

Learn You a Haskell

for Great Good!

Contents

Chapter 1 Introduction

1.1 About this tutorial 1. 1.2 So what's Haskell? 1. 1.3 What you need to dive in 2.

Chapter 2 Starting Out

2.1 Ready, set, go! 4. 2.2 Baby's first functions 7. 2.3 An intro to lists 8. 2.4 Texas ranges 13. 2.5 I'm a
list comprehension 14. 2.6 Tuples 16.

Chapter 3 Types and Typeclasses

3.1 Believe the type 20. 3.2 Type variables 22. 3.3 Typeclasses 101 22.

Chapter 4 Syntax in Functions

4.1 Pattern matching 27. 4.2 Guards, guards! 31. 4.3 Where! ? 32. 4.4 Let it be 34. 4.5 Case
expressions 36.

Chapter 5 Recursion

5.1 Hello recursion! 38. 5.2 Maximum awesome 38. 5.3 A few more recursive functions 39. 5.4 Quick,
sort! 41. 5.5 Thinking recursively 43.

Chapter 6 Higher order functions

6.1 Curried functions 44. 6.2 Some higher-orderism is in order 46. 6.3 Maps and filters 48. 6.4 Lamb-
das 52. 6.5 Only folds and horses 53. 6.6 Function application with $ 57. 6.7 Function composition 58.

Chapter 7 Modules

7.1 Loading modules 61. 7.2 Data.List 62. 7.3 Data.Char 72. 7.4 Data.Map 75. 7.5 Data.Set 79.
7.6 Making our own modules 81.

Chapter 8 Making Our Own Types and Typeclasses

8.1 Algebraic data types intro 85. 8.2 Record syntax 88. 8.3 Type parameters 90. 8.4 Derived instances 94.
8.5 Type synonyms 98. 8.6 Recursive data structures 101. 8.7 Typeclasses 102 105. 8.8 A yes-no
typeclass 109. 8.9 The Functor typeclass 112. 8.10 Kinds and some type-foo 115.

Chapter 9 Input and Output

9.1 Hello, world! 119. 9.2 Files and streams 130. 9.3 Command line arguments 141. 9.4 Randomness 146.
9.5 Bytestrings 153. 9.6 Exceptions 156.

Chapter 10 Functionally Solving Problems

10.1 Reverse Polish notation calculator 163. 10.2 Heathrow to London 167.

Chapter 11 Functors, Applicative Functors and Monoids

11.1 Functors redux 175. 11.2 Applicative functors 183. 11.3 The newtype keyword 196.
11.4 Monoids 202.

2

Chapter 12 A Fistful of Monads

12.1 Getting our feet wet with Maybe 216. 12.2 The Monad type class 218. 12.3 Walk the line 220. 12.4 do
notation 225. 12.5 The list monad 229. 12.6 Monad laws 235.

Chapter 13 For a FewMonads More

13.1 Writer? I hardly know her! 239. 13.2 Reader? Ugh, not this joke again. 248. 13.3 Tasteful stateful
computations 250. 13.4 Error error on the wall 256. 13.5 Some useful monadic functions 257. 13.6 Making
monads 268.

Chapter 14 Zippers

14.1 Taking a walk 273. 14.2 A trail of breadcrumbs 275. 14.3 Focusing on lists 279. 14.4 A very simple
file system 281. 14.5 Watch your step 284.

Chapter 1 Introduction

1.1 About this tutorial

Welcome to Learn You a Haskell for Great Good! If you're reading this, chances are you want
to learn Haskell. Well, you've come to the right place, but let's talk about this tutorial a bit first.

I decided to write this because I wanted to solidify my own knowledge of Haskell and because I
thought I could help people new to Haskell learn it from my perspective. There are quite a few
tutorials on Haskell floating around on the internet. When I was starting out in Haskell, I didn't
learn from just one resource. The way I learned it was by reading several different tutorials and
articles because each explained something in a different way than the other did. By going through
several resources, I was able put together the pieces and it all just came falling into place. So this
is an attempt at adding another useful resource for learning Haskell so you have a bigger chance
of finding one you like.

This tutorial is aimed at people who have experience in imperative pro-
gramming languages (C, C++, Java, Python…) but haven't programmed
in a functional language before (Haskell, ML, OCaml…) . Although I
bet that even if you don't have any significant programming experience,
a smart chap like you will be able to follow along and learn Haskell.

The channel #haskell on the freenode network is a great place to ask ques-
tions if you're feeling stuck. People there are extremely nice, patient and
understanding to newbies.

I failed to learn Haskell approximately 2 times before finally grasping it because it all just seemed
too weird to me and I didn't get it. But then once it just“clicked”and after getting over that
initial hurdle, it was pretty much smooth sailing. I guess what I'm trying to say is: Haskell is great
and if you're interested in programming you should really learn it even if it seems weird at first.
Learning Haskell is much like learning to program for the first time— it's fun! It forces you to
think differently, which brings us to the next section…

1.2 So what's Haskell?

Haskell is a purely functional programming language. In imperative
languages you get things done by giving the computer a sequence of tasks
and then it executes them. While executing them, it can change state.
For instance, you set variable a to 5 and then do some stuff and then set
it to something else. You have control flow structures for doing some
action several times. In purely functional programming you don't tell
the computer what to do as such but rather you tell it what stuff is. The
factorial of a number is the product of all the numbers from 1 to that
number, the sum of a list of numbers is the first number plus the sum of
all the other numbers, and so on. You express that in the form of functions. You also can't set a
variable to something and then set it to something else later. If you say that a is 5, you can't say it's
something else later because you just said it was 5. What are you, some kind of liar? So in purely
functional languages, a function has no side-effects. The only thing a function can do is calculate
something and return it as a result. At first, this seems kind of limiting but it actually has some

2

very nice consequences: if a function is called twice with the same parameters, it's guaranteed
to return the same result. That's called referential transparency and not only does it allow the
compiler to reason about the program's behavior, but it also allows you to easily deduce (and
even prove) that a function is correct and then build more complex functions by gluing simple
functions together.

Haskell is lazy. Thatmeans that unless specifically told otherwise, Haskell
won't execute functions and calculate things until it's really forced to show
you a result. That goes well with referential transparency and it allows
you to think of programs as a series of transformations on data. It also
allows cool things such as infinite data structures. Say you have an im-
mutable list of numbers xs = [1,2,3,4,5,6,7,8] and a function doubleMe
which multiplies every element by 2 and then returns a new list. If
we wanted to multiply our list by 8 in an imperative language and did
doubleMe(doubleMe(doubleMe(xs))) , it would probably pass through the list once and make
a copy and then return it. Then it would pass through the list another two times and return the
result. In a lazy language, calling doubleMe on a list without forcing it to show you the result
ends up in the program sort of telling you“Yeah yeah, I'll do it later!”. But once you want to see
the result, the first doubleMe tells the second one it wants the result, now! The second one says
that to the third one and the third one reluctantly gives back a doubled 1, which is a 2. The second
one receives that and gives back 4 to the first one. The first one sees that and tells you the first
element is 8. So it only does one pass through the list and only when you really need it. That way
when you want something from a lazy language you can just take some initial data and efficiently
transform and mend it so it resembles what you want at the end.

Haskell is statically typed. When you compile your program, the com-
piler knows which piece of code is a number, which is a string and so on.
That means that a lot of possible errors are caught at compile time. If you
try to add together a number and a string, the compiler will whine at you.
Haskell uses a very good type system that has type inference. That means
that you don't have to explicitly label every piece of code with a type be-
cause the type system can intelligently figure out a lot about it. If you say
a = 5 + 4 , you don't have to tell Haskell that a is a number, it can figure
that out by itself. Type inference also allows your code to be more gen-
eral. If a function youmake takes two parameters and adds them together and you don't explicitly
state their type, the function will work on any two parameters that act like numbers.

Haskell is elegant and concise. Because it uses a lot of high level concepts, Haskell programs are
usually shorter than their imperative equivalents. And shorter programs are easier to maintain
than longer ones and have less bugs.

Haskell was made by some really smart guys (with PhDs). Work on Haskell began in 1987 when
a committee of researchers got together to design a kick-ass language. In 2003 the Haskell Report
was published, which defines a stable version of the language.

1.3 What you need to dive in

A text editor and aHaskell compiler. You probably already have your favorite text editor installed
so we won't waste time on that. For the purposes of this tutorial we'll be using GHC, the most
widely used Haskell compiler. The best way to get started is to download the Haskell Platform,
which is basically Haskell with batteries included.

http://hackage.haskell.org/platform/

3

GHC can take a Haskell script (they usually have a .hs extension) and compile it but it also has an
interactive mode which allows you to interactively interact with scripts. Interactively. You can
call functions from scripts that you load and the results are displayed immediately. For learning
it's a lot easier and faster than compiling every time you make a change and then running the
program from the prompt. The interactive mode is invoked by typing in ghci at your prompt. If
you have defined some functions in a file called, say, myfunctions.hs , you load up those functions
by typing in :l myfunctions and then you can play with them, provided myfunctions.hs is in the
same folder from which ghci was invoked. If you change the .hs script, just run :l myfunctions
again or do :r , which is equivalent because it reloads the current script. The usual workflow for
me when playing around in stuff is defining some functions in a .hs file, loading it up andmessing
around with them and then changing the .hs file, loading it up again and so on. This is also what
we'll be doing here.

Chapter 2 Starting Out

2.1 Ready, set, go!

Alright, let's get started! If you're the sort of horrible person who doesn't
read introductions to things and you skipped it, you might want to read the
last section in the introduction anyway because it explains what you need
to follow this tutorial and how we're going to load functions. The first thing
we're going to do is run ghc's interactive mode and call some function to
get a very basic feel for haskell. Open your terminal and type in ghci . You
will be greeted with something like this.

GHCi, version 6.8.2: http://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.

Prelude>

Congratulations, you're in GHCI! The prompt here is Prelude> but because it can get longer
when you load stuff into the session, we're going to use ghci> . If you want to have the same
prompt, just type in :set prompt "ghci> " .

Here's some simple arithmetic.

ghci> 2 + 15

17

ghci> 49 * 100

4900

ghci> 1892 - 1472

420

ghci> 5 / 2

2.5

ghci>

This is pretty self-explanatory. We can also use several operators on one line and all the usual
precedence rules are obeyed. We can use parentheses tomake the precedence explicit or to change
it.

ghci> (50 * 100) - 4999

1

ghci> 50 * 100 - 4999

1

ghci> 50 * (100 - 4999)

-244950

Pretty cool, huh? Yeah, I know it's not but bear with me. A little pitfall to watch out for here
is negating numbers. If we want to have a negative number, it's always best to surround it with
parentheses. Doing 5 * -3 will make GHCI yell at you but doing 5 * (-3) will work just fine.

Boolean algebra is also pretty straightforward. As you probably know, && means a boolean and,
|| means a boolean or. not negates a True or a False .

5

ghci> True && False

False

ghci> True && True

True

ghci> False || True

True

ghci> not False

True

ghci> not (True && True)

False

Testing for equality is done like so.

ghci> 5 == 5

True

ghci> 1 == 0

False

ghci> 5 /= 5

False

ghci> 5 /= 4

True

ghci> "hello" == "hello"

True

What about doing 5 + "llama" or 5 == True ? Well, if we try the first snippet, we get a big scary
error message!

No instance for (Num [Char])

arising from a use of `+' at <interactive>:1:0-9

Possible fix: add an instance declaration for (Num [Char])

In the expression: 5 + "llama"

In the definition of `it': it = 5 + "llama"

Yikes! What GHCI is telling us here is that "llama" is not a number and so it doesn't know how
to add it to 5. Even if it wasn't "llama" but "four" or "4" , Haskell still wouldn't consider it to
be a number. + expects its left and right side to be numbers. If we tried to do True == 5 , GHCI
would tell us that the types don't match. Whereas + works only on things that are considered
numbers,== works on any two things that can be compared. But the catch is that they both have
to be the same type of thing. You can't compare apples and oranges. We'll take a closer look at
types a bit later. Note: you can do 5 + 4.0 because 5 is sneaky and can act like an integer or a
floating-point number. 4.0 can't act like an integer, so 5 is the one that has to adapt.

You may not have known it but we've been using functions now all along.
For instance, * is a function that takes two numbers and multiplies them.
As you've seen, we call it by sandwiching it between them. This is what we
call an infix function. Most functions that aren't used with numbers are
prefix functions. Let's take a look at them.

Functions are usually prefix so from now on we won't explicitly state that a
function is of the prefix form, we'll just assume it. In most imperative lan-
guages functions are called by writing the function name and then writing

6

its parameters in parentheses, usually separated by commas. In Haskell, functions are called by
writing the function name, a space and then the parameters, separated by spaces. For a start, we'll
try calling one of the most boring functions in Haskell.

ghci> succ 8

9

The succ function takes anything that has a defined successor and returns that successor. As you
can see, we just separate the function name from the parameter with a space. Calling a function
with several parameters is also simple. The functions min and max take two things that can be
put in an order (like numbers!). min returns the one that's lesser and max returns the one that's
greater. See for yourself:

ghci> min 9 10

9

ghci> min 3.4 3.2

3.2

ghci> max 100 101

101

Function application (calling a function by putting a space after it and then typing out the parame-
ters) has the highest precedence of them all. What that means for us is that these two statements
are equivalent.

ghci> succ 9 + max 5 4 + 1

16

ghci> (succ 9) + (max 5 4) + 1

16

However, if we wanted to get the successor of the product of numbers 9 and 10, we couldn't write
succ 9 * 10 because that would get the successor of 9, which would then be multiplied by 10. So
100. We'd have to write succ (9 * 10) to get 91.

If a function takes two parameters, we can also call it as an infix function by surrounding it with
backticks. For instance, the div function takes two integers and does integral division between
them. Doing div 92 10 results in a 9. But when we call it like that, there may be some confusion
as to which number is doing the division and which one is being divided. So we can call it as an
infix function by doing 92 `div` 10 and suddenly it's much clearer.

Lots of people who come from imperative languages tend to stick to the notion that parentheses
should denote function application. For example, in C, you use parentheses to call functions
like foo() , bar(1) or baz(3, "haha") . Like we said, spaces are used for function application in
Haskell. So those functions in Haskell would be foo , bar 1 and baz 3 "haha" . So if you see
something like bar (bar 3) , it doesn't mean that bar is called with bar and 3 as parameters. It
means that we first call the function bar with 3 as the parameter to get some number and then
we call bar again with that number. In C, that would be something like bar(bar(3)) .

7

2.2 Baby's first functions

In the previous section we got a basic feel for calling functions. Now let's try making our own!
Open up your favorite text editor and punch in this function that takes a number and multiplies
it by two.

doubleMe x = x + x

Functions are defined in a similar way that they are called. The function name is followed by
parameters seperated by spaces. But when defining functions, there's a = and after that we define
what the function does. Save this as baby.hs or something. Now navigate to where it's saved and
run ghci from there. Once inside GHCI, do :l baby. Now that our script is loaded, we can play
with the function that we defined.

ghci> :l baby

[1 of 1] Compiling Main (baby.hs, interpreted)

Ok, modules loaded: Main.

ghci> doubleMe 9

18

ghci> doubleMe 8.3

16.6

Because + works on integers as well as on floating-point numbers (anything that can be consid-
ered a number, really), our function also works on any number. Let's make a function that takes
two numbers and multiplies each by two and then adds them together.

doubleUs x y = x*2 + y*2

Simple. We could have also defined it as doubleUs x y = x + x + y + y . Testing it out produces
pretty predictable results (remember to append this function to the baby.hs file, save it and then
do :l baby inside GHCI).

ghci> doubleUs 4 9

26

ghci> doubleUs 2.3 34.2

73.0

ghci> doubleUs 28 88 + doubleMe 123

478

As expected, you can call your own functions from other functions that you made. With that in
mind, we could redefine doubleUs like this:

doubleUs x y = doubleMe x + doubleMe y

This is a very simple example of a common pattern you will see throughout Haskell. Making basic
functions that are obviously correct and then combining them intomore complex functions. This
way you also avoid repetition. What if some mathematicians figured out that 2 is actually 3 and
you had to change your program? You could just redefine doubleMe to be x + x + x and since
doubleUs calls doubleMe , it would automatically work in this strange new world where 2 is 3.

Functions in Haskell don't have to be in any particular order, so it doesn't matter if you define
doubleMe first and then doubleUs or if you do it the other way around.

8

Now we're going to make a function that multiplies a number by 2 but only if that number is
smaller than or equal to 100 because numbers bigger than 100 are big enough as it is!

doubleSmallNumber x = if x > 100

then x

else x*2

Right here we introduced Haskell's if statement. You're probably familiar with
if statements from other languages. The difference between Haskell's if state-
ment and if statements in imperative languages is that the else part is manda-
tory in Haskell. In imperative languages you can just skip a couple of steps if
the condition isn't satisfied but in Haskell every expression and function must
return something. We could have also written that if statement in one line but
I find this way more readable. Another thing about the if statement in Haskell
is that it is an expression. An expression is basically a piece of code that re-
turns a value. 5 is an expression because it returns 5, 4 + 8 is an expression,
x + y is an expression because it returns the sum of x and y . Because the else

is mandatory, an if statement will always return something and that's why it's an expression. If
we wanted to add one to every number that's produced in our previous function, we could have
written its body like this.

doubleSmallNumber' x = (if x > 100 then x else x*2) + 1

Had we omitted the parentheses, it would have added one only if x wasn't greater than 100.
Note the ' at the end of the function name. That apostrophe doesn't have any special meaning in
Haskell's syntax. It's a valid character to use in a function name. We usually use ' to either denote
a strict version of a function (one that isn't lazy) or a slightly modified version of a function or a
variable. Because ' is a valid character in functions, we can make a function like this.

conanO'Brien = "It's a-me, Conan O'Brien!"

There are two noteworthy things here. The first is that in the function name we didn't capitalize
Conan's name. That's because functions can't begin with uppercase letters. We'll see why a bit
later. The second thing is that this function doesn't take any parameters. When a function doesn't
take any parameters, we usually say it's a definition (or a name) . Because we can't change what
names (and functions) mean once we've defined them, conanO'Brien and the string "It's a-me,
Conan O'Brien!" can be used interchangeably.

2.3 An intro to lists

Much like shopping lists in the real world, lists in Haskell are very useful.
It's themost used data structure and it can be used in amultitude of different
ways tomodel and solve a whole bunch of problems. Lists are SO awesome.
In this section we'll look at the basics of lists, strings (which are lists) and
list comprehensions.

InHaskell, lists are a homogenous data structure. It stores several elements
of the same type. That means that we can have a list of integers or a list of characters but we can't
have a list that has a few integers and then a few characters. And now, a list!

9

Note: We can use the let keyword to define
a name right in GHCI. Doing let a = 1 inside
GHCI is the equivalent of writing a = 1 in a
script and then loading it.

ghci> let lostNumbers = [4,8,15,16,23,42]

ghci> lostNumbers

[4,8,15,16,23,42]

As you can see, lists are denoted by square brackets and the values in the lists are separated by
commas. If we tried a list like [1,2,'a',3,'b','c',4] , Haskell would complain that characters (which
are, by the way, denoted as a character between single quotes) are not numbers. Speaking of
characters, strings are just lists of characters. "hello" is just syntactic sugar for ['h','e','l','l','o'] .
Because strings are lists, we can use list functions on them, which is really handy.

A common task is putting two lists together. This is done by using the ++ operator.

ghci> [1,2,3,4] ++ [9,10,11,12]

[1,2,3,4,9,10,11,12]

ghci> "hello" ++ " " ++ "world"

"hello world"

ghci> ['w','o'] ++ ['o','t']

"woot"

Watch out when repeatedly using the ++ operator on long strings. When you put together two
lists (even if you append a singleton list to a list, for instance: [1,2,3] ++ [4]) , internally, Haskell
has to walk through the whole list on the left side of ++ . That's not a problem when dealing with
lists that aren't too big. But putting something at the end of a list that's fifty million entries long is
going to take a while. However, putting something at the beginning of a list using the : operator
(also called the cons operator) is instantaneous.

ghci> 'A':" SMALL CAT"

"A SMALL CAT"

ghci> 5:[1,2,3,4,5]

[5,1,2,3,4,5]

Notice how : takes a number and a list of numbers or a character and a list of characters, whereas
++ takes two lists. Even if you're adding an element to the end of a list with ++ , you have to
surround it with square brackets so it becomes a list.
[1,2,3]

is actually just syntactic sugar for 1:2:3:[] . [] is an empty list. If we prepend 3 to it, it becomes
[3] . If we prepend 2 to that, it becomes [2,3] , and so on.

10

Note: [] , [[]] and [[] , [] , []] are all differ-
ent things. The first one is an empty list, the
seconds one is a list that contains one empty
list, the third one is a list that contains three
empty lists.

If you want to get an element out of a list by index, use !! . The indices start at 0.

ghci> "Steve Buscemi" !! 6

'B'

ghci> [9.4,33.2,96.2,11.2,23.25] !! 1

33.2

But if you try to get the sixth element from a list that only has four elements, you'll get an error
so be careful!

Lists can also contain lists. They can also contain lists that contain lists that contain lists…

ghci> let b = [[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]

ghci> b

[[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]

ghci> b ++ [[1,1,1,1]]

[[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3],[1,1,1,1]]

ghci> [6,6,6]:b

[[6,6,6],[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]

ghci> b !! 2

[1,2,2,3,4]

The lists within a list can be of different lengths but they can't be of different types. Just like you
can't have a list that has some characters and some numbers, you can't have a list that has some
lists of characters and some lists of numbers.

Lists can be compared if the stuff they contain can be compared. When using < , <= , > and >=
to compare lists, they are compared in lexicographical order. First the heads are compared. If
they are equal then the second elements are compared, etc.

ghci> [3,2,1] > [2,1,0]

True

ghci> [3,2,1] > [2,10,100]

True

ghci> [3,4,2] > [3,4]

True

ghci> [3,4,2] > [2,4]

True

ghci> [3,4,2] == [3,4,2]

True

What else can you do with lists? Here are some basic functions that operate on lists.

11

head takes a list and returns its head. The head of a list is basically its first element.

ghci> head [5,4,3,2,1]

5

tail takes a list and returns its tail. In other words, it chops off a list's head.

ghci> tail [5,4,3,2,1]

[4,3,2,1]

last takes a list and returns its last element.

ghci> last [5,4,3,2,1]

1

init takes a list and returns everything except its last element.

ghci> init [5,4,3,2,1]

[5,4,3,2]

If we think of a list as a monster, here's what's what.

But what happens if we try to get the head of an empty list?

ghci> head []

*** Exception: Prelude.head: empty list

Oh my! It all blows up in our face! If there's no monster, it doesn't have a head. When using
head , tail , last and init , be careful not to use them on empty lists. This error cannot be caught
at compile time so it's always good practice to take precautions against accidentally tellingHaskell
to give you some elements from an empty list.

length takes a list and returns its length, obviously.

ghci> length [5,4,3,2,1]

5

null checks if a list is empty. If it is, it returns True , otherwise it returns False . Use this function
instead of xs == [] (if you have a list called xs)

12

ghci> null [1,2,3]

False

ghci> null []

True

reverse reverses a list.

ghci> reverse [5,4,3,2,1]

[1,2,3,4,5]

take takes number and a list. It extracts thatmany elements from the beginning of the list. Watch.

ghci> take 3 [5,4,3,2,1]

[5,4,3]

ghci> take 1 [3,9,3]

[3]

ghci> take 5 [1,2]

[1,2]

ghci> take 0 [6,6,6]

[]

See how if we try to take more elements than there are in the list, it just returns the list. If we try
to take 0 elements, we get an empty list.

drop works in a similar way, only it drops the number of elements from the beginning of a list.

ghci> drop 3 [8,4,2,1,5,6]

[1,5,6]

ghci> drop 0 [1,2,3,4]

[1,2,3,4]

ghci> drop 100 [1,2,3,4]

[]

maximum takes a list of stuff that can be put in some kind of order and returns the biggest
element.

minimum returns the smallest.

ghci> minimum [8,4,2,1,5,6]

1

ghci> maximum [1,9,2,3,4]

9

sum takes a list of numbers and returns their sum.

product takes a list of numbers and returns their product.

ghci> sum [5,2,1,6,3,2,5,7]

31

ghci> product [6,2,1,2]

24

ghci> product [1,2,5,6,7,9,2,0]

0

13

elem takes a thing and a list of things and tells us if that thing is an element of the list. It's usually
called as an infix function because it's easier to read that way.

ghci> 4 `elem` [3,4,5,6]

True

ghci> 10 `elem` [3,4,5,6]

False

Those were a few basic functions that operate on lists. We'll take a look at more list functions later

2.4 Texas ranges

What if we want a list of all numbers between 1 and 20? Sure, we could just
type them all out but obviously that's not a solution for gentlemen who demand
excellence from their programming languages. Instead, we'll use ranges. Ranges
are a way of making lists that are arithmetic sequences of elements that can be
enumerated. Numbers can be enumerated. One, two, three, four, etc. Characters
can also be enumerated. The alphabet is an enumeration of characters from A to
Z. Names can't be enumerated. What comes after“John”? I don't know.

To make a list containing all the natural numbers from 1 to 20, you just write
[1..20] . That is the equivalent of writing [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
and there's no difference between writing one or the other except that writing out long enumer-
ation sequences manually is stupid.

ghci> [1..20]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

ghci> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

ghci> ['K'..'Z']

"KLMNOPQRSTUVWXYZ"

Ranges are cool because you can also specify a step. What if we want all even numbers between 1
and 20? Or every third number between 1 and 20?

ghci> [2,4..20]

[2,4,6,8,10,12,14,16,18,20]

ghci> [3,6..20]

[3,6,9,12,15,18]

It's simply a matter of separating the first two elements with a comma and then specifying what
the upper limit is. While pretty smart, ranges with steps aren't as smart as some people expect
them to be. You can't do [1,2,4,8,16..100] and expect to get all the powers of 2. Firstly because
you can only specify one step. And secondly because some sequences that aren't arithmetic are
ambiguous if given only by a few of their first terms.

To make a list with all the numbers from 20 to 1, you can't just do [20..1] , you have to do
[20,19..1] .

Watch out when using floating point numbers in ranges! Because they are not completely precise
(by definition), their use in ranges can yield some pretty funky results.

14

ghci> [0.1, 0.3 .. 1]

[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

My advice is not to use them in list ranges.

You can also use ranges to make infinite lists by just not specifying an upper limit. Later we'll go
into more detail on infinite lists. For now, let's examine how you would get the first 24 multiples
of 13. Sure, you could do [13,26..24*13] . But there's a better way: take 24 [13,26..] . Because
Haskell is lazy, it won't try to evaluate the infinite list immediately because it would never finish.
It'll wait to see what you want to get out of that infinite lists. And here it sees you just want the
first 24 elements and it gladly obliges.

A handful of functions that produce infinite lists:

cycle takes a list and cycles it into an infinite list. If you just try to display the result, it will go on
forever so you have to slice it off somewhere.

ghci> take 10 (cycle [1,2,3])

[1,2,3,1,2,3,1,2,3,1]

ghci> take 12 (cycle "LOL ")

"LOL LOL LOL "

repeat takes an element and produces an infinite list of just that element. It's like cycling a list
with only one element.

ghci> take 10 (repeat 5)

[5,5,5,5,5,5,5,5,5,5]

Although it's simpler to just use the replicate function if you want some number of the same
element in a list. replicate 3 10 returns [10,10,10] .

2.5 I'm a list comprehension

If you've ever taken a course in mathematics, you've probably run into set
comprehensions. They're normally used for building more specific sets
out of general sets. A basic comprehension for a set that contains the first
ten even natural numbers is S = {2 · x|x ∈ N,x ≤ 10}. The part before
the pipe is called the output function, x is the variable, N is the input set
and x <= 10 is the predicate. Thatmeans that the set contains the doubles
of all natural numbers that satisfy the predicate.

If we wanted to write that in Haskell, we could do something like
take 10 [2,4..] . But what if we didn't want doubles of the first 10 natural numbers but some
kind of more complex function applied on them? We could use a list comprehension for that.
List comprehensions are very similar to set comprehensions. We'll stick to getting the first 10
even numbers for now. The list comprehension we could use is [x*2 | x <- [1..10]] . x is drawn
from [1..10] and for every element in [1..10] (which we have bound to x), we get that element,
only doubled. Here's that comprehension in action.

ghci> [x*2 | x <- [1..10]]

[2,4,6,8,10,12,14,16,18,20]

15

As you can see, we get the desired results. Now let's add a condition (or a predicate) to that
comprehension. Predicates go after the binding parts and are separated from them by a comma.
Let's say we want only the elements which, doubled, are greater than or equal to 12.

ghci> [x*2 | x <- [1..10], x*2 >= 12]

[12,14,16,18,20]

Cool, it works. How about if we wanted all numbers from 50 to 100 whose remainder when
divided with the number 7 is 3? Easy.

ghci> [x | x <- [50..100], x `mod` 7 == 3]

[52,59,66,73,80,87,94]

Success! Note that weeding out lists by predicates is also called filtering . We took a list of num-
bers and we filtered them by the predicate. Now for another example. Let's say we want a com-
prehension that replaces each odd number greater than 10 with "BANG!" and each odd number
that's less than 10 with "BOOM!" . If a number isn't odd, we throw it out of our list. For conve-
nience, we'll put that comprehension inside a function so we can easily reuse it.

boomBangs xs = [if x < 10 then "BOOM!" else "BANG!" | x <- xs, odd x]

The last part of the comprehension is the predicate. The function odd returns True on an odd
number and False on an even one. The element is included in the list only if all the predicates
evaluate to True .

ghci> boomBangs [7..13]

["BOOM!","BOOM!","BANG!","BANG!"]

We can include several predicates. If we wanted all numbers from 10 to 20 that are not 13, 15 or
19, we'd do:

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]

[10,11,12,14,16,17,18,20]

Not only can we have multiple predicates in list comprehensions (an element must satisfy all the
predicates to be included in the resulting list), we can also draw from several lists. When drawing
from several lists, comprehensions produce all combinations of the given lists and then join them
by the output function we supply. A list produced by a comprehension that draws from two lists
of length 4 will have a length of 16, provided we don't filter them. If we have two lists, [2,5,10]
and [8,10,11] and we want to get the products of all the possible combinations between numbers
in those lists, here's what we'd do.

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

As expected, the length of the new list is 9. What if we wanted all possible products that are more
than 50?

ghci> [x*y | x <- [2,5,10], y <- [8,10,11], x*y > 50]

[55,80,100,110]

16

How about a list comprehension that combines a list of adjectives and a list of nouns… for epic
hilarity.

ghci> let nouns = ["hobo","frog","pope"]

ghci> let adjectives = ["lazy","grouchy","scheming"]

ghci> [adjective ++ " " ++ noun | adjective <- adjectives, noun <- nouns]

["lazy hobo","lazy frog","lazy pope","grouchy hobo","grouchy frog",

"grouchy pope","scheming hobo","scheming frog","scheming pope"]

I know! Let's write our own version of length ! We'll call it length'.

length' xs = sum [1 | _ <- xs]

_ means that we don't care what we'll draw from the list anyway so instead of writing a variable
name that we'll never use, we just write _. This function replaces every element of a list with 1 and
then sums that up. This means that the resulting sum will be the length of our list.

Just a friendly reminder: because strings are lists, we can use list comprehensions to process and
produce strings. Here's a function that takes a string and removes everything except uppercase
letters from it.

removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]

Testing it out:

ghci> removeNonUppercase "Hahaha! Ahahaha!"

"HA"

ghci> removeNonUppercase "IdontLIKEFROGS"

"ILIKEFROGS"

The predicate here does all the work. It says that the character will be included in the new list
only if it's an element of the list ['A'. .'Z'] . Nested list comprehensions are also possible if you're
operating on lists that contain lists. A list contains several lists of numbers. Let's remove all odd
numbers without flattening the list.

ghci> let xxs = [[1,3,5,2,3,1,2,4,5], [1,2,3,4,5,6,7,8,9],

[1,2,4,2,1,6,3,1,3,2,3,6]]

ghci> [[x | x <- xs, even x] | xs <- xxs]

[[2,2,4],[2,4,6,8],[2,4,2,6,2,6]]

You can write list comprehensions across several lines. So if you're not in GHCI, it's better to split
longer list comprehensions across multiple lines, especially if they're nested.

2.6 Tuples

In some ways, tuples are like lists— they are a way to store several values into a single value.
However, there are a few fundamental differences. A list of numbers is a list of numbers. That's
its type and it doesn't matter if it has only one number in it or an infinite amount of numbers.
Tuples, however, are used when you know exactly how many values you want to combine and
its type depends on how many components it has and the types of the components. They are
denoted with parentheses and their components are separated by commas.

17

Another key difference is that they don't have to be homogenous. Unlike
a list, a tuple can contain a combination of several types.

Think about how we'd represent a two-dimensional vector in Haskell.
One way would be to use a list. That would kind of work. So what if we
wanted to put a couple of vectors in a list to represent points of a shape
on a two-dimensional plane? We could do something like [[1,2], [8,11],
[4,5]] . The problem with that method is that we could also do stuff like
[[1,2], [8,11,5], [4,5]], which Haskell has no problem with since it's still
a list of lists with numbers but it kind of doesn't make sense. But a tuple
of size two (also called a pair) is its own type, which means that a list can't have a couple of pairs
in it and then a triple (a tuple of size three), so let's use that instead. Instead of surrounding the
vectors with square brackets, we use parentheses: [(1,2), (8,11), (4,5)]. What if we tried to make a
shape like [(1,2), (8,11,5), (4,5)]? Well, we'd get this error:

Couldn't match expected type `(t, t1)'

against inferred type `(t2, t3, t4)'

In the expression: (8, 11, 5)

In the expression: [(1, 2), (8, 11, 5), (4, 5)]

In the definition of `it': it = [(1, 2), (8, 11, 5), (4, 5)]

It's telling us that we tried to use a pair and a triple in the same list, which is not supposed to
happen. You also couldn't make a list like [(1,2),("One",2)] because the first element of the list is a
pair of numbers and the second element is a pair consisting of a string and a number. Tuples can
also be used to represent a wide variety of data. For instance, if we wanted to represent someone's
name and age in Haskell, we could use a triple: ("Christopher", "Walken", 55) . As seen in this
example, tuples can also contain lists.

Use tuples when you know in advance how many components some piece of data should have.
Tuples are much more rigid because each different size of tuple is its own type, so you can't write
a general function to append an element to a tuple—you'd have to write a function for appending
to a pair, one function for appending to a triple, one function for appending to a 4-tuple, etc.

While there are singleton lists, there's no such thing as a singleton tuple. It doesn't really make
much sense when you think about it. A singleton tuple would just be the value it contains and as
such would have no benefit to us.

Like lists, tuples can be compared with each other if their components can be compared. Only
you can't compare two tuples of different sizes, whereas you can compare two lists of different
sizes. Two useful functions that operate on pairs:

fst takes a pair and returns its first component.

ghci> fst (8,11)

8

ghci> fst ("Wow", False)

"Wow"

snd takes a pair and returns its second component. Surprise!

ghci> snd (8,11)

11

18

ghci> snd ("Wow", False)

False

Note: these functions operate only on pairs.
Theywon't work on triples, 4-tuples, 5-tuples,
etc. We'll go over extracting data from tuples
in different ways a bit later.

A cool function that produces a list of pairs: zip. It takes two lists and then zips them together
into one list by joining the matching elements into pairs. It's a really simple function but it has
loads of uses. It's especially useful for when you want to combine two lists in a way or traverse
two lists simultaneously. Here's a demonstration.

ghci> zip [1,2,3,4,5] [5,5,5,5,5]

[(1,5),(2,5),(3,5),(4,5),(5,5)]

ghci> zip [1 .. 5] ["one", "two", "three", "four", "five"]

[(1,"one"),(2,"two"),(3,"three"),(4,"four"),(5,"five")]

It pairs up the elements and produces a new list. The first element goes with the first, the second
with the second, etc. Notice that because pairs can have different types in them, zip can take two
lists that contain different types and zip them up. What happens if the lengths of the lists don't
match?

ghci> zip [5,3,2,6,2,7,2,5,4,6,6] ["im","a","turtle"]

[(5,"im"),(3,"a"),(2,"turtle")]

The longer list simply gets cut off to match the length of the shorter one. Because Haskell is lazy,
we can zip finite lists with infinite lists:

ghci> zip [1..] ["apple", "orange", "cherry", "mango"]

[(1,"apple"),(2,"orange"),(3,"cherry"),(4,"mango")]

Here's a problem that combines tuples and list comprehensions: which right triangle that has
integers for all sides and all sides equal to or smaller than 10 has a perimeter of 24? First, let's try
generating all triangles with sides equal to or smaller than 10:

ghci> let triangles = [(a,b,c) | c <- [1..10], b <- [1..10], a <- [1..10]]

19

We're just drawing from three lists and our output function is combining them into a triple. If
you evaluate that by typing out triangles inGHCI, you'll get a list of all possible triangles with sides
under or equal to 10. Next, we'll add a condition that they all have to be right triangles. We'll also
modify this function by taking into consideration that side b isn't larger than the hypothenuse
and that side a isn't larger than side b.

ghci> let rightTriangles = [(a,b,c) | c <- [1..10], b <- [1..c], a <- [1..b], a^2 + b^2 == c^2]

We're almost done. Now, we just modify the function by saying that we want the ones where the
perimeter is 24.

ghci> let rightTriangles' = [(a,b,c) | c <- [1..10], b <- [1..c], a <- [1..b], a^2 + b^2 ==

c^2, a+b+c == 24]

ghci> rightTriangles'

[(6,8,10)]

And there's our answer! This is a commonpattern in functional programming. You take a starting
set of solutions and then you apply transformations to those solutions and filter them until you
get the right ones.

Chapter 3 Types and Typeclasses

3.1 Believe the type

Previously we mentioned that Haskell has a static type system. The type
of every expression is known at compile time, which leads to safer code.
If you write a program where you try to divide a boolean type with some
number, it won't even compile. That's good because it's better to catch
such errors at compile time instead of having your program crash. Every-
thing in Haskell has a type, so the compiler can reason quite a lot about
your program before compiling it.

Unlike Java or Pascal, Haskell has type inference. If we write a number, we don't have to tell
Haskell it's a number. It can infer that on its own, so we don't have to explicitly write out the
types of our functions and expressions to get things done. We covered some of the basics of
Haskell with only a very superficial glance at types. However, understanding the type system is a
very important part of learning Haskell.

A type is a kind of label that every expression has. It tells us in which category of things that
expression fits. The expression True is a boolean,“hello”is a string, etc.

Now we'll use GHCI to examine the types of some expressions. We'll do that by using the :t
command which, followed by any valid expression, tells us its type. Let's give it a whirl.

Here we see that doing :t on an expression prints out the expression
followed by :: and its type. :: is read as "has type of". Explicit types
are always denoted with the first letter in capital case. 'a', as it would
seem, has a type of Char. It's not hard to conclude that it stands for
character. True is of a Bool type. That makes sense. But what's
this? Examining the type of "HELLO!" yields a [Char]. The square
brackets denote a list. So we read that as it being a list of characters.
Unlike lists, each tuple length has its own type. So the expression
of (True, 'a') has a type of (Bool, Char), whereas an expression such
as ('a','b','c') would have the type of (Char, Char, Char). 4 == 5 will
always return False, so its type is Bool.

Functions also have types. When writing our own functions, we can choose to give them an ex-
plicit type declaration. This is generally considered to be good practice except when writing very
short functions. From here on, we'll give all the functions that we make type declarations. Re-
member the list comprehension we made previously that filters a string so that only caps remain?
Here's how it looks like with a type declaration.

removeNonUppercase :: [Char] -> [Char]

removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]

removeNonUppercase has a type of [Char] -> [Char] , meaning that it maps from a string to a
string. That's because it takes one string as a parameter and returns another as a result. The [Char]
type is synonymous with String so it's clearer if we write removeNonUppercase :: String -> String.
We didn't have to give this function a type declaration because the compiler can infer by itself
that it's a function from a string to a string but we did anyway. But how do we write out the type

21

of a function that takes several parameters? Here's a simple function that takes three integers and
adds them together:

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

The parameters are separated with -> and there's no special distinction between the parameters
and the return type. The return type is the last item in the declaration and the parameters are
the first three. Later on we'll see why they're all just separated with -> instead of having some
more explicit distinction between the return types and the parameters like Int, Int, Int -> Int or
something.

If you want to give your function a type declaration but are unsure as to what it should be, you
can always just write the function without it and then check it with :t. Functions are expressions
too, so :t works on them without a problem.

Here's an overview of some common types.

Int stands for integer. It's used for whole numbers. 7 can be an Int but 7.2 cannot. Int is bounded,
which means that it has a minimum and a maximum value. Usually on 32-bit machines the
maximum possible Int is 2147483647 and the minimum is -2147483648.

Integer stands for, er… also integer. The main difference is that it's not bounded so it can be used
to represent really really big numbers. I mean like really big. Int, however, is more efficient.

factorial :: Integer -> Integer

factorial n = product [1..n]

ghci> factorial 50

30414093201713378043612608166064768844377641568960512000000000000

Float is a real floating point with single precision.

circumference :: Float -> Float

circumference r = 2 * pi * r

ghci> circumference 4.0

25.132742

Double is a real floating point with double the precision!

circumference' :: Double -> Double

circumference' r = 2 * pi * r

ghci> circumference' 4.0

25.132741228718345

Bool is a boolean type. It can have only two values: True and False.

Char represents a character. It's denoted by single quotes. A list of characters is a string.

Tuples are types but they are dependent on their length as well as the types of their components, so
there is theoretically an infinite number of tuple types, which is too many to cover in this tutorial.
Note that the empty tuple () is also a type which can only have a single value: ()

22

3.2 Type variables

What do you think is the type of the head function? Because head takes a list of any type and
returns the first element, so what could it be? Let's check!

ghci> :t head

head :: [a] -> a

Hmmm! What is this a? Is it a type? Remember that we previously stated
that types are written in capital case, so it can't exactly be a type. Because
it's not in capital case it's actually a type variable. That means that a can be
of any type. This is much like generics in other languages, only in Haskell
it's much more powerful because it allows us to easily write very general
functions if they don't use any specific behavior of the types in them. Func-
tions that have type variables are called polymorphic functions. The type

declaration of head states that it takes a list of any type and returns one element of that type.

Although type variables can have names longer than one character, we usually give them names
of a, b, c, d…

Remember fst? It returns the first component of a pair. Let's examine its type.

ghci> :t fst

fst :: (a, b) -> a

We see that fst takes a tuple which contains two types and returns an element which is of the same
type as the pair's first component. That's why we can use fst on a pair that contains any two types.
Note that just because a and b are different type variables, they don't have to be different types. It
just states that the first component's type and the return value's type are the same.

3.3 Typeclasses 101

A typeclass is a sort of interface that defines some behavior. If a type
is a part of a typeclass, that means that it supports and implements the
behavior the typeclass describes. A lot of people coming from OOP
get confused by typeclasses because they think they are like classes in
object oriented languages. Well, they're not. You can think of them
kind of as Java interfaces, only better.

What's the type signature of the == function?

ghci> :t (==)

(==) :: (Eq a) => a -> a -> Bool

23

Note: the equality operator, == is a function.
So are +, *, -, / and pretty much all operators.
If a function is comprised only of special char-
acters, it's considered an infix function by de-
fault. If we want to examine its type, pass it to
another function or call it as a prefix function,
we have to surround it in parentheses.

Interesting. We see a new thing here, the => symbol. Everything before the => symbol is called a
class constraint. We can read the previous type declaration like this: the equality function takes
any two values that are of the same type and returns a Bool. The type of those two values must be
a member of the Eq class (this was the class constraint).

The Eq typeclass provides an interface for testing for equality. Any type where it makes sense to
test for equality between two values of that type should be a member of the Eq class. All standard
Haskell types except for IO (the type for dealing with input and output) and functions are a part
of the Eq typeclass.

The elem function has a type of (Eq a) => a -> [a] -> Bool because it uses == over a list to check
whether some value we're looking for is in it.

Some basic typeclasses:

Eq is used for types that support equality testing. The functions its members implement are ==
and /=. So if there's an Eq class constraint for a type variable in a function, it uses == or /=
somewhere inside its definition. All the types we mentioned previously except for functions are
part of Eq, so they can be tested for equality.

ghci> 5 == 5

True

ghci> 5 /= 5

False

ghci> 'a' == 'a'

True

ghci> "Ho Ho" == "Ho Ho"

True

ghci> 3.432 == 3.432

True

Ord is for types that have an ordering.

ghci> :t (>)

(>) :: (Ord a) => a -> a -> Bool

All the types we covered so far except for functions are part of Ord. Ord covers all the standard
comparing functions such as >, <, >= and <=. The compare function takes two Ord members of
the same type and returns an ordering. Ordering is a type that can be GT, LT or EQ, meaning
greater than, lesser than and equal, respectively.

24

To be a member of Ord, a type must first have membership in the prestigious and exclusive Eq
club.

ghci> "Abrakadabra" < "Zebra"

True

ghci> "Abrakadabra" `compare` "Zebra"

LT

ghci> 5 >= 2

True

ghci> 5 `compare` 3

GT

Members of Show can be presented as strings. All types covered so far except for functions are a
part of Show. The most used function that deals with the Show typeclass is show. It takes a value
whose type is a member of Show and presents it to us as a string.

ghci> show 3

"3"

ghci> show 5.334

"5.334"

ghci> show True

"True"

Read is sort of the opposite typeclass of Show. The read function takes a string and returns a type
which is a member of Read.

ghci> read "True" || False

True

ghci> read "8.2" + 3.8

12.0

ghci> read "5" - 2

3

ghci> read "[1,2,3,4]" ++ [3]

[1,2,3,4,3]

So far so good. Again, all types covered so far are in this typeclass. But what happens if we try to
do just read "4"?

ghci> read "4"

<interactive>:1:0:

Ambiguous type variable `a' in the constraint:

`Read a' arising from a use of `read' at <interactive>:1:0-7

Probable fix: add a type signature that fixes these type variable(s)

What GHCI is telling us here is that it doesn't know what we want in return. Notice that in the
previous uses of read we did something with the result afterwards. That way, GHCI could infer
what kind of result we wanted out of our read. If we used it as a boolean, it knew it had to return
a Bool. But now, it knows we want some type that is part of the Read class, it just doesn't know
which one. Let's take a look at the type signature of read.

25

ghci> :t read

read :: (Read a) => String -> a

See? It returns a type that's part of Read but if we don't try to use it in some way later, it has no
way of knowing which type. That's why we can use explicit type annotations. Type annotations
are a way of explicitly saying what the type of an expression should be. We do that by adding :: at
the end of the expression and then specifying a type. Observe:

ghci> read "5" :: Int

5

ghci> read "5" :: Float

5.0

ghci> (read "5" :: Float) * 4

20.0

ghci> read "[1,2,3,4]" :: [Int]

[1,2,3,4]

ghci> read "(3, 'a')" :: (Int, Char)

(3, 'a')

Most expressions are such that the compiler can infer what their type is by itself. But sometimes,
the compiler doesn't knowwhether to return a value of type Int or Float for an expression like read
"5". To see what the type is, Haskell would have to actually evaluate read "5". But since Haskell is
a statically typed language, it has to know all the types before the code is compiled (or in the case
of GHCI, evaluated). So we have to tell Haskell:“Hey, this expression should have this type, in
case you don't know!”.

Enum members are sequentially ordered types— they can be enumerated. The main advantage
of the Enum typeclass is that we can use its types in list ranges. They also have defined successors
and predecesors, which you can get with the succ and pred functions. Types in this class: (), Bool,
Char, Ordering, Int, Integer, Float and Double.

ghci> ['a'..'e']

"abcde"

ghci> [LT .. GT]

[LT,EQ,GT]

ghci> [3 .. 5]

[3,4,5]

ghci> succ 'B'

'C'

Bounded members have an upper and a lower bound.

ghci> minBound :: Int

-2147483648

ghci> maxBound :: Char

'\1114111'

ghci> maxBound :: Bool

True

ghci> minBound :: Bool

False

26

minBound and maxBound are interesting because they have a type of (Bounded a) => a. In a
sense they are polymorphic constants.
All tuples are also part of Bounded if the components are also in it.

ghci> maxBound :: (Bool, Int, Char)

(True,2147483647,'\1114111')

Num is a numeric typeclass. Its members have the property of being able to act like numbers.
Let's examine the type of a number.

ghci> :t 20

20 :: (Num t) => t

It appears that whole numbers are also polymorphic constants. They can act like any type that's
a member of the Num typeclass.

ghci> 20 :: Int

20

ghci> 20 :: Integer

20

ghci> 20 :: Float

20.0

ghci> 20 :: Double

20.0

Those are types that are in the Num typeclass. If we examine the type of *, we'll see that it accepts
all numbers.

ghci> :t (*)

(*) :: (Num a) => a -> a -> a

It takes two numbers of the same type and returns a number of that type. That's why (5 :: Int) *
(6 :: Integer) will result in a type error whereas 5 * (6 :: Integer) will work just fine and produce
an Integer because 5 can act like an Integer or an Int.
To join Num, a type must already be friends with Show and Eq.
Integral is also a numeric typeclass. Num includes all numbers, including real numbers and in-
tegral numbers, Integral includes only integral (whole) numbers. In this typeclass are Int and
Integer.
Floating includes only floating point numbers, so Float and Double.
A very useful function for dealing with numbers is fromIntegral. It has a type declaration of
fromIntegral : : (Num b, Integral a) => a -> b. From its type signature we see that it takes an
integral number and turns it into a more general number. That's useful when you want integral
and floating point types to work together nicely. For instance, the length function has a type
declaration of length : : [a] -> Int instead of having a more general type of (Num b) => length
: : [a] -> b. I think that's there for historical reasons or something, although in my opinion, it's
pretty stupid. Anyway, if we try to get a length of a list and then add it to 3.2, we'll get an error
because we tried to add together an Int and a floating point number. So to get around this, we do
fromIntegral (length [1,2,3,4]) + 3.2 and it all works out.
Notice that fromIntegral has several class constraints in its type signature. That's completely valid
and as you can see, the class constraints are separated by commas inside the parentheses.

Chapter 4 Syntax in Functions

4.1 Pattern matching

This chapter will cover some of Haskell's cool syntactic constructs and
we'll start with pattern matching. Pattern matching consists of specifying
patterns to which some data should conform and then checking to see if
it does and deconstructing the data according to those patterns.

When defining functions, you can define separate function bodies for
different patterns. This leads to really neat code that's simple and read-
able. You can pattern match on any data type— numbers, characters,
lists, tuples, etc. Let's make a really trivial function that checks if the num-
ber we supplied to it is a seven or not.

When you call lucky, the patterns will be checked from top to bottom and
when it conforms to a pattern, the corresponding function body will be
used. The only way a number can conform to the first pattern here is if it
is 7. If it's not, it falls through to the second pattern, which matches anything and binds it to x.
This function could have also been implemented by using an if statement. But what if we wanted a
function that says the numbers from 1 to 5 and says "Not between 1 and 5" for any other number?
Without patternmatching, we'd have tomake a pretty convoluted if then else tree. However, with
it:

sayMe :: (Integral a) => a -> String

sayMe 1 = "One!"

sayMe 2 = "Two!"

sayMe 3 = "Three!"

sayMe 4 = "Four!"

sayMe 5 = "Five!"

sayMe x = "Not between 1 and 5"

Note that if we moved the last pattern (the catch-all one) to the top, it would always say“Not
between 1 and 5”, because it would catch all the numbers and they wouldn't have a chance to fall
through and be checked for any other patterns.

Remember the factorial function we implemented previously? We defined the factorial of a num-
ber n as product [1. .n] . We can also define a factorial function recursively, the way it is usually
defined in mathematics. We start by saying that the factorial of 0 is 1. Then we state that the
factorial of any positive integer is that integer multiplied by the factorial of its predecessor. Here's
how that looks like translated in Haskell terms.

factorial :: (Integral a) => a -> a

factorial 0 = 1

factorial n = n * factorial (n - 1)

This is the first time we've defined a function recursively. Recursion is important in Haskell and
we'll take a closer look at it later. But in a nutshell, this is what happens if we try to get the factorial
of, say, 3. It tries to compute 3 * factorial 2. The factorial of 2 is 2 * factorial 1, so for now we have

28

3 * (2 * factorial 1). factorial 1 is 1 * factorial 0, so we have 3 * (2 * (1 * factorial 0)). Now here comes
the trick— we've defined the factorial of 0 to be just 1 and because it encounters that pattern
before the catch-all one, it just returns 1. So the final result is equivalent to 3 * (2 * (1 * 1)). Had
we written the second pattern on top of the first one, it would catch all numbers, including 0 and
our calculation would never terminate. That's why order is important when specifying patterns
and it's always best to specify the most specific ones first and then the more general ones later.

Pattern matching can also fail. If we define a function like this:

charName :: Char -> String

charName 'a' = "Albert"

charName 'b' = "Broseph"

charName 'c' = "Cecil"

and then try to call it with an input that we didn't expect, this is what happens:

ghci> charName 'a'

"Albert"

ghci> charName 'b'

"Broseph"

ghci> charName 'h'

"*** Exception: tut.hs:(53,0)-(55,21): Non-exhaustive patterns in function charName

It complains that we have non-exhaustive patterns, and rightfully so. When making patterns,
we should always include a catch-all pattern so that our program doesn't crash if we get some
unexpected input.

Patternmatching can also be used on tuples. What if we wanted tomake a function that takes two
vectors in a 2D space (that are in the form of pairs) and adds them together? To add together two
vectors, we add their x components separately and then their y components separately. Here's
how we would have done it if we didn't know about pattern matching:

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors a b = (fst a + fst b, snd a + snd b)

Well, that works, but there's a better way to do it. Let's modify the function so that it uses pattern
matching.

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors (x1, y1) (x2, y2) = (x1 + x2, y1 + y2)

There we go! Much better. Note that this is already a catch-all pattern. The type of addVectors
(in both cases) is addVectors :: (Num a) => (a, a) -> (a, a) - > (a, a), so we are guaranteed to get
two pairs as parameters.

fst and snd extract the components of pairs. But what about triples? Well, there are no provided
functions that do that but we can make our own.

first :: (a, b, c) -> a

first (x, _, _) = x

second :: (a, b, c) -> b

29

second (_, y, _) = y

third :: (a, b, c) -> c

third (_, _, z) = z

The _ means the same thing as it does in list comprehensions. It means that we really don't care
what that part is, so we just write a _.

Which reminds me, you can also pattern match in list comprehensions. Check this out:

ghci> let xs = [(1,3), (4,3), (2,4), (5,3), (5,6), (3,1)]

ghci> [a+b | (a,b) <- xs]

[4,7,6,8,11,4]

Should a pattern match fail, it will just move on to the next element.

Lists themselves can also be used in pattern matching. You can match with the empty list [] or
any pattern that involves : and the empty list. But since [1,2,3] is just syntactic sugar for 1:2:3:[],
you can also use the former pattern. A pattern like x:xs will bind the head of the list to x and the
rest of it to xs, even if there's only one element so xs ends up being an empty list.

Note: The x:xs pattern is used a lot, especially with recursive functions. But patterns that have : in
them onlymatch against lists of length 1 ormore. If you want to bind, say, the first three elements
to variables and the rest of the list to another variable, you can use something like x:y:z:zs. It will
only match against lists that have three elements or more.

Now that we know how to pattern match against list, let's make our own implementation of the
head function.

head' :: [a] -> a

head' [] = error "Can't call head on an empty list, dummy!"

head' (x:_) = x

Checking if it works:

ghci> head' [4,5,6]

4

ghci> head' "Hello"

'H'

Nice! Notice that if you want to bind to several variables (even if one of them is just _ and doesn't
actually bind at all), we have to surround them in parentheses. Also notice the error function that
we used. It takes a string and generates a runtime error, using that string as information about
what kind of error occurred. It causes the program to crash, so it's not good to use it too much.
But calling head on an empty list doesn't make sense.

Let's make a trivial function that tells us some of the first elements of the list in (in)convenient
English form.

tell :: (Show a) => [a] -> String

tell [] = "The list is empty"

tell (x:[]) = "The list has one element: " ++ show x

tell (x:y:[]) = "The list has two elements: " ++ show x ++ " and " ++ show y

tell (x:y:_) = "This list is long. The first two elements are: " ++ show x ++ " and " ++ show y

30

This function is safe because it takes care of the empty list, a singleton list, a list with two elements
and a list with more than two elements. Note that (x: []) and (x:y: []) could be rewriten as [x]
and [x,y](because its syntatic sugar, we don't need the parentheses). We can't rewrite (x:y:_) with
square brackets because it matches any list of length 2 or more.

We already implemented our own length function using list comprehension. Now we'll do it by
using pattern matching and a little recursion:

length' :: (Num b) => [a] -> b

length' [] = 0

length' (_:xs) = 1 + length' xs

This is similar to the factorial function we wrote earlier. First we defined the result of a known
input— the empty list. This is also known as the edge condition. Then in the second pattern we
take the list apart by splitting it into a head and a tail. We say that the length is equal to 1 plus the
length of the tail. We use _ to match the head because we don't actually care what it is. Also note
that we've taken care of all possible patterns of a list. The first pattern matches an empty list and
the second one matches anything that isn't an empty list.

Let's see what happens if we call length' on "ham". First, it will check if it's an empty list. Because
it isn't, it falls through to the second pattern. It matches on the second pattern and there it says
that the length is 1 + length' "am", because we broke it into a head and a tail and discarded the
head. O-kay. The length' of "am" is, similarly, 1 + length' "m". So right now we have 1 + (1 +
length' "m"). length' "m" is 1 + length' "" (could also be written as 1 + length'[]). And we've defined
length' [] to be 0. So in the end we have 1 + (1 + (1 + 0)).

Let's implement sum. We know that the sumof an empty list is 0. Wewrite that down as a pattern.
And we also know that the sum of a list is the head plus the sum of the rest of the list. So if we
write that down, we get:

sum' :: (Num a) => [a] -> a

sum' [] = 0

sum' (x:xs) = x + sum' xs

There's also a thing called as patterns. Those are a handy way of breaking something up according
to a pattern and binding it to names whilst still keeping a reference to the whole thing. You do
that by putting a name and an @ in front of a pattern. For instance, the pattern xs@(x:y:ys) .
This pattern will match exactly the same thing as x:y:ys but you can easily get the whole list via xs
instead of repeating yourself by typing out x:y:ys in the function body again. Here's a quick and
dirty example:

capital :: String -> String

capital "" = "Empty string, whoops!"

capital all@(x:xs) = "The first letter of " ++ all ++ " is " ++ [x]

ghci> capital "Dracula"

"The first letter of Dracula is D"

Normally we use as patterns to avoid repeating ourselves when matching against a bigger pattern
when we have to use the whole thing again in the function body.

One more thing— you can't use ++ in pattern matches. If you tried to pattern match against (xs
++ ys) , what would be in the first and what would be in the second list? It doesn't make much

31

sense. It would make sense to match stuff against (xs ++ [x,y,z]) or just (xs ++ [x]), but because
of the nature of lists, you can't do that.

4.2 Guards, guards!

Whereas patterns are a way of making sure a value conforms to some form and
deconstructing it, guards are a way of testing whether some property of a value
(or several of them) are true or false. That sounds a lot like an if statement and
it's very similar. The thing is that guards are a lot more readable when you have
several conditions and they play really nicely with patterns.

Instead of explaining their syntax, let's just dive in and make a function using
guards. We're going to make a simple function that berates you differently de-
pending on your BMI (body mass index). Your BMI equals your weight divided
by your height squared. If your BMI is less than 18.5, you're considered under-
weight. If it's anywhere from 18.5 to 25 then you're considered normal. 25 to
30 is overweight and more than 30 is obese. So here's the function (we won't be
calculating it right now, this function just gets a BMI and tells you off)

bmiTell :: (RealFloat a) => a -> String

bmiTell bmi

| bmi <= 18.5 = "You're underweight, you emo, you!"

| bmi <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"

| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"

| otherwise = "You're a whale, congratulations!"

Guards are indicated by pipes that follow a function's name and its parameters. Usually, they're
indented a bit to the right and lined up. A guard is basically a boolean expression. If it evaluates
to True, then the corresponding function body is used. If it evaluates to False, checking drops
through to the next guard and so on. If we call this function with 24.3, it will first check if that's
smaller than or equal to 18.5. Because it isn't, it falls through to the next guard. The check is
carried out with the second guard and because 24.3 is less than 25.0, the second string is returned.

This is very reminiscent of a big if else tree in imperative languages, only this is far better and
more readable. While big if else trees are usually frowned upon, sometimes a problem is defined
in such a discrete way that you can't get around them. Guards are a very nice alternative for this.

Many times, the last guard is otherwise. otherwise is defined simply as otherwise = True and
catches everything. This is very similar to patterns, only they check if the input satisfies a pattern
but guards check for boolean conditions. If all the guards of a function evaluate to False (and
we haven't provided an otherwise catch-all guard) , evaluation falls through to the next pattern.
That's how patterns and guards play nicely together. If no suitable guards or patterns are found,
an error is thrown.

Of course we can use guards with functions that take as many parameters as we want. Instead of
having the user calculate his own BMI before calling the function, let's modify this function so
that it takes a height and weight and calculates it for us.

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"

32

| weight / height ^ 2 <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"

| weight / height ^ 2 <= 30.0 = "You're fat! Lose some weight, fatty!"

| otherwise = "You're a whale, congratulations!"

Let's see if I'm fat ...

ghci> bmiTell 85 1.90

"You're supposedly normal. Pffft, I bet you're ugly!"

Yay! I'm not fat! But Haskell just called me ugly. Whatever!

Note that there's no = right after the function name and its parameters, before the first guard.
Many newbies get syntax errors because they sometimes put it there.

Another very simple example: let's implement our own max function. If you remember, it takes
two things that can be compared and returns the larger of them.

max' :: (Ord a) => a -> a -> a

max' a b

| a > b = a

| otherwise = b

Guards can also be written inline, although I'd advise against that because it's less readable, even
for very short functions. But to demonstrate, we could write max' like this:

max' :: (Ord a) => a -> a -> a

max' a b | a > b = a | otherwise = b

Ugh! Not very readable at all! Moving on: let's implement our own compare by using guards.

myCompare :: (Ord a) => a -> a -> Ordering

a `myCompare` b

| a > b = GT

| a == b = EQ

| otherwise = LT

ghci> 3 `myCompare` 2

GT

Note: Not only can we call functions as infix with backticks, we can also define them using back-
ticks. Sometimes it's easier to read that way.

4.3 Where!?

In the previous section, we defined a BMI calculator function and berator like this:

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| weight / height ^ 2 <= 18.5 = "You're underweight, you emo, you!"

| weight / height ^ 2 <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"

| weight / height ^ 2 <= 30.0 = "You're fat! Lose some weight, fatty!"

| otherwise = "You're a whale, congratulations!"

33

Notice that we repeat ourselves here three times. We repeat ourselves three times. Repeating
yourself (three times) while programming is about as desirable as getting kicked inna head. Since
we repeat the same expression three times, it would be ideal if we could calculate it once, bind it
to a name and then use that name instead of the expression. Well, we can modify our function
like this:

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| bmi <= 18.5 = "You're underweight, you emo, you!"

| bmi <= 25.0 = "You're supposedly normal. Pffft, I bet you're ugly!"

| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"

| otherwise = "You're a whale, congratulations!"

where bmi = weight / height ^ 2

We put the keyword where after the guards (usually it's best to indent it as much as the pipes
are indented) and then we define several names or functions. These names are visible across the
guards and give us the advantage of not having to repeat ourselves. If we decide that we want
to calculate BMI a bit differently, we only have to change it once. It also improves readability by
giving names to things and can make our programs faster since stuff like our bmi variable here is
calculated only once. We could go a bit overboard and present our function like this:

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| bmi <= skinny = "You're underweight, you emo, you!"

| bmi <= normal = "You're supposedly normal. Pffft, I bet you're ugly!"

| bmi <= fat = "You're fat! Lose some weight, fatty!"

| otherwise = "You're a whale, congratulations!"

where bmi = weight / height ^ 2

skinny = 18.5

normal = 25.0

fat = 30.0

Thenameswe define in thewhere section of a function are only visible to that function, sowe don't
have to worry about them polluting the namespace of other functions. Notice that all the names
are aligned at a single column. If we don't align them nice and proper, Haskell gets confused
because then it doesn't know they're all part of the same block.

where bindings aren't shared across function bodies of different patterns. If you want several
patterns of one function to access some shared name, you have to define it globally.

You can also use where bindings to pattern match! We could have rewritten the where section of
our previous function as:

...

where bmi = weight / height ^ 2

(skinny, normal, fat) = (18.5, 25.0, 30.0)

Let's make another fairly trivial function where we get a first and a last name and give someone
back their initials.

34

initials :: String -> String -> String

initials firstname lastname = [f] ++ ". " ++ [l] ++ "."

where (f:_) = firstname

(l:_) = lastname

We could have done this pattern matching directly in the function's parameters (it would have
been shorter and clearer actually) but this just goes to show that it's possible to do it in where
bindings as well.

Just like we've defined constants in where blocks, you can also define functions. Staying true to
our healthy programming theme, let's make a function that takes a list of weight-height pairs and
returns a list of BMIs.

calcBmis :: (RealFloat a) => [(a, a)] -> [a]

calcBmis xs = [bmi w h | (w, h) <- xs]

where bmi weight height = weight / height ^ 2

And that's all there is to it! The reason we had to introduce bmi as a function in this example is
because we can't just calculate one BMI from the function's parameters. We have to examine the
list passed to the function and there's a different BMI for every pair in there.

where bindings can also be nested. It's a common idiom to make a function and define some
helper function in its where clause and then to give those functions helper functions as well, each
with its own where clause.

4.4 Let it be

Very similar to where bindings are let bindings. Where bindings are a syn-
tactic construct that let you bind to variables at the end of a function and the
whole function can see them, including all the guards. Let bindings let you
bind to variables anywhere and are expressions themselves, but are very lo-
cal, so they don't span across guards. Just like any construct in Haskell that
is used to bind values to names, let bindings can be used for pattern match-
ing. Let's see them in action! This is how we could define a function that
gives us a cylinder's surface area based on its height and radius:

cylinder :: (RealFloat a) => a -> a -> a

cylinder r h =

let sideArea = 2 * pi * r * h

topArea = pi * r ^2

in sideArea + 2 * topArea

The form is let <bindings> in <expression>. Thenames that you define in the let part are accessible
to the expression after the in part. As you can see, we could have also defined this with a where
binding. Notice that the names are also aligned in a single column. So what's the difference
between the two? For now it just seems that let puts the bindings first and the expression that
uses them later whereas where is the other way around.

The difference is that let bindings are expressions themselves. where bindings are just syntactic
constructs. Remember when we did the if statement and it was explained that an if else statement
is an expression and you can cram it in almost anywhere?

35

ghci> [if 5 > 3 then "Woo" else "Boo", if 'a' > 'b' then "Foo" else "Bar"]

["Woo", "Bar"]

ghci> 4 * (if 10 > 5 then 10 else 0) + 2

42

You can also do that with let bindings.

ghci> 4 * (let a = 9 in a + 1) + 2

42

They can also be used to introduce functions in a local scope:

ghci> [let square x = x * x in (square 5, square 3, square 2)]

[(25,9,4)]

If we want to bind to several variables inline, we obviously can't align them at columns. That's
why we can separate them with semicolons.

ghci> (let a = 100; b = 200; c = 300 in a*b*c, let foo="Hey "; bar = "there!" in foo ++ bar)

(6000000,"Hey there!")

