.

In addition to accessing variables sequentially in memory, there are
several other variable declaration tricks you can use to maximize the
performance of the memory hierarchy. First, declare together all
variables you use within a common code sequence. In most languages,
this will allocate storage for the variables in physically adjacent memory
locations, thus supporting spatial locality as well as temporal locality.
Second, use local (automatic) variables, because most languages allocate
local storage on the stack and, as the system references the stack
frequently, variables on the stack tend to be in the cache. Third, declare
your scalar variables together, and separately from your array and
record variables. Access to any one of several adjacent scalar variables
generally forces the system to load all of the adjacent objects into the
cache.

In general, study the memory access patterns your program exhibits
and adjust your application accordingly. You can spend hours rewriting
your code in hand-optimized assembly language trying to achieve a 10

percent performance improvement, but if you instead modify the way
your program accesses memory, it’s not unheard of to see an order of
magnitude improvement in performance.

11.8 Runtime Memory Organization

Operating systems like macOS, Linux, or Windows put different types
of data into different sections (or segments) of main memory. Although
it’s possible to control the memory organization by running a linker and
specifying various parameters, by default Windows loads a typical
program into memory using the organization shown in Figure 11-6
(macOS and Linux are similar, though they rearrange some of the
sections).

Figure 11-6: Typical Windows runtime memory organization

The operating system reserves the lowest memory addresses, and
your application generally cannot access data (or execute instructions) at
these addresses. One reason the OS reserves this space is to help detect

NULL pointer references. Programmers often initialize a pointer with NULL
(0) to indicate that it is not valid. Should you attempt to access memory
location 0 under such an OS, it will generate a general protection fault to
indicate that you’ve accessed a memory location that doesn’t contain
valid data.

The remaining seven sections of memory hold different types of data
associated with your program:

The code section holds the program’s machine instructions.

The constant section contains compiler-generated read-only data.

The read-only data section holds user-defined data that can only be
read, never written.

The static section stores user-defined, initialized, static variables.

The storage, or BSS, section holds user-defined uninitialized
variables.

The stack section maintains local variables and other temporary
data.

The heap section maintains dynamic variables.

NOTE

Often, a compiler will combine the code, constant, and read-only data
sections because they all contain read-only data.

Most of the time, a given application can live with the default layouts
chosen for these sections by the compiler and linker/loader. In some
cases, however, knowing the memory layout can help you develop
shorter programs. For example, combining the code, constants, and
read-only data sections into a single read-only section can save padding
space that the compiler/linker might otherwise place between them.
Although these savings are probably insignificant for large applications,
they can have a big impact on the size of a small program.

The following sections discuss each of these memory areas in detail.

11.8.1 Static and Dynamic Objects, Binding, and Lifetime

Before exploring the memory organization of a typical program, we
need to define a few terms: binding, lifetime, static, and dynamic.

Binding is the process of associating an attribute with an object. For
example, when you assign a value to a variable, the value is bound to that
variable at the point of the assignment. This bond remains until you
bind some other value to the variable (via another assignment
operation). Likewise, if you allocate memory for a variable while the
program is running, the variable is bound to the address at that point.
They remain bound until you associate a different address with the
variable. Binding needn’t occur at runtime. For example, values are
bound to constant objects during compilation, and these bonds cannot
change while the program is running.

The lifetime of an attribute extends from the point when you first
bind that attribute to an object to the point when you break that bond,
perhaps by binding a different attribute to the object. For example, the
lifetime of a variable is from the time you first associate memory with
the variable to the moment you deallocate that variable’s storage.

Static objects are those that have an attribute bound to them prior to
the application’s execution (usually during compilation or during the
linking phase, though it is possible to bind values even earlier).
Constants are good examples of static objects; they have the same value
bound to them throughout program execution. Global (program-level)
variables in programming languages like Pascal, C/C++, and Ada are
also examples of static objects in that they have the same address bound
to them throughout the program’s lifetime. The lifetime of a static
object, therefore, extends from the point at which the program first
begins execution to the point when the application terminates.

Associated with static binding is the notion of identifier scope—the
section of the program where the identifier’s name is bound to the
object. As names exist only during compilation, scope qualifies as a
static attribute in compiled languages. (In interpretive languages, where
the interpreter maintains the identifier names during program
execution, scope can be a nonstatic attribute.) The scope of a local

variable is generally limited to the procedure or function in which you
declare it (or to any nested procedure or function declarations in block
structured languages like Pascal or Ada), and the name is not visible
outside the subroutine. In fact, it’s possible to reuse an identifier’s name
in a different scope (that is, in a different function or procedure). In that
case, the second occurrence of the identifier will be bound to a different
object than its first occurrence.

Dynamic objects are those that have some attribute assigned to them
during program execution. While it is running, the program may
choose to change that attribute (dynamically). The lifetime of that
attribute begins when the application binds the attribute to the object
and ends when the program breaks that bond. If the program never
breaks the bond, the attribute’s lifetime extends from the point of
association to the point the program terminates. The system binds
dynamic attributes to an object at runtime, after the application begins
execution.

NOTE

An object may have a combination of static and dynamic attributes. For
example, a static variable has an address bound to it for the entire
execution time of the program, but it could have different values bound to it
throughout the program’s lifetime. Any given attribute, however, is either
static or dynamic; it cannot be both.

11.8.2 The Code, Read-Only, and Constant Sections

The code section in memory contains the machine instructions for a
program. Your compiler translates each statement you write into a
sequence of one or more byte values. The CPU interprets these byte
values as machine instructions during program execution.

Most compilers also attach a program’s read-only data to the code
section because, like the code instructions, the read-only data is already
write-protected. However, it is perfectly possible under Windows,
macOS, Linux, and many other operating systems to create a separate

section in the executable file and mark it as read-only. As a result, some
compilers support a separate read-only data section. Such sections
contain initialized data, tables, and other objects that the program
should not change during program execution.

The constant section shown in Figure 11-6 typically contains data
that the compiler generates (as opposed to user-defined read-only data).
Most compilers actually emit this data directly to the code section. This
is why, as previously noted, in most executable files, you’ll find a single
section that combines the code, read-only data, and constant data
sections.

11.8.3 The Static Variables Section

Many languages enable you to initialize a global variable during the
compilation phase. For example, in C/C++ you could use statements
like the following to provide initial values for these static objects:

static int i = 10;
static char ch[] = { 'a', 'b', 'c', 'd' };

In C/C++ and other languages, the compiler places these initial
values in the executable file. When you execute the application, the OS
loads the portion of the executable file that contains these static
variables into memory so that the values appear at the addresses
associated with those static variables. Therefore, when the program
shown here first begins execution, i and ch will have these values bound
to them.

11.8.4 The Storage Variables Section

The storage variables (or BSS) section is where compilers typically put
static objects that don’t have an explicit value associated with them. BSS
stands for “block started by a symbol,” which is an old assembly
language term describing a pseudo-opcode you would use to allocate
storage for an uninitialized static array. In modern operating systems
like Windows and Linux, the compiler/linker puts all uninitialized
variables into a BSS section that simply tells the OS how many bytes to
set aside for that section. When the OS loads the program into memory,

it reserves sufficient memory for all the objects in the BSS section and
fills this range of memory with 0s.

Note that the BSS section in the executable file doesn’t actually
contain any data, so programs that declare uninitialized static objects
(especially large arrays) in a BSS section will consume less disk space.

However, not all compilers actually use a BSS section. Some
Microsoft languages and linkers, for example, simply place the
uninitialized objects in the static/read-only data section and explicitly
give them an initial value of 0. Although Microsoft claims that this
scheme is faster, it certainly makes executable files larger if your code
has large, uninitialized arrays (because each byte of the array winds up
in the executable file—something that would not happen if the compiler
placed the array in a BSS section).

11.8.5 The Stack Section

The stack is a data structure that expands and contracts in response to
procedure invocations and returns to calling routines, among other
things. At runtime, the system places all automatic variables (nonstatic
local variables), subroutine parameters, temporary values, and other
objects in the stack section of memory in a special data structure called
an activation record (which is aptly named, as the system creates it when a
subroutine first begins execution, and deallocates it when the subroutine
returns to its caller). Therefore, the stack section in memory is very
busy.

Most CPUs implement the stack using a register called the stack
pointer. Some CPUs, however, don’t provide an explicit stack pointer,
instead using a general-purpose register for stack implementation. If a
CPU provides a stack pointer, we say that it supports a hardware stack; if
it uses a general-purpose register, then we say that it uses a software-
implemented stack. The 80x86 provides a hardware stack, while the MIPS
Rx000 CPU family uses a software-implemented stack. Systems that
provide hardware stacks can generally manipulate data on the stack
using fewer instructions than systems that implement the stack in
software. In theory, a hardware stack actually slows down all
instructions the CPU executes, but in practice, the 80x86 CPU is one of

the fastest CPUs around, providing ample proof that having a hardware
stack doesn’t necessarily mean you’ll wind up with a slow CPU.

11.8.6 The Heap Section and Dynamic Memory Allocation

Although simple programs may need only static and automatic
variables, sophisticated programs need to be able to allocate and
deallocate storage dynamically (at runtime) under program control. The
C and HLA languages provide the malloc() and free() functions for this
purpose, C++ provides new() and delete(), Pascal uses new() and dispose(),
and other languages include comparable routines. These memory
allocation routines have a few things in common: they let the
programmer request how many bytes of storage to allocate, they return
a pointer to the newly allocated storage (that is, the address of that
storage), and they provide a facility for returning the storage space to
the system once it is no longer needed, so the system can reuse it in a
future allocation call. Dynamic memory allocation takes place in a
section of memory known as the heap.

Generally, an application refers to data on the heap using pointer
variables either implicitly or explicitly; some languages, like Java,
implicitly use pointers behind the scenes. Thus, objects in heap memory
are usually known as anonymous variables because we refer to them by
their memory address (via pointers) rather than by name.

The OS and application create the heap section in memory after the
program begins execution; the heap is never a part of the executable file.
Generally, the OS and language runtime libraries maintain the heap for
an application. Despite the variations in memory management
implementations, it’s still a good idea for you to have a basic idea of how
heap allocation and deallocation operate, because using them
inappropriately will have a very negative impact on your application
performance.

11.8.6.1 A Simple Memory Allocation Scheme

An extremely simple (and fast) memory allocation scheme would return
a pointer to a block of memory whose size the caller requests. It would

carve out allocation requests from the heap, returning blocks of
memory that are currently unused.

A very simple memory manager might maintain a single variable (a
free space pointer) pointing to the heap. Whenever a memory allocation
request comes along, the system makes a copy of this heap pointer and
returns it to the application; then the heap management routines add
the size of the memory request to the address held in the pointer
variable and verify that the memory request doesn’t try to use more
memory than is available in the heap (some memory managers return an
error indication, like a NULL pointer, when the memory request is too
large, and others raise an exception). As the heap management routines
increment the free space pointer, they effectively mark all previous
memory as “unavailable for future requests.”

11.8.6.2 Garbage Collection

The problem with this simple memory management scheme is that it
wastes memory, because there’s no garbage collection mechanism for the
application to free the memory so it can be reused later. Garbage
collection—that is, reclaiming memory when an application has finished
using it—is one of the main purposes of a heap management system.

The only catch is that supporting garbage collection requires some
overhead. The memory management code will need to be more
sophisticated, will take longer to execute, and will require some
additional memory to maintain the internal data structures the heap
management system uses.

Let’s consider an easy implementation of a heap manager that
supports garbage collection. This simple system maintains a (linked) list
of free memory blocks. Each free memory block in the list requires two
double-word values: one specifying the size of the free block, and the
other containing a link to the next free block in the list (that is, a
pointer), as shown in Figure 11-7.

The system initializes the heap with a NULL link pointer, and the size
field contains the size of the heap’s entire free space. When a memory
allocation request comes along, the heap manager searches through the

list to find a free block with enough memory to satisfy the request. This
search process is one of the defining characteristics of a heap manager.
Some common search algorithms are first-fit search and best-fit search.
A first-fit search, as its name suggests, scans the list of blocks until it finds
the first block of memory large enough to satisfy the allocation request.
A best-fit search scans the entire list and finds the smallest block large
enough to satisfy the request. The advantage of the best-fit algorithm is
that it tends to preserve larger blocks better than the first-fit algorithm,
so the system is still able to satisfy larger subsequent allocation requests
when they arrive. The first-fit algorithm, on the other hand, just grabs
the first suitably large block it finds, even if there’s a smaller block that
would suffice, which may limit the system’s ability to handle future large
memory requests.

Figure 11-7: Heap management using a list of free memory blocks

Still, the first-fit algorithm does have a couple of advantages over the
best-fit algorithm. The most obvious is that it is usually faster. The

best-fit algorithm has to scan through every block in the free block list
in order to find the smallest one large enough to satisfy the allocation
request (unless, of course, it finds a perfectly sized block along the way).
The first-fit algorithm can stop once it finds a block large enough to
satisfy the request.

The first-fit algorithm also tends to suffer less from a degenerate
condition known as external fragmentation. Fragmentation occurs after a
long sequence of allocation and deallocation requests. Remember, when
the heap manager satisfies a memory allocation request, it usually
creates two blocks of memory: one in-use block for the request, and one
free block that contains the remaining bytes from the original block
(assuming the request did not exactly match the block size). After
operating for a while, the best-fit algorithm may have produced lots of
leftover blocks of memory that are too small to satisfy an average
memory request, making them effectively unusable. As these small
fragments accumulate throughout the heap, they can end up consuming
a fair amount of memory. This can lead to a situation where the heap
doesn’t have a sufficiently large block to satisfy a memory allocation
request even though there is enough total free memory available (spread
throughout the heap). See Figure 11-8 for an example of this condition.

Figure 11-8: Memory fragmentation

There are other memory allocation strategies in addition to the first-
fit and best-fit search algorithms. Some of these execute faster, some
have less memory overhead, some are easy to understand (and some are
very complex), some produce less fragmentation, and some can combine
and use noncontiguous blocks of free memory. Memory/heap
management is one of the more heavily studied subjects in computer
science, and there’s a considerable amount of literature explaining the

benefits of one scheme over another. For more information on memory
allocation strategies, check out a good book on OS design.

11.8.6.3 Freeing Allocated Memory

Memory allocation is only half of the story. As mentioned earlier, the
heap manager has to provide a call that allows an application to return
memory it no longer needs for future reuse. In C and HLA, for
example, an application accomplishes this by calling the free() function.

At first blush, free() might seem like a very simple function to write:
just append the previously allocated and now unused block to the end of
the free list. The problem with this trivial implementation is that it
almost guarantees that the heap becomes fragmented to the point of
being unusable in very short order. Consider the situation in Figure 11-
9.

Figure 11-9: Freeing a memory block

If a trivial implementation of free() simply takes the block to be freed
and appends it to the free list, the memory organization in Figure 11-9
produces three free blocks. However, because these three blocks are
contiguous, the heap manager should really combine them into a single
free block, so that it will be able to satisfy a larger request.
Unfortunately, this operation would require it to scan the free block list
to determine if there are any free blocks adjacent to the block the
system is freeing.

While you could come up with a data structure that makes it easier
to combine adjacent free blocks, such schemes generally add 8 or more
bytes of overhead with each block on the heap. Whether or not this is a
reasonable tradeoff depends on the average size of a memory allocation.

If the applications that use the heap manager tend to allocate small
objects, the extra overhead for each memory block could wind up
consuming a large percentage of the heap space. However, if the most
allocations are large, then the few bytes of overhead won’t matter much.

11.8.6.4 The OS and Memory Allocation

The performance of the algorithms and data structures used by the heap
manager is only one piece of the performance puzzle. Ultimately, the
heap manager needs to request blocks of memory from the operating
system. At one extreme, the OS handles all memory allocation requests
directly. At the other extreme, the heap manager is a runtime library
routine that links with your application, first requesting large blocks of
memory from the OS and then doling out pieces of them as allocation
requests arrive from the application.

The problem with making direct memory allocation requests to the
operating system is that OS API calls are often very slow. This is
because they generally involve switching between kernel mode and user
mode on the CPU (which is not fast). Therefore, a heap manager that
the OS implements directly will not perform well if your application
makes frequent calls to the memory allocation and deallocation
routines.

Because of the high overhead of an OS call, most languages
implement their own versions of the malloc() and free() functions within
their runtime library. On the very first memory allocation, the malloc()
routine requests a large block of memory from the OS, and the
application’s malloc() and free() routines manage this block of memory
themselves. If an allocation request comes along that the malloc()

function cannot fulfill in the block it originally created, malloc() will
request another large block (generally much larger than the request)
from the OS and add that block to the end of its free list. Because the
application’s malloc() and free() routines call the OS only occasionally,
the application doesn’t suffer the performance hit associated with
frequent OS calls.

Most standard heap management functions perform reasonably for a
typical program. However, keep in mind that the procedures are very

implementation- and language-specific; it’s dangerous to assume that
malloc() and free() are relatively efficient when writing software that
requires high-performance components. The only portable way to
ensure a high-performance heap manager is to develop your own
application-specific set of allocation/deallocation routines. Writing such
routines is beyond the scope of this book, but you should know you
have this option.

11.8.6.5 Heap Memory Overhead

A heap manager often exhibits two types of overhead: performance
(speed) and memory (space). Until now, this discussion has mainly dealt
with the performance aspects, but now we’ll turn our attention to
memory.

Each block the system allocates requires some amount of overhead
beyond the storage the application requests; at the very least, this
overhead is a few bytes to keep track of the block’s size. Fancier (higher-
performance) schemes may require additional bytes, but typically the
overhead is between 4 and 16 bytes. The heap manager can keep this
information in a separate internal table, or it can attach the block size
and other memory management information directly to the block it
allocates.

Saving this information in an internal table has a couple of
advantages. First, it is difficult for the application to accidentally
overwrite the information stored there; attaching the data to the heap
memory blocks themselves doesn’t protect as well against this
possibility. Second, putting memory management information in an
internal data structure allows the memory manager to determine
whether a given pointer is valid (that is, whether it points at some block
of memory that the heap manager believes it has allocated).

The advantage of attaching the control information directly to each
block that the heap manager allocates is that it’s very easy to locate this
information, whereas storing the information in an internal table might
require a search operation.

Another issue that affects the overhead associated with the heap
manager is the allocation granularity—the minimum number of bytes the
heap manager supports. Although most heap managers allow you to
request an allocation as small as 1 byte, they may actually allocate some
minimum number of bytes greater than 1. To ensure an allocated object
is aligned on a reasonable address for that object, most heap managers
allocate memory blocks on a 4-, 8-, or 16-byte boundary. For
performance reasons, many heap managers begin each allocation on a
typical cache-line boundary, usually 16, 32, or 64 bytes.

Whatever the granularity, if the application requests some number of
bytes that is less than or not a multiple of the heap manager’s
granularity, the heap manager will allocate extra bytes of storage so that
the complete allocation is an even multiple of the granularity value.
This amount varies by heap manager (and possibly even by version of a
specific heap manager), so an application should never assume that it
has more memory available than it requests.

The extra memory the heap manager allocates results in another
form of fragmentation called internal fragmentation. Like external
fragmentation, internal fragmentation produces small amounts of
leftover memory throughout the system that cannot satisfy future
allocation requests. Assuming random-sized memory allocations, the
average amount of internal fragmentation that occurs on each allocation
is half the granularity size. Fortunately, the granularity size is quite
small for most memory managers (typically 16 bytes or less), so after
thousands and thousands of memory allocations you’ll lose only a
couple dozen or so kilobytes to internal fragmentation.

Between the costs associated with allocation granularity and the
memory control information, a typical memory request may require
between 4 and 16 bytes, plus whatever the application requests. If you’re
making large memory allocation requests (hundreds or thousands of
bytes), the overhead bytes won’t consume a large percentage of memory
on the heap. However, if you allocate lots of small objects, the memory
consumed by internal fragmentation and memory control information
may represent a significant portion of your heap area. For example,
consider a simple memory manager that always allocates blocks of data

on 4-byte boundaries and requires a single 4-byte length value that it
attaches to each allocation request for memory storage. This means that
the minimum amount of storage the heap manager requires for each
allocation is 8 bytes. If you make a series of malloc() calls to allocate a
single byte, the application won’t be able to use almost 88 percent of the
memory it allocates. Even if you allocate 4-byte values on each
allocation request, the heap manager consumes 67 percent of the
memory for overhead purposes. However, if your average allocation is a
block of 256 bytes, the overhead requires only about 2 percent of the
total memory allocation. In short, the larger your allocation request, the
less impact the control information and internal fragmentation will have
on your heap.

Many software engineering studies in computer science journals have
found that memory allocation/deallocation requests cause a significant
loss of performance. In such studies, the authors often obtained
performance improvements of 100 percent or better just by
implementing their own simplified, application-specific, memory
management algorithms rather than calling the standard runtime library
or OS kernel memory allocation code. Hopefully, this section has made
you aware of this potential problem in your own code.

11.9 For More Information

Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach. 5th ed. Waltham, MA: Elsevier, 2012.

12
INPUT AND OUTPUT

A typical program has three basic tasks: input, computation, and output.
So far we’ve concentrated on the computational aspects of the computer
system, but now we’ll turn to input and output.

This chapter will focus on the primitive input/output (I/O) activities
of the CPU, rather than on the abstract file or character I/O that high-
level applications usually employ. It will discuss how the CPU transfers
data to and from the outside world, paying special attention to the
performance issues behind I/O operations. As all high-level I/O
activities are eventually routed through the low-level I/O systems, it’s
crucial to understand how these processes work if you want to write
programs that communicate efficiently with the outside world.

12.1 Connecting a CPU to the Outside World

The first thing to know is that I/O in a typical computer system is
radically different from I/O in a typical high-level programming
language. At the primitive I/O levels of a computer system, you’ll rarely
find machine instructions that behave like Pascal’s writeln, C++’s cout, C’s
printf, Swift’s print, or even the HLA stdin and stdout statements. In fact,

most I/O machine instructions behave exactly like the 80x86’s mov

instruction. To send data to an output device, the CPU simply moves
that data to a special memory location; and to read data from an input
device, the CPU retrieves the data from the device’s address. I/O
operations behave much like memory read and write operations, except
that I/O usually involves more wait states.

Based on the CPU’s ability to read and write data at a given port
address, I/O ports can be grouped into five categories: read-only, write-
only, read/write, dual I/O, and bidirectional.

A read-only port is an input port. If the CPU can only read the data
from the port, then the data must come from some source external to
the computer system. It’s never a good idea to try to write to a read-only
port because, although the hardware typically ignores such attempts, it
can cause some devices to fail. A good example of a read-only port is the
status port on the original IBM PC’s parallel printer interface. Data
from this port specifies the current status of the printer, while the
hardware ignores any data written to this port.

A write-only port is always an output port. Data written to such a port
is available for use by an external device. Attempting to read data from a
write-only port generally returns whatever garbage value happens to be
on the data bus, so your programs shouldn’t depend on the meaning of
such values. An output port typically uses a latch device to hold data to
be sent to the outside world. When a CPU writes to a port address
associated with an output latch, the latch stores the data and makes it
available on an external set of signal lines (see Figure 12-1).

Figure 12-1: A typical write-only port

A perfect example of an output port is a parallel printer port. The
CPU typically writes an ASCII character to a byte-wide output port
that connects to the DB-25F connector on the back of the computer’s
case. A cable transmits this data to the printer, where it arrives on the
printer’s input port (from the printer’s perspective, it is reading the data
from the computer system). A processor inside the printer typically
converts this ASCII character to a sequence of dots that it prints on
paper.

Output ports can be write-only or read/write. The port in Figure 12-
1, for example, is a write-only port. Because the outputs on the latch do
not loop back to the CPU’s data bus, the CPU can’t read the data the
latch contains. Both the address decode line (En) and the write control
line (W) must be active for the latch to operate. If the CPU tries to read
the data located at the latch’s address, the address decode line is active
but the write control line is not, so the latch does not respond to the
read request.

A read/write port is an output (write-only) port as far as the outside
world is concerned. However, as the name implies, the CPU can also
read data from such a port—specifically, it reads the data that was last
written to the port. Doing so does not affect the data presented to the

external peripheral device.1 Figure 12-2 illustrates a read/write port.

Figure 12-2: A read/write port

As you can see, the data written to the output port loops back to a
second latch. Placing the address of these two latches on the address bus
asserts the address decode lines on both latches. Therefore, to select
between the two latches, the CPU must also assert either the read line
or the write line. Asserting the read line (which happens during a read
operation) will enable the lower latch. This places the data previously
written to the output port on the CPU’s data bus, allowing the CPU to
read that data.

The port in Figure 12-2 is not an input port—true input ports read
data from external pins. Although the CPU can read data from this
latch, the organization of this circuit simply allows the CPU to read the
data it previously wrote to the port, thus saving the program from
having to maintain this value in a separate variable. The data on the
external connector is output only, and you can’t connect real-world
input devices to these signal pins.

A dual I/O port is also a read/write port, but when you read a dual
I/O port, you read data from an external input device rather than the
last data written to the output side of the port’s address. Writing data to
a dual I/O port transmits data to some external output device, just as

writing to a write-only port does. Figure 12-3 shows how you could
interface a dual I/O port with the system.

Figure 12-3: A dual I/O port

A dual I/O port is actually created with two ports—a read-only port
and a write-only port—that share the same port address. Reading from
the address accesses the read-only port, and writing to the address
accesses the write-only port. Essentially, this port arrangement uses the
read (R) and write (W) control lines to provide an extra address bit that
specifies which of the two ports to use.

Finally, a bidirectional port allows the CPU to both read data from and
write data to an external device. To function properly, a bidirectional
port must pass various control lines, such as read and write enable, to
the peripheral device so that the device can change the direction of data
transfer based on the CPU’s read/write request. In effect, a bidirectional
port is an extension of the CPU’s bus through a bidirectional latch or
buffer.

Generally, a given peripheral device utilizes multiple I/O ports. The
original IBM PC parallel printer interface, for example, uses three port
addresses: a read/write I/O port, a read-only input port, and a write-
only output port. The read/write data port allows the CPU to read the

last ASCII character written through it. The input port returns control
signals from the printer, which indicate whether the printer is ready to
accept another character, offline, out of paper, and other statuses. The
output port transmits control information to the printer. Later-model
PCs substituted a bidirectional port for the data port, allowing data
transfer from and to a device through the parallel port. The
bidirectional data port improved performance for various devices such
as disk and tape drives connected to the PC’s parallel port. (Of course,
modern PCs talk to printers over the USB port—that’s quite a different
animal from the hardware perspective, though.)

12.2 Other Ways to Connect Ports to the System

The examples thus far may have given you the impression that the CPU
always reads and writes peripheral data using the data bus. However,
while the CPU generally transfers the data it has read from input ports
across the data bus, it doesn’t always use the data bus to write data to
output ports. In fact, a very common output method is to simply access
a port’s address directly without writing any data to it. Figure 12-4
illustrates a simple example of this technique using a set/reset (S/R) flip-
flop.

Figure 12-4: Outputting data to a port by directly accessing that port

In this circuit, an address decoder decodes two separate addresses.
Any read or write access to the first address sets the output line to a 1;
any read or write access to the second address sets the output line to a 0.
This circuit ignores the data on the CPU’s data lines, as well as the

status of the read and write lines. The only thing that matters is that the
CPU accesses one of these two addresses.

Another possible way to connect an output port to a system is to
connect the read/write status lines to the data input of a D flip-flop.
Figure 12-5 shows how you could design such a device.

Figure 12-5: Outputting data using the read/write control as the data to output

In this diagram, any read of the port sets the output bit to 0, while
any write to this port sets the output bit to 1 (the read control line will
be HIGH when writing to the specified address).

These are only two examples of an amazing variety of designs that
engineers have devised to avoid using the data bus (largely to reduce
hardware costs or improve performance). However, unless otherwise
noted, the remaining examples in this chapter presume that the CPU
reads and writes data to and from an external device using the data bus.

12.3 I/O Mechanisms

There are three basic I/O mechanisms that computer systems use to
communicate with peripheral devices: memory-mapped input/output,
I/O-mapped input/output, and direct memory access (DMA). Memory-
mapped I/O uses ordinary locations within the CPU’s memory address
space to communicate with peripheral devices. I/O-mapped input/output
uses an address space separate from memory, as well as special machine
instructions to transfer data between that I/O address space and the
outside world. Direct memory access (DMA) is a special form of memory-
mapped I/O where the peripheral device reads and writes data located

in memory without CPU intervention. Each I/O mechanism has its
own set of advantages and disadvantages, as we will discuss in this
section.

Usually, the hardware system designer determines how a device
connects to a computer system; programmers have little control over
this decision. Nevertheless, by paying attention to the costs and benefits
of the I/O mechanism used for communication between the CPU and
the peripheral device, you can choose code sequences that will maximize
I/O performance within your applications.

12.3.1 Memory-Mapped I/O

A memory-mapped peripheral device is connected to the CPU’s address
and data lines exactly like regular memory, so whenever the CPU writes
to or reads from the address associated with the peripheral device, the
CPU transfers data to or from the device. This mechanism has several
benefits and only a few disadvantages.

The principle advantage of a memory-mapped I/O subsystem is that
the CPU can use any instruction that accesses memory, such as mov, to
transfer data between the CPU and a peripheral. For example, if you’re
trying to access a read/write or bidirectional port, you can use an 80x86
read/modify/write instruction, like add, to read the port, manipulate the
value, and then write data back to the port, all with a single instruction.
Of course, if the port is read-only or write-only, such an instruction will
be of little use.

The big disadvantage of memory-mapped I/O devices is that they
consume addresses in the CPU’s memory map. Every byte of address
space that a peripheral device consumes is one less byte available for
installing actual memory. Generally, the minimum amount of space you
can allocate to a peripheral (or block of related peripherals) is a page of
memory (4,096 bytes on an 80x86). Fortunately, a typical PC has only a
couple dozen such devices, so this usually isn’t much of a problem.
However, it can become a problem with some peripheral devices, like
video cards, that consume a large chunk of the address space. Some
video cards have between 1GB and 32GB of on-board memory that
they map into the memory address space, which means that the 1GB to

32GB address range consumed by such a card is not available to the
system for use as regular RAM (though this is hardly a concern on a 64-
bit processor).

