
M
A

G
N

U
S

S
O

N
P

R
A

C
T

IC
A

L
 �V

U
L

N
E

R
A

B
IL

IT
Y

 M
A

N
A

G
E

M
E

N
T

A N D R E W M A G N U S S O N

P R A C T I C A L
�V U L N E R A B I L I T Y

M A N A G E M E N T
A S T R A T E G I C A P P R O A C H T O

M A N A G I N G C Y B E R R I S K

PRACTICAL VULNERABILITY MANAGEMENT

P R A C T I C A L
V U L N E R A B I L I T Y

M A N A G E M E N T
A S t r a t e g i c A p p r o a c h t o

M a n a g i n g C y b e r R i s k

by Andrew Magnusson

San Francisco

PRACTICAL VULNERABILITY MANAGEMENT. Copyright © 2020 by Andrew Magnusson.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59327-988-2 (print)
ISBN-13: 978-1-59327-989-9 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editors: Katrina Taylor and Janelle Ludowise
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Developmental Editors: Alex Freed and Athabasca Witschi
Technical Reviewer: Daniel E. Dumond
Copyeditor: Anne Marie Walker
Compositor: Kim Scott, Bumpy Design
Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Magnusson, Andrew, author.
Title: Practical vulnerability management : a strategic approach to managing cyber risk/ Andrew
Magnusson.
Description: San Francisco, CA : No Starch Press, Inc., [2020] | Includes
 index. | Summary: “A hands-on guide to improving an organization’s
 computer security and developing scanning tools on a budget. It starts
 by discussing the components of a vulnerability management program and
 then shows the reader how to build a free or low-cost system to
 automatically handle the repetitive aspects of vulnerability management”
 -- Provided by publisher.
Identifiers: LCCN 2020016647 (print) | LCCN 2020016648 (ebook) | ISBN
 9781593279882 (paperback) | ISBN 9781593279899 (ebook)
Subjects: LCSH: Computer networks--Security measures.
Classification: LCC TK5105.59 .M36167 2020 (print) | LCC TK5105.59
 (ebook) | DDC 658.4/78--dc23
LC record available at https://lccn.loc.gov/2020016647
LC ebook record available at https://lccn.loc.gov/2020016648

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other prod-
uct and company names mentioned herein may be the trademarks of their respective owners. Rather than use
a trademark symbol with every occurrence of a trademarked name, we are using the names only in an edito-
rial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in it.

www.nostarch.com

To Jessica

About the Author
Andrew Magnusson fell sideways into the information security field almost
20 years ago and never looked back. He started off as a firewall adminis-
trator, and has since tried his hand at security engineering, vulnerability
analysis, and consulting. He presently heads up the customer engineering
team for strongDM. He lives in Rhode Island with his wife, daughter, and
two cats.

About the Tech Reviewer
A loving husband and father of twins, Daniel E. Dumond is a seasoned
security practitioner and business leader with over 21 years of experience.
Throughout his career, he has held many technical and senior leadership
roles in the information security space, and traveled the globe to help
build and deliver innovative security products and services for the world’s
most important organizations. Dan has a passion for programming and
automation, which he uses to tackle some of the most daunting security
challenges.

B R I E F C O N T E N T S

Acknowledgments . xvii

Introduction . xix

PART I: VULNERABILITY MANAGEMENT BASICS . 1

Chapter 1: Basic Concepts . . 3

Chapter 2: Sources of Information . . 13

Chapter 3: Vulnerability Scanners . 19

Chapter 4: Automating Vulnerability Management . 25

Chapter 5: Dealing with Vulnerabilities . 31

Chapter 6: Organizational Support and Office Politics . 37

PART II: HANDS-ON VULNERABILITY MANAGEMENT . 45

Chapter 7: Setting Up Your Environment . 47

Chapter 8: Using the Data Collection Tools . 57

Chapter 9: Creating an Asset and Vulnerability Database . 79

Chapter 10: Maintaining the Database . 97

Chapter 11: Generating Asset and Vulnerability Reports . 103

Chapter 12: Automating Scans and Reporting . 115

Chapter 13: Advanced Reporting . 123

Chapter 14: Advanced Topics . 139

Chapter 15: Conclusion . . 155

Index . . 163

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xvii

INTRODUCTION	 xix
Who This Book Is For . xx
Back to Basics . xx
Vulnerability Management Is Not Patch Management . xxi
Main Topics Covered . xxii
How This Book Is Organized . xxii
Outcomes . xxiii
Get the Code . xxiv
Important Disclaimer . xxiv

PART I: VULNERABILITY MANAGEMENT BASICS	 1

1
BASIC CONCEPTS	 3
The CIA Triad and Vulnerabilities . 4
What Is Vulnerability Management? . 4

Collecting Data . 5
Analyzing Data . 7
Applying Cull-Rank to a Real-World Example . 8
Making Recommendations . 9
Implementing Recommendations . 9

Vulnerability Management and Risk Management . 10
Summary . 11

2
SOURCES OF INFORMATION	 13
Asset Information . 13
Vulnerability Information . 14
Exploit Data . 15
Advanced Data Sources . . 16
Summary . 17

3
VULNERABILITY SCANNERS	 19
What Vulnerability Scanners Do . 19
How Vulnerability Scanners Work . . 20

xii Contents in Detail

How to Deploy Vulnerability Scanners . 21
Ensuring the Scanner Has Access . 21
Choosing Your OS and Hardware . 22
Configuring Your Scanner . 22

Getting Results . 24
Summary . 24

4
AUTOMATING VULNERABILITY MANAGEMENT	 25
Understanding the Automation Process . 25
Data Collection . . 26
Automating Scans and Updates . 27
Exploiting Your System’s Vulnerabilities . 28
Summary . 29

5
DEALING WITH
VULNERABILITIES	 31
Security Measures . 32

Patching . 32
Mitigation . 32
Systemic Measures . 33
Accept the Risk . 34
Defense in Depth . 34
Validating Controls . 34

Summary . 35

6
ORGANIZATIONAL SUPPORT AND OFFICE POLITICS	 37
Balancing Competing Priorities . 38
Gaining Support . 39

Empathy . 39
Involve Stakeholders Early . . 40
Understand Office Politics . 40
Speak Their Language . 40
Find a Champion . 41
Argue for Risk Management . 41

Summary . 43

PART II: HANDS-ON VULNERABILITY MANAGEMENT	 45

7
SETTING UP YOUR ENVIRONMENT	 47
Setting Up the System . 47

Installing the OS and Packages . 48
Customize It . 49

Contents in Detail xiii

Installing the Tools . . 49
Setting Up OpenVAS . 49
Setting Up cve-search . 50
Setting Up Metasploit . 52
Customize It . 53

Keeping the System Updated . 53
Writing a Script for Automatic Updates . 53
Running the Script Automatically . 55
Customize It . 55

Summary . 55

8
USING THE DATA COLLECTION TOOLS	 57
An Introduction to the Tools . 58

Nmap . . 58
OpenVAS . 58
cve-search . 59

Getting Started with Nmap Scanning . 60
Running a Basic Scan . 61
Using Nmap Flags . 62
Customize It . 66

Getting Started with OpenVAS . 67
Running a Basic OpenVAS Scan with the Web GUI . 67
Running a Basic Scan from the Command Line . 72
Customize It . 75

Getting Started with cve-search . . 75
Searching for CVE IDs . 75
Finding Out More About a CVE . 76
Text Searching the CVE Database . 77
Customize It . 78

Summary . 78

9
CREATING AN ASSET AND VULNERABILITY DATABASE	 79
Preparing the Database . 80
Understanding the Database Structure . 81

Customize It . 86
Getting Nmap into the Database . 86

Defining the Requirements . 87
Building the Script . 88
Customize It . 90

Getting OpenVAS into the Database . 91
Defining the Requirements . 91
Mapping Vulnerabilities to Hosts . 92
Building the Script . 93
Customize It . 96

Summary . 96

xiv Contents in Detail

10
MAINTAINING THE DATABASE	 97
Defining Database Indexes . . 98

Setting Indexes . 98
Testing Indexes . 99
Customize It . 100

Keeping the Data Fresh . 100
Determining the Cleanup Parameters . 100
Cleaning Up Your Database with Python . . 101
Customize It . 101

Summary . 102

11
GENERATING ASSET AND VULNERABILITY REPORTS	 103
Asset Reports . 104

Planning Your Report . 104
Getting the Data . 105
Script Listing . 107
Customize It . 109

Vulnerability Reports . 109
Planning Your Report . 109
Getting the Data . 110
Script Listing . 111
Customize It . 112

Summary . 113

12
AUTOMATING SCANS AND REPORTING	 115
Visualizing the Automation Process . 116

Collect Data . 116
Analyze Data . 117
Maintain the Database . 117

Planning the Script . 117
Assembling the Script . 119

Running Nmap and OpenVAS . . 119
Scheduling the Script . 119
Script Listings . . 120
Customize It . 121

Summary . 122

13
ADVANCED REPORTING	 123
Detailed Asset Reporting . 124

Planning the Script . 125
Script Listing . 126
Customize It . 130

Contents in Detail xv

Detailed Vulnerability Reporting . 131
Planning the Script . 133
Script Listing . 133
Customize It . 136

Exploitable Vulnerability Reporting . 136
Preparation . 136
Modifying the Old Script . . 137
Customize It . 138

Summary . 138

14
ADVANCED TOPICS	 139
Building a Simple REST API . 140

An Introduction to APIs and REST . 140
Designing the API Structure . 141
Implementing the API . 142
Getting the API Running . 145
Customize It . 146

Automating Vulnerability Exploitation . 147
Pros and Cons . 147
Automating Metasploit . 148

Bringing the System into the Cloud . 149
Cloud Architecture . 150
Cloud and Network Ranges . 150
Other Implementation Considerations . 151

Summary . 152

15
CONCLUSION	 155
A Look Back . 155

Designing and Building . . 156
Maintaining the System . . 156

Commercial Vulnerability Management Products . . 157
Commercial Scanners . 157
Commercial Vulnerability Management Systems . . 158
An Incomplete List of Commercial Options . . 159

Coming Trends in Information Security . . 159
Clouds and Containers Revisited . 159
Zero-Trust Networking . 160

In Closing . 161

INDEX	 163

A C K N O W L E D G M E N T S

This project was by no means a one-man job. Many others were of great help
to me in conceiving, writing, testing, and finally, publishing this book.

First, I want to thank my parents, Jan Slaughter and Phil Magnusson.
Without their love and support, raising me to love words and to understand
and harness computers, this book would not exist.

My wife, Jessica McKay-Dasent, was a constant and unconditional
support during the time I wrote and revised this book. From the time I
conceived it to the time it was completed, we got married, bought a house,
and had our daughter Artemis. She was an amazing and supportive partner
throughout, even as I slipped away for hours at a time to write and rewrite.

The editorial and support staff at No Starch Press, including but by no
means limited to, Zach Lebowski, Alex Freed, Annie Choi, Barbara Yien,
Janelle Ludowise, Katrina Taylor, Bill Pollock, and Athabasca Witschi,
helped shape this book into its current state. They contributed innumerable
improvements, large and small, to the raw material I provided them.

Dan Dumond performed an excellent technical review, making the text
and scripts cleaner and more resilient in the process. Any remaining errors
in the book and in the code are mine alone.

Annie Searle, a teacher and friend, was instrumental in instilling in me
a risk-management mindset, and was kind enough to review early drafts of
several chapters of the present work.

While I was at Mandiant Consulting, several colleagues generously sup-
ported this undertaking: Elliott Dorham, Mike Shingler, Dennis Hanzlik,
and Jurgen Kutscher.

Finally, I’d like to thank my colleagues at strongDM, particularly Justin
McCarthy, Elizabeth Zalman, and Schuyler Brown.

It’s human nature to pay attention to the
problems that are big and flashy, attract-

ing lots of interest, such as advanced persistent
threat (APT) groups—state-sponsored attackers.

APT-linked attackers have compromised major retail-
ers, financial institutions, and even government net-
works. But when we focus all of our attention on APTs
and other headline-generating activity, we miss basic
issues. Even though you have new firewalls protecting
your system and powerful traffic-monitoring devices,
if you don’t keep up with the bread and butter of
your security responsibilities, you’re leaving many

I N T R O D U C T I O N

xx Inroduction

chinks in your system’s armor. Neglecting the basics, like keeping your sys-
tems updated, can lead to serious consequences.

Consider this example: suppose you’re an information security man-
ager at a medium-sized e-commerce business. You’ve set up firewalls to
block incoming traffic except for traffic to internet-facing services on sys-
tems in your demilitarized zone (DMZ). You’ve turned on egress filtering to
block unauthorized exit traffic. An antivirus is on the endpoints, and you’ve
hardened your servers. You believe your system is safe.

But an old web service is running on an outdated version of Tomcat
on a Linux server in the DMZ. It’s a relic from an ill-advised foray into sell-
ing some of your company’s valuable proprietary data to selected business
partners. The initiative failed, but because you made some sales, you had
a contractual obligation to keep that server up for another year. At the
end of the year, the project was quietly shuttered, but the server is still run-
ning. Everyone has forgotten about it. But someone on the outside notices
it. An attack comes in from a compromised server in Moldova, and your
unpatched Tomcat server is vulnerable to a five-year-old Java issue. Now the
attacker has a foothold in your network, and all your protections couldn’t
stop it. Where did you fail?

This guide demonstrates the value of strong information security
fundamentals. These are the most important components of a successful
information security program. Unfortunately, they’re regularly neglected in
favor of sexier topics, such as traffic analysis and automated malware sand-
boxing. Don’t get me wrong; these are great advances in the state of the art
of information security. But without a strong grasp of the fundamentals,
investment in more advanced tools and techniques is futile.

Who This Book Is For
This book is for security practitioners tasked with defending their organiza-
tion on a small budget and looking for ways to replicate functionality from
commercially available vulnerability management tools. If you’re familiar
with vulnerability management as a process, you’ll have a head start. To
build your own vulnerability management system, you should be familiar
with Linux and database concepts and have some experience in a program-
ming language like Python. The scripts in this book are written in Python,
but you can functionally re-create them in whichever modern scripting or
programming language you prefer.

Back to Basics
You can consider a number of security topics as foundational, such as
authentication management, network design, and asset management.
Although these elements might not be exciting or interesting for an
analyst to work on, they’re of critical importance.

Introduction xxi

Vulnerability management is one of the foundational concepts of
information security. A perfectly written and configured software package
doesn’t exist. Bugs are an inevitable part of software, and many bugs have
security implications. Dealing with these software vulnerabilities is a peren-
nial issue in information security; the practice of vulnerability management
is required for a baseline level of security that can serve as a trusted founda-
tion upon which to deploy more advanced and specialized tools.

Vulnerabilities affect an organization’s IT infrastructure at all levels,
so vulnerability management affects all aspects of an IT security program.
Endpoint security relies on workstations and servers being up-to-date with
the latest software versions to minimize the attack surface. Zero-day vulner-
abilities are always a concern. But removing the low-hanging fruit of known
(and sometimes long-standing) vulnerabilities makes it more difficult for
attackers to compromise an endpoint and gain a foothold in your environ-
ment. Network security does its best to ensure that only necessary traffic
passes among internal network segments and to and from the internet. But
if systems or network devices contain known vulnerabilities, even otherwise
legitimate traffic might contain network-based attacks using known and
trusted protocols. Identity and access management (IAM) restricts users to the
specific systems and data to which they’re entitled. But if the identity sys-
tems are vulnerable, attackers can simply sidestep them.

If your environment has a baseline level of security, any countermea-
sures you put in place can’t be easily bypassed by exploiting known vul-
nerabilities. Let’s consider an analogy: after World War I, France tried to
protect itself from Germany by building a long line of forts and entrench-
ments along its German border. It was named the Maginot Line after
the French minister of war. But when World War II began, the Germans
ignored the barrier by simply going around it, invading France across the
Belgian border instead. All of that expensive defensive infrastructure was
irrelevant. The same goes for your environment. If it doesn’t have a founda-
tional level of security, any additional countermeasures are no more than
a Maginot Line. Attackers can easily avoid them because there is an easier
path elsewhere. But by establishing a vulnerability management baseline
and maintaining it via an active vulnerability management program, you
can trust that additional security measures will add real value to your secu-
rity program.

Vulnerability Management Is Not Patch Management
Patch management, perhaps in conjunction with a full software configuration
management (SCM) system, keeps track of the versions and patch levels of
servers and endpoints across an enterprise. It can push patches remotely to
keep systems up-to-date. But although traditional patch management and
vulnerability management (as described in this guide) share many similari-
ties, the underlying assumptions are very different.

Patch management assumes that patches are available, a patch manage-
ment system can manage all the devices on the network that need patches,
and there is enough time and manpower to apply all patches. But in real

xxii Inroduction

environments, it’s very rare for all of these conditions to hold. Devices exist
that aren’t managed by the SCM: for example, network devices like routers
and firewalls, test machines, abandoned servers, and devices running oper-
ating systems that aren’t compatible with SCM agents. All these components
are invisible to a typical SCM deployment and could easily become out-of-
date without anyone noticing. Even if automated patching is practicable
for endpoints, often you must handle servers and network devices manu-
ally, because automatically patching a server might lead to downtime when
the organization can least afford it. On the other hand, manually patch-
ing servers and network devices takes time that overworked IT staff often
can’t spare.

Vulnerability management takes a more pragmatic approach. Instead of
asking, “How can we apply all of these patches?” vulnerability management
asks, “Given our limited resources, how can we best improve our security
posture by addressing the most important vulnerabilities?” Vulnerability
management looks at the problem through a risk management lens.
We start with the full domain of vulnerabilities that exist on networked
devices—managed and unmanaged—and determine which of these vulner-
abilities present the highest risk to the organization’s security. Once we’ve
gathered that data, we have enough information to prioritize patching and
remediation activities. If after this process is complete we have the capacity
to apply more updates and remediation, so much the better. But by look-
ing at the highest-risk issues first and using our limited time and resources
wisely, we can improve the system’s security posture significantly with com-
paratively little effort.

Main Topics Covered
This technical guide is divided into two main parts: conceptual and practi-
cal. In the first part, you’ll learn about the concepts and components of the
vulnerability management process. In the second and larger part, you’ll
look at a practical approach to building a free or low-cost vulnerability
management system. Although you can follow the guide exactly, it’s most
important for you to understand the concepts behind each script to adapt
it to your own needs. Toward the end of the book, you’ll explore topics you
might want to tackle once your vulnerability management system is up and
running. One of those topics is purchasing a commercial tool to improve
your vulnerability management program when you have the budget to do so.

How This Book Is Organized
Although there’s a natural flow from chapter to chapter and part to part,
from theoretical to practical guidance, if you’re an experienced practi-
tioner, you can jump to the specific topics of most interest. Similarly, the
scripts naturally build from one to the next. But you can apply them on a
piecemeal basis, depending on which tools and processes are already in
place in your environment.

Introduction xxiii

A summary of each chapter follows:

Chapter 1: Basic Concepts introduces the fundamental ideas of vulner-
ability management and its connection to risk management.

Chapter 2: Sources of Information discusses the various types of data
you’ll need to collect to conduct the vulnerability management process.

Chapter 3: Vulnerability Scanners explores the process of scanning the
systems in your network to find vulnerabilities.

Chapter 4: Automating Vulnerability Management explains how to
build an automated system to collect and analyze the data you collect.

Chapter 5: Dealing with Vulnerabilities describes what to do about
the vulnerability information you gather: patch, mitigate, or accept
the risk.

Chapter 6: Organizational Support and Office Politics provides
information on how to accomplish vulnerability management in your
organization.

Chapter 7: Setting Up Your Environment explains how to put together
the underlying OS, install required packages, and write a script to keep
everything up-to-date.

Chapter 8: Using the Data Collection Tools discusses how to use
Nmap, cve-search, OpenVAS, and Metasploit.

Chapter 9: Creating an Asset and Vulnerability Database shows you
how to import scan results into the database.

Chapter 10: Maintaining the Database covers adding keys and culling
old data.

Chapter 11: Generating Asset and Vulnerability Reports delves into
creating basic CSV reports for assets and vulnerabilities.

Chapter 12: Automating Scans and Reporting describes writing a
script to automate Nmap and OpenVAS scanning and periodically
generate reports.

Chapter 13: Advanced Reporting discusses advanced reports using
HTML.

Chapter 14: Advanced Topics explores creating an API, considering
automatic exploitation, and entering the cloud.

Chapter 15: Conclusion wraps up the book by providing information
on future security trends and how they might change your vulnerability
management process.

Outcomes
This book’s goal is to take you from having no vulnerability management
knowledge to having a functional vulnerability management program so
you can generate accurate and usable vulnerability intelligence. This intel-
ligence can help you increase your understanding of your organization’s

xxiv Inroduction

vulnerability landscape and improve the organization’s overall security pos-
ture. By working through this guide, you’ll strengthen your organization’s
vulnerability management capabilities, which is one of the fundamentals of
a successful information security program.

Get the Code
As you are working through the steps to build yourself a vulnerability
management system, you can always check the GitHub repository at
https://github.com/magnua/practicalvm/. This repository contains all of the
code in this book, as well as a few example configuration files that you can
use in your own environment. Pull requests and suggestions are welcome!

Important Disclaimer
As is the case with most computer security tools or practices, you can use
the tools and techniques in this guide offensively as well as defensively.
Scanning can be an adversarial and malicious activity, and you should only
perform it on systems (and networks) that you own or those you’ve been
authorized to scan. I repeat: do not scan or otherwise probe systems that aren’t
yours. Even when used properly, such tools can potentially cause negative
outcomes including, in extreme cases, system crash and data loss. Be aware
of the potential risks before engaging in any scanning or exploitation-
related activity.

https://github.com/magnua/practicalvm

PART I
V U L N E R A B I L I T Y M A N A G E M E N T B A S I C S

Before you dive into vulnerability man-
agement, you should first understand

some basic information about vulnerabili-
ties. You might already be familiar with vulner-

abilities and their varying risk levels. If so, consider
this chapter a refresher to prepare you for the more
advanced topics to come. This chapter isn’t an exhaus-
tive primer of information security concepts, but it
should be enough to ensure that the rest of the book
is comprehensible.

1
B A S I C C O N C E P T S

4 Chapter 1

The CIA Triad and Vulnerabilities
The three main pillars of information security are confidentiality of infor-
mation (who can access data), integrity of information (who can modify
data), and availability of information (whether data is available to autho-
rized users). These three factors are known as the CIA triad. Although it
isn’t a perfect model, the terms aid in discussing and categorizing security
vulnerabilities.

Software, firmware, and hardware have bugs, and although not all bugs
are serious, many have security implications. If you can enter improper
input into a program and cause it to crash, not only is that a bug, it’s a
vulnerability. But when you enter improper input and all it does is change
the onscreen text color, presuming the text is still visible, that bug isn’t a
vulnerability. Well, it isn’t until someone clever figures out how to leverage
that bug to cause security-related issues. In short, a vulnerability is a weak-
ness in an information system that an attacker can leverage in a way that
has security implications. Typically vulnerabilities are due to bugs, but these
weaknesses could stem from flaws in the code logic, poor software design,
or implementation choices.

Because a bug must have implications for the confidentiality, integrity,
or availability of data—or an entire information system—to be considered
a vulnerability, the major vulnerability types map directly to the CIA triad.
Denial-of-service (DoS) vulnerabilities impact the availability of data: if
authorized users can’t access the system, they can’t access the data either.
Information disclosure vulnerabilities impact data confidentiality: they per-
mit unauthorized users to access data that they couldn’t otherwise access.
Similarly, information modification vulnerabilities allow unauthorized
users to modify data, so these vulnerabilities impact data integrity.

A fourth vulnerability category involves code execution and command
execution. These vulnerabilities allow attackers to execute specific com-
mands or arbitrary code on a system. The attacker has either limited or
complete access to the system, depending on the user level at which this
code executes, and can affect all three portions of the CIA triad. If an
attacker can run commands, that person might be able to read or modify
sensitive data or even shut down or reboot the system. Vulnerabilities in this
category are the most severe.

Some vulnerabilities might fit into more than one category, and the
categorization (and severity) could change as attackers begin to better
understand the vulnerability and exploit it more thoroughly. Because the
vulnerability landscape changes constantly, you need an effective vulner-
ability management program to keep abreast of developments.

What Is Vulnerability Management?
Vulnerability management is the practice of staying aware of known vulner-
abilities in an environment and then resolving or mitigating these vulnera-
bilities to improve the environment’s overall security posture. Although this

Basic Concepts 5

definition sounds simple, it entails a number of interdependent activities.
I’ll discuss each of these activities in more detail in the following chapters.
For now, let’s look at the vulnerability management life cycle’s major com-
ponents (see Figure 1-1).

Collect data

Make
recommendations

Implement
recommendations Analyze data

Figure 1-1: The vulnerability management life cycle

The first step is to understand the current vulnerability environment.
To do so, you need to collect data about your systems to determine the vul-
nerabilities that exist on them. The next step is to analyze that collected
data as well as security-related data from other sources.

Your data analysis results will help you make recommendations about
the actions needed to improve your security posture. These recommenda-
tions might include installing patches or applying mitigations, such as fire-
wall rules or system-hardening techniques. The next step is to implement
recommendations. Once this is complete, the cycle begins again: you col-
lect another round of systems data and the vulnerabilities that remain after
analysis and mitigation, as well as new vulnerabilities that weren’t apparent
in the previous cycle.

The management process is neither short nor simple. Finding vulner-
abilities can be easy, but dealing with them and improving your security
baseline will be ongoing. The process will also involve many different roles
and business processes throughout the organization.

Let’s look at each step in more detail.

Collecting Data
You can split the collection component into two major categories: internal
and external data collection. We’ll look at each in turn.

6 Chapter 1

Internal data collection involves gathering information about your orga-
nizational environment. This data includes information about the hosts on
your network—endpoints and network devices—and vulnerability infor-
mation about each host. Host information can come from an exploratory
scan using a network-mapping tool (like Nmap), an asset database tool, or
a configuration management database (CMDB). If you have only a spreadsheet
that contains data about your servers and workstations, it won’t be suffi-
cient. For vulnerability management to be successful, you need to start with
accurate and complete data. A spreadsheet you create and update manu-
ally won’t reflect the actual hosts and network information that live in your
environment.

Vulnerability data comes from one source: vulnerability scanners. These
tools discover vulnerabilities by interacting with devices, either through
network-based scans or host-based agents. Network scanners reach out to
every IP address within a range, or a specific list of IPs, to determine which
ports are open, which services are running on those ports, the operating
system (OS) versions and relevant configurations, and software packages
running on each device. Host-based scanless agents query the system
directly to determine running services and version information. Both
approaches have benefits and drawbacks, which I’ll discuss in more detail
in Chapter 3.

The internal data you collect quickly becomes stale—this is especially
true of vulnerability information—so you must gather it regularly. Even
though you might not add or remove hosts frequently, vulnerability infor-
mation changes daily: people install new software packages or perform
updates, and new vulnerabilities are discovered and publicly disclosed.
Regular scanning and routine scanner updates to incorporate new vulner-
ability information ensure that you have accurate and complete data about
your current environment. On the downside, regular scanning might have
negative effects. But you must balance this risk against the importance of
having accurate vulnerability data. I’ll discuss this trade-off in Chapter 2.

Information like network configurations and other advanced data
sources, although potentially useful in your analyses, are outside the
scope of this guide. But the same warning applies: if the information
isn’t recent and thorough, your entire analysis is less useful to you. Fresh
data is good data.

External data collection encompasses the data sources that come from
outside your organization. This information includes public vulnerability
details, embodied by the constantly growing mass of common vulnerabilities
and exposures (CVE) data that NIST (the National Institute of Standards and
Technology) provides; public exploit information from the Exploit Database
and Metasploit; additional vulnerability, mitigation, and exploit detail from
open sources like CVE Details (https://cvedetails.com/); and any number of
proprietary data sources, such as threat intelligence feeds.

Although this information comes from outside your organization,
you can still remain up-to-date at all times by either querying online
sources directly or keeping local data repositories. Unlike local data
collection, which might cause issues in your environment, collecting data

Basic Concepts 7

from third-party sources is as easy as reaching out and getting it. So, you
have no reason—except perhaps to save data transfer costs—not to update
these sources daily or even keep a live connection in the case of threat intel-
ligence feeds.

Analyzing Data
Once you’ve collected internal and external data, you need to analyze this
data to gain useful vulnerability intelligence about your environment.

Vulnerability information alone, as anyone familiar with a scanner
report can tell you, is overwhelming for any environment larger than a few
devices. Scanners will find many vulnerabilities on nearly every device, and
separating important vulnerabilities from the unimportant ones can be dif-
ficult. Worse, if all you have is a thousand-page scanner report, you’ll have
a hard time deciding which remediation tasks to assign to an already over-
worked systems administrator.

You can approach this problem in two ways. One way is to try to reduce
the list of vulnerabilities to a more manageable length, known as culling.
The other is to try to rank the vulnerabilities in order of importance,
known as ranking.

Culling is straightforward: it’s a binary yes-or-no decision you make on
every vulnerability. The criterion for accepting a vulnerability might be, for
example, the vulnerability is newer than a certain date, there are known
exploits, or it’s remotely exploitable. You could also combine any number
of these binary filters to cull the list even further. Only if a vulnerability
matches the criteria would you take the time to analyze it further.

Ranking requires a criterion using some sort of scale. For instance, you
could rank a set of vulnerabilities based on their effects on confidentiality,
integrity, or availability. Or, you could use the Common Vulnerability Scoring
System (CVSS), which is a 1-to-10 scale that takes into account a vulnerabil-
ity’s severity along all three of the CIA triad’s axes. If you have a strong
understanding of your organization’s risk landscape, you might have your
own scoring system that focuses on internally developed risk metrics.

Although these two methodologies have different focuses, you can con-
vert between them. You can use a binary categorization, such as exploitabil-
ity, to rank rather than to cull, resulting in a list that is split into two groups.
In contrast, you can use a ranking metric to cull by setting a threshold. For
example, you could set a culling threshold of a CVE score of 5 and ignore
any vulnerability with a lower score. Given a metric for categorizing vulner-
abilities, you should then decide whether you want to use this category as a
ranking or as a culling metric, or both.

Because culling results in a smaller dataset to analyze, whereas ranking
is an analysis method in itself, consider using both. By first culling the vul-
nerability set, you can limit your subsequent analysis to vulnerabilities that
you must address, which makes analysis faster and more relevant. Once you
identify the most critical vulnerabilities, you can rank the remaining vul-
nerabilities to more easily determine their relative significance.

8 Chapter 1

In this book’s scripts, I use a simple cull-rank profile, which you can
modify or replace based on your organization’s needs. This profile uses the
CVSS score and exploitability as metrics (see Figure 1-2).

Cull CVSS < 5

Sort by systems
with exploitable
vulnerabilities and
by total vulnerability
severity

Rank by exploitability
and by CVSS score

Combine
with asset

list

Culled CVE
list

Initial CVE
list

Figure 1-2: A simple cull-rank profile to filter important vulnerabilities

You first cull vulnerabilities with a low CVSS score because they’re not
severe enough to analyze further. Next, you rank the remaining vulner-
abilities by exploitability and then by CVSS score, from high to low. You
combine this list with the asset list. Then rank the resulting list first by the
number of exploitable vulnerabilities per system and then by the total sever-
ity of vulnerabilities found on the system. The resulting list shows the sys-
tems with the highest risk at the top.

Applying Cull-Rank to a Real-World Example
Let’s look at an example of how the cull-rank analysis process might work in
a real-world scenario: let’s say you just ran a vulnerability scan against your
main end-user network segment—a Class C network with 256 total addresses
of which 254 are usable. You know the segment includes numerous Windows
hosts as well as a handful of printers and miscellaneous devices. The scan
result shows a list of approximately 2,000 total vulnerabilities spread across
84 devices.

You work through the list and cull vulnerabilities with a CVSS score less
than 5, cutting your list to about 500 vulnerabilities on 63 devices. At this
point, you have only 38 unique vulnerabilities—most of the vulnerabilities
exist on multiple hosts—which means you only need to look at each of
those 38 vulnerabilities once. By this measure, you’ve already cut the list of
items to investigate by about 92 percent. To determine which of the remain-
ing vulnerabilities you need to investigate, you’ll apply several rankings.

First, find out whether any of these 38 unique vulnerabilities have pub-
licly known exploits. If they do, you need to address those vulnerabilities

Basic Concepts 9

first. Second, establish what the CVSS severity of each vulnerability is.
Higher severity means greater consequences of compromise, so you should
focus on the more severe vulnerabilities.

Before you execute the third ranking methodology, look at what you
have so far. Of your 38 unique vulnerabilities, 3 have known exploits, and
the remaining 35 have been sorted in order of CVSS severity.

Now you can apply the final ranking: combine the list of vulnerabilities
with the actual vulnerable hosts. For each host, determine how many vul-
nerabilities it has and the severity of those vulnerabilities. Once you’ve done
this, you’ll have a clear picture of where you need to focus your remediation
efforts.

In this example, among those 63 hosts with vulnerabilities, 48 have one
to two vulnerabilities of severity no higher than 7, whereas 11 have up to 15
vulnerabilities with one or two in the critical range (CVSS of 9 and higher).
The last four contain all the rest of those 500 total vulnerabilities among
them—an average of 125 on each host, including all three exploitable vul-
nerabilities! Clearly these systems need heavy remediation, and you have a
good argument for addressing the situation immediately.

Making Recommendations
Now that you have a list of hosts and vulnerabilities that is sorted by risk to
your organization, the next step is to recommend actions to remediate the
vulnerabilities. You’ll start with the highest risk and work your way down
the list. If you’re working in a small environment, you might be responsible
for this step; in a larger organization, this step might consist of a longer
process that involves working with system and application owners as well as
other stakeholders.

The two major types of remediation are patching and mitigation.
Patching is simple: you apply the patch that resolves the vulnerability in
question. Mitigation is more complex and is context dependent.

If a patch isn’t available or if it’s infeasible to apply one, you need to
look at other ways to address the risk. Perhaps changing a configuration
will prevent a specific vulnerability from being exploited. Perhaps the vul-
nerable service isn’t needed outside specific IP ranges so you can protect it
with firewall rules or router access control lists (ACLs), reducing the exposure.
Perhaps an existing intrusion detection system (IDS) or intrusion prevention
system (IPS) needs additional rules to detect whether someone is attempting
to exploit that specific vulnerability and block it. All of these are examples
of vulnerability mitigation, and the correct response will depend on your
environment.

Implementing Recommendations
With recommendations in hand, you can finally approach the system and
application owners to suggest they implement the proposed remediation
actions. If they were involved in the recommendation process, this step
should be straightforward. If the recommendations are unexpected, you’ll

10 Chapter 1

need to explain the security risks and the reasons for the recommendations
you’ve developed. I’ll discuss this process in Chapter 6. At this stage, you
should all agree on a timeframe for the implementation.

Once those responsible have implemented the recommendations—via
patching or mitigation—the final step is to verify that the changes have
been made and are effective. Because mitigating controls vary widely, deter-
mining that they’re in place and effective is largely a manual process. But
with patching, you can verify the changes by scanning again to see whether
the vulnerabilities still exist. This returns you to the first phase—collecting
data. The cycle starts over, and the new scans will validate remedial actions
and discover new vulnerabilities.

Vulnerability Management and Risk Management
Vulnerability management is closely tied to the enterprise’s risk manage-
ment goals. This technical guide doesn’t focus on information risk man-
agement as a whole. But it’s important to understand where vulnerability
management corresponds to risk management. Without a functional vul-
nerability management program, the enterprise’s IT risk management goals
will be difficult, if not impossible, to achieve.

The overall IT risk management framework is similar to vulnerability
management. Generally, the IT risk management stages are to identify criti-
cal assets, identify and rank risks, identify controls, implement controls,
and then monitor the controls’ effectiveness. Risk management is also a
continual process rather than a one-time event with a defined endpoint. So
where does vulnerability management fit into this process?

Different phases of vulnerability management map to different phases
of the risk management process (see Table 1-1). For instance, identifying
assets in the risk management framework is directly related to collecting
asset and vulnerability data.

Table 1-1: Mapping Vulnerability Management to IT Risk Management

Vulnerability management IT risk management

Collect data Identify critical assets

Analyze data Identify and rank risks

Make recommendations Identify controls

Implement recommendations Implement controls

(Collect data) Monitor controls

But these mappings are only part of the process. Vulnerability-related
risks discovered through the vulnerability management process might
lead an organization to consider controls that don’t directly resolve the
vulnerabilities, such as implementing a protocol-aware firewall. Although
a measure like that would be effective against certain exploits, it would
also mitigate various other risk types. In addition, regular vulnerability

Basic Concepts 11

management data collection is useful not only for identifying assets and
risks but also for monitoring the controls’ effectiveness. For example, you
implement a firewall as a control, but the next scan indicates that it’s mis-
configured and not filtering the traffic it’s intended to block.

