

CONTENTS IN DETAIL

PRAISE FOR MYSQL CRASH COURSE

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR

ACKNOWLEDGMENTS

INTRODUCTION
About This Book
Who Is This Book For?
SQL in MySQL vs. SQL in Other Database Systems
Using the Online Resources

PART I: GETTING STARTED

CHAPTER 1: INSTALLING MYSQL AND TOOLS
The MySQL Architecture
Installing MySQL
Summary

CHAPTER 2: CREATING DATABASES AND TABLES
Using MySQL Workbench
Creating a New Database

Creating a New Table
Constraints
Indexes
Dropping and Altering Tables
Summary

PART II: SELECTING DATA FROM A MYSQL DATABASE

CHAPTER 3: INTRODUCTION TO SQL
Querying Data from a Table
Using the Wildcard Character
Ordering Rows
Formatting SQL Code
Uppercase Keywords
Backticks
Code Comments
Null Values
Summary

CHAPTER 4: MYSQL DATA TYPES
String Data Types
char
varchar
enum
set
tinytext, text, mediumtext, and longtext
Binary Data Types
tinyblob, blob, mediumblob, and longblob
binary

varbinary
bit
Numeric Data Types
tinyint, smallint, mediumint, int, and bigint
Boolean
Decimal Data Types
Date and Time Data Types
The json Data Type
Spatial Data Types
Summary

CHAPTER 5: JOINING DATABASE TABLES
Selecting Data from Multiple Tables
Table Aliasing
Types of Joins
Inner Joins
Outer Joins
Natural Joins
Cross Joins
Self Joins
Variations on Join Syntax
Parentheses
Old-School Inner Joins
Column Aliasing
Joining Tables in Different Databases
Summary

CHAPTER 6: PERFORMING COMPLEX JOINS WITH MULTIPLE T
ABLES

Writing One Query with Two Join Types
Joining Many Tables
Associative Tables
Managing the Data in Your Result Set
The limit Keyword
The union Keyword
Temporary Tables
Common Table Expressions
Recursive Common Table Expressions
Derived Tables
Subqueries
Subqueries That Return More Than One Row
Correlated Subqueries
Summary

CHAPTER 7: COMPARING VALUES
Comparison Operators
Equal
Not Equal
Greater Than
Greater Than or Equal To
Less Than
Less Than or Equal To
is null
is not null
in
not in
between
not between

like
not like
exists
Checking Booleans
or Conditions
Summary

CHAPTER 8: CALLING BUILT-IN MYSQL FUNCTIONS
What Is a Function?
Passing Arguments to a Function
Optional Arguments
Calling Functions Within Functions
Calling Functions from Different Parts of Your Query
Aggregate Functions
count()
max()
min()
sum()
avg()
group by
String Functions
concat()
format()
left()
right()
lower()
upper()
substring()
trim()

ltrim()
rtrim()
Date and Time Functions
curdate()
curtime()
now()
date_add()
date_sub()
extract()
datediff()
date_format()
str_to_date()
time_format()
Mathematical Operators and Functions
Mathematical Operators
Mathematical Functions
Other Handy Functions
cast()
coalesce()
distinct()
database()
if()
version()
Summary

CHAPTER 9: INSERTING, UPDATING, AND DELETING DATA
Inserting Data
Inserting Null Values
Inserting Multiple Rows at Once

Inserting Without Listing Column Names
Inserting Sequences of Numbers
Inserting Data Using a Query
Using a Query to Create and Populate a New Table
Updating Data
Updating Multiple Rows
Updating Multiple Columns
Deleting Data
Truncating and Dropping a Table
Summary

PART III: DATABASE OBJECTS

CHAPTER 10: CREATING VIEWS
Creating a New View
Using Views to Hide Column Values
Inserting, Updating, and Deleting from Views
Dropping a View
Indexes and Views
Summary

CHAPTER 11: CREATING FUNCTIONS AND PROCEDURES
Functions vs. Procedures
Creating Functions
Redefining the Delimiter
Adding Parameters and Returning a Value
Specifying Characteristics
Defining the Function Body
Creating Procedures

Using select to Display Values
Defining Local Variables and User Variables
Using Logic in Procedures
Displaying Procedure Results with select
Using a Cursor
Declaring Output Parameters
Writing Procedures That Call Other Procedures
Listing the Stored Routines in a Database
Summary

CHAPTER 12: CREATING TRIGGERS
Triggers That Audit Data
After Insert Triggers
After Delete Triggers
After Update Triggers
Triggers That Affect Data
Before Insert Triggers
Before Update Triggers
Before Delete Triggers
Summary

CHAPTER 13: CREATING EVENTS
The Event Scheduler
Creating Events with No End Date
Creating Events with an End Date
Checking for Errors
Summary

PART IV: ADVANCED TOPICS

CHAPTER 14: TIPS AND TRICKS
Common Mistakes
Working in the Wrong Database
Using the Wrong Server
Leaving where Clauses Incomplete
Running Partial SQL Statements
Transactions
Supporting an Existing System
Using the MySQL Command Line Client
Loading Data from a File
Loading Data to a File
MySQL Shell
Summary

CHAPTER 15: CALLING MYSQL FROM PROGRAMMING LANGU
AGES
PHP
PDO
Object-Oriented MySQLi
Procedural MySQLi
Python
Selecting from a Table
Inserting a Row into a Table
Calling a Stored Procedure
Java
Selecting from a Table
Inserting a Row into a Table
Calling a Stored Procedure
Summary

PART V: PROJECTS

CHAPTER 16: BUILDING A WEATHER DATABASE
Technologies You’ll Use
cron
Bash
SQL Scripts
Project Overview
The Data File
Creating the Weather Tables
Data Types
Constraints
Loading the Data File
Copying the Data to Your Final Table
Scheduling the Bash Script on cron
Alternative Approaches
Summary

CHAPTER 17: TRACKING CHANGES TO VOTER DATA WITH TRI
GGERS
Setting Up the Database
Creating the Tables
The voter Table
The ballot Table
The race Table
The candidate Table
The ballot_candidate Table
Adding Triggers
Before Triggers

After Triggers
Alternative Approaches
Audit Tables
Triggers vs. Privileges
Replacing check Constraints with New Tables
Summary

CHAPTER 18: PROTECTING SALARY DATA WITH VIEWS
Creating the employee Table
Creating the View
Controlling Permissions
Using MySQL Workbench to Test User Access
An Alternative Approach
Summary

AFTERWORD

INDEX

PRAISE FOR MYSQL CRASH COURSE

“A fantastic resource for anyone who wants to learn about
MySQL . . . and an excellent refresher for more seasoned
developers.”

—S���� S����, M�SQL D�������� A�������

“Understand not just the ‘what,’ but the ‘why’ behind
MySQL development.”

—S����� S���, ��� ��� ������ ����������� ���������

MYSQL CRASH COURSE

A Hands-on Introduction to Database
Development

by Rick Silva

MYSQL CRASH COURSE. Copyright © 2023 by Rick Silva.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing
ISBN-13: 978-1-7185-0300-7 (print)
ISBN-13: 978-1-7185-0301-4 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editors: Rachel Monaghan, Eva Morrow, and Frances Saux
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Frédéric Descamps
Copyeditor: Rachel Monaghan
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Scout Festa
For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com
Library of Congress Cataloging-in-Publication Data

Names: Silva, Rick, author.
Title: MySQL crash course : a hands-on introduction to database development / Rick
Silva.
Description: San Francisco, CA : No Starch Press, Inc., [2023] | Includes index.
Identifiers: LCCN 2022050277 (print) | LCCN 2022050278 (ebook) | ISBN 9781718503007
(print) | ISBN
 9781718503014 (ebook)
Subjects: LCSH: SQL (Computer program language) | MySQL (Electronic resource) |
Computer
 programming.
Classification: LCC QA76.73.S67 S557 2023 (print) | LCC QA76.73.S67 (ebook) | DDC
005.75/6--dc23/
 eng/20221128
LC record available at https://lccn.loc.gov/2022050277
LC ebook record available at https://lccn.loc.gov/2022050278

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.

shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

To my wife,
Patti, for her

patience, love,
and support. You

are Mother
Teresa in a scarf.

About the Author
Rick Silva is a software developer with decades of database experience.
Silva has worked at Harvard Business School, Zipcar, and various financial
services companies. A Boston native and a Boston College alum, he now
lives in the Raleigh, North Carolina, area with his wife, Patti, and his dog,
Dixie. When he’s not joining database tables, he’s playing banjo at a local
bluegrass jam.

About the Technical Reviewer
Frédéric Descamps (@lefred) has been consulting on open source and
MySQL for more than 20 years. After graduating with a degree in
management information technology, he started his career as a developer
for an ERP system under HP-UX. He then opted for a career in the world of
open source by joining one of the first Belgian startups dedicated 100
percent to free projects around GNU/Linux. In 2011 Frédéric joined
Percona, one of the leading MySQL-based specialists. He joined the
MySQL Community Team in 2016 as a MySQL Community Manager for
EMEA and APAC. Descamps is a regular speaker at open source
conferences and a technical reviewer for several books. His blog, mostly
dedicated to MySQL, is at https://lefred.be.

Descamps is also the devoted father of three adorable daughters:
Wilhelmine, Héloïse, and Barbara.

https://lefred.be/

ACKNOWLEDGMENTS

This book wouldn’t have been possible without the team of professionals at
No Starch Press, to whom I am deeply thankful. Thanks to Bill Pollock for
believing in the concept and setting the ship on the right course.

I am grateful for the exceptionally talented team of editors at No Starch
Press, including Rachel Monaghan, Eva Morrow, Frances Saux, Jenn
Kepler, and Jill Franklin. Thanks to Miles Bond for his hard work on the
book, and to Eric Matthes for taking the time to share his insights with me.

I want to thank Frédéric Descamps, affectionately known as @lefred in
MySQL circles, for being the technical reviewer of this book. His attention
to detail and deep knowledge of MySQL are impressive and appreciated.

Thanks to Jimmy Allen and the gang at Oasis for all the encouragement.

INTRODUCTION

In the mid-1980s, I landed my first
software development job, which
introduced me to the relational
database management system
(RDBMS), a system to store and retrieve

data from a database. The concept has been around
since 1970, when E.F. Codd published his famous
paper introducing the relational model. The term
relational refers to the fact that the data is stored in a
grid of rows and columns, otherwise known as a
table.

At the time I started out, commercial database systems weren’t widely
available. In fact, I didn’t know anybody else who was using one. The
RDBMS I used was imperfect, with no graphical interface and a command
line interface that periodically crashed for no apparent reason. Since the
World Wide Web had yet to be invented, there were no websites I could
turn to for help, so I had no choice but to start my system back up and hope
for the best.

Still, the idea was pretty cool. I saved large amounts of data in tables I
created based on the nature of the information I wanted to store. I defined
table columns, loaded data into the tables from files, and queried that data
with Structured Query Language (SQL), a language for interacting with
databases that allowed me to add, change, and delete multiple rows of data
in a snap. I could manage an entire company’s data using this technology!

Today, relational database management systems are ubiquitous and,
thankfully, far more stable and advanced than the clunkers I used in the
’80s. SQL has also vastly improved. The focus of this book is MySQL,
which has become the most popular open source RDBMS in the world
since its creation in 1995.

About This Book
This book will teach you to use MySQL using its Community Server (also
known as the Community Edition), which is free to use and has the features
most people need. There are also paid versions of MySQL, including the
Enterprise Edition, that come with extra features and capabilities. All
editions run on a wide variety of operating systems, such as Linux,
Windows, macOS, and even the cloud, and have a robust set of features and
tools.

Throughout this book, you’ll explore the most useful parts of MySQL
development, as well as insights I’ve picked up over the years. We’ll cover
how to write SQL statements; create tables, functions, triggers, and views;
and ensure the integrity of your data. In the last three chapters, you’ll see
how to use MySQL in the real world through hands-on projects.

This book is organized in five parts:

Part I: Getting Started
Chapter 1: Installing MySQL and Tools Shows you how to download
MySQL and offers some tips for installing it on various operating
systems. You’ll also install two tools to access MySQL: MySQL
Workbench and the MySQL command line client.
Chapter 2: Creating Databases and Tables Defines databases and
tables and shows how to create them. You’ll also add constraints to your
tables to enforce rules about the data they will allow and see how indexes
can speed up data retrieval.

Part II: Selecting Data from a MySQL Database

Chapter 3: Introduction to SQL Covers how to query database tables
to select the information you want to display. You’ll order your results,
add comments to your SQL code, and deal with null values.
Chapter 4: MySQL Data Types Discusses the data types you can use to
define the columns in your tables. You’ll see how to define columns to
hold strings, integers, dates, and more.
Chapter 5: Joining Database Tables Summarizes the different ways
you can select from two tables at once, covering the main types of joins
and how to create aliases for your columns and tables.
Chapter 6: Performing Complex Joins with Multiple Tables Shows
you how to join many tables as well as use temporary tables, Common
Table Expressions, derived tables, and subqueries.
Chapter 7: Comparing Values Walks you through comparing values in
SQL. For example, you’ll see ways to check whether one value is equal
to another, greater than another, or within a range of values.
Chapter 8: Calling Built-in MySQL Functions Explains what a
function is, how to call functions, and what the most useful functions are.
You’ll learn about functions that deal with math, dates, and strings, and
use aggregate functions for groups of values.
Chapter 9: Inserting, Updating, and Deleting Data Describes how to
add, change, and remove data in your tables.

Part III: Database Objects
Chapter 10: Creating Views Explores database views, or virtual tables
based on a query you create.
Chapter 11: Creating Functions and Procedures Shows you how to
write reusable stored routines.
Chapter 12: Creating Triggers Explains how to write database triggers
that automatically execute when a change is made to data.
Chapter 13: Creating Events Shows you how to set up functionality to
run based on a defined schedule.

Part IV: Advanced Topics
Chapter 14: Tips and Tricks Discusses how to avoid some common
problems, support existing systems, and load data from a file into a table.
Chapter 15: Calling MySQL from Programming Languages Explores
calling MySQL from within PHP, Python, and Java programs.

Part V: Projects
Chapter 16: Building a Weather Database Shows you how to build a
system to load weather data into a trucking company’s database using
technologies such as cron and Bash.
Chapter 17: Tracking Changes to Voter Data with Triggers Guides
you through the process of building an election database, using database
triggers to prevent data errors, and tracking user changes to data.
Chapter 18: Protecting Salary Data with Views Shows you how to use
views to expose or hide sensitive data from particular users.
Every chapter includes “Try It Yourself” exercises to help you master the

concepts explained in the text.

Who Is This Book For?
This book is suitable for anyone interested in MySQL, including folks new
to MySQL and databases, developers who would like a refresher, and even
seasoned software developers transitioning to MySQL from another
database system.

Since this book focuses on MySQL development rather than
administration, MySQL database administrators (DBAs) may want to look
elsewhere. While I occasionally wander into a topic of interest to a DBA
(like granting permissions on tables), I don’t delve into server setup, storage
capacity, backup, recovery, or most other DBA-related issues.

I’ve designed this book for MySQL beginners, but if you’d like to
attempt the exercises in your own MySQL environment, Chapter 1 will
guide you through downloading and installing MySQL.

SQL in MySQL vs. SQL in Other Database
Systems
Learning SQL is an important part of using MySQL. SQL allows you to
store, modify, and delete data from your databases, as well as create and
remove tables, query your data, and much more.

Relational database management systems other than MySQL, including
Oracle, Microsoft SQL Server, and PostgreSQL, also use SQL. In theory,
the SQL used in these systems is standardized according to the American
National Standards Institute (ANSI) specifications. In practice, however,
there are some differences among the database systems.

Each database system comes with its own extension of SQL. For
example, Oracle provides a procedural extension of SQL called Procedural
Language/SQL (PL/SQL). Microsoft SQL Server comes with Transact-SQL
(T-SQL). PostgreSQL comes with Procedural Language/PostgreSQL
(PL/pgSQL). MySQL doesn’t have a fancy name for its extension; it’s
simply called the MySQL stored program language. These SQL extensions
all use different syntaxes.

Database systems created these extensions because SQL is a non-
procedural language, meaning it’s great for retrieving and storing data to or
from a database, but it isn’t designed to be a procedural programming
language like Java or Python that allows us to use if...then logic or while
loops, for example. The database procedural extensions add that
functionality.

Therefore, while much of the SQL knowledge you learn from this book
will be transferable to other database systems, some of the syntax may
require tweaking if you want to run your queries with a database system
other than MySQL.

Using the Online Resources
This book includes many example scripts, which you can find at https://gith
ub.com/ricksilva/mysql_cc. The scripts for Chapters 2–18 follow the
naming convention chapter_X.sql, where X is the chapter number. Chapters
15 and 16 have additional scripts in folders named chapter_15 and
chapter_16.

Each script creates the MySQL databases and tables shown in the
corresponding chapter. The script also contains example code and answers
for the exercises. I recommend attempting the exercises yourself, but feel
free to use this resource if you get stuck or want to check your answers.

You can browse through the scripts and copy commands as you see fit.
From GitHub, paste the commands into your environment using a tool like
MySQL Workbench or the MySQL command line client (these tools are
discussed in Chapter 1). Alternatively, you can download the scripts to your
computer. To do this, navigate to the GitHub repository and click the green
Code button. Choose the Download ZIP option to download the scripts as
a ZIP file.

For more information on MySQL and the tools available, visit https://dev.
mysql.com/doc/. The MySQL reference manual is particularly helpful.
Documentation for MySQL Workbench can be found at https://dev.mysql.co
m/doc/workbench/en/, and for documentation on the MySQL command line
you can check out https://dev.mysql.com/doc/refman/8.0/en/mysql.xhtml.

https://github.com/ricksilva/mysql_cc
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/workbench/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql.xhtml

MySQL is a fantastic database system to learn. Let’s get started!

PART I
GETTING STARTED

In this part of the book, you’ll install MySQL and the
tools to access your MySQL databases. Then, you’ll
start getting familiar with these tools by creating your
first database.

In Chapter 1, you’ll install MySQL, MySQL Workbench, and the
MySQL command line client on your computer.

In Chapter 2, you’ll create your own MySQL database and a database
table.

1
INSTALLING MYSQL AND TOOLS

To begin working with databases, you’ll
install the free version of MySQL,
called MySQL Community Server (also
known as MySQL Community Edition),
and two handy tools: MySQL

Workbench and the MySQL command line client.
This software can be downloaded for free from the
MySQL website. You will use these tools to work on
projects and exercises later in this book.

The MySQL Architecture
MySQL uses a client/server architecture, as shown in Figure 1-1.

Figure 1-1: The client/server architecture

The server side of this architecture hosts and manages resources or
services that the client side needs to access. This means that, in a live
production environment, the server software (MySQL Community Server)
would run on a dedicated computer housing the MySQL database. The tools
used to access the database, MySQL Workbench and the MySQL command
line client, would reside on the user’s computer.

Because you’re setting up a development environment for learning
purposes, you’ll install both the MySQL client tools and the MySQL
Community Server software on the same computer. In other words, your
computer will act as both the client and the server.

Installing MySQL
Instructions for installing MySQL are available at https://dev.mysql.com.
Click MySQL Documentation, and under the MySQL Server heading,
click MySQL Reference Manual and select the most recent version. You’ll
then be taken to the reference manual for that version. On the left-hand
menu, click Installing and Upgrading MySQL. Find your operating

https://dev.mysql.com/

system in the table of contents and follow the instructions to download and
install MySQL Community Server.

There are countless ways to install MySQL—for example, from a ZIP
archive, the source code, or a MySQL installer program. The instructions
vary based on your operating system and which MySQL products you want
to use, so the best and most current resource for installation is always the
MySQL website. However, I’ll offer a few tips:
When you install MySQL, it creates a database user called root and asks
you to choose a password. Don’t lose this password; you’ll need it later.
In general, I’ve found it easier to use an installer program, like MySQL
Installer, if one is available.
If you’re using Windows, you’ll be given the option of two different
installers: a web installer or a full bundle installer. However, it’s not
obvious which one is which, as shown in Figure 1-2.

Figure 1-2: Selecting the web installer for Windows

The web installer has a much smaller file size and its filename contains
the word web, as highlighted in the figure. I recommend choosing this
option because it allows you to select the MySQL products you want to
install, and it downloads them from the web. The full bundle installer
contains all MySQL products, which shouldn’t be necessary.

As of this writing, both installers appear on this web page as 32-bit. This
refers to the installation application, not MySQL itself. Either installer can
install 64-bit binaries. In fact, on Windows, MySQL is available only for
64-bit operating systems.
You can download MySQL without creating an account if you prefer. On
the web page shown in Figure 1-3, select No Thanks, Just Start My
Download at the bottom of the screen.

Figure 1-3: Downloading MySQL without creating an account

From here, your next step is to download MySQL Workbench, a
graphical tool used to access MySQL databases. With this tool, you can
explore your database, run SQL statements against that database, and
review the data that gets returned. To download MySQL Workbench, go to
https://dev.mysql.com/doc/workbench/en/. This takes you directly to the
MySQL Workbench reference manual. Click Installation in the left-hand
menu, choose your operating system, and follow the instructions.

https://dev.mysql.com/doc/workbench/en/

When you install MySQL Community Server or MySQL Workbench on
your computer, the MySQL command line client should be installed
automatically. This client allows you to connect to a MySQL database from
the command line interface of your computer (also called the console,
command prompt, or terminal). You can use this tool to run a SQL
statement, or many SQL statements saved in a script file, against a MySQL
database. The MySQL command line client is useful in situations where
you don’t need to see your results in a nicely formatted graphical user
interface.

You’ll use these three MySQL products for most of what you do in
MySQL, including the exercises in this book.

Now that your computer is set up with MySQL, you can start creating
databases!

Summary
In this chapter, you installed MySQL, MySQL Workbench, and the MySQL
command line client from the official website. You located the MySQL
Server and MySQL Workbench reference manuals, which contain tons of
useful information. I recommend using these if you get stuck, have
questions, or want to learn more.

In the next chapter, you’ll learn how to view and create MySQL
databases and tables.

2
CREATING DATABASES AND TABLES

In this chapter, you’ll use MySQL
Workbench to view and create
databases in MySQL. Then you’ll learn
how to create tables to store data in
those databases. You’ll define the name

of the table and its columns and specify the type of
data that the columns can contain. Once you’ve
practiced these basics, you’ll improve your tables
using two helpful MySQL features, constraints and
indexes.

Using MySQL Workbench
As you learned in Chapter 1, MySQL Workbench is a visual tool you can
use to enter and run SQL commands and view their results. Here, we’ll
walk through the basics of how to use MySQL Workbench to view
databases.

NOTE

If you’re using another tool, such as PhpMyAdmin, MySQL Shell, or
the MySQL command line client, be sure to read through this
section anyway. The MySQL commands are the same regardless of
the tool you use to connect to MySQL.

You’ll start by opening MySQL Workbench by double-clicking its icon.
The tool looks like Figure 2-1.

Figure 2-1: Showing databases with MySQL Workbench

In the top-right panel, enter the show databases; command. Make sure
to include the semicolon, which indicates the end of the statement. Then
click the lightning bolt icon, highlighted in Figure 2-1, to execute the
command. The results, a list of available MySQL databases, appear in the
Result Grid panel (your results will look different from mine):

Database

information_schema
location
music
mysql
performance_schema
restaurant
solar_system
subway
sys

Some databases in this list are system databases that were created
automatically when MySQL was installed—such as information_schema,
mysql, and performance_schema—and others are databases I’ve created.
Any databases you create should appear in this list.

DATABASE TERMINOLOGY

In MySQL, the term schema is synonymous with database. You can use show
databases or show schemas to return a list of all of your databases. Notice in Figure 2-1
that schemas is the term MySQL Workbench uses.

Sometimes the term database gets conflated with database system or relational
database management system (RDBMS). For example, you might hear somebody ask,
“Which database are you using, Oracle, MySQL, or PostgreSQL?” What they’re really
asking is, “Which database system are you using?” A MySQL database is a place to
organize your data, while a database system is software that is used to store and
retrieve data.

You can also browse databases by using the Navigator panel on the left.
Click the Schemas tab at the bottom of the panel to show a list of
databases, and click the right arrow (▶) to investigate the contents of your
databases. Note that, by default, the Navigator panel doesn’t show the
system databases that were automatically created when MySQL was
installed.

Now that you’ve seen how to view the list of databases in MySQL, it’s
time to try creating your own.

Creating a New Database

To create a new database, you use the create database command along
with a name for the database you want to create:

create database circus;

create database finance;

create database music;

Your database’s name should describe the type of data stored there. In
this example, the database called circus might contain tables for data on
clowns, tightrope walkers, and trapeze acts. The finance database might
have tables for accounts receivable, income, and cash flow. Tables of data
on bands, songs, and albums might go in the music database.

To remove a database, use the drop database command:

drop database circus;

drop database finance;

drop database music;

These commands remove the three databases you just created, any tables
in those databases, and all of the data in those tables.

Of course, you haven’t actually created any tables yet. You’ll do that
now.

TRY IT YOURSELF
2-1. Run show databases in MySQL Workbench. How many databases do you have?
2-2. Using MySQL Workbench, create a database named cryptocurrency. After you
have created the database, run the show databases command. Do you see the new
database in your list of databases? How many databases do you have now?
2-3. Drop the cryptocurrency database and then run show databases again. Is the
database gone from your list of databases?

Creating a New Table

In this example, you’ll create a new table to hold global population data and
specify what type of data the table can contain:

create database land;

use land;

create table continent
(
 continent_id int,
 continent_name varchar(20),
 population bigint
);

First, you create a database called land using the create database
command you saw earlier. On the next line, the use command tells MySQL
to use the land database for the SQL statements that follow it. This ensures
that your new table will be created in the land database.

Next, you use the create table command followed by a descriptive
name for the table, continent. Within parentheses, you create three
columns in the continent table—continent_id, continent_name, and
population—and for each column you choose a MySQL data type that
controls the type of data allowed in that column. Let’s go over this in more
detail.

You define the continent_id column as an int so that it will accept
integer (numeric) data. Each continent will have its own distinct ID number
in this column (1, 2, 3, and so on). Then, you define the continent_name
column as a varchar(20) to accept character data up to 20 characters long.
Finally, you define the population as a bigint to accept big integers, as the
population of an entire continent can be quite a large number.

NOTE

Chapter 4 covers MySQL data types, including bigint, in more
depth.

When you run this create table statement, MySQL creates an empty
table. The table has a table name and its columns are defined, but it doesn’t

have any rows yet. You can add, delete, and modify the rows in the table
whenever you need.

If you try to add a row with data that doesn’t match one of the column’s
data types, however, MySQL will reject the entire row. For example,
because the continent_id column was defined as an int, MySQL won’t
allow that column to store values like Continent #1 or A because those
values contain letters. MySQL won’t allow you to store a value like The
Continent of Atlantis in the continent_name column either, since that
value has more than 20 characters.

Constraints
When you create your own database tables, MySQL allows you to put
constraints, or rules, on the data they contain. Once you define constraints,
MySQL will enforce them.

Constraints help maintain data integrity; that is, they help keep the data
in your database accurate and consistent. For example, you might want to
add a constraint to the continent table so that there can’t be two rows in
the table with the same value in a particular column.

The constraints available in MySQL are primary key, foreign key, not
null, unique, check, and default.

Primary Keys
Identifying the primary key in a table is an essential part of database design.
A primary key consists of a column, or more than one column, and uniquely
identifies the rows in a table. When you create a database table, you need to
determine which column(s) should make up the primary key, because that
information will help you retrieve the data later. If you combine data from
multiple tables, you’ll need to know how many rows to expect from each
table and how to join the tables. You don’t want duplicate or missing rows
in your result sets.

Consider this customer table with the columns customer_id,
first_name, last_name, and address:

customer_id first_name last_name address
----------- ---------- --------- ----------------------

 1 Bob Smith 12 Dreary Lane
 2 Sally Jones 76 Boulevard Meugler
 3 Karen Bellyacher 354 Main Street

To decide what the primary key for the table should be, you need to
identify which column(s) uniquely identifies the rows in the table. For this
table, the primary key should be customer_id, because every customer_id
corresponds to only one row in the table.

No matter how many rows might be added to the table in the future, there
will never be two rows with the same customer_id. This can’t be said of
any other columns. Multiple people can have the same first name, last
name, or address.

A primary key can be composed of more than one column, but even the
combination of the first_name, last_name, and address columns isn’t
guaranteed to uniquely identify the rows. For example, Bob Smith at 12
Dreary Lane might live with his son of the same name.

To designate the customer_id column as the primary key, use the
primary key syntax when you create the customer table, as shown in Listin
g 2-1:

create table customer
(
 customer_id int,
 first_name varchar(50),
 last_name varchar(50),
 address varchar(100),
 primary key (customer_id)
);

Listing 2-1: Creating a primary key

Here you define customer_id as a column that accepts integer values and
as the primary key for the table.

Making customer_id the primary key benefits you in three ways. First, it
prevents duplicate customer IDs from being inserted into the table. If

someone using your database tries to add customer_id 3 when that ID
already exists, MySQL will give an error message and not insert the row.

Second, making customer_id the primary key prevents users from
adding a null value (that is, a missing or unknown value) for the
customer_id column. When you define a column as the primary key, it’s
designated as a special column whose values cannot be null. (You’ll learn
more about null values later in this chapter.)

Those two benefits fall under the category of data integrity. Once you
define this primary key, you can be assured that all rows in the table will
have a unique customer_id, and that no customer_id will be null. MySQL
will enforce this constraint, which will help keep the data in your database
of a high quality.

The third advantage to creating a primary key is that it causes MySQL to
create an index. An index will help speed up the performance of SQL
queries that select from the table. We’ll look at indexes more in the
“Indexes” section later in this chapter.

If a table has no obvious primary key, it often makes sense to add a new
column that can serve as the primary key (like the customer_id column
shown here). For performance reasons, it’s best to keep the primary key
values as short as possible.

Now let’s look at a primary key that consists of more than one column,
which is known as a composite key. The high_temperature table shown in
Listing 2-2 stores cities and their highest temperature by year.

city year high_temperature
----------------------- ---- ----------------
Death Valley, CA 2020 130
International Falls, MN 2020 78
New York, NY 2020 96
Death Valley, CA 2021 128
International Falls, MN 2021 77
New York, NY 2021 98

Listing 2-2: Creating multiple primary key columns

For this table, the primary key should consist of both the city and year
columns, because there should be only one row in the table with the same

city and year. For example, there’s currently a row for Death Valley for the
year 2021 with a high temperature of 128, so when you define city and
year as the primary key for this table, MySQL will prevent users from
adding a second row for Death Valley for the year 2021.

To make city and year the primary key for this table, use MySQL’s
primary key syntax with both column names:

create table high_temperature
(
 city varchar(50),
 year int,
 high_temperature int,
 primary key (city, year)
);

The city column is defined to hold up to 50 characters, and the year and
high_temperature columns are defined to hold an integer. The primary key
is then defined to be both the city and year columns.

MySQL doesn’t require you to define a primary key for the tables you
create, but you should for the data integrity and performance benefits cited
earlier. If you can’t figure out what the primary key should be for a new
table, that probably means you need to rethink your table design.

Every table can have at most one primary key.

Foreign Keys
A foreign key is a column (or columns) in a table that matches the table to
the primary key column(s) of another table. Defining a foreign key
establishes a relationship between two tables so that you will be able to
retrieve one result set containing data from both tables.

You saw in Listing 2-1 that you can create the primary key in the
customer table using the primary key syntax. You’ll use similar syntax to
create the foreign key in this complaint table:

create table complaint
 (
 complaint_id int,
 customer_id int,

 complaint varchar(200),
 primary key (complaint_id),
 foreign key (customer_id) references customer(customer_i
d)
);

In this example, first you create the complaint table, define its columns
and their data types, and specify complaint_id as the primary key. Then,
the foreign key syntax allows you to define the customer_id column as a
foreign key. With the references syntax, you specify that the customer_id
column of the complaint table references the customer_id column of the
customer table (you’ll learn what this means in a moment).

Here’s the customer table again:

customer_id first_name last_name address
----------- ---------- --------- ----------------------

 1 Bob Smith 12 Dreary Lane
 2 Sally Jones 76 Boulevard Meugler
 3 Karen Bellyacher 354 Main Street

And here’s the data for the complaint table:

complaint_id customer_id complaint
------------ ----------- -------------------------------
 1 3 I want to speak to your manager

The foreign key allows you to see which customer customer_id 3 in the
complaint table is referring to in the customer table; in this case,
customer_id 3 references Karen Bellyacher. This arrangement, illustrated
in Figure 2-2, allows you to track which customers made which complaints.

Figure 2-2: Primary keys and foreign keys

In the customer table, the customer_id column has been defined as the
primary key (labeled PK). In the complaint table, the customer_id column
has been defined as a foreign key (FK) because it will be used to join the
complaint table to the customer table.

Here’s where things get interesting. Because you defined the foreign key,
MySQL won’t allow you to add a new row in the complaint table unless it
is for a valid customer—that is, unless there is a customer_id row in the
customer table that correlates with a customer_id in the complaint table.
If you try to add a row in the complaint table for customer_id 4, for
example, MySQL will give an error. It doesn’t make sense to have a row in
the complaint table for a customer that doesn’t exist, so MySQL prevents
the row from being added in order to maintain data integrity.

Also, now that you’ve defined the foreign key, MySQL will not allow
you to delete customer_id 3 from the customer table. Deleting this ID
would leave a row in the complaint table for customer_id 3, which would
no longer correspond to any row in the customer table. Restricting data
deletion is part of referential integrity.

DATA INTEGRITY VS. REFERENTIAL INTEGRITY

Data integrity refers to the overall accuracy and consistency of the data in your
database. You want high-quality data. People lose confidence in your data when they
spot problems like a salary value that contains alpha characters or a percent increase
value over 100 percent.

Referential integrity refers to the quality of the relationships between the data in your
tables. If you have a complaint in the complaint table for a customer that doesn’t exist
in the customer table, you have a referential integrity problem. By defining customer_id
as a foreign key, you can be assured that every customer_id in the complaint table
refers to a customer_id that exists in the customer table.

There can be only one primary key per table, but a table can have more
than one foreign key (see Figure 2-3).

Figure 2-3: A table can have only one primary key, but it can have multiple foreign keys.

Figure 2-3 shows an example of a table named dog that has three foreign
keys, each pointing to the primary key of a different table. In the dog table,
owner_id is a foreign key used to refer to the owner table, breed_id is a
foreign key used to refer to the breed table, and veterinarian_id is a
foreign key used to refer to the veterinarian table.

As with primary keys, when you create a foreign key, MySQL will
automatically create an index that will speed up the access to the table.
More on that shortly.

TRY IT YOURSELF
2-4. Create a database called athletic containing a table called sport and a table
called player. Define the column names, primary key, and foreign key as shown
here.

Have all the columns in the tables accept integer values except for player_name
and sport_name, which should accept up to 50 characters. The primary key for the
player table should be player_id. The primary key for the sport table should be
sport_id. The player table should have a foreign key of sport_id that references the
primary key of the sport table.

not null
A null value represents an empty or undefined value. It is not the same as
zero, an empty character string, or a space character.

Allowing null values in a column can be appropriate in some cases, but
other times, permitting the absence of crucial information could result in the
database missing data that is needed. Take a look at this table named
contact that contains contact information:

contact_id name city phone email_addre
ss
----------- ---------- --------- ------- -----------

 1 Steve Chen Beijing 123-3123 steve@schen
21.org
 2 Joan Field New York 321-4321 jfield@jfny
99.com

 3 Bill Bashful Lincoln null bb@shyguy7
7.edu

The value of the phone column for contact_id 3 is null because Bill
Bashful doesn’t own a phone. It is reasonable that the contact table would
allow null values for the phone column, as a phone number might not be
available or applicable for a contact.

On the other hand, the name column should not allow null values. It
would be better not to allow the following row to be added to the contact
table:

contact_id name city phone email_addre
ss
----------- ---------- --------- ------- -----------

 3 null Lincoln null bb@shyguy7
7.edu

There isn’t much point in saving information about a contact unless you
know their name, so you can add a not null constraint to the name column
to prevent this situation from occurring.

Create the contact table like so:

create table contact
(
 contact_id int,
 name varchar(50) not null,
 city varchar(50),
 phone varchar(20),
 email_address varchar(50),
 primary key(contact_id)
);

Using the not null syntax when you define the name column prevents a
value of null from being stored there and maintains data integrity. If you
try to add a row with a null name, MySQL will display an error message
and the row will be rejected.

For columns defined as the table’s primary key, such as the contact_id
column in this example, specifying not null isn’t necessary. MySQL

prevents null values for primary key columns automatically.

unique
If you want to prevent duplicate values in a column, you can add a unique
constraint to the column definition. Let’s return to the contact table from
the previous example:

create table contact
(
 contact_id int,
 name varchar(50) not null,
 city varchar(50),
 phone varchar(20),
 email_address varchar(50) unique,
 primary key(contact_id)
);

Here, you prevent duplicate email addresses from being entered by using
the unique syntax on the email_address column. Now MySQL will no
longer allow two contacts in the table to have the same email address.

check
You can use a check constraint to make sure that a column contains certain
values or a certain range of values. For example, let’s revisit the
high_temperature table from Listing 2-2:

create table high_temperature
(
 city varchar(50),
 year int,
 high_temperature int,
 constraint check (year between 1880 and 2200),
 constraint check (high_temperature < 200),
 primary key (city, year)
);

In this example, you add a check constraint to the year column to make
sure that any year entered into the table is between 1880 and 2200.
Accurate temperature tracking wasn’t available until 1880, and your
database probably won’t be in use after the year 2200. Trying to add a year

that is outside of that range would most likely be an error, so the constraint
will prevent that from occurring.

You’ve also added a check constraint to the high_temperature column
to limit temperature values to less than 200 degrees, because a temperature
higher than that would most likely be a data error.

default
Finally, you can add a default constraint to a column so that if a value isn’t
supplied, a default value will be used. Take a look at the following job
table:

create table job
(
 job_id int,
 job_desc varchar(100),
 shift varchar(50) default '9-5',
 primary key (job_id)
);

In this example, you add a default constraint to the shift column,
which stores data on work schedules. The default shift is 9-5, meaning that
if a row doesn’t include any data for the shift column, 9-5 will be written to
the column. If a value for shift is provided, the default won’t be used.

You’ve seen how different constraints can help you improve and
maintain the integrity of the data in your tables. Let’s turn now to another
MySQL feature that also offers performance benefits to your tables:
indexes.

Indexes
MySQL lets you create indexes on your tables to speed up the process of
retrieving data; in some cases, such as in tables with defined primary or
foreign keys, MySQL will create indexes automatically. Just as an index in
the back of a book can help you find information without needing to scan
each page, indexes help MySQL find data in your tables without having to
read every row.

NOTE

You’ll see the terms indexes and indices in MySQL resources and
documentation. Both are correct; it’s just a matter of individual
preference.

Say you create a product table like so

create table product
(
 product_id int,
 product_name varchar(100),
 supplier_id int
);

and you want to make the process of retrieving information about suppliers
more efficient. Here’s the syntax to create an index that will do that:

create index product_supplier_index on product(supplier_id);

In this example, you create an index, called product_supplier_index,
on the supplier_id column of the product table. Now, when users retrieve
data from the product table using the supplier_id column, the index
should make that retrieval quicker.

Once you create an index, you won’t need to reference it by name—
MySQL will use it behind the scenes. The new index won’t change
anything about the way you use the table; it will just speed up access to it.

Although adding indexes can significantly improve performance, it
wouldn’t make sense to index every column. Maintaining indexes has a
performance cost, and creating indexes that don’t get used can actually
decrease performance.

When you create tables, MySQL automatically creates most of the
indexes that you’ll need. You don’t need to create indexes for columns that
have been defined as primary keys, as foreign keys, or with unique
constraints, because MySQL automatically indexes those columns.

Let’s look at how we would create the dog table from Figure 2-3:

use pet;

create table dog
(
 dog_id int,
 dog_name varchar(50),
 owner_id int,
 breed_id int,
 veterinarian_id int,
 primary key (dog_id),
 foreign key (owner_id) references owner(owner_id),
 foreign key (breed_id) references breed(breed_id),
 foreign key (veterinarian_id) references veterinarian(vet
erinarian_id)
);

The primary key for the table is dog_id, and the foreign keys are
owner_id, breed_id, and veterinarian_id. Note that you haven’t created
any indexes with the create index command. MySQL has automatically
created indexes, however, from the columns labeled as the primary key and
the foreign keys. You can confirm this using the show indexes command:

show indexes from dog;

The results are shown in Figure 2-4.

Figure 2-4: Indexes automatically created by MySQL for the dog table

You can see in the Column_name column that MySQL automatically
created all of the indexes that you need for this table.

NOTE

The owner, breed, and veterinarian tables must exist before the
dog table gets created. The code to create those tables in the pet
database is in https://github.com/ricksilva/mysql_cc/blob/main/chap
ter_2.sql.

Dropping and Altering Tables
To drop a table, which removes the table and all of its data, use the drop
table syntax:

drop table product;

Here you tell MySQL to drop the product table you created in the
previous section.

To make changes to a table, use the alter table command. You can add
columns, drop columns, change a column’s data type, rename columns,
rename the table, add or remove constraints, and make other changes.

Try altering the customer table from Listing 2-1:

alter table customer add column zip varchar(50);
alter table customer drop column address;
alter table customer rename column zip to zip_code;
alter table customer rename to valued_customer;

Here you alter the customer table in four ways: you add a column named
zip that stores zip codes, remove the address column, rename the zip
column to zip_code to make it more descriptive, and change the table name
from customer to valued_customer.

WARNING

If you drop a table, you’ll lose all the data in the table as well.

https://github.com/ricksilva/mysql_cc/blob/main/chapter_2.sql

Summary
In this chapter, you saw how to use MySQL Workbench to run commands
and view databases. You created your own database tables and learned how
to optimize them using indexes and adding constraints.

In the next chapter, the beginning of Part II of the book, you’ll learn
about retrieving data from MySQL tables using SQL, displaying your data
in an ordered way, formatting SQL statements, and using comments in
SQL.

PART II
SELECTING DATA FROM A MYSQL

DATABASE
So far, you’ve created MySQL databases and tables
for storing data. In Part II, you’ll retrieve data from
those tables.

In Chapter 3, you’ll select data from a MySQL table.
In Chapter 4, you’ll look more into MySQL data types.
In Chapter 5, you’ll use joins to select data from multiple tables.
In Chapter 6, you’ll dig deeper into complex joins with multiple tables.
In Chapter 7, you’ll learn more about comparing values in MySQL.
In Chapter 8, you’ll learn about MySQL’s built-in functions and call them

from your SQL statements.

3
INTRODUCTION TO SQL

To select data from a MySQL database,
you’ll use Structured Query Language
(SQL). SQL is the standard language for
querying and managing data in an
RDBMS like MySQL.

SQL commands can be categorized into Data Definition Language
(DDL) statements and Data Manipulation Language (DML) statements. So
far, you’ve been using DDL commands like create database, create
table, and drop table to define your databases and tables.

DML commands, on the other hand, are used to manipulate the data in
your existing databases and tables. In this chapter, you’ll use the DML
select command to retrieve data from a table. You’ll also learn how to
specify an order for MySQL to sort your results and how to deal with null
values in your table columns.

NOTE

Some people pronounce SQL as “sequel” and others say “ess-cue-
ell.” Whichever way you like to pronounce it, SQL is the main
language used in MySQL development, so it pays to learn it well.

Querying Data from a Table

A query is a request for information from a database table or group of
tables. To specify the information you want to retrieve from the table, use
the select command, as shown in Listing 3-1.

select continent_id,
 continent_name,
 population
from continent;

Listing 3-1: Using select to display data from the continent table

Here you’re querying the continent table (as indicated by the from
keyword), which contains information about each continent’s name and
population. Using the select command, you specify that you want to return
data from the continent_id, continent_name, and population columns.
This is known as a select statement.

Listing 3-2 shows the results of running the select statement.

continent_id continent_name population
------------ -------------- ----------
 1 Asia 4641054775
 2 Africa 1340598147
 3 Europe 747636026
 4 North America 592072212
 5 South America 430759766
 6 Australia 43111704
 7 Antarctica 0

Listing 3-2: Results of running the select statement

The query returned a list of all seven continents, displaying each
continent’s ID, name, and population.

In order to show the data from only one continent—Asia, for example—
you can add a where clause to the end of your previous code:

select continent_id,
 continent_name,
 population
from continent
where continent_name = 'Asia';

A where clause filters the results by applying conditions to the select
statement. This query finds the only row in the table where the value of the
continent_name column equals Asia and displays the following result:

continent_id continent_name population
------------ -------------- ----------
 1 Asia 4641054775

Now change the select statement to select only the population column:

select population
from continent
where continent_name = 'Asia';

The query now returns one column (population) for one row (Asia):

population

4641054775

The continent_id and continent_name values don’t appear in your
result set because you didn’t select them in the SQL query.

TRY IT YOURSELF
Locate the commands in the SQL script at https://github.com/ricksilva/mysql_cc/blob/
main/chapter_3.sql that create the feedback database and that create and load the
customer table. Copy the SQL commands from the scripts and paste them into
MySQL Workbench. Run them to create the database and the table, and to load its
rows.
3-1. The feedback database contains a table called customer. Select the first_name
and last_name columns from the table for all customers.
3-2. Modify your query to select the customer_id, first_name, and last_name columns
from the customer table for all customers whose first name is Karen. How many
Karens do you have in the table?

Using the Wildcard Character

https://github.com/ricksilva/mysql_cc/blob/main/chapter_3.sql

The asterisk wildcard character (*) in SQL allows you to select all of the
columns in a table without having to type all of their names in your query:

select *
from continent;

This query returns all three columns from the continent table. The
results are the same as those for Listing 3-1, where you individually listed
the three column names.

Ordering Rows
When you query data from your database, you’ll often want to see the
results in a particular order. To do that, add an order by clause to your SQL
query:

select continent_id,
 continent_name,
 population
from continent
order by continent_name;

Here you select all of the columns in the continent table and order the
results alphabetically by the values in the continent_name column.

The results are as follows:

continent_id continent_name population
------------ -------------- ----------
 2 Africa 1340598147
 7 Antarctica 0
 1 Asia 4641054775
 6 Australia 43111704
 3 Europe 747636026
 4 North America 592072212
 5 South America 430759766

Adding order by continent_name results in an alphabetized list,
regardless of the values of the continent_id or population columns.

MySQL ordered the rows alphabetically because continent_name is
defined as a column that stores alphanumeric characters.

CHARACTER SETS AND COLLATIONS

Interestingly, the characters that can be stored and the order in which they get sorted
may be different in your MySQL environment than in mine. This is determined by the
character set and collation you’re using.

A character set defines the set of characters that can be stored. Collations are the
rules for comparing character sets. Examples of character sets are latin1, utf8mb3, and
utf8mb4. The default character set, as of this writing, is utf8mb4. It allows you to save a
wide range of characters and even use emojis in your text columns.

The default collation is utf8mb4_0900_ai_ci. The _ci stands for “case insensitive.”
There is also a utf8mb4_0900_ai_cs collation, where the _cs means “case sensitive.” If
you are using the case-insensitive collation but I have switched to the case-sensitive
collation, our results will be sorted differently.

MySQL can also order columns with integer data types. You can specify
whether you want your results sorted in ascending (lowest to highest) or
descending (highest to lowest) order using the asc and desc keywords:

select continent_id,
 continent_name,
 population
from continent;
order by population desc;

In this example, you have MySQL order the results by population and
sort the values in descending order (desc) order.

NOTE

If you don’t specify asc or desc in your order by clause for integer
data types, MySQL will default to ascending.

The results are as follows:

continent_id continent_name population
------------ -------------- ----------

 1 Asia 4641054775
 2 Africa 1340598147
 3 Europe 747636026
 4 North America 592072212
 5 South America 430759766
 6 Australia 43111704
 7 Antarctica 0

The query returns all seven rows because you didn’t filter the results with
a where clause. Now the data is displayed in descending order based on the
population column instead of alphabetically based on the continent_name
column.

Formatting SQL Code
So far, the SQL you’ve seen has been in a nice, readable format:

select continent_id,
 continent_name,
 population
from continent;

Notice how the column names and the table name all align vertically. It’s
a good idea to write SQL statements in a neat, maintainable format like this,
but MySQL will also allow you to write SQL statements in less organized
ways. For example, you can write the code from Listing 3-1 on only one
line:

select continent_id, continent_name, population from continen
t;

Or you can separate the select and from statements, like so:

select continent_id, continent_name, population
from continent;

Both options return the same results as Listing 3-1, though your SQL
might be a little harder for people to understand.

Readable code is important for the maintainability of your codebase,
even though MySQL will run less readable code without issue. It might be
tempting to just get the code working and then move on to the next task, but
writing the code is only the first part of your job. Take the time to make
your code readable, and your future self (or whoever will be maintaining
the code) will thank you.

Let’s look at some other SQL code conventions you might see.

Uppercase Keywords
Some developers use uppercase for MySQL keywords. For example, they
might write Listing 3-1 like this, with the words select and from in
uppercase:

SELECT continent_id,
 continent_name,
 population
FROM continent;

Similarly, some developers might format a create table statement with
multiple phrases in uppercase:

CREATE TABLE dog
(
 dog_id int,
 dog_name varchar(50) UNIQUE,
 owner_id int,
 breed_id int,
 veterinarian_id int,
 PRIMARY KEY (dog_id),
 FOREIGN KEY (owner_id) REFERENCES owner(owner_id),
 FOREIGN KEY (breed_id) REFERENCES breed(breed_id),
 FOREIGN KEY (veterinarian_id) REFERENCES veterinarian(vet
erinarian_id)
);

Here, create table, unique, primary key, foreign key, and references
have all been capitalized for readability. Some MySQL developers would
capitalize the data types int and varchar as well. If you find using
uppercase for keywords is beneficial, feel free to do so.

If you are working with an existing codebase, it’s best to be consistent
and follow the coding style precedent that has been set. If you work at a
company that has formal style conventions, you should follow them.
Otherwise, choose what works best for you. You’ll get the same results
either way.

Backticks
If you maintain SQL that other developers have written, you may encounter
SQL statements that use backticks (`):

select `continent_id`,
 `continent_name`,
 `population`
from `continent`;

This query selects all of the columns in the continent table, surrounding
the column names and the table name with backticks. In this example, the
statement runs just as well without the backticks.

Backticks allow you to get around some of MySQL’s rules for naming
tables and columns. For example, you might have noticed that when column
names consist of more than one word, I’ve used an underscore between the
words instead of a space, like continent_id. If you wrap column names in
backticks, however, you don’t need to use underscores; you can name a
column continent id rather than continent_id.

Normally, if you were to name a table or column select, you’d receive
an error message because select is a MySQL reserved word; that is, it has
a dedicated meaning in SQL. However, if you wrap select in backticks, the
query will run without error:

select * from `select`;

In this select * from statement, you’re selecting all columns within the
select table.

Although MySQL will run code like this, I recommend avoiding
backticks, as your code will be more maintainable and easier to type
without them. In the future, another developer who needs to make a change

to this query might be confused by a table named select or a table with
spaces in its name. Your goal should always be to write code that is simple
and well organized.

Code Comments
Comments are lines of explanatory text that you can add to your code to
make it easier to understand. They can help you or other developers
maintain the code in the future. Oftentimes, comments clarify complex SQL
statements or point out anything about the table or data that’s out of the
ordinary.

To add single-line comments, use two hyphens followed by a space (--).
This syntax tells MySQL that the rest of the line is a comment.

This SQL query includes a one-line comment at the top:

-- This SQL statement shows the highest-populated continents
 at the top
select continent_id,
 continent_name,
 population
from continent
order by population desc;

You can use the same syntax to add a comment at the end of a line of
SQL:

select continent_id,
 continent_name, -- Continent names are displayed in En
glish
 population
from continent
order by population desc;

In this code, the comment for the continent_name column lets
developers know that the names are displayed in English.

WHITESPACE IN SINGLE-LINE COMMENTS

At first blush, it seems strange that MySQL will allow this comment:

select 7+5; -- Adding 5 dollars to the 7 I already had

but not this one:

select 7+5; --Adding 5 dollars to the 7 I already had

Why does MySQL require whitespace after the --?

The answer is that a comment using the -- syntax could be confused with the syntax
for subtracting a negative number. To subtract –5 from 7 in SQL, you could use this
syntax:

select 7--5;

If MySQL always interpreted -- (two hyphens with no spaces) as a comment, then
this line of code would return 7, not the correct result of 12, because everything after
the 7 would get commented out.

To add multiline comments, use /* at the beginning of the comment and
*/ at the end:

/*
This query retrieves data for all the continents in the worl
d.
The population of each continent is updated in this table yea
rly.
*/
select * from continent;

This two-line comment explains the query and says how often the table is
updated.

The syntax for inline comments is similar:

select 3.14 /* The value of pi */ * 81;

There are some special uses for inline comments. For example, if you
maintain code that has been written by others, you might notice what looks
like cryptic inline comments:

select /*+ no_index(employee idx1) */
 employee_name
from employee;

The /*+ no_index(employee idx1) */ in the first line is an optimizer
hint, which uses the inline comment syntax with a plus sign after the /*.