I/O and the Cache

The CPU cannot cache values intended for memory-mapped I/O
ports. Caching data from an input port would mean that
subsequent reads of the port would access the value in the cache
rather than the port data, which could be different. Similarly, with
a write-back cache mechanism, some writes might never reach an
output port because the CPU might save up several writes in the
cache before sending the last one to the actual I/O port. In order
to avoid these potential problems, we need some mechanism to tell
the CPU not to cache accesses to certain memory locations.

The solution is found in the CPU’s memory management
subsystem. The 80x86’s page table entries, for example, contain a
flag that the CPU can use to determine whether it is okay to map
data from a page in memory to the cache. If this flag is set one way,
the cache operates normally; if the flag is set the other way, the
CPU does not cache accesses to that page.

12.3.2 I/O-Mapped Input/Output

As noted previously, I/O-mapped input/output uses a special I/O
address space separate from the normal memory space, coupled with
special machine instructions to access device addresses. For example,
the 80x86 CPUs provide the in and out instructions specifically for this
purpose. These instructions behave like mov except that they transmit
data to and from the special I/O address space rather than the normal
memory address space. Typically, processors that provide I/O-mapped
input/output capabilities use the same physical address bus to transfer
both memory addresses and I/O device addresses. Additional control
lines differentiate between addresses that belong to the normal memory

space and those that belong to the special I/O address space. This
means that such CPUs could use both I/O-mapped input/output or
memory-mapped I/O. Therefore, if the number of I/O-mapped
locations in the CPU’s address space is insufficient, a hardware designer
can always use memory-mapped I/O instead (as a video card does on a
typical PC).

In modern 80x86 PC systems that utilize the PCI bus (or later
variants), special peripheral chips on the system’s motherboard remap
the I/O address space into the main memory space, allowing programs
to access I/O-mapped devices using either memory-mapped or I/O-
mapped input/output.

12.3.3 Direct Memory Access

Memory-mapped I/O subsystems and I/O-mapped subsystems are both
forms of programmed I/O, as they require the CPU to move data
between the peripheral device and memory. To store into memory a
sequence of 10 bytes taken from a programmed I/O input port, the
CPU must read each value from the input port and store it into
memory.

However, processing data 1 byte (or word or double word) at a time
via the CPU may be too slow for very high-speed I/O devices. Such
devices generally have an interface to the CPU’s bus so they can read
and write memory directly—that is, without the CPU as an
intermediary. Direct memory access (DMA) allows I/O operations to
proceed in parallel with other CPU operations, which increases the
overall speed of the system—unless the CPU and the DMA device both
try to use the address and data buses at the same time. Concurrent
processing occurs only if the bus is free for use by the I/O device, which
happens when the CPU has a cache and is accessing cached code and
data. Nevertheless, even if the CPU must halt and wait for a DMA
operation to complete before beginning a different operation, the DMA
approach is still much faster, because many of the bus operations are
instruction fetches or I/O port accesses that don’t occur during DMA
operations.

A typical DMA controller consists of a pair of counters and other
circuitry that interfaces with memory and the peripheral device. One of
the counters serves as an address register, supplying an address on the
address bus for each transfer. The second counter specifies the number
of data transfers. The application initializes the DMA controller’s
address counter with the address of the block where it should begin
transferring data. Each time the peripheral device wants to transfer data
to or from memory, it sends a signal to the DMA controller, which
places the value of the address counter on the address bus. In
coordination with the DMA controller, the peripheral device places data
on the data bus to write to memory during an input operation, or it
reads data from the data bus, taken from memory, during an output

operation.2 After a successful data transfer, the DMA controller
increments its address register and decrements the transfer counter.
This process repeats until the transfer counter decrements to zero.

12.4 I/O Speed Hierarchy

Different peripheral devices have different data transfer rates. Some
devices, like keyboards, are extremely slow compared to CPU speeds.
Other devices, like solid-state disk drives, can actually transfer data
faster than the CPU can process it. The appropriate programming
technique for data transfer depends strongly on the transfer speed of the
peripheral device involved in the I/O operation. Therefore, before
discussing how to write the most appropriate code, we should establish
some terminology to describe the different transfer rates of peripheral
devices.

Low-speed devices Devices that produce or consume data at a rate
much slower than the CPU is capable of processing. For the
purposes of discussion, we’ll assume that low-speed devices operate
at speeds that are three or more orders of magnitude slower than the
CPU.

Medium-speed devices Devices that transfer data at approximately
the same rate as, or up to three orders of magnitude slower than, the

CPU (accessing the device using programmed I/O).

High-speed devices Devices that transfer data faster than the CPU
is capable of handling using programmed I/O.

The speed of the peripheral device determines the type of I/O
mechanism used for the I/O operation. Clearly, high-speed devices
must use DMA because programmed I/O is too slow. Medium- and
low-speed devices can use any of the three I/O mechanisms for data
transfer (though low-speed devices rarely use DMA because of the cost
of the extra hardware involved).

With typical bus architectures, CPUs are capable of one transfer per
microsecond or better. Therefore, high-speed devices are those that
transfer data more rapidly than once per microsecond. Medium-speed
transfers are those that involve a data transfer every 1 to 100
microseconds. Low-speed devices usually transfer data less often than
once every 100 microseconds. Of course, these definitions for low-,
medium-, and high-speed devices are system dependent. Faster CPUs
with faster buses allow faster medium-speed operations.

Note that one transfer per microsecond is not the same as a 1MB-
per-second transfer rate. A peripheral device can actually transfer more
than 1 byte per data transfer operation. For example, when using the
80x86 in(dx, eax); instruction, the peripheral device can transfer 4 bytes
in one transfer. Therefore, if the device is capable of one transfer per
microsecond, it can transfer 4MB per second using this instruction.

12.5 System Buses and Data Transfer Rates

In Chapter 6, you saw that the CPU communicates with memory and
I/O devices using the system bus. If you’ve ever looked inside a
computer or read the specifications for a system, you’ve probably seen
terms like PCI, ISA, EISA, or even NuBus used to refer to the
computer’s system bus. In this section, we’ll discuss how these different
computer system buses relate to the CPU bus, and how they affect the
performance of a system.

A single computer system often employs multiple buses. Therefore, a
software engineer can choose which peripheral devices to use based
upon their bus connections. Maximizing performance for a particular
bus may require different programming techniques than for other
buses. Although it’s not possible to choose the buses a particular
computer system employs, a software engineer can select among the
available buses to improve an application.

Computer system buses like PCI (Peripheral Component
Interconnect) and ISA (Industry Standard Architecture) define physical
connectors inside a computer system. Specifically, they describe the set
of electronic signals (connector pins on the bus), physical dimensions (that
is, connector layouts and distances from one another), and a data
transfer protocol for connecting different electronic devices. These
buses are often extensions of the CPU’s local bus (the address, data, and
control lines), because many of the signals on the system buses are
identical to the CPU’s signals.

However, peripheral buses themselves are not necessarily identical to
the CPU’s bus—they may have additional or fewer signals compared to
those on the CPU. For example, the ISA bus supports only 24 address
lines compared with the Intel and AMD’s x86-64 40 to 52 address lines.

Different peripheral devices are designed to use different peripheral
buses. Figure 12-6 shows the organization of the PCI and ISA buses in a

typical computer system.3

Figure 12-6: Connection of the PCI and ISA buses in a typical PC

Notice how the CPU’s address and data buses connect to a PCI bus
controller peripheral device, but not to the PCI bus itself. The PCI bus
controller contains two sets of pins, providing a bridge between the
CPU’s local bus and the PCI bus. The signal lines on the local bus are
not connected directly to the corresponding lines on the PCI bus;
instead, the PCI bus controller acts as an intermediary, rerouting all
data transfer requests between the CPU and the PCI bus.

Also note that the ISA bus controller is usually connected to the PCI
bus controller, not directly to the CPU. This is typically for cost or
performance reasons (there may be a limit to the number of devices that
can connect directly to the CPU bus without additional buffering, for
example).

The CPU’s local bus usually runs at some fraction of the CPU’s
frequency. Typical local bus frequencies are currently 66 MHz, 100
MHz, 133 MHz, 400 MHz, 533 MHz, and 800 MHz, but they may
become even faster. Usually, only memory and a few selected
peripherals like the PCI bus controller sit on the CPU’s bus and operate
at this high frequency.

Because a typical CPU’s bus is 64 bits wide and it’s theoretically
possible to achieve one data transfer per clock cycle, the CPU’s bus has
a maximum data transfer rate of 8 bytes times the clock frequency, or
800MB per second for a 100 MHz bus. In practice, CPUs rarely achieve
the maximum data transfer rate, but they do achieve some percentage of
it, so the faster the bus, the more data can move in and out of the CPU
(and caches) in a given amount of time.

12.5.1 Performance of the PCI Bus

The PCI bus comes in several configurations. The base configuration
has a 32-bit-wide data bus operating at 33 MHz. Like the CPU’s local
bus, the PCI bus is theoretically capable of transferring data on each
clock cycle. This means that the bus has a theoretical maximum data
transfer rate of 4 bytes times 33 MHz, or 132MB per second. In
practice, though, the PCI bus doesn’t come anywhere near this level of
performance except in short bursts. Newer versions of the PCI-e offer

up to 16 “lanes,” allowing for much faster data transfer (largely for high-
performance video cards).

Whenever the CPU wants to access a peripheral on the PCI bus, it
must negotiate with other peripheral devices for the right to use the
bus. This negotiation can take several clock cycles before the PCI
controller grants the CPU access to the bus. If a CPU writes a double
word per bus transfer, the negotiation time actually slows the transfer
rate dramatically. The only way to achieve anywhere near the maximum
theoretical bandwidth on the bus is to use a DMA controller and move
blocks of data in burst mode. In burst mode, the DMA controller
negotiates just once for the bus and then makes many transfers without
giving up the bus between each one.

There are a couple of enhancements to the PCI bus that improve
performance. Some PCI buses support a 64-bit-wide data path. This,
obviously, doubles the maximum theoretical data transfer rate from 4
bytes per transfer to 8 bytes per transfer. Another enhancement is
running the bus at 66 MHz, which also doubles the throughput. With a
64-bit-wide, 66 MHz bus, you would quadruple the data transfer rate of
the baseline configuration. These optional enhancements to the PCI
bus allow it to grow with the CPU as CPUs increase their performance.
A high-performance version of the PCI bus, PCI-X, was available for a
while, but it has largely been replaced by the PCI-e bus. PCI-e is a
serial bus, transmitting data serially over a few data lines. However, it
uses lanes to pass additional data in parallel. For example, a 16-lane
PCI-e bus is 16 times faster than a single-lane variant.

12.5.2 Performance of the ISA Bus

The ISA bus is a carryover from the original PC/AT computer system.
This bus is 16 bits wide and operates at 8 MHz. It requires four clock
cycles for each bus cycle (a bus cycle is the time it takes to transfer one
16-bit word of data across the ISA bus). For this and other reasons, the
ISA bus is capable of about only one data transmission per microsecond.
With a 16-bit-wide bus, data transfer is limited to about 2MB per
second. This is much slower than both the CPU’s local bus and the PCI
bus. Generally, the ISA bus is really only capable of supporting low-

speed and medium-speed devices—like an RS-232 communications
device, a modem, or a parallel printer interface—to the ISA bus. Most
other devices, like disks, scanners, and network cards, are too fast for
the ISA bus.

Accessing the ISA bus on most systems involves first negotiating for
the PCI bus, but the PCI bus is so much faster than the ISA bus that
this negotiation time has very little impact on the performance of
peripherals on the ISA bus. Therefore, connecting the ISA controller
directly to the CPU’s local bus wouldn’t noticeably improve
performance.

Fortunately, the ISA bus is thoroughly obsolete these days, and you
won’t find it on modern PCs. A few industrial PCs and SBCs (single-
board computers) support ISA bus connections for legacy applications,
but other than that the ISA bus is dead.

12.5.3 The AGP Bus

Video display (aka graphics) cards are very special peripherals that need
maximum bus performance to ensure quick screen updates and fast
graphic operations. Unfortunately, if the CPU has to constantly
negotiate with other peripherals for the use of the PCI bus, graphics
performance can suffer. To overcome this problem, video card designers
created the Accelerated Graphics Port (AGP), an interface between the
CPU’s local bus and the video display card that provides various control
lines and bus protocols specifically designed for video display cards.

The AGP connection lets the CPU quickly move data to and from
the video display RAM (see Figure 12-7).

Figure 12-7: The AGP bus interface

Because there’s only one AGP port per system, only one card can use
the AGP slot at a time. The upside of this is that the system never has to
negotiate for access to the AGP bus. However, by 2008 the performance
of video cards surpassed that of the AGP bus. Most modern video cards
use multilane PCI-e bus interfaces instead.

12.6 Buffering

If a particular I/O device produces or consumes data faster than the
system is capable of transferring data to or from that device, the system
designer has two choices: provide a faster connection between the CPU
and the device, or slow down the rate of transfer between the two.

If the peripheral device is connected to a slow bus like ISA, a system
designer can create a faster connection by switching to a wider bus like
the 64-bit PCI, a faster bus (one with a higher frequency), or a higher-
performance bus like PCI-e. System designers can also sometimes
create a faster interface to the bus, as they did with the AGP
connection.

The alternative—slowing down the transfer rate between the
peripheral and the computer system—isn’t always as bad an option as it
might initially seem. Most high-speed devices don’t transfer data to the
system at a constant rate. Instead, they typically transfer a block of data

rapidly and then sit idle for some time. Although the burst rate is higher
than the CPU or memory can handle, the average data transfer rate is
usually lower. If you can average out the high-bandwidth peaks and
transfer some of the data when the peripheral is inactive, you can easily
move data between the peripheral and the computer system without
resorting to an expensive, high-bandwidth bus or connection.

The trick is to use memory on the peripheral side to buffer the data.
The peripheral can rapidly fill this buffer with data during an input
operation, and rapidly extract data from the buffer during an output
operation. Once the peripheral device is inactive, the system either
empties or refills the buffer at a sustainable rate. As long as the average
data transfer rate of the peripheral device is below the maximum
bandwidth the system supports, and the buffer is large enough to hold
bursts of data going to and from the peripheral, this scheme lets the
peripheral communicate with the system at a lower average data transfer
rate.

Often, to save costs, the buffering takes place in memory on the
CPU rather than on the peripheral device. In this case, it is often the
software engineer’s responsibility to initialize the buffer for a peripheral
device. In some cases, neither the peripheral device nor the OS provides
a buffer for the peripheral’s data, so the application must do so in order
to maintain maximum performance and avoid data loss. In other cases,
the device or OS may provide a small buffer, but the application itself
might not process the data often enough to avoid data overruns in the
small buffer; in these situations, an application can create a larger buffer
that is local to the application.

12.7 Handshaking

Many I/O devices cannot accept data at just any rate. For example, an
i9-based PC is capable of sending several hundred million characters
per second to a printer, but printers can’t print that many characters
each second. Likewise, an input device such as a keyboard will never
transmit several million keystrokes per second to the system (because
the keyboard operates at human speeds, not computer speeds). Because

of these differences in capabilities, the CPU needs some way to
coordinate data transfer between the computer system and its peripheral
devices.

One common approach is to send and receive status bits on a port
separate from the data port. For example, a printer could send a single
bit to tell the system whether it is ready to accept more data. Likewise, a
single status bit in a different port could specify whether a keystroke is
available at the keyboard data port. The CPU can test these bits prior to
writing a character to the printer or reading a key from the keyboard.

Using status bits to indicate that a device is ready to accept or
transmit data is known as handshaking, so named because the protocol is
similar to two people signifying agreement with a handshake.

The following 80x86 assembly language program segment
demonstrates how handshaking works:

mov($379, dx); // Initialize DX with the address of the status port.
repeat

 in(dx, al); // Get the parallel port status into the AL register.
 and($80, al); // Clear z flag if the HO bit is set.

until(@nz); // Repeat until the HO bit contains a 1.

// Okay to write another byte to the printer data port here.

This code fragment will continuously loop while the HO bit of the
printer status register (at input port $379) contains 0 and will exit once
the HO bit is set (indicating that the printer is ready to accept data).

12.8 Timeouts on an I/O Port

One problem with the repeat..until loop in the previous section is that it
could spin indefinitely as it waits for the printer to become ready to
accept additional input. If someone turns the printer off or the printer
cable becomes disconnected, the program could freeze up, forever
waiting for the printer to become available. Usually, it’s a better idea to
inform the user when something goes wrong rather than allowing the
system to hang. To do this, include a timeout period in the loop; once

exceeded, the timeout causes the program to alert the user that
something is wrong with the peripheral device.

You can expect some sort of response from most peripheral devices
within a reasonable amount of time. For example, even in the worst
case, most printers will be ready to accept additional character data
within a few seconds of the last transmission. Therefore, something is
probably wrong if 30 seconds or more has passed without the printer
accepting a new character. A program written to detect this kind of
problem typically pauses, asking the user to check the printer, and then
resumes printing once the user indicates the problem is resolved.

Choosing a good timeout period is not an easy task. You must
carefully balance the irritation of possible false alarms from the program
with the pain of having it lock up for long periods when something
actually is wrong. Both situations are equally annoying.

An easy way to create a timeout period is to count the number of
times the program loops while waiting for a handshake signal from a
peripheral. Consider the following modification to the repeat..until loop
from the previous section:

mov($379, dx); // Initialize DX with the address of the status port.
mov(30_000_000, ecx); // Timeout period of approximately 30 seconds,
 // assuming port access time is about 1 microsecond.
HandshakeLoop:

 in(dx, al); // Get the parallel port status into the AL register.
 and($80, al); // Clear z flag if the HO bit is set.

loopz HandshakeLoop; // Decrement ECX and loop while ECX <> 0 and
 // the HO bit of AL contains a 0.

if(ecx <> 0) then

 // Okay to write another byte to the printer data port here.

else

 // We had a timeout condition if we get here.

endif;

This code will exit once the printer is ready to accept data or when
approximately 30 seconds have expired. You might question the 30-
second figure, since a software-based loop (counting down ECX to 0)

should run at different speeds on different processors. However, the in()
instruction reads a port on the bus, and that means this instruction will
take approximately 1 microsecond to execute (I/O ports often inject lots
of wait states). Hence, one million times through the loop will take
about a second (plus or minus 50 percent, but close enough for our
purposes). This is true almost regardless of the CPU frequency.

12.9 Interrupts and Polled I/O

Polling is the process of constantly testing a port to see if data is
available. The handshaking loops of the previous sections provide good
examples of polling—the CPU waits in a short loop, testing the printer
port’s status value until the printer is ready to accept more data, and
then the CPU can transfer more data to the printer. Polled I/O is
inherently inefficient. If the printer in this example takes 10 seconds to
accept another byte of data, the CPU spins, doing nothing productive
for those 10 seconds.

In early personal computer systems, this is exactly how a program
would behave. When a program wanted to read a key from the
keyboard, it would poll the keyboard status port until a key was
available. These early computers could not do other processing while
waiting for the keyboard.

The solution to this problem is to use an interrupt mechanism. An
interrupt is triggered by an external hardware event, such as the printer
becoming ready to accept another character, that causes the CPU to
interrupt its current instruction sequence and call a special interrupt
service routine (ISR). Typically, an ISR runs through the following
sequence of events:

1. It preserves the current values of all machine registers and flags so
that the interrupted computation can be continued later.

2. It does whatever operation is necessary to service the interrupt.

3. It restores the registers and flags to the values they had before the
interrupt.

4. It resumes execution of the code that was interrupted.

In most computer systems, typical I/O devices generate an interrupt
whenever they make data available to the CPU, or when they become
able to accept data from the CPU. The ISR quickly processes the
interrupt request in the background, allowing some other computation
to proceed normally in the foreground.

Though ISRs are usually written by OS designers or peripheral
device manufacturers, most OSes enable you to pass an interrupt to an
application via signals or some similar mechanism. This allows you to
include ISRs directly within an application. You could use this facility,
for example, to have a peripheral device notify your application when its
internal buffer is full and the application needs to copy data from the
peripheral’s buffer to an application buffer to prevent data loss.

12.10 Protected-Mode Operation and Device
Drivers

If you’re working on an ancient Windows 95 or 98 system, you can
write assembly code to access I/O ports directly. The handshaking code
shown earlier is a good example of this. However, modern versions of
Windows and all versions of Linux and macOS employ a protected mode
of operation. In this mode, direct access to devices is restricted to the
OS and certain privileged programs. Standard applications, even those
written in assembly language, are not so privileged. If you write a simple
program that attempts to send data to an I/O port, the system will
generate an illegal access exception and halt your program.

Linux won’t allow just any program to access I/O ports; only
programs with “superuser” (root) privileges can do so. For limited I/O
access, it’s possible to use the Linux ioperm system call to make certain
I/O ports accessible from user applications. (For more details, read the
man page on ioperm.)

If Linux, macOS, and Windows don’t allow direct access to
peripheral devices, how does a program communicate with these

devices? Clearly, this can be done, because applications interact with
real-world devices all the time. The answer is that these OSes permit
specially written modules, known as device drivers, to access I/O ports. A
complete discussion of writing device drivers is well beyond the scope of
this book, but understanding how they work may help you understand
the possibilities and limitations of I/O under a protected-mode OS.

12.10.1 The Device Driver Model

A device driver is a special type of program that links with the OS. It
must follow some specific protocols, and it must make some special calls
to the OS that are not available to standard applications. Furthermore,
in order to install a device driver in your system, you must have
administrator privileges, because device drivers pose all kinds of security
and resource allocation risks, and you can’t leave your system
vulnerable. Therefore, installation is not a trivial process, and
application programs cannot load and unload drivers at will.

Fortunately, there are only a limited number of devices found on a
typical PC, so you only need a limited number of device drivers. You
would typically install a device driver in the OS at the same time you
install the device, or, if the device is built into the PC, at the same time
you install the OS. About the only time you’d really need to write your
own device driver is when building your own device, or in unique cases
where you need to take advantage of some device’s capabilities that
standard device drivers don’t handle.

The device driver model works well with low-speed devices, where
the OS and device driver can respond to the device much more quickly
than it requires. The model is also great for use with medium- and
high-speed devices where the system transmits large blocks of data to
and from the device. However, the device driver model does have a few
drawbacks, one being that it does not support medium- and high-speed
data transfers that require substantial interaction between the device
and the application.

The problem is that calling the OS is an expensive process.
Whenever an application makes a call to the OS to transmit data to the
device, it can potentially take hundreds of microseconds, if not

milliseconds, before the device driver actually sees the application’s data.
If the interaction between the device and the application requires a
constant flurry of bytes moving back and forth, there will be a big delay
if each transfer has to go through the OS. For applications of this sort,
you’ll need to write a special device driver that can handle the
transactions itself rather than continually returning to the application.

Because applications can’t access devices directly (in modern OSes),
all communication between them must take place through a device
driver intermediary. The question, then, is how do applications
communicate with device drivers?

12.10.2 Communication with Device Drivers

For the most part, communicating with a peripheral device under a
modern OS is exactly like writing data to a file or reading data from a
file. In most OSes, you open a “file” using a special filename like COM1
(the serial port) or LPT1 (the parallel port) and the OS automatically
creates a connection to the specified device. When you are finished
using the device, you “close” the associated file, which tells the OS that
the application is done with the device so other applications can use it.

Of course, most devices don’t support the same semantics as disk
files. Some devices, like printers or modems, can accept a long stream of
unformatted data, but others may require that you preformat the data
into blocks and write the blocks to the device with a single write
operation. The exact semantics depend upon the particular device.
Nevertheless, the typical way to send data to a peripheral is to use an
OS “write” function to which you pass a buffer containing some data,
and the way to read data from a device is to call an OS “read” function
to which you pass the address of some buffer into which the OS will
place the data it reads.

But not all devices conform to these stream-I/O data semantics of file
I/O, either. Therefore, most OSes provide a device-control API that lets
you pass information directly to the peripheral’s device driver to handle
the cases where a stream-I/O model fails.

Because it varies by OS, the exact details concerning the OS API
interface are a bit beyond the scope of this book. Though most OSes
use a similar scheme, they differ enough to make it impossible to
describe them in a general way. So, for further details, consult the
programmer’s reference for your particular OS.

12.11 For More Information

Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. “Chapter
13: I/O Systems.” In Operating System Concepts. 8th ed. Hoboken, NJ:
John Wiley & Sons, 2009.

NOTE

Early editions of Patterson and Hennessy’s Computer Architecture: A
Quantitative Approach provided a good chapter on I/O devices and buses;
sadly, as it covered very old peripheral devices, the authors dropped the
chapter rather than updating it in subsequent revisions. Internet searches
seem to be the last place you can find consistent information on this subject
(outside of this book, of course).

13
COMPUTER PERIPHERAL BUSES

System buses are not the only buses you’ll find in a computer system.
There are many specialized peripheral buses as well. This chapter
discusses the SCSI, IDE/ATA, SATA, SAS, FibreChannel, Firewire, and
USB buses that connect computers with various peripheral devices.

13.1 The Small Computer System Interface

The Small Computer System Interface (SCSI, pronounced “scuzzy”) is a
peripheral interconnection bus used to connect high-speed peripheral
devices to personal computer systems. Designed in the early 1980s, the
SCSI bus was popularized by its introduction on the Apple Macintosh
computer system in the mid 1980s. The original SCSI bus supported an
8-bit bidirectional data bus and was capable of transferring 5MB of data
per second, which was considered high performance for hard-disk
subsystems of that era. Although its early performance is quite slow by
modern standards, SCSI has gone through several revisions over the
years and remains a high-performance peripheral interconnection
system. At the height of its popularity, these older SCSI devices were
capable of transferring 320MBps (megabytes per second).

Although the SCSI interconnection system is most commonly used
for disk drive subsystems, SCSI was designed to support a whole host of
PC peripherals using a cable connection. Indeed, as SCSI became
popular during the late 1980s and into the 1990s, you could find
printers, scanners, imaging machines, phototypesetters, network and
display adapters, and many other devices interfacing with the SCSI bus.

However, the prevalence of SCSI as a general-purpose peripheral
bus has diminished since the emergence of the USB, FireWire, and
Thunderbolt peripheral connection systems. Except for very high-
performance disk drive subsystems and some very specialized peripheral
devices, few new peripherals use the interface. To understand why
SCSI’s popularity waned, let’s look at the problems SCSI users have
faced over the years.

13.1.1 Limitations

When SCSI was first introduced, the SCSI bus supported concurrent
connection of the SCSI adapter card and up to seven actual peripheral
devices. To connect multiple devices, you ran a cable from the host
controller card to the first peripheral device. To connect a second
device, you ran a cable from a second connector on the first device to
the second device. To connect a third device, you ran a cable from a
separate connector on the second device to the third device, and so on.
At the end of this “daisy chain” of devices, you attached a special
terminating device to the last connector of the last peripheral device.
Without the special “terminator” at the end of the SCSI chain, many
SCSI systems would work unreliably, if at all.

As a “convenience” to their customers, many peripheral
manufacturers built the terminating circuitry into their devices.
Unfortunately, connecting multiple terminators in the middle of the
SCSI chain was just as bad as not having a terminator at all. Though
most manufacturers who designed the terminating circuitry into their
peripherals often provided an option to disable the terminator, some did
not. Ensuring that those devices with the active terminator circuitry
were at the end of the SCSI chain was often cumbersome, and even if a
device provided an option to enable or disable the terminator, knowing

the appropriate DIP switch settings was challenging if the
documentation wasn’t handy. As a result, many computer owners had
problems with a chain of SCSI devices not working properly in their
system.

On the original SCSI bus, the computer system owner had to assign
each device one of eight numeric “addresses” from 0 to 7, with address
7 generally reserved for the host controller card. If two devices in the
SCSI chain had the same address, they wouldn’t operate properly. This
made moving SCSI peripherals from one computer system to another
somewhat difficult, because the address of the device being moved was
usually already taken by another device on the new system.

The original SCSI bus had other limitations as well. First, it
supported only seven peripheral devices. When SCSI was first designed,
this wasn’t usually a problem because common SCSI peripherals like
hard drives and scanners were very expensive, costing thousands of
dollars each. Connecting more than seven devices wasn’t something
your average computer owner would have done back then. As the price
of hard drives and other SCSI peripherals came down, however, the
seven-peripheral limit became burdensome.

Second, SCSI was not hot-swappable; that is, you couldn’t unplug or
connect a peripheral device while the power was on. Doing so could
cause electrical damage to the SCSI controller, the peripheral, or even
some other peripheral on the SCSI bus. As SCSI peripherals became
more affordable and people began connecting multiple devices to their
computer systems, the desire to unplug a device from one system and
plug it into another grew, but SCSI did not support that capability.

13.1.2 Improvements

Despite these drawbacks, SCSI’s popularity grew. To maintain that
popularity, SCSI was modified over time to improve its functionality.
SCSI-2, the first modification, increased the speed from 5 MHz to 10
MHz, thus doubling the data transfer rate on the bus. This was
necessary because the speed of high-performance devices like disk drives
improved so much that the original SCSI was actually slowing them
down. Next, expanding the size of the bidirectional SCSI data bus from

8 bits to 16 bits not only doubled the data transfer rate from 10MBps to
20MBps, but also increased the number of peripherals you could place
on the bus from 7 to 15. Variations of SCSI-2 were known as Fast SCSI
(10 MHz), Wide SCSI (16 bits), and Fast and Wide SCSI (16 bits at 10
MHz).

It should come as no surprise that SCSI-3 followed SCSI-2. SCSI-3
offers a veritable smorgasbord of different connection options while
maintaining compatibility with the older standards. Although SCSI-3
(using names like Ultra, Ultra-Wide, Ultra2, Wide Ultra2, Ultra3, and
Ultra320) still operates as a 16-bit bus in the parallel cable mode, and
still supports a maximum of 15 peripherals, it vastly increased the
operating speed of the bus and the maximum permissible physical
distance across which SCSI peripherals could be chained. In short,
SCSI-3 operates at speeds of up to 160 MHz, allowing the SCSI bus to
transfer data in bursts up to 320MBps (that is, faster than many PCI bus
interconnects!).