Because this guide isn’t an information risk management cookbook,
we’ll leave this discussion here and continue to an in-depth exploration
of vulnerability management. But if you’re interested in understanding
information risk management methodology and procedures, I recommend
looking into NIST 800-53 and ISO/IEC 27003, ISO/IEC 27004, and ISO/IEC
27005. You can find each with a Google search.

Summary
This chapter provided you with a crash course in vulnerability manage-
ment and its place in the larger IT risk management framework. You
learned about the general vulnerability management process that you’ll
follow throughout the remainder of this book and previewed the steps to
take once you have actionable vulnerability intelligence.

In the next chapter, we’ll look more closely at the vulnerability manage-
ment process and get a step closer to implementing your own vulnerability
management system.

To have a successful vulnerability manage-
ment program, you need information from

several data sources. This chapter introduces
you to each of these sources. In the next chap-

ter, you’ll see how they all come together to give you a
useful vulnerability landscape for your organization.

2
S O U R C E S O F I N F O R M A T I O N

Asset Information
Despite the importance of asset information, many organizations, large and
small, don’t have a full—or even fragmentary—understanding of what is on
their networks. Perhaps you use a spreadsheet that you pass among network
administrators and update intermittently. Or maybe you have a database of
Windows desktops using a CMDB or endpoint management product. But
to perform vulnerability management, you need a complete inventory of
IP-connected devices and any additional data that you can glean about each

14 Chapter 2

host. Non-networked devices, although important to an overall risk assess-
ment, are outside the scope of an automated vulnerability management
program.

Obtaining a list of hosts—and even a wealth of additional
information—is straightforward. You can use a network-scanning tool,
like Nmap, or a vulnerability scanner, like Nessus or Qualys (which
you’ll need anyway to collect vulnerability data), to do a network sweep
and find live hosts. But these scans can be obtrusive and might cause
application or even OS crashes. So, you need to carefully plan for an
information-gathering scan.

New devices are added to networks all the time, and although most
organizations have a change management policy in place, this is no guar-
antee that changes aren’t made without following policy. To have updated
and trustworthy asset information, you must perform discovery scans on a
regular basis across the entire network.

Ideally, you would run these scans on a schedule. But the risks of regu-
lar scanning (which you’ll learn about in the next section) might mean
that your organization isn’t comfortable having these scans done without
a human monitoring them, ready to stop the scans if any issues crop up. If
this is the case, you’ll need to run fewer discovery scans, on a manual basis,
and import the resulting data into your datastore.

CH A NGE M A N AGE ME N T

Any organization with risk management in place will have a change man-
agement system to ensure that systems and networks remain in a stable state
and to document any changes to that state. These systems can range from an
email chain for change requests, approvals, and coordination to a full com-
mercial change management system encompassing ticketing and configuration
management.

Change control alone must not, and cannot, be the only control in place
for IT changes. There are always ways around it. Administrators apply—or fail
to apply—patches, add and change network routes to troubleshoot issues, buy
and connect new network devices, or enable new services to fulfill a perceived
business need without creating the necessary change control paper trail. Thus,
you can’t trust what a change management system says about the IT infrastruc-
ture’s state.

Vulnerability Information
Once you have a complete account of all devices on the network, you’ll con-
figure a vulnerability scanner to do a deep scan of each device and discover
any known host vulnerabilities. For example, a scanner might determine

Sources of Information 15

that a Windows server is running a version of the IIS web server that is vul-
nerable to a directory traversal attack: the consequence is possible informa-
tion disclosure.

When configuring and scheduling scans, carefully look at the avail-
able scanner options and tailor the settings to your environment and risk
tolerance. The same goes for scheduling the times and scopes of scans. For
example, you can scan some of your network sections, such as endpoint seg-
ments, every day. The reasons are that the risk of downtime is limited and
the consequences aren’t severe if a user’s workstation is briefly offline. But
scanning your critical systems, such as core production databases, might
be too risky to do outside of scheduled maintenance windows. You need to
understand the trade-off between getting fresh data and risking downtime.

By their very nature, network vulnerability scanners will only find vul-
nerabilities that are discoverable over a network connection. If a locally
exploitable vulnerability is in a desktop application on a Windows end-
point, a network scan won’t find it. For example, a network scanner won’t
find CVE-2018-0862—a vulnerability in Microsoft Equation Editor that an
attacker can only exploit by opening a crafted Word or WordPad document.
The reason is that Microsoft Office applications in general aren’t detectable
via a network scan.

To plug this hole, you could use an endpoint scanner (for example, the
Qualys “scanless agent”) or a software configuration management (SCM) tool or
CMDB to gather a list of deployed software versions and determine known
vulnerabilities by checking against a vulnerability database. Despite these
limitations, having an accurate account of just network-discoverable vulner-
abilities is an excellent start.

I’ll cover vulnerability scanners in more detail in Chapter 3.

Exploit Data
Although a lot of information is available on a per-vulnerability basis, you
can do more by combining data sources. The lowest-hanging fruit is exploit
data. Information about publicly available exploits is widely accessible and
often searchable. For example, the Exploit Database website (https://www
.exploit-db.com/) has a searchable index of public exploits. Also, Metasploit,
which I’ll discuss in Chapter 14, has a large archive of usable exploits and
a command line tool to easily deploy these exploits against target systems.
Most exploits are associated with a particular vulnerability—a specific CVE
ID. You can use the CVE ID to correlate exploit information with vulner-
ability information that you already possess.

Addressing an exploitable vulnerability is likely a higher priority to your
organization than a vulnerability that isn’t yet known to be exploitable. But
not all exploits are equal. For instance, an exploit that enables arbitrary
code execution is more severe than one that causes DoS or even one that
permits reading arbitrary data. Knowing the consequences of an exploit is
very useful for prioritizing exploits with more granularity.

https://www.exploit-db.com
https://www.exploit-db.com

16 Chapter 2

C V E IDS

The CVE database is an attempt, led by the MITRE Corporation, to systematize
and catalog all known information security vulnerabilities. Every newly discov-
ered vulnerability is assigned a CVE ID in the form CVE-yyyy-xxxx, where yyyy
is the current year and xxxx is a four (or more) digit number. The database is
available online at https://cve.mitre.org/.

The CVE record includes a description of the vulnerability and links to
data sources, such as official vulnerability announcements from the vendor,
third-party notifications, and even exploit announcements. For an example of
an exhaustively documented vulnerability, go to the CVE website and search
for “CVE-2014-0160.” This is the identifier for the Heartbleed vulnerability, a
particularly nasty information leakage vulnerability that affected nearly every
web server in existence. Its CVE page contains more than 100 references, from
mailing list posts, to testing tools, to patch announcements from dozens of sepa-
rate vendors.

Advanced Data Sources
The following list contains a few specialized and advanced data sources.
Although largely outside the scope of this book, they’re valuable references.

Threat intelligence feeds  These feeds include information about the
current threat landscape: threat actors and groups, the exploits cur-
rently being used in exploit kits, and the vulnerabilities with privately
available exploits that aren’t yet public knowledge. Use this information
to determine which vulnerabilities are currently a higher risk to your
organization. Because these threat feeds contain fresh data, you should
use the feed data as soon as it comes in to get a timely assessment of
your exposure to newly discovered threats. Numerous free and paid
threat feeds are available, such as iSight Threat Intelligence, iDefense
Threat Intelligence, and industry-specific threat feeds, like the one pro-
vided by FS-ISAC.

Proprietary exploits  Although it’s expensive, adding proprietary
exploit data (sometimes known as exploit kits) to the publicly avail-
able information from Exploit Database and Metasploit broadens the
range of exploits that you can match against your vulnerability data.
Sources range from commercial threat intelligence sources that com-
mission their own exploit research to decidedly gray- or black-market
options, such as independent researchers selling newly discovered vul-
nerability and exploit information to the highest bidder. Whatever the
source, proprietary exploit information will help you better prioritize
your own vulnerability data based on exploits you would otherwise be
unaware of.

https://cve.mitre.org

Sources of Information 17

Network configurations  Use network configurations from routing
devices like routers, firewalls, and managed switches to create a model
of your network. By combining this information (which subnets route
to which, which ports are accessible from where) with vulnerability and
exploit data, you get a deep understanding of your network attack sur-
face. For example, if a Tomcat exploit exists for an internal web appli-
cation server but your router configuration indicates that this server
is accessible only to a limited list of source IP addresses, it might be of
less concern to you than if it were accessible to the internet at large. You
might already have network configuration information, especially if you
have a centralized configuration repository, such as SolarWinds. On
the downside, it takes significant work to integrate this data with your
existing vulnerability data. Some commercial vulnerability management
products contain built-in functionality to ingest network configurations.

Summary
Each of the data sources discussed in this chapter contributes an important
set of data to your vulnerability management system. Table 2-1 breaks down
the data you can glean from each of these sources.

Table 2-1: Data Sources for Vulnerability Management

Data source Important data

Host/port scanner (Nmap) IP address
MAC address
Hostname
Open ports (TCP and UDP)
Service and OS fingerprinting

Network vulnerability
scanner

(Same as above)
Additional service fingerprinting and version detection
Network vulnerabilities
Local vulnerabilities (authenticated scans only)

Host-based vulnerability
scanner

Local vulnerabilities

CMDB/SCM OS details
Deployed software details
Configuration details
Owner of the device
Criticality of the device and application

Exploit databases Exploit information
Vulnerability mapping to exploits

Threat intelligence Attacker and targeted industry intelligence
Newly discovered, escalating, or widespread exploits

Exploit kits Proprietary exploit information

Network configurations Network topology and potential attack paths

In the next chapter, you’ll take an in-depth look at vulnerability
scanning.

Although vulnerability management has
several other components, the raw data you

collect from your vulnerability scanner is the
most important. If the scanner isn’t configured

correctly or if it’s located in the wrong place, it won’t
give you the data you need for the rest of your vulner-
ability management process.

3
V U L N E R A B I L I T Y S C A N N E R S

This book assumes use of a network-based scanner, which learns about a
system by sending packets across the network and listening for particular
responses. In this chapter, I’ll discuss how network-based vulnerability scan-
ners work and how to make the most of them in your environment.

What Vulnerability Scanners Do
A scanner discovers all it can about the OS and running services on every
device you configure it to scan. Based on the discovered information,
the scanner determines whether the device is susceptible to any known

20 Chapter 3

vulnerabilities. Once it finishes collecting a list of vulnerabilities on all the
devices within the specified network ranges, the scanner produces a report.
The report consists of a list of hosts, any information known about them,
and which vulnerabilities exist on each host. You’ll use this report as a
major component of your vulnerability analysis.

How Vulnerability Scanners Work
Security administrators configure scanners to scan specific network ranges
or individual systems, or targets. The scanner sends ping packets to all IP
addresses in the given target—reaching out to hosts to determine what is
active and responding. Once the scanner knows which IP addresses belong
to live devices, it sends additional pings, connection requests to open ports,
or packets crafted to elicit certain status messages or error responses. An
administrator can configure the scanner to be more or less aggressive when
probing. At higher levels of aggression, the scanner will send thousands of
packets to each device to find out which ports are open and what kind of
device it is.

Once the scanner recognizes what a device is and what services are
running on it, it sends probes to determine additional information. For
instance, if it detects that the device is listening on port 80 (a typical web
server port), it will try to connect to the web server to identify which server
software is running (and which version is in use). The scanner matches
version information against its own internal vulnerability database. If, for
instance, the device is running version 3.1 of a specific piece of software,
and vulnerabilities in that software were fixed in version 3.2, the scanner
reports that the device is vulnerable to those issues. In addition, some scan-
ners have specific tests for certain vulnerabilities. These tests are useful in
cases where other mitigations that prevent exploitation of that vulnerability
have already been implemented.

Scanning isn’t an exact science. Although fingerprinting often discov-
ers the OS running on a device, exceptional cases might throw it off. For
example, a customized network stack can make a machine appear to be
running a different OS, or a rare OS without a good fingerprint available
might be misidentified.

A similar level of uncertainty exists with vulnerability discovery. For
instance, an HTTP server reports that it’s running Apache 2.2.0, and the
scanner infers that it’s vulnerable to specific issues that weren’t fixed until
Apache 2.2.1. But that system’s vendor backported those fixes to its custom-
ized version of Apache 2.2.0, so in fact the system isn’t vulnerable. The
scanner has no way of knowing this, so it reports the false positive that the
system is vulnerable. Although you can minimize these errors, false posi-
tives are part of network vulnerability scanning.

Vulnerability Scanners 21

How to Deploy Vulnerability Scanners
You have a number of choices to make about how you deploy scanners in
your systems, including how to give them access to the networks they need
to scan, what OS and hardware they run on, and how to configure them so
they are effective in your environment.

Ensuring the Scanner Has Access
Scanner placement within the network is critical. If you’re trying to scan
any network segment other than the local network, the scanner will send
packets through routers and maybe even firewalls. Those devices might
have ACLs or firewall rules preventing certain sorts of traffic, both of which
are likely to drop the scanner’s probe packets. As such, you can use two gen-
eral methods for deploying scanners.

First, you can open full access through any intervening network devices
from the scanner to any network ranges you intend to scan. This might
involve excluding the scanner’s traffic from IPS policies. Opening full
access ensures that packets aren’t blocked between the scanner and its tar-
get, which could cause incorrect results.

Second, you can set up multiple scanners—each local, or close in the
network topology, to the network segments to scan. For instance, if you want
to scan a firewall demilitarized zone (DMZ), place a scanner within the DMZ
so it has direct access to the systems it’s trying to scan. Both approaches
have strengths and weaknesses.

R E S T R IC T E D OR UNR E S T R IC T E D SC A NNING?

One school of thought holds that you should perform all scanning via a
“normal” network environment. In other words, the scanner shouldn’t be
able to access anything that an unprivileged user on that network segment
is blocked (by firewall rule or ACL) from accessing. An attacker won’t have
unfettered access, so why should your scanner? But you shouldn’t be trying
to emulate an attacker’s point of view when you run scans. You want to get
a complete view of the vulnerabilities across your enterprise. What if your
attacker is in a different subnet? What if your attacker has already compro-
mised a system in the “restricted” network? Your scanners need to see the
entirety of the systems they’re scanning to do their job.

Opening Full Access to Your Scanner

By configuring the network to accept and pass all scanner traffic and
responses, you can locate the scanner anywhere in your network. You can

22 Chapter 3

also use a single scanner for multiple network segments, which reduces the
cost of setting up a scanning environment. But opening full access from the
scanner can also be dangerous; attackers can leverage holes in your router
and firewall infrastructure. If an attacker compromises the scanner system,
they could use its access to the rest of the network to compromise other sys-
tems more easily.

Setting Up Multiple Scanners

Setting up multiple scanners might seem to be the best approach. You
don’t need to open firewall ports or add ACLs. But this method has its
own drawbacks.

First, it costs more to set up, because each scanner requires its own
physical or virtual hardware. Also, if you’re using a commercial scanner,
the licensing fees could cost more than the underlying hardware.

Second, you might have a coordination issue: either you’ll have to con-
nect to each scanner directly to set up scans and retrieve the results sepa-
rately, or you’ll need some kind of hierarchical environment to manage
the scanners from a central location. For example, Tenable sells Security
Center to manage multiple Nessus scanners, and Qualys uses the cloud-
based QualysGuard. This coordination adds time and costs to scanner
deployment.

Additionally, you’ll likely still need to open firewall ports and router
configurations to ensure the analyst (or central control system) can access
these scanners in various network locations.

Choosing Your OS and Hardware
Some scanners, such as Qualys, use their own appliances, so you don’t have
control over the underlying system. But others—including Nessus and
OpenVAS—are applications that run on whichever platform you prefer.
The OS you choose doesn’t matter, as long as your scanner of choice sup-
ports it. You can use whichever platform you’re most familiar with or which-
ever follows your organization’s policy.

For the hardware, more power is always better. Scanners use a tremen-
dous amount of RAM because they run a large number of concurrent tests
against multiple targets, so it’s best to beef up the RAM first. Generally
speaking, two CPUs and 8GB of RAM should be enough for a small deploy-
ment. Less RAM will work, but your system might be unresponsive while the
scanner is running. A fast connection (high speed with low latency) is also
essential; otherwise, the network tests will take a long time and might even
return false positives or negatives if they time out before completion.

Configuring Your Scanner
Once your scanner is set up and online, you need to tailor the scanner to
your environment. Scanners have a long list of configuration options, often
called policies or templates. They let you configure how fast your scanner
sends out its packets, what types of tests to run, and many other choices.

Vulnerability Scanners 23

The options ensure that the scanner returns useful results without overbur-
dening your network or causing issues with the devices it scans. If you have
a test environment, this is a good time to use it: configure your scan poli-
cies and then scan the test network. If you run into problems (for example,
network congestion, or slowdowns, or device malfunctions caused by the
scanner’s actions), adjust your policy until you eliminate those issues. Once
you’re sure the scanner is properly customized, you can scan your live
environment. Whether or not you can practice on a test network first, it’s
still best to run a few scans on a small portion of your live network before
scanning the entire system. It’s better to experience problems with a few
systems—preferably those you manage that are geographically close—than
to cause your entire production database environment to reboot!

Once you’ve tested your scan policy and are ready to scan larger parts
of your network, or even the entire system, consider the best way to set
up your scans’ targets and schedules. There are a few reasons to break up
your scans into more manageable pieces. If you run one enormous scan,
it might take a very long time to complete—time you could otherwise be
using to analyze scan data from smaller scans. If you have several scan-
ners, you’ll need to set up your scans so the correct scanners are targeting
the correct networks. Additionally, the ideal times to run the scans might
be different for different network segments. Although it might be fine to
run scans on your workstation VLANs after hours, that might be prime
processing time in some of your data center environments. Some sensitive
or production-critical networks might simply be off limits until designated
change windows, just in case something goes wrong and a system becomes
unresponsive.

When you’re planning your scans, inform other stakeholders of your
scan plans and policies and involve them in determining appropriate scan
targets and time windows. Involving others early in the planning process
ensures you won’t catch them by surprise if you run a scan that causes a
domain controller to crash. You don’t want the Windows administrators
to successfully lobby for their systems to be exempt from future scans. To
have a complete view of your network, you’ll need buy-in, or at the very
least grudging acceptance, of the scanning regimen before you begin. In
Chapter 6, we’ll talk more about how to get scanning and remediation
accomplished in a business environment.

Some organizations simply won’t allow regular automated vulnerability
scans. In this case, manually run the scans with an analyst present to moni-
tor the scan progress. Then, if any issues pop up on the scanned systems,
the scapegoat—I mean, analyst—can halt the scan before downtime is
incurred or prolonged.

Organizations with very stringent uptime requirements and extremely
rare maintenance windows might use lab or redundant systems as scan
targets instead of live systems. An additional set of servers—or an entire
network—is duplicated, including the network configurations, OS, applica-
tions, and patch levels. Any scan data from the test systems will, in prin-
ciple, be identical to any data from live systems.

24 Chapter 3

But it can be very difficult to perfectly synchronize the patch levels
of systems. Any difference in configuration can lead to differing scan
results—for instance, if the host-based firewall on a lab system opens a dif-
ferent set of ports than on the live system. The bottom line is that there is
no way to ensure accurate results without conducting scans against the real-
world systems that you’re tasked to protect.

Getting Results
Scanners can report their results in many ways: a plaintext file; a structured
format like XML or CSV; or more readable formats like HTML, an RTF or
Word file, or a PDF. Although the last options are preferable for reading the
reports directly, we’ll focus on the machine-readable output formats, such
as XML and CSV. The reason is that running the scanner and collecting its
results is only the first step. You’ll still need to analyze this data to get use-
ful vulnerability intelligence. Most, if not all, scanners can produce output
in XML, and that is the format you’ll use most in this guide. But any struc-
tured, computer-parseable format will do.

Summary
Vulnerability scanners can generate vast amounts of information, and it’s
important to understand what is useful to you as a vulnerability analyst. By
properly deploying and configuring your vulnerability scanners, you can
ensure that you’re collecting only (or at least primarily) data that matters
to you while disregarding irrelevant information. In some environments, it
might make sense to deploy several scanners to get different views of your
network or to gain visibility into otherwise heavily restricted network seg-
ments. You might also separate your scans into smaller targets to get results
faster or to limit the chances of causing networkwide outages as a scanning
side effect.

In addition, you must consider the broader operational environment
you’re part of. Scans can be intrusive and in extreme cases cause system
downtime, so you need to carefully introduce regular vulnerability scan-
ning. Involve other teams in the process of determining appropriate targets
and schedules so you’re not solely responsible if a scan goes wrong.

In the next chapter, you’ll learn how to collect and analyze the data
your scanners produce. You’ll also be introduced to the automated meth-
ods for collection and analysis that you’ll build in the practical portion of
this book.

In this chapter, you’ll learn how to pro-
grammatically compile your data sources

to provide vulnerability prioritization and
validation. As a result, you’ll save time for more

important work, such as improving your organiza-
tion’s security, rather than going cross-eyed staring at
huge vulnerability data dumps.

4
A U T O M A T I N G V U L N E R A B I L I T Y

M A N A G E M E N T

Understanding the Automation Process
Automating your vulnerability management program consists of correlating
information from the three main data sources—asset, vulnerability, and
exploit information—as well as any additional accessible data sources. For a
refresher on these data sources, refer to Chapter 2.

Information is correlated through two shared fields: one contains IP
addresses that are shared between asset and vulnerability data. The other
contains CVE/BID IDs (BID is short for Bugtraq ID) that are shared
between vulnerability and exploit data. First, you use the IP address to

26 Chapter 4

correlate assets with vulnerabilities, and then you use the CVE ID to cor-
relate vulnerabilities with exploits. The result is a useful database that
provides a list of exploits per host, hosts per exploit, and more. Figure 4-1
shows this step-by-step process.

Asset data

Results

Vulnerability data

Exploit data

Figure 4-1: Correlating information to produce
a useful database for vulnerability analysis

You break down each step, except for Results, into substeps: collecting
the data and correlating and analyzing the data. You’ll need to get all the data
into one place before you can start analyzing it. In this book, you’ll use
MongoDB, a document-based database that excels in speedy queries over
large volumes of data. But you can also accomplish this process through
more traditional SQL databases by replacing the Mongo-specific code in
the upcoming scripts with SQL connections and queries.

In each step of the process, you’ll collect the relevant data, import it
into your Mongo database, and perform appropriate analysis at that stage,
before assimilating the next set of data. Once you’ve completed this process
on your own, you’ll find that certain levels of analysis are more useful to
you than others. You’ll then be able to streamline your process to highlight
those analyses and downplay or set aside the rest.

Data Collection
In the first stage of the process, asset data analysis, you find assets, their
network information, and the OS running on each asset.

Once you add in vulnerability data, you’ll match vulnerabilities with spe-
cific assets and pinpoint hosts that are in the greatest need of vulnerability
remediation. Important data points at this second stage include CVSS score,
which describes the overall severity of the vulnerability; attack vectors—
whether the exploit is local, remote, and so on; and specific consequences of
exploitation, such as DoS or root code execution.

Next, you add exploit data to further prioritize among vulnerable hosts,
highlighting hosts that are vulnerable to known exploits and hence at
greater risk of exploitation by malicious actors. At each stage of the analysis
process, you can generate reports with useful security-related information,
which Table 4-1 summarizes.

Automating Vulnerability Management 27

Table 4-1: Data Sources and Their Potential Analyses

Data Analysis

Asset data Asset summary: a report on assets, their OS, open ports, and
networking information

Vulnerability data Vulnerability summary: discovered vulnerabilities on an asset
or set of assets
Vulnerability prioritization by CVSS, attack vectors, conse-
quences: the same report as above but filtered to look for
specific vulnerability types

Exploit data Exploit matching and further vulnerability prioritization: a
report focusing on exploitable vulnerabilities or those with
certain exploitability characteristics

The two processes described in Chapter 1—culling and ranking—can
take place at any of these stages, depending on the criteria you’re using. For
instance, an IP-based cull could take place as soon as you have asset data.
On the other hand, prioritizing based on CVSS can’t take place until you
have vulnerability data.

By culling early, you can limit analysis work. But for simplicity of analy-
sis, it’s easiest to do the culling and ranking steps in one place, once you
have all the relevant data. That way, if you want to change your analysis
priorities, you can change your criteria in one place rather than looking
in multiple scripts from different phases of the vulnerability management
process.

Once you’ve combined the datasets and applied prioritization rules,
you have a finished product: a list of hosts with relevant vulnerabilities per
host, sorted with the highest risk hosts/vulnerabilities at the top.

Automating Scans and Updates
You can gather all the information discussed so far manually. For instance,
you can run ad hoc Nmap and vulnerability scans and manually look up
information about known exploits. But you experience the real power of a
vulnerability management system when you automate these steps. You won’t
need to remember to run scans when you set up the system to automati-
cally start them at regular intervals. Most likely, you’ll scan during off hours
when any additional load on the systems won’t cause performance issues.
The scans will then generate updated reports, which are emailed or placed
in a shared network location for perusal at your convenience.

By scheduling scans to run on a regular basis and then automatically
importing the results into your database, your vulnerability information
will always be up-to-date. This process lets you safely automate reporting,
because the weekly generated reports use fresh data. Similarly, by peri-
odically updating your other data sources, such as Metasploit and the
cve-search database, you can be confident that the third-party data you
draw upon in your reports is also current.

28 Chapter 4

In the scripts in Part II of this book, you’ll leverage the standard
Linux/Unix scheduling utility—the cron daemon—to automate the col-
lection and the analysis of your vulnerability data. To coordinate all of
the tasks, from data collection to report generation, you’ll use shell scripts
to run your Python scripts in sequence. By doing so, you’ll prevent, for
instance, the reporting script from running while the scanners are still
collecting data about the environment. These scripts use a one-week inter-
val, but your organization’s collection and reporting interval will depend
on how often you need a fresh view of your organization’s vulnerability
landscape.

Exploiting Your System’s Vulnerabilities
At this point in your analysis, you have a regularly updated enterprise view
that includes hosts, known vulnerabilities on those hosts, and any related
known exploits that you could use against those hosts. From here, you
can provide prioritized vulnerability information to system and applica-
tion owners. You can also go one step further and attempt to exploit these
vulnerabilities.

The first option is already a successful outcome of the vulnerability
management process. The second option looks at the exploitable vulner-
abilities list and runs a penetration test against affected hosts to determine
whether they’re exploitable. If successful, this option provides an additional
level of prioritization to the results: not only is a system in principle exploit-
able, but it has been exploited.

There are two ways to attempt to exploit vulnerabilities. First, you can
use a human penetration tester, either a security analyst with penetration
testing skills or an outside auditor. Second, you can extend your automation
by bringing Metasploit back into the process. Now, instead of just getting a
list of exploits from it, you’ll automate it to exploit those potentially exploit-
able hosts. This might seem like an excellent option or it might seem very
frightening, depending on your perspective. Both perspectives are valid.

For those security analysts who have already seen the value of automat-
ing the vulnerability process, attempting to exploit your system might seem
like a logical next step. You have a list of exploits and a list of vulnerable
hosts, so why not check them out?

For more cautious analysts, exploiting their systems looks like a recipe
for disaster. Running live exploits in a production environment is even
more unpredictable than running scans: hosts could be taken down, net-
works could be clogged, and with only an automated system to blame, real
heads might roll.

As with the rest of your security program, your decision depends on
what you’re trying to accomplish and your organization’s risk tolerance. If
your organization would rather incur a DoS attack than get attacked by way
of an unpatched exploitable vulnerability, perhaps automated exploitation

Automating Vulnerability Management 29

attempts are an option. On the other hand, if you’re in a more risk-averse
environment, tread very carefully: be sure to have full buy-in and acknowl-
edgment of the risks from your CIO or the equivalent executive.

I’ll briefly discuss how to integrate Metasploit into your vulnerabil-
ity management program in this fashion in Chapter 14. But the actual
process—particularly automation—will be left to you as an exercise.
Automation is a powerful tool, but you must temper it with skill and
extreme caution.

Summary
In this chapter, you learned how to take the raw vulnerability information
from your scanners and shape it into usable intelligence. By combining
data from your scanners with information about your network, additional
information sources, and exploitability information, you can prioritize the
vulnerabilities and focus on remediating the most severe issues.

In the next chapter, you’ll learn how to remediate by patching and miti-
gating vulnerabilities as well as effecting systemic change to improve your
organization’s security posture.

All the data collection and analysis you do
will be for nothing if you don’t have a clear

goal in mind for how you’ll use the results.
In this chapter, you’ll learn to use your vulner-

ability analysis to improve your organization’s baseline
security level. We’ll look at three broad categories
of security measures: patching, mitigation, and sys-
temic measures. Patches and mitigations are direct
responses and are almost always the most pressing.
But the lasting value in any security program is sys-
temic change brought about by improved intelligence.
Although it might seem counterintuitive, another
option is to accept the existing risk. I’ll discuss why that
could be the correct decision in your environment.

5
D E A L I N G W I T H

V U L N E R A B I L I T I E S

32 Chapter 5

Security Measures
All of the measures mentioned you can apply in combination as part of a
defense-in-depth strategy. Using this approach, you put redundant controls
in place to defend against a vulnerability or category of vulnerabilities.
Additionally, you must test these controls to confirm their effectiveness in
protecting against vulnerability exploitation.

Patching
Patching is applying updates to resolve bugs and address vulnerabilities.
Your first step after learning about new vulnerabilities is to determine the
availability of a patch and apply it as soon as possible. You want to close the
hole before any adversaries take advantage of it. Of course, this is easier
said than done. Patching might be as easy as running an “updater” pro-
gram on the system. Or it could be as complicated as compiling new code
from an unofficial resource, applying it, and crossing your fingers. Patch
management products, such as Microsoft System Center Configuration Manager
(SCCM), are very helpful. But centralized patch tools might not be avail-
able for all operating systems and devices in your organization. In addition,
there may be other reasons that patching is not feasible: perhaps the vul-
nerability is too new for the developer to have addressed it, the software is
no longer being updated, or business requirements prioritize uptime over
updates. Whatever the case, your next step is to look at how to mitigate the
vulnerability without directly modifying the vulnerable application or OS.

Mitigation
Mitigations are a broad category of actions that either make exploitation
more difficult or make the exploitation consequences less severe. For
example, if you had a vulnerability on a specific Linux server daemon,
you could use a firewall to block the port the daemon is using, preventing
anyone from accessing it and exploiting the vulnerability. Of course, this
isn’t always a reasonable response. With the exception of network services
that listen only on localhost (127.0.0.1) for local connections, most network
services are running to communicate with outside systems. So if you’re
going to close them, you might as well turn them off. Instead, you might
limit or block the vulnerable system from initiating connections to other
internal systems. That way, even if the server is compromised, it will be dif-
ficult for the attacker to move laterally within the organization and compro-
mise more systems.

Mitigations fall into a number of overlapping categories:

Application-based  These mitigations modify the vulnerable appli-
cation to remove or limit the danger of exploitation. For example, if
a vulnerability is in an Apache module that you’re unable to patch
immediately, you might modify the Apache configuration to disable
that module. Alternatively, you could filter requests to the module and
exclude known attack patterns.

Dealing with Vulnerabilities 33

Host-based  This mitigation is performed at the OS level, rather than
on the application. A host-based firewall or a system tool like SELinux,
which limits the effectiveness of exploitation by making it harder
to modify the underlying system, are good examples of host-based
mitigations.

Network-based  This mitigation is performed at the network level to
intercept or monitor traffic to/from the vulnerable host. An example
is a physical firewall, or an IDS, which watches for traffic indicating an
attack or a successful compromise.

Temporary  Some mitigations are more like bandages and are
designed to be temporary. For example, blocking all access to a
vulnerable host is probably not a lasting solution. But until you find
a patch or a more permanent mitigation, it’s invaluable.

Permanent  If a mitigation doesn’t affect the normal functionality of
a vulnerable product, it often makes sense to leave it in place, even after
you address the underlying vulnerability. This provides additional secu-
rity against future vulnerabilities and improves the system’s overall
security posture.

Logical  As distinguished from physical mitigations, logical mitiga-
tions occur at the software or network level (where most vulnerabilities
exist).

Physical  Sometimes you’ll need physical mitigations. For instance,
some secure environments prohibit removable USB drives to stop data
exfiltration or the introduction of malware. Instead of disabling the
USB ports in software, these organizations epoxy the ports shut, physi-
cally preventing the insertion of USB devices.

Systemic Measures
You implement a mitigation to protect against a specific vulnerability (or
class of vulnerabilities), but you take systemic measures to improve the
organization’s overall security posture. Mitigations are reactive, whereas sys-
temic measures are proactive. You might implement specific mitigations in
response to a particular threat or vulnerability. But later, during a postmor-
tem or a scheduled security review, the need for these mitigations might
lead you to rethink your security posture to protect against future threats in
that category.

Here’s an example: you have a MySQL vulnerability on a system that
you can’t immediately patch. So you block access to the MySQL port (TCP
3306) using your internal firewall; modify the MySQL configuration to
listen only on a local socket; and when you can, patch MySQL to a newer
version. So far, you’ve done some mitigation (and a bit of patching). Now
take a step back: why was that port open anyway? Maybe it should have been
closed beforehand. What about other MySQL servers that weren’t vulner-
able to this specific issue? Do they really need to be listening for remote
connections? What if that first system had been successfully compromised?

34 Chapter 5

Could an attacker have used it as a launch point for further attacks? By
thinking about these systemic questions, you can make broader changes
that improve your overall security environment or at least start a conversa-
tion to influence organizational policies and configuration standards.

Accept the Risk
A fourth option is to do nothing at all. In risk management terms, this is
called risk acceptance. Risk acceptance happens when you decide that the
risk is so rare or so low impact that it’s not worth addressing. There are
cases where this is the best option. But even when you accept the risk, you
need to document this lack of action and ensure that stakeholders agree
with the decision. If auditors come around, you’ll need to show them that
you’ve considered and accepted the risk, not just neglected it. From the
outside, an accepted but undocumented risk and an unnoticed risk look
the same!

Defense in Depth
Most responses to a vulnerability will encompass patching, mitigation, and
systemic change. Defense in depth is the practice of using multiple defensive
measures in concert. Although you might not be able to apply a patch
immediately on a critical system, you can quickly put some mitigations in
place to block or at least limit the exploitation severity. Once you can patch
the system, you can remove some of the more draconian mitigations (for
instance, blocking all access to the affected service) while leaving some
mitigations, such as improved configurations, in place. When certain miti-
gations are applied to multiple systems or across network environments,
they might become systemic improvements.

This is the power of defense in depth: if you have multiple layers of
protection, one layer can mitigate the failure of another layer. Even better,
layered defenses can help protect against vulnerabilities that haven’t been
discovered. If a new MySQL zero-day vulnerability comes out that requires
direct access, your existing measures of permitting access from only trusted
hosts might be the difference between a day one exploitation and having
enough time to apply the patch.

Validating Controls
Once you’ve put a patch, mitigation, or systemic change into place, the last
step is to validate the presence and effectiveness of your chosen controls. In
other words, you have to test those controls. With a mitigation or a systemic
change, you can sometimes do this using additional scans: if the scanner
no longer reports a vulnerability, the change is successful. Sometimes man-
ual testing is best, especially if the mitigation or other change has subtle
effects. Although a vulnerability scanner might have a hard time determin-
ing whether, for instance, you’ve disabled specific login options in Secure
Shell (SSH), a human can craft test cases to validate this change.

Dealing with Vulnerabilities 35

Patching might seem like a simple case to validate. If you can confirm
the patch has been applied, the vulnerability has been removed, right? But
in reality, applying a patch doesn’t always fully resolve the issue. Vendor-
supplied patches (especially unofficial patches) might be incomplete, incor-
rectly applied, or missed on some systems, or they might cause other issues
with the system and need to be rolled back. It’s best to treat patching like
any other mitigation and determine its effectiveness through active testing.

You can validate controls with the tools you already have by doing a
vulnerability scan of a system before and after you apply controls. When you
do, you should see a difference in the results. Let’s say you have a remote
code execution vulnerability on a MySQL deployment, and the system
owner claims to have applied the patch to address this vulnerability. You
would expect that a new scan of that system will show that the vulnerability
no longer exists; if it does, you know the patch was incorrectly applied, not
applied at all, or ineffective. If the mitigation was instead to restrict MySQL
database connections to localhost, your scan should show that the port is no
longer open on the system’s public network interfaces.