When you run a query, MySQL’s query optimizer tries to determine the
fastest way to execute it. For example, if there are indexes on the employee
table, would it be faster to use the indexes to access the data, or do the
tables have so few rows that using the indexes would actually be slower?

The query optimizer usually does a good job of coming up with query
plans, comparing them, and then executing the fastest plan. But there are
times when you’ll want to give your own instructions—hints—about the
most efficient way to execute the query.

The hint in the preceding example tells the optimizer not to use the idx1
index on the employee table.

Query optimization is a vast topic and we’ve barely scratched the
surface, but if you encounter the /*+ . . . */ syntax, just know that it allows
you to provide hints to MySQL.

As you can see, a well-placed, descriptive comment will save time and
aggravation. A quick explanation about why you used a particular approach
can spare another developer from having to research the same issue, or jog
your own memory if you’ll be the one maintaining the code. However,
avoid the temptation to add comments that state the obvious; if a comment
won’t make the SQL more understandable, you shouldn’t add it. Also, it’s
important to update comments as you update your code. Comments that
aren’t up to date and are no longer relevant don’t serve a purpose, and
might confuse other developers or your future self.

Null Values
As discussed in Chapter 2, null represents a missing or unknown value.
MySQL has special syntax, including is null and is not null, to help
handle null values in your data.

Consider a table called unemployed that has two columns: region_id and
unemployed. Each row represents a region and tells you how many people
are unemployed in that region. Look at the full table using select * from,
like so:

select *
from unemployed;

The results are as follows:

region_id unemployed
--------- ----------
 1 2218457
 2 137455
 3 null

Regions 1 and 2 have reported their number of unemployed people, but
region 3 hasn’t done so yet, so the unemployed column for region 3 is set to
the null value. You wouldn’t want to use 0 here, because that would mean
there are no unemployed people in region 3.

To show only the rows for regions that have an unemployed value of
null, use the where clause with is null:

select *
from unemployed
where unemployed is null;

The result is:

region unemployed
------ ----------
 3 null

On the other hand, if you wanted to exclude rows that have an
unemployed value of null in order to see only the data that has already been
reported, replace is null with is not null in the where clause, like so:

select *
from unemployed
where unemployed is not null;

The results are as follows:

region unemployed
------ ----------
 1 2218457
 2 137455

Using this syntax with null values can help you filter your table data so
that MySQL returns only the most meaningful results.

Summary
In this chapter, you learned how to use the select statement and the
wildcard character to retrieve data from a table, and you saw that MySQL
can return results in an order you specify. You also looked at ways to format
your code for readability and clarity, including adding comments to your
SQL statements to make maintaining the code easier. Finally, you saw how
you might handle null values in your data.

Chapter 4 is all about MySQL data types. So far, the tables you’ve
created have mainly used int to accept integer data or varchar to accept
character data. Next, you’ll learn more about other MySQL data types for
numeric and character data, as well as data types for dates and very large
values.

4
MYSQL DATA TYPES

In this chapter, you’ll look at all of the
available MySQL data types. You’ve
already seen that int and varchar can
be used for integer and character data,
but MySQL also has data types to store

dates, times, and even binary data. You’ll explore
how to choose the best data types for your columns
and the pros and cons of each type.

When you create a table, you define each column’s data type based on
the kind of data you’ll store in that column. For example, you wouldn’t use
a data type that allows only numbers for a column that stores names. You
might additionally consider the range of values that the column will have to
accommodate. If a column needs to store a value like 3.1415, you should
use a data type that allows decimal values with four positions after the
decimal point. Lastly, if more than one data type can handle the values your
column will need to store, you should choose the one that uses the least
amount of storage.

Say you want to create a table, solar_eclipse, that includes data about
solar eclipses, including the date of the eclipse, the time it occurs, the type
of eclipse, and its magnitude. Your raw data might look like Table 4-1.

Table 4-1: Data on Solar Eclipses

Eclipse date Time of greatest eclipse Eclipse type Magnitude
2022-04-30 20:42:36 Partial 0.640
2022-10-25 11:01:20 Partial 0.862
2023-04-20 04:17:56 Hybrid 1.013

In order to store this data in a MySQL database, you’ll create a table with
four columns:

create table solar_eclipse
(
 eclipse_date date,
 time_of_greatest_eclipse time,
 eclipse_type varchar(10),
 magnitude decimal(4,3)
);

In this table, each of the four columns has been defined with a different
data type. Since the eclipse_date column will store dates, you use the
date data type. The time data type, which is designed to store time data, is
applied to the time_of_greatest_eclipse column.

For the eclipse_type column, you use the varchar data type because
you need to store variable-length character data. You don’t expect these
values to be long, so you use varchar(10) to set the maximum number of
characters to 10.

For the magnitude column, you use the decimal data type and specify
that the values will have four digits total and three digits after the decimal
point.

Let’s look at these and several other data types in more depth, and
explore when it’s appropriate to use each one.

String Data Types
A string is a set of characters, including letters, numbers, whitespace
characters like spaces and tabs, and symbols like punctuation marks. For
values that include only numbers, you should use a numeric data type rather

than a string data type. You would use a string data type for a value like I
love MySQL 8.0! but a numeric data type for a value like 8.0.

This section will examine MySQL’s string data types.

char
The char data type is used for fixed-length strings—that is, strings that hold
an exact number of characters. To define a column within a country_code
table to store three-letter country codes like USA, GBR, and JPN, use char(3),
like so:

create table country_code
(
 country_code char(3)
);

When defining columns with the char data type, you specify the length
of the string inside the parentheses. The char data type defaults to one
character if you leave out the parentheses, though in cases where you want
only one character, it’s clearer to specify char(1) than just char.

The length of the string cannot exceed the length defined within the
parentheses. If you tried to insert JAPAN into the country_code column,
MySQL would reject the value because the column has been defined to
store a maximum of three characters. However, MySQL will allow you to
insert a string with fewer than three characters, such as JP; it simply adds a
space to the end of JP and saves the value in the column.

You can define a char data type with up to 255 characters. If you try to
define a column with a data type of char(256) you’ll get an error message
because it’s out of char’s range.

varchar
The varchar data type, which you’ve seen before, is for variable-length
strings, or strings that can hold up to a specified number of characters. It’s
useful when you need to store strings but aren’t sure exactly how long they
will be. For example, to create an interesting_people table and then
define a column called interesting_name that stores various names, you

need to be able to accommodate short names like Jet Li as well as long
names like Hubert Blaine Wolfeschlegelsteinhausenbergerdorff:

create table interesting_people
(
 interesting_name varchar(100)
);

In the parentheses, you define a character limit of 100 for the
interesting_name column because you don’t anticipate that anybody’s
name in the database will be over 100 characters.

The number of characters that varchar can accept depends on your
MySQL configuration. Your database administrator (DBA) can help you, or
you can use this quick hack to determine your maximum. Write a create
table statement with a column that has an absurdly long varchar
maximum value:

create table test_varchar_size
(
 huge_column varchar(999999999)
);

The create table statement will fail, giving you an error message like

Error Code: 1074. Column length too big for column 'huge_colu
mn'
(max = 16383);
use BLOB or TEXT instead

The table was not created because the varchar definition was too large,
but the error message told you that the maximum number of characters that
varchar can accept in this environment is 16,383, or varchar(16383).

The varchar data type is mostly used for small strings. When you’re
storing more than 5,000 characters, I recommend using the text data type
instead (we’ll get to it momentarily).

enum

The enum data type, short for enumeration, lets you create a list of values
that you want to allow in a string column. Here’s how to create a table
called student with a student_class column that can accept only one of
the following values—Freshman, Sophomore, Junior, or Senior:

create table student
 (
 student_id int,
 student_class enum('Freshman','Sophomore','Junior','Seni
or')
);

If you try to add a value to the column other than the ones in the list of
permitted values, it will be rejected. You can add only one of the permitted
values to the student_class column; a student can’t be both a freshman
and a sophomore.

set
The set data type is similar to the enum data type, but set allows you to
select multiple values. In the following create table statement, you define
a list of languages for a language_spoken column in a table called
interpreter:

create table interpreter
 (
 interpreter_id int,
 language_spoken set('English','German','French','Spani
sh')
);

The set data type allows you to add any or all of the languages in the set
to the language_spoken column, as someone might speak one or more of
these languages. If you try to add any value to the column other than the
ones in the list, however, they will be rejected.

tinytext, text, mediumtext, and longtext
MySQL includes four text data types that store variable-length strings:

tinytext Stores up to 255 characters

text Stores up to 65,535 characters, which is approximately 64KB
mediumtext Stores up to 16,777,215 characters, approximately 16MB
longtext Stores up to 4,294,967,295 characters, approximately 4GB

The following create table statement creates a table named book that
contains four columns. The last three columns, author_bio,
book_proposal, and entire_book, all use text data types of different sizes:

create table book
 (
 book_id int,
 author_bio tinytext,
 book_proposal text,
 entire_book mediumtext
);

You use the tinytext data type for the author_bio column because you
don’t anticipate any author biographies larger than 255 characters. This also
forces users to make sure their bios have fewer than 255 characters. You
choose the text data type for the book_proposal column because you
aren’t expecting any book proposals of over 64KB. Finally, you choose the
mediumtext data type for the entire_book column to limit the size of books
to 16MB.

STRING FORMATTING

String values must be surrounded by single quotes or double quotes. The following
query uses single quotes around the string Town Supply:

select *
from store
where store_name = 'Town Supply';

This query uses double quotes:

select *
from store
where store_name = "Town Supply";

Both queries return the same values. Things get more interesting when you want to
compare strings that have special characters in them, like apostrophes, quotes, or
tabs. For example, using single quotes for Town Supply works fine, but using single
quotes for the string Bill's Supply

select *
from store
where store_name = 'Bill's Supply';

results in the following error:

Error Code: 1064. You have an error in your SQL syntax; check the manual that
 corresponds to your MySQL server version for the right syntax to use near 's
 Supply'' at line 1

MySQL is confused because the single quotes at the beginning and the end of the
string are the same character as the apostrophe in Bill's. It’s not clear whether the
apostrophe is ending the string or part of the string.

You can work around the problem by surrounding the string in double quotes instead
of single quotes:

select *
from store
where store_name = "Bill's Supply";

Now MySQL knows that the apostrophe is part of the string.
You can also fix the error by surrounding the string in single quotes and escaping the

apostrophe:

select *
from store
where store_name = 'Bill\'s Supply';

The backslash character is the escape character, and it creates an escape sequence
that tells MySQL the next character is part of the string. There are other escape
sequences available as well:

\" Double quote
\n Newline (linefeed)

\r Carriage return
\t Tab

\\ Backslash
You can use escape sequences to add special characters to strings, like the double

quotes around the nickname Kitty:

select *
from accountant
where accountant_name = "Kathy \"Kitty\" McGillicuddy";

In this case you could also wrap the string in single quotes so you don’t have to escape
the double quotes:

select *
from accountant
where accountant_name = 'Kathy "Kitty" McGillicuddy';

Either way, the result returned is Kathy "Kitty" McGillicuddy.

Binary Data Types
MySQL provides data types to store binary data, or raw data in byte format
that is not human-readable.

tinyblob, blob, mediumblob, and longblob
A binary large object (BLOB) is a variable-length string of bytes. You can
use BLOBs to store binary data like images, PDF files, and videos. BLOB
data types come in the same sizes as the text data types. While tinytext
can store up to 255 characters, tinyblob can store up to 255 bytes.

tinyblob Stores up to 255 bytes
blob Stores up to 65,535 bytes, approximately 64KB
mediumblob Stores up to 16,777,215 bytes, approximately 16MB
longblob Stores up to 4,294,967,295 bytes, approximately 4GB

binary
The binary data type is for fixed-length binary data. It’s similar to the char
data type, except that it’s used for strings of binary data rather than
character strings. You specify the size of the byte string within the
parentheses like so:

create table encryption
 (
 key_id int,
 encryption_key binary(50)
);

For the column called encryption_key in the encryption table, you set
the maximum size of the byte string to 50 bytes.

varbinary
The varbinary data type is for variable-length binary data. You specify the
maximum size of the byte string within the parentheses:

create table signature
 (
 signature_id int,
 signature varbinary(400)
);

Here, you’re creating a column called signature (in a table of the same
name) with a maximum size of 400 bytes.

bit
One of the lesser-used data types, bit is used for storing bit values. You can
specify how many bits you want to store, up to a maximum of 64. A
definition of bit(15) allows you to store up to 15 bits.

STRINGS OF CHARACTERS VS. STRINGS OF BYTES

A character string, usually just called a string, is a human-readable set of characters. A
byte string, on the other hand, is a string of bytes. Byte strings aren’t human-readable.

In the following table, named animal, the animal_desc column has been defined with
the tinytext data type and the animal_picture column has been defined with the
mediumblob data type:

create table animal
 (
 animal_name varchar(20),
 animal_desc tinytext,
 animal_picture mediumblob
);

Here is the result when you query the table using MySQL Workbench.

The contents of the animal_desc column are human-readable, but MySQL
Workbench displays the contents of animal_picture as BLOB because that column value
is set to a byte string format.

Numeric Data Types
MySQL provides data types to store numbers of different sizes. The
numeric type to use also depends upon whether the numbers you want to
store contain decimal points.

tinyint, smallint, mediumint, int, and bigint
Integers are whole numbers without a fraction or decimal. Integer values
can be positive, negative, or zero. MySQL includes the following integer
data types:

tinyint Stores integer values that range from –128 to 127, or 1 byte of storage
smallint Stores integer values ranging from –32,768 to 32,767, or 2 bytes of storage
mediumint Stores integer values ranging from –8,388,608 to 8,388,607, or 3 bytes of

storage
int Stores integer values from –2,147,483,648 to 2,147,483,647, or 4 bytes of

storage
bigint Stores integer values that range from –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807, or 8 bytes of storage

How do you know which integer type is right for your data? Take a look
at the planet_stat table in Listing 4-1.

create table planet_stat
(
 planet varchar(20),
 miles_from_earth bigint,
 diameter_km mediumint
);

Listing 4-1: Creating a table on planet statistics

This table contains statistics about planets using varchar(20) to store the
planet’s name, bigint to store its distance from Earth in miles, and
mediumint for the planet’s diameter (in kilometers).

Looking at the results, you can see that Neptune is 2,703,959,966 miles
from Earth. In this case, bigint is the appropriate choice for that column,
as int wouldn’t have been large enough for that value.

planet miles_from_earth diameter_km
------- ---------------- -----------
Mars 48678219 6792
Jupiter 390674712 142984
Saturn 792248279 120536
Uranus 1692662533 51118
Neptune 2703959966 49528

Considering that int takes 4 bytes of storage and bigint takes 8 bytes,
using bigint for a column where int would have been large enough means
taking up more disk space than necessary. In small tables, using int where
a smallint or a mediumint would have sufficed won’t cause any problems.
But if your table has 20 million rows, it pays to take the time to size the
columns correctly—those extra bytes add up.

One technique you can use for space efficiency is defining integer data
types as unsigned. By default, the integer data types allow you to store
negative and positive integers. If you won’t need any negative numbers,
you can use unsigned to prevent negative values and increase the number
of positive numbers. For example, the tinyint data type gives you a default
range of values between –128 and 127, but if you specify unsigned, your
range becomes 0 to 255.

If you specify smallint as unsigned, your range becomes 0 to 65,535.
Specifying the mediumint data type gives you a range of 0 to 16,777,215,
and specifying int changes the range to 0 through 4,294,967,295.

In Listing 4-1, you defined the miles_from_earth column as a bigint,
but if you take advantage of the larger unsigned upper range values, you
can fit the values into an int data type instead. You can be confident using
unsigned for this column, as it will never need to store a negative number
—no planet will ever be less than zero miles away from Earth:

create table planet_stat
(
 planet varchar(20),
 miles_from_earth int unsigned, -- Now using int unsigne
d, not bigint
 diameter_km mediumint
);

By defining the column as unsigned, you can use the more compact int
type and save disk space.

Boolean
Boolean values have only two states: true or false; on or off; 1 or 0.
Technically, MySQL doesn’t have a data type to capture boolean values;
they’re stored in MySQL as tinyint(1). You can use the synonym bool to

create columns to store boolean values. When you define a column as bool,
it creates a tinyint(1) column behind the scenes.

This table called food has two boolean columns, organic_flag and
gluten_free_flag, to tell you whether a food is organic or gluten-free:

create table food
(
 food varchar(30),
 organic_flag bool,
 gluten_free_flag bool
);

It’s common practice to add the suffix _flag to columns that contain
boolean values, such as organic_flag, because setting the value to true or
false can be compared to raising or lowering a flag, respectively.

To view the structure of a table, you can use the describe, or desc,
command. Figure 4-1 shows the result of running desc food; in MySQL
Workbench.

Figure 4-1: Describing the food table in MySQL Workbench

You can see that, although the organic_flag and gluten_free_flag
columns were created with the bool synonym, the data type that was used
to create those columns is tinyint(1).

Decimal Data Types
For numbers that contain decimal points, MySQL provides the decimal,
float, and double data types. Whereas decimal stores exact values, float

and double store approximate values. For that reason, if you are storing
values that can be handled equally well by decimal, float, or double, I
recommend using the decimal data type.

decimal

The decimal data type allows you to define precision and scale. Precision is
the total number of digits that you can store, and scale is the number of
digits after the decimal point. The decimal data type is often used for
monetary values with a scale of 2.

For example, if you define a price column as decimal(5,2), you can
store values between –999.99 and 999.99. A precision of 5 means you can
store five total digits, and a scale of 2 means you can store two digits after
the decimal point.

The following synonyms are available for the decimal type:
numeric(5,2), dec(5,2), and fixed(5,2). All of these are equivalent and
create a data type of decimal(5,2).

float

The float data type stores numeric data with a floating-point decimal.
Unlike the decimal data type, where the scale is defined, a floating-point
number has a decimal point that isn’t always in the same location—the
decimal point can float within the number. A float data type could
represent the number 1.234, 12.34, or 123.4.

double

The double data type, short for double precision, also allows you to store
a number with an undefined scale that has a decimal point someplace in the
number. The double data type is similar to float except that double can
store numbers more accurately. In MySQL, storing a float uses 4 bytes and
storing a double uses 8. For floating-point numbers with many digits, use
the double data type.

Date and Time Data Types

For dates and times, MySQL provides the date, time, datetime,
timestamp, and year data types.

date

The date data type stores dates in YYYY-MM-DD format (year, month, and
day, respectively).

time

The time data type stores times in hh:mm:ss format, representing hours,
minutes, and seconds.

datetime

The datetime data type is for storing both the date and time in one value
with the format YYYY-MM-DD hh:mm:ss.

timestamp

The timestamp data type also stores the date and the time in one value with
the same format YYYY-MM-DD hh:mm:ss, though timestamp stores the
current date and time, while datetime is designed for other date and time
values.

The range of values that timestamp accepts is smaller; dates must be
between the year 1970 and 2038. The datetime data type accepts a wider
range of dates, from the years 1000 to 9999. You should use timestamp
only when you want to stamp the current date and time value, such as to
save the date and time that a row was updated.

year

The year data type stores the year in the YYYY format.

The json Data Type
JavaScript Object Notation (JSON) is a popular format for sending data
between computers. MySQL provides the json data type to allow you to

store and retrieve entire JSON documents in your database. MySQL will
check that a JSON document contains valid JSON before allowing it to be
saved in a json column.

A simple JSON document might look like this:

{
 "department":"Marketing",
 "city":"Detroit",
 "managers":[
 {
 "name":"Tom McBride",
 "age":29
 },
 {
 "name":"Jill Hatfield",
 "age":25
 }
]
}

JSON documents contain key/value pairs. In this example, department is
a key and Marketing is a value. These keys and values don’t correspond to
rows and columns in your table; instead, the entire JSON document can be
saved in a column that has the json data type. Later, you can extract
properties from the JSON document using MySQL queries.

Spatial Data Types
MySQL provides data types for representing geographical location data, or
geodata. This type of data helps answer questions like “What city am I in?”
or “How many Chinese restaurants are within 5 miles of my location?”

geometry Stores location values of any geographical type, including point,
linestring, and polygon types

point Represents a location with a particular latitude and longitude, like
your current location

linestring Represents points and the curve between them, such as the
location of a highway

polygon Represents a boundary, such as around a country or city
multipoint Stores an unordered collection of point types

multilinestring Stores a collection of linestring types
emultipolygon Stores a collection of polygon typess
geometrycollection Stores a collection of geometry types

TRY IT YOURSELF
4-1. Create a database named rapper and write a create table statement for the
album table. The album table should have five columns:

The rapper_id column should use an unsigned smallint data type.

The album_name column should be a variable-length string that can hold up to 100
characters.

The explicit_lyrics_flag should store a boolean value.

The album_revenue column should store a monetary amount with a precision of 12 and
a scale of 2.

The album_content column should use the longblob data type.

Summary
In this chapter, you explored the available MySQL data types and when to
use them. In the next chapter, you’ll look at ways to retrieve data from
multiple tables using different MySQL join types, and display that data in a
single result set.

5
JOINING DATABASE TABLES

A SQL query walks into a bar, approaches two tables, and asks, “May I join you?”

—The worst database joke in history

Now that you’ve learned how to use
SQL to select and filter data from a
table, you’ll see how to join database
tables. Joining tables means selecting
data from more than one table and

combining it in a single result set. MySQL provides
syntax to do different types of joins, like inner joins
and outer joins. In this chapter, you’ll look at how to
use each type.

Selecting Data from Multiple Tables
The data you want to retrieve from a database often will be stored in more
than one table, and you need to return it as one dataset in order to view all
of it at once.

Let’s look at an example. This table, called subway_system, contains data
for every subway in the world:

subway_system city country_code
------------------------ ---------------- ------------
Buenos Aires Underground Buenos Aires AR
Sydney Metro Sydney AU
Vienna U-Bahn Vienna AT
Montreal Metro Montreal CA
Shanghai Metro Shanghai CN
London Underground London GB
MBTA Boston US
Chicago L Chicago US
BART San Francisco US
Washington Metro Washington, D.C. US
Caracas Metro Caracas VE
--snip--

The first two columns, subway_system and city, contain the name of the
subway and the city where it’s located. The third column, country_code,
stores the two-character ISO country code. AR stands for Argentina, CN
stands for China, and so on.

The second table, called country, has two columns, country_code and
country:

country_code country
------------ -----------
AR Argentina
AT Austria
AU Australia
BD Bangladesh
BE Belgium
--snip--

Say you want to get a list of subway systems and their full city and
country names. That data is spread across the two tables, so you’ll need to
join them to get the result set you want. Each table has the same
country_code column, so you’ll use that as a link to write a SQL query that
joins the tables (see Listing 5-1).

select subway_system.subway_system,
 subway_system.city,

 country.country
from subway_system
inner join country
on subway_system.country_code = country.country_code;

Listing 5-1: Joining the subway_system and country tables

In the country table, the country_code column is the primary key. In the
subway_system table, the country_code column is a foreign key. Recall
that a primary key uniquely identifies rows in a table, and a foreign key is
used to join with the primary key of another table. You use the = (equal)
symbol to specify that you want to join all equal values from the
subway_system and country tables’ country_code columns.

Since you’re selecting from two tables in this query, it’s a good idea to
specify which table the column is in every time you reference it, especially
because the same column appears in both tables. There are two reasons for
this. First, it will make the SQL easier to maintain because it will be
immediately apparent in the SQL query which columns come from which
tables. Second, because both tables have a column named country_code, if
you don’t specify the table name, MySQL won’t know which column you
want to use and will give an error message. To avoid this, in your select
statement, type the table name, a period, and then the column name. For
example, in Listing 5-1, subway_system.city refers to the city column in
the subway_system table.

When you run this query, it returns all of the subway systems with the
country names retrieved from the country table:

subway_system city country
------------------------ ---------------- -------------
-
Buenos Aires Underground Buenos Aires Argentina
Sydney Metro Sydney Australia
Vienna U-Bahn Vienna Austria
Montreal Metro Montreal Canada
Shanghai Metro Shanghai China
London Underground London United Kingdo
m
MBTA Boston United States
Chicago L Chicago United States
BART San Francisco United States

Washington Metro Washington, D.C. United States
Caracas Metro Caracas Venezuela
--snip--

Note that the country_code column does not appear in the resulting join.
This is because you selected only the subway_system, city, and country
columns in the query.

NOTE

When joining two tables based on columns with the same name, you
can use the using keyword instead of on. For example, replacing the
last line in Listing 5-1 with using (country_code); would return
the same result with less typing required.

Table Aliasing
To save time when writing SQL, you can declare aliases for your table
names. A table alias is a short, temporary name for a table. The following
query returns the same result set as Listing 5-1:

select s.subway_system,
 s.city,
 c.country
from subway_system s
inner join country c
on s.country_code = c.country_code;

You declare s as the alias for the subway_system table and c for the
country table. Then you can type s or c instead of the full table name when
referencing the column names elsewhere in the query. Keep in mind that
table aliases are only in effect for the current query.

You can also use the word as to define table aliases:

select s.subway_system,
 s.city,
 c.country
from subway_system as s

inner join country as c
on s.country_code = c.country_code;

The query returns the same results with or without as, but you’ll cut
down on typing by not using it.

Types of Joins
MySQL has several different types of joins, each of which has its own
syntax, as summarized in Table 5-1.

Table 5-1: MySQL Join Types

Join
type

Description Syntax

Inner
join

Returns rows where both tables have a matching value. inner

join

join

Outer
join

Returns all rows from one table and the matching rows from a second
table. Left joins return all rows from the table on the left. Right joins return
all rows from the table on the right.

left

outer

join

left

join

right

outer

join

right

join

Natural
join

Returns rows based on column names that are the same in both tables. natural

join

Cross
join

Matches all rows in one table to all rows in another table and returns a
Cartesian product.

cross

join

Let’s look at each type of join in more depth.

Inner Joins
Inner joins are the most commonly used type of join. In an inner join, there
must be a match in both tables for data to be retrieved.

You performed an inner join on the subway_system and country tables in
Listing 5-1. The returned list had no rows for Bangladesh and Belgium.
These countries are not in the subway_system table, as they don’t have
subways; thus, there was not a match in both tables.

Note that when you specify inner join in a query, the word inner is
optional because this is the default join type. The following query performs
an inner join and produces the same results as Listing 5-1:

select s.subway_system,
 s.city,
 c.country
from subway_system s
join country c
on s.country_code = c.country_code;

You’ll come across MySQL queries that use inner join and others that
use join. If you have an existing codebase or written standards, it’s best to
follow the practices outlined there. If not, I recommend including the word
inner for clarity.

Outer Joins
An outer join displays all rows from one table and any matching rows in a
second table. In Listing 5-2, you select all countries and display subway
systems for the countries if there are any.

select c.country,
 s.city,
 s.subway_system
from subway_system s right outer join country c
on s.country_code = c.country_code;

Listing 5-2: Performing a right outer join

In this query, the subway_system table is considered the left table
because it is to the left of the outer join syntax, while the country table
is the right table. Because this is a right outer join, this query returns all the
rows from the country table even if there is no match in the subway_system

table. Therefore, all the countries appear in the result set, whether or not
they have subway systems:

country city subway_system
-------------------- ------------ ---------------------

United Arab Emirates Dubai Dubai Metro
Afghanistan null null
Albania null null
Armenia Yerevan Yerevan Metro
Angola null null
Antarctica null null
Argentina Buenos Aires Buenos Aires Undergro
und
--snip--

For countries without matching rows in the subway_system table, the
city and subway_system columns display null values.

As with inner joins, the word outer is optional; using left join and
right join will produce the same results as their longer equivalents.

The following outer join returns the same results as Listing 5-2, but uses
the left outer join syntax instead:

select c.country,
 s.city,
 s.subway_system
from country c left outer join subway_system s
on s.country_code = c.country_code;

In this query, the order of the tables is switched from Listing 5-2. The
subway_system table is now listed last, making it the right table. The syntax
country c left outer join subway_system s is equivalent to
subway_system s right outer join country c in Listing 5-2. It doesn’t
matter which join you use as long as you list the tables in the correct order.

Natural Joins
A natural join in MySQL automatically joins tables when they have a
column with the same name. Here is the syntax to automatically join two
tables based on a column that is found in both:

select *
from subway_system s
natural join country c;

With natural joins, you avoid a lot of the extra syntax required for an
inner join. In Listing 5-2, you had to include on s.country_code =
c.country_code to join the tables based on their common country_code
column, but with a natural join, you get that for free. The results of this
query are as follows:

country_code subway_system city
country
------------ ------------------------ ------------

AR Buenos Aires Underground Buenos Aires
Argentina
AU Sydney Metro Sydney
Australia
AT Vienna U-Bahn Vienna
Austria
CA Montreal Metro Montreal
Canada
CN Shanghai Metro Shanghai
China
GB London Underground London
United Kingdom
US MBTA Boston
United States
US Chicago L Chicago
United States
US BART San Francisco
United States
US Washington Metro Washington, D.C.
United States
VE Caracas Metro Caracas
Venezuela
--snip--

Notice that you selected all columns from the tables using the select *
wildcard. Also, although both tables have a country_code column,
MySQL’s natural join was smart enough to display that column just once in
the result set.

Cross Joins
MySQL’s cross join syntax can be used to get the Cartesian product of two
tables. A Cartesian product is a listing of every row in one table matched
with every row in a second table. For example, say a restaurant has two
database tables called main_dish and side_dish. Each table has three rows
and one column.

The main_dish table is as follows:

main_item

steak
chicken
ham

And the side_dish table looks like:

side_item

french fries
rice
potato chips

A Cartesian product of these tables would be a list of all the possible
combinations of main dishes and side dishes, and is retrieved using the
cross join syntax:

select m.main_item,
 s.side_item
from main_dish m
cross join side_dish s;

This query, unlike the others you’ve seen, doesn’t join tables based on
columns. There are no primary keys or foreign keys being used. Here are
the results of this query:

main_item side_item
--------- ----------
ham french fries
chicken french fries
steak french fries

ham rice
chicken rice
steak rice
ham potato chips
chicken potato chips
steak potato chips

Since there are three rows in the main_dish table and three rows in the
side_dish table, the total number of possible combinations is nine.

Self Joins
Sometimes, it can be beneficial to join a table to itself, which is known as a
self join. Rather than using special syntax as you did in the previous joins,
you perform a self join by listing the same table name twice and using two
different table aliases.

For example, the following table, called music_preference, lists music
fans and their favorite genre of music:

music_fan favorite_genre
--------- --------------
Bob Reggae
Earl Bluegrass
Ella Jazz
Peter Reggae
Benny Jazz
Bunny Reggae
Sierra Bluegrass
Billie Jazz

To pair music fans who like the same genre, you join the
music_preference table to itself, as shown in Listing 5-3.

select a.music_fan,
 b.music_fan
from music_preference a
inner join music_preference b
on (a.favorite_genre = b.favorite_genre)
where a.music_fan != b.music_fan
order by a.music_fan;

Listing 5-3: Self join of the music_preference table

The music_preference table is listed twice in the query, aliased once as
table a and once as table b. MySQL will then join tables a and b as if they
are different tables.

In this query, you use the != (not equal) syntax in the where clause to
ensure that the value of the music_fan column from table a is not the same
as the value of the music_fan column in table b. (Remember from Chapter
3 that you can use a where clause in your select statements to filter your
results by applying certain conditions.) This way, music fans won’t be
paired up with themselves.

NOTE

The != (not equal) syntax used here and the = (equal) syntax you’ve
been using throughout this chapter are what’s known as comparison
operators, as they let you compare values in your MySQL queries. C
hapter 7 will discuss comparison operators in more detail.

Listing 5-3 produces the following result set:

music_fan music_fan
--------- ---------
Benny Ella
Benny Billie
Billie Ella
Billie Benny
Bob Peter
Bob Bunny
Bunny Bob
Bunny Peter
Earl Sierra
Ella Benny
Ella Billie
Peter Bob
Peter Bunny
Sierra Earl

A music fan can now find other fans of their favorite genre in the right
column next to their name.

NOTE

In Listing 5-3, the table is joined to itself as an inner join, but you
could have used another type of join, like an outer join or a cross
join.

Variations on Join Syntax
MySQL allows you to write SQL queries that accomplish the same results
in different ways. It’s a good idea to get comfortable with different
syntaxes, as you may have to modify code created by someone who doesn’t
write SQL queries in quite the same way that you do.

Parentheses
You can choose to use parentheses when joining on columns or leave them
off. This query, which does not use parentheses

select s.subway_system,
 s.city,
 c.country
from subway_system as s
inner join country as c
on s.country_code = c.country_code;

is the same as this query, which does:

select s.subway_system,
 s.city,
 c.country
from subway_system as s
inner join country as c
on (s.country_code = c.country_code);

Both queries return the same result.

Old-School Inner Joins
This query, written in an older style of SQL, is equivalent to Listing 5-1:

select s.subway_system,
 s.city,
 c.country
from subway_system as s,
 country as c
where s.country_code = c.country_code;

This code doesn’t include the word join; instead, it lists the table names
separated by a comma in the from statement.

When writing queries, use the newer syntax shown in Listing 5-1, but
keep in mind that this older style is still supported by MySQL and you
might see it used in some legacy code today.

Column Aliasing
You read earlier in the chapter about table aliasing; now you’ll create
aliases for columns.

In some parts of the world, like France, subway systems are referred to as
metros. Let’s select the subway systems for cities in France from the
subway_system table and use column aliasing to display the heading metro
instead:

select s.subway_system as metro,
 s.city,
 c.country
from subway_system as s
inner join country as c
on s.country_code = c.country_code
where c.country_code = 'FR';

As with table aliases, you can use the word as in your SQL query or you
can leave it out. Either way, the results of the query are as follows, now
with the subway_system column heading changed to metro:

metro city country
----- -------- -------
Lille Metro Lille France
Lyon Metro Lyon France
Marseille Metro Marseille France

Paris Metro Paris France
Rennes Metro Rennes France
Toulouse Metro Toulouse France

When creating tables, try to give your column headings descriptive
names so that the results of your queries will be meaningful at a glance. In
cases where the column names could be clearer, you can use a column alias.

Joining Tables in Different Databases
Sometimes there are tables with the same name in multiple databases, so
you need to tell MySQL which database to use. There are a couple of
different ways to do this.

In this query, the use command (introduced in Chapter 2) tells MySQL to
use the specified database for the SQL statements that follow it:

use subway;

select * from subway_system;

On the first line, the use command sets the current database to subway.
Then, when you select all the rows from the subway_system table on the
next line, MySQL knows to pull data from the subway_system table in the
subway database.

Here’s a second way to specify the database name in your select
statements:

select * from subway.subway_system;

In this syntax, the table name is preceded by the database name and a
period. The subway.subway_system syntax tells MySQL that you want to
select from the subway_system table in the subway database.

Both options produce the same result set:

subway_system city country_code
----------------- ------------------------- ------------
Buenos Aires Underground Buenos Aires AR

Sydney Metro Sydney AU
Vienna U-Bahn Vienna AT
Montreal Metro Montreal CA
Shanghai Metro Shanghai CN
London Underground London GB
--snip--

Specifying the database and table name allows you to join tables that are
in different databases on the same MySQL server, like so:

select s.subway_system,
 s.city,
 c.country
from subway.subway_system as s
inner join location.country as c
on s.country_code = c.country_code;

This query joins the country table in the location database with the
subway_system table in the subway database.

TRY IT YOURSELF
In the solar_system database, there are two tables: planet and ring. The planet
table is as follows:

planet_id planet_name
--------- ---------
 1 Mercury
 2 Venus
 3 Earth
 4 Mars
 5 Jupiter
 6 Saturn
 7 Uranus
 8 Neptune

The ring table stores only the planets with rings:

planet_id ring_tot
--------- --------
 5 3
 6 7
 7 13
 8 6

5-1. Write a SQL query to perform an inner join between the planet and the ring
tables, joining the tables based on their planet_id columns. How many rows do you
expect the query to return?
5-2. Write a SQL query to do an outer join between the planet and the ring tables,
with the planet table as the left table.
5-3. Modify your SQL query from Exercise 5-2 so that the planet table is the right
table. The set returned by the query should be the same as the results of the
previous exercise.
5-4. Modify your SQL query from Exercise 5-3 using a column alias. Make the
ring_tot column display as rings in the heading of the result set.

Summary
In this chapter, you learned how to select data from two tables and display
that data in a single result set using various joins offered by MySQL. In Cha
pter 6, you’ll build on this knowledge by performing even more complex
joins involving multiple tables.

6
PERFORMING COMPLEX JOINS WITH

MULTIPLE TABLES

In Chapter 5, you saw how to join two
tables and display the data in one result
set. In this chapter, you’ll create
complex joins with more than two
tables, learn about associative tables,

and see how to combine or limit the results of a
query. You’ll then explore different ways to
temporarily save a query’s results in a table-like
format, including temporary tables, derived tables,
and Common Table Expressions (CTEs). Finally,
you’ll learn how to work with subqueries, which let
you nest one query inside another for more refined
results.

Writing One Query with Two Join Types
Joining three or more tables introduces greater complexity than joining two,
as you might have different join types (like an inner and an outer join) in
the same query. For example, Figure 6-1 illustrates three tables in the

police database, which contains information on crimes, including the
suspect and location.

Figure 6-1: Three tables within the police database

The location table contains the locations where the crimes occurred:

location_id location_name
----------- -------------------------
 1 Corner of Main and Elm
 2 Family Donut Shop
 3 House of Vegan Restaurant

The crime table contains a description of the crimes:

crime_id location_id suspect_id crime_name
-------- ----------- ---------- --------------------------

 1 1 1 Jaywalking
 2 2 2 Larceny: Donut
 3 3 null Receiving Salad Under Fals
e Pretenses

The suspect table contains information about the suspect:

suspect_id suspect_name
---------- ---------------
 1 Eileen Sideways
 2 Hugo Hefty

Say you want to write a query that joins all three tables to get a list of
crimes, where they occurred, and the name of the suspect. The police

database was designed so that there will always be a matching location in
the location table for every crime in the crime table. However, there may
not be a matching suspect in the suspect table because the police have not
identified a suspect for every crime.

You’ll perform an inner join between the crime and location tables,
because you know there will be a match. But because there may not be a
suspect match for each crime, you’ll do an outer join between the crime
table and the suspect table. Your query might look like this:

select c.crime_name,
 l.location_name,
 s.suspect_name
from crime c

❶ join location l
 on c.location_id = l.location_id

❷ left join suspect s
 on c.suspect_id = s.suspect_id;

In this example, you alias the tables with c for crime, l for location,
and s for suspect. You use the join syntax for the inner join between the
crime and location tables ❶, and the left join syntax for the outer join
to the suspect table ❷.

Using a left join might cause some confusion in this context. When you
were using left join with only two tables in Chapter 5, it was easy to
understand which was the left table and which was the right, because there
were only two possibilities. But how does it work now that you’re joining
three tables?

To understand multiple-table joins, imagine that MySQL is building
temporary tables as it progresses through the query. MySQL joins the first
two tables, crime and location, and the result of that join becomes the left
table. Then MySQL does a left join between the crime/location
combined table and the suspect table on the right.

You used a left join for the outer join because you want all of the crimes
and locations to appear regardless of whether there is a match with the
suspect table on the right. The results of this query are as follows:

crime_name location_name
suspect_name
------------------------------------- ----------------------

Jaywalking Corner of Main and Elm
Eileen Sideways
Larceny: Donut Family Donut Shop
Hugo Hefty
Receiving Salad Under False Pretenses Green Vegan Restaurant
null

The suspect for the last crime was able to escape, so the value of the
suspect_name on the last row is null. If you had used an inner join instead,
the query wouldn’t have returned the last row, because inner joins return
rows only where there is a match.

You can use the null value that gets returned from an outer join to your
advantage. Say you want to write a query to display only crimes where the
suspect is not known. You could specify in the query that you want to see
only rows where the suspect name is null:

select c.crime_name,
 l.location_name,
 s.suspect_name
from crime c
join location l
 on c.location_id = l.location_id
left join suspect s
 on c.suspect_id = s.suspect_id
where s.suspect_name is null;

The results of this query are:

crime_name location_name
suspect_name
------------------------------------- ----------------------

Receiving Salad Under False Pretenses Green Vegan Restaurant
null

Adding the where clause on the last line of the query showed you only
rows that have no matching row in the suspect table, which limited your
list to crimes with unknown suspects.

Joining Many Tables
MySQL allows up to 61 tables in a join, though you’ll rarely need to write
queries with that many. If you find yourself joining more than 10 tables,
that’s a sign the database could be redesigned to make writing queries
simpler.

The wine database has six tables you can use to help plan a trip to a
winery. Let’s look at all six in turn.

The country table stores the countries where the wineries are located:

country_id country_name
---------- ------------
 1 France
 2 Spain
 3 USA

The region table stores the regions within those countries where the
wineries are located:

region_id region_name country_id
--------- ----------- ----------
 1 Napa Valley 3
 2 Walla Walla Valley 3
 3 Texas Hill 3

The viticultural_area table stores the wine-growing subregions where
the wineries are located:

viticultural_area_id viticultural_area_name region_id
-------------------- ---------------------- ---------
 1 Atlas Peak 1
 2 Calistoga 1
 3 Wild Horse Valley 1

The wine_type table stores information about the types of wine
available:

wine_type_id wine_type_name
------------ ------------------
 1 Chardonnay

 2 Cabernet Sauvignon
 3 Merlot

The winery table stores information about the wineries:

winery_id winery_name viticultural_area_id offer
ing_tours_flag
--------- --------------------- -------------------- -----

 1 Silva Vineyards 1
0
 2 Chateau Traileur Parc 2
1
 3 Winosaur Estate 3
1

The portfolio table stores information about the winery’s portfolio of
wines—that is, which wines the winery offers:

winery_id wine_type_id in_season_flag
--------- ------------ --------------
 1 1 1
 1 2 1
 1 3 0
 2 1 1
 2 2 1
 2 3 1
 3 1 1
 3 2 1
 3 3 1

For example, the winery with a winery_id of 1 (Silva Vineyards) offers
the wine with a wine_type_id of 1 (Chardonnay), which is in season (its
in_season_flag—a boolean value—is 1, indicating true).

Listing 6-1 shows a query that joins all six tables to find a winery in the
USA that has a Merlot in season and is offering tours.

select c.country_name,
 r.region_name,
 v.viticultural_area_name,
 w.winery_name
from country c
join region r

 on c.country_id = r.country_id
 and c.country_name = 'USA'
join viticultural_area v
 on r.region_id = v.region_id
join winery w
 on v.viticultural_area_id = w.viticultural_area_id
 and w.offering_tours_flag is true
join portfolio p
 on w.winery_id = p.winery_id
 and p.in_season_flag is true
join wine_type t
 on p.wine_type_id = t.wine_type_id
 and t.wine_type_name = 'Merlot';

Listing 6-1: A query to list US wineries with in-season Merlot

While this is a longer query than you’re used to, you’ve seen most of the
syntax before. You create table aliases for each table name in the query
(country, region, viticultural_area, winery, portfolio, and
wine_type). When referring to columns in the query, you precede the
column names with the table aliases and a period. For example, you precede
the offering_tours_flag column with w because it is in the winery table,
resulting in w.offering_tours_flag. (Remember from Chapter 4 that it’s
best practice to add the suffix _flag to columns that contain boolean values
like true or false, which is the case with the offering_tours column,
since a winery either offers tours or doesn’t.) Finally, you perform inner
joins on each table with the word join, as there should be matching values
when you join these tables.

Unlike our earlier queries, this query contains some joins between tables
where more than one condition must be met. For example, when you join
the country and region tables, there are two conditions that need to be met:
The value in the country_id column of the country table must match the
value in the country_id column of the region table.
The value in the country_name column of the country table must equal
USA.

You handled the first condition using the on keyword:

from country c
join region r

 on c.country_id = r.country_id

Then you used the and keyword to specify the second condition:

 and c.country_name = 'USA'

You can add more and statements to specify as many joining conditions
as you need.

The results of the query in Listing 6-1 are as follows:

country_name region_name viticultural_area_name winer
y_name
------------ ------------- ---------------------- -----

 USA Napa Valley Calistoga Chate
au Traileur Parc
 USA Napa Valley Wild Horse Valley Winos
aur Estate

Associative Tables
In Listing 6-1, most of the tables are straightforward: the winery table
stores a list of wineries, region stores a list of regions, country stores
countries, and viticultural_area stores viticultural areas (wine-growing
subregions).

The portfolio table, however, is a little different. Remember, it stores
information about which wines are in each winery’s portfolio. Here it is
again:

winery_id wine_type_id in_season_flag
--------- ------------ --------------
 1 1 1
 1 2 1
 1 3 0
 2 1 1
 2 2 1
 2 3 1
 3 1 1
 3 2 1
 3 3 1

Its winery_id column is the primary key of the winery table, and its
wine_type_id column is the primary key of the wine_type table. This
makes portfolio an associative table because it associates rows that are
stored in other tables to each other by referencing their primary keys, as
illustrated in Figure 6-2.

Figure 6-2: The portfolio table is an associative table.

The portfolio table represents many-to-many relationships because one
winery can produce many wine types, and one wine type can be produced
in many wineries. For example, winery 1 (Silva Vineyards) offers many
wine types: 1 (Chardonnay), 2 (Cabernet Sauvignon), and 3 (Merlot). Wine
type 1 (Chardonnay) is offered by many wineries: 1 (Silva Vineyards), 2
(Chateau Traileur Parc), and 3 (Winosaur Estate). The portfolio table
contains that list of relationships between each winery_id and
wine_type_id that tells us which wineries have which wine types. As a
bonus, it also contains the in_season_flag column, which, as you’ve seen,
tracks whether that wine is in season at that winery.

Next, we’ll look at different ways to work with the data that’s returned
from your queries. We’ll start with some simple options for managing the
data in your result set and then cover some more involved approaches in the
latter half of the chapter.

Managing the Data in Your Result Set

Sometimes you’ll want to control how much data from your queries is
displayed in your result set. For example, you might want to pare down
your results or combine the results of several select statements. SQL
provides keywords to add this functionality to your queries.

The limit Keyword
The limit keyword lets you limit the number of rows displayed in your
result set. For example, consider a table called best_wine_contest that
holds the results of a contest where wine tasters voted for their favorite
wines. If you query the table and order by the place column, you’ll see the
wines that ranked the best first:

select *
from best_wine_contest
order by place;

The results are:

wine_name place
------------ -----
Riesling 1
Pinot Grigio 2
Zinfandel 3
Malbec 4
Verdejo 5

If you want to see only the top three wines, use limit 3:

select *
from best_wine_contest
order by place
limit 3;

Now the results are:

wine_name place
------------ -----
Riesling 1
Pinot Grigio 2
Zinfandel 3

The limit keyword limited the results to three rows. To see only the
wine that won top place, you could use limit 1.

The union Keyword
The union keyword combines the results of multiple select statements into
one result set. For example, the following query selects all the wine types
from two different tables, wine_type and best_wine_contest, and shows
them in one list:

select wine_type_name from wine_type
union
select wine_name from best_wine_contest;

The result is:

wine_type_name

Chardonnay
Cabernet Sauvignon
Merlot
Riesling
Pinot Grigio
Zinfandel
Malbec
Verdejo

The wine_type table has a column called wine_type_name that includes
Chardonnay, Cabernet Sauvignon, and Merlot. The best_wine_contest
table has a column called wine_name that includes Riesling, Pinot Grigio,
Zinfandel, Malbec, and Verdejo. Using union allows you to see all of the
wines together in one result set.

You can use union only when every select statement has the same
number of columns. The union works in this example because you specified
just one column in each of the select statements. The column name in the
result set is usually taken from the first select statement.

The union keyword will remove duplicate values from the result set. For
example, if you had Merlot in both the wine_type and the
best_wine_contest tables, using union would produce a list of distinct

wines, with Merlot listed only once. To see a list that includes duplicate
values, use union all:

select wine_type_name from wine_type
union all
select wine_name from best_wine_contest;

The result would be:

wine_type_name

Chardonnay
Cabernet Sauvignon
Merlot
Riesling
Pinot Grigio
Zinfandel
Malbec
Verdejo
Merlot

Now you can see that Merlot is listed twice.
Next, you’ll dive in a bit deeper to make your queries even more efficient

by creating temporary result sets in a table-like format.

TRY IT YOURSELF
In the nutrition database, there are two tables, good_snack and bad_snack.
The good_snack table looks like this:

snack_name

carrots
salad
soup

The bad_snack table looks like this:

snack_name

sausage pizza
BBQ ribs
nachos

6-1. Write a query to display all the snacks from both tables in one result set.

Temporary Tables
MySQL allows you to create temporary tables—that is, a temporary result
set that will exist only for your current session and then be automatically
dropped. For example, you can create a temporary table using a tool like
MySQL Workbench and then query that table within the tool. If you close
and reopen MySQL Workbench, however, the temporary table will be gone.
You can reuse a temporary table several times in a single session.

You can define a temporary table the same way you create a regular
table, except that you use the syntax create temporary table instead of
create table:

create temporary table wp1
(
 winery_name varchar(100),
 viticultural_area_id int
)

The wp1 temporary table gets created with the column names and data
types that you specified, without any rows.

To create a temporary table based on the results of a query, simply
precede the query with the same create temporary table syntax, as
shown in Listing 6-2, and the resulting temporary table will contain the
rows of data that were selected from the query.

 create temporary table winery_portfolio
 select w.winery_name,
 w.viticultural_area_id
 from winery w
 join portfolio p

❶ on w.winery_id = p.winery_id

❷ and w.offering_tours_flag is true
 and p.in_season_flag is true
 join wine_type t

❸ on p.wine_type_id = t.wine_type_id

❹ and t.wine_type_name = 'Merlot';

Listing 6-2: Creating a temporary table

Here you create a temporary table called winery_portfolio that stores
the results of a query joining the winery, portfolio, and wine_type tables
from Listing 6-1 and Figure 6-2. The winery and portfolio tables are
joined based on two conditions:

The values of the winery_id columns in the tables match ❶.
The winery is offering tours. For this, you check that the
offering_tours_flag in the winery table is set to true ❷.
Those results are joined with the wine_type table based on two conditions:

The values of the wine_type_id columns in the tables match ❸.

The wine_type_name in the wine_type table is Merlot ❹.

NOTE

Temporary tables are created with the data types of the columns
you’ve selected in the query. For example, in Listing 6-2 you
selected winery_name from the winery table, which was defined as
varchar(100), so the winery_portfolio temporary table also gets
created with a winery_name column defined as varchar(100).

Once you’ve created a temporary table, you can query its contents by
selecting from it, just as you would with a permanent table:

select * from winery_portfolio;

The results are:

winery_name viticultural_area_id
--------------------- --------------------
Chateau Traileur Parc 2
Winosaur Estate 3

Now you can write a second query to select from the winery_portfolio
temporary table and join it with other three tables from Listing 6-1:

select c.country_name,
 r.region_name,
 v.viticultural_area_name,
 w.winery_name
from country c
join region r
 on c.country_id = r.country_id
 and c.country_name = 'USA'
join viticultural_area v
 on r.region_id = v.region_id
join winery_portfolio w
 on v.viticultural_area_id = w.viticultural_area_id;

Here you are joining the winery_portfolio temporary table to the
remaining tables that were part of the original query in Listing 6-1:
country, region, and viticultural_area. In this way, you simplified a
large, six-table query by isolating the data from three tables into a

temporary table and then joining that temporary table with the other three
tables. This query returns the same results as Listing 6-1.

TRY IT YOURSELF
The canada database contains the province, capital_city, and tourist_attraction
tables shown here.
The province table looks like this:

province_id province_name official_language
----------- --------------------- -----------------
 1 Alberta English
 2 British Columbia English
 3 Manitoba English
 4 New Brunswick English, French
 5 Newfoundland English
 6 Nova Scotia English
 7 Ontario English
 8 Prince Edward Island English
 9 Quebec French
 10 Saskatchewan English

The capital_city table looks like this:

city_id city_name province_id
------- --------- -----------
 1 Toronto 7
 2 Quebec City 9
 3 Halifax 5
 4 Fredericton 4
 5 Winnipeg 3
 6 Victoria 2
 7 Charlottetown 8
 8 Regina 10
 9 Edmonton 1
 10 St. Johns 5

The tourist_attraction table looks like this:

attraction_id attraction_name attraction_city_id open_flag
------------- --------------------------- ------------------ ---------
 1 CN Tower 1 true
 2 Old Quebec 2 true
 3 Royal Ontario Museum 1 true
 4 Place Royale 2 true
 5 Halifax Citadel 3 true
 6 Garrison District 4 true
 7 Confederation Centre of... 7 true
 8 Stone Hall Castle 8 true
 9 West Edmonton Mall 9 true
 10 Signal Hill 10 true
 11 Canadian Museum for Human... 5 true
 12 Royal BC Museum 6 true
 13 Sunnyside Amusement Park 1 false

6-2. Write a query that performs an inner join between the three tables. Select the
attraction_name column from the tourist_attraction table, the city_name column

from the capital_city table, and the province_name column from the province table.