SCSI was originally a parallel interface. Today, it supports four
different interconnection standards: SCSI Parallel Interface (SPI), Serial
SCSI across FireWire, Fibre Channel Arbitrated Loop, and Serial-
Attached SCSI (SAS). The SPI is the original standard that most people
associate with SCSI. SCSI parallel cables contain either 8 or 16 data
lines, depending on the type of SCSI interface in use. This makes SCSI
cables bulky, heavy, and expensive. The parallel SCSI interface also
limits the maximum length of the SCSI chain in the system to just a few
meters. These concerns, especially the economic ones, are why modern
computer systems use SCSI peripherals only when they require
extremely high performance.

Note that the computer system doesn’t own the SCSI bus and
doesn’t necessarily direct the traffic between various peripherals on the
bus. SCSI is a true peer-to-peer bus, and any two peripherals on it may
communicate with each other. Indeed, it’s possible (though unusual) for
two computer systems to share the same SCSI bus.

This peer-to-peer operation can improve the performance of the
overall system tremendously. To illustrate this point, consider a tape
backup system. In practice, most tape backup programs read a block of

data from a disk drive into the computer’s memory and then write that
block of data from the computer’s memory to the tape drive. On the
SCSI bus (in theory, at least), it’s possible to have the tape and disk
drives communicate directly with each other. The tape backup software
would send two commands, one to the disk drive and one to the tape
drive, telling the disk drive to transfer the block of data directly to the
tape drive rather than going through the computer system. Not only
does this reduce the number of transfers across the SCSI bus by half,
speeding up the transfer, but it also frees up the computer’s CPU to do
other things. In reality, few tape backup systems work this way, but
there are many examples where two peripherals communicate across the
SCSI bus without using the computer as an intermediary. Software that
programs SCSI peripherals to operate this way (rather than running the
data through the computer’s memory) is a prime example of great
programming.

13.1.3 SCSI Protocol

SCSI is not only an electrical interconnection, but a protocol as well. You
don’t communicate with a SCSI peripheral device by writing some data
to a couple of registers on the SCSI interface card, sending that data
down the SCSI cable to the peripheral device. Instead, you build up a
data structure in memory containing a SCSI command, command
parameters, any data you want to send to the SCSI peripheral, and
possibly a pointer with the memory address where the SCSI controller
should store any data the peripheral device returns. Once you construct
this data structure, you normally provide the SCSI controller with the
data structure’s address, and the SCSI controller then fetches the
command from system memory and sends it to the appropriate
peripheral device on the SCSI bus.

13.1.3.1 SCSI Command Set

As SCSI hardware has evolved over the years, so has the SCSI protocol
—
or the SCSI command set. SCSI was never intended to serve as just a
hard-disk interface, and the breadth of peripherals that it supports has

steadily increased over time with the advent of new types of computer
peripherals. To accommodate these new and unanticipated uses for the
SCSI bus, SCSI’s designers created a device-independent command
protocol that could be easily extended as new devices were invented.
Contrast this with certain device interfaces, such as the original
Integrated Disk Electronics (IDE) interface, which was suitable only for
disk drives.

The SCSI protocol transmits a packet containing the peripheral’s
address, the command, and the command’s data. The SCSI-3 standard
has roughly grouped these commands into the following classes:

SCSI Controller Commands (SCC) Controller commands for
RAID arrays

SCSI Enclosure Services (SES) Commands Enclosure services
commands

SCSI Graphics Commands (SGC) Graphics commands for
printers

SCSI Block Commands (SBC) Hard-disk interface commands

Management Server Commands (MSC) Commands for
converting between SCSI protocols

Multimedia Commands (MMC) Multimedia commands for
devices such as DVD drives

Object-based Storage Device (OSD) Commands Commands for
managing how objects are allocated, placed, and accessed

SCSI Primary Commands (SPC) Primary commands

Reduced Block Commands (RBC) Commands for simplified hard-
drive subsystems

SCSI Stream Commands (SSC) Stream commands for tape drives

Although the SCSI commands themselves are standardized, the
actual interface to the SCSI host controller is not. Different host
controller manufacturers use different hardware to connect their SCSI
controller chips to the host computer system, so how you talk to a SCSI
controller chip depends on the particular host controller device.
Because SCSI controllers are very complex and difficult to program, and
because there is no “standard” SCSI interface chip, programmers are
faced with having to write several different variants of their software to
control SCSI devices.

13.1.3.2 SCSI Device Drivers

To correct this situation, SCSI host controller manufacturers like
Adaptec have created specialized device driver modules that provide a
uniform interface to their devices. Rather than writing data directly to a
SCSI chip, a programmer creates an in-memory data structure with
SCSI commands to be placed on the SCSI bus, calls the device driver
software, and lets the device driver transfer the SCSI commands to the
SCSI bus. There are several benefits of this approach:

It frees the programmer from having to learn the complexities of
each particular host controller.

It allows different manufacturers to provide a compatible interface
to their SCSI controller devices.

It allows manufacturers to create a single optimized driver that
properly supports the capabilities of their device, rather than
prompting individual programmers to write (possibly mediocre)
code for the device.

It allows manufacturers to change the hardware of future versions
of their device without destroying compatibility with existing
software.

This concept was carried forward into modern OSes. Today, SCSI
host controller manufacturers write SCSI miniport drivers for OSes like
Windows. These miniport drivers provide a hardware-independent

interface to the host controller so that the OS can simply say, “Here is a
SCSI command. Put it on the SCSI bus.”

13.1.4 SCSI Advantages

One big advantage of the SCSI interface is that it provides parallel
processing of SCSI commands. That is, a host system can place several
different SCSI commands on the bus, and different peripheral devices
can process those commands simultaneously. Some devices, like disk
drives, can even accept multiple commands at once and process them in
the order that is most efficient. As an example, suppose that a disk drive
is currently near block 1,000. If the system sends block read requests for
blocks 5,000; 4,560; 3,000; and 8,000; the disk controller can rearrange
these requests and satisfy them in the most efficient order (probably
3,000; 4,560; 5,000; and then 8,000) as it moves the read/write head
across the surface of the disk. This results in a big performance
improvement on multitasking OSes that process requests for disk I/O
from several different applications simultaneously.

SCSI is also a great interface for RAID systems because SCSI is one
of the few disk controller interfaces that supports a large number of
drives on the same interface.

The original SPI (parallel SCSI) is all but dead. Even SCSI over
FireWire is almost gone (as is FireWire). However, today SCSI still
lives on in the form of SAS (Serial-Attached SCSI). Very-high-
performance hard-disk drives use the SAS command set (rather than the
standard SATA command set). The highest-performing RAID systems
are still built around SAS drives.

The SCSI command set is very powerful, and it is designed for high-
performance applications. It is sufficiently large and complex that space
limitations prevent its inclusion here. Readers interested in a deeper
look at SCSI programming should refer to The Book of SCSI, 2nd ed., by
Gary Field, Peter M. Ridge et al. (No Starch Press, 2000). The
complete SCSI specifications appear at various sites on the web. A quick
search for “SCSI specifications” should turn up several copies.

13.2 The IDE/ATA Interface

Although SCSI is very high performance, it is also expensive. A SCSI
device requires a sophisticated and fast processor in order to handle all
the operations that are possible on the SCSI bus. Furthermore, because
SCSI devices can operate on a peer-to-peer basis (that is, one peripheral
may talk to another without intervention from a host computer system),
each SCSI device must carry around a considerable amount of
sophisticated software in ROM on the device’s controller board. Adding
all the extra functionality needed to support full SCSI when all you
want to do is to attach a single hard disk to a personal computer system
is overkill. The Integrated Drive Electronics (IDE) interface was an effort
to provide a bare-bones, low-cost mass storage option.

The idea behind the IDE interface was to lower the cost of the disk
drive by using the host computer’s CPU to do the processing (SCSI
used embedded CPUs to handle a lot of the work). Because the PC’s
CPU was usually idle (during SCSI transfers) anyway, this seemed like a
good use of resources. IDE drives, because they were often hundreds of
dollars less than SCSI drives, became incredibly popular on PC systems.
The much lower cost of the IDE interface and of IDE drives ensured its
popularity.

Because the original IDE specification was geared specifically to
hard-disk drives and was not particularly well suited for other types of
storage devices, the committee that designed the IDE interface went
back to work and developed the Advanced Technology Attachment with
Packet Interface (ATAPI), which is usually shortened to ATA. Like SCSI,
the ATA standard has gone through several revisions and improvements
over the years. The ATAPI specification (in its eighth version as of
2013) extends IDE to support a wide range of mass storage devices,
including tape drives, zip drives, CD-ROMs, DVDs, removable
cartridge drives, and more. In order to extend the IDE interface to
support all these different storage devices, ATAPI’s designers adopted a
packet command format that is very similar to—in some cases, identical
to—the SCSI packet command format.

In modern protected-mode OSes like Windows or Linux, however,
an application programmer is never allowed to talk directly to the
hardware. In theory, it would be possible to write a miniport driver for
IDE to simulate how SCSI works. In practice, though, the OS vendor
generally supplies a software library that provides an application
programming interface (API) to the IDE/ATAPI devices. The application
programmer can then make function calls to the API, passing
appropriate parameters, and the underlying library routines take care of
the remaining tasks associated with actually talking to the hardware.

Programming ATAPI devices in a modern system is quite similar to
programming SCSI devices. You load up a memory-based data structure
with a command code and a set of parameters, and then pass the
memory structure to a driver library function that passes the data across
ATAPI to the target storage device. If such a low-level library is not
available, and your OS allows it, you can program the ATAPI device to
grab this data (generally using DMA on modern systems).

The full ATAPI specification is almost 500 pages long, so we don’t
have sufficient space to cover it here. If you’re interested in a more
detailed look at IDE/ATAPI, search for “ATAPI specifications” online.

Modern machines use a serial ATA (SATA) controller. This is a high-
performance serial version of the venerable IDE/ATAPI parallel
interface. However, to the programmer, it looks exactly like ATAPI.

13.2.1 The SATA Interface

As time passed, hard drives became sufficiently fast that the IDE/ATA
interface was reducing drive performance. Serial AT Attachment (SATA)
and, later, SATA-II and SATA-III, provided several advantages over the
parallel IDE/ATA (often shortened to PATA, for “Parallel ATA”).
Whereas PATA was capable of running at 133MBps, SATA-I, II, and III
were capable of transferring data at 1.5Gbps (gigabits per second;
150MBps), 3.0Gbps (300MBps), and 6.0Gbps (600MBps), respectively,
though few (RAID) systems even come close to achieving these data
transfer rates. SATA also offered other advantages over PATA, including
smaller cables (7 conductors rather than 40 or 80) and hot swapping.
Today, most hard-disk drives connecting to PCs use the SATA interface

(and most of the others use SAS, which is effectively SCSI over SATA,
or Fibre Channel interfaces).

13.2.2 Fibre Channel

Fibre Channel is a very high-performance transport mechanism (up to
128Gbps). While it is a generic network protocol for large mainframe
computers, one of its predominant uses is to connect very high-
performance disk arrays to computer system (usually servers). For disk
drive use, Fibre Channel transports SCSI commands across the Fibre
Channel cabling. So, the 1980s SCSI interface lives on today in Fibre
Channel, still the highest-performance disk interface protocol.

13.3 The Universal Serial Bus

The Universal Serial Bus (USB) is a mechanism that allows you to use a
single interface to connect a wide variety of peripheral devices to a PC,
similar to SCSI. The USB supports hot-pluggable devices, meaning you
can plug and unplug devices without shutting down the power or
rebooting your machine, and it supports plug-and-play devices, meaning
the OS will automatically load a device driver, if available, once you
plug in a device. This flexibility comes at a cost, however. Programming
devices on the USB is considerably more complex than programming a
serial or parallel port. You cannot communicate with USB peripherals
by reading or writing a few device registers.

13.3.1 USB Design

To understand the motivation behind USB, consider the situation PC
users faced when Windows 95 first arrived, nearly 14 years after the
introduction of the IBM PC. IBM designed its PC with a variety of
peripheral interconnects that were common on PCs and minicomputers
in the late 1970s. However, the IBM designers didn’t anticipate (or
allow for) the wide variety of peripheral devices that people would
invent to attach to PCs in the following decades. They also did not
count on any individual PC owners connecting more than a few

different peripheral devices to their machines. Certainly, three parallel
ports, four serial ports, and a single hard-disk drive should have been
sufficient!

By the time Windows 95 was introduced, people were connecting
their PCs to all kinds of devices, including sound cards, video digitizers,
digital cameras, advanced gaming devices, scanners, telephones, mice,
digitizing tablets, SCSI devices, and literally hundreds of other devices
the original PC’s designers hadn’t dreamed of. The creators of these
devices interfaced their hardware to the PC using peripheral I/O port
addresses, interrupts, and DMA channels that were originally intended
for other devices. The problem with this approach was that there were a
limited number of port addresses, interrupts, and DMA channels, and a
large number of devices competing for them. As a workaround, the
device manufacturers added “jumpers” to their cards that would allow
the purchaser to select from a small set of different port addresses,
interrupts, and DMA channels, to alleviate conflicts with other devices.

Creating a conflict-free system was a complex process, though, and it
was impossible to achieve with some combinations of peripherals. In
fact, one of the big selling points of the Apple Macintosh during this
period was that you could easily connect multiple peripheral devices
without worrying about device conflicts. What was needed was a new
peripheral connection system that supported a large number of devices
without conflicts. USB was the answer.

USB allows the connection of up to 127 devices simultaneously by
using a 7-bit address. USB reserves the 128th slot, address 0, for
autoconfiguration purposes. In real life, it’s doubtful that you’d ever
successfully connect so many devices to a single PC, but it’s good to
know that USB has a fair amount of potential for growth, unlike the
original PC.

Despite the name, USB isn’t a true “bus” in the sense of allowing
several devices to communicate with one another. Instead, the USB is a
controller/peripheral connection, with the PC always acting as
controller. This means, for example, that a digital camera can’t talk
directly to a printer across the USB. To transmit information from the
camera to the printer, both of which are connected to a PC, the camera

must first send its data to the PC before the PC can pass the data along
to the printer. The PCIe, ISA, FireWire (IEEE 1394), and Thunderbolt
buses allow two devices to communicate peer-to-peer (that is,
independent of the host’s CPU), but USB wasn’t designed to support
this method of communication (to keep down the cost of peripherals

and the USB interface chips they contain).1

USB also keeps peripheral costs down by moving as much
complexity as possible to the host (PC) side of the connection. The
thinking here is that the PC’s CPU will offer much higher performance
than the low-cost microcontrollers found in most USB peripheral
devices. This means that writing software to be embedded in a USB
peripheral isn’t much more work than using another interface. On the
other hand, writing USB software on the host side is very complex—so
complex, in fact, that it isn’t realistic to expect programmers to do so.

Instead, the OS supplier must provide a USB host controller stack
that enables communication with USB devices, and most application
programmers talk to those devices using the OS’s device driver
interface. Even programmers who need to write custom USB device
drivers for their particular device don’t talk directly to the USB
hardware. Instead, they make OS calls to the USB host controller stack
with requests for their particular device. Because a typical USB host
controller stack is generally around 20,000 to 50,000 lines of C code
and requires several years of development, there’s little chance of
programming USB devices on a system that doesn’t provide a native
USB stack (such as MS-DOS).

13.3.2 USB Performance

The initial USB design supported two different types of peripherals—
slow and fast—to support devices with different price points. Slow
devices could transfer up to 1.5Mbps (megabits per second) across the
USB, while fast devices were capable of transferring up to 12Mbps
(1.5MBps). Cost-sensitive devices could be built inexpensively as low-
speed devices. Non-cost-sensitive devices could use the 12Mbps data
rate.

The USB 2.0 specifications added a high-speed mode supporting up
to 480Mbps data transfer rates (60MBps), at considerable extra
complexity and cost. USB 3.0 upped the performance to 635MBps
(super-speed). Finally, the USB 3.1 and USB-C (Thunderbolt 3)
interfaces bumped the speed up to 5GBps (gigabytes per second;
SuperSpeed), 10GBps (SuperSpeed+), and 40GBps, respectively. USB
4.0 is expected to be capable of up to 80GBps.

USB does not dedicate the entire available bandwidth to one
peripheral. Instead, the host controller stack multiplexes the data on the
USB, effectively giving each peripheral a “time slice” of the bus. The
USB operates with a 1-millisecond clock. At the start of each
millisecond period, the USB host controller begins a new USB frame,
and during a frame, each peripheral may transmit or receive a packet of
data. Packets vary in size, depending on the speed of the device and the
transmission time, but typically contain between 4 and 64 bytes of data.
If you’re transferring data between four peripherals at an equal rate,
you’d typically expect the USB stack to transmit one packet of data
between the host and each peripheral in a round-robin fashion, taking
care of the first peripheral first, the second peripheral second, and so on.
Like time slicing in a multitasking OS, this data transfer mechanism
gives the appearance of transferring data concurrently between the host
and every USB peripheral, even though there can be only one
transmission on the USB at a time.

Although USB provides a very flexible and expandable system,
because the bandwidth on the bus is shared between all attached
peripherals, it can slow devices down. For example, if you connect two
disk drives to the USB and access both drives simultaneously, the two
drives must share the available bandwidth on the USB. For USB 1.x
devices, this produces a noticeable speed degradation. For USB 2.x
devices, the available bandwidth is sufficiently high (typically higher
than what two disk drives can sustain) that you won’t notice the
performance degradation. For USB 3.x (and later) and USB-C, the
performance is as high as many native bus controllers. (For example,
Thunderbolt-3/USB-C provides a transport mechanism for the PCI bus
and SCSI.) Theoretically, you could use multiple host controllers to

provide multiple USB buses in a system (with full bandwidth available
on each bus), but this addresses only part of the performance problem.

Another performance consideration is the overhead of the USB host
controller stack. Although the USB 1.x hardware may be capable of
12Mbps bandwidth, there is some dead time—that is, time during
which no transmission takes place on the USB—because the host
controller stack takes a while to set up data transfers. In some USB
systems, you can achieve at most half the theoretical USB bandwidth,
because the host controller stack uses so much of the available CPU
time setting up the transfer and moving data around. On some
embedded systems using slower processors (such as 486, StrongArm, or
MIPS) running an embedded USB 1.x host controller device, this can
be a real problem.

If a particular host controller stack is incapable of maintaining the
full USB bandwidth, it usually means that the CPU can’t process USB
information as fast as the USB produces it, because the CPU’s
processing capabilities are saturated—and no time is available for other
computations, either. Remember, USB leaves all the complex
computations for the host controller on the USB, and executing code in
the USB stack on the host requires CPU cycles. It’s quite possible for
the host controller to get so involved processing USB traffic that overall
system performance for non-USB traffic suffers.

Fortunately, on PCs with USB 2.x controllers, the host controller
consumes only a small percentage of the USB bandwidth. When USB-3
and USB-C came along, USB hardware began supporting other
transmission protocols, such as SCSI and PCI, eliminating many of the
performance issues associated with USB.

13.3.3 Types of USB Transmissions

The USB protocol supports four different types of data transmissions:
control, bulk, interrupt, and isochronous. The peripheral manufacturer,
not the application programmer, determines the data transfer
mechanism between the host and a given peripheral device. That is, if a
device uses the isochronous data transfer mode to communicate with
the host PC, a programmer can’t decide to use bulk transfers instead.

The application program may not even be aware of the underlying
transmission scheme, as long as the software can handle the rate at
which the device produces or consumes the data.

USB generally uses control transmissions to initialize a peripheral
device by reading and writing data from and to a peripheral’s registers.
For example, if you have a USB-to-serial converter device, you would
typically use control transfers to set the baud rate, number of data bits,
parity, number of stop bits, and so on, just as you would store data into

the 8250 SCC’s register set.2 USB guarantees correct delivery of control
transmissions and also guarantees that at least 10 percent of the USB
bandwidth is available for control transmissions to prevent starvation, a
situation where a particular transmission never occurs because some
higher-priority transmission is always taking place.

USB bulk transmissions are used to transmit large blocks of data
between the host and a peripheral device. Bulk transmissions are
available only on full-speed (12Mbps), high-speed (480Mbps), and
super-speed (USB 3/USB-C) devices, not on low-speed ones. On full-
speed devices, a bulk transmission generally carries between 4 and 64
bytes of data per packet; on high- and super-speed devices, you can
transmit up to 1,023 bytes per packet. USB guarantees correct delivery
of a bulk packet between the host and the peripheral device, but it does
not guarantee timely delivery. If the USB is handling a large number of
other transmissions, it may take a while for a bulk transmission to
complete. In theory, a bulk transmission might never occur if the USB
is sufficiently busy with the right combination of isochronous, interrupt,
and control transmissions. In practice, however, most USB stacks do set
aside a small amount of guaranteed bandwidth for bulk transmissions
(generally about 2 to 2.5 percent) to prevent starvation.

USB intends bulk transmissions to be used by devices that need to
transmit a fair amount of data correctly, but not necessarily quickly. For
example, when you’re transferring data to a printer or between a
computer and a disk drive, correct transfer is far more important than
timely transfer. Sure, it may be annoying to wait what seems like forever
to save a file to a USB disk drive, but operating slowly is much better
than writing incorrect data to the disk file.

For devices that require both correct data transmission and timely
delivery, USB uses interrupt transfers. Despite their name, interrupt
transfers do not involve interrupts on the computer system. Instead, the
USB protocol marks interrupt transfers as high-priority events. The
host polls all devices on the USB, but the devices do not interrupt the
host when they have data available. A peripheral device using the
interrupt transfer type may request how often the host polls it, choosing

an interval from 1 to 255 milliseconds.3

In order to guarantee correct and timely delivery of interrupt
transmissions between a host and a peripheral device, the USB host
controller stack must reserve a portion of the USB bandwidth whenever
an application opens a device for interrupt transmission. For example, if
a particular device wants to be serviced every millisecond and needs to
transmit 16 bytes per packet, the USB host controller stack must reserve
a little bit more than 128Kbps (kilobits per second) of bandwidth (16
bytes × 8 bits per byte × 1,000 packets per second) from the total
bandwidth available. You need to reserve a little bit more than this,
because there’s some protocol overhead on the bus as well—at least 10
to 20 percent, but it could be more depending upon how the USB stack
is written.

Because there’s a limited amount of bandwidth available on the USB,
and because interrupt transmissions consume a fixed amount of that
bandwidth whenever you open a device for use, you can’t have an
arbitrary number of interrupt transmissions active at any one time.
Once the USB bandwidth (minus the 10 percent that USB reserves for
control transmissions) is consumed, the stack refuses to activate any new
interrupt transmissions.

Interrupt transmission packets are between 4 and 64 bytes long,
though most of the time they fall into the low end of this range. Larger
packets would prevent the system from guaranteeing the desired polling
frequency.

Many devices use interrupt transmissions to notify the host CPU
that some data is available, and then the host uses a bulk transmission to
actually read the data from the device. If the amount of data to transmit
between the host and the peripheral is small enough, the peripheral may

transmit the data as part of the interrupt’s data payload to avoid a
second transmission. Keyboards, mice, joysticks, and similar devices
typically transmit their data this way. Disk drives, scanners, and other
such devices use interrupt transmissions to notify the host that data is
available and then use bulk transfers to move the data around.

Isochronous (or iso) transfers are the fourth transfer type that USB
supports. Like interrupt transfers, iso transfers require a timely delivery.
Like bulk transfers, they generally involve larger data packets. However,
unlike the other three transfer types, they do not guarantee correct
delivery between the host and the peripheral device. Timely delivery is
so important for iso transfers that if a packet arrives late, it might as well
not arrive at all. Peripheral devices such as audio input (microphones)
and output (speakers) and video cameras use iso transmissions. If you
lose a packet, or if a packet is transmitted incorrectly between the
peripheral and host, you’ll get a momentary glitch on the video display
or in the audio signal, but such problems are not disastrous as long as
they don’t occur too frequently.

Like interrupt transfers, iso transfers consume USB bandwidth.
Whenever you open a connection to an iso USB peripheral device, that
device requests a certain amount of bandwidth. If the bandwidth is
available, the USB host controller stack reserves it for the device until
the application is finished with the device. If sufficient bandwidth is not
available, the USB stack notifies the application that it cannot use the
desired device until the user stops using other iso and interrupt devices
to free up some bandwidth.

13.3.4 USB-C

USB originally competed with FireWire for mindshare among
peripheral developers. Early on, FireWire was a much higher-
performing interface and protocol. However, with the advent of USB-2
and, especially, USB-3, FireWire became less attractive. During this
time, Apple worked with Intel to create a new external peripheral bus
protocol—Thunderbolt. Thunderbolt totally smoked USB on
performance. The race was on again, this time between USB and
Thunderbolt. However, Intel (which promoted both USB and

Thunderbolt) decided to merge the two standards into one: USB-C.
USB-C is actually a Thunderbolt 3 hardware interface that happens to
carry USB, PCI, SCSI, and other protocols over the serial bus. Now,
you don’t really have to decide—USB-C (or Thunderbolt-3) is the
interface of choice.

13.3.5 USB Device Drivers

Most OSes that provide a USB stack support dynamic loading and
unloading of USB device drivers, known as client drivers in USB
terminology. Whenever you attach a USB device to the USB, the host
system gets a signal telling it that the bus topology has changed (that is,
there’s a new device on the USB). The host controller scans for the new
device, a process known as enumeration, and then reads some
configuration information from the peripheral. Among other things,
this configuration information tells the USB stack the type of the
device, the manufacturer, and model information. The USB host stack
uses this information to determine which device driver to load into
memory. If the USB stack can’t find a suitable driver, it generally opens
up a dialog box requesting help from the user; if the user can’t provide
the path to an appropriate driver, the system simply ignores the new
device. Similarly, when the user unplugs a device, the USB stack
unloads the appropriate device driver from memory if it’s not also being
used for some other device.

To simplify device driver implementation for many common devices,
such as keyboards, disk drives, mice, and joysticks, the USB standard
defines certain device classes. Peripheral manufacturers who create
devices that adhere to one of these standardized device classes don’t
have to supply a device driver with their equipment. Instead, the class
drivers that come with the USB host controller stack provide the only
interface necessary. Examples of class drivers include HID (Human
Interface Devices, such as keyboards, mice, and joysticks), STORAGE
(disk, CD, and tape drives), COMMUNICATIONS (modems and serial
converters), AUDIO (speakers, microphones, and telephony
equipment), and PRINTERS. Peripheral manufacturers can always opt
to supply their own specialized features that add bells and whistles to

their product, but a customer will often get basic functionality from
some existing class driver by simply plugging in the device without
installing a device driver specifically for it.

13.4 For More Information

Axelson, Jan. USB Complete: The Developer’s Guide. 4th ed. Madison,
WI: Lakeview Publishing, 2009.

Field, Gary, Peter M. Ridge et al. The Book of SCSI. 2nd ed. San
Francisco: No Starch Press, 2000.

NOTE

For the USB, FireWire, and TCP/IP (network) protocol stacks, you’ll find
considerable information online. For example, http://www.usb.org/
contains all the technical specifications for the USB protocol as well as
programming information for various common USB host controller chip
sets. You’ll also find plenty of online code resources, such as complete source
code from Linux for TCP/IP and USB host controller stacks.

http://www.usb.org/

14
MASS STORAGE DEVICES AND FILESYSTEMS

The most prevalent I/O device on modern computers is probably the
mass storage device. Whereas some PCs don’t have a display (they’re
operated headlessly), or even a keyboard or mouse (they’re accessed
remotely), almost every computer system recognizable as a PC has a
mass storage device of some sort. This chapter will focus on the types of
mass storage devices—hard drives, floppy disks, tape drives, flash drives,
solid state drives, and more—as well as the special filesystem format
they use to organize the data they store.

14.1 Disk Drives

Almost all modern computer systems include some sort of disk drive
unit to provide online mass storage. At one time, certain workstation
vendors produced diskless workstations, but the relentless drop in price
and increasing storage space of fixed (aka “hard”) disk and solid-state
drive (SSD) units have all but obliterated the diskless computer system.
Disk drives are so ubiquitous in modern systems that most people take
them for granted. However, it’s dangerous for a programmer to take a
disk drive for granted. Software constantly interacts with the disk drive

as a medium for application file storage, so it’s very important to
understand how disk drives operate if you want to write efficient code.

14.1.1 Floppy Disk Drives

Floppy disks have all but disappeared from today’s PCs. Their limited
storage capacity (typically 1.44MB) is far too small for modern
applications and the data they produce. It’s hard to believe that at the
beginning of the PC revolution a 143KB (that’s kilobytes, not megabytes
or gigabytes) floppy drive was considered a high-ticket item. However,
floppy disk drives have failed to keep up with technological advances in
the computer industry. Therefore, we won’t consider them further in
this chapter.

14.1.2 Hard Drives

The fixed disk drive, more commonly known as the hard drive, is the
most common mass storage device in use today (though, as of 2020,
SSDs are rapidly replacing hard drives). The modern hard drive is truly
an engineering marvel. Between 1982 and 2020, the capacity of a single
drive unit has increased over 2,400,000-fold, from 5MB to over 16TB
(terabytes). At the same time, the minimum price for a new unit has
dropped from $2,500 (US) to below $50. No other component in the
computer system has enjoyed such a radical increase in capacity and
performance along with a comparable drop in price. (Semiconductor
RAM probably comes in second: paying the 1982 price today would get
you about 40,000 times the capacity.)

While hard drives were decreasing in price and increasing in
capacity, they were also becoming faster. In the early 1980s, a hard-drive
subsystem was doing well to transfer 1MBps between the drive and the
CPU’s memory; modern hard drives can transfer more than
2,500MBps.1 While this increase in performance isn’t as great as that of
memory or CPUs, keep in mind that disk drives are mechanical units on
which the laws of physics place greater limitations. In some cases, the
dropping cost of hard drives has allowed system designers to improve
their performance by using disk arrays (see “RAID Systems” on page
388 for details). By using certain hard-disk subsystems like disk arrays,

you could achieve 2500MBps (or better) transfer rates, though it’s not
especially cheap to do so.

Hard drives are so named because their data is stored on a small,
rigid disk that is usually made out of aluminum or glass and is coated
with a magnetic material. Floppy disks, in contrast, store their
information on a thin piece of flexible Mylar plastic.