But if your mitigation was to restrict MySQL connections to the local
network, your scan will show nothing different. In such situations, devise
testing methods based on the purpose of the mitigations or systemic mea-
sures that have been put in place. In this example, you might run another
scan from outside your local network segment.

Although a full discussion of control validation techniques is outside
the scope of the present topic, the general principle is simple: don’t assume
anything works! Always test to make sure that any measures you’ve taken to
address the vulnerability are addressing it.

Summary
In this chapter, we took a high-level look at the actions you can take when
you discover vulnerabilities in your environment. Whether immediate,
systemic, or—in the case of risk acceptance—just in the form of documen-
tation, the measures you take to protect against vulnerabilities will depend
on the system you’re working within.

In the next chapter, you’ll learn how to work within your organiza-
tion’s structures to put these measures into effect and bring about lasting
improvements to your system’s security posture.

Once you set up your vulnerability man-
agement environment and scripts, you can

obtain valuable information about exploit-
able vulnerabilities on devices across your net-

work. You can also act on the information in a way
that will improve your organization’s security posture.
If you work in a small organization, you’re probably
the security analyst and the systems administrator.
So it’s up to you to patch your vulnerable systems,
and you’re done. But if you work in a larger environ-
ment, the problem is more complicated and business
oriented. You’ll have to interact with other IT staff. In
addition, you’ll likely need to know the next update

6
O R G A N I Z A T I O N A L S U P P O R T A N D

O F F I C E P O L I T I C S

38 Chapter 6

window, who performs the updates, and, most pressingly, what motivation
the system or application owners have to apply the patches that will resolve
the vulnerabilities you’ve found.

This chapter focuses on the human-data interface. To use your analysis
results to effect real security improvement in your organization’s environ-
ment, you need a solid grasp of interpersonal interactions and your organi-
zation’s structure and politics. No scripts exist for this more humancentric
portion of the vulnerability management process. But there are some
guidelines to help make this process as smooth as possible.

Balancing Competing Priorities
Being a security analyst can be difficult. You see what needs to be done to
improve an organization’s security, but you can’t always resolve the issues
yourself. Instead, you must work with other functional groups and individ
uals who might not share your priorities. Everyone does their part to keep
the business running smoothly: you improve security, systems administra-
tors and database administrators (DBAs) increase uptime and keep the sys-
tems running, and application owners ensure that their programs continue
to function properly. On the macro level, everyone’s goals align. But in the
trenches, these differing goals can conflict.

Imagine a security analyst who’s in possession of a short list of vulner-
abilities in the organization that are, according to their standards, critical.
Among them is a known vulnerability in the Windows kernel that attackers
can exploit remotely and without authentication. This vulnerability exists in
a database server that is vital to the organization’s operations. A Windows
administrator is in charge of the box, a DBA manages the SQL Server
instance on the box, and a manager is in charge of the application using
that database.

In this situation, the analyst should consider three factors. First is the
organization’s structure. If all three people they need to talk to share a
common manager, the analyst should initially talk to the manager. Second,
before doing so, they should consider the organization’s politics. It might be
impolitic to speak to an executive directly. If so, the next step is to escalate
the issue up their own chain of command. Third, and most important, the
analyst should consider the official policy. If there is a stated policy for secu-
rity issues, they’re in luck: they follow the policy. If the organization lacks a
policy, they should consider getting a policy. It won’t help them now when
they have a critical vulnerability on a business-critical database server, but
it’ll set an important precedent for the future.

The security analyst wants to address the vulnerability to remove an
easy attack point and improve the organization’s overall security posture.
But think about this issue from the systems administrator’s point of view.
Applying a patch to the Windows kernel means that the system will proba-
bly have to be rebooted. A reboot means downtime. Also, if any issues occur
with the patch—and Microsoft has more than once produced patches that
cause serious issues or even a full system breakdown when applied—more

Organizational Support and Office Politics 39

downtime could happen and maybe require a hands-on recovery (even
more downtime!). Even if the recommendation is for mitigation strategies,
such as locking down services or blocking ports, these measures might lead
to unforeseen system problems.

The system administrator is very cautious about agreeing to address
the issue, because it goes against their immediate priorities. Likewise, the
DBA and application owner will be concerned about the downtime and any
unforeseen consequences of the patch or mitigation. If all three are united
against taking any action, the issue is likely to persist for some time, if not
indefinitely. Again, none of these priorities are wrong. But the ground-level
tactics used to achieve individual priorities are in conflict.

Gaining Support
In the long term, the answer to everyone’s issues is straightforward: strong
information security and risk management governance. With the proper
policies and authority structures in place, the organization can align its
priorities and address issues in a way that is consistent with proper risk
management strategies. If the priority is uptime, patching might have to
wait. If the priority is system security, uptime will take a back seat.

But that’s a discussion for another time (and another pay grade). In
many organizations, these processes and policies are incomplete or non-
existent. You’ll still have to find a way to resolve problems. In the following
sections, I provide strategies that can help you, as a security analyst, navi-
gate any organizational barriers to address the priorities that you’ve identi-
fied in your vulnerability management processes.

Empathy
We can get so caught up in our own ideas of how to protect the organization
that we forget that other people have their own, equally valid perspectives.
When trying to convince others of your point of view, put yourself in their
shoes and try to understand what they want. When talking to a Windows
administrator who must keep their systems up and running, recognize this
and remind them that although patching incurs some downtime, you can
control that downtime and do it at an appropriate time. Likewise, remind
them that if the server is compromised through an unpatched vulnerability,
the downtime will be unexpected and potentially protracted. The DBA and
application owner are concerned about data integrity and confidentiality.
Emphasizing that a vulnerability might lead to data manipulation, destruc-
tion, or disclosure might be enough to convince them that improved data
protection is worth some downtime.

Empathizing with others won’t always do the trick. Sometimes you’ll
need to take additional steps. But by starting with an ounce of understand-
ing and willingness to listen to someone else’s viewpoint, you might save
yourself a world of pain. You might even gain a new ally in the cause of
increased security.

40 Chapter 6

Involve Stakeholders Early
We all know how it feels to have decisions forced on us without being
involved in the decision-making process, particularly when rulings might
impact us negatively. Scans and vulnerability remediation affect system
administrators, application developers, application owners, and end users,
among others. Instead of conducting the entire vulnerability management
process on your own and then emerging with a list of directives, involve
others early in the process. If you’re responsive to stakeholders’ concerns,
they’ll likely be more supportive of your recommendations or directives,
even if from time to time you must overrule their desires.

Understand Office Politics
Often, technical people try to skirt office politics. They’d rather get their
work done without worrying about who is speaking to whom, who just
won a big contract, who has pull with the executives, and who doesn’t. But
ignoring these issues doesn’t make them go away: they’re real and power-
ful. Knowing who you should approach and how you should approach them
will help you get approval for difficult or controversial actions (like taking a
server offline to patch). It’s also important to know whose toes you’re step-
ping on when you push such actions. Sure, you might win the immediate
battle of applying that patch or mitigation, but in a few months, you might
find that you’ve made an enemy of a systems manager who’s now stonewall-
ing you at every turn.

In many ways, this office politics strategy is simply empathy taken to
another level. In some respects, even technical work is social. Often, the
changes you’ll want to implement have a social impact. Understanding an
organization’s official and unofficial structures, and then imagining your-
self as a co-worker navigating those structures, can help you appreciate your
colleagues’ perspectives on your proposed actions.

Speak Their Language
Empathizing with someone goes hand in hand with being able to speak to
them in terms they understand. A technical discussion about uptime, patch
levels, and exploits makes sense to technical staff, such as server adminis-
trators and DBAs. But if that same discussion happens with more business-
oriented staff, they might tune out as soon as you start talking. Learn about
the kinds of concerns they have and the metrics they use, then couch your
conversations in those terms if possible. An application owner or others in
a business-oriented role might be more concerned about return on invest-
ment or, if they’re involved in risk management, risk/control terminology.
By phrasing your arguments using their preferred terms, you can show an
awareness of their concerns and your willingness to recognize other per-
spectives when coming to your conclusions.

Organizational Support and Office Politics 41

Find a Champion
Having the approval of a C-level executive interested in the organization’s
security might be the most effective way to get support for security-related
activities. But if you’re fortunate enough to have the ear of a CIO, CTO, or
even a CFO or audit officer, don’t overuse that privilege: security concerns
aren’t their only priority. In addition, be aware that if you’re constantly
going over your co-workers’ heads to get your way, it will only cause more
friction. On the other hand, if your organization has a chief information
security officer (CISO), you’re in a strong position to ensure that security
concerns are heard and understood at a high organizational level.

Argue for Risk Management
You might not have a full risk management program in place. But that
shouldn’t stop you from taking a page (or several pages) from the risk man-
agement playbook when you’re making your arguments to address vulner-
abilities. You can use this simple formula in almost any situation:

Risk = Likelihood × Cost

To estimate the overall risk of an adverse event, you need to look at
two dimensions. First, how likely is it to occur? Second, if it does occur, how
costly will that event be to your organization? Let’s use the previously men-
tioned example of the known vulnerability in your database server. Let’s
also say you’re working for a company with data that attackers are likely to
want. The cost of an attempted breach happening is extremely high, and
the probability of its happening is also high, especially if that proprietary
data is on a vulnerable server. So the overall risk if that vulnerability is not
addressed is very high. Conversely, if you do patch the vulnerability, you
need to look at the likelihood of a bad outcome (crash, application incom-
patibility, and so on) and the cost of those events (cleanup time, employee
time addressing the issue, cost of potential lost business) to estimate the
risk of fixing the problem. Once you have those two estimates, you can com-
pare the relative risks of patching and not patching and decide what makes
sense to all parties.

A simple way of calculating risk without using specific numbers is to use
a risk matrix, like the one in Figure 6-1. A risk matrix is a simple table that
ranks risks by assigning them relative likelihoods and costs, making it easier
to understand the relative values of two otherwise dissimilar risks. Instead
of trying to figure out exact percentages of likelihood and precise costs, you
rank both on a scale of 1 to 5. Then you combine the two axes to determine
the overall risk level—low to high. You can involve other stakeholders in
these risk calculations to ensure a consensus on the relative likelihoods and
costs of various courses of action (this will also make explaining the risks to
them much easier).

42 Chapter 6

Likelihood/cost 1

1 1

2

2 2

3 3

4 4

5 5

2

4

6

8

10

3

3

6

9

12

15

4

4

8

12

16

20

5

5

10

15

20

25

Low risk (1–7) Medium risk (8–14) High risk (15+)

Figure 6-1: Simple risk calculation

Continuing with the example, let’s look at the two courses of action—
patch or don’t patch—in these risk matrix terms. If we patch, what is the
likelihood of issues? Well, historically in this environment, there is a small
chance of patches causing issues on Windows systems, so we’ll rank it as a 2
(to be conservative). If issues happen, what will be the cost of that event?
Well, it will consume administrator time, possibly requiring a patch rollback
or a restore from backup. At the same time, we might lose several hours of
processing because this is a critical database. On a scale of 1 (negligible)
to 5 (catastrophic), this patching problem would be painful but relatively
brief. Let’s give it a risk of 3. So the overall risk is 6, putting it in the “Low
risk” category.

Now let’s look at not patching. What are the odds of someone compro-
mising the system if we don’t patch? It’s a known vulnerability with known
exploits, so that makes it more likely to be compromised than a vulnerabil-
ity with no known exploits. But it’s in a protected network segment, a cir-
cumstance that provides some mitigation. We’ll rank it as 3 for likelihood.
What about the cost? The data on that database is confidential, and the
application it runs is critical to company operations. If the database is sim-
ply brought down, we can restore it from a backup, as in the other scenario.
But if that data is compromised, it could be very serious: we would lose com-
petitive advantage and could face significant negative publicity if it becomes
public knowledge that we were attacked. We’ll give it a cost of 5. The overall
risk is now 15. The risk of taking no action is much higher than the risk of
applying the patch, so taking action is the right thing to do.

You can use these risk calculations for more than simple act/don’t act
decisions. Although a complete discussion of information security risk
management is not the goal, here are two other situations in which the risk
calculations might be very useful:

•	 Weighing the cost/benefit of a new piece of security hardware or
software: If a tool costs the company $150,000 but not addressing the
risks it mitigates is likely to cost only $10,000, it’s not a good investment.

Organizational Support and Office Politics 43

•	 Estimating the damage that could be done by various types of adver-
saries and considering available countermeasures: If the attackers
are opportunistic criminals, it might make sense to focus defenses
against the less sophisticated attackers first (or exclusively) to maximize
security dollars. If the attackers are advanced black hat hackers, more
sophisticated (and expensive) countermeasures will be necessary.

Summary
Security practitioners often have great responsibility coupled with little to
no formal authority. Working against bureaucracy can sometimes feel like
shoveling back the tide. But by building relationships within the organiza-
tion and making a strong case for enacting security measures (by patching,
mitigation, or more systemic changes), you can accomplish more than you
would by treating every new security incident as an isolated battle to fight
against the rest of your organization. Gaining executive sponsorship for an
IT risk management program will pay dividends in the long run, and you
can leverage risk management concepts to make an even stronger case.

This is the end of Part I. You’ve taken a whistle-stop tour of the vulnera-
bility management practice and its tasks and components. You also learned
how to take effective steps to improve your organization’s vulnerability
posture. In Part II, you’ll build the vulnerability management system we’ve
been discussing.

PART II
H A N D S - O N V U L N E R A B I L I T Y

M A N A G E M E N T

To start constructing a complete vulner-
ability management system, you must first

build the foundation. In this chapter, you’ll
set up the base Linux environment for your

system, install the tools you’ll use in the following
chapters, and write a script to ensure all the compo-
nents are regularly updated.

7
S E T T I N G U P Y O U R E N V I R O N M E N T

Setting Up the System
Your first step, of course, is to set up a Linux-based environment for the
basic tools you’ll use to build your system: those tools include Nmap,
OpenVAS, cve-search, and Metasploit.

48 Chapter 7

H A R DWA R E PR E R EQUISI T E S

For a small network, you’ll only need one CPU and 4GB of RAM. But for
larger environments, you should add more CPUs and 8GB or more of RAM.
Storage-wise, 50GB of disk space will suffice in a small environment, but large
MongoDB instances will quickly fill disk space. So, consider upgrading to
250GB of disk space or more.

Installing the OS and Packages
We’ll use the following software in this guide. Many of these packages
will be pre-installed in most Linux distributions. Install the rest using
the package manager that comes with your system. (Ubuntu and other
Debian-based systems use apt, whereas Redhat-based distributions typically
use yum.)

•	 Linux (this guide uses Ubuntu 18.04 LTS)

•	 Python 3.3 or later (cve-search requires this Python version)

•	 MongoDB 2.2 or later, and MongoDB development headers
(the package names will vary by distribution; Ubuntu uses mongodb
and mongodb-dev)

•	 SQLite 3 (OpenVAS requires this version)

•	 Nmap

•	 pip3 (to install additional Python packages; package is python3-pip
in Ubuntu)

•	 Git (for cve-search, Metasploit, Exploit-db)

•	 libxml2-dev, libxslt1-dev, zlib1g-dev (for cve-search)

•	 jq (for JSON parsing)

•	 cURL (to download files and scripts)

•	 psql (the PostgreSQL client; to manually look at the Metasploit
Framework database)

The Linux distribution you use is up to you. Using a prebuilt virtual
machine image can save some time, although I recommend working
through the Linux install process manually to customize the installation
to your needs.

Although it’s not a requirement, I recommend setting up a dedicated
user (I used vmadmin) with sudo privileges that you’ll use to run the scripts we
will create. You’ll increase your system security by not using the root user.

Setting Up Your Environment 49

Customize It
To tailor this basic setup to your own environment, you could add more
scanners (on separate physical or virtual hardware) and configure them
to send their reports to a centralized location. Or you could locate the
MongoDB instance on a separate machine or a shared server. Using data-
bases other than MongoDB is also an option, although doing so will require
modifying the scripts you write.

By deploying these packages on a compact single-board system, such as
the Raspberry Pi, you can make a palm-sized vulnerability-scanning system
that you could use at different locations as a portable vulnerability manage-
ment tool.

You can also use a different Unix-type operating system, such as BSD or
a commercial Unix like Solaris, or even Windows with the appropriate tools
(Python, MongoDB) in place. But collecting all the prerequisites might be
a chore. Recent versions of Windows 10 with the Linux subsystem installed
can use standard Ubuntu packages.

Installing the Tools
After setting up your base Linux system, the next step is to install the main
tools—OpenVAS, cve-search, and Metasploit—which you’ll use to build
your vulnerability management system.

N O T E 	 In this book, the # prompt indicates that you must run that command as root or with
root privileges via sudo.

Setting Up OpenVAS
OpenVAS is an open source vulnerability scanner that derived from
Nessus when Nessus became closed source. The OpenVAS community
and Greenbone Networks GmbH currently maintain it.

Installing the Packages

OpenVAS is not part of the standard Ubuntu repository, so we need to
add a custom repo to the trusted Ubuntu list. We’ll use the OpenVAS
repository built by Mohammad Razavi, which is available at https://
launchpad.net/~mrazavi/+archive/ubuntu/openvas/.

To get these packages, add this repository information to your apt
software sources:

add-apt-repository ppa:mrazavi/openvas

Next, update apt to make apt aware that the OpenVAS software is in this
custom repository:

apt-get update

https://launchpad.net/~mrazavi/+archive/ubuntu/openvas/
https://launchpad.net/~mrazavi/+archive/ubuntu/openvas/

50 Chapter 7

Download and install OpenVAS. The download consists of about
100MB of data and in total will take up approximately 500MB of space:

apt-get install openvas9

Updating OpenVAS

Once the package is installed, run the setup scripts in Listing 7-1 to sync
data that OpenVAS uses in its scans. You must run all these scripts as root.

greenbone-nvt-sync
greenbone-scapdata-sync
greenbone-certdata-sync
service openvas-scanner restart
service openvas-manager restart

u # openvasmd --rebuild --progress

Listing 7-1: Getting OpenVAS ready to go

The rebuilding tool u might take a long time to complete. This is
normal and is nothing to worry about.

Edit your Redis configuration, which the OpenVAS scanner daemon
uses for temporary result storage. Edit /etc/redis/redis.conf and comment
out any lines with the format save xx yy (for example, save 900 1). Then
restart Redis (# service redis-server restart) and the OpenVAS scanner
(# service openvas-scanner restart).

N O T E 	 The preceding instructions are based on OpenVAS version 9 on Ubuntu. Future
versions might have different installation and update instructions.

Test the Deployment

Go to https://<your-ip-address>:4000. If everything is up and running, you
should see a Greenbone Security Assistant login page. The default login to
Greenbone is admin/admin. Once you’re logged in, click around to famil-
iarize yourself with the interface—and don’t forget to change the default
credentials to something more secure. Setting up and running scans is a
bit complicated, but you’ll delve into more of the OpenVAS and Greenbone
scan options in Chapter 8.

Setting Up cve-search
The tool cve-search is a set of Python scripts backed by a MongoDB data-
base that contains a vast amount of publicly available vulnerability informa-
tion from the official CVE database at https://cve.mitre.org/. You’ll mostly use
the cve‑search database, not the frontend tools, but those utilities might be
useful for doing manual vulnerability searches.

https://cve.mitre.org

Setting Up Your Environment 51

Downloading cve-search

You can download cve-search as a .zip or .tarball file from the cve-search site
(https://adulau.github.io/cve-search/) and extract it or get it directly from the
developer’s online repository using Git. Unlike many of the commands in
these chapters, you can do this as a normal (unprivileged) user. The follow-
ing command installs the cve-search tool into the ./cve-search directory:

$ git clone https://github.com/cve-search/cve-search.git

Installing Dependencies via pip

To ensure that all of cve-search’s prerequisites are in place, use the pip3
tool to set up the requirements in requirements.txt (a file that comes with
cve-search). Before running this command, ensure that you’ve installed the
libxml2-dev, libxslt1-dev, and zlib1g-dev packages or the equivalent for your
Linux distribution:

$ cd cve-search; sudo pip3 install -r requirements.txt

If this command fails, don’t despair. Be patient, look at where errors
are occurring in the installation process, make any necessary changes, and
retry. You might need to add additional packages via your distribution’s
package manager.

Populating the Database

Finally, you’ll build and populate the MongoDB database that serves as the
datastore for the cve-search tools using the commands in Listing 7-2. The
second and third scripts might take quite a long time to complete.

$./sbin/db_mgmt_json.py -p
Database population started
Importing CVEs for year 2002
Importing CVEs for year 2003
Importing CVEs for year 2004
Importing CVEs for year 2005
--snip--
$./sbin/db_mgmt_cpe_dictionary.py
Preparing [##] 194571/194571
$./sbin/db_updater.py -c
INFO:root:Starting cve
Preparing [##] 630/630
INFO:root:cve has 120714 elements (0 update)
INFO:root:Starting cpe
Not modified
--snip--
INFO:root:
[-] No plugin loader file!

Listing 7-2: Building and updating the CVE database

https://adulau.github.io/cve-search/

52 Chapter 7

Testing cve-search

Once the tools are installed and the database is populated, try a simple
search to see what kind of information is available in the CVE database.
The command ./bin/search.py -c CVE-2010-3333 -o json|jq will find informa-
tion about CVE-2010-3333, a stack buffer overflow vulnerability in Microsoft
Office. Piping the command through jq will format the JSON blob into
something much more readable. We’ll look at CVE information in more
detail in Chapter 8.

Setting Up Metasploit
The Metasploit Framework tool contains numerous working exploits as
well as a scriptable Ruby environment for automating repetitive or complex
exploitation tasks. This step is optional because you can build nearly the
entire system without using Metasploit.

Installing the Metasploit Framework

The easiest way to deploy the Metasploit Framework on a Linux system
is to use the installer script detailed at https://github.com/rapid7/metasploit
-framework/wiki/Nightly-Installers/. This script sets up the proper Metasploit
repositories and integrates with package management systems, such as yum
and apt. Another option is to clone the Git repository and build directly
from there, but I follow the installer method in this deployment.

Execute this long chain of commands as root to download and run
the latest version of the installer script (msfinstall), which will add the
Metasploit repository to apt and then install the Metasploit Framework:

curl https://raw.githubusercontent.com/rapid7/metasploit-omnibus/master/config/templates
/metasploit-framework-wrappers/msfupdate.erb > msfinstall && chmod 755 msfinstall &&
./msfinstall

If you want more control over the individual steps, follow the instruc-
tions at the Github URL above.

Completing and Testing the Installation

Run msfconsole as root to complete the setup.

msfconsole

This step sets up the Postgres database and eventually brings you to an
msf> prompt. From there, you can explore the Metasploit Framework. For
example, if you’re interested in whether Metasploit has exploits for the 2014
“Heartbleed” vulnerability, search for CVE-2014-0160, as shown in Listing 7-3.

msf > search cve-2014-0160
[!] Module database cache not built yet, using slow search

https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers/
https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers/

Setting Up Your Environment 53

Matching Modules
================

 # Name Disclosure Date Rank Check Description
 - ---- --------------- ---- ----- -----------

 u �0 auxiliary/scanner/ssl/openssl_heartbleed 2014-04-07
normal Yes OpenSSL Heartbeat (Heartbleed) Information Leak

 v �1 auxiliary/server/openssl_heartbeat_client_memory 2014-04-07
normal No OpenSSL Heartbeat (Heartbleed) Client Memory Exposure

Listing 7-3: Sample Metasploit search output

Either of the two exploits uv matching this vulnerability could exploit
a system vulnerable to CVE-2014-0160. Because I’m just covering install-
ing the Metasploit Framework, I’ll leave further exploitation for you as an
exercise. Keep in mind that Metasploit includes working exploit code and
it can cause serious issues, including but not limited to crashes, on any sys-
tems you try attacking with Metasploit. Be careful and try it only on systems
you’re authorized to attack.

Customize It
If you prefer or if your Linux distribution doesn’t have prebuilt packages
for OpenVAS available, you can install OpenVAS from source. Doing so will
give you some opportunities to customize it for your environment.

Although I installed OpenVAS 9 in this chapter, earlier versions are
functional (and might be easier to find for your architecture). Those ver-
sions might have a different XML output format, which means you’ll need
to modify your scripts.

You can install the cve-search set of scripts in a different location (by
cloning the Git repository into a different location) if you want multiple
users to use the tool.

By installing Metasploit manually, you’ll have more control over the
additional packages it uses—Ruby and PostgreSQL in particular—and can
customize your deployment more fully.

Keeping the System Updated
Once all the software is installed, you’ll need to keep it up-to-date. The
script in this section shows you how to create an updater script that is suit-
able for running on a schedule.

Writing a Script for Automatic Updates
First, create a bash script that will run a number of update scripts for the
tools you’ve deployed. This way, instead of having to run numerous separate
update scripts every time you want to update your toolchain, you can run
a single script. Even better, you can add this script to the system scheduler
(cron) so it will run automatically on a regular basis.

54 Chapter 7

Save Listing 7-4 as update-vm-tools.sh.

u #!/bin/bash
v CVE_SEARCH_DIR=/path/to/cve-search

w LOG=/path/to/output.log

this clears the log file by overwriting it with a single
line containing the date and time to an empty file

x date > ${LOG}

y greenbone-nvt-sync >> ${LOG}
greenbone-scapdata-sync >> ${LOG}
greenbone-certdata-sync >> ${LOG}
service openvas-scanner restart >> ${LOG}
service openvas-manager restart >> ${LOG}
openvasmd --rebuild >> ${LOG}

z ${CVE_SEARCH_DIR}/sbin/db_updater.py -v >> ${LOG}

{ apt-get -y update >> ${LOG}

| msfupdate >> ${LOG}

} echo Update process done. >> ${LOG}

Listing 7-4: A simple system updater script

The shebang identifies that this is a bash shell script u, so when you
run it, the system knows which interpreter to use. The CVE_SEARCH_DIR vari-
able v points to the cve-search path on your system. The LOG variable w
points to a log file, which starts with the current date x. The output of all
the update commands will be written to the log file.

The same commands you used in Listing 7-1 to sync OpenVAS are
used to update it y. Check the specific version of OpenVAS that you’ve
installed to ensure that these executables and paths are correct. Then
execute the cve-search updater using the value stored in CVE_SEARCH_DIR
to refer to the actual cve-search path on your system z. To update the
underlying Linux system as well as the OpenVAS packages, run a full sys-
tem update using the -y flag so the update doesn’t ask for confirmation
and runs without human interaction {. (If you’re running a Linux system
that isn’t based on Debian, your update command might be different; for
instance, RPM-based systems like Redhat use yum to update.) Next, we
update Metasploit using its own msfupdate script | and write Update process
done to the log file }.

Set the script as an executable using the following chmod command:

chmod +x update-vm-tools.sh

Now you can run the script at any time to update your vulnerability
management toolchain.

Setting Up Your Environment 55

Running the Script Automatically
Now that you have a single update script, you can add it to crontab to run
regularly. I set it up to run weekly on Sundays at 4 am, but you can change
that to a different time.

Edit /etc/crontab (as root) and add the following line at the bottom of
the file:

0 4 * * 7 root /path/to/update-vm-tools.sh

Many Linux distributions have directories that will automatically run
anything in them on a regular basis using cron. For example, Ubuntu runs
any script placed in the /etc/cron.weekly/ directory at 6 am on Sundays. If
you want to use this method instead, simply save your update script in that
directory or create a symlink to it.

To ensure that the script ran successfully, you can look at the log file
generated in the update script (/path/to/update.log in Listing 7-4 w) and
look at the output of each update script.

Customize It
I placed the data update and system update components in a single script
for simplicity. But you might prefer to separate data and application updates
either by making the apt update manual or by running it on a different
schedule from the other update scripts. You might also change the apt-get
command to update only Metasploit and OpenVAS, saving the full system
updates for a manual process.

In later chapters (particularly Chapter 12), you’ll schedule other scripts
for data collection and analysis. When setting the specific timeframes for
these other scripts to run, keep in mind that they might conflict with the
system updates in this script, so schedule accordingly.

Summary
In this chapter, you took the first steps to building a complete vulnerability
management system: you set up the OS and the underlying tools that you’ll
be writing script controls for in the following chapters. It might not seem
like much, but from small beginnings you’ll build great things.

In the next chapter, you’ll look at Nmap, cve-search, and OpenVAS in
more detail so you can become familiar with their features before you start
controlling them via shell scripts and Python.

The goal for your vulnerability manage-
ment system is to have usable vulnerability

data in a database to make it easy to search,
analyze, and generate automated reports. You’ve

installed all the basic tools, but your database is empty.

8
U S I N G T H E D A T A C O L L E C T I O N

T O O L S

In this chapter, you’ll look at the tools you’ll use to collect the raw data
for your vulnerability management system: they include Nmap, OpenVAS,
and cve-search. To gain some basic familiarity with each tool, you’ll run
each manually to explore its configuration options and see what kind of
data you can collect with it. If you’re already familiar with these tools, you
can move on to the next chapter. There you’ll collect the information you
need and store it in the database.

58 Chapter 8

An Introduction to the Tools
Although the information you can gather with the Nmap, OpenVAS, and
cve-search tools overlaps, the purpose of each tool is very different. Before
we get into the nitty-gritty of command line options and XML outputs, let’s
situate the three of them in the overall program.

Nmap
The Nmap network discovery scanning tool was originally developed in
1997 by Gordon Lyon, a programmer known in the security community as
Fyodor. In its more than 20-year life, Nmap has had regular development
and improvement, and it remains a central tool in the security specialist’s
tool belt.

How Does It Work?

The Nmap tool sends various packets to an IP address or a range of IP
addresses to gather networking-related information about the hosts at
those addresses. You can configure the specific packets it sends and which
ports it sends them to: Nmap can be slow and stealthy or very fast and
aggressive, depending on how you configure it.

What Is It Good For?

You can use Nmap to do quick scans of network ranges to discover informa-
tion about the live hosts: their addresses, which services they’re providing
on which network ports, and which OS they’re running.

What Is It Not Good For?

Although Nmap will tell you which ports are open on a host, it isn’t a vul-
nerability scanner. In some cases, Nmap can determine the specific version
of a server running on a port, but it won’t match that information with
known vulnerabilities or perform additional testing to determine whether
certain vulnerabilities exist. The Nmap tool isn’t sufficient for determining
how at-risk any of the hosts it finds might be. Instead, it’s best to use the
information gleaned from Nmap and as the basis for further analysis, either
on its own or with additional data from vulnerability scanners.

OpenVAS
OpenVAS is a vulnerability scanner. Its roots lie in an earlier scanner,
Nessus, first released in 1998. In 2005, Tenable Network Security, founded
by the Nessus core developers, converted Nessus into a commercial prod-
uct. In response, a number of open source developers forked the Nessus
codebase to continue providing a free and open source scanner project.
The current result is OpenVAS, which only barely resembles the modern
incarnation of the commercial Nessus product. OpenVAS is divided into a

Using the Data Collection Tools 59

number of separate components: the scanner, a management and schedul-
ing daemon, and the Greenbone Security Assistant, which is a web-based
frontend to make configuring and running scans easy.

How Does It Work?

Like Nmap, OpenVAS sends a series of network packets to one or more IP
addresses. But unlike Nmap, OpenVAS sends targeted packets to determine
specific versions of services and whether or not they’re vulnerable to known
attacks. It also contains numerous plug-ins that do more aggressive test-
ing for specific vulnerabilities beyond simple version checking. (For more
details about the capabilities of vulnerability scanners, see Chapter 3.)

What Is It Good For?

OpenVAS is ideal for finding specific vulnerabilities on hosts in the tar-
geted network. But, like any network vulnerability scanner, it will only dis-
cover network vulnerabilities, not those that can only be exploited from the
local system. Its internal database includes significant background detail
about the vulnerabilities it can find, including CVSS scores, exploitation
consequences, and a comprehensive list of external references containing
more vulnerability details. You can also use OpenVAS for host discovery.

What Is It Less Good For?

Although OpenVAS provides host discovery, its OS fingerprinting function-
ality is less complete than Nmap’s, so it might not identify the specific OS
the target is running. By running the two in concert, you’ll get a more accu-
rate view of your network environment.

Differences Between OpenVAS and Commercial Scanners

To be frank, the OpenVAS scanner is free and it shows. Its interfaces, both
command line and web based, are functional and complete, but their
usability leaves a lot to be desired. Without a commercially supported bud-
get to develop new vulnerability tests, development of OpenVAS is largely
left to the open source community. Older vulnerabilities are well supported,
but new vulnerability coverage is significantly less comprehensive. However,
in an environment where there is no budget for a vulnerability management
program, this tool provides significant value. That said, this is the first com-
ponent you should replace if you have a budget of $1,000 or more and can
purchase a commercial scanning product, such as Nessus or Qualys.

cve-search
Once you have asset and vulnerability information from Nmap and
OpenVAS, the next step is to bring in additional data sources. The
cve-search tool suite will give you a comprehensive local repository of
CVE data.

60 Chapter 8

CVE/NVD

The CVE list, provided by the Mitre Corporation, is the authoritative
source of CVE information. Its content is synchronized to the National
Vulnerability Database (NVD) which is run by NIST; NVD adds additional
vulnerability information, such as vulnerability rating, patch information,
and more searching options. If you’re looking for information on vulner-
abilities, check these two lists first. They provide online search functional-
ity, vulnerability feeds, and the option to mirror their databases locally.
But if you want to programmatically grab and parse CVE information, the
cve‑search tools will save you a lot of time.

cve-search

The cve-search suite is a collection of Python scripts that gathers vulner-
ability information from several online sources (primarily the CVE/NVD
repositories). It then puts that data into a Mongo database for easy querying
and analysis. This suite is a gold mine for those interested in doing auto-
mated vulnerability data analysis. We’ll use the cve-search suite to build and
maintain our local CVE database. Then we’ll query that database directly
for analysis instead of using the cve-search frontend tools. But keep in mind
that those tools are useful for manual vulnerability searching.

Getting Started with Nmap Scanning
The goal of this exercise is to gain a basic familiarity with Nmap scans. By
using this tool, you can determine:

•	 The number of hosts in a given network segment

•	 The MAC address of each host, which you can leverage to figure out the
underlying hardware

•	 Which ports are open on each host and which services are running on
those ports

•	 Which OS might be running on the host

C AU T ION

For all scripts that involve live scanning, you need a network range or series of
hosts that you have permission to scan. Scanning with Nmap, although gener-
ally not intrusive, can cause problems with the scanned systems. The risks range
from temporary slowness due to resource exhaustion to more serious issues that
might require a system reboot or other manual intervention. Penetration testers
regularly run into issues scanning networked printers: the probes may cause the
printers to output page after page of garbage output, wasting reams of paper if
the testers haven’t excluded the printers or removed the paper in advance. Only
scan systems you own or have permission to scan.

Using the Data Collection Tools 61

Although you’ll look at a few scanning and output options, you’ll only
scratch the surface of Nmap’s capabilities. I highly recommend reading the
Nmap manual (run man nmap at the command prompt) to learn about all its
features.

Running a Basic Scan
The best way to understand how Nmap works and what kind of informa-
tion you can gather is to do a basic scan of your network range. I used the
10.0.1.0/24 range, which is my local test network. Running Nmap without
any arguments except for the scan range makes it do a basic scan:

nmap 10.0.1.0/24

This command scans the 1,000 most common ports on each address in
the target network range. The output will look something like Listing 8-1.

N O T E 	 Although an unprivileged user can run this scan, you can gather more information
when you run it as root. For example, the MAC address output in Listing 8-1 won’t
be available if you run an unprivileged scan.

--snip--
u Nmap scan report for 10.0.1.4
v Host is up (0.0051s latency).

Not shown: 997 filtered ports
w PORT STATE SERVICE

22/tcp open ssh
88/tcp open kerberos-sec
5900/tcp open vnc

x MAC Address: B8:E8:56:15:68:20 (Apple)

Nmap scan report for 10.0.1.5
Host is up (0.0032s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
5357/tcp open wsdapi
MAC Address: 70:85:C2:4A:A9:90 (ASRock Incorporation)

--snip--
y Nmap done: 256 IP addresses (7 hosts up) scanned in 663.38 seconds

--snip--

Listing 8-1: Default nmap output when run as the root user

The output is separated by host u. For each host, you’ll see whether the
host is up and how long it takes to contact it v, the open ports and the ser-
vice running on each port w, and the MAC (network hardware) address x
if available. If you run Nmap as an unprivileged user or if the targeted

62 Chapter 8

device is on another subnet, the MAC information won’t be available.
Additionally, there’s a summary of scanned hosts and statistics for how
long it took Nmap to complete its scan y.

Even just using the default options, you can learn a good deal about
the systems you scan. However, Nmap can provide even more data.