Select rows from the attraction table only where the open_flag is set to true.
Select rows from the province table only where the official_language is set to
French.
6-3. Create a temporary table called open_tourist_attraction that selects the
attraction_city_id and attraction_name columns from the tourist_attraction table
where the open_flag value is true.

6-4. Write a query that joins the open_tourist_attraction temporary table you
created in Exercise 6-2 to the capital_city table. Select the attraction_name column
from the open_tourist_attraction temporary table and the city_name column from
the capital_city table. Select only rows from the capital_city table that have a
city_name of Toronto.

Common Table Expressions
Common Table Expressions (CTEs), a feature introduced in MySQL
version 8.0, are a temporary result set that you name and can then select
from as if it were a table. You can use CTEs only for the duration of one
query (versus temporary tables, which can be used for the entire session). Li
sting 6-3 shows how to use a CTE to simplify the query from Listing 6-1:

❶ with winery_portfolio_cte as
(
 select w.winery_name,
 w.viticultural_area_id
 from winery w
 join portfolio p
 on w.winery_id = p.winery_id
 and w.offering_tours_flag is true
 and p.in_season_flag is true
 join wine_type t
 on p.wine_type_id = t.wine_type_id
 and t.wine_type_name = 'Merlot'
)

❷ select c.country_name,
 r.region_name,
 v.viticultural_area_name,
 wp.winery_name
from country c
join region r
 on c.country_id = r.country_id

 and c.country_name = 'USA'
join viticultural_area v
 on r.region_id = v.region_id

❸ join winery_portfolio_cte wp
 on v.viticultural_area_id = wp.viticultural_area_id;

Listing 6-3: Naming and then querying a CTE

First, you use the with keyword to give the CTE a name; here, you define
the name winery_portfolio_cte for the results of the query shown
between the parentheses ❶. Then you add another query ❷ that uses
winery_portfolio_cte in a join as if it were a table ❸. The results are the
same as those of Listing 6-1.

CTEs and temporary tables both temporarily save the results of a query
in a table-like format. However, while temporary tables can be used more
than once (that is, in multiple queries) in a session, CTEs can be used only
for the duration of the query in which they are defined. After you run Listin
g 6-3, try to run another query to select from winery_portfolio_cte:

select * from winery_portfolio_cte;

You’ll get an error:

Error Code: 1146. Table 'wine.winery_portfolio_cte' doesn't e
xist

MySQL is looking for a table named winery_portfolio_cte, so it’s no
surprise it can’t locate your CTE. Besides that, the CTE existed only for the
duration of your query, so it’s no longer available.

Recursive Common Table Expressions
Recursion is a technique that is used when an object references itself. When
I think of recursion, I think of Russian nesting dolls. You open the largest
doll and discover a smaller doll within it; then you open that doll and find
an even smaller doll within that; and so on until you reach the tiniest doll in
the center. In other words, to see all the dolls, you start with the largest doll

and then iterate through each smaller doll until you find a doll that doesn’t
contain another one.

Recursion is useful when your data is organized as a hierarchy or a series
of values where you need to know the previous value to arrive at the current
value.

A recursive CTE references itself. Recursive CTEs have two select
statements separated by a union statement. Take a look at this recursive
CTE called borg_scale_cte, which contains a series of numbers between 6
and 20:

❶ with recursive borg_scale_cte as
(

 ❷ select 6 as current_count
 union

 ❸ select current_count + 1
 from borg_scale_cte

 ❹ where current_count < 20
)
select * from borg_scale_cte;

First, you define the CTE as recursive and name it borg_scale_cte ❶.
Then, the first select statement returns the first row containing the number
6 ❷. The second select statement returns all other rows with values 7
through 20. It continually adds 1 to the current_count column and selects
the resulting numbers ❸, so long as the current_count is less than 20 ❹.

In the last line, you use the wildcard character * to select all the values
from the CTE, which returns:

current_count

 6
 7
 8
 9
 10
 11
 12
 13
 14

 15
 16
 17
 18
 19
 20

You can also use a recursive CTE as if it were a table and join it with
other tables, for example.

Derived Tables
Derived tables are an alternative to CTEs for creating a table of results just
for use within a query. The SQL that creates the derived table goes within
parentheses:

select wot.winery_name,
 t.wine_type_name
from portfolio p
join wine_type t
on p.wine_type_id = t.wine_type_id
join (
 select *
 from winery
 where offering_tours_flag is true
) wot
On p.winery_id = wot.winery_id;

The query within the parentheses produces a derived table aliased as wot
(short for wineries offering tours). You can treat wot as if it were just
another table, joining it to the portfolio and wine_type tables, and
selecting columns from it. As with a CTE, the derived table is available just
for the duration of your query.

The choice to use a derived table rather than a CTE is often a matter of
style. Some developers prefer to use CTEs because they feel CTEs are a
more readable option. If you need to use recursion, however, you would
have to use a CTE.

Subqueries

A subquery (or inner query) is a query nested within another query. A
subquery is used to return data that will be used by the main query. When a
query has a subquery, MySQL runs the subquery first, selects the resulting
value from the database, and then passes it back to the outer query. For
example, this SQL statement uses a subquery to return a list of all the wine-
growing regions in the United States from the wine database:

❶ select region_name
from region
where country_id =
(

 ❷ select country_id
 from country
 where country_name = 'USA'
);

The result of this query is as follows:

region_name

Napa Valley
Walla Walla Valley
Texas Hill

The query has two parts: the outer query ❶ and the subquery ❷. Try
running the subquery in isolation, without the outer query:

 select country_id
 from country
 where country_name = 'USA';

The result shows that the country_id returned for USA is 3:

country_id

 3

In your query, 3 is passed from the subquery to the outer query, which
makes the entire SQL statement evaluate to:

select region_name
from region
where country_id = 3;

This results in a list of regions for country_id 3 (USA) being returned:

region_name

Napa Valley
Walla Walla Valley
Texas Hill

Subqueries That Return More Than One Row
Subqueries can return more than one row. Here’s the same query as before,
this time including all countries, not just the USA:

select region_name
from region

❶ where country_id =
(
 select country_id
 from country

❷ -- where country_name = 'USA' - line commented out
);

Now the line of the subquery that specifies that you want only USA
regions is commented out ❷, so the country_id for all countries will be
returned. When you run this query, instead of a list of regions, MySQL
returns an error:

Error Code: 1242. Subquery returns more than 1 row

The problem is that the outer query expects only one row to be returned
because you used the = syntax ❶. Instead, the subquery returns three rows:
country_id 3 for the USA, 1 for France, and 2 for Spain. You should use =
only when there is no possibility that the subquery could return more than
one row.

This is a common mistake that you should be mindful of. Many
developers have written a query that worked when they tested it, but all of a
sudden, one day it starts producing Subquery returns more than 1 row
errors. Nothing has changed about the query (unlike in this case where a
line has been commented out), but the data in their database has changed.
For example, new rows might have been added to a table, and the
developer’s subquery now returns multiple rows where it used to return one.

To write a query where more than one row can be returned from the
subquery, you can use the in keyword instead of =:

select region_name
from region
where country_id in
(
 select country_id
 from country
-- where country_name = 'USA' - line commented out
);

Now that you’ve replaced = with in, the outer query can accept multiple
rows back from the subquery without error, and you’ll get a list of regions
for all countries.

TRY IT YOURSELF
Say you’re working at a staffing firm and you receive a report about a query that used
to run successfully but is now failing with an error message of Subquery returns more
than 1 row. You’ve been asked to fix this query:

select employee_id,
 hat_size
from wardrobe
where employee_id =
(
 select employee_id
 from employee
 where position_name = 'Pope'
);

The attire database contains the wardrobe and employee tables.
The wardrobe table looks like this:

employee_id hat_size
----------- --------
 1 8.25
 2 7.50
 3 6.75

The employee table looks like this:

employee_id employee_name position_name
----------- ------------- -------------
 1 Benedict Pope
 2 Garth Singer
 3 Francis Pope

6-5. Employee 3 has been added to the database recently. How would you fix the
query? Why do you think the query used to work without a problem, but now the
same query fails?

Correlated Subqueries
In a correlated subquery, a column from a table in the subquery is joined
with a column from a table in the outer query.

Let’s take a look at two tables called best_paid and employee in the pay
database. The best_paid table shows that the highest salary in the Sales
department is $200,000, and the highest salary in the Manufacturing
department is $80,000:

department salary
---------- ------
Sales 200000
Manufacturing 80000

The employee table stores a list of employees, their department, and their
salary:

employee_name department salary
-------------- -------------- ------
Wanda Wealthy Sales 200000
Paul Poor Sales 12000
Mike Mediocre Sales 70000
Betty Builder Manufacturing 80000
Sean Soldering Manufacturing 80000
Ann Assembly Manufacturing 65000

You can use a correlated subquery to find the highest-paid employees in
each department:

select employee_name,
 salary
from employee e
where salary =
 (
 select b.salary
 from best_paid b
 where b.department = e.department
);

In the outer query, you select employees and salaries from the employee
table. In the subquery, you join the results of the outer query with the
best_paid table to determine if this employee has the highest salary for
their department.

The results are:

employee_name salary
-------------- ------
Wanda Wealthy 200000
Betty Builder 80000
Sean Soldering 80000

The results show that Wanda is the highest-paid employee in the Sales
department and Betty and Sean are tied for the highest salary in the
Manufacturing department.

TRY IT YOURSELF
In the monarchy database, there is a table named royal_family that contains the
following data:

name birthdate
--------------------------------- ----------
Prince Louis of Cambridge 2018-04-23
Princess Charlotte of Cambridge 2015-05-02
Prince George of Cambridge 2013-07-22
Prince William, Duke of Cambridge 1982-06-21
Catherine, Duchess of Cambridge 1982-01-09
Charles, Prince of Whales 1948-11-14
Queen Elizabeth II 1926-04-21
Prince Andrew, Duke of York 1960-02-19

6-6. Write a query to select all columns from the table and order by the birthdate
column.
6-7. Add limit 1 to the end of the query to see who is the oldest royal in the table.

6-8. Now change the query to order by the birthdate column in descending order.
Then add limit 3 to the end of the query to see who the youngest three royals in the
table are.

Summary
In this chapter, you wrote complex SQL statements using multiple tables.
You saw how to limit or combine the rows of your results, and you explored
several different ways to write queries using result sets as if they were
tables.

In the next chapter, you’ll compare values in your queries; for example,
you’ll check that one value is more than another value, compare values that
have different data types, and check whether a value matches some pattern.

7
COMPARING VALUES

This chapter discusses comparing
values in MySQL. You’ll practice
checking whether values are equal,
whether one value is greater or less than
another value, and whether a value falls

within a specific range or matches a pattern. You’ll
also learn how to check that at least one condition in
your queries is met.

Comparing values can be useful in a variety of scenarios. For example,
you might want to check that an employee worked 40 or more hours, that a
flight’s status is not canceled, or that the average temperature of a vacation
destination is between 70 and 95 degrees Fahrenheit.

Comparison Operators
You can use MySQL’s comparison operators, shown in Table 7-1, to
compare values in your queries.

Table 7-1: MySQL Comparison Operators

Symbol or keyword(s) Description
= Equal
!=, <> Not equal
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
is null A null value
is not null A non-null value
in Matches a value in a list
not in Doesn’t match a value in a list
between Within a range
not between Not within a range
like Matches a pattern
not like Does not match a pattern

These operators let you compare values in a database to other values. You
can choose to select data if it meets the criteria you define using these
comparison operators. Let’s discuss them in depth, using various databases
as examples.

Equal
The equal operator, introduced in Chapter 5, lets you check that values are
equal to each other to achieve specific results. For example, here you use =
with the wine database table from Chapter 6:

select *
from country
where country_id = 3;

This query selects all countries from the country table that have a
country_id equal to 3.

In the following query, you’re using = with a string, rather than a number:

select *
from wine_type
where wine_type_name = 'Merlot';

This query selects all wines from the wine_type table with the name
Merlot—that is, a wine_type_name equal to Merlot.

The following query is similar to what you saw in Chapter 5 when you
were learning how to join two tables. Here you’re using = to compare
values that come from two tables with a common column name:

select c.country_name
from country c
join region r
 on c.country_id = r.country_id;

This query joins all equal values from the region and country tables’
country_id columns.

In each of these examples, the = syntax checks that the value on the left
of the operator is the same as the value on the right of it. You can also use =
with a subquery that returns one row:

select *
from region
where country_id =
(
 select country_id
 from country
 where country_name = 'USA'
);

Using = in this way, you’re checking for rows in the outer query where
the country_id column in the region table matches the results of an entire
subquery.

NOTE

Regardless of the comparison operator that you use, you should
compare values that have the same data type. For example, you
should avoid comparing an int with a varchar in your queries. In
some cases, MySQL can perform automatic conversions, but this is
not best practice.

Not Equal
Not equal is expressed by the <> or != symbols, where the < symbol is less
than and the > symbol is greater than (so <> means less than or greater
than), and the ! symbol means not (so != means not equal). The != and <>
operators do the same thing, so it doesn’t matter which syntax you use.

The not equal operator is useful for excluding certain data from the
results of your queries. For example, maybe you’re a banjo player looking
for fellow musicians to start a band. Since you play banjo, you can
eliminate it from the list of instruments you want to see:

select *
from musical_instrument
where instrument != 'banjo';

Here you’ve used the not equal operator on the musical_instrument
table to exclude the banjo from the list of instruments returned.

Say you’re planning a wedding and you have a prior commitment on
February 11, 2024, so you need to exclude that date:

select *
from possible_wedding_date
where wedding_date <> '2024-02-11';

Now you’ve excluded 2/11/2024 from a list of potential wedding dates in
your possible_wedding_date table.

Greater Than

The greater than operator checks that the value on the left is greater than the
value on the right. It is expressed using the > symbol. Say you’re looking
for jobs that have a salary greater than $100,000 and a start_date after
1/20/2024. You can select jobs that match these requirements from the job
table using the following query:

select *
from job
where salary > 100000
and start_date > '2024-01-20';

In this query, only the jobs that meet both conditions will be returned.

Greater Than or Equal To
Greater than or equal to is expressed using the >= symbol. For example, you
can edit your previous query to select all jobs where the salary is $100,000
or higher and that have a start_date of 1/20/2024 or later:

select *
from job
where salary >= 100000
and start_date >= '2024-01-20';

The difference between > and >= is that >= includes the value listed in its
results. In the previous examples, a job with a salary of exactly $100,000
will be returned by >= but not by >.

Less Than
Less than is expressed using the < symbol. For example, to view all games
starting before 10 PM, you can perform the following query:

select *
from team_schedule
where game_time < '22:00';

In MySQL, time is expressed in military format, which operates on a 24-
hour clock.

Less Than or Equal To
Less than or equal to is expressed using the <= symbol. You can expand the
previous query to select all rows where the game_time is 10 PM or earlier:

select *
from team_schedule
where game_time <= '22:00';

If the game_time is exactly 22:00 (10 PM), a row will be returned when
you use <= but not when you use <.

is null
As discussed in Chapters 2 and 3, null is a special value indicating that
data is not applicable or not available. The is null syntax allows you to
specify that you want only null values to be returned from a table. For
example, say you want to query the employee table to see a list of
employees who have not retired or set a retirement date:

select *
from employee
where retirement_date is null;

Now only rows with a retirement_date of null are returned:

emp_name retirement_date
-------- ---------------
Nancy null
Chuck null
Mitch null

It’s only possible to check null values with the is null comparison
operator. For example, using = null won’t work:

select *
from employee
where retirement_date = null;

Even though there are null values in the table, this syntax won’t return
any rows. In this scenario, MySQL doesn’t throw an error, so you might not

realize that the wrong data is being returned.

is not null
You can use is not null to check for values that are not null. Try
reversing the logic of the previous example to check for employees who
have retired or set a retirement date:

select *
from employee
where retirement_date is not null;

Now, the query returns rows with a retirement_date that is not null:

emp_name retirement_date
-------- ---------------
Alfred 2034-01-08
Latasha 2029-11-17

As with is null, you have to use the is not null syntax for this type of
query. Using other syntax, like != null or <> null, will not produce the
correct results:

select *
from employee
where retirement_date != null;

As you saw earlier with = null, MySQL won’t return any rows when
you try to use the != null syntax, and won’t alert you with an error.

in
You can use the in keyword to specify a list of multiple values you want
your query to return. For example, let’s revisit the wine database to return
specific wines from the wine_type table:

select *
from wine_type
where wine_type_name in ('Chardonnay', 'Riesling');

This will return rows where the wine_type_name is Chardonnay or
Riesling.

You can also use in with a subquery to select a list of wine types that are
in another table:

select *
from wine_type
where wine_type_name in
 (
 select wine_type_name
 from cheap_wine
);

Instead of providing a hardcoded list of wine types to return in your
results, here you’re selecting all of the wine types from the cheap_wine
table.

not in
To reverse the previous example’s logic and exclude certain wine types, you
can use not in:

select *
from wine_type
where wine_type_name not in ('Chardonnay', 'Riesling');

This returns all rows where the wine_type_name is not Chardonnay or
Riesling.

To select wines that are not from the cheap_wine table, you can use not
in within a subquery as follows:

select *
from wine_type
where wine_type_name not in
 (
 select wine_type_name
 from cheap_wine
);

This query excludes wine types from the cheap_wine table.

between
You can use the between operator to check that a value is within a specified
range. For example, to list the millennials in a customer table, search for
people who were born between 1981 and 1996:

select *
from customer
where birthyear between 1981 and 1996;

The between keyword is inclusive. This means it checks for every
birthyear within the range, including the years 1981 and 1996.

not between
You can check that a value is not within a range by using the not between
operator. Use the same table from the previous example to find customers
who are not millennials:

select *
from customer
where birthyear not between 1981 and 1996;

The not between operator returns the opposite list of customers that
between did, and is exclusive. Customers born in 1981 or 1996 will be
excluded by this query since they are part of the between 1981 and 1996
group.

like
The like operator allows you to check if a string matches some pattern. For
example, you can use like to find books from No Starch Press by checking
if a book’s ISBN contains the No Starch publisher code, 59327.

To specify the pattern to match, you use one of two wildcard characters
with the like operator: percent (%) or underscore (_).

The % Character

The percent wildcard character matches any number of characters. For
example, to return a list of billionaires whose last name starts with the letter
M, you can use the % wildcard character along with like:

select *
from billionaire
where last_name like 'M%';

Your query will find billionaires whose last name starts with an M
followed by zero or more other characters. This means that like 'M%'
would match only the letter M with no characters after it, or M followed by
a few characters, like Musk, or M followed by many characters, like
Melnichenko. The results of your query might look like this:

first_name last_name
---------- ---------
Elon Musk
Jacqueline Mars
John Mars
Andrey Melnichenko

You can use two % characters to find a character located anywhere in the
string, whether at the beginning, in the middle, or at the end. For example,
the following query looks for billionaires whose last names contain the
letter e:

select *
from billionaire
where last_name like '%e%';

The results might look like this:

first_name last_name
---------- ---------
Jeff Bezos
Bill Gates
Mark Zuckerberg
Andrey Melnichenko

While the syntax last_name like '%e%' is handy, it can cause your
query to run slower than normal. That’s because when you use the %

wildcard at the beginning of a search pattern, MySQL can’t take advantage
of any indexes on the last_name column. (Remember, indexes help
MySQL optimize your queries; for a refresher, see the section “Indexes” in
Chapter 2.)

The _ Character
The underscore wildcard character matches any character. For example, say
you need to find a contact and you can’t remember if her name was Jan or
Jen. You might write a query to select names that start with J, followed by
the wildcard character, followed by n.

Here you use the underscore wildcard to return a list of three-letter terms
that end in at:

select *
from three_letter_term
where term like '_at';

The results might look like this:

term

cat
hat
bat

TRY IT YOURSELF
7-1. In the band database, the musician table contains the following data:

musician_name phone musician_type
---------------- ------------ -------------
Diva DeLuca 615-758-7836 Opera Singer
Skeeter Sullivan 629-209-2332 Bluegrass Singer
Tex Macaroni 915-789-1721 Country Singer
Bronzy Bohannon 212-211-1216 Sax Player

Write a query that finds all the singers from Nashville, Tennessee. Nashville has
two area codes, 615 and 629, so you’ll want to find phone numbers that start with
those numbers. You can find singers by finding the text Singer somewhere in the
musician_type column.

not like
The not like operator can be used to find strings that do not match some
pattern. It also uses the % and _ wildcard characters. For example, to reverse
your logic for the like example, enter the following:

select *
from three_letter_term
where term not like '_at';

The results are words in the three_letter_term table that do not end in
at:

term

dog
egg
ape

Similarly, you can find billionaires whose last names do not start with the
letter M using this query:

select *
from billionaire
where last_name not like 'M%';

The results might look like this:

first_name last_name
---------- ---------
Jeff Bezos
Bill Gates
Mark Zuckerberg

exists
The exists operator checks to see if a subquery returns at least one row.
Here you go back to the customer table in the not between example and
use exists to see whether the table has at least one millennial:

select 'There is at least one millennial in this table'
where exists
(
 select *
 from customer
 where birthyear between 1981 and 1996
);

There are millennials in the customer table, so your result is:

There is at least one millennial in this table

If there had been no customers born between 1981 and 1996, your query
wouldn’t have returned any rows, and the text There is at least one
millennial in this table would not have been shown.

You might see the same query written using select 1 instead of select
* in the subquery:

select 'There is at least one millennial in this table'
where exists
(
 select 1
 from customer
 where birthyear between 1981 and 1996
);

In this query, it doesn’t matter if you select * or 1 because you’re looking
for at least one customer that matches your description. All you really care
about is that the inner query returned something.

Checking Booleans
In Chapter 4, you learned that booleans can have one of two values: true or
false. You can use special syntax, is true or is false, to return only
results with one value or the other. In this example, you return a list of
employed bachelors in the bachelor table by using the is true syntax in
the employed_flag column:

select *
from bachelor
where employed_flag is true;

This query causes MySQL to return only rows for bachelors who are
employed.

To check bachelors whose employed_flag value is set to false, use is
false:

select *
from bachelor
where employed_flag is false;

Now MySQL returns only rows for bachelors who are unemployed.
You can check the value of boolean columns in other ways as well. These

lines are all equivalent ways of checking for true values:

employed_flag is true
employed_flag
employed_flag = true
employed_flag != false
employed_flag = 1
employed_flag != 0

The following lines are all equivalent ways to check for false values:

employed_flag is false
not employed_flag
employed_flag = false
employed_flag != true
employed_flag = 0
employed_flag != 1

As you can see here, a value of 1 is equivalent to true and a value of 0 is
equivalent to false.

or Conditions

You can use MySQL’s or keyword to check that at least one of two
conditions has been met.

Consider this table called applicant, which contains information about
job applicants.

name associates_degree_flag bachelors_degree_flag
 years_experience
------------ ---------------------- ---------------------

Joe Smith 0 1
7
Linda Jones 1 0
2
Bill Wang 0 1
1
Sally Gooden 1 0
0
Katy Daly 0 0
0

The associates_degree_flag and bachelors_degree_flag columns are
booleans, where 0 represents false and 1 represents true.

In the following query, you select from the applicant table to get a list
of qualified applicants for a job that requires a bachelor’s degree or two or
more years of experience:

select *
from applicant
where bachelors_degree_flag is true
or years_experience >= 2;

The results are:

name associates_degree_flag bachelors_degree_flag
 years_experience
------------ ---------------------- ---------------------

Joe Smith 0 1
7
Linda Jones 1 0
2

Bill Wang 0 1
1

Say you need to write a query with both the and (both conditions must be
met) and or (either condition must be met) keywords. In this case, you can
use parentheses to group your conditions so that MySQL will return the
correct results.

Let’s see how using parentheses can be beneficial. Here you create
another query with the applicant table for a new job that requires
applicants to have two or more years’ experience and either an associate’s
degree or a bachelor’s degree:

select *
from applicant
where years_experience >= 2
and associates_degree_flag is true
or bachelors_degree_flag is true;

The results of this query are not what you expected:

name associates_degree_flag bachelors_degree_flag
 years_experience
------------ ---------------------- ---------------------

Joe Smith 0 1
7
Linda Jones 1 0
2
Bill Wang 0 1
1

Bill doesn’t have two or more years’ experience, so why did he appear in
your result set?

The query uses both an and and an or. The and has a higher operator
precedence than the or, which means and gets evaluated before or. This
caused your query to find applicants that met at least one of the following
two conditions:
Two or more years’ experience and an associate’s degree
or

A bachelor’s degree
That’s not what you intended when you wrote the query. You can correct

the problem by using parentheses to group your conditions:

select *
from applicant
where years_experience >= 2
and (
 associates_degree_flag is true
or bachelors_degree_flag is true
);

Now the query finds applicants that meet these conditions:
Two or more years’ experience
and
An associate’s degree or a bachelor’s degree

Your results should now be in line with your expectations:

name associates_degree_flag bachelors_degree_flag
 years_experience
------------ ---------------------- ---------------------

Joe Smith 0 1
7
Linda Jones 1 0
2

NOTE

Even in cases where parentheses won’t change the results returned
by your query, using them is a best practice because it makes your
code more readable.

TRY IT YOURSELF
7-2. In the airport database, the boarding table contains the following data:

passenger_name license_flag student_id_flag soc_sec_card_flag
-------------- ------------- -------------- -----------------
Frank Flyer 1 0 0
Rhonda Runway 0 0 1
Sam Suitcase 0 1 1
Pam Prepared 1 1 1

In order to board a flight, a passenger must have a license, along with either a
student ID or a Social Security card. The following query was written to identify
passengers who are allowed to board:

select *
from boarding
where license_flag is true
and student_id_flag is true
or soc_sec_card_flag is true;

But it isn’t returning the correct results:

passenger_name license_flag student_id_flag soc_sec_card_flag
-------------- ------------- -------------- -----------------
Rhonda Runway 0 0 1
Sam Suitcase 0 1 1
Pam Prepared 1 1 1

Only Pam Prepared should be appearing in this list. How would you change the query
to get the correct results?

Summary
In this chapter, you learned various ways to compare values in MySQL
through comparison operators, such as checking whether values are equal,
null, or within a range, or if they match a pattern. You also learned how to
check that at least one condition is met in your queries.

In the next chapter, you’ll take a look at using MySQL’s built-in
functions, including those that deal with mathematics, dates, and strings.
You’ll also learn about aggregate functions and how to use them for groups
of values.

8
CALLING BUILT-IN MYSQL

FUNCTIONS

MySQL has hundreds of prewritten
functions that perform a variety of
tasks. In this chapter, you’ll review
some common functions and learn how
to call them from your queries. You’ll

work with aggregate functions, which return a single
value summary based on many rows of data in the
database, and functions that help perform
mathematical calculations, process strings, deal with
dates, and much more.

In Chapter 11, you’ll learn to create your own functions, but for now
you’ll focus on calling MySQL’s most useful built-in functions. For an up-
to-date list of all the built-in functions, the best source is the MySQL
reference manual. Search online for “MySQL built-in function and operator
reference,” and bookmark the web page in your browser.

What Is a Function?

A function is a set of saved SQL statements that performs some task and
returns a value. For example, the pi() function determines the value of pi
and returns it. Here’s a simple query that calls the pi() function:

select pi();

Most of the queries you’ve seen thus far include a from clause that
specifies which table to use. In this query, you aren’t selecting from any
table, so you can call the function without from. It returns the following
result:

pi()

3.141593

For common tasks such as this, it makes more sense to use MySQL’s
built-in function rather than having to remember the value every time you
need it.

Passing Arguments to a Function
As you just saw, functions return a value. Some functions also let you pass
values to them. When you call the function, you can specify a value that it
should use. The values you pass to a function are called arguments.

To see how arguments work, you’ll call the upper() function, which
allows you to accept one argument: a string value. The function determines
what the uppercase equivalent of that string is and returns it. The following
query calls upper() and specifies an argument of the text rofl:

select upper('rofl');

The result is as follows:

upper('rofl')

ROFL

The function translated each letter to uppercase and returned ROFL.

TRY IT YOURSELF
8-1. You can use the lower() function, which takes one argument, to return the
lowercase version of a string. Call the lower() function with the argument E.E.
Cummings and see what it returns.
8-2. The now() function returns the current date and time. Call now() with no
arguments.

In some functions, you can specify more than one argument. For
example, datediff() allows you to specify two dates as arguments and
then returns the difference in days between them. Here you call datediff()
to find out how many days there are between Christmas and Thanksgiving
in 2024:

select datediff('2024-12-25', '2024-11-28');

The result is:

datediff('2024-12-25', '2024-11-28')
27

When you called the datediff() function, you specified two arguments,
the date of Christmas and the date of Thanksgiving, and separated them by
commas. The function calculated the difference in days and returned that
value (27).

Functions accept different numbers and types of values. For example,
upper() accepts one string value, while datediff() accepts two date
values. As you’ll see in this chapter, other functions accept values that are
an integer, a boolean, or another data type.

Optional Arguments
Some functions accept an optional argument, in which you can supply
another value for a more specific result when you call the function. The
round() function, for example, which rounds decimal numbers, accepts one
argument that must be provided and a second argument that is optional. If

you call round() with the number you want rounded as the only argument,
it will round the number to zero places. Try calling the round() function
with one argument of 2.71828:

select round(2.71828);

The round() function returns your rounded number with zero digits after
the decimal point, which also removes the decimal point itself:

round(2.71828)

 3

If you supply round() with its optional argument, you can specify how
many places after the decimal point you want it to round. Try calling
round() with a first argument of 2.71828 and a second argument of 2,
separating the arguments with a comma:

select round(2.71828, 2);

Now the result is:

round(2.71828)

 2.72

This time, round() returns a rounded number with two digits after the
decimal point.

GETTING HELP

MySQL provides the help statement so you can get help from the MySQL reference
manual. If you type help round, for example, MySQL provides a wealth of information
about the round() function, including the URL of the manual page for it and examples:

> help round
Name: 'ROUND'
Description:
Syntax:
ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm
depends on the data type of X. D defaults to 0 if not specified. D can
be negative to cause D digits left of the decimal point of the value X
to become zero. The maximum absolute value for D is 30; any digits in
excess of 30 (or -30) are truncated.

URL: https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.xhtml

Examples:
mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20
mysql> SELECT ROUND(.12345678901234567890123456789012345, 35);
 -> 0.123456789012345678901234567890

The help statement can also assist with topics other than functions. For example,
you could type help 'data types' to learn about MySQL data types:

> help 'data types'
You asked for help about help category: "Data Types"
For more information, type 'help <item>', where <item> is one of the following
topics:
 AUTO_INCREMENT
 BIGINT
 BINARY
 BIT
 BLOB
 BLOB DATA TYPE
 BOOLEAN
 CHAR
 CHAR BYTE
 DATE
 DATETIME
 --snip--

The help statement is case-insensitive, so getting help on round and ROUND will return
the same information.

Calling Functions Within Functions
You can use the results of one function in a call to another function by
wrapping, or nesting, functions.

Say you want to get the rounded value of pi. You can wrap your call to
the pi() function within a call to the round() function:

select round(pi());

The result is:

round(pi())

 3

The innermost function gets executed first and the results are passed to
the outer function. The call to the pi() function returns 3.141593, and that
value is passed as an argument to the round() function, which returns 3.

NOTE

If you find queries with nested functions hard to read, you can
format your SQL to put the inner functions on their own line and
indent them as follows:

select round(
 pi()
);

You can modify your query and round pi to two digits by specifying a
value in the round() function’s optional second argument, like so:

select round(pi(), 2);

The result is:

round(pi(), 2)

 3.14

This call to the pi() function returns 3.141593, which is passed to
round() as the function’s first argument. The statement evaluates to
round(3.141593,2), which returns 3.14.

Calling Functions from Different Parts of
Your Query
You can call functions in the select list of your query and also in the where
clause. For example, take a look at the movie table, which contains the
following data about movies:

movie_name star_rating release_date
----------------- ----------- ------------
Exciting Thriller 4.72 2024-09-27
Bad Comedy 1.2 2025-01-02
OK Horror 3.1789 2024-10-01

The star_rating column holds the average number of stars that viewers
rated the movie on a scale of 1 to 5. You’ve been asked to write a query to
display movies that have more than 3 stars and a release date in 2024. You
also need to display the movie name in uppercase and round the star rating:

select upper(movie_name),
 round(star_rating)
from movie
where star_rating > 3
and year(release_date) = 2024;

First, you use the upper() and round() functions in the select list of the
query. You wrap the movie name values in the upper() function and wrap
the star rating value in the round() function. You then specify that you’re
pulling data from the movie table.

In the where clause, you call the year() function and specify one
argument: the release_date from the movie table. The year() function
returns the year of the movie’s release, which you compare (=) to 2024 to
display only movies with a release date in 2024.

The results are:

upper(movie_name) round(star_rating)
----------------- ------------------
EXCITING THRILLER 5
OK HORROR 3

Aggregate Functions
An aggregate function is a type of function that returns a single value based
on multiple values in the database. Common aggregate functions include
count(), max(), min(), sum(), and avg(). In this section, you’ll see how to
call these functions with the following continent table:

continent_id continent_name population
------------ -------------- ----------
1 Asia 4641054775
2 Africa 1340598147
3 Europe 747636026
4 North America 592072212
5 South America 430759766
6 Australia 43111704
7 Antarctica 0

count()
The count() function returns the number of rows returned from a query,
and can help answer questions about your data like “How many customers
do you have?” or “How many complaints did you get this year?”

You can use the count() function to determine how many rows are in the
continent table, like so:

select count(*)
from continent;

When you call the count() function, you use an asterisk (or a wildcard)
between the parentheses to count all rows. The asterisk selects all rows
from a table, including all of each row’s column values.

The result is:

count(*)

 7

Use a where clause to select all continents with a population of more than
1 billion:

select count(*)
from continent
where population > 1000000000;

The result is:

count(*)

 2

The query returns 2 because only two continents, Asia and Africa, have
more than 1 billion people.

max()
The max() function returns the maximum value in a set of values, and can
help answer questions like “What was the highest yearly inflation rate?” or
“Which salesperson sold the most cars this month?”

Here you use the max() function to find the maximum population for any
continent in the table:

select max(population)
from continent;

The result is:

max(population)

 4641054775

When you call the max() function, it returns the number of people who
live in the most populated continent. The row in the table with the highest
population for any continent is Asia, with a population of 4,641,054,775.

Aggregate functions like max() can be particularly useful in subqueries.
Step away from the continent table for a moment, and turn your attention
to the train table:

train mile
--------------- ----
The Chief 8000
Flying Scotsman 6500
Golden Arrow 2133

Here you’ll use max() to help determine which train in the train table
has traveled the most miles:

select *
from train
where mile =
(
 select max(mile)
 from train
);

In the inner query, you select the maximum number of miles that any
train in your table has traveled. In the outer query, you display all the
columns for trains that have traveled that number of miles.

The result is:

train_name mile
---------- ----
The Chief 8000

min()

The min() function returns the minimum value in a set of values, and can
help answer questions such as “What is the cheapest price for gas in town?”
or “Which metal has the lowest melting point?”

Let’s return to the continent table. Use the min() function to find the
population of the least populated continent:

select min(population)
from continent;

When you call the min() function, it returns the minimum population
value in the table:

min(population)

 0

The row in the table with the lowest population is Antarctica, with 0.

sum()
The sum() function calculates the sum of a set of numbers, and helps
answer questions like “How many bikes are there in China?” or “What were
your total sales this year?”

Use the sum() function to get the total population of all the continents,
like so:

select sum(population)
from continent;

When you call the sum() function, it returns the sum total of the
population for every continent.

The result is:

max(population)

 7795232630

avg()

The avg() function returns the average value based on a set of numbers,
and can help answer questions including “What is the average amount of
snow in Wisconsin?” or “What is the average salary for a doctor?”

Use the avg() function to find the average population of the continents:

select avg(population)
from continent;

When you call the avg() function, it returns the average population value
of the continents in the table:

avg(population)

1113604661.4286

MySQL arrives at 1,113,604,661.4286 by totaling the population of
every continent (7,795,232,630) and dividing that result by the number of
continents (7).

Now, use the avg() function in a subquery to display all continents that
are less populated than the average continent:

select *
from continent
where population <
(
 select avg(population)
 from continent
);

The inner query selects the average population size for all of continents:
1,113,604,661.4286 people. The outer query selects all columns from the
continent table for continents with populations less than that value.

The result is:

continent_id continent_name population
------------ -------------- ----------
 3 Europe 747636026
 4 North America 592072212
 5 South America 430759766

 6 Australia 43111704
 7 Antarctica 0

TRY IT YOURSELF
In the music database, the genre_stream table contains the following data:

Genre Stream
----------------- -------
R&B, Hip Hop 3102456
Rock 1577569
Pop 1298756
Country 764789
Latin 601758
Dance, Electronic 308745

8-3. Write a query to determine how many rows are in the table.
8-4. Write a query to find the average number of streams for all genres.

group by
A group by clause tells MySQL how you want your results grouped, and
can be used only in queries with aggregate functions. To see how group by
works, take a look at the sale table, which stores a company’s sales:

sale_id customer_name salesperson amount
------- ------------- ----------- ------
1 Bill McKenna Sally 12.34
2 Carlos Souza Sally 28.28
3 Bill McKenna Tom 9.72
4 Bill McKenna Sally 17.54
5 Jane Bird Tom 34.44

You can use the sum() aggregate function to add the sales amounts, but
do you want to calculate one grand total for all sales, sum the amounts by
customer, sum the amounts by salesperson, or calculate the totals that each
salesperson sold to each customer?

To display amounts summed by customer, you group by the
customer_name column, as in Listing 8-1.

select sum(amount)
from sale

group by customer_name;

Listing 8-1: A query to sum amounts by customer

The results are as follows:

sum(amount)

 39.60
 28.28
 34.44

The sum total of the amount spent by customer Bill McKenna is $39.60;
for Carlos Souza, it’s $28.28; and for Jane Bird, it’s $34.44. The results are
ordered alphabetically by the customer’s first name.

Alternatively, you may want to see sum totals of the amounts by
salesperson. Listing 8-2 shows you how to use group by on the
salesperson_name column.

select sum(amount)
from sale
group by salesperson_name;

Listing 8-2: A query to sum amounts by salesperson

Your results are:

sum(amount)

 58.16
 44.16

The total amount sold by Sally is $58.16, and for Tom it’s $44.16.
Because sum() is an aggregate function, it can operate on any number of

rows and will return one value. The group by statement tells MySQL
which rows you want sum() to operate on, so the syntax group by
salesperson_name sums up the amounts for each salesperson.

Now say that you want to see just one row with a sum of every amount in
the table. In this case, you don’t need to use group by, since you aren’t

summing up by any group. Your query should look like the following:

select sum(amount)
from sale;

The result should be:

sum(amount)

 102.32

The group by clause works with all aggregate functions. For example,
you could use group by with count() to return the count of sales for each
salesperson, as in Listing 8-3.

select count(*)
from sale
group by salesperson_name;

Listing 8-3: A query to count rows for each salesperson

The result is:

count(*)

 3
 2

The query counted three rows in the sales table for Sally and two rows
for Tom.

Or you can use avg() to get the average sale amount and group by
salesperson_name to return the average sale amount per salesperson, as
shown in Listing 8-4.

select avg(amount)
from sale
group by salesperson_name;

Listing 8-4: A query to get the average amount sold by each salesperson

The result is:

avg(amount)

 19.386667
 22.080000

The results show that the average amount of each sale for Sally was
$19.386667, and the average amount of each sale for Tom was $22.08.

When looking at these results, however, it’s not immediately clear which
salesperson’s average was $19.386667 and which salesperson’s was $22.08.
To clarify that, let’s modify the query to display more information in the
result set. In Listing 8-5, you select the salesperson’s name as well.

select salesperson_name,
 avg(amount)
from sale
group by salesperson_name;

Listing 8-5: A query to display the salesperson’s name and their average
amount sold

The results of your modified query are:

salesperson_name avg(amount)
---------------- -----------
Sally 19.386667
Tom 22.080000

Your averages appear with the same values, but now the salesperson’s
name appears next to them. Adding this extra information makes your
results much easier to understand.

After you’ve written several queries that use aggregate functions and
group by, you might notice that you usually group by the same columns
that you selected in the query. For example, in Listing 8-5, you selected the
salesperson_name column and also grouped by the salesperson_name
column.

To help you determine which column(s) to group by, look at the select
list, or the part of the query between the words select and from. The select
list contains the items you want to select from the database table; you
almost always want to group by this same list. The only part of the select
list that shouldn’t be part of the group by statement are the aggregate
functions called.

For example, take a look at this theme_park table, which contains data
from six different theme parks, including their country, state, and the city
where they are located:

country state city park
------- ------------ ------------------ ----------------
-
USA Florida Orlando Disney World
USA Florida Orlando Universal Studio
s
USA Florida Orlando SeaWorld
USA Florida Tampa Busch Gardens
Brazil Santa Catarina Balneario Camboriu Unipraias Park
Brazil Santa Catarina Florianopolis Show Water Park

Say you want to select the country, state, and the number of parks for
those countries and states. You might start to write your SQL statement like
this:

select country,
 state,
 count(*)
from theme_park;

This query is incomplete, however, and running it will return an error
message or incorrect results, depending on your configuration settings.

You should group by everything you’ve selected that is not an aggregate
function. In this query, the columns you’ve selected, country and state,
are not aggregate functions, so you will use group by with them:

select country,
 state,
 count(*)
from theme_park

group by country,
 state;

The results are as follows:

country state count(*)
------ -------------- --------
USA Florida 4
Brazil Santa Catarina 2

As you can see, the query now returns the correct results.

TRY IT YOURSELF
8-5. You can find the theme_park table in the vacation database. Write a query to
select the country and the count of parks in each country. Do not display the state or
the city. Which column should you group by in your query?

String Functions
MySQL provides several functions to help you work with character strings
and perform tasks such as comparing, formatting, and combining strings.
Let’s take a look at the most useful string functions.

concat()
The concat() function concatenates, or joins, two or more strings together.
For example, say you have the following phone_book table:

first_name last_name
---------- ----------
Jennifer Perez
Richard Johnson
John Moore

You can write a query to display first and last names together, separated
by a space character:

select concat(first_name, ' ', last_name)
from phone_book;

The results should be as follows:

concat(first_name, ' ', last_name)

Jennifer Perez
Richard Johnson
John Moore

The names appear as one string, separated by a space.

format()
The format() function formats a number by adding commas and showing
the requested number of decimal points. For example, let’s revisit the
continent table and select the population of Asia as follows:

select population
from continent
where continent_name = 'Asia';

The result is:

population

4641054775

It’s difficult to tell whether the population of Asia is about 4.6 billion or
464,000,000. To make the results more readable, you can format the
population column with commas using the format() function like so:

select format(population, 0)
from continent;

The format() function takes two arguments: a number to format and the
number of positions to show after the decimal point. You called format()
with two arguments: the population column and the number 0.

NOTE

The format() function requires two arguments, meaning that you
need to specify 0 as the second argument if you don’t want your
result to show any numbers after the decimal point. This differs from
the round() function, which allows you to leave the second
argument blank. If you were to leave the second argument in
format() blank, you’d get an error.

Now that the population column has been formatted with commas, it’s
clear in the result that Asia has around 4.6 billion people:

population

4,641,054,775

Now call the format() function to format the number 1234567.89 with
five digits after the decimal point:

select format(1234567.89, 5);

The result is:

format(1234567.89, 5)

 1,234,567.89000

The format() function accepts 1234567.89 as the number to be
formatted in the first argument, adds commas, and add trailing zeros so that
the result is displayed with five decimal positions.

left()
The left() function returns some number of characters from the left side
of a value. Consider the following taxpayer table:

last_name soc_sec_no
--------- ------------
Jagger 478-555-7598

McCartney 478-555-1974
Hendrix 478-555-3555

To select last names from the taxpayer table, and also select the first
three characters of the last_name column, you can write the following:

select last_name,
 left(last_name, 3)
from taxpayer;

The result is:

last_name left(last_name, 3)
---------- -----------------
Jagger Jag
McCartney McC
Hendrix Hen

The left() function is helpful in cases when you want to disregard the
characters on the right.

right()
The right() function returns some number of characters from the right side
of a value. Continue using the taxpayer table to select the last four digits of
the taxpayers’ Social Security numbers:

select right(soc_sec_no, 4)
from taxpayer;

The result is:

right(soc_sec_no, 4)

 7598
 1974
 3555

The right() function selects the rightmost characters without the
characters on the left.

lower()
The lower() function returns the lowercase version of a string. Select the
taxpayers’ last names in lowercase:

select lower(last_name)
from taxpayer;

The result is:

lower(last_name)

jagger
mccartney
hendrix

upper()
The upper() function returns the uppercase version of a string. Select the
taxpayers’ last names in uppercase:

select upper(last_name)
from taxpayer;

The result is:

upper(last_name)

JAGGER
MCCARTNEY
HENDRIX

THE POWER OF COMBINING FUNCTIONS

MySQL functions can be most useful when you combine them. Say you work for a tax
agency, and you’re tasked with creating a new taxpayer identifier that will comprise the
first three characters of the taxpayer’s last name in uppercase letters concatenated
with the last four digits of their Social Security number. You can use the concat(),
upper(), left(), and right() functions together to build the new taxpayer ID, like so:

select last_name,
 concat(
 upper(
 left(last_name, 3)
),
 right(soc_sec_no, 4)
) as new_taxpayer_id
from taxpayer;

The result is:

last_name new_taxpayer_id
--------- ---------------
Jagger JAG7598
McCartney MCC1974
Hendrix HEN3555

The result set shows two columns: the last_name column that you selected directly
from the taxpayer table, and the new_taxpayer_id column that you built using parts of
the last_name and soc_sec_no columns and some built-in functions.

To get the new_taxpayer_id values, you used the left() function to get the first three
characters from the last_name column; called the upper() function to convert those
three characters to uppercase; and used the right() function to get the last four digits
from the soc_sec_no column. Then you passed those values into the concat() function
to combine them into one string. Finally, you used the as new_taxpayer_id syntax to
create a column alias of new_taxpayer_id so that the second column appears with that
heading.

substring()
The substring() function returns part of a string and takes three
arguments: a string, the starting character position of the substring you
want, and the ending character position of the substring you want.

You can extract the substring gum from the string gumbo by using this
query:

select substring('gumbo', 1, 3);

The result is:

substring('gumbo', 1, 3)

 gum

In gumbo, g is the first character, u is the second character, and m is the
third. Selecting a substring starting at character 1 and going to character 3
returns those first three characters.

The second argument to the substring() function can accept a negative
number. If you pass a negative number to it, the beginning position of your
substring will be calculated by counting backward from the end of the
string. For example:

select substring('gumbo', -3, 2);

The result is:

substring('gumbo', -3, 2)

 mb

The string gumbo has five characters. You asked substring() to start
your substring at the end of the string minus three character positions,
which is position 3. Your third argument was 2, so your substring will start
at the third character 3 and go for two characters, yielding the mb substring.

The third argument to the substring() function is optional. You can
provide just the first two arguments—a string and the starting character
position—to return the set of characters between the starting position until
the end of the string:

select substring('MySQL', 3);

The result is:

substring('MySQL', 3)

 SQL

The substring() function returned all the characters starting at the third
character of the string MySQL, going all the way to the end of the string,
resulting in SQL.

MySQL provides an alternate syntax for substring() that uses the from
and for keywords. For example, to select the first three characters of the
word gumbo, use the following syntax:

select substring('gumbo' from 1 for 3);

This substring starts at the first character and continues for three
characters. The result is as follows:

substring('gumbo' from 1 for 3)

 gum

This result is the same as the first substring example you saw, but you
might find this syntax easier to read.

NOTE

The substring() function has a synonym called substr(). Calling
substring('MySQL', 3) and substr('MySQL', 3) yields identical
results.

trim()
The trim() function strips any number of leading or trailing characters
from a string. You can specify the characters you want removed, as well as
whether you want the leading characters removed, the trailing characters
removed, or both.

For example, if you have the string **instructions**, you could use
trim() to return the string with the asterisks removed like so:

select trim(leading '*' from '**instructions**') as column1,
 trim(trailing '*' from '**instructions**') as column2,
 trim(both '*' from '**instructions**') as column3,
 trim('*' from '**instructions**') as column4;

In column1, you trim the leading asterisks. In column2, you trim the
trailing asterisks. In column3, you trim both the leading and trailing
asterisks. When you don’t specify leading, trailing, or both, as in
column4, MySQL defaults to trimming both.

The results are as follows:

column1 column2 column3 column4
-------------- -------------- ------------ ------------
instructions** **instructions instructions instructions

By default, trim() removes space characters. This means that if you
have space characters around a string, you can use trim() without having
to specify the character you want to strip:

select trim(' asteroid ');

The result is the string asteroid with no spaces on either side:

trim(' asteroid ')

asteroid

The trim() function removes spaces from both sides of a string by
default.

ltrim()
The ltrim() function removes leading spaces from the left side of a string:

select ltrim(' asteroid ');

The result is the string asteroid with no spaces on the left side of it:

ltrim(' asteroid ')

asteroid

The spaces to the right are unaffected.

rtrim()
The rtrim() function removes trailing spaces from the right side of a
string:

select rtrim(' asteroid ');

The result is the string asteroid with no spaces on the right side of it:

rtrim(' asteroid ')

 asteroid

The spaces to the left are unaffected.

TRY IT YOURSELF
8-6. A zip code (such as 24701 or 79936) is used for US postal delivery. Each
character in a zip code has meaning. The first character is the national area. The
second and third characters represent the sectional center. The fourth and fifth
characters are for the associate post office.

The mail database contains an address table that has a zip_code column. The
table contains character strings for the following zip codes: 94103, 37188, and 96718.

Write a query that selects the zip code and uses the substring() function to select
the other parts of the zip code from the zip_code column. The query should produce
the following output:

zip_code national_area sectional_center associate_post_office
-------- ------------- ---------------- ---------------------
94103 9 41 03
37188 3 71 88
96718 9 67 18

Date and Time Functions

MySQL provides date-related functions that help you perform tasks like
getting the current date and time, selecting a part of the date, and
calculating how many days there are between two dates.

As you saw in Chapter 4, MySQL provides the date, time, and datetime
data types, where date contains a month, day, and year; time contains
hours, minutes, and seconds; and datetime has all of those parts because it
comprises both a date and a time. These are the formats MySQL uses to
return many of the results of the functions you’ll see here.

curdate()
The curdate() function returns the current date in the date format:

select curdate();

Your result should look similar to the following:

curdate()

2024-12-14

Both current_date() and current_date are synonyms for curdate()
and will produce identical results.

curtime()
The curtime() function returns the current time in the time format:

select curtime();

Your result should look similar to the following:

curtime()

09:02:41

For me, the current time is 9:02 AM and 41 seconds. Both
current_time() and current_time are synonyms for curtime() and will
produce identical results.

now()
The now() function returns the current date and time in a datetime format:

select now();

Your results should look similar to the following:

now()

2024-12-14 09:02:18

Both current_timestamp() and current_timestamp are synonyms for
now() and will produce identical results.

date_add()
The date_add() function adds some amount of time to a date value. To add
(or subtract) from date values, you use an interval, a value that you can use
to perform calculations on dates and times. With an interval, you can supply
a number and a unit of time, like 5 day, 4 hour, or 2 week. Consider the
following table called event:

event_id eclipse_datetime
-------- -------------------
 374 2024-10-25 11:01:20

To select the eclipse_datetime date from the event table and add 5
days, 4 hours, and 2 weeks to the date, you use date_add() with interval
as follows:

select eclipse_datetime,
 date_add(eclipse_datetime, interval 5 day) as add_5_
days,
 date_add(eclipse_datetime, interval 4 hour) as add_4_
hours,
 date_add(eclipse_datetime, interval 2 week) as add_2_
weeks
from event
where event_id = 374;

NOTE

The units of time are singular. For example, you use minute, not
minutes. Other units of time commonly used with intervals include
second, month, and year.

Your results should look similar to this:

eclipse_datetime add_5_days add_4_hours
add_2_weeks
------------------- ------------------- -------------------

2024-10-25 11:01:20 2024-10-30 11:01:20 2024-10-25 15:01:20
2024-11-08 11:01:20

The results show that the intervals of 5 days, 4 hours, and 2 weeks were
added to the eclipse date and time and have been listed in the columns you
specified.

date_sub()
The date_sub() function subtracts a time interval from a date value. For
example, here you subtract the same time intervals in the previous example
from the eclipse_datetime column of the event table:

select eclipse_datetime,
 date_sub(eclipse_datetime, interval 5 day) as sub_5_
days,
 date_sub(eclipse_datetime, interval 4 hour) as sub_4_
hours,
 date_sub(eclipse_datetime, interval 2 week) as sub_2_
weeks
from event
where event_id = 374;

The results are:

eclipse_datetime sub_5_days sub_4_hours
sub_2_weeks
------------------- ------------------- -------------------

2024-10-25 11:01:20 2024-10-20 11:01:20 2024-10-25 07:01:20
2024-10-11 11:01:20

The results show that the intervals of 5 days, 4 hours, and 2 weeks were
subtracted from the eclipse date and time and have been listed in the
columns you specified.

extract()
The extract() function pulls out specified parts of a date or a datetime
value. It uses the same units of time as date_add() and date_sub(), like
day, hour, and week.