In disk-drive terminology, the small aluminum or glass disk is known
as a platter. Each platter has two surfaces, front and back (or top and
bottom), both of which have the magnetic coating. During operation,
the hard-drive unit spins this platter at a particular speed, which these
days is usually 3,600; 5,400; 7,200; 10,000; or 15,000 revolutions per
minute (RPM). Generally, though not always, the faster the platter
spins, the faster the data is read from the disk and the higher the data
transfer rate between the disk and the system. The smaller disk drives in
laptop computers typically spin at much slower speeds, like 2,000 or
4,000 RPM, to conserve battery life and generate less heat.

A hard-disk subsystem contains two main active components: the
disk platter(s) and the read/write head. The read/write head, when held
stationary, floats above concentric circles, or tracks, on the disk surface.
Each track is broken up into a sequence of sections known as sectors or
blocks. The actual number of sectors varies by drive design, but a typical
hard drive has between 32 and 128 sectors per track (see Figure 14-1).
Each sector typically holds between 256 and 4,096 bytes of data. Many
disk-drive units let the OS choose between several different sector sizes,
the most common being 512 bytes and 4,096 bytes.

Figure 14-1: Tracks and sectors on a hard-disk platter

The disk drive records data when the read/write head sends a series
of electrical pulses to the platter, which translates them into magnetic
pulses that the platter’s magnetic surface retains. The frequency at
which the disk controller can record these pulses is limited by the
quality of the electronics, the read/write head design, and the quality of
the magnetic surface.

The magnetic medium is capable of recording two adjacent bits on
its disk surface and then differentiating between them during a later
read operation. However, as you record bits closer and closer together,
it becomes increasingly difficult to differentiate between them in the
magnetic domain. Bit density is a measure of how closely a particular
hard disk can pack data into its tracks—the higher the bit density, the

more data you can squeeze onto a single track. However, recovering
densely packed data requires faster and more expensive electronics.

The bit density has a big impact on the performance of the drive. If
the drive’s platters are rotating at a fixed number of RPM, then the
higher bit density, the more bits will rotate underneath the read/write
head over a certain duration. Larger disk drives tend to be faster than
smaller disk drives because they employ a higher bit density.

By moving the disk’s read/write head in a roughly linear path from
the center of the disk platter to the outside edge, the system can
position a single read/write head over any one of several thousand
tracks. Yet the use of only one read/write head means that it will take a
fair amount of time to move the head among the disk’s many tracks.
Indeed, two of the most cited hard-disk performance parameters are the
read/write head’s average seek time and track-to-track seek time.

The average seek time is half the amount of time it takes to move the
read/write head from the edge of the disk to the center, or vice versa. A
typical high-performance disk drive has an average seek time between 5
and 10 milliseconds. On the other hand, its track-to-track seek time—that
is, the amount of time it takes to move the disk head from one track to
the next—is on the order of 1 or 2 milliseconds. From these numbers,
you can see that the acceleration and deceleration of the read/write head
consumes a much greater percentage of the track-to-track seek time
than of the average seek time. It takes only 20 times longer to traverse
1,000 tracks than it does to move to the next track. And because moving
the read/write heads from one track to the next is usually the most
common operation, the track-to-track seek time is probably a better
indication of the disk’s performance. Regardless of which metric you
use, however, keep in mind that moving the disk’s read/write head is one
of the most expensive operations you can do on a disk drive, so it’s
something you want to minimize.

Because most hard-drive subsystems record data on both sides of a
disk platter, there are two read/write heads associated with each platter
—one for the top and one for the bottom. And because most hard drives
incorporate multiple platters in their disk assembly in order to increase

storage capacity (see Figure 14-2), a typical drive has multiple pairs of
read/write heads.

Figure 14-2: Multiple-platter hard-disk assembly

The various read/write heads are physically connected to the same
actuator. Therefore, each head sits above the same track on its
respective platter, and all the heads move across the disk surfaces as a
unit. The set of all tracks over which the read/write heads are currently
sitting is known as a cylinder (see Figure 14-3).

Figure 14-3: A hard-disk cylinder

Although using multiple heads and platters increases the cost of a
hard-disk drive, it also improves the performance. The performance
boost occurs when data the system needs isn’t located on the current
track. In a hard-disk subsystem with only one platter, the read/write
head would need to move to another track to locate the data. But in a
subsystem with multiple platters, the next block of data to read is
usually located within the same cylinder. And because the hard-disk
controller can quickly switch between read/write heads electronically,
doubling the number of platters in a disk subsystem nearly doubles the
disk unit’s track-to-track seek performance because it winds up doing
half the number of seek operations. Of course, increasing the number of
platters also increases the unit’s capacity, which is another reason why
high-capacity drives are often higher-performance drives as well.

With older disk drives, when the system wants to read a particular
sector from a particular track on one of the platters, it commands the
disk to position the read/write head over the appropriate track, and the
disk drive then waits for the desired sector to rotate underneath. But by
the time the head settles down, there’s a chance that the desired sector
has just passed under the head, in which case the disk has to wait for
almost one complete rotation before it can read the data. On average,
the desired sector appears halfway across the disk. If the disk is rotating
at 7,200 RPM (120 revolutions per second), it requires 8.333
milliseconds for one complete rotation of the platter. Typically, 4.2
milliseconds will pass before the sector rotates underneath the head.
This delay is known as the average rotational latency of the drive, and it is
usually equal to the time needed for one rotation, divided by 2.

To see how average rotational latency can be a problem, consider
that an OS usually manipulates disk data in sector-sized chunks. For
example, when reading data from a disk file, the OS typically requests
that the disk subsystem read a sector of data and return that data. Upon
receiving the data, the OS processes it and then very likely makes a
request for additional data from the disk. But what happens when this
second request is for data located on the next sector of the current
track? Unfortunately, while the OS is processing the first sector’s data,

the disk platters are still moving underneath the read/write heads. If the
OS wants to read the next sector on the disk’s surface but doesn’t notify
the drive immediately after reading the first sector, the second sector
will rotate underneath the read/write head. When this happens, the OS
will have to wait for almost a complete disk rotation before it can read
the second sector. This is known as blowing revs (revolutions). If the OS
(or application) is constantly blowing revs when reading data from a file,
filesystem performance suffers dramatically. In early “single-tasking”
OSes running on slower machines, blowing revs was an unpleasant fact
of life. If a track had 64 sectors, it would often take 64 revolutions of the
disk in order to read all the data on a single track.

To combat this problem, the disk-formatting routines for older
drives allow the user to interleave sectors. Interleaving is the process of
spreading out sectors within a track so that logically adjacent sectors are
not physically adjacent on the disk surface (see Figure 14-4).

The advantage of interleaving sectors is that once the OS reads a
sector, it will take a full sector’s rotation time before the logically
adjacent sector moves under the read/write head. This gives the OS
time to do some processing and to issue a new disk I/O request before
the desired sector moves underneath the head. However, in modern
multitasking OSes, it’s difficult to guarantee that an application will gain
control of the CPU so that it can respond before the next logical sector
moves under the head, so interleaving isn’t very effective.

Figure 14-4: Interleaving sectors

To solve this problem, as well as improve disk performance in
general, most modern disk drives include memory on the disk controller
that allows it to read data from an entire track in one disk revolution.
Once it caches the track data in memory, the controller can
communicate disk read/write operations at RAM speed rather than at
disk rotation speeds, which can dramatically improve performance.
Reading the first sector from a track still exhibits rotational latency, but
once the disk controller reads the entire track, the latency is all but
eliminated for that track.

A typical track may have 64 sectors of 512 bytes each, for a total of
32KB per track. Because newer disks usually have between 8MB and
512MB of on-controller memory, the controller can buffer hundreds of
tracks in its memory. Therefore, the disk controller cache improves not

only the performance of disk read/write operations on a single track,
but also overall disk performance. Note that the disk controller cache
speeds up read operations and write operations. For example, the CPU
can often write data to the disk controller’s cache memory within a few
microseconds and then return to normal data processing while the disk
controller moves the disk read/write heads into position. When the disk
heads are finally in position at the appropriate track, the controller can
write the data from the cache to the disk surface.

From an application designer’s perspective, advances in disk
subsystem design have reduced the need to understand how disk-drive
geometries (track and sector layouts) and disk-controller hardware
affect the application’s performance. Despite these attempts to make the
hardware transparent to the application, though, software engineers
wanting to write great code must always remain cognizant of the disk
drive’s underlying operation. For example, it’s valuable to know that
sequential file operations are usually much faster than random-access
operations because sequential operations require fewer head seeks. Also,
if you know that a disk controller has an on-board cache, you can write
file data in smaller blocks, doing other processing between the block
operations, to give the hardware time to write the data to the disk
surface. Though the techniques early programmers used to maximize
disk performance don’t apply to modern hardware, by understanding
how disks operate and how they store their data, you can avoid various
pitfalls that produce slow code.

14.1.3 RAID Systems

Because a modern disk drive typically has between 8 and 16 heads, you
might wonder if you could improve performance by simultaneously
reading or writing data on multiple heads. While this is certainly
possible, it really didn’t happen until SATA and larger disk caches came
along. But there’s yet another way to improve disk drive performance
using parallel read and write operations—the redundant array of
inexpensive disks (RAID) configuration.

The RAID concept is quite simple: you connect multiple hard-disk
drives to a special host controller card (sometimes known as an adapter),

which simultaneously reads and writes the various disk drives. By
hooking up two disk drives to a RAID controller card, you can read and
write data about twice as fast as you could with a single disk drive. By
hooking up four disk drives, you can improve average performance by
almost a factor of 4.

RAID controllers support different configurations depending on the
purpose of the disk subsystem. So-called RAID 0 subsystems use
multiple disk drives simply to increase the data transfer rate. If you
connect two 150GB disk drives to a RAID controller, you’ll produce the
equivalent of a 300GB disk subsystem with double the data transfer rate.
This is a typical configuration for personal RAID systems—those
systems that are not installed on a file server.

Many high-end file-server systems are RAID 1 (and higher)
subsystems that store multiple copies of the data across the multiple disk
drives, rather than increasing the data transfer rate between the system
and the disk drive. In such configurations, should one disk fail, a copy of
the data is still available on another disk drive. Some even higher-level
RAID subsystems combine four or more disk drives to increase the data
transfer rate and provide redundant data storage. This type of
configuration usually appears on high-end, high-availability file server
systems.

Modern RAID system configurations can be categorized as follows:

RAID 0 Interleaves data across all disks to increase performance (at
the expense of reliability). This is known as striping. Requires a
minimum of two disks.

RAID 1 Replicates data on pairs of drives to increase reliability (at
the cost of performance; also cuts in half the total amount of storage
available). Allows failure of at least one drive without data loss
(depending on the drives that fail, could support two or more drive
failures). Requires an even number of drives, with a minimum of two
disks. This is known as mirroring.

RAID 5 Stores parity information on the drives. Faster than RAID
1, slower than RAID 0. Allows failure of one drive without data loss.

Requires a minimum of three drives. At three drives, 66 percent of
the total storage is available for data; any drives you add beyond
three increase data storage by the size of the added drive.

RAID 6 Stores duplicate parity information across the drives. Faster
than RAID 1, slower than RAID 0 and 5. Allows failure of two drives
without data loss. Requires a minimum of four drives. At four drives,
half the total storage is available for data, but any drives you add
beyond four increase system storage by the size of the added drive.

RAID 10 Combination of RAID 1 + RAID 0. Minimum four drives;
expansion has to be in pairs of drives. Interleaved (striped) data
across drives to speed up performance, plus redundant storage on
pairs of drives for reliability. Faster than RAID 1 (but slower than
RAID 0).

RAID 50, 60 Combination of RAID 5 + RAID 0 or RAID 6 + RAID
0.

There are other RAID combinations (like 2, 3, and 4), but most are
obsolete and you won’t find them in use in modern systems.

RAID systems enable you to dramatically increase disk subsystem
performance without having to purchase exotic and expensive mass
storage solutions. Though a software engineer can’t assume that every
computer system in the world has a fast RAID subsystem available, for
those applications that demand the absolute highest-performance
storage subsystem, RAID (possibly using SSDs) could be a solution.

14.1.4 Optical Drives

An optical drive uses a laser beam and a special photosensitive medium
to record and play back digital data. Optical drives have a few
advantages over hard-disk subsystems that use magnetic media:

They are more shock resistant, so banging the disk drive around
during operation won’t destroy the drive unit as easily as it would a
hard disk.

The medium is usually removable, allowing you to maintain an
almost unlimited amount of offline or near-line storage.

They’re fairly high-capacity (though modern USB memory sticks
and SD cards have greater capacities).

At one time, optical storage systems appeared to be the wave of the
future because they offered very high storage capacity in a small space.
Unfortunately, they have fallen out of favor in all but a few niche
markets because they also have several drawbacks:

While their read performance is okay, their write speed is very slow
—an order of magnitude slower than a hard drive and only a few
times faster than a floptical (older combined magnetic/optical
floppy) drive.

Although the optical medium is far more robust than the magnetic
medium, the magnetic medium in a hard drive is usually sealed
away from dirt, humidity, and abrasion. In contrast, optical media
is easily accessible to someone who really wants to do damage to
the disk’s surface.

Seek times for optical-disk subsystems are much slower than for
magnetic disks.

Optical disks have limited storage capacity, currently less than
about 128GB (Blu-ray).

Ultimately, the low price and increasing capacity of USB flash drives
killed off optical drives for personal computer use.

One area where optical-disk subsystems are still in use, however, is in
near-line storage subsystems, which typically use a robotic jukebox to
manage hundreds or thousands of optical disks. Although you could
argue that a rack of high-capacity hard-disk drives would provide a
more space-efficient storage solution, it would consume far more power,
generate far more heat, and require a more sophisticated interface than
an optical jukebox, which usually has only a single optical-drive unit and
a robotic disk-selection mechanism. For archival storage, where the

server system rarely needs access to any particular piece of data in the
storage subsystem, a jukebox system is a very cost-effective solution.

If you wind up writing software that manipulates files on an optical-
drive subsystem, the most important thing to remember is that read
access is much faster than write access. You should try to use the optical
system as a “read-mostly” device and avoid writing data as much as
possible to the device. You should also avoid random access on an
optical disk’s surface, as seek times are very slow.

CD, DVD, and Blu-ray drives are also optical drives. However,
because of their widespread use, and their sufficiently different
organization and performance when compared with standard optical
drives, they warrant a separate discussion.

14.1.5 CD, DVD, and Blu-ray Drives

CD-ROM was the first optical drive subsystem to gain wide acceptance
in the personal computer market. CD-ROM disks were based on the
audio CD digital recording standard, and they provided a large amount
of storage (650MB) when compared to hard-disk-drive storage
capacities at the time (typically 100MB). As time passed, of course, this
relationship reversed. Still, CD-ROMs became the preferred
distribution vehicle for most commercial applications, completely
replacing the floppy-disk medium for this purpose.

Although the CD-ROM format is a very inexpensive distribution
medium in large quantities, often costing only a few cents per disk, it’s
not appropriate for small production runs. The problem is that it
typically costs several hundreds or thousands of dollars to produce a
disk master (from which the run of CD-ROMs are made), meaning that
CD-ROM is usually cost-effective only when the quantity of disks being
produced is at least in the thousands.

The solution was a new CD medium, CD-Recordable (CD-R),
which allowed the production of one-off CD-ROMs. CD-R uses a
write-once optical disk technology, known euphemistically as WORM
(write-once, read-many). When first introduced, CD-R disks cost about
$10 to $15. However, once the drives reached critical mass and media

manufacturers began producing blank CD-R disks in huge quantities,
their bulk retail price fell to about $0.25. As a result, CD-R made it
possible to distribute a fair amount of data in small quantities.

One obvious drawback to CD-R is the “write-once” limitation. To
overcome it, the CD-Rewriteable (CD-RW) drive and medium were
created. CD-RW, as its name suggests, supports both reading and
writing. Unlike with optical disks, however, you can’t simply rewrite a
single sector on CD-RW. Instead, to rewrite the data on a CD-RW
disk, you must first erase the whole disk.

Although the 650MB of storage on a CD seemed like a gargantuan
amount when CDs were first introduced, the old maxim that data and
programs expand to fill up all available space certainly held true.
Though CDs were ultimately expanded to 700MB, various games (with
embedded video), large databases, developer documentation,
programmer development systems, clip art, stock photographs, and
even regular applications reached the point where a single CD was
woefully inadequate. The DVD-ROM (and later, DVD-R, DVD-RW,
DVD+RW, and DVD-RAM) disk reduced this problem by offering
between 3GB and 17GB of storage on a single disk. Except for the
DVD-RAM format, you can view the DVD formats as faster, higher-
capacity versions of the CD formats. There are some clear technical
differences between the two, but most of them are transparent to the
software. Today, Blu-ray optical discs deliver up to 128GB of storage
(Blu-ray BDXL). However, electronic distribution via the internet has
largely replaced physical media, so Blu-ray discs have never become as
popular as distribution or storage media.

The CD and DVD formats were created for reading data in a
continuous stream—streaming data—from the storage medium. The
track-to-track head movement time required to read data stored on a
hard disk creates a big gap in the streaming sequence, which is
unacceptable for audio and video applications. CDs and DVDs record
information on a single, very long track that forms a spiral across the
surface of the whole disk. Thus, the CD or DVD player can
continuously read the data simply by moving the laser beam along the
disk’s single spiral track at a constant rate.

Although having a single track is great for streaming data, it does
make it a bit more difficult to locate a specific sector on the disk. The
CD or DVD drive can only approximate a sector’s position by
mechanically positioning the laser beam to some point on the disk.
Next, it must actually read data from the disk surface to determine
where the laser is positioned, and then do some fine-tuning to locate the
desired sector. As a result, searching for a specific sector on a CD or
DVD disk can take an order of magnitude longer than searching for a
specific sector on a hard disk.

The most important thing to remember for a programmer writing
code that interacts with CD or DVD media is that random access is
verboten. These media were designed for sequential streaming access,
and seeking data on such media will hinder your application
performance. If you’re using these disks to deliver your application and
its data to the end user, you should have the user copy the data to a hard
disk before use if high-performance random access is necessary.

14.2 Tape Drives

Tape drives were also popular mass storage devices. Traditionally, PC
owners used tape drives to back up data stored on hard-disk drives back
in the days when hard drives were much smaller. For many years, tape
storage was far more cost-effective than hard-disk storage on a cost-per-
megabyte basis. Indeed, at one time there was an order of magnitude
difference in cost per megabyte between tape storage and magnetic disk
storage. And because tape drives held more data than most hard-disk
drives, they were more space-efficient too.

However, because of competition and technological advances in the
hard-disk-drive marketplace, tapes have lost these advantages. Hard-
disk drives now exceed 16TB in storage, and the optimum price point
for hard disks is about $0.25 per gigabyte. Tape storage today costs far
more per megabyte than hard-disk storage. Plus, only a few tape
technologies allow you to store 250GB on a single tape, and those that
do (such as Digital Linear Tape, or DLT) are extremely expensive. It’s
not surprising that tape drives are seeing less and less use these days in

home PCs and are typically found only in larger file server machines.
Linear Tape-Open (LTO) drives extend the capacity to around 12TB
(expected to increase to around 200TB in the future). Nevertheless,
today a typical LTO-8 tape costs almost $130 (US), about half the price
per megabyte of a hard drive.

Back in the days of mainframes, application programs interacted with
tape drives in much the same way that today’s applications interact with
hard-disk drives. A tape drive, however, is not an efficient random-
access device. That is, although software can read a random set of
blocks from a tape, it cannot do so with acceptable performance. Of
course, in the days when most applications ran on mainframes,
applications generally were not interactive, and CPUs were much
slower; thus, the standard for “acceptable performance” was different.

In a tape drive, the read/write head is fixed, and the tape transport
mechanism moves the tape past the head linearly, from the beginning of
the tape to the end, or vice versa. If the beginning of the tape is
currently positioned over the read/write head and you want to read data
at the end of the tape, you have to move the entire tape past the head to
get to the desired data. This can be very slow, requiring tens or even
hundreds of seconds, depending on the length and format of the tape.
Compare this with the tens of milliseconds it takes to reposition a hard
disk’s read/write head (or the negligible time it takes to get data from an
SSD). Therefore, to perform well on a tape drive, software must be
written to account for the limitations of a sequential access device. In
particular, data should be read or written sequentially on a tape.

Originally, data was written to tapes in blocks (much like sectors on a
hard disk), and the drives were designed to allow quasi-random access to
the tape’s blocks. If you’ve ever watched old movies that used the reel-
to-reel drives, with the reels constantly stopping, starting, stopping,
reversing, stopping, and continuing, you’ve seen “random access” in
action. Such tape drives were very expensive because they required
powerful motors, finely tooled tape-path mechanisms, and so on. As
hard drives became larger and less expensive, applications stopped using
tape as a data manipulation medium and used it only for offline storage
(to back up data from hard disks).

Because sequential data access on tape does not require the heavy-
duty mechanics of the original tape drives, tape-drive manufacturers
sought to make a lower-cost product suitable for sequential access only.
Their solution was the streaming tape drive, which was designed to keep
the data constantly moving from the CPU to the tape, or vice versa. For
example, while backing up the data from a hard disk to tape, a streaming
tape drive treats the data like a video or audio recording and just lets the
tape run, constantly writing the data from the hard disk to the tape.
Because of the way streaming tape drives work, very few applications
deal directly with the tape unit. Today, it’s very rare for anything other
than a tape backup utility program, run by the system administrator, to
access the tape hardware.

14.3 Flash Storage

An interesting storage medium that has become popular because of its
compact form factor2 is flash storage. The flash medium is actually a
semiconductor device, based on electrically erasable programmable read-
only memory (EEPROM) technology, which, despite its name, is both
readable and writable. Unlike regular semiconductor memory, flash
storage is nonvolatile, meaning it maintains its data even when
disconnected from power. Like other semiconductor technologies, flash
storage is purely electronic and doesn’t require any motors or other
electromechanical devices for proper operation. Therefore, flash storage
devices are more reliable and shock resistant, and they use far less power
than mechanical storage solutions such as disk drives. This makes flash
storage especially valuable in portable battery-powered devices like cell
phones, tablets, laptop computers, electronic cameras, MP3 playback
devices, and recorders.

Flash storage modules now provide in excess of 1TB of storage, and
their optimal price point is about $0.15 (US) per gigabyte. This makes
them comparable, per bit, to hard-disk storage.

Flash devices are sold in many different form factors. OEMs
(original equipment manufacturers) can buy flash storage devices that
look like other semiconductor chips and mount them directly on their

circuit boards. However, most flash memory devices sold today are built
into one of several standard forms, including SDHC cards,
CompactFlash cards, smart-memory modules, memory sticks,
USB/flash modules, or SSDs. For example, you might remove a
CompactFlash card from your camera, insert it into a special
CompactFlash card reader on your PC, and access your photographs
just as you would files on a disk drive.

Memory in a flash storage module is organized in blocks of bytes,
not unlike sectors on a hard disk. In contrast to regular semiconductor
memory or RAM, however, you can’t write individual bytes in a flash
storage module. Although you can generally read an individual byte
from a flash storage device, to write to a particular byte you must first
erase the entire block on which it resides. The block size varies by
device, but most OSes treat these flash blocks like a disk sector for the
purposes of reading and writing. Although the basic flash storage device
itself could connect directly to the CPU’s memory bus, most common
flash storage packages (such as CompactFlash cards and memory sticks)
contain electronics that simulate a hard-disk interface, and you access
the flash device just as you would a hard-disk drive.

One interesting aspect to flash memory devices, and EEPROM
devices in general, is that they have a limited write lifetime. That is, you
can write to a particular memory cell in a flash memory module only a
certain number of times before that cell begins to have problems
retaining the information. This was a big concern in early
EEPROM/flash devices, because the average number of write cycles
before failures began occurring was around 10,000. That is, if some
software wrote to the same memory block 10,000 times in a row, the
EEPROM/flash device would probably develop a bad memory cell in
that block, effectively rendering the entire chip useless. On the other
hand, if the software wrote just once to 10,000 separate blocks, the
device could still take 9,999 more writes to each memory cell.
Therefore, the OSes of these early devices would try to spread out write
operations across the entire device to minimize damage. Although
modern flash devices still exhibit this problem, technological advances
have reduced it almost to the point where we can ignore it. A modern

flash memory cell supports an average of about a million write cycles
before it will go bad. Furthermore, today’s OSes simply mark bad flash
blocks, the same way they mark bad sectors on a disk, and will skip a
block once they determine that it has gone bad.

Being electronic, flash devices do not exhibit rotational latency times
at all, and they don’t exhibit much in the way of seek times either.
There’s a tiny amount of time needed to write an address to a flash
memory module, but it’s nothing compared to the head seek times on a
hard disk. Despite this, flash memory is generally nowhere near as fast
as typical RAM. Reading data from a flash device itself usually takes
microseconds (rather than nanoseconds), and the interface between the
flash memory device and the system may require additional time to set
up a data transfer. In addition, it’s common to interface a flash storage
module to a PC using a USB flash reader device, and this can further
reduce the average read time per byte to hundreds of microseconds.

Write performance is even worse. To write a block of data to flash,
you must write the data, read it back, compare it to the original data,
and rewrite it if they don’t match. This process can take several tens or
even hundreds of milliseconds.

As a result, flash memory modules are generally quite a bit slower
than high-performance hard-disk subsystems. However, thanks mainly
to demand from high-end digital camera users who want to be able to
snap as many pictures as possible in a short time, technological advances
are boosting their performance. Though flash memory performance
probably won’t catch up with hard-disk performance any time soon, you
can expect it to continue improving over time.

14.4 RAM Disks

Another interesting mass storage device is the RAM disk, a
semiconductor solution that treats a large block of the computer
system’s memory as though it were a disk drive, simulating blocks and
sectors using memory arrays. The advantage of memory-based disks is
that they are very high performance. RAM disks don’t suffer from the
time delays associated with head seek time and rotational latency that

you find on hard, optical, and floppy drives. Their interface to the CPU
is also much faster, so data transfer times are very short, often running
at the maximum bus speed. It’s hard to imagine a faster storage
technology than a RAM disk.

RAM disks, however, have two disadvantages: cost and volatility. The
cost per byte of storage in a RAM disk system is very high. Indeed, byte
for byte, semiconductor storage is as much as 10,000 times more
expensive than magnetic hard-disk storage. As a result, RAM disks
usually have low storage capacities, typically no more than several
gigabytes. And RAM disks are volatile—they lose their memory unless
they are powered at all times. This generally means that semiconductor
disks are great for storing temporary files and files you’ll copy back to
some permanent storage device before shutting down the system. They
are not particularly well suited for maintaining important information
over long periods of time.

14.5 Solid-State Drives

Modern high-performance PCs use solid-state drives (SSDs). SSDs use
flash memory (like USB sticks) with a high-performance interface to the
system. But SSDs aren’t simply USB flash drives in different clothing.
USB flash drives are designed for low cost per bit—except for certain
camera applications (particularly 4K and 8K camcorders), speed is
secondary to cost and capacity. A typical USB flash drive, for example, is
quite a bit slower than a mediocre hard drive. SSDs, on the other hand,
must be fast. Because of their solid-state design, they’re typically an
order of magnitude faster than rotating magnetic media. With a RAID
configuration, SSDs can actually achieve the performance limits of
SATA interfaces.

As this was being written, SSDs cost between 4 and 16 times as much
as high-capacity hard drives (8TB drives and 1TB SSDs both cost about
$100 US). However, the price-per-gigabyte gap has been closing. SSDs
are rapidly replacing rotating magnetic drives, and rotating magnetic
media will likely be relegated to the trash bin of history (much like tape
drives). Before that point, why would anyone pay more for an SSD?

SSDs typically use a different underlying technology to store data
and provide a much faster electronic interface to the PC. This is why an
SSD tends to be much more expensive than a USB flash drive. That’s
also why SSDs can achieve 2,500MBps data transfer rates, while high-
quality memory cards are capable of only around 100MBps (and USB
flash/thumb drives are even worse).

From a programmer’s perspective, one of the big advantages of SSDs
is that you no longer have to worry about seek times and other latency
issues. SSDs tend to be true(r) random-access devices (at least when
compared with hard drives). Accessing data at the beginning of the drive
and then at the end takes only a little longer than accessing any pair of
data elements elsewhere on the SSD.

There are a couple of disadvantages to SSDs, though. First of all,
their write performance is usually much slower than their read
performance (though writing to an SSD is still much faster than writing
to a hard drive). Fortunately, data is read far more often than it is
written, but this is something to consider when you’re working on
software that writes data to a SSD. The second drawback is that SSDs
wear out after a while. Writing to the same location over and over again
will eventually cause the associated memory cell(s) to fail. Fortunately,
modern OSes work around these failures. However, when you write
applications that continuously overwrite file data, keep this issue in
mind.

14.6 Hybrid Drives

Most modern hard drives contain an on-board RAM cache (to hold
entire tracks of data to eliminate rotational latency, for example).
Hybrid drives, such as Apple’s older Fusion Drive, combine a small SSD
with a large hard drive—typically a 32GB to 128GB SSD and a 2TB
magnetic disk, in Apple’s case. Frequently accessed data stays in the
SSD cache, and is swapped out to the hard drive when space is needed
for new data. This works the same way as caching in main memory,
boosting the system performance to near-SSD speeds for data that is
accessed regularly.

14.7 Filesystems on Mass Storage Devices

Very few applications access mass storage devices directly. That is,
applications do not generally read and write tracks, sectors, or blocks on
a mass storage device; instead, they open, read, write, and otherwise
manipulate files on it. The OS’s file manager abstracts away the physical
configuration of the underlying storage device and provides a
convenient storage facility for multiple independent files on a single
device.

On the earliest computer systems, applications were responsible for
tracking the physical location of data on a mass storage device, because
there was no file manager available to do so. They were able to
maximize their performance by carefully considering the layout of data
on the disk. For example, they could manually interleave data across
various sectors on a track to give the CPU time to process it between
reading and writing those sectors on the track. Such software was often
many times faster than comparable software using a generic file
manager. Later, when file managers were commonly available, some
application authors still managed their files on a storage device for
performance reasons. This was especially true back in the days of floppy
disks, when low-level software written to manipulate data at the track
and sector level often ran 10 times faster than the same application
using a file manager system.