Using Nmap Flags
You can use the nmap command’s flags to learn more about your network or
adjust your scans’ output format.

Getting More Information with -v

The -v flag adds verbosity to the scan; this means that Nmap becomes
chattier about what it’s doing:

nmap -v 10.0.1.0/24

You can add up to three v flags in a row (or -v3) to get more informa-
tion that you can use to monitor the scan’s progress. For example, adding
-vvv to the same scan will result in Listing 8-2.

nmap -vvv 10.0.1.0/24
Starting Nmap 7.01 (https://nmap.org) at 2020-03-04 10:42 PST
Initiating ARP Ping Scan at 10:42
Scanning 255 hosts [1 port/host]
adjust_timeouts2: packet supposedly had rtt of -137778 microseconds. Ignoring time.
adjust_timeouts2: packet supposedly had rtt of -132660 microseconds. Ignoring time.
adjust_timeouts2: packet supposedly had rtt of -54309 microseconds. Ignoring time.
adjust_timeouts2: packet supposedly had rtt of -59003 microseconds. Ignoring time.
adjust_timeouts2: packet supposedly had rtt of -59050 microseconds. Ignoring time.
Completed ARP Ping Scan at 10:43, 3.26s elapsed (255 total hosts)
Initiating Parallel DNS resolution of 255 hosts. at 10:43
Completed Parallel DNS resolution of 255 hosts. at 10:43, 0.02s elapsed
DNS resolution of 16 IPs took 0.02s. Mode: Async [#: 1, OK: 11, NX: 5, DR: 0, SF: 0, TR: 16,
CN: 0]
Nmap scan report for 10.0.1.0 [host down, received no-response]
Nmap scan report for 10.0.1.2 [host down, received no-response]
Nmap scan report for 10.0.1.3 [host down, received no-response]
Nmap scan report for 10.0.1.4 [host down, received no-response]
--snip--
SYN Stealth Scan Timing: About 10.98% done; ETC: 13:37 (0:04:11 remaining)
Increasing send delay for 10.0.1.7 from 40 to 80 due to 11 out of 27 dropped probes since last
increase.
Increasing send delay for 10.0.1.18 from 40 to 80 due to 11 out of 23 dropped probes since last
increase.
--snip--

Listing 8-2: Verbose nmap output showing debugging and progress-related information

Using the Data Collection Tools 63

Under normal circumstances, this resulting information might not
matter to you. But if a scan isn’t succeeding, more verbose output can help
diagnose any issues.

Getting the OS Fingerprint with -O

Another very useful flag is -O, which instructs Nmap to look at the network
traffic’s OS fingerprint to determine which OS is running on the systems
being scanned:

nmap -O 10.0.1.5

Just as a human has a unique set of fingerprints, an operating system
has characteristics that, taken in combination, are unique to the OS and
often point to a specific version or even an OS patch level. But this informa-
tion isn’t guaranteed to be correct. For instance, custom network stacks can
throw off OS detection by changing the fingerprint, and even marginally
skilled coders could deliberately shape the network traffic from a system to
make it look like it has a different OS. Regardless, OS fingerprinting is a
highly useful data point in your asset database.

Listing 8-3 shows example output of the –O flag.

Nmap scan report for 10.0.1.5
Host is up (0.0035s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
5357/tcp open wsdapi
MAC Address: 70:85:C2:4A:A9:90 (ASRock Incorporation)

u �Warning: OSScan results may be unreliable because we could not find at
least 1 open and 1 closed port
Device type: general pupose|phone|specialized

v �Running (JUST GUESSING): Microsoft Windows Vista|2008|7|Phone|2012 (93%),
FreeBSD 6.X (86%)
OS CPE: cpe:/o:microsoft:windows_vista::- cpe:/o:microsoft:windows_vista::sp1
cpe:/o:microsoft:windows_server_2008::sp1 cpe:/o:microsoft:windows_7
cpe:/o:microsoft:windows cpe:/o:microsoft:windows_8
cpe:/o:microsoft:windows_server_2012 cpe:/o:freebsd:freebsd:6.2

w �Aggressive OS guesses: Microsoft Windows Vista SP0 or SP1, Windows Server
2008 SP1, or Windows 7 (93%), Microsoft Windows Vista SP2, Windows 7 SP1,
or Windows Server 2008 (93%), Microsoft Windows Phone 7.5 or 8.0 (92%),
Windows Server 2008 R2 (92%), Microsoft Windows 7 Professional or
Windows 8 (92%), Microsoft Windows Embedded Standard 7 (91%),
Microsoft Windows Server 2008 SP1 (91%), Microsoft Windows Server
2008 R2 (90%), Microsoft Windows 7 (89%), Microsoft Windows 8 Enterprise (89%)
No exact OS matches for host (test conditions non-ideal).
Network Distance: 1 hop

Listing 8-3: nmap output with OS fingerprinting

64 Chapter 8

If Nmap is uncertain about its fingerprinting, it will clearly report
that u. But Nmap tells you its best guesses for the running OS v, and it
provides common platform enumeration (CPE ; a standardized reference to
specific OS and software packages) references for those guesses. It will even
tell you it’s making a more aggressive guess w where it does its best to fig-
ure out exactly which version of Windows is on that host. In this case, this
system is running Windows 10.

Making Nmap “Aggressive”

The “aggressive” flag -A combines the OS fingerprinting option with version
detection and script scanning (equivalent to the flag combination -O -sV
--script=default --traceroute). It provides even more information about the
host. This scan can be intrusive, and system owners are likely to consider it
hostile if they are the target of an aggressive scan. Listing 8-4 shows exam-
ple output of the -A flag on the same host (10.0.1.5).

nmap -A 10.0.1.5
--snip--
Nmap scan report for 10.0.1.5
Host is up (0.0035s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE VERSION
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn Microsoft Windows 98 netbios-ssn
445/tcp open microsoft-ds Microsoft Windows 7 or 10 microsoft-ds
5357/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)

u |_http-server-header: Microsoft-HTTPAPI/2.0
|_http-title: Service Unavailable
MAC Address: 70:85:C2:4A:A9:90 (Unknown)
—-snip--
Host script results:
|_nbstat: NetBIOS name: GAMING-PC, NetBIOS user: <unknown>,
NetBIOS MAC: d8:cb:8a:17:99:80 (Micro-star Intl)
| smb-os-discovery:

v | OS: Windows 10 Home 10586 (Windows 10 Home 6.3)
| OS CPE: cpe:/o:microsoft:windows_10::-
| NetBIOS computer name: GAMING-PC
| Workgroup: WORKGROUP
|_ System time: 2020-05-01T16:44:35-04:00
| smb-security-mode:
| account_used: guest
| authentication_level: user
| challenge_response: supported
|_ message_signing: disabled (dangerous, but default)
|_smbv2-enabled: Server supports SMBv2 protocol

TRACEROUTE
HOP RTT ADDRESS
1 3.53 ms 10.0.1.5

Listing 8-4: Aggressive scanning nmap output

Using the Data Collection Tools 65

In this case, the more aggressive scanning (NetBIOS checks) deter-
mined the actual version of Windows running on the host v. The aggres-
sive scan can also determine additional information about the HTTP server
running on port 5357 u.

Modifying the Output Format with -o

Of particular importance for this guide is the -o flag, which lets you output
in default format (-oN), XML (-oX), or greppable (-oG) text. You can also use
the -oS flag to output in the “script kiddie” format, but that is a novelty for-
mat and unlikely to be useful to you in this book!

By using the XML flag, you can output your scan results in a format
that is easily parseable by XML-aware Python scripts. Let’s scan the same
host we did previously but output in XML format using this command:

nmap -oX output.xml 10.0.1.5

The Nmap tool generates some basic output to the screen. But the
actual XML output is in output.xml, so look inside that file as shown in
Listing 8-5.

cat output.xmlu | xmllint --format -v
w <?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE nmaprun>
<?xml-stylesheet href="file:///usr/bin/../share/nmap/nmap.xsl" type="text/
xsl"?>
<!-- Nmap 7.01 scan initiated Sat Apr 4 09:26:56 2020 as: nmap -oX output.xml
10.0.1.5 -->

x �<nmaprun scanner="nmap" args="nmap -oX output.xml 10.0.1.48"
start="1523118416" startstr="Sat Apr 4 09:26:56 2020" version="7.01"
xmloutputversion="1.04">

 y �<scaninfo type="syn" protocol="tcp" numservices="1000"
services="1,3-4,6-7,9,13,17,19-26,

--snip--
 64623,64680,65000,65129,65389"/>
 <verbose level="0"/>
 <debugging level="0"/>
 <host starttime="1523118416" endtime="1523118436">
 <status state="up" reason="arp-response" reason_ttl="0"/>

 z <address addr="10.0.1.48" addrtype="ipv4"/>
 { <address addr="70:85:C2:4A:A9:90" addrtype="mac"/>
 | <hostnames>

 </hostnames>
 <ports>
 <extraports state="filtered" count="996">
 <extrareasons reason="no-responses" count="996"/>
 </extraports>

 } <port protocol="tcp" portid="135">
 <state state="open" reason="syn-ack" reason_ttl="128"/>
 <service name="msrpc" method="table" conf="3"/>
 </port>
--snip--

66 Chapter 8

 </ports>
 <times srtt="1867" rttvar="254" to="100000"/>
 </host>

 ~ <runstats>
 <finished time="1523118436" timestr="Sat Apr 4 09:27:16 2020"
elapsed="20.14" summary="Nmap done at Sat Apr 4 09:27:16 2020; 1 IP address (1
host up) scanned in 20.14 seconds" exit="success"/>
 <hosts up="1" down="0" total="1"/>
 </runstats>
</nmaprun>

Listing 8-5: An Nmap scan output in XML format

Take a look inside the file using the cat command u. The xmllint com-
mand v formats the output to indent it properly and make it more read-
able. (The trailing - in the xmllint command instructs it to take its input
from STDIN, allowing us to pipe the output of the previous command into it.)

The first few lines w make up the header, which you don’t need to
worry about. Next, you see some basic information about the scan, includ-
ing the command line that generates this specific output and when it
ran x. Then there are more scan parameters, including the specific ports
that Nmap checked y. You see the IP z and MAC { addresses, as well as
any hostnames that Nmap detected for this host |. In this scan, there are
no hostnames, but if there were, the output would look something like this:

<hostnames>
 <hostname name="scanme.nmap.org" type="user"/>
 <hostname name="scanme.nmap.org" type="PTR"/>
</hostnames>

Next, you see some very interesting output—the details of each open
port that Nmap found. TCP port 135 } is open. You know it’s open because
you received a SYN-ACK packet after probing it, the time-to-live (TTL) of
packets coming from it is 128 hops, and it’s running the Microsoft Remote
Procedure Call (MSRPC) protocol. The output also contains the overall
run statistics, including the number of hosts found and how long it took
to run the scan ~.

Customize It
I highly recommend experimenting with the Nmap options for your scan to
find a set that work best in your environment: that means producing useful
information while not overloading the network or causing issues on the sys-
tems you’re scanning. Here are a few places to start:

•	 Different scan types: Instead of the default SYN scan, try others.

•	 Scan speed: Limit your scan activity to keep your network unclogged,
especially over a low-bandwidth connection.

•	 Different OS-fingerprinting options: Some options are more effective
than others, depending on the devices you scan and your overall net-
work configuration.

Using the Data Collection Tools 67

Zenmap, a graphical frontend for Nmap, is useful if you plan to do a lot
of different Nmap scans and want a simpler method than repeatedly creat-
ing long shell commands. Zenmap provides output in a browsable format
that can make digesting scan results easier.

Getting Started with OpenVAS
In this section, you’ll become comfortable running scans with OpenVAS
from the web GUI (Greenbone Security Assistant) and the command line.
OpenVAS isn’t a very user-friendly tool, so it’s important you’re familiar with
its options before you start running scans and analyzing the resulting data.

This discussion won’t be a comprehensive OpenVAS tutorial. But it will
give you enough familiarity with the web and command line interfaces to
generate XML scan results you can use in your vulnerability management
system.

Running a Basic OpenVAS Scan with the Web GUI
Here you’ll learn how to run a basic OpenVAS scan from the Greenbone
web GUI, and in the next section, you’ll run a scan from your command
line.

Log into Greenbone at https://localhost:4000/. The default username is
admin, and the password is admin, but you’ve changed those credentials
already, haven’t you? Because Greenbone uses a self-signed transport layer
security (TLS) certificate, your browser will probably warn you that the site
isn’t trusted. This is expected; just click through and continue to the login
page. When you successfully log in, you should see an empty Greenbone
dashboard: you’ll fill it with information as you run scans and discover
information about your environment (see Figure 8-1).

Figure 8-1: A Greenbone dashboard after you run a scan

You’ll spend most of your time in the Scans tab where you can run
scans and look at the results.

68 Chapter 8

Setting Up Targets and Configurations

You can set up the scan tasks in the Tasks tab, but first you need to set up
targets and scan configurations on the Configuration tab.

At the upper left of the Targets page on the Configuration tab is a
small star icon; this is Greenbone’s indicator for creating a new item
(see Figure 8-2). Click the star icon to create a new target.

Figure 8-2: Creating a new target

Once you click the star, the New Target configuration page will appear
(see Figure 8-3).

Figure 8-3: The New Target configuration page

Using the Data Collection Tools 69

The configuration window contains lots of options, but for now, let’s
focus on the basics. Name the target and, if you like, add a description. The
most important option is the Hosts field: enter the hosts you want to scan,
separating each host with a comma. You can specify hosts using any of the
following methods, alone or in combination:

•	 IP address

•	 CIDR IP range

•	 Dash range (for example, 10.0.1.1-10.0.1.3 refers to 10.0.1.1, 10.0.1.2,
and 10.0.1.3)

Just below this field is the option to exclude one or more hosts; using
the same format as for the Hosts field, exclude any IPs that you don’t want
in the scan. For now, we’ll leave the rest of the page at the defaults. Click
the Create button.

Under Configuration4Scan Configs, you’ll see a list of different built-
in scan configurations (see Figure 8-4).

Figure 8-4: Scan Configs

You’ll likely want to customize one of these scan types for your own
environment. But we’ll stick to using Full and fast for now; it’s a good
compromise between speed and thoroughness.

Creating a Task

Now that you have a target set and a scan config to use, you can create the
scan task. Return to Scans4Tasks and click the star icon in the upper left
to create a new task. This will open a configuration menu, like the one
shown in Figure 8-5.

70 Chapter 8

Figure 8-5: New scan task

Much like the target configuration, I recommend you stick to minimal
customizations for now, as in Figure 8-5. Name the task and choose the
scan target you just created. Scroll down the configuration window, select
the Full and fast scan config, and click Create.

You now have a shiny new scanning task. You can prompt OpenVAS
to start the task by clicking the play icon on the right of the task list (see
Figure 8-6).

Figure 8-6: Your new task

The Scans4Tasks window will list all your tasks and provide some
information about each task, such as the severity of the vulnerabilities
discovered by the task and the last time the task was completed (see
Figure 8-7).

Using the Data Collection Tools 71

Figure 8-7: The Scans4Tasks window after you add a few tasks

Now that your scan has started, you can watch its progress in the
Scans4Reports page. Even though the scan has just begun, there’s a good
chance there’s already some information there. The scan might take several
hours to complete, depending on the number of hosts you’re scanning.

Exporting Your Scan Reports

Once the report status indicates Done, the scan is complete, and you can
export the report. We’ll ingest the XML-formatted report into our database
in the next chapter, but first we need to generate the report.

The easiest way to do this with Greenbone is to export the report from
the Scans4Reports page. Click the report you want to export (in the Date
column), ensure that the drop-down box next to this icon is set to XML or
Anonymous XML, and then click the down-pointing arrow icon to down-
load the report (see Figure 8-8).

Figure 8-8: Exporting a report

You can look at the resulting file in a text or XML editor.

72 Chapter 8

Running a Basic Scan from the Command Line
Now you know how to create OpenVAS targets, tasks, and scan reports
through the Greenbone web GUI. But to integrate automated scanning into
the rest of your vulnerability management program, you’ll need to use the
omp command line tool, which was installed with OpenVAS. Then you can
schedule your scans with the same scripts you use to ingest the scan outputs
into your vulnerability database (see Chapter 9).

To get omp to work, you need to modify the init scripts for openvas
-manager and openvas-gsd. The reason is that the packaged version of
OpenVAS is configured to listen for commands on a Unix socket (not
a network port). Unfortunately, omp can only communicate on a net-
work port, so you must change this configuration. To do so, find the
DAEMON_ARGS variable in /etc/init.d/openvas-manager and modify it to read
DAEMON_ARGS="-a 127.0.0.1 -p 9390".

Next, in /etc/init.d/openvas-gsa, modify the DAEMON_ARGS line to read
DAEMON_ARGS="--mlisten 127.0.0.1 -m 9390".

Then reload the init scripts (systemctl daemon-reload) and restart
openvas-manager (service openvas-manager restart) and openvas-gsd (service
openvas-gsa restart).

Specify the username and password in ~/omp.config (it’s the same as for
the web GUI, so use whatever you’ve changed it to from admin/admin).
When you run scheduled jobs, you’ll use the -c command line option to
point at this config file, as shown in the following code. This ensures that
omp finds the correct configuration file when you run it from cron, whether
or not you run it as the scanuser user.

$ omp -c /home/scanuser/omp.config -X "<help></help>"

Now that your OpenVAS command line tool is up and ready to go, let’s
test it by setting up some scans.

Testing the Command Line Tool

OpenVAS uses XML for input and output, meaning you’ll send commands
as XML blocks to omp using the --xml or -x flag.

Test omp by sending a simple command and verifying that the result
looks like Listing 8-6.

$ omp -X "<help></help>"
<help_response status_text="OK" status="200">
 AUTHENTICATE Authenticate with the manager.
 COMMANDS Run a list of commands.
 CREATE_AGENT Create an agent.
 CREATE_ALERT Create an alert.
 CREATE_ASSET Create an asset.
 CREATE_CONFIG Create a config.
 CREATE_CREDENTIAL Create a credential.

Using the Data Collection Tools 73

--snip--
 VERIFY_REPORT_FORMAT Verify a report format.
 VERIFY_SCANNER Verify a scanner.
</help_response>

Listing 8-6: Testing omp

If you get a result other than status="200" in the first response line,
it’s likely that your credentials are incorrect. Verify those, and if you still
experience issues, check back to the OpenVAS setup steps in Chapter 7 and
ensure you’ve followed the steps in “Updating OpenVAS.”

Creating a Scan Task with omp

Because you’ve already created a scan target and scan configuration via
Greenbone, you can use them to initiate scans from the command line.
It’s a lot easier to build and test scan targets and configurations using the
web GUI and then schedule scans and export reports at the command line,
using XML as little as possible.

N O T E 	 You can find a full XML command reference at http://docs.greenbone.net/API
/OMP/omp-7.0.html.

To check our list of available targets and configs, use omp with the –T and
-g flags, as in Listing 8-7.

$ omp -T
u �c8f84568-94ea-4528-b049-56f4029c1368 Target for immediate scan of IP

10.0.1.0/24
7fc8000a-28f7-45ea-bd62-9dec89a1f679 Target for immediate scan of IP 10.0.1.1
a6f26bd5-f1e3-4fd3-88fc-8aa65dd487bc Target for immediate scan of IP 10.0.1.7
206a5a14-ab30-462c-b191-440a30daeb17 Target for immediate scan of IP 10.0.1.8
6539fd3c-871c-43ff-be9c-9768e6bebddd test target
$ omp -g

v 8715c877-47a0-438d-98a3-27c7a6ab2196 Discovery
085569ce-73ed-11df-83c3-002264764cea empty
daba56c8-73ec-11df-a475-002264764cea Full and fast
698f691e-7489-11df-9d8c-002264764cea Full and fast ultimate
708f25c4-7489-11df-8094-002264764cea Full and very deep
74db13d6-7489-11df-91b9-002264764cea Full and very deep ultimate
2d3f051c-55ba-11e3-bf43-406186ea4fc5 Host Discovery
bbca7412-a950-11e3-9109-406186ea4fc5 System Discovery

Listing 8-7: Getting target and scan config IDs

The omp –T flag returns a list of configured scan targets u with univer-
sally unique identifiers (UUIDs). The omp -g flag returns a list of configured
scan types v, again with matching UUIDs. With these target and config
IDs, create a scan task with the -C flag, as shown in Listing 8-8.

http://docs.greenbone.net/API/OMP/omp-7.0.html
http://docs.greenbone.net/API/OMP/omp-7.0.html

74 Chapter 8

$ omp -C --target=c8f84568-94ea-4528-b049-56f4029c1368 --config=698f691e-7489-
11df-9d8c-002264764cea --name="Scan Task"

u dd3617ce-868f-457a-a2f8-bfb7bdb1b8ff

Listing 8-8: Creating a task and getting its ID

You can also do this with an XML command, but the -C format is much
simpler! The response you’ll get is a UUID that refers to an OpenVAS task.
Think of the task as a combination of a scan configuration and a target; you
can kick off that task on demand by referring to its UUID u, as shown in
Listing 8-9.

$ omp --start-task dd3617ce-868f-457a-a2f8-bfb7bdb1b8ff
<start_task_response status_text="OK, request submitted" status="202"><report
_id>4dc106f1-cf3a-47a1-8a71-06b25d8d2c70</report_id></start_task_response>

Listing 8-9: Starting the task

When the task is complete, you’ll need the report_id to look at the
results. The easiest way to tell if the scan is running is to look at the Tasks
page in Greenbone. You should see a task in progress in the table at the
bottom of the page (see Figure 8-9).

Figure 8-9: A running scan task

You can also check on the scan task’s progress by using the --get_tasks
command, which will give you an exhaustive rundown of the scan’s current
status. Listing 8-10 shows a (truncated!) example.

$ omp --get-tasks dd3617ce-868f-457a-a2f8-bfb7bdb1b8ff|xmllint --format -
<?xml version="1.0"?>
<get_tasks_response status_text="OK" status="200">
 <apply_overrides>0</apply_overrides>
 <task id="dd3617ce-868f-457a-a2f8-bfb7bdb1b8ff">
--snip--

 u <status>Running</status>
--snip--
</get_tasks_response>

Listing 8-10: omp get_tasks output

When the status XML value u changes from Running to Done, the scan
is finished. As in Listing 8-5, xmllint formats the output XML into a more
readable layout.

Once the scan is complete, you can get the report in XML format using
omp --get-report, as shown in Listing 8-11.

Using the Data Collection Tools 75

$ omp --get-report 4dc106f1-cf3a-47a1-8a71-06b25d8d2c70|xmllint --format - > output.xml

Listing 8-11: Exporting the report

In Listing 8-11, we redirect the output to a file using >. You can run this
command at any time during the scan, but the report will be incomplete.
There’s a field in the output XML file called scan_run_status; you’ll know you
have a full report when the value of this field changes from Running to Done.
We’ll look at this XML output format in more detail in Chapter 9.

Customize It
If there’s more than one security analyst in your organization, you can set
up additional accounts or integrate with LDAP/RADIUS authentication
in the Greenbone web interface to allow others to set up scan targets, run
scans, and look at results.

You can do more in-depth scans by configuring SSH and other creden-
tials: this permits OpenVAS to log into some services and conduct deeper
scans. You can save these credentials most easily via the Greenbone web
GUI under the Configuration tab.

Getting Started with cve-search
Although we’ll use cve-search primarily for its comprehensive database of
CVE information, it’s very useful on its own for finding detailed informa-
tion about any vulnerability with a CVE ID.

Searching for CVE IDs
We’ll use search.py, which is in cve-search/bin/ (see the section “Setting Up
cve-search” in Chapter 7), to search for CVEs that affect a product (identi-
fied by its CPE) and search for a specific CVE.

In Listing 8-12, we use the -p (for product) flag to find all CVEs that
affect Windows 10.

$./search.py -p o:microsoft:windows_10

Listing 8-12: Searching for CVEs that affect Windows 10

This command outputs a huge result set, including full details of all
CVEs found. In Listing 8-13, I’ve restricted the results returned to CVE ID
by passing the value cveid to the –o flag.

$./search.py -p o:microsoft:windows_10 -o cveid
CVE-2015-6184
CVE-2015-6051
CVE-2015-6048
CVE-2015-6042
CVE-2016-1002
CVE-2016-1005

76 Chapter 8

CVE-2016-1001
CVE-2016-1000
CVE-2016-0999
CVE-2016-0998
CVE-2016-0997
CVE-2016-0996
--snip--

Listing 8-13: CVE IDs that affect Windows 10

The vulnerability management system you’re building will handle
tasks like this entirely with the database. But the commands like the one
in Listing 8-12 can be useful for filtering a list of vulnerabilities to just those
that affect the operating systems your organization has deployed.

Finding Out More About a CVE
To find out more about a specific CVE, specify a CVE ID using the –c flag.
Searching for CVE-2016-0996 from Listing 8-13 gives us the results in
Listing 8-14.

$./search.py -c CVE-2016-0996 -o json | python -m json.toolu
{
 "Modified": "2016-03-16T13:53:26.727-04:00",
 "Published": "2016-03-12T10:59:16.853-05:00",

 v "access": {
 "authentication": "NONE",
 "complexity": "MEDIUM",
 "vector": "NETWORK"
 },

 w "cvss": 9.3,
 "cvss-time": "2016-03-16T09:46:38.087-04:00",
 "id": "CVE-2016-0996",

 x "impact": {
 "availability": "COMPLETE",
 "confidentiality": "COMPLETE",
 "integrity": "COMPLETE"
 },

 y "references": [
 �"https://helpx.adobe.com/security/products/flash-player/apsb16-08

.html",
 "http://www.zerodayinitiative.com/advisories/ZDI-16-193/"
],

 z �"summary": "Use-after-free vulnerability in the setInterval method in
Adobe Flash Player before 18.0.0.333 and 19.x through 21.x before
21.0.0.182 on Windows and OS X and before 11.2.202.577 on Linux, Adobe
AIR before 21.0.0.176, Adobe AIR SDK before 21.0.0.176, and Adobe AIR
SDK & Compiler before 21.0.0.176 allows attackers to execute arbitrary
code via crafted arguments, a different vulnerability than CVE-2016-0987,
CVE-2016-0988, CVE-2016-0990, CVE-2016-0991, CVE-2016-0994, CVE-2016-0995,
CVE-2016-0997, CVE-2016-0998, CVE-2016-0999, and CVE-2016-1000.",

Using the Data Collection Tools 77

 { "vulnerable_configuration": [
 "cpe:2.3:a:adobe:flash_player_esr:18.0.0.329",
 "cpe:2.3:o:microsoft:windows",
 "cpe:2.3:o:apple:mac_os_x",
--snip--

Listing 8-14: Details of CVE-2016-0996

The output contains the access vectors for this vulnerability v and all
the relevant CVSS and common weakness enumeration (CWE) informa-
tion. (Note that, like OpenVAS, cve-search doesn’t provide CVSSv3 scores,
but only a CVSSv2 score w and details, via its access v and impact x sec-
tions.) Another section lists all external references y for this vulnerability:
they include a US-CERT alert, the Microsoft patch details, and a number
of third-party notifications as well. There’s a human-readable summary of
the vulnerability z and CPE information for all the known systems (OS or
application) that are subject to this vulnerability {.

By using the -o json flag, the command returns a block of JSON with-
out newlines or indentation, so you’ll need to pipe the output through the
Python tool json.tool u for readable formatting.

Text Searching the CVE Database
We can also use the -f flag to do an arbitrary text search across the CVE
database summary fields. Listing 8-15 shows the first (of many) results of a
search for “buffer overflow.”

$./search.py -f "buffer overflow"
{
 "Modified": "2008-09-05T16:40:25.38-04:00",
 "Published": "2005-01-10T00:00:00.000-05:00",
 "_id": {
 "$oid": "5706df571d41c81f2d58a882"
 },
 "access": {
 "authentication": "NONE",
 "complexity": "HIGH",
 "vector": "NETWORK"
 },
 "cvss": 5.1,
 "cvss-time": "2004-01-01T00:00:00.000-05:00",
 "id": "CVE-2004-1112",

--snip--

Listing 8-15: Searching for CVEs related to buffer overflows

With this search tool, you can find complete information for any vul-
nerabilities matching your specific criteria. By combining flags, you can
compile lists of, for instance, buffer overflow vulnerabilities from the last
year that affect Linux.

78 Chapter 8

Customize It
Although search.py doesn’t currently support output formatting for CVE
searches (only for product searches), you can use Linux command line
utilities, like jq, to parse JSON strings and even pull out specific fields.
Use these tools to write bash scripts to do whatever data manipulation
you please.

Here are a couple of examples:

•	 Generate a weekly list of relevant (for instance, high severity and affect-
ing Windows 10) vulnerabilities that have been added to the database
and then email it to security staff.

•	 Regularly look at “interesting” CVEs (perhaps one that is affecting your
organization that you’ve not yet fully addressed) and note whether new
reference URLs have been added to their records.

Your full vulnerability management system and some custom scripting
can handle the preceding two use cases, but sometimes it’s easier and more
straightforward to perform the same task with command line tools.

Summary
In this chapter, you learned about the main data sources—Nmap,
OpenVAS, and cve-search—for your vulnerability management program.
You tried each tool to understand the types of information you can gather
and started thinking about how to use the three tools to provide a more
complete vulnerability picture of your organization.

In Chapter 9, you’ll take the first steps toward painting that picture by
writing scripts that will parse and import scanner outputs into your vulner-
ability database.

In this chapter, you’ll learn to get the out­
puts from OpenVAS and Nmap into your

Mongo database. You’ll start by exploring
some general practices for working with data.

Next, you’ll look at the XML output formats of both
tools and learn to select the specific data fields you’re
interested in. Then you’ll walk through a few Python
scripts that will collect all this data, generate Mongo
documents, and insert those documents into the
database.

9
C R E A T I N G A N A S S E T A N D

V U L N E R A B I L I T Y D A T A B A S E

80 Chapter 9

Preparing the Database
To design a database, you’ll need to understand your desired outcomes
and the analysis you’ll have to do to achieve those outcomes. Then you can
think about the data you’ll have to collect and the model you need to make
those analyses possible.

In this situation, you want a more secure environment to improve your
vulnerability posture. To make that improvement, you need information
about the hosts you’re trying to secure, and that information comes in two
varieties: persistent and dynamic.

Persistent information doesn’t change (or rarely changes); dynamic
information changes frequently. Your environment dictates how a data
point is categorized. For example, in some networks, IP addresses are stat­
ically assigned, but in others, dynamic host configuration protocol (DHCP) might
assign a different address after every reboot or even daily. Persistent data
will be collected once and updated as needed. Dynamic data associated
with a device will be updated every time a vulnerability scan is run against
that device.

Table 9-1 describes the host-based data that we’ll collect from the
Nmap and OpenVAS scans and how it’s categorized.

Table 9-1: Relevant Host Data

Data type Notes

Persistent

Hostname If available. In some cases, multiple hostnames might be reported.

MAC address If available.

IP address IPv4 address. If your environment uses IPv6, you can modify the
scripts accordingly to capture this information.

OS / CPE The OS version that was detected, including CPE if available.

Dynamic

Vulnerabilities Includes details reported by OpenVAS and a reference to the
cve‑search CVE entry.

Ports Ports that are open (listening for incoming data) including number,
protocol, and detected service.

Last scan date Automatically generated.

In the record (document) for each host, you’ll include a vulnerability
identifier for each vulnerability discovered on that host. You can use this
identifier to relate hosts to specific vulnerability and exploit information. A
good deal of data related to each vulnerability is stored in its own dataset
(collection, in Mongo parlance). This means that you’ll have a collection of
hosts and a collection of vulnerabilities with mappings from the former to
the latter.

In other words, vulnerability information is orthogonal to hosts: one
host might have one or more vulnerabilities, but each vulnerability is a

Creating an Asset and Vulnerability Database 81

data item, which you can relate to one or more hosts. The same is true
of exploits. Table 9-2 contains the vulnerability data you’ll collect in the
scripts later in the chapter.

Table 9-2: Relevant Vulnerability Data

Data type Notes

CVE/BID ID CVE or Bugtraq ID for the vulnerability. This is an industry
standard identifier.

Date reported When the vulnerability was first reported—by the vendor, by a
third party, or by active exploitation.

Affected software Names and CPEs of software (or OS) affected by the vulnerability.

CVSS CVSS score for the vulnerability.

Description Free-form text description of the vulnerability.

Advisory URLs URLs pointing to advisories about the vulnerability that might
contain more information.

Update URLs URLs pointing to update information for addressing the
vulnerability.

Understanding the Database Structure
Although MongoDB can accept unstructured data, your scripting and data
analysis will be much easier if you have some idea of the data types you’re
trying to capture and how you want to structure them in your Mongo docu­
ments. If you’re using a relational database, such as SQL, this step is abso­
lutely essential, because you can’t insert data into an empty database with
no structure.

R E L AT ION A L V S. NON-R E L AT ION A L DATA BA SE S

A full discussion of the difference between database types could be its own
substantial volume and is beyond the scope of this book. But I’ll provide a
crash course.

A relational database is what most people think of when you talk about
databases: it’s a database that contains tables consisting of rows and col‑
umns of structured data. Each row is identified by a unique key. Connections
between tables are made by sharing key values, so a value in one table might
point to an entire row of data in another table—hence the name “relational.”

Databases that don’t share this structure are non-relational databases. A
wide variety of databases exist under this heading, including MongoDB. These
non-relational databases might be as simple as a list of key-value pairs, but
they can also allow you to arbitrarily structure data.

(continued)

82 Chapter 9

Let’s look at an example. A relational database might have a table
labeled NAME with columns FirstName, MiddleName, LastName, like so:

FirstName MiddleName LastName

Andrew Philip Magnusson

Jorge Luis Borges

But a rigid structure like this doesn’t always make sense: the standard
first‑middle-last paradigm can be difficult to map onto names in other cultures.
For instance, Jorge Luis Borges, the Argentine author, had several more names:
Jorge Francisco Isidoro Luis Borges Acevedo. In MongoDB, you might have a
collection (roughly analogous to a table) called NAME that can include all sorts
of name structures in their own documents (roughly analogous to data rows),
for instance:

{
 "FirstName":"Jorge",
 "MiddleNames": ["Francisco","Isidoro","Luis"],
 "LastNames":["Borges","Acevedo"]
}

A simpler name might just have FirstName and a single value in LastNames:

{
 "FirstName":"Alexander",
 "LastNames":"Lovelace"
}

Each type of database has its advantages. Relational databases have
a predefined data structure that makes queries, indexing, and database
maintenance very fast but at a cost: they have a rigid structure that cannot be
changed without major effort, especially once the database is being used in
a production environment. Non-relational databases let you define your data
structure more loosely and change it as you go, offering flexibility. But they’ll
never be quite as fast, and you can’t count on specific data fields existing in
your documents. In the preceding NAME data example, you’ll need to make
sure your code is sufficiently robust to not crash when a MiddleNames field
isn’t present!

Now that you have an idea of the kinds of data you want to collect, you
can start building your database structure. In this section, we’ll look at how
you might represent this data in Mongo or in SQL formats.

Listing 9-1 shows an example of host data in JavaScript Object Notation
(JSON) format, which is representative of the MongoDB internal data

Creating an Asset and Vulnerability Database 83

structure. Strictly speaking, Mongo stores its data in binary JSON (BSON), a
more compact way of representing the same data as JSON. But for the pur­
poses of interacting with Mongo, you’ll use JSON.

{
 u "_id" : ObjectId("57d734bf1d41c8b71daaee0e"),
 v "mac" : {

 "vendor" : "Apple",
 "addr" : "6C:70:9F:D0:31:6F"
 },
 "ip" : "10.0.1.1",

 w "ports" : [
 {
 "state" : "open",
 "port" : "53",
 "proto" : "tcp",
 "service" : "domain"
 },
--snip--
],
 "updated" : ISODate("2020-01-05T02:19:11.966Z"),

 x "hostnames" : [
"airport",
"airport.local"
],
 "os" : [
 {
 "cpe" : [
 "cpe:/o:netbsd:netbsd:5"
],
 "osname" : "NetBSD 5.0 – 5.99.5",
 "accuracy" : "100"
 }
],

 y "oids" : [
 {
 "proto" : "tcp",
 "oid" : "1.3.6.1.4.1.25623.1.0.80091",
 "port" : "general"
 }
]
}

Listing 9-1: An example JSON host description document

N O T E 	 In the JSON format, keys and values are delineated by double quotes. A key is a
unique string that labels the following value. A value can be a simple string, a
nested JSON document (delineated by curly brackets), or a list of strings or nested
documents (surrounded by square brackets). This format lets you build a sophisti‑
cated data structure that is easy to parse and traverse.