You don't have to put a semicolon after the last binding but you can if you want. Like we said
before, you can pattern match with let bindings. They're very useful for quickly dismantling a
tuple into components and binding them to names and such.

ghci> (let (a,b,c) = (1,2,3) in a+b+c) * 100

600

You can also put let bindings inside list comprehensions. Let's rewrite our previous example of
calculating lists of weight-height pairs to use a let inside a list comprehension instead of defining
an auxiliary function with a where.

calcBmis :: (RealFloat a) => [(a, a)] -> [a]

calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2]

We include a let inside a list comprehension much like we would a predicate, only it doesn't filter
the list, it only binds to names. The names defined in a let inside a list comprehension are visible
to the output function (the part before the |) and all predicates and sections that come after of the
binding. So we could make our function return only the BMIs of fat people:

calcBmis :: (RealFloat a) => [(a, a)] -> [a]

calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2, bmi >= 25.0]

We can't use the bmi name in the (w, h) <- xs part because it's defined prior to the let binding.

We omitted the in part of the let binding when we used them in list comprehensions because the
visibility of the names is already predefined there. However, we could use a let in binding in a
predicate and the names defined would only be visible to that predicate. The in part can also be
omitted when defining functions and constants directly in GHCi. If we do that, then the names
will be visible throughout the entire interactive session.

36

ghci> let zoot x y z = x * y + z

ghci> zoot 3 9 2

29

ghci> let boot x y z = x * y + z in boot 3 4 2

14

ghci> boot

<interactive>:1:0: Not in scope: `boot'

If let bindings are so cool, why not use them all the time instead of where bindings, you ask? Well,
since let bindings are expressions and are fairly local in their scope, they can't be used across
guards. Some people prefer where bindings because the names come after the function they're
being used in. That way, the function body is closer to its name and type declaration and to some
that's more readable.

4.5 Case expressions

Many imperative languages (C, C++, Java, etc.) have case syntax and
if you've ever programmed in them, you probably know what it's about.
It's about taking a variable and then executing blocks of code for specific
values of that variable and then maybe including a catch-all block of code
in case the variable has some value for which we didn't set up a case.

Haskell takes that concept and one-ups it. Like the name implies, case
expressions are, well, expressions, much like if else expressions and let
bindings. Not only can we evaluate expressions based on the possible
cases of the value of a variable, we can also dopatternmatching. Hmmm, taking a variable, pattern
matching it, evaluating pieces of code based on its value, where have we heard this before? Oh
yeah, pattern matching on parameters in function definitions! Well, that's actually just syntactic
sugar for case expressions. These two pieces of code do the same thing and are interchangeable:

head' :: [a] -> a

head' [] = error "No head for empty lists!"

head' (x:_) = x

head' :: [a] -> a

head' xs = case xs of [] -> error "No head for empty lists!"

(x:_) -> x

As you can see, the syntax for case expressions is pretty simple:

case expression of pattern -> result

pattern -> result

pattern -> result

...

expression is matched against the patterns. The pattern matching action is the same as expected:
the first pattern that matches the expression is used. If it falls through the whole case expression
and no suitable pattern is found, a runtime error occurs.

Whereas pattern matching on function parameters can only be done when defining functions,
case expressions can be used pretty much anywhere. For instance:

37

describeList :: [a] -> String

describeList xs = "The list is " ++ case xs of [] -> "empty."

[x] -> "a singleton list."

xs -> "a longer list."

They are useful for pattern matching against something in the middle of an expression. Because
pattern matching in function definitions is syntactic sugar for case expressions, we could have
also defined this like so:

describeList :: [a] -> String

describeList xs = "The list is " ++ what xs

where what [] = "empty."

what [x] = "a singleton list."

what xs = "a longer list."

Chapter 5 Recursion

5.1 Hello recursion!

We mention recursion briefly in the previous chapter. In this chapter,
we'll take a closer look at recursion, why it's important to Haskell and
how we can work out very concise and elegant solutions to problems by
thinking recursively.

If you still don't know what recursion is, read this sentence. Haha! Just
kidding! Recursion is actually a way of defining functions in which the
function is applied inside its own definition. Definitions in mathematics

are often given recursively. For instance, the fibonacci sequence is defined recursively. First, we
define the first two fibonacci numbers non-recursively. We say that F(0) = 0 and F(1) = 1,meaning
that the 0th and 1st fibonacci numbers are 0 and 1, respectively. Then we say that for any other
natural number, that fibonacci number is the sum of the previous two fibonacci numbers. So F(n)
= F(n-1) + F(n-2) . That way, F(3) is F(2) + F(1) , which is (F(1) + F(0)) + F(1) . Because we've
now come down to only non-recursively defined fibonacci numbers, we can safely say that F(3)
is 2. Having an element or two in a recursion definition defined non-recursively (like F(0) and
F(1) here) is also called the edge condition and is important if you want your recursive function
to terminate. If we hadn't defined F(0) and F(1) non recursively, you'd never get a solution any
number because you'd reach 0 and then you'd go into negative numbers. All of a sudden, you'd
be saying that F(-2000) is F(-2001) + F(-2002) and there still wouldn't be an end in sight!

Recursion is important to Haskell because unlike imperative languages, you do computations in
Haskell by declaring what something is instead of declaring how you get it. That's why there are
no while loops or for loops in Haskell and instead we many times have to use recursion to declare
what something is.

5.2 Maximum awesome

The maximum function takes a list of things that can be ordered (e.g. instances of the Ord type-
class) and returns the biggest of them. Think about how you'd implement that in an imperative
fashion. You'd probably set up a variable to hold the maximum value so far and then you'd loop
through the elements of a list and if an element is bigger than then the current maximum value,
you'd replace it with that element. The maximum value that remains at the end is the result.
Whew! That's quite a lot of words to describe such a simple algorithm!

Now let's see how we'd define it recursively. We could first set up an edge condition and say
that the maximum of a singleton list is equal to the only element in it. Then we can say that
the maximum of a longer list is the head if the head is bigger than the maximum of the tail. If
the maximum of the tail is bigger, well, then it's the maximum of the tail. That's it! Now let's
implement that in Haskell.

maximum' :: (Ord a) => [a] -> a

maximum' [] = error "maximum of empty list"

maximum' [x] = x

maximum' (x:xs)

39

| x > maxTail = x

| otherwise = maxTail

where maxTail = maximum' xs

As you can see, pattern matching goes great with recursion! Most imperative languages don't
have pattern matching so you have to make a lot of if else statements to test for edge conditions.
Here, we simply put them out as patterns. So the first edge condition says that if the list is empty,
crash! Makes sense because what's the maximum of an empty list? I don't know. The second
pattern also lays out an edge condition. It says that if it's the singleton list, just give back the only
element.

Now the third pattern is where the action happens. We use pattern matching to split a list into
a head and a tail. This is a very common idiom when doing recursion with lists, so get used to
it. We use a where binding to define maxTail as the maximum of the rest of the list. Then we
check if the head is greater than the maximum of the rest of the list. If it is, we return the head.
Otherwise, we return the maximum of the rest of the list.

Let's take an example list of numbers and check out how this would work on them: [2,5,1]. If we
call maximum' on that, the first two patterns won't match. The third one will and the list is split
into 2 and [5,1]. The where clause wants to know the maximum of [5,1], so we follow that route.
It matches the third pattern again and [5,1] is split into 5 and [1]. Again, the where clause wants
to know the maximum of [1] . Because that's the edge condition, it returns 1. Finally! So going
up one step, comparing 5 to the maximum of [1] (which is 1) , we obviously get back 5. So now
we know that the maximum of [5,1] is 5. We go up one step again where we had 2 and [5,1] .
Comparing 2 with the maximum of [5,1], which is 5, we choose 5.

An even clearer way to write this function is to use max. If you remember, max is a function that
takes two numbers and returns the bigger of them. Here's how we could rewrite maximum' by
using max:

maximum' :: (Ord a) => [a] -> a

maximum' [] = error "maximum of empty list"

maximum' [x] = x

maximum' (x:xs) = max x (maximum' xs)

How's that for elegant! In essence, the maximum of a list is the max of the first element and the
maximum of the tail.

5.3 A few more recursive functions

Now that we know how to generally think recursively, let's implement a few functions using re-
cursion. First off, we'll implement replicate. replicate takes an Int and some element and returns

40

a list that has several repetitions of the same element. For instance, replicate 3 5 returns [5,5,5] .
Let's think about the edge condition. My guess is that the edge condition is 0 or less. If we try to
replicate something zero times, it should return an empty list. Also for negative numbers, because
it doesn't really make sense.

replicate' :: (Num i, Ord i) => i -> a -> [a]

replicate' n x

| n <= 0 = []

| otherwise = x:replicate' (n-1) x

We used guards here instead of patterns because we're testing for a boolean condition. If n is less
than or equal to 0, return an empty list. Otherwise return a list that has x as the first element and
then x replicated n-1 times as the tail. Eventually, the (n-1) part will cause our function to reach
the edge condition.

Note: Num is not a subclass of Ord. That means that what constitutes for a number doesn't really
have to adhere to an ordering. So that's why we have to specify both the Num and Ord class
constraints when doing addition or subtraction and also comparison.

Next up, we'll implement take. It takes a certain number of elements from a list. For instance,
take 3 [5,4,3,2,1] will return [5,4,3]. If we try to take 0 or less elements from a list, we get an empty
list. Also if we try to take anything from an empty list, we get an empty list. Notice that those are
two edge conditions right there. So let's write that out:

take' :: (Num i, Ord i) => i -> [a] -> [a]

take' n _

| n <= 0 = []

take' _ [] = []

take' n (x:xs) = x : take' (n-1) xs

The first pattern specifies that if we try to take a 0 or negative number
of elements, we get an empty list. Notice that we're using _ to match
the list because we don't really care what it is in this case. Also notice
that we use a guard, but without an otherwise part. Thatmeans that if n
turns out to be more than 0, the matching will fall through to the next
pattern. The second pattern indicates that if we try to take anything
from an empty list, we get an empty list. The third pattern breaks the
list into a head and a tail. And then we state that taking n elements
from a list equals a list that has x as the head and then a list that takes n-1 elements from the tail
as a tail. Try using a piece of paper to write down how the evaluation would look like if we try to
take, say, 3 from [4,3,2,1].

reverse simply reverses a list. Think about the edge condition. What is it? Come on ... it's the empty
list! An empty list reversed equals the empty list itself. O-kay. What about the rest of it? Well,
you could say that if we split a list to a head and a tail, the reversed list is equal to the reversed tail
and then the head at the end.

reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

There we go!

41

BecauseHaskell supports infinite lists, our recursion doesn't really have to have an edge condition.
But if it doesn't have it, it will either keep churning at something infinitely or produce an infinite
data structure, like an infinite list. The good thing about infinite lists though is that we can cut
themwhere wewant. repeat takes an element and returns an infinite list that just has that element.
A recursive implementation of that is really easy, watch.

repeat' :: a -> [a]

repeat' x = x:repeat' x

Calling repeat 3 will give us a list that starts with 3 and then has an infinite amount of 3's as a tail.
So calling repeat 3 would evaluate like 3:repeat 3, which is 3:(3:repeat 3), which is 3:(3:(3:repeat
3)), etc. repeat 3 will never finish evaluating, whereas take 5 (repeat 3) will give us a list of five 3's.
So essentially it's like doing replicate 5 3.

zip takes two lists and zips them together. zip [1,2,3][2,3] returns[(1,2),(2,3)], because it truncates the
longer list to match the length of the shorter one. How about if we zip something with an empty
list? Well, we get an empty list back then. So there's our edge condition. However, zip takes two
lists as parameters, so there are actually two edge conditions.

zip' :: [a] -> [b] -> [(a,b)]

zip' _ [] = []

zip' [] _ = []

zip' (x:xs) (y:ys) = (x,y):zip' xs ys

First two patterns say that if the first list or second list is empty, we get an empty list. The third
one says that two lists zipped are equal to pairing up their heads and then tacking on the zipped
tails. Zipping [1,2,3] and ['a','b'] will eventually try to zip [3] with []. The edge condition patterns
kick in and so the result is (1,'a'):(2,'b'):[], which is exactly the same as [(1,'a'),(2,'b')].

Let's implement one more standard library function— elem. It takes an element and a list and
sees if that element is in the list. The edge condition, as is most of the times with lists, is the empty
list. We know that an empty list contains no elements, so it certainly doesn't have the droids we're
looking for.

elem' :: (Eq a) => a -> [a] -> Bool

elem' a [] = False

elem' a (x:xs)

| a == x = True

| otherwise = a `elem'` xs

Pretty simple and expected. If the head isn't the element then we check the tail. If we reach an
empty list, the result is False.

5.4 Quick, sort!

Wehave a list of items that can be sorted. Their type is an instance of the Ord typeclass. And now,
we want to sort them! There's a very cool algoritm for sorting called quicksort. It's a very clever
way of sorting items. While it takes upwards of 10 lines to implement quicksort in imperative
languages, the implementation is much shorter and elegant in Haskell. Quicksort has become
a sort of poster child for Haskell. Therefore, let's implement it here, even though implementing

42

quicksort in Haskell is considered really cheesy because everyone does it to showcase how elegant
Haskell is.

So, the type signature is going to be quicksort :: (Ord a) => [a] -> [a]. No
surprises there. The edge condition? Empty list, as is expected. A sorted
empty list is an empty list. Now here comes the main algorithm: a sorted
list is a list that has all the values smaller than (or equal to) the head of the
list in front (and those values are sorted), then comes the head of the list
in the middle and then come all the values that are bigger than the head
(they're also sorted). Notice that we said sorted two times in this definition,
so we'll probably have to make the recursive call twice! Also notice that
we defined it using the verb is to define the algorithm instead of saying do
this, do that, then do that That's the beauty of functional programming!
How are we going to filter the list so that we get only the elements smaller

than the head of our list and only elements that are bigger? List comprehensions. So, let's dive in
and define this function.

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerSorted = quicksort [a | a <- xs, a <= x]

biggerSorted = quicksort [a | a <- xs, a > x]

in smallerSorted ++ [x] ++ biggerSorted

Let's give it a small test run to see if it appears to behave correctly.

ghci> quicksort [10,2,5,3,1,6,7,4,2,3,4,8,9]

[1,2,2,3,3,4,4,5,6,7,8,9,10]

ghci> quicksort "the quick brown fox jumps over the lazy dog"

" abcdeeefghhijklmnoooopqrrsttuuvwxyz"

Booyah! That's what I'm talking about! So if we have, say [5,1,9,4,6,7,3] and we want to sort it,
this algorithm will first take the head, which is 5 and then put it in the middle of two lists that
are smaller and bigger than it. So at one point, you'll have [1,4,3] ++ [5] ++ [9,6,7] . We know
that once the list is sorted completely, the number 5 will stay in the fourth place since there are 3
numbers lower than it and 3 numbers higher than it. Now, if we sort [1,4,3] and [9,6,7], we have
a sorted list! We sort the two lists using the same function. Eventually, we'll break it up so much
that we reach empty lists and an empty list is already sorted in a way, by virtue of being empty.
Here's an illustration:

43

An element that is in place and won't move anymore is represented in orange. If you read them
from left to right, you'll see the sorted list. Although we chose to compare all the elements to the
heads, we could have used any element to compare against. In quicksort, an element that you
compare against is called a pivot. They're in green here. We chose the head because it's easy to get
by pattern matching. The elements that are smaller than the pivot are light green and elements
larger than the pivot are dark green. The yellowish gradient thing represents an application of
quicksort.

5.5 Thinking recursively

Wedid quite a bit of recursion so far and as you've probably noticed, there's a pattern here. Usually
you define an edge case and then you define a function that does something between some element
and the function applied to the rest. It doesn't matter if it's a list, a tree or any other data structure.
A sum is the first element of a list plus the sum of the rest of the list. A product of a list is the
first element of the list times the product of the rest of the list. The length of a list is one plus the
length of the tail of the list. Ekcetera, ekcetera ...

Of course, these also have edge cases. Usually the edge case is some sce-
nario where a recursive application doesn't make sense. When dealing
with lists, the edge case is most often the empty list. If you're dealing
with trees, the edge case is usually a node that doesn't have any chil-
dren.

It's similar when you're dealing with numbers recursively. Usually it
has to do with some number and the function applied to that number
modified. We did the factorial function earlier and it's the product of a
number and the factorial of that number minus one. Such a recursive

application doesn't make sense with zero, because factorials are defined only for positive integers.
Often the edge case value turns out to be an identity. The identity for multiplication is 1 because
if you multiply something by 1, you get that something back. Also when doing sums of lists, we
define the sum of an empty list as 0 and 0 is the identity for addition. In quicksort, the edge case
is the empty list and the identity is also the empty list, because if you add an empty list to a list,
you just get the original list back.

So when trying to think of a recursive way to solve a problem, try to think of when a recursive
solution doesn't apply and see if you can use that as an edge case, think about identities and think
about whether you'll break apart the parameters of the function (for instance, lists are usually
broken into a head and a tail via pattern matching) and on which part you'll use the recursive call.

Chapter 6 Higher order functions

Haskell functions can take functions as parameters and return functions
as return values. A function that does either of those is called a higher
order function. Higher order functions aren't just a part of the Haskell
experience, they pretty much are the Haskell experience. It turns out that
if you want to define computations by defining what stuff is instead of
defining steps that change some state and maybe looping them, higher
order functions are indispensable. They're a really powerful way of solv-
ing problems and thinking about programs.

6.1 Curried functions

Every function inHaskell officially only takes one parameter. So how is it possible that we defined
and used several functions that take more than one parameter so far? Well, it's a clever trick! All
the functions that accepted several parameters so far have been curried functions. What does that
mean? You'll understand it best on an example. Let's take our good friend, the max function. It
looks like it takes two parameters and returns the one that's bigger. Doing max 4 5 first creates a
function that takes a parameter and returns either 4 or that parameter, depending onwhich is big-
ger. Then, 5 is applied to that function and that function produces our desired result. That sounds
like a mouthful but it's actually a really cool concept. The following two calls are equivalent:

ghci> max 4 5

5

ghci> (max 4) 5

5

Putting a space between two things is simply function application. The
space is sort of like an operator and it has the highest precedence. Let's
examine the type of max. It's max : : (Ord a) => a -> a -> a. That can
also be written as max : : (Ord a) => a -> (a -> a) . That could be read
as: max takes an a and returns (that's the ->) a function that takes an
a and returns an a. That's why the return type and the parameters of
functions are all simply separated with arrows.

So how is that beneficial to us? Simply speaking, if we call a func-
tion with too few parameters, we get back a partially applied function,
meaning a function that takes as many parameters as we left out. Us-
ing partial application (calling functions with too few parameters, if
you will) is a neat way to create functions on the fly so we can pass
them to another function or to seed them with some data.

Take a look at this offensively simple function:

multThree :: (Num a) => a -> a -> a -> a

multThree x y z = x * y * z

45

What really happens when we do multThree 3 5 9 or ((multThree 3) 5) 9? First, 3 is applied to
multThree, because they're separated by a space. That creates a function that takes one parameter
and returns a function. So then 5 is applied to that, which creates a function that will take a
parameter and multiply it by 15. 9 is applied to that function and the result is 135 or something.
Remember that this function's type could also be written as multThree : : (Num a) => a -> (a ->
(a -> a)) . The thing before the -> is the parameter that a function takes and the thing after it is
what it returns. So our function takes an a and returns a function of type (Num a) => a -> (a ->
a). Similarly, this function takes an a and returns a function of type (Num a) => a -> a. And this
function, finally, just takes an a and returns an a. Take a look at this:

ghci> let multTwoWithNine = multThree 9

ghci> multTwoWithNine 2 3

54

ghci> let multWithEighteen = multTwoWithNine 2

ghci> multWithEighteen 10

180

By calling functions with too few parameters, so to speak, we're creating new functions on the fly.
What if we wanted to create a function that takes a number and compares it to 100? We could do
something like this:

compareWithHundred :: (Num a, Ord a) => a -> Ordering

compareWithHundred x = compare 100 x

If we call it with 99, it returns a GT. Simple stuff. Notice that the x is on the right hand side on
both sides of the equation. Now let's think about what compare 100 returns. It returns a function
that takes a number and compares it with 100. Wow! Isn't that the function we wanted? We can
rewrite this as:

compareWithHundred :: (Num a, Ord a) => a -> Ordering

compareWithHundred = compare 100

The type declaration stays the same, because compare 100 returns a function. Compare has a
type of (Ord a) => a -> (a -> Ordering) and calling it with 100 returns a (Num a, Ord a) => a
-> Ordering. The additional class constraint sneaks up there because 100 is also part of the Num
typeclass.

Note: Yo! Make sure you really understand how curried functions and partial application work
because they're really important! Infix functions can also be partially applied by using sections.
To section an infix function, simply surround it with parentheses and only supply a parameter
on one side. That creates a function that takes one parameter and then applies it to the side that's
missing an operand. An insultingly trivial function:

divideByTen :: (Floating a) => a -> a

divideByTen = (/10)

Calling, say, divideByTen 200 is equivalent to doing 200 / 10, as is doing (/10) 200. A function
that checks if a character supplied to it is an uppercase letter:

isUpperAlphanum :: Char -> Bool

isUpperAlphanum = (`elem` ['A'..'Z'])

46

The only special thing about sections is using -. From the definition of sections, (-4) would result
in a function that takes a number and subtracts 4 from it. However, for convenience, (-4) means
minus four. So if you want to make a function that subtracts 4 from the number it gets as a
parameter, partially apply the subtract function like so: (subtract 4).

What happens if we try to just do multThree 3 4 in GHCI instead of binding it to a name with a
let or passing it to another function?

ghci> multThree 3 4

<interactive>:1:0:

No instance for (Show (t -> t))

arising from a use of `print' at <interactive>:1:0-12

Possible fix: add an instance declaration for (Show (t -> t))

In the expression: print it

In a 'do' expression: print it

GHCI is telling us that the expression produced a function of type a -> a but it doesn't know how
to print it to the screen. Functions aren't instances of the Show typeclass, so we can't get a neat
string representation of a function. When we do, say, 1 + 1 at the GHCI prompt, it first calculates
that to 2 and then calls show on 2 to get a textual representation of that number. And the textual
representation of 2 is just the string "2", which then gets printed to our screen.

6.2 Some higher-orderism is in order

Functions can take functions as parameters and also return functions. To illustrate this, we're
going to make a function that takes a function and then applies it twice to something!

applyTwice :: (a -> a) -> a -> a

applyTwice f x = f (f x)

First of all, notice the type declaration. Before, we didn't need paren-
theses because -> is naturally right-associative. However, here, they're
mandatory. They indicate that the first parameter is a function that
takes something and returns that same thing. The second parameter
is something of that type also and the return value is also of the same
type. We could read this type declaration in the curried way, but to
save ourselves a headache, we'll just say that this function takes two
parameters and returns one thing. The first parameter is a function (of
type a -> a) and the second is that same a. The function can also be Int
-> Int or String -> String or whatever. But then, the second parameter
to also has to be of that type.

Note: Fromnowon, we'll say that functions take several parameters despite each function actually
taking only one parameter and returning partially applied functions until we reach a function that
returns a solid value. So for simplicity's sake, we'll say that a -> a -> a takes two parameters, even
though we know what's really going on under the hood.

The body of the function is pretty simple. We just use the parameter f as a function, applying x
to it by separating them with a space and then applying the result to f again. Anyway, playing
around with the function:

47

ghci> applyTwice (+3) 10

16

ghci> applyTwice (++ " HAHA") "HEY"

"HEY HAHA HAHA"

ghci> applyTwice ("HAHA " ++) "HEY"

"HAHA HAHA HEY"

ghci> applyTwice (multThree 2 2) 9

144

ghci> applyTwice (3:) [1]

[3,3,1]

The awesomeness and usefulness of partial application is evident. If our function requires us to
pass it a function that takes only one parameter, we can just partially apply a function to the point
where it takes only one parameter and then pass it.

Now we're going to use higher order programming to implement a really useful function that's in
the standard library. It's called zipWith. It takes a function and two lists as parameters and then
joins the two lists by applying the function between corresponding elements. Here's how we'll
implement it:

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith' _ [] _ = []

zipWith' _ _ [] = []

zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys

Look at the type declaration. The first parameter is a function that takes two things and produces a
third thing. They don't have to be of the same type, but they can. The second and third parameter
are lists. The result is also a list. The first has to be a list of a's, because the joining function takes
a's as its first argument. The second has to be a list of b's, because the second parameter of the
joining function is of type b. The result is a list of c's. If the type declaration of a function says it
accepts an a -> b -> c function as a parameter, it will also accept an a -> a -> a function, but not the
other way around! Remember that when you're making functions, especially higher order ones,
and you're unsure of the type, you can just try omitting the type declaration and then checking
what Haskell infers it to be by using :t.

The action in the function is pretty similar to the normal zip. The edge conditions are the same,
only there's an extra argument, the joining function, but that argument doesn't matter in the edge
conditions, so we just use a _ for it. And function body at the last pattern is also similar to zip,
only it doesn't do (x,y) , but f x y. A single higher order function can be used for a multitude of
different tasks if it's general enough. Here's a little demonstration of all the different things our
zipWith' function can do:

ghci> zipWith' (+) [4,2,5,6] [2,6,2,3]

[6,8,7,9]

ghci> zipWith' max [6,3,2,1] [7,3,1,5]

[7,3,2,5]

ghci> zipWith' (++) ["foo ", "bar ", "baz "] ["fighters", "hoppers", "aldrin"]

["foo fighters","bar hoppers","baz aldrin"]

ghci> zipWith' (*) (replicate 5 2) [1..]

[2,4,6,8,10]

48

ghci> zipWith' (zipWith' (*)) [[1,2,3],[3,5,6],[2,3,4]] [[3,2,2],[3,4,5],[5,4,3]]

[[3,4,6],[9,20,30],[10,12,12]]

As you can see, a single higher order function can be used in very versatile ways. Imperative
programming usually uses stuff like for loops, while loops, setting something to a variable, check-
ing its state, etc. to achieve some behavior and then wrap it around an interface, like a function.
Functional programming uses higher order functions to abstract away common patterns, like ex-
amining two lists in pairs and doing something with those pairs or getting a set of solutions and
eliminating the ones you don't need.

We'll implement another function that's already in the standard library, called flip. Flip simply
takes a function and returns a function that is like our original function, only the first two argu-
ments are flipped. We can implement it like so:

flip' :: (a -> b -> c) -> (b -> a -> c)

flip' f = g

where g x y = f y x

Reading the type declaration, we say that it takes a function that takes an a and a b and returns a
function that takes a b and an a. But because functions are curried by default, the second pair of
parentheses is really unnecessary, because -> is right associative by default. (a -> b -> c) -> (b ->
a -> c) is the same as (a -> b -> c) -> (b -> (a -> c)), which is the same as (a -> b -> c) -> b -> a ->
c. We wrote that g x y = f y x. If that's true, then f y x = g x y must also hold, right? Keeping that
in mind, we can define this function in an even simpler manner.

flip' :: (a -> b -> c) -> b -> a -> c

flip' f y x = f x y

Here, we take advantage of the fact that functions are curried. When we call flip' f without the
parameters y and x, it will return an f that takes those two parameters but calls them flipped. Even
though flipped functions are usually passed to other functions, we can take advantage of currying
when making higher-order functions by thinking ahead and writing what their end result would
be if they were called fully applied.

ghci> flip' zip [1,2,3,4,5] "hello"

[('h',1),('e',2),('l',3),('l',4),('o',5)]

ghci> zipWith (flip' div) [2,2..] [10,8,6,4,2]

[5,4,3,2,1]

6.3 Maps and filters

map takes a function and a list and applies that function to every element in the list, producing a
new list. Let's see what its type signature is and how it's defined.

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

The type signature says that it takes a function that takes an a and returns a b, a list of a's and
returns a list of b's. It's interesting that just by looking at a function's type signature, you can

49

sometimes tell what it does. map is one of those really versatile higher-order functions that can
be used in millions of different ways. Here it is in action:

ghci> map (+3) [1,5,3,1,6]

[4,8,6,4,9]

ghci> map (++ "!") ["BIFF", "BANG", "POW"]

["BIFF!","BANG!","POW!"]

ghci> map (replicate 3) [3..6]

[[3,3,3],[4,4,4],[5,5,5],[6,6,6]]

ghci> map (map (^2)) [[1,2],[3,4,5,6],[7,8]]

[[1,4],[9,16,25,36],[49,64]]

ghci> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)]

[1,3,6,2,2]

You've probably noticed that each of these could be achieved with a list comprehension. map
(+3) [1,5,3,1,6] is the same as writing [x+3 | x <- [1,5,3,1,6]]. However, using map is much more
readable for cases where you only apply some function to the elements of a list, especially once
you're dealing with maps of maps and then the whole thing with a lot of brackets can get a bit
messy.

filter is a function that takes a predicate (a predicate is a function that tells whether something is
true or not, so in our case, a function that returns a boolean value) and a list and then returns the
list of elements that satisfy the predicate. The type signature and implementation go like this:

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

Pretty simple stuff. If p x evaluates to True, the element gets included in the new list. If it doesn't,
it stays out. Some usage examples:

ghci> filter (>3) [1,5,3,2,1,6,4,3,2,1]

[5,6,4]

ghci> filter (==3) [1,2,3,4,5]

[3]

ghci> filter even [1..10]

[2,4,6,8,10]

ghci> let notNull x = not (null x) in filter notNull [[1,2,3], [],

[3,4,5], [2,2], [], [], []]

[[1,2,3],[3,4,5],[2,2]]

ghci> filter (`elem` ['a'..'z']) "u LaUgH aT mE BeCaUsE I aM diFfeRent"

"uagameasadifeent"

ghci> filter (`elem` ['A'..'Z']) "i lauGh At You BecAuse u r aLL the Same"

"GAYBALLS"

All of this could also be achived with list comprehensions by the use of predicates. There's no
set rule for when to use map and filter versus using list comprehension, you just have to decide
what's more readable depending on the code and the context. The filter equivalent of applying

50

several predicates in a list comprehension is either filtering something several times or joining the
predicates with the logical && function.

Remember our quicksort function from the previous chapter? We used list comprehensions to
filter out the list elements that are smaller than (or equal to) and larger than the pivot. We can
achieve the same functionality in a more readable way by using filter:

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerSorted = quicksort (filter (<=x) xs)

biggerSorted = quicksort (filter (>x) xs)

in smallerSorted ++ [x] ++ biggerSorted

Mapping and filtering is the bread and butter of every functional
programmer's toolbox. Uh. It doesn't matter if you do it with
the map and filter functions or list comprehensions. Recall how
we solved the problem of finding right triangles with a certain
circumference. With imperative programming, we would have
solved it by nesting three loops and then testing if the current
combination satisfies a right triangle and if it has the right perime-

ter. If that's the case, we would have printed it out to the screen or something. In functional pro-
gramming, that pattern is achieved with mapping and filtering. You make a function that takes
a value and produces some result. We map that function over a list of values and then we filter
the resulting list out for the results that satisfy our search. Thanks to Haskell's laziness, even if
you map something over a list several times and filter it several times, it will only pass over the
list once.

Let's find the largest number under 100,000 that's divisible by 3829. To do that, we'll just filter a
set of possibilities in which we know the solution lies.

largestDivisible :: (Integral a) => a

largestDivisible = head (filter p [100000,99999..])

where p x = x `mod` 3829 == 0

We first make a list of all numbers lower than 100,000, descending. Then we filter it by our predi-
cate and because the numbers are sorted in a descendingmanner, the largest number that satisfies
our predicate is the first element of the filtered list. We didn't even need to use a finite list for our
starting set. That's laziness in action again. Because we only end up using the head of the filtered
list, it doesn't matter if the filtered list is finite or infinite. The evaluation stops when the first
adequate solution is found.

Next up, we're going to find the sum of all odd squares that are smaller than 10,000. But first,
because we'll be using it in our solution, we're going to introduce the takeWhile function. It
takes a predicate and a list and then goes from the beginning of the list and returns its elements
while the predicate holds true. Once an element is found for which the predicate doesn't hold, it
stops. If we wanted to get the first word of the string "elephants know how to party", we could do
takeWhile (/=' ') "elephants know how to party" and it would return "elephants". Okay. The sum
of all odd squares that are smaller than 10,000. First, we'll begin by mapping the (^2) function to
the infinite list [1..]. Then we filter them so we only get the odd ones. And then, we'll take elements
from that list while they are smaller than 10,000. Finally, we'll get the sum of that list. We don't
even have to define a function for that, we can do it in one line in GHCI:

51

ghci> sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

166650

Awesome! We start with some initial data (the infinite list of all natural numbers) and then we
map over it, filter it and cut it until it suits our needs and then we just sum it up. We could have
also written this using list comprehensions:

ghci> sum (takeWhile (<10000) [n^2 | n <- [1..], odd (n^2)])

166650

It's a matter of taste as to which one you find prettier. Again, Haskell's property of laziness is what
makes this possible. We can map over and filter an infinite list, because it won't actually map and
filter it right away, it'll delay those actions. Only when we force Haskell to show us the sum does
the sum function say to the takeWhile that it needs those numbers. takeWhile forces the filtering
and mapping to occur, but only until a number greater than or equal to 10,000 is encountered.

For our next problem, we'll be dealing with Collatz sequences. We take a natural number. If that
number is even, we divide it by two. If it's odd, we multiply it by 3 and then add 1 to that. We
take the resulting number and apply the same thing to it, which produces a new number and so
on. In essence, we get a chain of numbers. It is thought that for all starting numbers, the chains
finish at the number 1. So if we take the starting number 13, we get this sequence: 13, 40, 20, 10,
5, 16, 8, 4, 2, 1. 13*3 + 1 equals 40. 40 divided by 2 is 20, etc. We see that the chain has 10 terms.

Now what we want to know is this: for all starting numbers between 1 and 100, how many chains
have a length greater than 15? First off, we'll write a function that produces a chain:

chain :: (Integral a) => a -> [a]

chain 1 = [1]

chain n

| even n = n:chain (n `div` 2)

| odd n = n:chain (n*3 + 1)

Because the chains end at 1, that's the edge case. This is a pretty standard recursive function.

ghci> chain 10

[10,5,16,8,4,2,1]

ghci> chain 1

[1]

ghci> chain 30

[30,15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1]

Yay! It seems to be working correctly. And now, the function that tells us the answer to our
question:

numLongChains :: Int

numLongChains = length (filter isLong (map chain [1..100]))

where isLong xs = length xs > 15

We map the chain function to [1..100] to get a list of chains, which are themselves represented as
lists. Then, we filter them by a predicate that just checks whether a list's length is longer than 15.
Once we've done the filtering, we see how many chains are left in the resulting list.

52

Note: This function has a type of numLongChains :: Int because length returns an Int instead of a
Num a for historical reasons. If we wanted to return a more general Num a, we could have used
fromIntegral on the resulting length. Using map, we can also do stuff like map (*) [0..], if not for
any other reason than to illustrate how currying works and how (partially applied) functions are
real values that you can pass around to other functions or put into lists (you just can't turn them
to strings). So far, we've only mapped functions that take one parameter over lists, like map (*2)
[0..] to get a list of type (Num a) => [a], but we can also do map (*) [0..] without a problem. What
happens here is that the number in the list is applied to the function *, which has a type of (Num
a) => a -> a -> a. Applying only one parameter to a function that takes two parameters returns a
function that takes one parameter. If we map * over the list [0. .] , we get back a list of functions
that only take one parameter, so (Num a) => [a -> a] . map (*) [0. .] produces a list like the one
we'd get by writing [(0*),(1*),(2*),(3*),(4*),(5*)...

ghci> let listOfFuns = map (*) [0..]

ghci> (listOfFuns !! 4) 5

20

Getting the element with the index 4 from our list returns a function that's equivalent to (4*). And
then, we just apply 5 to that function. So that's like writing (4*) 5 or just 4 * 5.

6.4 Lambdas

Lambdas are basically anonymous functions that are used because we
need some functions only once. Normally, we make a lambda with
the sole purpose of passing it to a higher-order function. To make
a lambda, we write a \ (because it kind of looks like the greek letter
lambda if you squint hard enough) and then we write the parameters,
separated by spaces. After that comes a -> and then the function body.
We usually surround them by parentheses, because otherwise they ex-
tend all the way to the right.

If you look about 5 inches up, you'll see that we used a where binding
in our numLongChains function to make the isLong function for the
sole purpose of passing it to filter. Well, instead of doing that, we can
use a lambda:

numLongChains :: Int

numLongChains = length (filter (\xs -> length xs > 15) (map chain [1..100]))

Lambdas are expressions, that's whywe can just pass them like that. The expression (\xs -> length
xs > 15) returns a function that tells us whether the length of the list passed to it is greater than
15.

People who are not well acquainted with how currying and partial ap-
plication works often use lambdas where they don't need to. For in-
stance, the expressionsmap (+3)[1,6,3,2] andmap (\x -> x + 3)[1,6,3,2]
are equivalent since both (+3) and (\x -> x + 3) are functions that take
a number and add 3 to it. Needless to say, making a lambda in this case
is stupid since using partial application is much more readable.

Like normal functions, lambdas can take any number of parameters:

53

ghci> zipWith (\a b -> (a * 30 + 3) / b) [5,4,3,2,1] [1,2,3,4,5]

[153.0,61.5,31.0,15.75,6.6]

And like normal functions, you can pattern match in lambdas. The only difference is that you
can't define several patterns for one parameter, like making a [] and a (x:xs) pattern for the same
parameter and then having values fall through. If a pattern matching fails in a lambda, a runtime
error occurs, so be careful when pattern matching in lambdas!

ghci> map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)]

[3,8,9,8,7]

Lambdas are normally surrounded by parentheses unless we mean for them to extend all the way
to the right. Here's something interesting: due to the way functions are curried by default, these
two are equivalent:

addThree :: (Num a) => a -> a -> a -> a

addThree x y z = x + y + z

addThree :: (Num a) => a -> a -> a -> a

addThree = \x -> \y -> \z -> x + y + z

If we define a function like this, it's obvious why the type declaration is what it is. There are three
->'s in both the type declaration and the equation. But of course, the first way to write functions
is far more readable, the second one is pretty much a gimmick to illustrate currying.

However, there are times when using this notation is cool. I think that the flip function is the
most readable when defined like so:

flip' :: (a -> b -> c) -> b -> a -> c

flip' f = \x y -> f y x

Even though that's the same as writing flip' f x y = f y x, we make it obvious that this will be used
for producing a new function most of the time. The most common use case with flip is calling it
with just the function parameter and then passing the resulting function on to a map or a filter.
So use lambdas in this way when you want to make it explicit that your function is mainly meant
to be partially applied and passed on to a function as a parameter.

6.5 Only folds and horses

Back when we were dealing with recursion, we noticed a theme
throughout many of the recursive functions that operated on lists.
Usually, we'd have an edge case for the empty list. We'd introduce
the x:xs pattern and then we'd do some action that involves a single
element and the rest of the list. It turns out this is a very common
pattern, so a couple of very useful functions were introduced to encap-
sulate it. These functions are called folds. They're sort of like the map
function, only they reduce the list to some single value.

A fold takes a binary function, a starting value (I like to call it the ac-
cumulator) and a list to fold up. The binary function itself takes two
parameters. The binary function is called with the accumulator and the first (or last) element and
produces a new accumulator. Then, the binary function is called again with the new accumulator

54

and the now new first (or last) element, and so on. Once we've walked over the whole list, only
the accumulator remains, which is what we've reduced the list to.

First let's take a look at the foldl function, also called the left fold. It folds the list up from the
left side. The binary function is applied between the starting value and the head of the list. That
produces a new accumulator value and the binary function is called with that value and the next
element, etc.

Let's implement sum again, only this time, we'll use a fold instead of explicit recursion.

sum' :: (Num a) => [a] -> a

sum' xs = foldl (\acc x -> acc + x) 0 xs

Testing, one two three:

ghci> sum' [3,5,2,1]

11

Let's take an in-depth look into how this fold happens. \acc x ->
acc + x is the binary function. 0 is the starting value and xs is the
list to be folded up. Now first, 0 is used as the acc parameter to the
binary function and 3 is used as the x (or the current element) pa-
rameter. 0 + 3 produces a 3 and it becomes the new accumulator
value, so to speak. Next up, 3 is used as the accumulator value and
5 as the current element and 8 becomes the new accumulator value.
Moving forward, 8 is the accumulator value, 2 is the current ele-
ment, the new accumulator value is 10. Finally, that 10 is used as
the accumulator value and 1 as the current element, producing an
11. Congratulations, you've done a fold!

This professional diagram on the left illustrates how a fold happens,
step by step (day by day!) . The greenish brown number is the
accumulator value. You can see how the list is sort of consumed
up from the left side by the accumulator. Om nom nom nom! If
we take into account that functions are curried, we can write this
implementation ever more succinctly, like so:

sum' :: (Num a) => [a] -> a

sum' = foldl (+) 0

The lambda function (\acc x -> acc + x) is the same as (+). We can omit the xs as the parameter
because calling foldl (+) 0 will return a function that takes a list. Generally, if you have a function
like foo a = bar b a, you can rewrite it as foo = bar b, because of currying.

Anyhoo, let's implement another function with a left fold before moving on to right folds. I'm
sure you all know that elem checks whether a value is part of a list so I won't go into that again
(whoops, just did!). Let's implement it with a left fold.

elem' :: (Eq a) => a -> [a] -> Bool

elem' y ys = foldl (\acc x -> if x == y then True else acc) False ys

Well, well, well, what do we have here? The starting value and accumulator here is a boolean
value. The type of the accumulator value and the end result is always the same when dealing with

55

folds. Remember that if you ever don't know what to use as a starting value, it'll give you some
idea. We start off with False. It makes sense to use False as a starting value. We assume it isn't
there. Also, if we call a fold on an empty list, the result will just be the starting value. Then we
check the current element is the element we're looking for. If it is, we set the accumulator to True.
If it's not, we just leave the accumulator unchanged. If it was False before, it stays that way because
this current element is not it. If it was True, we leave it at that.

The right fold, foldr works in a similar way to the left fold, only the accumulator eats up the values
from the right. Also, the left fold's binary function has the accumulator as the first parameter and
the current value as the second one (so \acc x -> ...), the right fold's binary function has the current
value as the first parameter and the accumulator as the second one (so \x acc -> . . .) . It kind of
makes sense that the right fold has the accumulator on the right, because it folds from the right
side.

The accumulator value (and hence, the result) of a fold can be of any type. It can be a number,
a boolean or even a new list. We'll be implementing the map function with a right fold. The
accumulator will be a list, we'll be accumulating the mapped list element by element. From that,
it's obvious that the starting element will be an empty list.

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldr (\x acc -> f x : acc) [] xs

If we're mapping (+3) to [1,2,3] , we approach the list from the right side. We take the last ele-
ment, which is 3 and apply the function to it, which ends up being 6. Then, we prepend it to the
accumulator, which is was[]. 6:[] is [6] and that's now the accumulator. We apply (+3) to 2, that's
5 and we prepend (:) it to the accumulator, so the accumulator is now [5,6]. We apply (+3) to 1
and prepend that to the accumulator and so the end value is [4,5,6].

Of course, we could have implemented this function with a left fold too. It would be map' f xs =
foldl (\acc x -> acc ++ [f x]) [] xs, but the thing is that the ++ function is much more expensive
than :, so we usually use right folds when we're building up new lists from a list.

If you reverse a list, you can do a right fold on it just like you would
have done a left fold and vice versa. Sometimes you don't even have
to do that. The sum function can be implemented pretty much the
same with a left and right fold. One big difference is that right folds
work on infinite lists, whereas left ones don't! To put it plainly, if you
take an infinite list at some point and you fold it up from the right,
you'll eventually reach the beginning of the list. However, if you take
an infinite list at a point and you try to fold it up from the left, you'll
never reach an end!

Folds can be used to implement any function where you traverse a list once, element by element,
and then return something based on that. Whenever you want to traverse a list to return some-
thing, chances are you want a fold. That's why folds are, along with maps and filters, one of the
most useful types of functions in functional programming.

The foldl1 and foldr1 functions work much like foldl and foldr, only you don't need to provide
them with an explicit starting value. They assume the first (or last) element of the list to be the
starting value and then start the fold with the element next to it. With that in mind, the sum
function can be implemented like so: sum = foldl1 (+) . Because they depend on the lists they
fold up having at least one element, they cause runtime errors if called with empty lists. foldl and
foldr, on the other hand, work fine with empty lists. When making a fold, think about how it acts

56

on an empty list. If the function doesn't make sense when given an empty list, you can probably
use a foldl1 or foldr1 to implement it.

Just to show you how powerful folds are, we're going to implement a bunch of standard library
functions by using folds:

maximum' :: (Ord a) => [a] -> a

maximum' = foldr1 (\x acc -> if x > acc then x else acc)

reverse' :: [a] -> [a]

reverse' = foldl (\acc x -> x : acc) []

product' :: (Num a) => [a] -> a

product' = foldr1 (*)

filter' :: (a -> Bool) -> [a] -> [a]

filter' p = foldr (\x acc -> if p x then x : acc else acc) []

head' :: [a] -> a

head' = foldr1 (\x _ -> x)

last' :: [a] -> a

last' = foldl1 (_ x -> x)

head is better implemented by pattern matching, but this just goes to show, you can still achieve
it by using folds. Our reverse' definition is pretty clever, I think. We take a starting value of
an empty list and then approach our list from the left and just prepend to our accumulator. In
the end, we build up a reversed list. \acc x -> x : acc kind of looks like the : function, only the
parameters are flipped. That's why we could have also written our reverse as foldl (flip (:)) [].

Another way to picture right and left folds is like this: say we have a right fold and the binary
function is f and the starting value is z. If we're right folding over the list [3,4,5,6], we're essentially
doing this: f 3 (f 4 (f 5 (f 6 z))) . f is called with the last element in the list and the accumulator,
that value is given as the accumulator to the next to last value and so on. If we take f to be + and
the starting accumulator value to be 0, that's 3 + (4 + (5 + (6 + 0))) . Or if we write + as a prefix
function, that's (+) 3 ((+) 4 ((+) 5 ((+) 6 0))). Similarly, doing a left fold over that list with g as the
binary function and z as the accumulator is the equivalent of g (g (g (g z 3) 4) 5) 6. If we use flip
(:) as the binary function and [] as the accumulator (so we're reversing the list) , then that's the
equivalent of flip (:) (flip (:) (flip (:) (flip (:) [] 3) 4) 5) 6. And sure enough, if you evaluate that
expression, you get [6,5,4,3].

scanl and scanr are like foldl and foldr, only they report all the intermediate accumulator states
in the form of a list. There are also scanl1 and scanr1, which are analogous to foldl1 and foldr1.

ghci> scanl (+) 0 [3,5,2,1]

[0,3,8,10,11]

ghci> scanr (+) 0 [3,5,2,1]

[11,8,3,1,0]

ghci> scanl1 (\acc x -> if x > acc then x else acc) [3,4,5,3,7,9,2,1]

[3,4,5,5,7,9,9,9]

57

ghci> scanl (flip (:)) [] [3,2,1]

[[],[3],[2,3],[1,2,3]]

When using a scanl, the final result will be in the last element of the resulting list while a scanr
will place the result in the head.

Scans are used to monitor the progression of a function that can be implemented as a fold. Let's
answer us this question: How many elements does it take for the sum of the roots of all natural
numbers to exceed 1000? To get the squares of all natural numbers, we just do map sqrt [1. .] .
Now, to get the sum, we could do a fold, but because we're interested in how the sum progresses,
we're going to do a scan. Once we've done the scan, we just see how many sums are under 1000.
The first sum in the scanlist will be 1, normally. The second will be 1 plus the square root of 2.
The third will be that plus the square root of 3. If there are X sums under 1000, then it takes X+1
elements for the sum to exceed 1000.

sqrtSums :: Int

sqrtSums = length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..]))) + 1

ghci> sqrtSums

131

ghci> sum (map sqrt [1..131])

1005.0942035344083

ghci> sum (map sqrt [1..130])

993.6486803921487

We use takeWhile here instead of filter because filter doesn't work on infinite lists. Even though
we know the list is ascending, filter doesn't, so we use takeWhile to cut the scanlist off at the first
occurence of a sum greater than 1000.

6.6 Function application with $

Alright, next up, we'll take a look at the $ function, also called function application. First of all,
let's check out how it's defined:

($) :: (a -> b) -> a -> b

f $ x = f x

What the heck? What is this useless operator? It's just function appli-
cation! Well, almost, but not quite! Whereas normal function applica-
tion (putting a space between two things) has a really high precedence,
the $ function has the lowest precedence. Function application with a
space is left-associative (so f a b c is the same as ((f a) b) c)), function
application with $ is right-associative.

That's all very well, but how does this help us? Most of the time, it's
a convenience function so that we don't have to write so many paren-

theses. Consider the expression sum (map sqrt [1. .130]) . Because $ has such a low precedence,
we can rewrite that expression as sum $ map sqrt [1..130], saving ourselves precious keystrokes!
When a $ is encountered, the expression on its right is applied as the parameter to the function
on its left. How about sqrt 3 + 4 + 9? This adds together 9, 4 and the square root of 3. If we want
get the square root of 3 + 4 + 9, we'd have to write sqrt (3 + 4 + 9) or if we use $ we can write it as

58

sqrt $ 3 + 4 + 9 because $ has the lowest precedence of any operator. That's why you can imagine
a $ being sort of the equivalent of writing an opening parentheses and then writing a closing one
on the far right side of the expression.

How about sum (filter (> 10) (map (*2) [2..10]))? Well, because $ is right-associative, f (g (z x)) is
equal to f $ g $ z x. And so, we can rewrite sum (filter (> 10) (map (*2) [2..10])) as sum $ filter (>
10) $ map (*2) [2..10].

But apart from getting rid of parentheses, $ means that function application can be treated just
like another function. That way, we can, for instance, map function application over a list of
functions.

ghci> map ($ 3) [(4+), (10*), (^2), sqrt]

[7.0,30.0,9.0,1.7320508075688772]

6.7 Function composition

In mathematics, function composition is defined like this: , meaning that composing two func-
tions produces a new function that, when calledwith a parameter, say, x is the equivalent of calling
g with the parameter x and then calling the f with that result.

In Haskell, function composition is pretty much the same thing. We do function composition
with the . function, which is defined like so:

(.) :: (b -> c) -> (a -> b) -> a -> c

f . g = \x -> f (g x)

Mind the type declaration. f must take as its parameter a value that has the
same type as g's return value. So the resulting function takes a parameter
of the same type that g takes and returns a value of the same type that f
returns. The expression negate .(* 3) returns a function that takes a number,
multiplies it by 3 and then negates it.

One of the uses for function composition is making functions on the fly to
pass to other functions. Sure, can use lambdas for that, but many times,
function composition is clearer and more concise. Say we have a list of

numbers and we want to turn them all into negative numbers. One way to do that would be to
get each number's absolute value and then negate it, like so:

ghci> map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]

[-5,-3,-6,-7,-3,-2,-19,-24]

Notice the lambda and how it looks like the result function composition. Using function compo-
sition, we can rewrite that as:

ghci> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]

[-5,-3,-6,-7,-3,-2,-19,-24]

Fabulous! Function composition is right-associative, so we can compose many functions at a
time. The expression f (g (z x)) is equivalent to (f . g . z) x. With that in mind, we can turn

59

ghci> map (\xs -> negate (sum (tail xs))) [[1..5],[3..6],[1..7]]

[-14,-15,-27]

into

ghci> map (negate . sum . tail) [[1..5],[3..6],[1..7]]

[-14,-15,-27]

But what about functions that take several parameters? Well, if we want to use them in function
composition, we usually have to partially apply them just so much that each function takes just
one parameter. sum (replicate 5 (max 6.7 8.9)) can be rewritten as (sum . replicate 5 . max 6.7) 8.9
or as sum . replicate 5 . max 6.7 $ 8.9. What goes on in here is this: a function that takes what max
6.7 takes and applies replicate 5 to it is created. Then, a function that takes the result of that and
does a sum of it is created. Finally, that function is called with 8.9. But normally, you just read
that as: apply 8.9 to max 6.7, then apply replicate 5 to that and then apply sum to that. If you want
to rewrite an expression with a lot of parentheses by using function composition, you can start
by putting the last parameter of the innermost function after a $ and then just composing all the
other function calls, writing them without their last parameter and putting dots between them. If
you have replicate 100 (product (map (*3) (zipWith max [1,2,3,4,5] [4,5,6,7,8]))), you can write it
as replicate 100 . product . map (*3) . zipWith max [1,2,3,4,5] $ [4,5,6,7,8]. If the expression ends
with three parentheses, chances are that if you translate it into function composition, it'll have
three composition operators.

Another common use of function composition is defining functions in the so-called point free
style (also called the pointless style). Take for example this function that we wrote earlier:

sum' :: (Num a) => [a] -> a

sum' xs = foldl (+) 0 xs

The xs is exposed on both right sides. Because of currying, we can omit the xs on both sides,
because calling foldl (+) 0 creates a function that takes a list. Writing the function as sum' = foldl
(+) 0 is called writing it in point free style. How would we write this in point free style?

fn x = ceiling (negate (tan (cos (max 50 x))))

We can't just get rid of the x on both right right sides. The x in the function body has parentheses
after it. cos (max 50) wouldn't make sense. You can't get the cosine of a function. What we can
do is express fn as a composition of functions.

fn = ceiling . negate . tan . cos . max 50

Excellent! Many times, a point free style is more readable and concise, because it makes you
think about functions and what kind of functions composing them results in instead of thinking
about data and how it's shuffled around. You can take simple functions and use composition as
glue to form more complex functions. However, many times, writing a function in point free
style can be less readable if a function is too complex. That's why making long chains of function
composition is discouraged, although I plead guilty of sometimes being too composition-happy.
The prefered style is to use let bindings to give labels to intermediary results or split the problem
into sub-problems and then put it together so that the function makes sense to someone reading
it instead of just making a huge composition chain.

60

In the section about maps and filters, we solved a problem of finding the sum of all odd squares
that are smaller than 10,000. Here's what the solution looks like when put into a function.

oddSquareSum :: Integer

oddSquareSum = sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

Being such a fan of function composition, I would have probably written that like this:

oddSquareSum :: Integer

oddSquareSum = sum . takeWhile (<10000) . filter odd . map (^2) $ [1..]

However, if there was a chance of someone else reading that code, I would have written it like
this:

oddSquareSum :: Integer

oddSquareSum =

let oddSquares = filter odd $ map (^2) [1..]

belowLimit = takeWhile (<10000) oddSquares

in sum belowLimit

It wouldn't win any code golf competition, but someone reading the function will probably find
it easier to read than a composition chain.

Chapter 7 Modules

7.1 Loading modules

A Haskell module is a collection of related functions, types and type-
classes. A Haskell program is a collection of modules where the main
module loads up the other modules and then uses the functions defined
in them to do something. Having code split up into several modules has
quite a lot of advantages. If a module is generic enough, the functions
it exports can be used in a multitude of different programs. If your own
code is separated into self-contained modules which don't rely on each
other too much (we also say they are loosely coupled), you can reuse them later on. It makes the
whole deal of writing code more manageable by having it split into several parts, each of which
has some sort of purpose.

The Haskell standard library is split into modules, each of them contains functions and types that
are somehow related and serve some common purpose. There's a module for manipulating lists,
a module for concurrent programming, a module for dealing with complex numbers, etc. All
the functions, types and typeclasses that we've dealt with so far were part of the Prelude module,
which is imported by default. In this chapter, we're going to examine a few useful modules and
the functions that they have. But first, we're going to see how to import modules.

The syntax for importing modules in a Haskell script is import <module name>. This must be
done before defining any functions, so imports are usually done at the top of the file. One script
can, of course, import several modules. Just put each import statement into a separate line. Let's
import the Data.List module, which has a bunch of useful functions for working with lists and use
a function that it exports to create a function that tells us how many unique elements a list has.

import Data.List

numUniques :: (Eq a) => [a] -> Int

numUniques = length . nub

When you do import Data.List, all the functions that Data.List exports become available in the
global namespace, meaning that you can call them from wherever in the script. nub is a function
defined in Data.List that takes a list and weeds out duplicate elements. Composing length and
nub by doing length . nub produces a function that's the equivalent of \xs -> length (nub xs).

You can also put the functions of modules into the global namespace when using GHCI. If you're
in GHCI and you want to be able to call the functions exported by Data.List, do this:

ghci> :m + Data.List

If we want to load up the names from several modules inside GHCI, we don't have to do :m +
several times, we can just load up several modules at once.

ghci> :m + Data.List Data.Map Data.Set

However, if you've loaded a script that already imports a module, you don't need to use :m + to
get access to it.

62

If you just need a couple of functions from a module, you can selectively import just those func-
tions. If we wanted to import only the nub and sort functions from Data.List, we'd do this:

import Data.List (nub, sort)

You can also choose to import all of the functions of a module except a few select ones. That's
often useful when several modules export functions with the same name and you want to get rid
of the offending ones. Say we already have our own function that's called nub and we want to
import all the functions from Data.List except the nub function:

import Data.List hiding (nub)

Another way of dealing with name clashes is to do qualified imports. The Data.Map module,
which offers a data structure for looking up values by key, exports a bunch of functions with the
same name as Prelude functions, like filter or null. So when we import Data.Map and then call
filter, Haskell won't know which function to use. Here's how we solve this:

import qualified Data.Map

Thismakes it so that if wewant to referenceData.Map's filter function, we have to doData.Map.fil-
ter, whereas just filter still refers to the normal filter we all know and love. But typing out
Data.Map in front of every function from that module is kind of tedious. That's why we can
rename the qualified import to something shorter:

import qualified Data.Map as M

Now, to reference Data.Map's filter function, we just use M.filter.

Use this handy reference to see which modules are in the standard library. A great way to pick
up new Haskell knowledge is to just click through the standard library reference and explore the
modules and their functions. You can also view theHaskell source code for eachmodule. Reading
the source code of some modules is a really good way to learn Haskell and get a solid feel for it.

To search for functions or to find out where they're located, use Hoogle. It's a really awesome
Haskell search engine, you can search by name, module name or even type signature.

7.2 Data.List

The Data.List module is all about lists, obviously. It provides some very useful functions for deal-
ing with them. We've already met some of its functions (like map and filter) because the Pre-
lude module exports some functions from Data.List for convenience. You don't have to import
Data.List via a qualified import because it doesn't clash with any Prelude names except for those
that Prelude already steals fromData.List. Let's take a look at some of the functions that we haven't
met before.

intersperse takes an element and a list and then puts that element in between each pair of elements
in the list. Here's a demonstration:

ghci> intersperse '.' "MONKEY"

"M.O.N.K.E.Y"

ghci> intersperse 0 [1,2,3,4,5,6]

[1,0,2,0,3,0,4,0,5,0,6]

63

intercalate takes a list of lists and a list. It then inserts that list in between all those lists and then
flattens the result.

ghci> intercalate " " ["hey","there","guys"]

"hey there guys"

ghci> intercalate [0,0,0] [[1,2,3],[4,5,6],[7,8,9]]

[1,2,3,0,0,0,4,5,6,0,0,0,7,8,9]

transpose transposes a list of lists. If you look at a list of lists as a 2D matrix, the columns become
the rows and vice versa.

ghci> transpose [[1,2,3],[4,5,6],[7,8,9]]

[[1,4,7],[2,5,8],[3,6,9]]

ghci> transpose ["hey","there","guys"]

["htg","ehu","yey","rs","e"]

Say we have the polynomials 3x2 + 5x + 9, 10x3 + 9 and 8x3 + 5x2 + x - 1 and we want to add
them together. We can use the lists [0,3,5,9],[10,0,0,9] and [8,5,1,-1] to represent them in Haskell.
Now, to add them, all we have to do is this:

ghci> map sum $ transpose [[0,3,5,9],[10,0,0,9],[8,5,1,-1]]

[18,8,6,17]

When we transpose these three lists, the third powers are then in the first row, the second powers
in the second one and so on. Mapping sum to that produces our desired result.

foldl' and foldl1' are stricter versions of their respective lazy incarna-
tions. When using lazy folds on really big lists, you might often get a
stack overflow error. The culprit for that is that due to the lazy nature
of the folds, the accumulator value isn't actually updated as the folding
happens. What actually happens is that the accumulator kind ofmakes
a promise that it will compute its value when asked to actually produce
the result (also called a thunk) . That happens for every intermediate
accumulator and all those thunks overflow your stack. The strict folds
aren't lazy buggers and actually compute the intermediate values as

they go along instead of filling up your stack with thunks. So if you ever get stack overflow errors
when doing lazy folds, try switching to their strict versions.

concat flattens a list of lists into just a list of elements.

ghci> concat ["foo","bar","car"]

"foobarcar"

ghci> concat [[3,4,5],[2,3,4],[2,1,1]]

[3,4,5,2,3,4,2,1,1]

It will just remove one level of nesting. So if you want to completely flatten [[[2,3], [3,4,5], [2]],
[[2,3], [3,4]]], which is a list of lists of lists, you have to concatenate it twice.

Doing concatMap is the same as first mapping a function to a list and then concatenating the list
with concat.

ghci> concatMap (replicate 4) [1..3]

[1,1,1,1,2,2,2,2,3,3,3,3]

64

and takes a list of boolean values and returns True only if all the values in the list are True.

ghci> and $ map (>4) [5,6,7,8]

True

ghci> and $ map (==4) [4,4,4,3,4]

False

or is like and, only it returns True if any of the boolean values in a list is True.

ghci> or $ map (==4) [2,3,4,5,6,1]

True

ghci> or $ map (>4) [1,2,3]

False

any and all take a predicate and then check if any or all the elements in a list satisfy the predicate,
respectively. Usually we use these two functions instead of mapping over a list and then doing
and or or.

ghci> any (==4) [2,3,5,6,1,4]

True

ghci> all (>4) [6,9,10]

True

ghci> all (`elem` ['A'..'Z']) "HEYGUYSwhatsup"

False

ghci> any (`elem` ['A'..'Z']) "HEYGUYSwhatsup"

True

iterate takes a function and a starting value. It applies the function to the starting value, then it
applies that function to the result, then it applies the function to that result again, etc. It returns
all the results in the form of an infinite list.

ghci> take 10 $ iterate (*2) 1

[1,2,4,8,16,32,64,128,256,512]

ghci> take 3 $ iterate (++ "haha") "haha"

["haha","hahahaha","hahahahahaha"]

splitAt takes a number and a list. It then splits the list at that many elements, returning the re-
sulting two lists in a tuple.

ghci> splitAt 3 "heyman"

("hey","man")

ghci> splitAt 100 "heyman"

("heyman","")

ghci> splitAt (-3) "heyman"

("","heyman")

ghci> let (a,b) = splitAt 3 "foobar" in b ++ a

"barfoo"

takeWhile is a really useful little function. It takes elements from a list while the predicate holds
and then when an element is encountered that doesn't satisfy the predicate, it's cut off. It turns
out this is very useful.

65

ghci> takeWhile (>3) [6,5,4,3,2,1,2,3,4,5,4,3,2,1]

[6,5,4]

ghci> takeWhile (/=' ') "This is a sentence"

"This"

Say we wanted to know the sum of all third powers that are under 10,000. We can't map (^3) to
[1..], apply a filter and then try to sum that up because filtering an infinite list never finishes. You
may know that all the elements here are ascending but Haskell doesn't. That's why we can do this:

ghci> sum $ takeWhile (<10000) $ map (^3) [1..]

53361

We apply (^3) to an infinite list and then once an element that's over 10,000 is encountered, the
list is cut off. Now we can sum it up easily.

dropWhile is similar, only it drops all the elements while the predicate is true. Once predicate
equates to False, it returns the rest of the list. An extremely useful and lovely function!

ghci> dropWhile (/=' ') "This is a sentence"

" is a sentence"

ghci> dropWhile (<3) [1,2,2,2,3,4,5,4,3,2,1]

[3,4,5,4,3,2,1]

We're given a list that represents the value of a stock by date. The list is made of tuples whose first
component is the stock value, the second is the year, the third is the month and the fourth is the
date. We want to know when the stock value first exceeded one thousand dollars!

ghci> let stock = [(994.4,2008,9,1), (995.2,2008,9,2), (999.2,2008,9,3),

(1001.4,2008,9,4), (998.3,2008,9,5)]

ghci> head (dropWhile (\(val,y,m,d) -> val < 1000) stock)

(1001.4,2008,9,4)

span is kind of like takeWhile, only it returns a pair of lists. The first list contains everything the
resulting list from takeWhile would contain if it were called with the same predicate and the same
list. The second list contains the part of the list that would have been dropped.

ghci> let (fw, rest) = span (/=' ') "This is a sentence" in

"First word:" ++ fw ++ ", the rest:" ++ rest

"First word: This, the rest: is a sentence"

Whereas span spans the list while the predicate is true, break breaks it when the predicate is first
true. Doing break p is the equivalent of doing span (not . p).

ghci> break (==4) [1,2,3,4,5,6,7]

([1,2,3],[4,5,6,7])

ghci> span (/=4) [1,2,3,4,5,6,7]

([1,2,3],[4,5,6,7])

When using break, the second list in the result will start with the first element that satisfies the
predicate.

sort simply sorts a list. The type of the elements in the list has to be part of the Ord typeclass,
because if the elements of a list can't be put in some kind of order, then the list can't be sorted.

66

ghci> sort [8,5,3,2,1,6,4,2]

[1,2,2,3,4,5,6,8]

ghci> sort "This will be sorted soon"

" Tbdeehiillnooorssstw"

group takes a list and groups adjacent elements into sublists if they are equal.

ghci> group [1,1,1,1,2,2,2,2,3,3,2,2,2,5,6,7]

[[1,1,1,1],[2,2,2,2],[3,3],[2,2,2],[5],[6],[7]]

If we sort a list before grouping it, we can find out how many times each element appears in the
list.

ghci> map (\l@(x:xs) -> (x,length l)) . group . sort $ [1,1,1,1,

2,2,2,2,3,3,2,2,2,5,6,7]

[(1,4),(2,7),(3,2),(5,1),(6,1),(7,1)]

inits and tails are like init and tail, only they recursively apply that to a list until there's nothing
left. Observe.

ghci> inits "w00t"

["","w","w0","w00","w00t"]

ghci> tails "w00t"

["w00t","00t","0t","t",""]

ghci> let w = "w00t" in zip (inits w) (tails w)

[("","w00t"),("w","00t"),("w0","0t"),("w00","t"),("w00t","")]

Let's use a fold to implement searching a list for a sublist.

search :: (Eq a) => [a] -> [a] -> Bool

search needle haystack =

let nlen = length needle

in foldl (\acc x -> if take nlen x == needle then True else acc) False (tails haystack)

First we call tails with the list in which we're searching. Then we go over each tail and see if it
starts with what we're looking for.

With that, we actually just made a function that behaves like isInfixOf. isInfixOf searches for a
sublist within a list and returns True if the sublist we're looking for is somewhere inside the target
list.

ghci> "cat" `isInfixOf` "im a cat burglar"

True

ghci> "Cat" `isInfixOf` "im a cat burglar"

False

ghci> "cats" `isInfixOf` "im a cat burglar"

False

isPrefixOf and isSuffixOf search for a sublist at the beginning and at the end of a list, respectively.

67

ghci> "hey" `isPrefixOf` "hey there!"

True

ghci> "hey" `isPrefixOf` "oh hey there!"

False

ghci> "there!" `isSuffixOf` "oh hey there!"