In theory, today’s software could benefit from this approach as well,
but in practice you rarely see this kind of low-level disk access in
modern applications, for several reasons. First, writing software that
manipulates a mass storage device at such a low level locks you into
using that particular device. That is, if your software manipulates a disk
with 48 sectors per track, 12 tracks per cylinder, and 768 cylinders per
drive, that software will not work optimally (if at all) on a drive with a
different sector, track, and cylinder layout. Second, accessing the drive
at a low level makes it difficult to share the device among different
applications, something that can be especially costly on a multitasking
system that may have several applications sharing the device at once.
For example, if you’ve laid out your data on various sectors on a track to

coordinate computation time with sector access, your work is lost when
the OS interrupts your program and gives some other application its
time slice—time you were counting on to do any necessary
computations prior to the next data sector rotating under the read/write
head. Third, some of the features of modern mass storage devices, such
as on-board caching controllers and SCSI interfaces that present a
storage device as a sequence of blocks rather than as something with a
given track and sector geometry, eliminate any advantage that low-level
software might have had. Fourth, modern OSes typically contain file
buffering and block caching algorithms that provide good filesystem
performance, obviating the need to operate at such a low level. Finally,
low-level disk access is very complex, and writing such software is
difficult.

14.7.1 Sequential Filesystems

The earliest file manager systems stored files sequentially on the disk’s
surface. That is, if each sector/block on the disk held 512 bytes and a
file was 32KB long, that file would consume 64 consecutive
sectors/blocks on the disk’s surface. To access that file at some future
time, the file manager only needed to know the file’s starting block
number and the number of blocks it occupied. The filesystem had to
maintain these two pieces of information somewhere in nonvolatile
storage. The obvious place was on the storage media itself, in a data
structure known as the directory—an array of values starting at a specific
disk location that the OS can reference when an application requests a
particular file. The file manager can search through the directory for
the file’s name and extract its starting block and length. With this
information, the filesystem can provide the application with access to
the file’s data.

One advantage of the sequential filesystem is that it is very fast. The
OS can read or write a single file’s data very rapidly if the file is stored in
sequential blocks on the disk’s surface. But a sequential file organization
has some serious problems, too. The biggest and most obvious
drawback is that you can’t extend the size of a file once the file manager
places another file at the next block on the disk. Disk fragmentation is

another big problem. As applications create and delete many small and
medium files, the disk fills up with short sequences of unused sectors
that, individually, are too small for most files. On sequential filesystems,
disks often had free space sufficient to hold some data, but they couldn’t
use it because it was scattered in small pieces all over the disk’s surface.
To solve this problem, users had to run disk compaction programs to
coalesce all the free sectors and move them to the end of the disk by
physically rearranging files on its surface. Another solution was to copy
files from one full disk to another empty disk, collecting the many small,
unused sectors together. Obviously, this was extra work that the user
had to do—work that the OS should have been doing.

The sequential file storage scheme really falls apart when used with
multitasking OSes. If two applications attempt to write file data to the
disk concurrently, the filesystem must place the starting block of the
second application’s file beyond the last block required by the first
application’s file. As the OS has no way of determining how large the
files can grow, each application has to tell the OS the maximum length
of the file when the application first opens it. Unfortunately, many
applications cannot determine in advance how much space they’ll need
for their files, so they have to guess the size of the file when opening it.
If the estimated file size is too small, either the program has to abort
with a “file full” error, or the application has to create a larger file, copy
the old data from the “full” file to the new file, and then delete the old
file. As you can imagine, this is horribly inefficient and definitely not
great code.

To avoid such performance problems, many applications grossly
overestimate the amount of space they need for their files. As a result,
they wind up wasting disk space when the files don’t actually use all the
data allocated to them, a form of internal fragmentation. Furthermore,
if applications truncate their files when closing them, the resulting free
sections returned to the OS tend to fragment the disk into the small,
unusable blocks of free space described previously, a problem known as
external fragmentation. For these reasons, sequential storage on the disk
has been replaced by more sophisticated storage management schemes
in modern OSes.

14.7.2 Efficient File Allocation Strategies

Most modern file allocation strategies allow files to be stored across
arbitrary blocks on the disk. Because the filesystem can now place bytes
of the file in any free block on the disk, the problems of external
fragmentation and the limitation on file size are all but eliminated. As
long as there’s at least one free block on the disk, you can expand the
size of any file. However, with this flexibility comes some added
complexity. In a sequential filesystem, it was easy to locate free space on
the disk; by simply noting the starting block numbers and sizes of the
files in a directory, the filesystem could locate a free block large enough
to satisfy the current disk allocation request, if one was available. But
with files stored across arbitrary blocks, scanning the directory and
noting which blocks a file uses is far too expensive to compute, so the
filesystem has to keep track of the free and used blocks. Most modern
OSes use one of three data structures—a set, a table (array), or a list—to
keep track of which sectors are free and which are not. Each scheme has
its advantages and disadvantages.

14.7.2.1 Free-Space Bitmaps

The free-space bitmap scheme uses a set data structure to maintain a set
of free blocks on the disk drive. If a block is a member of that set, the
file manager can remove it whenever it needs another block for a file.
Because set membership is a Boolean relationship (a block is either in
the set or it’s not), it takes exactly 1 bit to specify the set membership of
each block.

Typically, a file manager reserves a certain section of the disk to hold
a bitmap that specifies which blocks on the disk are free. The bitmap
consumes some integral number of blocks on the disk, with each block
consumed representing a specific number of other blocks on the disk,
which we can calculate by multiplying the block size (in bytes) by 8 (bits
per byte). For example, if the OS uses 4,096-byte blocks on the disk, a
bitmap consisting of a single block can track up to 32,768 other blocks
on the disk.

The disadvantage of the bitmap scheme is that as disks get large, so
does the bitmap. For example, on a 120GB drive with 4,096-byte
blocks, the bitmap will be almost 4MB long. While this is a small
percentage of the total disk capacity, accessing a single bit in a bitmap
this large can be clumsy. To find a free block, the OS has to do a linear
search through this 4MB bitmap. Even if you keep the bitmap in system
memory (which is a bit expensive, considering that you have to do it for
each drive), searching through it every time you need a free sector is an
expensive proposition. As a result, you don’t see this scheme used much
on larger disk drives.

One advantage (and also a disadvantage) of the bitmap scheme is that
the file manager uses it only to keep track of the free space on the disk,
not which sectors belong to a given file. As a result, if the free-space
bitmap is damaged somehow, nothing is permanently lost; you can
easily reconstruct it by searching through all the disk directories and
computing which sectors are being used by the files in those directories
(the remaining sectors, obviously, are the free ones). Although this
process is somewhat time-consuming, it’s nice to have the option if
disaster strikes.

14.7.2.2 File Allocation Tables

Another way to track disk-sector usage is with a table of sector pointers,
or a file allocation table (FAT). This scheme is widely used. Cementing its
popularity, this is also the default file allocation scheme used on most
USB flash drives. An interesting facet of the FAT structure is that it
combines both free-space management and file-sector allocation
management into the same data structure, ultimately saving space when
compared to the bitmap scheme, which uses separate data structures for
each. Furthermore, unlike the bitmap scheme, FAT doesn’t require an
inefficient linear search to find the next available free sector.

The FAT is really nothing more than an array of self-relative
pointers (that is, indexes into itself), setting aside one pointer for each
sector/block on the storage device. When a disk is initialized, the first
several blocks on its surface are reserved for objects like the root
directory and the FAT itself, and the remaining blocks on the disk are

free. Somewhere in the root directory is a free-space pointer that
specifies the next available free block on the disk. Assuming the free-
space pointer initially contains the value 64, implying that the next free
block is block 64, the FAT entries at indexes 64, 65, 66, and so on,
would contain the following values, assuming there are n blocks on the
disk, numbered from 0 to n – 1:

FAT index FAT entry value

.

64 65

65 66

66 67

67 68

.

n – 2 n – 1

n – 1 0

The entry at block 64 tells you the next available free block on the
disk, 65. Moving on to entry 65, you’ll find the value of the next
available free block on the disk, 66. The last entry in the FAT contains a
0 (block 0 contains meta-information for the entire disk partition and is
never available).

Whenever an application needs one or more blocks to hold some
new data on the disk’s surface, the file manager grabs the free-space
pointer value and then continues going through the FAT entries for
however many blocks are required to store the new data. For example, if
each block is 4,096 bytes long and the current application is attempting
to write 8,000 bytes to a file, the file manager will need to remove two
blocks from the free-block list, following these steps:

1. Get the value of the free-space pointer.

2. Save the value of the free-space pointer in order to determine the
first free sector.

3. Continue going through the FAT entries for the number of blocks
required to store the application’s data.

4. Extract the FAT entry value of the last block where the application
needs to store its data, and set the free-space pointer to this value.

5. Store a 0 over the FAT entry value of the last block that the
application uses, marking the end to the list of blocks that the
application needs.

6. Return the original (as it was prior to these steps) value of the free-
space pointer into the FAT as the pointer to the list of blocks that
are now allocated for the application.

After the block allocation in our earlier example, the application has
blocks 64 and 65 at its disposal, the free-space pointer contains 66, and
the FAT looks like this:

FAT index FAT entry value

.

64 65

65 0

66 67

67 68

.

n – 2 n – 1

n – 1 0

This is not to imply that entries in the FAT always contain the index
of the next entry in the table. As the file manager allocates and
deallocates storage for files on the disk, these numbers tend to become
scrambled. For example, if an application returns block 64 to the free
list but holds on to block 65, the free-space pointer would contain the
value 64, and the FAT would have the following values:

FAT index FAT entry value

.

64 66

65 0

66 67

67 68

.

n – 2 n – 1

n – 1 0

As noted earlier, one advantage of the FAT data structure is that it
combines both free-space management and file allocation management
into a single data structure. This means that each file doesn’t have to
carry around a list of the blocks its data occupies. Instead, it needs only
a single pointer value specifying an index into the FAT where the first
block of the file’s data can be found. You can find the remaining blocks
containing the file’s data by stepping through the FAT.

One important advantage of the FAT scheme over the set (bitmap)
scheme is that once the disk using a FAT filesystem is full, it doesn’t
maintain information about which blocks are free. In contrast, the
bitmap scheme consumes space on the disk to track free blocks even
when there are none available. The FAT scheme replaces the entries
originally used to track free blocks with the file-block pointers. When
the disk is full, the values that originally maintained the free-block list
are no longer consuming disk space because they’re all now tracking
blocks in files. In this case, the free-space pointer contains 0 (to denote
an empty free-space list) and all the FAT entries contain chains of block
indexes for file data.

However, the FAT scheme does have a couple of disadvantages. First,
unlike the bitmap in a set scheme filesystem, the table in a FAT
filesystem represents a single point of failure. If the FAT is somehow
destroyed, it can be very difficult to repair the disk and recover files;
losing some free space on a disk is a problem, but losing track of where

your files are on the disk is a major problem. Furthermore, because the
disk head tends to spend more time in the FAT area of a storage device
than in any other single area on the disk, the FAT is the most likely part
of a hard disk to be damaged by a head crash, and the most likely part of
a floppy or optical drive to exhibit excessive wear. This is a sufficiently
big concern that some FAT filesystems provide an option to maintain an
extra copy of the FAT on the disk.

Another problem with the FAT is that it’s usually located at a fixed
place on the disk, typically at some low block number. In order to
determine which block or blocks to read for a particular file, the disk
heads must move to the FAT, so if the FAT is at the beginning of the
disk, they’ll constantly be traveling to and from the FAT across large
distances. This massive head movement not only is slow but tends to
wear out the mechanical parts of the disk drive sooner. In newer
versions of Microsoft OSes, the FAT-32 scheme eliminates part of this
problem by allowing the FAT to be positioned somewhere other than
the beginning of the disk, though still at a fixed location. Application
file I/O performance can be quite low with a FAT filesystem unless the
OS caches the FAT in main memory, which can be dangerous if the
system crashes, because you could lose track of all file data whose FAT
entries have not been written to disk.

The FAT scheme is also inefficient for doing random access on a file.
To read from offset m to offset n in a file, the file manager must divide n
by the block size to obtain the block offset into the file containing the
byte at offset n, divide m by the block size to obtain its block offset, and
then sequentially search through the FAT chain between these two
blocks to find the sector(s) containing the desired data. This linear
search can be expensive if the file is a large database with many
thousands of blocks between the current block position and the desired
block position.

Yet another problem with the FAT filesystem, though this one is
rather esoteric, is that it doesn’t support sparse files. That is, you cannot
write to byte 0 and byte 1,000,000 of a file without also allocating every
byte of data between those two points on the disk surface. Some non-
FAT file managers allocate only the blocks where an application has

written data. For example, if an application writes data only to bytes 0
and 1,000,000 of a file, the file manager allocates only two blocks for the
file. If the application attempts to read a block that hasn’t been
previously allocated (for example, if the application in the current
example attempts to read the byte at offset 500,000 without first writing
to that location), the file manager simply returns 0s for the read
operation without actually using any space on the disk. But because of
how a FAT is organized, you can’t create sparse files on the disk.

14.7.2.3 Lists of Blocks

To overcome the limitations of the FAT filesystem, advanced OSes—
such as Windows NT/2000/XP/7/8/10, macOS (APFS), and various
flavors of Unix—use a list-of-blocks scheme instead. Indeed, the list
scheme enjoys all the advantages of a FAT system (such as efficient,
nonlinear free-block location, and efficient storage of the free-block
list), and it solves many of FAT’s problems.

The list scheme begins by setting aside several blocks on the disk for
the purpose of keeping (generally) 32- or 64-bit pointers to each free
block on the disk. If each block on the disk holds 4,096 bytes, a block
can hold 1,024 (or 512) pointers. Dividing the number of blocks on the
disk by 1,024 (512) determines the number of blocks the free-block list
will initially consume. As you’ll soon see, the system uses these blocks to
store data once the disk fills up, so there’s no storage overhead
associated with the blocks consumed by the free-block list.

If a block in the free-block list contains 1,024 pointers (the following
examples all assume 32-bit pointers), then the first 1,023 pointers
contain the block numbers of free blocks on the disk. The file manager
maintains two pointers on the disk: one that holds the block number of
the current block containing free-block pointers, and one that holds an
index into that current block. Whenever the filesystem needs a free
block, it obtains the index for one from the free-block list by using these
two pointers. Then the file manager increments the index into the free-
block list to the next available entry in the list. When the index
increments to 1,023 (the 1,024th item in the free-block list), instead of
using the pointer entry value at that index to locate a free block, the file

manager uses it as the address of the next block containing a list of free-
block pointers on the disk, and it uses the current block, containing a
now-empty list of block pointers, as the free block. This is how the file
manager reuses the blocks originally designated to hold the free-block
list, rather than reusing the pointers in the free-block list to keep track
of the blocks belonging to a given file, as FAT does. Once the file
manager uses up all the free-block pointers in a given block, it uses that
block for actual file data.

Unlike the FAT, the list scheme does not merge the free-block list
and the file list into the same data structure. Instead, a separate data
structure for each file holds the list of blocks associated with that file.
Under typical Unix and Linux filesystems, the directory entry for the
file actually holds the first 8 to 16 entries in the list (see Figure 14-5).
This allows the OS to track small files (up to 32KB or 64KB) without
having to allocate any extra space on the disk.

Figure 14-5: Block list for small files

Research on various flavors of Unix suggests that the vast majority of
files are small, and embedding several pointers into the directory entry
provides an efficient way to access small files. Of course, as time passes,
the average file size seems to increase. But as it turns out, block sizes
tend to increase as well. When the research was first done, the typical
block size was 512 bytes, but today it’s 4,096 bytes. During that time,
then, average file sizes could have increased by a factor of 8 without, on
average, requiring any extra space in the directory entries.

For medium files, up to about 4MB, the OS will allocate a single
block with 1,024 pointers to the blocks that store the file’s data. The OS
continues to use the pointers found in the directory entry for the first
few blocks of the file, and then it uses a block on the disk to hold the
next group of block pointers. Generally, the last pointer in the directory
entry holds the location of this block (see Figure 14-6).

Figure 14-6: Block list for medium files

For files larger than about 4MB, the filesystem switches to a three-
tiered block scheme, which works for file sizes up to 4GB. In this
scheme, the last pointer in the directory entry stores the location of a
block of 1,024 pointers, and each pointer in this block holds the
location of an additional block of 1,024 pointers, with each pointer in
this block storing the location of a block that contains actual file data.
See Figure 14-7 for the details.

Figure 14-7: Three-level block list for large files (up to 4GB)

One advantage to this tree structure is that it readily supports sparse
files: an application can write to block 0 and block 100 of a file without
having to allocate data blocks for every block between those two points.
By placing a special block pointer value (typically 0) in the intervening
entries in the block list, the OS can determine whether a block isn’t
present in the file. Should an application attempt to read a missing
block in the file, the OS can simply return all 0s for the empty block. Of
course, once the application writes data to a block that hadn’t been
previously allocated, the OS must copy the data to the disk and fill in
the appropriate block pointer in the block list.

As disks became larger, the 4GB file limit imposed by this scheme
began to create some problems for certain applications, such as video
editors, large database applications, and web servers. One could easily
extend this scheme 1,000 times—to 4TB—by adding another level to
the block-list tree. The only problem with this approach is that the
more levels of indirection you have, the slower random file access
becomes, because the OS may have to read several blocks from the disk
in order to get a single block of data. (When it has one level, it makes
sense to cache the block-pointer list in memory, but with two and three
levels, it’s impractical to do this for every file). Another way to extend
the maximum size 4GB at a time is to use multiple pointers to second-
tier file blocks (for example, have all or most of the original 8 to 16
pointers in the directory point at second-tier block-list entries rather
than directly at file data blocks). Although there’s no current convention
for extending beyond three levels, rest assured that as the need arises,
OS designers will develop schemes for accessing large files efficiently.
For example, 64-bit OSes can use 64-bit pointers, rather than 32-bit
pointers, and eliminate the 4GB limitation.

14.8 Writing Software That Manipulates Data on a
Mass Storage Device

Understanding how different mass storage devices behave is important
if you want to write high-performance software that manipulates files
on these devices. Although modern OSes attempt to isolate applications
from the physical realities of mass storage, an OS can only do so much
for you. Furthermore, because an OS can’t predict how your particular
application will access files on a mass storage device, it can’t tailor file
access optimizations to your application; instead, its optimizations are
geared toward applications exhibiting typical file access patterns. The
less typical your application’s file I/O is, then, the less likely you’ll get
the best performance out of the system. In this section, we’ll look at
how you can coordinate your file access activities with the OS to achieve
the best performance.

14.8.1 File Access Performance

Although disk drives and most other mass storage devices are often
thought of as “random access” devices, the fact is that mass storage
access is usually more efficient when done sequentially. Sequential
access on a disk drive is relatively efficient because the OS can move the
read/write head one track at a time (assuming the file appears in
sequential blocks on the disk). This is much faster than accessing one
block on the disk, moving the read/write head to some other track,
accessing another block, moving the head again, and so on. Therefore,
you should avoid random file access in an application if at all possible.

You should also try to read or write large blocks of data on each file
access rather than reading or writing small amounts more frequently.
There are two reasons for this. First, OS calls are not fast, so if you
make half as many calls by reading or writing twice as much data on
each access, the application will often run twice as fast. Second, the OS
must read or write whole disk blocks. If your block size is 4,096 bytes,
but you just write 2,000 bytes to some block and then seek to some
other position in the file outside that block, the OS will actually have to
read the entire 4,096-byte block from the disk, merge in the 2,000
bytes, and then finally write the entire 4,096 bytes back to the disk.
Contrast this with a write operation that writes a full 4,096 bytes—in
this case, the OS wouldn’t have to read the data from the disk first; it

would only have to write the block. Writing full blocks improves disk
access performance by a factor of 2, because writing partial blocks
requires the OS to first read the block, merge the data, and then write
the block; writing whole blocks renders the read operation unnecessary.
Even if your application doesn’t write data in increments that are even
multiples of the disk’s block size, writing large blocks improves
performance. If you write 16,000 bytes to a file in one write operation,
the OS will still have to write the last block of those 16,000 bytes using
a read-merge-write operation, but it will write the first three blocks
using only write operations.

If you start with a relatively empty disk, the OS generally attempts to
write the data for new files in sequential blocks. This organization is
probably most efficient for future file access. However, as the system’s
users create and delete files on the disk, the blocks of data for individual
files may be distributed nonsequentially. In a very bad case, the OS may
wind up allocating a few blocks here and a few blocks there all across
the disk’s surface. As a result, even sequential file access can behave like
slow random file access. As discussed previously, this kind of file
fragmentation can dramatically decrease filesystem performance.
Unfortunately, there’s no way for an application to determine if its file
data is fragmented across the disk surface and, even if it could, there’s
little it could do about the situation. Although there are utilities
available to defragment the blocks on the disk’s surface, an application
generally can’t request their execution (and “defragger” utilities are
quite slow anyway).

Although applications rarely get the opportunity to defragment their
data files during normal program execution, there are some things you
can do to reduce the probability of your data files becoming
fragmented. The best advice you can follow is to always write file data
in large chunks. Indeed, if you can write the whole file in a single write
operation, do so. In addition to speeding up access to the OS, writing
large amounts of data tends to result in the allocation of sequential
blocks. When you write small blocks of data to the disk, other
applications in a multitasking environment could also be writing to the
disk concurrently. In this case, the OS may interleave the block

allocation requests for the files being written by several different
applications, making it unlikely that a particular file’s data will be
written sequentially. It is important to try to write a file’s data in
sequential blocks, even if you plan to access portions of that data
randomly, since searching for random records in a file written
sequentially generally requires far less head movement than searching
for random records in a file whose blocks are scattered all over.

If you’re going to create a file and then access its blocks of data
repeatedly, whether randomly or sequentially, try to preallocate the
blocks on the disk. If you know, for example, that your file’s data will not
exceed 1MB, you could write a block of one million 0s to the disk before
your application starts manipulating the file. By doing so, you help
ensure that the OS will write your file to sequential blocks on the disk.
Though you pay an initial price to write all those 0s (an operation you
wouldn’t normally do, presumably), the savings in read/write head-seek
times could easily make up for it. This scheme is especially useful if an
application is reading or writing two or more files concurrently (which
would almost guarantee the interleaving of the blocks for the various
files).

14.8.2 Synchronous and Asynchronous I/O

Because most mass storage devices are mechanical, and, therefore,
subject to mechanical delays, applications that use them extensively have
to wait for them to complete read/write operations. Most disk I/O
operations are synchronous, meaning that an application that makes a call
to the OS must wait until that I/O request is complete before
continuing subsequent operations.

This is why most modern OSes also provide an asynchronous I/O
capability, in which the OS begins the application’s request and then
returns control to the application without waiting for the I/O operation
to complete. While the I/O operation proceeds, the application
promises not to do anything with the data buffer specified for it.
However, the application can do computation and schedule additional
I/O operations, because the OS will notify it when the original request
completes. This is especially useful when you’re accessing files on

multiple disk drives in the system, which is usually possible only with
SCSI and other high-end drives.

14.8.3 The Implications of I/O Type

Another important consideration for writing software that manipulates
mass storage devices is the type of I/O you’re performing. Binary I/O is
usually faster than formatted text I/O, because of the format of the data
written to disk. For example, suppose you have an array of 16 integer
values that you want to write to a file. To achieve this, you could use
either of the following two C/C++ code sequences:

FILE *f;
int array[16];
 . . .
// Sequence #1:

fwrite(f, array, 16 * sizeof(int));
 . . .
// Sequence #2:

for(i=0; i < 16; ++i)
 fprintf(f, "%d ", array[i]);

The second sequence looks like it would run slower than the first
because it uses a loop, rather than a single call, to step through each
element of the array. But although the extra execution overhead of the
loop does have a small negative impact on the execution time of the
write operation, this efficiency loss is minor compared to the real
problem with the second sequence. Whereas the first code sequence
writes out a 64-byte memory image consisting of 16 32-bit integers to
the disk, the second code sequence converts each of the 16 integers to a
string of characters and then writes each string to the disk. This integer-
to-string conversion process is relatively slow. Furthermore, the
fprintf() function has to interpret the format string ("%d") at runtime,
which incurs an additional delay.

The advantage of formatted I/O is that the resulting file is both
human-readable and easily read by other applications. However, if
you’re using a file to hold data that is of interest only to your

application, a more efficient approach might be to write the data as a
memory image.

14.8.4 Memory-Mapped Files

Memory-mapped files use the OS’s virtual memory capabilities to map
memory addresses in the application space directly to blocks on the
disk. Modern OSes have highly optimized virtual memory subsystems,
so piggy-backing file I/O on top of the virtual memory subsystem
results in very efficient file access. Furthermore, memory-mapped file
access is easy. When you open a memory-mapped file, the OS returns a
memory pointer to some block of memory. By simply accessing the
memory locations referenced by this pointer, just as you would any
other in-memory data structure, you can access the file’s data. This
makes file access almost trivial, while often improving file manipulation
performance, especially when file access is random.

One of the reasons that memory-mapped files are so much more
efficient than regular files is that the OS reads the list of blocks
belonging to memory-mapped files only once. It then sets up the
system’s memory management tables to point at each block belonging
to the file. After opening the file, the OS rarely has to read any file
metadata from the disk, which greatly reduces superfluous disk access
during random file access. It also improves sequential file access, though
to a lesser degree. The OS doesn’t constantly have to copy data between
the disk, internal OS buffers, and application data buffers.

Memory-mapped file access does have some disadvantages. First, you
can’t map gigantic files entirely into memory, at least on older PCs and
OSes that have a 32-bit address bus and set aside a maximum of 4GB
per application. Generally, it isn’t practical to use a memory-mapped
access scheme for files larger than 256MB, though this has changed as
more CPUs with 64-bit addressing capabilities have become available.
It’s also not a good idea to use memory-mapped files when an
application is already using most of the RAM physically present in the
system. Fortunately, these two situations are not typical, so they don’t
limit the use of memory-mapped files much.

A more common and significant issue is that when you first create a
memory-mapped file, you have to tell the OS the file’s maximum size. If
it’s impossible to determine the file’s final size, you’ll have to
overestimate it and then truncate the file when you close it.
Unfortunately, this wastes system memory while the file is open.
Memory-mapped files work well when you’re manipulating files in
read-only mode or simply reading and writing data in an existing file
without extending the file’s size. Fortunately, you can always create a file
using traditional file access mechanisms and then use memory-mapped
file I/O to access the file later.

Finally, almost every OS does memory-mapped file access
differently, so it’s unlikely that memory-mapped file I/O code will be
portable between OSes. Nevertheless, the code to open and close
memory-mapped files is quite short, and it’s easy enough to provide
multiple copies of the code for the various OSes you need to support.
Of course, actually accessing the file’s data consists of simple memory
accesses, and that’s independent of the OS. For more information on
memory-mapped files, consult your OS’s API reference. Given their
convenience and performance, you should seriously consider using
memory-mapped files whenever possible in your applications.

14.9 For More Information

Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Operating
System Concepts. 8th ed. Hoboken, NJ: John Wiley & Sons, 2009.

15
MISCELLANEOUS INPUT AND OUTPUT

DEVICES

Although mass storage devices are, arguably, the most common
peripheral in modern computer systems, there are many other widely
used devices, such as communication ports (serial and parallel),
keyboards and mice, and sound cards. These peripherals will be the
focus of this chapter.

15.1 Exploring Specific PC Peripheral Devices

In some respects, it’s dangerous to discuss real devices on modern PCs
because the traditional (“legacy”) devices have all but disappeared from
PC designs. As manufacturers introduce new PCs, they are removing
many of the legacy, easy-to-program peripherals like parallel and serial
ports, and replacing them with complex peripherals like USB and
Thunderbolt. Although a detailed discussion on programming these
newer peripheral devices is beyond the scope of this book, you need to
understand their behavior in order to write great code that accesses
them.

NOTE

Because of the nature of the peripheral devices discussed in the rest of this
chapter, the information presented applies only to IBM-compatible PCs.
There simply isn’t enough space in this book to cover how particular I/O
devices behave on different systems. Other systems support similar I/O
devices, but their hardware interfaces may differ from what’s described
here. Nevertheless, the general principles still apply.

15.1.1 The Keyboard

The original IBM PC’s keyboard is a computer system in its own right.
Buried inside the keyboard’s case is an 8042 microcontroller chip that
constantly scans the switches on the keyboard to see if any keys are
being pressed. This processing occurs in parallel with the normal
activities of the PC, and even though the PC’s 80x86 is busy with other
things, the keyboard never misses a keystroke.

A typical keystroke starts with the user pressing a key on the
keyboard. This closes an electrical contact in a switch, which the
keyboard’s microcontroller can sense. Unfortunately, mechanical
switches do not always close perfectly clean. Often, the contacts bounce
off one another several times before coming to rest with a solid
connection. To a microcontroller chip that is reading the switch
constantly, these bouncing contacts look like a very quick series of
keypresses and releases. If the microcontroller registers these as
multiple keystrokes, it can result in a phenomenon known as keybounce, a
problem common to many cheap and old keyboards. Even on the most
expensive and newest keyboards, keybounce can be a problem if you
look at the switch a million times a second, because mechanical switches
simply cannot settle down that quickly. A typical inexpensive key will
settle down within 5 milliseconds, so if the keyboard-scanning software
polls the key less often than this, the controller will effectively miss the
keybounce. The practice of limiting how often the keyboard is scanned
in order to eliminate keybounce is known as debouncing. Typical
keyboard controllers scan the keyboard once every 10 to 25

milliseconds; any less than this may produce bouncy keys, and any more
may result in lost keystrokes (by very fast typists).

The keyboard controller must not generate a new key code sequence
every time it scans the keyboard and finds a key held down. The user
may hold a key down for many tens or hundreds of milliseconds before
releasing it, and we don’t want this to register as multiple keystrokes.
Instead, the keyboard controller should generate a single key code value
when the key goes from the up position to the down position (a down key
operation). In addition, modern keyboards provide an autorepeat
capability that engages once the user has held down a key for a given
time period (usually about half a second), and it treats the held key as a
sequence of keystrokes as long as the user continues to hold the key
down. However, even these autorepeat keystrokes are regulated to allow
only about 10 keystrokes per second rather than the number of times
per second the keyboard controller scans all the switches on the
keyboard.