84 Chapter 9

In Listing 9-1, the _id field u, auto-generated by Mongo, uniquely
identifies the document within the database. The value of the mac field v
is a nested document that contains the MAC address and the MAC vendor.
The ports key w contains a list of documents that each contain informa­
tion about an open port. Because a host often has different hostnames
depending on which one you ask—domain name system (DNS) servers might
use one name and a NetBIOS lookup something else—hostnames x is a list
instead of a single value. The oids key y contains a list of documents con­
taining an OID, a protocol, and a port that OID was detected on. The OID
is a unique vulnerability identifier generated by OpenVAS that you’ll use
to map vulnerabilities to hosts. In the vulnerabilities collection, there will
be one unique document (representing a specific vulnerability) for each
unique OID.

SQL TA BL E S T RUC T UR E

If you’re using SQL, you’ll need to know the data type you’ll be storing for each
data field to define your database tables. Here are example table definitions you
might use in SQL. Keep in mind that the definitions in Listing 9-2 are not perfectly
optimized and there are ways to improve the structure for large databases—see
“Customize It” on page 86 for more. (The following definitions are for MySQL;
you might need to adjust for other SQL flavors.)

u CREATE TABLE hosts
 (macid CHAR(17), macvendor VARCHAR(25),
 ip VARCHAR(15), hostname VARCHAR(100),

 v updated DATETIME DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 id INT AUTO_INCREMENT PRIMARY KEY);

w CREATE TABLE ports
 (id INT AUTO_INCREMENT PRIMARY KEY,

 x host_id INT NOT NULL, state VARCHAR(6),
 port INT, protocol VARCHAR(3), service VARCHAR(25),

 y FOREIGN KEY(host_id) REFERENCES hosts(id));
z CREATE TABLE os

 (id INT AUTO_INCREMENT PRIMARY KEY,
 cpe VARCHAR(50), osname VARCHAR (50), accuracy INT,
 FOREIGN KEY(host_id) REFERENCES hosts(id));

{ CREATE TABLE hostoid
 (id INT AUTO_INCREMENT PRIMARY KEY,
 FOREIGN KEY(oid_id) REFERENCES oids(id),
 FOREIGN KEY(host_id) REFERENCES hosts(id));

Listing 9-2: MySQL table definitions for host data

These commands will create tables in an existing SQL database. Because SQL
doesn’t nest data directly, as you can do in Mongo, you’ll need to split your data
into multiple tables. Here you have table definitions for hosts u, ports w, and OS
information z and a table mapping hosts to OIDs {. You’ll need to use keys to
bring it all together.

Creating an Asset and Vulnerability Database 85

A key in SQL identifies an individual record in a specific table, mostly
by using foreign keys in other tables that refer back to the original table. For
example, in the ports table is a field (host_id x) that is explicitly defined as a
foreign key y: the id field in the hosts table. This key lets you query the data‑
base and find port information for a specific host. The same lines are in the os
definition, and all together the three tables are linked to provide direct access
to all the persistent host information you need. An updated field v is automati‑
cally changed every time a hosts record is changed.

Now let’s look at the vulnerability data in Listing 9-3. The JSON for a
vulnerability document contains all the information listed in Table 9-2, as
well as some extra fields reported by the OpenVAS scanner. If space is at a
premium, you might not need to record all this information in your data­
base. But if you have the space, it can’t hurt to keep it around for future use.

{
 "_id" : ObjectId("57fc2c891d41c805cf22111b"),

 u "oid" : "1.3.6.1.4.1.25623.1.0.105354",
 "summary" : "The remote GSA is prone to a default account authentication
 bypass vulnerability.",
 "cvss" : 10,
 "vuldetect" : "Try to login with default credentials.",
 "solution_type" : "Workaround",
 "qod_type" : "exploit",
 "bid" : "NOBID",
 "threat" : "High",
 "description" : null,
 "proto" : "tcp",
 "insight" : "It was possible to login with default
 credentials: admin/admin",
 "family" : "Default Accounts",
 "solution" : "Change the password.",
 "xref" : "NOXREF",
 "port" : "443",
 "impact" : "This issue may be exploited by a remote attacker to gain
 access to sensitive information or modify system
 configuration.",

 v "cve" : [
 "NOCVE"
],
 "name" : "GSA Default Admin Credentials",
 "updated" : ISODate("2016-10-11T00:04:25.596Z"),
 "cvss_base_vector" : "AV:N/AC:L/Au:N/C:C/I:C/A:C"
}

Listing 9-3: An example JSON vulnerability description document

86 Chapter 9

As with Listing 9-1, much of this data is fairly self-explanatory, but there
are a few important points to note. The oid value u can be added directly
to the list of oids in the host document: each vulnerability that OpenVAS
finds on a host will be given a separate OID. So the OID will be put into the
host document, and the details of the OID will be in the vulnerability col­
lection. When you need to report on vulnerabilities found on a given host,
you’ll first retrieve the host record and then retrieve the records associated
with any OIDs recorded for that host. The cve key v has a list as its value,
because individual vulnerabilities are often associated with more than one
CVE. In this example, the only CVE reported is NOCVE, which is a standard
placeholder when MITRE has not assigned a CVE ID to a vulnerability.

As you proceed through the examples that follow, consider how the
scripts build documents in Mongo and make any necessary adjustments for
your own needs.

Customize It
Think carefully about your needs and customize the information you
collect accordingly. For example, let’s say your organization has specific
VLANs set up for different purposes. You can add a key-value pair in your
Mongo database to specify which VLAN a host is located on, or customize
your scripts to determine the VLAN from the host’s IP address, to facilitate
analysis of which hosts are on which network segments. Depending on your
network configuration, this might require consulting external systems or
databases.

Return to your data definitions as you think about the new information
you’re gathering and how you want to store it. If you’re using an unstruc­
tured database like Mongo, it’s easy enough—just add key-value pairs. But
if you’re using SQL, you’ll need to reconfigure your database to define
those new data fields.

If you’re using SQL, you can optimize the table structure to save some
space when handling large datasets. For example, instead of a ports table
that maps directly to hosts records using records like port, service, protocol,
host ID, you could have a third table, host-to-port mappings, so any one port
record could map to any number of hosts, and vice versa. Make a hosts
table with host ID and other fields; a ports table with port, service, protocol
records; and a host-port table with port ID and host ID records. In small envi­
ronments, the difference is minimal, but in larger organizations, the space
savings could be substantial.

Getting Nmap into the Database
Now you’ll start connecting the tools you’ve deployed. First, you’ll need to
write a script to input your Nmap scan data into the Mongo database.

Creating an Asset and Vulnerability Database 87

Defining the Requirements
As with any script, decide what you want your ingestion script to accom­
plish: namely, collecting the host data laid out in Table 9-1. We’ll start this
process by looking at the Nmap XML output to define which portions of it
are important.

Listing 9-4 shows a segment of XML output from Nmap (run with the
OS detection flag -O).

--snip--
<host starttime="1473621609" endtime="1473627403"><status state="up"
reason="arp-response" reason_ttl="0"/>

u <address addr="10.0.1.4" addrtype="ipv4"/>
v <address addr="B8:E8:56:15:68:20" addrtype="mac" vendor="Apple"/>
w <hostnames>

</hostnames>
x <ports><extraports state="filtered" count="997">

<extrareasons reason="no-responses" count="997"/>
</extraports>
<port protocol="tcp" portid="22"><state state="open" reason="syn-ack"
reason_ttl="64"/><service name="ssh" method="table" conf="3"/></port>
--snip--
</ports>

y <os><portused state="open" proto="tcp" portid="22"/>
<osmatch name="Apple Mac OS X 10.10.2 (Darwin 14.1.0)"
accuracy="100" line="4734">
<osclass type="general purpose" vendor="Apple" osfamily="Mac OS X"
osgen="10.10.X" accuracy="100"><cpe>cpe:/o:apple:mac_os_x:10.10.2</cpe>
</osclass>
</osmatch>
<osmatch name="Apple Mac OS X 10.7.0 (Lion) - 10.10 (Yosemite)
or iOS 4.1 - 8.3 (Darwin 10.0.0 - 14.5.0)" accuracy="100" line="6164">
--snip--
<osclass type="phone" vendor="Apple" osfamily="iOS" osgen="4.X"

z accuracy="100"><cpe>cpe:/o:apple:iphone_os:4</cpe></osclass>
<osclass type="phone" vendor="Apple" osfamily="iOS" osgen="5.X"
accuracy="100"><cpe>cpe:/o:apple:iphone_os:5</cpe></osclass>
--snip--

Listing 9-4: Excerpt from Nmap XML output

We need to parse out the IP address u; MAC address v; hostname w
(if it’s available—it’s not here); open ports x with protocol, port number,
its state (open or closed), and a guess at the service running on that port;
and OS matches y. The MAC address also depends on availability: if the
destination host is more than one hop from the scanner, the MAC address
likely belongs to a router or switch rather than the actual host.

We record all the returned osmatch values y along with corresponding
CPE labels and accuracy tags z as a list to reflect Nmap’s uncertainty about
the match. In this example, multiple CPEs are reported as a 100 percent
accuracy match; when you produce a report for this host, you’ll have to
report all, none, or choose one based on other criteria.

88 Chapter 9

You need to associate all this information with a single host document
and distinguish that host document using a field that’s present in every scan
result. The hostname and MAC addresses might not be present or accurate,
so we use the IP address. If the IP changes regularly in your DHCP environ­
ment, a Windows NetBIOS name might be a better choice, that is, if you
can guarantee continuity, because NetBIOS names must be unique per
Windows domain.

You must also decide whether you want to create new host documents
for each scan or update existing documents. The reason is that in most use
cases, only some of the data changes from scan to scan—most prominently,
the list of vulnerabilities. It will save time and effort to update an existing
document with the new information you collect.

Building the Script
In Listing 9-5, IP addresses are authoritative, and new data for existing
hosts will overwrite old data. Of course, your requirements might differ.
The script iterates through an Nmap output XML file and inserts relevant
information into a Mongo database.

All the required information for a host is contained within a host tag,
so you need a simple loop to find each host tag, pull the appropriate sub­
tags, and then do a Mongo document insert for each host into the Mongo
hosts database.

#!/usr/bin/env python3

u from xml.etree.cElementTree import iterparse
from pymongo import MongoClient
import datetime, sys

v client = MongoClient('mongodb://localhost:27017')
w db = client['vulnmgt']

def usage():
 print ('''
Usage: $ nmap-insert.py <infile>
 ''')

x def main():
 if (len(sys.argv) < 2): # no files
 usage()
 exit(0)

 y infile = open(sys.argv[1], 'r')

 z for event, elem in iterparse(infile):
 { if elem.tag == "host":

 # add some defaults in case these come up empty
 macaddr = {}
 hostnames = []
 os = []

Creating an Asset and Vulnerability Database 89

 addrs = elem.findall("address")
 # all addresses, IPv4, v6 (if exists), MAC
 for addr in addrs:
 type = addr.get("addrtype")
 if (type == "ipv4"):
 ipaddr = addr.get("addr")
 if (type == "mac"): # there are two useful things to get here
 macaddr = {"addr": addr.get("addr"),
 "vendor": addr.get("vendor")}

 hostlist = elem.findall("hostname")
 for host in hostlist:
 hostnames += [{"name": host.get("name"),
 "type": host.get("type")}]

 # OS detection
 # We will be conservative and put it all in there.
 oslist = elem.find("os").findall("osmatch")
 for oseach in oslist:
 cpelist = []
 for cpe in oseach.findall("osclass"):
 cpelist += {cpe.findtext("cpe")}
 os += [{"osname": oseach.get("name"),
 "accuracy": oseach.get("accuracy"),
 "cpe": cpelist}]

 portlist = elem.find("ports").findall("port")
 ports = []
 for port in portlist:
 ports += [{"proto": port.get("protocol"),
 "port": port.get("portid"),
 "state": port.find("state").get("state"),
 "service": port.find("service").get("name")
 }]
 elem.clear()

 | host = {"ip": ipaddr,
 "hostnames": hostnames,
 "mac": macaddr,
 "ports": ports,
 "os": os,
 "updated": datetime.datetime.utcnow()
 }

 } if db.hosts.count({'ip': ipaddr}) > 0:
 db.hosts.update_one(
 {"ip": ipaddr},
 {"$set": host}
)
 else:
 db.hosts.insert(host)

90 Chapter 9

 ~ infile.close() # We're done.

main()

Listing 9-5: The nmap-insert.py code listing for Nmap database insertion

We import u iterparse from the xml library for the XML parsing,
MongoClient from pymongo to interact with the database, and datetime and sys
for generating the current date and file read/writes, respectively. Fill in
your Mongo server IP v and database information.

We encapsulate the main logic in a main() function x that we call at the
end of the script listing. This function first opens the input file y, which is
passed as an argument to the script, loops through every XML element z,
and gathers details from each host element {. Then it inserts or updates a
Mongo document } with that information for each host |. The script takes
the IP address as the canonical identifier of the host, creates a new docu­
ment if the IP doesn’t exist yet, and updates an existing document if that IP
is associated with it. Once the script runs out of XML to parse, it closes the
input file and exits ~.

Customize It
If your organization uses IPv6, or if IPv6 has finally taken over when you’re
reading this, record the IPv6 address instead of ignoring it as Listing 9-5
does. Keep in mind that IPv6 is no more authoritative than IPv4; a single
host might have multiple (and changing!) IPv6 addresses.

You can modify the script in Listing 9-5 to capture more (or all) of the
Nmap output for the database. Say you want to track Nmap’s run statistics.
Listing 9-6 shows a Python snippet example to parse the runstats XML
block, which for clarity you might place before the main if elem.tag ==
"host": { statement.

 if elem.tag == "runstats":
 finished = elem.find("finished")
 hosts = elem.find("hosts")
 elapsed = finished.get("elapsed")
 summary = finished.get("summary")
 hostsUp = hosts.get("up")
 hostsDown = hosts.get("down")
 hostsTotal = hosts.get("total")

Listing 9-6: Python snippet to parse runstats block

You can also add your own key-value pairs to the Mongo document. For
example, a high-value host tag will help prioritize vulnerabilities, because
vulnerabilities on high-value hosts are more pressing than those on normal
or low-value systems.

You can write one script to collect the data and insert it into the data­
base. Although this is more complicated to build, it simplifies scheduling

Creating an Asset and Vulnerability Database 91

because you only need to run one script rather than several. (Hint: use the
-oX - flags to send the Nmap output to STDOUT, which you can then pipe into
the input to the insertion script.)

Instead of manually parsing the XML, you can use libraries. Two
Python modules are available to control Nmap and parse its results:
python‑nmap and python-libnmap. Try both to see which you prefer.

BUIL D OR BOR ROW ?

A well-known dilemma you might face is whether you should write your own
code or use existing Python modules to do much of the work for you. Using
existing modules eliminates a lot of manual work, but it leads to more software
packages to think about and keep up-to-date. In this script, I chose manual cod‑
ing and more control, but both options are perfectly legitimate.

Getting OpenVAS into the Database
Once you’ve extracted the relevant Nmap data and inserted it into the data­
base, the next step is to do the same for OpenVAS.

Defining the Requirements
OpenVAS formats its output by result, which for OpenVAS means any find­
ings, from service detection to specific vulnerabilities. Listing 9-7 shows a
result for CVE-2016-2183 and CVE-2016-6329 on host 10.0.1.21.

--snip--
<result id="a3e8107e-0e6c-49b0-998b-739ef8ae0949">

 u <name>SSL/TLS: Report Vulnerable Cipher Suites for HTTPS</name>
 <comment/>
 <creation_time>2017-12-29T19:06:23Z</creation_time>
 <modification_time>2017-12-29T19:06:23Z</modification_time>
 <user_tags>
 <count>0</count>
 </user_tags>

 v �<Host>10.0.1.21<asset asset_id="5b8d8ed0-e0b1-42e0-
b164-d464bc779941"/></host>

 w <port>4000/tcp</port>
 <nvt oid="1.3.6.1.4.1.25623.1.0.108031">
 <type>nvt</type>

 x <name>SSL/TLS: Report Vulnerable Cipher Suites for HTTPS</name>
 <family>SSL and TLS</family>

 y <cvss_base>5.0</cvss_base>
 z <cve>CVE-2016-2183, CVE-2016-6329</cve>
 { <bid>NOBID</bid>
 | �<xref>URL:https://bettercrypto.org/, URL:https://mozilla.github.io

/server-side-tls/ssl-config-generator/, URL:https://sweet32.info/
</xref>

92 Chapter 9

 } �<tags>cvss_base_vector=AV:N/AC:L/Au:N/C:P/I:N/A:N|summary=This
routine reports all SSL/TLS cipher suites accepted by a
service where attack vectors exists only on HTTPS services.
|solution=The configuration of this service should be changed so
that it does not accept the listed cipher suites anymore.

Please see the references for more resources supporting you with this task.
|insight=These rules are applied for the evaluation of the vulnerable
cipher suites:

 �- 64-bit block cipher 3DES vulnerable to the SWEET32 attack (CVE-2016-2183).
|affected=Services accepting vulnerable SSL/TLS cipher suites via HTTPS.
|solution_type=Mitigation|qod_type=remote_app</tags>

 ~ <cert>
 <cert_ref id="CB-K17/1980" type="CERT-Bund"/>
 <cert_ref id="CB-K17/1871" type="CERT-Bund"/>
 <cert_ref id="CB-K17/1803" type="CERT-Bund"/>
 <cert_ref id="CB-K17/1753" type="CERT-Bund"/>
--snip--
 </result>
--snip--
</results>

Listing 9-7: Example result block from an OpenVAS XML scan report

So what information do you want from this scan? Recall that Table 9-2
identified relevant vulnerability data: cve z, bid {, date reported, affected
software, CVSS y, description ux}, advisory URLs |~, and update
URLs. OpenVAS reports most of this information, as well as the host v
and port w associated with the finding.

The cert section ~ includes links to known computer emergency
response team (CERT) advisories. Although the sample script in
Listing 9-8 ignores this section, parse this data if it’s important to you.

Mapping Vulnerabilities to Hosts
Most important is how you’ll structure all the data. The two different sets
of data, vulnerabilities and hosts, have implicit mappings between them:
host A has vulnerabilities X, Y, Z. Vulnerability X is on hosts A, B, C. There
are two obvious ways to represent this mapping. Each host can have a list of
vulnerabilities it’s subject to: host A would have a vulnerabilities list of X, Y,
Z within its structure. Alternatively, you could use the same mapping on the
vulnerability side. Vulnerability X would have a host tag that contains the
list of hosts A, B, C.

Both options are valid, and both are one-sided. If you store the data
with the vulnerabilities, host reporting is difficult: you have to look for all
the places that host A appears across the entire vulnerability database. The
reverse is true if you store all the vulnerability IDs with the hosts. In addi­
tion, if you store both mappings in both places, you risk ending up with
stale or orphaned mappings. Choose one depending on whether you want
to more easily report on vulnerabilities (and which hosts are affected) or
hosts (and which vulnerabilities they have).

Creating an Asset and Vulnerability Database 93

The script in Listing 9-8 goes with option 1: embedding vulnerability
identifiers in each host document. Host documents are likely to be longer-
lived than vulnerability documents. If your hosts are subject to a regular
patching regimen (which I understand is a tall order in some organiza­
tions), the host documents will remain for the long term. But the vulner­
ability documents, because they’re patched on a regular basis, will age out
of the database, using scripts you’ll see in Chapter 10. If this assumption
doesn’t hold in your organization, you might want to use option 2.

M A PPINGS IN SQL

There is a third mapping option that makes sense when you’re using SQL. If
you store the mappings in a third table with 1:1 mappings of hosts and vulner‑
abilities, you only need to search in one place for both kinds of reporting. For
example, “host A has vulnerability X” would be one record. Another would
be “host A has vulnerability Y” and so on. When reporting, you’d first find the
mappings you’re interested in (“all vulnerabilities on host A”) and then use the
other two tables to flesh out the details of host A and its vulnerabilities X, Y,
and Z. In a schematic, it would look something like this:

1.	 Query mapping table: find all records pertaining to host A and gather
associated vulnerabilities in set B.

2.	 Query host table: find details of host A.

3.	 Query vulnerabilities table: find all records pertaining to vulnerability
set B.

Experienced SQL users do this with JOIN statements in a single query;
amateurs like me find it easier to run a few queries in sequence. This third solu‑
tion is an example of database normalization. For more information, consult
Wikipedia or your nearest computer bookshelf.

Building the Script
The script in Listing 9-8 iterates over the result tags, pulls the relevant
data, and then sends that data to the database, keying off the OID as an
authoritative vulnerability identifier, as discussed earlier in the section
“Understanding the Database Structure” on page 81.

To build the vulnerability mapping, you must parse through the entire
set of returned documents and build a list of which vulnerabilities apply to
which hosts. Then replace the previous vulnerability list for each host with
the new list.

#!/usr/bin/env python3

from xml.etree.cElementTree import iterparse
from pymongo import MongoClient

94 Chapter 9

import datetime, sys

client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']

host - OIDs map
u oidList = {}

def usage():
 print ('''
Usage: $ openvas-insert.py <infile>
 ''')

def main():
 if (len(sys.argv) < 2): # no files
 usage()
 exit(0)

 infile = open(sys.argv[1], 'r')

 for event, elem in iterparse(infile):

 if elem.tag == "result":
 result = {}

 v ipaddr = elem.find("host").text
 (port, proto) = elem.find("port").text.split('/')
 result['port'] = port
 result['proto'] = proto
 nvtblock = elem.find("nvt") # a bunch of stuff is in here

 w oid = nvtblock.get("oid")
 result['oid'] = oid
 result['name'] = nvtblock.find("name").text
 result['family'] = nvtblock.find("family").text

 x cvss = float(nvtblock.find("cvss_base").text)
 if (cvss == 0):
 continue
 result['cvss'] = cvss

 # these fields might contain one or more comma-separated values.
 result['cve'] = nvtblock.find("cve").text.split(", ")
 result['bid'] = nvtblock.find("bid").text.split(", ")
 result['xref'] = nvtblock.find("xref").text.split(", ")

 y tags = nvtblock.find("tags").text.split("|")
 for item in tags:
 (tagname, tagvalue) = item.split("=", 1)
 result[tagname] = tagvalue
 result['threat'] = elem.find("threat").text
 result['updated'] = datetime.datetime.utcnow()
 elem.clear()

Creating an Asset and Vulnerability Database 95

 z if db.vulnerabilities.count({'oid': oid}) == 0:
 db.vulnerabilities.insert(result)

 { if ipaddr not in oidList.keys():
 oidList[ipaddr] = []
 oidList[ipaddr].append({'proto': proto, 'port': port, 'oid': oid})

 | for ipaddress in oidList.keys():
 if db.hosts.count({'ip': ipaddress}) == 0:
 db.hosts.insert({'ip': ipaddress,
 'mac': { 'addr': "", 'vendor': "Unknown"
},
 'ports': [],
 'hostnames': [],
 'os': [],
 'updated': datetime.datetime.utcnow(),
 'oids': oidList[ipaddress]})
 else:
 db.hosts.update_one({'ip': ipaddress},
 �{'$set': { 'updated':

datetime.datetime.utcnow(),
 'oids': oidList[ipaddress]}})

 infile.close() # we're done

main()

Listing 9-8: The openvas-insert.py code listing for OpenVAS database insertion

As with nmap-insert.py (Listing 9-5), you iterate over each result, col­
lecting the information you require. First, you get the vulnerable host’s IP
address v. Next, from subtags of the nvt tag, you get the OID (to identify
the vulnerability) w; the CVSS score (ignoring any vulnerabilities with a
CVSS score of 0) x; and the cve, bid, and xref fields (which contain one or
more comma-separated values). Then you get the key-value pairs from tags,
a free-form section in each vulnerability record that separates keys and val­
ues using a pipe character (|). Because you can’t know ahead of time what
will or won’t be in that field, this script simply parses all key-value pairs y
and adds them as is into the Mongo vulnerabilities document along with
the other data z. If the vulnerability already exists in the vulnerabilities
database, the script doesn’t insert anything.

Then you add or update an entry in the host-to-vulnerability map
oidList u for the host with information on each vulnerability found on that
host {. Once you’re finished going through all the vulnerabilities, you can
use that map to add OIDs to each affected host document in hosts | by
looping through the dictionary you created previously.

96 Chapter 9

Customize It
If you find other information in the OpenVAS scan results useful, store that
too. You could even store the entirety of the scan report data in a Mongo
document. But you’d probably want to parse out items like the tags section
into separate sections first. If you choose to go this route, it will take up a
lot more space!

Because there’s a lot of overlap in OpenVAS with the Nmap results, I
skipped importing any results (like open ports) that would duplicate Nmap.
You might want to supplement (or overwrite) the Nmap results or only use
OpenVAS.

If you’re interested in searching for specific vulnerability categories,
you can expand the cvss_base_vector tag before creating the Mongo docu­
ment (for example, "Access vector": "remote", "confidentiality impact": high"
and so on) by parsing this field in a similar way to the tags field, separating
keys and values by the : and / characters.

Listing 9-8 uses OIDs as a unique identifier rather than BID/CVE IDs
because not all scan results have the latter IDs but every result has an OID.
Unfortunately, this leads to another problem: OpenVAS uses the same OID
to track multiple instances of the same test on a host. For instance, it might
run the “service detection” test on every open port on a host and report
them all with the same OID but different descriptions. By only storing one
document per OID, this script will overwrite these colliding reports. But
it appears that this only occurs in low-importance (0.0 severity) tests, so I
ignored those results entirely. Doing so might not suit your use case. I also
considered (but eventually decided against) creating a hash from certain
values—say, OID, summary, port, and description—and using that as the
unique identifier. That way the script would only store a single instance of
any given test result but not lose any data. If these low-severity test results
are important in your environment, consider replacing OID with hash as the
authoritative vulnerability identifier.

Similarly, my solution to the issue of stale vulnerability mappings—
deleting all old mappings per host and replacing them—might not work
in your environment, especially if you’re pulling vulnerability data from
multiple scanners. If you add a scanner tag to the vulnerability mappings in
your host documents, you can delete only the appropriate mappings when
importing new scan results.

Summary
In this chapter, you took your first steps toward building a working vulner­
ability management system. Congratulations! With the Nmap and OpenVAS
data coming into your database, you can start generating simple reports
that provide insight into your organization’s current vulnerability status.

But before creating reports, you need to pause and do a few mainte­
nance tasks. In the next chapter, you’ll explore ways to improve your data­
base structure and search time with indexes. You’ll also write a script that
automatically ages out old data to ensure that your reporting contains only
fresh, actionable vulnerability information.

Your database now contains information
about hosts and vulnerabilities that you

parsed out of Nmap and OpenVAS scan
results. To generate meaningful reports, you

need to start with a quality database that contains
accurate, consistent, and recent information about
your environment. Being able to generate those
reports quickly is also beneficial. The examples in
this chapter show you how to improve your database.
You’ll add indexes to speed query performance and
maintain data integrity by restricting the values that
you can place in the index. In addition, you’ll auto-
matically remove stale data so your reports are based
only on the most recent vulnerability findings.

10
M A I N T A I N I N G T H E D A T A B A S E

98 Chapter 10

Defining Database Indexes
In Mongo, marking a key as an index indicates to the underlying system
that you’ll likely run many searches of that specific key-value pair across
documents in the collection. For this reason, Mongo maintains an index of
the values for that particular key to enable much faster search and retrieval.

You should add indexes to your document collections in Mongo for
two reasons. First, by setting a certain key as an index, you can search
against that key more quickly and efficiently. This practice will become
more important as your database grows and you create analysis scripts
that query the database heavily.

Second, indexes help with data integrity. An index with the unique
property tells Mongo there can only be one document with a given key
value, which makes the database resilient to accidental data duplication.
For example, if you set the IP address key as a unique index, any attempts
to add new documents with the same IP address as an existing document
will result in an error.

Setting Indexes
You can set indexes using the createIndex command. For now, just set
indexes for the uniquely identifying fields in each collection: IP address
(for hosts) and OID (for vulnerabilities). The syntax to set an index is as
follows:

db.hosts.createIndex({keyname:1}, {unique:1})

In this snippet, keyname indicates you’re making an index, and unique:1
tells Mongo you want it to be a unique key.

Now open Mongo and set a couple of indexes, as shown in Listing 10-1.

$ mongo
> use vulnmgt
switched to db vulnmgt
> db.hosts.createIndex({ip:1}, {unique:1})

u {
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}
> db.vulnerabilities.createIndex({oid:1}, {unique:1})
{
 "createdCollectionAutomatically" : false,
 "numIndexesBefore" : 1,
 "numIndexesAfter" : 2,
 "ok" : 1
}

Listing 10-1: Creating indexes

Maintaining the Database 99

Creating indexes can take a nontrivial amount of time depending on
your document collection’s size, which is all the more reason to create your
indexes ahead of time! If the createIndex command is successful, it returns a
JSON document with information about the index u.

Testing Indexes
After setting up your unique indexes, test them to ensure that you can’t
insert new documents using existing key values: find an existing key and
then attempt to create a new document using that same key value, as shown
in Listing 10-2.

> db.hosts.find({ip: "10.0.1.18"})
{ "_id" : ObjectId("57d734bf1d41c8b71daaee13"), "mac" : { "vendor" :
"Raspberry Pi Foundation", "addr" : "B8:27:EB:59:A8:E1" }, "ip" : "10.0.1.18",
"ports" : [{ "port" : "22", "state" : "open", "service" :
--snip--
> db.hosts.insert({ip:"10.0.1.18"})
WriteResult({
 "nInserted" : 0,
 "writeError" : {
 "code" : 11000,

 u �"errmsg" : "insertDocument :: caused by :: 11000 E11000 duplicate key
error index: vulnmgt.hosts.$ip_1 dup key: { : \"10.0.1.18\" }"

 }
})
> db.vulnerabilities.find({oid:"1.3.6.1.4.1.25623.1.0.80091"})
{ "_id" : ObjectId("57fc2c891d41c805cf22111f"), "oid" :
"1.3.6.1.4.1.25623.1.0.80091", "summary" : "The remote host implements TCP
timestamps and therefore allows to compute\nthe uptime.", "cvss" : 2.6,
--snip--
> db.vulnerabilities.insert({oid:"1.3.6.1.4.1.25623.1.0.80091"})
WriteResult({
 "nInserted" : 0,
 "writeError" : {
 "code" : 11000,

 v �"errmsg" : "insertDocument :: caused by :: 11000 E11000 duplicate
key error index: vulnmgt.vulnerabilities.$oid_1 dup key: { :
\"1.3.6.1.4.1.25623.1.0.80091\" }"

 }
})

Listing 10-2: Testing uniqueness constraints

Mongo returns a duplicate key index error (u, v) when you try to add
new documents using the same unique index values as existing documents.
This error test should protect you from any sloppy coding leading to dupli-
cation in your database collections.

100 Chapter 10

Customize It
You can use other keys in your document structure as indexes. For instance,
if you used a hash value to uniquely identify vulnerability results in
Chapter 9, you would use that as an index rather than the OID.

If your database is already sizeable, or you expect it to become even
larger before you determine the specific queries you’ll be using in
Chapters 11 and 13, you can read ahead now and determine which keys
you want to index to save some time.

Keeping the Data Fresh
Your reports are only as good as the data they rely on, so it’s important to
make sure your information is up-to-date.

Your scripts to insert host information from Nmap and OpenVAS will
update host information and add new hosts as needed. But what about old
hosts? Imagine you scan a server in January and it appears in your database,
but it gets decommissioned in February. You need to cull out-of-date infor-
mation from your database to make sure you’re reporting on actual hosts
and vulnerabilities, not phantoms.

You can leave the vulnerabilities database as is because it contains
vulnerability information that should be relatively static once added to the
database. Vulnerability mappings are cleared and regenerated every time
the vulnerability scan reports are imported (see “Getting OpenVAS into the
Database” on page 91), so those shouldn’t get stale as long as you regu-
larly scan and ingest the results.

Determining the Cleanup Parameters
 If you delete all entries that aren’t found in the latest scan, you risk losing
important data simply because a system was offline or unreachable at scan
time. But if you keep data indefinitely, you might fill the database with
irrelevant data, making it harder to find the active information you need.
How long should you keep stale data? Or, how many scans can pass with no
updates to a specific host before you decide it’s gone and you can remove it?

The answer depends on how frequently you scan and any asset man-
agement policies in place at your organization. The script in the next sec-
tion assumes that scans are weekly, and any information that hasn’t been
updated for one month (four scan cycles) is considered deprecated and
removed.

The scripts so far insert all database entries with timestamps and
update those timestamps whenever the data is updated. So you can use
the timestamps to delete documents in the hosts database that haven’t
been updated in at least four weeks.

There are a few ways to perform this cleanup: you can run the com-
mands manually from the Mongo command line, write a bash script that
automatically runs the Mongo commands, or wrap the whole thing in a
Python script. For the sake of consistency, we’ll do the cleanup in Python.

Maintaining the Database 101

Cleaning Up Your Database with Python
Listing 10-3 cleans up the database by deleting unchanged records older
than a certain date. By default, this script assumes any data older than
28 days is stale and can be removed.

#!/usr/bin/env python3

v0.2
Andrew Magnusson

from pymongo import MongoClient
import datetime, sys

client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']

u olderThan = 28

def main():

 v date = datetime.datetime.utcnow()
 w oldDate = date - datetime.timedelta(days=olderThan)

 x hostsremoved = db.hosts.find({'updated': {'$lt': oldDate}}).count()
 y db.hosts.remove({'updated': {'$lt': oldDate}})

 z print("Stale hosts removed:", hostsremoved)

main()

Listing 10-3: A simple script (db-clean.py) that cleans up your database

This script calculates the current date v and then uses olderThan u to
get the cutoff date for removing documents w. Then it queries the database
to get a list of all documents where the value of updated is older than the cut-
off date x, deletes those documents y by telling Mongo to remove all, and
prints the list of removed documents z.

Because this script assumes a 28-day deletion interval, you should run it
at least once every 28 days by scheduling it with cron. We’ll look at schedul-
ing in more detail in Chapter 12.

Customize It
Customize the “stale data” variable (olderThan) in the script in Listing 10-3
to correspond to how often you run your Nmap and vulnerability scanner
scans. We’ll look at scan intervals in more depth in Chapter 12.

You can also use Mongo TTL indexes instead of a script. Adding a TTL
index to your host collection tells Mongo to delete records automatically if,
for instance, their updated field hasn’t been changed in more than 28 days.
But be careful not to let those deletion intervals happen while you’re run-
ning analyses on your data.

102 Chapter 10

Summary
Now that you’ve increased your database’s speed and your data’s quality,
you can start looking at what your database can do for you. In Chapter 11,
you’ll learn how to extract information from your database and put it into
human-readable form, starting with simple asset and vulnerability reports.

Now that you have some asset and vulner-
ability data to work with, you’ll use that

data to generate reports about the asset
information for each device in your database.

When your boss asks, “How many Linux servers do we
have?” or “How many of our desktops are susceptible
to this new zero-day vulnerability I heard about on
the news this morning?” you can use these reports
to provide a confident answer. Before diving into this
chapter, be sure to work through the database main-
tenance steps in Chapter 10.

11
G E N E R A T I N G A S S E T A N D

V U L N E R A B I L I T Y R E P O R T S

104 Chapter 11

Asset Reports
An asset report is an overview of all the different systems in your environ-
ment. It includes information about which OS and services each is running
and how many vulnerabilities each has. Asset reports are useful when you
want an overview of your organization’s vulnerability environment on a
host-by-host basis. Questions you can answer with this report include:

•	 How many hosts are in my environment?

•	 How many Linux servers do I have?

•	 How many vulnerabilities are on my production servers?

•	 Which of my workstations is most in need of patching?

Planning Your Report
When planning your reports, take the time to determine the information
your report should contain. You already have an extensive amount of data,
including a list of hosts with OS information, open ports, services, and vul-
nerabilities. You could just dump all of this data into an enormous spread-
sheet, but then you’d have to sift through that data. Instead, we’ll make a
CSV file—a smaller and more readable spreadsheet—with only the most
important data.

You can use Microsoft Excel or any other spreadsheet program to view
and sort the data in a CSV file, create more detailed reports, or do further
data analysis. For example, you might create a pivot table showing vulner-
ability counts per OS or summarize the asset list by OS or by open ports.

The script we’ll use will collect the following information about each
host in the database:

•	 IP address

•	 Hostname (if available)

•	 OS

•	 Open ports (TCP and UDP)

•	 Services detected

•	 Number of vulnerabilities found

•	 List of vulnerabilities by CVE

Table 11-1 shows examples of output for each column, with open
ports, detected services, and the list of CVEs collapsed into lists of
semicolon-separated values.