True

ghci> "there!" `isSuffixOf` "oh hey there"

False

elem and notElem check if an element is or isn't inside a list.

partition takes a list and a predicate and returns a pair of lists. The first list in the result contains
all the elements that satisfy the predicate, the second contains all the ones that don't.

ghci> partition (`elem` ['A'..'Z']) "BOBsidneyMORGANeddy"

("BOBMORGAN","sidneyeddy")

ghci> partition (>3) [1,3,5,6,3,2,1,0,3,7]

([5,6,7],[1,3,3,2,1,0,3])

It's important to understand how this is different from span and break:

ghci> span (`elem` ['A'..'Z']) "BOBsidneyMORGANeddy"

("BOB","sidneyMORGANeddy")

While span and break are done once they encounter the first element that doesn't and does satisfy
the predicate, partition goes through the whole list and splits it up according to the predicate.

find takes a list and a predicate and returns the first element that satisfies the predicate. But it
returns that element wrapped in a Maybe value. We'll be covering algebraic data types more in
depth in the next chapter but for now, this is what you need to know: a Maybe value can either
be Just something or Nothing. Much like a list can be either an empty list or a list with some
elements, a Maybe value can be either no elements or a single element. And like the type of a list
of, say, integers is [Int], the type of maybe having an integer is Maybe Int. Anyway, let's take our
find function for a spin.

ghci> find (>4) [1,2,3,4,5,6]

Just 5

ghci> find (>9) [1,2,3,4,5,6]

Nothing

ghci> :t find

find :: (a -> Bool) -> [a] -> Maybe a

Notice the type of find. Its result is Maybe a. That's kind of like having the type of [a], only a value
of the type Maybe can contain either no elements or one element, whereas a list can contain no
elements, one element or several elements.

Remember when we were searching for the first time our stock went over $1000. We did head
(dropWhile (\(val,y,m,d) -> val < 1000) stock) . Remember that head is not really safe. What
would happen if our stock never went over $1000? Our application of dropWhile would return
an empty list and getting the head of an empty list would result in an error. However, if we rewrote
that as find (\(val,y,m,d) -> val > 1000) stock, we'd be much safer. If our stock never went over

68

$1000 (so if no element satisfied the predicate) , we'd get back a Nothing. But there was a valid
answer in that list, we'd get, say, Just (1001.4,2008,9,4).

elemIndex is kind of like elem, only it doesn't return a boolean value. It maybe returns the index
of the element we're looking for. If that element isn't in our list, it returns a Nothing.

ghci> :t elemIndex

elemIndex :: (Eq a) => a -> [a] -> Maybe Int

ghci> 4 `elemIndex` [1,2,3,4,5,6]

Just 3

ghci> 10 `elemIndex` [1,2,3,4,5,6]

Nothing

elemIndices is like elemIndex, only it returns a list of indices, in case the element we're looking for
crops up in our list several times. Becausewe're using a list to represent the indices, we don't need a
Maybe type, because failure can be represented as the empty list, which is verymuch synonymous
to Nothing.

ghci> ' ' `elemIndices` "Where are the spaces?"

[5,9,13]

findIndex is like find, but itmaybe returns the index of the first element that satisfies the predicate.
findIndices returns the indices of all elements that satisfy the predicate in the form of a list.

ghci> findIndex (==4) [5,3,2,1,6,4]

Just 5

ghci> findIndex (==7) [5,3,2,1,6,4]

Nothing

ghci> findIndices (`elem` ['A'..'Z']) "Where Are The Caps?"

[0,6,10,14]

We already covered zip and zipWith. We noted that they zip together two lists, either in a tuple or
with a binary function (meaning such a function that takes two parameters). But what if we want
to zip together three lists? Or zip three lists with a function that takes three parameters? Well, for
that, we have zip3, zip4, etc. and zipWith3, zipWith4, etc. These variants go up to 7. While this
may look like a hack, it works out pretty fine, because there aren't many times when you want to
zip 8 lists together. There's also a very clever way for zipping infinite numbers of lists, but we're
not advanced enough to cover that just yet.

ghci> zipWith3 (\x y z -> x + y + z) [1,2,3] [4,5,2,2] [2,2,3]

[7,9,8]

ghci> zip4 [2,3,3] [2,2,2] [5,5,3] [2,2,2]

[(2,2,5,2),(3,2,5,2),(3,2,3,2)]

Just like with normal zipping, lists that are longer than the shortest list that's being zipped are cut
down to size.

lines is a useful function when dealing with files or input from somewhere. It takes a string and
returns every line of that string in a separate list.

ghci> lines "first line\nsecond line\nthird line"

["first line","second line","third line"]

69

'\n' is the character for a unix newline. Backslashes have special meaning in Haskell strings and
characters.

unlines is the inverse function of lines. It takes a list of strings and joins them together using a
'\n'.

ghci> unlines ["first line", "second line", "third line"]

"first line\nsecond line\nthird line\n"

words and unwords are for splitting a line of text into words or joining a list of words into a text.
Very useful.

ghci> words "hey these are the words in this sentence"

["hey","these","are","the","words","in","this","sentence"]

ghci> words "hey these are the words in this\nsentence"

["hey","these","are","the","words","in","this","sentence"]

ghci> unwords ["hey","there","mate"]

"hey there mate"

We've already mentioned nub. It takes a list and weeds out the duplicate elements, returning a
list whose every element is a unique snowflake! The function does have a kind of strange name.
It turns out that "nub" means a small lump or essential part of something. In my opinion, they
should use real words for function names instead of old-people words.

ghci> nub [1,2,3,4,3,2,1,2,3,4,3,2,1]

[1,2,3,4]

ghci> nub "Lots of words and stuff"

"Lots fwrdanu"

delete takes an element and a list and deletes the first occurence of that element in the list.

ghci> delete 'h' "hey there ghang!"

"ey there ghang!"

ghci> delete 'h' . delete 'h' $ "hey there ghang!"

"ey tere ghang!"

ghci> delete 'h' . delete 'h' . delete 'h' $ "hey there ghang!"

"ey tere gang!"

\\ is the list difference function. It acts like a set difference, basically. For every element in the
right-hand list, it removes a matching element in the left one.

ghci> [1..10] \\ [2,5,9]

[1,3,4,6,7,8,10]

ghci> "Im a big baby" \\ "big"

"Im a baby"

Doing [1..10] \\ [2,5,9] is like doing

delete 2 . delete 5 . delete 9 $ [1..10].

union also acts like a function on sets. It returns the union of two lists. It pretty much goes over
every element in the second list and appends it to the first one if it isn't already in yet. Watch out
though, duplicates are removed from the second list!

70

ghci> "hey man" `union` "man what's up"

"hey manwt'sup"

ghci> [1..7] `union` [5..10]

[1,2,3,4,5,6,7,8,9,10]

intersect works like set intersection. It returns only the elements that are found in both lists.

ghci> [1..7] `intersect` [5..10]

[5,6,7]

insert takes an element and a list of elements that can be sorted and inserts it into the last posi-
tion where it's still less than or equal to the next element. In other words, insert will start at the
beginning of the list and then keep going until it finds an element that's equal to or greater than
the element that we're inserting and it will insert it just before the element.

ghci> insert 4 [3,5,1,2,8,2]

[3,4,5,1,2,8,2]

ghci> insert 4 [1,3,4,4,1]

[1,3,4,4,4,1]

The 4 is inserted right after the 3 and before the 5 in the first example and in between the 3 and 4
in the second example.

If we use insert to insert into a sorted list, the resulting list will be kept sorted.

ghci> insert 4 [1,2,3,5,6,7]

[1,2,3,4,5,6,7]

ghci> insert 'g' $ ['a'..'f'] ++ ['h'..'z']

"abcdefghijklmnopqrstuvwxyz"

ghci> insert 3 [1,2,4,3,2,1]

[1,2,3,4,3,2,1]

What length, take, drop, splitAt, !! and replicate have in common is that they take an Int as one
of their parameters (or return an Int), even though they could be more generic and usable if they
just took any type that's part of the Integral or Num typeclasses (depending on the functions) .
They do that for historical reasons. However, fixing that would probably break a lot of existing
code. That's why Data.List has their more generic equivalents, named genericLength, generic-
Take, genericDrop, genericSplitAt, genericIndex and genericReplicate. For instance, length has
a type signature of length :: [a] -> Int. If we try to get the average of a list of numbers by doing let
xs = [1. .6] in sum xs / length xs, we get a type error, because you can't use / with an Int. generi-
cLength, on the other hand, has a type signature of genericLength :: (Num a) => [b] -> a. Because
a Num can act like a floating point number, getting the average by doing let xs = [1..6] in sum xs
/ genericLength xs works out just fine.

The nub, delete, union, intersect and group functions all have their more general counterparts
called nubBy, deleteBy, unionBy, intersectBy and groupBy. The difference between them is that
the first set of functions use == to test for equality, whereas the By ones also take an equality
function and then compare them by using that equality function. group is the same as groupBy
(==).

For instance, say we have a list that describes the value of a function for every second. We want
to segment it into sublists based on when the value was below zero and when it went above. If

71

we just did a normal group, it would just group the equal adjacent values together. But what we
want is to group them by whether they are negative or not. That's where groupBy comes in! The
equality function supplied to the By functions should take two elements of the same type and
return True if it considers them equal by its standards.

ghci> let values = [-4.3, -2.4, -1.2, 0.4, 2.3, 5.9, 10.5, 29.1, 5.3, -2.4, -14.5, 2.9, 2.3]

ghci> groupBy (\x y -> (x > 0) == (y > 0)) values

[[-4.3,-2.4,-1.2],[0.4,2.3,5.9,10.5,29.1,5.3],[-2.4,-14.5],[2.9,2.3]]

From this, we clearly see which sections are positive andwhich are negative. The equality function
supplied takes two elements and then returns True only if they're both negative or if they're both
positive. This equality function can also be written as \x y -> (x > 0) && (y > 0) || (x <= 0) &&
(y <= 0) , although I think the first way is more readable. An even clearer way to write equality
functions for the By functions is if you import the on function from Data.Function. on is defined
like this:

on :: (b -> b -> c) -> (a -> b) -> a -> a -> c

f `on` g = \x y -> f (g x) (g y)

So doing (==) `on` (> 0) returns an equality function that looks like \x y -> (x > 0) == (y > 0). on
is used a lot with the By functions because with it, we can do:

ghci> groupBy ((==) `on` (> 0)) values

[[-4.3,-2.4,-1.2],[0.4,2.3,5.9,10.5,29.1,5.3],[-2.4,-14.5],[2.9,2.3]]

Very readable indeed! You can read it out loud: Group this by equality on whether the elements
are greater than zero.

Similarly, the sort, insert, maximum and minimum also have their more general equivalents.
Functions like groupBy take a function that determines when two elements are equal. sortBy,
insertBy, maximumBy and minimumBy take a function that determine if one element is greater,
smaller or equal to the other. The type signature of sortBy is sortBy :: (a -> a -> Ordering) -> [a]
-> [a]. If you remember from before, the Ordering type can have a value of LT, EQ or GT. sort is
the equivalent of sortBy compare, because compare just takes two elements whose type is in the
Ord typeclass and returns their ordering relationship.

Lists can be compared, but when they are, they are compared lexicographically. What if we have
a list of lists and we want to sort it not based on the inner lists' contents but on their lengths? Well,
as you've probably guessed, we'll use the sortBy function.

ghci> let xs = [[5,4,5,4,4],[1,2,3],[3,5,4,3],[],[2],[2,2]]

ghci> sortBy (compare `on` length) xs

[[],[2],[2,2],[1,2,3],[3,5,4,3],[5,4,5,4,4]]

Awesome! compare `on` length ... man, that reads almost like real English! If you're not sure how
exactly the on works here, compare `on` length is the equivalent of \x y -> length x `compare`
length y. When you're dealing with By functions that take an equality function, you usually do
(==) `on` something and when you're dealing with By functions that take an ordering function,
you usually do compare `on` something.

72

7.3 Data.Char

The Data.Char module does what its name suggests. It exports functions
that deal with characters. It's also helpful when filtering and mapping
over strings because they're just lists of characters.

Data.Char exports a bunch of predicates over characters. That is, func-
tions that take a character and tell us whether some assumption about it
is true or false. Here's what they are:

isControl checks whether a character is a control character.

isSpace checks whether a character is a white-space characters. That in-
cludes spaces, tab characters, newlines, etc.

isLower checks whether a character is lower-cased.

isUpper checks whether a character is upper-cased.

isAlpha checks whether a character is a letter.

isAlphaNum checks whether a character is a letter or a number.

isPrint checks whether a character is printable. Control characters, for instance, are not printable.

isDigit checks whether a character is a digit.

isOctDigit checks whether a character is an octal digit.

isHexDigit checks whether a character is a hex digit.

isLetter checks whether a character is a letter.

isMark checks for Unicode mark characters. Those are characters that combine with preceding
letters to form latters with accents. Use this if you are French.

isNumber checks whether a character is numeric.

isPunctuation checks whether a character is punctuation.

isSymbol checks whether a character is a fancy mathematical or currency symbol.

isSeparator checks for Unicode spaces and separators.

isAscii checks whether a character falls into the first 128 characters of the Unicode character set.

isLatin1 checks whether a character falls into the first 256 characters of Unicode.

isAsciiUpper checks whether a character is ASCII and upper-case.

isAsciiLower checks whether a character is ASCII and lower-case.

All these predicates have a type signature of Char -> Bool. Most of the time you'll use this to filter
out strings or something like that. For instance, let's say we're making a program that takes a
username and the username can only be comprised of alphanumeric characters. We can use the
Data.List function all in combination with the Data.Char predicates to determine if the username
is alright.

ghci> all isAlphaNum "bobby283"

True

ghci> all isAlphaNum "eddy the fish!"

False

73

Kewl. In case you don't remember, all takes a predicate and a list and returns True only if that
predicate holds for every element in the list.

We can also use isSpace to simulate the Data.List function words.

ghci> words "hey guys its me"

["hey","guys","its","me"]

ghci> groupBy ((==) `on` isSpace) "hey guys its me"

["hey"," ","guys"," ","its"," ","me"]

ghci>

Hmmm, well, it kind of does what words does but we're left with elements of only spaces. Hmm,
whatever shall we do? I know, let's filter that sucker.

ghci> filter (not . any isSpace) . groupBy ((==) `on` isSpace) $ "hey guys its me"

["hey","guys","its","me"]

Ah.

The Data.Char also exports a datatype that's kind of like Ordering. The Ordering type can have a
value of LT, EQ or GT. It's a sort of enumeration. It describes a few possible results that can arise
from comparing two elements. The GeneralCategory type is also an enumeration. It presents
us with a few possible categories that a character can fall into. The main function for getting
the general category of a character is generalCategory. It has a type of generalCategory : : Char
-> GeneralCategory. There are about 31 categories so we won't list them all here, but let's play
around with the function.

ghci> generalCategory ' '

Space

ghci> generalCategory 'A'

UppercaseLetter

ghci> generalCategory 'a'

LowercaseLetter

ghci> generalCategory '.'

OtherPunctuation

ghci> generalCategory '9'

DecimalNumber

ghci> map generalCategory " \t\nA9?|"

[Space,Control,Control,UppercaseLetter,DecimalNumber,OtherPunctuation,MathSymbol]

Since the GeneralCategory type is part of the Eq typeclass, we can also test for stuff like general-
Category c == Space.

toUpper converts a character to upper-case. Spaces, numbers, and the like remain unchanged.

toLower converts a character to lower-case.

toTitle converts a character to title-case. For most characters, title-case is the same as upper-case.

digitToInt converts a character to an Int. To succeed, the character must be in the ranges '0'..'9',
'a'..'f' or 'A'..'F'.

74

ghci> map digitToInt "34538"

[3,4,5,3,8]

ghci> map digitToInt "FF85AB"

[15,15,8,5,10,11]

intToDigit is the inverse function of digitToInt. It takes an Int in the range of 0..15 and converts
it to a lower-case character.

ghci> intToDigit 15

'f'

ghci> intToDigit 5

'5'

The ord and chr functions convert characters to their corresponding numbers and vice versa:

ghci> ord 'a'

97

ghci> chr 97

'a'

ghci> map ord "abcdefgh"

[97,98,99,100,101,102,103,104]

The difference between the ord values of two characters is equal to how far apart they are in the
Unicode table.

The Caesar cipher is a primitive method of encoding messages by shifting each character in them
by a fixed number of positions in the alphabet. We can easily create a sort of Caesar cipher of our
own, only we won't constrict ourselves to the alphabet.

encode :: Int -> String -> String

encode shift msg =

let ords = map ord msg

shifted = map (+ shift) ords

in map chr shifted

Here, we first convert the string to a list of numbers. Thenwe add the shift amount to each number
before converting the list of numbers back to characters. If you're a composition cowboy, you
could write the body of this function as map (chr . (+ shift) . ord) msg. Let's try encoding a few
messages.

ghci> encode 3 "Heeeeey"

"Khhhhh|"

ghci> encode 4 "Heeeeey"

"Liiiii}"

ghci> encode 1 "abcd"

"bcde"

ghci> encode 5 "Marry Christmas! Ho ho ho!"

"Rfww~%Hmwnxyrfx&%Mt%mt%mt&"

That's encoded alright. Decoding a message is basically just shifting it back by the number of
places it was shifted by in the first place.

75

decode :: Int -> String -> String

decode shift msg = encode (negate shift) msg

ghci> encode 3 "Im a little teapot"

"Lp#d#olwwoh#whdsrw"

ghci> decode 3 "Lp#d#olwwoh#whdsrw"

"Im a little teapot"

ghci> decode 5 . encode 5 $ "This is a sentence"

"This is a sentence"

7.4 Data.Map

Association lists (also called dictionaries) are lists that are used to store key-value pairs where
ordering doesn't matter. For instance, we might use an association list to store phone numbers,
where phone numbers would be the values and people's names would be the keys. We don't care
in which order they're stored, we just want to get the right phone number for the right person.

The most obvious way to represent association lists in Haskell would be by having a list of pairs.
The first component in the pair would be the key, the second component the value. Here's an
example of an association list with phone numbers:

phoneBook =

[("betty","555-2938")

,("bonnie","452-2928")

,("patsy","493-2928")

,("lucille","205-2928")

,("wendy","939-8282")

,("penny","853-2492")

]

Despite this seemingly odd indentation, this is just a list of pairs of strings. The most common
task when dealing with association lists is looking up some value by key. Let's make a function
that looks up some value given a key.

findKey :: (Eq k) => k -> [(k,v)] -> v

findKey key xs = snd . head . filter (\(k,v) -> key == k) $ xs

Pretty simple. The function that takes a key and a list, filters the list so that only matching keys
remain, gets the first key-value that matches and returns the value. But what happens if the key
we're looking for isn't in the association list? Hmm. Here, if a key isn't in the association list, we'll
end up trying to get the head of an empty list, which throws a runtime error. However, we should
avoid making our programs so easy to crash, so let's use the Maybe data type. If we don't find
the key, we'll return a Nothing. If we find it, we'll return Just something, where something is the
value corresponding to that key.

findKey :: (Eq k) => k -> [(k,v)] -> Maybe v

findKey key [] = Nothing

findKey key ((k,v):xs) = if key == k

then Just v

else findKey key xs

76

Look at the type declaration. It takes a key that can be equated, an association list and then it
maybe produces a value. Sounds about right.

This is a textbook recursive function that operates on a list. Edge case, splitting a list into a head
and a tail, recursive calls, they're all there. This is the classic fold pattern, so let's see how this
would be implemented as a fold.

findKey :: (Eq k) => k -> [(k,v)] -> Maybe v

findKey key = foldr (\(k,v) acc -> if key == k then Just v else acc) Nothing

Note: It's usually better to use folds for this standard list recursion pattern instead of explicitly
writing the recursion because they're easier to read and identify. Everyone knows it's a fold when
they see the foldr call, but it takes some more thinking to read explicit recursion.

ghci> findKey "penny" phoneBook

Just "853-2492"

ghci> findKey "betty" phoneBook

Just "555-2938"

ghci> findKey "wilma" phoneBook

Nothing

Works like a charm! If we have the girl's phone number, we Just get
the number, otherwise we get Nothing.

We just implemented the lookup function from Data.List. If we want
to find the corresponding value to a key, we have to traverse all the ele-
ments of the list until we find it. The Data.Map module offers associa-
tion lists that are much faster (because they're internally implemented
with trees) and also it provides a lot of utility functions. From now on,
we'll say we're working with maps instead of association lists.

Because Data.Map exports functions that clash with the Prelude and
Data.List ones, we'll do a qualified import.

import qualified Data.Map asMap Put this import statement into a script and then load the script
via GHCI.

Let's go ahead and see what Data.Map has in store for us! Here's the basic rundown of its func-
tions.

The fromList function takes an association list (in the form of a list) and returns a map with the
same associations.

ghci> Map.fromList [("betty","555-2938"),("bonnie","452-2928"),("lucille","205-2928")]

fromList [("betty","555-2938"),("bonnie","452-2928"),("lucille","205-2928")]

ghci> Map.fromList [(1,2),(3,4),(3,2),(5,5)]

fromList [(1,2),(3,2),(5,5)]

If there are duplicate keys in the original association list, the duplicates are just discarded. This is
the type signature of fromList

Map.fromList :: (Ord k) => [(k, v)] -> Map.Map k v

77

It says that it takes a list of pairs of type k and v and returns amap that maps from keys of type k to
type v. Notice that when we were doing association lists with normal lists, the keys only had to be
equatable (their type belonging to the Eq typeclass) but now they have to be orderable. That's an
essential constraint in the Data.Map module. It needs the keys to be orderable so it can arrange
them in a tree.

You should always use Data.Map for key-value associations unless you have keys that aren't part
of the Ord typeclass.

empty represents an empty map. It takes no arguments, it just returns an empty map.

ghci> Map.empty

fromList []

insert takes a key, a value and a map and returns a new map that's just like the old one, only with
the key and value inserted.

ghci> Map.empty

fromList []

ghci> Map.insert 3 100 Map.empty

fromList [(3,100)]

ghci> Map.insert 5 600 (Map.insert 4 200 (Map.insert 3 100 Map.empty))

fromList [(3,100),(4,200),(5,600)]

ghci> Map.insert 5 600 . Map.insert 4 200 . Map.insert 3 100 $ Map.empty

fromList [(3,100),(4,200),(5,600)]

We can implement our own fromList by using the empty map, insert and a fold. Watch:

fromList' :: (Ord k) => [(k,v)] -> Map.Map k v

fromList' = foldr (\(k,v) acc -> Map.insert k v acc) Map.empty

It's a pretty straightforward fold. We start of with an empty map and we fold it up from the right,
inserting the key value pairs into the accumulator as we go along.

null checks if a map is empty.

ghci> Map.null Map.empty

True

ghci> Map.null $ Map.fromList [(2,3),(5,5)]

False

size reports the size of a map.

ghci> Map.size Map.empty

0

ghci> Map.size $ Map.fromList [(2,4),(3,3),(4,2),(5,4),(6,4)]

5

singleton takes a key and a value and creates a map that has exactly one mapping.

ghci> Map.singleton 3 9

fromList [(3,9)]

ghci> Map.insert 5 9 $ Map.singleton 3 9

fromList [(3,9),(5,9)]

78

lookup works like the Data.List lookup, only it operates on maps. It returns Just something if it
finds something for the key and Nothing if it doesn't.

member is a predicate takes a key and a map and reports whether the key is in the map or not.

ghci> Map.member 3 $ Map.fromList [(3,6),(4,3),(6,9)]

True

ghci> Map.member 3 $ Map.fromList [(2,5),(4,5)]

False

map and filter work much like their list equivalents.

ghci> Map.map (*100) $ Map.fromList [(1,1),(2,4),(3,9)]

fromList [(1,100),(2,400),(3,900)]

ghci> Map.filter isUpper $ Map.fromList [(1,'a'),(2,'A'),(3,'b'),(4,'B')]

fromList [(2,'A'),(4,'B')]

toList is the inverse of fromList.

ghci> Map.toList . Map.insert 9 2 $ Map.singleton 4 3

[(4,3),(9,2)]

keys and elems return lists of keys and values respectively. keys is the equivalent of map fst .
Map.toList and elems is the equivalent of map snd . Map.toList.

fromListWith is a cool little function. It acts like fromList, only it doesn't discard duplicate keys
but it uses a function supplied to it to decide what to do with them. Let's say that a girl can have
several numbers and we have an association list set up like this.

phoneBook =

[("betty","555-2938")

,("betty","342-2492")

,("bonnie","452-2928")

,("patsy","493-2928")

,("patsy","943-2929")

,("patsy","827-9162")

,("lucille","205-2928")

,("wendy","939-8282")

,("penny","853-2492")

,("penny","555-2111")

]

Now if we just use fromList to put that into a map, we'll lose a few numbers! So here's what we'll
do:

phoneBookToMap :: (Ord k) => [(k, String)] -> Map.Map k String

phoneBookToMap xs = Map.fromListWith (\number1 number2 ->

number1 ++ ", " ++ number2) xs

ghci> Map.lookup "patsy" $ phoneBookToMap phoneBook

"827-9162, 943-2929, 493-2928"

ghci> Map.lookup "wendy" $ phoneBookToMap phoneBook

"939-8282"

79

ghci> Map.lookup "betty" $ phoneBookToMap phoneBook

"342-2492, 555-2938"

If a duplicate key is found, the function we pass is used to combine the values of those keys into
some other value. We could also first make all the values in the association list singleton lists and
then we can use ++ to combine the numbers.

phoneBookToMap :: (Ord k) => [(k, a)] -> Map.Map k [a]

phoneBookToMap xs = Map.fromListWith (++) $ map (\(k,v) -> (k,[v])) xs

ghci> Map.lookup "patsy" $ phoneBookToMap phoneBook

["827-9162","943-2929","493-2928"]

Pretty neat! Another use case is if we're making a map from an association list of numbers and
when a duplicate key is found, we want the biggest value for the key to be kept.

ghci> Map.fromListWith max [(2,3),(2,5),(2,100),(3,29),(3,22),(3,11),(4,22),(4,15)]

fromList [(2,100),(3,29),(4,22)]

Or we could choose to add together values on the same keys.

ghci> Map.fromListWith (+) [(2,3),(2,5),(2,100),(3,29),(3,22),(3,11),(4,22),(4,15)]

fromList [(2,108),(3,62),(4,37)]

insertWith is to insert what fromListWith is to fromList. It inserts a key-value pair into a map,
but if that map already contains the key, it uses the function passed to it to determine what to do.

ghci> Map.insertWith (+) 3 100 $ Map.fromList [(3,4),(5,103),(6,339)]

fromList [(3,104),(5,103),(6,339)]

These were just a few functions from Data.Map. You can see a complete list of functions in the
documentation.

7.5 Data.Set

TheData.Setmodule offers us, well, sets. Like sets frommathematics. Sets
are kind of like a cross between lists and maps. All the elements in a set
are unique. And because they're internally implementedwith trees (much
like maps in Data.Map), they're ordered. Checking for membership, in-
serting, deleting, etc. is much faster than doing the same thing with lists.
The most common operation when dealing with sets are inserting into a
set, checking for membership and converting a set to a list.

Because the names in Data.Set clash with a lot of Prelude and Data.List
names, we do a qualified import.

Put this import statement in a script:

import qualified Data.Set as Set

And then load the script via GHCI.

Let's say we have two pieces of text. We want to find out which characters were used in both of
them.

80

text1 = "I just had an anime dream. Anime... Reality... Are they so different?"

text2 = "The old man left his garbage can out and now his trash is all over my lawn!"

The fromList function works much like you would expect. It takes a list and converts it into a set.

ghci> let set1 = Set.fromList text1

ghci> let set2 = Set.fromList text2

ghci> set1

fromList " .?AIRadefhijlmnorstuy"

ghci> set2

fromList " !Tabcdefghilmnorstuvwy"

As you can see, the items are ordered and each element is unique. Now let's use the intersection
function to see which elements they both share.

ghci> Set.intersection set1 set2

fromList " adefhilmnorstuy"

We can use the difference function to see which letters are in the first set but aren't in the second
one and vice versa.

ghci> Set.difference set1 set2

fromList ".?AIRj"

ghci> Set.difference set2 set1

fromList "!Tbcgvw"

Or we can see all the unique letters used in both sentences by using union.

ghci> Set.union set1 set2

fromList " !.?AIRTabcdefghijlmnorstuvwy"

The null, size, member, empty, singleton, insert and delete functions all work like you'd expect
them to.

ghci> Set.null Set.empty

True

ghci> Set.null $ Set.fromList [3,4,5,5,4,3]

False

ghci> Set.size $ Set.fromList [3,4,5,3,4,5]

3

ghci> Set.singleton 9

fromList [9]

ghci> Set.insert 4 $ Set.fromList [9,3,8,1]

fromList [1,3,4,8,9]

ghci> Set.insert 8 $ Set.fromList [5..10]

fromList [5,6,7,8,9,10]

ghci> Set.delete 4 $ Set.fromList [3,4,5,4,3,4,5]

fromList [3,5]

We can also check for subsets or proper subset. Set A is a subset of set B if B contains all the
elements that A does. Set A is a proper subset of set B if B contains all the elements that A does
but has more elements.

81

ghci> Set.fromList [2,3,4] `Set.isSubsetOf` Set.fromList [1,2,3,4,5]

True

ghci> Set.fromList [1,2,3,4,5] `Set.isSubsetOf` Set.fromList [1,2,3,4,5]

True

ghci> Set.fromList [1,2,3,4,5] `Set.isProperSubsetOf` Set.fromList [1,2,3,4,5]

False

ghci> Set.fromList [2,3,4,8] `Set.isSubsetOf` Set.fromList [1,2,3,4,5]

False

We can also map over sets and filter them.

ghci> Set.filter odd $ Set.fromList [3,4,5,6,7,2,3,4]

fromList [3,5,7]

ghci> Set.map (+1) $ Set.fromList [3,4,5,6,7,2,3,4]

fromList [3,4,5,6,7,8]

Sets are often used to weed a list of duplicates from a list by first making it into a set with fromList
and then converting it back to a list with toList. The Data.List function nub already does that, but
weeding out duplicates for large lists is much faster if you cram them into a set and then convert
them back to a list than using nub. But using nub only requires the type of the list's elements to
be part of the Eq typeclass, whereas if you want to cram elements into a set, the type of the list has
to be in Ord.

ghci> let setNub xs = Set.toList $ Set.fromList xs

ghci> setNub "HEY WHATS CRACKALACKIN"

" ACEHIKLNRSTWY"

ghci> nub "HEY WHATS CRACKALACKIN"

"HEY WATSCRKLIN"

setNub is generally faster than nub on big lists but as you can see, nub preserves the ordering of
the list's elements, while setNub does not.

7.6 Making our own modules

We've looked at some cool modules so far, but how do we make our
own module? Almost every programming language enables you to
split your code up into several files and Haskell is no different. When
making programs, it's good practice to take functions and types that
work towards a similar purpose and put them in a module. That way,
you can easily reuse those functions in other programs by just import-
ing your module.

Let's see how we can make our own modules by making a little module that provides some func-
tions for calculating the volume and area of a few geometrical objects. We'll start by creating a
file called Geometry.hs.

We say that a module exports functions. What that means is that when I import a module, I can
use the functions that it exports. It can define functions that its functions call internally, but we
can only see and use the ones that it exports.

82

At the beginning of a module, we specify the module name. If we have a file called Geometry.hs,
then we should name our module Geometry. Then, we specify the functions that it exports and
after that, we can start writing the functions. So we'll start with this.

module Geometry

(sphereVolume

, sphereArea

, cubeVolume

, cubeArea

, cuboidArea

, cuboidVolume

) where

As you can see, we'll be doing areas and volumes for spheres, cubes and cuboids. Let's go ahead
and define our functions then:

module Geometry

(sphereVolume

, sphereArea

, cubeVolume

, cubeArea

, cuboidArea

, cuboidVolume

) where

sphereVolume :: Float -> Float

sphereVolume radius = (4.0 / 3.0) * pi * (radius ^ 3)

sphereArea :: Float -> Float

sphereArea radius = 4 * pi * (radius ^ 2)

cubeVolume :: Float -> Float

cubeVolume side = cuboidVolume side side side

cubeArea :: Float -> Float

cubeArea side = cuboidArea side side side

cuboidVolume :: Float -> Float -> Float -> Float

cuboidVolume a b c = rectangleArea a b * c

cuboidArea :: Float -> Float -> Float -> Float

cuboidArea a b c = rectangleArea a b * 2 + rectangleArea a c * 2 +

rectangleArea c b * 2

rectangleArea :: Float -> Float -> Float

rectangleArea a b = a * b

Pretty standard geometry right here. There are a few things to take note of though. Because a cube
is only a special case of a cuboid, we defined its area and volume by treating it as a cuboid whose

83

sides are all of the same length. We also defined a helper function called rectangleArea, which
calculates a rectangle's area based on the lenghts of its sides. It's rather trivial because it's just
multiplication. Notice that we used it in our functions in the module (namely cuboidArea and
cuboidVolume) but we didn't export it! Because we want our module to just present functions
for dealing with three dimensional objects, we used rectangleArea but we didn't export it.

When making a module, we usually export only those functions that act as a sort of interface to
ourmodule so that the implementation is hidden. If someone is using ourGeometrymodule, they
don't have to concern themselves with functions that we don't export. We can decide to change
those functions completely or delete them in a newer version (we could delete rectangleArea and
just use * instead) and no one will mind because we weren't exporting them in the first place.

To use our module, we just do:

import Geometry

Geometry.hs has to be in the same folder that the program that's importing it is in, though.

Modules can also be given a hierarchical structures. Eachmodule can have a number of sub-mod-
ules and they can have sub-modules of their own. Let's section these functions off so that Geom-
etry is a module that has three sub-modules, one for each type of object.

First, we'll make a folder called Geometry. Mind the capital G. In it, we'll place three files:
Sphere.hs, Cuboid.hs, and Cube.hs. Here's what the files will contain:

Sphere.hs

module Geometry.Sphere

(volume

, area

) where

volume :: Float -> Float

volume radius = (4.0 / 3.0) * pi * (radius ^ 3)

area :: Float -> Float

area radius = 4 * pi * (radius ^ 2)

Cuboid.hs

module Geometry.Cuboid

(volume

, area

) where

volume :: Float -> Float -> Float -> Float

volume a b c = rectangleArea a b * c

area :: Float -> Float -> Float -> Float

area a b c = rectangleArea a b * 2 + rectangleArea a c * 2 +

rectangleArea c b * 2

84

rectangleArea :: Float -> Float -> Float

rectangleArea a b = a * b

Cube.hs

module Geometry.Cube

(volume

, area

) where

import qualified Geometry.Cuboid as Cuboid

volume :: Float -> Float

volume side = Cuboid.volume side side side

area :: Float -> Float

area side = Cuboid.area side side side

Alright! So first is Geometry.Sphere. Notice how we placed it in a folder called Geometry and
then defined the module name as Geometry.Sphere. We did the same for the cuboid. Also notice
how in all three sub-modules, we defined functions with the same names. We can do this because
they're separate modules. We want to use functions from Geometry.Cuboid in Geometry.Cube
but we can't just straight up do import Geometry.Cuboid because it exports functions with the
same names as Geometry.Cube. That's why we do a qualified import and all is well.

So now if we're in a file that's on the same level as the Geometry folder, we can do, say:

import Geometry.Sphere

And then we can call area and volume and they'll give us the area and volume for a sphere. And
if we want to juggle two or more of these modules, we have to do qualified imports because they
export functions with the same names. So we just do something like:

import qualified Geometry.Sphere as Sphere

import qualified Geometry.Cuboid as Cuboid

import qualified Geometry.Cube as Cube

And then we can call Sphere.area, Sphere.volume, Cuboid.area, etc. and each will calculate the
area or volume for their corresponding object.

The next time you find yourself writing a file that's really big and has a lot of functions, try to
see which functions serve some common purpose and then see if you can put them in their own
module. You'll be able to just import your module the next time you're writing a program that
requires some of the same functionality.

Chapter 8 Making Our Own Types and Type-
classes

In the previous chapters, we covered some existing Haskell types and typeclasses. In this chapter,
we'll learn how to make our own and how to put them to work!

8.1 Algebraic data types intro

So far, we've run into a lot of data types. Bool, Int, Char, Maybe, etc. But how do we make our
own? Well, one way is to use the data keyword to define a type. Let's see how the Bool type is
defined in the standard library.

data Bool = False | True

data means that we're defining a new data type. The part before the = denotes the type, which is
Bool. The parts after the = are value constructors. They specify the different values that this type
can have. The | is read as or. So we can read this as: the Bool type can have a value of True or
False. Both the type name and the value constructors have to be capital cased.

In a similar fashion, we can think of the Int type as being defined like this:

data Int = -2147483648 | -2147483647 | ... | -1 | 0 | 1 | 2 | ... | 2147483647

The first and last value constructors are the minimum and maxi-
mum possible values of Int. It's not actually defined like this, the
ellipses are here because we omitted a heapload of numbers, so this
is just for illustrative purposes.

Now, let's think about how we would represent a shape in Haskell.
One way would be to use tuples. A circle could be denoted as (43.1,
55.0, 10.4) where the first and second fields are the coordinates of
the circle's center and the third field is the radius. Sounds OK, but
those could also represent a 3D vector or anything else. A better
solution would be to make our own type to represent a shape. Let's
say that a shape can be a circle or a rectangle. Here it is:

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

Now what's this? Think of it like this. The Circle value constructor has three fields, which take
floats. So when we write a value constructor, we can optionally add some types after it and those
types define the values it will contain. Here, the first two fields are the coordinates of its center,
the third one its radius. The Rectangle value constructor has four fields which accept floats. The
first two are the coordinates to its upper left corner and the second two are coordinates to its lower
right one.

Now when I say fields, I actually mean parameters. Value constructors are actually functions that
ultimately return a value of a data type. Let's take a look at the type signatures for these two value
constructors.

86

ghci> :t Circle

Circle :: Float -> Float -> Float -> Shape

ghci> :t Rectangle

Rectangle :: Float -> Float -> Float -> Float -> Shape

Cool, so value constructors are functions like everything else. Who would have thought? Let's
make a function that takes a shape and returns its surface.

surface :: Shape -> Float

surface (Circle _ _ r) = pi * r ^ 2

surface (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) * (abs $ y2 - y1)

The first notable thing here is the type declaration. It says that the function takes a shape and
returns a float. We couldn't write a type declaration of Circle -> Float because Circle is not a type,
Shape is. Just like we can't write a function with a type declaration of True -> Int. The next thing
we notice here is that we can pattern match against constructors. We pattern matched against
constructors before (all the time actually) when we pattern matched against values like[] or False
or 5, only those values didn't have any fields. We just write a constructor and then bind its fields
to names. Because we're interested in the radius, we don't actually care about the first two fields,
which tell us where the circle is.

ghci> surface $ Circle 10 20 10

314.15927

ghci> surface $ Rectangle 0 0 100 100

10000.0

Yay, it works! But if we try to just print out Circle 10 20 5 in the prompt, we'll get an error. That's
because Haskell doesn't know how to display our data type as a string (yet) . Remember, when
we try to print a value out in the prompt, Haskell first runs the show function to get the string
representation of our value and then it prints that out to the terminal. To make our Shape type
part of the Show typeclass, we modify it like this:

data Shape = Circle Float Float Float | Rectangle Float Float Float

Float deriving (Show)

Wewon't concern ourselves with deriving toomuch for now. Let's just say that if we add deriving
(Show) at the end of a data declaration, Haskell automagically makes that type part of the Show
typeclass. So now, we can do this:

ghci> Circle 10 20 5

Circle 10.0 20.0 5.0

ghci> Rectangle 50 230 60 90

Rectangle 50.0 230.0 60.0 90.0

Value constructors are functions, so we can map them and partially apply them and everything.
If we want a list of concentric circles with different radii, we can do this.

ghci> map (Circle 10 20) [4,5,6,6]

[Circle 10.0 20.0 4.0, Circle 10.0 20.0 5.0, Circle 10.0 20.0 6.0,

Circle 10.0 20.0 6.0]

87

Our data type is good, although it could be better. Let's make an intermediate data type that
defines a point in two-dimensional space. Then we can use that to make our shapes more under-
standable.

data Point = Point Float Float deriving (Show)

data Shape = Circle Point Float | Rectangle Point Point deriving (Show)

Notice that when defining a point, we used the same name for the data type and the value con-
structor. This has no special meaning, although it's common to use the same name as the type if
there's only one value constructor. So now the Circle has two fields, one is of type Point and the
other of type Float. This makes it easier to understand what's what. Same goes for the rectangle.
We have to adjust our surface function to reflect these changes.

surface :: Shape -> Float

surface (Circle _ r) = pi * r ^ 2

surface (Rectangle (Point x1 y1) (Point x2 y2)) = (abs $ x2 -

x1) * (abs $ y2 - y1)

The only thing we had to change were the patterns. We disregarded the whole point in the circle
pattern. In the rectangle pattern, we just used a nested pattern matching to get the fields of the
points. If we wanted to reference the points themselves for some reason, we could have used
as-patterns.

ghci> surface (Rectangle (Point 0 0) (Point 100 100))

10000.0

ghci> surface (Circle (Point 0 0) 24)

1809.5574

How about a function that nudges a shape? It takes a shape, the amount to move it on the x
axis and the amount to move it on the y axis and then returns a new shape that has the same
dimensions, only it's located somewhere else.

nudge :: Shape -> Float -> Float -> Shape

nudge (Circle (Point x y) r) a b = Circle (Point (x+a) (y+b)) r

nudge (Rectangle (Point x1 y1) (Point x2 y2)) a b = Rectangle (Point (x1+a) (y1+b))(Point (x2+a)

(y2+b))

Pretty straightforward. We add the nudge amounts to the points that denote the position of the
shape.

ghci> nudge (Circle (Point 34 34) 10) 5 10

Circle (Point 39.0 44.0) 10.0

If we don't want to deal directly with points, we can make some auxilliary functions that create
shapes of some size at the zero coordinates and then nudge those.

baseCircle :: Float -> Shape

baseCircle r = Circle (Point 0 0) r

baseRect :: Float -> Float -> Shape

baseRect width height = Rectangle (Point 0 0) (Point width height)

88

ghci> nudge (baseRect 40 100) 60 23

Rectangle (Point 60.0 23.0) (Point 100.0 123.0)

You can, of course, export your data types in your modules. To do that, just write your type along
with the functions you are exporting and then add some parentheses and in them specify the value
constructors that you want to export for it, separated by commas. If you want to export all the
value constructors for a given type, just write ...

If we wanted to export the functions and types that we defined here in a module, we could start it
off like this:

module Shapes

(Point(..)

, Shape(..)

, surface

, nudge

, baseCircle

, baseRect

) where

By doing Shape(..), we exported all the value constructors for Shape, so that means that whoever
imports our module can make shapes by using the Rectangle and Circle value constructors. It's
the same as writing Shape (Rectangle, Circle).

We could also opt not to export any value constructors for Shape by just writing Shape in the
export statement. That way, someone importing our module could only make shapes by using
the auxilliary functions baseCircle and baseRect. Data.Map uses that approach. You can't create
a map by doing Map.Map [(1,2),(3,4)] because it doesn't export that value constructor. However,
you can make a mapping by using one of the auxilliary functions like Map.fromList. Remember,
value constructors are just functions that take the fields as parameters and return a value of some
type (like Shape) as a result. So when we choose not to export them, we just prevent the person
importing our module from using those functions, but if some other functions that are exported
return a type, we can use them to make values of our custom data types.

Not exporting the value constructors of a data types makes them more abstract in such a way that
we hide their implementation. Also, whoever uses our module can't pattern match against the
value constructors.

8.2 Record syntax

OK, we've been taskedwith creating a data type that describes a person. The
info that we want to store about that person is: first name, last name, age,
height, phone number, and favorite ice-cream flavor. I don't know about
you, but that's all I ever want to know about a person. Let's give it a go!

data Person = Person String String Int Float String String deriving (Show)
O-kay. The first field is the first name, the second is the last name, the third is the age and so on.
Let's make a person.

ghci> let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

ghci> guy

Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

89

That's kind of cool, although slightly unreadable. What if we want to create a function to get
seperate info from a person? A function that gets some person's first name, a function that gets
some person's last name, etc. Well, we'd have to define them kind of like this.

firstName :: Person -> String

firstName (Person firstname _ _ _ _ _) = firstname

lastName :: Person -> String

lastName (Person _ lastname _ _ _ _) = lastname

age :: Person -> Int

age (Person _ _ age _ _ _) = age

height :: Person -> Float

height (Person _ _ _ height _ _) = height

phoneNumber :: Person -> String

phoneNumber (Person _ _ _ _ number _) = number

flavor :: Person -> String

flavor (Person _ _ _ _ _ flavor) = flavor

Whew! I certainly did not enjoy writing that! Despite being very cumbersome and BORING to
write, this method works.

ghci> let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

ghci> firstName guy

"Buddy"

ghci> height guy

184.2

ghci> flavor guy

"Chocolate"

There must be a better way, you say! Well no, there isn't, sorry.

Just kidding, there is. Hahaha! The makers of Haskell were very smart and anticipated this sce-
nario. They included an alternative way to write data types. Here's how we could achieve the
above functionality with record syntax.

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

, height :: Float

, phoneNumber :: String

, flavor :: String

} deriving (Show)

So instead of just naming the field types one after another and separating them with spaces, we
use curly brackets. First we write the name of the field, for instance, firstName and then we write
a double colon : : (also called Paamayim Nekudotayim, haha) and then we specify the type. The
resulting data type is exactly the same. The main benefit of this is that it creates functions that

90

lookup fields in the data type. By using record syntax to create this data type, Haskell automati-
cally made these functions: firstName, lastName, age, height, phoneNumber and flavor.

ghci> :t flavor

flavor :: Person -> String

ghci> :t firstName

firstName :: Person -> String

There's another benefit to using record syntax. When we derive Show for the type, it displays
it differently if we use record syntax to define and instantiate the type. Say we have a type that
represents a car. We want to keep track of the company that made it, the model name and its year
of production. Watch.

data Car = Car String String Int deriving (Show)

ghci> Car "Ford" "Mustang" 1967

Car "Ford" "Mustang" 1967

If we define it using record syntax, we can make a new car like this.

data Car = Car {company :: String, model :: String, year :: Int} deriving (Show)

ghci> Car {company="Ford", model="Mustang", year=1967}

Car {company = "Ford", model = "Mustang", year = 1967}

When making a new car, we don't have to necessarily put the fields in the proper order, as long
as we list all of them. But if we don't use record syntax, we have to specify them in order.

Use record syntax when a constructor has several fields and it's not obvious which field is which.
If we make a 3D vector data type by doing data Vector = Vector Int Int Int, it's pretty obvious
that the fields are the components of a vector. However, in our Person and Car types, it wasn't so
obvious and we greatly benefited from using record syntax.

8.3 Type parameters

A value constructor can take some values parameters and then produce a new value. For instance,
the Car constructor takes three values and produces a car value. In a similar manner, type con-
structors can take types as parameters to produce new types. This might sound a bit too meta
at first, but it's not that complicated. If you're familiar with templates in C++, you'll see some
parallels. To get a clear picture of what type parameters work like in action, let's take a look at
how a type we've already met is implemented.

data Maybe a = Nothing | Just a

The a here is the type parameter. And because there's a type parameter involved, we
call Maybe a type constructor. Depending on what we want this data type to hold
when it's not Nothing, this type constructor can end up producing a type of Maybe
Int, Maybe Car, Maybe String, etc. No value can have a type of just Maybe, because
that's not a type per se, it's a type constructor. In order for this to be a real type that
a value can be part of, it has to have all its type parameters filled up.

So if we pass Char as the type parameter to Maybe, we get a type of Maybe Char. The value Just
'a' has a type of Maybe Char, for example.

91

You might not know it, but we used a type that has a type parameter before we used Maybe. That
type is the list type. Although there's some syntactic sugar in play, the list type takes a parameter
to produce a concrete type. Values can have an [Int] type, a [Char] type, a[[String]] type, but you
can't have a value that just has a type of [].

Let's play around with the Maybe type.

ghci> Just "Haha"

Just "Haha"

ghci> Just 84

Just 84

ghci> :t Just "Haha"

Just "Haha" :: Maybe [Char]

ghci> :t Just 84

Just 84 :: (Num t) => Maybe t

ghci> :t Nothing

Nothing :: Maybe a

ghci> Just 10 :: Maybe Double

Just 10.0

Type parameters are useful because we can make different types with them depending on what
kind of types we want contained in our data type. When we do :t Just "Haha", the type inference
engine figures it out to be of the type Maybe [Char], because if the a in the Just a is a string, then
the a in Maybe a must also be a string.

Notice that the type of Nothing is Maybe a. Its type is polymorphic. If some function requires
a Maybe Int as a parameter, we can give it a Nothing, because a Nothing doesn't contain a value
anyway and so it doesn't matter. The Maybe a type can act like a Maybe Int if it has to, just like 5
can act like an Int or a Double. Similarly, the type of the empty list is [a] . An empty list can act
like a list of anything. That's why we can do [1,2,3] ++ [] and ["ha","ha","ha"] ++ [].

Using type parameters is very beneficial, but only when using them makes sense. Usually we use
them when our data type would work regardless of the type of the value it then holds inside it,
like with our Maybe a type. If our type acts as some kind of box, it's good to use them. We could
change our Car data type from this:

data Car = Car { company :: String

, model :: String

, year :: Int

} deriving (Show)

To this:

data Car a b c = Car { company :: a

, model :: b

, year :: c

} deriving (Show)

But would we really benefit? The answer is: probably no, because we'd just end up defining func-
tions that only work on the Car String String Int type. For instance, given our first definition of
Car, we could make a function that displays the car's properties in a nice little text.

92

tellCar :: Car -> String

tellCar (Car {company = c, model = m, year = y}) = "This " ++ c ++ " " ++ m ++ " was made in "

++ show y

ghci> let stang = Car {company="Ford", model="Mustang", year=1967}

ghci> tellCar stang

"This Ford Mustang was made in 1967"

A cute little function! The type declaration is cute and it works nicely. Now what if Car was Car
a b c?

tellCar :: (Show a) => Car String String a -> String

tellCar (Car {company = c, model = m, year = y}) = "This " ++ c ++ " " ++ m ++ " was made in "

++ show y

We'd have to force this function to take a Car type of (Show a) => Car String String a. You can
see that the type signature is more complicated and the only benefit we'd actually get would be
that we can use any type that's an instance of the Show typeclass as the type for c.

ghci> tellCar (Car "Ford" "Mustang" 1967)

"This Ford Mustang was made in 1967"

ghci> tellCar (Car "Ford" "Mustang" "nineteen sixty seven")

"This Ford Mustang was made in \"nineteen sixty seven\""

ghci> :t Car "Ford" "Mustang" 1967

Car "Ford" "Mustang" 1967 :: (Num t) => Car [Char] [Char] t

ghci> :t Car "Ford" "Mustang" "nineteen sixty seven"

Car "Ford" "Mustang" "nineteen sixty seven" :: Car [Char] [Char] [Char]

In real life though, we'd end up using Car String String Int most of
the time and so it would seem that parameterizing the Car type isn't
really worth it. We usually use type parameters when the type that's
contained inside the data type's various value constructors isn't really
that important for the type to work. A list of stuff is a list of stuff and
it doesn't matter what the type of that stuff is, it can still work. If we
want to sum a list of numbers, we can specify later in the summing
function that we specifically want a list of numbers. Same goes for
Maybe. Maybe represents an option of either having nothing or having
one of something. It doesn't matter what the type of that something is.

Another example of a parameterized type that we've already met is
Map k v from Data.Map. The k is the type of the keys in a map and
the v is the type of the values. This is a good example of where type
parameters are very useful. Having maps parameterized enables us to
have mappings from any type to any other type, as long as the type
of the key is part of the Ord typeclass. If we were defining a mapping
type, we could add a typeclass constraint in the data declaration:

data (Ord k) => Map k v = ...

However, it's a very strong convention in Haskell to never add typeclass constraints in data decla-
rations. Why? Well, because we don't benefit a lot, but we end up writing more class constraints,
even when we don't need them. If we put or don't put the Ord k constraint in the data declaration

93

forMap k v, we're going to have to put the constraint into functions that assume the keys in amap
can be ordered. But if we don't put the constraint in the data declaration, we don't have to put
(Ord k) => in the type declarations of functions that don't care whether the keys can be ordered
or not. An example of such a function is toList, that just takes a mapping and converts it to an
associative list. Its type signature is toList :: Map k a -> [(k, a)]. If Map k v had a type constraint
in its data declaration, the type for toList would have to be toList :: (Ord k) => Map k a -> [(k, a)],
even though the function doesn't do any comparing of keys by order.

So don't put type constraints into data declarations even if it seems to make sense, because you'll
have to put them into the function type declarations either way.

Let's implement a 3D vector type and add some operations for it. We'll be using a parameterized
type because even though it will usually contain numeric types, it will still support several of them.

data Vector a = Vector a a a deriving (Show)

vplus :: (Num t) => Vector t -> Vector t -> Vector t

(Vector i j k) `vplus` (Vector l m n) = Vector (i+l) (j+m) (k+n)

vectMult :: (Num t) => Vector t -> t -> Vector t

(Vector i j k) `vectMult` m = Vector (i*m) (j*m) (k*m)

scalarMult :: (Num t) => Vector t -> Vector t -> t

(Vector i j k) `scalarMult` (Vector l m n) = i*l + j*m + k*n

vplus is for adding two vectors together. Two vectors are added just by adding their corresponding
components. scalarMult is for the scalar product of two vectors and vectMult is for multiplying
a vector with a scalar. These functions can operate on types of Vector Int, Vector Integer, Vector
Float, whatever, as long as the a fromVector a is from theNum typeclass. Also, if you examine the
type declaration for these functions, you'll see that they can operate only on vectors of the same
type and the numbers involved must also be of the type that is contained in the vectors. Notice
that we didn't put a Num class constraint in the data declaration, because we'd have to repeat it
in the functions anyway.

Once again, it's very important to distinguish between the type constructor and the value con-
structor. When declaring a data type, the part before the = is the type constructor and the con-
structors after it (possibly separated by |'s) are value constructors. Giving a function a type of
Vector t t t -> Vector t t t -> t would be wrong, because we have to put types in type declaration
and the vector type constructor takes only one parameter, whereas the value constructor takes
three. Let's play around with our vectors.

ghci> Vector 3 5 8 `vplus` Vector 9 2 8

Vector 12 7 16

ghci> Vector 3 5 8 `vplus` Vector 9 2 8 `vplus` Vector 0 2 3

Vector 12 9 19

ghci> Vector 3 9 7 `vectMult` 10

Vector 30 90 70

ghci> Vector 4 9 5 `scalarMult` Vector 9.0 2.0 4.0

74.0

ghci> Vector 2 9 3 `vectMult` (Vector 4 9 5 `scalarMult` Vector 9 2 4)

Vector 148 666 222

94

8.4 Derived instances

In the Typeclasses 101 section, we explained the basics of typeclasses. We ex-
plained that a typeclass is a sort of an interface that defines some behavior. A
type can be made an instance of a typeclass if it supports that behavior. Exam-
ple: the Int type is an instance of the Eq typeclass because the Eq typeclass defines
behavior for stuff that can be equated. And because integers can be equated, Int
is a part of the Eq typeclass. The real usefulness comes with the functions that act
as the interface for Eq, namely == and /=. If a type is a part of the Eq typeclass,
we can use the == functions with values of that type. That's why expressions like
4 == 4 and "foo" /= "bar" typecheck.

We alsomentioned that they're often confusedwith classes in languages like Java,
Python, C++ and the like, which then baffles a lot of people. In those languages,
classes are a blueprint from which we then create objects that contain state and
can do some actions. Typeclasses are more like interfaces. We don't make data
from typeclasses. Instead, we first make our data type and then we think about
what it can act like. If it can act like something that can be equated, we make it
an instance of the Eq typeclass. If it can act like something that can be ordered,
we make it an instance of the Ord typeclass.

In the next section, we'll take a look at how we can manually make our types instances of type-
classes by implementing the functions defined by the typeclasses. But right now, let's see how
Haskell can automatically make our type an instance of any of the following typeclasses: Eq, Ord,
Enum, Bounded, Show, Read. Haskell can derive the behavior of our types in these contexts if we
use the deriving keyword when making our data type.

Consider this data type:

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

}

It describes a person. Let's assume that no two people have the same combination of first name,
last name and age. Now, if we have records for two people, does it make sense to see if they
represent the same person? Sure it does. We can try to equate them and see if they're equal or
not. That's why it would make sense for this type to be part of the Eq typeclass. We'll derive the
instance.

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

} deriving (Eq)

When we derive the Eq instance for a type and then try to compare two values of that type with
== or /=, Haskell will see if the value constructors match (there's only one value constructor here
though) and then it will check if all the data contained insidematches by testing each pair of fields
with ==. There's only one catch though, the types of all the fields also have to be part of the Eq
typeclass. But since both String and Int are, we're OK. Let's test our Eq instance.

95

ghci> let mikeD = Person {firstName = "Michael", lastName = "Diamond", age = 43}

ghci> let adRock = Person {firstName = "Adam", lastName = "Horovitz", age = 41}

ghci> let mca = Person {firstName = "Adam", lastName = "Yauch", age = 44}

ghci> mca == adRock

False

ghci> mikeD == adRock

False

ghci> mikeD == mikeD

True

ghci> mikeD == Person {firstName = "Michael", lastName = "Diamond", age = 43}

True

Of course, since Person is now in Eq, we can use it as the a for all functions that have a class
constraint of Eq a in their type signature, such as elem.

ghci> let beastieBoys = [mca, adRock, mikeD]

ghci> mikeD `elem` beastieBoys

True

TheShowandRead typeclasses are for things that can be converted to or from strings, respectively.
Like with Eq, if a type's constructors have fields, their type has to be a part of Show or Read if we
want to make our type an instance of them. Let's make our Person data type a part of Show and
Read as well.

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

} deriving (Eq, Show, Read)

Now we can print a person out to the terminal.

ghci> let mikeD = Person {firstName = "Michael", lastName = "Diamond", age = 43}

ghci> mikeD

Person {firstName = "Michael", lastName = "Diamond", age = 43}

ghci> "mikeD is: " ++ show mikeD

"mikeD is: Person {firstName = \"Michael\", lastName = \"Diamond\", age = 43}"

Had we tried to print a person on the terminal before making the Person data type part of Show,
Haskell would have complained at us, claiming it doesn't know how to represent a person as a
string. But now that we've derived a Show instance for it, it does know.

Read is pretty much the inverse typeclass of Show. Show is for converting values of our a type to
a string, Read is for converting strings to values of our type. Remember though, when we use the
read function, we have to use an explicit type annotation to tell Haskell which type we want to
get as a result. If we don't make the type we want as a result explicit, Haskell doesn't know which
type we want.

ghci> read "Person {firstName =\"Michael\", lastName =\"Diamond\",

age = 43}" :: Person

Person {firstName = "Michael", lastName = "Diamond", age = 43}

96

If we use the result of our read later on in a way that Haskell can infer that it should read it as a
person, we don't have to use type annotation.

ghci> read "Person {firstName =\"Michael\", lastName =\"Diamond\",

age = 43}" == mikeD

True

We can also read parameterized types, but we have to fill in the type parameters. So we can't do
read "Just 't'" :: Maybe a, but we can do read "Just 't'" :: Maybe Char.

We can derive instances for the Ord type class, which is for types that have values that can be or-
dered. If we compare two values of the same type that weremade using different constructors, the
value which was made with a constructor that's defined first is considered smaller. For instance,
consider the Bool type, which can have a value of either False or True. For the purpose of seeing
how it behaves when compared, we can think of it as being implemented like this:

data Bool = False | True deriving (Ord)

Because the False value constructor is specified first and the True value constructor is specified
after it, we can consider True as greater than False.

ghci> True `compare` False

GT

ghci> True > False

True

ghci> True < False

False

In theMaybe a data type, theNothing value constructor is specified before the Just value construc-
tor, so a value of Nothing is always smaller than a value of Just something, even if that something
is minus one billion trillion. But if we compare two Just values, then it goes to compare what's
inside them.

ghci> Nothing < Just 100

True

ghci> Nothing > Just (-49999)

False

ghci> Just 3 `compare` Just 2

GT

ghci> Just 100 > Just 50

True

But we can't do something like Just (*3) > Just (*2) , because (*3) and (*2) are functions, which
aren't instances of Ord.

We can easily use algebraic data types to make enumerations and the Enum and Bounded type-
classes help us with that. Consider the following data type:

data Day = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday

97

Because all the value constructors are nullary (take no parameters, i.e. fields), we can make it part
of the Enum typeclass. The Enum typeclass is for things that have predecessors and successors.
We can also make it part of the Bounded typeclass, which is for things that have a lowest possible
value and highest possible value. And while we're at it, let's also make it an instance of all the
other derivable typeclasses and see what we can do with it.

data Day = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday

deriving (Eq, Ord, Show, Read, Bounded, Enum)

Because it's part of the Show and Read typeclasses, we can convert values of this type to and from
strings.

ghci> Wednesday

Wednesday

ghci> show Wednesday

"Wednesday"

ghci> read "Saturday" :: Day

Saturday

Because it's part of the Eq and Ord typeclasses, we can compare or equate days.

ghci> Saturday == Sunday

False

ghci> Saturday == Saturday

True

ghci> Saturday > Friday

True

ghci> Monday `compare` Wednesday

LT

It's also part of Bounded, so we can get the lowest and highest day.

ghci> minBound :: Day

Monday

ghci> maxBound :: Day

Sunday

It's also an instance of Enum. We can get predecessors and successors of days and we can make
list ranges from them!

ghci> succ Monday

Tuesday

ghci> pred Saturday

Friday

ghci> [Thursday .. Sunday]

[Thursday,Friday,Saturday,Sunday]

ghci> [minBound .. maxBound] :: [Day]

[Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday]

That's pretty awesome.

98

8.5 Type synonyms

Previously, we mentioned that when writing types, the [Char] and String types are equivalent
and interchangeable. That's implemented with type synonyms. Type synonyms don't really do
anything per se, they're just about giving some types different names so that theymakemore sense
to someone reading our code and documentation. Here's how the standard library defines String
as a synonym for [Char].

type String = [Char]

We've introduced the type keyword. The keyword might be misleading to some,
because we're not actually making anything new (we did that with the data key-
word), but we're just making a synonym for an already existing type.

If we make a function that converts a string to uppercase and call it toUpperString
or something, we can give it a type declaration of toUpperString ::[Char] -> [Char]
or toUpperString : : String -> String. Both of these are essentially the same, only
the latter is nicer to read.

When we were dealing with the Data.Map module, we first represented a phonebook with an
association list before converting it into a map. As we've already found out, an association list is
a list of key-value pairs. Let's look at a phonebook that we had.

phoneBook :: [(String,String)]

phoneBook =

[("betty","555-2938")

,("bonnie","452-2928")

,("patsy","493-2928")

,("lucille","205-2928")

,("wendy","939-8282")

,("penny","853-2492")

]

We see that the type of phoneBook is [(String,String)] . That tells us that it's an association list
that maps from strings to strings, but not much else. Let's make a type synonym to convey some
more information in the type declaration.

type PhoneBook = [(String,String)]

Now the type declaration for our phonebook can be phoneBook :: PhoneBook. Let's make a type
synonym for String as well.

type PhoneNumber = String

type Name = String

type PhoneBook = [(Name,PhoneNumber)]

Giving the String type synonyms is something that Haskell programmers do when they want to
convey more information about what strings in their functions should be used as and what they
represent.

So now, when we implement a function that takes a name and a number and sees if that name
and number combination is in our phonebook, we can give it a very pretty and descriptive type
declaration.

99

inPhoneBook :: Name -> PhoneNumber -> PhoneBook -> Bool

inPhoneBook name pnumber pbook = (name,pnumber) `elem` pbook

If we decided not to use type synonyms, our function would have a type of String -> String ->
[(String,String)] -> Bool. In this case, the type declaration that took advantage of type synonyms
is easier to understand. However, you shouldn't go overboard with them. We introduce type
synonyms either to describe what some existing type represents in our functions (and thus our
type declarations become better documentation) or when something has a long-ish type that's
repeated a lot (like [(String,String)]) but represents something more specific in the context of our
functions.

Type synonyms can also be parameterized. If we want a type that represents an association list
type but still want it to be general so it can use any type as the keys and values, we can do this:

type AssocList k v = [(k,v)]

Now, a function that gets the value by a key in an association list can have a type of (Eq k) => k
-> AssocList k v -> Maybe v. AssocList is a type constructor that takes two types and produces a
concrete type, like AssocList Int String, for instance.

Note: Fonzie says: Aaay! When I talk about concrete types I mean like fully applied types like
Map Int String or if we're dealin' with one of them polymorphic functions,[a] or (Ord a) =>Maybe
a and stuff. And like, sometimes me and the boys say that Maybe is a type, but we don't mean
that, cause every idiot knows Maybe is a type constructor. When I apply an extra type to Maybe,
like Maybe String, then I have a concrete type. You know, values can only have types that are
concrete types! So in conclusion, live fast, love hard and don't let anybody else use your comb!

Just like we can partially apply functions to get new functions, we can partially apply type parame-
ters and get new type constructors from them. Just like we call a function with too few parameters
to get back a new function, we can specify a type constructor with too few type parameters and
get back a partially applied type constructor. If we wanted a type that represents a map (from
Data.Map) from integers to something, we could either do this:

type IntMap v = Map Int v

Or we could do it like this:

type IntMap = Map Int

Either way, the IntMap type constructor takes one parameter and that is the type of what the
integers will point to.

Note: Oh yeah. If you're going to try and implement this, you'll probably going to do a qualified
import of Data.Map. When you do a qualified import, type constructors also have to be preceeded
with a module name. So you'd write type IntMap = Map.Map Int.

Make sure that you really understand the distinction between type constructors and value con-
structors. Just because we made a type synonym called IntMap or AssocList doesn't mean that
we can do stuff like AssocList [(1,2),(4,5),(7,9)]. All it means is that we can refer to its type by using
different names. We can do [(1,2),(3,5),(8,9)] :: AssocList Int Int, which will make the numbers
inside assume a type of Int, but we can still use that list as we would any normal list that has pairs
of integers inside. Type synonyms (and types generally) can only be used in the type portion of

100

Haskell. We're in Haskell's type portion whenever we're defining new types (so in data and type
declarations) or when we're located after a ::. The :: is in type declarations or in type annotations.

Another cool data type that takes two types as its parameters is the Either a b type. This is roughly
how it's defined:

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

It has two value constructors. If the Left is used, then its contents are of type a and if Right is
used, then its contents are of type b. So we can use this type to encapsulate a value of one type or
another and then when we get a value of type Either a b, we usually pattern match on both Left
and Right and we different stuff based on which one of them it was.

ghci> Right 20

Right 20

ghci> Left "w00t"

Left "w00t"

ghci> :t Right 'a'

Right 'a' :: Either a Char

ghci> :t Left True

Left True :: Either Bool b

So far, we've seen thatMaybe awasmostly used to represent the results of computations that could
have either failed or not. But somtimes,Maybe a isn't good enough becauseNothing doesn't really
convey much information other than that something has failed. That's cool for functions that can
fail in only one way or if we're just not interested in how and why they failed. A Data.Map lookup
fails only if the key we were looking for wasn't in the map, so we know exactly what happened.
However, when we're interested in how some function failed or why, we usually use the result
type of Either a b, where a is some sort of type that can tell us something about the possible failure
and b is the type of a successful computation. Hence, errors use the Left value constructor while
results use Right.

An example: a high-school has lockers so that students have some place to put their Guns'n'Roses
posters. Each locker has a code combination. When a student wants a new locker, they tell the
locker supervisor which locker number they want and he gives them the code. However, if some-
one is already using that locker, he can't tell them the code for the locker and they have to pick
a different one. We'll use a map from Data.Map to represent the lockers. It'll map from locker
numbers to a pair of whether the locker is in use or not and the locker code.

import qualified Data.Map as Map

data LockerState = Taken | Free deriving (Show, Eq)

type Code = String

type LockerMap = Map.Map Int (LockerState, Code)

Simple stuff. We introduce a new data type to represent whether a locker is taken or free and we
make a type synonym for the locker code. We also make a type synonym for the type that maps
from integers to pairs of locker state and code. And now, we're going to make a function that
searches for the code in a locker map. We're going to use an Either String Code type to represent

101

our result, because our lookup can fail in two ways— the locker can be taken, in which case we
can't tell the code or the locker number might not exist at all. If the lookup fails, we're just going
to use a String to tell what's happened.

lockerLookup :: Int -> LockerMap -> Either String Code

lockerLookup lockerNumber map =

case Map.lookup lockerNumber map of

Nothing -> Left $ "Locker number " ++ show lockerNumber ++ " doesn't exist!"