In this example, you select some parts of your eclipse_datetime
column:

select eclipse_datetime,
 extract(year from eclipse_datetime) as year,
 extract(month from eclipse_datetime) as month,
 extract(day from eclipse_datetime) as day,
 extract(week from eclipse_datetime) as week,
 extract(second from eclipse_datetime) as second
from event
where event_id = 374;

The extract() function takes the eclipse_datetime value from the
event table and displays the individual parts requested by the column
names you specify. The results are as follows:

eclipse_datetime year month day week second
------------------- ---- ----- --- ---- ------
2024-10-25 11:01:20 2024 10 25 43 20

MySQL provides other functions you can use for the same purpose as
extract(), including year(), month(), day(), week(), hour(), minute(),
and second(). This query achieves the same result as the preceding one:

select eclipse_datetime,
 year(eclipse_datetime) as year,
 month(eclipse_datetime) as month,
 day(eclipse_datetime) as day,
 week(eclipse_datetime) as week,

 second(eclipse_datetime) as second
from event
where event_id = 374;

You can also use the date() and time() functions to select just the date
or time portion of a datetime value:

select eclipse_datetime,
 date(eclipse_datetime) as date,
 time(eclipse_datetime) as time
from event
where event_id = 374;

The results are:

eclipse_datetime date time
------------------- ---------- --------
2024-10-25 11:01:20 2024-10-25 11:01:20

As you can see, the date() and time() functions provide a quick way to
extract just the date or the time from a datetime value.

datediff()
The datediff() function returns the number of days between two dates.
Say you want to check how many days there are between New Year’s Day
and Cinco de Mayo in 2024:

select datediff('2024-05-05', '2024-01-01');

The result is 125 days:

datediff('2024-05-05', '2024-01-01')

 125

If the date argument on the left is more recent than the date argument on
the right, datediff() will return a positive number. If the date on the right
is more recent, datediff() will return a negative number. If the two dates
are the same, 0 will be returned.

date_format()
The date_format() function formats a date according to a format string
that you specify. The format string is made up of characters that you add
and specifiers that start with a percent sign. The most common specifiers
are listed in Table 8-1.

Table 8-1: Common Specifiers

Specifier Description
%a Abbreviated weekday name (Sun–Sat)
%b Abbreviated month name (Jan–Dec)
%c Month, numeric (1–12)
%D Day of the month with suffix (1st, 2nd, 3rd, . . .)
%d Day of the month, two digits with a leading zero where applicable (01–31)
%e Day of the month (1–31)
%H Hour with leading zero where applicable (00–23)
%h Hour (01–12)
%i Minutes (00–59)
%k Hour (0–23)
%l Hour (1–12)
%M Month name (January–December)
%m Month (00–12)
%p AM or PM
%r Time, 12-hour (hh:mm:ss followed by AM or PM)
%s Seconds (00–59)
%T Time, 24-hour (hh:mm:ss)
%W Weekday name (Sunday–Saturday)
%w Day of the week (0 = Sunday – 6 = Saturday)
%Y Year, four digits
%y Year, two digits

The datetime 2024-02-02 01:02:03 represents February 2, 2024, at 1:02
AM and 3 seconds. Try experimenting with some different formats for that
datetime:

select date_format('2024-02-02 01:02:03', '%r') as format1,
 date_format('2024-02-02 01:02:03', '%m') as format2,
 date_format('2024-02-02 01:02:03', '%M') as format3,
 date_format('2024-02-02 01:02:03', '%Y') as format4,
 date_format('2024-02-02 01:02:03', '%y') as format5,
 date_format('2024-02-02 01:02:03', '%W, %M %D at %T')
as format6;

The result is:

format1 format2 format3 format4 format5 format6
----------- ------- -------- ------- ------- -----------

01:02:03 AM 02 February 2024 24 Friday, Feb
ruary 2nd at 01:02:03

The column you aliased as format6 shows how the format specifiers can
be combined. In that format string, you added a comma and the word at in
addition to four specifiers for the date and time.

str_to_date()
The str_to_date() function converts a string value to a date based on the
format you provide. You use the same specifiers that you used for
date_format(), but the two functions take opposite actions:
date_format() converts a date to a string, while str_to_date() converts a
string to a date.

Depending upon the format you provide, str_to_date() can convert a
string to a date, a time, or a datetime:

select str_to_date('2024-02-02 01:02:03', '%Y-%m-%d')
as date_format,
 str_to_date('2024-02-02 01:02:03', '%Y-%m-%d %H:%i:%
s') as datetime_format,
 str_to_date('01:02:03', '%H:%i:%s')
as time_format;

The result is:

date_format datetime_format time_format
----------- ------------------- -----------

2024-02-02 2024-02-02 01:02:03 01:02:03

The last column, time_format, can also be converted with the function of
the same name. We’ll look at it next.

time_format()
As its name implies, the time_format() function formats time. You can use
the same specifiers as date_format() for time_format(). For example,
here’s how to get the current time and format it in some different ways:

select time_format(curtime(), '%H:%i:%s')
as format1,
 time_format(curtime(), '%h:%i %p')
as format2,
 time_format(curtime(), '%l:%i %p')
as format3,
 time_format(curtime(), '%H hours, %i minutes and %s s
econds') as format4,
 time_format(curtime(), '%r')
as format5,
 time_format(curtime(), '%T')
as format6;

Expressed in military time, the current time for me is 21:09:55, which is
9:09 PM and 55 seconds. Your results should look similar to the following:

format1 format2 format3 format4
format5 format6
-------- -------- ------- --------------------------------
--- ----------- --------
21:09:55 09:09 PM 9:09 PM 21 hours, 09 minutes and 55 seco
nds 09:09:55 PM 21:09:55

The column you aliased as format2 shows the hour with a leading 0
because you used the %H specifier, but the format3 column does not because
you used the %h specifier. In columns 1–3, you added colon characters to the
format string. In format4 you added the word hours, a comma, the word
minutes, the word and, and the word seconds.

TRY IT YOURSELF
8-7. The Summer Olympics are scheduled to be held in Brisbane on July 23, 2032.
Write a query to calculate how many days that is from today’s date.

Mathematical Operators and Functions
MySQL provides many functions to perform calculations. There are also
arithmetic operators available, like + for addition, - for subtraction, * for
multiplication, / and div for division, and % and mod for modulo. You’ll
start reviewing some queries that use these operators, and then you’ll use
parentheses to control the order of operations. Afterward, you’ll use
mathematical functions to perform various tasks, including raising a
number to a power, calculating standard deviation, and rounding and
truncating numbers.

Mathematical Operators
You’ll start by performing some mathematical calculations using the data
from the payroll table:

employee salary deduction bonus tax_rate
-------- --------- --------- -------- --------
Max Bain 80000.00 5000.00 10000.00 0.24
Lola Joy 60000.00 0.00 800.00 0.18
Zoe Ball 110000.00 2000.00 30000.00 0.35

Try out some of the arithmetic operators as follows:

select employee,
 salary - deduction,
 salary + bonus,
 salary * tax_rate,
 salary / 12,
 salary div 12
from payroll;

In this example, you use mathematical operators to get the employee’s
salary minus their deductions, add their bonus to their salary, multiply their
salary by their tax rate, and see their monthly salary by dividing their
annual salary by 12, respectively.

The result is as follows:

employee salary - deduction salary + bonus salary * tax_ra
te salary / 12 salary div 12
-------- ------------------ -------------- ----------------
-- ----------- -------------
Max Bain 75000.00 90000.00 9199.9995708465
58 6666.666667 6666
Lola Joy 60000.00 60800.00 10800.0004291534
42 5000.000000 5000
Zoe Ball 108000.00 140000.00 38499.999344348
91 9166.666667 9166

Notice that in the two columns on the right, salary / 12 and salary
div 12, you received different results when using the / and the div
operators. This is because div discards any fractional amount and / does
not.

Modulo
MySQL provides two operators for modulo: the percent sign (%) and the mod
operator. Modulo takes one number, divides it by another, and returns the
remainder. Consider a table called roulette_winning_number:

winning_number

 21
 8
 13

You can use modulo to determine if a number is odd or even by dividing
it by 2 and checking the remainder, like so:

select winning_number,
 winning_number % 2
from roulette_winning_number;

Anything with a remainder of 1 is an odd number. The results are as
follows:

winning_number winning_number % 2
-------------- ------------------
 21 1
 8 0
 13 1

The results show 1 for odd numbers and 0 for even numbers. In the first
row, 21 % 2 evaluates to 1 because 21 divided by 2 is 10 with a remainder
of 1.

NOTE

The terms modulo and modulus are often confused. Modulo is the
name of a function that finds the remainder of one number being
divided by another. Modulus is the number you are dividing by. For
example, in the expression 21 % 2, 2 is the modulus and % is the
modulo operator.

Using mod or % produces the same results. Modulo is also available as the
mod() function. All of these queries return the same results:

select winning_number % 2 from roulette_winning_number;
select winning_number mod 2 from roulette_winning_number;
select mod(winning_number, 2) from roulette_winning_number;

Operator Precedence
When there is more than one arithmetic operator used in a mathematical
expression, *, /, div, %, and mod are evaluated first; + and - are evaluated
last. This is called operator precedence. The following query (which uses
the payroll table) was written to calculate the taxes employees will pay
based on their salary, bonus, and tax rate, but the query is returning the
wrong tax amount:

select employee,
 salary,
 bonus,
 tax_rate,
 salary + bonus * tax_rate
from payroll;

The results are:

employee salary bonus tax_rate salary + bonus * tax
_rate
-------- --------- -------- -------- --------------------

Max Bain 80000.00 10000.00 0.24 8240
0.0000
Lola Joy 60000.00 800.00 0.18 6014
4.0000
Zoe Ball 110000.00 30000.00 0.35 12050
0.0000

The column on the right should represent the amount of taxes the
employees have to pay, but it seems to be too high. If Max Bain’s salary is
$80,000 and his bonus is $10,000, it doesn’t seem reasonable that he would
be required to pay $82,400 in taxes.

The query is returning the wrong value because you expected MySQL to
add salary and bonus first, and then multiply the result by the tax_rate.
Instead, MySQL multiplied bonus by tax_rate first and then added the
salary. The multiplication happened first because multiplication has a
higher operator precedence than addition.

To correct the problem, use parentheses to tell MySQL to consider
salary + bonus as a group:

select employee,
 salary,
 bonus,
 tax_rate,
 (salary + bonus) * tax_rate
from payroll;

The results are:

employee salary bonus tax_rate salary + bonus * tax
_rate
-------- --------- -------- -------- --------------------

Max Bain 80000.00 10000.00 0.24 2160
0.0000
Lola Joy 60000.00 800.00 0.18 1094
4.0000
Zoe Ball 110000.00 30000.00 0.35 4900
0.0000

Now the query returns $21,600 for Max Bain, which is the correct value.
You should use parentheses frequently when performing calculations—not
only because it gives you control over the order of operations, but also
because it makes your SQL easier to read and understand.

Mathematical Functions
MySQL provides many mathematical functions that can help with tasks like
rounding numbers, getting the absolute value of a number, and dealing with
exponents, as well as finding cosines, logarithms, and radians.

abs()
The abs() function gets the absolute value of a number. The absolute value
of a number is always positive. For example, the absolute value of 5 is 5,
and the absolute value of –5 is 5.

Say you had a contest to guess the number of jelly beans in a jar. Write a
query to see whose guess was closest to the actual number, 300:

select guesser,
 guess,
 300 as actual,
 300 – guess as difference
from jelly_bean;

Here you’ve selected the guesser’s name and their guess from the
jelly_bean table. You select 300 and alias the column as actual so it will
appear in your results with that heading. Then you subtract the guess from
300 and alias that column as difference. The results are:

guesser guess actual difference
------- ----- ------ ----------
Ruth 275 300 25
Henry 350 300 -50
Ike 305 300 -5

The difference column shows how far off the guesses were from the
actual value of 300, but the results are a bit hard to interpret. When the
guess was higher than the actual amount of 300, your difference column
appears as a negative number. When the guess was lower than the actual
amount, your difference column appears as a positive number. For your
contest, you don’t care whether the guess was higher or lower than 300, you
only care about which guess was closest to 300.

You can use the abs() function to remove the negative numbers from the
difference column:

select guesser,
 guess,
 300 as actual,
 abs(300 – guess) as difference
from jelly_bean;

The results are:

guesser guess actual difference
------- ----- ------ ----------
Ruth 275 300 25
Henry 350 300 50
Ike 305 300 5

Now you can easily see that Ike won your contest because his value in
the difference column is the smallest.

ceiling()
The ceiling() function returns the smallest whole number that is greater
than or equal to the argument. If you pay $3.29 for gas, and you want to
round that number up to the next whole dollar amount, you’d write the
following query:

select ceiling(3.29);

The result is:

ceiling(3.29)

 4

The ceiling() function has a synonym, ceil(), that produces identical
results.

floor()
The floor() function returns the largest whole number that is less than or
equal to the argument. To round $3.29 down to the next lowest whole dollar
amount, you’d write the following query:

select floor(3.29);

The result is:

floor(3.29)

 3

If the argument is already a whole number, then that number will be
returned in both the ceiling() and floor() functions. For example,
ceiling(33) and floor(33) both return 33.

pi()
The pi() function returns the value of pi, as seen at the beginning of this
chapter.

degrees()
The degrees() function converts radians to degrees. You can convert pi to
degrees using this query:

select degrees(pi());

The result is:

degrees(pi())

 180

You got your answer by wrapping the pi() function in the degrees()
function.

radians()
The radians() function converts degrees to radians. You can convert 180
to radians using this query:

select radians(180);

Your results are:

radians(180)

3.141592653589793

The function was sent an argument of 180 and returned a value of pi.

exp()
The exp() function returns the natural logarithm base number e raised to
the power of the number you provide as an argument (2, in this example):

select exp(2);

The result is:

7.38905609893065

The function returned 7.38905609893065, which is e (2.718281828459)
squared.

log()

The log() function returns the natural logarithm of the number you provide
as an argument:

select log(2);

The result is:

0.6931471805599453

MySQL also provides the log10() function, which returns the base-10
logarithm, and log2(), which returns the base-2 logarithm.

The log() function can accept two arguments: the base of a number, then
the number itself. For example, to find the log2(8), enter the following:

select log(2, 8);

The result is:

log(2, 8)

 3

The function was sent two arguments, 2 and 8, and returned a value of 3.

mod()
The mod() function, as you saw earlier, is the modulo function. It takes one
number, divides it by another, and returns the remainder.

select mod(7, 2);

The result is:

mod(7, 2)

 1

The mod(7,2) function evaluates to 1 because 7 divided by 2 is 3 with a
remainder of 1. Modulo is also available as the % operator and the mod

operator.

pow()
The pow() function returns a number raised to a power. To raise 5 to the
power of 3, you could write this query:

select pow(5, 3);

The result is:

pow(5, 3)

 125

The pow() function has a synonym, power(), that returns identical
results.

round()
The round() function, introduced earlier in the chapter, rounds decimal
numbers. To round the number 9.87654321 to three digits after the decimal
point, use the following query:

select round(9.87654321, 3);

The result is:

round(9.87654321, 3)

 9.877

To round all of the fractional numbers, call round() with just one
argument:

select round(9.87654321);

The result is:

round(9.87654321)

 10

Calling round() without the optional second argument causes it to
default to 0 digits after the decimal point.

truncate()
The truncate() function shortens a number to specified number of decimal
places. To truncate the number 9.87654321 to three digits after the decimal
point, use the following query:

select truncate(9.87654321, 3);

The result is:

truncate(9.87654321, 3)

 9.876

To truncate all of the fractional numbers, call truncate() with 0 as the
second argument:

select truncate(9.87654321, 0);

The result is:

truncate(9.87654321, 0)

 9

The truncate() function removes digits to convert the number to the
requested number of digits after the decimal point. This differs from
round(), which rounds numbers up or down before removing digits.

sin()
The sin() function returns the sine of a number given in radians. You can
use this query to get the sine of 2:

select sin(2);

The result is:

sin(2)

0.9092974268256817

The function was sent an argument of 2 and returned a value of
0.9092974268256817.

cos()
The cos() function returns the cosine of a number that is given in radians.
Use the following query to get the cosine of 2:

select cos(2);

The result is:

cos(2)

-0.4161468365471424

The function was sent an argument of 2 and returned a value of
-0.4161468365471424.

sqrt()
The sqrt() function returns the square root of a number. You can get the
square root of 16 like so:

sqrt(16)

 4

The function was sent an argument of 16 and returned a value of 4.

stddev_pop()

The stddev_pop() function returns the population standard deviation of the
numbers provided. Population standard deviation is the standard deviation
when all values of a dataset are taken into consideration. For example, look
at the test_score table, which contains all of your test scores:

score

 70
 82
 97

Now write a query to get the population standard deviation of test scores:

select stddev_pop(score)
from test_score;

The result is:

stddev_pop(score)

11.045361017187261

The std() and stddev() functions are synonyms for stddev_pop() and
will produce identical results.

To get the standard deviation of a sample of values, rather than the entire
population of a dataset, you can use stddev_samp() function.

tan()
The tan() function accepts an argument in radians and returns the tangent.
For example, you can get the tangent of 3.8 with the following query:

select tan(3.8);

The result is:

0.7735560905031258

The function was sent an argument of 3.8 and returned a value of
0.7735560905031258.

TRY IT YOURSELF
8-8. The moon is 252,088 miles from Earth. Write a query to calculate how many
kilometers the moon is from Earth. Round the number to the nearest kilometer. To
convert miles to kilometers, multiply the miles by 1.60934.

Other Handy Functions
Other useful functions include cast(), coalesce(), distinct(),
database(), if(), and version().

cast()
The cast() function converts a value from one data type to a different data
type. To call the cast() function, pass a value into cast() as the first
argument, follow it with the as keyword, and then specify the data type you
want to convert it to.

For example, select the datetime column order_datetime from the table
called online_order:

select order_datetime
from online_order;

Your results show the following datetime values:

order_datetime

2024-12-08 11:39:09
2024-12-10 10:11:14

You can select those values without their time portion by casting from a
datetime data type to a date data type, like so:

select cast(order_datetime as date)
from online_order;

Your results are:

cast(order_datetime as date)

 2024-12-08
 2024-12-10

The date part of the datetime now appears as a date value.

coalesce()
The coalesce() function returns the first non-null value in a list. You could
specify null values followed by a non-null value, and coalesce() would
return the non-null value:

select coalesce(null, null, 42);

The result is:

coalesce(null, null, 42)

 42

The coalesce() function is also useful when you want to display a value
in your result instead of null. For example, in the candidate table used in
the following query, the employer column will sometimes store the
candidate’s employer name, and other times that column will be null. In
order to display the text Between Jobs instead of null, you’d enter the
following:

select employee_name,
 coalesce(employer, 'Between Jobs')
from candidate;

The results are:

employee_name employer
------------- ------------
Jim Miller Acme Corp

Laura Garcia Globex
Jacob Davis Between Jobs

The query now displays Between Jobs rather than null for Jacob Davis,
which is more informative, especially for nontechnical users who may not
understand what null means.

distinct()
When you have duplicate values, you can use the distinct() function to
display each value only once. For example, if you want to know which
countries your customers are from, you could query the customer table like
so:

select country
from customer;

The result is:

country

India
USA
USA
USA
India
Peru

The query is returning the country column value for every row in the
customer table. You can use the distinct() function to see each country in
your result set just once:

select distinct(country)
from customer;

Now the result is:

country

India

USA
Peru

The distinct() function is also available as an operator. To use it,
remove the parentheses like so:

select distinct country
from customer;

The result set is identical:

country

India
USA
Peru

The distinct() function is especially useful when combined with the
count() function to find how many unique values you have. Here you write
a query to count the number of distinct countries in your table:

select count(distinct country)
from customer;

The result is:

count(distinct country)

 3

You identified the distinct countries using the distinct() function and
wrapped them in the count() function to get a count of them.

database()
The database() function tells you which database you’re currently using.
As you saw in Chapter 2, the use command lets you select which database
you want to use. Throughout your day, you might move between different
databases and forget your current database. You can call the database()
function like so:

use airport;

select database();

The result is:

database()

 airport

If you’re not in the database you thought you were and you tried to query
a table, MySQL would give an error saying the table doesn’t exist. Calling
database() is a quick way to check.

if()
The if() function returns a different value depending upon whether a
condition is true or false. The if() function accepts three arguments: the
condition you want to test, the value to return if the condition is true, and
the value to return if the condition is false.

Let’s write a query that lists students and whether they passed or failed an
exam. The test_result table contains the following data:

student_name grade
------------ -----
Lisa 98
Bart 41
Nelson 11

Your query to check if each student passed the exam should look similar
to the following:

select student_name,
 if(grade > 59, 'pass', 'fail')
from test_result;

The condition you’re testing is whether the student’s grade is greater
than 59. If so, you return the text pass. If not, you return the text fail. The
results are:

student_name if(grade > 59, 'pass', 'fail')
------------ ------------------------------
Lisa pass
Bart fail
Nelson fail

NOTE

There is also an if statement that is described in Chapter 11 that
you’ll use when you create your own functions and procedures. This
statement is different from the if() function described here.

MySQL also has a case operator that lets you perform more
sophisticated logic than the if() function. The case operator lets you test
more than one condition and returns the result for the first condition that is
met. In the following query, you select the student name and add a comment
to the student based on their grade:

select student_name,
case
 when grade < 30 then 'Please retake this exam'
 when grade < 60 then 'Better luck next time'
 else 'Good job'
end
from test_result;

The case operator uses a matching end keyword that marks the end of
the case statement.

For any students who received a grade less than 30, the case statement
returns Please retake this exam and then control is passed to the end
statement.

Students who received a grade of 30 or more aren’t handled by the first
when condition of the case statement, so control drops to the next line.

If a student received a grade of 30 or higher but less than 60, Better
luck next time is returned and control passes to the end statement.

If a student’s grade didn’t match either of the when conditions, meaning
the student scored higher than 60, control drops to the else keyword, where
Good job is returned. You use an else clause to capture any student grades
that aren’t handled by the first two conditions. The results are:

student_name case when grade < 30 then 'Please...
------------ ------------------------------------
Lisa Good job
Bart Better luck next time
Nelson Please retake this exam

Unlike the if() function—which returns a result if a condition is true or
false—case lets you check several conditions and returns a result based on
the first condition that is met.

version()
The version() function returns the version of MySQL you are using:

select version();

The result is:

version

8.0.27

The version of MySQL installed on my server is 8.0.27. Yours may be
different.

TRY IT YOURSELF
8-9. In the electricity database, the electrician table contains the following data:

electrician years_experience
-------------- ----------------
Zach Zap 1
Wanda Wiring 6
Larry Light 21

In this company, an electrician with less than 5 years’ experience gets the
Journeyman title; an electrician with between 5 and 10 years’ experience has the
Apprentice title; and the Master Electrician title is given to those with 10 years’
experience or more.

The following query was written to display each electrician’s name and title, but it is
returning the wrong results:

select name,
case
 when years_experience < 10 then 'Apprentice'
 when years_experience < 5 then 'Journeyman'
 else 'Master Electrician'
end
from electrician;

The results are:

name case when years_e...
-------------- ------------------
Zach Zap Apprentice
Wanda Wiring Apprentice
Larry Light Master Electrician

Zach Zap should be appearing as a Journeyman, not an Apprentice. What is wrong
with the query? Modify the query to return the correct names and titles.

Summary
In this chapter, you looked at how to call MySQL built-in functions and
pass values, known as arguments, to those functions. You explored the most
useful functions and saw how to locate the more obscure ones when
necessary. In the next chapter, you’ll look at how to insert, update, and
delete data from a MySQL database.

9
INSERTING, UPDATING, AND

DELETING DATA

In this chapter, you’ll learn to insert,
update, and delete data from tables.
You’ll practice ways to insert data from
one table to another, use queries to
update or delete data from a table, and

create a table that automatically increments a
numeric value into a column as you insert rows.

Inserting Data
So far, you’ve been querying data from tables. But how did the data get into
the tables in the first place? Typically, you insert data using the insert
statement.

Adding rows to a table with the insert statement is known as populating
a table. You specify the name of the table, the names of the columns you
want to insert values into, and the values you want to insert.

Here you insert a row of data into the arena table, which contains
information about various arena names, locations, and capacities:

❶ insert into arena
 (

 ❷ arena_id,
 arena_name,
 location,
 seating_capacity
)

❸ values
 (
 1,

 ❹ 'Madison Square Garden',
 'New York',
 20000
);

First, you specify that you want to insert a row into the arena table ❶,
and that your data will go into the arena_id, arena_name, location, and
seating_capacity columns ❷. You then list the values you want to insert
under the values keyword in the same order in which you listed the
columns ❸. You surround, or wrap, the values Madison Square Garden and
New York in quotes because they are character strings ❹.

When you run this insert statement, MySQL returns the message 1
row(s) affected to let you know that one row was inserted into the table.

You can then query your arena table to confirm the new row looks as
you intended:

select * from arena;

The result is:

arena_id arena_name location seating_capacity
-------- --------------------- -------- ----------------
 1 Madison Square Garden New York 20000

The row was inserted, and the columns and their values appear as you
expected.

Inserting Null Values

When you want to insert a null value into a column, you have two options.
First, you can list the column name and use the null keyword as the value
to insert. For example, if you want to add a row to the arena table for the
Dean Smith Center but don’t know its seating capacity, you can write an
insert statement like this:

insert into arena
 (
 arena_id,
 arena_name,
 location,
 seating_capacity
)
values
 (
 2,
 'Dean Smith Center',
 'North Carolina',
 null
);

The second option is to omit the column name entirely. As an alternative
to the preceding insert statement, you can omit the seating_capacity
column from your list of columns and provide no value for it in your list of
values:

insert into arena
 (
 arena_id,
 arena_name,
 location
)
values
 (
 2,
 'Dean Smith Center',
 'North Carolina'
);

Since you didn’t insert a value into the seating_capacity column,
MySQL will set it to null by default. You can see the row that was inserted
using this query:

select *
from arena
where arena_id = 2;

The result is:

arena_id arena_name location seating_capacity
-------- ----------------- -------- ----------------
 2 Dean Smith Center North Carolina null

The seating_capacity column will be set to null regardless of which
approach you take.

If the seating_capacity column had been defined as not null when
you created the table, you wouldn’t be allowed to insert a null value using
either approach (see Chapter 2).

TRY IT YOURSELF
9-1. Create a database called food. In the database, create a table called
favorite_meal that has two columns. The meal column should be defined as
varchar(50), and the price column should be defined as numeric(5,2). Then insert
the following data into the table:

meal price
------------ -------
Pizza 7.22
Cheeseburger 8.41
Salad 9.57

Run the query select * from favorite_meal; to see your new rows in the table.

9-2. Create a database called education. In the database, create a table called
college that has three columns. The college_name column should be defined as
varchar(100), the location column should be defined as varchar(50), and the
undergrad_enrollment column should be defined as an int. Insert the following data
into the table:

college_name location undergrad_enrollment
------------------------------------- -------- --------------------
Princeton University New Jersey 4773
Massachusetts Institute of Technology Massachusetts 4361
Oxford University Oxford 11955

Run the query select * from college; to see your new rows in the table.

Inserting Multiple Rows at Once
When you want to insert multiple rows, you can either insert one row at a
time or insert them as a group. Let’s start with the first approach. Here’s
how you insert three arenas into the arena table using individual insert
statements:

insert into arena (arena_id, arena_name, location, seating_ca
pacity)
values (3, 'Philippine Arena', 'Bocaue', 55000);

insert into arena (arena_id, arena_name, location, seating_ca
pacity)
values (4, 'Sportpaleis', 'Antwerp', 23359);

insert into arena (arena_id, arena_name, location, seating_ca
pacity)
values (5, 'Bell Centre', 'Montreal', 22114);

You could achieve the same results by combining all three rows into one
insert statement:

insert into arena (arena_id, arena_name, location, seating_ca
pacity)
values (3, 'Philippine Arena', 'Bocaue', 55000),
 (4, 'Sportpaleis', 'Antwerp', 23359),
 (5, 'Bell Centre', 'Montreal', 22114);

To insert multiple rows at once, surround each row’s values with
parentheses and use a comma between each set of values. MySQL will
insert all three rows into the table and give you the message 3 row(s)
affected to let you know that all three rows were inserted.

NOTE

The format of these SQL statements is a little different from the
previous examples you have seen. The list of column names
(arena_id, arena_name, location, and seating_capacity) is all
on one line. You might prefer to put your column names on one line
like this to save space, or you might find it more readable to list
each column on its own line, as in the earlier examples. The choice
is yours.

Inserting Without Listing Column Names
You can also insert data into a table without specifying the column names.
Since you’re inserting four values and the arena table only has four
columns, you could replace the insert statement that lists the column
names with one that does not:

insert into arena
values (6, 'Staples Center', 'Los Angeles', 19060);

MySQL is able to determine which columns to insert the values into
because you’ve provided the data in the same order as the columns in your
table.

Although omitting the column names saves you some typing, it’s best
practice to list them. At some point in the future, you might add a fifth
column to the arena table. If you don’t list your columns, making that
change would break your insert statements because you’d be trying to
insert four values into a table with five columns.

Inserting Sequences of Numbers
You might want to insert sequential numbers into a table column, such as in
the arena table where the first row of the arena_id column should have the
value 1, the next row of the arena_id column should have the value 2, the
next row should have a value of 3, and so on. MySQL provides an easy way
to do that by letting you define a column with the auto_increment

attribute. The auto_increment attribute is particularly useful for a primary
key column—that is, the column that uniquely identifies the rows in a table.

Let’s look at how it works. Select everything from the arena table you’ve
created thus far:

select * from arena;

The results are:

arena_id arena_name location seating_capa
city
-------- --------------------- -------------- ------------

 1 Madison Square Garden New York 20000
 2 Dean Smith Center North Carolina null
 3 Philippine Arena Bocaue 55000
 4 Sportpaleis Antwerp 23359
 5 Bell Centre Montreal 22114
 6 Staples Center Los Angeles 19060

You can see that each arena has its own arena_id that is one larger than
the value for the arena that was inserted before it.

When you inserted the values in the arena_id column, you found the
highest arena_id already in the table and added 1 to it when inserting the
next row. For example, when you inserted the row for the Staples Center,
you hardcoded the arena_id as 6 because the previous arena_id was 5:

insert into arena (arena_id, arena_name, location, seating_ca
pacity)
values (6, 'Staples Center', 'Los Angeles', 19060);

This approach won’t work very well in a real production database where
many new rows are being created quickly. A better approach is to have
MySQL manage that work for you by defining the arena_id column with
auto_increment when you create the table. Let’s try it.

Drop the arena table and re-create it using auto_increment for the
arena_id column:

drop table arena;

create table arena (
 arena_id int primary key auto_i
ncrement,
 arena_name varchar(100),
 location varchar(100),
 seating_capacity int
);

Now when you insert rows into the table, you won’t have to deal with
inserting data into the arena_id column. You can insert data into the other
columns and MySQL will automatically increment the arena_id column
for you with each new row that you insert. Your insert statements should
look like this:

insert into arena (arena_name, location, seating_capacity)
values ('Madison Square Garden', 'New York', 20000);

insert into arena (arena_name, location, seating_capacity)
values ('Dean Smith Center', 'North Carolina', null);

insert into arena (arena_name, location, seating_capacity)
values ('Philippine Arena', 'Bocaue', 55000);

insert into arena (arena_name, location, seating_capacity)
values ('Sportpaleis', 'Antwerp', 23359);

insert into arena (arena_name, location, seating_capacity)
values ('Bell Centre', 'Montreal', 22114);

insert into arena (arena_name, location, seating_capacity)
values ('Staples Center', 'Los Angeles', 19060);

You didn’t list arena_id as one of the columns in your list of columns,
nor did you provide a value for arena_id in your list of values. Take a look
at the rows in the table after MySQL runs your insert statements:

select * from arena;

The results are:

arena_id arena_name location seating_capa
city
-------- --------------------- -------------- ------------

 1 Madison Square Garden New York 20000
 2 Dean Smith Center North Carolina null
 3 Philippine Arena Bocaue 55000
 4 Sportpaleis Antwerp 23359
 5 Bell Centre Montreal 22114
 6 Staples Center Los Angeles 19060

As you can see, MySQL automatically incremented the values for the
arena_id column.

Only one column per table can be defined with auto_increment, and it
has to be the primary key column (or a column that is part of the primary
key).

When inserting a value into a column defined with auto_increment,
MySQL will always insert a higher number, but there can be gaps between
the numbers. For example, you could end up with arena_id 22, 23, and
then 29 in your table. The reasons for this have to do with the storage
engine your database is using, how your MySQL server is configured, and
other factors that are beyond the scope of this book, so just know that a
column defined with auto_increment will always result in an ascending list
of numbers.

Inserting Data Using a Query
You can insert data into a table based on values returned from a query. For
example, say the large_building table has data you want to add to your
arena table. The large_building table was created with these data types:

create table large_building
 (
 building_type varchar(50),
 building_name varchar(100),
 building_location varchar(100),
 building_capacity int,
 active_flag bool
);

It contains this data:

building_type building_name building_location building
_capacity active_flag
------------- ----------------- ----------------- --------
--------- -----------
Hotel Wanda Inn Cape Cod 1
25 1
Arena Yamada Green Dome Japan 20
000 1
Arena Oracle Arena Oakland 19
596 1

For your purposes, you don’t care about the first row in the table, because
Wanda Inn is a hotel, not an arena. You can write a query to return the arena
data from the other rows in the large_building table like so:

select building_name,
 building_location,
 building_capacity
from large_building
where building_type = 'Arena'
and active_flag is true;

The results are:

building_name building_location building_capacity
----------------- ----------------- -----------------
Yamada Green Dome Japan 20000
Oracle Arena Oakland 19596

You can then use that query as the basis for an insert statement to insert
these rows into the arena table:

insert into arena (
 arena_name,
 location,
 seating_capacity
)
select building_name,
 building_location,
 building_capacity
from large_building

where building_type = 'Arena'
and active_flag is true;

MySQL inserts the two rows that were returned from your query into the
arena table. You can query the arena table to see the new rows:

select * from arena;

Here are the results with the new rows included:

arena_id arena_name location seating_capa
city
-------- --------------------- -------------- ------------

 1 Madison Square Garden New York 20000
 2 Dean Smith Center North Carolina null
 3 Philippine Arena Bocaue 55000
 4 Sportpaleis Antwerp 23359
 5 Bell Centre Montreal 22114
 6 Staples Center Los Angeles 19060
 7 Yamada Green Dome Japan 20000
 8 Oracle Arena Oakland 19596

The insert statement added arenas 7 and 8 to the existing data in the
arena table.

Using a Query to Create and Populate a New Table
The create table as syntax allows you to create and populate a table in
one step. Here you create a new table called new_arena and insert rows into
it at the same time:

create table new_arena as
select building_name,
 building_location,
 building_capacity
from large_building
where building_type = 'Arena'
and active_flag is true;

NOTE

The as keyword is optional.

This statement creates a table called new_arena based on the results of
the preceding large_building query. Now query the new table:

select * from new_arena;

The results are:

building_name building_location building_capacity
----------------- ----------------- -----------------
Yamada Green Dome Japan 20000
Oracle Arena Oakland 19596

The new_arena table is created with the same column names and data
types as the large_building table. You can confirm the data types by
describing the table with the desc keyword:

desc new_arena;

The results are:

Field Type Null Key Default Extra
----------------- ------------ ---- --- ------- -----
building_name varchar(100) YES null
building_location varchar(100) YES null
building_capacity int YES null

You can also use create table to make a copy of a table. For example,
you might save the current state of the arena table by making a copy of it
and calling the new table arena_ with the current date appended to it, like
so:

create table arena_20241125 as
select * from arena;

Before you add or remove columns from the arena table, you might want
to ensure you have your original data saved in a second table first. This is
useful when you’re about to make major changes to a table, but it may not
be practical to make a copy of a very large table.

Updating Data
Once you have data in your tables, you’ll likely want to make changes to it
over time. MySQL’s update statement allows you to modify existing data.

Arenas are notorious for having their names changed, and the arenas in
your table are no exception. Here you change the arena_name value for
arena_id 6 from Staples Center to Crypto.com Arena using the update
statement:

update arena
set arena_name = 'Crypto.com Arena'
where arena_id = 6;

First, you use the set keyword to set column values in the table. Here
you are setting the arena_name column’s value to Crypto.com Arena.

Next, you specify which row(s) you want updated in the where clause. In
this case, you chose to update the row based on the arena_id column with a
value of 6, but you could have updated that same row based on another
column. For example, you can update the row based on the arena_name
column instead:

update arena
set arena_name = 'Crypto.com Arena'
where arena_name = 'Staples Center';

Or, since you have only one arena in Los Angeles listed, you can update
the row using the location column:

update arena
set arena_name = 'Crypto.com Arena'
where location = 'Los Angeles';

It’s important that you craft your where clauses carefully because any
rows that match the criteria specified there will be updated. For example, if
there are five arenas with a location of Los Angeles, this update
statement will rename all five to Crypto.com Arena, whether or not that’s
what you intended.

It’s usually best to update rows based on a primary key column. When
you created the arena table, you defined the arena_id column as the
primary key of the table. That means there will only be one row in the table
for an arena_id of 6, so if you use the syntax where arena_id = 6, you
can be confident you’re updating only that row.

Using a primary key in your where clause is also best practice because
primary key columns are indexed. Indexed columns are typically faster at
finding rows in the table than unindexed columns.

Updating Multiple Rows
To update multiple rows, you can use a where clause that matches more
than one row. Here you update the seating capacity of all arenas with an
arena_id greater than 3:

update arena
set seating_capacity = 20000
where arena_id > 3;

MySQL updates arenas 4, 5, and 6 to have seating_capacity values of
20,000.

If you remove your where clause entirely, all rows in your table will be
updated:

update arena
set seating_capacity = 15000;

If you select * from arena now, you can see that all arenas have a
seating capacity of 15,000:

arena_id arena_name location seating_capa
city
-------- --------------------- -------------- ------------

 1 Madison Square Garden New York 15000
 2 Dean Smith Center North Carolina 15000
 3 Philippine Arena Bocaue 15000
 4 Sportpaleis Antwerp 15000
 5 Bell Centre Montreal 15000
 6 Crypto.com Arena Los Angeles 15000

In this example, it’s apparent that you forgot to use a where clause to
limit the number of rows to update.

Updating Multiple Columns
You can update more than one column with one update statement by
separating the column names with a comma:

update arena
set arena_name = 'Crypto.com Arena',
 seating_capacity = 19100
where arena_id = 6;

Here, you’ve updated both the arena_name and the seating_capacity
column values for the row that has an arena_id of 6.

TRY IT YOURSELF
9-3. In the food database, update all prices in the favorite_meal table so that they’re
raised by 20 percent.

Deleting Data
To remove data from your tables, you use the delete statement. You can
delete one row at a time, multiple rows, or all rows with one delete
statement. You use the where clause to specify which rows you want to
delete. Here, you delete the row with an arena_id of 2:

delete from arena
where arena_id = 2;

After you run this delete statement, select the remaining rows from the
table like so:

select * from arena;

The result is:

arena_id arena_name location seating_capa
city
-------- --------------------- -------------- ------------

 1 Madison Square Garden New York 15000
 3 Philippine Arena Bocaue 15000
 4 Sportpaleis Antwerp 15000
 5 Bell Centre Montreal 15000
 6 Crypto.com Arena Los Angeles 15000

You can see that the row containing the arena_id of 2 has been deleted.
In Chapter 7, you learned about using like for simple pattern matches.

You can do that here to delete all arenas that have the word Arena in their
name:

delete from arena
where arena_name like '%Arena%';

Select the remaining rows from the table:

select * from arena;

The result is:

arena_id arena_name location seating_capa
city
-------- --------------------- -------------- ------------

 1 Madison Square Garden New York 15000
 4 Sportpaleis Antwerp 15000
 5 Bell Centre Montreal 15000

The two rows containing Philippine Arena and Crypto.com Arena are
no longer in the table.

If you write a delete statement and the where clause doesn’t match any
rows, no rows will be deleted:

delete from arena
where arena_id = 459237;

This statement won’t delete any rows because there aren’t any with an
arena_id of 459237. MySQL won’t produce an error message, but it will
tell you 0 row(s) affected.

To delete all rows from the table, you can use a delete statement without
a where clause:

delete from arena;

This statement removes all rows from the table.

NOTE

As with update statements, you need to take care with your where
clauses when writing delete statements. MySQL will delete all the
rows identified in the where clause, so be sure that it’s correct.

TRY IT YOURSELF
9-4. Due to a mozzarella shortage, you need to remove Pizza from the favorite_meal
table in the food database. Write a delete statement that accomplishes this.

Truncating and Dropping a Table
Truncating a table removes all the rows but keeps the table intact. It has the
same effect as using delete without a where clause, but it’s typically faster.

You can truncate a table using the truncate table command, like so:

truncate table arena;

Once the statement runs, the table will still exist but there will be no rows
in it.

If you want to remove both the table and all of its data, you can use the
drop table command:

drop table arena;

If you try to select from the arena table now, MySQL will display a
message saying the table doesn’t exist.

Summary
In this chapter you looked at inserting, updating, and deleting data from a
table. You saw how to insert null values and quickly create or delete entire
tables. In the next chapter, you’ll learn the benefits of using table-like
structures called views.

PART III
DATABASE OBJECTS

In Part III, you’ll create database objects like views,
functions, procedures, triggers, and events. These
objects will be stored on your MySQL server so you
can call them whenever you need them.

In Chapter 10, you’ll learn how to create views that let you access the
results of a query as a table-like structure.

In Chapter 11, you’ll create your own functions and procedures to
perform tasks like getting and updating the population of states.

In Chapter 12, you’ll create your own triggers that automatically take an
action you define when rows are inserted, updated, or deleted from a table.

In Chapter 13, you’ll create your own MySQL events to manage
scheduled tasks.

In these chapters, you’ll use the following naming conventions for
different types of objects:

beer A table that contains data about beer.
v_beer A view that contains data about beer.
f_get_ipa() A function that gets a list of India pale ales.
p_get_pilsner() A procedure that gets a list of pilsner beers.
tr_beer_ad A trigger that automatically takes an action after some rows in the beer

table are deleted. I use the tr_ prefix for triggers so that they won’t be
confused with tables, which also start with the letter t. The suffix _ad
stands for after delete. _bd stands for before delete. _bu and _au
stand for before and after update, respectively. _bi and _ai stand for
before and after insert, respectively. You’ll learn what those suffixes
mean in Chapter 12.
A scheduled event to load new beer data into the beer table.

e_load_beer

In previous chapters, you’ve named tables descriptively so that other
programmers can quickly understand the nature of the data that the table is
storing. For database objects other than tables, you’ll continue using that
approach and also prefix the name of the object with a short description of
its type (as in v_ for view); occasionally, you’ll add a suffix as well (as in
_ad for after delete).

While these naming conventions aren’t law, consider using them, as they
help you quickly understand a database object’s purpose.

10
CREATING VIEWS

In this chapter, you’ll learn how to
create and use views. Views are virtual
tables based on the output of a query
you write to customize the display of
your result set. Each time you select

from a view, MySQL reruns the query that you
defined the view with, returning the latest results as a
table-like structure with rows and columns.

Views are useful in situations where you want to simplify a complex
query or hide sensitive or irrelevant data.

Creating a New View
You create a view using the create view syntax. Let’s look at an example
with the following course table:

course_name course_level
--------------------------------------- ------------
Introduction to Python beginner
Introduction to HTML beginner
React Full-Stack Web Development advanced
Object-Oriented Design Patterns in Java advanced
Practical Linux Administration advanced

Learn JavaScript beginner
Advanced Hardware Security advanced

Here you create a view named v_course_beginner that selects all
columns with a course_level of beginner from the course table:

create view v_course_beginner as
select *
from course
where level = 'beginner';

Running this statement creates the view and saves it in your MySQL
database. Now you can query the v_course_beginner view at any time,
like so:

select * from v_course_beginner;

The results are:

course_name course_level
---------------------- ------------
Introduction to Python beginner
Introduction to HTML beginner
Learn JavaScript beginner

Since you defined the view by selecting * (the wildcard character) from
the course table, it has the same column names as the table.

The v_course_beginner view should be used by beginner students, so
you selected only courses from the table with a course_level of beginner,
hiding the advanced courses.

Now create a second view for advanced students that includes just
advanced courses:

create view v_course_advanced as
select *
from courses
where level = 'advanced';

Selecting from the v_course_advanced view displays the advanced
courses:

select * from v_course_advanced;

The results are:

course_name course_level
--------------------------------------- ------------
React Full-Stack Web Development advanced
Object-Oriented Design Patterns in Java advanced
Practical Linux Administration advanced
Advanced Hardware Security advanced

When you defined the v_course_advanced view, you provided MySQL
with a query that selects data from the course table. MySQL runs this
query each time the view is used, meaning that the view is always up to
date with the latest rows from the course table. In this example, any new
advanced courses added to the course table will be shown each time you
select from the v_course_advanced view.

This approach allows you to maintain your courses in the course table
and provide different views of the data to beginner and advanced students.

Using Views to Hide Column Values
In the course table example, you created views that displayed certain rows
from the table and hid others. You can also create views that display
different columns.

Let’s look at an example of using views to hide sensitive column data.
You have two tables, company and complaint, that help track complaints for
local companies.

The company table is as follows:

company_id company_name owner owner_phone_
number
---------- -------------------- ------------- ------------

1 Cattywampus Cellular Sam Shady 784-785-1
245
2 Wooden Nickel Bank Oscar Opossum 719-997-4
545

3 Pitiful Pawn Shop Frank Fishy 917-185-7
911

And here’s the complaint table:

complaint_id company_id complaint_desc
------------ ---------- ------------------------------
1 1 Phone doesn't work
2 1 Wi-Fi is on the blink
3 1 Customer service is bad
4 2 Bank closes too early
5 3 My iguana died
6 3 Police confiscated my purchase

You’ll start by writing a query to select information about each company
and a count of its received complaints:

select a.company_name,
 a.owner,
 a.owner_phone_number,
 count(*)
from company a
join complaint b
on a.company_id = b.company_id
group by a.company_name,
 a.owner,
 a.owner_phone_number;

The results are:

company_name owner owner_phone_number count
(*)
-------------------- ------------- ------------------ -----

Cattywampus Cellular Sam Shady 784-785-1245 3
Wooden Nickel Bank Oscar Opossum 719-997-4545 1
Pitiful Pawn Shop Frank Fishy 917-185-7911 2

To display the results of this query in a view called v_complaint, simply
add the create view syntax as the first line of the original query:

create view v_complaint as
select a.company_name,

 a.owner,
 a.owner_phone_number,
 count(*)
from company a
join complaint b
on a.company_id = b.company_id
group by a.company_name,
 a.owner,
 a.owner_phone_number;

Now, the next time you want to get a list of companies with a count of
complaints, you can simply type select * from v_complaint instead of
rewriting the entire query.

Next, you’ll create another view that hides the owner information. You’ll
name the view v_complaint_public, and you’ll let all users of your
database access the view. This view will show the company name and
number of complaints, but not the owner’s name or phone number:

create view v_complaint_public as
select a.company_name,
 count(*)
from company a
join complaint b
on a.company_id = b.company_id
group by a.company_name;

You can query the view like so:

select * from v_complaint_public;

The results are:

company_name count(*)
-------------------- --------
Cattywampus Cellular 3
Wooden Nickel Bank 1
Pitiful Pawn Shop 2

This is an example of using a view to hide data stored in columns. While
the owners’ contact information is in your database, you are withholding it
by not selecting those columns in your v_complaint_public view.

Once you’ve created your views, you can use them as if they were tables.
For example, you can join views to tables, join views to other views, and
use views in subqueries.

Inserting, Updating, and Deleting from Views
In Chapter 9 you learned how to insert, update, and delete rows from tables.
In some cases, it’s also possible to modify rows using a view. For example,
the v_course_beginner view is based on the course table. You can update
that view using the following update statement:

update v_course_beginner
set course_name = 'Introduction to Python 3.1'
where course_name = 'Introduction to Python';

This update statement updates the course_name column in the
v_course_beginner view’s underlying course table. MySQL is able to
perform the update because the view and the table are so similar; for every
row in the v_course_beginner view, there is one row in the course table.

Now, try to update the v_complaint view with a similar query:

update v_complaint
set owner_phone_number = '578-982-1277'
where owner = 'Sam Shady';

You receive the following error message:

Error Code: 1288. The target table v_complaint of the UPDATE
 is not updatable

MySQL doesn’t allow you to update the v_complaint view, because it
was created using multiple tables and the count() aggregate function. It’s a
more complex view than the v_course_beginner view. The rules about
which views allow rows to be updated, inserted, or deleted are fairly
complicated. For this reason, I recommend changing data directly from
tables and avoiding using views for this purpose.

Dropping a View
To remove a view, use the drop view command:

drop view v_course_advanced;

While the view is removed from the database, the underlying table still
exists.

TRY IT YOURSELF
The corporate database contains the following employee table:

employee_name department position home_address date_of_birth
--------------- ---------- ---------- ----------------- -------------
Sidney Crumple accounting Accountant 123 Credit Road 1997-01-04
Al Ledger accounting Bookkeeper 2 Revenue Street 2002-11-22
Bean Counter accounting Manager 8 Bond Street 1996-04-29
Lois Crumple accounting Accountant 123 Debit Lane 2000-08-27
Lola Hardsell sales Sales Rep 66 Hawker Street 2000-07-09
Bob Closer sales Sales Rep 73 Peddler Way 1999-02-16

10-1. Create a view called v_employee_accounting that has all employees in
accounting.
10-2. Create a view called v_employee_sales that has all employees in sales.

10-3. Create a view called v_employee_private that has all employees in all
departments. Hide the home_address and date_of_birth columns. Create three
queries that select * from each view. Do they return what you expect?

Indexes and Views
You can’t add indexes to views to speed up your queries, but MySQL can
use any indexes on the underlying tables. For example, the following query

select *
from v_complaint
where company_name like 'Cattywampus%';

can take advantage of an index on the company_name column of the company
table, since the v_complaint view is built on the company table.

Summary
In this chapter, you saw how to use views to provide a custom
representation of your data. In the next chapter, you’ll learn how to write
functions and procedures and add logic to them to perform certain tasks
based on your data values.

11
CREATING FUNCTIONS AND

PROCEDURES

In Chapter 8, you learned how to call
built-in MySQL functions; in this
chapter, you’ll write your own. You’ll
also learn to write procedures and
explore the key differences between the

two.
You’ll add logic to your functions and procedures using if statements,

loops, cursors, and case statements to perform different tasks based on the
value of your data. Lastly, you’ll practice accepting values in your functions
and procedures and returning values.

Functions vs. Procedures
Functions and procedures are programs you can call by name. Because
they’re saved in your MySQL database, they are sometimes called stored
functions and procedures. Collectively, they are referred to as stored
routines or stored programs. When you write a complex SQL statement or a
group of statements with several steps, you should save it as a function or
procedure so you can easily call it by name later.

The main difference between a function and a procedure is that a function
gets called from a SQL statement and always returns one value. A
procedure, on the other hand, gets called explicitly using a call statement.
Procedures also pass values back to the caller differently than functions.
(Note that the caller may be a person using a tool like MySQL Workbench,
a program written in a programming language like Python or PHP, or
another MySQL procedure.) While procedures may return no values, one
value, or many values, a function accepts arguments, performs some task,
and returns a single value. For example, you might find the population of
New York by calling the f_get_state_population() function from a
select statement, passing in the state name as an argument to the function:

select f_get_state_population('New York');

You pass an argument to a function by putting it between the parentheses.
To pass more than one argument, separate them by commas. The function
accepts the argument, does some processing that you defined when you
created the function, and returns a value:

f_get_state_population('New York')

 19299981

The f_get_state_population() function took the text New York as an
argument, did a lookup in your database to find the population, and returned
19299981.

NOTE

Consider starting your custom functions with f_ to make their role
clear, as I’ve done here.

You can also call functions in the where clause of SQL statements, such
as the following example that returns every state_population greater than
New York’s:

select *
from state_population
where population > f_get_state_population('New York');

Here, you called the function f_get_state_population() with an
argument of New York. The function returned the value 19299981, which
caused your query to evaluate to the following:

select *
from state_population
where population > 19299981;

Your query returned data from the state table for states with a
population greater than 19,299,981:

state population
---------- ----------
California 39613493
Texas 29730311
Florida 21944577

Procedures, on the other hand, are not called from SQL queries, but
instead via the call statement. You pass in any arguments the procedure
has been designed to accept, the procedure performs the tasks you defined,
and then control returns to the caller.

For example, you call a procedure named p_set_state_population()
and pass it an argument of New York like so:

call p_set_state_population('New York');

You’ll see how to create the p_set_state_population() procedure and
define its tasks in Listing 11-2. For now, just know that this is the syntax for
calling a procedure.

NOTE

Consider starting procedures with p_ to make their role clear.

Procedures are often used to execute business logic by updating,
inserting, and deleting records in tables, and they can also be used to
display a dataset from the database. Functions are used for smaller tasks,
like getting one piece of data from the database or formatting a value.
Sometimes you can implement the same functionality as either a procedure
or a function.