Upon detecting a down keystroke, the microcontroller sends a
keyboard scan code to the PC. The scan code is not related to the ASCII
code for that key; it is an arbitrary value IBM chose when the PC’s
keyboard was first developed. The PC keyboard actually generates two
scan codes for every key pressed. It generates a down code when a key is
pressed down and an up code when the key is released. If the user holds
the key down long enough for the autorepeat operation to begin, the
keyboard controller sends a sequence of down codes until the key is
released, at which point the keyboard controller sends a single up code.

The 8042 microcontroller chip transmits these scan codes to the PC,
where they are processed by an interrupt service routine (ISR) for the
keyboard. Having separate up and down codes is important because
certain keys (like SHIFT, CTRL, and ALT) are meaningful only when held
down. By generating up codes for all the keys, the keyboard ensures that
the keyboard ISR knows which keys are pressed while the user is
holding down one of these modifier keys. Exactly what the system does
with these scan codes depends on the OS, but usually the OS’s keyboard
device driver will translate the scan code sequence into an appropriate
ASCII code or some other notation that applications can work with.

Today, almost all PC keyboards interface via the USB port, and they
probably use a more modern microcontroller than the 8042 found in
the original IBM PC keyboard, but otherwise their behavior is exactly
the same.

15.1.2 The Standard PC Parallel Port

The original IBM PC design provided support for three parallel printer
ports (which IBM designated LPT1:, LPT2:, and LPT3:). With laser and
inkjet printers still a few years in the future, IBM probably envisioned
machines that could support a standard dot matrix printer, a daisy wheel
printer, and maybe some other auxiliary type of printer for different
purposes. IBM almost certainly didn’t anticipate the widespread use of
parallel ports, or it probably would have designed them differently. At
their prime, the PC’s parallel port controlled keyboards, disk drives,
tape drives, SCSI adapters, Ethernet and other network adapters,
joystick adapters, auxiliary keypad devices, other miscellaneous devices,
and, oh yes, printers.

Today, the parallel port is largely absent in systems because of
connector size and performance problems. Nevertheless, it remains an
interesting device. It’s one of the few interfaces that hobbyists can use to
connect the PC to simple devices they’ve built themselves. Therefore,
learning to program the parallel port is a task many hardware
enthusiasts have taken upon themselves.

In a unidirectional parallel communication system, there are two
distinguished sites: the transmitting site and the receiving site. The
transmitting site places its data on the data lines and informs the
receiving site that data is available; the receiving site then reads the data
lines and informs the transmitting site that it has taken the data. Note
how the two sites synchronize their access to the data lines—the
receiving site does not read the data lines until the transmitting site tells
it to, and the transmitting site does not place a new value on the data
lines until the receiving site removes the data and tells the transmitting
site that it has the data. In other words, this form of parallel
communication between the printer and computer system relies on
handshaking to coordinate the data transfer.

The PC’s parallel port implements handshaking using three control
signals in addition to the eight data lines. The transmitting site uses the
strobe (or data strobe) line to tell the receiving site that data is available.
The receiving site uses the acknowledge line to tell the transmitting site
that it has taken the data. A third handshaking line, busy, tells the
transmitting site that the receiving site is busy so it should not attempt
to send data yet. The busy signal differs from the acknowledge signal in
that acknowledge tells the system that the receiving site has accepted
the data and processed it, whereas busy communicates only that the
receiving site can’t accept any new data yet—it does not imply that the
last transmission has been processed (or even received).

In a typical data transmission session, the transmitting site:

1. Checks the busy line to see if the receiving site is busy. If the busy
line is active, the transmitter waits in a loop until the busy line
becomes inactive.

2. Places its data on the data lines.

3. Activates the strobe line.

4. Waits in a loop for the acknowledge line to become active.

5. Sets the strobe inactive.

6. Waits in a loop for the receiving site to set the acknowledge line
inactive, indicating that it recognizes that the strobe line is now
inactive.

7. Repeats steps 1 through 6 for each byte it must transmit.

Meanwhile, the receiving site:

1. Sets the busy line inactive when it is ready to accept data.

2. Waits in a loop until the strobe line becomes active.

3. Reads the data from the data lines.

4. Activates the acknowledge line.

5. Waits in a loop until the strobe line goes inactive.

6. Sets the busy line active (optional).

7. Sets the acknowledge line inactive.

8. Processes the data.

9. Sets the busy line inactive (optional).

10. Repeats steps 2 through 9 for each additional byte it receives.

By carefully following these steps, the receiving and transmitting
sites coordinate their actions so that the transmitting site doesn’t
attempt to put several bytes on the data lines before the receiving site
consumes them, and so the receiving site doesn’t attempt to read data
that the transmitting site has not sent.

15.1.3 Serial Ports

The RS-232 serial communication standard is probably the most
popular serial communication scheme in the world. Although it suffers
from many drawbacks (speed being the primary one), it is widely used,
and there are thousands of devices you can connect to a PC using an
RS-232 serial interface. Though many devices still use this standard, it
is rapidly being eclipsed by USB (and today you can handle most RS-
232 interfacing requirements by plugging a USB-to-RS232 cable into
your PC).

The original PC system design supports concurrent use of up to four
RS-232 compatible devices connected through the COM1:, COM2:,
COM3:, and COM4: ports. To connect additional serial devices, you can
buy interface cards that let you add 16 or more serial ports to the PC.

In the early days of the PC, DOS programmers had to directly access
the 8250 serial communication controller (SCC) to implement RS-232
communications in their applications. A typical serial communications
program would have a serial port ISR that read incoming data from the
SCC and wrote outgoing data to the chip, as well as code to initialize
the chip and to buffer incoming and outgoing data.

Fortunately, today’s application programmers rarely program the
SCC directly. Instead, OSes such as Windows and Linux provide
sophisticated serial communications device drivers that application
programmers can call. These drivers provide a consistent feature set
that all applications can use, and this reduces the learning curve needed

to provide serial communication functionality. Another advantage to the
OS device driver approach is that it removes the dependency on the
8250 SCC. Applications that use an OS device driver will automatically
work with different SCCs. In contrast, an application that programs the
8250 directly won’t work on a system that uses a USB-to-RS232
converter cable. However, if the manufacturer of that converter cable
provides an appropriate device driver for an OS, applications that do
serial communications via that OS will automatically work with the
USB/serial device.

An in-depth examination of RS-232 serial communications is beyond
the scope of this book. For more information on this topic, consult your
OS programmer’s guide or pick up one of the many excellent texts
devoted specifically to this subject.

15.2 Mice, Trackpads, and Other Pointing Devices

Along with disk drives, keyboards, and display devices, pointing devices
are probably the most common peripherals you’ll find on modern PCs.
Pointing devices are among the least complex peripheral devices,
providing a very simple data stream to the computer. They come in two
categories: those that return the relative position of the pointer and
those that return the absolute position of the pointing device. The
relative position is the change in position since the last time the system
read the device; the absolute position is some set of coordinate values
within a fixed coordinate system. Mice, trackpads, and trackballs return
relative coordinates; touch screens, light pens, pressure-sensitive tablets,
and joysticks return absolute coordinates.

Generally, it’s easy to translate an absolute coordinate system to a
relative one, but problematic to do the reverse. Converting a relative
coordinate system to an absolute one requires a constant reference point
that may become meaningless if, for example, someone lifts a mouse off
the surface and sets it down elsewhere. Fortunately, most windowing
systems work with relative coordinate values from pointing devices, so
the limitations of pointing devices that return relative coordinates are
not a problem.

Early mice were typically optomechanical devices that rotated two
encoding wheels oriented along the x- and y-axes of the mouse body.
Usually, both wheels were encoded to send 2-bit pulses whenever they
moved a certain distance. One bit told the system that the wheel had
moved a certain distance, and the other bit told the system which
direction the wheel had moved.1 By constantly tracking the 4 bits (2 bits
for each axis) from the mouse, the computer system could determine
the mouse’s distance and direction traveled, and keep a very accurate
record of the mouse’s position in between application requests for that
position.

One problem with having the CPU track each mouse movement is
that, when moved quickly, mice can generate a constant and high-speed
stream of data. If the system is busy with other computations, it might
miss some of the incoming mouse data and therefore lose track of the
mouse’s position. Furthermore, the host’s CPU time is better spent on
application computations than tracking the mouse position.

As a result, mouse manufacturers decided early on to incorporate a
simple microcontroller in the mouse package, to keep track of the
physical mouse movements and respond to system requests for mouse
coordinate updates, or at the very least generate interrupts on a periodic
basis when the mouse position changes. Most modern mice connect to
the system via the USB and respond with positional updates to system
requests that occur about every 8 milliseconds.

Because of the wide acceptance of the mouse as a GUI pointing
device, computer manufacturers have created many other devices that
serve the same purpose but are more portable—mice aren’t the most
convenient pointing devices to attach to a laptop computer on the road,
for example. Trackballs, strain gauges (the little “stick” between the G
and H keys on many laptops), trackpads, trackpoints, and touch screens
are all examples of devices that manufacturers have attached to laptop
computers, tablets, and PDAs to create more portable pointing devices.
Though these devices vary in their convenience to the end user, to the
OS they can all look like a mouse. So, from a software perspective,
there’s little difference between them.

In modern OSes, the application rarely interfaces with a pointing
device directly. Instead, the OS tracks the mouse position and updates
cursors and other mouse effects in the system, then notifies the
application when some sort of pointing device event (such as a button
press) occurs. In response to a query from an application, the OS
returns the position of the system cursor and the state of the buttons on
the pointing device.

15.3 Joysticks and Game Controllers

The analog game adapter created for the IBM PC allowed users to
connect up to four resistive potentiometers and four digital switch
connections to the PC. The design of the PC’s game adapter was
obviously influenced by the analog input capabilities of the Apple II
computer, the most popular computer available at the time the PC was
developed. IBM’s analog input design, like Apple’s, was designed to be
dirt-cheap. Accuracy and performance were not a concern at all. In fact,
you can purchase the electronic parts to build your own version of the
game adapter, at retail, for less than $3.

Due to the inherent inefficiencies of reading the original electronics
of the IBM PC game controller, most modern game controllers contain
the analog electronics that convert physical position into a digital value
directly inside the controller, and then interface to the system via USB.
Microsoft Windows and other modern OSes provide a special game-
controller device-driver interface and APIs that allow applications to
determine what facilities the game controller has, and also send the data
to those applications in a standardized form. This allows game-
controller manufacturers to provide many special features that were not
possible with the original PC game-controller interface. Modern
applications read game-controller data just as though they were reading
data from a file or some other character-oriented device like a keyboard.
This vastly simplifies the programming of such devices while improving
overall system performance.

Some “old-school” game programmers feel that calling APIs is
inherently inefficient and that great code always controls the hardware

directly. This thinking is a bit outdated, for a few reasons. First, most
modern OSes don’t allow applications direct access to hardware even if
the programmer wants it. Second, software that talks directly to the
hardware won’t work with as wide a variety of devices as software that
lets the OS handle the hardware. Finally, most OS device drivers can
probably be written more efficiently by the manufacturer’s or OS
developer’s programming team than by an individual.

Because newer game controllers are no longer constrained by the
design of the original IBM PC game-controller card, they provide a
wide range of capabilities. Refer to the relevant game controller and OS
documentation for information on how to program the API for a
specific device.

15.4 Sound Cards

The original IBM PC included a built-in speaker that the CPU could
program (using an onboard timer chip) to produce a single-frequency
tone. Producing a wide range of sound effects was possible, but it
required programming a single bit connected directly to the speaker.
This process consumed nearly all the available CPU time. Within a
couple of years of the PC’s arrival, various manufacturers like Creative
Labs created a special interface board—a sound card—that provided
higher-quality PC audio output and didn’t consume anywhere near that
amount of CPU resources.

The first sound cards to appear for the PC didn’t follow any
standards because none existed at the time. Creative Labs’ Sound
Blaster card became the de facto standard because it had reasonable
capabilities and sold in very high volumes. At the time, there was no
such thing as a device driver for sound cards, so most applications were
programming the registers directly on the sound card. Initially, so many
applications were written for the Sound Blaster card that anyone
wanting to use most audio applications also had to purchase it. Other
sound card manufacturers quickly copied the Sound Blaster design, and
all of them were subsequently stuck with it, because any new features
they added wouldn’t be supported by the available audio software.

Sound card technology stagnated until Microsoft introduced
multimedia support into Windows. The original audio cards were
capable of mediocre music synthesis, suitable only for cheesy sound
effects for video games. Some boards supported 8-bit telephone-quality
audio sampling, but the audio was definitely not high fidelity. Once
Windows provided a standardized, device-independent interface for
audio, the sound card manufacturers began producing high-quality
sound cards for the PC.

Immediately, “CD-quality” cards appeared that were capable of
recording and playing back audio at 44.1 KHz and 16 bits. Higher-
quality sound cards began adding wavetable synthesis hardware that
produced realistic synthesis of musical instruments. Synthesizer
manufacturers like Roland and Yamaha produced sound cards with the
same electronics found in their high-end synthesizers. Today,
professional recording studios use PC-based digital audio recording
systems to record original music with 24-bit resolution at 96 (or even
192) KHz, arguably producing better results than all but the finest
analog recording systems. Of course, such systems cost many thousands
of dollars. They’re definitely not your typical sound card that retails for
under $100.

15.4.1 How Audio Interface Peripherals Produce Sound

Modern audio interface peripherals2 generally produce sound in one of
three different ways: analog (FM synthesis), digital wavetable synthesis,
or digital playback. The first two schemes produce musical tones and
are the basis for most computer-based synthesizers, while the third is
used to play back audio that was digitally recorded.

The FM synthesis scheme is an older, lower-cost, music synthesis
mechanism that creates musical tones by controlling various oscillators
and other sound-producing circuits on the sound card. The sound
produced by such devices is usually very low quality, reminiscent of
early video games; there’s no mistaking it for an actual musical
instrument. While some very low-end sound cards still use FM
synthesis as their main sound-producing mechanism, few modern audio

peripherals use it for anything other than producing intentionally
“synthetic” sounds.

Modern sound cards that provide musical synthesis capabilities tend
to use wavetable synthesis: the audio manufacturer typically records and
digitizes several notes from an actual musical instrument, and then
programs these digital recordings into read-only memory (ROM),
which they assemble into the audio interface circuit. When an
application requests that the audio interface play some note on a given
musical instrument, the audio hardware plays back the recording from
ROM, producing a very realistic sound.

However, wavetable synthesis is not simply a digital playback
scheme. To record over 100 different instruments, each with a several
octave range, would require a prohibitively expensive amount of ROM
storage. Therefore, most manufacturers of such devices use software
embedded on the audio interface card to raise or lower, by some
integral number of octaves, a small number of digitized waveforms
stored in ROM. This allows manufacturers to record and store only a
single octave (12 notes) for each instrument. Some synthesizers use
software to convert only a single recorded note into any other note, to
reduce costs, but the more notes the manufacturer records, the better
the quality of the resulting sound. Some of the higher-end audio boards
record several octaves on complex musical instruments (like a piano) but
only a few notes on some lesser-used, less complex sound-producing
objects, like sound effects for gunshots, explosions, and crowd noise.

Finally, pure digital playback is used for two purposes: playing back
arbitrary audio recordings and performing very high-end musical
synthesis, known as sampling. A sampling synthesizer is, effectively, a
RAM-based version of a wavetable synthesizer. Rather than storing
digitized instruments in ROM, a sampling synthesizer stores them in
system RAM. Whenever an application wants to play a given note from
a musical instrument, the system fetches the recording for that note
from system RAM and sends it to the audio circuitry for playback. Like
wavetable synthesis methods, a sampling synthesizer can convert
digitized notes up and down octaves, but because the system doesn’t
have the cost-per-byte constraints associated with ROM, the audio

manufacturer can usually record a wider range of samples from real-
world musical instruments. Generally, sampling synthesizers provide a
microphone input so you can create your own samples. This allows you,
for example, to play a song by recording a barking dog and generating a
couple octaves of “dog bark” notes on the synthesizer. Third parties
often sell “sound fonts” containing high-quality samples of popular
musical instruments.

The other use for pure digital playback is as a digital audio recorder.
Almost every modern sound card has an audio input that will
theoretically record “CD-quality” sound in stereo.3 This allows the user
to record an analog signal and play it back verbatim, like a tape
recorder. With sufficient outboard gear, it’s even possible to make your
own musical recordings and burn your own music CDs, though to do so
you’d want something a little bit fancier than a typical Sound Blaster
card—something at least as advanced as the DigiDesign ProTools HDX
or M-Audio system.

15.4.2 The Audio and MIDI File Formats

There are two standard mechanisms for playing back sound in a modern
PC: audio file playback and MIDI file playback.

Audio files contain digitized samples of the sound to play back.
While there are many different audio file formats (for example, WAV
and AIF), the basic idea is the same—the file contains some header
information that specifies the recording format (such as 16-bit 44.1
KHz, or 8-bit 22 KHz) and the number of samples, followed by the
actual sound samples. Some of the simpler file formats allow you to
dump the data directly to a typical sound card after proper initialization
of the card; other formats may require a minor data translation before
the sound card can process the data. In either case, the audio file format
is essentially a hardware-independent version of the data you’d normally
feed to a generic sound card.

One problem with sound files is that they can grow rather large. One
minute of stereo CD-quality audio requires just less than 10MB of
storage. A typical 3- to 4-minute song requires between 20MB and
45MB. Not only does such a file take up an inordinate amount of RAM,

but it consumes a fair amount of storage in the software’s distribution
file as well. If you’re playing back a unique audio sequence that you’ve
recorded, you have no choice but to use this space to hold the sequence.
However, if you’re playing back an audio sequence that consists of a
series of repeated sounds, you can use the same technique that sampling
synthesizers use and store only one instance of each sound, and then use
some sort of index value to indicate which sound you want to play. This
can dramatically reduce the size of a music file.

This is exactly the idea behind the Musical Instrument Digital Interface
(MIDI) file format. MIDI is a standard protocol for controlling music
synthesis and other equipment. If you want to play back music that
doesn’t contain vocals or other nonmusical elements, MIDI can be very
efficient.

Rather than holding audio samples, a MIDI file simply specifies the
musical notes to play, when to play them, how long to play them, which
instrument to play them on, and so on. Because it takes only a few bytes
to specify all this information, a MIDI file can represent an entire song
very compactly. High-quality MIDI files generally range from about
20KB to 100KB for a typical 3- to 4-minute song. Contrast this with the
20MB to 45MB for an audio file of the same length. Most sound cards
today are capable of playing back General MIDI (GM) files using an on-
board wavetable synthesizer or FM synthesis. Most synthesizer
manufacturers use the GM standard to control their equipment, so its
use is very widespread and GM files are easy to obtain.

One problem with MIDI is that the quality of the playback is
dependent upon the quality of the end user’s sound card. Some of the
more expensive audio boards do a very good job of playing back MIDI
files, but some of the lower-cost boards—including, unfortunately, a
large number of systems that have the audio interface built into the
motherboard—produce cartoonish-sounding playback.

Therefore, you need to carefully consider using MIDI in your
applications. On the one hand, MIDI offers the advantages of smaller
files and faster processing. On the other hand, on some systems the
audio quality will be quite low, making your application sound bad. You

have to balance the pros and cons of these approaches for your
particular application.

Because most modern sound cards are capable of playing back CD-
quality recordings, you might wonder why the manufacturers don’t
collect a bunch of samples and simulate one of these sampling
synthesizers. Well, they do. Roland, for example, provides the Virtual
Sound Canvas program, which simulates its hardware Sound Canvas
module in software. These virtual synthesizers produce very high-
quality output, but consume a large percentage of the CPU’s capability,
thus leaving less power for your applications. If your applications don’t
need the full power of the CPU, these virtual synthesizers provide a
very high-quality, low-cost solution.

If you know your target audience will have a synthesizer, another
solution is to connect an outboard synthesizer module to your PC via a
MIDI interface port and send the MIDI data to a synthesizer to play.
This is an acceptable solution for a specialized application with a limited
customer base, since few people outside of musicians would own a
synthesizer.

15.4.3 Programming Audio Devices

One of the best aspects of audio in modern applications is that there’s
been a tremendous amount of standardization. File formats and audio
hardware interfaces are very easy to use in modern applications. As with
most other peripherals, few modern programs control audio hardware
directly, because OSes like Windows and Linux provide device drivers
that handle it for you. Producing sound in a typical Windows
application requires little more than reading data from a file that
contains the sound information and writing that data to another file
used by the device driver, which interfaces with the actual audio
hardware.

One other issue to consider when writing audio-based software is the
availability of multimedia extensions in the CPU you’re using. The
Pentium and later 80x86 CPUs provide the MMX, SSE, and AVX
instruction sets. Other CPU families provide comparable instruction set
extensions (such as the AltiVec instructions on the PowerPC or NEON

on ARM). Although the OS probably uses these extended instructions
in the device driver, you can employ them in your own applications as
well. Unfortunately, that usually involves assembly language
programming, because few high-level languages provide efficient access
to them. Therefore, if you’re going to be doing high-performance
multimedia programming, assembly language is something you’ll
probably want to learn. See The Art of Assembly Language for additional
details on the Pentium’s SSE/AVX instruction set.

15.5 For More Information

Axelson, Jan. Parallel Port Complete: Programming, Interfacing, & Using
the PC’s Parallel Printer Port. Madison, WI: Lakeview Publishing,
2000.

———. Serial Port Complete: Programming and Circuits for RS-232 and
RS-485 Links and Networks. Madison, WI: Lakeview Publishing,
2000.

Hyde, Randall. The Art of Assembly Language. 2nd ed. San Francisco:
No Starch Press, 2010.

AFTERWORD: THINKING LOW-LEVEL,

WRITING HIGH-LEVEL

The goal of this book was to get you thinking at the machine level. One
way to force yourself to write code at this level is to write your
applications in assembly language. When you write code statement by
statement in assembly language, you get a pretty good idea of the cost
associated with each one.

Unfortunately, using assembly language isn’t a realistic solution for
most applications. The disadvantages of assembly language have been
well publicized (and exaggerated) over the past several decades, and as a
result many people have decided assembly isn’t an option for them.

Unlike writing code in assembly language, writing code in a high-
level language doesn’t force you to think at a high level of abstraction.
There’s nothing preventing you from thinking in low-level terms while
writing high-level code. This book has equipped you with the
background knowledge you need to do just that. By learning how the
computer represents data, you’ve learned how HLL data types translate
to the machine level. By learning how the CPU executes machine
instructions, you’ve learned the costs of various operations in your HLL
applications. And by learning about memory performance, you’ve
learned how to organize your HLL variables and other data to

maximize cache and memory access. There’s only one piece missing
from this puzzle: “Exactly how does a particular compiler map HLL
statements to the machine level?” That topic is sufficiently large that it
deserves an entire book on its own. And that’s the purpose of the second
volume in the Write Great Code series: Thinking Low-Level, Writing
High-Level.

WGC2 will pick up right where this book leaves off. It will teach you
how each statement in a typical HLL maps to machine code, how you
can choose between two or more high-level sequences to produce the
best possible machine code, and how to analyze that machine code to
determine its quality and that of the high-level code that produced it.
And while doing all of this, it will give you a greater appreciation for
how compilers work and encourage you to help them do their job
better.

Congratulations on your progress thus far toward writing great code.
See you in Volume 2.

A

ASCII CHARACTER SET

Binary HexadecimalDecimal Character

0000_0000 00 0 NULL

0000_0001 01 1 CTRL A

0000_0010 02 2 CTRL B

0000_0011 03 3 CTRL C

0000_0100 04 4 CTRL D

0000_0101 05 5 CTRL E

0000_0110 06 6 CTRL F

0000_0111 07 7 Bell

0000_1000 08 8 Backspace

0000_1001 09 9 TAB

0000_1010 0A 10 Line feed

0000_1011 0B 11 CTRL K

0000_1100 0C 12 Form feed

0000_1101 0D 13 RETURN

0000_1110 0E 14 CTRL N

0000_1111 0F 15 CTRL O

0001_0000 10 16 CTRL P

0001_0001 11 17 CTRL Q

0001_0010 12 18 CTRL R

0001_0011 13 19 CTRL S

0001_0100 14 20 CTRL T

Binary HexadecimalDecimal Character

0001_0101 15 21 CTRL U

0001_0110 16 22 CTRL V

0001_0111 17 23 CTRL W

0001_1000 18 24 CTRL X

0001_1001 19 25 CTRL Y

0001_1010 1A 26 CTRL Z

0001_1011 1B 27 CTRL [

0001_1100 1C 28 CTRL \

0001_1101 1D 29 ESC

0001_1110 1E 30 CTRL ^

0001_1111 1F 31 CTRL _

0010_0000 20 32 Space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

Binary HexadecimalDecimal Character

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

Binary HexadecimalDecimal Character

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

Binary HexadecimalDecimal Character

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

Binary HexadecimalDecimal Character

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127

GLOSSARY

A

ABI Application binary interface

Abstract base class A class that has at least one abstract method
(member function).

Abstract method A method in a class that does not have an
implementation. Derived classes are responsible for implementing the
abstract method.

Accuracy The correctness of a computation.

Activation record A block of memory holding parameters, local
variables, and other memory entities associated with a
procedure/function call.

Address bus The portion of the system bus on which memory
addresses appear (to access memory and I/O devices).

Address space The range of memory locations available to a single
application.

Addressing modes A mechanism for selecting an effective address in
memory by combining register values, constants, and other
components.

Aggregate data type A data type containing a collection of data values.

AGP Accelerated graphics port

ALU Arithmetic logical unit

Anonymous variables Variables without a name bound to them. For
example, a data structure that a program allocates on the heap and
refers to via a pointer (rather than by name) is an anonymous variable.

Arabic numerals The common 10 digits (0–9) used by most Western
countries to represent base-10 values.

Architecture (computer) See Computer architecture.

ARM Acorn RISC Machine; a popular CPU architecture (used in most
smartphones, for example).

Array base address Memory address of the first element of an array.

Associated values In Swift, an associated value is an auxiliary value
associated with an enum constant in an enumerated data type. Swift uses
associated values to provide the same functionality as discriminate
unions or variant record data types.

Associativity A binary operator ° is said to be associative if (A ° B) ° C =
A ° (B ° C) for all Boolean values A, B, and C.

Asynchronous I/O I/O operations that take place independent of the
CPU’s activities. That is, the CPU starts the I/O operation and then
performs other activities without waiting for the I/O operation to
complete.

ATA Advanced Technology Attachment; an older disk-drive-interface
command set. SATA is the modern replacement.

ATAPI ATA with Packet Interface

Average rotational latency The average time required for a desired
disk sector to appear under a disk head.

B

Base class An ancestor class of derived classes.

Basic Multilingual Plane The first group of 65,536 Unicode code
points (U+0000 to U+CFFF and U+E000 to U+FFFF).

BCD Binary-coded decimal

Best-fit A memory allocation scheme whereby the system scans all the
blocks on the free list to find the smallest one that can satisfy the
allocation request.

Big-endian A byte organization (usually in memory) where the HO
byte of a multibyte structure appears first in the string of bytes (for
example, the HO byte appears at the lowest address in memory and the
LO byte appears at the highest address).

Binary-coded decimal A binary representation of base-10 numbers
that uses nibbles (4 bits) to represent a single decimal digit. Binary
values 1010 through 1111 are illegal BCD values.

Binary numbering system A numeric system based on powers of 2
(and only having the digits 0 and 1).

Binding Associating some attribute with an object (such as associating a
value with a variable).

Bit A single binary digit, representing the value 0 or 1.

Bit strings An ordered sequence of one or more binary digits (bits).

Bitwise Operations on two bit strings that proceed on a bit-by-bit basis;
that is, they operate on 2 bits at a time, each of which occupies the same
position in its respective bit string.

BIU Bus interface unit

BMP See Basic Multilingual Plane.

Boolean expressions Arithmetic-like expressions that evaluate to either
true or false.

Boolean logic A mathematical system based on two values (for
example, 0 and 1, or true and false).

BSS Block started by a symbol; an area of memory bound to an
identifier.

Byte A bit string containing exactly 8 bits.

Byte-addressable memory Memory from which the CPU can access
individual bytes (as opposed to other memory, often on RISC
processors, that can be accessed only 32 or 64 bits at a time).

C

Cache hit When a CPU accesses a memory location that is present in
the memory cache.

Cache line A group of memory locations managed as a set by the CPU
or cache manager. Typically, a CPU writes or reads an entire cache line
to/from memory at one time.

Cache miss A memory access to a location that is not currently held in
cache memory.

Canonical equivalence Two different sequences (such as strings) are
canonically equivalent if they produce the same character on an output
device. If two strings are canonically equivalent, comparing them for
equality should produce true even if they have different bytes in their
sequences.

Casting The process of converting a value from one type to another.

Central processing unit The core component in a computer system
where arithmetic, logical, control, instruction fetch and decode, and
other operations take place.

Character string A sequence of characters.

CISC Complex instruction set computer

Clock frequency The frequency of the signal (typically a square wave)
input to a CPU that synchronizes and controls its internal operations.
The speed of the CPU is often directly proportional to the clock
frequency.

Closure A mathematical system is closed with respect to a particular
operator if every pair of values in that system supplied to that operator
produces a value in the system.

Code pages Different character sets sharing the same numeric
representation (for example, multiple EBCDIC character sets lie in
different code pages).

Code plane A set of up to 65,536 different Unicode characters.

Code point A numeric value (in the range 0–65,535) representing a
Unicode character (scalar) or a surrogate code point (Unicode character
set expansion).

Column-major ordering Organizing arrays in memory with column
elements appearing in consecutive memory locations.

Commutative A two-operand operator is commutative if you can swap
the left and right operands and the operator produces the same result.

Composite data types Data types that contain a collection of other
data objects. Examples include arrays, structs/records, classes, tuples,
and unions.

Computer architecture The set of rules and methods that define the
functionality and organization of a computer system.

Control bus The portion of the system bus that contains various
control lines, such as read/write control, byte enable lines, clock signals,
and hold lines.

Control characters Special characters that perform terminal/device
manipulation rather than displaying a symbol on an output device.
Examples include backspace, carriage return, and line feed.

Control hazard An attempt by a CPU to continue executing
instructions in a pipeline after a control transfer occurs (invalidating the
sequential instructions in the pipeline).

Copy on write A mechanism whereby data is shared between multiple
variables until one variable writes to the common data, at which point
the system makes a copy of the data prior to modifying it (for the
variable writing to the common data).

Core See CPU core.