Just (state, code) -> if state /= Taken

then Right code

else Left $ "Locker " ++ show lockerNumber ++ " is already taken!"

We do a normal lookup in the map. If we get a Nothing, we return a value of type Left String,
saying that the locker doesn't exist at all. If we do find it, then we do an additional check to see if
the locker is taken. If it is, return a Left saying that it's already taken. If it isn't, then return a value
of type Right Code, in which we give the student the correct code for the locker. It's actually a
Right String, but we introduced that type synonym to introduce some additional documentation
into the type declaration. Here's an example map:

lockers :: LockerMap

lockers = Map.fromList

[(100,(Taken,"ZD39I"))

,(101,(Free,"JAH3I"))

,(103,(Free,"IQSA9"))

,(105,(Free,"QOTSA"))

,(109,(Taken,"893JJ"))

,(110,(Taken,"99292"))

]

Now let's try looking up some locker codes.

ghci> lockerLookup 101 lockers

Right "JAH3I"

ghci> lockerLookup 100 lockers

Left "Locker 100 is already taken!"

ghci> lockerLookup 102 lockers

Left "Locker number 102 doesn't exist!"

ghci> lockerLookup 110 lockers

Left "Locker 110 is already taken!"

ghci> lockerLookup 105 lockers

Right "QOTSA"

We could have used aMaybe a to represent the result but then we wouldn't knowwhy we couldn't
get the code. But now, we have information about the failure in our result type.

8.6 Recursive data structures

As we've seen, a constructor in an algebraic data type can have several (or none at all) fields and
each field must be of some concrete type. With that in mind, we can make types whose construc-
tors have fields that are of the same type! Using that, we can create recursive data types, where

102

one value of some type contains values of that type, which in turn containmore values of the same
type and so on.

Think about this list: [5] . That's just syntactic sugar for 5: [] . On the left side of the : , there's a
value and on the right side, there's a list. And in this case, it's an empty list. Now how about the
list [4,5]? Well, that desugars to 4:(5:[]). Looking at the first :, we see that it also has an element on
its left side and a list (5:[]) on its right side. Same goes for a list like 3:(4:(5:6:[])), which could be
written either like that or like 3:4:5:6:[] (because : is right-associative) or [3,4,5,6].

We could say that a list can be an empty list or it can be an element joined together with a : with
another list (that can be either the empty list or not).

Let's use algebraic data types to implement our own list then!

data List a = Empty | Cons a (List a) deriving (Show, Read, Eq, Ord)

This reads just like our definition of lists from one of the previous paragraphs. It's either an empty
list or a combination of a head with some value and a list. If you're confused about this, youmight
find it easier to understand in record syntax.

data List a = Empty | Cons { listHead :: a, listTail ::

List a} deriving (Show, Read, Eq, Ord)

You might also be confused about the Cons constructor here. cons is another word for : . You
see, in lists, : is actually a constructor that takes a value and another list and returns a list. We can
already use our new list type! In other words, it has two fields. One field is of the type of a and
the other is of the type [a].

ghci> Empty

Empty

ghci> 5 `Cons` Empty

Cons 5 Empty

ghci> 4 `Cons` (5 `Cons` Empty)

Cons 4 (Cons 5 Empty)

ghci> 3 `Cons` (4 `Cons` (5 `Cons` Empty))

Cons 3 (Cons 4 (Cons 5 Empty))

We called our Cons constructor in an infix manner so you can see how it's just like : . Empty is
like [] and 4 `Cons` (5 `Cons` Empty) is like 4:(5:[]).

We can define functions to be automatically infix by making them comprised of only special
characters. We can also do the same with constructors, since they're just functions that return a
data type. So check this out.

infixr 5 :-:

data List a = Empty | a :-: (List a) deriving (Show, Read, Eq, Ord)

First off, we notice a new syntactic construct, the fixity declarations. When we define functions
as operators, we can use that to give them a fixity (but we don't have to). A fixity states how tightly
the operator binds and whether it's left-associative or right-associative. For instance, *'s fixity is
infixl 7 * and +'s fixity is infixl 6. That means that they're both left-associative (4 * 3 * 2 is (4 * 3) *
2) but * binds tighter than +, because it has a greater fixity, so 5 * 4 + 3 is (5 * 4) + 3.

103

Otherwise, we just wrote a :-: (List a) instead of Cons a (List a). Now, we can write out lists in our
list type like so:

ghci> 3 :-: 4 :-: 5 :-: Empty

(:-:) 3 ((:-:) 4 ((:-:) 5 Empty))

ghci> let a = 3 :-: 4 :-: 5 :-: Empty

ghci> 100 :-: a

(:-:) 100 ((:-:) 3 ((:-:) 4 ((:-:) 5 Empty)))

When deriving Show for our type, Haskell will still display it as if the constructor was a prefix
function, hence the parentheses around the operator (remember, 4 + 3 is (+) 4 3).

Let's make a function that adds two of our lists together. This is how ++ is defined for normal
lists:

infixr 5 ++

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

So we'll just steal that for our own list. We'll name the function .++.

infixr 5 .++

(.++) :: List a -> List a -> List a

Empty .++ ys = ys

(x :-: xs) .++ ys = x :-: (xs .++ ys)

And let's see if it works ...

ghci> let a = 3 :-: 4 :-: 5 :-: Empty

ghci> let b = 6 :-: 7 :-: Empty

ghci> a .++ b

(:-:) 3 ((:-:) 4 ((:-:) 5 ((:-:) 6 ((:-:) 7 Empty))))

Nice. Is nice. If we wanted, we could implement all of the functions that operate on lists on our
own list type.

Notice how we pattern matched on (x :-: xs) . That works because pattern matching is actually
about matching constructors. We can match on :-: because it is a constructor for our own list
type and we can also match on : because it is a constructor for the built-in list type. Same goes
for []. Because pattern matching works (only) on constructors, we can match for stuff like that,
normal prefix constructors or stuff like 8 or 'a', which are basically constructors for the numeric
and character types, respectively.

Now, we're going to implement a binary search tree. If you're not fa-
miliar with binary search trees from languages like C, here's what they
are: an element points to two elements, one on its left and one on its
right. The element to the left is smaller, the element to the right is big-
ger. Each of those elements can also point to two elements (or one, or
none). In effect, each element has up to two sub-trees. And a cool thing
about binary search trees is that we know that all the elements at the
left sub-tree of, say, 5 are going to be smaller than 5. Elements in its

104

right sub-tree are going to be bigger. So if we need to find if 8 is in our tree, we'd start at 5 and
then because 8 is greater than 5, we'd go right. We're now at 7 and because 8 is greater than 7, we
go right again. And we've found our element in three hops! Now if this were a normal list (or a
tree, but really unbalanced), it would take us seven hops instead of three to see if 8 is in there.

Sets and maps from Data.Set and Data.Map are implemented using trees, only instead of normal
binary search trees, they use balanced binary search trees, which are always balanced. But right
now, we'll just be implementing normal binary search trees.

Here's what we're going to say: a tree is either an empty tree or it's an element that contains some
value and two trees. Sounds like a perfect fit for an algebraic data type!

data Tree a = EmptyTree | Node a (Tree a) (Tree a) deriving (Show, Read, Eq)

Okay, good, this is good. Instead of manually building a tree, we're going to make a function that
takes a tree and an element and inserts an element. We do this by comparing the value we want
to insert to the root node and then if it's smaller, we go left, if it's larger, we go right. We do the
same for every subsequent node until we reach an empty tree. Once we've reached an empty tree,
we just insert a node with that value instead of the empty tree.

In languages like C, we'd do this by modifying the pointers and values inside the tree. In Haskell,
we can't really modify our tree, so we have to make a new sub-tree each time we decide to go
left or right and in the end the insertion function returns a completely new tree, because Haskell
doesn't really have a concept of pointer, just values. Hence, the type for our insertion function
is going to be something like a -> Tree a - > Tree a. It takes an element and a tree and returns a
new tree that has that element inside. This might seem like it's inefficient but laziness takes care
of that problem.

So, here are two functions. One is a utility function for making a singleton tree (a tree with just
one node) and a function to insert an element into a tree.

singleton :: a -> Tree a

singleton x = Node x EmptyTree EmptyTree

treeInsert :: (Ord a) => a -> Tree a -> Tree a

treeInsert x EmptyTree = singleton x

treeInsert x (Node a left right)

| x == a = Node x left right

| x < a = Node a (treeInsert x left) right

| x > a = Node a left (treeInsert x right)

The singleton function is just a shortcut for making a node that has something and then two
empty sub-trees. In the insertion function, we first have the edge condition as a pattern. If we've
reached an empty sub-tree, that means we're where we want and instead of the empty tree, we put
a singleton tree with our element. If we're not inserting into an empty tree, then we have to check
some things. First off, if the element we're inserting is equal to the root element, just return a tree
that's the same. If it's smaller, return a tree that has the same root value, the same right sub-tree
but instead of its left sub-tree, put a tree that has our value inserted into it. Same (but the other
way around) goes if our value is bigger than the root element.

Next up, we're going to make a function that checks if some element is in the tree. First, let's
define the edge condition. If we're looking for an element in an empty tree, then it's certainly not
there. Okay. Notice how this is the same as the edge condition when searching for elements in

105

lists. If we're looking for an element in an empty list, it's not there. Anyway, if we're not looking
for an element in an empty tree, then we check some things. If the element in the root node is
what we're looking for, great! If it's not, what then? Well, we can take advantage of knowing that
all the left elements are smaller than the root node. So if the element we're looking for is smaller
than the root node, check to see if it's in the left sub-tree. If it's bigger, check to see if it's in the
right sub-tree.

treeElem :: (Ord a) => a -> Tree a -> Bool

treeElem x EmptyTree = False

treeElem x (Node a left right)

| x == a = True

| x < a = treeElem x left

| x > a = treeElem x right

All we had to do was write up the previous paragraph in code. Let's have some fun with our trees!
Instead of manually building one (although we could) , we'll use a fold to build up a tree from a
list. Remember, pretty much everything that traverses a list one by one and then returns some
sort of value can be implemented with a fold! We're going to start with the empty tree and then
approach a list from the right and just insert element after element into our accumulator tree.

ghci> let nums = [8,6,4,1,7,3,5]

ghci> let numsTree = foldr treeInsert EmptyTree nums

ghci> numsTree

Node 5 (Node 3 (Node 1 EmptyTree EmptyTree) (Node 4 EmptyTree EmptyTree)) (Node 7
(Node 6 EmptyTree EmptyTree)(Node 8 EmptyTree EmptyTree))In that foldr, treeInsert was the
folding function (it takes a tree and a list element and produces a new tree) and EmptyTree was
the starting accumulator. nums, of course, was the list we were folding over.

When we print our tree to the console, it's not very readable, but if we try, we can make out its
structure. We see that the root node is 5 and then it has two sub-trees, one of which has the root
node of 3 and the other a 7, etc.

ghci> 8 `treeElem` numsTree

True

ghci> 100 `treeElem` numsTree

False

ghci> 1 `treeElem` numsTree

True

ghci> 10 `treeElem` numsTree

False

Checking for membership also works nicely. Cool.

So as you can see, algebraic data structures are a really cool and powerful concept in Haskell. We
can use them to make anything from boolean values and weekday enumerations to binary search
trees and more!

8.7 Typeclasses 102

106

So far, we've learned about some of the standard Haskell typeclasses
and we've seen which types are in them. We've also learned how to au-
tomatically make our own types instances of the standard typeclasses
by asking Haskell to derive the instances for us. In this section, we're
going to learn how tomake our own typeclasses and how tomake types
instances of them by hand.

A quick recap on typeclasses: typeclasses are like interfaces. A type-
class defines some behavior (like comparing for equality, comparing
for ordering, enumeration) and then types that can behave in that way
are made instances of that typeclass. The behavior of typeclasses is
achieved by defining functions or just type declarations that we then
implement. So when we say that a type is an instance of a typeclass, we
mean that we can use the functions that the typeclass defines with that
type.

Typeclasses have pretty much nothing to do with classes in languages
like Java or Python. This confusesmany people, so I want you to forget
everything you know about classes in imperative languages right now.

For example, the Eq typeclass is for stuff that can be equated. It defines
the functions == and /=. If we have a type (say, Car) and comparing
two carswith the equality function==makes sense, then itmakes sense
for Car to be an instance of Eq.

This is how the Eq class is defined in the standard prelude:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

Woah, woah, woah! Some new strange syntax and keywords there! Don't worry, this will all be
clear in a second. First off, when we write class Eq a where, this means that we're defining a new
typeclass and that's called Eq. The a is the type variable and it means that a will play the role of
the type that we will soon be making an instance of Eq. It doesn't have to be called a, it doesn't
even have to be one letter, it just has to be a lowercase word. Then, we define several functions.
It's not mandatory to implement the function bodies themselves, we just have to specify the type
declarations for the functions.

Note: Some people might understand this better if we wrote class Eq equatable where and then
specified the type declarations like (==) :: equatable -> equatable -> Bool.

Anyway, we did implement the function bodies for the functions that Eq defines, only we defined
them in terms of mutual recursion. We said that two instances of Eq are equal if they are not
different and they are different if they are not equal. We didn't have to do this, really, but we did
and we'll see how this helps us soon.

Note: If we have say class Eq a where and then define a type declaration within that class like (==)
:: a -> -a -> Bool, then when we examine the type of that function later on, it will have the type of
(Eq a) => a -> a -> Bool.

107

So once we have a class, what can we do with it? Well, not much, really. But once we start making
types instances of that class, we start getting some nice functionality. So check out this type:

data TrafficLight = Red | Yellow | Green

It defines the states of a traffic light. Notice how we didn't derive any class instances for it. That's
because we're going to write up some instances by hand, even though we could derive them for
types like Eq and Show. Here's how we make it an instance of Eq.

instance Eq TrafficLight where

Red == Red = True

Green == Green = True

Yellow == Yellow = True

_ == _ = False

We did it by using the instance keyword. So class is for defining new typeclasses and instance is
for making our types instances of typeclasses. When we were defining Eq, we wrote class Eq a
where andwe said that a plays the role of whichever typewill bemade an instance later on. We can
see that clearly here, because when we're making an instance, we write instance Eq TrafficLight
where. We replace the a with the actual type.

Because == was defined in terms of /= and vice versa in the class declaration, we only had to
overwrite one of them in the instance declaration. That's called the minimal complete definition
for the typeclass— the minimum of functions that we have to implement so that our type can
behave like the class advertises. To fulfill the minimal complete definition for Eq, we have to
overwrite either one of == or /=. If Eq was defined simply like this:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

we'd have to implement both of these functions when making a type an instance of it, because
Haskell wouldn't know how these two functions are related. The minimal complete definition
would then be: both == and /=.

You can see that we implemented == simply by doing pattern matching. Since there are many
more cases where two lights aren't equal, we specified the ones that are equal and then just did a
catch-all pattern saying that if it's none of the previous combinations, then two lights aren't equal.

Let's make this an instance of Show by hand, too. To satisfy the minimal complete definition for
Show, we just have to implement its show function, which takes a value and turns it into a string.

instance Show TrafficLight where

show Red = "Red light"

show Yellow = "Yellow light"

show Green = "Green light"

Once again, we used pattern matching to achieve our goals. Let's see how it works in action:

ghci> Red == Red

True

ghci> Red == Yellow

108

False

ghci> Red `elem` [Red, Yellow, Green]

True

ghci> [Red, Yellow, Green]

[Red light,Yellow light,Green light]

Nice. We could have just derived Eq and it would have had the same effect (but we didn't for
educational purposes) . However, deriving Show would have just directly translated the value
constructors to strings. But if we want lights to appear like "Red light", then we have to make the
instance declaration by hand.

You can also make typeclasses that are subclasses of other typeclasses. The class declaration for
Num is a bit long, but here's the first part:

class (Eq a) => Num a where

...

As we mentioned previously, there are a lot of places where we can cram in class constraints. So
this is just like writing class Num a where, only we state that our type a must be an instance of
Eq. We're essentially saying that we have to make a type an instance of Eq before we can make
it an instance of Num. Before some type can be considered a number, it makes sense that we
can determine whether values of that type can be equated or not. That's all there is to subclassing
really, it's just a class constraint on a class declaration! When defining function bodies in the class
declaration or when defining them in instance declarations, we can assume that a is a part of Eq
and so we can use == on values of that type.

But how are theMaybe or list typesmade as instances of typeclasses? WhatmakesMaybe different
from, say, TrafficLight is that Maybe in itself isn't a concrete type, it's a type constructor that takes
one type parameter (like Char or something) to produce a concrete type (like Maybe Char). Let's
take a look at the Eq typeclass again:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

From the type declarations, we see that the a is used as a concrete type because all the types in
functions have to be concrete (remember, you can't have a function of the type a -> Maybe but
you can have a function of a -> Maybe a or Maybe Int -> Maybe String). That's why we can't do
something like

instance Eq Maybe where

...

Because like we've seen, the a has to be a concrete type but Maybe isn't a concrete type. It's a type
constructor that takes one parameter and then produces a concrete type. It would also be tedious
to write instance Eq (Maybe Int) where, instance Eq (Maybe Char) where, etc. for every type ever.
So we could write it out like so:

109

instance Eq (Maybe m) where

Just x == Just y = x == y

Nothing == Nothing = True

_ == _ = False

This is like saying that we want to make all types of the form Maybe something an instance of
Eq. We actually could have written (Maybe something) , but we usually opt for single letters to
be true to the Haskell style. The (Maybe m) here plays the role of the a from class Eq a where.
While Maybe isn't a concrete type, Maybe m is. By specifying a type parameter (m, which is in
lowercase), we said that we want all types that are in the form of Maybe m, where m is any type,
to be an instance of Eq.

There's one problem with this though. Can you spot it? We use == on the contents of the Maybe
but we have no assurance that what the Maybe contains can be used with Eq! That's why we have
to modify our instance declaration like this:

instance (Eq m) => Eq (Maybe m) where

Just x == Just y = x == y

Nothing == Nothing = True

_ == _ = False

We had to add a class constraint! With this instance declaration, we say this: we want all types
of the form Maybe m to be part of the Eq typeclass, but only those types where the m (so what's
contained inside the Maybe) is also a part of Eq. This is actually how Haskell would derive the
instance too.

Most of the times, class constraints in class declarations are used for making a typeclass a subclass
of another typeclass and class constraints in instance declarations are used to express require-
ments about the contents of some type. For instance, here we required the contents of the Maybe
to also be part of the Eq typeclass.

When making instances, if you see that a type is used as a concrete type in the type declarations
(like the a in a -> a -> Bool), you have to supply type parameters and add parentheses so that you
end up with a concrete type.

Note: Take into account that the type you're trying to make an instance of will replace the para-
meter in the class declaration. The a from class Eq a where will be replaced with a real type when
you make an instance, so try mentally putting your type into the function type declarations as
well. (==) :: Maybe -> Maybe -> Bool doesn't make much sense but (==) :: (Eq m) => Maybe m
-> Maybe m -> Bool does. But this is just something to think about, because == will always have
a type of (==) :: (Eq a) => a -> a -> Bool, no matter what instances we make.

Ooh, one more thing, check this out! If you want to see what the instances of a typeclass are, just
do :info YourTypeClass in GHCI. So typing :info Num will show which functions the typeclass
defines and it will give you a list of the types in the typeclass. :info works for types and type
constructors too. If you do :info Maybe, it will show you all the typeclasses that Maybe is an
instance of. Also :info can show you the type declaration of a function. I think that's pretty cool.

8.8 A yes-no typeclass

110

In JavaScript and some other weakly typed languages, you can put al-
most anything inside an if expression. For example, you can do all
of the following: if (0) alert("YEAH!") else alert("NO!") , if ("") alert
("YEAH!") else alert("NO!"), if (false) alert("YEAH") else alert("NO!), etc.
and all of these will throw an alert of NO!. If you do if ("WHAT") alert
("YEAH") else alert("NO!"), it will alert a "YEAH!" because JavaScript

considers non-empty strings to be a sort of true-ish value.

Even though strictly using Bool for boolean semantics works better in Haskell, let's try and im-
plement that JavaScript-ish behavior anyway. For fun! Let's start out with a class declaration.

class YesNo a where

yesno :: a -> Bool

Pretty simple. The YesNo typeclass defines one function. That function takes one value of a type
that can be considered to hold some concept of true-ness and tells us for sure if it's true or not.
Notice that from the way we use the a in the function, a has to be a concrete type.

Next up, let's define some instances. For numbers, we'll assume that (like in JavaScript) any num-
ber that isn't 0 is true-ish and 0 is false-ish.

instance YesNo Int where

yesno 0 = False

yesno _ = True

Empty lists (and by extensions, strings) are a no-ish value, while non-empty lists are a yes-ish
value.

instance YesNo [a] where

yesno [] = False

yesno _ = True

Notice howwe just put in a type parameter a in there tomake the list a concrete type, even though
we don't make any assumptions about the type that's contained in the list. What else, hmm ... I
know, Bool itself also holds true-ness and false-ness and it's pretty obvious which is which.

instance YesNo Bool where

yesno = id

Huh? What's id? It's just a standard library function that takes a parameter and returns the same
thing, which is what we would be writing here anyway.

Let's make Maybe a an instance too.

instance YesNo (Maybe a) where

yesno (Just _) = True

yesno Nothing = False

We didn't need a class constraint because we made no assumptions about the contents of the
Maybe. We just said that it's true-ish if it's a Just value and false-ish if it's a Nothing. We still
had to write out (Maybe a) instead of just Maybe because if you think about it, a Maybe -> Bool
function can't exist (because Maybe isn't a concrete type), whereas a Maybe a -> Bool is fine and

111

dandy. Still, this is really cool because now, any type of the form Maybe something is part of
YesNo and it doesn't matter what that something is.

Previously, we defined a Tree a type, that represented a binary search tree. We can say an empty
tree is false-ish and anything that's not an empty tree is true-ish.

instance YesNo (Tree a) where

yesno EmptyTree = False

yesno _ = True

Can a traffic light be a yes or no value? Sure. If it's red, you stop. If it's green, you go. If it's yellow?
Eh, I usually run the yellows because I live for adrenaline.

instance YesNo TrafficLight where

yesno Red = False

yesno _ = True

Cool, now that we have some instances, let's go play!

ghci> yesno $ length []

False

ghci> yesno "haha"

True

ghci> yesno ""

False

ghci> yesno $ Just 0

True

ghci> yesno True

True

ghci> yesno EmptyTree

False

ghci> yesno []

False

ghci> yesno [0,0,0]

True

ghci> :t yesno

yesno :: (YesNo a) => a -> Bool

Right, it works! Let's make a function that mimics the if statement, but it works with YesNo
values.

yesnoIf :: (YesNo y) => y -> a -> a -> a

yesnoIf yesnoVal yesResult noResult = if yesno yesnoVal then yesResult else noResult

Pretty straightforward. It takes a yes-no-ish value and two things. If the yes-no-ish value is more
of a yes, it returns the first of the two things, otherwise it returns the second of them.

ghci> yesnoIf [] "YEAH!" "NO!"

"NO!"

ghci> yesnoIf [2,3,4] "YEAH!" "NO!"

"YEAH!"

112

ghci> yesnoIf True "YEAH!" "NO!"

"YEAH!"

ghci> yesnoIf (Just 500) "YEAH!" "NO!"

"YEAH!"

ghci> yesnoIf Nothing "YEAH!" "NO!"

"NO!"

8.9 The Functor typeclass

So far, we've encountered a lot of the typeclasses in the standard library.
We've playedwithOrd, which is for stuff that can be ordered. We've palled
around with Eq, which is for things that can be equated. We've seen Show,
which presents an interface for types whose values can be displayed as
strings. Our good friend Read is there whenever we need to convert a
string to a value of some type. And now, we're going to take a look at the
Functor typeclass, which is basically for things that can be mapped over.
You're probably thinking about lists now, since mapping over lists is such
a dominant idiom in Haskell. And you're right, the list type is part of the
Functor typeclass.

What better way to get to know the Functor typeclass than to see how it's
implemented? Let's take a peek.

class Functor f where

fmap :: (a -> b) -> f a -> f b

Alright. We see that it defines one function, fmap, and doesn't provide any default implementa-
tion for it. The type of fmap is interesting. In the definitions of typeclasses so far, the type variable
that played the role of the type in the typeclass was a concrete type, like the a in (==) :: (Eq a) =>
a -> a -> Bool. But now, the f is not a concrete type (a type that a value can hold, like Int, Bool or
Maybe String), but a type constructor that takes one type parameter. A quick refresher example:
Maybe Int is a concrete type, butMaybe is a type constructor that takes one type as the parameter.
Anyway, we see that fmap takes a function from one type to another and a functor applied with
one type and returns a functor applied with another type.

If this sounds a bit confusing, don't worry. All will be revealed soon when we check out a few
examples. Hmm, this type declaration for fmap reminds me of something. If you don't know
what the type signature of map is, it's: map :: (a -> b) -> [a] -> [b].

Ah, interesting! It takes a function from one type to another and a list of one type and returns a
list of another type. My friends, I think we have ourselves a functor! In fact, map is just a fmap
that works only on lists. Here's how the list is an instance of the Functor typeclass.

instance Functor [] where

fmap = map

That's it! Notice how we didn't write instance Functor [a] where, because from fmap :: (a -> b) ->
f a -> f b, we see that the f has to be a type constructor that takes one type. [a] is already a concrete
type (of a list with any type inside it) , while [] is a type constructor that takes one type and can
produce types such as [Int], [String] or even [[String]].

113

Since for lists, fmap is just map, we get the same results when using them on lists.

map :: (a -> b) -> [a] -> [b]

ghci> fmap (*2) [1..3]

[2,4,6]

ghci> map (*2) [1..3]

[2,4,6]

What happens when we map or fmap over an empty list? Well, of course, we get an empty list. It
just turns an empty list of type [a] into an empty list of type [b].

Types that can act like a box can be functors. You can think of a list as a box that has an infinite
amount of little compartments and they can all be empty, one can be full and the others empty or
a number of them can be full. So, what else has the properties of being like a box? For one, the
Maybe a type. In a way, it's like a box that can either hold nothing, in which case it has the value
of Nothing, or it can hold one item, like "HAHA", in which case it has a value of Just "HAHA".
Here's how Maybe is a functor.

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

Again, notice how we wrote instance Functor Maybe where instead of instance Functor (Maybe
m) where, like we did when we were dealing with Maybe and YesNo. Functor wants a type con-
structor that takes one type and not a concrete type. If you mentally replace the fs with Maybes,
fmap acts like a (a -> b) -> Maybe a -> Maybe b for this particular type, which looks OK. But if
you replace f with (Maybe m), then it would seem to act like a (a -> b) -> Maybe m a -> Maybe m
b, which doesn't make any damn sense because Maybe takes just one type parameter.

Anyway, the fmap implementation is pretty simple. If it's an empty value of Nothing, then just
return a Nothing. If we map over an empty box, we get an empty box. It makes sense. Just like
if we map over an empty list, we get back an empty list. If it's not an empty value, but rather a
single value packed up in a Just, then we apply the function on the contents of the Just.

ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") (Just "Something serious.")

Just "Something serious. HEY GUYS IM INSIDE THE JUST"

ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") Nothing

Nothing

ghci> fmap (*2) (Just 200)

Just 400

ghci> fmap (*2) Nothing

Nothing

Another thing that can bemapped over andmade an instance of Functor is our Tree a type. It can
be thought of as a box in a way (holds several or no values) and the Tree type constructor takes
exactly one type parameter. If you look at fmap as if it were a function made only for Tree, its
type signature would look like (a -> b) -> Tree a -> Tree b. We're going to use recursion on this
one. Mapping over an empty tree will produce an empty tree. Mapping over a non-empty tree
will be a tree consisting of our function applied to the root value and its left and right sub-trees
will be the previous sub-trees, only our function will be mapped over them.

114

instance Functor Tree where

fmap f EmptyTree = EmptyTree

fmap f (Node x leftsub rightsub) = Node (f x) (fmap f

leftsub) (fmap f rightsub)

ghci> fmap (*2) EmptyTree

EmptyTree

ghci> fmap (*4) (foldr treeInsert EmptyTree [5,7,3,2,1,7])

Node 28 (Node 4 EmptyTree (Node 8 EmptyTree (Node 12

EmptyTree (Node 20 EmptyTree EmptyTree)))) EmptyTree

Nice! Now how about Either a b? Can this be made a functor? The Functor typeclass wants a
type constructor that takes only one type parameter but Either takes two. Hmmm! I know, we'll
partially apply Either by feeding it only one parameter so that it has one free parameter. Here's
how Either a is a functor in the standard libraries:

instance Functor (Either a) where

fmap f (Right x) = Right (f x)

fmap f (Left x) = Left x

Well well, what did we do here? You can see how we made Either a an instance instead of just
Either. That's because Either a is a type constructor that takes one parameter, whereas Either takes
two. If fmap was specifically for Either a, the type signature would then be (b -> c) -> Either a b ->
Either a c because that's the same as (b -> c) -> (Either a) b -> (Either a) c. In the implementation,
we mapped in the case of a Right value constructor, but we didn't in the case of a Left. Why is
that? Well, if we look back at how the Either a b type is defined, it's kind of like:

data Either a b = Left a | Right b

Well, if we wanted to map one function over both of them, a and b would have to be the same
type. I mean, if we tried to map a function that takes a string and returns a string and the b was
a string but the a was a number, that wouldn't really work out. Also, from seeing what fmap's
type would be if it operated only on Either values, we see that the first parameter has to remain
the same while the second one can change and the first parameter is actualized by the Left value
constructor.

This also goes nicely with our box analogy if we think of the Left part as sort of an empty box with
an error message written on the side telling us why it's empty.

Maps from Data.Map can also be made a functor because they hold values (or not!). In the case
of Map k v, fmap will map a function v -> v' over a map of type Map k v and return a map of type
Map k v'.

Note: Note, the ' has no special meaning in types just like it doesn't have special meaning when
naming values. It's used to denote things that are similar, only slightly changed.

Try figuring out how Map k is made an instance of Functor by yourself!

With the Functor typeclass, we've seen how typeclasses can represent pretty cool higher-order
concepts. We've also had some more practice with partially applying types and making instances.
In one of the next chapters, we'll also take a look at some laws that apply for functors.

Note: Just one more thing! Functors should obey some laws so that they may have some prop-
erties that we can depend on and not think about too much. If we use fmap (+1) over the list

115

[1,2,3,4], we expect the result to be [2,3,4,5] and not its reverse, [5,4,3,2]. If we use fmap (\a -> a)
(the identity function, which just returns its parameter) over some list, we expect to get back the
same list as a result. For example, if we gave the wrong functor instance to our Tree type, using
fmap over a tree where the left sub-tree of a node only has elements that are smaller than the node
and the right sub-tree only has nodes that are larger than the node might produce a tree where
that's not the case. We'll go over the functor laws in more detail in one of the next chapters.

8.10 Kinds and some type-foo

Type constructors take other types as parameters to even-
tually produce concrete types. That kind of reminds me of
functions, which take values as parameters to produce val-
ues. We've seen that type constructors can be partially ap-
plied (Either String is a type that takes one type and produces
a concrete type, like Either String Int), just like functions can.
This is all very interesting indeed. In this section, we'll take a
look at formally defining how types are applied to type con-
structors, just like we took a look at formally defining how val-
ues are applied to functions by using type declarations. You
don't really have to read this section to continue on yourmag-
ical Haskell quest and if you don't understand it, don't worry
about it. However, getting this will give you a very thorough
understanding of the type system.

So, values like 3, "YEAH" or takeWhile (functions are also val-
ues, because we can pass them around and such) each have
their own type. Types are little labels that values carry so that
we can reason about the values. But types have their own little labels, called kinds. A kind is more
or less the type of a type. This may sound a bit weird and confusing, but it's actually a really cool
concept.

What are kinds and what are they good for? Well, let's examine the kind of a type by using the :k
command in GHCI.

ghci> :k Int

Int :: *

A star? How quaint. What does that mean? A *means that the type is a concrete type. A concrete
type is a type that doesn't take any type parameters and values can only have types that are concrete
types. If I had to read * out loud (I haven't had to do that so far), I'd say star or just type.

Okay, now let's see what the kind of Maybe is.

ghci> :k Maybe

Maybe :: * -> *

The Maybe type constructor takes one concrete type (like Int) and then returns a concrete type
likeMaybe Int. And that's what this kind tells us. Just like Int -> Intmeans that a function takes an
Int and returns an Int, * -> * means that the type constructor takes one concrete type and returns
a concrete type. Let's apply the type parameter to Maybe and see what the kind of that type is.

116

ghci> :k Maybe Int

Maybe Int :: *

Just like I expected! We applied the type parameter to Maybe and got back a concrete type (that's
what * -> * means. A parallel (although not equivalent, types and kinds are two different things)
to this is if we do :t isUpper and :t isUpper 'A'. isUpper has a type of Char -> Bool and isUpper 'A'
has a type of Bool, because its value is basically True. Both those types, however, have a kind of *.

We used :k on a type to get its kind, just like we can use :t on a value to get its type. Like we said,
types are the labels of values and kinds are the labels of types and there are parallels between the
two.

Let's look at another kind.

ghci> :k Either

Either :: * -> * -> *

Aha, this tells us that Either takes two concrete types as type parameters to produce a concrete
type. It also looks kind of like a type declaration of a function that takes two values and returns
something. Type constructors are curried (just like functions), so we can partially apply them.

ghci> :k Either String

Either String :: * -> *

ghci> :k Either String Int

Either String Int :: *

When we wanted to make Either a part of the Functor typeclass, we had to partially apply it
because Functor wants types that take only one parameter while Either takes two. In other words,
Functor wants types of kind * -> * and so we had to partially apply Either to get a type of kind *
-> * instead of its original kind * -> * -> *. If we look at the definition of Functor again

class Functor f where

fmap :: (a -> b) -> f a -> f b

we see that the f type variable is used as a type that takes one concrete type to produce a concrete
type. We know it has to produce a concrete type because it's used as the type of a value in a
function. And from that, we can deduce that types that want to be friends with Functor have to
be of kind * -> *.

Now, let's do some type-foo. Take a look at this typeclass that I'm just going to make up right
now:

class Tofu t where

tofu :: j a -> t a j

Man, that looks weird. How would we make a type that could be an instance of that strange
typeclass? Well, let's look at what its kind would have to be. Because j a is used as the type of a
value that the tofu function takes as its parameter, j a has to have a kind of *. We assume * for
a and so we can infer that j has to have a kind of * -> *. We see that t has to produce a concrete
value too and that it takes two types. And knowing that a has a kind of * and j has a kind of * ->
*, we infer that t has to have a kind of * -> (* -> *) -> *. So it takes a concrete type (a) , a type
constructor that takes one concrete type (j) and produces a concrete type. Wow.

117

OK, so let's make a type with a kind of * -> (* -> *) -> *. Here's one way of going about it.

data Frank a b = Frank {frankField :: b a} deriving (Show)

How do we know this type has a kind of * -> (* -> *) - > *? Well, fields in ADTs are made to hold
values, so theymust be of kind *, obviously. We assume * for a, whichmeans that b takes one type
parameter and so its kind is * -> *. Now we know the kinds of both a and b and because they're
parameters for Frank, we see that Frank has a kind of * -> (* -> *) -> * The first * represents a and
the (* -> *) represents b. Let's make some Frank values and check out their types.

ghci> :t Frank {frankField = Just "HAHA"}

Frank {frankField = Just "HAHA"} :: Frank [Char] Maybe

ghci> :t Frank {frankField = Node 'a' EmptyTree EmptyTree}

Frank {frankField = Node 'a' EmptyTree EmptyTree} :: Frank Char Tree

ghci> :t Frank {frankField = "YES"}

Frank {frankField = "YES"} :: Frank Char []

Hmm. Because frankField has a type of form a b, its values must have types that are of a similar
form as well. So they can be Just "HAHA", which has a type ofMaybe [Char] or it can have a value
of ['Y','E','S'], which has a type of [Char](if we used our own list type for this, it would have a type
of List Char). And we see that the types of the Frank values correspond with the kind for Frank.
[Char] has a kind of * and Maybe has a kind of * -> *. Because in order to have a value, it has to
be a concrete type and thus has to be fully applied, every value of Frank blah blaah has a kind of
*.

Making Frank an instance of Tofu is pretty simple. We see that tofu takes a j a (so an example
type of that form would be Maybe Int) and returns a t a j. So if we replace Frank with j, the result
type would be Frank Int Maybe.

instance Tofu Frank where

tofu x = Frank x

ghci> tofu (Just 'a') :: Frank Char Maybe

Frank {frankField = Just 'a'}

ghci> tofu ["HELLO"] :: Frank [Char] []

Frank {frankField = ["HELLO"]}

Not very useful, but we did flex our typemuscles. Let's do somemore type-foo. We have this data
type:

data Barry t k p = Barry { yabba :: p, dabba :: t k }

And now we want to make it an instance of Functor. Functor wants types of kind * -> * but Barry
doesn't look like it has that kind. What is the kind of Barry? Well, we see it takes three type
parameters, so it's going to be something -> something -> something -> *. It's safe to say that p is
a concrete type and thus has a kind of *. For k, we assume * and so by extension, t has a kind of *
-> *. Now let's just replace those kinds with the somethings that we used as placeholders and we
see it has a kind of (* -> *) -> * -> * -> *. Let's check that with GHCI.

ghci> :k Barry

Barry :: (* -> *) -> * -> * -> *

118

Ah, we were right. How satisfying. Now, to make this type a part of Functor we have to partially
apply the first two type parameters so that we're left with * -> *. That means that the start of the
instance declaration will be: instance Functor (Barry a b) where. If we look at fmap as if it was
made specifically for Barry, it would have a type of fmap :: (a -> b) -> Barry c d a -> Barry c d b,
because we just replace the Functor's f with Barry c d. The third type parameter from Barry will
have to change and we see that it's conviniently in its own field.

instance Functor (Barry a b) where

fmap f (Barry {yabba = x, dabba = y}) = Barry {yabba = f x, dabba = y}

There we go! We just mapped the f over the first field.

In this section, we took a good look at how type parameters work and kind of formalized them
with kinds, just like we formalized function parameters with type declarations. We saw that there
are interesting parallels between functions and type constructors. They are, however, two com-
pletely different things. Whenworking on real Haskell, you usually won't have tomess with kinds
and do kind inference by hand like we did now. Usually, you just have to partially apply your own
type to * -> * or * when making it an instance of one of the standard typeclasses, but it's good to
know how and why that actually works. It's also interesting to see that types have little types of
their own. Again, you don't really have to understand everything we did here to read on, but if
you understand how kinds work, chances are that you have a very solid grasp of Haskell's type
system.

Chapter 9 Input and Output

We'vementioned thatHaskell is a purely functional language. Whereas in
imperative languages you usually get things done by giving the computer
a series of steps to execute, functional programming is more of defining
what stuff is. In Haskell, a function can't change some state, like changing
the contents of a variable (when a function changes state, we say that the
function has side-effects). The only thing a function can do in Haskell is
give us back some result based on the parameters we gave it. If a function
is called two times with the same parameters, it has to return the same
result. While this may seem a bit limiting when you're coming from an
imperative world, we've seen that it's actually really cool. In an imperative
language, you have no guarantee that a simple function that should just
crunch some numbers won't burn down your house, kidnap your dog
and scratch your car with a potato while crunching those numbers. For instance, when we were
making a binary search tree, we didn't insert an element into a tree by modifying some tree in
place. Our function for inserting into a binary search tree actually returned a new tree, because it
can't change the old one.

While functions being unable to change state is good because it helps us reason about our pro-
grams, there's one problem with that. If a function can't change anything in the world, how is it
supposed to tell us what it calculated? In order to tell us what it calculated, it has to change the
state of an output device (usually the state of the screen), which then emits photons that travel to
our brain and change the state of our mind, man.

Do not despair, all is not lost. It turns out that Haskell actually has a really clever system for
dealing with functions that have side-effects that neatly separates the part of our program that
is pure and the part of our program that is impure, which does all the dirty work like talking
to the keyboard and the screen. With those two parts separated, we can still reason about our
pure program and take advantage of all the things that purity offers, like laziness, robustness and
modularity while efficiently communicating with the outside world.

9.1 Hello, world!

Up until now, we've always loaded our functions into GHCI to test
them out and play with them. We've also explored the standard library
functions that way. But now, after eight or so chapters, we're finally
going to write our first real Haskell program! Yay! And sure enough,
we're going to do the good old "hello, world" schtick.

Note: Hey! For the purposes of this chapter, I'm going to assume
you're using a unix-y environment for learning Haskell. If you're in
Windows, I'd suggest you download Cygwin, which is a Linux-like en-

vironment for Windows, A.K.A. just what you need.

So, for starters, punch in the following in your favorite text editor:

main = putStrLn "hello, world" We just defined a name called main and in it we call a function
called putStrLn with the parameter "hello, world". Looks pretty much run of the mill, but it isn't,
as we'll see in just a few moments. Save that file as helloworld.hs.

120

And now, we're going to do something we've never done before. We're actually going to com-
pile our program! I'm so excited! Open up your terminal and navigate to the directory where
helloworld.hs is located and do the following:

$ ghc --make helloworld

[1 of 1] Compiling Main (helloworld.hs, helloworld.o)

Linking helloworld ...

Okay! With any luck, you got something like this and now you can run your program by doing
./helloworld.

$./helloworld

hello, world

And there we go, our first compiled program that printed out something to the terminal. How
extraordinarily boring!

Let's examine what we wrote. First, let's look at the type of the function putStrLn.

ghci> :t putStrLn

putStrLn :: String -> IO ()

ghci> :t putStrLn "hello, world"

putStrLn "hello, world" :: IO ()

We can read the type of putStrLn like this: putStrLn takes a string and returns an I/O action that
has a result type of()(i.e. the empty tuple, also know as unit). An I/O action is something that, when
performed, will carry out an action with a side-effect (that's usually either reading from the input
or printing stuff to the screen) and will also contain some kind of return value inside it. Printing a
string to the terminal doesn't really have any kind of meaningful return value, so a dummy value
of () is used.

Note: The empty tuple is a value of () and it also has a type of ().

So, when will an I/O action be performed? Well, this is where main comes in. An I/O action will
be performed when we give it a name of main and then run our program.

Having your whole program be just one I/O action seems kind of limiting. That's why we can use
do syntax to glue together several I/O actions into one. Take a look at the following example:

main = do

putStrLn "Hello, what's your name?"

name <- getLine

putStrLn ("Hey " ++ name ++ ", you rock!")

Ah, interesting, new syntax! And this reads pretty much like an imperative program. If you
compile it and try it out, it will probably behave just like you expect it to. Notice that we said do
and then we laid out a series of steps, like we would in an imperative program. Each of these steps
is an I/O action. By putting them together with do syntax, we glued them into one I/O action.
The action that we got has a type of IO (), because that's the type of the last I/O action inside.

Because of that, main always has a type signature of main : : IO something, where something is
some concrete type. By convention, we don't usually specify a type declaration for main.

121

An interesting thing that we haven't met before is the third line, which states name <- getLine. It
looks like it reads a line from the input and stores it into a variable called name. Does it really?
Well, let's examine the type of getLine.

ghci> :t getLine

getLine :: IO String

Aha, o-kay. getLine is an I/O action that contains a result type of
String. That makes sense, because it will wait for the user to input
something at the terminal and then that something will be represented
as a string. So what's up with name <- getLine then? You can read that
piece of code like this: perform the I/O action getLine and then bind
its result value to name. getLine has a type of IO String, so name will
have a type of String. You can think of an I/O action as a box with little
feet that will go out into the real world and do something there (like
write some graffiti on a wall) and maybe bring back some data. Once
it's fetched that data for you, the only way to open the box and get the

data inside it is to use the <- construct. And if we're taking data out of an I/O action, we can only
take it out when we're inside another I/O action. This is how Haskell manages to neatly separate
the pure and impure parts of our code. getLine is in a sense impure because its result value is not
guaranteed to be the same when performed twice. That's why it's sort of tainted with the IO type
constructor and we can only get that data out in I/O code. And because I/O code is tainted too,
any computation that depends on tainted I/O data will have a tainted result.

When I say tainted, I don't mean tainted in such a way that we can never use the result contained
in an I/O action ever again in pure code. No, we temporarily un-taint the data inside an I/O
action when we bind it to a name. When we do name <- getLine, name is just a normal string,
because it represents what's inside the box. We can have a really complicated function that, say,
takes your name (a normal string) as a parameter and tells you your fortune and your whole life's
future based on your name. We can do this:

main = do

putStrLn "Hello, what's your name?"

name <- getLine

putStrLn $ "

Read this carefully, because this is your future: " ++ tellFortune name and tellFortune (or any of
the functions it passes name to) doesn't have to know anything about I/O, it's just a normal String
-> String function!

Take a look at this piece of code. Is it valid?

nameTag = "Hello, my name is " ++ getLine

If you said no, go eat a cookie. If you said yes, drink a bowl of molten lava. Just kidding, don't!
The reason that this doesn't work is that ++ requires both its parameters to be lists over the same
type. The left parameter has a type of String (or [Char] if you will), whilst getLine has a type of IO
String. You can't concatenate a string and an I/O action. We first have to get the result out of the
I/O action to get a value of type String and the only way to do that is to say something like name
<- getLine inside some other I/O action. If we want to deal with impure data, we have to do it in

122

an impure environment. So the taint of impurity spreads around much like the undead scourge
and it's in our best interest to keep the I/O parts of our code as small as possible.

Every I/O action that gets performed has a result encapsulated within it. That's why our previous
example program could also have been written like this:

main = do

foo <- putStrLn "Hello, what's your name?"

name <- getLine

putStrLn ("Hey " ++ name ++ ", you rock!")

However, foo would just have a value of () , so doing that would be kind of moot. Notice that
we didn't bind the last putStrLn to anything. That's because in a do block, the last action cannot
be bound to a name like the first two were. We'll see exactly why that is so a bit later when we
venture off into the world of monads. For now, you can think of it in the way that the do block
automatically extracts the value from the last action and binds it to its own result.

Except for the last line, every line in a do block that doesn't bind can also be written with a bind.
So putStrLn "BLAH" can be written as _ <- putStrLn "BLAH". But that's useless, so we leave out
the <- for I/O actions that don't contain an important result, like putStrLn something.

Beginners sometimes think that doing

name = getLine

will read from the input and then bind the value of that to name. Well, it won't, all this does is
give the getLine I/O action a different name called, well, name. Remember, to get the value out of
an I/O action, you have to perform it inside another I/O action by binding it to a name with <-.

I/O actions will only be performed when they are given a name of main or when they're inside a
bigger I/O action that we composed with a do block. We can also use a do block to glue together
a few I/O actions and then we can use that I/O action in another do block and so on. Either way,
they'll be performed only if they eventually fall into main.

Oh, right, there's also one more case when I/O actions will be performed. When we type out an
I/O action in GHCI and press return, it will be performed.

ghci> putStrLn "HEEY"

HEEY

Evenwhenwe just punch out a number or call a function inGHCI and press return, it will evaluate
it (as much as it needs) and then call show on it and then it will print that string to the terminal
using putStrLn implicitly.

Remember let bindings? If you don't, refresh your memory on them by reading this section.
They have to be in the form of let bindings in expression, where bindings are names to be given to
expressions and expression is the expression that is to be evaluated that sees them. We also said
that in list comprehensions, the in part isn't needed. Well, you can use them in do blocks pretty
much like you use them in list comprehensions. Check this out:

import Data.Char

main = do

putStrLn "What's your first name?"

123

firstName <- getLine

putStrLn "What's your last name?"

lastName <- getLine

let bigFirstName = map toUpper firstName

bigLastName = map toUpper lastName

putStrLn $ "hey " ++ bigFirstName ++ " " ++

bigLastName ++ ", how are you?"

See how the I/O actions in the do block are lined up? Also notice how the let is lined up with the
I/O actions and the names of the let are lined up with each other? That's good practice, because
indentation is important inHaskell. Now, we didmap toUpper firstName, which turns something
like "John" into a much cooler string like "JOHN". We bound that uppercased string to a name
and then used it in a string later on that we printed to the terminal.

You may be wondering when to use <- and when to use let bindings? Well, remember, <- is (for
now) for performing I/O actions and binding their results to names. map toUpper firstName,
however, isn't an I/O action. It's a pure expression in Haskell. So use <- when you want to bind
results of I/O actions to names and you can use let bindings to bind pure expressions to names.
Had we done something like let firstName = getLine, we would have just called the getLine I/O
action a different name and we'd still have to run it through a <- to perform it.

Now we're going to make a program that continuously reads a line and prints out the same line
with the words reversed. The program's execution will stop when we input a blank line. This is
the program:

main = do

line <- getLine

if null line

then return ()

else do

putStrLn $ reverseWords line

main

reverseWords :: String -> String

reverseWords = unwords . map reverse . words

To get a feel of what it does, you can run it before we go over the code.

Note: Protip: To run a program you can either compile it and then run the produced executable
file by doing ghc --make helloworld and then ./helloworld or you can use the runhaskell command
like so: runhaskell helloworld.hs and your program will be executed on the fly.

First, let's take a look at the reverseWords function. It's just a normal function that takes a string
like "hey thereman" and then calls wordswith it to produce a list ofwords like ["hey","there","man"].
Then we map reverse on the list, getting ["yeh","ereht","nam"] and then we put that back into one
string by using unwords and the final result is "yeh ereht nam". See how we used function com-
position here. Without function composition, we'd have to write something like reverseWords st
= unwords (map reverse (words st)).

What about main? First, we get a line from the terminal by performing getLine call that line line.
And now, we have a conditional expression. Remember that in Haskell, every if must have a
corresponding else because every expression has to have some sort of value. We make the if so

124

that when a condition is true (in our case, the line that we entered is blank), we perform one I/O
action and when it isn't, the I/O action under the else is performed. That's why in an I/O do block,
ifs have to have a form of if condition then I/O action else I/O action.

Let's first take a look at what happens under the else clause. Because, we have to have exactly one
I/O action after the else, we use a do block to glue together two I/O actions into one. You could
also write that part out as:

else (do

putStrLn $ reverseWords line

main)

This makes it more explicit that the do block can be viewed as one I/O action, but it's uglier.
Anyway, inside the do block, we call reverseWords on the line that we got from getLine and then
print that out to the terminal. After that, we just perform main. It's called recursively and that's
okay, because main is itself an I/O action. So in a sense, we go back to the start of the program.

Now what happens when null line holds true? What's after the then is performed in that case.
If we look up, we'll see that it says then return () . If you've done imperative languages like C,
Java or Python, you're probably thinking that you know what this return does and chances are
you've already skipped this really long paragraph. Well, here's the thing: the return in Haskell is
really nothing like the return in most other languages! It has the same name, which confuses a
lot of people, but in reality it's quite different. In imperative languages, return usually ends the
execution of a method or subroutine and makes it report some sort of value to whoever called it.
In Haskell (in I/O actions specifically) , it makes an I/O action out of a pure value. If you think
about the box analogy from before, it takes a value and wraps it up in a box. The resulting I/O
action doesn't actually do anything, it just has that value encapsulated as its result. So in an I/O
context, return "haha" will have a type of IO String. What's the point of just transforming a pure
value into an I/O action that doesn't do anything? Why taint our program with IO more than it
has to be? Well, we needed some I/O action to carry out in the case of an empty input line. That's
why we just made a bogus I/O action that doesn't do anything by writing return ().

Using return doesn't cause the I/Odo block to end in execution or anything like that. For instance,
this program will quite happily carry out all the way to the last line:

main = do

return ()

return "HAHAHA"

line <- getLine

return "BLAH BLAH BLAH"

return 4

putStrLn line

All these returns do is that they make I/O actions that don't really do anything except have an
encapsulated result and that result is thrown away because it isn't bound to a name. We can use
return in combination with <- to bind stuff to names.

main = do

a <- return "hell"

b <- return "yeah!"

putStrLn $ a ++ " " ++ b

125

So you see, return is sort of the opposite to <-. While return takes a value and wraps it up in a
box, <- takes a box (and performs it) and takes the value out of it, binding it to a name. But doing
this is kind of redundant, especially since you can use let bindings in do blocks to bind to names,
like so:

main = do

let a = "hell"

b = "yeah"

putStrLn $ a ++ " " ++ b

When dealing with I/O do blocks, we mostly use return either because we need to create an I/O
action that doesn't do anything or because we don't want the I/O action that's made up from a do
block to have the result value of its last action, but we want it to have a different result value, so
we use return to make an I/O action that always has our desired result contained and we put it at
the end.

Note: A do block can also have just one I/O action. In that case, it's the same as just writing the
I/O action. Some people would prefer writing then do return () in this case because the else also
has a do.

Before we move on to files, let's take a look at some functions that are useful when dealing with
I/O.

putStr is much like putStrLn in that it takes a string as a parameter and returns an I/O action that
will print that string to the terminal, only putStr doesn't jump into a new line after printing out
the string while putStrLn does.

main = do putStr "Hey, "

putStr "I'm "

putStrLn "Andy!"

$ runhaskell putstr_test.hs

Hey, I'm Andy!

Its type signature is putStr : : String -> IO (), so the result encapsulated within the resulting I/O
action is the unit. A dud value, so it doesn't make sense to bind it.

putChar takes a character and returns an I/O action that will print it out to the terminal.

main = do putChar 't'

putChar 'e'

putChar 'h'

$ runhaskell putchar_test.hs

teh

putStr is actually defined recursively with the help of putChar. The edge condition of putStr is the
empty string, so if we're printing an empty string, just return an I/O action that does nothing by
using return (). If it's not empty, then print the first character of the string by doing putChar and
then print of them using putStr.

putStr :: String -> IO ()

putStr [] = return ()

putStr (x:xs) = do

126

putChar x

putStr xs

See how we can use recursion in I/O, just like we can use it in pure code. Just like in pure code,
we define the edge case and then think what the result actually is. It's an action that first outputs
the first character and then outputs the rest of the string.

print takes a value of any type that's an instance of Show (meaning that we know how to represent
it as a string), calls show with that value to stringify it and then outputs that string to the terminal.
Basically, it's just putStrLn . show. It first runs show on a value and then feeds that to putStrLn,
which returns an I/O action that will print out our value.

main = do print True

print 2

print "haha"

print 3.2

print [3,4,3]

$ runhaskell print_test.hs

True

2

"haha"

3.2

[3,4,3]

As you can see, it's a very handy function. Remember how we talked about how I/O actions are
performed only when they fall into main or when we try to evaluate them in the GHCI prompt?
When we type out a value (like 3 or [1,2,3]) and press the return key, GHCI actually uses print on
that value to display it on our terminal!

ghci> 3

3

ghci> print 3

3

ghci> map (++"!") ["hey","ho","woo"]

["hey!","ho!","woo!"]

ghci> print (map (++"!") ["hey","ho","woo"])

["hey!","ho!","woo!"]

When we want to print out strings, we usually use putStrLn because we don't want the quotes
around them, but for printing out values of other types to the terminal, print is used the most.

getChar is an I/O action that reads a character from the input. Thus, its type signature is getChar ::
IO Char, because the result contained within the I/O action is a Char. Note that due to buffering,
reading of the characters won't actually happen until the user mashes the return key.

main = do

c <- getChar

if c /= ' '

then do

putChar c

main

else return ()

127

This program looks like it should read a character and then check if it's a space. If it is, halt
execution and if it isn't, print it to the terminal and then do the same thing all over again. Well, it
kind of does, only not in the way you might expect. Check this out:

$ runhaskell getchar_test.hs

hello sir

hello

The second line is the input. We input hello sir and then press return. Due to buffering, the
execution of the program will begin only when after we've hit return and not after every inputted
character. But once we press return, it acts on what we've been putting in so far. Try playing with
this program to get a feel for it!

The when function is found in Control.Monad (to get access to it, do import Control.Monad). It's
interesting because in a do block it looks like a control flow statement, but it's actually a normal
function. It takes a boolean value and an I/O action if that boolean value is True, it returns the
same I/O action that we supplied to it. However, if it's False, it returns the return (), action, so an
I/O action that doesn't do anything. Here's how we could rewrite the previous piece of code with
which we demonstrated getChar by using when:

import Control.Monad

main = do

c <- getChar

when (c /= ' ') $ do

putChar c

main

So as you can see, it's useful for encapsulating the if something then do some I/O action else return
() pattern.

sequence takes a list of I/O actions and returns an I/O actions that will perform those actions one
after the other. The result contained in that I/O action will be a list of the results of all the I/O
actions that were performed. Its type signature is sequence :: [IO a] -> IO [a]. Doing this:

main = do

a <- getLine

b <- getLine

c <- getLine

print [a,b,c]

Is exactly the same as doing this:.

main = do

rs <- sequence [getLine, getLine, getLine]

print rs

So sequence [getLine, getLine, getLine]makes an I/O action that will perform getLine three times.
If we bind that action to a name, the result is a list of all the results, so in our case, a list of three
things that the user entered at the prompt.

A common pattern with sequence is when we map functions like print or putStrLn over lists.
Doing map print [1,2,3,4] won't create an I/O action. It will create a list of I/O actions, because

128

that's like writing [print 1, print 2, print 3, print 4]. If we want to transform that list of I/O actions
into an I/O action, we have to sequence it.

ghci> sequence (map print [1,2,3,4,5])

1

2

3

4

5

[(),(),(),(),()]

What's with the [(),() ,() ,() ,()] at the end? Well, when we evaluate an I/O action in GHCI, it's
performed and then its result is printed out, unless that result is (), in which case it's not printed
out. That's why evaluating putStrLn "hehe" in GHCI just prints out hehe (because the contained
result in putStrLn "hehe" is ()). But when we do getLine in GHCI, the result of that I/O action is
printed out, because getLine has a type of IO String.

Because mapping a function that returns an I/O action over a list and then sequencing it is so
common, the utility functions mapM and mapM_ were introduced. mapM takes a function and
a list, maps the function over the list and then sequences it. mapM_ does the same, only it throws
away the result later. We usually use mapM_ when we don't care what result our sequenced I/O
actions have.

ghci> mapM print [1,2,3]

1

2

3

[(),(),()]

ghci> mapM_ print [1,2,3]

1

2

3

forever takes an I/O action and returns an I/O action that just repeats the I/O action it got forever.
It's located in Control.Monad. This little programwill indefinitely ask the user for some input and
spit it back to him, CAPSLOCKED:

import Control.Monad

import Data.Char

main = forever $ do

putStr "Give me some input: "

l <- getLine

putStrLn $ map toUpper l

forM (located in Control.Monad) is like mapM, only that it has its parameters switched around.
The first parameter is the list and the second one is the function to map over that list, which is
then sequenced. Why is that useful? Well, with some creative use of lambdas and do notation,
we can do stuff like this:

129

import Control.Monad

main = do

colors <- forM [1,2,3,4] (\a -> do

putStrLn $ "Which color do you associate with the number " ++ show a ++ "?"

color <- getLine

return color)

putStrLn "The colors that you associate with 1, 2, 3 and 4 are: "

mapM putStrLn colors

The (\a -> do ...) is a function that takes a number and returns an I/O action. We have to surround
it with parentheses, otherwise the lambda thinks the last two I/O actions belong to it. Notice that
we do return color in the inside do block. We do that so that the I/O action which the do block
defines has the result of our color contained within it. We actually didn't have to do that, because
getLine already has that contained within it. Doing color <- getLine and then return color is just
unpacking the result from getLine and then repackaging it again, so it's the same as just doing
getLine. The forM (called with its two parameters) produces an I/O action, whose result we bind
to colors. colors is just a normal list that holds strings. At the end, we print out all those colors
by doing mapM putStrLn colors.

You can think of forM as meaning: make an I/O action for every element in this list. What each
I/O action will do can depend on the element that was used to make the action. Finally, perform
those actions and bind their results to something. We don't have to bind it, we can also just throw
it away.

$ runhaskell form_test.hs

Which color do you associate with the number 1?

white

Which color do you associate with the number 2?

blue

Which color do you associate with the number 3?

red

Which color do you associate with the number 4?

orange

The colors that you associate with 1, 2, 3 and 4 are:

white

blue

red

orange

We could have actually done that without forM, only with forM it's more readable. Normally we
write forMwhenwewant tomap and sequence some actions thatwe define there on the spot using
do notation. In the same vein, we could have replaced the last line with forM colors putStrLn.

In this section, we learned the basics of input and output. We also found out what I/O actions are,
how they enable us to do input and output and when they are actually performed. To reiterate,
I/O actions are values much like any other value in Haskell. We can pass them as parameters to
functions and functions can return I/O actions as results. What's special about them is that if they
fall into the main function (or are the result in a GHCI line), they are performed. And that's when
they get to write stuff on your screen or play Yakety Sax through your speakers. Each I/O action
can also encapsulate a result with which it tells you what it got from the real world.

130

Don't think of a function like putStrLn as a function that takes a string and prints it to the screen.
Think of it as a function that takes a string and returns an I/O action. That I/O action will, when
performed, print beautiful poetry to your terminal.

9.2 Files and streams

getChar is an I/O action that reads a sin-
gle character from the terminal. getLine is
an I/O action that reads a line from the ter-
minal. These two are pretty straightforward
and most programming languages have some
functions or statements that are parallel to
them. But now, let's meet getContents. get-
Contents is an I/O action that reads every-
thing from the standard input until it encoun-
ters an end-of-file character. Its type is get-
Contents :: IO String. What's cool about get-
Contents is that it does lazy I/O. When we do
foo <- getContents, it doesn't read all of the in-
put at once, store it in memory and then bind it to foo. No, it's lazy! It'll say: "Yeah yeah, I'll read
the input from the terminal later as we go along, when you really need it!".

getContents is really useful when we're piping the output from one program into the input of our
program. In case you don't know how piping works in unix-y systems, here's a quick primer. Let's
make a text file that contains the following little haiku:

I'm a lil' teapot

What's with that airplane food, huh?

It's so small, tasteless

Yeah, the haiku sucks, what of it? If anyone knows of any good haiku tutorials, let me know.

Now, recall the little program we wrote when we were introducing the forever function. It
prompted the user for a line, returned it to him in CAPSLOCK and then did that all over again,
indefinitely. Just so you don't have to scroll all the way back, here it is again:

import Control.Monad

import Data.Char

main = forever $ do

putStr "Give me some input: "

l <- getLine

putStrLn $ map toUpper l

We'll save that program as capslocker.hs or something and compile it. And then, we're going to
use a unix pipe to feed our text file directly to our little program. We're going to use the help
of the GNU cat program, which prints out a file that's given to it as an argument. Check it out,
booyaka!

131

$ ghc --make capslocker

[1 of 1] Compiling Main (capslocker.hs, capslocker.o)

Linking capslocker ...

$ cat haiku.txt

I'm a lil' teapot

What's with that airplane food, huh?

It's so small, tasteless

$ cat haiku.txt | ./capslocker

I'M A LIL' TEAPOT

WHAT'S WITH THAT AIRPLANE FOOD, HUH?

IT'S SO SMALL, TASTELESS

capslocker <stdin>: hGetLine: end of file

As you can see, piping the output of one program (in our case that was cat) to the input of another
(capslocker) is done with the | character. What we've done is pretty much equivalent to just
running capslocker, typing our haiku at the terminal and then issuing an end-of-file character
(that's usually done by pressing Ctrl-D). It's like running cat haiku.txt and saying:“Wait, don't
print this out to the terminal, tell it to capslocker instead!”.

So what we're essentially doing with that use of forever is taking the input and transforming it into
some output. That's why we can use getContents to make our program even shorter and better:

import Data.Char

main = do

contents <- getContents

putStr (map toUpper contents)

We run the getContents I/O action and name the string it produces contents. Then, we map
toUpper over that string and print that to the terminal. Keep in mind that because strings are
basically lists, which are lazy, and getContents is I/O lazy, it won't try to read the whole content
at once and store it into memory before printing out the capslocked version. Rather, it will print
out the capslocked version as it reads it, because it will only read a line from the input when it
really needs to.

$ cat haiku.txt | ./capslocker

I'M A LIL' TEAPOT

WHAT'S WITH THAT AIRPLANE FOOD, HUH?

IT'S SO SMALL, TASTELESS

Cool, it works. What if we just run capslocker and try to type in the lines ourselves?

$./capslocker

hey ho

HEY HO

lets go

LETS GO

We got out of that by pressing Ctrl-D. Pretty nice! As you can see, it prints out our capslocked
input back to us line by line. When the result of getContents is bound to contents, it's not repre-
sented inmemory as a real string, butmore like a promise that it will produce the string eventually.

132

When we map toUpper over contents, that's also a promise to map that function over the even-
tual contents. And finally when putStr happens, it says to the previous promise: "Hey, I need a
capslocked line!". It doesn't have any lines yet, so it says to contents: "Hey, how about actually get-
ting a line from the terminal?". So that's when getContents actually reads from the terminal and
gives a line to the code that asked it to produce something tangible. That code thenmaps toUpper
over that line and gives it to putStr, which prints it. And then, putStr says: "Hey, I need the next
line, come on!" and this repeats until there's no more input, which is signified by an end-of-file
character.

Let's make program that takes some input and prints out only those lines that are shorter than 10
characters. Observe:

main = do

contents <- getContents

putStr (shortLinesOnly contents)

shortLinesOnly :: String -> String

shortLinesOnly input =

let allLines = lines input

shortLines = filter (\line -> length line < 10) allLines

result = unlines shortLines

in result

We've made our I/O part of the program as short as possible. Because our program is supposed
to take some input and print out some output based on the input, we can implement it by reading
the input contents, running a function on them and then printing out what the function gave
back.

The shortLinesOnly functionworks like this: it takes a string, like "short\nlooooooooooooooong
\nshort again". That string has three lines, two of them are short and the middle one is long. It
runs the lines function on that string, which converts it to ["short", "looooooooooooooong", "short
again"], whichwe then bind to the name allLines. That list of string is then filtered so that only those
lines that are shorter than 10 characters remain in the list, producing ["short", "short again"]. And
finally, unlines joins that list into a single newline delimited string, giving "short \nshort again".
Let's give it a go.

i'm short

so am i

i am a loooooooooong line!!!

yeah i'm long so what hahahaha!!!!!!

short line

loooooooooooooooooooooooooooong

short

$ ghc --make shortlinesonly

[1 of 1] Compiling Main (shortlinesonly.hs, shortlinesonly.o)

Linking shortlinesonly ...

$ cat shortlines.txt | ./shortlinesonly

i'm short

so am i

short

133

We pipe the contents of shortlines.txt into the output of shortlinesonly and as the output, we only
get the short lines.

This pattern of getting some string from the input, transforming it with a function and then out-
putting that is so common that there exists a functionwhichmakes that even easier, called interact.
interact takes a function of type String -> String as a parameter and returns an I/O action that will
take some input, run that function on it and then print out the function's result. Let's modify our
program to use that.

main = interact shortLinesOnly

shortLinesOnly :: String -> String

shortLinesOnly input =

let allLines = lines input

shortLines = filter (\line -> length line < 10) allLines

result = unlines shortLines

in result

Just to show that this can be achieved in much less code (even though it will be less readable) and
to demonstrate our function composition skill, we're going to rework that a bit further.

main = interact $ unlines . filter ((<10) . length) . lines

Wow, we actually reduced that to just one line, which is pretty cool!

interact can be used to make programs that are piped some contents into them and then dump
some result out or it can be used to make programs that appear to take a line of input from the
user, give back some result based on that line and then take another line and so on. There isn't
actually a real distinction between the two, it just depends on how the user is supposed to use
them.