Like tables and views, functions and procedures are saved in the database
where you created them. You can set the current database with the use
command; then, when you define a procedure or function, it will be created
in that database.

Now that you’ve seen how to call functions and procedures, let’s look at
how to create them.

Creating Functions
Listing 11-1 defines the f_get_state_population() function, which
accepts a state’s name and returns the population of the state.

❶ use population;

❷ drop function if exists f_get_state_population;

delimiter //

❸ create function f_get_state_population(
 state_param varchar(100)
)
returns int
deterministic reads sql data
begin
 declare population_var int;

 select population
 into population_var
 from state_population
 where state = state_param;

 return(population_var);

❹ end//

delimiter ;

Listing 11-1: Creating the f_get_state_population() function

In the first line, you set the current database to population with the use
command ❶ so your function will be created in that database.

NOTE

Another way to accomplish this is to specify the database name in
the create function statement by prefixing the function name with
the database name and a period, like so:

create function population.f_get_state_population(

For simplicity’s sake, I’ll continue using the approach shown in L
isting 11-1.

Before you create the function, you use the drop function statement in
case there’s already a version of this function. If you try to create a function
and an old version already exists, MySQL will send a function already
exists error and won’t create the function. Similarly, if you try to drop a
function that doesn’t already exist, MySQL will also send an error. To
prevent that error from appearing, you add if exists after drop function
❷, which will drop the function if it already exists, but won’t send an error
if it doesn’t.

The function itself is defined between the create function ❸ and end
statements ❹. We’ll walk through its components in the following sections.

Redefining the Delimiter
The function definition also includes lines of code to redefine and then reset
your delimiter. A delimiter is one or more characters that separate one SQL
statement from another and mark the end of each statement. Typically,
you’ll use a semicolon as the delimiter.

In Listing 11-1, you temporarily set the MySQL delimiter to // using the
delimiter // statement because your function is made up of multiple SQL
statements that end in a semicolon. For example,
f_get_state_population() has three semicolons, located after the
declare statement, the select statement, and the return statement. To
ensure that MySQL creates your function starting with the create
function statement and ending with the end statement, you need a way to
tell it not to interpret any semicolons between those two statements as the
end of your function. This is why you’ve redefined the delimiter.

Let’s take a look at what would happen if you didn’t redefine your
delimiter. If you remove or comment out the delimiter // statement at the
beginning of your code and look at it in MySQL Workbench, you’ll notice
some red X markers on lines 12 and 19, indicating errors (Figure 11-1).

Figure 11-1: MySQL Workbench showing errors on lines 12 and 19

You commented out the delimiter statement on line 5 by adding two
hyphens and a space (--) in front of it; this caused MySQL Workbench to
report errors on lines 12 and 19 because the semicolon has become the
delimiter character. Thus, every time MySQL encounters a semicolon, it
assumes that is the end of a SQL statement. MySQL Workbench tries to
help you by showing error markers with a red X to let you know the
statements ending in semicolons aren’t valid.

Redefining the delimiter to // (or something other than ;) informs
MySQL Workbench that the statements creating your function aren’t over
until it hits // at the end of line 21. You can fix the errors by uncommenting
line 5 (removing the two hyphens and a space, -- , at the beginning of the
line), thereby reinserting the delimiter // command.

After the function has been created, you set the delimiter back to the
semicolon on line 23.

NOTE

The typical characters developers use to redefine the delimiter are
//, $$, and occasionally ;;.

Although redefining the delimiter to // is necessary here because your
function body contains three semicolons, there are other situations where
you don’t need to redefine your delimiter. For example, you can simplify
the following function:

delimiter //
create function f_get_world_population()
returns bigint
deterministic no sql
begin
 return(7978759141);
end//

delimiter ;

The begin and end keywords group statements that are part of the
function body. Since this function body has only one SQL statement,
returning the world population, you don’t need to use begin and end here.
And you don’t need to redefine your delimiter, either, because there’s only
one semicolon—at the end of the return statement. You can remove the
code that redefines and resets the delimiter and simplify your function to
this:

create function f_get_world_population()
returns bigint

deterministic no sql
return(7978759141);

While this is a more concise way to write the function, you might want to
keep the begin and end statements and redefine the delimiter because it
makes it easier to add a second SQL statement in the future. The choice is
yours.

Adding Parameters and Returning a Value
Both built-in functions and custom functions can accept parameters. You
created the f_get_state_population() function in Listing 11-1 to accept
one parameter named state_param, which has a varchar(100) data type.
You can define parameters with the data types in Chapter 4, including int,
date, decimal, and text, to define a table’s columns.

NOTE

Consider ending any parameters with _param to make their role
clear.

Because functions return a value to the caller of the function, you use the
returns keyword in Listing 11-1 to let MySQL know the data type of the
value that your function will return. In this case, the function will return an
integer, representing the population of a state.

PARAMETERS VS. ARGUMENTS

Some developers use the words arguments and parameters interchangeably, although
there is a difference between the two. While arguments are the values that are passed
to functions, parameters are the variables in the functions that receive those values.

The key point for you, however, is that you can call functions and send values to
them, and write functions that receive those values. Functions can be written to accept
no values at all, or they can be written to take a large number of them—even
thousands. Typically, though, you won’t need to write a function that accepts more than
10 parameters.

Specifying Characteristics
In Listing 11-1, once you establish that your function returns an integer, you
specify some characteristics of your function. A characteristic is an
attribute or property of the function. In this example, you used the
deterministic and reads sql data characteristics:

deterministic reads sql data

You can list the characteristics on one line, or you can list each
characteristic on its own line, like so:

deterministic
reads sql data

You need to choose from two sets of characteristics: deterministic or
not deterministic, and reads sql data, modifies sql data, contains
sql, or no sql. You must specify at least one of these three characteristics
for all of your functions: deterministic, no sql, or reads sql data. If
you don’t, MySQL will send an error message and won’t create your
function.

deterministic or not deterministic
Choosing deterministic means the function will return the same value
given the same arguments and the same state of the database. This is usually
the case. The f_get_state_population() function is deterministic
because, unless the data in the database changes, every time you call
f_get_state_population() with an argument of New York, the function
will return the value 19299981.

The not deterministic characteristic means that the function may not
return the same value given the same arguments and the same state of the
database. This would be the case for a function that returns the current date,
for example, as calling it today will yield a different return value than
calling it tomorrow.

If you tag a nondeterministic function as deterministic, you might get
incorrect results when you call your function. If you tag a deterministic
function as not deterministic, your function might run slower than

necessary. If you don’t define a function as deterministic or not
deterministic, MySQL defaults to not deterministic.

MySQL uses deterministic or not deterministic for two purposes.
First, MySQL has a query optimizer that determines the fastest way to
execute queries. Specifying deterministic or not deterministic helps
the query optimizer make good execution choices.

Second, MySQL has a binary log that keeps track of changes to data in
the database. The binary log is used to perform replication, a process in
which data from one MySQL database server is copied to another server,
known as a replica. Specifying deterministic or not deterministic
helps MySQL perform this replication.

NOTE

Your database administrator can remove the requirement to tag
functions as deterministic or not deterministic by setting the
log_bin_trust_function_creators configuration variable to ON.

reads sql data, modifies sql data, contains sql, or no sql
The reads sql data characteristic means that the function reads from the
database using select statements but doesn’t update, delete, or insert any
data; modifies sql data, on the other hand, means that the function does
update, delete, or insert data. This would be the case more for procedures
than for functions because procedures are more commonly used for
modifying data in the database than functions are.

The contains sql characteristic means the function has at least one SQL
statement but doesn’t read or write any data from the database, and no sql
means the function contains no SQL statements. An example of no sql
would be a function that returns a hardcoded number, in which case it
doesn’t query the database. You could, for example, write a function that
always returns 212 so that you don’t need to remember the temperature at
which water boils.

If you don’t specify reads sql data, modifies sql data, contains
sql, or no sql, MySQL defaults to contains sql.

Defining the Function Body
After listing the characteristics, you define the function body, the block of
code that gets executed when the function is called. You use a begin and an
end statement to mark the beginning and end of the function body.

In Listing 11-1, you declared a variable named population_var with the
declare keyword. Variables are named objects that can hold values. You
can declare them with any of the MySQL data types; in this case, you used
the int type. You’ll learn about different types of variables in the section
“Defining Local Variables and User Variables” later in the chapter.

NOTE

Consider ending your variables with _var to make their role clear.

Then you add a select statement that selects the population from your
database and writes it into your population_var variable. This select
statement is similar to those you’ve used before, except you’re now using
the into keyword to select the value you got from the database into a
variable.

You then return the value of population_var to the caller of the function
with a return statement. Since functions always return one value, there
must be a return statement in your function. The data type of the value
being returned must match the returns statement at the beginning of the
function. You use returns to declare the data type of the value you’ll
return, and return to actually return the value.

Your end statement is followed by // because you redefined your
delimiter to // earlier. Once you reach the end statement, your function
body is complete, so you redefine your delimiter back to a semicolon.

TRY IT YOURSELF
11-1. In the diet database, the calorie table contains the following data:

food calorie_count
------ -------------
banana 110
pizza 700
apple 185

Write a function called f_get_calorie_count() that accepts the name of a food as a
parameter and returns the calorie count. The food parameter should be defined as
varchar(100). The characteristics should be deterministic and reads sql data.

You can test the function by calling it like so:

select f_get_calorie_count('pizza');

Creating Procedures
Similar to functions, procedures accept parameters, include a code block
surrounded by begin and end, can have defined variables, and can have a
redefined delimiter.

Unlike functions, procedures don’t use the returns or return keyword
because procedures don’t return one value in the way that functions do.
Also, you can display values in procedures using the select keyword.
Additionally, while MySQL requires you to specify characteristics like
deterministic or reads sql data when creating functions, this is not
required for procedures.

Listing 11-2 creates a procedure called p_set_state_population() that
accepts a parameter for the state’s name, gets the latest population values
for each county in the state from the county_population table, sums the
populations, and writes the total population to the state_population table.

❶ use population;

❷ drop procedure if exists p_set_state_population;

❸ delimiter //

❹ create procedure p_set_state_population(

 ❺ in state_param varchar(100)
)
begin

 ❻ delete from state_population
 where state = state_param;

 ❼ insert into state_population
 (
 state,
 population
)
 select state,

 ❽ sum(population)
 from county_population
 where state = state_param
 group by state;

❾ end//

delimiter ;

Listing 11-2: Creating the p_set_state_population() procedure

First, you set your current database to population with use so the
procedure will be created in the population database ❶. Before creating
the procedure, you check to see if it already exists, and if it does, the old
version is deleted with the drop command ❷. Then you redefine your
delimiter to // just as you did when creating functions ❸.

Next, you create the procedure and call it p_set_state_population()
❹. As with functions, you name the parameter state_param and give it a
varchar(100) data type, and you also specify in to set state_param as an
input parameter ❺. Let’s look at this step a little closer.

Unlike functions, procedures can accept parameter values as input and
also pass values back to the caller as output. They can also accept multiple
input and output parameters. (You’ll explore output parameters in depth
later in this chapter.) When you write procedures, you specify the type of
parameter using the keyword in for input, out for output, or inout for

parameters that are both. This specification isn’t necessary for functions
because function parameters are always assumed to be input. If you don’t
specify in, out, or inout for your procedure parameters, MySQL defaults
to in.

Next, the procedure body is between the begin and end statements. In
this body, you delete the existing row in the state_population table for the
state (if one exists) ❻, then insert a new row into the state_population
table ❼. If you don’t delete the existing row(s) first, the table will have a
row for every time you run the procedure. You want to start with a clean
slate before you write the current information to the state_population
table.

You get the state’s population by summing the populations of the
individual counties in that state from the county_population table ❽.

As you did with functions, when you’re done defining the procedure you
redefine your delimiter to a semicolon ❾.

Using select to Display Values
When you create procedures and functions, you can use the select...into
syntax to write a value from the database into a variable. But unlike
functions, procedures can also use select statements without the into
keyword to display values.

Listing 11-3 creates a procedure called
p_set_and_show_state_population() to select the population of the state
into a variable and then display a message to the procedure caller.

use population;

drop procedure if exists p_set_and_show_state_population;

delimiter //

create procedure p_set_and_show_state_population(
 in state_param varchar(100)
)
begin

 ❶ declare population_var int;

 delete from state_population
 where state = state_param;

 ❷ select sum(population)
 into population_var
 from county_population
 where state = state_param;

 ❸ insert into state_population
 (
 state,
 population
)
 values
 (
 state_param,
 population_var
);

 ❹ select concat(
 'Setting the population for ',
 state_param,
 ' to ',
 population_var
);
end//

delimiter ;

Listing 11-3: Creating the p_set_and_show_state_population()
procedure

In this procedure, you declare a variable called population_var as an
integer ❶ and insert the sum of the county populations into it using a
select...into statement ❷. Then you insert the state_param parameter
value and the population_var variable value into your state_population
table ❸.

When you call the procedure, it not only sets the correct population of
New York in the state_population table, but also displays an informative
message:

call p_set_and_show_state_population('New York');

The message displayed is:

Setting the population for New York to 20201249

You used select to display the message, which you built by
concatenating (using the concat() function), the text Setting the
population for, the state_param value, the word to, and the
population_var value ❹.

Defining Local Variables and User Variables
The population_var variable is a local variable. Local variables are
variables that you define in your procedures and functions using the
declare command with a data type:

declare population_var int;

Local variables are only available—or in scope—during the execution of
the procedure or function containing them. Because you’ve defined
population_var as an int, it will accept only integer values.

You can also use a user variable, which starts with the at sign (@) and can
be used for the entire length of your session. As long as you’re connected to
your MySQL server, the user variable will be in scope. If you create a user
variable from MySQL Workbench, for example, it will be available until
you close the tool.

When creating a local variable, you must specify its data type; when
creating a user variable, it’s not necessary.

You might see code in a function or procedure that uses both local
variables and user variables:

declare local_var int;
set local_var = 2;
set @user_var = local_var + 3;

You never declared the @user_var variable with a data type like int,
char, or bool, but because it was being set to an integer value (the
local_var value plus 3), MySQL automatically set it to int for you.

FUN WITH USER VARIABLES

Create a function in the weird_math database called f_math_trick():

use weird_math;

drop function if exists f_math_trick;

delimiter //

create function f_math_trick(
 input_param int
)
returns int
no sql
begin
 set @a = input_param;
 set @b = @a * 3;
 set @c = @b + 6;
 set @d = @c / 3;
 set @e = @d - @a;

 return(@e);
end//

delimiter ;

The function takes an integer parameter and returns an integer value. You’re using
several user variables—@a, @b, @c, @d, and @e—to perform mathematical calculations
based on the value of the input argument. The function takes the input_param
parameter value and utilizes user variables to multiply it by 3, add 6, divide by 3, and
subtract the parameter value. At the end of the function, you return the value of the @e
user variable.

You can run the function like so:

select f_math_trick(12);

The result is:

f_math_trick(12)

 2

You passed the f_math_trick() function an argument of 12, and the function returned
2. Try testing other values by calling the function three times with the arguments -28, 0,
and 175.

select f_math_trick(-28),
 f_math_trick(0),
 f_math_trick(175);

f_math_trick(-28) f_math_trick(0) f_math_trick(175)

----------------- --------------- -----------------
 2 2 2

No matter what value you send as an argument to this function, it always returns 2!

Using Logic in Procedures
In procedures, you can use similar programming logic to what you’d use in
programming languages like Python, Java, or PHP. For example, you can
control the flow of execution with conditional statements like if and case
to execute parts of your code under specific conditions. You can also use
loops to repeatedly execute parts of your code.

if Statements
An if statement is a decision-making statement that executes particular
lines of code if a condition is true. Listing 11-4 creates a procedure called
p_compare_population() that compares the population in the
state_population table to the county_population table. If the population
values match, it returns one message. If they don’t, it returns another.

use population;

drop procedure if exists p_compare_population;

delimiter //

create procedure p_compare_population(
 in state_param varchar(100)
)
begin
 declare state_population_var int;
 declare county_population_var int;

 select population

 ❶ into state_population_var
 from state_population
 where state = state_param;

 select sum(population)

 ❷ into county_population_var
 from county_population

 where state = state_param;

 ❸ if (state_population_var = county_population_var) then
 select 'The population values match';

 ❹ else
 select 'The population values are different';
 end if;

end//

delimiter ;

Listing 11-4: The p_compare_population() procedure

In the first select statement, you select the population for the state from
the state_population table and write it into the state_population_var
variable ❶. Then, in the second select statement, you select the sum of the
populations for each county in the state from the county_population table
and write it into the county_population_var variable ❷. You compare the
two variables with the if...then syntax. You’re saying if the values
match ❸, then execute the line that displays the message The population
values match; else (otherwise) ❹, execute the next line, displaying the
message The population values are different. Then you use end if to
mark the end of the if statement.

You call the procedure using the following call statement:

call p_compare_population('New York');

The result is:

The population values are different

The procedure shows that the values in the two tables don’t match.
Perhaps the population table for the counties contains updated data, but the
state_population table hasn’t been updated yet.

MySQL provides the elseif keyword to check for more conditions. You
could expand your if statement to display one of three messages:

if (state_population_var = county_population_var) then
 select 'The population values match';
elseif (state_population_var > county_population_var) then
 select 'State population is more than the sum of county p
opulation';
else
 select 'The sum of county population is more than the sta
te population';
end if;

The first condition checks whether the state_population_var value
equals the county_population_var value. If that condition is true, the code
displays the text The population values match and control flows to the
end if statement.

If the first condition was not met, the code checks the elseif condition,
which sees if state_population_var is greater than
county_population_var. If that condition is true, your code displays the
text State population is more than the sum of county population
and control flows to the end if statement.

If neither condition is met, control flows to the else statement, the code
displays The sum of county population is more than the state
population, and control drops down to the end if statement.

case Statements
A case statement is a way to write complex conditional statements. For
example, Listing 11-5 defines a procedure that uses a case statement to
determine if a state has more than 30 million people, between 10 and 30
million people, or less than 10 million people.

use population;

drop procedure if exists p_population_group;

delimiter //

create procedure p_population_group(
 in state_param varchar(100)
)
begin
 declare state_population_var int;

 select population
 into state_population_var
 from state_population
 where state = state_param;

 case

 ❶ when state_population_var > 30000000 then select 'Over
 30 Million';

 ❷ when state_population_var > 10000000 then select 'Betwe
en 10M and 30M';

 ❸ else select 'Under 10 Million';
 end case;

end//

delimiter ;

Listing 11-5: The p_population_group() procedure

Your case statement begins with case and ends with end case. It has
two when conditions—which are similar to if statements—and an else
statement.

When the condition state_population_var > 30000000 is true, the
procedure displays Over 30 Million ❶ and control flows to the end case
statement.

When the condition state_population_var > 10000000 is true, the
procedure displays Between 10M and 30M ❷ and control flows to the end
case statement.

If neither when condition was met, the else statement is executed, the
procedure displays Under 10 Million ❸, and control drops down to the
end case statement.

You can call your procedure to find out which group a state falls into:

call p_population_group('California');
Over 30 Million

call p_population_group('New York');
Between 10M and 30M

call p_population_group('Rhode Island');
Under 10 Million

Based on the population retrieved from the database for the state, the
case statement displays the correct population grouping for that state.

TRY IT YOURSELF
11-2. The age database contains the following table, called family_member_age, that
contains family members’ names and ages:

person age
------- ---
Junior 7
Ricky 16
Grandpa 102

Create a procedure called p_get_age_group() that takes a parameter of the family
member’s name and returns an age group. If the family member is less than 13
years old, the procedure should display the Child age group. If the family member is
between 13 and 20 years old, the procedure should display the Teenager age group.
Anybody else’s age group should appear as Adult.

You can test the procedure like so:

call p_get_age_group('Ricky');

Loops
You can create loops in your procedures to execute parts of your code
repeatedly. MySQL allows you to create simple loops, repeat loops, and
while loops. This procedure uses a simple loop to display the text Looping
Again over and over:

drop procedure if exists p_endless_loop;

delimiter //
create procedure p_endless_loop()
begin
loop
 select 'Looping Again';
end loop;
end;

//
delimiter ;

Now call the procedure:

call p_endless_loop();

You mark the beginning and end of your loop with the loop and end
loop commands. The commands between them will be executed repeatedly.

This procedure displays the text Looping Again over and over,
theoretically forever. This is called an endless loop and should be avoided.
You created the loop but didn’t provide a way for it to stop. Whoops!

If you run this procedure in SQL Workbench, it opens a different result
tab to display the text Looping Again each time you go through the loop.
Thankfully, MySQL eventually senses that too many result tabs have been
opened and gives you the option to stop running your procedure (Figure 11-
2).

Figure 11-2: Running an endless loop in MySQL Workbench

To avoid creating endless loops, you must design loops to end when
some condition has been met. This procedure uses a more sensible simple
loop that loops 10 times and then stops:

drop procedure if exists p_more_sensible_loop;

delimiter //
create procedure p_more_sensible_loop()
begin

❶ set @cnt = 0;

❷ msl: loop
 select 'Looping Again';

❸ set @cnt = @cnt + 1;

❹ if @cnt = 10 then

 ❺ leave msl;
 end if;
end loop msl;
end;
//
delimiter ;

In this procedure you define a user variable called @cnt (short for
counter) and set it to 0 ❶. You label the loop msl (for more sensible loop)
by preceding the loop statement with msl: ❷. Each time you go around in
the loop, you add 1 to @cnt ❸. In order for the loop to end, the value of
@cnt must reach 10 ❹. Once it does, you exit the loop using the leave
command with the name of the loop you want to exit, msl ❺.

When you call this procedure, it runs the code between the loop and end
loop statements 10 times, displaying Looping Again each time. After the
code has been executed 10 times, the loop stops, control drops to the line
after the end loop statement, and the procedure returns control to the caller.

You can also code a repeat loop with the repeat...until syntax, like
so:

drop procedure if exists p_repeat_until_loop;

delimiter //
create procedure p_repeat_until_loop()
begin
set @cnt = 0;
repeat
 select 'Looping Again';
 set @cnt = @cnt + 1;
until @cnt = 10
end repeat;
end;
//
delimiter ;

The code between repeat and end repeat is the body of your loop. The
commands between them will be executed repeatedly until @cnt equals 10
and then control will drop down to the end statement. The until statement
is at the end of the loop, so the commands in your loop will be executed at

least once, because the condition until @cnt = 10 isn’t checked until
you’ve gone through the loop the first time.

You can also code a while loop using the while and end while
statements:

drop procedure if exists p_while_loop;

delimiter //
create procedure p_while_loop()
begin
set @cnt = 0;
while @cnt < 10 do
 select 'Looping Again';
 set @cnt = @cnt + 1;
end while;
end;
//
delimiter ;

Your while command specifies the condition that must be met in order
for the commands in the loop to be executed. If your condition @cnt < 10
is met, the procedure will do the commands in the loop. When the end
while statement is reached, control flows back to the while command and
you check again if @cnt is still less than 10. Once your counter is no longer
less than 10, control flows to the end command and the loop ends.

Loops are a handy way to repeat functionality when you need to perform
similar tasks again and again. Don’t forget to give your loops a way to exit
so that you avoid writing endless loops, and if you need your loop to
execute at least one time, use the repeat...until syntax.

Displaying Procedure Results with select
Since you can use the select statement in procedures, you can write
procedures that query data from the database and display the results. When
you write a query you’ll need to run again, you can save it as a procedure
and call the procedure whenever you need it.

Say you wrote a query that selects the populations of all counties in a
state, formats them with commas, and orders the counties from largest to

smallest. You might want to save your work as a procedure and name it
p_get_county_population(), like so:

use population;

drop procedure if exists p_get_county_population;

delimiter //

create procedure p_get_county_population(
 in state_param varchar(100)
)
begin
 select county,
 format(population, 0)
 from county_population
 where state = state_param
 order by population desc;
end//

delimiter ;

With that procedure in place, you can call it each time you need that
information:

call p_get_county_population('New York');

The results show all 62 counties in New York, with their populations
formatted appropriately:

Kings 2,736,074
Queens 2,405,464
New York 1,694,251
Suffolk 1,525,920
Bronx 1,472,654
Nassau 1,395,774
Westchester 1,004,457
Erie 954,236
--snip--

The next time you want to see the latest version of this data, you can just
call the procedure again.

TRY IT YOURSELF
11-3. Create a diet database and a procedure called p_get_food() that takes no
parameters. The procedure should display the food and calorie_count columns from
the calorie table. Order the results, showing foods with the highest calorie_count
value first and the lowest calorie_count last.

You can test the procedure by calling it like so:

call p_get_food();

Using select in your procedure displays your results. You can also pass
values back to the caller of the procedure using the output parameter.

Using a Cursor
While SQL is very good at quickly updating or deleting many rows in a
table at once, you’ll occasionally need to loop through a dataset and process
it one row at a time. You can accomplish this with a cursor.

A cursor is a database object that selects rows from the database, holds
them in memory, and allows you to loop through them one at a time. To use
a cursor, first declare the cursor, then open it, fetch each row from it, and
close it. These steps are shown in Figure 11-3.

Figure 11-3: Steps for using a cursor

Create a procedure called p_split_big_ny_counties() that uses a
cursor. The procedure will use the county_population table, which
contains the population of each county within a state. New York has 62
counties, the largest of which are shown here:

county population
----------- ----------
Kings 2,736,074
Queens 2,405,464
New York 1,694,251
Suffolk 1,525,920
Bronx 1,472,654
Nassau 1,395,774
Westchester 1,004,457

Imagine you’re a database developer working for the State of New York.
You’ve been asked to break up counties that have over 2 million people into
two smaller counties, each containing half of the original county’s
population.

For example, Kings County has a population of 2,736,074 people. You
have been asked to create a county called Kings-1 with 1,368,037 people
and another called Kings-2 with the remaining 1,368,037. Then you need to
delete the original Kings row that had a population of 2,736,074. You could
write the procedure shown in Listing 11-6 to accomplish this task.

drop procedure if exists p_split_big_ny_counties;

delimiter //

create procedure p_split_big_ny_counties()
begin

❶ declare v_state varchar(100);
 declare v_county varchar(100);
 declare v_population int;

❷ declare done bool default false;

❸ declare county_cursor cursor for
 select state,
 county,
 population
 from county_population
 where state = 'New York'
 and population > 2000000;

❹ declare continue handler for not found set done = true;

❺ open county_cursor;

❻ fetch_loop: loop
 fetch county_cursor into v_state, v_county, v_population;

 ❼ if done then
 leave fetch_loop;
 end if;

 ❽ set @cnt = 1;

 ❾ split_loop: loop

 insert into county_population
 (

 state,
 county,
 population
)
 values
 (
 v_state,
 concat(v_county, '-', @cnt),
 round(v_population/2)
);

 set @cnt = @cnt + 1;

 if @cnt > 2 then
 leave split_loop;
 end if;

 end loop split_loop;

 -- delete the original county

 ❿ delete from county_population where county = v_county;

 end loop fetch_loop;

 close county_cursor;
end;
//

delimiter ;

Listing 11-6: Creating the p_split_big_ny_counties() procedure

This procedure uses a cursor to select the original state, county, and
population values from the county_population table. You fetch one row at
a time from the cursor and loop through your fetch_loop once per each
row until all the rows have been processed. Let’s walk through it.

First you declare the v_state, v_county, and v_population variables
that will hold the state, county, and population values for each county
with more than 2 million people ❶. You also declare a variable named done
that will recognize when there are no more rows for your cursor to fetch.
You define the done variable as a boolean and set its default value to false
❷.

Then you declare a cursor, called county_cursor, whose select
statement gets all counties from the county_population table that have a
population of over 2 million: Kings and Queens counties, in this example
❸.

Next, you declare a condition handler that will automatically set your
done variable to true when your cursor has no more rows to read ❹.
Condition handlers define how MySQL should respond to situations that
arise in your procedures. Your condition handler handles the condition not
found; if no more rows are found by your fetch statement, the procedure
will execute the set done = true statement, which will change the value
of your done variable from false to true, letting you know that there are
no more rows to fetch.

When you declare a condition handler, you can choose for it to continue
—keep running the procedure—or exit after the condition has been
handled. You choose continue in Listing 11-6.

Next, you open the county_cursor that you declared earlier to prepare it
to be used ❺. You create a fetch_loop loop that will fetch and iterate
through each row of the county_cursor, one row at a time ❻. After this,
you fetch the state, county, and population values for a row from the cursor
to your v_state, v_county, and v_population variables.

You check your done variable ❼. If all the rows have been fetched from
the cursor, you exit the fetch_loop and control flows to the line after the
end loop statement. Then you close your cursor and exit the procedure.

If you aren’t done fetching rows from the cursor, set a user variable
called @cnt to 1 ❽. Then you enter a loop called split_loop that will do
the work of splitting the county into two ❾.

NOTE

Notice that your procedure has nested loops: an outer fetch_loop
that reads the original county data from the table, and an inner
split_loop that splits the counties into two smaller counties.

In split_loop, you insert a row into the county_population table that
has a county name with a -1 or -2 appended and a population that is half
of the original county’s population. The -1 or -2 suffix is controlled by your
@cnt user variable. You start @cnt as 1 and each time you loop through the
split_loop loop, you add 1 to it. Then you concatenate the original county
name to a dash and the @cnt variable. You halve the population by dividing
your original population that is saved in the v_population variable by 2.

You can call functions from procedures; for example, you use concat()
to add the suffix to the county name and you use round() to make sure the
new population value doesn’t have a fractional part. If there were an odd
number of people in your original county, you wouldn’t want the population
of the new county to be a number like 1368036.5.

When the @cnt variable is more than 2, your work splitting this county is
done, so you leave the split_loop and control flows to the line after your
end loop split_loop statement. Then you delete the row for the original
county from the database ❿.

You reach the end of your fetch_loop, which concludes your work for
this county. Control flows back to the beginning of the fetch_loop where
you fetch and begin processing for the next county.

Now you can call your procedure

call p_split_big_ny_counties();

and then look at the largest counties in New York in the database like so:

select *
from county_population
order by population desc;

The results are:

state county population
-------- ----------- ----------
New York New York 1694251
New York Suffolk 1525920
New York Bronx 1472654
New York Nassau 1395774
New York Kings-1 1368037

New York Kings-2 1368037
New York Queens-1 1202732
New York Queens-2 1202732
New York Westchester 1004457
--snip--

Your procedure worked! You now have Kings-1, Kings-2, Queens-1, and
Queens-2 counties that are half the size of the original Kings and Queens
counties. There are no counties with more than 2 million people, and the
original Kings and Queens rows have been removed from the table.

NOTE

Cursors are typically slower than SQL’s normal set processing, so
when you have a choice of using a cursor or not, it’s usually best not
to. However, there are times when you need to process each row
individually.

Declaring Output Parameters
So far, all the parameters you’ve used in your procedures have been input,
but procedures also allow you to use output parameters, which pass a value
back to the procedure caller. As mentioned earlier, this caller may be a
person using a tool like MySQL Workbench, a program written in another
programming language like Python or PHP, or another MySQL procedure.

If the caller of the procedure is an end user who just needs to see some
values but doesn’t need to do any further processing with them, you can use
a select statement to display the values. But if the caller needs to use the
values, you can pass them back from your procedure as output parameters.

This procedure, called p_return_state_population(), returns the
population of a state back to the procedure caller using an output parameter:

use population;

drop procedure if exists p_return_state_population;

delimiter //

create procedure p_return_state_population(

 ❶ in state_param varchar(100),

 ❷ out current_pop_param int
)
begin

 ❸ select population
 into current_pop_param
 from state_population
 where state = state_param;
end//

delimiter ;

In the procedure, you declare an in (input) parameter named
state_param as varchar(100), a string of up to 100 characters ❶. Then
you define an out (output) parameter named current_pop_param as an int
❷. You select the population of the state into your output parameter,
current_pop_param, which will be automatically returned to the caller
because you declared it as an out parameter ❸.

Now call the procedure using a call statement and send New York as an
input parameter. Declare that you want the procedure’s output parameter to
be returned to you as a new user variable called @pop_ny:

call p_return_state_population('New York', @pop_ny);

The order of the arguments you send to the procedure matches the order
of the parameters that you defined when you created the procedure. The
procedure was defined to accept two parameters: state_param and
current_pop_param. When you call the procedure, you supply the value of
New York for the state_param input parameter. Then you supply @pop_ny,
which is the name of the variable that will accept the procedure’s
current_pop_param output parameter value.

You can see the results of the procedure by writing a select statement
that displays the value of the @pop_ny variable:

select @pop_ny;

The result is:

20201249

The population of New York is saved for you in the @pop_ny user
variable.

Writing Procedures That Call Other Procedures
Procedures can call other procedures. For example, here you create a
procedure named p_population_caller() that calls
p_return_state_population(), gets the value of the @pop_ny variable,
and does some additional processing with it:

use population;

drop procedure if exists p_population_caller;

delimiter //

create procedure p_population_caller()
begin
 call p_return_state_population('New York', @pop_ny);
 call p_return_state_population('New Jersey', @pop_nj);

 set @pop_ny_and_nj = @pop_ny + @pop_nj;

 select concat(
 'The population of the NY and NJ area is ',
 @pop_ny_and_nj);

end//

delimiter ;

The p_population_caller() procedure calls the
p_return_state_population() procedure twice: once with an input
parameter of New York, which returns a value to the @pop_ny variable, and
once with an input parameter of New Jersey, which returns a value to the
@pop_nj variable.

You then create a new user variable called @pop_ny_and_nj and use it to
hold the combined populations of New York and New Jersey, by adding

@pop_ny and @pop_nj. Then you display the value of the @pop_ny_and_nj
variable.

Run your caller procedure using the call statement:

call p_population_caller();

The result is:

The population of the NY and NJ area is 29468379

The total population displayed from the caller procedure is 29,468,379,
which is the sum of 20,201,249 people in New York and 9,267,130 in New
Jersey.

Listing the Stored Routines in a Database
To get a list of the functions and procedures stored in a database, you can
query the routines table in the information_schema database:

select routine_type,
 routine_name
from information_schema.routines
where routine_schema = 'population';

The results are:

routine_type routine_name
------------ -------------------------------
FUNCTION f_get_state_population
PROCEDURE p_compare_population
PROCEDURE p_endless_loop
PROCEDURE p_get_county_population
PROCEDURE p_more_sensible_loop
PROCEDURE p_population_caller
PROCEDURE p_repeat_until_loop
PROCEDURE p_return_state_population
PROCEDURE p_set_and_show_state_population
PROCEDURE p_set_state_population
PROCEDURE p_split_big_ny_counties
PROCEDURE p_while_loop

As you can see, this query returns a list of functions and procedures in
the population database.

Summary
In this chapter, you learned to create and call procedures and functions. You
used if statements, case statements, and repeatedly executed functionality
with loops. You also saw the benefit of using cursors to process one row at
a time.

In the next chapter, you’ll create triggers to automatically fire and
perform processing for you based on events like rows getting inserted or
deleted.

12
CREATING TRIGGERS

In this chapter, you’ll create triggers,
database objects that automatically fire,
or execute, before or after a row is
inserted, updated, or deleted from a
table, and perform the functionality

you’ve defined. Every trigger is associated with one
table.

Triggers are most often used to track changes made to a table or to
enhance the data’s quality before it’s saved to the database.

Like functions and procedures, triggers are saved in the database in
which you create them.

Triggers That Audit Data
You’ll first use triggers to track changes to a database table by creating a
second audit table that logs which user changed which piece of data and
saves the date and time of the change.

Take a look at the following payable table in a company’s accounting
database.

payable_id company amount service
----------- ------- ------- ---------------------

 1 Acme HVAC 123.32 Repair of Air Conditi
oner
 2 Initech Printers 1459.00 Printer Repair
 3 Hooli Cleaning 398.55 Janitorial Services

To create an audit table that tracks any changes made to the payable
table, enter the following:

create table payable_audit
 (
 audit_datetime datetime,
 audit_user varchar(100),
 audit_change varchar(500)
);

You’ll create triggers so that when changes are made to the payable
table, a record of the changes is saved to the payable_audit table. You’ll
save the date and time of the change to the audit_datetime column; the
user who made the change to the audit_user column; and a text description
of what changed to the audit_change column.

Triggers can be set to fire either before or after rows are changed. The
first set of triggers you’ll create are after triggers. You’ll set three triggers to
fire after changes are made to data in the payable table.

After Insert Triggers
An after insert trigger (indicated in the code by the suffix _ai) fires after a
row is inserted. Listing 12-1 shows how to create an after insert trigger for
the payable table.

use accounting;

drop trigger if exists tr_payable_ai;

delimiter //

❶ create trigger tr_payable_ai

❷ after insert on payable

❸ for each row
begin

❹ insert into payable_audit
 (
 audit_datetime,
 audit_user,
 audit_change
)
 values
 (
 now(),
 user(),
 concat(
 'New row for payable_id ',

 ❺ new.payable_id,
 '. Company: ',
 new.company,
 '. Amount: ',
 new.amount,
 '. Service: ',
 new.service
)
);
end//

delimiter ;

Listing 12-1: Creating an after insert trigger

First you create your trigger and call it tr_payable_ai ❶. Next, you
specify the after keyword to indicate when the trigger should fire ❷. In
this example, a row will be inserted into the payable table and then the
trigger will fire, writing the audit row to the payable_audit table.

NOTE

I find it helpful to prefix my triggers with tr_, followed by the name
of the table I’m tracking, followed by an abbreviation that says
when the trigger will fire. These abbreviations include _bi (before
insert), _ai (after insert), _bu (before update), _au (after update),
_bd (before delete), and _ad (after delete). You’ll learn what all
these triggers mean throughout this chapter.

In the trigger, for each row ❸ that gets inserted into the payable table,
MySQL will run the code between the begin and end statements. All
triggers will include the for each row syntax.

You insert a row into the payable_audit table with an insert statement
that calls three functions: now() to get the current date and time; user() to
get the username of the user who inserted the row; and concat() to build a
string describing the data that was inserted into the payable table ❹.

When writing triggers, you use the new keyword to access the new values
being inserted into the table ❺. For example, you got the new payable_id
value by referencing new.payable_id, and the new company value by
referencing new.company.

Now that you have the trigger in place, try inserting a row into the
payable table to see if the new row automatically gets tracked in the
payable_audit table:

insert into payable
 (
 payable_id,
 company,
 amount,
 service
)
values
 (
 4,
 'Sirius Painting',
 451.45,
 'Painting the lobby'
);

select * from payable_audit;

The results show that your trigger worked. Inserting a new row into the
payable table caused your tr_payable_ai trigger to fire, which inserted a
row into your payable_audit audit table:

audit_datetime audit_user audit_change
------------------- -------------- ------------------------

2024-04-26 10:43:14 rick@localhost New row for payable_id

 4.
 Company: Sirius Paintin
g. Amount: 451.45.
 Service: Painting the lo
bby

The audit_datetime column shows the date and time that the row was
inserted. The audit_user column shows the username and the host of the
user who inserted the row (the host is the server where the MySQL database
resides). The audit_change column contains a description of the added row
you built with the concat() function.

TRY IT YOURSELF
The jail database has a table called alcatraz_prisoner that contains the following
data:

prisoner_id prisoner_name
----------- -------------
 85 Al Capone
 594 Robert Stroud
 1476 John Anglin

12-1. Create an audit table called alcatraz_prisoner_audit in the jail database.
Create the table with these columns: audit_datetime, audit_user, and audit_change.
12-2. Write an after insert trigger called tr_alcatraz_prisoner_ai that tracks new
rows inserted into the alcatraz_prisoner table to the alcatraz_prisoner_audit table.

You can test the trigger by inserting a new row into alcatraz_prisoner, like so:

insert into alcatraz_prisoner
 (
 prisoner_id,
 prisoner_name
)
values
 (
 117,
 'Machine Gun Kelly'
);

Check to see that the new row was tracked to the alcatraz_prisoner_audit table
by selecting from it:

select * from alcatraz_prisoner_audit;

Do you see an audit row for Machine Gun Kelly?

After Delete Triggers
Now you’ll write an after delete trigger (specified in code with the suffix
_ad) that will log any rows that are deleted from the payable table to the
payable_audit table (Listing 12-2).

use accounting;

drop trigger if exists tr_payable_ad;

delimiter //

create trigger tr_payable_ad
 after delete on payable
 for each row
begin
 insert into payable_audit
 (
 audit_date,
 audit_user,
 audit_change
)
 values
 (
 now(),
 user(),
 concat(
 'Deleted row for payable_id ',

 ❶ old.payable_id,
 '. Company: ',
 old.company,
 '. Amount: ',
 old.amount,
 '. Service: ',
 old.service
)
);
end//

delimiter ;

Listing 12-2: Creating an after delete trigger

The delete trigger looks similar to the insert trigger except for a few
differences; namely, you used the old keyword ❶ instead of new. Since this

trigger fires when a row is deleted, there are only old values for the
columns.

With your after delete trigger in place, delete a row from the payable
table and see if the deletion gets logged in the payable_audit table:

delete from payable where company = 'Sirius Painting';

The results are:

audit_datetime audit_user audit_change
------------------- -------------- ------------------------

2024-04-26 10:43:14 rick@localhost New row for payable_id
 4.
 Company: Sirius Paintin
g. Amount: 451.45.
 Service: Painting the lo
bby
2024-04-26 10:47:47 rick@localhost Deleted row for payable_
id 4.
 Company: Sirius Paintin
g. Amount: 451.45.
 Service: Painting the lo
bby

The trigger worked! The payable_audit table still contains the row you
inserted into the payable table, but you also have a row that tracked the
deletion.

Regardless of whether rows get inserted or deleted, you’re logging the
changes to the same payable_audit table. You included the text New row or
Deleted row as part of your audit_change column value to clarify the
action taken.

After Update Triggers
To write an after update trigger (_au) that will log any rows that are updated
in the payable table to the payable_audit table, enter the code in Listing 1
2-3.

use accounting;

drop trigger if exists tr_payable_au;

delimiter //

create trigger tr_payable_au
 after update on payable
 for each row
begin

 ❶ set @change_msg =
 concat(
 'Updated row for payable_id ',
 old.payable_id
);

❷ if (old.company != new.company) then
 set @change_msg =
 concat(
 @change_msg,
 '. Company changed from ',
 old.company,
 ' to ',
 new.company
);
 end if;

 if (old.amount != new.amount) then
 set @change_msg =
 concat(
 @change_msg,
 '. Amount changed from ',
 old.amount,
 ' to ',
 new.amount
);
 end if;

 if (old.service != new.service) then
 set @change_msg =
 concat(
 @change_msg,
 '. Service changed from ',
 old.service,
 ' to ',
 new.service

);
 end if;

❸ insert into payable_audit
 (
 audit_datetime,
 audit_user,
 audit_change
)
 values
 (
 now(),
 user(),
 @change_msg
);

end//

delimiter ;

Listing 12-3: Creating an after update trigger

You declare this trigger to fire after an update to the payable table. When
you update a row in a table, you can update one or more of its columns. You
design your after update trigger to show only the column values that
changed in the payable table. For example, if you didn’t change the
service column, you won’t include any text about the service column in
the payable_audit table.

You create a user variable called @change_msg ❶ (for change message)
that you use to build a string that contains a list of every updated column.
You check whether each column in the payable table has changed. If the
old company column value is different from the new company column value,
you add the text Company changed from old value to new value to the
@change_msg variable ❷. You then do the same thing with the amount and
service columns, adjusting the message text accordingly. When you’re
done, the value of @change_msg is inserted into the audit_change column
of the payable_audit table ❸.

With your after update trigger in place, see what happens when a user
updates a row in the payable table:

update payable
set amount = 100000,
 company = 'House of Larry'
where payable_id = 3;

The first two rows in the payable_audit table are still in the results,
along with a new row that tracked the update statement:

audit_datetime audit_user audit_change
------------------- -------------- ------------------------

2024-04-26 10:43:14 rick@localhost New row for payable_id
 4.
 Company: Sirius Paintin
g. Amount: 451.45.
 Service: Painting the lo
bby
2024-04-26 10:47:47 rick@localhost Deleted row for payable_
id 4.
 Company: Sirius Paintin
g. Amount: 451.45.
 Service: Painting the lo
bby
2024-04-26 10:49:20 larry@localhost Updated row for payable_
id 3. Company
 changed from Hooli Clean
ing to House of
 Larry. Amount changed fr
om 4398.55 to
 100000.00

It seems that a user named larry@localhost updated a row, changed the
amount to $100,000, and changed the company that will be paid to House of
Larry. Hmmm . . .

Triggers That Affect Data
You can also write triggers that fire before rows are changed in a table, to
change the data that gets written to tables or prevent rows from being
inserted or deleted. This can help improve the quality of your data before
you save it to the database.

Create a credit table in the bank database that will store customers and
their credit scores:

create table credit
 (
 customer_id int,
 customer_name varchar(100),
 credit_score int
);

As with after triggers, there are three before triggers that will fire before
a row is inserted, deleted, or updated.

Before Insert Triggers
The before insert trigger (_bi) fires before a new row is inserted. Listing 12
-4 shows how to write a before insert trigger to make sure no scores outside
of the 300–850 range (the lowest possible credit score and the highest) get
inserted into the credit table.

use bank;

delimiter //

❶ create trigger tr_credit_bi

❷ before insert on credit
 for each row
begin

❸ if (new.credit_score < 300) then
 set new.credit_score = 300;
 end if;

❹ if (new.credit_score > 850) then
 set new.credit_score = 850;
 end if;

end//

delimiter ;

Listing 12-4: Creating a before insert trigger

First, you name the trigger tr_credit_bi ❶ and define it as a before
insert trigger ❷ so that it will fire before rows are inserted into the credit
table. Because this is an insert trigger, you can take advantage of the new
keyword by checking if new.credit_score—the value about to be inserted
into the credit table—is less than 300. If so, you set it to exactly 300 ❸.
You do a similar check for credit scores over 850, changing their value to
exactly 850 ❹.

Insert some data into the credit table and see what effect your trigger
has:

insert into credit
 (
 customer_id,
 customer_name,
 credit_score
)
values
 (1, 'Milton Megabucks', 987),
 (2, 'Patty Po', 145),
 (3, 'Vinny Middle-Class', 702);

Now take a look at the data in the credit table:

select * from credit;

The result is:

customer_id customer_name credit_score
----------- ------------------ ------------
 1 Milton Megabucks 850
 2 Patty Po 300
 3 Vinny Middle-Class 702

Your trigger worked. It changed the credit score for Milton Megabucks
from 987 to 850 and the credit score for Patti Po from 145 to 300 just before
those values were inserted into the credit table.

Before Update Triggers

The before update trigger (_bu) fires before a table is updated. You already
wrote a trigger that prevents an insert statement from setting a credit score
outside of the 300–850 range, but it’s possible that an update statement
could update a credit score value outside of that range too. Listing 12-5
shows how to create a before update trigger to solve this.

use bank;

delimiter //

create trigger tr_credit_bu
 before update on credit
 for each row
begin
 if (new.credit_score < 300) then
 set new.credit_score = 300;
 end if;

 if (new.credit_score > 850) then
 set new.credit_score = 850;
 end if;

end//

delimiter ;

Listing 12-5: Creating a before update trigger

Update a row to test your trigger:

update credit
set credit_score = 1111
where customer_id = 3;

Now take a look at the data in the credit table:

select * from credit;

The result is:

customer_id customer_name credit_score
----------- ------------------ ------------
 1 Milton Megabucks 850

 2 Patty Po 300
 3 Vinny Middle-Class 850

It worked. The trigger would not let you update the credit score for Vinny
Middle-Class to 1111. Instead, it set the value to 850 before updating the
row in the table.

TRY IT YOURSELF
The exam database has a table called grade that contains the following data:

student_name score
------------ -----
 Billy 79
 Jane 87
 Paul 93

The teacher’s policy is that students who scored less than 50 points will be given a
score of 50. Students who got all questions correct—including extra credit—cannot
get a score higher than 100.
12-3. Write an update trigger called tr_grade_bu that changes scores under 50 to 50,
and scores over 100 to 100.

You can test the trigger by updating the scores in the table like so:

update grade set score = 38 where student_name = 'Billy';
update grade set score = 107 where student_name = 'Jane';
update grade set score = 95 where student_name = 'Paul';

Now check the values in the grade table:

select * from grade;

You should see these results:

student_name score
------------ -----
 Billy 50
 Jane 100
 Paul 95

The trigger should have set Billy’s score to 50, Jane’s to 100, and Paul’s to 95.

Before Delete Triggers

Lastly, a before delete trigger (_bd) will fire before a row is deleted from a
table. You can use a before delete trigger as a check before you allow the
row to be deleted.

Say your bank manager asked you to write a trigger that prevents users
from deleting any customers from the credit table that have a credit score
over 750. You can achieve this by writing a before delete trigger as shown
in Listing 12-6.

use bank;

delimiter //

create trigger tr_credit_bd
 before delete on credit
 for each row
begin

❶ if (old.credit_score > 750) then
 signal sqlstate '45000'
 set message_text = 'Cannot delete scores over 750';
 end if;
end//

delimiter ;

Listing 12-6: Creating a before delete trigger

If the credit score of the row you’re about to delete is over 750, the
trigger returns an error ❶. You use a signal statement, which handles
returning an error, followed by the sqlstate keyword and code. A sqlstate
code is a five-character code that identifies a particular error or a warning.
Since you’re creating your own error, you use 45000, which represents a
user-defined error. Then, you define the message_text to display your error
message.

Test your trigger by deleting some rows from the credit table:

delete from credit where customer_id = 1;

Since customer 1 has a credit score of 850, the result is:

Error Code: 1644. Cannot delete scores over 750

Your trigger worked. It prevented the deletion of the row because the
credit score was over 750.

Now delete the row for customer 2, who has a credit score of 300:

delete from credit where customer_id = 2;

You get a message back informing you that the row was deleted:

1 row(s) affected.

Your trigger is working as you intended. It allowed you to delete the row
for customer 2 because their credit score was not more than 750, but
prevented you from deleting customer 1 because their credit score was over
750.

Summary
In this chapter, you created triggers that automatically fire and perform
tasks you define. You learned the differences between before and after
triggers, and the three types of each. You used triggers to track changes to
tables, prevent particular rows from being deleted, and control ranges of
allowed values.

In the next chapter, you’ll learn how to use MySQL events to schedule
tasks.

13
CREATING EVENTS

In this chapter, you’ll create events.
Also called scheduled events, these are
database objects that fire based on a set
schedule, executing the functionality
you defined when creating them.

Events can be scheduled to run once or at some interval, like daily,
weekly, or yearly; for example, you might create an event to perform
weekly payroll processing. You can use events to schedule long-running
processing during off-hours, like updating a billing table based on orders
that came in that day. Sometimes you schedule off-hour events because
your functionality needs to happen at a particular time, like making changes
to the database at 2 AM when Daylight Saving Time begins.

The Event Scheduler
MySQL has an event scheduler that manages the scheduling and execution
of events. The event scheduler can be turned on or off, but should be on by
default. To confirm that the scheduler is on, run the following command:

show variables like 'event_scheduler';

If your scheduler is on, the result should look as follows:

Variable_name Value
--------------- -----
event_scheduler ON

If the Value displayed is OFF, you (or your database administrator) need
to turn the scheduler on with this command:

set global event_scheduler = on;

If the Value returned is DISABLED, your MySQL server was started with
the scheduler disabled. Sometimes this is done to temporarily stop the
scheduler. You can still schedule events, but no events will fire until the
scheduler is enabled again. If the event scheduler is disabled, it needs to be
changed in a configuration file managed by your database administrator.

Creating Events with No End Date
In Listing 13-1 you create an event that removes old rows from the
payable_audit table in the bank database.

use bank;

drop event if exists e_cleanup_payable_audit;

delimiter //

❶ create event e_cleanup_payable_audit

❷ on schedule every 1 month

❸ starts '2024-01-01 10:00'

❹ do
begin

❺ delete from payable_audit
 where audit_datetime < date_sub(now(), interval 1 year);
end //

delimiter ;

Listing 13-1: Creating a monthly event

To create the event in the bank database, first you set your current
database to bank with the use command. Then you drop the old version of
this event (if one exists) in order to create a new one. Next you create the
event, e_cleanup_payable_audit ❶, and set a schedule to run it once per
month.

NOTE

Consider beginning events with e_ to make their purpose clear.

Every event begins with on schedule; for a one-time event, you’d follow
this with the at keyword and the timestamp (the date and time) at which the
event should fire. For a recurring event, on schedule should be followed
by the word every and the interval at which it should fire. For example,
every 1 hour, every 2 week, or every 3 year. (Intervals are expressed in
the singular form, like 3 year and not 3 years.) In this case, you specify
every 1 month ❷. You’ll also define the date and time when the recurring
event starts and ends.

For your event, you define starts as 2024-01-01 10:00 ❸, meaning
your event will start firing on 1/1/2024 at 10 AM and will fire every month
at this time. You didn’t use the ends keyword, so this event will fire
monthly—theoretically forever—until the event is dropped with the drop
event command.

Then, you define the event’s actions with the do command ❹, and add the
SQL statements that perform the functionality in the event body. Your event
body starts with begin and ends with end. Here, you delete rows in the
payable_audit table that are more than one year old ❺. While you use only
one statement here, it is possible to put multiple SQL statements in the
event body.