Collapsing fields with multiple values preserves the data in a searchable
format at the cost of some readability. But it’s a necessary compromise to
represent all the data in a single CSV-formatted record.

Generating Asset and Vulnerability Reports 105

Table 11-1: Asset Report Output Format

Column name Example data

IP Address 10.0.1.1

Hostname

OS NetBSD 5.0 – 5.99.5

Open TCP ports 53; 5009; 10000;

Open UDP ports

Detected services domain; snet-sensor-mgmt; airport-admin;

Vulnerabilities found 1

List of CVEs NOCVE

Getting the Data
Because we primarily want to focus on hosts, our first task will be to find a
list of hosts. In this Mongo database, you’re using IP addresses to uniquely
identify each host, so you’re guaranteed to have only one unique document
per IP address.

To get a list of distinct IP addresses in the hosts collection, enter this
command in the Mongo shell:

> db.hosts.distinct("ip")

Once you have that list, run the query in Listing 11-1, which uses find to
get detailed information about a host with a given IP.

u > db.hosts.find({ip:"10.0.1.18"})
{
 "_id": ObjectId("57d734bf1d41c8b71daaee13"),
 "mac": {
 "vendor": "Raspberry Pi Foundation",
 "addr": "B8:27:EB:59:A8:E1"
 },
 "ip": "10.0.1.18",

 v "ports": [
 {
 "state": "open",

 "port": "22",
 "proto": "tcp",
 "service": "ssh"

 },
 {
 "state": "open",
 "port": "80",
 "proto": "tcp",

106 Chapter 11

 "service": "http"
 },
--snip--
 "updated": ISODate("2020-01-05T02:19:11.974Z"),

 w "hostnames": [],
 "os": [
 {
 "cpe": [
 "cpe:/o:linux:linux_kernel:3",
 "cpe:/o:linux:linux_kernel:4"
],

 x "osname": "Linux 3.2 - 4.0",
 "accuracy": "100"
 }
],
 "oids": [
 {
 "proto": "tcp",

 y "oid": "1.3.6.1.4.1.25623.1.0.80091",
 "port": "general"
 }
]

Listing 11-1: Mongo output for one ip, reformatted for clarity

The output of the db.hosts.find query u gives you open ports v with
port numbers, protocols proto, and service names; a list of detected host-
names (if any) w; the detected OS name (if any) x; and the OIDs of any
vulnerabilities the scanner found on this host y.

You can look up each oid from the host document to get the associated
CVE or CVEs using the script in Listing 11-2.

> db.vulnerabilities.find({oid:"1.3.6.1.4.1.25623.1.0.80091"})
{
 "_id": ObjectId("57fc2c891d41c805cf22111f"),
 "oid": "1.3.6.1.4.1.25623.1.0.80091",
 �"summary": "The remote host implements TCP timestamps and therefore allows
to compute\nthe uptime.",

 "cvss": 2.6,
 �"vuldetect": "Special IP packets are forged and sent with a little delay in
between to the\ntarget IP. The responses are searched for a timestamps. If
found, the\ntimestamps are reported.",

 "bid": "NOBID",
 "affected": "TCP/IPv4 implementations that implement RFC1323.",
 "threat": "Low",
 �"description": "It was detected that the host implements RFC1323.\n\nThe
following timestamps were retrieved with a delay of 1 seconds in-between:\
nPaket 1: 1\nPaket 2: 1",

 "proto": "tcp",
 �"insight": "The remote host implements TCP timestamps, as defined by
RFC1323.",

--snip--

Generating Asset and Vulnerability Reports 107

 �"impact": "A side effect of this feature is that the uptime of the remote\
nhost can sometimes be computed.",

 u "cve": [
 "NOCVE"
],
 "name": "TCP timestamps",
 "updated": ISODate("2020-10-11T00:04:25.601Z"),
 "cvss_base_vector": "AV:N/AC:H/Au:N/C:P/I:N/A:N"
}

Listing 11-2: Excerpted Mongo output for one oid, reformatted for clarity

Right now, we’re only interested in the CVE or CVEs associated with
this vulnerability u. But the output from Listing 11-2 provides a good deal
of additional information that you can mine later. These general queries
will obtain more information than you need, which is why we’ll use the
script to parse out the information we want to focus on.

There is one more wrinkle: as you saw in “Getting OpenVAS into the
Database” on page 91, each OID might be associated with more than one
CVE. Do you treat each associated CVE as a separate vulnerability in your
vulnerability totals? Or, do you go by the OID count, which might be differ-
ent from the count of specific CVEs? The script in the next section uses the
OID count because it better captures the results the scanner returned. In
general, multiple CVEs associated with a single OID are very similar. The
alternative is to base the count on the total number of NOCVE or CVE-XXX-XXXX
results discovered. This approach makes sense if you’re only interested in
unique results that are severe enough to have their own CVE identifier (not
the numerous low-severity results OpenVAS will also return).

Script Listing
Listing 11-3 uses the queries we built in the previous section to generate the
asset report.

#!/usr/bin/env python3
from pymongo import MongoClient

u import datetime, sys, csv
client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']
outputFile = "asset-report.csv"

v �header = ['IP Address', 'Hostname', 'OS', 'Open TCP Ports',
'Open UDP Ports', 'Detected Services', 'Vulnerabilities Found',
'List of CVEs']
def main():
 with open(outputFile, 'w') as csvfile:
 linewriter = csv.writer(csvfile)

 w linewriter.writerow(header)
 iplist = db.hosts.distinct("ip")

 x for ip in iplist:
 details = db.hosts.find_one({'ip':ip})
 openTCPPorts = ""
 openUDPPorts = ""

108 Chapter 11

 detectedServices = ""
 serviceList = []

 y for portService in details['ports']:
 if portService['proto'] == "tcp":
 openTCPPorts += portService['port'] + "; "
 elif portService['proto'] == "udp":
 openUDPPorts += portService['port'] + "; "
 serviceList.append(portService['service'])

 z serviceList = set(serviceList)
 for service in serviceList:
 detectedServices += service + "; "
 cveList = ""

 { if 'oids' in details.keys():
 vulnCount = len(details['oids'])
 for oidItem in details['oids']:
 �oidCves = db.vulnerabilities.find_one({'oid':

oidItem['oid']})['cve']
 for cve in oidCves:
 cveList += cve + "; "
 else:
 vulnCount = 0

 | if details['os'] != []:
 os = details['os'][0]['osname']
 else:
 os = "Unknown"
 if details['hostnames'] != []:
 hostname = details['hostnames'][0]
 else:
 hostname = ""

 } �record = [details['ip'], hostname, os, openTCPPorts,
openUDPPorts, detectedServices, vulnCount, cveList]

 linewriter.writerow(record)
 ~ csvfile.close()

main()

Listing 11-3: Script listing for asset-report.py

The script has two primary parts: the headers and declarations, and
the main loop inside main(). To output to a CSV file, import the Python csv
library u. The overall format of your CSV file is set with the header array v,
which will be the first line to write to the output file w.

The main loop in the script x goes through a list of unique IP addresses
in the Mongo database and retrieves each IP’s associated document. From
the ports structure y, we collect all open ports (TCP and UDP) and ser-
vice names, deduplicate the list of service names (because multiple ports
might report the same service name) by casting it to a set z, and then write
the ports and names to semicolon-separated strings. To get the vulner-
ability count and list, we check the host details for the oids key, count the
OIDs found, and then query the vulnerabilities collection to get the cor-
responding CVE identifiers {. Next, we collect the OS name or, if none is
included, report the detected OS as Unknown |. At the end, we collate all this

Generating Asset and Vulnerability Reports 109

information into a single line of the output CSV } and write it to the output
file. Then we move on to the next IP in the list. When the loop finishes with
all the IP addresses, we close the CSV file, which writes the output to disk ~.

Customize It
You can output the asset report as a nicely formatted HTML, PDF, or Word
document. Modules for all three exist for Python. But reports in those
formats aren’t easily modified and sorted in another program the way that
CSVs are. So you might sort the assets by IP, OS, or number of vulnerabili-
ties in the script before writing the information to a file.

You can collect different details about your assets, depending on your
needs, or manipulate certain fields further. For example, the detected OS
names are often too granular (or not granular enough) to be useful for
aggregation. So you can create a combined OS type field like “Windows” or
“Linux” using string matching or regular expressions on the osname field to
categorize each host under a more general OS type.

If you want to report on a subset of hosts, you can add logic either in
the MongoDB query or in the Python script to select a subset of returned
records. See Chapter 13 for more information on how to do this.

Vulnerability Reports
A vulnerability report is an overview of the specific vulnerabilities in your
environment. This report is useful for addressing urgent vulnerabilities.
For instance, if you can show that a particular vulnerability is widespread
in your organization, you can build a case to do an emergency patch.

To generate the report, you’ll write a script that looks for relevant data
in your Mongo database and outputs it to a CSV file that is ready for further
analysis in a spreadsheet program.

Planning Your Report
As with the previous script, you should first decide what you want to know
about the vulnerabilities in your environment. Many fields in the vulner-
ability database (vulnmgt) that you imported from the scan results and in
cvedb (this database is created by cve-search and is the source of most vul-
nerability details) aren’t presently relevant. Which do we want to focus on?
Items in the following list should be plenty for now:

•	 CVE ID

•	 Title (from cvedb)

•	 Description (from cvedb)

•	 CVSS score (from cvedb)

•	 CVSS details (from cvedb)

•	 Number of hosts with this vulnerability

•	 List of hosts with this vulnerability, by IP

110 Chapter 11

The “number of hosts” field plus the CVSS field will let you prioritize
vulnerabilities by sorting the results in a spreadsheet program.

Table 11-2 shows examples of output for each column, again with mul-
tiple values for one field collapsed as a semicolon-separated list.

Table 11-2: Vulnerability Report Output Format

Column name Example data

CVE ID NOCVE

Description The remote host implements TCP time-
stamps; allows for computing the uptime

CVSS 2.6

Confidentiality impact, Integrity impact,
Availability impact

Partial, None, None

Access vector, Access complexity,
Authentication required

Network, High, None

Hosts affected 1

List of hosts 10.1.1.31

Getting the Data
The vulnerability information is stored on a per-host basis and referenced
by the OpenVAS OID. So you must first collect a list of OIDs from each
host in your gathered scan results, cross-reference your vulnerabilities col-
lection to determine the CVE (or lack thereof) for each vulnerability, and
then get CVE details from the cvedb collection. In pseudocode, Listing 11-4
shows how the logic works.

For each host in hosts:
 Get all OIDs
 For each OID:
 Get CVE
 Associate CVE with host (CVE => (list of affected hosts) map)
For each CVE:
 Get cvedb fields
 Get and count hosts that are associated with this CVE
 Build output CSV line

Listing 11-4: Pseudocode for finding relevant CVEs

Building reverse correlations (CVE to host) on the fly avoids the over-
head of a separate database collection that just has host and CVE pairs.

To handle the fact that some OIDs might have more than one CVE, you
can separate OIDs that contain multiple CVEs into separate CSV lines. Or,
you can choose only the first associated CVE, ignoring any remaining CVEs
on the grounds that they’re likely to be almost identical. The script in the
following section separates OIDs into individual CVEs.

Generating Asset and Vulnerability Reports 111

Script Listing
Listing 11-5 contains the code we’ll use to generate a vulnerability report.

#!/usr/bin/env python3
from pymongo import MongoClient
import datetime, sys, csv
client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']
cvedb = client['cvedb']
outputFile = "vuln-report.csv"
header = ['CVE ID', 'Description', 'CVSS', 'Confidentiality Impact',
'Integrity Impact', 'Availability Impact', 'Access Vector',
'Access Complexity', 'Authentication Required', 'Hosts Affected',
'List of Hosts']
def main():
 with open(outputFile, 'w') as csvfile:
 linewriter = csv.writer(csvfile)
 linewriter.writerow(header)
 hostCveMap = {}
 hostList = db.hosts.find({'oids': {'$exists' : 'true'}})

 u for host in hostList:
 ip = host['ip']

 v for oidItem in host['oids']:
 �cveList = db.vulnerabilities.find_one({'oid':

oidItem['oid']})['cve']
 for cve in cveList:
 if cve == "NOCVE":
 continue

 w if cve in hostCveMap.keys():
 if ip not in hostCveMap[cve]:
 hostCveMap[cve].append(ip)
 else:
 hostCveMap[cve] = [ip]

 x for cve in hostCveMap.keys():
 cvedetails = cvedb.cves.find_one({'id': cve})
 affectedHosts = len(hostCveMap[cve])
 listOfHosts = ""
 for host in hostCveMap[cve]:
 listOfHosts += host + "; "
 if (cvedetails):
 if "impact" not in cvedetails:
 �cvedetails["impact"] = {"availability": None,

"confidentiality": None, "integrity": None }
 if "access" not in cvedetails:
 �cvedetails["access"] = {"authentication": None,

"complexity": None, "vector": None }
 record = [cve, cvedetails['summary'], cvedetails['cvss'],
 �cvedetails['impact']['confidentiality'],

cvedetails['impact']['integrity'],
 �cvedetails['impact']['availability'],

cvedetails['access']['vector'],
 �cvedetails['access']['complexity'],

cvedetails['access']['authentication'],
 affectedHosts, listOfHosts]

112 Chapter 11

 else:
 �record = [cve, "", "", "", "", "", "", "", "",

affectedHosts, listOfHosts]
 y linewriter.writerow(record)

 csvfile.close()
main()

Listing 11-5: Script listing for vuln-report.py

Because this script’s structure is so similar to asset-report.py (Listing 11-3),
let’s just look at the tricky parts. There are two main loops: one to go
through each host and build the CVE-to-hosts map u and the other to
loop through the resulting map and output a line for each relevant CVE x.

The first loop goes through each host document to collect a list of
OIDs v, resolving them to CVE IDs (if any) via the vulnerabilities collec-
tion. Then it builds a dictionary of CVE IDs mapped to a list of vulnerable
hosts (identified by IP address). For each CVE, we check whether it’s in
the hostCveMap dictionary w. If it is, we then check whether the current IP
is already mapped to the relevant CVE; if it’s not, we add it to the list of
IPs associated with that key. If the CVE isn’t in our map and thus has no IPs
associated with it, we create a new CVE key in the dictionary and create
a list containing the current IP to use as the value. Once this map is com-
plete, a second loop x collects details from the cvedb database for each CVE
key in hostCveMap. The vulnerability details, including the list of affected
hosts collapsed into a single semicolon-separated list, are then written to a
single CSV output line y.

Customize It
The method of vulnerability analysis I used in Listing 11-5 requires that
you load the entire collection of hosts with vulnerabilities into RAM, which
might be infeasible for large datasets of thousands of hosts with multiple
vulnerabilities per host. To speed up the script, you can prebuild a col-
lection with a 1:1 relationship between hosts and vulnerabilities and then
query it for all hosts affected by a given CVE. You can do this either with
a dedicated script or by modifying the openvas-insert.py script (Listing 9-8)
to build this collection while you’re parsing the OpenVAS output file. This
spares your computer from having to load the entire collection of hosts with
vulnerabilities into RAM. But you’ll need to add some additional code to
your other scripts, delete stale data, and ensure that relevant indexes are
created correctly (“Defining Database Indexes” on page 98). Because
a separate document collection will provide this mapping, you’ll need to
update your other scripts that insert and delete data to make them aware of
this mapping.

As mentioned before, this database uses only CVSSv2 scores, because
neither OpenVAS nor cve-search provides CVSSv3 scores. If CVSSv3 scores
are important in your environment, use other data sources to fill in that gap.

Generating Asset and Vulnerability Reports 113

In this script, I ignore all OpenVAS results that report a CVE of NOCVE.
Generally, they’re low-severity issues. If you want to include these in the
report, you’ll have to pull most of the fields for these results from the
OpenVAS data rather than from the CVE database.

Summary
In this chapter, you built your first reports using the data in your vulner-
ability database. Because the two most important aspects of this database
are the hosts (assets) and the vulnerabilities your scans discovered, it’s only
natural to report according to these two parameters.

In Chapter 12, we’ll take a short side trip to fully automate the vulner-
ability scanning program. Then, in Chapter 13, you’ll learn how to produce
more complex reports on the data your scans collect.

You’ve now created scripts to scan your
network, inserted the results into your data-

base, and generated simple reports from
the resulting data. If you wanted to, you could

run all those scripts manually every time you needed
fresh information about your organization’s vulner-
ability posture. But why do that when you can write
another script to do the work for you? In this chapter,
we’ll automate this process using a bash script called
automation.sh.

12
A U T O M A T I N G S C A N S A N D

R E P O R T I N G

Automation might sound complicated, but a simple automation script
just executes other scripts, one after the other, as in Listing 12-1, and is
scheduled to run on a specific interval using cron.

116 Chapter 12

#!/bin/bash
run-script-1
run-script-2
--snip--
run-script-x

Listing 12-1: A simple automation script

In our case, automation.sh will run the scripts we built in Chapters 8
through 11.

Visualizing the Automation Process
Before we build automation.sh, let’s walk through the process from begin-
ning to end so you’re clear on the tasks you want to automate and in
what order.

Figure 12-1 highlights the steps of the vulnerability management life
cycle (described in Chapter 1) that we’ll automate, which are collect data
and analyze data.

Collect data

Make
recommendations

Implement
recommendations Analyze data

Figure 12-1: The vulnerability management life cycle

Collect Data
Collecting data usually occurs in two stages: run scans and then parse the
results and import the data into your database. Chapters 8 and 9 showed
the steps for this process.

Automating Scans and Reporting 117

1.	 Run Nmap; output the results to XML.

2.	 Run nmap-insert.py to parse the XML output and populate the Mongo
database.

3.	 Run OpenVAS; output the results to XML.

4.	 Run openvas-insert.py to parse the XML output and populate the Mongo
database.

Our automation script will use all of these steps in turn and will save
the intermediate XML outputs with timestamps in case we need to review
them later.

SE R I A L OR PA R A L L E L OPE R AT ION?

Instead of running one task, waiting for it to complete, and moving on to the
next step, you could run some of the data-collecting steps in parallel. For exam-
ple, you could run an Nmap scan and an OpenVAS scan at the same time,
or you might import the results into Mongo in parallel. Monitoring multiple
processes and ensuring they all finish before moving on to the next phase is an
excellent challenge for experienced coders. But here we’ll err on the side of a
simple script that you can build and understand easily.

Analyze Data
By comparison, the data analysis step is easy: you run the scripts that gen-
erate reports (asset-report.py and vuln-report.py from Chapter 11) and then
deliver the final result to whoever needs it. Of course, there’s room for con-
siderable complexity in this step, both within the reports that generate the
results and in how you combine them. You might use other tools to gener-
ate more reports or perform your own analyses on the data. The types and
number of reports you create will depend on the data you accumulate and
the reason for the analysis.

Maintain the Database
Maintaining the database, which was discussed in Chapter 10, isn’t part of
the high-level vulnerability management process; nonetheless, it’s impor-
tant. This is a separate process you should do continually, so we’ll build it
into the automation script.

Planning the Script
The automation script doesn’t need to be complex. All it has to do is run all
the steps that until now you’ve been running manually and store the out-
puts for later investigation. The list of operations is straightforward: collect

118 Chapter 12

and then analyze that data—run your scans, import the data, run your
reports, and handle database maintenance tasks along the way. But there
are some nuances worth mentioning:

•	 Order of operations. You must collect data before you can insert it and
insert data before you can generate reports. But you don’t have to run
your scans serially unless you customized your scan invocations so the
input of one depends on the output of the other. For example, if you
decided to save time in the OpenVAS script step by scanning only IP
addresses that were returned as “live” by the Nmap scan, Nmap must
finish before you start OpenVAS.

•	 Short subscripts or direct command lines. The database insertion pro-
cess is complicated enough that it requires its own scripts. But since you
can invoke Nmap using a single command, you can put the Nmap com-
mand directly into the main script. However, you might want to wrap
that invocation in its own short script to keep your main script more
consistent and readable. We’ll consider this decision and how automat-
ing Nmap differs from automating OpenVAS in “Running Nmap and
OpenVAS” later in this chapter.

•	 Delivering the output. A script that runs asset-report.py and vuln-report.py
will generate the reports, but once you have them, you need to decide
what to do with them. You might save them to a shared folder in your
environment, upload them via a web form to a secure location, or just
email them to yourself. Whatever you choose to do, make sure the
reports end up in a place where you won’t forget about them!

•	 Keeping your environment organized. Either delete the temporary files
that scanning produces or save them in a way that won’t be overwritten
by newer scan results every time you run the script. If you maintain an
organized environment, you can easily refer to old scan results when
you need to look at them directly (instead of via the database).

•	 Synchronizing with other scheduled tasks. Don’t schedule collection,
reporting, updates, and maintenance tasks while you’re in the middle
of a system update (Chapter 7) or a database cleanup (Chapter 10). You
should run these tasks when they won’t conflict to avoid any incomplete
or inaccurate results.

With these considerations in mind, here’s a suggested outline for the
automation.sh script. In the next section, I’ll explain how I handled each
design decision.

1.	 Run a database cleanup script to remove data older than one month
(db-clean.py).

2.	 Run an Nmap scan on a configured network range; save the output to a
timestamped XML file.

3.	 Import the results of the preceding Nmap scan into the database
(nmap-insert.py).

4.	 Run an OpenVAS scan on a configured network range; save the output
to a timestamped XML file.

Automating Scans and Reporting 119

5.	 Import the results of the preceding OpenVAS scan into the database
(openvas-insert.py).

6.	 Run the reporting scripts; save the output to a timestamped CSV file.

Assembling the Script
Now that you know the steps your script needs to take and the order of
the steps, you can build the script. Once it’s assembled, you’ll decide on
an interval to run it, and you’ll have a working vulnerability management
system.

But before we get to the script listing, I want to highlight a few of the
design decisions I made, keeping in mind the concerns I outlined in the
previous section and the reasons for those decisions.

Running Nmap and OpenVAS
Nmap is very straightforward: all you need to do is run the tool from the
command line with the required parameters. For that reason, I set up
automation.sh to run Nmap directly and then run nmap-insert.py to store its
XML output in the database.

OpenVAS is more complicated. You must start the scan with one omp
command, then wait for it to finish (monitoring its process with another
omp command) before running a third omp command to generate the XML
output. It’s possible to include all these steps directly in the automation
script. But it’s more modular, maintainable, and readable to break out the
OpenVAS commands into their own script. So the automation.sh script needs
to run the OpenVAS script (run-openvas.sh) and wait for it to complete
before importing the resulting XML file into the database.

Scheduling the Script
To control precisely when the script runs, edit the system crontab directly.
As root, add the following line at the bottom of /etc/crontab, filling in the
specific path to automation.sh:

4 0 * * 7 root </path/to/automation.sh>

This line will schedule the automation script to run at 12:04 am, system
time, on Sundays. You can also put the automation script, or a symlink to
it, into /etc/cron.weekly or whichever directory best suits your preferred scan
interval.

Because you’re also using cron to run your system update script from
Listing 7-4, make sure the two scripts—system update and automation—
don’t run simultaneously. Most systems run entries in the /etc/cron.xxxx
directories in alphabetical order. But I’d suggest ensuring this is true in
your environment before putting the scripts here for scheduling. If you’re
placing the scripts directly in crontab, leave a safe interval between the
update and automation scripts, ideally running them on different days.

120 Chapter 12

Script Listings
Listing 12-2, automation.sh, and Listing 12-3, run-openvas.sh, are the code
listings you’ll run. Don’t forget to mark them as executable (run: chmod +x
filename) before scheduling.

#!/bin/bash
u TS='date +%Y%m%d'

SCRIPTS=/path/to/scripts
OUTPUT=/path/to/output
RANGE="10.0.0.0/24"
LOG=/path/to/output-$TS.log
date > ${LOG}

v echo "Running database cleanup script." >> $LOG
$SCRIPTS/db-clean.py

w nmap -A -O -oX $OUTPUT/nmap-$TS.xml $RANGE >> $LOG
x $SCRIPTS/nmap-insert.py $OUTPUT/nmap-$TS.xml >> $LOG
y $SCRIPTS/run-openvas.sh >> $LOG
z $SCRIPTS/openvas-insert.py $OUTPUT/openvas-$TS.xml >> $LOG

$SCRIPTS/asset-report.py >> $LOG
mv $SCRIPTS/asset-report.csv $OUTPUT/asset-report-$TS.csv
$SCRIPTS/vuln-report.py >> $LOG
mv $SCRIPTS/vuln-report.csv $OUTPUT/vuln-report-$TS.csv
echo "Finished." >> $LOG

Listing 12-2: Script listing for automation.sh

To timestamp the XML and CSV output files, we store the current time
in a YYYYMMDD format in the variable TS u. Then we use the SCRIPTS and OUTPUT
variables to store the paths to the script and output folders, respectively. We
set RANGE to the network range or ranges we want to scan with Nmap. (Don’t
forget that OpenVAS is configured differently, via setting up targets, and is
not bound by the range specified here.) We point LOG to a log file location
that will also be tagged with the current timestamp. This file will hold the
STDOUT output of each command for later review. Because every log and out-
put file is timestamped, it will be easy to return to the script outputs later in
case we run into problems or need to conduct additional analysis.

We run the database cleanup script v to ensure that no stale data
remains in the database. This script invokes Nmap directly w but runs
OpenVAS using the script shown in Listing 12-3 y. After running the data-
base insert scripts xz, we run the asset- and vulnerability-reporting scripts
and move their output files to the OUTPUT directory. Then we add the line
"Finished." to LOG so we know the script ran to completion.

Listing 12-3 presents the details of run-openvas.sh:

#!/bin/bash
u OUTPUT=/path/to/output

TS='date +%Y%m%d'
v TASKID=taskid

OMPCONFIG="-c /path/to/omp.config"

Automating Scans and Reporting 121

w �REPORTID=' omp $OMPCONFIG --start-task $TASKID |
xmllint --xpath '/start_task_response/report_id/text()' -'

x while true; do
 sleep 120

 y �STATUS='omp $OMPCONFIG -R $TASKID |
xmllint --xpath 'get_tasks_response/task/status/text()' -'

 if [$STATUS = "Done"]; then
 z �omp $OMPCONFIG -X '<get_reports report_id="'$REPORTID'"/>'|

xmllint --format - > $OUTPUT/openvas-$TS.xml
 break
 fi
done

Listing 12-3: Wrapper script to run OpenVAS scans

This script assumes we already created a task, either through the
Greenbone web GUI or the command line (see Chapter 8). By reusing the
same task for each scan, we get a report history in the web GUI. We set the
TASKID variable to the task globally unique identifier (GUID) (from the com-
mand line XML output or web GUI) v and OMPCONFIG to the path of the con-
figuration file with our OpenVAS credentials. Then we invoke omp to start
the specified task w.

The omp command returns a chunk of XML that we’ll parse with
xmllint, the Swiss Army knife of XML tools. The --xpath flag tells it to return
data from a specific location: the text content of a report_id tag inside a
start_task_response tag. We save the resulting report ID to get the scan
report later z.

The rest of the script is a simple loop x: wait two minutes; check the
current status of the task y, again using xmllint; when it changes to Done,
generate the final report z; and exit. At this point, a report will be in the
configured output folder u, and the rest of the automation script will run
as previously described in Listing 12-2.

Customize It
If you’re using multiple scanners and have built your own scanning and
database insertion scripts, you’ll need to think about the order in which
they execute and enter their results into the database. You’ll need to con-
sider these issues especially if you plan to have your scripts overwrite results
that are already in the database.

If you want to run your Nmap and vulnerability scans separately or
scan multiple network segments on different intervals, run them with sepa-
rate scripts on their own intervals. Also, time your report generation so it
doesn’t run while a scan is still in progress or inserting its results into the
database.

If you don’t want to clear old results from your dataset every time you
run new scans, schedule db-clean.py to run at a different interval instead of
calling it from automation.sh.

122 Chapter 12

Additionally, if you’d prefer not to synchronize your update script and
your collection/reporting script(s), you can combine the two: first run a full
update of your system, then run the scans and report on the results. Note
that this will increase the script’s total runtime.

Summary
In this chapter, you automated your scans and basic reporting, saving your-
self a lot of busywork. At this point, you have a basic vulnerability manage-
ment system: it periodically scans your environment and then generates and
saves reports based on the most recent data available.

Now that you have a good understanding of the vulnerability manage-
ment process, you can expand beyond the basics. In the next chapter, we’ll
look at more complex reports that you can generate from your scan data.
Then, in Chapter 14, we’ll incorporate other data sources and build a basic
API to allow other tools to integrate with your vulnerability management
system.

Now that you’ve completed the tedious
aspects of assembling all the parts of your

vulnerability management system—scanner,
database ingester, and basic reporting—you can

start building complex reports. So far, you’ve gener-
ated simple CSV tables of vulnerabilities and hosts.
In this chapter, you’ll expand your reports with more
details about assets and vulnerabilities. You’ll also
integrate an additional data source (a list of exploit-
able vulnerabilities from the Exploit Database) to
supplement your in-house data collection.

13
A D V A N C E D R E P O R T I N G

124 Chapter 13

Detailed Asset Reporting
To expand on the basic asset report that contained system information,
number of vulnerabilities, and CVE IDs of the vulnerabilities, you’ll make
three improvements:

•	 Add an option to report on a subset of hosts, selected by IP address.

•	 Enrich the report with all the host-specific data that’s available, plus
OpenVAS and cve-search data for each vulnerability associated with the
host.

•	 Output the reports in HTML format because the expanded informa-
tion won’t map to a simple table.

To select hosts to include in the report, you’ll add logic to your script to
filter for a provided network range.

The following is the information you’ll collect and format for each host:

IP address
The unique identifier for each host in the database.

Hostname(s)
In some environments, especially Windows-heavy networks where
NetBIOS is in use, hostnames might be an easier way to identify
individual hosts.

MAC information
Although this information is only worthwhile if the scanner can col-
lect the host’s MAC, this is another way to uniquely identify the host in
question as well as learn about its networking hardware.

Detected OS (if multiple, choose the one with highest accuracy)
The underlying OS can help you sort your hosts as well as look at
per‑OS vulnerability trends.

Open ports (sorted by protocol, port number) and detected services
Just knowing which ports are open can be very useful to a security team.

Vulnerabilities associated with the host
All of the host’s known vulnerabilities in one place, compris-
ing the following details, all of which are pulled directly from the
OpenVAS results:

•	 OID

•	 OpenVAS name

•	 OpenVAS summary

•	 OpenVAS CVSS score

•	 OpenVAS CVSS string

•	 CVE(s) associated

Advanced Reporting 125

The resulting HTML document will look similar to Figure 13-1.

Figure 13-1: Sample report for assets in range 10.0.0.0/24

Unlike the basic asset report, this one provides detailed information on
a host-by-host basis that isn’t structured in a spreadsheet format. Although
the table borders are invisible, the “Open TCP Ports and Services” and
“Known Vulnerabilities” sections are formatted via tables.

Planning the Script
Like your summary asset report (Listing 11-3 in Chapter 11), you’ll draw
largely from the hosts collection in Mongo in detailed-assets.py. But for
each host, you’ll also want information on every vulnerability (per OID)
OpenVAS discovers for that host, which you’ll pull from the vulnerabilities
collection. Listing 13-1 shows the logic to put together all the information.

Get all unique hosts in 'hosts'
Filter per IP range, if any, passed as a command line parameter
For each host in 'hosts' after IP filter:
 Gather basic information in Mongo document
 For each OID associated with the host:
 Look up in 'vulnerabilities' collection
 Assemble data from returned document
 Format and present data

Listing 13-1: Pseudocode for detailed-assets.py

Once you’ve planned your script’s logic, think about implementa-
tion details. How will you pass the filtering IP range to the script? Do
you want to search for hosts any other way than by network range (more
on this in “Customize It” on page 130)? How do you want to format the
output HTML?

126 Chapter 13

In Listing 13-2, I used the yattag library, which produces well-formatted
HTML code by using standard Python structures and idioms. The yattag
library automatically makes any text strings that pass through it HTML
safe: for instance, it replaces < and > with < and >, and it replaces other
entities with their HTML-encoded equivalents to ensure that the browser
doesn’t interpret any unexpected HTML code (or scripts!). If you manually
generate the HTML tags, you must ensure that all strings pulled from the
database are properly HTML formatted before placing them into the out-
put file.

As we walk through the sample script that implements this logic, you’ll
learn about some of the other design choices I made. Use the code as inspi-
ration to customize the form (displayed HTML) and function (specific
fields retrieved from the database) for your own purposes.

Script Listing
Because the script detailed-assets.py in Listing 13-2 is fairly long, we’ll walk
through it in parts. First, we’ll look at the script’s preamble and table-
setting portions: loading important libraries and starting the script with
the main() function.

#!/usr/bin/env python3

from pymongo import MongoClient
from operator import itemgetter

u import datetime, sys, ipaddress
from yattag import Doc, indent

client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']
outputFile = "detailed-asset-report.html"

def main():
 v if len(sys.argv) > 1:

 network = sys.argv[1]
 else:
 network = '0.0.0.0/0'
 networkObj = ipaddress.ip_network(network)

 w doc, tag, text, line = Doc().ttl()
 x with tag('html'):

 with tag('head'):
 line('title', 'Asset report for ' + network)

Listing 13-2: Script listing for detailed-assets.py (part 1)

We import the ipaddress library (from Python 3) u and the Doc and
indent functions from yattag (installed via pip). If we pass the script no argu-
ments, it reports on hosts in any network range. If we pass an argument, it’s
interpreted as an IP address range using classless interdomain routing (CIDR)
notation v.

We initialize the yattag structure, which creates four objects (doc, tag,
text, line) w that will be used throughout the rest of the script to provide

Advanced Reporting 127

HTML structures for the document, tags, text blocks, and short (one-line)
tags, respectively. By using these four objects to generate chunks of HTML,
the entire document is created in memory before it’s written to a file at the
end of the script. Keep this in mind because very large HTML documents
for result sets of thousands or tens of thousands of assets might strain your
vulnerability management system’s available memory.

USING ‘ W I T H’

The with structure lets you run code with setup and teardown procedures but
abstracts away the complexity. When you run with function(): do things,
you’re actually running setupFunction(), do things, cleanupFunction().

The with tag('tagname') x structure means the HTML tag tagname
encapsulates all the output generated within the following indented code
block. The with structure creates the tag (when it’s invoked) and closes it
when the block ends. In larger-scope tags, such as body and html, most of the
script executes within the with block scopes!

Consider this brief example: imagine you want to make a simple HTML
document, as shown in Listing 13-3.

<html>
 <head>
 <title>This is a title!</title>
 </head>
 <body>
 <h1>This is a heading!</h1>
 <p>This is some text in a paragraph.</p>
 </body>
</html>

Listing 13-3: Trivial HTML

You could use the yattag library to generate this using the Python snip-
pet in Listing 13-4. Note that all you need to do is enclose the individual tag
items (title, h1, p) within the larger with() blocks.

from yattag import Doc
doc, tag, text, line = Doc().ttl()
with tag('html'):
 with tag('head'):
 line('title', 'This is a title!')
 with tag('body'):
 line('h1', 'This is a heading!')
 line('p', 'This is some text in a paragraph.')

Listing 13-4: yattag example

128 Chapter 13

Most of the rest of the script takes place within the context of the html
tag. In the next code section (Listing 13-5) we retrieve the basic informa-
tion for each host and place it in the in-progress HTML document.

 u with tag('body'):
 line('h1', 'Asset report for ' + network)
 iplist = db.hosts.distinct("ip")

 v iplist.sort(key=ipaddress.ip_address)
 for ip in iplist:

 w if ipaddress.ip_address(ip) not in networkObj:
 continue
 details = db.hosts.find_one({'ip':ip})
 osList = details['os']

 x if osList != []:
 osList.sort(key=itemgetter('accuracy'))
 os = osList[0]['osname']
 cpe = osList[0]['cpe'][0]
 else:
 os = "Unknown"
 cpe = "None"
 hostnameString = ""

 y if details['hostnames'] != []:
 for name in details['hostnames']:
 hostnameString += name + ', '

 line('h2', ip)
 line('b', 'Hostname(s): ')
 text(hostnameString)
 doc.stag('br')
 line('b', 'Detected OS: ')
 text(os + " (" + str(cpe) + ")")
 doc.stag('br')
 line('b', 'MAC address: ')
 if all (k in details['mac'] for k in ('addr', 'vendor')):
 �text("{} ({})".format(details['mac']['addr'],

details['mac']['vendor']))
 openTCPPorts = []
 openUDPPorts = []

 z for portService in details['ports']:
 if portService['proto'] == "tcp":
 �openTCPPorts.append([int(portService['port']),

portService['service']])
 elif portService['proto'] == "udp":
 �openUDPPorts.append([int(portService['port']),

portService['service']])
 openTCPPorts.sort()
 openUDPPorts.sort()
 if len(openTCPPorts) > 0:
 line('h3', 'Open TCP Ports and Services')
 with tag('table'):
 with tag('tr'):
 line('td', 'Port')
 line('td', 'Service')
 for port, service in openTCPPorts:

Advanced Reporting 129

 with tag('tr'):
 line('td', port)
 line('td', service)

 if len(openUDPPorts) > 0:
 line('h3', 'Open UDP Ports and Services')
 with tag('table'):
 with tag('tr'):
 line('td', 'Port')
 line('td', 'Service')
 for port, service in openUDPPorts:
 with tag('tr'):
 line('td', port)
 line('td', service)

Listing 13-5: Script listing for detailed-assets.py (part 2)

The with tag for the HTML body block is nested inside the html block u.
We retrieve the list of hosts from the database and then sort it using the
ipaddress library v. This is necessary because, unlike CSV, HTML can’t be
easily sorted. The ipaddress.ip_address is a sortable field, but if you’re not
using the ipaddress library, you’ll need to write a custom sort function to
account for the dot-decimal notation of IP addresses.