Let's make a program that continuously reads a line and then tells us if the line is a palindrome
or not. We could just use getLine to read a line, tell the user if it's a palindrome and then run
main all over again. But it's simpler if we use interact. When using interact, think about what you
need to do to transform some input into the desired output. In our case, we have to replace each
line of the input with either "palindrome" or "not a palindrome". So we have to write a function
that transforms something like "elephant\nABCBA\nwhatever" into "not a palindrome\npalin-
drome\nnot a palindrome". Let's do this!

respondPalindromes contents = unlines (map (

\xs -> if isPalindrome xs then "palindrome" else

"not a palindrome") (lines contents))

where isPalindrome xs = xs == reverse xs

Let's write this in point-free.

respondPalindromes = unlines . map (\xs -> if isPalindrome

xs then "palindrome" else "not a palindrome") . lines

where isPalindrome xs = xs == reverse xs

Pretty straightforward. First it turns something like "elephant\nABCBA\nwhatever" into ["ele-
phant", "ABCBA", "whatever"] and then it maps that lambda over it, giving ["not a palindrome",

134

"palindrome", "not a palindrome"] and then unlines joins that list into a single, newline delimited
string. Now we can do

main = interact respondPalindromes

Let's test this out:

$ runhaskell palindromes.hs

hehe

not a palindrome

ABCBA

palindrome

cookie

not a palindrome

Even though we made a program that transforms one big string of input into another, it acts like
we made a program that does it line by line. That's because Haskell is lazy and it wants to print
the first line of the result string, but it can't because it doesn't have the first line of the input yet.
So as soon as we give it the first line of input, it prints the first line of the output. We get out of
the program by issuing an end-of-line character.

We can also use this program by just piping a file into it. Let's say we have this file:

dogaroo

radar

rotor

madam

and we save it as words.txt. This is what we get by piping it into our program:

$ cat words.txt | runhaskell palindromes.hs

not a palindrome

palindrome

palindrome

palindrome

Again, we get the same output as if we had run our program and put in the words ourselves at the
standard input. We just don't see the input that palindromes.hs because the input came from the
file and not from us typing the words in.

So now you probably see how lazy I/O works and how we can use it to our advantage. You can
just think in terms of what the output is supposed to be for some given input and write a function
to do that transformation. In lazy I/O, nothing is eaten from the input until it absolutely has to
be because what we want to print right now depends on that input.

So far, we've worked with I/O by printing out stuff to the terminal and reading from it. But what
about reading and writing files? Well, in a way, we've already been doing that. One way to think
about reading from the terminal is to imagine that it's like reading from a (somewhat special)
file. Same goes for writing to the terminal, it's kind of like writing to a file. We can call these two
files stdout and stdin, meaning standard output and standard input, respectively. Keeping that
in mind, we'll see that writing to and reading from files is very much like writing to the standard
output and reading from the standard input.

135

We'll start off with a really simple program that opens a file called girlfriend.txt, which contains
a verse from Avril Lavigne's #1 hit Girlfriend, and just prints out out to the terminal. Here's
girlfriend.txt:

Hey! Hey! You! You!

I don't like your girlfriend!

No way! No way!

I think you need a new one!

And here's our program:

import System.IO

main = do

handle <- openFile "girlfriend.txt" ReadMode

contents <- hGetContents handle

putStr contents

hClose handle

Running it, we get the expected result:

$ runhaskell girlfriend.hs

Hey! Hey! You! You!

I don't like your girlfriend!

No way! No way!

I think you need a new one!

Let's go over this line by line. The first line is just four exclamations, to get our attention. In
the second line, Avril tells us that she doesn't like our current romantic partner. The third line
serves to emphasize that disapproval, whereas the fourth line suggests we should seek out a new
girlfriend.

Let's also go over the program line by line! Our program is several I/O actions glued together with
a do block. In the first line of the do block, we notice a new function called openFile. This is its
type signature: openFile :: FilePath -> IOMode -> IO Handle. If you read that out loud, it states:
openFile takes a file path and an IOMode and returns an I/O action that will open a file and have
the file's associated handle encapsulated as its result.

FilePath is just a type synonym for String, simply defined as:

type FilePath = String

IOMode is a type that's defined like this:

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

136

Just like our type that represents the seven possible values for the days
of the week, this type is an enumeration that represents what we want
to do with our opened file. Very simple. Just note that this type is
IOMode andnot IOMode. IOModewould be the type of an I/O action
that has a value of some type Mode as its result, but IOMode is just a
simple enumeration.

Finally, it returns an I/O action that will open the specified file in the
specifiedmode. If we bind that action to somethingwe get aHandle. A
value of type Handle represents where our file is. We'll use that handle
so we know which file to read from. It would be stupid to read a file
but not bind that read to a handle because we wouldn't be able to do
anything with the file. So in our case, we bound the handle to handle.

In the next line, we see a function called hGetContents. It takes a Han-
dle, so it knows which file to get the contents from and returns an IO String— an I/O action that
holds as its result the contents of the file. This function is pretty much like getContents. The only
difference is that getContents will automatically read from the standard input (that is from the
terminal) , whereas hGetContents takes a file handle which tells it which file to read from. In all
other respects, they work the same. And just like getContents, hGetContents won't attempt to
read the file at once and store it in memory, but it will read it as needed. That's really cool because
we can treat contents as the whole contents of the file, but it's not really loaded in memory. So
if this were a really huge file, doing hGetContents wouldn't choke up our memory, but it would
read only what it needed to from the file, when it needed to.

Note the difference between the handle used to identify a file and the contents of the file, bound
in our program to handle and contents. The handle is just something by which we know what
our file is. If you imagine your whole file system to be a really big book and each file is a chapter
in the book, the handle is a bookmark that shows where you're currently reading (or writing) a
chapter, whereas the contents are the actual chapter.

With putStr contents we just print the contents out to the standard output and thenwe do hClose,
which takes a handle and returns an I/O action that closes the file. You have to close the file
yourself after opening it with openFile!

Another way of doing what we just did is to use the withFile function, which has a type signature
of withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a. It takes a path to a file, an IOMode
and then it takes a function that takes a handle and returns some I/O action. What it returns is an
I/O action that will open that file, do something we want with the file and then close it. The result
encapsulated in the final I/O action that's returned is the same as the result of the I/O action
that the function we give it returns. This might sound a bit complicated, but it's really simple,
especially with lambdas, here's our previous example rewritten to use withFile:

import System.IO

main = do

withFile "girlfriend.txt" ReadMode (\handle -> do

contents <- hGetContents handle

putStr contents)

As you can see, it's very similar to the previous piece of code. (\handle -> ...) is the function that
takes a handle and returns an I/O action and it's usually done like this, with a lambda. The reason

137

it has to take a function that returns an I/O action instead of just taking an I/O action to do and
then close the file is because the I/O action that we'd pass to it wouldn't know on which file to
operate. This way, withFile opens the file and then passes the handle to the function we gave it. It
gets an I/O action back from that function and then makes an I/O action that's just like it, only it
closes the file afterwards. Here's how we can make our own withFile function:

withFile' :: FilePath -> IOMode -> (Handle -> IO a) -> IO a

withFile' path mode f = do

handle <- openFile path mode

result <- f handle

hClose handle

return result

We know the result will be an I/O action so we can just start off with
a do. First we open the file and get a handle from it. Then, we apply
handle to our function to get back the I/O action that does all the work.
We bind that action to result, close the handle and then do return re-
sult. By returning the result encapsulated in the I/O action that we got
from f, we make it so that our I/O action encapsulates the same result
as the one we got from f handle. So if f handle returns an action that
will read a number of lines from the standard input and write them to
a file and have as its result encapsulated the number of lines it read, if
we used that with withFile', the resulting I/O action would also have as
its result the number of lines read.

Just like we have hGetContents that works like getContents but for a
specific file, there's also hGetLine, hPutStr, hPutStrLn, hGetChar, etc.
They work just like their counterparts without the h, only they take a
handle as a parameter and operate on that specific file instead of operating on standard input or
standard output. Example: putStrLn is a function that takes a string and returns an I/O action
that will print out that string to the terminal and a newline after it. hPutStrLn takes a handle and
a string and returns an I/O action that will write that string to the file associated with the handle
and then put a newline after it. In the same vein, hGetLine takes a handle and returns an I/O
action that reads a line from its file.

Loading files and then treating their contents as strings is so common that we have these three
nice little functions to make our work even easier:

readFile has a type signature of readFile : : FilePath -> IO String. Remember, FilePath is just a
fancy name for String. readFile takes a path to a file and returns an I/O action that will read that
file (lazily, of course) and bind its contents to something as a string. It's usually more handy than
doing openFile and binding it to a handle and then doing hGetContents. Here's how we could
have written our previous example with readFile:

import System.IO

main = do

contents <- readFile "girlfriend.txt"

putStr contents

Because we don't get a handle with which to identify our file, we can't close it manually, so Haskell
does that for us when we use readFile.

138

writeFile has a type of writeFile :: FilePath -> String -> IO (). It takes a path to a file and a string
to write to that file and returns an I/O action that will do the writing. If such a file already exists,
it will be stomped down to zero length before being written on. Here's how to turn girlfriend.txt
into a CAPSLOCKED version and write it to girlfriendcaps.txt:

import System.IO

import Data.Char

main = do

contents <- readFile "girlfriend.txt"

writeFile "girlfriendcaps.txt" (map toUpper contents)

$ runhaskell girlfriendtocaps.hs

$ cat girlfriendcaps.txt

HEY! HEY! YOU! YOU!

I DON'T LIKE YOUR GIRLFRIEND!

NO WAY! NO WAY!

I THINK YOU NEED A NEW ONE!

appendFile has a type signature that's just like writeFile, only appendFile doesn't truncate the file
to zero length if it already exists but it appends stuff to it.

Let's say we have a file todo.txt that has one task per line that we have to do. Now let's make a
program that takes a line from the standard input and adds that to our to-do list.

import System.IO

main = do

todoItem <- getLine

appendFile "todo.txt" (todoItem ++ "\n")

$ runhaskell appendtodo.hs

Iron the dishes

$ runhaskell appendtodo.hs

Dust the dog

$ runhaskell appendtodo.hs

Take salad out of the oven

$ cat todo.txt

Iron the dishes

Dust the dog

Take salad out of the oven

We needed to add the "\n" to the end of each line because getLine doesn't give us a newline
character at the end.

Ooh, onemore thing. We talked about how doing contents <- hGetContents handle doesn't cause
the whole file to be read at once and stored in-memory. It's I/O lazy, so doing this:

main = do

withFile "something.txt" ReadMode (\handle -> do

139

contents <- hGetContents handle

putStr contents)

is actually like connecting a pipe from the file to the output. Just like you can think of lists as
streams, you can also think of files as streams. This will read one line at a time and print it out
to the terminal as it goes along. So you may be asking, how wide is this pipe then? How often
will the disk be accessed? Well, for text files, the default buffering is line-buffering usually. That
means that the smallest part of the file to be read at once is one line. That's why in this case it
actually reads a line, prints it to the output, reads the next line, prints it, etc. For binary files, the
default buffering is usually block-buffering. That means that it will read the file chunk by chunk.
The chunk size is some size that your operating system thinks is cool.

You can control how exactly buffering is done by using the hSetBuffering function. It takes a
handle and a BufferMode and returns an I/O action that sets the buffering. BufferMode is a simple
enumeration data type and the possible values it can hold are: NoBuffering, LineBuffering or
BlockBuffering (Maybe Int) . The Maybe Int is for how big the chunk should be, in bytes. If it's
Nothing, then the operating system determines the chunk size. NoBuffering means that it will
be read one character at a time. NoBuffering usually sucks as a buffering mode because it has to
access the disk so much.

Here's our previous piece of code, only it doesn't read it line by line but reads the whole file in
chunks of 2048 bytes.

main = do

withFile "something.txt" ReadMode (\handle -> do

hSetBuffering handle $ BlockBuffering (Just 2048)

contents <- hGetContents handle

putStr contents)

Reading files in bigger chunks can help if we want to minimize disk access or when our file is
actually a slow network resource.

We can also use hFlush, which is a function that takes a handle and returns an I/O action that
will flush the buffer of the file associated with the handle. When we're doing line-buffering, the
buffer is flushed after every line. When we're doing block-buffering, it's after we've read a chunk.
It's also flushed after closing a handle. That means that when we've reached a newline character,
the reading (or writing) mechanism reports all the data so far. But we can use hFlush to force that
reporting of data that has been read so far. After flushing, the data is available to other programs
that are running at the same time.

Think of reading a block-buffered file like this: your toilet bowl is set to flush itself after it has
one gallon of water inside it. So you start pouring in water and once the gallon mark is reached,
that water is automatically flushed and the data in the water that you've poured in so far is read.
But you can flush the toilet manually too by pressing the button on the toilet. This makes the
toilet flush and all the water (data) inside the toilet is read. In case you haven't noticed, flushing
the toilet manually is a metaphor for hFlush. This is not a very great analogy by programming
analogy standards, but I wanted a real world object that can be flushed for the punchline.

We already made a program to add a new item to our to-do list in todo.txt, now let's make a
program to remove an item. I'll just paste the code and then we'll go over the program together
so you see that it's really easy. We'll be using a few new functions from System.Directory and one
new function from System.IO, but they'll all be explained.

140

Anyway, here's the program for removing an item from todo.txt:

import System.IO

import System.Directory

import Data.List

main = do

handle <- openFile "todo.txt" ReadMode

(tempName, tempHandle) <- openTempFile "." "temp"

contents <- hGetContents handle

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++

line) [0..] todoTasks

putStrLn "These are your TO-DO items:"

putStr $ unlines numberedTasks

putStrLn "Which one do you want to delete?"

numberString <- getLine

let number = read numberString

newTodoItems = delete (todoTasks !! number) todoTasks

hPutStr tempHandle $ unlines newTodoItems

hClose handle

hClose tempHandle

removeFile "todo.txt"

renameFile tempName "todo.txt"

At first, we just open todo.txt in read mode and bind its handle to handle.

Next up, we use a function that we haven't met before which is from System.IO—openTempFile.
Its name is pretty self-explanatory. It takes a path to a temporary directory and a template name
for a file and opens a temporary file. We used "." for the temporary directory, because . denotes the
current directory on just about any OS. We used "temp" as the template name for the temporary
file, which means that the temporary file will be named temp plus some random characters. It
returns an I/O action that makes the temporary file and the result in that I/O action is a pair of
values: the name of the temporary file and a handle. We could just open a normal file called
todo2.txt or something like that but it's better practice to use openTempFile so you know you're
probably not overwriting anything.

The reasonwe didn't use getCurrentDirectory to get the current directory and then pass it to open-
TempFile but instead just passed "." to openTempFile is because . refers to the current directory
on unix-like system and Windows

Next up, we bind the contents of todo.txt to contents. Then, split that string into a list of strings,
each string one line. So todoTasks is now something like ["Iron the dishes", "Dust the dog", "Take
salad out of the oven"] . We zip the numbers from 0 onwards and that list with a function that
takes a number, like 3, and a string, like "hey" and returns "3 - hey", so numberedTasks is ["0 -
Iron the dishes", "1 - Dust the dog" We join that list of strings into a single newline delimited
string with unlines and print that string out to the terminal. Note that instead of doing that, we
could have also done mapM putStrLn numberedTasks

We ask the user which one they want to delete and wait for them to enter a number. Let's say they
want to delete number 1, which is Dust the dog, so they punch in 1. numberString is now "1" and
because we want a number, not a string, we run read on that to get 1 and bind that to number.

141

Remember the delete and !! functions from Data.List. !! returns an element from a list with some
index and delete deletes the first occurence of an element in a list and returns a new list without
that occurence. (todoTasks ! ! number) (number is now 1) returns "Dust the dog". We bind
todoTasks without the first occurence of "Dust the dog" to newTodoItems and then join that into
a single string with unlines before writing it to the temporary file that we opened. The old file is
now unchanged and the temporary file contains all the lines that the old one does, except the one
we deleted.

After that we close both the original and the temporary files and then we remove the original one
with removeFile, which, as you can see, takes a path to a file and deletes it. After deleting the old
todo.txt, we use renameFile to rename the temporary file to todo.txt. Be careful, removeFile and
renameFile (which are both in System.Directory by the way) take file paths as their parameters,
not handles.

And that's that! We could have done this in even fewer lines, but we were very careful not to
overwrite any existing files and politely asked the operating system to tell us where we can put
our temporary file. Let's give this a go!

$ runhaskell deletetodo.hs

These are your TO-DO items:

0 - Iron the dishes

1 - Dust the dog

2 - Take salad out of the oven

Which one do you want to delete?

1

$ cat todo.txt

Iron the dishes

Take salad out of the oven

$ runhaskell deletetodo.hs

These are your TO-DO items:

0 - Iron the dishes

1 - Take salad out of the oven

Which one do you want to delete?

0

$ cat todo.txt

Take salad out of the oven

9.3 Command line arguments

Dealing with command line arguments is pretty much a necessity if you
want to make a script or application that runs on a terminal. Luckily,
Haskell's standard library has a nice way of getting command line argu-
ments of a program.

In the previous section, we made one program for adding a to-do item
to our to-do list and one program for removing an item. There are two

142

problems with the approach we took. The first one is that we just hard-
coded the name of our to-do file in our code. We just decided that the file
will be named todo.txt and that the user will never have a need for managing several to-do lists.

One way to solve that is to always ask the user which file they want to use as their to-do list.
We used that approach when we wanted to know which item the user wants to delete. It works,
but it's not so good, because it requires the user to run the program, wait for the program to ask
something and then tell that to the program. That's called an interactive program and the difficult
bit with interactive command line programs is this—what if you want to automate the execution
of that program, like with a batch script? It's harder to make a batch script that interacts with a
program than a batch script that just calls one program or several of them.

That's why it's sometimes better to have the user tell the program what they want when they run
the program, instead of having the program ask the user once it's run. And what better way to
have the user tell the program what they want it to do when they run it than via command line
arguments!

The System.Environment module has two cool I/O actions. One is getArgs, which has a type of
getArgs : : IO [String] and is an I/O action that will get the arguments that the program was
run with and have as its contained result a list with the arguments. getProgName has a type of
getProgName :: IO String and is an I/O action that contains the program name.

Here's a small program that demonstrates how these two work:

import System.Environment

import Data.List

main = do

args <- getArgs

progName <- getProgName

putStrLn "The arguments are:"

mapM putStrLn args

putStrLn "The program name is:"

putStrLn progName

We bind getArgs and progName to args and progName. We say The arguments are: and then
for every argument in args, we do putStrLn. Finally, we also print out the program name. Let's
compile this as arg-test.

$./arg-test first second w00t "multi word arg"

The arguments are:

first

second

w00t

multi word arg

The program name is:

arg-test

Nice. Armed with this knowledge you could create some cool command line apps. In fact, let's
go ahead and make one. In the previous section, we made a separate program for adding tasks
and a separate program for deleting them. Now, we're going to join that into one program, what

143

it does will depend on the command line arguments. We're also going to make it so it can operate
on different files, not just todo.txt.

We'll call it simply todo and it'll be able to do (haha!) three different things:

• View tasks

• Add tasks

• Delete tasks

We're not going to concern ourselves with possible bad input too much right now.

Our program will be made so that if we want to add the task Find the magic sword of power to
the file todo.txt, we have to punch in todo add todo.txt "Find the magic sword of power" in our
terminal. To view the tasks we'll just do todo view todo.txt and to remove the task with the index
of 2, we'll do todo remove todo.txt 2.

We'll start by making a dispatch association list. It's going to be a simple association list that has
command line arguments as keys and functions as their corresponding values. All these functions
will be of type [String] -> IO(). They're going to take the argument list as a parameter and return
an I/O action that does the viewing, adding, deleting, etc.

import System.Environment

import System.Directory

import System.IO

import Data.List

dispatch :: [(String, [String] -> IO ())]

dispatch = [("add", add)

, ("view", view)

, ("remove", remove)

]

We have yet to define main, add, view and remove, so let's start with main:

main = do

(command:args) <- getArgs

let (Just action) = lookup command dispatch

action args

First, we get the arguments and bind them to (command:args) . If you remember your pattern
matching, this means that the first argument will get bound to command and the rest of themwill
get bound to args. If we call our program like todo add todo.txt "Spank the monkey", command
will be "add" and args will be ["todo.xt", "Spank the monkey"].

In the next line, we look up our command in the dispatch list. Because "add" points to add, we
get Just add as a result. We use pattern matching again to extract our function out of the Maybe.
What happens if our command isn't in the dispatch list? Well then the lookupwill returnNothing,
but we said we won't concern ourselves with failing gracefully too much, so the pattern matching
will fail and our program will throw a fit.

Finally, we call our action function with the rest of the argument list. That will return an I/O
action that either adds an item, displays a list of items or deletes an item and because that action

144

is part of the main do block, it will get performed. If we follow our concrete example so far and
our action function is add, it will get called with args (so ["todo.txt", "Spank the monkey"]) and
return an I/O action that adds Spank the monkey to todo.txt.

Great! All that's left now is to implement add, view and remove. Let's start with add:

add :: [String] -> IO ()

add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")

If we call our program like todo add todo.txt "Spank the monkey", the "add" will get bound to
command in the first pattern match in the main block, whereas ["todo.txt", "Spank the monkey"]
will get passed to the function that we get from the dispatch list. So, because we're not dealingwith
bad input right now, we just pattern match against a list with those two elements right away and
return an I/O action that appends that line to the end of the file, along with a newline character.

Next, let's implement the list viewing functionality. If we want to view the items in a file, we
do todo view todo.txt. So in the first pattern match, command will be "view" and args will be
["todo.txt"].

view :: [String] -> IO ()

view [fileName] = do

contents <- readFile fileName

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++

line) [0..] todoTasks

putStr $ unlines numberedTasks

We already did pretty much the same thing in the program that only deleted tasks when we were
displaying the tasks so that the user can choose one for deletion, only here we just display the
tasks.

And finally, we're going to implement remove. It's going to be very similar to the program that
only deleted the tasks, so if you don't understand how deleting an item here works, check out the
explanation under that program. The main difference is that we're not hardcoding todo.txt but
getting it as an argument. We're also not prompting the user for the task number to delete, we're
getting it as an argument.

remove :: [String] -> IO ()

remove [fileName, numberString] = do

handle <- openFile fileName ReadMode

(tempName, tempHandle) <- openTempFile "." "temp"

contents <- hGetContents handle

let number = read numberString

todoTasks = lines contents

newTodoItems = delete (todoTasks !! number) todoTasks

hPutStr tempHandle $ unlines newTodoItems

hClose handle

hClose tempHandle

removeFile fileName

renameFile tempName fileName

145

We opened up the file based on fileName and opened a temporary file, deleted the line with the
index that the user wants to delete, wrote that to the temporary file, removed the original file and
renamed the temporary file back to fileName.

Here's the whole program at once, in all its glory!

import System.Environment

import System.Directory

import System.IO

import Data.List

dispatch :: [(String, [String] -> IO ())]

dispatch = [("add", add)

, ("view", view)

, ("remove", remove)

]

main = do

(command:args) <- getArgs

let (Just action) = lookup command dispatch

action args

add :: [String] -> IO ()

add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")

view :: [String] -> IO ()

view [fileName] = do

contents <- readFile fileName

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++

line) [0..] todoTasks

putStr $ unlines numberedTasks

remove :: [String] -> IO ()

remove [fileName, numberString] = do

handle <- openFile fileName ReadMode

(tempName, tempHandle) <- openTempFile "." "temp"

contents <- hGetContents handle

let number = read numberString

todoTasks = lines contents

newTodoItems = delete (todoTasks !! number) todoTasks

hPutStr tempHandle $ unlines newTodoItems

hClose handle

hClose tempHandle

removeFile fileName

renameFile tempName fileName

146

To summarize our solution: we made a dispatch association that maps from
commands to functions that take some command line arguments and return
an I/O action. We see what the command is and based on that we get the
appropriate function from the dispatch list. We call that function with the
rest of the command line arguments to get back an I/O action that will do the
appropriate thing and then just perform that action!

In other languages, we might have implemented this with a big switch case
statement or whatever, but using higher order functions allows us to just tell
the dispatch list to give us the appropriate function and then tell that function
to give us an I/O action for some command line arguments.

Let's try our app out!

$./todo view todo.txt

0 - Iron the dishes

1 - Dust the dog

2 - Take salad out of the oven

$./todo add todo.txt "Pick up children from drycleaners"

$./todo view todo.txt

0 - Iron the dishes

1 - Dust the dog

2 - Take salad out of the oven

3 - Pick up children from drycleaners

$./todo remove todo.txt 2

$./todo view todo.txt

0 - Iron the dishes

1 - Dust the dog

2 - Pick up children from drycleaners

Another cool thing about this is that it's easy to add extra functionality. Just add an entry in the
dispatch association list and implement the corresponding function and you're laughing! As an
exercise, you can try implementing a bump function that will take a file and a task number and
return an I/O action that bumps that task to the top of the to-do list.

You could make this program fail a bit more gracefully in case of bad input (for example, if some-
one runs todo UP YOURS HAHAHAHA) by making an I/O action that just reports there has
been an error (say, errorExit : : IO ()) and then check for possible erronous input and if there is
erronous input, perform the error reporting I/O action. Another way is to use exceptions, which
we will meet soon.

9.4 Randomness

Many times while programming, you need to get some random data. Maybe you're making a
game where a die needs to be thrown or you need to generate some test data to test out your pro-
gram. There are a lot of uses for random data when programming. Well, actually, pseudo-ran-
dom, because we all know that the only true source of randomness is a monkey on a unicycle with

147

a cheese in one hand and its butt in the other. In this section, we'll take a look at how to make
Haskell generate seemingly random data.

In most other programming languages, you have functions that
give you back some random number. Each time you call that
function, you get back a (hopefully) different random number.
How aboutHaskell? Well, remember, Haskell is a pure functional
language. What that means is that it has referential transparency.
What THAT means is that a function, if given the same parame-
ters twice, must produce the same result twice. That's really cool
because it allows us to reason differently about programs and it
enables us to defer evaluation until we really need it. If I call a
function, I can be sure that it won't do any funny stuff before giv-
ing me the results. All that matters are its results. However, this
makes it a bit tricky for getting random numbers. If I have a func-
tion like this:

randomNumber :: (Num a) => a

randomNumber = 4

It's not very useful as a random number function because it will always return 4, even though I
can assure you that the 4 is completely random, because I used a die to determine it.

How do other languages make seemingly random numbers? Well, they take various info from
your computer, like the current time, how much and where you moved your mouse and what
kind of noises you made behind your computer and based on that, give a number that looks
really random. The combination of those factors (that randomness) is probably different in any
given moment in time, so you get a different random number.

Ah. So in Haskell, we can make a random number then if we make a function that takes as its
parameter that randomness and based on that returns some number (or other data type).

Enter the System.Random module. It has all the functions that satisfy our need for randomness.
Let's just dive into one of the functions it exports then, namely random. Here's its type: random
:: (RandomGen g, Random a) => g -> (a, g). Whoa! Some new typeclasses in this type declaration
up in here! The RandomGen typeclass is for types that can act as sources of randomness. The
Random typeclass is for things that can take on random values. A boolean value can take on a
random value, namely True or False. A number can also take up a plethora of different random
values. Can a function take on a randomvalue? I don't think so, probably not! If we try to translate
the type declaration of random to English, we get something like: it takes a random generator
(that's our source of randomness) and returns a random value and a new random generator.
Why does it also return a new generator as well as a random value? Well, we'll see in a moment.

To use our random function, we have to get our hands on one of those random generators. The
System.Random module exports a cool type, namely StdGen that is an instance of the Random-
Gen typeclass. We can either make a StdGen manually or we can tell the system to give us one
based on a multitude of sort of random stuff.

To manually make a random generator, use the mkStdGen function. It has a type of mkStdGen
:: Int -> StdGen. It takes an integer and based on that, gives us a random generator. Okay then,
let's try using random and mkStdGen in tandem to get a (hardly random) number.

148

ghci> random (mkStdGen 100)

<interactive>:1:0:

Ambiguous type variable `a' in the constraint:

`Random a' arising from a use of `random' at <interactive>:1:0-20

Probable fix: add a type signature that fixes these type variable(s)

What's this? Ah, right, the random function can return a value of any type that's part of the
Random typeclass, so we have to inform Haskell what kind of type we want. Also let's not forget
that it returns a random value and a random generator in a pair.

ghci> random (mkStdGen 100) :: (Int, StdGen)

(-1352021624,651872571 1655838864)

Finally! A number that looks kind of random! The first component of the tuple is our number
whereas the second component is a textual representation of our new random generator. What
happens if we call random with the same random generator again?

ghci> random (mkStdGen 100) :: (Int, StdGen)

(-1352021624,651872571 1655838864)

Of course. The same result for the same parameters. So let's try giving it a different random
generator as a parameter.

ghci> random (mkStdGen 949494) :: (Int, StdGen)

(539963926,466647808 1655838864)

Alright, cool, great, a different number. We can use the type annotation to get different types
back from that function.

ghci> random (mkStdGen 949488) :: (Float, StdGen)

(0.8938442,1597344447 1655838864)

ghci> random (mkStdGen 949488) :: (Bool, StdGen)

(False,1485632275 40692)

ghci> random (mkStdGen 949488) :: (Integer, StdGen)

(1691547873,1597344447 1655838864)

Let's make a function that simulates tossing a coin three times. If randomdidn't return a new gen-
erator along with a random value, we'd have to make this function take three random generators
as a parameter and then return coin tosses for each of them. But that sounds wrong because if
one generator can make a random value of type Int (which can take on a load of different values),
it should be able to make three coin tosses (which can take on precisely eight combinations). So
this is where random returning a new generator along with a value really comes in handy.

We'll represent a coin with a simple Bool. True is tails, False is heads.

threeCoins :: StdGen -> (Bool, Bool, Bool)

threeCoins gen =

let (firstCoin, newGen) = random gen

(secondCoin, newGen') = random newGen

(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

149

We call random with the generator we got as a parameter to get a coin and a new generator. Then
we call it again, only this time with our new generator, to get the second coin. We do the same for
the third coin. Had we called it with the same generator every time, all the coins would have had
the same value and we'd only be able to get (False, False, False) or (True, True, True) as a result.

ghci> threeCoins (mkStdGen 21)

(True,True,True)

ghci> threeCoins (mkStdGen 22)

(True,False,True)

ghci> threeCoins (mkStdGen 943)

(True,False,True)

ghci> threeCoins (mkStdGen 944)

(True,True,True)

Notice that we didn't have to do random gen :: (Bool, StdGen). That's because we already specified
that we want booleans in the type declaration of the function. That's why Haskell can infer that
we want a boolean value in this case.

So what if we want to flip four coins? Or five? Well, there's a function called randoms that takes
a generator and returns an infinite sequence of values based on that generator.

ghci> take 5 $ randoms (mkStdGen 11) :: [Int]

[-1807975507,545074951,-1015194702,-1622477312,-502893664]

ghci> take 5 $ randoms (mkStdGen 11) :: [Bool]

[True,True,True,True,False]

ghci> take 5 $ randoms (mkStdGen 11) :: [Float]

[7.904789e-2,0.62691015,0.26363158,0.12223756,0.38291094]

Why doesn't randoms return a new generator as well as a list? We could implement the randoms
function very easily like this:

randoms' :: (RandomGen g, Random a) => g -> [a]

randoms' gen = let (value, newGen) = random gen in value:randoms' newGen

A recursive definition. We get a random value and a new generator from the current generator
and thenmake a list that has the value as its head and randomnumbers based on the newgenerator
as its tail. Because we have to be able to potentially generate an infinite amount of numbers, we
can't give the new random generator back.

We couldmake a function that generates a finite stream of numbers and a new generator like this:

finiteRandoms :: (RandomGen g, Random a, Num n) => n -> g -> ([a], g)

finiteRandoms 0 gen = ([], gen)

finiteRandoms n gen =

let (value, newGen) = random gen

(restOfList, finalGen) = finiteRandoms (n-1) newGen

in (value:restOfList, finalGen)

Again, a recursive definition. We say that if we want 0 numbers, we just return an empty list
and the generator that was given to us. For any other number of random values, we first get one
random number and a new generator. That will be the head. Then we say that the tail will be n

150

- 1 numbers generated with the new generator. Then we return the head and the rest of the list
joined and the final generator that we got from getting the n - 1 random numbers.

What if we want a random value in some sort of range? All the random integers so far were
outrageously big or small. What if we want to to throw a die? Well, we use randomR for that
purpose. It has a type of randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g), meaning
that it's kind of like random, only it takes as its first parameter a pair of values that set the lower
and upper bounds and the final value produced will be within those bounds.

ghci> randomR (1,6) (mkStdGen 359353)

(6,1494289578 40692)

ghci> randomR (1,6) (mkStdGen 35935335)

(3,1250031057 40692)

There's also randomRs, which produces a stream of random values within our defined ranges.
Check this out:

ghci> take 10 $ randomRs ('a','z') (mkStdGen 3) :: [Char]

"ndkxbvmomg"

Nice, looks like a super secret password or something.

Youmay be asking yourself, what does this section have to do with I/O anyway? We haven't done
anything concerning I/O so far. Well, so far we've always made our random number generator
manually by making it with some arbitrary integer. The problem is, if we do that in our real
programs, they will always return the same random numbers, which is no good for us. That's
why System.Random offers the getStdGen I/O action, which has a type of IO StdGen. When your
program starts, it asks the system for a good random number generator and stores that in a so
called global generator. getStdGen fetches you that global random generator when you bind it to
something.

Here's a simple program that generates a random string.

import System.Random

main = do

gen <- getStdGen

putStr $ take 20 (randomRs ('a','z') gen)

$ runhaskell random_string.hs

pybphhzzhuepknbykxhe

$ runhaskell random_string.hs

eiqgcxykivpudlsvvjpg

$ runhaskell random_string.hs

nzdceoconysdgcyqjruo

$ runhaskell random_string.hs

bakzhnnuzrkgvesqplrx

Be careful though, just performing getStdGen twice will ask the system for the same global gen-
erator twice. If you do this:

import System.Random

151

main = do

gen <- getStdGen

putStrLn $ take 20 (randomRs ('a','z') gen)

gen2 <- getStdGen

putStr $ take 20 (randomRs ('a','z') gen2)

you will get the same string printed out twice! One way to get two different strings of length 20
is to set up an infinite stream and then take the first 20 characters and print them out in one line
and then take the second set of 20 characters and print them out in the second line. For this, we
can use the splitAt function from Data.List, which splits a list at some index and returns a tuple
that has the first part as the first component and the second part as the second component.

import System.Random

import Data.List

main = do

gen <- getStdGen

let randomChars = randomRs ('a','z') gen

(first20, rest) = splitAt 20 randomChars

(second20, _) = splitAt 20 rest

putStrLn first20

putStr second20

Another way is to use the newStdGen action, which splits our current random generator into two
generators. It updates the global random generator with one of them and encapsulates the other
as its result.

import System.Random

main = do

gen <- getStdGen

putStrLn $ take 20 (randomRs ('a','z') gen)

gen' <- newStdGen

putStr $ take 20 (randomRs ('a','z') gen')

Not only do we get a new random generator when we bind newStdGen to something, the global
one gets updated aswell, so if we do getStdGen again and bind it to something, we'll get a generator
that's not the same as gen.

Here's a little program that will make the user guess which number it's thinking of.

import System.Random

import Control.Monad(when)

main = do

gen <- getStdGen

askForNumber gen

askForNumber :: StdGen -> IO ()

askForNumber gen = do

let (randNumber, newGen) = randomR (1,10) gen :: (Int, StdGen)

152

putStr "Which number in the range from 1 to 10 am I thinking of? "

numberString <- getLine

when (not $ null numberString) $ do

let number = read numberString

if randNumber == number

then putStrLn "You are correct!"

else putStrLn $ "Sorry, it was " ++ show randNumber

askForNumber newGen

We make a function askForNumber, which takes a random number
generator and returns an I/O action that will prompt the user for a
number and tell him if he guessed it right. In that function, we first
generate a random number and a new generator based on the gener-
ator that we got as a parameter and call them randNumber and new-
Gen. Let's say that the number generatedwas 7. Thenwe tell the user to
guess which number we're thinking of. We perform getLine and bind
its result to numberString. When the user enters 7, numberString be-
comes "7". Next, we use when to check if the string the user entered is

an empty string. If it is, an empty I/O action of return () is performed, which effectively ends the
program. If it isn't, the action consisting of that do block right there gets performed. We use read
on numberString to convert it to a number, so number is now 7.

Note: Excuseme! If the user gives us some input here that read can't read (like "haha"), our program
will crash with an ugly errormessage. If you don't want your program to crash on erronous input,
use reads, which returns an empty list when it fails to read a string. When it succeeds, it returns
a singleton list with a tuple that has our desired value as one component and a string with what it
didn't consume as the other.

We check if the number that we entered is equal to the one generated randomly and give the user
the appropriate message. And then we call askForNumber recursively, only this time with the
new generator that we got, which gives us an I/O action that's just like the one we performed,
only it depends on a different generator and we perform it.

main consists of just getting a random generator from the system and calling askForNumber with
it to get the initial action.

Here's our program in action!

$ runhaskell guess_the_number.hs

Which number in the range from 1 to 10 am I thinking of? 4

Sorry, it was 3

Which number in the range from 1 to 10 am I thinking of? 10

You are correct!

Which number in the range from 1 to 10 am I thinking of? 2

Sorry, it was 4

Which number in the range from 1 to 10 am I thinking of? 5

Sorry, it was 10

Which number in the range from 1 to 10 am I thinking of?

Another way to make this same program is like this:

153

import System.Random

import Control.Monad(when)

main = do

gen <- getStdGen

let (randNumber, _) = randomR (1,10) gen :: (Int, StdGen)

putStr "Which number in the range from 1 to 10 am I thinking of? "

numberString <- getLine

when (not $ null numberString) $ do

let number = read numberString

if randNumber == number

then putStrLn "You are correct!"

else putStrLn $ "Sorry, it was " ++ show randNumber

newStdGen

main

It's very similar to the previous version, only instead of making a function that takes a generator
and then calls itself recursively with the new updated generator, we do all the work in main. After
telling the user whether they were correct in their guess or not, we update the global generator
and then call main again. Both approaches are valid but I like the first one more since it does less
stuff in main and also provides us with a function that we can reuse easily.

9.5 Bytestrings

Lists are a cool and useful data structure. So far, we've used them
pretty much everywhere. There are a multitude of functions that
operate on them and Haskell's laziness allows us to exchange the
for and while loops of other languages for filtering and mapping
over lists, because evaluation will only happen once it really needs
to, so things like infinite lists (and even infinite lists of infinite
lists!) are no problem for us. That's why lists can also be used to
represent streams, either when reading from the standard input
or when reading from files. We can just open a file and read it as a
string, even though it will only be accessed when the need arises.

However, processing files as strings has one drawback: it tends to
be slow. As you know, String is a type synonym for [Char]. Chars
don't have a fixed size, because it takes several bytes to represent
a character from, say, Unicode. Furthemore, lists are really lazy.
If you have a list like [1,2,3,4], it will be evaluated only when completely necessary. So the whole
list is sort of a promise of a list. Remember that [1,2,3,4] is syntactic sugar for 1:2:3:4:[]. When the
first element of the list is forcibly evaluated (say by printing it), the rest of the list 2:3:4:[] is still
just a promise of a list, and so on. So you can think of lists as promises that the next element will
be delivered once it really has to and along with it, the promise of the element after it. It doesn't
take a big mental leap to conclude that processing a simple list of numbers as a series of promises
might not be the most efficient thing in the world.

That overhead doesn't bother us so much most of the time, but it turns out to be a liability when
reading big files and manipulating them. That's why Haskell has bytestrings. Bytestrings are sort

154

of like lists, only each element is one byte (or 8 bits) in size. The way they handle laziness is also
different.

Bytestrings come in two flavors: strict and lazy ones. Strict bytestrings reside in Data.ByteString
and they do away with the laziness completely. There are no promises involved; a strict bytestring
represents a series of bytes in an array. You can't have things like infinite strict bytestrings. If you
evaluate the first byte of a strict bytestring, you have to evaluate it whole. The upside is that
there's less overhead because there are no thunks (the technical term for promise) involved. The
downside is that they're likely to fill your memory up faster because they're read into memory at
once.

The other variety of bytestrings resides in Data.ByteString.Lazy. They're lazy, but not quite as lazy
as lists. Like we said before, there are as many thunks in a list as there are elements. That's what
makes them kind of slow for some purposes. Lazy bytestrings take a different approach— they
are stored in chunks (not to be confused with thunks!) , each chunk has a size of 64K. So if you
evaluate a byte in a lazy bytestring (by printing it or something) , the first 64K will be evaluated.
After that, it's just a promise for the rest of the chunks. Lazy bytestrings are kind of like lists of
strict bytestrings with a size of 64K. When you process a file with lazy bytestrings, it will be read
chunk by chunk. This is cool because it won't cause the memory usage to skyrocket and the 64K
probably fits neatly into your CPU's L2 cache.

If you look through the documentation for Data.ByteString.Lazy, you'll see that it has a lot of
functions that have the same names as the ones from Data.List, only the type signatures have
ByteString instead of [a] and Word8 instead of a in them. The functions with the same names
mostly act the same as the ones that work on lists. Because the names are the same, we're going
to do a qualified import in a script and then load that script into GHCI to play with bytestrings.

import qualified Data.ByteString.Lazy as B

import qualified Data.ByteString as S

B has lazy bytestring types and functions, whereas S has strict ones. We'll mostly be using the lazy
version.

The function pack has the type signature pack :: [Word8] -> ByteString. What that means is that
it takes a list of bytes of type Word8 and returns a ByteString. You can think of it as taking a list,
which is lazy, and making it less lazy, so that it's lazy only at 64K intervals.

What's the deal with that Word8 type? Well, it's like Int, only that it has a much smaller range,
namely 0-255. It represents an 8-bit number. And just like Int, it's in the Num typeclass. For
instance, we know that the value 5 is polymorphic in that it can act like any numeral type. Well,
it can also take the type of Word8.

ghci> B.pack [99,97,110]

Chunk "can" Empty

ghci> B.pack [98..120]

Chunk "bcdefghijklmnopqrstuvwx" Empty

As you can see, you usually don't have to worry about the Word8 too much, because the type
system can makes the numbers choose that type. If you try to use a big number, like 336 as a
Word8, it will just wrap around to 80.

We packed only a handful of values into a ByteString, so they fit inside one chunk. The Empty is
like the [] for lists.

155

unpack is the inverse function of pack. It takes a bytestring and turns it into a list of bytes.

fromChunks takes a list of strict bytestrings and converts it to a lazy bytestring. toChunks takes
a lazy bytestring and converts it to a list of strict ones.

ghci> B.fromChunks [S.pack [40,41,42], S.pack [43,44,45], S.pack [46,47,48]]

Chunk "()*" (Chunk "+,-" (Chunk "./0" Empty))

This is good if you have a lot of small strict bytestrings and you want to process them efficiently
without joining them into one big strict bytestring in memory first.

The bytestring version of : is called cons It takes a byte and a bytestring and puts the byte at the
beginning. It's lazy though, so it will make a new chunk even if the first chunk in the bytestring
isn't full. That's why it's better to use the strict version of cons, cons' if you're going to be inserting
a lot of bytes at the beginning of a bytestring.

ghci> B.cons 85 $ B.pack [80,81,82,84]

Chunk "U" (Chunk "PQRT" Empty)

ghci> B.cons' 85 $ B.pack [80,81,82,84]

Chunk "UPQRT" Empty

ghci> foldr B.cons B.empty [50..60]

Chunk "2" (Chunk "3" (Chunk "4" (Chunk "5" (Chunk "6" (Chunk "7"

(Chunk "8" (Chunk "9" (Chunk ":" (Chunk ";" (Chunk "<"Empty))))))))))

ghci> foldr B.cons' B.empty [50..60]

Chunk "23456789:;<" Empty

As you can see empty makes an empty bytestring. See the difference between cons and cons'?
With the foldr, we started with an empty bytestring and then went over the list of numbers from
the right, adding each number to the beginning of the bytestring. When we used cons, we ended
up with one chunk for every byte, which kind of defeats the purpose.

Otherwise, the bytestring modules have a load of functions that are analogous to those in
Data.List, including, but not limited to, head, tail, init, null, length, map, reverse, foldl, foldr,
concat, takeWhile, filter, etc.

It also has functions that have the same name and behave the same as some functions found in
System.IO, only Strings are replaced with ByteStrings. For instance, the readFile function in Sys-
tem.IO has a type of readFile :: FilePath -> IO String, while the readFile from the bytestring mod-
ules has a type of readFile :: FilePath -> IO ByteString. Watch out, if you're using strict bytestrings
and you attempt to read a file, it will read it into memory at once! With lazy bytestrings, it will
read it into neat chunks.

Let's make a simple program that takes two filenames as command-line arguments and copies the
first file into the second file. Note that System.Directory already has a function called copyFile,
but we're going to implement our own file copying function and program anyway.

import System.Environment

import qualified Data.ByteString.Lazy as B

main = do

(fileName1:fileName2:_) <- getArgs

copyFile fileName1 fileName2

156

copyFile :: FilePath -> FilePath -> IO ()

copyFile source dest = do

contents <- B.readFile source

B.writeFile dest contents

We make our own function that takes two FilePaths (remember, FilePath is just a synonym for
String) and returns an I/O action that will copy one file into another using bytestring. In themain
function, we just get the arguments and call our function with them to get the I/O action, which
is then performed.

$ runhaskell bytestringcopy.hs something.txt ../../something.txt

Notice that a program that doesn't use bytestrings could look just like this, the only difference
is that we used B.readFile and B.writeFile instead of readFile and writeFile. Many times, you
can convert a program that uses normal strings to a program that uses bytestrings by just doing
the necessary imports and then putting the qualified module names in front of some functions.
Sometimes, you have to convert functions that you wrote to work on strings so that they work on
bytestrings, but that's not hard.

Whenever you need better performance in a program that reads a lot of data into strings, give
bytestrings a try, chances are you'll get some good performance boosts with very little effort
on your part. I usually write programs by using normal strings and then convert them to use
bytestrings if the performance is not satisfactory.

9.6 Exceptions

All languages have procedures, functions, and pieces of code that
might fail in some way. That's just a fact of life. Different lan-
guages have different ways of handling those failures. In C, we
usually use some abnormal return value (like -1 or a null pointer)
to indicate that what a function returned shouldn't be treated like
a normal value. Java and C#, on the other hand, tend to use ex-
ceptions to handle failure. When an exception is thrown, the con-
trol flow jumps to some code that we've defined that does some
cleanup and then maybe re-throws the exception so that some
other error handling code can take care of some other stuff.

Haskell has a very good type system. Algebraic data types allow
for types like Maybe and Either and we can use values of those
types to represent results thatmay be there or not. InC, returning,
say, -1 on failure is completely a matter of convention. It only has

special meaning to humans. If we're not careful, wemight treat these abnormal values as ordinary
ones and then they can cause havoc and dismay in our code. Haskell's type system gives us some
much-needed safety in that aspect. A function a ->Maybe b clearly indicates that it itmay produce
a b wrapped in Just or that it may return Nothing. The type is different from just plain a -> b and
if we try to use those two functions interchangeably, the compiler will complain at us.

Despite having expressive types that support failed computations, Haskell still has support for
exceptions, because they make more sense in I/O contexts. A lot of things can go wrong when
dealing with the outside world because it is so unreliable. For instance, when opening a file, a

157

bunch of things can go wrong. The file might be locked, it might not be there at all or the hard
disk drive or something might not be there at all. So it's good to be able to jump to some error
handling part of our code when such an error occurs.

Okay, so I/O code (i.e. impure code) can throw exceptions. It makes sense. But what about pure
code? Well, it can throw exceptions too. Think about the div and head functions. They have types
of (Integral a) => a -> a -> a and [a] -> a, respectively. No Maybe or Either in their return type
and yet they can both fail! div explodes in your face if you try to divide by zero and head throws
a tantrum when you give it an empty list.

ghci> 4 `div` 0

*** Exception: divide by zero

ghci> head []

*** Exception: Prelude.head: empty list

Pure code can throw exceptions, but it they can only be caught in the
I/O part of our code (when we're inside a do block that goes intomain).
That's because you don't know when (or if) anything will be evaluated
in pure code, because it is lazy and doesn't have a well-defined order
of execution, whereas I/O code does.

Earlier, we talked about how we should spend as little time as possible
in the I/O part of our program. The logic of our program should reside
mostly within our pure functions, because their results are dependant
only on the parameters that the functions are called with. When deal-
ing with pure functions, you only have to think about what a function
returns, because it can't do anything else. This makes your life easier.
Even though doing some logic in I/O is necessary (like opening files
and the like) , it should preferably be kept to a minimum. Pure func-

tions are lazy by default, which means that we don't know when they will be evaluated and that it
really shouldn't matter. However, once pure functions start throwing exceptions, it matters when
they are evaluated. That's why we can only catch exceptions thrown from pure functions in the
I/O part of our code. And that's bad, because we want to keep the I/O part as small as possible.
However, if we don't catch them in the I/O part of our code, our program crashes. The solution?
Don't mix exceptions and pure code. Take advantage of Haskell's powerful type system and use
types like Either and Maybe to represent results that may have failed.

That's why we'll just be looking at how to use I/O exceptions for now. I/O exceptions are excep-
tions that are caused when something goes wrong while we are communicating with the outside
world in an I/O action that's part of main. For example, we can try opening a file and then it
turns out that the file has been deleted or something. Take a look at this program that opens a file
whose name is given to it as a command line argument and tells us how many lines the file has.

import System.Environment

import System.IO

main = do (fileName:_) <- getArgs

contents <- readFile fileName

putStrLn $ "The file has " ++ show (length (lines contents)) ++ " lines!"

A very simple program. We perform the getArgs I/O action and bind the first string in the list
that it yields to fileName. Then we call the contents of the file with that name contents. Lastly, we

158

apply lines to those contents to get a list of lines and then we get the length of that list and give
it to show to get a string representation of that number. It works as expected, but what happens
when we give it the name of a file that doesn't exist?

$ runhaskell linecount.hs i_dont_exist.txt

linecount.hs: i_dont_exist.txt: openFile: does not exist (No such file or directory) Aha, we get an
error from GHC, telling us that the file does not exist. Our program crashes. What if we wanted
to print out a nicer message if the file doesn't exist? One way to do that is to check if the file exists
before trying to open it by using the doesFileExist function from System.Directory.

import System.Environment

import System.IO

import System.Directory

main = do (fileName:_) <- getArgs

fileExists <- doesFileExist fileName

if fileExists

then do contents <- readFile fileName

putStrLn $ "The file has " ++ show (length (lines contents)) ++ " lines!"

else do putStrLn "The file doesn't exist!"

We did fileExists <- doesFileExist fileName because doesFileExist has a type of doesFileExist : :
FilePath -> IO Bool, which means that it returns an I/O action that has as its result a boolean
value which tells us if the file exists. We can't just use doesFileExist in an if expression directly.

Another solution here would be to use exceptions. It's perfectly acceptable to use them in this
context. A file not existing is an exception that arises from I/O, so catching it in I/O is fine and
dandy.

To deal with this by using exceptions, we're going to take advantage of the catch function from
System.IO.Error. Its type is catch : : IO a -> (IOError -> IO a) -> IO a. It takes two parameters.
The first one is an I/O action. For instance, it could be an I/O action that tries to open a file. The
second one is the so-called handler. If the first I/O action passed to catch throws an I/O exception,
that exception gets passed to the handler, which then decides what to do. So the final result is an
I/O action that will either act the same as the first parameter or it will do what the handler tells it
if the first I/O action throws an exception.

If you're familiar with try-catch blocks in languages like Java
or Python, the catch function is similar to them. The first
parameter is the thing to try, kind of like the stuff in the try
block in other, imperative languages. The second parameter
is the handler that takes an exception, just like most catch
blocks take exceptions that you can then examine to see what
happened. The handler is invoked if an exception is thrown.

The handler takes a value of type IOError, which is a value
that signifies that an I/O exception occurred. It also car-
ries information regarding the type of the exception that was
thrown. How this type is implemented depends on the implementation of the language itself,
which means that we can't inspect values of the type IOError by pattern matching against them,

159

just like we can't patternmatch against values of type IO something. We can use a bunch of useful
predicates to find out stuff about values of type IOError as we'll learn in a second.

So let's put our new friend catch to use!

import System.Environment

import System.IO

import System.IO.Error

main = toTry `catch` handler

toTry :: IO ()

toTry = do (fileName:_) <- getArgs

contents <- readFile fileName

putStrLn $ "The file has " ++ show (length (lines contents)) ++ " lines!"

handler :: IOError -> IO ()

handler e = putStrLn "Whoops, had some trouble!"

First of all, you'll see that put backticks around it so that we can use it as an infix function, because
it takes two parameters. Using it as an infix function makes it more readable. So toTry `catch`
handler is the same as catch toTry handler, which fits well with its type. toTry is the I/O action
that we try to carry out and handler is the function that takes an IOError and returns an action
to be carried out in case of an exception.

Let's give this a go:

$ runhaskell count_lines.hs i_exist.txt

The file has 3 lines!

$ runhaskell count_lines.hs i_dont_exist.txt

Whoops, had some trouble!

In the handler, we didn't check to see what kind of IOError we got. We just say "Whoops, had
some trouble!" for any kind of error. Just catching all types of exceptions in one handler is bad
practice in Haskell just like it is in most other languages. What if some other exception happens
that we don't want to catch, like us interrupting the program or something? That's why we're
going to do the same thing that's usually done in other languages as well: we'll check to see what
kind of exception we got. If it's the kind of exception we're waiting to catch, we do our stuff. If
it's not, we throw that exception back into the wild. Let's modify our program to catch only the
exceptions caused by a file not existing.

import System.Environment

import System.IO

import System.IO.Error

main = toTry `catch` handler

toTry :: IO ()

toTry = do (fileName:_) <- getArgs

contents <- readFile fileName

160

putStrLn $ "The file has " ++ show (length (lines contents)) ++ " lines!"

handler :: IOError -> IO ()

handler e

| isDoesNotExistError e = putStrLn "The file doesn't exist!"

| otherwise = ioError e

Everything stays the same except the handler, which we modified to only catch a certain group of
I/O exceptions. Here we used two new functions from System.IO.Error— isDoesNotExistError
and ioError. isDoesNotExistError is a predicate over IOErrors, which means that it's a function
that takes an IOError and returns a True or False, meaning it has a type of isDoesNotExistError ::
IOError -> Bool. We use it on the exception that gets passed to our handler to see if it's an error
caused by a file not existing. We use guard syntax here, but we could have also used an if else.
If it's not caused by a file not existing, we re-throw the exception that was passed by the handler
with the ioError function. It has a type of ioError :: IOException -> IO a, so it takes an IOError
and produces an I/O action that will throw it. The I/O action has a type of IO a, because it never
actually yields a result, so it can act as IO anything.

So the exception thrown in the toTry I/O action that we glued together with a do block isn't caused
by a file existing, toTry `catch` handler will catch that and then re-throw it. Pretty cool, huh?

There are several predicates that act on IOError and if a guard doesn't evaluate to True, evaluation
falls through to the next guard. The predicates that act on IOError are:

• isAlreadyExistsError

• isDoesNotExistError

• isAlreadyInUseError

• isFullError

• isEOFError

• isIllegalOperation

• isPermissionError

• isUserError

Most of these are pretty self-explanatory. isUserError evaluates to True when we use the func-
tion userError to make the exception, which is used for making exceptions from our code and
equipping them with a string. For instance, you can do ioError $ userError "remote computer
unplugged!", although It's prefered you use types like Either andMaybe to express possible failure
instead of throwing exceptions yourself with userError.

So you could have a handler that looks something like this:

handler :: IOError -> IO ()

handler e

| isDoesNotExistError e = putStrLn "The file doesn't exist!"

| isFullError e = freeSomeSpace

| isIllegalOperation e = notifyCops

| otherwise = ioError e

161

Where notifyCops and freeSomeSpace are some I/O actions that you define. Be sure to re-throw
exceptions if they don't match any of your criteria, otherwise you're causing your program to fail
silently in some cases where it shouldn't.

System.IO.Error also exports functions that enable us to ask our exceptions for some attributes,
like what the handle of the file that caused the error is, or what the filename is. These start with
ioe and you can see a full list of them in the documentation. Say we want to print the filename
that caused our error. We can't print the fileName that we got from getArgs, because only the
IOError is passed to the handler and the handler doesn't know about anything else. A function
depends only on the parameters it was called with. That's why we can use the ioeGetFileName
function, which has a type of ioeGetFileName :: IOError -> Maybe FilePath. It takes an IOError
as a parameter and maybe returns a FilePath (which is just a type synonym for String, remember,
so it's kind of the same thing). Basically, what it does is it extracts the file path from the IOError,
if it can. Let's modify our program to print out the file path that's responsible for the exception
occurring.

import System.Environment

import System.IO

import System.IO.Error

main = toTry `catch` handler

toTry :: IO ()

toTry = do (fileName:_) <- getArgs

contents <- readFile fileName

putStrLn $ "The file has " ++ show (length (lines contents)) ++ " lines!"

handler :: IOError -> IO ()

handler e

| isDoesNotExistError e =

case ioeGetFileName e of Just path -> putStrLn $ "Whoops! File does not exist at: " ++

path

Nothing -> putStrLn "Whoops! File does not exist at unknown location!"

| otherwise = ioError e

In the guardwhere isDoesNotExistError is True, we used a case expression to call ioeGetFileName
with e and then pattern match against the Maybe value that it returned. Using case expressions
is commonly used when you want to pattern match against something without bringing in a new
function.

You don't have to use one handler to catch exceptions in your whole I/O part. You can just cover
certain parts of your I/O code with catch or you can cover several of them with catch and use
different handlers for them, like so:

main = do toTry `catch` handler1

thenTryThis `catch` handler2

launchRockets

Here, toTry uses handler1 as the handler and thenTryThis uses handler2. launchRockets isn't a
parameter to catch, so whichever exceptions it might throw will likely crash our program, unless
launchRockets uses catch internally to handle its own exceptions. Of course toTry, thenTryThis

162

and launchRockets are I/O actions that have been glued together using do syntax and hypotheti-
cally defined somewhere else. This is kind of similar to try-catch blocks of other languages, where
you can surround your whole program in a single try-catch or you can use a more fine-grained
approach and use different ones in different parts of your code to control what kind of error han-
dling happens where.

Nowyou knowhow to dealwith I/O exceptions! Throwing exceptions frompure code anddealing
with them hasn't been covered here, mainly because, like we said, Haskell offers much better ways
to indicate errors than reverting to I/O to catch them. Even when glueing together I/O actions
that might fail, I prefer to have their type be something like IO (Either a b), meaning that they're
normal I/O actions but the result that they yield when performed is of type Either a b, meaning
it's either Left a or Right b.

Chapter 10 Functionally Solving Problems

In this chapter, we'll take a look at a few interesting problems and how to think functionally to
solve them as elegantly as possible. We probably won't be introducing any new concepts, we'll
just be flexing our newly acquired Haskell muscles and practicing our coding skills. Each section
will present a different problem. First we'll describe the problem, then we'll try and find out what
the best (or least worst) way of solving it is.

10.1 Reverse Polish notation calculator

Usually when we write mathematical expressions in school, we write them in an infix manner.
For instance, we write 10 - (4 + 3) * 2. +, * and - are infix operators, just like the infix functions we
met in Haskell (+, `elem`, etc.). This makes it handy because we, as humans, can parse it easily in
our minds by looking at such an expression. The downside to it is that we have to use parentheses
to denote precedence.

Reverse Polish notation is another way of writing down mathematical expressions. Initially it
looks a bit weird, but it's actually pretty easy to understand and use because there's no need for
parentheses and it's very easy to punch into a calculator. While most modern calculators use infix
notation, some people still swear by RPN calculators. This is what the previous infix expression
looks like in RPN: 10 4 3 + 2 * -. How do we calculate what the result of that is? Well, think of a
stack. You go over the expression from left to right. Every time a number is encountered, push
it on to the stack. When we encounter an operator, take the two numbers that are on top of the
stack (we also say that we pop them), use the operator and those two and then push the resulting
number back onto the stack. When you reach the end of the expression, you should be left with
a single number if the expression was well-formed and that number represents the result.

Let's go over the expression 10 4 3 + 2 * - together! First we push 10 on to the stack and the stack
is now 10. The next item is 4, so we push it to the stack as well. The stack is now 10, 4. We do the
same with 3 and the stack is now 10, 4, 3. And now, we encounter an operator, namely +! We
pop the two top numbers from the stack (so now the stack is just 10), add those numbers together
and push that result to the stack. The stack is now 10, 7. We push 2 to the stack, the stack for now
is 10, 7, 2. We've encountered an operator again, so let's pop 7 and 2 off the stack, multiply them
and push that result to the stack. Multiplying 7 and 2 produces a 14, so the stack we have now is
10, 14. Finally, there's a -. We pop 10 and 14 from the stack, subtract 14 from 10 and push that
back. The number on the stack is now -4 and because there are no more numbers or operators in
our expression, that's our result!

164

Now that we know how we'd calculate any RPN expression by hand, let's think about how we
couldmake a Haskell function that takes as its parameter a string that contains a RPN expression,
like "10 4 3 + 2 * -" and gives us back its result.

What would the type of that function be? We want it to take a string as a parameter and produce
a number as its result. So it will probably be something like solveRPN :: (Num a) => String -> a.

Note: Protip: it really helps to first think what the type declaration of a function should be before
concerning ourselves with the implementation and then write it down. In Haskell, a function's
type declaration tells us a whole lot about the function, due to the very strong type system.

Cool. When implementing a solution to a problem inHaskell, it's also
good to think back on how you did it by hand and maybe try to see if
you can gain any insight from that. Here we see that we treated every
number or operator that was separated by a space as a single item. So
it might help us if we start by breaking a string like "10 4 3 + 2 * -" into
a list of items like ["10","4","3","+","2","*","-"].

Next up, what did we do with that list of items in our head? We went
over it from left to right and kept a stack as we did that. Does the
previous sentence remind you of anything? Remember, in the section

about folds, we said that pretty much any function where you traverse a list from left to right or
right to left one element by element and build up (accumulate) some result (whether it's a number,
a list, a stack, whatever) can be implemented with a fold.

In this case, we're going to use a left fold, because we go over the list from left to right. The
accumulator value will be our stack and hence, the result from the fold will also be a stack, only
as we've seen, it will only have one item.

One more thing to think about is, well, how are we going to represent the stack? I propose we
use a list. Also I propose that we keep the top of our stack at the head of the list. That's because
adding to the head (beginning) of a list is much faster than adding to the end of it. So if we have
a stack of, say, 10, 4, 3, we'll represent that as the list [3,4,10].

Now we have enough information to roughly sketch our function. It's going to take a string, like,
"10 4 3 + 2 * -" and break it down into a list of items by using words to get ["10", "4", "3", "+", "2",
"*", "-"] . Next, we'll do a left fold over that list and end up with a stack that has a single item, so
[-4]. We take that single item out of the list and that's our final result!

So here's a sketch of that function:

import Data.List

solveRPN :: (Num a) => String -> a

solveRPN expression = head (foldl foldingFunction

[] (words expression))

where foldingFunction stack item = ...

We take the expression and turn it into a list of items. Then we fold over that list of items with
the folding function. Mind the [] , which represents the starting accumulator. The accumulator
is our stack, so [] represents an empty stack, which is what we start with. After getting the final
stack with a single item, we call head on that list to get the item out and then we apply read.

So all that's left now is to implement a folding function that will take a stack, like [4,10] , and an
item, like "3" and return a new stack [3,4,10] . If the stack is [4,10] and the item "*", then it will

165

have to return [40] . But before that, let's turn our function into point-free style because it has a
lot of parentheses that are kind of freaking me out:

import Data.List

solveRPN :: (Num a) => String -> a

solveRPN = head . foldl foldingFunction [] . words

where foldingFunction stack item = ...

Ah, there we go. Much better. So, the folding function will take a stack and an item and return a
new stack. We'll use pattern matching to get the top items of a stack and to pattern match against
operators like "*" and "-".

solveRPN :: (Num a, Read a) => String -> a

solveRPN = head . foldl foldingFunction [] . words

where foldingFunction (x:y:ys) "*" = (x * y):ys

foldingFunction (x:y:ys) "+" = (x + y):ys

foldingFunction (x:y:ys) "-" = (y - x):ys

foldingFunction xs numberString = read numberString:xs

We laid this out as four patterns. The patterns will be tried from top to bottom. First the folding
function will see if the current item is "*". If it is, then it will take a list like [3,4,9,3] and call its
first two elements x and y respectively. So in this case, x would be 3 and y would be 4. ys would
be [9,3]. It will return a list that's just like ys, only it has x and y multiplied as its head. So with this
we pop the two topmost numbers off the stack, multiply them and push the result back on to the
stack. If the item is not "*", the pattern matching will fall through and "+" will be checked, and so
on.

If the item is none of the operators, then we assume it's a string that represents a number. If it's
a number, we just call read on that string to get a number from it and return the previous stack
but with that number pushed to the top.

And that's it! Also noticed that we added an extra class constraint of Read a to the function
declaration, because we call read on our string to get the number. So this declaration means that
the result can be of any type that's part of the Num and Read typeclasses (like Int, Float, etc.).

For the list of items ["2","3","+"], our function will start folding from the left. The intial stack will
be[]. It will call the folding function with[] as the stack (accumulator) and "2" as the item. Because
that item is not an operator, it will be read and the added to the beginning of [] . So the new
stack is now [2] and the folding function will be called with [2] as the stack and ["3"] as the item,
producing a new stack of [3,2]. Then, it's called for the third time with [3,2] as the stack and "+" as
the item. This causes these two numbers to be popped off the stack, added together and pushed
back. The final stack is [5], which is the number that we return.

Let's play around with our function:

ghci> solveRPN "10 4 3 + 2 * -"

-4

ghci> solveRPN "2 3 +"

5

ghci> solveRPN "90 34 12 33 55 66 + * - +"

-3947

166

ghci> solveRPN "90 34 12 33 55 66 + * - + -"

4037

ghci> solveRPN "90 34 12 33 55 66 + * - + -"

4037

ghci> solveRPN "90 3 -"

87

Cool, it works! One nice thing about this function is that it can be easily modified to support
various other operators. They don't even have to be binary operators. For instance, we can make
an operator "log" that just pops one number off the stack and pushes back its logarithm. We can
also make a ternary operators that pop three numbers off the stack and push back a result or
operators like "sum" which pop off all the numbers and push back their sum.

Let's modify our function to take a few more operators. For simplicity's sake, we'll change its type
declaration so that it returns a number of type Float.

import Data.List

solveRPN :: String -> Float

solveRPN = head . foldl foldingFunction [] . words

where foldingFunction (x:y:ys) "*" = (x * y):ys

foldingFunction (x:y:ys) "+" = (x + y):ys

foldingFunction (x:y:ys) "-" = (y - x):ys

foldingFunction (x:y:ys) "/" = (y / x):ys

foldingFunction (x:y:ys) "^" = (y ** x):ys

foldingFunction (x:xs) "ln" = log x:xs

foldingFunction xs "sum" = [sum xs]

foldingFunction xs numberString = read numberString:xs

Wow, great! / is division of course and ** is floating point exponentiation. With the logarithm
operator, we just pattern match against a single element and the rest of the stack because we only
need one element to perform its natural logarithm. With the sum operator, we just return a stack
that has only one element, which is the sum of the stack so far.

ghci> solveRPN "2.7 ln"

0.9932518

ghci> solveRPN "10 10 10 10 sum 4 /"

10.0

ghci> solveRPN "10 10 10 10 10 sum 4 /"

12.5

ghci> solveRPN "10 2 ^"

100.0

Notice that we can include floating point numbers in our expression because read knows how to
read them.

ghci> solveRPN "43.2425 0.5 ^"

6.575903

I think that making a function that can calculate arbitrary floating point RPN expressions and has
the option to be easily extended in 10 lines is pretty awesome.

167

One thing to note about this function is that it's not really fault tolerant. When given input that
doesn't make sense, it will just crash everything. We'll make a fault tolerant version of this with a
type declaration of solveRPN :: String -> Maybe Float once we get to know monads (they're not
scary, trust me!) . We could make one right now, but it would be a bit tedious because it would
involve a lot of checking for Nothing on every step. If you're feeling up to the challenge though,
you can go ahead and try it! Hint: you can use reads to see if a read was successful or not.