The show events command displays a list of scheduled events in the
current database, as in Figure 13-1.

Figure 13-1: The show events command as seen in MySQL Workbench

The user account that defined the event is listed as the Definer. This gives
you an audit trail that tells you who scheduled which events.

To show only events for a particular database (even if you aren’t
currently in that database), use the show events in database command. In
this example, the command would be show events in bank.

To get a list of all events in all databases, you can use the following
query:

select * from information_schema.events;

MySQL provides you with the events table in the information_schema
database that you can query for this purpose.

Creating Events with an End Date
For events that should run for a limited time, use the ends keyword. For
example, you might want to create an event that runs at 1/1/2024 once an
hour between 9 AM and 5 PM:

on schedule every 1 hour
starts '2024-01-01 9:00'
ends '2024-01-01 17:00'

To schedule an event that runs every 5 minutes for the next hour, you
might enter the following:

on schedule every 5 minute
starts current_timestamp
ends current_timestamp + interval 1 hour

You started your event immediately. It will fire every 5 minutes, and will
stop firing one hour from now.

Sometimes you need an event to fire just once at a particular date and
time. For example, you may need to wait until after midnight to do some
one-time account updates to your bank database so that interest rates are
calculated first by another process. You could define an event like so:

use bank;

drop event if exists e_account_update;

delimiter //

create event e_account_update
on schedule at '2024-03-10 00:01'
do
begin
 call p_account_update();
end //

delimiter ;

Your e_account_update event is scheduled to run on 3/10/2024 at 1
minute past midnight.

NOTE

Events can call procedures. In this example, you moved the
functionality that updates your account out of the event and into the
p_account_update() procedure, which allows you to call it from
your scheduled event but also call the procedure directly to execute
it immediately.

You might find it useful to schedule a one-time event when the clocks
change to Daylight Saving Time. On 3/10/2024, for example, the clocks
move forward one hour. On 11/6/2024, Daylight Saving Time ends and the
clocks move back one hour. In many databases, data will need to change as
a result.

Schedule a one-time event for March 10, 2024, so that the database
makes changes when Daylight Saving Time begins. On that date at 2 AM,
your system clock will change to 3 AM. Schedule your event for 1 minute
before the clocks change:

use bank;

drop event if exists e_change_to_dst;

delimiter //

create event e_change_to_dst
on schedule
at '2024-03-10 1:59'
do
begin
 -- Make any changes to your application needed for DST
 update current_time_zone
 set time_zone = 'EDT';
end //

delimiter ;

Rather than having to stay awake until 1:59 in the morning to change the
clock, you can schedule an event to do it for you.

Checking for Errors
To check for errors after your event runs, query a table in the
performance_schema database called error_log.

The performance_schema database is used to monitor the performance of
MySQL. The error_log table houses diagnostic messages like errors,
warnings, and notifications of the MySQL server starting or stopping.

For example, you can check all event errors by finding rows where the
data column contains the text Event Scheduler:

select *
from performance_schema.error_log
where data like '%Event Scheduler%';

This query finds all rows in the table that have the text Event Scheduler
somewhere in the data column. Recall from Chapter 7 that the like
operator allows you to check if a string matches some pattern. Here you’re
using the % wildcard character to check that the data column contains a
value that starts with any character(s), contains the text Event Scheduler,
then ends with any character(s).

To find errors for a particular event, search for the event name. Say the
e_account_update event calls a procedure named p_account_update(),
but that procedure doesn’t exist. You’ll find errors for the
e_account_update event like so:

select *
from performance_schema.error_log
where data like '%e_account_update%';

The query returns a row that shows the logged column with the date and
time when the event fired, and the data column shows an error message (Fi
gure 13-2).

Figure 13-2: Displaying event errors in MySQL Workbench

The message tells you that the e_account_update event in the bank
database failed because p_account_update does not exist.

You can disable an event using the alter command:

alter event e_cleanup_payable_audit disable;

The event will not fire again until you re-enable it, like so:

alter event e_cleanup_payable_audit enable;

When an event is no longer needed, you can drop it from the database
using the drop event command.

TRY IT YOURSELF
13-1. Create a recurring event in the eventful database called e_write_timestamp
that starts firing now and stops firing in 5 minutes. Create the event so that every
minute, the event writes the current timestamp into the message column of the
event_message table, using this command:

insert into event_message (message)
values (current_timestamp);

13-2. Check if there were any errors for the event.
13-3. Over the next 5 minutes, check the contents of the event_message table using
the select * from event_message; command. Are new timestamps being inserted
into the table every minute?

Summary
In this chapter, you scheduled events to fire once and on a recurring basis.
You learned how to check for errors in your event scheduler, and disable
and drop events. The next chapter will focus on assorted tips and tricks that
can make MySQL more productive and enjoyable.

PART IV
ADVANCED TOPICS

In Part IV, you’ll learn how to load data to and from
files, run MySQL commands from script files, avoid
common pitfalls, and use MySQL within
programming languages.

In Chapter 14, we’ll go over some tips and tricks for avoiding common
problems, and you’ll see how to load data to or from a file. You’ll also take
a look at using transactions and the MySQL command line client.

In Chapter 15, you’ll use MySQL from programming languages like
PHP, Python, and Java.

14
TIPS AND TRICKS

In this chapter, you’ll build confidence
in your new MySQL skills by reviewing
common pitfalls and how to avoid
them. Then, you’ll look at transactions
and the MySQL command line client.

You’ll also learn how to load data to and from files.

Common Mistakes
MySQL can process sets of information very quickly. You can update
thousands of rows in the blink of an eye. While this gives you a lot of
power, it also means there is greater potential for mistakes, like running
SQL against the wrong database or server or running partial SQL
statements.

Working in the Wrong Database
When working with relational databases like MySQL, you need to be
cognizant of which database you’re working in. It’s surprisingly common to
run a SQL statement in the wrong one. Let’s look at some ways you can
avoid it.

Say you’ve been asked to create a new database called distribution and
to create a table called employee.

You might use these SQL commands:

create database distribution;

create table employee
 (
 employee_id int primary key,
 employee_name varchar(100),
 tee_shirt_size varchar(3)
);

If you’re using MySQL Workbench to run the commands, you’ll see two
green checkmarks in the lower panel telling you that your database and
table were successfully created (Figure 14-1).

Figure 14-1: You used MySQL Workbench to create an employee table in the distribution
database . . . didn’t you?

Everything looks good, so you declare victory and move on to your next
task. Then you start to get calls saying that the table wasn’t created. What
went wrong?

Although you created the distribution database, you didn’t set your
current database to distribution before you created the table. Your new
employee table instead was created in whatever your current database
happened to be at the time. You should have included the use command
before you created the table, like so:

create database distribution;

use distribution;

create table employee
 (
 employee_id int primary key,
 employee_name varchar(100),
 tee_shirt_size varchar(3)
);

One way to avoid creating a table in the wrong database is to fully qualify
the table name when you create it. You can specify the name of the database
to create the table in, so that even if you aren’t currently in that database,
the table will be created there. Here you specify that you want to create the
employee table in the distribution database:

create table distribution.employee

Another way you could have avoided creating the table in the wrong
database is by checking what your current database was before creating the
table, like so:

select database();

If your result was anything other than distribution, this would have
alerted you that you forgot to correctly set your current database with the
use command.

You can fix such a mistake by figuring out which database the employee
table was created in, dropping the table, and then re-creating the employee
table in the distribution database.

To determine which database or databases have an employee table, run
this query:

select table_schema,
 create_time
from information_schema.tables
where table_name = 'employee';

You’ve queried the tables table in the information_schema database,
and selected the create_time column to see if this table was created
recently. The output is as follows:

TABLE_SCHEMA CREATE_TIME
------------ -------------------
 bank 2024-02-05 14:35:00

It’s possible that you could have different tables named employee in more
than one database. If that were the case, your query would have returned
more than one row. But in this example, the only database with an employee
table is bank, so that’s where your table was mistakenly created.

As an extra check, see how many rows are in the employee table:

use bank;

select count(*) from employee;

count(*)

 0

There are no rows in this table, which is expected for a table that was
created by mistake. Confident that the employee table in the bank database
is the one you accidentally created in the wrong place, you can now run
these commands to correct your mistake:

use bank;

-- Remove the employee table mistakenly created in the bank d
atabase
drop table employee;

use distribution;

-- Create the employee table in the bank database
create table employee
 (
 employee_id int primary key,
 employee_name varchar(100),
 tee_shirt_size varchar(3)
);

Your employee table in the bank database has been removed, and an
employee table in the distribution database has been created.

You could have moved the table from one database to the other with the
alter table command instead, like so:

alter table bank.employee rename distribution.employee;

It’s preferable to drop and re-create a table rather than altering the table,
however, especially if the table has triggers or foreign keys associated with
it that might still be pointing to the wrong database.

Using the Wrong Server
Sometimes, SQL statements can be executed against the wrong MySQL
server. Companies often set up different servers for production and
development. The production environment is the live environment that end
users access, so you want to be careful with its data. The development
environment is where developers test new code. Since the data in this
environment is seen only by developers, you should always test your SQL
statements here before releasing them to production.

It’s not unusual for a developer to have two windows open: one
connected to the production server and one connected to the development
server. If you’re not careful, you can make changes in the wrong window.

If you’re using a tool like MySQL Workbench, consider naming your
connections Production and Development so that its tabs clearly state which
environment is which (see Figure 14-2).

Figure 14-2: Naming the MySQL Workbench tabs Development and Production

To name connections in MySQL Workbench, go to Database▶Manage
Connections. In the Setup New Connection window that opens, enter a
connection name like Development or Production that specifies the
environment.

NOTE

To avoid potential mistakes, consider opening a connection to the
production environment only when you’re making changes that have
already been tested, and closing that window once you’re finished.

Other tools have similar ways to mark production and development
environments. Some allow you to change the background color, so you
might consider setting your production screen to red as a reminder to be
careful in that environment.

Leaving where Clauses Incomplete
When you insert, update, or delete data in a table, it’s crucial that your
where clause is complete. If it isn’t, you run the risk of changing unintended
rows.

Imagine you own a used car dealership and you store the cars you have in
stock in the inventory table. Check what’s in the table:

select * from inventory;

The results are:

vin mfg model color
---------- ---------- -------- ------
1ADCQ67RFGG234561 Ford Mustang red
2XBCE65WFGJ338565 Toyota RAV4 orange
3WBXT62EFGS439561 Volkswagen Golf black
4XBCX68RFWE532566 Ford Focus green
5AXDY62EFWH639564 Ford Explorer yellow
6DBCZ69UFGQ731562 Ford Escort white
7XBCX21RFWE532571 Ford Focus black
8AXCL60RWGP839567 Toyota Prius gray
9XBCX11RFWE532523 Ford Focus red

Looking at a Ford Focus on the lot, you notice that you have it listed as
green, but its color is actually closer to blue. You decide to update its color
in the database (Listing 14-1).

update inventory
set color = 'blue'
where mfg = 'Ford'
and model = 'Focus';

Listing 14-1: An update statement with incomplete criteria in the where
clause

When you run the update statement, you’re surprised to see MySQL
return a message of 3 row(s) affected. You meant to update only one
row, but it appears that three rows were changed.

You run a query to see what happened:

select *
from inventory
where mfg = 'Ford'
and model = 'Focus';

The results are:

4XBCX68RFWE532566 Ford Focus blue
7XBCX21RFWE532571 Ford Focus blue
9XBCX11RFWE532523 Ford Focus blue

Because the where clause in your update statement was missing criteria,
you mistakenly updated the color of every Ford Focus in the table to blue.

Your update statement in Listing 14-1 should have been:

update inventory
set color = 'blue'
where mfg = 'Ford'
and model = 'Focus'
and color = 'green';

The last line is missing in Listing 14-1. With this additional criteria, the
update statement would have changed just green Ford Focuses to blue.
Since you had only one green Ford Focus on the lot, only the correct car
would have been updated.

A more efficient way to do the update would have been to use the VIN
(Vehicle Identification Number) in your where clause:

update inventory
set color = 'blue'
where vin = '4XBCX68RFWE532566';

Since each car has a distinct VIN, with this approach you are guaranteed
that your update statement will update just one vehicle.

Either of these update statements would have provided enough criteria to
identify the one row you intended to change, and you would have updated
just that row.

A simple sanity check you can perform before you insert, update, or
delete rows is to select from the table using the same where clause. For
example, if you were planning to run the update statement in Listing 14-1,
you would run this select statement first:

select *
from inventory
where mfg = 'Ford'
and model = 'Focus';

The results would have been:

vin mfg model color
---------- ---------- -------- ------
4XBCX68RFWE532566 Ford Focus green
7XBCX21RFWE532571 Ford Focus black
9XBCX11RFWE532523 Ford Focus red

The query produces a list of the rows that you are about to update. If you
really wanted to update all three rows, you could then run the update
statement that uses the same where clause. In this case, you would have
recognized that this where clause in your select statement matched too
many rows and could have avoided updating more than the single row you
intended.

Running Partial SQL Statements
MySQL Workbench has three lightning bolt icons that can be used for
executing SQL statements in different ways. Each icon’s actions are listed
in Table 14-1.

Table 14-1: Lightning Bolt Icons in MySQL Workbench

Simple lightning bolt Executes the selected statements or, if nothing is selected, all
statements

Cursor lightning bolt Executes the statement under the keyboard cursor

Magnifying glass lightning
bolt

Executes the EXPLAIN plan for the statement under the cursor

Most MySQL Workbench users will use the simple and cursor lightning
bolt icons for their day-to-day work. The magnifying glass lightning bolt is
used less often, as it is an optimization tool that explains what steps
MySQL would take to run your query.

If you use the simple lightning bolt icon without realizing part of your
SQL statement is highlighted, you’ll inadvertently run that highlighted
section. For example, say you want to delete the Toyota Prius from the

inventory table. You write the following delete statement to delete the car
with the Prius’s VIN:

delete from inventory
where vin = '8AXCL60RWGP839567';

Now, you’ll use MySQL Workbench to run your delete statement (Figur
e 14-3).

Figure 14-3: Mistakenly deleting all rows in the table using MySQL Workbench

When you click the simple lightning bolt icon, MySQL tells you that all
rows in the table were deleted. What happened?

Before you ran the delete statement, you mistakenly highlighted the first
line of the SQL command. This told MySQL to delete all rows in the table,
rather than the one you attempted to specify.

Transactions
You can lessen the possibility of mistakes by executing statements as part of
a transaction. A transaction is a group of one or more SQL statements that
can be committed (made permanent) or rolled back (canceled). For
example, before updating your inventory table, you could use the start

transaction command to begin a transaction that you can later commit or
roll back:

start transaction;

update inventory
set color = 'blue'
where mfg = 'Ford'
and model = 'Focus';

The begin command is an alias for start transaction. You can use
either.

If you run your update statement and MySQL returns a message of 3
row(s) affected, but you were expecting one row to be changed, you can
roll back the transaction:

rollback;

Your update gets rolled back, the changes are canceled, and the rows
remain unchanged in the table. To make the changes permanent, commit the
transaction:

commit;

Transactions are helpful when you’re using Data Manipulation Language
(DML) statements like insert, update, or delete. Data Definition
Language (DDL) statements like create function, drop procedure, or
alter table shouldn’t be made in a transaction. They can’t be rolled back
—running them will automatically commit the transaction.

TRY IT YOURSELF
The zoo table in the travel database contains the following data:

zoo_name country
------------------------ ---------
Beijing Zoo China
Berlin Zoological Garden Germany
Bronx Zoo USA
Ueno Zoo Japan
Singapore Zoo Singapore
Chester Zoo England
San Diego Zoo USA
Toronto Zoo Canada
Korkeasaari Zoo Finland
Henry Doorly Zoo USA

14-1. Using MySQL Workbench, run these commands one at a time:

use travel;

start transaction;

update zoo
set zoo_name = 'SD Zoo'
where country = 'USA';

rollback;

select * from zoo;

Did the update statement take effect, or was it rolled back?

14-2. Now run the same commands one at a time, but instead of using rollback, use
commit. Does the update statement take effect now?

use travel;

start transaction;

update zoo
set zoo_name = 'SD Zoo'
where country = 'USA';

commit;

select * from zoo;

Did the update statement update only the San Diego Zoo? Should this update
statement have been rolled back or committed?

Until you commit or roll back your update statement, MySQL will keep
the table locked. For example, if you run these commands

start transaction;

update inventory
set color = 'blue'
where mfg = 'Ford'
and model = 'Focus';

the inventory table will remain locked and no other users will be able to
make changes to its data until you commit or roll back your changes. If you
start the transaction and then go to lunch without committing or rolling it
back, you might come back to some angry database users.

Supporting an Existing System
You may find yourself supporting a MySQL system that has already been
developed. A good way to start to understand an existing system is by
browsing through its database objects using MySQL Workbench (Figure 14
-4).

You can learn a lot about an existing system by exploring using MySQL’s
navigator panel. Are there many databases with a few tables in each one, or
are there one or two databases with a lot of tables in each? What are the
naming conventions you should follow? Are there many stored procedures,
or is most of the business logic handled outside of MySQL in a
programming language like PHP or Python? Have primary and foreign keys
been set up for most tables? Do they use many triggers? Looking at the
procedures, functions, and triggers, which delimiter do they use? Check the
existing database objects and follow that lead when it comes to naming
conventions for any new code you add to the system.

Figure 14-4: Exploring an existing MySQL database

Sometimes the hardest part of supporting an existing system is
understanding the problem set and terminology of the application. A good
first question for you to ask is, “What are the most important tables?” Focus

your attention on learning about them first. You can select from the table
and understand how those primary key values uniquely identify the rows in
the table. Check for triggers on those tables and look through the trigger
code to understand what actions happen automatically when data in the
tables is changed.

MySQL Workbench also presents a nice graphical depiction of the way
that MySQL objects hang together. For example, you can see in Figure 14-4
that databases have tables, stored procedures, and functions. Tables have
columns, indexes, foreign keys, and triggers.

Using the MySQL Command Line Client
The MySQL command line client, mysql, allows you to run SQL
commands from the command line interface of your computer (often called
the console, command prompt, or terminal). This is useful in situations
where you want to run SQL statements against a MySQL database but don’t
need a graphical user interface like MySQL Workbench.

At the command line of your computer, enter mysql to start the MySQL
command line client tool, and supply additional information like:

mysql --host localhost --database investment --user rick --pa
ssword=icu2

You can also use single-letter options with a single dash—for example, -
h instead of --host; -D for --database; and -u and -p for --user and --
password=, respectively.

You specify the host where the MySQL server is located with --host. In
this example, the MySQL server is installed on my computer, so I’ve
supplied the value localhost. If you’re connecting to a server that’s
installed on another computer, you can the specify the host, like --host
www.nostarch.com, or supply an IP address.

Then, enter the name of the database you want to connect to after --
database, your MySQL user ID after --user, and your MySQL password
after the --password= option.

NOTE

If your computer doesn’t recognize the mysql command, try adding
the directory where mysql is located to your path. If you have a
Windows computer, you can add the directory to your PATH
environment variable using the Environment Variables system
properties dialog. If you have a Mac, you usually change the $PATH
variable in the .bash_profile file. You can find more information by
searching for “Customizing the Path for MySQL Tools” in the
online reference manual at
https://dev.mysql.com/doc/refman/8.0/en/.

You should see this warning:

[Warning] Using a password on the command line interface can
 be insecure.

That’s because you supplied the database password in plaintext. This
isn’t a great idea, as anyone looking over your shoulder could see your
password. A more secure approach is to let mysql prompt you for it. If you
use -p at the command line without specifying the password, the tool will
prompt you to enter the password. As you type the letters of the password,
asterisks will appear:

mysql -h localhost -D investment -u rick -p
Enter password: ****

Another approach is to use the MySQL configuration utility to securely
store your credentials:

> mysql_config_editor set --host=localhost --user=investment
 --password
Enter password: ****

You specify host and user with the --host and --user options. The --
password option allows you to enter your password.

https://dev.mysql.com/doc/refman/8.0/en/

Once you have saved credentials, you can use the print --all option to
show them:

mysql_config_editor print --all

The password appears as asterisks:

[client]
user = "investment"
password = ****
host = "localhost"

Now you can enter the MySQL command line client, mysql, at the
command line without having to enter your username, password, or host:

mysql -D investment

In other words, you can log in to MySQL by providing only the name of
the database.

You might wonder why you would use a text-based tool like mysql when
more sophisticated graphical tools like MySQL Workbench are available.
The mysql tool is particularly useful when you want to run SQL statements
that are in a script file. A script file is a set of SQL commands saved in a
file on your computer. For example, you could create a file called
max_and_min_indexes.sql that contains the following SQL statements,
which get the market index with the smallest and largest values:

use investment;

select *
from market_index
where market_value =
(
 select min(market_value)
 from market_index
);

select *
from market_index
where market_value =
(

 select max(market_value)
 from market_index
);

You can then run the SQL script from your command line using mysql:

mysql –h localhost -D investment -u rick -picu2 < min_and_ma
x.sql > min_and_max.txt

You used < so that mysql will take its input from the min_and_max.sql
script, and > so that it will write its output to the min_and_max.txt file. If
you supply the password, in this case icu2, don’t add a space after -p.
Strangely, -picu2 works but -p icu2 does not.

After you run the command, the output file min_and_max.txt should look
like this:

market_index market_value
S&P 500 4351.77
market_index market_value
Dow Jones Industrial Average 34150.66

The mysql tool writes a tab between the columns in the file.

NOTE

To see a complete list of options, type mysql --help at the
command line.

Loading Data from a File
Oftentimes you’ll get data in the form of files, such as accepting a data feed
from another organization. The load data command reads data from a file
and writes it into a table.

To test loading data from a file into a table, I created a data file on my
computer called market_indexes.txt in the C:\Users\rick\market\ directory.
The file looks like this:

Dow Jones Industrial Average 34150.66
Nasdaq 13552.93
S&P 500 4351.77

The file contains the names and current value of three financial market
indexes. It is tab-delimited, which means that the fields in the file are
separated by the tab character.

In MySQL, load the file into a table like so:

use investment;

load data local
infile 'C:/Users/rick/market/market_indexes.txt'
into table market_index;

You use the load data command and specify local, which tells MySQL
to look for the data file on your local computer, not on the server where
MySQL is installed. By default, load data loads tab-delimited files.

After the infile keyword, you give the name of the input file you want
to load. In this example, you’re using the path of a file on a Windows
computer. To specify the directory where the file is located on Windows,
use forward slashes, as backslashes will result in an error. To load a file in a
Mac or Linux environment, use forward slashes as usual.

Take a look at the data that was loaded into the table:

select * from market_index;

The result is:

market_index market_value
---------------------------- ------------
Dow Jones Industrial Average 34150.66
Nasdaq 13552.93
S&P 500 4351.77

There were two fields in the file and two columns in the table, so the
fields on the left were loaded into the first column and the fields on the right
were loaded into the second column in the table.

Another common data file format is a comma-separated values (CSV)
file. You could have loaded a data file called market_indexes.csv that looks
like this:

Dow Jones Industrial Average, 34150.66
Nasdaq, 13552.93
S&P 500, 4351.77

To load this file, add the syntax fields terminated by "," to declare
the delimiter in this file as a comma. MySQL uses the commas in the data
file to identify the beginning and end of the fields.

load data local
infile 'C:/Users/rick/market/market_indexes.csv'
into table market_index
fields terminated by ",";

Occasionally, you’ll want to load a data file that has a header row, like
this:

Financial Index, Current Value
Dow Jones Industrial Average, 34150.66
Nasdaq, 13552.93
S&P 500, 4351.77

You can have load data skip the header by using the ignore keyword:

load data local
infile 'C:/Users/rick/market/market_indexes.csv'
into table market_index
fields terminated by ","
ignore 1 lines;

There was one header line in the data file, so you used the ignore 1
lines syntax to prevent the first line from loading into the table. The three
rows of data are loaded, but the Financial Index and Current Value
headings in the data file are ignored.

Loading Data to a File

You can provide data to another department or organization by sending data
files. One way to write data from the database to a file is to use the syntax
select...into outfile. You can run queries and select the results to a file
rather than to your screen.

You can specify which delimiters you want to use to format the output.
Create a CSV file containing the values in the market_index table like so:

select * from market_index
into outfile 'C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/m
arket_index.csv'
fields terminated by ',' optionally enclosed by '"';

You select all values from the market_index table and write them to the
market_index.csv file in the C:/ProgramData/MySQL/MySQL Server
8.0/Uploads directory on the host computer.

You use commas as the delimiter in your output file by using the syntax
fields terminated by ','.

The optionally enclosed by '"' line tells MySQL to wrap fields in
quotes for any columns that have a string data type.

Your market_index.csv gets created like this:

"Dow Jones Industrial Average",34150.66
"Nasdaq",13552.93
"S&P 500",4351.77

The select...into outfile syntax can create a file only on the server
where MySQL is running. It can’t create a file on your local computer.

HOW TO ENABLE LOADING DATA

Depending on how your MySQL environment is configured, running the load data
local command may produce an error like this:

Error Code: 3948. Loading local data is disabled; this must be enabled on both
the client and server sides

You or your database administrator can configure MySQL to allow loading local files
by setting the local_infile system variable to ON. You can see the current value of your
local_infile setting using this command:

show global variables like 'local_infile';

The result may show that the value is set to OFF:

Variable_name Value
------------- -----
local_infile OFF

If it is set to OFF, you won’t be able to load files from your client computer. You can
set it to ON using this command:

set global local_infile = on;

If you work in a highly secure environment, your database administrator might not
want to allow local files to be loaded, and may choose not to change this setting to ON.

To load files that reside on the host—the server where MySQL is installed—check for
a setting called secure_file_priv that controls which directory on the server you can
load files from. You can check this value using this command:

show global variables like 'secure_file_priv';

If the Value returned is a directory, then that is the only directory on the server you’ll
be allowed to import or export files to and from.

Variable_name Value
---------------- --
secure_file_priv C:\ProgramData\MySQL\MySQL Server 8.0\Uploads\

In this case, when you use load data, the files must be loaded from the
C:\ProgramData\MySQL\MySQL Server 8.0\Uploads\ directory on the server. This
setting also affects writing to a file with select...into outfile. You won’t be able to
write to files in any other directories on the server.

If the secure_file_priv is set to null, you won’t be able to read from or write to files
on the server at all. If it is set to blank (''), then you can read from or write to files in
any directory on the server.

MySQL Shell
While the MySQL command line client (mysql) is a tried-and-true way to
run SQL commands that has been used for decades, MySQL Shell
(mysqlsh) is a newer MySQL command line client tool that can run SQL,
Python, or JavaScript commands.

You saw earlier that the mysql syntax to run a script called
min_and_max.sql is:

mysql –h localhost -D investment -u rick -picu2 < min_and_ma
x.sql > min_and_max.txt

If you prefer, you could use MySQL Shell to run that same script using
this command:

mysqlsh --sql –h localhost -D investment -u rick -picu2 < min
_and_max.sql > min_and_max.txt

The syntax is similar, except you call mysqlsh instead of mysql. Also,
since mysqlsh can run in SQL, Python, or JavaScript mode, you need to
specify --sql to run in SQL mode. (The default mode is JavaScript.)

MySQL Shell comes with a handy utility called parallel table import
(import-table) that can load large data files to tables faster than load
data.

mysqlsh ❶ --mysql -h localhost -u rick -picu2 ❷ -- util impor
t-table c:\Users
\rick\market_indexes.txt --schema=investment --table=market_i
ndex

When you use the import-table utility, you need to call mysqlsh with
the --mysql syntax ❶ to use a classic MySQL protocol connection to
communicate between the client and the MySQL server.

To run the parallel table import utility, use the -- util syntax and then
give the name of the utility you want to use—in this case, import-table ❷.
You provide the name of the file you want to load,

c:\Users\rick\market_indexes.txt, and the database, investment, as well as
the table that you want to load the data into, market_index.

The choice to use mysql or mysqlsh is yours. As mysqlsh matures, more
developers will move to it and away from mysql. If you have a large data
load that is slow to run, using mysqlsh with its parallel table import utility
will be considerably faster than using load data.

You can learn more about MySQL Shell at https://dev.mysql.com/doc/my
sql-shell/8.0/en/.

Summary
In this chapter, you looked at some tips and tricks, including how to avoid
making common mistakes, use transactions, support existing systems, and
load data to and from files.

In the next chapter, you’ll call MySQL from programming languages like
PHP, Python, and Java.

https://dev.mysql.com/doc/mysql-shell/8.0/en/

15
CALLING MYSQL FROM

PROGRAMMING LANGUAGES

In this chapter, you’ll write computer
programs that use MySQL, focusing on
three open source programming
languages: PHP, Python, and Java.
You’ll write programs in each language

to select from a table, insert a row into a table, and
call a stored procedure.

Regardless of the programming language, you follow the same general
steps to call MySQL. First, you establish a connection to the MySQL
database using your MySQL database credentials, including the hostname
of the MySQL server, the database, user ID, and password. Then, you use
that connection to run your SQL statements against the database.

You embed SQL statements in your program and when the program is
run, the SQL is executed against the database. If you need to send
parameter values to a SQL statement, you use a prepared statement, a
reusable SQL statement that uses placeholders to temporarily represent the
parameters. Then you bind parameter values to the prepared statement,
replacing the placeholders with actual values.

If you’re retrieving data from the database, you iterate through the results
and perform some action, like displaying the results. When you’re done,

you close the connection to MySQL.
Let’s look at some examples using PHP, Python, and Java.

PHP
PHP (a recursive acronym for PHP: Hypertext Preprocessor) is an open
source programming language used mostly for web development. Millions
of websites have been built with PHP.

NOTE

Instructions for installing PHP are available at https://www.php.net/
manual/en/install.php.

PHP is commonly used with MySQL. Both are part of the LAMP stack, a
popular software development architecture consisting of Linux, Apache,
MySQL, and PHP. (The P can also refer to the Python programming
language and, less frequently, to Perl.) Many sites use Linux as the
operating system; Apache as the web server to receive requests and send
back responses; MySQL as the relational database management system; and
PHP as the programming language.

To use MySQL from within PHP, you need a PHP extension, which
enables you to use functionality in your PHP program that isn’t included in
the core language. Since not all PHP applications need to access MySQL,
this functionality is provided as an extension you can load. There are two
choices for extensions: PHP Data Objects (PDO) and MySQLi. You’ll
specify which you want to load by listing them in your php.ini
configuration file, like so:

extension=pdo_mysql
extension=mysqli

The PDO and MySQLi extensions provide different ways to create
database connections and execute SQL statements from within your PHP
programs. These are object-oriented extensions. (MySQLi is also available

https://www.php.net/manual/en/install.php

as a procedural extension; you’ll learn what this means in the section
“Procedural MySQLi” later in the chapter.) Object-oriented programming
(OOP) relies on objects that contain data and can execute code in the form
of methods. A method is the equivalent of a function in procedural
programming; it is a set of instructions you can call to take some action,
like running a query or executing a stored procedure.

To use PHP’s object-oriented MySQL extensions, you’ll create a new PDO
or MySQLi object in your PHP code and use the -> symbol to call the
object’s methods.

Let’s take a look at each of these extensions, starting with PDO.

PDO
The PDO extension can be used with many relational database management
systems, including MySQL, Oracle, Microsoft SQL Server, and
PostgreSQL.

Selecting from a Table
In Listing 15-1, you write a PHP program called
display_mountains_pdo.php that uses PDO to select from a MySQL table
called mountain in the topography database.

<?php

❶ $conn = new PDO(
 'mysql:host=localhost;dbname=topography',
 'top_app',
 'pQ3fgR5u5'
);

❷ $sql = 'select mountain_name, location, height from mountai
n';

❸ $stmt = $conn->query($sql);

while ($row = $stmt->fetch(❹ PDO::FETCH_ASSOC)) {

 ❺ echo(
 $row['mountain_name'] . ' | ' .

 $row['location'] . ' | ' .
 $row['height'] . '
'
);
}

$conn = ❻ null;
?>

Listing 15-1: Using PDO to display data from the mountain table
(display_mountains_pdo.php)

The program begins with the opening tag <?php and ends with the
closing tag ?>. The tags tell the web server to interpret the code between
them as PHP.

To use MySQL from within PHP, you need to create a connection to your
MySQL database by creating a new PDO object ❶ and passing in your
database credentials. In this case, your hostname is localhost, your
database name is topography, the database user ID is top_app, and the
password for your MySQL database is pQ3fgR5u5.

You can also specify the port by adding it to the end of the line with your
host and database name, like so:

 'mysql:host=localhost;dbname=topography;port=3306',

If you don’t provide a port, it defaults to 3306, which is the port normally
used to connect to a MySQL server. If your MySQL server instance was
configured to run on another port, ask your database administrator to check
the configuration files for the port number.

You save the connection as a variable named $conn. PHP variables are
preceded by a dollar sign. This variable now represents the connection
between your PHP program and your MySQL database.

Next, you create a PHP variable called $sql that holds your SQL
statement ❷.

You call PDO’s query() method and send it the SQL statement you want
to run. In object-oriented programming, the -> symbol is often used to call
an object’s instance methods, like $conn->query(). You save the statement
and its results as an array variable called $stmt ❸.

NOTE

In contrast to the -> symbol used to access an object’s instance
methods and variables, the double-colon syntax (::) is used to
access an object’s static members, like any constant variables. It is
known as the scope resolution operator (also sometimes called
paamayim nekudotayim, which is Hebrew for “double colon”).

An array is a type of variable you can use to store a group of values. It
uses an index to identify one value in the group. You use PDO’s fetch()
method to fetch each row from $stmt using a mode, which controls how the
data gets returned to you. Here, the mode PDO::FETCH_ASSOC ❹ returns an
array that is indexed by the database table’s column names, like
$row['mountain_name'], $row['location'], and $row['height']. If you
had used the mode PDO::FETCH_NUM, it would have returned an array that is
indexed by the column number starting at zero, like $row[0], $row[1], and
$row[2]. Other modes can be found in PHP’s online manual at https://php.n
et.

Next, the while loop will loop through each row that was fetched. You
use the echo() command ❺ to display each column separated by the pipe
(|) character. The
 HTML tag at the end of your echo() statement
will create a line break after each line in your browser.

Finally, you close the connection by setting it to null ❻.
Navigate to http://localhost/display_mountains_pdo.php to see the results

of your PHP program, shown in Figure 15-1.

Figure 15-1: The results of display_mountains_pdo.php

https://php.net/
http://localhost/display_mountains_pdo.php%20

You’ve successfully accessed MySQL via PDO to select data from the
mountain table and return each column separated by the pipe character.

Inserting a Row into a Table
Now you’ll create a new PHP program called add_mountain_pdo.php that
inserts a new row in the mountain table using PDO.

In Listing 15-2, you’ll use a prepared statement, which, as mentioned
earlier, uses placeholders to represent values in a SQL statement. Then,
you’ll replace those placeholders with actual values from PHP variables.
Using prepared statements is a good security practice because it helps
protect against SQL injection attacks, which are a common way for hackers
to run malicious SQL code against your database.

<?php

❶ $conn = new PDO(
 'mysql:host=localhost;dbname=topography',
 'top_app',
 'pQ3fgR5u5'
);

$new_mountain = 'K2';
$new_location = 'Asia';
$new_height = 28252;

$stmt = $conn->❷prepare(
 'insert into mountain (mountain_name, location, height)

 values (❸:mountain, :location, :height)'
);

❹ $stmt->bindParam(':mountain', $new_mountain, PDO::PARAM_STR);
$stmt->bindParam(':location', $new_location, PDO::PARAM_STR);
$stmt->bindParam(':height', $new_height, PDO::PARAM_INT);

$stmt->❺execute();

$conn = null;
?>

Listing 15-2: Using PDO to insert a row into the mountain table
(add_mountain_pdo.php)

As in Listing 15-1, you first create a connection to your MySQL database
❶. You have three PHP variables called $new_mountain, $new_location,
and $new_height that hold the name, location, and height of the mountain,
respectively, that you want to insert into your mountain table.

You use the connection’s prepare() method ❷ to create a prepared
statement that uses named placeholders for your values. You write the
insert SQL statement, but instead of including the actual values you want
to insert, you use placeholders ❸. Your named placeholders are :mountain,
:location, and :height. Named placeholders are preceded by a colon.

NOTE

PDO also allows you to use question marks instead of named
placeholders, like so:

$stmt = $conn->prepare(
 'insert into mountain (mountain_name, location, hei
ght)
 values (?, ?, ?)'
);

I recommend using named placeholders instead of question
marks, however, because they make your code more readable.

Next, you replace the placeholders with actual values using the
bindParam() method ❹, which links, or binds, a placeholder with a
variable. You bind the first placeholder to the $new_mountain variable,
which replaces :mountain with the value K2. You bind the second
placeholder to the $new_location variable, replacing :location with the
value Asia. You bind the third placeholder to the $new_height variable,
replacing :height with the value 28252.

Then, you specify the type of data the variables represent. The mountain
and location are strings, so you use PDO::PARAM_STR. The height is an

integer, so you use PDO::PARAM_INT.

When you call the statement’s execute() method ❺, your statement is
executed and your new row gets inserted into the mountain table.

Calling a Stored Procedure
Next, you’ll write a PHP program named find_mountains_by_loc_pdo.php
that calls a MySQL stored procedure, p_get_mountain_by_loc().

You’ll provide the stored procedure with a parameter for the location you
want to search for; in this example, you’ll search for mountains in Asia.
Your PHP program will call the stored procedure and return the number of
mountains in the mountain table that are in Asia (see Listing 15-3).

<?php

$conn = new PDO(
 'mysql:host=localhost;dbname=topography',
 'top_app',
 'pQ3fgR5u5'
);

$location = 'Asia';

$stmt = $conn->prepare('❶call p_get_mountain_by_loc(❷:locat
ion)');

$stmt->❸bindParam(':location', $location, PDO::PARAM_STR);

$stmt->❹execute();

❺ while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 echo(
 $row['mountain_name'] . ' | ' .
 $row['height'] . '
'
);
}
$conn = null;
?>

Listing 15-3: Using PDO to call a stored MySQL procedure
(find_mountains_by_loc_pdo.php)

You use the call statement ❶ in your prepared statement to call the
stored procedure. Then you create a named placeholder, :location ❷, and
use bindParam ❸ to replace :location with the value in the $location
variable, which evaluates to Asia.

Next, you execute the stored procedure ❹. Then you use a while
statement ❺ to select the rows returned from the stored procedure. You
display them to the user using the echo command. Finally, you end the
connection. The results are shown in Figure 15-2.

Figure 15-2: The results of find_mountains_by_loc_pdo.php

You can add more functionality to these programs. For example, you
might choose to allow the user to select the location they want to see, rather
than hardcoding Asia in the PHP program. You could even check for errors
connecting to the database or calling your stored procedure, and display
detailed error messages to the user when there is a problem.

HARDCODING CREDENTIALS

Regardless of the programming language you use, you shouldn’t hardcode database
credentials.

While it’s fine to use code that includes your host, database name, user ID, and
password for demonstration purposes,

$conn = new PDO(
 'mysql:host=localhost;dbname=topography',
 'top_app',
 'pQ3fgR5u5'
);

in a real application, you wouldn’t display such sensitive information in plaintext.
Instead, the database connection information is often stored and loaded from a
configuration file that has its file permissions set to control who can access the
information.

Object-Oriented MySQLi
The MySQL Improved (MySQLi) extension is the upgraded version of an
old legacy PHP extension that was called MySQL. In this section, you’ll
learn how to use the object-oriented version of MySQLi.

Selecting from a Table
In Listing 15-4, you write a PHP program using the object-oriented
MySQLi to select from your mountain table.

<?php

$conn = ❶ new mysqli(
 'localhost',
 'top_app',
 'pQ3fgR5u5',
 'topography'
);

$sql = 'select mountain_name, location, height from mountai
n';

$result = $conn->❷query($sql);

while ($row = ❸ $result->fetch_assoc()) {
 echo(
 $row['mountain_name'] . ' | ' .
 $row['location'] . ' | ' .
 $row['height'] . '
'
);
}

❹ $conn->close();
?>

Listing 15-4: Using object-oriented MySQLi to display data from the
mountain table (display_mountains_mysqli_oo.php)

You establish a connection to MySQL by creating a mysqli object ❶ and
passing in the host, user ID, password, and database. You run your query
using the connection’s query() method ❷ and save the results to a PHP
variable called $result.

You iterate through the resulting rows, calling the $result
fetch_assoc() method ❸ so that you can reference the columns as
indexes, like $row['mountain_name']. Then you print the values of those
columns and close your connection with the close() method ❹.

The result is displayed in Figure 15-3.

Figure 15-3: The results of display_mountains_mysqli_oo.php

Inserting a Row into a Table
Now, you’ll create a PHP program to insert a row into the mountain table
using object-oriented MySQLi (see Listing 15-5).

<?php

$conn = new mysqli(
 'localhost',
 'top_app',
 'pQ3fgR5u5',
 'topography'
);

$new_mountain = 'Makalu';
$new_location = 'Asia';
$new_height = 27766;

❶ $stmt = $conn->prepare(
 'insert into mountain (mountain_name, location, height)
 values (?, ?, ?)'
);

❷ $stmt->bind_param('ssi',$new_mountain,$new_location,$new_heig
ht);
$stmt->execute();
$conn->close();
?>

Listing 15-5: Using object-oriented MySQLi to insert a row into the
mountain table (add_mountain_mysqli_oo.php)

Once you’ve established your connection, you use a prepared statement
with question marks as your placeholders ❶. Then, you replace your
question mark placeholders with values using the bind_param() method ❷.

NOTE

While PDO allows you to use named placeholders, MySQLi requires
you to use question marks as placeholders.

With MySQLi, you can provide the data types of the bind variables as a
string. The first parameter you send to bind_param() is the value ssi,
which indicates that you want to replace the first and second placeholders
with a string (s) value, and the third placeholder with an integer (i) value.

You can also choose d if the bind variable has a data type of double (a
double-precision floating-point number) or b if the bind variable has a data
type of blob (a binary large object).

Finally, you execute the prepared statement with execute() and close
your connection. When you run the program, it inserts a new mountain—
Makalu—into your mountain table.

Calling a Stored Procedure
Listing 15-6 shows a PHP program that uses object-oriented MySQLi to
execute a stored procedure.

<?php

$conn = new mysqli(
 'localhost',
 'top_app',
 'pQ3fgR5u5',
 'topography'
);

$location = 'Asia';

$stmt = $conn->prepare('call p_get_mountain_by_loc(?)');

❶ $stmt->bind_param('s', $location);
$stmt->execute();

$result = $stmt->get_result();

while ($row = $result->fetch_assoc()) {
 echo(
 $row['mountain_name'] . ' | ' .
 $row['height'] . '
'
);
}

$conn->close();
?>

Listing 15-6: Using object-oriented MySQLi to call a stored MySQL
procedure (find_mountains_by_loc_mysqli_oo.php)

You use a prepared statement that calls the p_get_mountain_by_loc()
stored procedure. It has one question mark placeholder that represents the
location of the mountains you want to search for. You bind the location,
replacing the ? with Asia. You send s as the first parameter to the
bind_param() method to indicate that the location is a string ❶.

Once you execute the statement and loop through your results, the name
and height of the Asian mountains in your table are displayed.

The results are shown in Figure 15-4.

Figure 15-4: The results of find_mountains_by_loc_mysqli_oo.php

Procedural MySQLi
MySQLi is also available as a procedural extension. The procedural version
of MySQLi looks similar to the object-oriented version, but instead of using
-> syntax to call methods, like $conn->close(), you’ll use functions that
start with the text mysqli_, like mysqli_connect(), mysqli_query(), and
mysqli_close().

Procedural programming treats data and procedures as two different
entities. It uses a top-down approach where you write code giving
instructions in order from beginning to end, and call procedures—or
functions—that contain code to handle specific tasks.

SHOULD I USE MYSQLI OR PDO?

When working with an existing PHP application, continue using the extension that’s
already being used in the codebase. But which extension should you use if you’re
creating a new system?

If you want to migrate your application from MySQL to another database system like
Oracle, PostgreSQL, or Microsoft SQL Server, PDO is a good choice. MySQLi works
only with MySQL, whereas PDO also works with other database systems, which makes
migrating your application to another database system easier. If you support different
PHP applications that use different database systems, you can learn to use PDO with
MySQL and use the same approach for those other systems as well.

PDO also allows you to use named placeholders instead of question marks, making
your code a bit clearer.

Selecting from a Table
In Listing 15-7, you write a PHP program to select from your mountain
table using the procedural version of MySQLi.

<?php

$conn = mysqli_connect(
 'localhost',
 'top_app',
 'pQ3fgR5u5',
 'topography'
);

$sql = 'select mountain_name, location, height from mountai
n';

$result = mysqli_query($conn, $sql);

while ($row = mysqli_fetch_assoc($result)) {
 echo(
 $row['mountain_name'] . ' | ' .
 $row['location'] . ' | ' .
 $row['height'] . '
'
);
}
mysqli_close($conn);
?>

Listing 15-7: Using procedural MySQLi to display data from the
mountain table (display_mountains_mysqli_procedural.php)

You use MySQLi’s mysqli_connect() function to connect to the
database with your database credentials. You define a variable called $sql
that holds your SQL statement. Next, you use MySQLi’s mysqli_query()
function to run the query using your connection, and save the results to the
$result variable.

Then, you fetch the results using the mysql_fetch_assoc() function so
you can reference the resulting $row variables using indexes matching the
database column names, like $row['mountain_name'].

You print the results using the echo command and add a pipe (|)
delimiter between the values. The HTML
 tag will add a line break
after each row in your browser.

Finally, you close the connection using the mysqli_close() function.
The results are displayed in Figure 15-5.

Figure 15-5: The results of display_mountains_mysqli_procedural.php

Inserting a Row into a Table
Now, you’ll create a PHP program to insert a row into your mountain table
using procedural MySQLi (Listing 15-8).

<?php

$conn = mysqli_connect(
 'localhost',

 'top_app',
 'pQ3fgR5u5',
 'topography'
);

$new_mountain = 'Lhotse';
$new_location = 'Asia';
$new_height = 27940;

$stmt = mysqli_prepare(
 $conn,
 'insert into mountain (mountain_name, location, height)
 values (?, ?, ?)'
);

mysqli_stmt_bind_param(
 $stmt,
 'ssi',
 $new_mountain,
 $new_location,
 $new_height
);

mysqli_stmt_execute($stmt);
mysqli_close($conn);
?>

Listing 15-8: Using procedural MySQLi to insert a row into the
mountain table (add_mountain_mysqli_procedural.php)

The program inserts a new mountain called Lhotse into your mountain
table. The program’s logic is similar to the programs you’ve seen before:
you create a connection using your database credentials, use a prepared
statement with ? placeholders, bind values to replace the placeholders,
execute the statement, and close the connection.

Calling a Stored Procedure
The PHP code to execute a stored procedure using procedural MySQLi is
shown in Listing 15-9.

<?php

$conn = mysqli_connect(

 'localhost',
 'top_app',
 'pQ3fgR5u5',
 'topography'
);

$location = 'Asia';

$stmt = mysqli_prepare($conn, 'call p_get_mountain_by_loc
(?)');
mysqli_stmt_bind_param($stmt, 's', $location);
mysqli_stmt_execute($stmt);
$result = mysqli_stmt_get_result($stmt);

while ($row = mysqli_fetch_assoc($result)) {
 echo(
 $row['mountain_name'] . ' | ' .
 $row['height'] . '
'
);
}
mysqli_close($conn);
?>

Listing 15-9: Using procedural MySQLi to call a stored MySQL
procedure (find_mountains_by_loc_mysqli_procedural.php)

You use a prepared statement to call the procedure and a question mark
placeholder to represent the stored procedure’s parameter. You bind the
$location PHP variable and specify s (string) as the data type. Then, you
execute the statement and fetch and iterate through the resulting rows,
printing the mountain name and height for each row in your mountain table
that is in Asia. Finally, you close your connection.

The results are shown in Figure 15-6.

Figure 15-6: The results of find_mountains_by_loc_mysqli_procedural.php

Python
Python is an open source programming language with concise and readable
syntax. It’s worthwhile to learn Python because it can be used for many
different types of programming—from data science and math to video
games, web development, and even artificial intelligence!

NOTE

Instructions for installing Python can be found at Python.org at http
s://wiki.python.org/moin/BeginnersGuide/Download/.

Python’s syntax is unique in that it places a lot of importance on
indentation. Other languages use curly brackets to group a block of code, as
in this PHP code:

if ($temp > 70) {
 echo "It's hot in here. Turning down the temperature.";
 $new_temp = $temp - 2;
 setTemp($new_temp);
}

Because your block of PHP code starts with { and ends with }, the
indentation of the lines of code within the block doesn’t matter; it’s just for
readability. The following code runs just as well in PHP:

if ($temp > 70) {
 echo "It's hot in here. Turning down the temperature.";
$new_temp = $temp - 2;
setTemp($new_temp);
}

Python, on the other hand, doesn’t use curly brackets to identify blocks of
code. It relies on indentation:

if temp > 70:
 print("It's hot in here. Turning down the temperature.");
 new_temp = temp - 2
 set_temp(new_temp)

https://wiki.python.org/moin/BeginnersGuide/Download/

If the temperature is over 70 degrees, this example will print It's hot
in here and will turn down the temperature 2 degrees.

But if you change the indentation in Python, the program does something
different:

if temp > 70:
 print("It's hot in here. Turning down the temperature.")
new_temp = temp - 2
set_temp(new_temp)

The message It's hot in here will still print only when the
temperature is more than 70, but now the temperature will be turned down 2
degrees regardless. That’s probably not what you intended.

NOTE

To access MySQL from your Python code, you can use MySQL
Connector/Python, a driver that allows Python to communicate with
MySQL.

Selecting from a Table
In Listing 15-10, you write a Python program called display_mountains.py
to select from the mountain table and display the results.

import mysql.connector

❶ conn = mysql.connector.connect(
 user='top_app',
 password='pQ3fgR5u5',
 host='localhost',
 database='topography')

❷ cursor = conn.cursor()

cursor.execute('select mountain_name, location, height from m
ountain')

❸ for (mountain, location, height) in cursor:

 print(mountain, location, height)

conn.close()

Listing 15-10: Using Python to display data from the mountain table
(display_mountains.py)

In the first line of your code, you import MySQL Connector/Python with
mysql.connector. Then you create a connection to your MySQL database
❶ by calling the connect() method with your database credentials. You
save this connection as a Python variable called conn.

You use the connection to create a cursor that you save as a variable
called cursor ❷. Next, you use the cursor execute() method to run a SQL
query that selects from the mountain table. A for loop is one type of loop
that allows you to loop, or iterate, through values. Here, you use a for loop
❸ to iterate through the rows in the cursor, printing the mountain name,
location, and height of each mountain as you go. The looping will continue
until there are no more rows to loop through in cursor.

Lastly, you close the connection with conn.close().
You can navigate to your operating system’s command prompt and run

the Python program to see the results:

> python display_mountains.py
Mount Everest Asia 29029
Aconcagua South America 22841
Denali North America 20310
Mount Kilimanjaro Africa 19341
K2 Asia 28252
Makalu Asia 27766
Lhotse Asia 27940

Your Python program selected all the rows from your mountain table and
displayed the data from the table.

While your database credentials are included in your Python program in
this example, you’d typically put sensitive information in a Python file
called config.py to separate them from the rest of your code.

Inserting a Row into a Table
Now, you’ll write a Python program called add_mountain.py to insert a row
into the mountain table (Listing 15-11).

import mysql.connector

conn = mysql.connector.connect(
 user='top_app',
 password='pQ3fgR5u5',
 host='localhost',
 database='topography')

cursor = conn.cursor(prepared=True)

❶ sql = "insert into mountain(mountain_name, location, height)
 values (?,?,?)"

❷ val = ("Ojos Del Salado", "South America", 22615)
cursor.execute(sql, val)

❸ conn.commit()
cursor.close()

Listing 15-11: Using Python to insert a row into the mountain table
(add_mountain.py)

Using your connection, you create a cursor that allows you to use
prepared statements.

You create a Python variable called sql that contains the insert
statement ❶. Python can use either ? or %s for placeholders in prepared
statements. (The letter s has nothing to do with the data type or values here;
that is, the placeholder %s isn’t just for strings.)

You create a variable called val ❷ that contains the values you want to
insert into the table. Then you call the cursor execute() method, passing
in your sql and val variables. The execute() method binds the variables,
replacing the ? placeholders with the values, and executes the SQL
statement.

You need to commit the statement to the database by calling the
connection commit() method ❸. By default, MySQL Connector/Python
doesn’t automatically commit, so if you forget to call commit(), the
changes won’t be applied to your database.