The main body of the script loops over IP addresses. We first check
whether each host is in the provided IP range w. If it is, we generate a
block of HTML with the host details from the database. OS detection can
generate multiple options, so the script first sorts these by accuracy and
then reports the first result x. (There might be multiple 100 percent accu-
racy guesses, so take this with a grain of salt!) Next, we create a list of all
associated hostnames y, gather open ports, both TCP and UDP z, and
then print a table of open ports for each protocol.

Listing 13-6 shows the last major output section: for each host, a list of
vulnerabilities is associated with the host including basic details for each.

 u if 'oids' in details:
 line('h3', 'Known Vulnerabilities')
 for oidItem in details['oids']:
 �oidObj = db.vulnerabilities.find_one({'oid':

oidItem['oid']})
 line('h4', oidObj['name'])
 with tag('p'):
 text('OID: ')
 line('i', oidObj['oid'])
 with tag('table'):
 with tag('tr'):
 line('td', 'Summary')

 v if 'summary' in oidObj:
 line('td', oidObj['summary'])
 else:
 line('td', "")
 with tag('tr'):
 line('td', 'Impact')
 if 'impact' in oidObj:

130 Chapter 13

 line('td', oidObj['impact'])
 else:
 line('td', "")
 with tag('tr'):
 line('td', 'CVSS')
 line('td', oidObj['cvss'])
 with tag('tr'):
 line('td', 'CVSS Base Vector')
 line('td', oidObj['cvss_base_vector'])
 �oidCves = db.vulnerabilities.find_one({'oid':

oidItem['oid']})['cve']
 if oidCves != ['NOCVE']:
 line('h5', 'Associated CVE(s):')
 with tag('ul'):
 for cve in oidCves:
 line('li', cve)
 doc.stag('hr')

 w with open(outputFile, 'w') as htmlOut:
 htmlOut.write(indent(doc.getvalue()))
 htmlOut.close()

main()

Listing 13-6: Script listing for detailed-assets.py (part 3)

We first check if any OIDs are associated with the host u and then loop
through them, gathering details. A number of the fields we want in our
report are optional in the OpenVAS report, so you’ll need to check whether
any given tag exists before trying to insert it v. Once the HTML is fully
generated, we write the complete document to the output file using another
with tag w and exit. The indent function makes the output more readable.
The result is that we’ve generated the report shown in Figure 13-1. (If you
take some time to refine the HTML document, you can even make it a little
less ugly.)

Customize It
You could place the kind of structured data generated by detailed-assets.py
into a Word document, a PDF, or a JSON structure to send to another sys-
tem for further analysis. If you’re a masochist, you could even structure it
as a CSV table. But I’ll leave representing this kind of nested data in CSV as
an exercise for you.

Instead of filtering on IP range, you could filter on any of the fields in
the host document, such as hostnames or os.cpe. You can add more filtering
options to the command line or build the filters directly into the script if
you’re certain that you’ll always want them for your detailed asset reports.

If you’d prefer not to install yet another Python library, you could hand
generate your HTML tags by constructing strings and writing them to the
output file. If you do so, you’ll need to make all the data returned from
Mongo, particularly the free-form text fields, HTML safe.

Advanced Reporting 131

You can identify and sort hosts by hostname instead of IP address, espe-
cially in Windows-only environments where workstations and servers are
often better known by hostname than IP address.

The script detailed-assets.py generates the entire HTML document in
memory before writing it to a file at the end. If you have large datasets or
limited RAM on your vulnerability management system, you can reduce
RAM consumption by modifying the script to write the file piecemeal: first
outputting the opening HTML tags and then one host record at a time.

In addition to using OpenVAS data, you can expand the script to pull
data from the cve-search database for vulnerabilities with associated CVEs.
You’ll learn how to use this database in the next script.

Detailed Vulnerability Reporting
This script expands the simple vulnerability report from Listing 11-5 with
detailed vulnerability information from OpenVAS and the cve-search data-
base, compiled together in one readable HTML report. We’ll add an IP
range filter as a command line argument so you can view vulnerabilities for
a subset of hosts. But the only host information in the report will be a list
of IP addresses affected by each vulnerability and a count. We’ll also add
a filter to exclude vulnerabilities without CVE IDs: we’ll assume that any
vulnerability without a CVE isn’t serious enough to describe in detail. If you
want to see all the vulnerabilities in the database, just remove this filter.

Here is the information you’ll collect and format for each vulnerability:

CVE
The CVE ID of the vulnerability

Summary
A brief description of the vulnerability

CWE
The common weakness enumeration (CWE) category with a link to the
online CWE database

Published date
When the vulnerability was first disclosed publicly

Last update time
The last time the vulnerability information was updated

CVSS score
A numerical score from 0 to 10 of the overall vulnerability severity

CVSS details
The individual breakdowns of each component comprising the full
CVSS score, each given on a scale of “none, low, medium, high, critical”:

•	 Confidentiality impact

•	 Integrity impact

132 Chapter 13

•	 Availability impact

•	 Access vector

•	 Access complexity

•	 Authentication required

References
External links to reports, patches, and analysis

List of affected hosts
A list, by IP address, of hosts in your environment that this vulnerability
affects

Count of affected hosts
The number of hosts with this vulnerability in your environment

As with CVE, the MITRE Corporation manages CWE and provides a
comprehensive taxonomy of vulnerabilities. (If a vulnerability in some soft-
ware you use is categorized, for example, as CWE-426: Untrusted Search
Path, you can look up CWE-426 to learn how that class of vulnerabilities
works.)

We include the list of references attached to the CVE, which might
include patch or mitigation information, information about exploits, and
third-party vulnerability reports, to provide important context that informs
how your organization addresses the vulnerability.

The output will look similar to Figure 13-2. It’s ordered by vulnerability,
and the important details are output in an HTML table.

Figure 13-2: Sample output for detailed-vulns.py

Advanced Reporting 133

Planning the Script
Because detailed-vulns.py is designed to return vulnerabilities found on
hosts within a specific network range, the first step is to find all of those
hosts. Once we have that list, we’ll use it to find all vulnerabilities that exist
on one or more hosts on the list. Then, using that list, we’ll pull details
for each vulnerability that has an associated CVE: the rest are ignored.
Listing 13-7 shows what the logic looks like.

Get all unique hosts in 'hosts'
Filter per IP range, if any, passed as a command line parameter
For each host in 'hosts' after IP filter:
 Collect list of OIDs, insert into OID list
For each OID in OID list:
 Determine if it has a CVE; if not, go to next OID
 Gather data from associated CVE in cvedb database
 Format and present data

Listing 13-7: Pseudocode for detailed-vulns.py

Like detailed-assets.py in the preceding section, Listing 13-8 uses yattag
to format and output the report in HTML. Because the structure is simi-
lar to the previous script, I’ll provide the entire script in the next section
and then draw your attention to a few key pieces.

Script Listing
Listing 13-8 shows the complete detailed-vulns.py script.

#!/usr/bin/env python3
from pymongo import MongoClient
import datetime, sys, ipaddress
from yattag import Doc, indent

client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']
cvedb = client['cvedb']
outputFile = "detailed-vuln-report.html"

def main():
 if len(sys.argv) > 1:
 network = sys.argv[1]
 else:
 network = '0.0.0.0/0'
 networkObj = ipaddress.ip_network(network)
 hostCveMap = {}
 hostList = db.hosts.find({'oids': {'$exists' : 'true'}})

 u for host in hostList:
 ip = host['ip']
 if ipaddress.ip_address(ip) not in networkObj:
 continue
 for oidItem in host['oids']:
 �cveList = db.vulnerabilities.find_one({'oid':

oidItem['oid']})['cve']

134 Chapter 13

 for cve in cveList:
 v if cve == "NOCVE":

 continue
 w if cve in hostCveMap.keys():

 if ip not in hostCveMap[cve]:
 hostCveMap[cve].append(ip)
 else:
 hostCveMap[cve] = [ip]
 doc, tag, text, line = Doc().ttl()

 with tag('html'):
 with tag('head'):
 line('title', 'Vulnerability report for ' + network)
 with tag('body'):
 line('h1', 'Vulnerability report for ' + network)

 x for cve in sorted(hostCveMap.keys()):
 cvedetails = cvedb.cves.find_one({'id': cve})
 affectedHosts = len(hostCveMap[cve])
 listOfHosts = hostCveMap[cve]
 line('h2', cve)
 line('b', 'Affected hosts: ')
 text(affectedHosts)
 doc.stag('br')
 if (cvedetails):
 with tag('table'):
 with tag('tr'):
 line('td', 'Summary')
 line('td', cvedetails['summary'])
 with tag('tr'):
 line('td', 'CWE')
 with tag('td'):
 id = 'Unknown'
 if cvedetails['cwe'] != 'Unknown':
 id=cvedetails['cwe'].split('-')[1]

 y �with tag('a',
href="https://cwe.mitre.org/data/"\
"definitions/"+id):

 text(cvedetails['cwe'])
 cweDetails = cvedb.cwe.find_one({'id': id})
 if cweDetails:
 text("(" + cweDetails['name'] + ")")
 else:
 text("(no title)")
 with tag('tr'):
 line('td', 'Published')
 �line('td',

cvedetails['Published'].strftime("%Y-%m-%d"))
 with tag('tr'):
 line('td', 'Modified')
 �line('td',

cvedetails['Modified'].strftime("%Y-%m-%d"))
 with tag('tr'):
 line('td', 'CVSS')
 line('td', cvedetails['cvss'] or 'Unknown')

Advanced Reporting 135

 with tag('tr'):
 with tag('td'):
 line('b', 'Impacts')
 if 'impact' in cvedetails:
 with tag('tr'):
 line('td', "Confidentiality")
 �line('td', cvedetails['impact']

['confidentiality'])
 with tag('tr'):
 line('td', "Integrity")
 line('td', cvedetails['impact']['integrity'])
 with tag('tr'):
 line('td', "Availability")
 �line('td', cvedetails['impact']

['availability'])
 with tag('tr'):
 with tag('td'):
 line('b', 'Access')
 if 'access' in cvedetails:
 with tag('tr'):
 line('td', "Vector")
 line('td', cvedetails['access']['vector'])
 with tag('tr'):
 line('td', "Complexity")
 line('td', cvedetails['access']['complexity'])
 with tag('tr'):
 line('td', "Authentication")
 �line('td', cvedetails['access']

['authentication'])
 with tag('tr'):
 with tag('td'):
 line('b', "References")
 for reference in cvedetails['references']:
 with tag('tr'):
 with tag('td'):
 with tag('a', href=reference):
 text(reference)
 else:
 line('i', "Details unknown -- update your CVE database")
 doc.stag('br')

 line('b', "Affected hosts:")
 doc.stag('br')
 for host in sorted(listOfHosts):
 text(host)
 doc.stag('br')
 with open(outputFile, 'w') as htmlOut:
 htmlOut.write(indent(doc.getvalue()))
 htmlOut.close()

main()

Listing 13-8: Script listing for detailed-vulns.py

136 Chapter 13

In the first main loop, we collect a list of vulnerabilities on the specified
hosts by CVE ID u. If a vulnerability doesn’t have an assigned CVE, we skip
it v. We build a host map (a dictionary with CVE IDs as keys, mapped to a
list of IP addresses) for each CVE during the first loop w, so when it comes
time to list the hosts affected by each vulnerability, the information is
already available. We loop through the full set of vulnerabilities x and for
each one generate a chunk of HTML containing vulnerability details (the
same way as in detailed-assets.py). Because the vulnerability details include
links to CWE information and CVE references, we need to use the HTML a
tags with href attributes to generate links in the output report y.

Customize It
Several of the suggestions from detailed-assets.py, such as adding filters other
than IP addresses and writing the report in chunks if it’s large, might be
useful to you in customizing this script as well.

You might want to include more host information, for example, host-
name, total vulnerabilities on that host, and OS detection.

If you report on all discovered vulnerabilities, not just those with CVE
IDs, you need data from the OpenVAS report to fill in for the data that’s
not in the cve-search database.

In addition, instead of sorting by CVE ID, from oldest to newest, you
can sort from newest to oldest or use another sort entirely, such as total
CVSS score.

Exploitable Vulnerability Reporting
Now that we’ve generated more complex reports, let’s bring in external
vulnerability information to enrich an existing report. In this example,
you’ll use a publicly available exploit repository, the Exploit Database
(https://exploit-db.com/), and combine its information with the detailed
vulnerability report to add another level of detail and actionability.

Preparation
To filter vulnerabilities according to their appearance in the Exploit
Database, we’ll use cve_searchsploit (available at https://github.com
/andreafioraldi/cve_searchsploit/), a free command line tool, to search the
Exploit Database. It contains a JSON file, exploitdb_mapping_cve.json, that
directly maps CVE IDs to a list of exploits that apply to that CVE, which is
exactly the data we need to add an exploitability filter to our vulnerability
report.

To install cve_searchsploit, run this command:

$ git clone https://github.com/andreafioraldi/cve_searchsploit.git

This line installs the tool in the cve_searchsploit/ subdirectory of the
current directory. Once it’s there, don’t forget to add a command to your

https://exploit-db.com/
https://github.com/andreafioraldi/cve_searchsploit
https://github.com/andreafioraldi/cve_searchsploit

Advanced Reporting 137

updater script (Listing 7-4) to periodically run git fetch; git checkout
origin/master -- cve_searchsploit/exploitdb_mapping_cve.json within that
directory to refresh the JSON file and ensure the mapping is up-to-date.

N O T E 	 The References section in the CVE database includes some Exploit Database links.
But the mappings in exploitdb_mapping_cve.json are more comprehensive than
the links in References. Using cve_searchsploit is a good example of integrating an
external data source into our vulnerability management system.

Modifying the Old Script
Because exploitable-vulns.py is essentially detailed-vulns.py with one more fil-
ter, which is to only report on vulnerabilities that also have known exploits
in the Exploit Database, the changes required are minimal. We load the
CVE-to-exploit map from exploitdb_mapping_cve.json, but before outputting a
report on any given vulnerability, we ensure that it exists in that map. Then
we add a section to the report with links to the exploits that also exist on
the Exploit Database. Listing 13-9 shows the changes from detailed-vulns.py.
You can find the complete script listing at https://github.com/magnua
/practicalvm/.

#!/usr/bin/env python3
--snip other imports--

u import datetime, sys, ipaddress, json
--snip other global variables--
cveToExploitdbMap = "/home/andy/cve_searchsploit/cve_searchsploit/exploitdb_"\
"mapping_cve.json"

def main():
--snip network selection--

 v with open(cveToExploitdbMap) as mapfile:
 exploitMap = json.load(mapfile)
--snip host finding--
 for host in hostList:
--snip CVE finding--
 for cve in cveList:
 if cve == "NOCVE":
 continue

 w if cve not in exploitMap:
 continue
--snip CVE-to-host mapping--
 doc, tag, text, line = Doc().ttl()
 with tag('html'):
 with tag('head'):
 line('title', 'Exploitable vulnerability report for ' + network)
 with tag('body'):
 line('h1', 'Exploitable vulnerability report for ' + network)
 for cve in sorted(hostCveMap.keys()):
--snip most HTML generation--
 line('b', "ExploitDB links")
 doc.stag('br')

https://github.com/magnua/practicalvm
https://github.com/magnua/practicalvm

138 Chapter 13

 x for exploitID in exploitMap[cve]:
 �with tag('a',

href="https://www.exploit-db.com/exploits/"+exploitID):
 text("https://www.exploit-db.com/exploits/"+exploitID)
 doc.stag('br')
 with open(outputFile, 'w') as htmlOut:
 htmlOut.write(indent(doc.getvalue()))
 htmlOut.close()

main()

Listing 13-9: Selected script listing for exploitable-vulns.py

First, we import the JSON library, which we need to parse exploitdb_
mapping_cve.json u. Next, we load exploitdb_mapping_cve.json into memory,
converting the JSON data into a Python dictionary using the with struc-
ture v. We discard vulnerabilities not in this map w and convert the list
of exploits into live links to their respective Exploit Database pages x.

Customize It
All of the suggestions from detailed-vulns.py are still valid for
exploitable-vulns.py.

The Exploit Database is just one publicly available list of exploits.
Another one is Metasploit, which I’ll briefly discuss in the next chapter.
You can import its vulnerability mappings from its local database by run-
ning the appropriate queries in exploitable-vulns.py.

You can also write filters similar to the exploitability filter for other vul-
nerability fields if you have matching external data sources. For example,
you can import commercial vulnerability intelligence data to report on only
vulnerabilities that are known to be under active attack by APT adversaries.

Summary
You now have several new and more complex reports to experiment
with and customize. Don’t forget to add them to your automation script
(Listing 12-2) so they run regularly and you always have fresh reports.

At this point, your vulnerability management system is largely complete
and, I hope, regularly generating useful vulnerability intelligence for your
organization.

In Chapter 14, we’ll look at system integration with your other tools via
a basic application programming interface (API), automated exploitation
and whether it makes sense in your environment, and vulnerability manage-
ment systems in cloud environments.

You now have a fully functional and auto-
mated vulnerability management system.

But projects like building this system are
never actually finished. This chapter contains

several ideas to enhance your system, including a
simple integration API, automated penetration testing
for known vulnerabilities, and cloud environments.
Only the first script is a hands-on exercise: the rest
discuss options and possibilities but leave the imple-
mentation details to you.

14
A D V A N C E D T O P I C S

140 Chapter 14

Building a Simple REST API
To get data from your vulnerability management system into another tool
or to integrate your system into a third-party automation or orchestration
product, you could do periodic database dumps, output reports in a format
those tools can ingest, or write an API. If the destination tool supports API
integration, using an API is a good solution. In this section, we’ll look at
building a simple representational state transfer (REST) API from scratch.
But first, let’s look at what a REST API is.

An Introduction to APIs and REST
Programmatic interfaces (shared boundaries between system components
that are accessed using programs) provide a consistent method for pro-
grams to interact with each other and with the host OS. When you use an
API, you don’t need to understand the inner workings of the application
you’re communicating with; you just need to know that if your program
writes this message to that location, the receiving system will understand
and respond with a response of that type. Abstracting the inner workings
behind an interface that remains consistent, no matter how the infra-
structure behind that interface might change, greatly simplifies software
development and interoperation. The reason is that programs can evolve
independently while retaining a common communication language.

REST defines a class of APIs that communicate over the internet by
reading from and writing to an unknown database (or other arbitrary stor-
age system). A full REST API supports all database operations: creating,
reading, updating, and deleting records (commonly called CRUD). The
HTTP methods POST, GET, PUT (sometimes PATCH), and DELETE implement their
respective CRUD operations, as shown in Table 14-1.

Table 14-1: HTTP Methods Mapped to CRUD Actions

Method Action

GET Get (read) the contents of a record (or information about multiple records)
POST Create a new record

PUT/PATCH Update an existing record or create one if it doesn’t yet exist
DELETE Delete an existing record

To use the API, the client sends an HTTP request using the appropri-
ate method to a URL (technically, a universal resource indicator (URI)) that
specifies the record or records to act on. For example, I send a GET request
to http://rest-server/names/ to tell the REST API to send back a list of names
(commonly in XML or JSON). A GET request to http://rest-server/names/
andrew-magnusson/ returns more information about the name record for
“Andrew Magnusson.” A DELETE request to that same address tells the remote
system to delete my name record.

Advanced Topics 141

The address in a URI, unlike one in a standard web URL, doesn’t point
to a consistent web location. Instead, it points to an API endpoint: an inter-
face for a program running on the server side that the REST client uses to
send the appropriate HTTP method to perform CRUD actions.

Designing the API Structure
Think about what you need your vulnerability management API to do.
How many of the CRUD actions will you support? In simple-api.py, I imple-
ment only GET (read existing records), the simplest and safest method; all
a client can do is request data that’s already in the database. Our vulner-
ability management system updates itself internally, so there’s no need for
external systems to make changes to the database. If you want external sys-
tems (particularly automation or orchestration routines) to modify the vul-
nerability database, you can implement POST, PUT/PATCH, and DELETE methods.

You also need to consider what data the API clients should have access
to. Your vulnerability management database contains a list of hosts with
associated details, a list of discovered vulnerabilities with their own details,
and a mirror of the CVE database provided by cve-search. We don’t need to
provide the CVE database contents with our API because it’s publicly avail-
able. If other tools need this information, there are easier ways for them to
get it than by querying your API. But it makes sense to expose host and vul-
nerability information that is specific to your network and most likely can’t
be found anywhere but the vulnerability management system.

The simple-api.py implements four endpoints for the hosts and
vulnerabilities collections, accessible only via the GET method.
Table 14-2 lists the details of each endpoint.

Table 14-2: API Endpoints and Their Function

Endpoint Action

/hosts/ Returns a JSON-formatted list of IP addresses in the
database

/hosts/<ip address> Returns JSON-formatted host details for the provided
IP address, including a list of CVEs it’s vulnerable to

/vulnerabilities/ Returns a JSON-formatted list of CVE IDs in the vulner-
abilities database; that is, CVEs that currently affect
hosts in the system

/vulnerabilities/<CVE ID> Returns JSON-formatted details for the provided CVE
ID, including a list of IP addresses that are vulnerable

If any other URI paths are requested from the server where you host
your API, the script returns a JSON document containing a key-value pair
in the form {'error': 'error message'} and an HTTP status code. An HTTP
status code of 2xx indicates success, and the 4xx series refers to a variety of
errors (for example, 404 “page not found”). For purely whimsical reasons, I
decided to make all the errors return code 418, which in HTTP unofficially
means (I’m not making this up) “I’m a teapot.” Feel free to use a different
error code in your script.

142 Chapter 14

Implementing the API
Instead of building the entire API in a single main() function, we’ll split the
script into logical functions:

main()  Starts the server instance and tells Python to handle all
requests via SimpleRequestHandler.

SimpleRequestHandler  A custom class that inherits from the http.server
.BaseHTTPRequestHandler class and overrides the do_GET function that
parses the request URI for GET requests. It either returns an error or
passes control to the database lookup functions that handle request-
ing and parsing data from Mongo. It returns an error for other HTTP
method handlers like do_POST and do_PUT because they’re not supported.

Database lookup functions  There are four of these, one for each
endpoint. Each one performs Mongo queries and returns the data to
SimpleRequestHandler in a JSON document, as well as a response code in
the case of errors.

We’ll look at each section in order, starting with the Python headers
and the main() function in Listing 14-1.

#!/usr/bin/env python3

u import http.server, socketserver, json, re, ipaddress
from bson.json_util import dumps
from pymongo import MongoClient
from io import BytesIO

client = MongoClient('mongodb://localhost:27017')
db = client['vulnmgt']

v PORT=8000
ERRORCODE=418 # I'm a teapot

--functions and object definitions are in Listings 14-2 and 14-3--

w def main():
 Handler = SimpleRequestHandler
 with socketserver.TCPServer(("", PORT), Handler) as httpd:
 httpd.serve_forever()

main()

Listing 14-1: Script listing for simple-api.py (part 1)

We import http.server and socketserver for basic HTTP server function-
ality, bson.json_util for a BSON-dumping utility to turn Mongo responses
into clean JSON, and BytesIO to build the server response, which must be
in a byte format rather than simple ASCII u. The global variables PORT and
ERRORCODE v define the listening port for the server and the standard error
code to return, respectively.

Advanced Topics 143

When the script starts w, we instantiate a TCPServer, listening at the con-
figured port. It delegates its handling to SimpleRequestHandler and, because
it’s invoked with serve_forever, will continue serving requests until the pro-
cess is killed.

When a request comes in via GET, the do_GET method of
SimpleRequestHandler in Listing 14-2 kicks into action.

class SimpleRequestHandler(http.server.BaseHTTPRequestHandler):
 def do_GET(self):

 u response = BytesIO()
 v splitPath = self.path.split('/')

 if (splitPath[1] == 'vulnerabilities'):
 �if(len(splitPath) == 2 or (len(splitPath) == 3 and splitPath[2]

== '')):
 self.send_response(200)

 w response.write(listVulns().encode())
 elif(len(splitPath) == 3):

 x code, details = getVulnDetails(splitPath[2])
 self.send_response(code)
 response.write(details.encode())
 else:

 y self.send_response(ERRORCODE)
 �response.write(json.dumps([{'error': 'did you mean '\

'vulnerabilities/?'}]).encode())
 elif (splitPath[1] == 'hosts'):
 �if(len(splitPath) == 2 or (len(splitPath) == 3 and splitPath[2]

== '')):
 self.send_response(200)

 z response.write(listHosts().encode())
 elif(len(splitPath) == 3):

 { code, details = getHostDetails(splitPath[2])
 self.send_response(code)
 response.write(details.encode())
 else:
 self.send_response(ERRORCODE)
 �response.write(json.dumps([{'error': 'did you mean '\

'hosts/?'}]).encode())
 else:
 self.send_response(ERRORCODE)
 �response.write(json.dumps([{'error': 'unrecognized path '

+ self.path}]).encode())
 self.end_headers()

 | self.wfile.write(response.getvalue())

Listing 14-2: Script listing for simple-api.py (part 2)

To determine whether the request path is one of the four supported
endpoints, the requested URI is first split into its component pieces. To
handle this parsing, we split the path into an array using / (forward slash)
as the delimiter v. The first value in that array is blank (the empty string
prior to the first slash), so the second and third values point to the appro-
priate database lookup function wxz{, and the return values of those

144 Chapter 14

functions are used as the response body. If no function is matched, an error
is returned as the response. Building the response in http.server requires
three steps (four if any errors are generated):

1.	 Send headers (implicitly handled by sending a response code with
send_response).

2.	 End headers with end_headers().

3.	 Generate errors as needed using ERRORCODE y.

4.	 Send actual response data with wfile.write |, which takes the byte
stream from the response variable. This variable is instantiated as a
BytesIO object u and is built by adding data to it via response.write,
which automatically puts it into the proper byte format.

Additionally, there are four database functions: listHosts, listVulns,
getHostDetails, and getVulnDetails, as shown in Listing 14-3.

def listHosts():
 u results = db.hosts.distinct('ip')

 count = len(results)
 response = [{'count': count, 'iplist': results}]

 v return json.dumps(response)

def listVulns():
 results = db.vulnerabilities.distinct('cve')
 if 'NOCVE' in results:
 results.remove('NOCVE') # we don't care about these
 count = len(results)
 response = [{'count': count, 'cvelist': results}]
 return json.dumps(response)

def getHostDetails(hostid):
 code = 200
 try:

 w ipaddress.ip_address(hostid)
 x response = db.hosts.find_one({'ip': hostid})

 if response:
 cveList = []

 y oids = db.hosts.distinct('oids.oid', {'ip': hostid})
 for oid in oids:
 oidInfo = db.vulnerabilities.find_one({'oid': oid})
 if 'cve' in oidInfo.keys():
 cveList += oidInfo['cve']
 cveList = sorted(set(cveList)) # sort, remove dupes
 if 'NOCVE' in cveList:
 cveList.remove('NOCVE') # remove NOCVE

 z response['cves'] = cveList
 else:
 response = [{'error': 'IP ' + hostid + ' not found'}]
 code = ERRORCODE
 except ValueError as e:
 response= [{'error': str(e)}]

Advanced Topics 145

 code = ERRORCODE
 return code, dumps(response)

def getVulnDetails(cveid):
 code = 200

 { if (re.fullmatch('CVE-\d{4}-\d{4,}', cveid)):
 | response = db.vulnerabilities.find_one({'cve': cveid})

 if response: # there's a cve in there
 oid = response['oid']

 } result = db.hosts.distinct('ip', {'oids.oid': oid})
 response['affectedhosts'] = result
 else:
 response = [{'error': 'no hosts affected by ' + cveid}]
 code = ERRORCODE
 else:
 response = [{'error': cveid + ' is not a valid CVE ID'}]
 code = ERRORCODE
 return code, dumps(response)

Listing 14-3: Script listing for simple-api.py (part 3)

The first two database functions query Mongo for a complete and dedu-
plicated list of IP addresses (listHosts) u or CVE IDs (listVulns) and send it
back as a JSON structure v.

The details functions first validate whether the input value is a legiti-
mate IP address w or CVE ID { and send back an error if not. Next, they
pull out the details for a specific host x or vulnerability |. Then they run a
second query to get the list of associated hosts (for a vulnerability) } or vul-
nerabilities (for a host) y. This data, once collected, is inserted into a JSON
structure z that is returned to SimpleRequestHandler and then the client.

Getting the API Running
Once the simple-api.py script is complete and tested, set it up on your server
to run all the time. The process for doing this depends on the service man-
agement system that your OS uses: common ones for Linux are systemd,
SysV-style init, and upstart. These instructions apply to systemd.

Create a service file called simple-api.service in the systemd scripts
location (/lib/systemd/system on Ubuntu) to add a new systemd service.
Listing 14-4 shows the contents of the service file.

[Unit]
Description=systemd script for simple-api.py
DefaultDependencies=no
Wants=network-pre.target

[Service]
Type=simple
RemainAfterExit=false
ExecStart=/path/to/scripts/simple-api.py
ExecStop=/usr/bin/killall simple-api

146 Chapter 14

TimeoutStopSec=30s

[Install]
WantedBy=multi-user.target

Listing 14-4: Service configuration for simple-api.py

Now make simple-api.py executable using chmod +x and run the com-
mands in Listing 14-5 as root to start the service and ensure that it’s
running.

systemctl enable simple-api.service
Created symlink /etc/systemd/system/multi-user.target.wants/simple-api.service
→ /lib/systemd/system/simple-api.service.
systemctl daemon-reload
systemctl start simple-api
systemctl status simple-api
 simple-api.service - SystemD script for simple-api.py
 �Loaded: loaded (/lib/systemd/system/simple-api.service; enabled; vendor

preset: enabled)
 Active: active (running) since Sun 2020-04-26 16:54:07 UTC; 1s ago
 Main PID: 1554 (python3)
 Tasks: 3 (limit: 4633)
 CGroup: /system.slice/simple-api.service
 1554 python3 /path/to/scripts/simple-api.py

Apr 28 16:54:07 practicalvm systemd[1]: Started systemd script for
simple-api.py.

Listing 14-5: Starting the service

First, systemctl enable adds simple-api.service into the systemd configura-
tion. Next, systemctl daemon-reload and systemctl start simple-api start the
service. Then systemctl status simple-api outputs the response you see in
Listing 14-5 if the service is successfully running. At this point, the API will
be up and listening on the port you’ve configured within the script.

Customize It
Python’s http.server library minimizes external dependencies and makes it
very clear how the code functions. But it doesn’t provide API-specific func-
tionality and only supports basic HTTP authentication (the Python authors
strongly recommend that you not use it in a production environment). If
you want to significantly expand the API, you can use a REST framework,
such as Flask or Falcon, to simplify coding and maintain the API.

The simple-api.py script doesn’t even implement basic HTTP authentica-
tion. So it’s very important to either heavily restrict access to the web server
or add authentication to the script before using it in production.

The script returns a simple list of hosts or vulnerability IDs from the
/list endpoints. You can return more information about every host/
vulnerability, similar to the advanced reports in Chapter 13.

Advanced Topics 147

If you expect clients to use your API by requesting large batches of
data, you can make this easier and more efficient by adding the option
to include paging information in the query. For example, a request to
http://api-server/hosts/list/?start=20&count=20 would return records 20
through 40, and a client could iterate through the total host listing a
batch at a time.

As the script and systemd service are written now, the log messages from
http.server are printed to STDERR, which may not be captured by the systemd
logger, journald. You can modify the script or the service definition to retain
logs so you can keep an eye on who is using your API.

Descriptive error messages let an attacker probe your API to see what
information is available. You can harden the API by replacing all the errors
with a generic message that doesn’t provide hints to the correct endpoint
formats.

Automating Vulnerability Exploitation
Once you have information about systems containing vulnerabilities with
known exploits (see Listing 13-9), you can determine whether those vulner-
abilities are exploitable. If they are, you might prioritize fixing or mitigating
those vulnerabilities. If they’re not, either it’s a false positive result or exist-
ing mitigations protect the host from successful exploitation.

But this process is slow and tedious: you have to find the exploit, set
up your system to run it, attempt exploitation, and then record the results.
You’ve already automated most of your process, so why not automate this
final step as well? Tools like Metasploit are scriptable via the command line,
so is there any reason not to automatically attempt exploitation?

Pros and Cons
Actually, there are several very good reasons not to automate vulnerability
exploitation. Even the process of vulnerability scanning isn’t without risks.
It’s always possible to cause glitches or even crash a system with aggressive
scans or fragile targets. Running exploits is more dangerous yet: they could
crash a production system, damage important data, or even (in rare cases)
damage the underlying hardware. Exploit code that you don’t thoroughly
understand might have backdoor functions or unexpected side effects. Even
if you could ensure that the exploits you’re running do nothing but verify
that exploitation is possible, you could still damage the system you’re testing.

For many organizations, the risk isn’t worth the reward of knowing
which systems in the environment are vulnerable to which exploits. So they
perform vulnerability exploitation manually, or at least partially manually.
It’s best to have an experienced penetration tester attempt exploitation in
a controlled environment. The tester uses an exploitation framework like
Metasploit to automate tedious steps, such as running tests repeatedly with
different inputs or trying different exploits until they find one that works.
But there’s always a human monitoring its effectiveness and ready to stop
the test if something goes wrong.

148 Chapter 14

Some organizations have a large set of assets and a threat model where
the exploitation risk is significantly higher than the risk of occasionally
crashing a critical service. If manual exploitation of all the critical vulner-
abilities isn’t feasible, the additional information might be worth the risk.
But this isn’t a decision you should make lightly or in a vacuum. You’ll need
organizational support before implementing automatic vulnerability exploi-
tation (see “Gaining Support” on page 39).

Automating Metasploit
Once you’ve identified which exploits exist for vulnerabilities in your
environment, you need to run the identified exploits against the vulner-
able host. With the Exploit Database, there’s no easy way to script “run
this exploit on host X”: exploits are written in various languages, some
might need to be compiled before running, and they have received vary-
ing levels of vetting for effectiveness and safety. As a unified penetration-
testing framework, Metasploit solves these issues. All Metasploit-compatible
exploits are implemented in Ruby, tested extensively, and run in a con-
sistent manner via the Metasploit Framework. Better still, you can script
Metasploit from the command line and encapsulate it in a Python (or simi-
lar) script. This section describes how to write such a script, but I’ll leave
the implementation as an exercise for the motivated reader.

N O T E 	 You can modify the exploitable-vulns.py script in Listing 13-9 to use Metasploit’s
internal vulnerability-to-exploit mapping and be confident that any systems thereby
marked as exploitable do in fact have automatable Metasploit modules. Access to
this data and parsing it to find those mappings is another exercise I’ll leave to the
advanced reader.

Listing 14-6 shows the overall structure of a possible automated exploi-
tation script in pseudocode.

Query database for list of hosts with vulnerabilities
Map vulnerabilities against list of exploits (Exploit-DB, Metasploit, other)
Result: list of hosts and exploitable vulnerabilities on each host
For each host in this list:
 For each vulnerability on that host:
 Determine Metasploit module for specified vulnerability
 Kick off Metasploit module against specified host
 Record success/failure in host record in database

Listing 14-6: Pseudocode for automated exploitation with Metasploit

Getting a list of exploitable vulnerabilities on each host by mapping
them against an existing list of exploits should be familiar from working
with exploitable-vulns.py. The loop in Listing 14-7 goes through each exploit-
able vulnerability on each host and starts a Metasploit session to attempt to
exploit the vulnerability with its associated Metasploit module.