10.2 Heathrow to London

Our next problem is this: your plane has just landed in England and you rent a car. You have a
meeting really soon and you have to get from Heathrow Airport to London as fast as you can (but
safely!).

There are twomain roads going fromHeathrow to London and there's a number of regional roads
crossing them. It takes you a fixed amount of time to travel from one crossroads to another. It's
up to you to find the optimal path to take so that you get to London as fast as you can! You start
on the left side and can either cross to the other main road or go forward.

As you can see in the picture, the shortest path from Heathrow to London in this case is to start
on main road B, cross over, go forward on A, cross over again and then go forward twice on B. If
we take this path, it takes us 75 minutes. Had we chosen any other path, it would take more than
that.

Our job is to make a program that takes input that represents a road system and print out what
the shortest path across it is. Here's what the input would look like for this case:

50

10

30

5

90

20

40

2

25

10

8

0

168

To mentally parse the input file, read it in threes and mentally split the road system into sections.
Each section is comprised of a road A, road B and a crossing road. To have it neatly fit into
threes, we say that there's a last crossing section that takes 0 minutes to drive over. That's because
we don't care where we arrive in London, as long as we're in London.

Just like we did when solving the RPN calculator problem, we're going to solve this problem in
three steps:

• Forget Haskell for a minute and think about how we'd solve the problem by hand

• Think about how we're going to represent our data in Haskell

• Figure out how to operate on that data in Haskell so that we produce at a solution

In the RPN calculator section, we first figured out that when calculating an expression by hand,
we'd keep a sort of stack in our minds and then go over the expression one item at a time. We
decided to use a list of strings to represent our expression. Finally, we used a left fold to walk oevr
the list of strings while keeping a stack to produce a solution.

Okay, so howwould we figure out the shortest path fromHeathrow to London by hand? Well, we
can just sort of look at the whole picture and try to guess what the shortest path is and hopefully
we'll make a guess that's right. That solution works for very small inputs, but what if we have a
road that has 10,000 sections? Yikes! We also won't be able to say for certain that our solution is
the optimal one, we can just sort of say that we're pretty sure.

That's not a good solution then. Here's a simplified picture of our road system:

Alright, can you figure out what the shortest path to the first crossroads (the first blue dot on A,
marked A1) on road A is? That's pretty trivial. We just see if it's shorter to go directly forward on
A or if it's shorter to go forward on B and then cross over. Obviously, it's cheaper to go forward
via B and then cross over because that takes 40 minutes, whereas going directly via A takes 50
minutes. What about crossroads B1? Same thing. We see that it's a lot cheaper to just go directly
via B (incurring a cost of 10 minutes), because going via A and then crossing over would take us
a whole 80 minutes!

Now we know what the cheapest path to A1 is (go via B and then cross over, so we'll say that's B,
C with a cost of 40) and we know what the cheapest path to B1 is (go directly via B, so that's just
B, going at 10) . Does this knowledge help us at all if we want to know the cheapest path to the
next crossroads on both main roads? Gee golly, it sure does!

Let's see what the shortest path to A2 would be. To get to A2, we'll either go directly to A2 from
A1 or we'll go forward from B1 and then cross over (remember, we can only move forward or

169

cross to the other side). And because we know the cost to A1 and B1, we can easily figure out what
the best path to A2 is. It costs 40 to get to A1 and then 5 to get from A1 to A2, so that's B, C, A
for a cost of 45. It costs only 10 to get to B1, but then it would take an additional 110 minutes to
go to B2 and then cross over! So obviously, the cheapest path to A2 is B, C, A. In the same way,
the cheapest way to B2 is to go forward from A1 and then cross over.

Note: Maybe you're asking yourself: but what about getting to A2 by first crossing over at B1 and
then going on forward? Well, we already covered crossing from B1 to A1 when we were looking
for the best way to A1, so we don't have to take that into account in the next step as well.

Now that we have the best path to A2 and B2, we can repeat this indefinitely until we reach the
end. Once we've gotten the best paths for A4 and B4, the one that's cheaper is the optimal path!

So in essence, for the second section, we just repeat the step we did at first, only we take into
account what the previous best paths on A and B. We could say that we also took into account
the best paths on A and on B in the first step, only they were both empty paths with a cost of 0.

Here's a summary. To get the bast path from Heathrow to London, we do this: first we see what
the best path to the next crossroads onmain road A is. The two options are going directly forward
or starting at the opposite road, going forward and then crossing over. We remember the cost
and the path. We use the same method to see what the best path to the next crossroads on main
road B is and remember that. Then, we see if the path to the next crossroads on A is cheaper if
we go from the previous A crossroads or if we go from the previous B crossroads and then cross
over. We remember the cheaper path and then we do the same for the crossroads opposite of it.
We do this for every section until we reach the end. Once we've reached the end, the cheapest of
the two paths that we have is our optimal path!

So in essence, we keep one shortest path on the A road and one shortest path on the B road and
when we reach the end, the shorter of those two is our path. We now know how to figure out
the shortest path by hand. If you had enough time, paper and pencils, you could figure out the
shortest path through a road system with any number of sections.

Next step! How do we represent this road system with Haskell's data types? One way is to think
of the starting points and crossroads as nodes of a graph that point to other crossroads. If we
imagine that the starting points actually point to each other with a road that has a length of one,
we see that every crossroads (or node) points to the node on the other side and also to the next
one on its side. Except for the last nodes, they just point to the other side.

data Node = Node Road Road | EndNode Road

data Road = Road Int Node

A node is either a normal node and has information about the road that leads to the other main
road and the road that leads to the next node or an end node, which only has information about
the road to the other main road. A road keeps information about how long it is and which node
it points to. For instance, the first part of the road on the A main road would be Road 50 a1 where
a1 would be a node Node x y, where x and y are roads that point to B1 and A2.

Another way would be to use Maybe for the road parts that point forward. Each node has a road
part that point to the opposite road, but only those nodes that aren't the end ones have road parts
that point forward.

data Node = Node Road (Maybe Road)

data Road = Road Int Node

170

This is an alright way to represent the road system in Haskell and we could certainly solve this
problem with it, but maybe we could come up with something simpler? If we think back to our
solution by hand, we always just checked the lengths of three road parts at once: the road part on
the A road, its opposite part on the B road and part C, which touches those two parts and connects
them. When we were looking for the shortest path to A1 and B1, we only had to deal with the
lengths of the first three parts, which have lengths of 50, 10 and 30. We'll call that one section. So
the road system that we use for this example can be easily represented as four sections: 50, 10, 30,
5, 90, 20, 40, 2, 25, and 10, 8, 0.

It's always good to keep our data types as simple as possible, although not any simpler!

data Section = Section { getA :: Int, getB :: Int,

getC :: Int } deriving (Show)

type RoadSystem = [Section]

This is pretty much perfect! It's as simple as it goes and I have a feeling it'll work perfectly for
implementing our solution. Section is a simple algebraic data type that holds three integers for
the lenghts of its three road parts. We introduce a type synonym as well, saying that RoadSystem
is a list of sections.

Note: We could also use a triple of (Int, Int, Int) to represent a road section. Using tuples instead
of making your own algebraic data types is good for some small localized stuff, but it's usually
better to make a new type for things like this. It gives the type system more information about
what's what. We can use (Int, Int, Int) to represent a road section or a vector in 3D space and we
can operate on those two, but that allows us to mix them up. If we use Section and Vector data
types, then we can't accidentally add a vector to a section of a road system.

Our road system from Heathrow to London can now be represented like this:

heathrowToLondon :: RoadSystem

heathrowToLondon = [Section 50 10 30, Section 5 90 20,

Section 40 2 25, Section 10 8 0]

All we need to do now is to implement the solution that we came up with previously in Haskell.
What should the type declaration for a function that calculates a shortest path for any given road
system be? It should take a road system as a parameter and return a path. We'll represent a path
as a list as well. Let's introduce a Label type that's just an enumeration of either A, B or C. We'll
also make a type synonym: Path.

data Label = A | B | C deriving (Show)

type Path = [(Label, Int)]

Our function, we'll call it optimalPath should thus have a type declaration of optimalPath : :
RoadSystem -> Path. If called with the road system heathrowToLondon, it should return the
following path:

[(B,10), (C,30), (A,5), (C,20), (B,2), (B,8)]

We're going to have to walk over the list with the sections from left to right and keep the optimal
path on A and optimal path on B as we go along. We'll accumulate the best path as we walk over
the list, left to right. What does that sound like? Ding, ding, ding! That's right, A LEFT FOLD!

171

Whendoing the solution by hand, therewas a step thatwe repeated over and over again. It involed
checking the optimal paths on A and B so far and the current section to produce the new optimal
paths on A and B. For instance, at the beginning the optimal paths were [] and [] for A and B
respectively. We examined the section Section 50 10 30 and concluded that the new optimal path
to A1 is [(B,10),(C,30)] and the optimal path to B1 is [(B,10)]. If you look at this step as a function,
it takes a pair of paths and a section and produces a new pair of paths. The type is (Path, Path)
-> Section -> (Path, Path). Let's go ahead and implement this function, because it's bound to be
useful.

Note: Hint: it will be useful because (Path, Path) -> Section -> (Path, Path) can be used as the
binary function for a left fold, which has to have a type of a -> b -> a

roadStep :: (Path, Path) -> Section -> (Path, Path)

roadStep (pathA, pathB) (Section a b c) =

let priceA = sum $ map snd pathA

priceB = sum $ map snd pathB

forwardPriceToA = priceA + a

crossPriceToA = priceB + b + c

forwardPriceToB = priceB + b

crossPriceToB = priceA + a + c

newPathToA = if forwardPriceToA <= crossPriceToA

then (A,a):pathA

else (C,c):(B,b):pathB

newPathToB = if forwardPriceToB <= crossPriceToB

then (B,b):pathB

else (C,c):(A,a):pathA

in (newPathToA, newPathToB)

What's going on here? First, calculate the op-
timal price on road A based on the best so far
on A and we do the same for B. We do sum $
map snd pathA, so if pathA is something like
[(A,100),(C,20)], priceAbecomes 120. forwardPrice-
ToA is the price that we would pay if we went
to the next crossroads on A if we went there
directly from the previous crossroads on A. It
equals the best price to our previous A, plus
the length of the A part of the current section.
crossPriceToA is the price that we would pay
if wewent to the next A by going forward from
the previous B and then crossing over. It's the
best price to the previous B so far plus the B
length of the section plus the C length of the
section. We determine forwardPriceToB and
crossPriceToB in the same manner.

Now that we know what the best way to A and B is, we just need to make the new paths to A
and B based on that. If it's cheaper to go to A by just going forwards, we set newPathToA to be
(A,a):pathA. Basically we prepend the Label A and the section length a to the optimal path path
on A so far. Basically, we say that the best path to the next A crossroads is the path to the previous

172

A crossroads and then one section forward via A. Remember, A is just a label, whereas a has a
type of Int. Why do we prepend instead of doing pathA ++ [(A,a)] ? Well, adding an element
to the beginning of a list (also known as consing) is much faster than adding it to the end. This
means that the path will be the wrong way around once we fold over a list with this function, but
it's easy to reverse the list later. If it's cheaper to get to the next A crossroads by going forward
from road B and then crossing over, then newPathToA is the old path to B that then goes forward
and crosses to A. We do the same thing for newPathToB, only everything's mirrored.

Finally, we return newPathToA and newPathToB in a pair.

Let's run this function on the first section of heathrowToLondon. Because it's the first section,
the best paths on A and B parameter will be a pair of empty lists.

ghci> roadStep ([], []) (head heathrowToLondon)

([(C,30),(B,10)],[(B,10)])

Remember, the paths are reversed, so read them from right to left. From this we can read that the
best path to the next A is to start on B and then cross over to A and that the best path to the next
B is to just go directly forward from the starting point at B.

Note: Optimization tip: when we do priceA = sum $ map snd pathA, we're calculating the price
from the path on every step. We wouldn't have to do that if we implemented roadStep as a (Path,
Path, Int, Int) -> Section -> (Path, Path, Int, Int) function where the integers represent the best
price on A and B.

Now that we have a function that takes a pair of paths and a section and produces a new optimal
path, we can just easily do a left fold over a list of sections. roadStep is called with([],[]) and the first
section and returns a pair of optimal paths to that section. Then, it's called with that pair of paths
and the next section and so on. When we've walked over all the sections, we're left with a pair
of optimal paths and the shorter of them is our answer. With this in mind, we can implement
optimalPath.

optimalPath :: RoadSystem -> Path

optimalPath roadSystem =

let (bestAPath, bestBPath) = foldl roadStep ([],[]) roadSystem

in if sum (map snd bestAPath) <= sum (map snd bestBPath)

then reverse bestAPath

else reverse bestBPath

We left fold over roadSystem (remember, it's a list of sections) with the starting accumulator being
a pair of empty paths. The result of that fold is a pair of paths, so we pattern match on the pair
to get the paths themselves. Then, we check which one of these was cheaper and return it. Before
returning it, we also reverse it, because the optimal paths so far were reversed due to us choosing
consing over appending.

Let's test this!

ghci> optimalPath heathrowToLondon

[(B,10),(C,30),(A,5),(C,20),(B,2),(B,8),(C,0)]

This is the result that we were supposed to get! Awesome! It differs from our expected result a
bit because there's a step (C,0) at the end, which means that we cross over to the other road once
we're in London, but because that crossing doesn't cost anything, this is still the correct result.

173

We have the function that finds an optimal path based on, now we just have to read a textual
representation of a road system from the standard input, convert it into a type of RoadSystem,
run that through our optimalPath function and print the path.

First off, let's make a function that takes a list and splits it into groups of the same size. We'll call
it groupsOf. For a parameter of [1..10], groupsOf 3 should return [[1,2,3],[4,5,6],[7,8,9],[10]].

groupsOf :: Int -> [a] -> [[a]]

groupsOf 0 _ = undefined

groupsOf _ [] = []

groupsOf n xs = take n xs : groupsOf n (drop n xs)

A standard recursive function. For an xs of [1. .10] and an n of 3, this equals [1,2,3] : groupsOf
3 [4,5,6,7,8,9,10]. When the recursion is done, we get our list in groups of three. And here's our
main function, which reads from the standard input, makes a RoadSystem out of it and prints out
the shortest path:

import Data.List

main = do

contents <- getContents

let threes = groupsOf 3 (map read $ lines contents)

roadSystem = map (\[a,b,c] -> Section a b c) threes

path = optimalPath roadSystem

pathString = concat $ map (show . fst) path

pathPrice = sum $ map snd path

putStrLn $ "The best path to take is: " ++ pathString

putStrLn $ "The price is: " ++ show pathPrice

First, we get all the contents from the standard input. Then, we call lines with our contents to
convert something like "50\n10\n30\n. . . to ["50","10","30". . and then we map read to that to
convert it to a list of numbers. We call groupsOf 3 on it so that we turn it to a list of lists of length
3. We map the lambda (\[a,b,c] -> Section a b c) over that list of lists. As you can see, the lambda
just takes a list of length 3 and turns it into a section. So roadSystem is now our system of roads
and it even has the correct type, namely RoadSystem (or [Section]) . We call optimalPath with
that and then get the path and the price in a nice textual representation and print it out.

We save the following text

50

10

30

5

90

20

40

2

25

10

8

0

174

in a file called paths.txt and then feed it to our program.

$ cat paths.txt | runhaskell heathrow.hs

The best path to take is: BCACBBC

The price is: 75

Works like a charm! You can use your knowledge of the Data.Random module to generate a
much longer system of roads, which you can then feed to what we just wrote. If you get stack
overflows, try using foldl' instead of foldl, because foldl' is strict.

Chapter 11 Functors, Applicative Functors and
Monoids

Haskell's combination of purity, higher order functions, parameterized algebraic data types, and
typeclasses allows us to implement polymorphism on a much higher level than possible in other
languages. We don't have to think about types belonging to a big hierarchy of types. Instead, we
think about what the types can act like and then connect them with the appropriate typeclasses.
An Int can act like a lot of things. It can act like an equatable thing, like an ordered thing, like an
enumerable thing, etc.

Typeclasses are open, which means that we can define our own data type, think about what it can
act like and connect it with the typeclasses that define its behaviors. Because of that and because
of Haskell's great type system that allows us to know a lot about a function just by knowing its
type declaration, we can define typeclasses that define behavior that's very general and abstract.
We've met typeclasses that define operations for seeing if two things are equal or comparing two
things by some ordering. Those are very abstract and elegant behaviors, but we just don't think
of them as anything very special because we've been dealing with them for most of our lives. We
recently met functors, which are basically things that can be mapped over. That's an example of
a useful and yet still pretty abstract property that typeclasses can describe. In this chapter, we'll
take a closer look at functors, along with slightly stronger and more useful versions of functors
called applicative functors. We'll also take a look at monoids, which are sort of like socks.

11.1 Functors redux

We've already talked about functors in their own little section. If you
haven't read it yet, you should probably give it a glance right now, or
maybe later when you have more time. Or you can just pretend you
read it.

Still, here's a quick refresher: Functors are things that can be mapped
over, like lists, Maybes, trees, and such. In Haskell, they're described
by the typeclass Functor, which has only one typeclassmethod, namely
fmap, which has a type of fmap :: (a -> b) -> f a -> f b. It says: give me a function that takes an a
and returns a b and a box with an a (or several of them) inside it and I'll give you a box with a b
(or several of them) inside it. It kind of applies the function to the element inside the box.

Note: A word of advice. Many times the box analogy is used to help you get some intuition for
how functors work, and later, we'll probably use the same analogy for applicative functors and
monads. It's an okay analogy that helps people understand functors at first, just don't take it too
literally, because for some functors the box analogy has to be stretched really thin to still hold
some truth. A more correct term for what a functor is would be computational context. The
context might be that the computation can have a value or it might have failed (Maybe and Either
a) or that there might be more values (lists), stuff like that.

If we want to make a type constructor an instance of Functor, it has to have a kind of * -> *, which
means that it has to take exactly one concrete type as a type parameter. For example,Maybe can be
made an instance because it takes one type parameter to produce a concrete type, like Maybe Int
orMaybe String. If a type constructor takes two parameters, like Either, we have to partially apply

176

the type constructor until it only takes one type parameter. So we can't write instance Functor
Either where, but we canwrite instance Functor (Either a) where and then if we imagine that fmap
is only for Either a, it would have a type declaration of fmap :: (b -> c) -> Either a b -> Either a c.
As you can see, the Either a part is fixed, because Either a takes only one type parameter, whereas
just Either takes two so fmap :: (b -> c) -> Either b -> Either c wouldn't really make sense.

We've learned by now how a lot of types (well, type constructors really) are instances of Functor,
like [] , Maybe, Either a and a Tree type that we made on our own. We saw how we can map
functions over them for great good. In this section, we'll take a look at two more instances of
functor, namely IO and (->) r.

If some value has a type of, say, IO String, that means that it's an I/O action that, when performed,
will go out into the real world and get some string for us, which it will yield as a result. We can
use <- in do syntax to bind that result to a name. We mentioned that I/O actions are like boxes
with little feet that go out and fetch some value from the outside world for us. We can inspect
what they fetched, but after inspecting, we have to wrap the value back in IO. By thinking about
this box with little feet analogy, we can see how IO acts like a functor.

Let's see how IO is an instance of Functor. When we fmap a function over an I/O action, we want
to get back an I/O action that does the same thing, but has our function applied over its result
value.

instance Functor IO where

fmap f action = do

result <- action

return (f result)

The result of mapping something over an I/O action will be an I/O action, so right off the bat
we use do syntax to glue two actions and make a new one. In the implementation for fmap, we
make a new I/O action that first performs the original I/O action and calls its result result. Then,
we do return (f result) . return is, as you know, a function that makes an I/O action that doesn't
do anything but only presents something as its result. The action that a do block produces will
always have the result value of its last action. That's why we use return to make an I/O action that
doesn't really do anything, it just presents f result as the result of the new I/O action.

We can play around with it to gain some intuition. It's pretty simple really. Check out this piece
of code:

main = do line <- getLine

let line' = reverse line

putStrLn $ "You said " ++ line' ++ " backwards!"

putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"

Theuser is prompted for a line andwe give it back to the user, only reversed. Here's how to rewrite
this by using fmap:

main = do line <- fmap reverse getLine

putStrLn $ "You said " ++ line ++ " backwards!"

putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

177

Just like when we fmap reverse over Just "blah" to get Just "halb", we can
fmap reverse over getLine. getLine is an I/O action that has a type of IO
String and mapping reverse over it gives us an I/O action that will go out
into the real world and get a line and then apply reverse to its result. Like
we can apply a function to something that's inside a Maybe box, we can
apply a function to what's inside an IO box, only it has to go out into the
real world to get something. Then when we bind it to a name by using <-,
the name will reflect the result that already has reverse applied to it.

The I/O action fmap (++"!") getLine behaves just like getLine, only that its result always has "!"
appended to it!

If we look at what fmap's type would be if it were limited to IO, it would be fmap :: (a -> b) -> IO a
-> IO b. fmap takes a function and an I/O action and returns a new I/O action that's like the old
one, except that the function is applied to its contained result.

If you ever find yourself binding the result of an I/O action to a name, only to apply a function
to that and call that something else, consider using fmap, because it looks prettier. If you want to
apply multiple transformations to some data inside a functor, you can declare your own function
at the top level, make a lambda function or ideally, use function composition:

import Data.Char

import Data.List

main = do line <- fmap (intersperse '-' . reverse . map toUpper) getLine

putStrLn line

$ runhaskell fmapping_io.hs

hello there

E-R-E-H-T- -O-L-L-E-H

As you probably know, intersperse '-' . reverse . map toUpper is a function that takes a string,
maps toUpper over it, the applies reverse to that result and then applies intersperse '-' to that
result. It's like writing (\xs -> intersperse '-' (reverse (map toUpper xs))), only prettier.

Another instance of Functor that we've been dealing with all along but didn't know was a Functor
is (->) r. You're probably slightly confused now, since what the heck does (->) r mean? The
function type r -> a can be rewritten as (->) r a, much like we can write 2 + 3 as (+) 2 3. When
we look at it as (->) r a, we can see (->) in a slighty different light, because we see that it's just
a type constructor that takes two type parameters, just like Either. But remember, we said that
a type constructor has to take exactly one type parameter so that it can be made an instance of
Functor. That's why we can't make (->) an instance of Functor, but if we partially apply it to (->)
r, it doesn't pose any problems. If the syntax allowed for type constructors to be partially applied
with sections (like we can partially apply + by doing (2+), which is the same as (+) 2), you could
write (->) r as (r ->). How are functions functors? Well, let's take a look at the implementation,
which lies in Control.Monad.Instances

Note: We usually mark functions that take anything and return anything as a -> b. r -> a is the
same thing, we just used different letters for the type variables.

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))

178

If the syntax allowed for it, it could have been written as

instance Functor (r ->) where

fmap f g = (\x -> f (g x))

But it doesn't, so we have to write it in the former fashion.

First of all, let's think about fmap's type. It's fmap : : (a -> b) -> f a -> f b. Now what we'll do is
mentally replace all the f's, which are the role that our functor instance plays, with (->) r's. We'll
do that to see how fmap should behave for this particular instance. We get fmap :: (a -> b) ->((->)
r a) ->((->) r b). Now what we can do is write the (->) r a and (-> r b) types as infix r -> a and r ->
b, like we normally do with functions. What we get now is fmap :: (a -> b) -> (r -> a) -> (r -> b).

HmmmOK.Mapping one function over a function has to produce a function, just likemapping a
function over a Maybe has to produce a Maybe and mapping a function over a list has to produce
a list. What does the type fmap ::(a -> b) -> (r -> a) -> (r -> b) for this instance tell us? Well, we see
that it takes a function from a to b and a function from r to a and returns a function from r to b.
Does this remind you of anything? Yes! Function composition! We pipe the output of r -> a into
the input of a -> b to get a function r -> b, which is exactly what function composition is about.
If you look at how the instance is defined above, you'll see that it's just function composition.
Another way to write this instance would be:

instance Functor ((->) r) where

fmap = (.)

This makes the revelation that using fmap over functions is just composition sort of obvious. Do
:m + Control.Monad.Instances, since that's where the instance is defined and then try playing
with mapping over functions.

ghci> :t fmap (*3) (+100)

fmap (*3) (+100) :: (Num a) => a -> a

ghci> fmap (*3) (+100) 1

303

ghci> (*3) `fmap` (+100) $ 1

303

ghci> (*3) . (+100) $ 1

303

ghci> fmap (show . (*3)) (*100) 1

"300"

We can call fmap as an infix function so that the resemblance to . is clear. In the second input
line, we're mapping (*3) over (+100), which results in a function that will take an input, call (+100)
on that and then call (*3) on that result. We call that function with 1.

How does the box analogy hold here? Well, if you stretch it, it holds. When we use fmap (+3)
over Just 3, it's easy to imagine the Maybe as a box that has some contents on which we apply the
function (+3) . But what about when we're doing fmap (*3) (+100) ? Well, you can think of the
function (+100) as a box that contains its eventual result. Sort of like how an I/O action can be
thought of as a box that will go out into the real world and fetch some result. Using fmap (*3) on
(+100) will create another function that acts like (+100), only before producing a result, (*3) will
be applied to that result. Now we can see how fmap acts just like . for functions.

179

The fact that fmap is function composition when used on functions isn't so terribly useful right
now, but at least it's very interesting. It also bends our minds a bit and let us see how things
that act more like computations than boxes (IO and (->) r) can be functors. The function being
mapped over a computation results in the same computation but the result of that computation
is modified with the function.

Before we go on to the rules that fmap should follow,
let's think about the type of fmap once more. Its type
is fmap : : (a -> b) -> f a -> f b. We're missing the
class constraint (Functor f) =>, but we left it out here for
brevity, because we're talking about functors anyway so
we know what the f stands for. When we first learned
about curried functions, we said that all Haskell func-
tions actually take one parameter. A function a -> b ->
c actually takes just one parameter of type a and then re-
turns a function b -> c, which takes one parameter and
returns a c. That's how if we call a function with too few
parameters (i.e. partially apply it) , we get back a func-
tion that takes the number of parameters that we left out
(if we're thinking about functions as taking several pa-
rameters again). So a -> b -> c can be written as a -> (b
-> c), to make the currying more apparent.

In the same vein, if we write fmap :: (a -> b) -> (f a -> f b), we can think of fmap not as a function
that takes one function and a functor and returns a functor, but as a function that takes a function
and returns a new function that's just like the old one, only it takes a functor as a parameter and
returns a functor as the result. It takes an a -> b function and returns a function f a -> f b. This is
called lifting a function. Let's play around with that idea by using GHCI's :t command:

ghci> :t fmap (*2)

fmap (*2) :: (Num a, Functor f) => f a -> f a

ghci> :t fmap (replicate 3)

fmap (replicate 3) :: (Functor f) => f a -> f [a]

The expression fmap (*2) is a function that takes a functor f over numbers and returns a functor
over numbers. That functor can be a list, a Maybe , an Either String, whatever. The expression
fmap (replicate 3) will take a functor over any type and return a functor over a list of elements of
that type.

Note: When we say a functor over numbers, you can think of that as a functor that has numbers
in it. The former is a bit fancier and more technically correct, but the latter is usually easier to get.

This is even more apparent if we partially apply, say, fmap (++"!") and then bind it to a name in
GHCI.

You can think of fmap as either a function that takes a function and a functor and then maps that
function over the functor, or you can think of it as a function that takes a function and lifts that
function so that it operates on functors. Both views are correct and in Haskell, equivalent.

The type fmap (replicate 3) :: (Functor f) => f a -> f [a] means that the function will work on any
functor. What exactly it will do depends on which functor we use it on. If we use fmap (replicate
3) on a list, the list's implementation for fmap will be chosen, which is just map. If we use it on a
Maybe a, it'll apply replicate 3 to the value inside the Just, or if it's Nothing, then it stays Nothing.

180

ghci> fmap (replicate 3) [1,2,3,4]

[[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

ghci> fmap (replicate 3) (Just 4)

Just [4,4,4]

ghci> fmap (replicate 3) (Right "blah")

Right ["blah","blah","blah"]

ghci> fmap (replicate 3) Nothing

Nothing

ghci> fmap (replicate 3) (Left "foo")

Left "foo"

Next up, we're going to look at the functor laws. In order for something to be a functor, it should
satisfy some laws. All functors are expected to exhibit certain kinds of functor-like properties
and behaviors. They should reliably behave as things that can be mapped over. Calling fmap on a
functor should just map a function over the functor, nothing more. This behavior is described in
the functor laws. There are two of them that all instances of Functor should abide by. They aren't
enforced by Haskell automatically, so you have to test them out yourself.

The first functor law states that if we map the id function over a functor, the functor that we
get back should be the same as the original functor. If wewrite that a bitmore formally, itmeans
that fmap id = id. So essentially, this says that if we do fmap id over a functor, it should be the
same as just calling id on the functor. Remember, id is the identity function, which just returns
its parameter unmodified. It can also be written as \x -> x. If we view the functor as something
that can be mapped over, the fmap id = id law seems kind of trivial or obvious.

Let's see if this law holds for a few values of functors.

ghci> fmap id (Just 3)

Just 3

ghci> id (Just 3)

Just 3

ghci> fmap id [1..5]

[1,2,3,4,5]

ghci> id [1..5]

[1,2,3,4,5]

ghci> fmap id []

[]

ghci> fmap id Nothing

Nothing

If we look at the implementation of fmap for, say, Maybe, we can figure out why the first functor
law holds.

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

We imagine that id plays the role of the f parameter in the implementation. We see that if wee
fmap id over Just x, the result will be Just (id x), and because id just returns its parameter, we can
deduce that Just (id x) equals Just x. So now we know that if we map id over a Maybe value with
a Just value constructor, we get that same value back.

181

Seeing that mapping id over a Nothing value returns the same value is trivial. So from these two
equations in the implementation for fmap, we see that the law fmap id = id holds.

The second law says that composing two functions and then mapping
the resulting function over a functor should be the same as first map-
ping one function over the functor and then mapping the other one.
Formally written, that means that fmap (f . g) = fmap f . fmap g. Or
to write it in another way, for any functor F, the following should hold:
fmap (f . g) F = fmap f (fmap g F).

If we can show that some type obeys both functor laws, we can rely
on it having the same fundamental behaviors as other functors when it
comes to mapping. We can know that when we use fmap on it, there
won't be anything other than mapping going on behind the scenes and
that it will act like a thing that can be mapped over, i.e. a functor. You

figure out how the second law holds for some type by looking at the implementation of fmap for
that type and then using the method that we used to check if Maybe obeys the first law.

If you want, we can check out how the second functor law holds for Maybe. If we do fmap (f .
g) over Nothing, we get Nothing, because doing a fmap with any function over Nothing returns
Nothing. If we do fmap f (fmap g Nothing), we get Nothing, for the same reason. OK, seeing how
the second law holds for Maybe if it's a Nothing value is pretty easy, almost trivial.

How about if it's a Just something value? Well, if we do fmap (f . g) (Just x) , we see from the
implementation that it's implemented as Just ((f . g) x), which is, of course, Just (f (g x)). If we do
fmap f (fmap g (Just x)), we see from the implementation that fmap g (Just x) is Just (g x). Ergo,
fmap f (fmap g (Just x)) equals fmap f (Just (g x)) and from the implementation we see that this
equals Just (f (g x)).

If you're a bit confused by this proof, don't worry. Be sure that you understand how function
composition works. Many times, you can intuitively see how these laws hold because the types
act like containers or functions. You can also just try them on a bunch of different values of a type
and be able to say with some certainty that a type does indeed obey the laws.

Let's take a look at a pathological example of a type constructor being an instance of the Functor
typeclass but not really being a functor, because it doesn't satisfy the laws. Let's say that we have
a type:

data CMaybe a = CNothing | CJust Int a deriving (Show)

The C here stands for counter. It's a data type that looks much like Maybe a, only the Just part
holds two fields instead of one. The first field in the CJust value constructor will always have a
type of Int, and it will be some sort of counter and the second field is of type a, which comes from
the type parameter and its type will, of course, depend on the concrete type that we choose for
CMaybe a. Let's play with our new type to get some intuition for it.

ghci> CNothing

CNothing

ghci> CJust 0 "haha"

CJust 0 "haha"

ghci> :t CNothing

CNothing :: CMaybe a

ghci> :t CJust 0 "haha"

182

CJust 0 "haha" :: CMaybe [Char]

ghci> CJust 100 [1,2,3]

CJust 100 [1,2,3]

If we use the CNothing constructor, there are no fields, and if we use the CJust constructor, the
first field is an integer and the second field can be any type. Let's make this an instance of Functor
so that everytime we use fmap, the function gets applied to the second field, whereas the first field
gets increased by 1.

instance Functor CMaybe where

fmap f CNothing = CNothing

fmap f (CJust counter x) = CJust (counter+1) (f x)

This is kind of like the instance implementation for Maybe, except that when we do fmap over a
value that doesn't represent an empty box (a CJust value), we don't just apply the function to the
contents, we also increase the counter by 1. Everything seems cool so far, we can even play with
this a bit:

ghci> fmap (++"ha") (CJust 0 "ho")

CJust 1 "hoha"

ghci> fmap (++"he") (fmap (++"ha") (CJust 0 "ho"))

CJust 2 "hohahe"

ghci> fmap (++"blah") CNothing

CNothing

Does this obey the functor laws? In order to see that something doesn't obey a law, it's enough to
find just one counter-example.

ghci> fmap id (CJust 0 "haha")

CJust 1 "haha"

ghci> id (CJust 0 "haha")

CJust 0 "haha"

Ah! We know that the first functor law states that if we map id over a functor, it should be the
same as just calling id with the same functor, but as we've seen from this example, this is not true
for our CMaybe functor. Even though it's part of the Functor typeclass, it doesn't obey the functor
laws and is therefore not a functor. If someone used our CMaybe type as a functor, they would
expect it to obey the functor laws like a good functor. But CMaybe fails at being a functor even
though it pretends to be one, so using it as a functor might lead to some faulty code. When we
use a functor, it shouldn't matter if we first compose a few functions and then map them over the
functor or if we just map each function over a functor in succession. But with CMaybe, it matters,
because it keeps track of how many times it's been mapped over. Not cool! If we wanted CMaybe
to obey the functor laws, we'd have to make it so that the Int field stays the same when we use
fmap.

At first, the functor laws might seem a bit confusing and unnecessary, but then we see that if we
know that a type obeys both laws, we can make certain assumptions about how it will act. If a
type obeys the functor laws, we know that calling fmap on a value of that type will only map the
function over it, nothing more. This leads to code that is more abstract and extensible, because
we can use laws to reason about behaviors that any functor should have and make functions that
operate reliably on any functor.

183

All the Functor instances in the standard library obey these laws, but you can check for yourself
if you don't believe me. And the next time you make a type an instance of Functor, take a minute
to make sure that it obeys the functor laws. Once you've dealt with enough functors, you kind
of intuitively see the properties and behaviors that they have in common and it's not hard to
intuitively see if a type obeys the functor laws. But even without the intuition, you can always just
go over the implementation line by line and see if the laws hold or try to find a counter-example.

We can also look at functors as things that output values in a context. For instance, Just 3 outputs
the value 3 in the context that it might or not output any values at all. [1,2,3] outputs three
values—1, 2, and 3, the context is that there may be multiple values or no values. The function
(+3) will output a value, depending on which parameter it is given.

If you think of functors as things that output values, you can think of mapping over functors as
attaching a transformation to the output of the functor that changes the value. When we do fmap
(+3) [1,2,3] , we attach the transformation (+3) to the output of [1,2,3] , so whenever we look
at a number that the list outputs, (+3) will be applied to it. Another example is mapping over
functions. When we do fmap (+3) (*3), we attach the transformation (+3) to the eventual output
of (*3) . Looking at it this way gives us some intuition as to why using fmap on functions is just
composition (fmap (+3)(*3) equals (+3) .(*3), which equals\x ->((x*3)+3)), because we take a function
like (*3) then we attach the transformation (+3) to its output. The result is still a function, only
when we give it a number, it will be multiplied by three and then it will go through the attached
transformation where it will be added to three. This is what happens with composition.

11.2 Applicative functors

In this section, we'll take a look at applicative functors, which are
beefed up functors, represented inHaskell by theApplicative typeclass,
found in the Control.Applicative module.

As you know, functions inHaskell are curried by default, whichmeans
that a function that seems to take several parameters actually takes just
one parameter and returns a function that takes the next parameter
and so on. If a function is of type a -> b -> c, we usually say that it
takes two parameters and returns a c, but actually it takes an a and
returns a function b -> c. That's why we can call a function as f x y or
as (f x) y. This mechanism is what enables us to partially apply functions by just calling them with
too few parameters, which results in functions that we can then pass on to other functions.

So far, when we were mapping functions over functors, we usually mapped functions that take
only one parameter. But what happens when we map a function like *, which takes two parame-
ters, over a functor? Let's take a look at a couple of concrete examples of this. If we have Just 3
and we do fmap (*) (Just 3) , what do we get? From the instance implementation of Maybe for
Functor, we know that if it's a Just something value, it will apply the function to the something
inside the Just. Therefore, doing fmap (*) (Just 3) results in Just ((*) 3), which can also be written
as Just (* 3) if we use sections. Interesting! We get a function wrapped in a Just!

ghci> :t fmap (++) (Just "hey")

fmap (++) (Just "hey") :: Maybe ([Char] -> [Char])

ghci> :t fmap compare (Just 'a')

fmap compare (Just 'a') :: Maybe (Char -> Ordering)

184

ghci> :t fmap compare "A LIST OF CHARS"

fmap compare "A LIST OF CHARS" :: [Char -> Ordering]

ghci> :t fmap (\x y z -> x + y / z) [3,4,5,6]

fmap (\x y z -> x + y / z) [3,4,5,6] :: (Fractional a) => [a -> a -> a]

If we map compare, which has a type of (Ord a) => a -> a -> Ordering over a list of characters,
we get a list of functions of type Char -> Ordering, because the function compare gets partially
applied with the characters in the list. It's not a list of (Ord a) => a -> Ordering function, because
the first a that got applied was a Char and so the second a has to decide to be of type Char.

We see how by mapping "multi-parameter" functions over functors, we get functors that contain
functions inside them. So now what can we do with them? Well for one, we can map functions
that take these functions as parameters over them, because whatever is inside a functor will be
given to the function that we're mapping over it as a parameter.

ghci> let a = fmap (*) [1,2,3,4]

ghci> :t a

a :: [Integer -> Integer]

ghci> fmap (\f -> f 9) a

[9,18,27,36]

But what if we have a functor value of Just (3 *) and a functor value of Just 5 and we want to take
out the function from Just (3 *) and map it over Just 5? With normal functors, we're out of luck,
because all they support is just mapping normal functions over existing functors. Even when we
mapped \f -> f 9 over a functor that contained functions inside it, we were just mapping a normal
function over it. But we can't map a function that's inside a functor over another functor with
what fmap offers us. We could pattern-match against the Just constructor to get the function out
of it and then map it over Just 5, but we're looking for a more general and abstract way of doing
that, which works across functors.

Meet the Applicative typeclass. It lies in the Control.Applicative module and it defines two meth-
ods, pure and <*>. It doesn't provide a default implementation for any of them, so we have to
define them both if we want something to be an applicative functor. The class is defined like so:

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

This simple three line class definition tells us a lot! Let's start at the first line. It starts the definition
of the Applicative class and it also introduces a class constraint. It says that if we want to make
a type constructor part of the Applicative typeclass, it has to be in Functor first. That's why if we
know that if a type constructor is part of the Applicative typeclass, it's also in Functor, so we can
use fmap on it.

The first method it defines is called pure. Its type declaration is pure :: a -> f a. f plays the role of
our applicative functor instance here. Because Haskell has a very good type system and because
everything a function can do is take some parameters and return some value, we can tell a lot from
a type declaration and this is no exception. pure should take a value of any type and return an
applicative functor with that value inside it. When we say inside it, we're using the box analogy
again, even though we've seen that it doesn't always stand up to scrutiny. But the a -> f a type
declaration is still pretty descriptive. We take a value and we wrap it in an applicative functor
that has that value as the result inside it.

185

A better way of thinking about pure would be to say that it takes a value and puts it in some sort
of default (or pure) context—a minimal context that still yields that value.

The <*> function is really interesting. It has a type declaration of f (a -> b) -> f a -> f b. Does
this remind you of anything? Of course, fmap : : (a -> b) -> f a -> f b. It's a sort of a beefed up
fmap. Whereas fmap takes a function and a functor and applies the function inside the functor,
<*> takes a functor that has a function in it and another functor and sort of extracts that function
from the first functor and then maps it over the second one. When I say extract, I actually sort of
mean run and then extract, maybe even sequence. We'll see why soon.

Let's take a look at the Applicative instance implementation for Maybe.

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

(Just f) <*> something = fmap f something

Again, from the class definition we see that the f that plays the role of the applicative functor
should take one concrete type as a parameter, so we write instance Applicative Maybe where
instead of writing instance Applicative (Maybe a) where.

First off, pure. We said earlier that it's supposed to take something and wrap it in an applicative
functor. We wrote pure = Just, because value constructors like Just are normal functions. We
could have also written pure x = Just x.

Next up, we have the definition for <*>. We can't extract a function out of a Nothing, because it
has no function inside it. So we say that if we try to extract a function from a Nothing, the result
is a Nothing. If you look at the class definition for Applicative, you'll see that there's a Functor
class constraint, which means that we can assume that both of <*>'s parameters are functors. If
the first parameter is not a Nothing, but a Just with some function inside it, we say that we then
want to map that function over the second parameter. This also takes care of the case where the
second parameter is Nothing, because doing fmap with any function over a Nothing will return
a Nothing.

So for Maybe, <*> extracts the function from the left value if it's a Just and maps it over the right
value. If any of the parameters is Nothing, Nothing is the result.

OK cool great. Let's give this a whirl.

ghci> Just (+3) <*> Just 9

Just 12

ghci> pure (+3) <*> Just 10

Just 13

ghci> pure (+3) <*> Just 9

Just 12

ghci> Just (++"hahah") <*> Nothing

Nothing

ghci> Nothing <*> Just "woot"

Nothing

We see how doing pure (+3) and Just (+3) is the same in this case. Use pure if you're dealing
with Maybe values in an applicative context (i.e. using them with <*>) , otherwise stick to Just.
The first four input lines demonstrate how the function is extracted and then mapped, but in this

186

case, they could have been achieved by just mapping unwrapped functions over functors. The
last line is interesting, because we try to extract a function from a Nothing and then map it over
something, which of course results in a Nothing.

With normal functors, you can just map a function over a functor and then you can't get the result
out in any general way, even if the result is a partially applied function. Applicative functors, on
the other hand, allow you to operate on several functors with a single function. Check out this
piece of code:

ghci> pure (+) <*> Just 3 <*> Just 5

Just 8

ghci> pure (+) <*> Just 3 <*> Nothing

Nothing

ghci> pure (+) <*> Nothing <*> Just 5

Nothing

What's going on here? Let's take a look, step by step. <*> is left-asso-
ciative, which means that pure (+) <*> Just 3 <*> Just 5 is the same as
(pure (+) <*> Just 3) <*> Just 5. First, the + function is put in a func-
tor, which is in this case a Maybe value that contains the function. So
at first, we have pure (+) , which is Just (+) . Next, Just (+) <*> Just 3
happens. The result of this is Just (3+) . This is because of partial ap-
plication. Only applying 3 to the + function results in a function that
takes one parameter and adds 3 to it. Finally, Just (3+) <*> Just 5 is
carried out, which results in a Just 8.

Isn't this awesome?! Applicative functors and the applicative style of doing pure f <*> x <*> y <*>
... allow us to take a function that expects parameters that aren't necessarily wrapped in functors
and use that function to operate on several values that are in functor contexts. The function can
take as many parameters as we want, because it's always partially applied step by step between
occurences of <*>.

This becomes even more handy and apparent if we consider the fact that pure f <*> x equals fmap
f x. This is one of the applicative laws. We'll take a closer look at them later, but for now, we
can sort of intuitively see that this is so. Think about it, it makes sense. Like we said before, pure
puts a value in a default context. If we just put a function in a default context and then extract
and apply it to a value inside another applicative functor, we did the same as just mapping that
function over that applicative functor. Instead of writing pure f <*> x <*> y <*> ..., we can write
fmap f x <*> y <*> This is why Control.Applicative exports a function called <$>, which is just
fmap as an infix operator. Here's how it's defined:

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

Note: Yo! Quick reminder: type variables are independent of parameter names or other value
names. The f in the function declaration here is a type variable with a class constraint saying
that any type constructor that replaces f should be in the Functor typeclass. The f in the function
body denotes a function that we map over x. The fact that we used f to represent both of those
doesn't mean that they somehow represent the same thing. By using <$>, the applicative style
really shines, because now if we want to apply a function f between three applicative functors, we
can write f <$> x <*> y <*> z. If the parameters weren't applicative functors but normal values,
we'd write f x y z.

187

Let's take a closer look at how this works. We have a value of Just "johntra" and a value of Just
"volta" and we want to join them into one String inside a Maybe functor. We do this:

ghci> (++) <$> Just "johntra" <*> Just "volta"

Just "johntravolta"

Before we see how this happens, compare the above line with this:

ghci> (++) "johntra" "volta"

"johntravolta"

Awesome! To use a normal function on applicative functors, just sprinkle some <$> and <*>
about and the function will operate on applicatives and return an applicative. How cool is that?

Anyway, when we do (++) <$> Just "johntra" <*> Just "volta", first (++), which has a type of (++)
: : [a] -> [a] -> [a] gets mapped over Just "johntra", resulting in a value that's the same as Just
("johntra"++) and has a type of Maybe ([Char] -> [Char]) . Notice how the first parameter of
(++) got eaten up and how the as turned into Chars. And now Just ("johntra"++) <*> Just "volta"
happens, which takes the function out of the Just and maps it over Just "volta", resulting in Just
"johntravolta". Had any of the two values been Nothing, the result would have also been Nothing.

So far, we've only usedMaybe in our examples and youmight be thinking that applicative functors
are all about Maybe. There are loads of other instances of Applicative, so let's go and meet them!

Lists (actually the list type constructor, []) are applicative functors. What a suprise! Here's how
[] is an instance of Applicative:

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

Earlier, we said that pure takes a value and puts it in a default context. Or in other words, a
minimal context that still yields that value. The minimal context for lists would be the empty list,
[] , but the empty list represents the lack of a value, so it can't hold in itself the value that we
used pure on. That's why pure takes a value and puts it in a singleton list. Similarly, the minimal
context for theMaybe applicative functor would be a Nothing, but it represents the lack of a value
instead of a value, so pure is implemented as Just in the instance implementation for Maybe.

ghci> pure "Hey" :: [String]

["Hey"]

ghci> pure "Hey" :: Maybe String

Just "Hey"

What about <*>? If we look at what <*>'s type would be if it were limited only to lists, we get
(<*>) :: [a -> b] -> [a] -> [b]. It's implemented with a list comprehension. <*> has to somehow
extract the function out of its left parameter and then map it over the right parameter. But the
thing here is that the left list can have zero functions, one function, or several functions inside it.
The right list can also hold several values. That's why we use a list comprehension to draw from
both lists. We apply every possible function from the left list to every possible value from the right
list. The resulting list has every possible combination of applying a function from the left list to a
value in the right one.

188

ghci> [(*0),(+100),(^2)] <*> [1,2,3]

[0,0,0,101,102,103,1,4,9]

The left list has three functions and the right list has three values, so the resulting list will have
nine elements. Every function in the left list is applied to every function in the right one. If we
have a list of functions that take two parameters, we can apply those functions between two lists.

ghci> [(+),(*)] <*> [1,2] <*> [3,4]

[4,5,5,6,3,4,6,8]

Because <*> is left-associative, [(+),(*)] <*> [1,2] happens first, resulting in a list that's the same
as [(1+),(2+),(1*),(2*)], because every function on the left gets applied to every value on the right.
Then, [(1+),(2+),(1*),(2*)] <*> [3,4] happens, which produces the final result.

Using the applicative style with lists is fun! Watch:

ghci> (++) <$> ["ha","heh","hmm"] <*> ["?","!","."]

["ha?","ha!","ha.","heh?","heh!","heh.","hmm?","hmm!","hmm."]

Again, see howwe used a normal function that takes two strings between two applicative functors
of strings just by inserting the appropriate applicative operators.

You can view lists as non-deterministic computations. A value like 100 or "what" can be viewed
as a deterministic computation that has only one result, whereas a list like [1,2,3] can be viewed
as a computation that can't decide on which result it wants to have, so it presents us with all of
the possible results. So when you do something like (+) <$> [1,2,3] <*> [4,5,6] , you can think
of it as adding together two non-deterministic computations with +, only to produce another
non-deterministic computation that's even less sure about its result.

Using the applicative style on lists is often a good replacement for list comprehensions. In the
second chapter, we wanted to see all the possible products of [2,5,10] and [8,10,11], so we did this:

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

We're just drawing from two lists and applying a function between every combination of elements.
This can be done in the applicative style as well:

ghci> (*) <$> [2,5,10] <*> [8,10,11]

[16,20,22,40,50,55,80,100,110]

This seems clearer to me, because it's easier to see that we're just calling * between two non-de-
terministic computations. If we wanted all possible products of those two lists that are more than
50, we'd just do:

ghci> filter (>50) $ (*) <$> [2,5,10] <*> [8,10,11]

[55,80,100,110]

It's easy to see how pure f <*> xs equals fmap f xs with lists. pure f is just [f] and [f] <*> xs will
apply every function in the left list to every value in the right one, but there's just one function in
the left list, so it's like mapping.

Another instance of Applicative that we've already encountered is IO. This is how the instance is
implemented:

189

instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

Since pure is all about putting a value in a minimal context that still holds
it as its result, it makes sense that pure is just return, because return does
exactly that; it makes an I/O action that doesn't do anything, it just yields
some value as its result, but it doesn't really do any I/O operations like
printing to the terminal or reading from a file.

If <*> were specialized for IO it would have a type of (<*>) : : IO (a ->
b) -> IO a -> IO b. It would take an I/O action that yields a function as
its result and another I/O action and create a new I/O action from those

two that, when performed, first performs the first one to get the function and then performs the
second one to get the value and then it would yield that function applied to the value as its result.
We used do syntax to implement it here. Remember, do syntax is about taking several I/O actions
and gluing them into one, which is exactly what we do here.

With Maybe and [], we could think of <*> as simply extracting a function from its left parameter
and then sort of applying it over the right one. With IO, extracting is still in the game, but now
we also have a notion of sequencing, because we're taking two I/O actions and we're sequencing,
or gluing, them into one. We have to extract the function from the first I/O action, but to extract
a result from an I/O action, it has to be performed.

Consider this:

myAction :: IO String

myAction = do

a <- getLine

b <- getLine

return $ a ++ b

This is an I/O action that will prompt the user for two lines and yield as its result those two lines
concatenated. We achieved it by gluing together two getLine I/O actions and a return, because
we wanted our new glued I/O action to hold the result of a ++ b. Another way of writing this
would be to use the applicative style.

myAction :: IO String

myAction = (++) <$> getLine <*> getLine

What we were doing before was making an I/O action that applied a function between the results
of two other I/O actions, and this is the same thing. Remember, getLine is an I/O action with the
type getLine : : IO String. When we use <*> between two applicative functors, the result is an
applicative functor, so this all makes sense.

If we regress to the box analogy, we can imagine getLine as a box that will go out into the real
world and fetch us a string. Doing (++) <$> getLine <*> getLine makes a new, bigger box that
sends those two boxes out to fetch lines from the terminal and then presents the concatenation
of those two lines as its result.

190

The type of the expression (++) <$> getLine <*> getLine is IO String, which means that this
expression is a completely normal I/O action like any other, which also holds a result value inside
it, just like other I/O actions. That's why we can do stuff like:

main = do

a <- (++) <$> getLine <*> getLine

putStrLn $ "The two lines concatenated turn out to be: " ++ a

If you ever find yourself binding some I/O actions to names and then calling some function on
them and presenting that as the result by using return, consider using the applicative style because
it's arguably a bit more concise and terse.

Another instance of Applicative is (->) r, so functions. They are rarely used with the applicative
style outside of code golf, but they're still interesting as applicatives, so let's take a look at how the
function instance is implemented.

Note: If you're confused aboutwhat (->) rmeans, check out the previous sectionwherewe explain
how (->) r is a functor.

instance Applicative ((->) r) where

pure x = (_ -> x)

f <*> g = \x -> f x (g x)

When we wrap a value into an applicative functor with pure, the result it yields always has to
be that value. A minimal default context that still yields that value as a result. That's why in
the function instance implementation, pure takes a value and creates a function that ignores its
parameter and always returns that value. If we look at the type for pure, but specialized for the
(->) r instance, it's pure :: a -> (r -> a).

ghci> (pure 3) "blah"

3

Because of currying, function application is left-associative, so we can omit the parentheses.

ghci> pure 3 "blah"

3

The instance implementation for <*> is a bit cryptic, so it's best if we just take a look at how to
use functions as applicative functors in the applicative style.

ghci> :t (+) <$> (+3) <*> (*100)

(+) <$> (+3) <*> (*100) :: (Num a) => a -> a

ghci> (+) <$> (+3) <*> (*100) $ 5

508

Calling <*> with two applicative functors results in an applicative functor, so if we use it on two
functions, we get back a function. So what goes on here? When we do (+) <$> (+3) <*> (*100),
we're making a function that will use + on the results of (+3) and (*100) and return that. To
demonstrate on a real example, when we did (+) <$> (+3) <*> (*100) $ 5, the 5 first got applied
to (+3) and (*100), resulting in 8 and 500. Then, + gets called with 8 and 500, resulting in 508.

ghci> (\x y z -> [x,y,z]) <$> (+3) <*> (*2) <*> (/2) $ 5

[8.0,10.0,2.5]

191

Same here. We create a function that will call
the function \x y z -> [x,y,z] with the eventual
results from (+3), (*2) and (/2). The 5 gets fed
to each of the three functions and then \x y z
-> [x, y, z] gets called with those results.

You can think of functions as boxes that con-
tain their eventual results, so doing k <$> f
<*> g creates a function that will call k with
the eventual results from f and g. When we do
something like (+) <$> Just 3 <*> Just 5, we're
using + on values that might or might not be
there, which also results in a value that might or might not be there. When we do (+) <$> (+10)
<*> (+5), we're using + on the future return values of (+10) and (+5) and the result is also some-
thing that will produce a value only when called with a parameter.

We don't often use functions as applicatives, but this is still really interesting. It's not very im-
portant that you get how the (->) r instance for Applicative works, so don't despair if you're not
getting this right now. Try playingwith the applicative style and functions to build up an intuition
for functions as applicatives.

An instance of Applicative that we haven't encountered yet is ZipList, and it lives in Control.Ap-
plicative.

It turns out there are actually more ways for lists to be applicative functors. One way is the one we
already covered, which says that calling <*> with a list of functions and a list of values results in
a list which has all the possible combinations of applying functions from the left list to the values
in the right list. If we do [(+3),(*2)] <*> [1,2], (+3) will be applied to both 1 and 2 and (*2) will
also be applied to both 1 and 2, resulting in a list that has four elements, namely [4,5,2,4].

However, [(+3) , (*2)] <*> [1,2] could also work in such a way that the first function in the left
list gets applied to the first value in the right one, the second function gets applied to the second
value, and so on. That would result in a list with two values, namely [4,4]. You could look at it as
[1 + 3, 2 * 2].

Because one type can't have two instances for the same typeclass, the ZipList a type was intro-
duced, which has one constructor ZipList that has just one field, and that field is a list. Here's the
instance:

instance Applicative ZipList where

pure x = ZipList (repeat x)

ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

<*> does just what we said. It applies the first function to the first value, the second function to
the second value, etc. This is done with zipWith (\f x -> f x) fs xs. Because of how zipWith works,
the resulting list will be as long as the shorter of the two lists.

pure is also interesting here. It takes a value and puts it in a list that just has that value repeating
indefinitely. pure "haha" results in ZipList (["haha","haha","haha".... This might be a bit confusing
since we said that pure should put a value in a minimal context that still yields that value. And
you might be thinking that an infinite list of something is hardly minimal. But it makes sense
with zip lists, because it has to produce the value on every position. This also satisfies the law that
pure f <*> xs should equal fmap f xs. If pure 3 just returned ZipList [3] , pure (*2) <*> ZipList

192

[1,5,10] would result in ZipList [2], because the resulting list of two zipped lists has the length of
the shorter of the two. If we zip a finite list with an infinite list, the length of the resulting list will
always be equal to the length of the finite list.

So how do zip lists work in an applicative style? Let's see. Oh, the ZipList a type doesn't have a
Show instance, so we have to use the getZipList function to extract a raw list out of a zip list.

ghci> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList [100,100,100]

[101,102,103]

ghci> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList [100,100..]

[101,102,103]

ghci> getZipList $ max <$> ZipList [1,2,3,4,5,3] <*> ZipList [5,3,1,2]

[5,3,3,4]

ghci> getZipList $ (,,) <$> ZipList "dog" <*> ZipList "cat" <*> ZipList "rat"

[('d','c','r'),('o','a','a'),('g','t','t')]

Note: The (,,) function is the same as \x y z -> (x,y,z). Also, the (,) function is the same as \x y ->
(x,y).

Aside from zipWith, the standard library has functions such as zipWith3, zipWith4, all the way
up to 7. zipWith takes a function that takes two parameters and zips two lists with it. zipWith3
takes a function that takes three parameters and zips three lists with it, and so on. By using zip
lists with an applicative style, we don't have to have a separate zip function for each number of
lists that we want to zip together. We just use the applicative style to zip together an arbitrary
amount of lists with a function, and that's pretty cool.

Control.Applicative defines a function that's called liftA2, which has a type of liftA2 ::(Applicative
f) => (a -> b -> c) -> f a -> f b -> f c . It's defined like this:

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = f <$> a <*> b

Nothing special, it just applies a function between two applicatives, hiding the applicative style
that we've become familiar with. The reason we're looking at it is because it clearly showcases why
applicative functors are more powerful than just ordinary functors. With ordinary functors, we
can just map functions over one functor. But with applicative functors, we can apply a function
between several functors. It's also interesting to look at this function's type as (a -> b -> c) -> (f a
-> f b -> f c). When we look at it like this, we can say that liftA2 takes a normal binary function
and promotes it to a function that operates on two functors.

Here's an interesting concept: we can take two applicative functors and combine them into one
applicative functor that has inside it the results of those two applicative functors in a list. For
instance, we have Just 3 and Just 4. Let's assume that the second one has a singleton list inside it,
because that's really easy to achieve:

ghci> fmap (\x -> [x]) (Just 4)

Just [4]

OK, so let's say we have Just 3 and Just [4]. How do we get Just [3,4]? Easy.

ghci> liftA2 (:) (Just 3) (Just [4])

Just [3,4]

193

ghci> (:) <$> Just 3 <*> Just [4]

Just [3,4]

Remember, : is a function that takes an element and a list and returns a new list with that element
at the beginning. Now that we have Just [3,4], could we combine that with Just 2 to produce Just
[2,3,4]? Of course we could. It seems that we can combine any amount of applicatives into one
applicative that has a list of the results of those applicatives inside it. Let's try implementing a
function that takes a list of applicatives and returns an applicative that has a list as its result value.
We'll call it sequenceA.

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA [] = pure []

sequenceA (x:xs) = (:) <$> x <*> sequenceA xs

Ah, recursion! First, we look at the type. It will transform a list of applicatives into an applicative
with a list. From that, we can lay some groundwork for an edge condition. If we want to turn
an empty list into an applicative with a list of results, well, we just put an empty list in a default
context. Now comes the recursion. If we have a list with a head and a tail (remember, x is an
applicative and xs is a list of them), we call sequenceA on the tail, which results in an applicative
with a list. Then, we just prepend the value inside the applicative x into that applicative with a
list, and that's it!

So if we do sequenceA [Just 1, Just 2], that's (:) <$> Just 1 <*> sequenceA [Just 2] . That equals (:)
<$> Just 1 <*>((:) <$> Just 2 <*> sequenceA[]). Ah! We know that sequenceA[] ends up as being
Just [], so this expression is now (:) <$> Just 1 <*> ((:) <$> Just 2 <*> Just []), which is (:) <$> Just
1 <*> Just [2], which is Just [1,2]!

Another way to implement sequenceA is with a fold. Remember, prettymuch any functionwhere
we go over a list element by element and accumulate a result along the way can be implemented
with a fold.

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA = foldr (liftA2 (:)) (pure [])

We approach the list from the right and start off with an accumulator value of pure[]. We do liftA2
(:) between the accumulator and the last element of the list, which results in an applicative that
has a singleton in it. Then we do liftA2(:) with the now last element and the current accumulator
and so on, until we're left with just the accumulator, which holds a list of the results of all the
applicatives.

Let's give our function a whirl on some applicatives.

ghci> sequenceA [Just 3, Just 2, Just 1]

Just [3,2,1]

ghci> sequenceA [Just 3, Nothing, Just 1]

Nothing

ghci> sequenceA [(+3),(+2),(+1)] 3

[6,5,4]

ghci> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> sequenceA [[1,2,3],[4,5,6],[3,4,4],[]]

[]

194

Ah! Pretty cool. When used on Maybe values, sequenceA creates a Maybe value with all the
results inside it as a list. If one of the values was Nothing, then the result is also a Nothing. This
is cool when you have a list of Maybe values and you're interested in the values only if none of
them is a Nothing.

When used with functions, sequenceA takes a list of functions and returns a function that returns
a list. In our example, we made a function that took a number as a parameter and applied it to
each function in the list and then returned a list of results. sequenceA [(+3),(+2),(+1)] 3 will call
(+3) with 3, (+2) with 3 and (+1) with 3 and present all those results as a list.

Doing (+) <$> (+3) <*> (*2) will create a function that takes a parameter, feeds it to both (+3)
and (*2) and then calls + with those two results. In the same vein, it makes sense that sequenceA
[(+3),(*2)] makes a function that takes a parameter and feeds it to all of the functions in the list.
Instead of calling + with the results of the functions, a combination of : and pure [] is used to
gather those results in a list, which is the result of that function.

Using sequenceA is cool when we have a list of functions and we want to feed the same input to
all of them and then view the list of results. For instance, we have a number and we're wondering
whether it satisfies all of the predicates in a list. One way to do that would be like so:

ghci> map (\f -> f 7) [(>4),(<10),odd]

[True,True,True]

ghci> and $ map (\f -> f 7) [(>4),(<10),odd]

True

Remember, and takes a list of booleans and returns True if they're all True. Another way to
achieve the same thing would be with sequenceA:

ghci> sequenceA [(>4),(<10),odd] 7

[True,True,True]

ghci> and $ sequenceA [(>4),(<10),odd] 7

True

sequenceA [(>4) , (<10) ,odd] creates a function that will take a number and feed it to all of the
predicates in [(>4),(<10),odd] and return a list of booleans. It turns a list with the type (Num a)
=> [a -> Bool] into a function with the type (Num a) => a -> [Bool]. Pretty neat, huh?

Because lists are homogenous, all the functions in the list have to be functions of the same type,
of course. You can't have a list like [ord,(+3)], because ord takes a character and returns a number,
whereas (+3) takes a number and returns a number.

When used with [], sequenceA takes a list of lists and returns a list of lists. Hmm, interesting. It
actually creates lists that have all possible combinations of their elements. For illustration, here's
the above done with sequenceA and then done with a list comprehension:

ghci> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> [[x,y] | x <- [1,2,3], y <- [4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> sequenceA [[1,2],[3,4]]

[[1,3],[1,4],[2,3],[2,4]]

ghci> [[x,y] | x <- [1,2], y <- [3,4]]

[[1,3],[1,4],[2,3],[2,4]]

195

ghci> sequenceA [[1,2],[3,4],[5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

ghci> [[x,y,z] | x <- [1,2], y <- [3,4], z <- [5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

This might be a bit hard to grasp, but if you play with it for a while, you'll see how it works. Let's
say that we're doing sequenceA[[1,2],[3,4]]. To see how this happens, let's use the sequenceA (x:xs)
=(:) <$> x <*> sequenceA xs definition of sequenceA and the edge condition sequenceA[] = pure
[]. You don't have to follow this evaluation, but it might help you if have trouble imagining how
sequenceA works on lists of lists, because it can be a bit mind-bending.

• We start off with sequenceA [[1,2],[3,4]]

• That evaluates to (:) <$> [1,2] <*> sequenceA [[3,4]]

• Evaluating the inner sequenceA further, we get (:) <$> [1,2] <*> ((:) <$> [3,4] <*> sequenceA
[])

• We've reached the edge condition, so this is now (:) <$> [1,2] <*> ((:) <$> [3,4] <*> [[]])

• Now, we evaluate the(:) <$> [3,4] <*>[[]] part, which will use : with every possible value in the
left list (possible values are 3 and 4) with every possible value on the right list (only possible
value is []), which results in [3:[], 4:[]], which is [[3],[4]]. So now we have(:) <$> [1,2] <*>[[3],[4]]

• Now, : is used with every possible value from the left list (1 and 2) with every possible value
in the right list ([3] and [4]), which results in [1:[3], 1:[4], 2:[3], 2:[4]], which is[[1,3],[1,4],[2,3],[2,4]

Doing (+) <$> [1,2] <*> [4,5,6]results in a non-deterministic computation x + y where x takes on
every value from [1,2] and y takes on every value from [4,5,6]. We represent that as a list which
holds all of the possible results. Similarly, when we do sequence [[1,2],[3,4],[5,6],[7,8]], the result
is a non-deterministic computation [x,y,z,w], where x takes on every value from [1,2], y takes on
every value from [3,4] and so on. To represent the result of that non-deterministic computation,
we use a list, where each element in the list is one possible list. That's why the result is a list of
lists.

When usedwith I/O actions, sequenceA is the same thing as sequence! It takes a list of I/O actions
and returns an I/O action that will perform each of those actions and have as its result a list of the
results of those I/O actions. That's because to turn an [IO a] value into an IO [a] value, to make an
I/O action that yields a list of results when performed, all those I/O actions have to be sequenced
so that they're then performed one after the other when evaluation is forced. You can't get the
result of an I/O action without performing it.

ghci> sequenceA [getLine, getLine, getLine]

heyh

ho

woo

["heyh","ho","woo"]

Like normal functors, applicative functors come with a few laws. The most important one is the
one that we already mentioned, namely that pure f <*> x = fmap f x holds. As an exercise, you
can prove this law for some of the applicative functors that we've met in this chapter.The other
functor laws are:

196

• pure id <*> v = v

• pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• pure f <*> pure x = pure (f x)

• u <*> pure y = pure ($ y) <*> u

We won't go over them in detail right now because that would take up a lot of pages and it would
probably be kind of boring, but if you're up to the task, you can take a closer look at them and see
if they hold for some of the instances.

In conclusion, applicative functors aren't just interesting, they're also useful, because they allow us
to combine different computations, such as I/O computations, non-deterministic computations,
computations that might have failed, etc. by using the applicative style. Just by using <$> and
<*> we can use normal functions to uniformly operate on any number of applicative functors and
take advantage of the semantics of each one.

11.3 The newtype keyword

So far, we've learned how to make our own algebraic data types by using the
data keyword. We've also learned how to give existing types synonyms with
the type keyword. In this section, we'll be taking a look at how to make new
types out of existing data types by using the newtype keyword and why we'd
want to do that in the first place.