Calling a Stored Procedure
Listing 15-12 shows a Python program called find_mountains_by_loc.py
that calls the p_get_mountain_by_loc() stored procedure and sends a
parameter value of Asia to display only the mountains in the table that are
in Asia.

import mysql.connector

conn = mysql.connector.connect(
 user='top_app',
 password='pQ3fgR5u5',
 host='localhost',
 database='topography')

cursor = conn.cursor()

❶ cursor.callproc('p_get_mountain_by_loc', ['Asia'])

❷ for results in cursor.stored_results():
 for record in results:
 print(record[0], record[1])

conn.close()

Listing 15-12: Using Python to call a stored procedure
(find_mountains_by_loc.py)

You call the cursor callproc() method to call your stored procedure,
sending it a value of Asia ❶. Then, you call the cursor stored_results()
method to get the results of the stored procedure, and you iterate through
those results using a for loop to get the record for each mountain ❷.

Python uses zero-based indexes, so record[0] represents the first
column that was returned from the stored procedure for the row—in this
example, the mountain name. To print the second column, the mountain’s
height, you use record[1].

Run the Python program from the command line to see the results:

> python find_mountains_by_loc.py
Mount Everest 29029

K2 28252
Makalu 27766
Lhotse 27940

Java
Java is an open source, object-oriented programming language that is
commonly used for everything from mobile app development to desktop
applications to web apps.

NOTE

Instructions for installing Java are available on Java.com at https://
www.java.com/en/download/help/download_options.xhtml.

There are lots of build tools and integrated development environments
(IDEs) for Java, but for these examples, you’ll work from the command
line. Let’s go over the basics before we start looking at examples.

You’ll create a Java program that ends in the file extension .java. To run
a Java program, you first compile it to a .class file using the javac
command. This file is in bytecode format. Bytecode is a machine-level
format that runs in the Java Virtual Machine (JVM). Once a program is
compiled, you run it using the java command.

Here you create a Java program called MountainList.java and compile it
to bytecode:

javac MountainList.java

That command creates a bytecode file called MountainList.class. To run
it, you use this command:

java MountainList

https://www.java.com/en/download/help/download_options.xhtml

NOTE

MySQL Connector/J is a Java Database Connectivity (JDBC)
driver, which lets you communicate between Java and MySQL. You
can use MySQL Connector/J to connect to MySQL databases, run
SQL statements, and process the results. You can also use it to run
stored procedures from within Java.

Selecting from a Table
As with the other programming languages, you’ll start by writing a Java
program called MountainList.java that selects a list of mountains from your
MySQL mountain table (Listing 15-13).

import java.sql.*; ❶

public class MountainList {

public static void main(String args[]) { ❷
 String url = "jdbc:mysql://localhost/topography";
 String username = "top_app";
 String password = "pQ3fgR5u5";

 try { ❸

 Class.forName("com.mysql.cj.jdbc.Driver"); ❹

 Connection ❺ conn = DriverManager.getConnection(url, us
ername, password);

 Statement stmt = conn.createStatement(); ❻
 String sql = "select mountain_name, location, height fr
om mountain";

 ResultSet rs = stmt.executeQuery(sql); ❼
 while (rs.next()) {
 System.out.println(
 rs.getString("mountain_name") + " | " +
 rs.getString("location") + " | " +
 rs.getInt("height");
);
 }
 conn.close();
 } catch (Exception ex) {
 System.out.println(ex);
 }

 }
}

Listing 15-13: Using Java to display data from the mountain table
(MountainList.java)

First, you import the java.sql package ❶ to give you access to Java
objects for using a MySQL database, like Connection, Statement, and
ResultSet.

You create a Java class called MountainList that has a main() method,
which is automatically executed when you run the program ❷. In the
main() method, you create a connection to your MySQL database by
providing your database credentials. You save this connection as a Java
variable called conn ❺.

You load the Java class for MySQL Connector/J,
com.mysql.cj.jdbc.Driver, using the Class.forName command ❹.

Using the Connection createStatement() method, you create a
Statement ❻ to execute SQL against the database. The Statement returns a
ResultSet ❼, which you loop through to display the name, location, and
height of each mountain in the database table. You close the connection
when you’re done.

Notice that many of these Java commands are wrapped in a try block ❸.
This way, if there are problems running these commands, Java will throw
an exception (or error) that you can catch in your corresponding catch
statement. In this case, when an exception is thrown, control is passed to the
catch block and you display the exception to the user.

In Python and PHP, wrapping your code in a try...catch block is best
practice, but optional. (The syntax in Python is try/except.) But in Java,
you must use a try...catch block. If you try to compile the Java code
without it, you’ll get an error saying that exceptions must be caught or
declared to be thrown.

Compile and run your Java program from the command line, and see the
results:

> javac MountainList.java
> java MountainList
Mount Everest | Asia | 29029
Aconcagua | South America | 22841
Denali | North America | 20310
Mount Kilimanjaro | Africa | 19341
K2 | Asia | 28252
Makalu | Asia | 27766
Lhotse | Asia | 27940
Ojos Del Salado | South America | 22615

Inserting a Row into a Table
In Listing 15-14, you’ll write a Java program to insert a row into the
mountain table.

import java.sql.*;

public class MountainNew {
 public static void main(String args[]) {
 String url = "jdbc:mysql://localhost/topography";
 String username = "top_app";
 String password = "pQ3fgR5u5";

 try {
 Class.forName("com.mysql.cj.jdbc.Driver");
 Connection conn = DriverManager.getConnection(url, user
name, password);
 String sql = "insert into mountain(mountain_name, locat
ion, height) " +
 "values (?,?,?)";

 ❶ PreparedStatement stmt = conn.prepareStatement(sql);
 stmt.setString(1, "Kangchenjunga");
 stmt.setString(2, "Asia");
 stmt.setInt(3, 28169);

 ❷ stmt.executeUpdate();
 conn.close();
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }
}

Listing 15-14: Using Java to insert a row into the mountain table
(MountainNew.java)

Your SQL statement uses question marks as placeholders. You use a
PreparedStatement this time ❶ instead of a Statement so that you can
send parameter values. You bind the parameter values using the
setString() and setInt() methods. Then you call the executeUpdate()
method ❷, which is used to insert, update, or delete rows in your MySQL
table.

Calling a Stored Procedure
Listing 15-15 shows a Java program to execute a MySQL stored procedure.

import java.sql.*;

public class MountainAsia {
 public static void main(String args[]) {
 String url = "jdbc:mysql://localhost/topography";
 String username = "top_app";
 String password = "pQ3fgR5u5";

 try {
 Class.forName("com.mysql.cj.jdbc.Driver");
 Connection conn = DriverManager.getConnection(url, user
name, password);
 String sql = "call p_get_mountain_by_loc(?)";

 ❶ CallableStatement stmt = conn.prepareCall(sql);
 stmt.setString(1, "Asia");
 ResultSet rs = stmt.executeQuery();
 while (rs.next()) {
 System.out.println(
 rs.getString("mountain_name") + " | " +
 rs.getInt("height")
);
 }
 conn.close();
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }
}

Listing 15-15: Using Java to call a MySQL stored procedure
(MountainAsia.java)

This time, you use a CallableStatement ❶ instead of Statement to call
stored procedures. You set the first (and only) parameter to Asia and
execute your query using CallableStatement’s executeQuery() method.
Then you iterate through the results, displaying each mountain name and
height.

The results are:

Mount Everest | 29029
K2 | 28252
Makalu | 27766
Lhotse | 27940
Kangchenjunga | 28169

OBJECT-RELATIONAL MAPPING

Object-relational mapping (ORM) tools take a different approach to using MySQL from
within programming languages like the ones you’ve seen in this chapter. ORM allows
you to interact with your database using your favorite object-oriented programming
language instead of using SQL. ORM makes the data in the database available to you
in the form of objects that you can manipulate in your code.

Summary
In this chapter, you looked at calling MySQL from programming languages.
You learned that SQL statements are often embedded and run from within
programs. You saw that the same database table that can be accessed from
MySQL Workbench can also be accessed using PHP, Python, Java, or any
number of other tools or languages.

In the next chapter, you’ll work on your first project using MySQL:
creating a functioning weather database. You’ll build scripts to accept a
weather feed hourly and load it into your MySQL database.

PART V
PROJECTS

Congratulations! You now know enough about
MySQL to begin building meaningful projects. In
this part of the book, you’ll work through three
projects that will teach you new skills and provide a
deeper understanding of the material presented so far.

These projects, outlined below, are independent of one another and can
be completed in any order:

Building a Weather Database
You’ll build a database to store current weather data for a trucking company
using technologies including cron, Bash, and SQL scripts.

Tracking Changes to Voter Data with Triggers
You’ll build a database to hold election data and build triggers on the tables
to track changes to the voter data.

Protecting Salary Data with Views
You’ll build a database that holds company data and allows access to the
salary data only as needed. You’ll hide salaries from most users.

16
BUILDING A WEATHER DATABASE

In this project, you’ll build a weather
database for a trucking company. The
company transports items up and down
the East Coast of the United States and
needs a way to get the current weather

for the major cities its drivers travel to.
The company already has a MySQL database set up that contains

trucking data, but you need to add a new database detailing the current
weather conditions for areas the truckers drive through. This will allow you
to incorporate weather data into the existing trucking application to show
the weather’s impact on scheduling and warn drivers of hazardous
conditions like black ice, snow, and extreme temperatures.

You’ll get these weather data files from a third-party company that
provides weather data. That company has agreed to send you a CSV file
every hour. Recall from Chapter 14 that a CSV file is a text file that
contains data and uses a comma as the delimiter between fields.

The company providing the weather data will use FTP (File Transfer
Protocol), a standard communication protocol that allows files to be
transferred between computers, to deliver the weather.csv file to your
/home/weather_load/ directory on one of your Linux servers. The data file
will arrive approximately every hour, but there can be delays, meaning the
files may not arrive exactly at hourly intervals. For that reason, you’ll write

a program that will run every 5 minutes to check for the file and load it into
your database when it’s available.

Once you’ve reviewed the necessary technologies, you’ll begin your
project by creating a new database called weather with two tables:
current_weather_load and current_weather. You’ll load the data from
the file into the current_weather_load table. Once you ensure that the data
loads without any problems, you’ll copy the data from
current_weather_load to the current_weather table, which is the table
that your trucking application will use. You can find the weather.csv data
file at https://github.com/ricksilva/mysql_cc/tree/main/chapter_16.

Technologies You’ll Use
For this project, you’ll use other technologies in addition to MySQL,
including cron and Bash. These technologies allow you to schedule the
loading of your weather data, check whether the data file is available, and
create a logfile containing any load errors.

cron
In order to schedule a script to run every 5 minutes, you’ll use cron, a
scheduler available on Unix-like operating systems (Unix, Linux, and
macOS). It is also available on Windows through the Windows Subsystem
for Linux (WSL), which lets you run a Linux environment on a Windows
computer. To install WSL, enter wsl --install on the command line.

The tasks that you schedule in cron are called cron jobs, and they run in
the background, not attached to a terminal. You can schedule jobs by adding
them to a configuration file called the crontab (cron table) file.

https://github.com/ricksilva/mysql_cc/tree/main/chapter_16

LEARNING MORE ABOUT CRON

If you’d like to learn more about cron, type man cron at your command prompt. The man
command is used to display a manual of commands that can be run, and cron specifies
that you want information about cron, including a list of options you can use with it.

If cron isn’t installed on your computer, you’ll need to search online for the command
to install it in your particular environment.

You can start and stop cron, but the commands to do so vary, so try searching for the
command using man cron. You should also find the command to get cron’s status in
order to see if it’s started or stopped.

You can get a list of your scheduled cron jobs by typing crontab -l. If
you need to edit your crontab configuration file, type crontab -e. The -e
option will open a text editor where you can add, modify, or delete jobs
from your crontab file.

To schedule a cron job, you must provide six pieces of information, in
this order:

. Minute (0–59)

. Hour (0–23)

. Day of the month (1–31)

. Month (1–12)

. Day of the week (0–6) (Sunday to Saturday)

. The command or script to run

For example, if you wanted to schedule a script called pi_day.sh to run,
you’d type crontab -e and add a crontab entry that looks like this:

14 3 14 3 * /usr/local/bin/pi_day.sh

With this cron job in place, the pi_day.sh script in the /usr/local/bin/
directory will execute every year on March 14 at 3:14 AM. Since the day of
the week has been set to * (the wildcard), the job will execute on whatever
day of the week March 14th happens to be on that year.

Bash
Bash is a shell and command language available in Unix and Linux
environments. You could use any number of tools or languages, but I’ve
chosen Bash because of its popularity and relative simplicity. Bash scripts
usually have the extension .sh, like pi_day.sh in the preceding example. In
this chapter’s project, you’ll write a Bash script called weather.sh that cron
will run every 5 minutes. This script will check if a new data file has
arrived and call SQL scripts to load the data into your database if it has.

NOTE

You can learn more about Bash at https://linuxconfig.org/bash-scrip
ting-tutorial-for-beginners or in The Linux Command Line, 2nd
edition, by William Shotts (No Starch Press, 2019).

SQL Scripts
SQL scripts are text files that contain SQL commands. For this project,
you’ll write two SQL scripts called load_weather.sql and copy_weather.sql.
The load_weather.sql script will load the data from the CSV file into the
current_weather_load table and alert you to any load issues. The
copy_weather.sql script will copy the weather data from the
current_weather_load table to the current_weather table.

Project Overview
You’ll schedule a cron job to run the weather.sh script every 5 minutes. If a
new weather.csv data file exists, it will be loaded into the
current_weather_load table. If it is loaded without errors, the data in the
current_weather_load table will be copied to the current_weather table,
where it will be used by your application. Figure 16-1 shows the flow of the
project.

https://linuxconfig.org/bash-scripting-tutorial-for-beginners

Figure 16-1: An overview of your weather project

If there isn’t a new weather.csv file available, the weather.sh script exits
without running the rest of the commands in the Bash script that load the

data and log errors. If the file was loaded and there aren’t any errors in
load_weather.log, the Bash script will call copy_weather.sql to copy the
data you just loaded in the current_weather_load table to the
current_weather table.

The Data File
Since the trucking company travels up and down the US East Coast, you’ve
requested the weather for the following locations:
Portland, Maine
Boston, Massachusetts
Providence, Rhode Island
New York, New York
Philadelphia, Pennsylvania
Washington, DC
Richmond, Virginia
Raleigh, North Carolina
Charleston, South Carolina
Jacksonville, Florida
Miami, Florida

The CSV data file will include the fields listed in Table 16-1.

Table 16-1: Fields in the CSV Data File

Field name Description
station_id The ID for the weather station where this data originated
station_city The city where the weather station is located
station_state A two-character code for the state where the weather station is located
station_lat The latitude of this weather station
station_lon The longitude of this weather station
as_of_datetime The date and time that the data was gathered
temp The temperature
feels_like The temperature that it currently “feels like”
wind The wind velocity (in kilometers per hour)
wind_direction The direction of the wind
precipitation Precipitation in the last hour (in millimeters)
pressure Barometric pressure
visibility The distance that can be clearly seen (in miles)
humidity The percentage of relative humidity in the air
weather_desc A text description of the current weather
sunrise The time that the sun rises at this location today
sunset The time that the sun sets at this location today

Approximately every hour, a CSV file containing the data for the
locations that you requested will be delivered to you. The CSV file should
look similar to Figure 16-2.

Figure 16-2: The weather.csv data file

The file has one row for each of the 11 weather stations you requested,
with every field delimited by a comma.

Creating the Weather Tables
Create a MySQL database called weather to store the weather data:

create database weather;

Now you’ll create a table called current_weather_load to load the CSV
file data into. The _load suffix makes it clear that this table is for loading
data about the current weather.

Listing 16-1 shows the SQL statement to create the
current_weather_load table.

create table current_weather_load
(
 station_id int primary key,
 station_city varchar(100),
 station_state char(2),
 station_lat decimal(6,4) not null,
 station_lon decimal(7,4) not null,
 as_of_dt datetime,
 temp int not null,
 feels_like int,
 wind int,
 wind_direction varchar(3),
 precipitation decimal(3,1),
 pressure decimal(6,2),
 visibility decimal(3,1) not null,
 humidity int,
 weather_desc varchar(100) not null,
 sunrise time,
 sunset time,
 constraint check(station_lat between -90 and 90),
 constraint check(station_lon between -180 and 180),
 constraint check(as_of_dt between (now() - interval 1 day)
 and now()),
 constraint check(temp between -50 and 150),
 constraint check(feels_like between -50 and 150),
 constraint check(wind between 0 and 300),
 constraint check(station_lat between -90 and 90),
 constraint check(wind_direction in
 (
 'N','S','E','W','NE','NW','SE','SW',
 'NNE','ENE','ESE','SSE','SSW','WSW','WNW','NNW'
)

),
 constraint check(precipitation between 0 and 400),
 constraint check(pressure between 0 and 1100),
 constraint check(visibility between 0 and 20),
 constraint check(humidity between 0 and 100)
);

Listing 16-1: Creating the current_weather_load table

Now create a second table called current_weather with the same
structure as current_weather_load:

create table current_weather like current_weather_load;

With these two tables in place, you now have a table that you can load
the CSV file to, as well as a final, user-facing table that you’ll copy the
weather data to once you are confident it has loaded cleanly.

Let’s go over Listing 16-1 in more detail.

Data Types
You should always choose data types for the columns that match the data in
the CSV file as closely as possible. For example, you define the
station_id, temp, feels_like, wind, and humidity columns as int data
types since they will come to you as numeric values without a decimal
point. You define station_lat, station_lon, precipitation, pressure,
and visibility as decimal data types because they will contain decimal
points.

You should also consider how large the column values could be. For
example, you define the station_lat column as decimal(6,4) because
latitudes need to store numbers with up to two digits before the decimal
point and four digits after the decimal point. You define station_lon as
decimal(7,4) because it represents a longitude, which needs to store up to
three digits before the decimal point and four digits after it. A longitude
column needs to be able to hold a larger value than a latitude column.

You have to get creative with the as_of_dt column. Its data comes to you
in the format YYYYMMDD hh:mm. MySQL doesn’t have a data type that stores
data in this format, so you create the as_of_dt column with a data type of

datetime. When you load the data file into your load table, you’ll convert
this value to the datetime format. (We’ll discuss how in the next section.)

The station_state column will always contain two characters, so you
define it as char(2). Since the station_city and weather_desc columns
will have a variable number of characters, you define both as a varchar
containing up to 100 characters. No city or description should have more
than 100 characters, so if you get a value for those columns that is larger
than 100, you can safely say the data is incorrect.

The sunrise and sunset values come to you formatted as times with the
hour and the minute provided. You use the time data type for those values,
even though you aren’t being sent the seconds in the data file. You’ll load
the values into columns with the time data type and let the seconds
automatically default to zeros. For example, you’ll load the value 17:06 and
it will be saved in the table as 17:06:00. This will work fine for your
purposes since your application doesn’t need to track the sunrise and sunset
time down to the second.

Constraints
You create a primary key on the station_id column to enforce uniqueness.
If the data file comes to you with two records for the same weather station,
you don’t want to load both records. Setting station_id as the primary key
will prevent the second row from being loaded and will produce a warning
message alerting you to a problem in the data file.

You add some other constraints to your columns as quality checks of the
data that will be loaded into the table.

The station_lat column must be in the range of a valid latitude value: –
90.0000 to 90.0000. You already defined station_lat with a data type of
decimal(6,4) so there can be only six total digits, with four digits after the
decimal point, but that won’t prevent an invalid value like 95.5555 from
being written to the column. Adding a check constraint will enforce that the
value is in the appropriate range. This allows you to store all legitimate
latitude values in your column and reject any values outside of that range.
Similarly, the station_lon column must be in the range of a valid
longitude value: –180.0000 to 180.0000.

The wind_direction column also has a check constraint to ensure that it
contains only one of 16 possible values that you provided in a list (N for
North, SE for Southeast, NNW for North-Northwest, and so on).

The other check constraints ensure that your data is within reasonable
ranges for weather data. For example, a temperature outside of the range of
–50 degrees to 150 degrees Fahrenheit is likely a mistake, so you’ll reject it.
Humidity is a percentage, so you enforce that it must be within the range of
0 to 100.

You also declare some of the columns in your load table with the not
null constraint. These columns are so important that you want your load to
fail if they are not provided. The station_id column must not be null since
it is the primary key of the table.

You define station_lat and station_lon as not null because you
want to plot the weather station’s location on a map in your trucking
application. You want to show each weather station’s current temperature,
visibility, and conditions at the right map location, and you can’t do that if
the station’s latitude and longitude aren’t provided.

The temperature, visibility, and weather_desc columns are also key
pieces of data for this project, and thus you define them as not null as
well.

Loading the Data File
Before you create the weather.sh Bash script that checks if a new CSV
weather file is available, you’ll write the load_weather.sql SQL script that
will load the CSV file into your current_weather_load table (see Listing 1
6-2).

use weather;

delete from current_weather_load;

load data local infile '/home/weather_load/weather.csv'
into table current_weather_load

❶ fields terminated by ','
(

 station_id,
 station_city,
 station_state,
 station_lat,
 station_lon,

 ❷ @aod,
 temp,
 feels_like,
 wind,
 wind_direction,
 precipitation,
 pressure,
 visibility,
 humidity,
 weather_desc,
 sunrise,
 sunset
)

❸ set as_of_dt = str_to_date(@aod,'%Y%m%d %H:%i');

❹ show warnings;

❺ select concat('No data loaded for ',station_id,': ',station_c
ity)
from current_weather cw
where cw.station_id not in
(
 select cwl.station_id
 from current_weather_load cwl
);

Listing 16-2: The load_weather.sql script

First, you set your current database to the weather database and delete all
rows from the current_weather_load table that may have been left over
from a previous load.

Then you use the load data command you saw in Chapter 14 to load the
weather.csv file into the current_weather_load table. Because you’re
loading a comma-separated file, you need to specify fields terminated
by ',' ❶ so that load data knows where one field ends and the next field
begins. You specify that the data file is called weather.csv and is in the
/home/weather_load/ directory.

Within parentheses, you list all the columns in the table that you want the
data fields loaded into, with one exception: instead of loading a value
directly from the file into the as_of_dt column, you load it into a variable
called @aod ❷. This variable holds the value of the as of date as it is
formatted in the CSV file, which, as mentioned earlier, is YYYYMMDD hh:mm.
You convert the value of the @aod variable from a string to a datetime data
type using MySQL’s str_to_date() function ❸. You use the format
specifiers %Y, %m, %d, %H, and %i to specify the format of the string. By
specifying str_to_date(@aod,'%Y%m%d %H:%i'), you’re saying the @aod
variable is made up of the following parts:
%Y, a four-digit year
%m, a two-digit month
%d, a two-digit day
A space
%H, a two-digit hour (0–23)
A colon
%i, a two-digit minute (0–59)

With this information, the str_to_date() function has what it needs to
convert the @aod string to the as_of_date datetime field in the
current_weather_load table.

NOTE

The str_to_date() function can convert a string to a date, time,
or datetime value, depending upon the format you provide. In this
case, it returns a datetime.

Next, you check if there were any problems loading the data. The show
warnings command ❹ lists any errors, warnings, or notes from the last
command that you ran. If problems in the data file caused your load data
command to fail, show warnings will tell you what the problem was.

Then, you add a query as a second check that the data loaded properly ❺.
In this query, you get a list of all the weather stations that had data the last
time you wrote data into the current_weather table. If any of those
weather stations aren’t in the current_weather_load table you just loaded,
that likely means weather station data was missing from your data file or
there was a problem with that weather station’s data that caused it not to
load. In either case, you want to be notified.

You’ve now written your load_weather.sql script to notify you of any
problems with loading the data. If load_weather.sql runs and no output is
created, the data was loaded into the current_weather_load table without
a problem.

Copying the Data to Your Final Table
Once the data is loaded from the CSV data file into your
current_weather_load table without issue, you’ll run another SQL script
called copy_weather.sql to copy the data to your final current_weather
table (Listing 16-3).

use weather;

delete from current_weather;

insert into current_weather
(
 station_id,
 station_city,
 station_state,
 station_lat,
 station_lon,
 as_of_dt,
 temp,
 feels_like,
 wind,
 wind_direction,
 precipitation,
 pressure,
 visibility,
 humidity,
 weather_desc,
 sunrise,

 sunset
)
select station_id,
 station_city,
 station_state,
 station_lat,
 station_lon,
 as_of_dt,
 temp,
 feels_like,
 wind,
 wind_direction,
 precipitation,
 pressure,
 visibility,
 humidity,
 weather_desc,
 sunrise,
 sunset
from current_weather_load;

Listing 16-3: The copy_weather.sql script

This SQL script sets your current database to the weather database,
deletes all old rows from the current_weather table, and loads the
current_weather table with the data from the current_weather_load
table.

Now that you have your SQL scripts written, you can write the Bash
script that calls them (Listing 16-4).

#!/bin/bash ❶

cd /home/weather/ ❷

if [! -f weather.csv]; then ❸
 exit 0
fi

mysql --local_infile=1 -h 127.0.0.1 -D weather -u trucking -p
Roger -s \

 < load_weather.sql > load_weather.log ❹

if [! -s load_weather.log]; then ❺
 mysql -h 127.0.0.1 -D weather -u trucking -pRoger -s < cop

y_weather.sql > copy_weather.log
fi

mv weather.csv weather.csv.$(date +%Y%m%d%H%M%S) ❻

Listing 16-4: The weather.sh script

The first line of a Bash script ❶ is known as a shebang. It tells the system
that the interpreter to use for the commands in this file is in the /bin/bash
directory.

Next, you use the cd command to change directories to /home/weather/
❷.

In your first if statement ❸, you check if the weather.csv file exists. In
Bash scripts, if statements start with if and end with fi. The -f command
checks if a file exists, and ! is the syntax for not. The statement if [! -f
weather.csv] checks if the weather.csv file does not exist. If it doesn’t,
that means you don’t have a new CSV data file to load, so you exit the
Bash script and provide an exit code of 0. By convention, you provide an
exit code of 0 for success or 1 to signal an error. Exiting the Bash script
here prevents the rest of the script from running; you don’t need to run the
rest of the script, since you don’t have a data file to process.

You use the MySQL command line client ❹ (the mysql command,
described in Chapter 14) to run the load_weather.sql SQL script. If the
load_weather.sql script has any problems loading the data to the
current_weather_load table, you’ll log those problems to a file called
load_weather.log.

In Bash, the left arrow (<) and right arrow (>) are used for redirection,
which lets you take your input from a file and write your output to another
file. The syntax < load_weather.sql tells the MySQL command line client
to run the commands from the load_weather.sql script. The syntax >
load_weather.log says to write any output to the load_weather.log file.

The local_infile=1 option lets you run the load data command (used
in the load_weather.sql script) using data files on your local computer, as
opposed to data files on the server where MySQL is installed. This may be
unnecessary in your environment, depending upon your configuration

settings. (Your DBA can set this option as a configuration parameter using
the command set global local_infile = on.)

The -h option tells the MySQL command line client which host server
MySQL is installed on. In this case, -h 127.0.0.1 indicates that your
MySQL host server is the same computer that you’re currently using to run
the script. Also known as localhost, 127.0.0.1 is the IP address for the
current (local) computer. You could also simply type -h localhost here.

Next, you provide the database name, weather; your MySQL user ID,
trucking; and your password, Roger. Oddly, MySQL doesn’t allow a space
after the -p, so enter your password without a preceding space.

You use the -s option to run your SQL script in silent mode. This
prevents the script from giving you too much information in your output.
For example, if no data gets loaded for the Boston weather station, you
want to see the message No data loaded for 375: Boston in your
load_weather.log file. But without the -s, the logfile will also show the
beginning of the select statement that produced that message:

concat('No data loaded for ',station_id,': ',station_city)
No data loaded for 375: Boston

Using -s prevents the text concat('No data loaded for
',station_id,': ',station_city) from being written to
load_weather.log.

In Bash, the backslash character (\) lets you continue your command on
the next line. After the -s, you use a backslash and continue on the next line
because your line of code was so long.

Next, your Bash script checks to see if any load problems are listed in the
load_weather.log file ❺. In an if statement, -s checks to see if the file size
is greater than 0 bytes. You only want to load the data into your final table,
current_weather, if there were no problems loading the data into your load
table, current_weather_load. In other words, you’ll only copy the data to
the current_weather table when the load_weather.log file is empty, or 0
bytes. You check that the logfile doesn’t have a size greater than 0 using the
syntax if [! -s load_weather.log].

Finally, in the last line of the weather.sh Bash script, you rename the
weather.csv file, adding the current date and time as a suffix. For example,
you’ll rename weather.csv to weather.csv.20240412210125 so that the next
time your Bash script is run, it won’t try to reload the same weather.csv file
❻. The mv command stands for move, and is used to rename or move files to
another directory.

Now let’s check out the results. If you are sent a weather.csv data file
with valid data, running the load_weather.sql script will result in the
current_weather_load table getting populated with values. This should
look similar to Figure 16-3.

The data in your current_weather_load table looks good. All 11 rows
that were in the CSV data file are now in the table, and the values look
reasonable for all of your columns.

On the other hand, if you’re sent a weather.csv data file with duplicate
values, or with values that are in the wrong format or out of range, the result
of running the load_weather.sql script will be that your load_weather.log
file will contain a list of the problems.

Figure 16-3: The current_weather_load table

Assuming you got valid data and copy_weather.sql ran, the
current_weather table should match Figure 16-3.

Next, you’ll create the schedule to run this Bash script using cron.

Scheduling the Bash Script on cron
Using the command crontab -e, create the following crontab entry:

*/5 * * * * /home/weather/weather.sh

The */5 in the minutes column tells cron to run this job every 5 minutes.
You can use the wildcard (*) character for all the other values (hour, day of
month, month, and day of week, respectively), since you want the script to
run for all hours, months, days, and days of the week. Figure 16-4 shows
what each piece of the crontab entry means.

Figure 16-4: Scheduling weather.sh on cron to run every 5 minutes

You then save the crontab file and exit the text editor that was launched
by the crontab -e command.

TRY IT YOURSELF
The weather.csv file contains valid weather data that will load into your
current_weather_load table without a problem:

4589,Portland,ME,43.6591,70.2568,20240211 13:26,22,14,13,NNE,2.5,29.91,1.7,34,
Heavy Snow,6:45,17:06
375,Boston,MA,42.3601,71.0589,20240211 13:27,24,15,11,NE,3.4,30.01,2.1,37,Sno
w,6:46,17:11
459,Providence,RI,41.8241,71.4128,20240211 13:26,25,15,11,SSW,3.1,27.32,1.7,3
8,Heavy Snow,6:47,17:14
778,New York,NY,40.7128,74.006,20240211 13:29,31,22,10,NE,2.2,29.83,3.3,34,Sno
w,6:55,17:26
4591,Philadelphia,PA,39.9526,75.1652,20240211 13:30,33,27,12,NW,2,29.85,5.7,8
8,Rain,6:58,17:32
753,Washington,DC,38.9072,77.0369,20240211 13:27,35,31,8,SSW,.3,30.51,8.1,74,D
rizzle,7:04,17:41
507,Richmond,VA,37.5407,77.4361,20240211 13:28,43,38,10,S,0,28.14,9.1,64,Partl
y Cloudy,7:04,17:45
338,Raleigh,NC,35.7796,78.6382,20240211 13:27,52,51,4,ESE,0,29.33,9.2,56,Partl
y Sunny,7:06,17:52
759,Charleston,SC,32.7765,79.9311,20240211 13:28,61,59,6,W,0,29.74,9.5,54,Sunn
y,7:07,18:02
103,Jacksonville,FL,30.3322,81.6557,20240211 13:26,67,62,3,WSW,0,29.77,10,55,S
unny,7:10,18:12
2746,Miami,FL,25.7617,80.1918,20240211 13:28,76,78,1,SW,0,28.14,10,67,Sunny,6:
59,18:12

16-1. Edit the CSV file using a text editor and add some invalid data. Remove a line
of data, duplicate a line of data, or replace a numeric value with a non-numeric value
like an X. Rerun the weather.sh Bash script, either using cron or by changing
directories to /home/weather/ and typing ./weather.sh to manually run the script.

Check the contents of the load_weather.log file. Does it list the data issues that
you put in the CSV file?

In the weather database, check the contents of the current_weather_load and
current_weather tables using the select * from syntax. Does the current_weather
table still contain the data from the last valid data load?

Alternative Approaches
As the saying goes, there are many ways to skin a cat. Likewise, there are
many other ways you could have approached this project using what you’ve
learned so far.

You could have loaded the data from the CSV file directly to the final
current_weather table, but using an interim load table enables you to

correct any data issues behind the scenes without affecting user-facing data.
If the CSV file comes to you with data problems like duplicate records,
incorrectly formatted column values, or out-of-range values, your load into
the current_weather_load table will fail. While you work with the CSV
file supplier to get a corrected file, your application will continue using the
existing data in the current_weather table and your users won’t be affected
(though the weather data they see won’t be as up to date as it normally
would be).

If your weather data provider had an application programming interface
(API) available, you could have received this weather data from an API
rather than loading a CSV data file. An API is another way to exchange
data between two systems, but an in-depth discussion is beyond the scope
of this book.

You created a primary key and several other constraints on your
current_weather_load table. You wouldn’t do this in cases where you
need to load a large number of records from a file into a table. For
performance reasons, you’d choose to load the data into a table that has no
constraints. As each row is being written into the table, MySQL needs to
check that the constraints aren’t being violated, which takes time. In your
weather project, however, there were only 11 rows being loaded, so the load
time was almost instantaneous even with the constraints.

You could have added a line of code to the Bash script, weather.sh, to
have it notify you and the data provider by email or text whenever there’s a
problem loading the data. This wasn’t included in the project because it
requires a bit of setup. To learn more, use the man command to look up the
mailx, mail, or sendmail commands (for example, man mailx).

Also, your database credentials are hardcoded in your weather.sh Bash
script so that the script can call the MySQL command line client. When you
load the data, MySQL gives you the warning Using a password on the
command line interface can be insecure. It would be worth
restructuring the code so that it hides your database user ID and password
or using the mysql_config_editor utility shown in Chapter 14.

Summary

In this project, you scheduled a cron job to execute a Bash script that checks
for the arrival of a CSV data file containing current weather data. When the
file arrived, you loaded it into your MySQL database. You also checked for
problems loading the data and, once it loaded cleanly, transferred the data to
your final weather table.

In the next project, you’ll use triggers to track changes to voter data in a
MySQL database.

17
TRACKING CHANGES TO VOTER

DATA WITH TRIGGERS

In this chapter, you’ll build a voting
database that stores data for an election.
You’ll improve the quality of your data
by designing the database with
constraints, including primary and

foreign keys, and using triggers to prevent bad data
from being entered. You’ll also use triggers to track
changes to your database so that if data quality issues
arise, you have a record of who made the changes and
when.

You’ll allow poll workers to change data when appropriate, so it’s
important to build a system that prevents errors from being made. The
techniques in this chapter can be applied to a wide variety of applications
and situations. The quality of your data is crucial, so it’s worth setting up
your database in a way that keeps your data as accurate as possible.

NOTE

This is quite a large project, so you may want to approach it by
tackling the sections on different days.

Setting Up the Database
First, you’ll create the database and take a look at its tables. The ballot for
your election has races for mayor, treasurer, school committee, the board of
health, and the planning board. Figure 17-1 shows the ballot you’ll use for
your database.

Figure 17-1: The ballot for your election

This election uses optical scan voting machines that read the ballots and
save the voting data to your MySQL database.

Create the voting database:

create database voting;

Now you can begin adding tables.

Creating the Tables
You’ll create the following tables within your voting database:

beer A table that contains data about beer.
voter People who are eligible to vote in this election
ballot The voter’s ballot
race The races on the ballot (for example, Mayor, Treasurer)
candidate The candidates running
ballot_candidate The candidates that the voter selected on their ballot

The entity relationship diagram (ERD) in Figure 17-2 shows these tables
and their columns, as well as the primary and foreign key relationships
between them.

Figure 17-2: The tables in your voting database

Voters will cast a ballot with the candidates that they selected for each
race.

The voter Table
The voter table will store information about each voter, such as name,
address, and county. Create the table as follows:

use voting;

create table voter
 (
 voter_id int primary key au
to_increment,
 voter_name varchar(100) not null,
 voter_address varchar(100) not null,
 voter_county varchar(50) not null,
 voter_district varchar(10) not null,
 voter_precinct varchar(10) not null,
 voter_party varchar(20),
 voting_location varchar(100) not null,
 voter_registration_num int not null un
ique
);

The voter_id column is the primary key for the table. Creating this
primary key not only will speed up joins that use the voter table, but also
will make sure that no two rows in the table have the same voter_id value.

You set voter_id to auto_increment so that MySQL will automatically
increase the voter_id value with each new voter you add to the table.

You can’t have two voters with the same registration number, so you set
the voter_registration_num column to unique. If a new voter is added to
the table with the same voter_registration_num as an existing voter, that
new row will be rejected.

All of the columns are defined as not null except for the voter_party
column. You’ll allow a row to be saved in the table with a null voter_party,
but if any other columns contain a null value, the row will be rejected.

The ballot Table
The ballot table holds information about each ballot, including the ballot
number, the voter who completed the ballot, when the ballot was cast, and
whether the ballot was cast in person or absentee. Create the ballot table
like so:

create table ballot
 (
 ballot_id int primary key auto_i

ncrement,
 voter_id int not null uniqu
e,
 ballot_type varchar(10) not null,
 ballot_cast_datetime datetime not null defaul
t now(),
 constraint foreign key (voter_id) references voter(voter_
id),
 constraint check(ballot_type in ('in-person', 'absente
e'))
);

The ballot_id column is your primary key in this table, and its values
automatically increment as you insert new ballot rows into the table.

You use a unique constraint for the voter_id column to ensure there is
only one ballot in the table per voter. If a voter tries to cast more than one
ballot, only the first ballot will be counted; subsequent ballots will be
rejected.

The ballot_cast_datetime column saves the date and time that the
ballot was cast. You set a default so that if a value isn’t provided for this
column, the now() function will write the current date and time to it.

You put a foreign key constraint on the ballot table’s voter_id column
to reject any ballots submitted by a voter whose information is not in the
voter table.

Lastly, you add a check constraint to the ballot_type column that allows
only the values in-person or absentee. Any rows with other ballot types
will be rejected.

The race Table
The race table stores information about each race in your election, including
the name of the race and how many candidates voters can vote for in it.
You’ll create it like so:

create table race
 (
 race_id int primary key a
uto_increment,
 race_name varchar(100) not null u
nique,

 votes_allowed int not null
);

The race_id column is the primary key for this table, and is set to
automatically increment. You define the race_name column with a unique
constraint so that two races of the same name, like Treasurer, can’t be
inserted into the table.

The votes_allowed column holds the number of candidates voters can
select in this race. For example, voters can choose one candidate for the
mayoral race, and two for the school committee race.

The candidate Table
Next, you’ll create the candidate table, which stores information about the
candidates who are running:

create table candidate
 (
 candidate_id int primary key a
uto_increment,
 race_id int not null,
 candidate_name varchar(100) not null u
nique,
 candidate_address varchar(100) not null,
 candidate_party varchar(20),
 incumbent_flag bool,
 constraint foreign key (race_id) references race(race_id)
);

The candidate_id column is the primary key for this table. This not only
prevents duplicate rows from being entered by mistake, but also enforces a
business rule—a requirement or policy about the way your system operates
—that a candidate can run for only one race. For example, if a candidate
tries to run for both mayor and treasurer, the second row would be rejected.
You also define the candidate_id column to automatically increment.

The race_id column stores the ID of the race in which the candidate is
running. The race_id is defined as a foreign key to the race_id column in
the race table. This means that there can’t be a race_id value in the
candidate table that isn’t also in the race table.

You define candidate_name as unique so that there can’t be two
candidates in the table with the same name.

THE ORDER OF TABLE CREATION

When you create tables that have foreign keys, the order of creation matters. For
example, the candidate table has a foreign key column called race_id that references
the race_id column of the race table. For that reason, you need to create the race table
before you create the candidate table. If you try to create the candidate table first, you’ll
get an error:

Error Code: 1824. Failed to open the referenced table 'race'

MySQL is letting you know that you defined a foreign key that points to the race table,
which doesn’t exist yet.

The ballot_candidate Table
Now, you’ll create your final table, ballot_candidate. This table tracks
which candidates received votes on which ballot.

create table ballot_candidate
 (
 ballot_id int,
 candidate_id int,
 primary key (ballot_id, candidate_id),
 constraint foreign key (ballot_id) references ballot(ball
ot_id),
 constraint foreign key (candidate_id) references candidat
e(candidate_id)
);

This is an associative table that references both the ballot and candidate
tables. The primary key for this table comprises both the ballot_id and
candidate_id columns. This enforces a rule that no candidate can get more
than one vote from the same ballot. If someone attempted to insert a
duplicate row with the same ballot_id and candidate_id, the row would
be rejected. Both columns are also foreign keys. The ballot_id column is
used to join to the ballot table and candidate_id is used to join to the
candidate table.

By defining your tables with these constraints, you’re improving the
quality and integrity of the data in your database.

TRY IT YOURSELF
17-1. Create the voting database and its tables using the create database and create
table statements shown previously.
17-2. Add a row to the voter table using this insert statement:

insert into voter
(
 voter_name,
 voter_address,
 voter_county,
 voter_district,
 voter_precinct,
 voter_party,
 voting_location,
 voter_registration_num
)
values
(
 'Susan King',
 '12 Pleasant St. Springfield',
 'Franklin',
 '12A',
 '4C',
 'Democrat',
 '523 Emerson St.',
 129756
);

17-3. Query the voter table using the select * from voter; syntax. Notice that the
row you inserted in Exercise 17-2 has a value for the voter_id column. You didn’t
provide a voter_id value in your insert statement, so how do you think that value got
there? Is there anything about the create table statement that would explain it?

17-4. Try to insert rows in the tables that violate your business rules. For example,
insert a new voter row with the same voter_registration_num as an existing row in
the voter table. Or insert a new row into the ballot table with a voter_id that doesn’t
exist in the voter table.

Are the constraints you defined when you created the tables working to prevent bad
data from being entered?

Adding Triggers
You’ll create several triggers on your tables to enforce business rules and
track changes to your data for auditing purposes. These triggers will fire

before or after a row is inserted, updated, or deleted from a table.

NOTE

In this chapter, you’ll focus mostly on building the triggers for the
voter and ballot tables. The code for the other triggers (relating to
the race, candidate, and ballot_candidate tables) is similar and
can be found on GitHub at https://github.com/ricksilva/mysql_cc/blo
b/main/chapter_17.sql.

Before Triggers
You’ll use triggers that fire before data gets changed to prevent data that
doesn’t adhere to your business rules from being written to your tables. In C
hapter 12, you created a trigger that changed credit scores that were below
300 to exactly 300 right before the data was saved to a table. For this
project, you’ll use before triggers to make sure voters don’t overvote, or vote
for more candidates than allowed for that race. You’ll also use before
triggers to prevent particular users from making changes to some of your
tables. Not every table will need a before trigger.

Business Rules
You’ll enforce a few business rules using before triggers. First, although all
poll workers are allowed to make changes to the ballot and
ballot_candidate tables, only the secretary of state is allowed to make
changes to data in the voter, race, and candidate tables. You’ll create the
following before triggers to enforce this business rule:

tr_voter_bi Prevents other users from inserting voters
tr_race_bi Prevents other users from inserting races
tr_candidate_bi Prevents other users from inserting candidates
tr_voter_bu Prevents other users from updating voters
tr_race_bu Prevents other users from updating races
tr_candidate_bu Prevents other users from updating candidates
tr_voter_bd Prevents other users from deleting voters
tr_race_bd Prevents other users from deleting races
tr_candidate_bd Prevents other users from deleting candidates

https://github.com/ricksilva/mysql_cc/blob/main/chapter_17.sql

These triggers will prevent users from making changes and will display
an error message explaining that only the secretary of state is allowed to
change this data.

Second, voters are allowed to select a certain number of candidates for
each race. It’s fine for voters to select no candidates for a race, or to select
fewer than the maximum allowed number of candidates for a race, but they
may not select more than the maximum number of candidates allowed.
You’ll prevent overvoting by creating the tr_ballot_candidate_bi trigger.

These are all the before triggers you’ll need for this project. Remember,
some tables won’t have before triggers.

Before Insert Triggers
You’ll need four before insert triggers for your project. Three of them will
prevent users other than the secretary of state from inserting data in your
voter, race, and candidate tables. The other before insert trigger will
prevent voters from voting for too many candidates in a race.

In Listing 17-1, you write the before insert trigger to prevent users other
than the secretary of state from inserting new rows in your voter table.

drop trigger if exists tr_voter_bi;

delimiter //

create trigger tr_voter_bi
 before insert on voter
 for each row
begin
 if user() not like 'secretary_of_state%' then

 ❶ signal sqlstate '45000'
 set message_text = 'Voters can be added only by the Secre
tary of State';
 end if;
end//

delimiter ;

Listing 17-1: Defining the tr_voter_bi trigger

First, in case the trigger already exists, you drop it before you re-create it.
You define the tr_voter_bi trigger as a before insert trigger. For each
row being inserted into the voter table, you check that the name of the user
inserting the new voter starts with the text secretary_of_state.

The user() function returns both the username and the hostname, like
secretary_of_state@localhost. If that string doesn’t start with the text
secretary_of_state, it means somebody other than the secretary of state is
trying to insert a voter record. In that case, you’ll send an error message with
the signal statement ❶.

You might remember from Chapter 12 that sqlstate is a five-character
code that identifies errors and warnings. The value you used, 45000, is an
error condition that causes your trigger to exit. This prevents the row from
being written to the voter table.

You can define the message to display by using the set message_text
syntax. Notice that this line is a part of the signal command, as there is no
semicolon at the end of the signal line. You could have combined these two
lines into one, like this:

signal sqlstate '45000' set message_text = 'Voters can be add
ed only...';

This tr_voter_bi trigger prevents users other than the secretary of state
from inserting voter rows.

TRY IT YOURSELF
17-5. Write similar before insert triggers for the race and candidate tables to prevent
users other than the secretary of state from inserting new races and candidates.

To test these triggers, first log in to MySQL Workbench and insert a row into the
tables. For example, for the race table, you could run this SQL:

insert into race (race_name, votes_allowed)
values ('Dog Catcher', 1);

You should get the error message Voters can be added only by the Secretary of
State.

Create a new MySQL user for the secretary of state like so:

create user secretary_of_state@localhost identified by 'v0t3';

This creates the secretary_of_state@localhost user with a password of v0t3.

Grant the new user permissions using this command:

grant all privileges on *.* to secretary_of_state@localhost;

(Granting superuser privileges on everything is normally a bad idea, but we’ll do it just
for this test.)

Now create a MySQL Workbench connection using secretary_of_state@localhost
as shown in the following figure.

Run the SQL to add a new race:

insert into race (race_name, votes_allowed)
values ('Dog Catcher', 1);

Now, because you’re running the insert statement using the secretary of state's
username, inserting the new race should succeed.

Now, write your tr_ballot_candidate_bi trigger to prevent voters from
voting for too many candidates in a race (Listing 17-2).

drop trigger if exists tr_ballot_candidate_bi;

delimiter //

create trigger tr_ballot_candidate_bi
 before insert on ballot_candidate
 for each row
begin

 declare v_race_id int;
 declare v_votes_allowed int;
 declare v_existing_votes int;
 declare v_error_msg varchar(100);
 declare v_race_name varchar(100);

❶ select r.race_id,
 r.race_name,
 r.votes_allowed

❷ into v_race_id,
 v_race_name,
 v_votes_allowed
 from race r
 join candidate c
 on r.race_id = c.race_id
 where c.candidate_id = new.candidate_id;

❸ select count(*)
 into v_existing_votes
 from ballot_candidate bc
 join candidate c
 on bc.candidate_id = c.candidate_id
 and c.race_id = v_race_id
 where bc.ballot_id = new.ballot_id;

 if v_existing_votes >= v_votes_allowed then
 select concat('Overvoting error: The ',
 v_race_name,
 ' race allows selecting a maximum of ',
 v_votes_allowed,
 ' candidate(s) per ballot.'
)
 into v_error_msg;

 ❹ signal sqlstate '45000' set message_text = v_error_msg;
 end if;
end//

delimiter ;

Listing 17-2: Defining the tr_ballot_candidate_bi trigger

Before a new row is inserted into the ballot_candidate table, your
trigger finds the number of votes allowed for that race. Then, it checks how
many existing rows are in the ballot_candidate table for this ballot and

this race. If the number of existing votes is greater than or equal to the
maximum allowed, the new row is prevented from being inserted. (The
number of existing votes should never be greater than the maximum
allowed, but you’ll check just for completeness.)

You declare five variables in your trigger: v_race_id holds the race ID,
v_race_name holds the name of the race, v_existing_votes stores the
number of votes that have already been cast on this ballot for candidates in
this race, v_votes_allowed holds the number of candidates that voters are
allowed to select in this race, and the v_error_msg variable holds an error
message to display to the user in case too many candidates have been
selected.

NOTE

In this example, you’ve declared each variable on its own line, but
you could also declare groups of variables that have the same data
types like so:

declare v_race_id, v_votes_allowed, v_existing_votes in
t;
declare v_error_msg, v_race_name varchar(100);

Notice that all of the int variables are declared together on the
same line, and all of the varchar(100) variables are declared
together.

In the first select statement ❶, you use the candidate_id that is about to
be inserted in the table—new.candidate_id—to get information about the
race the candidate is running for. You join to the race table and get the
race_id, race_name, and votes_allowed for the race and save them to
variables ❷.

In your second select statement, you get a count of how many votes
already exist in the ballot_candidate table for this race and this ballot ❸.
You join to the candidate table to get the list of candidates that are running
for this race. Then you count the number of rows in the ballot_candidate
table with a row that has one of those candidates and this ballot ID.

If the ballot_candidate table already has the maximum number of votes
for this ballot and this race, you’ll use the signal command with a sqlstate
code of 45000 to exit from the trigger and prevent the new row from being
written to the ballot_candidate table ❹. You’ll display the error message
that you stored in the v_error_msg variable to the user:

Overvoting error: The Mayor race allows selecting a maximum o
f 1 candidate(s) per ballot.

Before Update Triggers
You also need to prevent users other than the secretary of state from
updating voter rows by writing a tr_voter_bu trigger, as shown in Listing 1
7-3.

drop trigger if exists tr_voter_bu;

delimiter //

create trigger tr_voter_bu
 before update on voter
 for each row
begin
 if user() not like 'secretary_of_state%' then
 signal sqlstate '45000'
 set message_text = 'Voters can be updated only by the Sec
retary of State';
 end if;
end//

delimiter ;

Listing 17-3: Defining the tr_voter_bu trigger

This trigger will fire before a row is updated in the voter table.
Although the before insert and before update triggers are similar, there is

no way to combine them into one trigger. MySQL doesn’t have a way to
write a before insert or update trigger; it requires you to write two
separate triggers instead. You can, however, call stored procedures from
triggers. If two triggers shared similar functionality, you could add that
functionality to a stored procedure and have each trigger call that procedure.

TRY IT YOURSELF
17-6. Using the tr_voter_bu trigger as a model, write the before update triggers for
the race and candidate tables.

Before Delete Triggers
Next you’ll write the tr_voter_bd trigger to prevent any user other than the
secretary of state from deleting voter data (Listing 17-4).

drop trigger if exists tr_voter_bd;

delimiter //

create trigger tr_voter_bd
 before delete on voter
 for each row
begin
 if user() not like 'secretary_of_state%' then
 signal sqlstate '45000'
 set message_text = 'Voters can be deleted only by the Sec
retary of State';
 end if;
end//

delimiter ;

Listing 17-4: Defining the tr_voter_bd trigger

TRY IT YOURSELF
17-7. Using the tr_voter_bd trigger as a model, write the before delete triggers for the
race and candidate tables.

After Triggers
You’ll be writing triggers that fire after your data is inserted, updated, or
deleted to track the changes made to your tables. But since the purpose of
after triggers is to write rows to the audit tables, you need to create those

audit tables first. These audit tables save a record of the changes made to the
data in your tables, similar to those you saw in Chapter 12.

Audit Tables
Name your audit tables with the _audit suffix. For example, you’ll track
changes made to the voter table in the voter_audit table. You’ll name all
audit tables this way so it’s clear what data they’re tracking.

Create the audit tables as shown in Listing 17-5.

create table voter_audit
(
 audit_datetime datetime,
 audit_user varchar(100),
 audit_change varchar(1000)
);

create table ballot_audit
(
 audit_datetime datetime,
 audit_user varchar(100),
 audit_change varchar(1000)
);

create table race_audit
(
 audit_datetime datetime,
 audit_user varchar(100),
 audit_change varchar(1000)
);

create table candidate_audit
(
 audit_datetime datetime,
 audit_user varchar(100),
 audit_change varchar(1000)
);

create table ballot_candidate_audit
(
 audit_datetime datetime,
 audit_user varchar(100),
 audit_change varchar(1000)
);

Listing 17-5: Creating audit tables before defining your after triggers

All of your audit tables are defined with the same structure. Each table
has an audit_datetime column that contains the date and time that the
change was made, an audit_user column that contains the name of the user
who made the changes, and an audit_change column that contains a
description of the data that was changed. When you find data in your voting
application that doesn’t seem right, you can look to these audit tables to find
out more information.

Next, for each data table you’ll create three after triggers that fire after an
insert, update, or delete. The names of the triggers are shown in Table 17
-1.