CPU Central processing unit

CPU clock A signal that controls the rate of activities within a CPU
(also known as the system clock). See also Clock frequency.

CPU core A full CPU on a single piece of silicon. Often, multiple CPU
cores appear on the same piece of silicon, allowing multiple threads of

concurrent execution.

CU Control unit

D

Data bus The portion of the system bus where various components
exchange data with one another.

Data hazard An attempt by a CPU to use a piece of data before a
currently executing instruction is done using that data.

DBCS Double-byte character set; a character set scheme that uses 1 or
2 bytes to represent a large number of characters (typically fewer than
500 characters total).

Decimal numbering system A numeric representation system based
on exponents of 10.

Delphi A popular Object Pascal compiler and development system.

Denormalized values Floating-point numbers whose exponent
contains 0 and where the binary point isn’t between the HO mantissa bit
position and bit position HO – 1.

Descriptor A record (structure) that maintains information about a data
structure somewhere else in memory. For example, a string descriptor
might contain the length of the string along with a pointer to the
characters in that string.

Direct addressing Accessing a memory location using an address
encoded as part of the machine instruction.

Dirty bit A flag in a cache line specifying that data has been written to
the cache line but not all the way through to main memory.

Discriminant union Also known as a discriminated union. A collection
of data values in a structure whose use is mutually exclusive. That is, for
the lifetime of the object, the software will reference only a single field
from the structure. Often, compilers will allocate all the fields of a

union at the same memory address to conserve memory (because only
one should ever be used at a time).

Distributive Two binary operators ° and % are distributive if A ° (B %
C) = (A ° B) % (A ° C) for all Boolean values A, B, and C.

DMA Direct memory access

DOS Disk operating system

Double word A bit string that is the size of 2 words (typically 32 bits,
but it could be larger if the CPU’s native word size is greater than 16
bits).

DRAM Dynamic random-access memory; the most common form of
memory in modern computer systems.

DSM Distributed shared memory

Dword See Double word.

Dynamic objects Objects that have some attribute bound to them
while a program is running.

Dynamic range The difference between the smallest and largest
numbers in a given numeric representation.

E

EBCDIC Extended Binary Coded Decimal Interchange Code

Effective address A memory address resulting from the computation of
all addressing mode components in an instruction.

Endianness The organization of bytes in a multibyte data object in
memory. Big-endian organization stores the HO byte of a data structure
at the lowest (byte) address in memory, whereas the LO byte appears at
the highest address. Little-endian organization stores the LO byte at
the lowest address in memory and the HO byte at the highest address.

Excess-127 format A binary representation of floating-point exponents
using 8 bits, with values 0 through 127 representing negative exponents

and 128 through 255 representing positive exponents (and 0).

Excess-1,023 exponent A binary representation of floating-point
exponents using 11 bits, with values 0 through 1,023 representing
negative exponents and 1,024 through 2,047 representing positive
exponents (and 0).

Excess-16,383 exponent A binary representation of floating-point
exponents using 15 bits, with values 0 through 16,383 representing
negative exponents and 16,384 through 32,767 representing positive
exponents (and 0).

Exponent A mantissa is multiplied by the numeric base (usually binary)
raised to the exponent power (for example, for m.mmmmme+xx the exponent
is the xx portion).

F

Falling edge The component of a clock signal where the signal changes
from high to low.

False precision Garbage bits generated by certain computations
resulting in imprecise results.

FAT File allocation table

Field A data memory of a record, structure, class, or other
aggregate/composite data type.

FIFO First in, first out

First-fit A memory allocation scheme in which the memory manager
allocates first block (in the free-block list) that satisfies the allocation
request.

Fixed-point representation A numeric representation using a fixed set
of digits with a radix point at an assumed position in the string of digits.
For example, a six-digit decimal fixed-point representation (with the
decimal point fixed between the third and fourth digits) could represent
values between 000.000 and 999.999. Most commonly, fixed-point

values in computers are binary fixed-point values, with the binary point
fixed at a certain location in the bit string.

Floating-point representation A numeric representation for real
numbers that contains two components: a mantissa and an exponent.

FPU Floating-point unit

Fragmentation In a memory allocation scheme, fragmentation occurs
when larger blocks are broken up into small blocks that aren’t sufficient
to handle common allocation requests.

G

Garbage collection Automatic reclamation of dynamically allocated
memory by a system.

Glyph A set of strokes that draw a character on an output device.

GM General MIDI

Grapheme clusters A sequence of Unicode code points that produce a
single item most people would recognize as a stand-alone character on
an output device.

H

Harvard architecture A CPU architecture that uses separate memory
spaces for code and data.

Hazards Attempts by a CPU to simultaneously use a single resource by
multiple instructions.

Heap A region in memory reserved for dynamic storage allocation.

Hexadecimal numbering system A numbering system based on
powers of 16.

HLA High-Level Assembly (language)

HO High-order (most significant)

Hyperthreading A scheme (typically in 80x86 processors) whereby
multiple threads of execution occur in parallel by using functional units
on the CPU that are currently idle.

Hz Hertz (also known as cycles per second)—the unit of the system clock
frequency.

I

I/O Input/output

IDE Integrated drive electronics; an older disk drive interface (SATA is
the modern equivalent).

Identity A Boolean value I is said to be the identity element with
respect to some binary operator ° if A ° I = A for all Boolean values A.

Immediate operand A constant operand for a machine instruction.

Indexed addressing Computing the effective address by adding an
index (numeric value) held in a machine register or memory location to
some base address (which could also be in a register, in a memory
location, or encoded as part of the machine instruction).

Indexed addressing mode A memory address computed by adding
some value (typically held in a register) to a base address.

Indirect addressing Referencing a memory location by an address held
in a register or another memory location (that is, using a pointer to the
memory location).

Indirect addressing mode Accessing an address in memory where the
address is held in some register or memory location (rather than
encoded directly in the machine instruction).

Inheritance The process of one class inheriting attributes and
behaviors from another class (also known as subclassing).

Instruction cache A high-speed cache memory used to hold machine
instructions.

Instruction set architecture The design of the machine instruction set
for a CPU.

Inverse A Boolean value I is said to be the inverse element with respect
to some binary operator ° if A ° I = B and B ° A (that is, B is the opposite
value of A in a Boolean system) for all Boolean values A and B.

ISA Instruction set architecture; also the Industry Standard
Architecture bus (the name of the original IBM PC bus).

ISR Interrupt service routine

K

Kylix A Linux-based version of Delphi (Object Pascal).

L

L1 cache Level 1 caching system.

L2 cache Level 2 caching system.

L3 cache Level 3 caching system.

Latency The time between a request for some resource (such as data in
cache memory) and the actual fulfillment of that request.

Least significant bit The bit in a bit string representing the smallest
value (smallest exponent of 2). Typically the rightmost bit in a bit string.

Length-prefixed string A string that begins with a count of the
number of characters in the string.

Lifetime The period of time between the binding of some attribute to
the point when the bond is broken. For example, the lifetime of a
memory variable is usually from the point you allocate memory for the
variable to the point you deallocate that storage.

Little-endian A byte organization (usually in memory) where the LO
byte of a multibyte structure appears first in the string of bytes (for

example, the LO byte appears at the lowest address in memory and the
HO byte appears at the highest address).

LO Low-order (least significant)

Long word A bit string whose size is 128 bits.

LRU Least recently used

LSB Least significant bit

M

Machine code A numeric encoding of machine instructions in memory.

Machine instructions Commands that a CPU executes natively.

Macroinstruction Native CPU machine instructions (emulated by
executing several microcode instructions on microcoded CPUs).

Mantissa The significant digits in a real number that do not include the
exponent portion (for example, for m.mmmmme + xx the mantissa is the m.mmmmm
portion).

Mask in Force bits to 1 in a bit string.

Mask out Force bits to 0 in a bit string.

MASM Microsoft Macro Assembler

Memory access time The amount of time a CPU takes to fetch (or
write) a memory element. Typically specified in system clock period
units (that is, nanoseconds or picoseconds), though operating frequency
(for example, GHz) is also common (clock period is the reciprocal of the
clock frequency).

Memory addressing modes A mechanism for computing memory
addresses on a CPU.

Memory controllers Specialized components (typically on modern
CPUs) that interface directly to DRAM devices providing appropriate
address/data multiplexing, refresh control, and other memory-related
functions.

Memory leak Making dynamically allocated memory unavailable for
reuse. Occurs when code stops using an allocated block of memory
without explicitly freeing it.

Memory-mapped files Storing files in the address space of a process
and accessing the file data using virtual memory operations.

MHz Megahertz, or one million cycles per second

Microcode Internal low-level code that a CPU executes in order to
execute native machine instructions.

Microengine The component of the CPU that executes microcode.

Microinstructions Low-level instructions in microcode.

Microsecond One millionth of a second.

MIDI Musical Instrument Digital Interface

Millisecond One thousandth of a second.

MIMD Multiple instructions, multiple data

MMC Multimedia Commands (SCSI)

MMU Memory management unit

Modulo-n counters Variables that increment from 0 to (n – 1) and
then reset to 0.

Most significant bit The bit with the greatest value in a bit string
(often the leftmost bit in a bit string).

MSB Most significant bit

MSC Management Server Commands (SCSI)

Multiple inheritance The ability for a class to inherit attributes (data
fields) and behaviors (methods/functions) from multiple parent classes.

Multiprocessing Executing multiple threads of execution on multiple
CPUs (or CPU cores).

N

NaN Not-a-number; a special floating-point representation for illegal
values.

Nanosecond One billionth of a second.

Nibble A bit string containing exactly 4 bits.

Normalized floating-point values
Floating-point numbers that have their exponents adjusted so that the
binary point is between the HO and HO – 1 bit positions in the
mantissa.

Nsec See Nanosecond.

NUMA Non-uniform memory access

Number An intangible concept that represents a quantity.

Numbering system A set of symbols and conventions for representing
numeric values.

Numeric representation Printable symbols human beings use to
represent numbers.

O

Octal numbering system A numeric representation based on powers
of 8.

Offline storage Information kept on media that is not connected to the
computer system that uses it; examples include magnetic tapes and
optical disks.

One’s complement format A signed numeric representation that uses
a single bit as a sign bit. Note that one’s complement has two
representations of 0 (with the sign bit containing 0 or 1).

Opcode Operation codes; numerical encodings for machine
instructions.

Operation codes See Opcodes.

Operator precedence See Precedence.

OS Operating system

OSD Object-based Storage Device commands (SCSI)

Out-of-order execution Certain CPUs delay completing the
execution of certain instructions until after later instructions have begun
executing; however, the CPUs (usually) attempt to ensure that the
results produced with out-of-order execution are the same as if they’d
been produced with linear execution.

Overflow Incorrect calculations that produce a value that is too large to
fit in the destination bit string.

P

Parallel processing Running multiple threads (programs) concurrently
on multiple CPUs (or CPU cores).

Parameterized type Specifying a type as a parameter (argument) to a
class definition or function.

PATA Parallel ATA (same as IDE/ATA)

PCI Peripheral component interconnect

Pipeline Stages in a CPU’s hardware that execute phases of a machine
instruction.

Pointer A variable whose value refers to a different data value. Typically
pointers contain the memory address of the object they reference.

Polling Software testing to see if a resource or operation is available.

Polymorphism The feature of an object-oriented programming
language whereby an object reference to some base class could actually
refer to a derived class object. A polymorphic type is one whose
operations can apply to other types.

Positional notation system A system (typically numeric) where
different positions in a string of characters stand for different entities.
For example, the decimal numbering system is positional, with each
digit to the left representing a greater power of 10.

Postulate An initial assumption in a mathematical system.

Powerset A set of objects using a bit string representation with 1 bit
(present/not present) for each possible member of the set.

Pragma A special programming language feature that provides
information to the compiler (rather than generating machine code, as is
the case for normal statements).

Precedence A property that controls the order of evaluation when
multiple operators appear within an expression.

Precision The number of digits or bits maintained in a computation.

Prefetch queue A special first-in, first-out memory inside a CPU that
holds machine instructions that the CPU is about to execute.

Prefix opcode byte A prefix byte in a machine instruction that
redefines the following opcodes.

Q

QNaN Quiet not-a-number

Quad word A bit string that is 4 words concatenated together; this is
usually 64 bits.

R

Radix Base of a numbering system. For example, Radix-10 is the
decimal (base-10) numbering system.

Radix point A period that separates whole numbers from fractional
values in a numeric representation. Usually, the base (such as decimal or

hexadecimal) name is used rather than “radix” (for example, decimal point
or hexadecimal point).

RAID Redundant array of inexpensive disks

RAM Random access memory

Rational representation A numeric representation for fractional
numbers that uses two integers to represent the numerator and
denominator of a fractional value.

RBC Reduced Block Commands (SCSI)

Record In a language like Pascal, a composite data type that allows you
to combine different data objects into a single type.

Reference counter A data structure used to count how many pieces of
code are using (referencing) a block of memory so that the memory can
be reclaimed (garbage-collected) once the code is done using it.

Register renaming An architectural feature of the CPU that allows it
to process some operations faster by using shadow registers in place of
its main registers when the main registers are unavailable.

RISC Reduced instruction set computer; a computer architecture based
around reducing the work each machine instruction performs.

Rising edge The component of a clock signal where the signal changes
from low to high.

Row-major ordering Organizing elements of an array with elements in
rows appearing in consecutive memory locations.

S

SAS Serial-Attached SCSI

Saturation The process of storing a maximum (or minimum) value into
a numeric variable if the range of the original value does not fit in the
variable.

SBC SCSI Block Commands, or single-board computer

Scaled-index addressing Like an indexed address mode, but the
scaled-index addressing mode multiplies the index value by some
constant (usually 2, 4, 8, or 16) prior to adding the index to the base
address.

Scaled numeric format A numeric representation that multiples (or
divides) all values by a fixed constant. For example, a “times 1,000”
scaled format would multiply all numbers by 1,000, allowing an integer
value to represent numeric quantities from x.000 to x.999 (where x is
some arbitrary integer value).

SCC SCSI Controller Commands, or serial communications chip

Scope The portion of a program where an identifier’s name is bound to
an object.

SCSI Small Systems Computer Interface; an older interface to hard
drives and other peripherals. SAS (Serial-Attached SCSI) is the modern
implementation of SCSI.

SES SCSI Enclosure Services commands

SGC SCSI Graphics Commands

Sign contraction The process of reducing the number of bits used by a
two’s complement signed integer (sign contraction isn’t always possible
if the value won’t fit into the reduced number of bits).

Sign extension The process of expanding the size (bits) of a two’s
complement signed integer.

SIMD Single instruction, multiple data

SISD Single instruction, single data

SNaN Signaling not-a-number

Spatial locality The idea that if a system accesses a given memory
location, it will likely access an adjacent memory location in the near
future (such as accessing successive machine instructions in memory).

SPC SCSI Primary Commands

SPI SCSI Parallel Interface

SSC SCSI Stream Commands

SSD Solid-state drive; a semiconductor-based mass storage replacement
for hard drives.

Static (binding) Objects exhibit static binding when an attribute is
bound to the object the whole time the program is running.

Superscalar CPU A CPU that is capable of executing more than one
instruction simultaneously.

Surrogate code points Special Unicode values that expand the
character set beyond 65,536 characters (expansion beyond 16 bits).

Synchronous I/O With synchronous I/O, a process starts an I/O
operation and then waits for its completion before continuing
execution.

System bus A set of signal lines that connect various components of a
computer system (such as the CPU, memory, and I/O devices).

T

Tbyte A bit string whose size is 80 bits.

Temporal locality The idea that if a system accesses a given memory
location, it likely will access this same location in the near future.

Thrashing Repeated accesses to memory objects that are either not in
the cache or not in physical memory (forcing a reload of the cache from
main memory or a reload of memory from a secondary storage device,
such as a hard drive), resulting in reduced system performance.

Tuple A list of associated data values. In Swift, a tuple is roughly
equivalent to a list of values.

Two’s complement representation A special binary format
representing signed and unsigned integers.

U

Underflow Incorrect results produced from a calculation that are too
small to fit in the destination bit string.

Unicode A universal standardized character set that supports most
known characters.

Unicode normalization Adjusting canonically equivalent Unicode
strings so that they have the same (minimal) code points, organized in
the same order.

Union See Discriminant union.

USB Universal Serial Bus

µsec See Microsecond.

UTF Universal Transformation Format; an encoding scheme for
Unicode (UTF-8, UTF-16, and UTF-32 are the three standard
Unicode encoding schemes).

V

Virtual memory Utilizing secondary storage (hard drives or SSDs) to
hold infrequently accessed data so main memory is available for
frequently used data.

Virtual method table A table of pointers, each of which contains the
address of a virtual method associated with a class. Objects use virtual
method tables to provide linkages to methods associated with the
underlying class to supply polymorphism.

VLIW Very-long instruction word; a high-performance computer
architecture.

VMT See Virtual method table.

Von Neumann architecture A computer architecture for a stored-
program system where the data and program codes sit in the same
memory space and the computer fetches both on the same address and
data bus.

W

Wait state A clock cycle during which the CPU suspends activities
while waiting to synchronize with external hardware (such as slow
memory).

WGC Write Great Code

WGC1 Write Great Code, Volume 1: Understanding the Machine

WGC2 Write Great Code, Volume 2: Thinking Low-Level, Writing High-
Level

WGC3 Write Great Code, Volume 3: Engineering Software

WGC4 Write Great Code, Volume 4: Designing Great Code

WGC5 Write Great Code, Volume 5: Great Coding

WGC6 Write Great Code, Volume 6: Testing, Debugging, and Quality
Assurance

Word A bit string of some CPU-native length. Typically 16 bits on
modern CPUs, but it could be 32 or even 64 bits.

Z

Zero extension The process of expanding an unsigned binary bit string
to a larger-sized bit string.

Zero-terminated strings A character string that contains a 0 byte as
the last element of the string.