In the previous section, we saw that there are actually more ways for the list
type to be an applicative functor. One way is to have <*> take every function
out of the list that is its left parameter and apply it to every value in the list that
is on the right, resulting in every possible combination of applying a function
from the left list to a value in the right list.

ghci> [(+1),(*100),(*5)] <*> [1,2,3]

[2,3,4,100,200,300,5,10,15]

The second way is to take the first function on the left side of <*> and apply it to the first value
on the right, then take the second function from the list on the left side and apply it to the second
value on the right, and so on. Ultimately, it's kind of like zipping the two lists together. But lists
are already an instance of Applicative, so how did we also make lists an instance of Applicative
in this second way? If you remember, we said that the ZipList a type was introduced for this
reason, which has one value constructor, ZipList, that has just one field. We put the list that we're
wrapping in that field. Then, ZipList was made an instance of Applicative, so that when we want
to use lists as applicatives in the zipping manner, we just wrap them with the ZipList constructor
and then once we're done, unwrap them with getZipList:

ghci> getZipList $ ZipList [(+1),(*100),(*5)] <*> ZipList [1,2,3]

[2,200,15]

So, what does this have to do with this newtype keyword? Well, think about how we might write
the data declaration for our ZipList a type. One way would be to do it like so:

data ZipList a = ZipList [a]

197

A type that has just one value constructor and that value constructor has just one field that is a list
of things. We might also want to use record syntax so that we automatically get a function that
extracts a list from a ZipList:

data ZipList a = ZipList { getZipList :: [a] }

This looks fine and would actually work pretty well. We had two ways of making an existing type
an instance of a type class, so we used the data keyword to just wrap that type into another type
and made the other type an instance in the second way.

The newtype keyword in Haskell is made exactly for these cases when we want to just take one
type and wrap it in something to present it as another type. In the actual libraries, ZipList a is
defined like this:

newtype ZipList a = ZipList { getZipList :: [a] }

Instead of the data keyword, the newtype keyword is used. Now why is that? Well for one, new-
type is faster. If you use the data keyword to wrap a type, there's some overhead to all that wrap-
ping and unwrapping when your program is running. But if you use newtype, Haskell knows that
you're just using it to wrap an existing type into a new type (hence the name), because you want it
to be the same internally but have a different type. With that in mind, Haskell can get rid of the
wrapping and unwrapping once it resolves which value is of what type.

So why not just use newtype all the time instead of data then? Well, when you make a new type
from an existing type by using the newtype keyword, you can only have one value constructor
and that value constructor can only have one field. But with data, you can make data types that
have several value constructors and each constructor can have zero or more fields:

data Profession = Fighter | Archer | Accountant

data Race = Human | Elf | Orc | Goblin

data PlayerCharacter = PlayerCharacter Race Profession

When using newtype, you're restricted to just one constructor with one field.

We can also use the deriving keyword with newtype just like we would with data. We can derive
instances for Eq, Ord, Enum, Bounded, Show and Read. If we derive the instance for a type class,
the type that we're wrapping has to be in that type class to begin with. It makes sense, because
newtype just wraps an existing type. So now if we do the following, we can print and equate values
of our new type:

newtype CharList = CharList { getCharList :: [Char] } deriving (Eq, Show)

Let's give that a go:

ghci> CharList "this will be shown!"

CharList {getCharList = "this will be shown!"}

ghci> CharList "benny" == CharList "benny"

True

ghci> CharList "benny" == CharList "oisters"

198

In this particular newtype, the value constructor has the following type:

CharList :: [Char] -> CharList

It takes a [Char] value, such as "my sharona" and returns a CharList value. From the above exam-
ples where we used the CharList value constructor, we see that really is the case. Conversely, the
getCharList function, which was generated for us because we used record syntax in our newtype,
has this type:

getCharList :: CharList -> [Char]

It takes a CharList value and converts it to a [Char] value. You can think of this as wrapping and
unwrapping, but you can also think of it as converting values from one type to the other.

Using newtype to make type class instances

Many times, we want to make our types instances of certain type classes, but the type parameters
just don't match up for what we want to do. It's easy to make Maybe an instance of Functor,
because the Functor type class is defined like this:

class Functor f where

fmap :: (a -> b) -> f a -> f b

So we just start out with:

instance Functor Maybe where

And then implement fmap. All the type parameters add up because the Maybe takes the place of f
in the definition of the Functor type class and so if we look at fmap like it only worked on Maybe,
it ends up behaving like:

fmap :: (a -> b) -> Maybe a -> Maybe b

Isn't that just peachy? Now what if we wanted to make the
tuple an instance of Functor in such away that whenwe fmap
a function over a tuple, it gets applied to the first component
of the tuple? That way, doing fmap (+3)(1,1) would result in
(4,1) . It turns out that writing the instance for that is kind
of hard. With Maybe, we just say instance Functor Maybe
where because only type constructors that take exactly one
parameter can be made an instance of Functor. But it seems
like there's no way to do something like that with (a,b) so
that the type parameter a ends up being the one that changes
when we use fmap. To get around this, we can newtype our
tuple in such away that the second type parameter represents
the type of the first component in the tuple:

newtype Pair b a = Pair { getPair :: (a,b) }

And now, we can make it an instance of Functor so that the function is mapped over the first
component:

199

instance Functor (Pair c) where

fmap f (Pair (x,y)) = Pair (f x, y)

As you can see, we can pattern match on types defined with newtype. We pattern match to get
the underlying tuple, then we apply the function f to the first component in the tuple and then we
use the Pair value constructor to convert the tuple back to our Pair b a. If we imagine what the
type fmap would be if it only worked on our new pairs, it would be:

fmap :: (a -> b) -> Pair c a -> Pair c b

Again, we said instance Functor (Pair c) where and so Pair c took the place of the f in the type
class definition for Functor:

class Functor f where

fmap :: (a -> b) -> f a -> f b

So now, if we convert a tuple into a Pair b a, we can use fmap over it and the function will be
mapped over the first component:

ghci> getPair $ fmap (*100) (Pair (2,3))

(200,3)

ghci> getPair $ fmap reverse (Pair ("london calling", 3))

("gnillac nodnol",3)

On newtype laziness

We mentioned that newtype is usually faster than data. The only thing that can be done with
newtype is turning an existing type into a new type, so internally, Haskell can represent the values
of types defined with newtype just like the original ones, only it has to keep in mind that the their
types are now distinct. This fact means that not only is newtype faster, it's also lazier. Let's take a
look at what this means.

Like we've said before, Haskell is lazy by default, which means that only when we try to actu-
ally print the results of our functions will any computation take place. Furthemore, only those
computations that are necessary for our function to tell us the result will get carried out. The
undefined value in Haskell represents an erronous computation. If we try to evaluate it (that is,
force Haskell to actually compute it) by printing it to the terminal, Haskell will throw a hissy fit
(technically referred to as an exception):

ghci> undefined

*** Exception: Prelude.undefined

However, if we make a list that has some undefined values in it but request only the head of the
list, which is not undefined, everything will go smoothly because Haskell doesn't really need to
evaluate any other elements in a list if we only want to see what the first element is:

ghci> head [3,4,5,undefined,2,undefined]

3

\starttyping

Now consider the following type:

200

\stoptyping

data CoolBool = CoolBool { getCoolBool :: Bool }

It's your run-of-the-mill algebraic data type that was defined with the data keyword. It has one
value constructor, which has one field whose type is Bool. Let's make a function that pattern
matches on a CoolBool and returns the value "hello" regardless of whether the Bool inside the
CoolBool was True or False:

helloMe :: CoolBool -> String

helloMe (CoolBool _) = "hello"

Instead of applying this function to a normal CoolBool, let's throw it a curveball and apply it to
undefined!

ghci> helloMe undefined

"*** Exception: Prelude.undefined

Yikes! An exception! Now why did this exception happen? Types defined with the data keyword
can have multiple value constructors (even though CoolBool only has one). So in order to see if
the value given to our function conforms to the (CoolBool _) pattern, Haskell has to evaluate the
value just enough to see which value constructor was used when we made the value. And when
we try to evaluate an undefined value, even a little, an exception is thrown.

Instead of using the data keyword for CoolBool, let's try using newtype:

newtype CoolBool = CoolBool { getCoolBool :: Bool }

We don't have to change our helloMe function, because the pattern matching syntax is the same
if you use newtype or data to define your type. Let's do the same thing here and apply helloMe to
an undefined value:

ghci> helloMe undefined

"hello"

It worked! Hmmm, why is that? Well, like we've said, when we use new-
type, Haskell can internally represent the values of the new type in the
sameway as the original values. It doesn't have to add another box around
them, it just has to be aware of the values being of different types. And
because Haskell knows that types made with the newtype keyword can
only have one constructor, it doesn't have to evaluate the value passed to
the function to make sure that it conforms to the (CoolBool _) pattern
because newtype types can only have one possible value constructor and
one field!

This difference in behavior may seem trivial, but it's actually pretty im-
portant because it helps us realize that even though types defined with
data and newtype behave similarly from the programmer's point of view because they both have
value constructors and fields, they are actually two different mechanisms. Whereas data can be
used to make your own types from scratch, newtype is for making a completely new type out of
an existing type. Patternmatching on newtype values isn't like taking something out of a box (like
it is with data), it's more about making a direct conversion from one type to another.

201

type vs. newtype vs. data

At this point, you may be a bit confused about what exactly the difference between type, data and
newtype is, so let's refresh our memory a bit.

The type keyword is for making type synonyms. What that means is that we just give another
name to an already existing type so that the type is easier to refer to. Say we did the following:

type IntList = [Int]

All this does is to allow us to refer to the [Int] type as IntList. They can be used interchangeably.
We don't get an IntList value constructor or anything like that. Because [Int] and IntList are only
two ways to refer to the same type, it doesn't matter which name we use in our type annotations:

ghci> ([1,2,3] :: IntList) ++ ([1,2,3] :: [Int])

[1,2,3,1,2,3]

We use type synonyms when we want to make our type signatures more descriptive by giving
types names that tell us something about their purpose in the context of the functions where
they're being used. For instance, when we used an association list of type [(String,String)] to
represent a phone book, we gave it the type synonym of PhoneBook so that the type signatures of
our functions were easier to read.

The newtype keyword is for taking existing types and wrapping them in new types, mostly so
that it's easier to make them instances of certain type classes. When we use newtype to wrap an
existing type, the type that we get is separate from the original type. If we make the following
newtype:

newtype CharList = CharList { getCharList :: [Char] }

We can't use ++ to put together a CharList and a list of type [Char] . We can't even use ++ to
put together two CharLists, because ++ works only on lists and the CharList type isn't a list, even
though it could be said that it contains one. We can, however, convert two CharLists to lists, ++
them and then convert that back to a CharList.

When we use record syntax in our newtype declarations, we get functions for converting between
the new type and the original type: namely the value constructor of our newtype and the function
for extracting the value in its field. The new type also isn't automatically made an instance of the
type classes that the original type belongs to, so we have to derive or manually write them.

In practice, you can think of newtype declarations as data declarations that can only have one
constructor and one field. If you catch yourself writing such a data declaration, consider using
newtype.

The data keyword is for making your own data types and with them, you can go hog wild. They
can have as many constructors and fields as you wish and can be used to implement any algebraic
data type by yourself. Everything from lists and Maybe-like types to trees.

If you just want your type signatures to look cleaner and be more descriptive, you probably want
type synonyms. If you want to take an existing type and wrap it in a new type in order to make
it an instance of a type class, chances are you're looking for a newtype. And if you want to make
something completely new, odds are good that you're looking for the data keyword.

202

11.4 Monoids

Type classes in Haskell are used to present an
interface for types that have some behavior in
common. We started out with simple type
classes like Eq, which is for types whose values
can be equated, and Ord, which is for things
that can be put in an order and then moved
on to more interesting ones, like Functor and
Applicative.

When we make a type, we think about which
behaviors it supports, i.e. what it can act like
and then based on that we decide which type
classes to make it an instance of. If it makes
sense for values of our type to be equated, we
make it an instance of the Eq type class. If we
see that our type is some kind of functor, we
make it an instance of Functor, and so on.

Now consider the following: * is a function that takes two numbers and multiplies them. If we
multiply some number with a 1, the result is always equal to that number. It doesn't matter if we
do 1 * x or x * 1, the result is always x. Similarly, ++ is also a function which takes two things and
returns a third. Only instead of multiplying numbers, it takes two lists and concatenates them.
And much like *, it also has a certain value which doesn't change the other one when used with
++. That value is the empty list: [].

ghci> 4 * 1

4

ghci> 1 * 9

9

ghci> [1,2,3] ++ []

[1,2,3]

ghci> [] ++ [0.5, 2.5]

[0.5,2.5]

It seems that both * together with 1 and ++ along with [] share some common properties:

• The function takes two parameters.

• The parameters and the returned value have the same type.

• There exists such a value that doesn't change other values when used with the binary function.

There's another thing that these two operations have in common that may not be as obvious as
our previous observations: when we have three or more values and we want to use the binary
function to reduce them to a single result, the order in which we apply the binary function to the
values doesn't matter. It doesn't matter if we do (3 * 4) * 5 or 3 * (4 * 5). Either way, the result is
60. The same goes for ++:

203

ghci> (3 * 2) * (8 * 5)

240

ghci> 3 * (2 * (8 * 5))

240

ghci> "la" ++ ("di" ++ "da")

"ladida"

ghci> ("la" ++ "di") ++ "da"

"ladida"

We call this property associativity. * is associative, and so is ++, but -, for example, is not. The
expressions (5 - 3) - 4 and 5 - (3 - 4) result in different numbers.

By noticing and writing down these properties, we have chanced upon monoids! A monoid is
when you have an associative binary function and a value which acts as an identity with respect to
that function. When something acts as an identity with respect to a function, it means that when
called with that function and some other value, the result is always equal to that other value. 1
is the identity with respect to * and [] is the identity with respect to ++. There are a lot of other
monoids to be found in the world of Haskell, which is why the Monoid type class exists. It's for
types which can act like monoids. Let's see how the type class is defined:

class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

mconcat = foldr mappend mempty

The Monoid type class is defined in import Data.Monoid. Let's take
some time and get properly acquainted with it.

First of all, we see that only concrete types can be made instances of
Monoid, because the m in the type class definition doesn't take any
type parameters. This is different fromFunctor andApplicative, which
require their instances to be type constructors which take one parame-
ter.

The first function is mempty. It's not really a function, since it doesn't
take parameters, so it's a polymorphic constant, kind of likeminBound
from Bounded. mempty represents the identity value for a particular
monoid.

Next up, we have mappend, which, as you've probably guessed, is the binary function. It takes
two values of the same type and returns a value of that type as well. It's worth noting that the
decision to name mappend as it's named was kind of unfortunate, because it implies that we're
appending two things in some way. While ++ does take two lists and append one to the other, *
doesn't really do any appending, it just multiplies two numbers together. When we meet other
instances of Monoid, we'll see that most of them don't append values either, so avoid thinking in
terms of appending and just think in terms of mappend being a binary function that takes two
monoid values and returns a third.

The last function in this type class definition is mconcat. It takes a list of monoid values and
reduces them to a single value by doing mappend between the list's elements. It has a default
implementation, which just takes mempty as a starting value and folds the list from the right

204

with mappend. Because the default implementation is fine for most instances, we won't concern
ourselves with mconcat too much from now on. When making a type an instance of Monoid, it
suffices to just implementmempty andmappend. The reasonmconcat is there at all is because for
some instances, theremight be amore efficient way to implementmconcat, but formost instances
the default implementation is just fine.

Before moving on to specific instances of Monoid, let's take a brief look at the monoid laws. We
mentioned that there has to be a value that acts as the identity with respect to the binary function
and that the binary function has to be associative. It's possible to make instances of Monoid
that don't follow these rules, but such instances are of no use to anyone because when using the
Monoid type class, we rely on its instances acting like monoids. Otherwise, what's the point?
That's why when making instances, we have to make sure they follow these laws:

• mempty `mappend` x = x

• x `mappend` mempty = x

• (x `mappend` y) `mappend` z = x `mappend` (y `mappend` z)

The first two state that mempty has to act as the identity with respect to mappend and the third
says that mappend has to be associative i.e. that it the order in which we use mappend to reduce
several monoid values into one doesn't matter. Haskell doesn't enforce these laws, so we as the
programmer have to be careful that our instances do indeed obey them.

Lists are monoids

Yes, lists are monoids! Like we've seen, the ++ function and the empty list [] form a monoid. The
instance is very simple:

instance Monoid [a] where

mempty = []

mappend = (++)

Lists are an instance of the Monoid type class regardless of the type of the elements they hold.
Notice that we wrote instance Monoid [a] and not instance Monoid [], because Monoid requires
a concrete type for an instance.

Giving this a test run, we encounter no surprises:

ghci> [1,2,3] `mappend` [4,5,6]

[1,2,3,4,5,6]

ghci> ("one" `mappend` "two") `mappend` "tree"

"onetwotree"

ghci> "one" `mappend` ("two" `mappend` "tree")

"onetwotree"

ghci> "one" `mappend` "two" `mappend` "tree"

"onetwotree"

ghci> "pang" `mappend` mempty

"pang"

ghci> mconcat [[1,2],[3,6],[9]]

[1,2,3,6,9]

ghci> mempty :: [a]

[]

205

Notice that in the last line, we had to write an explicit type annotation,
because if we just did mempty, GHCi wouldn't know which instance to
use, so we had to say we want the list instance. We were able to use the
general type of [a] (as opposed to specifying [Int] or [String]) because
the empty list can act as if it contains any type.

Because mconcat has a default implementation, we get it for free when
wemake something an instance ofMonoid. In the case of the list, mcon-
cat turns out to be just concat. It takes a list of lists and flattens it, because
that's the equivalent of doing ++ between all the adjecent lists in a list.

Themonoid laws do indeed hold for the list instance. Whenwe have several lists andwemappend
(or ++) them together, it doesn't matter which ones we do first, because they're just joined at the
ends anyway. Also, the empty list acts as the identity so all is well. Notice that monoids don't
require that a `mappend` b be equal to b `mappend` a. In the case of the list, they clearly aren't:

ghci> "one" `mappend` "two"

"onetwo"

ghci> "two" `mappend` "one"

"twoone"

And that's okay. The fact that for multiplication 3 * 5 and 5 * 3 are the same is just a property of
multiplication, but it doesn't hold for all (and indeed, most) monoids.

Product and Sum

We already examined one way for numbers to be considered monoids. Just have the binary func-
tion be * and the identity value 1. It turns out that that's not the only way for numbers to be
monoids. Another way is to have the binary function be + and the identity value 0:

ghci> 0 + 4

4

ghci> 5 + 0

5

ghci> (1 + 3) + 5

9

ghci> 1 + (3 + 5)

9

The monoid laws hold, because if you add 0 to any number, the result is that number. And addi-
tion is also associative, so we get no problems there. So now that there are two equally valid ways
for numbers to be monoids, which way do choose? Well, we don't have to. Remember, when
there are several ways for some type to be an instance of the same type class, we can wrap that
type in a newtype and then make the new type an instance of the type class in a different way. We
can have our cake and eat it too.

TheData.Monoidmodule exports two types for this, namely Product and Sum. Product is defined
like this:

newtype Product a = Product { getProduct :: a }

deriving (Eq, Ord, Read, Show, Bounded)

206

Simple, just a newtype wrapper with one type parameter along with some derived instances. Its
instance for Monoid goes a little something like this:

instance Num a => Monoid (Product a) where

mempty = Product 1

Product x `mappend` Product y = Product (x * y)

mempty is just 1 wrapped in a Product constructor. mappend pattern matches on the Product
constructor, multiplies the two numbers and then wraps the resulting number back. As you can
see, there's a Num a class constraint. So this means that Product a is an instance of Monoid for
all a's that are already an instance of Num. To use Producta a as a monoid, we have to do some
newtype wrapping and unwrapping:

ghci> getProduct $ Product 3 `mappend` Product 9

27

ghci> getProduct $ Product 3 `mappend` mempty

3

ghci> getProduct $ Product 3 `mappend` Product 4 `mappend` Product 2

24

ghci> getProduct . mconcat . map Product $ [3,4,2]

24

This is nice as a showcase of the Monoid type class, but no one in their right mind would use this
way of multiplying numbers instead of just writing 3 * 9 and 3 * 1. But a bit later, we'll see how
these Monoid instances that may seem trivial at this time can come in handy.

Sum is defined like Product and the instance is similar as well. We use it in the same way:

ghci> getSum $ Sum 2 `mappend` Sum 9

11

ghci> getSum $ mempty `mappend` Sum 3

3

ghci> getSum . mconcat . map Sum $ [1,2,3]

6

Any and All

Another type which can act like a monoid in two distinct but equally valid ways is Bool. The first
way is to have the or function -- act as the binary function along with False as the identity value.
The way or works in logic is that if any of its two parameters is True, it returns True, otherwise
it returns False. So if we use False as the identity value, it will return False when or-ed with False
and True when or-ed with True. The Any newtype constructor is an instance of Monoid in this
fashion. It's defined like this:

newtype Any = Any { getAny :: Bool }

deriving (Eq, Ord, Read, Show, Bounded)

Its instance looks goes like so:

instance Monoid Any where

mempty = Any False

Any x `mappend` Any y = Any (x || y)

207

The reason it's called Any is because x `mappend` y will be True if any one of those two is True.
Even if three or more Any wrapped Bools are mappended together, the result will hold True if
any of them are True:

ghci> getAny $ Any True `mappend` Any False

True

ghci> getAny $ mempty `mappend` Any True

True

ghci> getAny . mconcat . map Any $ [False, False, False, True]

True

ghci> getAny $ mempty `mappend` mempty

False

The other way for Bool to be an instance of Monoid is to kind of do the opposite: have && be the
binary function and then make True the identity value. Logical and will return True only if both
of its parameters are True. This is the newtype declaration, nothing fancy:

newtype All = All { getAll :: Bool }

deriving (Eq, Ord, Read, Show, Bounded)

And this is the instance:

instance Monoid All where

mempty = All True

All x `mappend` All y = All (x && y)

When we mappend values of the All type, the result will be True only if all the values used in the
mappend operations are True:

ghci> getAll $ mempty `mappend` All True

True

ghci> getAll $ mempty `mappend` All False

False

ghci> getAll . mconcat . map All $ [True, True, True]

True

ghci> getAll . mconcat . map All $ [True, True, False]

False

Just like with multiplication and addition, we usually explicitly state the binary functions instead
of wrapping them in newtypes and then using mappend and mempty. mconcat seems useful for
Any and All, but usually it's easier to use the or and and functions, which take lists of Bools and
return True if any of them are True or if all of them are True, respectively.

The Ordering monoid

Hey, remember the Ordering type? It's used as the result when comparing things and it can have
three values: LT, EQ and GT, which stand for less than, equal and greater than respectively:

ghci> 1 `compare` 2

LT

ghci> 2 `compare` 2

EQ

208

ghci> 3 `compare` 2

GT

With lists, numbers and boolean values, finding monoids was just a matter of looking at already
existing commonly used functions and seeing if they exhibit some sort of monoid behavior. With
Ordering, we have to look a bit harder to recognize a monoid, but it turns out that its Monoid
instance is just as intuitive as the ones we've met so far and also quite useful:

instance Monoid Ordering where

mempty = EQ

LT `mappend` _ = LT

EQ `mappend` y = y

GT `mappend` _ = GT

The instance is set up like this: when we mappend two Or-
dering values, the one on the left is kept, unless the value
on the left is EQ, in which case the right one is the result.
The identity is EQ. At first, this may seem kind of arbitrary,
but it actually resembles the way we alphabetically compare
words. We compare the first two letters and if they differ, we
can already decide which word would go first in a dictionary.
However, if the first two letters are equal, then we move on
to comparing the next pair of letters and repeat the process.

For instance, if we were to alphabetically compare the words
"ox" and "on", we'd first compare the first two letters of each
word, see that they are equal and thenmove on to comparing
the second letter of each word. We see that 'x' is alphabeti-
cally greater than 'n', and so we know how the words compare. To gain some intuition for EQ
being the identity, we can notice that if we were to cram the same letter in the same position in
both words, it wouldn't change their alphabetical ordering. "oix" is still alphabetically greater than
and "oin".

It's important to note that in the Monoid instance for Ordering, x `mappend` y doesn't equal y
`mappend` x. Because the first parameter is kept unless it's EQ, LT `mappend` GT will result in
LT, whereas GT `mappend` LT will result in GT:

ghci> LT `mappend` GT

LT

ghci> GT `mappend` LT

GT

ghci> mempty `mappend` LT

LT

ghci> mempty `mappend` GT

GT

OK, so how is this monoid useful? Let's say you were writing a function that takes two strings,
compares their lengths, and returns an Ordering. But if the strings are of the same length, then
instead of returning EQ right away, we want to compare them alphabetically. One way to write
this would be like so:

209

lengthCompare :: String -> String -> Ordering

lengthCompare x y = let a = length x `compare` length y

b = x `compare` y

in if a == EQ then b else a

We name the result of comparing the lengths a and the result of the alphabetical comparison b
and then if it turns out that the lengths were equal, we return their alphabetical ordering.

But by employing our understanding of how Ordering is a monoid, we can rewrite this function
in a much simpler manner:

import Data.Monoid

lengthCompare :: String -> String -> Ordering

lengthCompare x y = (length x `compare` length y) `mappend`

(x `compare` y)

We can try this out:

ghci> lengthCompare "zen" "ants"

LT

ghci> lengthCompare "zen" "ant"

GT

Remember, when we use mappend, its left parameter is always kept unless it's EQ, in which case
the right one is kept. That's why we put the comparison that we consider to be the first, more
important criterion as the first parameter. If we wanted to expand this function to also compare
for the number of vowels and set this to be the second most important criterion for comparison,
we'd just modify it like this:

import Data.Monoid

lengthCompare :: String -> String -> Ordering

lengthCompare x y = (length x `compare` length y) `mappend`

(vowels x `compare` vowels y) `mappend`

(x `compare` y)

where vowels = length . filter (`elem` "aeiou")

We made a helper function, which takes a string and tells us how many vowels it has by first
filtering it only for letters that are in the string "aeiou" and then applying length to that.

ghci> lengthCompare "zen" "anna"

LT

ghci> lengthCompare "zen" "ana"

LT

ghci> lengthCompare "zen" "ann"

GT

Very cool. Here, we see how in the first example the lengths are found to be different and so LT is
returned, because the length of "zen" is less than the length of "anna". In the second example, the
lengths are the same, but the second string has more vowels, so LT is returned again. In the third

210

example, they both have the same length and the same number of vowels, so they're compared
alphabetically and "zen" wins.

The Ordering monoid is very cool because it allows us to easily compare things by many different
criteria and put those criteria in an order themselves, ranging from the most important to the
least.

Maybe the monoid

Let's take a look at the various ways that Maybe a can be made an instance of Monoid and what
those instances are useful for.

One way is to treat Maybe a as a monoid only if its type parameter a is a monoid as well and
then implement mappend in such a way that it uses the mappend operation of the values that
are wrapped with Just. We use Nothing as the identity, and so if one of the two values that we're
mappending is Nothing, we keep the other value. Here's the instance declaration:

instance Monoid a => Monoid (Maybe a) where

mempty = Nothing

Nothing `mappend` m = m

m `mappend` Nothing = m

Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)

Notice the class constraint. It says thatMaybe a is an instance ofMonoid only if a is an instance of
Monoid. If we mappend something with a Nothing, the result is that something. If we mappend
two Just values, the contents of the Justs get mappended and then wrapped back in a Just. We can
do this because the class constraint ensures that the type of what's inside the Just is an instance of
Monoid.

ghci> Nothing `mappend` Just "andy"

Just "andy"

ghci> Just LT `mappend` Nothing

Just LT

ghci> Just (Sum 3) `mappend` Just (Sum 4)

Just (Sum {getSum = 7})

This comes in use when you're dealing with monoids as results of computations that may have
failed. Because of this instance, we don't have to check if the computations have failed by seeing
if they're a Nothing or Just value; we can just continue to treat them as normal monoids.

But what if the type of the contents of the Maybe aren't an instance of Monoid? Notice that in the
previous instance declaration, the only case where we have to rely on the contents being monoids
is when both parameters of mappend are Just values. But if we don't know if the contents are
monoids, we can't use mappend between them, so what are we to do? Well, one thing we can do
is to just discard the second value and keep the first one. For this, the First a type exists and this
is its definition:

newtype First a = First { getFirst :: Maybe a }

deriving (Eq, Ord, Read, Show)

We take a Maybe a and we wrap it with a newtype. The Monoid instance is as follows:

211

instance Monoid (First a) where

mempty = First Nothing

First (Just x) `mappend` _ = First (Just x)

First Nothing `mappend` x = x

Just like we said. mempty is just a Nothing wrapped with the First newtype constructor. If map-
pend's first parameter is a Just value, we ignore the second one. If the first one is a Nothing, then
we present the second parameter as a result, regardless of whether it's a Just or a Nothing:

ghci> getFirst $ First (Just 'a') `mappend` First (Just 'b')

Just 'a'

ghci> getFirst $ First Nothing `mappend` First (Just 'b')

Just 'b'

ghci> getFirst $ First (Just 'a') `mappend` First Nothing

Just 'a'

First is useful when we have a bunch of Maybe values and we just want to know if any of them is
a Just. The mconcat function comes in handy:

ghci> getFirst . mconcat . map First $ [Nothing, Just 9, Just 10]

Just 9

If we want a monoid on Maybe a such that the second parameter is kept if both parameters of
mappend are Just values, Data.Monoid provides a the Last a type, which works like First a, only
the last non-Nothing value is kept when mappending and using mconcat:

ghci> getLast . mconcat . map Last $ [Nothing, Just 9, Just 10]

Just 10

ghci> getLast $ Last (Just "one") `mappend` Last (Just "two")

Just "two"

Using monoids to fold data structures

One of the more interesting ways to put monoids to work is to make them help us define folds
over various data structures. So far, we've only done folds over lists, but lists aren't the only data
structure that can be folded over. We can define folds over almost any data structure. Trees
especially lend themselves well to folding.

Because there are so many data structures that work nicely with folds, the Foldable type class was
introduced. Much like Functor is for things that can be mapped over, Foldable is for things that
can be folded up! It can be found in Data.Foldable and because it export functions whose names
clash with the ones from the Prelude, it's best imported qualified (and served with basil):

import qualified Foldable as F

To save ourselves precious keystrokes, we've chosen to import it qualified as F. Alright, so what
are some of the functions that this type class defines? Well, among them are foldr, foldl, foldr1
and foldl1. Huh? But we already know these functions, what's so new about this? Let's compare
the types of Foldable's foldr and the foldr from the Prelude to see how they differ:

ghci> :t foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

212

ghci> :t F.foldr

F.foldr :: (F.Foldable t) => (a -> b -> b) -> b -> t a -> b

Ah! So whereas foldr takes a list and folds it up, the foldr from Data.Foldable accepts any type
that can be folded up, not just lists! As expected, both foldr functions do the same for lists:

ghci> foldr (*) 1 [1,2,3]

6

ghci> F.foldr (*) 1 [1,2,3]

6

Okay then, what are some other data structures that support folds? Well, there's the Maybe we
all know and love!

ghci> F.foldl (+) 2 (Just 9)

11

ghci> F.foldr (||) False (Just True)

True

But folding over a Maybe value isn't terribly interesting, because when it comes to folding, it just
acts like a list with one element if it's a Just value and as an empty list if it's Nothing. So let's
examine a data structure that's a little more complex then.

Remember the tree data structure from the Making Our Own Types and Typeclasses chapter?
We defined it like this:

data Tree a = Empty | Node a (Tree a) (Tree a) deriving (Show, Read, Eq)

We said that a tree is either an empty tree that doesn't hold any values or it's a node that holds
one value and also two other trees. After defining it, we made it an instance of Functor and with
that we gained the ability to fmap functions over it. Now, we're going to make it an instance of
Foldable so that we get the abilty to fold it up. One way to make a type constructor an instance
of Foldable is to just directly implement foldr for it. But another, often much easier way, is to
implement the foldMap function, which is also a part of the Foldable type class. The foldMap
function has the following type:

foldMap :: (Monoid m, Foldable t) => (a -> m) -> t a -> m

Its first parameter is a function that takes a value of the type that our foldable structure contains
(denoted here with a) and returns a monoid value. Its second parameter is a foldable structure
that contains values of type a. It maps that function over the foldable structure, thus producing a
foldable structure that contains monoid values. Then, by doing mappend between those monoid
values, it joins them all into a single monoid value. This function may sound kind of odd at the
moment, but we'll see that it's very easy to implement. What's also cool is that implementing this
function is all it takes for our type to be made an instance of Foldable. So if we just implement
foldMap for some type, we get foldr and foldl on that type for free!

This is how we make Tree an instance of Foldable:

instance F.Foldable Tree where

foldMap f Empty = mempty

foldMap f (Node x l r) = F.foldMap f l `mappend`

213

f x `mappend`

F.foldMap f r

We think like this: if we are provided with a function that takes an element of our tree and returns
a monoid value, how do we reduce our whole tree down to one single monoid value? When we
were doing fmap over our tree, we applied the function that we were mapping to a node and then
we recursively mapped the function over the left sub-tree as well as the right one. Here, we're
tasked with not onlymapping a function, but with also joining up the results into a single monoid
value by using mappend. First we consider the case of the empty tree— a sad and lonely tree that
has no values or sub-trees. It doesn't hold any value that we can give to our monoid-making
function, so we just say that if our tree is empty, the monoid value it becomes is mempty.

The case of a non-empty node is a bit more interesting. It
contains two sub-trees as well as a value. In this case, we re-
cursively foldMap the same function f over the left and the
right sub-trees. Remember, our foldMap results in a sin-
gle monoid value. We also apply our function f to the value
in the node. Now we have three monoid values (two from
our sub-trees and one from applying f to the value in the
node) and we just have to bang them together into a single
value. For this purpose we use mappend, and naturally the
left sub-tree comes first, then the node value and then the
right sub-tree.

Notice that we didn't have to provide the function that takes a value and returns a monoid value.
We receive that function as a parameter to foldMap and all we have to decide is where to apply
that function and how to join up the resulting monoids from it.

Now that we have a Foldable instance for our tree type, we get foldr and foldl for free! Consider
this tree:

testTree = Node 5

(Node 3

(Node 1 Empty Empty)

(Node 6 Empty Empty)

)

(Node 9

(Node 8 Empty Empty)

(Node 10 Empty Empty)

)

It has 5 at its root and then its left node is has 3 with 1 on the left and 6 on the right. The root's
right node has a 9 and then an 8 to its left and a 10 on the far right side. With a Foldable instance,
we can do all of the folds that we can do on lists:

ghci> F.foldl (+) 0 testTree

42

ghci> F.foldl (*) 1 testTree

64800

214

And also, foldMap isn't only useful for making new instances of Foldable; it comes in handy for
reducing our structure to a single monoid value. For instance, if we want to know if any number
in our tree is equal to 3, we can do this:

ghci> getAny $ F.foldMap (\x -> Any $ x == 3) testTree

True

Here, \x -> Any \$ x == 3 is a function that takes a number and returns amonoid value, namely a
Bool wrapped inAny. foldMap applies this function to every element in our tree and then reduces
the resulting monoids into a single monoid with mappend. If we do this:

ghci> getAny $ F.foldMap (\x -> Any $ x > 15) testTree

False

All of the nodes in our tree would hold the value Any False after having the function in the lambda
applied to them. But to end up True, mappend for Any has to have at least one True value as a
parameter. That's why the final result is False, which makes sense because no value in our tree is
greater than 15.

We can also easily turn our tree into a list by doing a foldMap with the \x -> [x] function. By
first projecting that function onto our tree, each element becomes a singleton list. The mappend
action that takes place between all those singleton list results in a single list that holds all of the
elements that are in our tree:

ghci> F.foldMap (\x -> [x]) testTree

[1,3,6,5,8,9,10]

What's cool is that all of these trick aren't limited to trees, they work on any instance of Foldable.

Chapter 12 A Fistful of Monads

When we first talked about functors, we saw that they were a useful concept for values that can
be mapped over. Then, we took that concept one step further by introducing applicative func-
tors, which allow us to view values of certain data types as values with contexts and use normal
functions on those values while preserving the meaning of those contexts.

In this chapter, we'll learn aboutmonads, which are just beefed up applicative functors, much like
applicative functors are only beefed up functors.

Whenwe started offwith functors, we saw that it's possible tomap
functions over various data types. We saw that for this purpose,
the Functor type class was introduced and it had us asking the
question: when we have a function of type a -> b and some data
type f a, how do we map that function over the data type to end
up with f b? We saw how to map something over a Maybe a, a list
[a], an IO a etc. We even saw how to map a function a -> b over
other functions of type r -> a to get functions of type r -> b. To answer this question of how to
map a function over some data type, all we had to do was look at the type of fmap:

fmap :: (Functor f) => (a -> b) -> f a -> f b

And then make it work for our data type by writing the appropriate Functor instance.

Then we saw a possible improvement of functors and said, hey, what if that function a -> b is
already wrapped inside a functor value? Like, what if we have Just (*3), how do we apply that to
Just 5? What if we don't want to apply it to Just 5 but to a Nothing instead? Or if we have[(*2),(+4)],
how would we apply that to [1,2,3] ? How would that work even? For this, the Applicative type
class was introduced, in which we wanted the answer to the following type:

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

We also saw that we can take a normal value and wrap it inside a data type. For instance, we can
take a 1 and wrap it so that it becomes a Just 1. Or we can make it into a [1] . Or an I/O action
that does nothing and just yields 1. The function that does this is called pure.

Like we said, an applicative value can be seen as a value with an added context. A fancy value, to
put it in technical terms. For instance, the character 'a' is just a normal character, whereas Just 'a'
has some added context. Instead of a Char, we have a Maybe Char, which tells us that its value
might be a character, but it could also be an absence of a character.

It was neat to see how the Applicative type class allowed us to use normal functions on these
values with context and how that context was preserved. Observe:

ghci> (*) <$> Just 2 <*> Just 8

Just 16

ghci> (++) <$> Just "klingon" <*> Nothing

Nothing

ghci> (-) <$> [3,4] <*> [1,2,3]

[2,1,0,3,2,1]

216

Ah, cool, so now that we treat them as applicative values, Maybe a values represent computations
that might have failed,[a] values represent computations that have several results (non-determin-
istic computations), IO a values represent values that have side-effects, etc.

Monads are a natural extension of applicative functors and with them we're concerned with this:
if you have a value with a context, m a, how do you apply to it a function that takes a normal a
and returns a value with a context? That is, how do you apply a function of type a -> m b to a
value of type m a? So essentially, we will want this function:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b

If we have a fancy value and a function that takes a normal value but returns a fancy value, how
do we feed that fancy value into the function? This is the main question that we will concern
ourselves when dealingwithmonads. Wewritem a instead of f a because them stands forMonad,
but monads are just applicative functors that support >>=. The >>= function is pronounced as
bind.

When we have a normal value a and a normal function a -> b it's really easy to feed the value to
the function— you just apply the function to the value normally and that's it. But when we're
dealing with values that come with certain contexts, it takes a bit of thinking to see how these
fancy values are fed to functions and how to take into account their behavior, but you'll see that
it's easy as one two three.

12.1 Getting our feet wet with Maybe

Now that we have a vague idea of what monads are about, let's see if
we can make that idea a bit less vague.

Much to no one's surprise, Maybe is a monad, so let's explore it a bit
more and see if we can combine it with what we know about monads.

Note: Make sure you understand applicatives at this point. It's good
if you have a feel for how the various Applicative instances work and
what kind of computations they represent, because monads are noth-
ing more than taking our existing applicative knowledge and upgrad-
ing it.

A value of type Maybe a represents a value of type a with the context
of possible failure attached. A value of Just "dharma" means that the

string "dharma" is there whereas a value of Nothing represents its absence, or if you look at the
string as the result of a computation, it means that the computation has failed.

When we looked at Maybe as a functor, we saw that if we want to fmap a function over it, it gets
mapped over the insides if it's a Just value, otherwise the Nothing is kept because there's nothing
to map it over!

Like this:

ghci> fmap (++"!") (Just "wisdom")

Just "wisdom!"

ghci> fmap (++"!") Nothing

Nothing

217

As an applicative functor, it functions similarly. However, applicatives also have the function
wrapped. Maybe is an applicative functor in such a way that when we use <*> to apply a function
inside a Maybe to a value that's inside a Maybe, they both have to be Just values for the result to
be a Just value, otherwise the result is Nothing. It makes sense because if you're missing either the
function or the thing you're applying it to, you can't make something up out of thin air, so you
have to propagate the failure:

ghci> Just (+3) <*> Just 3

Just 6

ghci> Nothing <*> Just "greed"

Nothing

ghci> Just ord <*> Nothing

Nothing

When we use the applicative style to have normal functions act on Maybe values, it's similar. All
the values have to be Just values, otherwise it's all for Nothing!

ghci> max <$> Just 3 <*> Just 6

Just 6

ghci> max <$> Just 3 <*> Nothing

Nothing

And now, let's think about how we would do >>= for Maybe. Like we said, >>= takes a monadic
value, and a function that takes a normal value and returns a monadic value and manages to
apply that function to the monadic value. How does it do that, if the function takes a normal
value? Well, to do that, it has to take into account the context of that monadic value.

In this case, >>= would take a Maybe a value and a function of type a -> Maybe b and somehow
apply the function to the Maybe a. To figure out how it does that, we can use the intuition that we
have from Maybe being an applicative functor. Let's say that we have a function \x -> Just (x+1).
It takes a number, adds 1 to it and wraps it in a Just:

ghci> (\x -> Just (x+1)) 1

Just 2

ghci> (\x -> Just (x+1)) 100

Just 101

If we feed it 1, it evaluates to Just 2. If we give it the number 100, the result is Just 101. Very
straightforward. Now here's the kicker: how do we feed a Maybe value to this function? If we
think about how Maybe acts as an applicative functor, answering this is pretty easy. If we feed it
a Just value, take what's inside the Just and apply the function to it. If give it a Nothing, hmm,
well, then we're left with a function but Nothing to apply it to. In that case, let's just do what we
did before and say that the result is Nothing.

Instead of calling it >>=, let's call it applyMaybe for now. It takes a Maybe a and a function that
returns a Maybe b and manages to apply that function to the Maybe a. Here it is in code:

applyMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b

applyMaybe Nothing f = Nothing

applyMaybe (Just x) f = f x

218

Okay, now let's play with it for a bit. We'll use it as an infix function so that the Maybe value is on
the left side and the function on the right:

ghci> Just 3 `applyMaybe` \x -> Just (x+1)

Just 4

ghci> Just "smile" `applyMaybe` \x -> Just (x ++ " :)")

Just "smile :)"

ghci> Nothing `applyMaybe` \x -> Just (x+1)

Nothing

ghci> Nothing `applyMaybe` \x -> Just (x ++ " :)")

Nothing

In the above example, we see that when we used applyMaybe with a Just value and a function, the
function simply got applied to the value inside the Just. When we tried to use it with a Nothing,
the whole result was Nothing. What about if the function returns a Nothing? Let's see:

ghci> Just 3 `applyMaybe` \x -> if x > 2 then Just x else Nothing

Just 3

ghci> Just 1 `applyMaybe` \x -> if x > 2 then Just x else Nothing

Nothing

Just what we expected. If the monadic value on the left is a Nothing, the whole thing is Nothing.
And if the function on the right returns a Nothing, the result is Nothing again. This is very similar
to when we used Maybe as an applicative and we got a Nothing result if somewhere in there was
a Nothing.

It looks like that for Maybe, we've figured out how to take a fancy value and feed it to a function
that takes a normal value and returns a fancy one. We did this by keeping in mind that a Maybe
value represents a computation that might have failed.

Youmight be asking yourself, how is this useful? Itmay seem like applicative functors are stronger
than monads, since applicative functors allow us to take a normal function and make it operate
on values with contexts. We'll see that monads can do that as well because they're an upgrade of
applicative functors, and that they can also do some cool stuff that applicative functors can't.

We'll come back to Maybe in a minute, but first, let's check out the type class that belongs to
monads.

12.2 The Monad type class

Just like functors have the Functor type class and applicative functors have the Applicative type
class, monads come with their own type class: Monad! Wow, who would have thought? This is
what the type class looks like:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= _ -> y

219

fail :: String -> m a

fail msg = error msg

Let's start with the first line. It says class Monad m
where. But wait, didn't we say that monads are just
beefed up applicative functors? Shouldn't there be a
class constraint in there along the lines of class (Ap-
plicative m) = > Monad m where so that a type has
to be an applicative functor first before it can be made
a monad? Well, there should, but when Haskell was
made, it hadn't occured to people that applicative func-
tors are a good fit for Haskell so they weren't in there.
But rest assured, every monad is an applicative functor,
even if the Monad class declaration doesn't say so.

The first function that the Monad type class defines is
return. It's the same as pure, only with a different name.
Its type is (Monad m) => a -> m a. It takes a value and
puts it in a minimal default context that still holds that
value. In other words, it takes something and wraps it
in a monad. It always does the same thing as the pure
function from the Applicative type class, which means
we're already acquainted with return. We already used return when doing I/O. We used it to take
a value and make a bogus I/O action that does nothing but yield that value. For Maybe it takes a
value and wraps it in a Just.

Note: Just a reminder: return is nothing like the return that's in most other languages. It doesn't
end function execution or anything, it just takes a normal value and puts it in a context.

The next function is >>=, or bind. It's like function application, only in-
stead of taking a normal value and feeding it to a normal function, it takes
a monadic value (that is, a value with a context) and feeds it to a function
that takes a normal value but returns a monadic value.

Next up, we have >>. We won't pay too much attention to it for now be-
cause it comes with a default implementation and we pretty much never
implement it when making Monad instances.

The final function of the Monad type class is fail. We never use it explicitly in our code. Instead,
it's used by Haskell to enable failure in a special syntactic construct for monads that we'll meet
later. We don't need to concern ourselves with fail too much for now.

Now that we know what the Monad type class looks like, let's take a look at how Maybe is an
instance of Monad!

instance Monad Maybe where

return x = Just x

Nothing >>= f = Nothing

Just x >>= f = f x

fail _ = Nothing

220

return is the same as pure, so that one's a no-brainer. We do what we did in the Applicative type
class and wrap it in a Just.

The >>= function is the same as our applyMaybe. When feeding the Maybe a to our function,
we keep in mind the context and return a Nothing if the value on the left is Nothing because if
there's no value then there's no way to apply our function to it. If it's a Just we take what's inside
and apply f to it.

We can play around with Maybe as a monad:

ghci> return "WHAT" :: Maybe String

Just "WHAT"

ghci> Just 9 >>= \x -> return (x*10)

Just 90

ghci> Nothing >>= \x -> return (x*10)

Nothing

Nothing new or exciting on the first line since we already used pure with Maybe and we know
that return is just pure with a different name. The next two lines showcase >>= a bit more.

Notice how when we fed Just 9 to the function \x -> return (x*10) , the x took on the value 9
inside the function. It seems as though we were able to extract the value from a Maybe without
pattern-matching. And we still didn't lose the context of our Maybe value, because when it's
Nothing, the result of using >>= will be Nothing as well.

12.3 Walk the line

Now that we know how to feed a Maybe a value to a function of type
a -> Maybe b while taking into account the context of possible fail-
ure, let's see how we can use >>= repeatedly to handle computations
of several Maybe a values.

Pierre has decided to take a break from his job at the fish farm and
try tightrope walking. He's not that bad at it, but he does have one
problem: birds keep landing on his balancing pole! They come and
they take a short rest, chat with their avian friends and then take off
in search of breadcrumbs. This wouldn't bother him so much if the
number of birds on the left side of the pole was always equal to the
number of birds on the right side. But sometimes, all the birds decide

that they like one side better and so they throw him off balance, which results in an embarrassing
tumble for Pierre (he's using a safety net).

Let's say that he keeps his balance if the number of birds on the left side of the pole and on the
right side of the pole is within three. So if there's one bird on the right side and four birds on the
left side, he's okay. But if a fifth bird lands on the left side, then he loses his balance and takes a
dive.

We're going to simulate birds landing on and flying away from the pole and see if Pierre is still
at it after a certain number of birdy arrivals and departures. For instance, we want to see what
happens to Pierre if first one bird arrives on the left side, then four birds occupy the right side and
then the bird that was on the left side decides to fly away.

221

We can represent the pole with a simple pair of integers. The first component will signify the
number of birds on the left side and the second component the number of birds on the right side:

type Birds = Int

type Pole = (Birds,Birds)

First we made a type synonym for Int, called Birds, because we're using integers to represent how
many birds there are. And then we made a type synonym (Birds,Birds) and we called it Pole (not
to be confused with a person of Polish descent).

Next up, how about we make a function that takes a number of birds and lands them on one side
of the pole. Here are the functions:

landLeft :: Birds -> Pole -> Pole

landLeft n (left,right) = (left + n,right)

landRight :: Birds -> Pole -> Pole

landRight n (left,right) = (left,right + n)

Pretty straightforward stuff. Let's try them out:

ghci> landLeft 2 (0,0)

(2,0)

ghci> landRight 1 (1,2)

(1,3)

ghci> landRight (-1) (1,2)

(1,1)

To make birds fly away we just had a negative number of birds land on one side. Because landing
a bird on the Pole returns a Pole, we can chain applications of landLeft and landRight:

ghci> landLeft 2 (landRight 1 (landLeft 1 (0,0)))

(3,1)

When we apply the function landLeft 1 to (0,0) we get (1,0). Then, we land a bird on the right side,
resulting in (1,1). Finally two birds land on the left side, resulting in (3,1). We apply a function to
something by first writing the function and then writing its parameter, but here it would be better
if the pole went first and then the landing function. If we make a function like this:

x -: f = f x

We can apply functions by first writing the parameter and then the function:

ghci> 100 -: (*3)

300

ghci> True -: not

False

ghci> (0,0) -: landLeft 2

(2,0)

By using this, we can repeatedly land birds on the pole in a more readable manner:

222

ghci> (0,0) -: landLeft 1 -: landRight 1 -: landLeft 2

(3,1)

Pretty cool! This example is equivalent to the one before where we repeatedly landed birds on the
pole, only it looks neater. Here, it's more obvious that we start off with (0,0) and then land one
bird one the left, then one on the right and finally two on the left.

So far so good, but what happens if 10 birds land on one side?

ghci> landLeft 10 (0,3)

(10,3)

10 birds on the left side and only 3 on the right? That's sure to send poor Pierre falling through
the air! This is pretty obvious here but what if we had a sequence of landings like this:

ghci> (0,0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: landRight (-2)

(0,2)

It might seem like everything is okay but if you follow the steps here, you'll see that at one time
there are 4 birds on the right side and no birds on the left! To fix this, we have to take another
look at our landLeft and landRight functions. From what we've seen, we want these functions to
be able to fail. That is, we want them to return a new pole if the balance is okay but fail if the birds
land in a lopsided manner. And what better way to add a context of failure to value than by using
Maybe! Let's rework these functions:

landLeft :: Birds -> Pole -> Maybe Pole

landLeft n (left,right)

| abs ((left + n) - right) < 4 = Just (left + n, right)

| otherwise = Nothing

landRight :: Birds -> Pole -> Maybe Pole

landRight n (left,right)

| abs (left - (right + n)) < 4 = Just (left, right + n)

| otherwise = Nothing

Instead of returning a Pole these functions now return a Maybe Pole. They still take the number
of birds and the old pole as before, but then they check if landing that many birds on the pole
would throw Pierre off balance. We use guards to check if the difference between the number of
birds on the new pole is less than 4. If it is, we wrap the new pole in a Just and return that. If it
isn't, we return a Nothing, indicating failure.

Let's give these babies a go:

ghci> landLeft 2 (0,0)

Just (2,0)

ghci> landLeft 10 (0,3)

Nothing

Nice! When we land birds without throwing Pierre off balance, we get a new pole wrapped in a
Just. But when many more birds end up on one side of the pole, we get a Nothing. This is cool,
but we seem to have lost the ability to repeatedly land birds on the pole. We can't do landLeft 1

223

(landRight 1 (0,0)) anymore because when we apply landRight 1 to (0,0), we don't get a Pole, but
a Maybe Pole. landLeft 1 takes a Pole and not a Maybe Pole.

We need a way of taking a Maybe Pole and feeding it to a function that takes a Pole and returns
a Maybe Pole. Luckily, we have >>=, which does just that for Maybe. Let's give it a go:

ghci> landRight 1 (0,0) >>= landLeft 2

Just (2,1)

Remember, landLeft 2 has a type of Pole -> Maybe Pole. We couldn't just feed it the Maybe Pole
that is the result of landRight 1 (0,0), so we use >>= to take that value with a context and give it
to landLeft 2. >>= does indeed allow us to treat the Maybe value as a value with context because
if we feed a Nothing into landLeft 2, the result is Nothing and the failure is propagated:

ghci> Nothing >>= landLeft 2

Nothing

With this, we can now chain landings that may fail because >>= allows us to feed amonadic value
to a function that takes a normal one.

Here's a sequence of birdy landings:

ghci> return (0,0) >>= landRight 2 >>= landLeft 2 >>= landRight 2

Just (2,4)

At the beginning, we used return to take a pole and wrap it in a Just. We could have just applied
landRight 2 to (0,0), it would have been the same, but this way we can be more consistent by using
>>= for every function. Just (0,0) gets fed to landRight 2, resulting in Just (0,2). This, in turn, gets
fed to landLeft 2, resulting in Just (2,2), and so on.

Remember this example from before we introduced failure into Pierre's routine:

ghci> (0,0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: landRight (-2)

(0,2)

It didn't simulate his interaction with birds very well because in the middle there his balance was
off but the result didn't reflect that. But let's give that a go now by using monadic application
(>>=) instead of normal application:

ghci> return (0,0) >>= landLeft 1 >>= landRight 4 >>= landLeft (-1) >>= landRight (-2)

Nothing

Awesome. The final result represents failure, which is what we
expected. Let's see how this result was obtained. First, return puts
(0,0) into a default context, making it a Just (0,0) . Then, Just
(0,0) >>= landLeft 1 happens. Since the Just (0,0) is a Just value,
landLeft 1 gets applied to (0,0), resulting in a Just (1,0), because the
birds are still relatively balanced. Next, Just (1,0) >>= landRight
4 takes place and the result is Just (1,4) as the balance of the birds
is still intact, although just barely. Just (1,4) gets fed to landLeft (-1) . This means that landLeft
(-1) (1,4) takes place. Now because of how landLeft works, this results in a Nothing, because the
resulting pole is off balance. Now that we have a Nothing, it gets fed to landRight (-2), but because
it's a Nothing, the result is automatically Nothing, as we have nothing to apply landRight (-2) to.

224

We couldn't have achieved this by just using Maybe as an applicative. If you try it, you'll get
stuck, because applicative functors don't allow for the applicative values to interact with each
other very much. They can, at best, be used as parameters to a function by using the applicative
style. The applicative operators will fetch their results and feed them to the function in a manner
appropriate for each applicative and then put the final applicative value together, but there isn't
that much interaction going on between them. Here, however, each step relies on the previous
one's result. On every landing, the possible result from the previous one is examined and the pole
is checked for balance. This determines whether the landing will succeed or fail.

We may also devise a function that ignores the current number of birds on the balancing pole
and just makes Pierre slip and fall. We can call it banana:

banana :: Pole -> Maybe Pole

banana _ = Nothing

Now we can chain it together with our bird landings. It will always cause our walker to fall,
because it ignores whatever's passed to it and always returns a failure. Check it:

ghci> return (0,0) >>= landLeft 1 >>= banana >>= landRight 1

Nothing

The value Just (1,0) gets fed to banana, but it produces a Nothing, which causes everything to
result in a Nothing. How unfortunate!

Instead of making functions that ignore their input and just return a predetermined monadic
value, we can use the >> function, whose default implementation is this:

(>>) :: (Monad m) => m a -> m b -> m b

m >> n = m >>= _ -> n

Normally, passing some value to a function that ignores its parameter and always just returns
some predetermined value would always result in that predetermined value. With monads how-
ever, their context and meaning has to be considered as well. Here's how >> acts with Maybe:

ghci> Nothing >> Just 3

Nothing

ghci> Just 3 >> Just 4

Just 4

ghci> Just 3 >> Nothing

Nothing

If you replace >> with >>= _ ->, it's easy to see why it acts like it does.

We can replace our banana function in the chain with a >> and then a Nothing:

ghci> return (0,0) >>= landLeft 1 >> Nothing >>= landRight 1

Nothing

There we go, guaranteed and obvious failure!

It's also worth taking a look at what this would look like if we hadn't made the clever choice of
treating Maybe values as values with a failure context and feeding them to functions like we did.
Here's how a series of bird landings would look like:

225

routine :: Maybe Pole

routine = case landLeft 1 (0,0) of

Nothing -> Nothing

Just pole1 -> case landRight 4 pole1 of

Nothing -> Nothing

Just pole2 -> case landLeft 2 pole2 of

Nothing -> Nothing

Just pole3 -> landLeft 1 pole3

We land a bird on the left and then we examine the possibility
of failure and the possibility of success. In the case of failure, we
return a Nothing. In the case of success, we land birds on the
right and then do the same thing all over again. Converting this
monstrosity into a neat chain of monadic applications with >>=
is a classic example of how theMaybemonad saves us a lot of time
when we have to successively do computations that are based on
computations that might have failed.

Notice how the Maybe implementation of >>= features exactly
this logic of seeing if a value is Nothing and if it is, returning a
Nothing right away and if it isn't, going forwardwithwhat's inside
the Just.

In this section, we took some functions that we had and saw that they would work better if the
values that they returned supported failure. By turning those values into Maybe values and re-
placing normal function application with >>=, we got a mechanism for handling failure pretty
much for free, because >>= is supposed to preserve the context of the value to which it applies
functions. In this case, the context was that our values were values with failure and so when we
applied functions to such values, the possibility of failure was always taken into account.

12.4 do notation

Monads in Haskell are so useful that they got their own special syntax called do notation. We've
already encountered do notation when we were doing I/O and there we said that it was for gluing
together several I/O actions into one. Well, as it turns out, do notation isn't just for IO, but can be
used for any monad. Its principle is still the same: gluing together monadic values in sequence.
We're going to take a look at how do notation works and why it's useful.

Consider this familiar example of monadic application:

ghci> Just 3 >>= (\x -> Just (show x ++ "!"))

Just "3!"

Been there, done that. Feeding amonadic value to a function that returns one, no big deal. Notice
how when we do this, x becomes 3 inside the lambda. Once we're inside that lambda, it's just a
normal value rather than amonadic value. Now, what if we had another >>= inside that function?
Check this out:

ghci> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))

Just "3!"

226

Ah, a nested use of >>=! In the outermost lambda, we feed Just "!" to the lambda \y -> Just (show
x ++ y). Inside this lambda, the y becomes "!". x is still 3 because we got it from the outer lambda.
All this sort of reminds me of the following expression:

ghci> let x = 3; y = "!" in show x ++ y

"3!"

The main difference between these two is that the values in the former example are monadic.
They're values with a failure context. We can replace any of them with a failure:

ghci> Nothing >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))

Nothing

ghci> Just 3 >>= (\x -> Nothing >>= (\y -> Just (show x ++ y)))

Nothing

ghci> Just 3 >>= (\x -> Just "!" >>= (\y -> Nothing))

Nothing

In the first line, feeding a Nothing to a function naturally results in a Nothing. In the second line,
we feed Just 3 to a function and the x becomes 3, but then we feed a Nothing to the inner lambda
and the result of that is Nothing, which causes the outer lambda to produce Nothing as well. So
this is sort of like assigning values to variables in let expressions, only that the values in question
are monadic values.

To further illustrate this point, let's write this in a script and have each Maybe value take up its
own line:

foo :: Maybe String

foo = Just 3 >>= (\x ->

Just "!" >>= (\y ->

Just (show x ++ y)))

To save us from writing all these annoying lambdas, Haskell gives us do notation. It allows us to
write the previous piece of code like this:

foo :: Maybe String

foo = do

x <- Just 3

y <- Just "!"

Just (show x ++ y)

227

It would seem as though we've gained the ability to temporarily
extract things from Maybe values without having to check if the
Maybe values are Just values orNothing values at every step. How
cool! If any of the values that we try to extract from are Nothing,
the whole do expression will result in a Nothing. We're yanking
out their (possibly existing) values and letting >>= worry about
the context that comes with those values. It's important to re-
member that do expressions are just different syntax for chaining
monadic values.

In a do expression, every line is a monadic value. To inspect its
result, we use <-. If we have aMaybe String and we bind it with <-
to a variable, that variable will be a String, just like when we used
>>= to feed monadic values to lambdas. The last monadic value
in a do expression, like Just (show x ++ y) here, can't be used with
<- to bind its result, because that wouldn't make sense if we translated the do expression back to
a chain of >>= applications. Rather, its result is the result of the whole glued up monadic value,
taking into account the possible failure of any of the previous ones.

For instance, examine the following line:

ghci> Just 9 >>= (\x -> Just (x > 8))

Just True

Because the left parameter of >>= is a Just value, the lambda is applied to 9 and the result is a Just
True. If we rewrite this in do notation, we get:

marySue :: Maybe Bool

marySue = do

x <- Just 9

Just (x > 8)

If we compare these two, it's easy to see why the result of the whole monadic value is the result of
the last monadic value in the do expression with all the previous ones chained into it.

Our tightwalker's routine can also be expressed with do notation. landLeft and landRight take a
number of birds and a pole and produce a pole wrapped in a Just, unless the tightwalker slips,
in which case a Nothing is produced. We used >>= to chain successive steps because each one
relied on the previous one and each one had an added context of possible failure. Here's two birds
landing on the left side, then two birds landing on the right and then one bird landing on the left:

routine :: Maybe Pole

routine = do

start <- return (0,0)

first <- landLeft 2 start

second <- landRight 2 first

landLeft 1 second

Let's see if he succeeds:

ghci> routine

Just (3,2)

228

He does! Great. When we were doing these routines by explicitly writing >>=, we usually said
something like return (0,0) >>= landLeft 2, because landLeft 2 is a function that returns a Maybe
value. With do expressions however, each line must feature a monadic value. So we explicitly
pass the previous Pole to the landLeft landRight functions. If we examined the variables to which
we bound our Maybe values, start would be (0,0), first would be (2,0) and so on.

Because do expressions arewritten line by line, theymay look like imperative code to somepeople.
But the thing is, they're just sequential, as each value in each line relies on the result of the previous
ones, along with their contexts (in this case, whether they succeeded or failed).

Again, let's take a look at what this piece of code would look like if we hadn't used the monadic
aspects of Maybe:

routine :: Maybe Pole

routine =

case Just (0,0) of

Nothing -> Nothing

Just start -> case landLeft 2 start of

Nothing -> Nothing

Just first -> case landRight 2 first of

Nothing -> Nothing

Just second -> landLeft 1 second

See how in the case of success, the tuple inside Just (0,0) becomes start, the result of landLeft 2
start becomes first, etc.

If we want to throw the Pierre a banana peel in do notation, we can do the following:

routine :: Maybe Pole

routine = do

start <- return (0,0)

first <- landLeft 2 start

Nothing

second <- landRight 2 first

landLeft 1 second

When we write a line in do notation without binding the monadic value with <-, it's just like
putting >> after the monadic value whose result we want to ignore. We sequence the monadic
value but we ignore its result because we don't care what it is and it's prettier than writing _ <-
Nothing, which is equivalent to the above.

When to use do notation and when to explicitly use >>= is up to you. I think this example lends
itself to explicitly writing >>= because each step relies specifically on the result of the previous
one. With do notation, we had to specifically write on which pole the birds are landing, but every
time we used that came directly before. But still, it gave us some insight into do notation.

In do notation, when we bind monadic values to names, we can utilize pattern matching, just
like in let expressions and function parameters. Here's an example of pattern matching in a do
expression:

justH :: Maybe Char

justH = do

229

(x:xs) <- Just "hello"

return x

We use pattern matching to get the first character of the string "hello" and then we present it as
the result. So justH evaluates to Just 'h'.

What if this pattern matching were to fail? When matching on a pattern in a function fails, the
next pattern ismatched. If thematching falls through all the patterns for a given function, an error
is thrown and our program crashes. On the other hand, failed patternmatching in let expressions
results in an error being produced right away, because the mechanism of falling through patterns
isn't present in let expressions. When pattern matching fails in a do expression, the fail function
is called. It's part of the Monad type class and it enables failed pattern matching to result in a
failure in the context of the current monad instead of making our program crash. Its default
implementation is this:

fail :: (Monad m) => String -> m a

fail msg = error msg

So by default it does make our program crash, but monads that incorporate a context of possible
failure (like Maybe) usually implement it on their own. For Maybe, its implemented like so:

fail _ = Nothing

It ignores the error message and makes a Nothing. So when pattern matching fails in a Maybe
value that's written in do notation, the whole value results in a Nothing. This is preferable to
having our program crash. Here's a do expression with a pattern that's bound to fail:

wopwop :: Maybe Char

wopwop = do

(x:xs) <- Just ""

return x

The pattern matching fails, so the effect is the same as if the whole line with the pattern was
replaced with a Nothing. Let's try this out:

ghci> wopwop

Nothing

The failed pattern matching has caused a failure within the context of our monad instead of caus-
ing a program-wide failure, which is pretty neat.

12.5 The list monad

So far, we've seen howMaybe values can be viewed as values with a failure context and howwe can
incorporate failure handling into our code by using >>= to feed them to functions. In this section,
we're going to take a look at how to use the monadic aspects of lists to bring non-determinism
into our code in a clear and readable manner.

230

We've already talked about how lists represent non-deterministic values
when they're used as applicatives. A value like 5 is deterministic. It has
only one result and we know exactly what it is. On the other hand, a value
like [3,8,9] contains several results, so we can view it as one value that is
actually many values at the same time. Using lists as applicative functors
showcases this non-determinism nicely:

ghci> (*) <$> [1,2,3] <*> [10,100,1000]

[10,100,1000,20,200,2000,30,300,3000]

All the possible combinations of multiplying elements from the left list with elements from the
right list are included in the resulting list. When dealing with non-determinism, there are many
choices that we can make, so we just try all of them, and so the result is a non-deterministic value
as well, only it has many more results.

This context of non-determinism translates to monads very nicely. Let's go ahead and see what
the Monad instance for lists looks like:

instance Monad [] where

return x = [x]

xs >>= f = concat (map f xs)

fail _ = []

return does the same thing as pure, so we should already be familiar with return for lists. It takes a
value and puts it in aminimal default context that still yields that value. In other words, it makes a
list that has only that one value as its result. This is useful for when we want to just wrap a normal
value into a list so that it can interact with non-deterministic values.

To understand how >>= works for lists, it's best if we take a look at it in action to gain some
intuition first. >>= is about taking a value with a context (a monadic value) and feeding it to a
function that takes a normal value and returns one that has context. If that function just produced
a normal value instead of one with a context, >>= wouldn't be so useful because after one use, the
context would be lost. Anyway, let's try feeding a non-deterministic value to a function:

ghci> [3,4,5] >>= \x -> [x,-x]

[3,-3,4,-4,5,-5]

When we used >>= with Maybe, the monadic value was fed into the function while taking care
of possible failures. Here, it takes care of non-determinism for us. [3,4,5] is a non-deterministic
value and we feed it into a function that returns a non-deterministic value as well. The result
is also non-deterministic, and it features all the possible results of taking elements from the list
[3,4,5] and passing them to the function \x -> [x,-x]. This function takes a number and produces
two results: one negated and one that's unchanged. So when we use >>= to feed this list to the
function, every number is negated and also kept unchanged. The x from the lambda takes on
every value from the list that's fed to it.

To see how this is achieved, we can just follow the implementation. First, we start off with the list
[3,4,5]. Then, we map the lambda over it and the result is the following:

[[3,-3],[4,-4],[5,-5]]

The lambda is applied to every element and we get a list of lists. Finally, we just flatten the list and
voila! We've applied a non-deterministic function to a non-deterministic value!