Table 17-1: After Trigger Names

Table After insert triggers After update triggers After delete triggers
voter tr_voter_ai tr_voter_au tr_voter_ad

ballot tr_ballot_ai tr_ballot_au tr_ballot_ad

race tr_race_ai tr_race_au tr_race_ad

candidate tr_candidate_ai tr_candidate_au tr_candidate_ad

ballot_candidate tr_ballot_candidate_ai tr_ballot_candidate_au tr_ballot_candidate_ad

You’ll start with the after_insert trigger for each table.

After Insert Triggers
The tr_voter_ai trigger will fire after new rows are inserted into the voter
table, adding rows to the voter_audit table to track the new data (see Listin
g 17-6).

drop trigger if exists tr_voter_ai;

delimiter //

create trigger tr_voter_ai
 after insert on voter

❶ for each row
begin
 insert into voter_audit
 (

 audit_datetime,
 audit_user,
 audit_change
)
 values
 (

 ❷ now(),
 user(),
 concat(

 ❸ 'New Voter added -',
 ' voter_id: ', new.voter_id,
 ' voter_name: ', new.voter_name,
 ' voter_address: ', new.voter_address,
 ' voter_county: ', new.voter_county,
 ' voter_district: ', new.voter_district,
 ' voter_precinct: ', new.voter_precinct,
 ' voter_party: ', new.voter_party,
 ' voting_location: ', new.voting_locatio
n,
 ' voter_registration_num: ', new.voter_registrat
ion_num
)
);
end//

delimiter ;

Listing 17-6: Defining the tr_voter_ai trigger

To create the trigger, you first check if the tr_voter_ai trigger already
exists. If so, you drop it before re-creating it. Since a SQL insert statement
can insert one row or many rows, you specify that for each row being
inserted into the voter table, you want to write a single row to the
voter_audit table ❶.

In the audit_datetime column, you insert the current date and time using
the now() function ❷. In the audit_user column, you use the user()
function to insert the name of the user who made the change. The user()
function also returns the user’s hostname, so usernames are followed by an
at sign (@) and a hostname, like clerk_238@localhost.

You use the concat() function in the audit_change column to build a
string that shows the values that were inserted. You start with the text New
voter added - ❸ and get the inserted values by using the new keyword

that’s available to you in insert triggers. For example, new.voter_id
shows you the voter_id that was just inserted into the voter table.

After a new row is added to the voter table, the tr_voter_ai trigger fires
and writes a row with values like the following to the voter_audit table:

audit_datetime: 2024-05-04 14:13:04

audit_user: secretary_of_state@localhost

audit_change: New voter added – voter_id: 1 voter_name: Su
san King
 voter_address: 12 Pleasant St. Springfield
 voter_county: Franklin voter_district: 12A v
oter_precinct: 4C
 voter_party: Democrat voting_location: 523 E
merson St.
 voter_registration_num: 129756

The trigger writes the datetime, user (and hostname), and details about the
new voter to the audit table.

TRY IT YOURSELF
17-8. Using the tr_voter_ai trigger as a model, create the after insert trigger for the
ballot table. The trigger should be called tr_ballot_ai and write to the ballot_audit
table.

The trigger should use the new keyword to get the values for the columns. The
columns in the ballot table are ballot_id, voter_id, ballot_type, and
ballot_cast_datetime.

After you create the trigger, test it by inserting a new row into the ballot table, like
so:

insert into ballot
(
 voter_id,
 ballot_type,
 ballot_cast_datetime
)
values
(
 1,
 'in-person',
 now()
);

For this insert statement to work, there must first be a row with a voter_id of 1 in
the voter table, because voter_id in the ballot table is a foreign key that references
voter_id in the voter table. For this reason, you need to do Exercise 17-2 before you
do this exercise to insert that voter row.

Did the new row you inserted into the ballot table get logged to the ballot_audit
table? Query the ballot_audit table by typing select * from ballot_audit; and see
if you get the results that you expected.
17-9. Write the after insert triggers for the race, candidate, and ballot_candidate
tables. These triggers will be similar to the ones you’ve already written. You just need
to change the trigger name, the data table name, the audit table name, and the list of
columns.
To compare your code to the completed code in GitHub, go to https://github.com/ricksi
lva/mysql_cc/blob/main/chapter_17.sql.

After Delete Triggers
In Listing 17-7 you write the after delete trigger, called tr_voter_ad, which
will fire after rows are deleted from the voter table and track the deletions
in the voter_audit table.

https://github.com/ricksilva/mysql_cc/blob/main/chapter_17.sql

drop trigger if exists tr_voter_ad;

delimiter //

create trigger tr_voter_ad

❶ after delete on voter
 for each row
begin
 insert into voter_audit
 (
 audit_datetime,
 audit_user,
 audit_change
)
 values
 (
 now(),
 user(),
 concat(
 'Voter deleted -',
 ' voter_id: ', old.voter_id,
 ' voter_name: ', old.voter_name,
 ' voter_address: ', old.voter_address,
 ' voter_county: ', old.voter_county,
 ' voter_district: ', old.voter_district,
 ' voter_precinct: ', old.voter_precinct,
 ' voter_party: ', old.voter_party,
 ' voting_location: ', old.voting_locatio
n,
 ' voter_registration_num: ', old.voter_registrat
ion_num
)
);
end//

delimiter ;

Listing 17-7: Defining the tr_voter_ad trigger

You define this trigger as after delete on the voter table ❶. You use
the user() and now() functions to get the user who deleted the voter row
and the date and time at which the row was deleted. You build a string, using
the concat() function, that shows the values that were deleted.

The after delete trigger looks similar to your after insert trigger, but you
use the old keyword instead of new. You can precede your column names
with old and a period to get their value. For example, use old.voter_id to
get the value of the voter_id column for the row that was just deleted.

After a row is deleted from the voter table, the tr_voter_ad trigger fires
and writes a row to the voter_audit table with values like the following:

audit_datetime: 2024-05-04 14:28:54

audit_user: secretary_of_state@localhost

audit_change: Voter deleted – voter_id: 87 voter_name: Rut
h Bain
 voter_address: 887 Wyoming St. Centerville
 voter_county: Franklin voter_district: 12A v
oter_precinct: 4C
 voter_party: Republican voting_location: 523
Emerson St.
 voter_registration_num: 45796

The trigger writes the datetime, user (and hostname), and details about the
deleted voter record to the audit table.

TRY IT YOURSELF
17-10. Using the tr_voter_ad trigger as a model, create the after delete trigger for the
ballot table. The trigger should be called tr_ballot_ad and should write to the
ballot_audit table.

After you create the trigger, test it by deleting a row from the ballot table, like this:

delete from ballot
where ballot_id = 1;

Was the row that was deleted from the ballot table logged to the ballot_audit
table? When you run the select * from ballot_audit query, do you see a record of
the deleted row?
17-11. Create the after delete triggers for the other tables in your voter database. The
triggers should be named tr_race_ad, tr_candidate_ad, and tr_ballot_candidate_ad.
The triggers should write to the race_audit, candidate_audit, and
ballot_candidate_audit tables, respectively.

You can test the triggers by deleting rows from the race, candidate, and
ballot_candidate tables. When you query the audit tables, do you see a record of the
deleted rows?

After Update Triggers
Now you’ll write the after update trigger, tr_voter_au, which will fire after
rows in the voter table are updated and track the change in the voter_audit
table (Listing 17-8).

drop trigger if exists tr_voter_au;

delimiter //

create trigger tr_voter_au
 after update on voter
 for each row
begin
 set @change_msg = concat('Voter ',old.voter_id,' updated:
 ');

❶ if (new.voter_name != old.voter_name) then

 ❷ set @change_msg =
 concat(
 @change_msg,

 'Voter name changed from ',
 old.voter_name,
 ' to ',
 new.voter_name
);
 end if;

 if (new.voter_address != old.voter_address) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voter address changed from ',
 old.voter_address,
 ' to ',
 new.voter_address
);
 end if;

 if (new.voter_county != old.voter_county) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voter county changed from ', old.voter_county,
' to ',
 new.voter_county
);
 end if;

 if (new.voter_district != old.voter_district) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voter district changed from ',
 old.voter_district,
 ' to ',
 new.voter_district
);
 end if;

 if (new.voter_precinct != old.voter_precinct) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voter precinct changed from ',
 old.voter_precinct,
 ' to ',
 new.voter_precinct
);

 end if;

 if (new.voter_party != old.voter_party) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voter party changed from ',
 old.voter_party,
 ' to ',
 new.voter_party
);
 end if;

 if (new.voting_location != old.voting_location) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voting location changed from ',
 old.voting_location, '
 to ',
 new.voting_location
);
 end if;

 if (new.voter_registration_num != old.voter_registration_nu
m) then
 set @change_msg =
 concat(
 @change_msg,
 '. Voter registration number changed from ',
 old.voter_registration_num,
 ' to ',
 new.voter_registration_num
);
 end if;

insert into voter_audit(
 audit_datetime,
 audit_user,
 audit_change
)
values (
 now(),
 user(),

 ❸ @change_msg
);

end//

delimiter ;

Listing 17-8: Defining the tr_voter_au trigger

Because the after update trigger fires after a row gets updated in a table, it
can take advantage of both the new and old keywords. For example, you can
see if the voter_name column value was updated in the voter table by
checking new.voter_name != old.voter_name ❶. If the new value of the
voter’s name isn’t the same as the old value, it was updated, and you’ll save
that information to write to the audit table.

For your insert and delete triggers, you wrote the values for all the
columns in the voter table to the voter_audit table, but for your update
trigger, you’ll report only on the column values that changed.

For example, if you ran this update statement

update voter
set voter_name = 'Leah Banks-Kennedy',
 voter_party = 'Democrat'
where voter_id = 5876;

your update trigger would write a row to the voter_audit table with just
these changes:

audit_datetime: 2024-05-08 11:08:04

audit_user: secretary_of_state@localhost

audit_change: Voter 5876 updated: Voter name changed from
 Leah Banks
 to Leah Banks-Kennedy. Voter party changed f
rom Republican
 to Democrat

Since there were only two column values that changed, voter_name and
voter_party, you’ll write those two changes to your audit table.

To capture the changes that were made, you create a variable called
@change_msg ❷. Using if statements, you check if each column value
changed. When a column’s value has changed, you use the concat()

function to add information about that column’s changes to the end of the
existing @change_msg string variable. Once you’ve checked all of the
column values for changes, you write the value of @change_msg variable to
the audit_change column of the audit table ❸. You also write to the audit
table the username of the person who made the change to the audit_user
column, and the date and time that the change was made to the
audit_datetime column.

TRY IT YOURSELF
17-12. Using the tr_voter_au trigger as a model, create the after update trigger for
the ballot table. The trigger should be called tr_ballot_au and should write to the
ballot_audit table.

After you create the trigger, you can test it by updating a row in the ballot table:

update ballot
set ballot_type = 'absentee'
where ballot_id = 1;

Was the value that was updated in the ballot table logged to the ballot_audit
table? When you run the select * from ballot_audit query, do you see a record of
the updated value?
17-13. Create the after update triggers for the other tables in your voter database.
The triggers should be named tr_race_au, tr_candidate_au, and
tr_ballot_candidate_au. The triggers should write to the race_audit, candidate_audit,
and ballot_candidate_audit tables, respectively.

You’ve successfully built a database that not only stores your election
data, but also includes constraints and triggers that keep the data at a high
quality.

Alternative Approaches
As with the weather database project in the previous chapter, there are
numerous approaches to writing this voter database.

Audit Tables
In this project, you created five different audit tables. Instead, you could
have created just one audit table and written all of the audit records there.

Alternatively, you could have created 15 audit tables: three for each table.
For example, rather than auditing voter inserts, deletes, and updates to the
voter_audit table, you could have audited new voters to a table called
voter_audit_insert, changes to voters to voter_audit_update, and
deletions to voter_audit_delete.

Triggers vs. Privileges
Rather than using triggers to control which users can update which tables,
your database administrator could have done this by granting and revoking
these privileges to and from your database users. The advantage of using
triggers is that you’re able to display a customized message to the user
explaining the problem, like Voters can be added only by the
Secretary of State.

Replacing check Constraints with New Tables
When you created the ballot table, you used the following check constraint
to make sure that the ballot_type column has a value of in-person or
absentee:

constraint check(ballot_type in ('in-person', 'absentee'))

Another approach would have been to create a ballot_type table that has
rows for each ballot type, like this:

ballot_type_id ballot_type
-------------- ---------------
 1 in-person
 2 absentee

You could have added a table, named ballot_type, and made the
ballot_type_id column the primary key. If you did, you would save the
ballot_type_id instead of the ballot_type in the ballot table. This would
look like Figure 17-3.

Figure 17-3: Creating a ballot_type table to store ballot types

One advantage to this approach is that you could add new ballot types,
like military or overseas, without having to change the definition of the
ballot table. It’s also more efficient for each row of the ballot table to
save an ID representing the ballot type, like 3, rather than saving the full
name, like absentee.

You could have used a similar approach for the voter table. Instead of
creating the voter table with the columns voter_county, voter_district,
voter_precinct, and voter_party, you could have built the table to save
just the IDs: voter_county_id, voter_district_id, voter_precinct_id,
and voter_party_id and referenced new tables named county, district,
precinct, and party to get the list of valid IDs.

There is plenty of room for creativity when creating databases, so don’t
feel as though you need to strictly follow the approach I’ve used in this
project. Try any of these alternative approaches and see how they work for
you!

Summary
In this chapter, you built a voting database that stores data for an election.
You prevented data integrity problems using constraints and triggers, and
tracked changes to your data using audit tables. You also saw some possible
alternative approaches to this project. In the third and final project, you’ll
use views to hide sensitive salary data.

18
PROTECTING SALARY DATA WITH

VIEWS

In this project, you’ll use views to hide
sensitive salary data in an employee
table. The company in question has one
database user from each department
(Human Resources, Marketing,

Accounting, Technology, and Legal) who is allowed
access to most employee data. However, only users
from Human Resources should be able to access the
employees’ salaries.

Views can hide sensitive data, but they can also be used to simplify
access to a complex query, or to select just the relevant data in a table—for
example, to show just the table’s rows for a particular department.

Creating the employee Table
Start by creating your business database:

create database business;

Next, create an employee table that stores information about each
employee in the company, including full name, job title, and salary:

use business;

create table employee
(
 employee_id int primary key auto_increm
ent,
 first_name varchar(100) not null,
 last_name varchar(100) not null,
 department varchar(100) not null,
 job_title varchar(100) not null,
 salary decimal(15,2) not null
);

Since you created the employee_id column as auto_increment, you
don’t need to provide an employee_id value when inserting new rows into
the employee table. MySQL keeps track of that for you, and makes sure that
the employee_id value gets higher with each row you insert. Add the
following data to your table:

insert into employee(first_name, last_name, department, job_t
itle, salary)
values ('Jean',' Unger', 'Accounting', 'Bookkeeper', 81200);

insert into employee(first_name, last_name, department, job_t
itle, salary)
values ('Brock', 'Warren', 'Accounting', 'CFO', 246000);

insert into employee(first_name, last_name, department, job_t
itle, salary)
values ('Ruth', 'Zito', 'Marketing', 'Creative Director', 178
000);

insert into employee(first_name, last_name, department, job_t
itle, salary)
values ('Ann', 'Ellis', 'Technology', 'Programmer', 119500);

insert into employee(first_name, last_name, department, job_t
itle, salary)
values ('Todd', 'Lynch', 'Legal', 'Compliance Manager', 15700
0);

Now, query the table to see the inserted rows:

select * from employee;

The result is as follows:

employee_id first_name last_name department job_title
salary
----------- ---------- --------- ---------- -------------
----- ---------
1 Jean Unger Accounting Bookkeeper
81200.00
2 Brock Warren Accounting CFO
246000.00
3 Ruth Zito Marketing Creative Dire
ctor 178000.00
4 Ann Ellis Technology Programmer
119500.00
5 Todd Lynch Legal Compliance Ma
nager 157000.00

The employee table data looks good, but you want to hide the salary
column from everyone except the Human Resources user so that coworkers
can’t access one another’s sensitive information.

Creating the View
Instead of allowing all database users to access the employee table, you’ll
let them access a view called v_employee that has the columns from the
employee table minus the salary column. As discussed in Chapter 10, a
view is a virtual table based on a query. Create the view like so:

create view v_employee as
select employee_id,
 first_name,
 last_name,
 department,
 job_title
from employee;

You’ve left out the salary column from the select statement, so it
shouldn’t appear in your result once you query your view:

select * from v_employee;

The result is as follows:

employee_id first_name last_name department job_title
----------- ---------- --------- ---------- -------------

1 Jean Unger Accounting Bookkeeper
2 Brock Warren Accounting CFO
3 Ruth Zito Marketing Creative Dire
ctor
4 Ann Ellis Technology Programmer
5 Todd Lynch Legal Compliance Ma
nager

As expected, the v_employee view contains every column except for
salary.

Next, you’ll change the permissions of the employee database to allow
Human Resources to make changes in the underlying employee table. Since
v_employee is a view, the changes to employee will be immediately
reflected there.

Controlling Permissions
To adjust the permissions in your database, you’ll use the grant command,
which grants privileges to MySQL database users and controls which users
can access which tables.

You have one database user per department: accounting_user,
marketing_user, legal_user, technology_user, and hr_user. Grant
access to the employee table to only hr_user by entering the following:

grant select, delete, insert, update on business.employee to
 hr_user;

You’ve granted hr_user the ability to select, delete, insert, and update
rows in the employee table in the business database. You won’t grant that
access to the users from other departments. For example, if
accounting_user tries to query the employee table, they’ll get the
following error message:

Error Code: 1142. SELECT command denied to user 'accounting_u
ser'@'localhost'
for table ‘employee’

Now you’ll grant select access to your v_employee view to your users
from all of your departments:

grant select on business.v_employee to hr_user@localhost;
grant select on business.v_employee to accounting_user@localh
ost;
grant select on business.v_employee to marketing_user@localho
st;
grant select on business.v_employee to legal_user@localhost;
grant select on business.v_employee to technology_user@localh
ost;

All of your departments’ users can select from the v_employee view to
access the employee data they need.

REVOKING PRIVILEGES

If a user has already been granted access that you want to take away, you (or your
DBA) can use the revoke command, like so:

revoke select, delete, insert, update
on business.employee from legal_user@localhost;

This command revokes select, delete, insert, and update access on the employee
table for legal_user.

For this project, you can grant privileges using the root superuser
account that was created when you installed MySQL (see Chapter 1). In a
live production environment, your DBA would typically create other
accounts rather than using root, which has all privileges and can do

anything. In a professional setting, very few people know the root
password. A DBA can also define permissions to a role and then add or
remove users as members of that role, but a detailed discussion of roles is
beyond the scope of this book.

Using MySQL Workbench to Test User
Access
You’ll use MySQL Workbench with this project and connect as root to
create the database, tables, and departments’ users. Then, you’ll create
separate connections as hr_user and accounting_user to see how their
access differs.

NOTE

You could use another tool, like the MySQL command line client or
MySQL Shell, but I like the ease with which you can test different
users’ access by clicking a MySQL Workbench connection and
logging in as that user.

First, create a connection for the root user, using the password that you
created when you installed MySQL. To create the connection, click the +
icon next to the text MySQL Connections on the Welcome to MySQL
Workbench screen, as shown in Figure 18-1.

Figure 18-1: Creating a MySQL Workbench connection

The Setup New Connection window will open, as shown in Figure 18-2.
Here, enter a connection name (I chose to give the connection the same
name as the user: root) and enter root as the username.

Figure 18-2: Creating a MySQL Workbench connection for root

To save the connection, click OK. Now you can log in as root in the
future simply by clicking the connection.

Since root is a superuser account that has all privileges and can grant
privileges to other users, you’ll use this connection to run the script to
create the database, tables, view, and users for your departments. Figure 18-
3 shows the end of that script, but you’ll need to run the full one at https://gi
thub.com/ricksilva/mysql_cc/blob/main/chapter_18.sql.

https://github.com/ricksilva/mysql_cc/blob/main/chapter_18.sql

Figure 18-3: Creating tables, view, and users and granting access using MySQL Workbench

Now that you’ve run the script to create usernames for your departments,
you’ll create MySQL Workbench connections for hr_user and
accounting_user. Figure 18-4 shows how to set up a new connection for
hr_user.

To create the connection for hr_user, you entered a connection name and
username of hr_user. You’ll create a connection for accounting_user the
same way, using accounting_user for both the connection name and
username.

Figure 18-4: Creating a MySQL Workbench connection for hr_user

Now you have three connections in MySQL Workbench that you can use,
as shown in Figure 18-5.

Figure 18-5: MySQL Workbench connections for root, hr_user, and accounting_user

The connections appear with the names you used when you created them.
You can log in to MySQL as each user by clicking the corresponding
connection.

You can also open multiple connections at once. Open a connection as
hr_user, then click the home icon at the top left to return to the welcome
screen. From here, open another connection as accounting_user by
clicking its connection.

You now should see two tabs in MySQL Workbench, labeled hr_user
and accounting_user, as shown in Figure 18-6.

Figure 18-6: You can have multiple connections open in MySQL Workbench.

Simply click the appropriate tab to run queries as that user. Click the
hr_user tab to query the employee table as hr_user (Figure 18-7).

Figure 18-7: Querying the employee table as hr_user

Now, click the accounting_user tab and query the employee table again,
as shown in Figure 18-8.

Figure 18-8: The accounting_user cannot view the employee table.

Because you as root haven’t granted access on the employee table to
accounting_user, the error SELECT command denied is returned. The
accounting_user can, however, select from the v_employee view, so the
user can see employee data without the salaries (Figure 18-9).

Figure 18-9: The accounting_user is able to query the v_employee view.

Your other database users have the same privileges as accounting_user,
meaning they can’t query the employee table either, because you haven’t
granted them access.

TRY IT YOURSELF
18-1. Log in as root and create a view called v_employee_fn_dept that has just the
first_name and department columns from the employee table. Query the view. Do you
see the results you expected?

An Alternative Approach
There’s another way to hide data from particular users. MySQL allows you
to grant permissions at the column level; for example, you could grant the
select privilege on all the columns in the employee table except for
salary:

grant select(employee_id, first_name, last_name, department,
 job_title)
on employee
to technology_user@localhost;

This allows technology_user to select any or all of the employee_id,
first_name, last_name, department, or job_title columns from the
table, like so:

select employee_id,
 first_name,
 last_name
from employee;

The result is:

employee_id first_name last_name
----------- ---------- ---------
 1 Jean Unger
 2 Brock Warren
 3 Ruth Zito
 4 Ann Ellis
 5 Todd Lynch

Since you haven’t granted select access on the salary column, MySQL
will prevent technology_user from selecting that column:

select salary
from employee;

The result is an error message:

SELECT command denied to user 'technology_user'@'localhost' f
or table 'employee'

If technology_user tries to select all columns using the * wildcard, they
will receive the same error message, because they cannot return the salary
column. For this reason, I don’t favor this approach, as it can lead to
confusion. It’s more straightforward to allow users to access all permissible
tables through a view.

Summary
In this project, you used a view to hide salary information from particular
users. This technique could be used to hide any kind of sensitive data in
your tables. You also learned how granting and revoking privileges for
database users can help to create secure databases by exposing certain
pieces of data to specific users.

With these three projects under your belt, you’ll be able to build your
own databases, load data from files, create triggers to maintain the quality
of your data, and use views to protect sensitive data.

Good luck on the next stage of your MySQL journey!

AFTERWORD

Congratulations! You’ve learned a great
deal about MySQL development and
you’ve applied that new knowledge to
real-world projects.

One concept I hope has come through in this book is that there are many
ways to skin a MySQL cat. There’s plenty of room for creativity in
designing and developing databases. You can use your knowledge of
MySQL to build highly customized systems for your particular needs and
interests, from your favorite baseball statistics to your startup’s customer
list to a massive web-facing database of corporate takeovers.

To dig deeper into MySQL development, you can load public datasets of
interest into your own MySQL database. Websites like https://data.gov and
https://www.kaggle.com contain data that’s free to use. (Remember to check
the terms of the particular datasets you’d like to work with, however.) See if
you can load datasets from different sources into MySQL tables and join
them in a way that produces new or interesting insights.

I congratulate you on how far you’ve come. Learning to think in rows
and columns is no small feat. I hope you’ll continue to take the time to learn
new skills all throughout your life. Knowledge is definitely power.

https://data.gov/
https://www.kaggle.com/

Index

Please note that index links to approximate location of each term.

Symbols
+ (addition operator), 125
@ (at sign), 176
\\ (backslash escape sequence), 42
` (backtick), 32
\r (carriage return escape sequence), 42
{} (curly brackets), 250
/ (division operator), 125
\" (double quote escape sequence), 42
= (equal comparison operator), 68, 80, 86
> (greater than comparison operator), 86, 88
>= (greater than or equal to comparison operator), 86, 88
< (less than comparison operator), 86, 88
<= (less than or equal to comparison operator), 86, 89
% (modulo operator), 125
* (multiplication operator), 125
\n (newline escape sequence), 42
<> (not equal comparison operator), 86–88

!= (not equal comparison operator), 58, 86–87
? (placeholder), 241, 245, 252
%s (placeholder), 252
:: (scope resolution operator), 240
- (subtraction operator), 125
\t (tab escape sequence), 42
@ (user variable), 176
_ (wildcard character), 92
* (wildcard character), 29, 160
% (wildcard character), 92

A
abs() function, 128
addition operator (+), 125
after delete triggers, 199, 293
after insert triggers, 196, 291
after update triggers, 200, 295
aggregate functions, 105

avg(), 107
count(), 105
max(), 106
min(), 107
sum(), 107

aliasing
columns, 60
tables, 53

altering tables, 22, 222
alter table command, 22, 222
American National Standards Institute (ANSI), xxiv
and keyword, 68, 97
application programming interface (API), 275
arguments, 100

optional, 101
vs. parameters, 171
specifying more than one, 101

arithmetic operators. See mathematical operators
arrays, PHP, 240
ascending order, 30
asc keyword, 30
associative tables, 68, 282
at keyword, 211
at sign (@) before user variable, 176
audit tables, 195, 290, 299
auto_increment attribute, 147, 280, 302
avg() function, 107

B
backslash escape sequence (\\), 42
backticks (`), wrapping column names in, 32
Bash, 263, 269, 272–273, 276

shebang, 272
before delete triggers, 206, 289

before insert triggers, 203, 284
before update triggers, 204, 288
begin keyword, 170, 172
between comparison operator, 86, 91
binary data types, 43

binary, 43
bit, 44
BLOB. See BLOB data types
varbinary, 43

BLOB data types, 43
blob, 43
longblob, 43
mediumblob, 43
tinyblob, 43

boolean values, 46, 95
checking, 95
is false, 95
is true, 95
using _flag suffix with, 46, 68

browsing database objects in MySQL Workbench, 228
business rules, 281, 284
bytecode, Java, 254

C
calling MySQL

from Java, 253

from PHP, 238
from programming languages, 237
from Python, 250

call statements, 166
carriage return escape sequence (\r), 42
Cartesian product, 56
case operator, 139
case sensitivity, 30
case statements, 180
cast() function, 135
ceiling() function, 129
characteristics in functions, 171

contains sql, 172
deterministic, 171
modifies sql data, 172
no sql, 172
not deterministic, 171
reads sql data, 172

character sets, 30
check constraint, 20, 268, 281, 299
checking current database, 221
client/server architecture, 4
coalesce() function, 136
Codd, E.F., xxi
collations, 30
column-level permissions, 310

columns
aliasing, 60
creating, 12
defining data types for, 12, 37
inserting null values into, 144
inserting sequences of numbers, 147
naming, 32
omitting names, 145, 147
updating multiple, 153

combining functions, 116
command line interface, 6
command prompt, 6
comma-separated values (CSV) file, 233, 261, 265, 267, 270, 273, 275
commenting SQL, 33–34
Common Table Expressions (CTEs), 75

vs. derived tables, 78
recursive, 76

comparing values, 85
comparison operators, 58, 85

between, 86, 91
data types and, 87
= (equal), 86
exists, 94
> (greater than), 86, 88
>= (greater than or equal to), 86, 88
in, 86, 90

is not null, 86, 89
is null, 86, 89
< (less than), 86, 88
<= (less than or equal to), 86, 89
like, 86, 91
not between, 86, 91
<> (not equal), 86–88
!= (not equal), 86–87
not in, 86, 90
not like, 86, 93

composite keys, 14
concat() function, 112
condition handlers, 188

continue keyword, 188
exit keyword, 188

configuring MySQL for loading data to and from files, 234
connections, MySQL Workbench, 306
console, 6
constraints, 13, 268, 277

check, 20, 268, 281, 299
composite keys, 14
data integrity and, 13
default, 20
foreign keys, 15, 280
not null, 18, 268, 280
primary keys, 13, 153, 268, 280

unique, 19, 280
contains sql characteristic, 172
continue keyword, 188
controlling permissions, 303, 310
correlated subqueries, 81
cos() function, 134
count() function, 105
create database command, 11
create event command, 211
create function syntax, 168
create table as syntax, 151
create table command, 12
create temporary table syntax, 72
create view syntax, 159
creating columns, 12
creating databases, 11
creating events with an end date, 212
creating events with no end date, 210
creating procedures, 173
creating tables, 12, 278, 282
creating views, 159, 303
credentials, database, 230, 243, 252
cron, 262

cron jobs, 262
crontab, 262, 274

cross joins, 54, 56

CSV file, 233, 261, 265, 267, 270, 273, 275
CTEs. See Common Table Expressions
curdate() function, 120
curly brackets ({}), 250
cursors, 186, 251
curtime() function, 120
customizing the path for MySQL tools, 230

D
data_add() function, 121
database administrator (DBA), xxiv
database credentials, 230, 243, 252
database() function, 138
database objects. See also events; functions; procedures; triggers; views

browsing, 228
cursors, 186
naming conventions, 157

databases
checking current, 221
creating, 11
dropping, 11
naming connections, 223
terminology, 11

Data Definition Language (DDL), 27
data integrity, 13, 17, 282, 299

vs. referential integrity, 17

Data Manipulation Language (DML), 27
data types, 37, 267. See also binary data types; date and time data types;
decimal data types; numeric data types; spatial data types

comparison operators and, 87
declaring variables with, 172
defining, 12

for parameters, 170
for variables, 176

json, 48
numeric, 44

boolean values, 46
integer. See integer data types

date and time data types, 48, 120
date, 38, 48
datetime, 48, 267
time, 38, 48, 268
timestamp, 48
year, 48

date and time functions
curdate(), 120
curtime(), 120
data_add(), 121
data_sub(), 121
datediff(), 123

date and time functions (continued)
date_format(), 123

extract(), 122
now(), 120
str_to_date(), 124, 270
time_format(), 125
units of time and, 121

datediff() function, 101, 123
date_format() function, 123
date_sub() function, 121
DBA (database administrator), xxiv
DDL (Data Definition Language), 27
decimal data types, 47

decimal, 47, 267
double, 47
float, 47

declare keyword, 172, 176
default constraint, 20
defining data types, 12
degree() function, 130
delete statement, 154
deleting data from tables, 154
delimiter keyword, 168
delimiters

common, 169
redefining, 168, 173

derived tables, 78
descending order, 30

desc keyword, 30
deterministic characteristic, 171
development environment vs. production environment, 222
displaying procedure results with select, 184
distinct() function, 137
division operator (/), 125
DML (Data Manipulation Language), 27
do command, 211
double quote escape sequence (\"), 42
drop database command, 11
drop event command, 211
drop function statement, 168
dropping databases, 11
dropping tables, 22, 156
drop table command, 22, 156
drop view command, 163

E
elseif keyword, 179
end keyword, 170, 172
endless loops, 182
ends keyword, 212
entity relationship diagrams (ERDs), 279
environment, production vs. development, 222
equal comparison operator (=), 80, 86
error checking in the event scheduler, 213

escape sequences
\\ (backslash), 42
\r (carriage return), 42
\" (double quote), 42
\n (newline), 42
\t (tab), 42

events
at command, 211
checking for errors in the event scheduler, 213
create event command, 211
creating with end date, 212
creating with no end date, 210
do command, 211
drop event command, 211
dropping, 211
ends keyword, 212
naming convention, 211
on schedule keyword, 211
scheduling, 210
show events command, 211

event scheduler, 210
checking for errors in, 213
disabled, 210

exceptions, Java, 255
exclusive, defined, 91
exists comparison operator, 94

exit keyword, 188
exp() function, 131
extensions, PHP, 239, 243, 246

choosing between MySQLi and PDO, 247
extract() function, 122

F
File Transfer Protocol (FTP), 261
_flag suffix, 46, 68
floor() function, 130
foreign keys, 15, 280
for loops, 251
format() function, 113
formatting SQL code, 31, 147

backticks, 32
commenting, 33–34
uppercase vs. lowercase, 32
whitespace, 34

formatting strings, 41
from keyword, 28
FTP (File Transfer Protocol), 261
fully qualifying table names, 221
functions. See also aggregate functions; mathematical functions; string
functions

calling from different parts of a query, 104
calling within other functions, 103
characteristics, 171

combining, 116
creating custom, 167
defined, 100
defining the function body, 172
dropping, 168
listing all stored in a database, 192
MySQL built-in, 99
naming conventions, 166
parameters, 170
passing arguments to, 100
vs. procedures, 165
redefining delimiter in function definition, 168
value returned from, 166
writing custom, 165

G
grant command, 303
greater than comparison operator (>), 86, 88
greater than or equal to comparison operator (>=), 86, 88

H
help statement, 102
hiding column values with views, 161
host server, 198, 230

I
if exists syntax, 168

if() function, 138
if statements, 178
if...then syntax, 179
ignore keyword, 233
import-table utility, 236
inclusive, defined, 91
in comparison operator, 86, 90
indexes, 14, 21, 153, 164

show indexes command, 22
infile keyword, 232
in keyword, 80
inner joins, 54
input parameters, 190
inserting data into tables, 143, 149
insert statement, 143
installing and upgrading MySQL, 4–5
integer data types

bigint, 12, 45
boolean values, 46
int, 12, 45, 267
mediumint, 45
smallint, 45
tinyint, 45

is false syntax, 95
is not null comparison operator, 35, 86, 89
is null comparison operator, 35, 86, 89

is true syntax, 95

J
Java, 253

bytecode, 254
calling a stored procedure, 256
calling MySQL from, 253
exceptions, 255
inserting a row into a table, 255
installing, 254
java.sql package, 255
MySQL Connector/J, 254

Java (continued)
prepared statements, 256
selecting from a table, 254

JavaScript Object Notation (JSON), 48
java.sql package, 255
Java Virtual Machine (JVM), 254
joining tables, 51

in different databases, 61
joins, 54

complex, 63
cross, 56
inner, 54
of many tables, 66
natural, 56

outer, 55
queries with more than one type, 63
self, 57
syntax, 54

inner join alternative, 60
parentheses, 59

JSON (JavaScript Object Notation), 48
json data type, 48
JVM (Java Virtual Machine), 254

L
LAMP stack, 238
left() function, 114
less than comparison operator (<), 86, 88
less than or equal to comparison operator (<=), 86, 89
lightning bolt icons in MySQL Workbench, 225
like comparison operator, 86, 91
limit keyword, 70
listing functions and procedures stored in a database, 192
load data command, 232, 270
loading data

from a file, 232
to a file, 234, 269

local variables, 176
log() function, 131
loops, 181

for, 251
nested, 189
repeat, 183
repeat...until syntax, 183
until statements and, 184
while loops, 184

lower() function, 115
ltrim() function, 119

M
man command, 262, 276
many-to-many relationships, 69
mathematical functions, 125, 128

abs(), 128
ceiling(), 129
cos(), 134
degree(), 130
exp(), 131
floor(), 130
log(), 131
mod(), 132
pi(), 100, 103, 130
pow(), 132
power(), 132
radians(), 130
round(), 101, 103, 132

sin(), 133
sqrt(), 134
std(), 135
stddev(), 135
stddev_pop(), 134
stddev_samp(), 135
tan(), 135
truncate(), 133, 155

mathematical operators, 126
+ (addition), 125
/ (division), 125
% (modulo), 125
* (multiplication), 125
operator precedence, 97, 127
- (subtraction), 125

max() function, 106
methods, 238
Microsoft SQL Server, xxiv
min() function, 107
mistakes in MySQL, 219

leaving where clauses incomplete, 223
running partial SQL statements, 225
using the wrong server, 222
using transactions to avoid, 226
working in the wrong database, 220

modes, PHP, 240

mod() function, 132
modifies sql data characteristic, 172
mod operator, 126
modulo, 125–126, 132

vs. modulus, 127
operator (%), 125

multiplication operator (*), 125
MySQL. See also mistakes in MySQL

calling from programming languages, 237
command line client, 6, 230
configuring for loading data to and from files, 234
documentation, xxv, 4
help statement, 102
installing, 4
query optimizer, 35
reference manual, xxv, 99
stored program language, xxiv
supporting existing system, 228
tips and tricks, 219

MySQL Community Server, xxii, 3
MySQL Connector/J, 254
MySQL Connector/Python, 251
MySQLi (MySQL Improved), 238

object-oriented, 243
calling a stored procedure, 245
inserting a row into a table, 244

selecting from a table, 243
procedural, 246

calling a stored procedure, 249
inserting a row into a table, 248
selecting from a table, 247

MySQL Shell (mysqlsh), 235
parallel table import, 236

MySQL Workbench
browsing database objects in, 228
creating connections, 306
creating databases with, 11
creating tables with, 12
documentation for, xxv
installing, 6
lightning bolt icons, 225
Navigator panel, 11
reference manual, 6
Result Grid panel, 10
viewing databases with, 9

N
naming conventions for database objects, 157
naming database connections, 223
naming databases, 11
natural joins, 54, 56
nested loops, 189

new keyword, 197
newline escape sequence (\n), 42
no sql characteristic, 172
not between comparison operator, 86, 91
not deterministic characteristic, 171
not equal comparison operator (<> or !=), 86–87
not in comparison operator, 86, 90
not like comparison operator, 86, 93
not null constraint, 18, 268, 280
not null keyword, 145
now() function, 120
null values, 18, 35

inserting into columns, 144
numeric data types, 44. See also integer data types

boolean values, 46

O
object-oriented MySQLi, 243
object-oriented programming (OOP), 238
object-relational mapping (ORM), 257
old keyword, 200
old-school inner joins, 60
on keyword, 53, 68
online resources, xxiv, 230

GitHub, xxiv
MySQL command line client, xxv

MySQL reference manual, xxv, 99, 230
MySQL Workbench, xxv
PHP, 240

on schedule keyword, 211
OOP (object-oriented programming), 238
operator precedence, 97, 127
optimizer hints, 34
optional arguments, 101
optionally enclosed by keyword, 234
Oracle, xxiv
order by clause, 29
ordering rows, 29

alphabetically, 30
in ascending order, 30
in descending order, 30

order of operations, 97, 127
or keyword, 95
ORM (object-relational mapping), 257
outer joins, 54–55
output parameters, 190

P
paamayim nekudotayim, 240
parallel table import, 236
parameters

adding, 170

vs. arguments, 171
defining data types for, 170
in, 174
inout, 174
input, 190
naming convention, 170
out, 174
output, 190

parentheses
join syntax and, 59
specifying string length within, 39, 43
using to group conditions, 96

path, customizing for MySQL tools, 230
PDO object, 239
permissions, controlling, 303, 310
PHP, 238

arrays, 240
calling MySQL from, 238
extensions, 238, 243, 246

choosing between MySQLi and PDO, 247
installing, 238
modes, 240
online manual, 240
opening and closing tags, 239

PHP Data Objects (PDO), 238
calling a stored procedure, 242

inserting a row into a table, 240
selecting from a table, 239

pi() function, 100, 103, 130
placeholders, 238, 241. See also prepared statements

?, 241, 245, 252
%s, 252
named, 241, 245
PDO vs. MySQLi, 245
Python, 252

PL/pgSQL, xxiv
PL/SQL, xxiv
populating tables, 143
population standard deviation, 134
PostgreSQL, xxiv
power() function, 132
pow() function, 132
prepared statements, 237, 241. See also placeholders

Java, 256
Python, 252
using as security measure, 241

primary keys, 13, 153, 268, 280
privileges, revoking, 304
procedural extensions of SQL, xxiv
procedural MySQLi, 246
procedural programming, 246
procedures

calling other procedures, 191
call statements in, 166
condition handlers and, 188
creating, 173
displaying results with select, 184
vs. functions, 165
if statements, 178
Java, calling with, 256
listing all stored in a database, 192
naming conventions, 167
object-oriented MySQLi, calling with, 245
PDO, calling with, 242
procedural MySQLi, calling with, 249
Python, calling with, 253
select...into syntax, 175
select statements and, 175
specifying parameters for, 174
using cursors with, 186
using logic in, 178

case statements, 180
elseif keyword, 179
if statements, 178
loops, 181

values returned from, 166
production environment vs. development environment, 222
programming

object-oriented, 238, 243
procedural, 246

Python, 250
calling a stored procedure, 253
calling MySQL from, 250
importance of indentation, 250
inserting a row into a table, 252
installing, 250
MySQL Connector/Python, 251
prepared statements, 252
selecting from a table, 251

Q
queries

calling functions from, 104
with more than one join type, 64
nested, 78
optimizing, 34, 172
using to create and populate a new table, 151
using to insert table data, 149

R
radians() function, 130
RDBMS (relational database management system), xxi, 11
readability of code, 31
reads sql data characteristic, 172
recursion, 76

recursive CTEs, 76
recursive keyword, 77
referential integrity, 17
relational database management system (RDBMS), xxi, 11
repeat loops, 183
repeat...until syntax, 183
resources. See online resources
returns statement, 170

vs. return statement, 173
revoke command, 304
revoking privileges, 304
right() function, 115
root superuser account, 304, 306
round() function, 101, 103, 132
rows

deleting, 154
excluding, 36
inserting into table, 144
inserting multiple, 146
Java, inserting with, 255
limiting which are displayed, 70
modifying using a view, 163
object-oriented MySQLi, inserting with, 244
ordering, 29
PDO, inserting with, 240
procedural MySQLi, inserting with, 248

Python, inserting with, 252
updating, 152, 153

rtrim() function, 119

S
scope resolution operator (::), 240
script files, 231
security

hardcoding credentials, 243
using prepared statements for, 241

select command, 28
selecting data from multiple tables, 51
select...into outfile syntax, 234
select...into syntax, 175
select list, 111
select statements, 28, 53, 173

combining multiple, 70
displaying procedure results with, 184
in procedures, 175

self joins, 57
sequential numbers, inserting into column with auto_increment, 147
server

host, 198, 230
production vs. development, 222

Shotts, William (The Linux Command Line), 263
show databases command, 9

show events command, 211
show indexes command, 22
show schemas command, 11
silent mode, 273
sin() function, 133
spatial data types, 49

geometry, 49
geometrycollection, 49
linestring, 49
multilinestring, 49
multipoint, 49
multipolygon, 49
point, 49
polygon, 49

specifiers for date and time functions, 123
SQL, xxii, 27. See also formatting SQL code

comments in, 33–34
delimiters in SQL statements, 168
injection attacks, 241
partial statements as pitfall, 225
placeholders, 238, 241, 245
prepared statements, 237
procedural extensions of, xxiv
pronunciation, 27
queries, 28
script files, 263, 269–273

wildcard character, 29, 92, 160
sqlstate code, 206
sqrt() function, 134
start transaction command, 226
std() function, 135
stddev() function, 135
stddev_pop() function, 134
stddev_samp() function, 135
stored programs, 165
stored routines, 165
string data types, 38

char, 38, 267
enum, 40
set, 40
varchar, 12, 39, 267

string functions
concat(), 112
format(), 113
left(), 114
lower(), 115
ltrim(), 119
right(), 115
rtrim(), 119
substring(), 116
trim(), 118
upper(), 115

strings
of character vs. bytes, 44
converting to date, 124
defined, 38
escape sequences, 42
fixed length, 38
formatting, 41
special characters in, 42
variable length, 39

str_to_date() function, 124, 270
Structured Query Language. See SQL
subqueries, 78

correlated, 81
returning more than one row, 79

substr() function, 118
substring() function, 116
subtraction operator (-), 125
sum() function, 107
supporting an existing MySQL system, 228

T
tab escape sequence (\t), 42
tables

aliasing, 53
altering, 22, 222
associative, 68, 282

Common Table Expressions (CTEs), 75
creating, 12, 151, 278, 282
deleting data from, 154
derived, 78
dropping, 22, 156
fully qualifying names, 221
inserting data into, 143

omitting column names, 147
using a query, 149

inserting multiple rows at once, 146
Java

inserting rows, 255
selecting from a table, 254

joining, 51, 66
in different databases, 61

object-oriented MySQLi
inserting rows, 244
selecting from a table, 243

PDO
inserting rows, 240
selecting from a table, 239

populating columns with sequential numbers, 147
procedural MySQLi

inserting rows, 248
selecting from a table, 247

Python, inserting rows, 252

querying data from, 28
selecting data from multiple, 51
temporary, 72
truncating, 155
updating, 152–153

tan() function, 135
temporary tables, 72. See also Common Table Expressions (CTEs)
terminal, 6
text data types, 40

longtext, 40
mediumtext, 40
text, 40
tinytext, 40

time_format() function, 125
tracking changes with triggers, 195
transactions, 226

committing, 226
rolling back, 226
start transaction command, 226

Transact-SQL (T-SQL), xxiv
triggers, 195

after delete, 199, 293
after insert, 196
after update, 200, 295
before delete, 206, 289
before insert, 203, 284

before update, 204, 288
improving data quality with, 202, 284
naming convention, 197
new keyword and, 197
old keyword and, 200
vs. privileges, 299
tracking changes with, 195, 290

trim() function, 118
truncate() function, 133
truncate table command, 155
truncating tables, 155
try...catch blocks, 255

U
union all keyword, 71
union keyword, 70
unique constraint, 19, 280
units of time, 121
unsigned keyword, 46
until statements, 184
update statement, 152, 163, 298
updating tables, 152–153
upper() function, 100, 104, 115
use command, 12, 61
user variables, 176–177
using keyword, 53

using logic in procedures, 178
case statements, 180
elseif keyword, 179
loops, 181

V
variables, 172

declaring, 176, 288
defining data types for, 172
local, 176
math trick with user variables, 177
naming convention for, 172
scope, 176
user, 176

version() function, 140
viewing databases

with MySQL Workbench, 9
show databases command, 10

views, 159
creating, 159, 303
dropping, 163
hiding column values with, 161

views (continued)
querying, 160
selecting from, 160, 162
updating, 163

W
where clause

defined, 28
incomplete, 223

while loop, 184
whitespace, 34
wildcard characters

_, 92
*, 29, 160
%, 92

Windows Subsystem for Linux (WSL), 262

Y
year() function, 104

	PRAISE FOR MySQL Crash Course
	Title Page
	Copyright
	Dedication
	About the Author
	Acknowledgments
	Introduction
	About This Book
	Who Is This Book For?
	SQL in MySQL vs. SQL in Other Database Systems
	Using the Online Resources

	Part I: Getting Started
	Chapter 1: Installing MySQL and Tools
	The MySQL Architecture
	Installing MySQL
	Summary

	Chapter 2: Creating Databases and Tables
	Using MySQL Workbench
	Creating a New Database
	Creating a New Table
	Constraints
	Indexes

	Dropping and Altering Tables
	Summary

	Part II: Selecting Data from a MySQL Database
	Chapter 3: Introduction to SQL
	Querying Data from a Table
	Using the Wildcard Character
	Ordering Rows
	Formatting SQL Code
	Uppercase Keywords
	Backticks
	Code Comments

	Null Values
	Summary

	Chapter 4: MySQL Data Types
	String Data Types
	char
	varchar
	enum
	set
	tinytext, text, mediumtext, and longtext

	Binary Data Types
	tinyblob, blob, mediumblob, and longblob
	binary
	varbinary
	bit

	Numeric Data Types
	tinyint, smallint, mediumint, int, and bigint
	Boolean

	Decimal Data Types
	Date and Time Data Types
	The json Data Type
	Spatial Data Types
	Summary

	Chapter 5: Joining Database Tables
	Selecting Data from Multiple Tables
	Table Aliasing
	Types of Joins
	Inner Joins
	Outer Joins
	Natural Joins
	Cross Joins
	Self Joins

	Variations on Join Syntax
	Parentheses
	Old-School Inner Joins

	Column Aliasing
	Joining Tables in Different Databases
	Summary

	Chapter 6: Performing Complex Joins with Multiple Tables
	Writing One Query with Two Join Types
	Joining Many Tables
	Associative Tables
	Managing the Data in Your Result Set
	The limit Keyword
	The union Keyword

	Temporary Tables
	Common Table Expressions
	Recursive Common Table Expressions
	Derived Tables
	Subqueries
	Subqueries That Return More Than One Row
	Correlated Subqueries

	Summary

	Chapter 7: Comparing Values
	Comparison Operators
	Equal
	Not Equal
	Greater Than
	Greater Than or Equal To
	Less Than
	Less Than or Equal To
	is null
	is not null
	in
	not in
	between
	not between
	like
	not like
	exists

	Checking Booleans
	or Conditions
	Summary

	Chapter 8: Calling Built-in MySQL Functions
	What Is a Function?
	Passing Arguments to a Function
	Optional Arguments
	Calling Functions Within Functions
	Calling Functions from Different Parts of Your Query
	Aggregate Functions
	count()
	max()
	min()
	sum()
	avg()
	group by

	String Functions
	concat()
	format()
	left()
	right()
	lower()
	upper()
	substring()
	trim()
	ltrim()
	rtrim()

	Date and Time Functions
	curdate()
	curtime()
	now()
	date_add()
	date_sub()
	extract()
	datediff()
	date_format()
	str_to_date()
	time_format()

	Mathematical Operators and Functions
	Mathematical Operators
	Mathematical Functions

	Other Handy Functions
	cast()
	coalesce()
	distinct()
	database()
	if()
	version()

	Summary

	Chapter 9: Inserting, Updating, and Deleting Data
	Inserting Data
	Inserting Null Values
	Inserting Multiple Rows at Once
	Inserting Without Listing Column Names
	Inserting Sequences of Numbers
	Inserting Data Using a Query
	Using a Query to Create and Populate a New Table

	Updating Data
	Updating Multiple Rows
	Updating Multiple Columns

	Deleting Data
	Truncating and Dropping a Table
	Summary

	Part III: Database Objects
	Chapter 10: Creating Views
	Creating a New View
	Using Views to Hide Column Values
	Inserting, Updating, and Deleting from Views
	Dropping a View
	Indexes and Views
	Summary

	Chapter 11: Creating Functions and Procedures
	Functions vs. Procedures
	Creating Functions
	Redefining the Delimiter
	Adding Parameters and Returning a Value
	Specifying Characteristics
	Defining the Function Body

	Creating Procedures
	Using select to Display Values
	Defining Local Variables and User Variables
	Using Logic in Procedures
	Displaying Procedure Results with select
	Using a Cursor
	Declaring Output Parameters
	Writing Procedures That Call Other Procedures

	Listing the Stored Routines in a Database
	Summary

	Chapter 12: Creating Triggers
	Triggers That Audit Data
	After Insert Triggers
	After Delete Triggers
	After Update Triggers

	Triggers That Affect Data
	Before Insert Triggers
	Before Update Triggers
	Before Delete Triggers

	Summary

	Chapter 13: Creating Events
	The Event Scheduler
	Creating Events with No End Date
	Creating Events with an End Date
	Checking for Errors
	Summary

	Part IV: Advanced Topics
	Chapter 14: Tips and Tricks
	Common Mistakes
	Working in the Wrong Database
	Using the Wrong Server
	Leaving where Clauses Incomplete
	Running Partial SQL Statements

	Transactions
	Supporting an Existing System
	Using the MySQL Command Line Client
	Loading Data from a File
	Loading Data to a File
	MySQL Shell
	Summary

	Chapter 15: Calling MySQL from Programming Languages
	PHP
	PDO
	Object-Oriented MySQLi
	Procedural MySQLi

	Python
	Selecting from a Table
	Inserting a Row into a Table
	Calling a Stored Procedure

	Java
	Selecting from a Table
	Inserting a Row into a Table
	Calling a Stored Procedure

	Summary

	Part V: Projects
	Chapter 16: Building a Weather Database
	Technologies You’ll Use
	cron
	Bash
	SQL Scripts

	Project Overview
	The Data File
	Creating the Weather Tables
	Data Types
	Constraints

	Loading the Data File
	Copying the Data to Your Final Table
	Scheduling the Bash Script on cron
	Alternative Approaches
	Summary

	Chapter 17: Tracking Changes to Voter Data with Triggers
	Setting Up the Database
	Creating the Tables
	The voter Table
	The ballot Table
	The race Table
	The candidate Table
	The ballot_candidate Table

	Adding Triggers
	Before Triggers
	After Triggers

	Alternative Approaches
	Audit Tables
	Triggers vs. Privileges
	Replacing check Constraints with New Tables

	Summary

	Chapter 18: Protecting Salary Data with Views
	Creating the employee Table
	Creating the View
	Controlling Permissions
	Using MySQL Workbench to Test User Access
	An Alternative Approach
	Summary

	Afterword
	Index