INDEX

Numbers

7-bit strings, 111

advantages, 112

assembly language macro implementation, 112

16-bit bus data access, 138

8042 microcontroller chip (keyboard controller), 415

A

absolute position pointing devices, 417

abstract base classes, 202

abstract member functions in C++, 206

abstract methods, 202

Accelerated Graphics Port (AGP) bus, 360

accessing data with a 16-bit bus, 138

accessing double words in memory, 140

accessing elements of an array, 171, 175

accessing words

in byte-addressable memory, 136

at odd addresses, 139

acknowledge line (parallel port), 416

activation records, 342

active-low logic, 242

adders, 240

adding integer values to a pointer, 164

add instruction, 257

encoding on the x86, 310

encoding on the Y86, 296

addressable memory, 133

address bus, 133

address spaces, 135

Advanced Technology Attachment (ATA), 373

advantages of 7-bit strings, 112

AGP (Accelerated Graphics Port) bus, 360

algebraic manipulation of Boolean expressions, 223

aliases, 191

aligned data access, 164

allocating objects in contiguous memory, 163

AND operation, 42, 218

anonymous variables, 161, 342

application binary interface (ABI), 185

Arabic numerals, 11

architecture, 131

arithmetic and logical instructions (Y86), 292

arithmetic shift right operation, 49

arithmetic units, 263

ARM CPU (memory access), 141

arrays, 166

alignment in memory, 170

of arrays, 179

in C#, 168

declarations, 167

implementation in Swift, 179

index bounds checking, 169

initialization in Swift, 168

Pascal, 169

representation in memory, 170

Art of Assembly Language, 7, 59, 93, 157, 215, 317, 424

ASCII character set, 96–98

assembly language macro to declare 7-bit strings, 112

assigning instruction opcodes, 290

associativity, 219

asynchronous I/O (filesystems), 409

ATA (Advanced Technology Attachment), 373

ATAPI (ATA with Packet Interface), 373

audio device programming, 423

audio sampling, 421

average rotational latency (of a disk drive), 386

average seek time (on a disk), 384

B

backspace character, 97

base addresses

of an allocated memory region, 162

of an array, 166

of a record, 185

base classes, 195

base (numbering system radix), 12

BCD, 29

BDXL, 391

best-fit memory allocation, 343

biased (excess) exponents, 68

bidirectional ports, 352

big-endian data organization, 142

issues when using unions, 192

binary arithmetic

addition, 38

division, 41

multiplication, 40

subtraction, 39

binary-coded decimal, 29, 99

binary conversion

to decimal, 13

to hexadecimal, 16

binary data types, 20

binary I/O (files), 409

binary numbering system, 13

binary operator, 218

binary representations for NaN, 73

bit density (on a disk), 384

bit fields, 51, 54

bit numbers, 21

bit strings, 20, 44

bitwise operations, 44

BIU (bus interface unit), 265

blocks (on a disk), 383

blowing revs, 386

Blu-ray, 391

BMP (Unicode Basic Multilingual Plane), 102

Boolean algebra, 218

theorems of, 219

Boolean expressions, 220, 223

Boolean function numbers, 222

Boolean functions, 220, 221

Boolean literals, 223

Boolean logic, 217

Boolean map simplification, 229

Boolean operators, 218

precedence, 220

Boolean postulates, 218

Boolean terms, 223, 224

bounds checking of array indexes, 169

buffering peripheral device data, 360

bulk transmissions (USB), 378

burst mode on the PCI bus, 359

bus contention, 270

bus interface unit (BIU), 265

busy line (parallel port), 416

byte-addressable memory, 135, 162

byte-addressable memory array, 138

byte enable lines, 135, 140

bytes, 20

C

C/C++ records (structs), 182

C/C++ unions, 187

C# strings, 115

caches

coherency, 280

disk, 387

hits, 152, 153

line replacement policies, 329

lines, 152, 326

memory, 151

misses, 152

three-level (L3), 154

two-level (L2), 153

write policies, 330

canonical equivalence (Unicode), 105

canonical forms of Boolean expressions, 224

carriage return character, 97

case-variant records in Pascal/Delphi, 187

CD-Recordable (CD-R), 391

CD-Rewriteable (CD-RW), 391

CD-ROM, 390

ceil() function, 72

central processing unit (CPU), 131, 154

character names in Unicode, 103

character sets, 96–101, 119, 120

ASCII, 96–99

double-byte, 100

EBCDIC, 99–100

Unicode, 101

character strings, 110

choosing instructions for a CPU, 289

class constructors, 198

classes, 192

in C++, 205

in Java, 208

in Swift, 209

client drivers (USB), 380

clipping (saturation), 28

clock cycle, 148

clocked logic, 245

clocks per instruction (CPI), 275

closure (of an operator), 218

coarse-grained parallelism, 280

code planes in Unicode, 102

code points in Unicode, 101

column-major ordering, 173, 176

combining characters in Unicode, 108, 109

acute accent character, 104

COM ports, 417

commutivity, 218

comparing bits, 46

comparing dates, 53

comparing floating-point numbers, 65

comparing pointers, 162, 166

complex instruction set computer (CISC) instructions, 255, 301

composite data types, 166

computer architecture, 131

conditional jumps, 255

on the Y86, 295, 299

condition codes register, 257

constructing a truth map, 230

constructing logic functions using only NAND gates, 238

constructing minterms from the canonical form, 225

contention for the bus, 270

contiguousarray type (Swift), 180

control bus, 134

control characters, 96

control transfer instructions (on the Y86), 292

control transmissions (USB), 377

control units, 263

converting between canonical forms, 229

copy on write, 117

counters, 248

CPI (clocks per instruction), 275

CPU (central processing unit), 131

memory access, 154

cylinders (on a disk drive), 385

D

D (data) flip-flop, 246

dangling pointers, 117

data bus, 132

data hazard, 270

data transfer rates, 357

dates, 51

comparing, 53

DBCS (double-byte character sets), 100

debouncing keyboards, 414

decimal numbering system, 11

decimal-to-binary conversion, 13

declaring arrays in memory, 167

declaring multidimensional arrays, 177

decoder circuits, 242

decoding delays, 150

decoding instruction opcodes, 243

defragment operation, 408

delete() memory allocation function, 161, 342

Delphi strings, 118

DeMorgan’s Theorems, 220

denormalized operand (floating-point exception), 75

denormalized values, 71

descriptor-based strings, 114

device drivers, 364

digital audio recorder, 421

digital design, 217

Digital Linear Tape (DLT), 392

digital playback (audio), 420

digital wavetable synthesis, 420

direct-mapped caches, 326

direct memory access (DMA), 354, 355

direct memory addressing mode, 155, 293

dirty bits, 331

disadvantage of the bitmap scheme, 399

disadvantages of FAT, 402

disadvantages of zero-terminated strings, 111

discriminant unions, 187

disk caches, 387

disk directory, 398

disk-drive geometries, 387

diskless workstations, 381

dispose() memory allocation function, 161, 342

distributed shared memory (DSM), 321

distributive law, 219

division by zero (floating-point exception), 74

DLT (Digital Linear Tape), 392

DMA (direct memory access), 354, 355

double-byte character sets, 100, 101

double-precision floating-point format, 69

double-word storage in byte-addressable memory, 136

down codes on the keyboard, 415

down key code, 414

dual I/O ports, 352

duality principle, 220

DVD+RW, 391

DVD-R, 391

DVD-RAM, 391

DVD-ROM, 391

DVD-RW, 391

dword, 21

dynamic memory allocation, 161

dynamic range in floating-point numbers, 62

dynamic strings, 117

E

eager comparison, 66

EBCDIC (Extended Binary Coded Decimal Interchange Code)
character set, 99

EEPROM (electrically erasable programmable read-only memory), 393

effective address, 156

EISA bus, 357

electrically erasable programmable read-only memory (EEPROM), 393

encapsulation, 205

encoding instructions, 285

80x86, 301

Y86, 293, 296

endianness, 143

conversion, 144

end-of-line character, 98

equivalence function (exclusive-NOR), 222

error accumulation in floating-point calculations, 63

exceptions in floating-point arithmetic, 74

excess-127 exponent, 68

excess-1,023 exponent, 69

excess-16,383 exponents, 69, 70

exclusive-NOR, 222

exclusive-OR (XOR), 42, 221, 222

executing instructions out of order, 277

execution units, 254, 275

expansion opcodes, 294

exponents, 62

Extended Binary Coded Decimal Interchange Code (EBCDIC), 99

extended-precision floating-point format, 69

external fragmentation

in filesystems, 398

in a memory manager, 344

F

falling edge of a clock, 148

Fast SCSI, 369

Fast and Wide SCSI, 369

FAT (file allocation table), 400, 402

Fibre Channel, 374

fields in a record/structure, 181

file access performance, 407

file allocation strategies, 399

file allocation table (FAT), 400, 402

file fragmentation, 408

file manager, 396

file storage (in the memory hierarchy), 321

filesystems, 396

bitmap scheme pros and cons, 399

defragmenting, 408

directory, 398

FAT pros and cons, 402

fragmentation, 398

free-space bitmaps, 399

lists of blocks allocation scheme, 403

performance of, 407

sequential, 397

synchronous I/O, 409

three-tiered block scheme, 405

fine-grained parallelism, 280

first-fit memory allocation, 343

first-in, first-out (FIFO) cache replacement policy, 330

fixed-point representation, 30

flags register, 257

flash drive write performance, 395

flash storage, 393

flip-flops, 245

floating-point arithmetic, 61

floating-point comparisons, 65

floating-point division, 90

floating-point exceptions, 74

floating-point formats, 66

double-precision, 69

extended-precision, 69

quad-precision, 70

single-precision, 67

floating-point operations

addition, 75

division, 86, 90

multiplication, 86

subtraction, 75

floating-point unit (FPU), 30

floor() function, 72

floppy disk drives, 382

floptical drives, 389

flushing the pipeline, 271

FM synthesis, 420

forcing bits to 0, 44

forcing bits to 1, 44

formatted text I/O (files), 409

four-way set associative caches, 328

FPU (floating-point unit), 30

fragmentation, 408

free() memory allocation function, 161, 346

free-space bitmaps (filesystems), 399

full adder, 240

function numbers, Boolean, 222

functional units, 263

fusion drive, 396

G

game controllers, 419

garbage collection, 117, 161, 345

General MIDI (GM), 422

general protection fault, 339

generics, 213

geometries of disk drives, 387

glyphs, 10, 103

granularity of memory allocation, 347

grapheme clusters, 103, 105

great code, 5

guard bits, 71

guard digits, 63

H

half adder, 240

handshaking, 361

hard drives, 382

hardcopy storage (in the memory hierarchy), 322

Harvard architecture, 272

heap, 161, 343

hexadecimal numbering system, 15

hexadecimal-to-binary conversions, 16

high-order bit, 21

high-order byte, 21

high-speed devices, 357

HLA (High-Level Assembly) strings, 112

HLA (High-Level Assembly) unions, 190

hot-pluggable devices, 374

hot-swappable devices, 369

hybrid drives, 396

HyCode character set, 122

Hz (hertz), 148

I

IDE/ATA interface, 372

identity elements for a Boolean operator, 219

IEEE floating-point formats, 66

implementing arrays in Swift, 179

implementing pointers, 160

implication (logical function), 222

indexed addressing mode, 156, 293

indirect addressing mode, 155, 293

Industry Standard Architecture (ISA) bus, 357

inexact result (floating-point exception), 75

infinity (floating-point), 73

information hiding (encapsulation), 205

inheritance, 194, 196

inhibition (logical function), 222

initializing arrays in Swift, 168

input ports, 350

instruction design goals, 285

instruction pointer register, 253

instruction set architecture (ISA), 284

interfaces (Java), 210

interleaving sectors on a disk drive, 386

internal fragmentation, 347, 398

interrupt service routine (ISR), 364

interrupt transfers (USB), 378

interrupts, 363

invalid operation (floating-point exception), 74

inverse element (for Boolean operators), 219

inverted page tables, 335

inverting bits, 44

I/O (input/output), 131

direct memory access (DMA), 355, 356

I/O-mapped I/O, 355

memory-mapped I/O, 354–355

speed hierarchy, 356

ISA (Industry Standard Architecture) bus, 357

ISA (instruction set architecture), 284

ISO transfers (USB), 379

ISR (interrupt service routine), 364

J

Java interfaces, 210

Java strings, 114

jnz instruction, 255, 258

joysticks, 419

jump instructions, 299

K

kernel mode (CPU), 346

keyboard

keybounce, 414

modifier keys, 415

scan code, 415

L

L1 cache, 320

L2 cache, 320

L3 cache, 321

latency (of a cache access), 325

Latin-1 character set, 105

least recently used (LRU) cache replacement algorithm, 330

least significant bit, 21

left associative operations, 220

legacy peripherals, 413

legacy support, 284

length-prefixed strings, 111

levels

cache, 320–321

RAID, 388–389

Linear Tape-Open (LTO), 392

line feed character, 97

list representation of character sets, 120

lists of blocks allocation scheme (filesystems), 403

literals, Boolean, 220, 225

little-endian data organization, 142

issues when using unions, 192

local bus for a CPU, 357

locality of reference, 323

logical AND operation, 42, 218, 222

logical complement operation, 218

logical exclusive-OR operation, 42, 222

logical inhibition, 221

logical NAND operation, 222

logical NOR operation, 222

logical NOT operation, 42, 44, 218, 222

logical OR operation, 42, 218, 222

logical XOR operation, 42

long word, 22

loop instruction, 255, 259

lowercase alphabetic characters, 97

low-order bit, 21

low-order byte, 21

low-speed devices, 356

LPT printer ports, 415

LTO (Linear Tape-Open), 392

M

machine code, 296

machine organization, 3

malloc() function, 161, 346

string data allocation and, 116

mantissa, 62

mapping method for Boolean function simplification, 229

masking, 44

mass storage device filesystems, 396

maximum addressable memory, 133

medium-speed devices, 357

memory

access, 131, 148

addressing modes, 154

allocation, 161

search algorithms, 343

best-fit algorithm in a memory allocator, 343

first-fit algorithm in a memory allocator, 343

granularity of memory allocation, 347

leaks, 117

organization, 131

protection, 332

storage of records, 184

virtual, 332

memory banks, 138

memory cells, 245

memory paging, 332

memory management unit (MMU), 335

memory-mapped files, 335, 410

memory-mapped I/O, 354

mice, 417

microcode, 254

microinstructions, 254

MIDI (Musical Instrument Digital Interface) files, 422

MIMD (multiple instruction, multiple data) execution model, 279

miniport drivers, 372, 373

miserly approach to comparing floating-point numbers, 66

modifier keys (keyboard), 415

mod-reg-r/m byte (addressing mode byte on x86), 303

modulo-n counters, 47

most significant bit, 21

mov instruction, 256, 298

multidimensional arrays, 172, 177–178

multilevel page tables, 334

multiple inheritance, 206

multiple instruction, multiple data (MIMD) execution model, 279

multiprocessing, 280

Musical Instrument Digital Interface (MIDI) files, 422

N

NaN representations, 73

NAND gate, 238

NAND operation, 222

near-line memory storage systems, 322

near-line storage subsystems, 390

network storage (in the memory hierarchy), 321

new() memory allocation function, 161, 342

nibbles, 20

Non-Uniform Memory Access (NUMA), 321

nonvolatile storage, 393

normal forms (Unicode), 106

normalization, 70

in Unicode, 105, 106

NOR operation, 222

NOT instruction (Y86), 298

NOT operation, 42, 44, 218, 222

NuBus, 357

NULL pointer references, 339

NUMA (Non-Uniform Memory Access), 321

number of Boolean functions, 221

numbering systems, 11

numbers, definition of 10

numeric digit characters, 97

numeric overflow (floating-point exception), 75

numeric representation, 9

numeric/string conversions, 18

numeric underflow (floating-point exception), 75

n-way set associative cache, 328

O

octal (base-8) numbering system, 17

offline storage subsystems, 322

one-way set associative cache, 326

online memory subsystems, 322

opcodes, 254, 285

assigning, 290

operating system file managers, 396

operation codes. See opcodes

operations involving infinity, 74

optical drives, 389

ordinal data types, 169

OR operation, 42, 218, 222

OS API calls, 346

out-of-order execution, 277

output ports, 350

overhead of OS API calls, 346

P

packed data, 51

packing data, 55

paging, memory, 332

parallelism, 260

parallel ports

acknowledge line, 416

busy line, 416

strobe line, 416

parallel processing, 279

Pascal

arrays, 169

records, 181

unions (case-variant records), 187

PATA interface, 374

patch-board programming, 253

PC parallel printer port, 350

PCI (Peripheral Component Interconnect) bus, 357

PC peripherals, 413

peer-to-peer buses, 370

performance loss due to memory allocation, 348

performance of OS API calls, 346

Peripheral Component Interconnect (PCI) bus, 357

peripheral devices, PC, 413

pipeline flushing, 271

pipeline hazards, 273

pipeline stalls, 271

pipelining, 267

platter (hard disk media), 383

plug-and-play devices, 374

pointer arithmetic, 162

pointers, 342

address assignment in byte-addressable memory, 162

base addresses (of an allocated block), 162

types of, 159, 160

pointing devices, 417

polled I/O, 363

polymorphism, 201

positional notation system, 11

powerset representation of character sets, 119

precedence, 220

prefetch queues, 265

principle of duality, 220

private keyword (C++), 205

processor size, 132

product of maxterms

canonical form, 228

representation, 224

programmed I/O, 355

programming audio devices, 423

program status word. See flags register

protected keyword (C++), 205

protected-mode operation, 364

protocols (Swift), 210

pseudo-dynamic strings, 116

public keyword (C++), 205

Python strings, 116

Q

QNaN (quiet not-a-number), 73

quad-precision floating-point format, 70

quad word, 22

quiet not-a-number (QNaN), 73

R

radix point, 12

RAID (redundant array of inexpensive disks) systems, 388–389

RAM disks, 395

random logic CPU design, 254

rational representation of fractional values, 35

read control line, 134

reading from memory, 136

read-only port (I/O), 350

read operations on the bus, 149

read/write ports, 351

record base address, 185

records

in C/C++ (structs), 182

in HLA, 183

in Pascal, 181

in Swift (tuples), 183

reduced instruction set computer (RISC), 260

redundant array of inexpensive disks (RAID), 388–389

reel-to-reel drives, 393

reference counters, 118

reference counting for strings, 117

registers

electronic implementation of, 247

in the memory hierarchy, 320

renaming, 277

relative-position pointing devices, 417

replacement policy for caches, 329

representing arrays in memory, 170

representing character sets, 119–120

representing dates, 51

right associative operations, 220

RISC (reduced instruction set computer), 260

rising edge of a clock, 148

robotic jukebox (optical storage), 390

rotational latency (of a disk drive), 386

rounding floating-point results, 71–72

row-major ordering, 173

S

sampling (audio), 421

SATA interface, 374

saturation, 28

scalar, Unicode, 102

scaled-index addressing modes, 157, 306

scaled-index byte (sib), 307

scaled numeric formats, 33

scan code, keyboard, 415

schematic diagram symbols, 238

scientific notation, 62

SCSI (Small Computer System Interface), 367

command set, 370

miniport drivers, 372

sectors (on a disk), 383

semiconductor (RAM) disks, 395

sequential filesystems, 397

sequential logic, 245

serialized operations, 147

serial ports, 417

set/reset (SR) flip-flop, 245

seven-segment decoder, 241

shift left operation, 48

shift registers, 247

shift right operation, 48

sib (scaled-index byte), 307

signaling not-a-number (SNaN), 73

signals (interrupts), 364

sign bit, 23

sign contraction, 26

sign extension, 26

signed integer values, 23

significant digits, 62

simplification of Boolean functions, 229

single instruction, multiple data (SIMD) execution model, 279

single instruction, single data (SISD) execution model, 279

single-precision floating-point format, 67

size of a processor, 132

sizeof() function (C/C++), 162

Small Computer System Interface (SCSI), 367, 370, 372

SNaN (signaling not-a-number), 73

solid-state drives (SSDs), 381, 395, 396

sound cards, 419

spatial locality of reference, 151, 322, 323

SSDs (solid-state drives), 381, 395, 396

stack-pointer register, 342

stale character data, 117

starvation (USB), 378

static strings, 116

stored program computer, 253

storing double words in byte-addressable memory, 136

storing words in byte-addressable memory, 136

strain gauges (pointing devices), 418

stralloc() memory allocation function, 117

streaming data, 391

streaming tape drives, 393

strings

C#, 115

Delphi, 118

dynamic, 117

formats, 110

Java, 114

pseudo-dynamic, 116

Python, 116

reference counting, 117

static, 116

Swift, 115

zero-terminated, 110

strobe line (parallel port), 416

struct assembler directive, 183

structs in C/C++, 182

structures, 181–183

subtracting an integer from a pointer, 164

subtracting a pointer from a pointer, 164

sum of minterms, 224, 225, 227

superscalar operation, 275–277

surrogate code points in Unicode, 102, 103

Swift

arrays, 167

implementation, 179

initialization, 168

protocols, 210

records (tuples), 183

strings, 115

unions, 189

synchronous I/O (filesystems), 409

system buses, 132, 357

system clock, 147

period, 148

T

tally/slash numeric representation, 11

tape drives, 392

tbyte, 22

templates, 213

temporal locality of reference, 151, 322, 323

terms (Boolean), 223, 224

testing bits for 0 or 1, 45

theorems of Boolean algebra, 219

thrashing (cache), 331

three-level page tables, 335

three-tiered block scheme (filesystems), 405

timeouts on peripheral devices, 362

TLB (translation lookaside buffer), 334

touch screens, 418

trackpads, 417

trackpoints, 418

tracks (on a disk), 383

track-to-track seek time, 384

translation lookaside buffer (TLB), 334

truncating floating-point numbers, 71

truth tables, 43, 220

tuples (records) in Swift, 183

two’s complement numbering system, 23

two-level caching system, 153

two-way set associative caches, 328

U

unconditional jumps (Y86), 299

Unicode

BMP (Basic Multilingual Plane), 102

canonical equivalence, 105

character names, 103

code planes, 102

code points, 101

combining characters, 108, 109

encodings, 107, 108

UTF-8, 107

UTF-16, 107

UTF-32, 107

multilingual planes, 102

normal forms, 106

scalar, 102

surrogate code points, 102

Unicode character set, 101

uninitialized data sections in memory, 341

unions

in C/C++, 187

endian issues, 192

in HLA, 190

memory storage, 190

unique Boolean functions, 221

universal Boolean function (NAND gate), 238

Universal Serial Bus. See USB

unpacking data, 55

unsigned integer values, 23

up codes on the keyboard, 415

uppercase alphabetic characters, 97

USB, 374–375

bulk transmissions, 377, 378

bus enumeration, 380

client drivers, 380

control transmissions, 377

host controller stack, 376

interrupt transmissions, 377, 378

isochronous transmissions, 377, 379

starvation, 378

USB-c, 379

user mode (CPU), 346

UTF-8 encoding (Unicode), 107

UTF-16 encoding (Unicode), 107

UTF-32 encoding (Unicode), 107

V

variable-length instructions, 289

very long instruction word (VLIW) architectures, 278, 279

virtual memory, 321, 332

virtual method tables (VMTs), 194

virtual sound canvas, 423

von Neumann architecture, 131

W

wait states, 150

wavetable synthesis, 420

Wide SCSI, 369

words, 21

accessing in byte addressable memory, 136

stored at odd addresses, 139

working sets, 334

WORM (write-once, read-many), 391

write control line, 134

write lifetime (flash device), 394

write-once, read-many (WORM), 391

write-only port (I/O), 350

write operations on the bus, 149

write performance of flash drives, 395

write-through cache write policy, 330

writing to memory, 135

X

XOR (exclusive-OR) operation, 42, 222

Y

Y86 hypothetical processor, 291

Y86 instructions, 291

Z

zero extension, 26

zero flag, 255

zero-terminated strings, 110

disadvantages, 111

RESOURCES

Visit https://nostarch.com/writegreatcode1_2e for resources, errata,
and more information.

More no-nonsense books from NO STARCH PRESS

WRITE GREAT CODE, VOLUME 2, 2ND
EDITION
Thinking Low-Level, Writing High-Level

by RANDALL HYDE

JULY 2020, 656 pp., $49.95
ISBN: 978-1-71850-038-9

https://nostarch.com/writegreatcode1_2e

THE RUST PROGRAMMING LANGUAGE
(Covers Rust 2018)

by STEVE KLABNIK AND CAROL NICHOLS

AUGUST 2019, 560 pp., $39.95
ISBN 978-1-71850-044-0

WRITE GREAT CODE, VOLUME 3
Engineering Software

by RANDALL HYDE

JULY 2020, 360 pp., $49.95
ISBN 978-1-59327-979-0

PYTHON CRASH COURSE, 2ND EDITION
A Hands-On, Project-Based Introduction to Programming

by ERIC MATTHES

MAY 2019, 544 pp., $39.95
ISBN 978-1-59327-928-8

EFFECTIVE C
An Introduction to Professional C Programming

by ROBERT C. SEACORD

JULY 2020, 272 pp., $59.95
ISBN 978-1-71850-104-1

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code

by JONATHAN E. STEINHART

AUGUST 2019, 504 pp., $44.95
ISBN 978-1-59327-970-7

PHONE:
1.800.420.7240 OR

1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://www.nostarch.com/

MACHINE ARCHITECTURE FOR MERE

MORTALS

This first volume of Randall Hyde’s classic Write Great Code series dives
into machine organization without the extra overhead of learning
assembly language programming. Written for high-level language
programmers, Understanding the Machine fills in the low-level details of
machine organization that are often left out of computer science and
engineering courses. You’ll learn:

How the machine represents numbers, strings, and high-level data
structures, so you’ll know the inherent cost of using them

How to organize your data, so the machine can access it efficiently

How the CPU operates, so you can write code that works the way
the machine does

How I/O devices operate, so you can maximize your application’s
performance when accessing those devices

How to best use the memory hierarchy to produce the fastest
possible programs

Great code is efficient code. But before you can write truly efficient
code, you must understand how computer systems execute programs
and how abstractions in programming languages map to the machine’s
low level hardware. After all, compilers don’t write the best machine
code; programmers do. This book gives you the foundation upon which
all great software is built.

NEW COVERAGE OF:

Programming languages like Swift and Java

Code generation on modern 64-bit CPUs

ARM processors on mobile phones and tablets

Newer peripheral devices

Larger memory systems and large-scale SSDs

ABOUT THE AUTHOR

Randall Hyde is the author of The Art of Assembly Language and the
three volume Write Great Code series (all No Starch Press). He is also
the co-author of The Waite Group’s MASM 6.0 Bible. He has written for
Dr. Dobb’s Journal and Byte, and professional and academic journals.

THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com/

Footnotes

Chapter 2

1. Swift also allows you to specify binary numbers, using a 0b prefix.

2. The “..” notation, taken from Pascal and other programming
languages, denotes a range of values. Thus, “0..9” denotes all integer
values between 0 and 9.

3. HLA supports 128-bit values.

4. The ellipses (. . .) have the standard mathematical meaning: repeat a
string of zeros an indefinite number of times.

5. Borland’s compilers require the use of a special compiler directive to
activate this check. By default, the compiler does not do the bounds
check.

6. It isn’t possible to provide an exact computer representation of an
irrational number, so we won’t even try.

Chapter 3

1. This might sound like a lot, but you had to memorize approximately
200 rules for decimal addition!

2. It’s also possible to set all the uninteresting bits to 1s via the OR
operation, but the AND operator is often more convenient.

3. Actually, they could count down to 0 as well, but usually they count
up.

4. Some RISC CPUs only operate efficiently on double-word or quad-
word values, so the concept of bit fields and packed data may apply to
any object less than 32 or even 64 bits in size on such CPUs.

5. This was a software engineering near-disaster that occurred because
programmers in the 1900s encoded dates using only two digits. They
realized that when the year 2000 came along, programs wouldn’t be
able to differentiate 1900 and 2000.

6. Which field you’ll access most often depends on the application.

7. “Intuitive” meaning that the first field is the most significant portion
of the value, the second field is the next most significant, and the
third field is the least significant component of the number.

Chapter 4

1. Of course, the drawback is that you must now perform two
multiplications rather than one, so the result may be slower.

2. Actually, there are a couple of exceptions. The floating-point format
has two representations for 0—one with the sign bit set and one with
the sign bit clear; a floating-point comparison should treat these two
values as equal. Likewise, there are a couple of special floating-point
values that are incomparable, and the comparison operation must
consider those values as well.

3. In the rare case where you wind up with more than one bit to the left
of the binary point, you can normalize the mantissa by shifting its bits
to the right one position and incrementing the exponent.

4. “Biased” means to add an offset to the value—for example, an excess-
127 exponent has a bias of 127.

5. The alternative would be to underflow the values to 0.

6. If the algorithm shifts out only a single bit, you assume that “all the
other bits” are 0s.

7. Those who know a little 80x86 assembly language may wonder if it’s
legal to return a floating-point value in an integer register. Indeed, it
is! EAX can hold any 32-bit value, not just integers. Presumably, if
you’re writing a software-based floating-point package, you don’t
have floating-point hardware available and, therefore, you can’t pass
floating-point values around in the floating-point registers.

Chapter 5

1. Back before Windows became popular, IBM supported an extended
256-element character set on its text displays. Though this character
set is “standard” even on modern PCs, few applications or peripheral
devices continue to use it.

2. Historically, carriage return refers to the paper carriage used on
typewriters. A carriage return consisted of physically moving the
carriage all the way to the right so that the next character typed
would appear at the left-hand side of the paper.

3. ASCII is a 7-bit code. If the HO 9 bits of a 16-bit Unicode value are
all 0, the remaining 7 bits are an ASCII encoding for a character.

4. See “Unicode Encodings” on page 107 for a discussion of UTF-16
encoding.

5. Swift 5 switches the preferred encoding of strings from UTF-16 to
UTF-8; see https://swift.org/blog/utf8-string/.

6. This is probably a good balance of correctness versus efficiency; it can
be computationally expensive to handle all the weird cases that won’t
normally happen, such as "e\{301}\{301}".

7. UTF stands for “Unicode Transformational Format.”

8. Note that HLA is an assembly language, so it’s perfectly possible—
and easy—to support any reasonable string format. HLA’s native
string format is what it uses for literal string constants, and what most
of the routines in the HLA standard library support.

9. Actually, because of memory alignment restrictions, there can be up
to 12 bytes of overhead, depending on the string.

10. Though, being assembly language, it’s possible to create static
strings and pure dynamic strings in HLA as well.

11. Actually, you could call strrealloc() to change the size of an HLA
string, but dynamic string systems generally do this automatically.
Existing HLA string functions will not do this for you if they detect a
string overflow.

12. Though it is up to you to ensure that the character string maintains
set semantics (that is, you never allow duplicate characters in the
string).

https://swift.org/blog/utf8-string/

13. Actually, it’s worse than this because most C standard libraries use
lookup tables to map ranges of characters, but we’ll ignore that issue
here.

Chapter 6

1. Technically, the laptop manufacturer could add a lot of external
circuitry, including an external (to the CPU) memory controller, to
overcome this limitation. However, such designs are expensive, so
you rarely see them.

2. 680x0 series processors starting with the 68020, found in later
Macintosh systems, corrected this issue and allowed data access of
words and double words at arbitrary addresses.

3. Note that modern CPUs support out-of-order execution whereby the
CPU starts the execution of later instructions before earlier
instructions finish execution. However, the CPUs usually attempt to
retain the same semantics as in-order execution.

4. Often written as us when the Greek mu character is not available.

5. Intel i7 CPUs in 2019, for example, support 8MB on-chip L3 caches.

Chapter 7

1. Many Pascal compilers provide an option to turn off this bounds-
checking feature once your program is fully tested; doing so improves
the efficiency of the resulting program.

2. BASIC allows you to use floating-point values as array indices
because the original BASIC language did not provide support for
integer expressions; it provided only real values and string values.

3. Pascal strings usually require an extra byte, in addition to all the
characters in the string, to encode the length.

4. Note that create is a class procedure, not a method. Class procedures
do not appear in the VMT.

5. In assembly language, indices into the table are byte indices. Because
HLA pointers are 4 bytes, each offset in the table is 4 bytes greater
than the offset of the previous entry.

6. Note, by the way, that TheValue is not a common field, because this
field has a different type in the r64 class.

7. Technically, this isn’t always true. For performance reasons, Swift
uses copy-on-write to improve performance; so, multiple structure
objects can share the same memory location as long as you don’t
change the value of any field of that structure. However, once you do
modify the structure, Swift makes a copy of it and changes the copy
(hence the name copy-on-write). See the Swift documentation for more
details.

Chapter 8

1. See the discussion of function numbers in the next section.

2. These are also known as Karnaugh maps or Karnaugh/Veitch diagrams,
after Maurice Karnaugh, who created them by refining Edward
Veitch’s Boolean optimization diagrams.

3. Indeed, the four AND gates in a 7408 Transistor-Transistor Logic
(TTL) IC are probably constructed internally with transistors
arranged as a NAND gate followed by an inverter.

4. Actually, most memory modules are wider than 8 bits, so a real
256MB memory module will have fewer than 28 address lines, but
we’ll ignore this technicality in this example.

5. In practice, there is a short propagation delay between a change in the
inputs and the corresponding outputs in any electronic
implementation of a Boolean function.

6. x = “don’t care,” implying that the value may be 0 or 1 and it won’t
affect the outputs.

7. This is an unstable configuration and will change once S or R is set to
1.

8. “Latch” simply means to remember the value. That is, a D flip-flop is
the basic memory element because it can remember one data bit

appearing on its D input.

Chapter 9

1. There is actually nothing random about this logic at all. The name
comes from the fact that if you view a photomicrograph of a CPU die
that uses microcode, the microcode section looks very regular; the
same photograph of a CPU that utilizes hardware logic contains no
such easily discernible patterns.

2. Plus, of course, the common instructions at the beginning of the
sequence.

3. Note, by the way, that RISC should be read as “(reduced instruction)
set computer,” not “reduced (instruction set) computer.” RISC
reduces the complexity of each instruction, not the size of the
instruction set.

4. Note, by the way, that the number of stages in an instruction pipeline
varies among CPUs.

5. We’ll ignore the parallelism provided by pipelining and superscalar
operation in this discussion.

Chapter 10

1. Though this is a bit of an outlier, typical desktop and server CPUs
circa 2019/2020 contained 5 to 10 billion transistors.

2. Actually, Intel claims it’s a 1-byte opcode plus a 1-byte mod-reg-r/m
byte. For our purposes, we’ll treat the mod-reg-r/m byte as part of the
opcode.

3. The Y86 processor performs only unsigned comparisons.

4. We could also have used values $f7, $ef, and $e7, as they correspond as
well to an attempt to store a register into a constant. However, $ff is
easier to decode. Still, if you need even more prefix bytes for
instruction expansion, these three values are available.

5. The 64-bit variants of the 80x86 instruction set complicate things
even further.

6. The base32 register can be any of the 80x86 32-bit general-purpose

registers, as specified by the base field.

7. The 80x86 does not allow a program to use the ESP as an index
register.

8. The 80x86 doesn’t support a [base32+ebp*n] addressing mode, but you

can achieve the same effective address using [base32+ebp*n+disp8] with an

8-bit displacement value of 0.

Chapter 11

1. Note, however, that in some degenerate cases virtual memory can be
much slower than file access.

2. On newer 64-bit processors, of course, each process gets its own 64-
bit address space.

Chapter 12

1. Historically, “peripheral” meant any device external to the computer
system itself. This book will use the modern form of this term to
refer to any device that is not part of the CPU or memory.

2. Don’t forget that “input” and “output” are from the perspective of
the computer system, not the device. Hence, the device writes data
during an input operation and reads data during an output operation.

3. The ISA bus is the original IBM PC/AT bus. You won’t see it very
often on modern computer systems.

Chapter 13

1. Recently, the USB Interface Group (or USB-IF) has defined an
extension to the USB, known as USB On-the-Go, that allows a limited
amount of (pseudo-)peer-to-peer operation. Rather than supporting

true peer-to-peer operation, this scheme allows different peripherals
to take turns being the master on the USB.

2. In theory, you could use control transmissions to pass data between
the peripheral and the host, but very few devices do so.

3. The host may legally poll the device more often than the device
requests. The specified polling time is a minimum polling interval.

Chapter 14

1. Well, at least when connected in a high-performance RAID system.

2. In this context, “form factor” means shape and size.

Chapter 15

1. This is a bit of a simplification, but we’ll ignore that here.

2. The term sound card hardly applies anymore because many personal
computers include the audio controller directly on the motherboard,
and many high-end audio interface systems interface via USB or
FireWire, or require multiple boxes and interface cards.

3. “CD quality” simply means that the board’s digitizing electronics are
capable of capturing 44,100 16-bit samples every second. Usually the
analog circuitry on the board doesn’t have sufficiently high quality to
pass this audio quality through to the digitizing circuitry, so very few
PC sound cards today are truly capable of “CD-quality” recording.

	Cover Page
	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	ACKNOWLEDGMENTS
	1 WHAT YOU NEED TO KNOW TO WRITE GREAT CODE
	1.1 The Write Great Code Series
	1.2 What This Book Covers
	1.3 Assumptions This Book Makes
	1.4 Characteristics of Great Code
	1.5 The Environment for This Book
	1.6 Additional Tips
	1.7 For More Information

	2 NUMERIC REPRESENTATION
	2.1 What Is a Number?
	2.2 Numbering Systems
	2.3 Numeric/String Conversions
	2.4 Internal Numeric Representation
	2.5 Signed and Unsigned Numbers
	2.6 Useful Properties of Binary Numbers
	2.7 Sign Extension, Zero Extension, and Contraction
	2.8 Saturation
	2.9 Binary-Coded Decimal Representation
	2.10 Fixed-Point Representation
	2.11 Scaled Numeric Formats
	2.12 Rational Representation
	2.13 For More Information

	3 BINARY ARITHMETIC AND BIT OPERATIONS
	3.1 Arithmetic Operations on Binary and Hexadecimal Numbers
	3.2 Logical Operations on Bits
	3.3 Logical Operations on Binary Numbers and Bit Strings
	3.4 Useful Bit Operations
	3.5 Shifts and Rotates
	3.6 Bit Fields and Packed Data
	3.7 Packing and Unpacking Data
	3.8 For More Information

	4 FLOATING-POINT REPRESENTATION
	4.1 Introduction to Floating-Point Arithmetic
	4.2 IEEE Floating-Point Formats
	4.3 Normalization and Denormalized Values
	4.4 Rounding
	4.5 Special Floating-Point Values
	4.6 Floating-Point Exceptions
	4.7 Floating-Point Operations
	4.8 For More Information

	5 CHARACTER REPRESENTATION
	5.1 Character Data
	5.2 Character Strings
	5.3 Character Set Data Types
	5.4 Designing Your Own Character Set
	5.5 For More Information

	6 MEMORY ORGANIZATION AND ACCESS
	6.1 The Basic System Components
	6.2 Physical Organization of Memory
	6.3 Big-Endian vs. Little-Endian Organization
	6.4 The System Clock
	6.5 CPU Memory Access
	6.6 For More Information

	7 COMPOSITE DATA TYPES AND MEMORY OBJECTS
	7.1 Pointer Types
	7.2 Arrays
	7.3 Records/Structures
	7.4 Discriminant Unions
	7.5 Classes
	7.6 Classes in C++
	7.7 Classes in Java
	7.8 Classes in Swift
	7.9 Protocols and Interfaces
	7.10 Generics and Templates
	7.11 For More Information

	8 BOOLEAN LOGIC AND DIGITAL DESIGN
	8.1 Boolean Algebra
	8.2 Boolean Functions and Truth Tables
	8.3 Function Numbers
	8.4 Algebraic Manipulation of Boolean Expressions
	8.5 Canonical Forms
	8.6 Simplification of Boolean Functions
	8.7 What Does This Have to Do with Computers, Anyway?
	8.8 For More Information

	9 CPU ARCHITECTURE
	9.1 Basic CPU Design
	9.2 Decoding and Executing Instructions: Random Logic vs. Microcode
	9.3 Executing Instructions, Step by Step
	9.4 RISC vs. CISC: Improving Performance by Executing More, Faster, Instructions
	9.5 Parallelism: The Key to Faster Processing
	9.6 For More Information

	10 INSTRUCTION SET ARCHITECTURE
	10.1 The Importance of Instruction Set Design
	10.2 Basic Instruction Design Goals
	10.3 The Y86 Hypothetical Processor
	10.4 Encoding 80x86 Instructions
	10.5 Implications of Instruction Set Design to the Programmer
	10.6 For More Information

	11 MEMORY ARCHITECTURE AND ORGANIZATION
	11.1 The Memory Hierarchy
	11.2 How the Memory Hierarchy Operates
	11.3 Relative Performance of Memory Subsystems
	11.4 Cache Architecture
	11.5 NUMA and Peripheral Devices
	11.6 Virtual Memory, Memory Protection, and Paging
	11.7 Writing Software That Is Cognizant of the Memory Hierarchy
	11.8 Runtime Memory Organization
	11.9 For More Information

	12 INPUT AND OUTPUT
	12.1 Connecting a CPU to the Outside World
	12.2 Other Ways to Connect Ports to the System
	12.3 I/O Mechanisms
	12.4 I/O Speed Hierarchy
	12.5 System Buses and Data Transfer Rates
	12.6 Buffering
	12.7 Handshaking
	12.8 Timeouts on an I/O Port
	12.9 Interrupts and Polled I/O
	12.10 Protected-Mode Operation and Device Drivers
	12.11 For More Information

	13 COMPUTER PERIPHERAL BUSES
	13.1 The Small Computer System Interface
	13.2 The IDE/ATA Interface
	13.3 The Universal Serial Bus
	13.4 For More Information

	14 MASS STORAGE DEVICES AND FILESYSTEMS
	14.1 Disk Drives
	14.2 Tape Drives
	14.3 Flash Storage
	14.4 RAM Disks
	14.5 Solid-State Drives
	14.6 Hybrid Drives
	14.7 Filesystems on Mass Storage Devices
	14.8 Writing Software That Manipulates Data on a Mass Storage Device
	14.9 For More Information

	15 MISCELLANEOUS INPUT AND OUTPUT DEVICES
	15.1 Exploring Specific PC Peripheral Devices
	15.2 Mice, Trackpads, and Other Pointing Devices
	15.3 Joysticks and Game Controllers
	15.4 Sound Cards
	15.5 For More Information

	AFTERWORD: THINKING LOW-LEVEL, WRITING HIGH-LEVEL
	A ASCII CHARACTER SET
	GLOSSARY
	INDEX