Because Metasploit modules are referred to by name rather than
by CVE ID, you’ll need to connect the CVE you’re attempting to exploit

Advanced Topics 149

with the correct module. If you’re not getting exploit information from
Metasploit, you can correlate CVE IDs with Metasploit module names by
manually parsing Metasploit searches, as in Listing 14-7.

$ msfconsole -qx 'search cve:CVE-2012-2019;quit'

Matching Modules
================

 # Name Disclosure Date Rank Check Description
 - ---- --------------- ---- ----- -----------
 �1 exploit/windows/misc/hp_operations_agent_coda_34 2012-07-09 normal

Yes HP Operations Agent Opcode coda.exe 0x34 Buffer Overflow

Listing 14-7: Searching Metasploit modules using the Metasploit command line

This process takes quite some time, mostly because starting msfconsole
can take tens of seconds. You can split this listing into two scripts: one to
start msfconsole and the other to submit requests to the running console
process via a simple API.

Once you have the module name, the remaining step is to attempt
exploitation. Run msfconsole -qx 'command1;command2;commandX;quit' to run
a sequence of exploit-related commands and then close Metasploit. Many
modules require additional parameters for the best operation: you might
decide to run every module with its default configuration or store param-
eters for some of the more popular modules separately. To determine
whether exploitation was successful, you can rely on the Metasploit output.
Or, if you’ve configured Metasploit to use a database, you can pull success/
failure information from the database after the exploit was attempted.

At this point, you can test automatic exploitation. But before you do so,
consider the following:

•	 Is automatic exploitation testing necessary?

•	 Can I run this script against a test environment configured to replicate
the live environment rather than against production systems?

•	 Is this testing really necessary?

If you’re still convinced, good luck, and have at it!

Bringing the System into the Cloud
This book focuses on small organizations with on-premise workstations
and servers. But businesses are increasingly adding cloud-based operations
or even moving their entire production environment into the cloud. Many
new organizations are forgoing local infrastructure entirely, opting to place
their entire business infrastructure in a cloud environment. In this section,
we’ll look at some considerations for adding your cloud environment into
your existing vulnerability management system.

150 Chapter 14

Cloud Architecture
If your infrastructure is entirely in the cloud, it makes sense to deploy
your vulnerability-scanning system entirely in the same cloud environ-
ment. Doing so will minimize latency and let you allow access to your
various cloud network segments from a scanner that’s already in the same
environment.

But if your environment is a mix of cloud and on-premise infrastruc-
ture, you might need to consider a few different options. You could set
up your cloud environment to permit your scanning tools access into the
cloud. Or, you could set up separate scanners within the cloud environment
that deliver their results to your centralized Mongo database. Scanning
the cloud environment from a local scanner introduces latency (especially
if you’re geographically distant from your cloud network) and intervening
security devices. You’ll have to allow your scanner unlimited egress from
your local network and permit its public IP address unlimited access to the
cloud environment. Alternatively, you could provide this access via a virtual
private network (VPN) configuration, which would let you securely tunnel
traffic between your local and cloud environments.

If you set up multiple scanners for cloud or a heavily segmented local
network, you’ll need to ensure they coordinate their database insertions to
avoid overwriting each other’s data. You also must make sure that database
reporting and deletion only happens from one location to guarantee the
data remains consistent.

Cloud and Network Ranges
Unlike an on-premise network, where you know that all the IP addresses in
a range are part of your network, cloud hosts or services often have multiple
IP addresses: at a minimum, one for private access from within the same
network and one for public internet access. In the private address space,
cloud network separation ensures that you can’t target hosts belonging to
another cloud environment. But with public addresses, there is no such
guarantee: your cloud’s public IP addresses are adjacent to many other
addresses.

If you scan only your cloud environment’s private IP addresses, you can
specify an entire network range with confidence that you can’t access hosts
outside your cloud. To address ranges within the cloud’s private network,
you’ll need either a scanner within that range or a remote connection, such
as a VPN.

If you scan your cloud services’ public-facing addresses, you’ll need to
address your hosts individually rather than by network range to ensure you
don’t accidentally start an unauthorized scan (in other words, an attack) of
another organization’s hosts. Even though you can more safely scan hosts
via their internal addresses, external-facing scans in concert with internal
scans help you understand your public-facing vulnerabilities. A vulnerabil-
ity that only exists on internal-facing services might be less severe than the

Advanced Topics 151

same vulnerability on a port that’s open to the internet at large. Getting
both views of your environment will give you a better understanding of your
overall security posture.

If you perform internal and external scans, you’ll have to make some
decisions about the structure of your host data in your database. The scan-
ning and reporting scripts in this book uniquely identify each host by IP
address. If a host has more than one IP address, you’ll need to account for
this by choosing a different unique host identifier. Or, you can treat the
external and internal views on the same cloud system as separate hosts.
Whichever you choose, adjust your scripts and database to compensate.

Other Implementation Considerations
You’ll need a complete understanding of your cloud environment(s) for
complete scanning and reporting coverage. Consider the following ques-
tions: is your cloud environment largely located in the same place, or is it
distributed? Do you have multiple private cloud environments or just one?
Is there internal segmentation providing limited access into certain sub-
nets? This section discusses aspects of your cloud environment that you’ll
need to keep in mind while designing your cloud-scanning system.

Cloud Environment Distribution

Many organizations have multiple cloud environments, possibly spread
across several cloud providers, such as Amazon, Google, or Microsoft. Even
a “simple” multi-cloud environment might easily include a development
cloud environment, a testing cloud, the production cloud environment
where the actual business-critical services reside, and a management cloud
that controls access into the other three.

Underlying peering connections might link the disparate clouds, or
they might be restricted to communication over the public internet. In
multiple cloud environments hosted by a single cloud provider, a peering
arrangement might allow services in one environment to communicate with
another directly. Place your scanners where it’s easiest to ensure full cover-
age of your multiple cloud environments.

Virtual Machines and Services

You can think of a cloud environment much like a traditional data center
except all the physical services are replaced by virtual machines. But cloud
environments are a lot more flexible. All the major cloud vendors now
provide, in addition to custom virtual machines, software-as-a-service (SaaS).
In SaaS environments, you can register, say, a PostgreSQL server without
having to think about or even be aware of the underlying OS and support
software. For the purposes of your business and vulnerability management
system, the only thing that exists is PostgreSQL, and the cloud provider
handles the patching, configuration, and underlying OS.

Many modern cloud environments have a blend of full virtual machines,
SaaS services, and a containerized environment, which I discuss in the next

152 Chapter 14

section. You’ll need to be aware of this blend and choose your networking
settings accordingly to ensure that your scanner can access all open ports
across your environment.

Containerized Services

Organizations are increasingly turning to container-based deployments for
new services, using systems like Docker and Kubernetes. A full introduc-
tion to containers is beyond the scope of this book, but you can think of
them as extremely stripped-down virtual machines that expose only spe-
cific ports/services to the outside world, if at all. In some cases, especially
in Kubernetes environments, you might have multiple microservices that
speak only to each other and to the Kubernetes management system; hence,
they’re nearly invisible from an external scanner’s perspective.

Like SaaS systems, containerized environments raise questions of just
how much responsibility you have for vulnerability awareness and scanning
in these environments. Unlike with SaaS, your organization is still respon-
sible for the containerized environment, even if the environment only
externally exposes a very limited set of services. So you need to ensure that
the individual containers are not running vulnerable or outdated services.
The vulnerability management system we’ve built in this book is not well
suited to managing a containerized environment, but the principles you’ve
learned will serve you well in designing policies to keep these deployments
fully up-to-date.

Scanner Access Requirements

To accurately catalog vulnerabilities in your cloud environment, your scan-
ner needs network access to all of your virtual machines and services in
the cloud environment. In networking terms, this means that the scanner,
wherever it’s located, must be allowed to connect to its target IP range on
the full range of TCP ports. But what about a SaaS PostgreSQL database?
Which ports need to be opened to ensure the scanner can get as much
information as possible about that system?

You could allow the scanner access to all ports, 0 through 65535. But
considering the database only provides access on port 5432, you might
allow the scanner access to only that port on the SaaS host system to save
time and effort. On the other hand, what if you don’t entirely trust your
cloud provider to expose only the PostgreSQL service? The best way to find
out what other services are open might be via a comprehensive port scan.

Summary
In this chapter, you learned ways to expand your vulnerability management
system. You built a simple REST API to remotely query the vulnerability
database to integrate this system with other security or orchestration tools
in your environment. You considered the pros and cons of automated

Advanced Topics 153

exploitation of known vulnerabilities in your environment. You also con-
sidered how to extend your vulnerability management capability into
the cloud.

Security is always a process, never a goal, and your vulnerability man-
agement system is no different. In the next (and final) chapter, we’ll look
back at what you’ve accomplished. Then we’ll explore some of the topics
you might want to tackle next. For example, you might want to investigate
the vulnerability management implications of coming trends, such as the
zero-trust network, or you may someday want to find commercial replace-
ments for some of your homebrew tools.

Throughout this guide, you’ve built a com-
plete vulnerability management system

from scratch using freely available tools
and some Python “glue.” In the process, I hope

you’ve transformed your organization’s approach to
vulnerability management. But before you close this
book, let’s look back at where we’ve been and then
look forward to other improvements you might make
to your system in the future.

15
C O N C L U S I O N

A Look Back
Think about what you wanted to achieve when you first chose this book and
started reading. Perhaps you’re an IT administrator for a small business
who realized that you needed to systematize your patching cycle. Or maybe
you’re a security analyst who was tasked with formalizing a vulnerability

156 Chapter 15

management program in your organization. Most likely, you had a very
small budget or no budget at all and had to get creative to source the
required hardware for this project. Your goal, even if you hadn’t explicitly
articulated it, was to gain a comprehensive view of the hosts in your envi-
ronment and their current vulnerability status.

Designing and Building
When planning and writing this book, my ambitions for the vulnerability
management system were twofold:

•	 Use only freely available, off-the-shelf tools

•	 Create a system that’s comprehensible and extensible

You can decide if we built a comprehensible, extensible system. But it’s
clear that we built it for no cost beyond the hardware (physical or virtual) to
host it. This objective was particularly important to me because vulnerabil-
ity management is the foundation of a good information security program.
In addition, commercial vulnerability management tools are often well out-
side the budget of organizations with few or no security personnel.

Throughout this book, I’ve suggested ways to modify the provided
scripts and underlying tools to suit your environment and get the best and
most actionable data for your organization. Beyond that tweaking, I hope
you used the scripting language, database, and other tools that you’re most
comfortable with. By building and adjusting this system, you now have a
powerful tool that you understand intimately enough to improve as your
needs change and the vulnerability landscape evolves.

Maintaining the System
Depending on how you configured your vulnerability management system’s
automation (in automation.sh), you might have few to no manual tasks. The
system does its work uninterrupted, and every week you receive a series of
reports in your inbox or shared folder drawn from fresh scan data. But this
doesn’t mean you can ignore the system going forward! You need to main-
tain the system’s components and tweak the scan and reporting parameters
to sustain and improve the vulnerability intelligence you have to work with.

Although the system as described in this book will automatically update
its OS packages, tools, and CVE and exploit data from the internet, keep
an eye on these updates. It’s unlikely that cve-tools will be unable to update
on their own from the NVD repository in the foreseeable future. But you
might have to find a replacement for third-party data, such as the Exploit
Database-to-CVE mapping. Even if these data sources remain stable, new
data sources that weren’t available at the time of this writing, or at the time
you built the system, could become available. Keep up-to-date on the vul-
nerability management field and investigate new data feeds to see whether
they can improve your vulnerability intelligence.

Conclusion 157

As your system expands, you might need to expand its hardware as
well. If your system is fully virtualized, this might be as simple as assigning
further resources to it. But if you’re using physical hardware, you might
need to roll up your sleeves and perform some physical upgrades. Physical
hardware fails and becomes obsolete, so monitor and maintain the vulner-
ability management system like any other servers in your infrastructure.
Don’t neglect this maintenance, or you’ll risk a system failure just as your
CTO asks you about the latest Windows Server zero-day attack that’s already
being exploited worldwide.

Sooner or later, it might make sense to offload some of your vulnerabil-
ity management system to the pros: commercial vulnerability management
tools and systems. Let’s look at how you can bring commercial products into
your homegrown ecosystem without losing any of the valuable information
that you’re already receiving.

Commercial Vulnerability Management Products
Once your vulnerability management process and outcomes have proven
successful, your organization might make more funding available. If so, you
can start looking at commercial tools to improve your overall system. In this
section, we’ll consider some of the aspects of replacing part, or all, of your
system with commercial tools.

Commercial Scanners
The first step you should take is to research commercial vulnerability scan-
ners and select one to replace OpenVAS. Although OpenVAS is a service-
able tool, commercial tools are updated more regularly. Also, they’re much
easier to use and include additional features, such as a client-side agent
(for example, Tenable’s Nessus Agent or the Rapid7 Insight Agent) that can
limit or obviate the need for external scanning.

My purpose here isn’t to suggest or steer you away from a specific tool.
Instead, I’ll give you some points to consider when choosing a scanner that
meets your needs and that you can insert into your existing vulnerability
management system.

Report automation and export
To build your new scanner into your existing vulnerability manage-
ment system, you’ll need the capability to start scans via your automa-
tion script and import the scan results into your database to generate
reports. A scanner that generates easily parseable XML or JSON
reports will require minimal additional work to fit into your system.

Extensive and documented API
Generally, commercial scanners provide an API to control the scanner
and share scan result data with other tools. The better and more usable
the API, the easier it will be to integrate this scanner into your existing
system.

158 Chapter 15

Extensible architecture
Many commercial scan tools let you extend the system by adding more
scanners to increase coverage. If you choose a scanner that can aggre-
gate results from multiple scanner instances in one central location,
you can pull the scan results from that aggregator rather than commu-
nicating with multiple scanner instances throughout your network.

Commercial Vulnerability Management Systems
Suppose vulnerability management helps you patch a serious vulnerability
that becomes actively exploited a week later or discover an ongoing incur-
sion that your other security tools hadn’t yet noticed. Suddenly more money
is available—a lot more—to improve the technology underlying your vul-
nerability management process. Now you can look at full-featured commer-
cial vulnerability management systems.

It might seem as though you’ve wasted time and effort building a home-
brew solution only to replace it with a commercial product, but remember
that your system is a means to an end. The goal is to improve the organi-
zation’s vulnerability posture, and your homebrew system has served its
purpose. In addition, by building and maintaining your system, you under-
stand how a vulnerability management system works and can set up and
maintain your commercial system as a seasoned expert.

As in the previous section, I won’t make any recommendations, but I’ll
point out a few criteria to help you choose the commercial product that’s
right for you.

No loss of functionality
The commercial tool should perform the same tasks as your homebrew
system or at least integrate with your existing system to share data.

Ability to import existing data
Choose a commercial tool that lets you import data in JSON, XML, or
any other open format that you can write a script to generate so you
don’t lose all the historical vulnerability data you’ve already gathered.

Ability to export existing data
Don’t get locked into a product that won’t let you export its data into an
open and well-documented format, such as JSON or XML. This is the
bare minimum of connectivity you should expect; direct integration
with other security tools is even better.

Extensive and documented API
As you learned in “Building a Simple REST API” on page 140, even a
simple API can let you share your vulnerability information with other
tools. An extensive and well-documented API lets you build customized
integrations among your various security tools.

Conclusion 159

An Incomplete List of Commercial Options
Here’s a short, alphabetically ordered list of popular commercial vulnerabil-
ity scanners and vulnerability management systems to get you started. No
recommendation should be implied by a scanner’s presence on or absence
from this list.

Alert Logic (multiple products)

Greenbone Networks GmbH Greenbone Security Manager

IBM QRadar Vulnerability Manager

Qualys Vulnerability Management and Cloud Platform

Rapid7 InsightVM

Tenable Nessus and tenable.io

Tripwire IP360

Coming Trends in Information Security
Although the vulnerability management system you’ve built is well suited to
your current organization and network environment, it’s worth looking at
future trends that might change your information security needs. Consider
how cloud, containers, and zero-trust networking will influence how your
organization addresses vulnerability management.

Clouds and Containers Revisited
Even today, some organizations, primarily startups and other fast-growing
technology companies, have no on-premise infrastructure. All their produc-
tion systems are in a private cloud. They’re managed by an infrastructure
orchestration tool, such as Terraform, that dynamically sets up and tears
down hosts and services based on current needs. This makes it difficult to
determine what systems are currently running, never mind what their vul-
nerability posture might be. Integrating a vulnerability management system
into such an environment will take some thought and likely some coopera-
tion with your development operations (DevOps) team.

If you’re using an orchestration tool to build and tear down infrastruc-
ture, you can build a step into this process that registers (or deregisters) the
new host or service with your vulnerability management system. As a result,
you’ll always have an up-to-date list of hosts and IP addresses that you need
to scan. This works well for long-lived virtual hosts, but what about ephem-
eral hosts that have a life span measured in days or hours rather than weeks
or months?

Designating ephemeral hosts as out of scope and delegating their secu-
rity to the team that builds and maintains them is valid but shortsighted.
It’s true that there is limited utility to scanning such systems and keeping
their results for far longer than these hosts even exist. But the vulnerability
management program (that is, you) still has an important role in improving
the security posture of ephemeral infrastructure. You can’t point to scan

160 Chapter 15

results to suggest regular patching of these systems; however, you can insist
that updated patches be an integral part of the build process. Either these
systems must be fully patched as soon as they’re brought online, or, better
yet, your organization should create an organization-specific system image
that you use as the template for all short-lived systems. Regularly scanning
and updating this template is the best way to ensure that short-lived servers
are as secure as possible.

Some software tool must exist to create and delete the other systems
and ensure that the correct images are used, whether that’s Terraform,
Kubernetes, Chef, or another automation tool. The build/configuration sys-
tem is long-lived and is a good target for attacks on ephemeral infrastruc-
ture. Use traditional vulnerability scanning and management to secure the
build tools.

Organizations that have moved fully to the cloud for their infra-
structure or have been cloud-native from the beginning often have their
employees connect from arbitrary locations to do their work on their
devices rather than company-owned workstations. Such a fully decentral-
ized organization might use a zero-trust networking model, which is the
next topic.

Zero-Trust Networking
First described by John Kindervag in 2010, the basic premise of zero-trust
networking is simple: don’t trust anything without explicit verification. The
trust model in traditional network security is based on a network perimeter,
allowing devices in some network regions (based on IP address) access to
resources and blocking access from all other IP addresses. Zero-trust net-
working dispenses entirely with the concept of a network perimeter. Devices
are authorized individually based on other characteristics set by the network
administrator. For example, a system is authorized to connect to resources
only if a known user is logged in using multifactor authentication (MFA),
the system’s onboard antivirus reports that it’s clean, and the MAC address
is on a whitelist. The goal is to permit only devices that are safe and autho-
rized by metrics other than just an IP address.

Currently, the most prominent zero-trust model is BeyondCorp, a
framework developed at Google. Since 2011, Google has been building
and using the BeyondCorp model internally and has published several
research papers detailing its implementation. To Google Cloud customers,
the company provides a zero-trust implementation called “context-aware
access,” which is modeled on BeyondCorp. Not to be outdone by Google,
Microsoft announced a zero-trust framework built around Azure Active
Directory. Amazon hasn’t publicly released a zero-trust framework in AWS
(as this book goes to press), but most of the individual components are
available, although some assembly and a third-party identity provider are
required.

Zero-trust networking changes the vulnerability management process.
Instead of scanning and managing a well-defined set of network segments,
you must consider any number of workstations, laptops, and even mobile

Conclusion 161

devices as part of your infrastructure. But how can you regularly scan and
remediate vulnerabilities when you don’t even know where those devices
might be on your network from one day to the next?

The answer is as simple in concept as it is complex in execution: you
integrate a vulnerability management metric into the zero-trust autho-
rization criteria. A given host must be clear of major vulnerabilities (or
whichever threshold you prefer) to be authorized to connect. This provides
motivation not only to ensure your vulnerability data is always completely
up-to-date but also to make it an integral part of your overall network secu-
rity. Building a completely zero-trust networking model takes time and is
likely to be an iterative process unless you’re building a new network from
scratch. But you’ll have opportunities to advocate for including vulnerabil-
ity management in your organization’s zero-trust model.

Traditional scanning won’t do the trick to get correct and regularly
updated vulnerability information for hosts that are constantly moving
around and changing IP addresses. You’ll need a vulnerability-reporting
agent, a small binary that lives on the host and regularly reports back to a
central location on the machine’s vulnerability state. Because many zero-
trust configurations already require an antivirus/antimalware agent on
hosts, you might be able to get vulnerability information from the same
agent. Given sufficient time and expertise, you could most likely build a
homebrew solution that provides similar information, although this is well
outside the scope of the current discussion.

In Closing
You’ve reached the end of this book. I hope you’ve found the process of
building a vulnerability management system as rewarding as I’ve found
the process of writing this book. From day one, I learned new features and
details about Python, Mongo, command line tools, and the vulnerability
management field. My goal was to transmit much of that knowledge to you.

As with all fields of human endeavor, vulnerability management is
not and will never be completely explored. This book is a snapshot of one
aspect of vulnerability management. But even between writing and publi-
cation, new vulnerabilities, new vulnerability management products, and
new ideas about the best ways to catalog and address vulnerabilities have
certainly emerged. By working your way through this book and building a
customized vulnerability management system, you’re in an excellent posi-
tion to keep abreast of the field as it evolves and even contribute to the state
of the art.

Keep in mind that all the scripts in this book are available on GitHub at
https://github.com/magnua/practicalvm/. If you improve on these scripts or the
overall vulnerability management system, please submit a pull request or
suggestions. I look forward to seeing all the community suggestions to make
this free vulnerability management system even better.

Now go forth and protect your organization’s infrastructure!

https://github.com/magnua/practicalvm/

I N D E X

A
advanced persistent threat (APT), xix
Alert Logic, 159
application programming interface

(API), 140–147
asset-report.py, 107–109, 117, 118
automation.sh, 115, 118–121, 156

B
BeyondCorp, 160
Borges, Jorge Luis, 82
bugs, 4

C
change management, 14
CIA triad, 4, 7

availability, 4
confidentiality, 4
integrity, 4

classless interdomain routing
(CIDR), 126

CMDB (configuration management
database), 6, 13

common platform enumeration
(CPE), 87

common vulnerabilities and exposures
(CVE), 6, 15, 60, 86, 96,
107, 110, 131, 136

common vulnerability scoring system
(CVSS), 7, 26, 95, 131

common weakness enumeration
(CWE), 131, 132

configuration management database
(CMDB), 6, 13

create, read, update, delete
(CRUD), 140

cron, 28, 101
crontab, 119
cron.weekly, 119

CVE, 6, 15, 60, 86, 96, 107, 110, 131, 136
IDs, 16
NOCVE, 113

cvedetails.com, 6
cve-search, 59, 131, 141

dependencies, 51
setup, 50–52
usage, 75–78

cve_searchsploit, 136
CVSS (common vulnerability scoring

system), 7, 26, 95, 131, 136
CWE (common weakness

enumeration), 131, 132

D
data analysis

correlation, 25–26
culling, 7, 27
example, 8–9
ranking, 7, 27
result, 27

data collection, 5–7, 26
external, 6
internal, 6

data sources
assets, 13–14, 26
exploits, 15, 16, 26
network configuration, 17
threat intelligence, 16
vulnerabilities, 14–15, 26

data types
exploit, 26–27
host, 26–27, 80, 83, 87
mapping vulnerabilities to hosts,

92–93
persistent and dynamic, 80–81
vulnerability, 26–27, 81, 85, 91–92

db-clean.py, 101, 121
defense in depth, 34
demilitarized zone (DMZ), 21

164 Index

detailed-assets.py, 125, 126–131
detailed-vulns.py, 132, 133–136
DHCP (dynamic host configuration

protocol), 80, 88
DoS (denial of service), 4

E
exploitability, 7, 15, 136–137
exploitable-vulns.py, 137–138, 148
exploitation

automated, 28, 147–149
consequences, 26
manual, 28, 147
risks, 28, 147

Exploit Database, 15, 136–137, 148
exploit kits, 16

F
fingerprinting, 20, 124
FS-ISAC, 16
Fyodor, 58

G
Greenbone Networks GmbH, 49, 159
Greenbone Security Assistant, 50, 59,

67–71

H
Heartbleed vulnerability, 16, 52

I
IBM, 159
iDefense Threat Intelligence, 16
identity and access management

(IAM), xxi
intrusion detection system (IDS), 9
intrusion prevention system (IPS), 9
iSight Threat Intelligence, 16
ISO/IEC standards, 11

K
Kindervag, John, 160

M
MAC address, 124
Maginot Line, xxi
Metasploit, 15, 28, 138, 147

automation, 148–149
msfconsole, 52–53, 149
setup, 52–53

Microsoft System Center Configuration
Manager (SCCM), 32

mitigation. See vulnerability
management, mitigation

MITRE Corporation, 16, 132
MongoDB, 26, 86, 105–107

example document, 83–84
indexes, 98–100
TTL indexes, 101

N
National Institute of Standards and

Technology (NIST), 6, 60
National Vulnerability Database

(NVD), 60
Nessus, 49, 159
NetBIOS, 88
NIST standards, 11
Nmap, 58, 118, 119

data ingestion, 86–91
flags, 62–66
output, 61–64, 66, 87
Python modules, 91
usage, 60–67

nmap-insert.py, 88–90, 117, 119
NVD (National Vulnerability

Database), 60

O
OID. See OpenVAS, OID
omp. See OpenVAS, omp
OpenVAS, 22, 58–59, 118, 119, 131

data ingestion, 91–96
oids, 84
OID, 84, 86, 95, 96, 106–107, 110,

112, 124, 130
omp, 72–75, 119
output, 91–92
reports, 71, 74–75
setup, 49–50
targets, 68–69

Index 165

tasks, 69–71, 73–74
usage, 67–75
web GUI, 67–71

openvas-insert.py, 93–95, 112, 117, 119

P
patching, xxi–xxii, 9, 32
policies. See scanner, configuration
Python

bson, 142
BytesIO, 142, 144
http.server, 142, 144, 146
ipaddress, 126
modules and custom code, 91
socketserver, 142
with structure, 127
yattag, 126, 133

Q
Qualys, 22, 159

R
Rapid7, 159
Razavi, Mohammad, 49
Redis, 50
remediation, 9, 32–35
reporting

asset reports, 104–109, 124–131
automation, 115–122
CSV output, 104, 108–109
exploitability reports, 136–138
HTML output, 125–126,

130–131, 132
output format, 104, 109–110, 124,

125, 130, 132
vulnerability reports, 109–113,

131–136
representational state transfer (REST),

140–141
risk management, 10

consensus building, 39–41
formula, 41–43
risk acceptance, 34
risk matrix, 41–42
stakeholders, 38–41
risk tolerance, 28

run-openvas.sh, 119, 121

S
Scanner, 6, 157–158
scanning

automation, 115–122
cloud environments, 150–151, 152,

159–160
commercial scanners, 157–158
configuration, 15
containers, 152, 159–160
discovery, 14
information collected, 7, 20
limitations, 15, 20
network-based, 19
placement, 21–22
planning, 23
reports, 27
risks, 14, 15
scanners, 6, 157–158
scheduling, 14, 15, 23, 27
system requirements, 22
targets, 20
tradeoffs, 15
virtual machines, 151

SCCM (Microsoft System Center
Configuration Manager), 32

Secure Shell (SSH), 34
simple-api.py, 141, 142–147
software configuration management

(SCM), xxi, 15
SolarWinds, 17
SQL (structured query language), 26

normalization, 93
optimization, 86

SSH (Secure Shell), 34
systemd, 145–146, 147

T
templates. See scanning, configuration
Tenable, 159
Tripwire, 159

U
universal resource indicator (URI),

140–141
update-vm-tools.sh, 54

166 Index

V
vulnerability

and bugs, 4
code execution, 4
command execution, 4
denial of service (DoS), 4
information disclosure, 4
information modification, 4
prioritization, 15

vulnerability intelligence, 7
vulnerability management

and risk management, 10–11
API. See application programming

interface (API)
cloud environments, 149–152
life cycle, 5
mitigation, 9, 32–33
patching. See patching
recommendations, 9
remediation, 9
systemic measures, 33–34
validating controls, 34–35

vulnerability management system
cloud environments, 159–160
commercial products, 158
components, 49
database cleanup, 100–101
hardware requirements, 48
maintenance, 98–101, 156–157
Practical Vulnerability

Management repository,
xxiv, 161

prerequisites, 48
reporting. See reporting
update script, 53–54
updating, 53–55
zero-trust networking, 160–161

vulnerability scanner. See scanning,
scanners

vuln-report.py, 111–112, 117, 118

Z
Zenmap, 67
zero-trust networking, 160–161

BeyondCorp, 160

RESOURCES
Visit https://nostarch.com/practicalvulnerability/ for errata and more information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

BLACK HAT GO
Go Programming for Hackers and
Pentesters
by tom steele, chris patten,
and dan kottmann

368 pp., $39.95
isbn 978-1-59327-865-6

PENTESTING AZURE APPLICATIONS
The Definitive Guide to Testing and Securing
Deployments
by matt burrough

216 pp., $39.95
isbn 978-1-59327-863-2

PRACTICAL PACKET ANALYSIS, 3RD
EDITION
Using Wireshark to Solve Real-World
Network Problems
by chris sanders

368 pp., $49.95
isbn 978-1-59327-802-1

REAL-WORLD BUG HUNTING
A Field Guide to Web Hacking
by peter yaworski

264 pp., $39.95
isbn 978-1-59327-861-8

More no-nonsense books from NO STARCH PRESS

FOUNDATIONS OF INFORMATION
SECURITY
A Straightforward Introduction
by jason andress

248 pp., $39.95
isbn 978-1-71850-004-4

ATTACKING NETWORK
PROTOCOLS
A Hacker's Guide to Capture, Analysis, and
Exploitation
by james forshaw

336 pp., $49.95
isbn 978-1-59327-750-5

https://nostarch.com/practicalvulnerability/

Index 323

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

Bugs: they’re everywhere. Software, firmware,
hardware—they all have them. Bugs even live in
the cloud. And when one of these bugs is leveraged
to wreak havoc or steal sensitive information, a
company’s prized technology assets suddenly
become serious liabilities.

Fortunately, exploitable security weaknesses are
entirely preventable; you just have to find them before
the bad guys do. Practical Vulnerability Management
will help you achieve this goal on a budget, with a
proactive process for detecting bugs and squashing
the threat they pose.

The book starts by introducing the practice of
vulnerability management, its tools and components,
and detailing the ways it improves an enterprise’s
overall security posture. Then it’s time to get your
hands dirty! As the content shifts from conceptual
to practical, you’re guided through creating a
vulnerability-management system from the
ground up, using open-source software.

Along the way, you’ll learn how to:

•	Generate accurate and usable vulnerability intelligence

•	Scan your networked systems to identify and assess
bugs and vulnerabilities

•	 Prioritize and respond to various security risks

•	Automate scans, data analysis, reporting, and other
repetitive tasks

•	Customize the provided scripts to adapt them to your
own needs

Playing whack-a-bug won’t cut it against today’s
advanced adversaries. Use this book to set up, maintain,
and enhance an effective vulnerability management
system, and ensure your organization is always a step
ahead of hacks and attacks.

A B O U T T H E A U T H O R

Andrew Magnusson has been working in the
information security field since 2002, in areas ranging
from firewall configuration to security consulting to
managing SOC 2 compliance.

S T O P A T T A C K S
B E F O R E T H E Y

S T A R T

$29.95 ($39.95 CDN)

M
A

G
N

U
S

S
O

N
P

R
A

C
T

IC
A

L
 �V

U
L

N
E

R
A

B
IL

IT
Y

 M
A

N
A

G
E

M
E

N
T

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book Is For
	Back to Basics
	Vulnerability Management Is Not Patch Management
	Main Topics Covered
	How This Book Is Organized
	Outcomes
	Get the Code
	Important Disclaimer

	Part I: Vulnerability Management Basics
	Chapter 1: Basic Concepts
	The CIA Triad and Vulnerabilities
	What Is Vulnerability Management?
	Collecting Data
	Analyzing Data
	Applying Cull-Rank to a Real-World Example
	Making Recommendations
	Implementing Recommendations

	Vulnerability Management and Risk Management
	Summary

	Chapter 2: Sources of Information
	Asset Information
	Vulnerability Information
	Exploit Data
	Advanced Data Sources
	Summary

	Chapter 3: Vulnerability Scanners
	What Vulnerability Scanners Do
	How Vulnerability Scanners Work
	How to Deploy Vulnerability Scanners
	Ensuring the Scanner Has Access
	Choosing Your OS and Hardware
	Configuring Your Scanner

	Getting Results
	Summary

	Chapter 4: Automating Vulnerability Management
	Understanding the Automation Process
	Data Collection
	Automating Scans and Updates
	Exploiting Your System’s Vulnerabilities
	Summary

	Chapter 5: Dealing with Vulnerabilities
	Security Measures
	Patching
	Mitigation
	Systemic Measures
	Accept the Risk
	Defense in Depth
	Validating Controls

	Summary

	Chapter 6: Organizational Support and Office Politics
	Balancing Competing Priorities
	Gaining Support
	Empathy
	Involve Stakeholders Early
	Understand Office Politics
	Speak Their Language
	Find a Champion
	Argue for Risk Management

	Summary

	Part II: Hands-on Vulnerability Management
	Chapter 7: Setting Up Your Environment
	Setting Up the System
	Installing the OS and Packages
	Customize It

	Installing the Tools
	Setting Up OpenVAS
	Setting Up cve-search
	Setting Up Metasploit
	Customize It

	Keeping the System Updated
	Writing a Script for Automatic Updates
	Running the Script Automatically
	Customize It

	Summary

	Chapter 8: Using the Data Collection Tools
	An Introduction to the Tools
	Nmap
	OpenVAS
	cve-search

	Getting Started with Nmap Scanning
	Running a Basic Scan
	Using Nmap Flags
	Customize It

	Getting Started with OpenVAS
	Running a Basic OpenVAS Scan with the Web GUI
	Running a Basic Scan from the Command Line
	Customize It

	Getting Started with cve-search
	Searching for CVE IDs
	Finding Out More About a CVE
	Text Searching the CVE Database
	Customize It

	Summary

	Chapter 9: Creating an Asset and Vulnerability Database
	Preparing the Database
	Understanding the Database Structure
	Customize It

	Getting Nmap into the Database
	Defining the Requirements
	Building the Script
	Customize It

	Getting OpenVAS into the Database
	Defining the Requirements
	Mapping Vulnerabilities to Hosts
	Building the Script
	Customize It

	Summary

	Chapter 10: Maintaining the Database
	Defining Database Indexes
	Setting Indexes
	Testing Indexes
	Customize It

	Keeping the Data Fresh
	Determining the Cleanup Parameters
	Cleaning Up Your Database with Python
	Customize It

	Summary

	Chapter 11: Generating Asset and Vulnerability Reports
	Asset Reports
	Planning Your Report
	Getting the Data
	Script Listing
	Customize It

	Vulnerability Reports
	Planning Your Report
	Getting the Data
	Script Listing
	Customize It

	Summary

	Chapter 12: Automating Scans and Reporting
	Visualizing the Automation Process
	Collect Data
	Analyze Data
	Maintain the Database

	Planning the Script
	Assembling the Script
	Running Nmap and OpenVAS
	Scheduling the Script
	Script Listings
	Customize It

	Summary

	Chapter 13: Advanced Reporting
	Detailed Asset Reporting
	Planning the Script
	Script Listing
	Customize It

	Detailed Vulnerability Reporting
	Planning the Script
	Script Listing
	Customize It

	Exploitable Vulnerability Reporting
	Preparation
	Modifying the Old Script
	Customize It

	Summary

	Chapter 14: Advanced Topics
	Building a Simple REST API
	An Introduction to APIs and REST
	Designing the API Structure
	Implementing the API
	Getting the API Running
	Customize It

	Automating Vulnerability Exploitation
	Pros and Cons
	Automating Metasploit

	Bringing the System into the Cloud
	Cloud Architecture
	Cloud and Network Ranges
	Other Implementation Considerations

	Summary

	Chapter 15: Conclusion
	A Look Back
	Designing and Building
	Maintaining the System

	Commercial Vulnerability Management Products
	Commercial Scanners
	Commercial Vulnerability Management Systems
	An Incomplete List of Commercial Options

	Coming Trends in Information Security
	Clouds and Containers Revisited
	Zero-Trust Networking

	In Closing

	Index