231

Non-determinism also includes support for failure. The empty list[] is pretty much the equivalent
of Nothing, because it signifies the absence of a result. That's why failing is just defined as the
empty list. The error message gets thrown away. Let's play around with lists that fail:

ghci> [] >>= \x -> ["bad","mad","rad"]

[]

ghci> [1,2,3] >>= \x -> []

[]

In the first line, an empty list is fed into the lambda. Because the list has no elements, none of them
can be passed to the function and so the result is an empty list. This is similar to feeding Nothing
to a function. In the second line, each element gets passed to the function, but the element is
ignored and the function just returns an empty list. Because the function fails for every element
that goes in it, the result is a failure.

Just like with Maybe values, we can chain several lists with >>=, propagating the non-determin-
ism:

ghci> [1,2] >>= \n -> ['a','b'] >>= \ch -> return (n,ch)

[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

The list [1,2] gets bound to n and ['a','b'] gets bound to ch. Then,
we do return (n,ch) (or [(n,ch)]) , which means taking a pair
of (n,ch) and putting it in a default minimal context. In this case,
it's making the smallest possible list that still presents (n,ch) as
the result and features as little non-determinism as possible. Its
effect on the context is minimal. What we're saying here is this:
for every element in [1,2] , go over every element in ['a','b'] and
produce a tuple of one element from each list.

Generally speaking, because return takes a value and wraps it in
a minimal context, it doesn't have any extra effect (like failing in

Maybe or resulting in more non-determinism for lists) but it does present something as its result.

Note: When you have non-deterministic values interacting, you can view their computation as a
tree where every possible result in a list represents a separate branch.

Here's the previous expression rewritten in do notation:

listOfTuples :: [(Int,Char)]

listOfTuples = do

n <- [1,2]

ch <- ['a','b']

return (n,ch)

Thismakes it a bit more obvious that n takes on every value from [1,2] and ch takes on every value
from ['a','b'] . Just like with Maybe, we're extracting the elements from the monadic values and
treating them like normal values and >>= takes care of the context for us. The context in this case
is non-determinism.

Using lists with do notation really reminds me of something we've seen before. Check out the
following piece of code:

232

ghci> [(n,ch) | n <- [1,2], ch <- ['a','b']]

[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

Yes! List comprehensions! In our do notation example, n became every result from [1,2] and
for every such result, ch was assigned a result from ['a','b'] and then the final line put (n,ch) into
a default context (a singleton list) to present it as the result without introducing any additional
non-determinism. In this list comprehension, the same thing happened, only we didn't have to
write return at the end to present (n,ch) as the result because the output part of a list comprehen-
sion did that for us.

In fact, list comprehensions are just syntactic sugar for using lists as monads. In the end, list
comprehensions and lists in do notation translate to using >>= to do computations that feature
non-determinism.

List comprehensions allow us to filter our output. For instance, we can filter a list of numbers to
search only for that numbers whose digits contain a 7:

ghci> [x | x <- [1..50], '7' `elem` show x]

[7,17,27,37,47]

We apply show to x to turn our number into a string and then we check if the character '7' is
part of that string. Pretty clever. To see how filtering in list comprehensions translates to the list
monad, we have to check out the guard function and the MonadPlus type class. The MonadPlus
type class is for monads that can also act as monoids. Here's its definition:

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

mzero is synonymous to mempty from the Monoid type class and mplus corresponds to map-
pend. Because lists are monoids as well as monads, they can be made an instance of this type
class:

instance MonadPlus [] where

mzero = []

mplus = (++)

For lists mzero represents a non-deterministic computation that has no results at all— a failed
computation. mplus joins two non-deterministic values into one. The guard function is defined
like this:

guard :: (MonadPlus m) => Bool -> m ()

guard True = return ()

guard False = mzero

It takes a boolean value and if it's True, takes a() and puts it in a minimal default context that still
succeeds. Otherwise, it makes a failed monadic value. Here it is in action:

ghci> guard (5 > 2) :: Maybe ()

Just ()

ghci> guard (1 > 2) :: Maybe ()

Nothing

233

ghci> guard (5 > 2) :: [()]

[()]

ghci> guard (1 > 2) :: [()]

[]

Looks interesting, but how is it useful? In the list monad, we use it to filter out non-deterministic
computations. Observe:

ghci> [1..50] >>= (\x -> guard ('7' `elem` show x) >> return x)

[7,17,27,37,47]

The result here is the same as the result of our previous list comprehension. How does guard
achieve this? Let's first see how guard functions in conjunction with >>:

ghci> guard (5 > 2) >> return "cool" :: [String]

["cool"]

ghci> guard (1 > 2) >> return "cool" :: [String]

[]

If guard succeeds, the result contained within it is an empty tuple. So then, we use >> to ignore
that empty tuple and present something else as the result. However, if guard fails, then so will the
return later on, because feeding an empty list to a function with >>= always results in an empty
list. A guard basically says: if this boolean is False then produce a failure right here, otherwise
make a successful value that has a dummy result of () inside it. All this does is to allow the
computation to continue.

Here's the previous example rewritten in do notation:

sevensOnly :: [Int]

sevensOnly = do

x <- [1..50]

guard ('7' `elem` show x)

return x

Had we forgotten to present x as the final result by using return, the resulting list would just be a
list of empty tuples. Here's this again in the form of a list comprehension:

ghci> [x | x <- [1..50], '7' `elem` show x]

[7,17,27,37,47]

So filtering in list comprehensions is the same as using guard.

A knight's quest

Here's a problem that really lends itself to being solved with non-determinism. Say you have a
chess board and only one knight piece on it. We want to find out if the knight can reach a certain
position in three moves. We'll just use a pair of numbers to represent the knight's position on
the chess board. The first number will determine the column he's in and the second number will
determine the row.

234

Let's make a type synonym for the knight's current position on the chess board:

type KnightPos = (Int,Int)

So let's say that the knight starts at (6,2) . Can he get to (6,1) in exactly three moves? Let's see.
If we start off at (6,2) what's the best move to make next? I know, how about all of them! We
have non-determinism at our disposal, so instead of picking one move, let's just pick all of them
at once. Here's a function that takes the knight's position and returns all of its next moves:

moveKnight :: KnightPos -> [KnightPos]

moveKnight (c,r) = do

(c',r') <- [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

guard (c' `elem` [1..8] && r' `elem` [1..8])

return (c',r')

The knight can always take one step horizontally or vertically and two steps horizontally or verti-
cally but its movement has to be both horizontal and vertical. (c',r') takes on every value from the
list of movements and then guard makes sure that the new move, (c',r') is still on the board. If it
it's not, it produces an empty list, which causes a failure and return (c',r') isn't carried out for that
position.

This function can also be written without the use of lists as a monad, but we did it here just for
kicks. Here is the same function done with filter:

moveKnight :: KnightPos -> [KnightPos]

moveKnight (c,r) = filter onBoard

[(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

where onBoard (c,r) = c `elem` [1..8] && r `elem` [1..8]

Both of these do the same thing, so pick one that you think looks nicer. Let's give it a whirl:

ghci> moveKnight (6,2)

[(8,1),(8,3),(4,1),(4,3),(7,4),(5,4)]

ghci> moveKnight (8,1)

[(6,2),(7,3)]

235

Works like a charm! We take one position and we just carry out all the possible moves at once,
so to speak. So now that we have a non-deterministic next position, we just use >>= to feed it
to moveKnight. Here's a function that takes a position and returns all the positions that you can
reach from it in three moves:

in3 :: KnightPos -> [KnightPos]

in3 start = do

first <- moveKnight start

second <- moveKnight first

moveKnight second

If you pass it (6,2) , the resulting list is quite big, because if there are several ways to reach some
position in three moves, it crops up in the list several times. The above without do notation:

in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

Using >>= once gives us all possible moves from the start and then when we use >>= the second
time, for every possible first move, every possible next move is computed, and the same goes for
the last move.

Putting a value in a default context by applying return to it and then feeding it to a function with
>>= is the same as just normally applying the function to that value, but we did it here anyway
for style.

Now, let's make a function that takes two positions and tells us if you can get from one to the
other in exactly three steps:

canReachIn3 :: KnightPos -> KnightPos -> Bool

canReachIn3 start end = end `elem` in3 start

We generate all the possible positions in three steps and then we see if the position we're looking
for is among them. So let's see if we can get from (6,2) to (6,1) in three moves:

ghci> (6,2) `canReachIn3` (6,1)

True

Yes! How about from (6,2) to (7,3)?

ghci> (6,2) `canReachIn3` (7,3)

False

No! As an exercise, you can change this function so that when you can reach one position from
the other, it tells you which moves to take. Later on, we'll see how to modify this function so that
we also pass it the number of moves to take instead of that number being hardcoded like it is now.

12.6 Monad laws

Just like applicative functors, and functors before them, monads come with a few laws that all
monad instances must abide by. Just because something is made an instance of the Monad type
class doesn't mean that it's a monad, it just means that it was made an instance of a type class. For
a type to truly be a monad, the monad laws must hold for that type. These laws allow us to make
reasonable assumptions about the type and its behavior.

236

Haskell allows any type to be an instance of any type class as long
as the types check out. It can't check if the monad laws hold for
a type though, so if we're making a new instance of the Monad
type class, we have to be reasonably sure that all is well with the
monad laws for that type. We can rely on the types that comewith
the standard library to satisfy the laws, but later when we go about
making our own monads, we're going to have to manually check
the if the laws hold. But don't worry, they're not complicated.

Left identity

The first monad law states that if we take a value, put it in a default context with return and then
feed it to a function by using >>=, it's the same as just taking the value and applying the function
to it. To put it formally:

• return x >>= f is the same damn thing as f x

If you look atmonadic values as values with a context and return as taking a value and putting it in
a default minimal context that still presents that value as its result, it makes sense, because if that
context is really minimal, feeding this monadic value to a function shouldn't be much different
than just applying the function to the normal value, and indeed it isn't different at all.

For the Maybe monad return is defined as Just. The Maybe monad is all about possible failure,
and if we have a value and want to put it in such a context, it makes sense that we treat it as a
successful computation because, well, we know what the value is. Here's some return usage with
Maybe:

ghci> return 3 >>= (\x -> Just (x+100000))

Just 100003

ghci> (\x -> Just (x+100000)) 3

Just 100003

For the list monad return puts something in a singleton list. The >>= implementation for lists
goes over all the values in the list and applies the function to them, but since there's only one value
in a singleton list, it's the same as applying the function to that value:

ghci> return "WoM" >>= (\x -> [x,x,x])

["WoM","WoM","WoM"]

ghci> (\x -> [x,x,x]) "WoM"

["WoM","WoM","WoM"]

We said that for IO, using return makes an I/O action that has no side-effects but just presents a
value as its result. So it makes sense that this law holds for IO as well.

Right identity

The second law states that if we have a monadic value and we use >>= to feed it to return, the
result is our original monadic value. Formally:

• m >>= return is no different than just m

This one might be a bit less obvious than the first one, but let's take a look at why it should hold.
When we feed monadic values to functions by using >>=, those functions take normal values and

237

return monadic ones. return is also one such function, if you consider its type. Like we said,
return puts a value in a minimal context that still presents that value as its result. This means that,
for instance, forMaybe, it doesn't introduce any failure and for lists, it doesn't introduce any extra
non-determinism. Here's a test run for a few monads:

ghci> Just "move on up" >>= (\x -> return x)

Just "move on up"

ghci> [1,2,3,4] >>= (\x -> return x)

[1,2,3,4]

ghci> putStrLn "Wah!" >>= (\x -> return x)

Wah!

If we take a closer look at the list example, the implementation for >>= is:

xs >>= f = concat (map f xs)

So when we feed [1,2,3,4] to return, first return gets mapped over [1,2,3,4], resulting in [[1], [2],
[3], [4]] and then this gets concatenated and we have our original list.

Left identity and right identity are basically laws that describe how return should behave. It's an
important function for making normal values into monadic ones and it wouldn't be good if the
monadic value that it produced did a lot of other stuff.

Associativity

The final monad law says that when we have a chain of monadic function applications with >>=,
it shouldn't matter how they're nested. Formally written:

• Doing (m >>= f) >>= g is just like doing m >>= (\x -> f x >>= g)

Hmmm, now what's going on here? We have one monadic value, m and two monadic functions
f and g. When we're doing (m >>= f) >>= g, we're feeding m to f, which results in a monadic
value. Then, we feed that monadic value to g. In the expression m >>= (\x -> f x >>= g), we take
a monadic value and we feed it to a function that feeds the result of f x to g. It's not easy to see
how those two are equal, so let's take a look at an example that makes this equality a bit clearer.

Remember whenwe had our tightropewalker Pierre walk a ropewhile birds landed on his balanc-
ing pole? To simulate birds landing on his balancing pole, we made a chain of several functions
that might produce failure:

ghci> return (0,0) >>= landRight 2 >>= landLeft 2 >>= landRight 2

Just (2,4)

We started with Just (0,0) and then bound that value to the next monadic function, landRight 2.
The result of that was another monadic value which got bound into the next monadic function,
and so on. If we were to explicitly parenthesize this, we'd write:

ghci> ((return (0,0) >>= landRight 2) >>= landLeft 2) >>= landRight 2

Just (2,4)

But we can also write the routine like this:

238

return (0,0) >>= (\x ->

landRight 2 x >>= (\y ->

landLeft 2 y >>= (\z ->

landRight 2 z)))

return (0,0) is the same as Just (0,0) and when we feed it to the lambda, the x becomes (0,0) .
landRight takes a number of birds and a pole (a tuple of numbers) and that's what it gets passed.
This results in a Just (0,2) and when we feed this to the next lambda, y is (0,2). This goes on until
the final bird landing produces a Just (2,4), which is indeed the result of the whole expression.

So it doesn't matter how you nest feeding values to monadic functions, what matters is their
meaning. Here's another way to look at this law: consider composing two functions, f and g.
Composing two functions is implemented like so:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = (\x -> f (g x))

If the type of g is a -> b and the type of f is b -> c, we arrange them into a new function which has
a type of a -> c, so that its parameter is passed between those functions. Now what if those two
functions were monadic, that is, what if the values they returned were monadic values? If we had
a function of type a -> m b, we couldn't just pass its result to a function of type b -> m c, because
that function accepts a normal b, not a monadic one. We could however, use >>= to make that
happen. So by using >>=, we can compose two monadic functions:

(<=<) :: (Monad m) => (b -> m c) -> (a -> m b) -> (a -> m c)

f <=< g = (\x -> g x >>= f)

So now we can compose two monadic functions:

ghci> let f x = [x,-x]

ghci> let g x = [x*3,x*2]

ghci> let h = f <=< g

ghci> h 3

[9,-9,6,-6]

Cool. So what does that have to do with the associativity law? Well, when we look at the law as a
law of compositions, it states that f <=< (g <=< h) should be the same as (f <=< g) <=< h. This is
just another way of saying that for monads, the nesting of operations shouldn't matter.

If we translate the first two laws to use <=<, then the left identity law states that for every monadic
function f, f <=< return is the same as writing just f and the right identity law says that return <=<
f is also no different from f.

This is very similar to how if f is a normal function,(f . g) . h is the same as f . (g . h), f . id is always
the same as f and id . f is also just f.

In this chapter, we took a look at the basics of monads and learned how the Maybe monad and
the list monad work. In the next chapter, we'll take a look at a whole bunch of other cool monads
and we'll also learn how to make our own.

Chapter 13 For a Few Monads More

We've seen how monads can be used to take values with contexts
and apply them to functions and how using >>= or do notation
allows us to focus on the values themselves while the context gets
handled for us.

We've met the Maybe monad and seen how it adds a context of
possible failure to values. We've learned about the list monad and
saw how it lets us easily introduce non-determinism into our pro-
grams. We've also learned how to work in the IO monad, even
before we knew what a monad was!

In this chapter, we're going to learn about a few other monads.
We'll see how they can make our programs clearer by letting us
treat all sorts of values as monadic ones. Exploring a few monads
more will also solidify our intuition for monads.

The monads that we'll be exploring are all part of the mtl package.
A Haskell package is a collection of modules. The mtl package
comes with the Haskell Platform, so you probably already have it.
To check if you do, type ghc-pkg list in the command-line. This
will show which Haskell packages you have installed and one of
them should be mtl, followed by a version number.

13.1 Writer? I hardly know her!

We've loaded our gun with the Maybe monad, the list monad and the IO monad. Now let's put
the Writer monad in the chamber and see what happens when we fire it!

Whereas Maybe is for values with an added context of failure and the list is for non-deterministic
values, the Writer monad is for values that have another value attached that acts as a sort of log
value. Writer allows us to do computations whilemaking sure that all the log values are combined
into one log value that then gets attached to the result.

For instance, we might want to equip our values with strings that explain what's going on, prob-
ably for debugging purposes. Consider a function that takes a number of bandits in a gang and
tells us if that's a big gang or not. That's a very simple function:

isBigGang :: Int -> Bool

isBigGang x = x > 9

Now, what if instead of just giving us a True or False value, we want it to also return a log string
that says what it did? Well, we just make that string and return it along side our Bool:

isBigGang :: Int -> (Bool, String)

isBigGang x = (x > 9, "Compared gang size to 9.")

240

So now instead of just returning a Bool, we return a tuple where the first component of the tuple
is the actual value and the second component is the string that accompanies that value. There's
some added context to our value now. Let's give this a go:

ghci> isBigGang 3

(False,"Compared gang size to 9.")

ghci> isBigGang 30

(True,"Compared gang size to 9.")

So far so good. isBigGang takes a normal value and returns a value with
a context. As we've just seen, feeding it a normal value is not a problem.
Now what if we already have a value that has a log string attached to it,
such as (3, "Smallish gang."), and we want to feed it to isBigGang? It seems
like once again, we're faced with this question: if we have a function that
takes a normal value and returns a value with a context, how do we take
a value with a context and feed it to the function?

When we were exploring the Maybe monad, we made a function apply-
Maybe, which took a Maybe a value and a function of type a -> Maybe b
and fed that Maybe a value into the function, even though the function
takes a normal a instead of a Maybe a. It did this by minding the context
that comes with Maybe a values, which is that they are values with possi-

ble failure. But inside the a -> Maybe b function, we were able to treat that value as just a normal
value, because applyMaybe (which later became >>=) took care of checking if it was a Nothing or
a Just value.

In the same vein, let's make a function that takes a value with an attached log, that is, an (a,String)
value and a function of type a -> (b,String) and feeds that value into the function. We'll call
it applyLog. But because an (a,String) value doesn't carry with it a context of possible failure,
but rather a context of an additional log value, applyLog is going to make sure that the log of
the original value isn't lost, but is joined together with the log of the value that results from the
function. Here's the implementation of applyLog:

applyLog :: (a,String) -> (a -> (b,String)) -> (b,String)

applyLog (x,log) f = let (y,newLog) = f x in (y,log ++ newLog)

Whenwe have a valuewith a context andwewant to feed it to a function, we usually try to separate
the actual value from the context and then try to apply the function to the value and then see that
the context is taken care of. In theMaybemonad, we checked if the value was a Just x and if it was,
we took that x and applied the function to it. In this case, it's very easy to find the actual value,
because we're dealing with a pair where one component is the value and the other a log. So first
we just take the value, which is x and we apply the function f to it. We get a pair of (y,newLog),
where y is the new result and newLog the new log. But if we returned that as the result, the old
log value wouldn't be included in the result, so we return a pair of (y,log ++ newLog). We use ++
to append the new log to the old one.

Here's applyLog in action:

ghci> (3, "Smallish gang.") `applyLog` isBigGang

(False,"Smallish gang.Compared gang size to 9")

ghci> (30, "A freaking platoon.") `applyLog` isBigGang

(True,"A freaking platoon.Compared gang size to 9")

241

The results are similar to before, only now the number of people in the gang had its accompanying
log and it got included in the result log. Here are a few more examples of using applyLog:

ghci> ("Tobin","Got outlaw name.") `applyLog` (\x -> (length x, "Applied length."))

(5,"Got outlaw name.Applied length.")

ghci> ("Bathcat","Got outlaw name.") `applyLog` (\x -> (length x, "Applied length"))

(7,"Got outlaw name.Applied length")

See how inside the lambda, x is just a normal string and not a tuple and how applyLog takes care
of appending the logs.

Monoids to the rescue

Be sure you know what monoids are at this point! Cheers.

Right now, applyLog takes values of type (a,String), but is there a reason that the log has to be a
String? It uses ++ to append the logs, so wouldn't this work on any kind of list, not just a list of
characters? Sure it would. We can go ahead and change its type to this:

applyLog :: (a,[c]) -> (a -> (b,[c])) -> (b,[c])

Now, the log is a list. The type of values contained in the list has to be the same for the original
list as well as for the list that the function returns, otherwise we wouldn't be able to use ++ to stick
them together.

Would this work for bytestrings? There's no reason it shouldn't. However, the type we have now
only works for lists. It seems like we'd have to make a separate applyLog for bytestrings. But wait!
Both lists and bytestrings are monoids. As such, they are both instances of the Monoid type class,
which means that they implement the mappend function. And for both lists and bytestrings,
mappend is for appending. Watch:

ghci> [1,2,3] `mappend` [4,5,6]

[1,2,3,4,5,6]

ghci> B.pack [99,104,105] `mappend` B.pack [104,117,97,104,117,97]

Chunk "chi" (Chunk "huahua" Empty)

Cool! Now our applyLog can work for any monoid. We have to change the type to reflect this, as
well as the implementation, because we have to change ++ to mappend:

applyLog :: (Monoid m) => (a,m) -> (a -> (b,m)) -> (b,m)

applyLog (x,log) f = let (y,newLog) = f x in (y,log `mappend` newLog)

Because the accompanying value can now be any monoid value, we no longer have to think of the
tuple as a value and a log, but now we can think of it as a value with an accompanying monoid
value. For instance, we can have a tuple that has an item name and an item price as the monoid
value. We just use the Sum newtype to make sure that the prices get added as we operate with the
items. Here's a function that adds drink to some cowboy food:

import Data.Monoid

type Food = String

type Price = Sum Int

242

addDrink :: Food -> (Food,Price)

addDrink "beans" = ("milk", Sum 25)

addDrink "jerky" = ("whiskey", Sum 99)

addDrink _ = ("beer", Sum 30)

We use strings to represent foods and an Int in a Sum newtype wrapper to keep track of how
many cents something costs. Just a reminder, doing mappend with Sum results in the wrapped
values getting added together:

ghci> Sum 3 `mappend` Sum 9

Sum {getSum = 12}

The addDrink function is pretty simple. If we're eating beans, it returns "milk" along with Sum 25,
so 25 cents wrapped in Sum. If we're eating jerky we drink whiskey and if we're eating anything
else we drink beer. Just normally applying this function to a food wouldn't be terribly interesting
right now, but using applyLog to feed a food that comes with a price itself into this function is
interesting:

ghci> ("beans", Sum 10) `applyLog` addDrink

("milk",Sum {getSum = 35})

ghci> ("jerky", Sum 25) `applyLog` addDrink

("whiskey",Sum {getSum = 124})

ghci> ("dogmeat", Sum 5) `applyLog` addDrink

("beer",Sum {getSum = 35})

Milk costs 25 cents, but if we eat it with beans that cost 10 cents, we'll end up paying 35 cents.
Now it's clear how the attached value doesn't always have to be a log, it can be any monoid value
and how two such values are combined into one depends on the monoid. When we were doing
logs, they got appended, but now, the numbers are being added up.

Because the value that addDrink returns is a tuple of type (Food,Price), we can feed that result to
addDrink again, so that it tells us what we should drink along with our drink and how much that
will cost us. Let's give it a shot:

ghci> ("dogmeat", Sum 5) `applyLog` addDrink `applyLog` addDrink

("beer",Sum {getSum = 65})

Adding a drink to some dog meat results in a beer and an additional 30 cents, so ("beer", Sum 35).
And if we use applyLog to feed that to addDrink, we get another beer and the result is ("beer",
Sum 65).

The Writer type

Now that we've seen that a value with an attached monoid acts like a monadic value, let's examine
the Monad instance for types of such values. The Control.Monad.Writer module exports the
Writer w a type along with its Monad instance and some useful functions for dealing with values
of this type.

First, let's examine the type itself. To attach amonoid to a value, we just need to put them together
in a tuple. The Writer w a type is just a newtype wrapper for this. Its definition is very simple:

newtype Writer w a = Writer { runWriter :: (a, w) }

243

It's wrapped in a newtype so that it can be made an instance of Monad and that its type is sepa-
rate from a normal tuple. The a type parameter represents the type of the value and the w type
parameter the type of the attached monoid value.

Its Monad instance is defined like so:

instance (Monoid w) => Monad (Writer w) where

return x = Writer (x, mempty)

(Writer (x,v)) >>= f = let (Writer (y, v')) = f x in Writer (y, v `mappend` v')

First off, let's examine >>=. Its implementation is es-
sentially the same as applyLog, only now that our tuple
is wrapped in the Writer newtype, we have to unwrap
it when pattern matching. We take the value x and ap-
ply the function f to it. This gives us a Writer w a value
and we use a let expression to pattern match on it. We
present y as the new result and use mappend to com-
bine the old monoid value with the new one. We pack
that up with the result value in a tuple and then wrap
that with the Writer constructor so that our result is a
Writer value instead of just an unwrapped tuple.

So, what about return? It has to take a value and put it in a default minimal context that still
presents that value as the result. So what would such a context be for Writer values? If we want
the accompanying monoid value to affect other monoid values as little as possible, it makes sense
to use mempty. mempty is used to present identity monoid values, such as "" and Sum 0 and
empty bytestrings. Whenever we use mappend between mempty and some other monoid value,
the result is that other monoid value. So if we use return tomake a Writer value and then use >>=
to feed that value to a function, the resulting monoid value will be only what the function returns.
Let's use return on the number 3 a bunch of times, only we'll pair it with a different monoid every
time:

ghci> runWriter (return 3 :: Writer String Int)

(3,"")

ghci> runWriter (return 3 :: Writer (Sum Int) Int)

(3,Sum {getSum = 0})

ghci> runWriter (return 3 :: Writer (Product Int) Int)

(3,Product {getProduct = 1})

Because Writer doesn't have a Show instance, we had to use runWriter to convert our Writer
values to normal tuples that can be shown. For String, the monoid value is the empty string.
With Sum, it's 0, because if we add 0 to something, that something stays the same. For Product,
the identity is 1.

The Writer instance doesn't feature an implementation for fail, so if a pattern match fails in do
notation, error is called.

Using do notation with Writer

Now that we have aMonad instance, we're free to use do notation forWriter values. It's handy for
when we have a severalWriter values and we want to do stuff with them. Like with other monads,
we can treat them as normal values and the context gets taken for us. In this case, all the monoid

244

values that come attached get mappended and so are reflected in the final result. Here's a simple
example of using do notation with Writer to multiply two numbers:

import Control.Monad.Writer

logNumber :: Int -> Writer [String] Int

logNumber x = Writer (x, ["Got number: " ++ show x])

multWithLog :: Writer [String] Int

multWithLog = do

a <- logNumber 3

b <- logNumber 5

return (a*b)

logNumber takes a number and makes a Writer value out of it. For the monoid, we use a list of
strings and we equip the number with a singleton list that just says that we have that number.
multWithLog is a Writer value which multiplies 3 and 5 and makes sure that their attached logs
get included in the final log. We use return to present a*b as the result. Because return just takes
something and puts it in a minimal context, we can be sure that it won't add anything to the log.
Here's what we see if we run this:

ghci> runWriter multWithLog

(15,["Got number: 3","Got number: 5"])

Sometimes we just want some monoid value to be included at some particular point. For this, the
tell function is useful. It's part of the MonadWriter type class and in the case of Writer it takes a
monoid value, like ["This is going on"] and creates aWriter value that presents the dummy value()
as its result but has our desired monoid value attached. When we have a monadic value that has
() as its result, we don't bind it to a variable. Here's multWithLog but with some extra reporting
included:

multWithLog :: Writer [String] Int

multWithLog = do

a <- logNumber 3

b <- logNumber 5

tell ["Gonna multiply these two"]

return (a*b)

It's important that return (a*b) is the last line, because the result of the last line in a do expression
is the result of the whole do expression. Had we put tell as the last line, () would have been the
result of this do expression. We'd lose the result of the multiplication. However, the log would
be the same. Here is this in action:

ghci> runWriter multWithLog

(15,["Got number: 3","Got number: 5","Gonna multiply these two"])

Adding logging to programs

Euclid's algorithm is an algorithm that takes two numbers and computes their greatest common
divisor. That is, the biggest number that still divides both of them. Haskell already features the

245

gcd function, which does exactly this, but let's implement our own and then equip it with logging
capabilities. Here's the normal algorithm:

gcd' :: Int -> Int -> Int

gcd' a b

| b == 0 = a

| otherwise = gcd' b (a `mod` b)

Thealgorithm is very simple. First, it checks if the second number is 0. If it is, then the result is the
first number. If it isn't, then the result is the greatest common divisor of the second number and
the remainder of dividing the first number with the second one. For instance, if we want to know
what the greatest common divisor of 8 and 3 is, we just follow the algorithm outlined. Because 3
isn't 0, we have to find the greatest common divisor of 3 and 2 (if we divide 8 by 3, the remainder
is 2). Next, we find the greatest common divisor of 3 and 2. 2 still isn't 0, so now we have have 2
and 1. The second number isn't 0, so we run the algorithm again for 1 and 0, as dividing 2 by 1
gives us a remainder of 0. And finally, because the second number is now 0, the final result is 1.
Let's see if our code agrees:

ghci> gcd' 8 3

1

It does. Very good! Now, we want to equip our result with a context, and the context will be a
monoid value that acts as a log. Like before, we'll use a list of strings as our monoid. So the type
of our new gcd' function should be:

gcd' :: Int -> Int -> Writer [String] Int

All that's left now is to equip our function with log values. Here's the code:

import Control.Monad.Writer

gcd' :: Int -> Int -> Writer [String] Int

gcd' a b

| b == 0 = do

tell ["Finished with " ++ show a]

return a

| otherwise = do

tell [show a ++ " mod " ++ show b ++ " = " ++ show (a `mod` b)]

gcd' b (a `mod` b)

This function takes two normal Int values and returns a Writer [String] Int, that is, an Int that has
a log context. In the case where b is 0, instead of just giving a as the result, we use a do expression
to put together a Writer value as a result. First we use tell to report that we're finished and then
we use return to present a as the result of the do expression. Instead of this do expression, we
could have also written this:

Writer (a, ["Finished with " ++ show a])

However, I think the do expression is easier to read. Next, we have the case when b isn't 0. In
this case, we log that we're using mod to figure out the remainder of dividing a and b. Then,

246

the second line of the do expression just recursively calls gcd'. Remember, gcd' now ultimately
returns a Writer value, so it's perfectly valid that gcd' b (a `mod` b) is a line in a do expression.

While it may be kind of useful to trace the execution of this new gcd' by hand to see how the logs
get appended, I think it's more insightful to just look at the big picture and view these as values
with a context and from that gain insight as to what the final result will be.

Let's try our new gcd' out. Its result is a Writer [String] Int value and if we unwrap that from its
newtype, we get a tuple. The first part of the tuple is the result. Let's see if it's okay:

ghci> fst $ runWriter (gcd' 8 3)

1

Good! Now what about the log? Because the log is a list of strings, let's use mapM_ putStrLn to
print those strings to the screen:

ghci> mapM_ putStrLn $ snd $ runWriter (gcd' 8 3)

8 mod 3 = 2

3 mod 2 = 1

2 mod 1 = 0

Finished with 1

I think it's awesome how we were able to change our ordinary algorithm to one that reports what
it does as it goes along just by changing normal values to monadic values and letting the imple-
mentation of >>= for Writer take care of the logs for us. We can add a logging mechanism to
pretty much any function. We just replace normal values with Writer values where we want and
change normal function application to >>= (or do expressions if it increases readability).

Difference lists

When using the Writer monad, you have to be careful which monoid to use.
In the above code, we used the list, but using it as the monoid for Writer is
rather inefficient. That's because lists use ++ for mappend and using ++ to
add a something to the end of a list gets slower and slower as that list gets
longer and longer. And in our case, we were adding one item to the end of
the log on every single step! Our example was pretty small (the resulting list
had only four entries) , but the longer that list gets, the slower our program
becomes.

To get out of this predicament, it's best to use a data structure that supports
efficient appending. One suchdata structure is the difference list. A difference
list is similar to a list, only instead of being a normal list, it's a function that
takes a list and prepends another list to it. The difference list equivalent of a
list like [1,2,3] would be the function \xs -> [1,2,3] ++ xs. A normal empty
list is [], whereas an empty difference list is the function \xs -> [] ++ xs.

The cool thing about difference lists is that they support efficient appending. When we append
two normal lists with ++, it has to walk all the way to the end of the list on the left of ++ and then
stick the other one there. But what if we take the difference list approach and represent our lists
as functions? Well then, appending two difference lists can be done like so:

f `append` g = \xs -> f (g xs)

247

Remember, f and g are functions that take lists and prepend something to them. So, for instance,
if f is the function ("dog"++) (just another way of writing \xs -> "dog" ++ xs) and g the function
("meat"++), then f `append` g makes a new function that's equivalent to the following:

\xs -> "dog" ++ ("meat" ++ xs)

We've appended two difference lists just bymaking a new function that first applies one difference
list some list and then the other.

Let'smake a newtypewrapper for difference lists so that we can easily give themmonoid instances:

newtype DiffList a = DiffList { getDiffList :: [a] -> [a] }

The type that we wrap is [a] -> [a] because a difference list is just a function that takes a list and
returns another. Converting normal lists to difference lists and vice versa is easy:

toDiffList :: [a] -> DiffList a

toDiffList xs = DiffList (xs++)

fromDiffList :: DiffList a -> [a]

fromDiffList (DiffList f) = f []

To make a normal list into a difference list we just do what we did before and make it a function
that prepends it to another list. Because a difference list is a function that prepends something to
another list, if we just want that something, we apply the function to an empty list!

Here's the Monoid instance:

instance Monoid (DiffList a) where

mempty = DiffList (\xs -> [] ++ xs)

(DiffList f) `mappend` (DiffList g) = DiffList (\xs -> f (g xs))

Notice how for lists, mempty is just the id function and mappend is actually just function com-
position. Let's see if this works:

ghci> fromDiffList (toDiffList [1,2,3,4] `mappend` toDiffList [1,2,3])

[1,2,3,4,1,2,3]

Tip top! Now we can increase the efficiency of our gcd' function by making it use difference lists
instead of normal lists:

import Control.Monad.Writer

gcd' :: Int -> Int -> Writer (DiffList String) Int

gcd' a b

| b == 0 = do

tell (toDiffList ["Finished with " ++ show a])

return a

| otherwise = do

tell (toDiffList [show a ++ " mod " ++ show b ++ "

= " ++ show (a `mod` b)])

gcd' b (a `mod` b)

248

We only had to change the type of the monoid from [String] to DiffList String and then when
using tell, convert our normal lists into difference lists with toDiffList. Let's see if the log gets
assembled properly:

ghci> mapM_ putStrLn . fromDiffList . snd . runWriter $ gcd' 110 34

110 mod 34 = 8

34 mod 8 = 2

8 mod 2 = 0

Finished with 2

We do gcd' 110 34, then use runWriter to unwrap it from the newtype, then apply snd to that
to just get the log, then apply fromDiffList to convert it to a normal list and then finally print its
entries to the screen.

13.2 Reader? Ugh, not this joke again.

In the chapter about applicatives, we saw that the function type, (->) r is
an instance of Functor. Mapping a function f over a function g will make
a function that takes the same thing as g, applies g to it and then applies f
to that result. So basically, we're making a new function that's like g, only
before returning its result, f gets applied to that result as well. For instance:

ghci> let f = (*5)

ghci> let g = (+3)

ghci> (fmap f g) 8

55

We've also seen that functions are applicative functors. They allow us to operate on the eventual
results of functions as if we already had their results. Here's an example:

ghci> let f = (+) <$> (*2) <*> (+10)

ghci> f 3

19

The expression (+) <$> (*2) <*> (+10) makes a function that takes a number, gives that number
to (*2) and (+10) and then adds together the results. For instance, if we apply this function to 3,
it applies both (*2) and (+10) to 3, giving 6 and 13. Then, it calls (+) with 6 and 13 and the result
is 19.

Not only is the function type (->) r a functor and an applicative functor, but it's also amonad. Just
like other monadic values that we've met so far, a function can also be considered a value with a
context. The context for functions is that that value is not present yet and that we have to apply
that function to something in order to get its result value.

Because we're already acquainted with how functions work as functors and applicative functors,
let's dive right in and see what their Monad instance looks like. It's located in Control.Monad.In-
stances and it goes a little something like this:

instance Monad ((->) r) where

return x = _ -> x

h >>= f = \w -> f (h w) w

249

We've already seen how pure is implemented for functions, and return is pretty much the same
thing as pure. It takes a value and puts it in a minimal context that always has that value as its
result. And the only way to make a function that always has a certain value as its result is to make
it completely ignore its parameter.

The implementation for >>= seems a bit cryptic, but it's really not all that. When we use >>= to
feed a monadic value to a function, the result is always a monadic value. So in this case, when we
feed a function to another function, the result is a function as well. That's why the result starts off
as a lambda. All of the implementations of >>= so far always somehow isolated the result from
the monadic value and then applied the function f to that result. The same thing happens here.
To get the result from a function, we have to apply it to something, which is why we do (h w) here
to get the result from the function and then we apply f to that. f returns a monadic value, which
is a function in our case, so we apply it to w as well.

If don't get how >>= works at this point, don't worry, because with examples we'll see how this is
a really simple monad. Here's a do expression that utilizes this monad:

import Control.Monad.Instances

addStuff :: Int -> Int

addStuff = do

a <- (*2)

b <- (+10)

return (a+b)

This is the same thing as the applicative expression that we wrote earlier, only now it relies on
functions being monads. A do expression always results in a monadic value and this one is no
different. The result of this monadic value is a function. What happens here is that it takes a
number and then (*2) gets applied to that number and the result becomes a. (+10) is applied to
the same number that (*2) got applied to and the result becomes b. return, like in other monads,
doesn't have any other effect but tomake amonadic value that presents some result. This presents
a+b as the result of this function. If we test it out, we get the same result as before:

ghci> addStuff 3

19

Both (*2) and (+10) get applied to the number 3 in this case. return (a+b) does as well, but it
ignores it and always presents a+b as the result. For this reason, the function monad is also called
the reader monad. All the functions read from a common source. To illustrate this even better,
we can rewrite addStuff like so:

addStuff :: Int -> Int

addStuff x = let

a = (*2) x

b = (+10) x

in a+b

We see that the reader monad allows us to treat functions as values with a context. We can act as
if we already know what the functions will return. It does this by gluing functions together into
one function and then giving that function's parameter to all of the functions that it was glued
from. So if we have a lot of functions that are all just missing one parameter and they'd eventually

250

be applied to the same thing, we can use the reader monad to sort of extract their future results
and the >>= implementation will make sure that it all works out.

13.3 Tasteful stateful computations

Haskell is a pure language and because of that, our programs are
made of functions that can't change any global state or variables,
they can only do some computations and return them results.
This restriction actually makes it easier to think about our pro-
grams, as it frees us from worrying what every variable's value is
at some point in time. However, some problems are inherently
stateful in that they rely on some state that changes over time.
While such problems aren't a problem for Haskell, they can be
a bit tedious to model sometimes. That's why Haskell features a
thing called the state monad, which makes dealing with stateful
problems a breeze while still keeping everything nice and pure.

When we were dealing with random numbers, we dealt with functions that took a random gener-
ator as a parameter and returned a random number and a new random generator. If we wanted
to generate several random numbers, we always had to use the random generator that a previous
function returned along with its result. When making a function that takes a StdGen and tosses
a coin three times based on that generator, we had to do this:

threeCoins :: StdGen -> (Bool, Bool, Bool)

threeCoins gen =

let (firstCoin, newGen) = random gen

(secondCoin, newGen') = random newGen

(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

It took a generator gen and then random gen returned a Bool value along with a new generator.
To throw the second coin, we used the new generator, and so on. In most other languages, we
wouldn't have to return a new generator along with a random number. We could just modify the
existing one! But since Haskell is pure, we can't do that, so we had to take some state, make a
result from it and a new state and then use that new state to generate new results.

You'd think that to avoid manually dealing with stateful computations in this way, we'd have to
give up the purity of Haskell. Well, we don't have to, since there exist a special little monad called
the statemonadwhich handles all this state business for us andwithout giving up any of the purity
that makes Haskell programming so cool.

So, to help us understand this concept of stateful computations better, let's go ahead and give
them a type. We'll say that a stateful computation is a function that takes some state and returns
a value along with some new state. That function would have the following type:

s -> (a,s)

s is the type of the state and a the result of the stateful computations.

Assignment in most other languages could be thought of as a stateful computation. For instance,
whenwe do x = 5 in an imperative language, it will usually assign the value 5 to the variable x and it

251

will also have the value 5 as an expression. If you look at that functionally, you could look at it as a
function that takes a state (that is, all the variables that have been assigned previously) and returns
a result (in this case 5) and a new state, which would be all the previous variable mappings plus
the newly assigned variable. This stateful computation, a function that takes a state and returns a
result and a new state, can be thought of as a value with a context as well. The actual value is the
result, whereas the context is that we have to provide some initial state to actually get that result
and that apart from getting a result we also get a new state.

Stacks and stones

Say we want to model operating a stack. You have a stack of things one on top of another and
you can either push stuff on top of that stack or you can take stuff off the top of the stack. When
you're putting an item on top of the stack we say that you're pushing it to the stack and when
you're taking stuff off the top we say that you're popping it. If you want to something that's at the
bottom of the stack, you have to pop everything that's above it.

We'll use a list to represent our stack and the head of the list will be the top of the stack. To help
us with our task, we'll make two functions: pop and push. pop will take a stack, pop one item and
return that item as the result and also return a new stack, without that item. push will take an
item and a stack and then push that item onto the stack. It will return () as its result, along with a
new stack. Here goes:

type Stack = [Int]

pop :: Stack -> (Int,Stack)

pop (x:xs) = (x,xs)

push :: Int -> Stack -> ((),Stack)

push a xs = ((),a:xs)

We used() as the result when pushing to the stack because pushing an item onto the stack doesn't
have any important result value, its main job is to change the stack. Notice how we just apply
the first parameter of push, we get a stateful computation. pop is already a stateful computation
because of its type.

Let's write a small piece of code to simulate a stack using these functions. We'll take a stack, push
3 to it and then pop two items, just for kicks. Here it is:

stackManip :: Stack -> (Int, Stack)

stackManip stack = let

((),newStack1) = push 3 stack

(a ,newStack2) = pop newStack1

in pop newStack2

We take a stack and then we do push 3 stack, which results in a tuple. The first part of the tuple
is a () and the second is a new stack and we call it newStack1. Then, we pop a number from
newStack1, which results in a number a (which is the 3) that we pushed and a new stack which
we call newStack2. Then, we pop a number off newStack2 and we get a number that's b and a
newStack3. We return a tuple with that number and that stack. Let's try it out:

ghci> stackManip [5,8,2,1]

(5,[8,2,1])

252

Cool, the result is 5 and the new stack is [8,2,1]. Notice how stackManip is itself a stateful com-
putation. We've taken a bunch of stateful computations and we've sort of glued them together.
Hmm, sounds familiar.

The above code for stackManip is kind of tedious since we're manually giving the state to every
stateful computation and storing it and then giving it to the next one. Wouldn't it be cooler if,
instead of giving the stack manually to each function, we could write something like this:

stackManip = do

push 3

a <- pop

pop

Well, using the state monad will allow us to do exactly this. With it, we will be able to take stateful
computations like these and use them without having to manage the state manually.

The State monad

The Control.Monad.State module provides a newtype that wraps stateful computations. Here's
its definition:

newtype State s a = State { runState :: s -> (a,s) }

A State s a is a stateful computation that manipulates a state of type s and has a result of type a.

Now that we've seen what stateful computations are about and how they can even be thought of
as values with contexts, let's check out their Monad instance:

instance Monad (State s) where

return x = State $ \s -> (x,s)

(State h) >>= f = State $ \s -> let (a, newState) = h s

(State g) = f a

in g newState

Let's take a gander at return first. Our aim with return is to take a value and make a stateful
computation that always has that value as its result. That's why we just make a lambda \s -> (x,s).
We always present x as the result of the stateful computation and the state is kept unchanged,
because return has to put a value in aminimal context. So return will make a stateful computation
that presents a certain value as the result and keeps the state unchanged.

What about >>=? Well, the result of feeding a stateful computation
to a function with >>= has to be a stateful computation, right? So we
start offwith the State newtypewrapper and thenwe type out a lambda.
This lambda will be our new stateful computation. But what goes on
in it? Well, we somehow have to extract the result value from the first
stateful computation. Because we're in a stateful computation right
now, we can give the stateful computation h our current state s, which
results in a pair of result and a new state:(a, newState). Every time so far
when we were implementing >>=, once we had the extracted the result
from the monadic value, we applied the function f to it to get the new monadic value. In Writer,
after doing that and getting the new monadic value, we still had to make sure that the context was
taken care of bymappending the oldmonoid value with the new one. Here, we do f a and we get a
new stateful computation g. Now that we have a new stateful computation and a new state (goes

253

by the name of newState) we just apply that stateful computation g to the newState. The result is
a tuple of final result and final state!

So with >>=, we kind of glue two stateful computations together, only the second one is hidden
inside a function that takes the previous one's result. Because pop and push are already stateful
computations, it's easy to wrap them into a State wrapper. Watch:

import Control.Monad.State

pop :: State Stack Int

pop = State $ \(x:xs) -> (x,xs)

push :: Int -> State Stack ()

push a = State $ \xs -> ((),a:xs)

pop is already a stateful computation and push takes an Int and returns a stateful computation.
Now we can rewrite our previous example of pushing 3 onto the stack and then popping two
numbers off like this:

import Control.Monad.State

stackManip :: State Stack Int

stackManip = do

push 3

a <- pop

pop

See how we've glued a push and two pops into one stateful computation? When we unwrap it
from its newtype wrapper we get a function to which we can provide some initial state:

ghci> runState stackManip [5,8,2,1]

(5,[8,2,1])

We didn't have to bind the second pop to a because we didn't use that a at all. So we could have
written it like this:

stackManip :: State Stack Int

stackManip = do

push 3

pop

pop

Pretty cool. But what if we want to do this: pop one number off the stack and then if that number
is 5 we just put it back onto the stack and stop but if it isn't 5, we push 3 and 8 back on? Well,
here's the code:

stackStuff :: State Stack ()

stackStuff = do

a <- pop

if a == 5

then push 5

254

else do

push 3

push 8

This is quite straightforward. Let's run it with an initial stack.

ghci> runState stackStuff [9,0,2,1,0]

((),[8,3,0,2,1,0])

Remember, do expressions result in monadic values and with the State monad, a single do ex-
pression is also a stateful function. Because stackManip and stackStuff are ordinary stateful com-
putations, we can glue them together to produce further stateful computations.

moreStack :: State Stack ()

moreStack = do

a <- stackManip

if a == 100

then stackStuff

else return ()

If the result of stackManip on the current stack is 100, we run stackStuff, otherwise we do nothing.
return () just keeps the state as it is and does nothing.

The Control.Monad.State module provides a type class that's called MonadState and it features
two pretty useful functions, namely get and put. For State, the get function is implemented like
this:

get = State $ \s -> (s,s)

So it just takes the current state and presents it as the result. The put function takes some state
and makes a stateful function that replaces the current state with it:

put newState = State $ \s -> ((),newState)

So with these, we can see what the current stack is or we can replace it with a whole other stack.
Like so:

stackyStack :: State Stack ()

stackyStack = do

stackNow <- get

if stackNow == [1,2,3]

then put [8,3,1]

else put [9,2,1]

It's worth examining what the type of >>= would be if it only worked for State values:

(>>=) :: State s a -> (a -> State s b) -> State s b

See how the type of the state s stays the same but the type of the result can change from a to b? This
means that we can glue together several stateful computations whose results are of different types

255

but the type of the state has to stay the same. Now why is that? Well, for instance, for Maybe,
>>= has this type:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

It makes sense that the monad itself, Maybe, doesn't change. It wouldn't make sense to use >>=
between two different monads. Well, for the state monad, the monad is actually State s, so if that
s was different, we'd be using >>= between two different monads.

Randomness and the state monad

At the beginning of this section, we saw how generating numbers can sometimes be awkward
because every random function takes a generator and returns a random number along with a
new generator, which must then be used instead of the old one if we want to generate another
random number. The state monad makes dealing with this a lot easier.

The random function from System.Random has the following type:

random :: (RandomGen g, Random a) => g -> (a, g)

Meaning it takes a randomgenerator and produces a randomnumber alongwith a new generator.
We can see that it's a stateful computation, so we can wrap it in the State newtype constructor and
then use it as a monadic value so that passing of the state gets handled for us:

import System.Random

import Control.Monad.State

randomSt :: (RandomGen g, Random a) => State g a

randomSt = State random

So now if we want to throw three coins (True is tails, False is heads) we just do the following:

import System.Random

import Control.Monad.State

threeCoins :: State StdGen (Bool,Bool,Bool)

threeCoins = do

a <- randomSt

b <- randomSt

c <- randomSt

return (a,b,c)

threeCoins is now a stateful computations and after taking an initial random generator, it passes
it to the first randomSt, which produces a number and a new generator, which gets passed to the
next one and so on. We use return (a,b,c) to present (a,b,c) as the result without changing the
most recent generator. Let's give this a go:

ghci> runState threeCoins (mkStdGen 33)

((True,False,True),680029187 2103410263)

Nice. Doing these sort of things that require some state to be kept in between steps just became
much less of a hassle!

256

13.4 Error error on the wall

We know by now that Maybe is used to add a context of possible failure to values. A value can be
a Just something or a Nothing. However useful it may be, when we have a Nothing, all we know
is that there was some sort of failure, but there's no way to cram some more info in there telling
us what kind of failure it was or why it failed.

The Either e a type on the other hand, allows us to incorporate a context of possible failure to our
values while also being able to attach values to the failure, so that they can describe what went
wrong or provide some other useful info regarding the failure. An Either e a value can either be a
Right value, signifying the right answer and a success, or it can be a Left value, signifying failure.
For instance:

ghci> :t Right 4

Right 4 :: (Num t) => Either a t

ghci> :t Left "out of cheese error"

Left "out of cheese error" :: Either [Char] b

This is pretty much just an enhanced Maybe, so it makes sense for it to be a monad, because it
can also be viewed as a value with an added context of possible failure, only now there's a value
attached when there's an error as well.

Its Monad instance is similar to that of Maybe and it can be found in Control.Monad.Error:

instance (Error e) => Monad (Either e) where

return x = Right x

Right x >>= f = f x

Left err >>= f = Left err

fail msg = Left (strMsg msg)

return, as always, takes a value and puts it in a default minimal context. It wraps our value in the
Right constructor because we're using Right to represent a successful computation where a result
is present. This is a lot like return for Maybe.

The >>= examines two possible cases: a Left and a Right. In the case of a Right, the function f is
applied to the value inside it, similar to how in the case of a Just, the function is just applied to its
contents. In the case of an error, the Left value is kept, along with its contents, which describe the
failure.

The Monad instance for Either e makes an additional requirement, and that is that the type of the
value contained in a Left, the one that's indexed by the e type parameter, has to be an instance of
the Error type class. The Error type class is for types whose values can act like error messages. It
defines the strMsg function, which takes an error in the form of a string and returns such a value.
A good example of an Error instance is, well, the String type! In the case of String, the strMsg
function just returns the string that it got:

ghci> :t strMsg

strMsg :: (Error a) => String -> a

ghci> strMsg "boom!" :: String

"boom!"

257

But since we usually use String to describe the error when using Either, we don't have to worry
about this too much. When a pattern match fails in do notation, a Left value is used to signify this
failure.

Anyway, here are a few examples of usage:

ghci> Left "boom" >>= \x -> return (x+1)

Left "boom"

ghci> Right 100 >>= \x -> Left "no way!"

Left "no way!"

When we use >>= to feed a Left value to a function, the function is ignored and an identical Left
value is returned. When we feed a Right value to a function, the function gets applied to what's
on the inside, but in this case that function produced a Left value anyway!

When we try to feed a Right value to a function that also succeeds, we're tripped up by a peculiar
type error! Hmmm.

ghci> Right 3 >>= \x -> return (x + 100)

<interactive>:1:0:

Ambiguous type variable `a' in the constraints:

`Error a' arising from a use of `it' at <interactive>:1:0-33

`Show a' arising from a use of `print' at <interactive>:1:0-33

Probable fix: add a type signature that fixes these type variable(s)

Haskell says that it doesn't know which type to choose for the e part of our Either e a typed value,
even though we're just printing the Right part. This is due to the Error e constraint on the Monad
instance. So if you get type errors like this one when using Either as a monad, just add an explicit
type signature:

ghci> Right 3 >>= \x -> return (x + 100) :: Either String Int

Right 103

Alright, now it works!

Other than this little hangup, using this monad is very similar to using Maybe as a monad. In
the previous chapter, we used the monadic aspects of Maybe to simulate birds landing on the
balancing pole of a tightrope walker. As an exercise, you can rewrite that with the error monad
so that when the tightrope walker slips and falls, we remember how many birds were on each side
of the pole when he fell.

13.5 Some useful monadic functions

In this section, we're going to explore a few functions that either operate on monadic values or
return monadic values as their results (or both!) . Such functions are usually referred to as
monadic functions. While some of them will be brand new, others will be monadic counterparts
of functions that we already know, like filter and foldl. Let's see what they are then!

liftM and friends

Whenwe started our journey to the top ofMonadMountain, we first looked at functors, which are
for things that can be mapped over. Then, we learned about improved functors called applicative

258

functors, which allowed us to apply normal functions between several applicative values as well
as to take a normal value and put it in some default context. Finally, we introduced monads as
improved applicative functors, which added the ability for these values with context to somehow
be fed into normal functions.

So every monad is an applicative
functor and every applicative func-
tor is a functor. The Applicative
type class has a class constraint such
that our type has to be an instance
of Functor before we can make it
an instance of Applicative. But
even thoughMonad should have the
same constraint for Applicative, as
every monad is an applicative func-
tor, it doesn't, because the Monad
type class was introduced to Haskell
way before Applicative.

But even though every monad is a functor, we don't have to rely on it having a Functor instance
because of the liftM function. liftM takes a function and a monadic value and maps it over the
monadic value. So it's pretty much the same thing as fmap! This is liftM's type:

liftM :: (Monad m) => (a -> b) -> m a -> m b

And this is the type of fmap:

fmap :: (Functor f) => (a -> b) -> f a -> f b

If the Functor andMonad instances for a type obey the functor andmonad laws, these two amount
to the same thing (and all the monads that we've met so far obey both). This is kind of like pure
and return do the same thing, only one has an Applicative class constraint whereas the other has
a Monad one. Let's try liftM out:

ghci> liftM (*3) (Just 8)

Just 24

ghci> fmap (*3) (Just 8)

Just 24

ghci> runWriter $ liftM not $ Writer (True, "chickpeas")

(False,"chickpeas")

ghci> runWriter $ fmap not $ Writer (True, "chickpeas")

(False,"chickpeas")

ghci> runState (liftM (+100) pop) [1,2,3,4]

(101,[2,3,4])

ghci> runState (fmap (+100) pop) [1,2,3,4]

(101,[2,3,4])

We already know quite well how fmap works with Maybe values. And liftM does the same thing.
For Writer values, the function is mapped over the first component of the tuple, which is the
result. Doing fmap or liftM over a stateful computation results in another stateful computation,

259

only its eventual result is modified by the supplied function. Had we not mapped (+100) over
pop in this case before running it, it would have returned (1,[2,3,4]).

This is how liftM is implemented:

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f m = m >>= (\x -> return (f x))

Or with do notation:

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f m = do

x <- m

return (f x)

We feed themonadic valuem into the function and thenwe apply the function f to its result before
putting it back into a default context. Because of themonad laws, this is guaranteed not to change
the context, only the result that the monadic value presents. We see that liftM is implemented
without referencing the Functor type class at all. This means that we can implement fmap (or
liftM, whatever you want to call it) just by using the goodies that monads offer us. Because of this,
we can conclude that monads are stronger than just regular old functors.

The Applicative type class allows us to apply functions between values with contexts as if they
were normal values. Like this:

ghci> (+) <$> Just 3 <*> Just 5

Just 8

ghci> (+) <$> Just 3 <*> Nothing

Nothing

Using this applicative style makes things pretty easy. <$> is just fmap and <*> is a function from
the Applicative type class that has the following type:

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

So it's kind of like fmap, only the function itself is in a context. We have to somehow extract
it from the context and map it over the f a value and then assemble the context back together.
Because all functions are curried in Haskell by default, we can use the combination of <$> and
<*> to apply functions that take several parameters between applicative values.

Anyway, it turns out that just like fmap, <*> can also be implemented by using only what the
Monad type class give us. The ap function is basically <*>, only it has a Monad constraint instead
of an Applicative one. Here's its definition:

ap :: (Monad m) => m (a -> b) -> m a -> m b

ap mf m = do

f <- mf

x <- m

return (f x)

mf is a monadic value whose result is a function. Because the function is in a context as well as the
value, we get the function from the context and call it f, then get the value and call that x and then
finally apply the function to the value and present that as a result. Here's a quick demonstration:

260

ghci> Just (+3) <*> Just 4

Just 7

ghci> Just (+3) `ap` Just 4

Just 7

ghci> [(+1),(+2),(+3)] <*> [10,11]

[11,12,12,13,13,14]

ghci> [(+1),(+2),(+3)] `ap` [10,11]

[11,12,12,13,13,14]

Now we see that monads are stronger than applicatives as well, because we can use the functions
from Monad to implement the ones for Applicative. In fact, many times when a type is found
to be a monad, people first write up a Monad instance and then make an Applicative instance by
just saying that pure is return and <*> is ap. Similarly, if you already have a Monad instance for
something, you can give it a Functor instance just saying that fmap is liftM.

The liftA2 function is a convenience function for applying a function between two applicative
values. It's defined simply like so:

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c

liftA2 f x y = f <$> x <*> y

The liftM2 function does the same thing, only it has a Monad constraint. There also exist liftM3
and liftM4 and liftM5.

We saw how monads are stronger than applicatives and functors and how even though all mon-
ads are functors and applicative functors, they don't necessarily have Functor and Applicative
instances, so we examined the monadic equivalents of the functions that functors and applicative
functors use.

The join function

Here's some food for thought: if the result of one monadic value is another monadic value i.e. if
onemonadic value is nested inside the other, can you flatten them to just a single normalmonadic
value? Like, if we have Just (Just 9) , can we make that into Just 9? It turns out that any nested
monadic value can be flattened and that this is actually a property unique to monads. For this,
the join function exists. Its type is this:

join :: (Monad m) => m (m a) -> m a

So it takes a monadic value within a monadic value and gives us just a monadic value, so it sort
of flattens it. Here it is with some Maybe values:

ghci> join (Just (Just 9))

Just 9

ghci> join (Just Nothing)

Nothing

ghci> join Nothing

Nothing

The first line has a successful computation as a result of a successful computation, so they're both
just joined into one big successful computation. The second line features a Nothing as a result
of a Just value. Whenever we were dealing with Maybe values before and we wanted to combine
several of them into one, be it with <*> or >>=, they all had to be Just values for the result to be

261

a Just value. If there was any failure along the way, the result was a failure and the same thing
happens here. In the third line, we try to flatten what is from the onset a failure, so the result is a
failure as well.

Flattening lists is pretty intuitive:

ghci> join [[1,2,3],[4,5,6]]

[1,2,3,4,5,6]

As you can see, for lists, join is just concat. To flatten aWriter value whose result is aWriter value
itself, we have to mappend the monoid value.

ghci> runWriter $ join (Writer (Writer (1,"aaa"),"bbb"))

(1,"bbbaaa")

The outer monoid value "bbb" comes first and then to it "aaa" is appended. Intuitively speaking,
when you want to examine what the result of a Writer value is, you have to write its monoid value
to the log first and only then can you examine what it has inside.

Flattening Either values is very similar to flattening Maybe values:

ghci> join (Right (Right 9)) :: Either String Int

Right 9

ghci> join (Right (Left "error")) :: Either String Int

Left "error"

ghci> join (Left "error") :: Either String Int

Left "error"

If we apply join to a stateful computation whose result is a stateful computation, the result is a
stateful computation that first runs the outer stateful computation and then the resulting one.
Watch:

ghci> runState (join (State $ \s -> (push 10,1:2:s))) [0,0,0]

((),[10,1,2,0,0,0])

The lambda here takes a state and puts 2 and 1 onto the stack and presents push 10 as its result.
So when this whole thing is flattened with join and then run, it first puts 2 and 1 onto the stack
and then push 10 gets carried out, pushing a 10 on to the top.

The implementation for join is as follows:

join :: (Monad m) => m (m a) -> m a

join mm = do

m <- mm

m

Because the result of mm is a monadic value, we get that result and then just put it on a line of its
own because it's a monadic value. The trick here is that when we do m <- mm, the context of the
monad in which we are in gets taken care of. That's why, for instance, Maybe values result in Just
values only if the outer and inner values are both Just values. Here's what this would look like if
the mm value was set in advance to Just (Just 8):

262

joinedMaybes :: Maybe Int

joinedMaybes = do

m <- Just (Just 8)

m

Perhaps the most interesting thing about join is that for every monad,
feeding amonadic value to a functionwith >>= is the same thing as just
mapping that function over the value and then using join to flatten the
resulting nested monadic value! In other words, m >>= f is always the
same thing as join (fmap f m)! It makes sense when you think about it.
With >>=, we're always thinking about how to feed a monadic value
to a function that takes a normal value but returns a monadic value. If
we just map that function over the monadic value, we have a monadic
value inside a monadic value. For instance, say we have Just 9 and the
function \x -> Just (x+1) . If we map this function over Just 9, we're
left with Just (Just 10).

The fact that m >>= f always equals join (fmap f m) is very useful if
we're making our ownMonad instance for some type because it's often
easier to figure out how we would flatten a nested monadic value than
figuring out how to implement >>=.

filterM

The filter function is pretty much the bread of Haskell programming (map being the butter) . It
takes a predicate and a list to filter out and then returns a new list where only the elements that
satisfy the predicate are kept. Its type is this:

filter :: (a -> Bool) -> [a] -> [a]

The predicate takes an element of the list and returns a Bool value. Now, what if the Bool value
that it returned was actually a monadic value? Whoa! That is, what if it came with a context?
Could that work? For instance, what if every True or a False value that the predicate produced
also had an accompanying monoid value, like ["Accepted the number 5"] or ["3 is too small"] ?
That sounds like it could work. If that were the case, we'd expect the resulting list to also come
with a log of all the log values that were produced along the way. So if the Bool that the predicate
returned came with a context, we'd expect the final resulting list to have some context attached as
well, otherwise the context that each Bool came with would be lost.

The filterM function from Control.Monad does just what we want! Its type is this:

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

The predicate returns a monadic value whose result is a Bool, but because it's a monadic value,
its context can be anything from a possible failure to non-determinism and more! To ensure that
the context is reflected in the final result, the result is also a monadic value.

Let's take a list and only keep those values that are smaller than 4. To start, we'll just use the
regular filter function:

ghci> filter (\x -> x < 4) [9,1,5,2,10,3]

[1,2,3]

263

That's pretty easy. Now, let's make a predicate that, aside from presenting a True or False result,
also provides a log of what it did. Of course, we'll be using the Writer monad for this:

keepSmall :: Int -> Writer [String] Bool

keepSmall x

| x < 4 = do

tell ["Keeping " ++ show x]

return True

| otherwise = do

tell [show x ++ " is too large, throwing it away"]

return False

Instead of just and returning a Bool, this function returns a Writer [String] Bool. It's a monadic
predicate. Sounds fancy, doesn't it? If the number is smaller than 4 we report that we're keeping
it and then return True.

Now, let's give it to filterM along with a list. Because the predicate returns a Writer value, the
resulting list will also be a Writer value.

ghci> fst $ runWriter $ filterM keepSmall [9,1,5,2,10,3]

[1,2,3]

Examining the result of the resulting Writer value, we see that everything is in order. Now, let's
print the log and see what we got:

ghci> mapM_ putStrLn $ snd $ runWriter $ filterM keepSmall [9,1,5,2,10,3]

9 is too large, throwing it away

Keeping 1

5 is too large, throwing it away

Keeping 2

10 is too large, throwing it away

Keeping 3

Awesome. So just by providing a monadic predicate to filterM, we were able to filter a list while
taking advantage of the monadic context that we used.

A very cool Haskell trick is using filterM to get the powerset of a list (if we think of them as sets
for now). The powerset of some set is a set of all subsets of that set. So if we have a set like [1,2,3],
its powerset would include the following sets:

[1,2,3]

[1,2]

[1,3]

[1]

[2,3]

[2]

[3]

[]

In other words, getting a powerset is like getting all the combinations of keeping and throwing
out elements from a set. [2,3] is like the original set, only we excluded the number 1.

264

To make a function that returns a powerset of some list, we're going to rely on non-determinism.
We take the list [1,2,3] and then look at the first element, which is 1 and we ask ourselves: should
we keep it or drop it? Well, we'd like to do both actually. Sowe are going to filter a list andwe'll use
a predicate that non-deterministically both keeps and drops every element from the list. Here's
our powerset function:

powerset :: [a] -> [[a]]

powerset xs = filterM (\x -> [True, False]) xs

Wait, that's it? Yup. We choose to drop and keep every element, regardless of what that element
is. We have a non-deterministic predicate, so the resulting list will also be a non-deterministic
value and will thus be a list of lists. Let's give this a go:

ghci> powerset [1,2,3]

[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]

This takes a bit of thinking to wrap your head around, but if you just consider lists as non-deter-
ministic values that don't know what to be so they just decide to be everything at once, it's a bit
easier.

foldM

The monadic counterpart to foldl is foldM. If you remember your folds from the folds section,
you know that foldl takes a binary function, a starting accumulator and a list to fold up and then
folds it from the left into a single value by using the binary function. foldM does the same thing,
except it takes a binary function that produces a monadic value and folds the list up with that.
Unsurprisingly, the resulting value is also monadic. The type of foldl is this:

foldl :: (a -> b -> a) -> a -> [b] -> a

Whereas foldM has the following type:

foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a

The value that the binary function returns is monadic and so the result of the whole fold is
monadic as well. Let's sum a list of numbers with a fold:

ghci> foldl (\acc x -> acc + x) 0 [2,8,3,1]

14

The starting accumulator is 0 and then 2 gets added to the accumulator, resulting in a new accu-
mulator that has a value of 2. 8 gets added to this accumulator resulting in an accumulator of 10
and so on and when we reach the end, the final accumulator is the result.

Now what if we wanted to sum a list of numbers but with the added condition that if any number
is greater than 9 in the list, the whole thing fails? It would make sense to use a binary function
that checks if the current number is greater than 9 and if it is, fails, and if it isn't, continues on
its merry way. Because of this added possibility of failure, let's make our binary function return a
Maybe accumulator instead of a normal one. Here's the binary function:

binSmalls :: Int -> Int -> Maybe Int

binSmalls acc x

| x > 9 = Nothing

| otherwise = Just (acc + x)

265

Because our binary function is now a monadic function, we can't use it with the normal foldl, but
we have to use foldM. Here goes:

ghci> foldM binSmalls 0 [2,8,3,1]

Just 14

ghci> foldM binSmalls 0 [2,11,3,1]

Nothing

Excellent! Because one number in the list was greater than 9, the whole thing resulted in a Noth-
ing. Folding with a binary function that returns a Writer value is cool as well because then you
log whatever you want as your fold goes along its way.

Making a safe RPN calculator

Whenwewere solving the problem of implementing a RPN calculator,
we noted that it worked fine as long as the input that it got made sense.
But if something went wrong, it caused our whole program to crash.
Now that we know how to take some code that we have and make it
monadic, let's take our RPN calculator and add error handling to it by
taking advantage of the Maybe monad.

We implemented our RPN calculator by taking a string like "1 3 + 2
", breaking it up into words to get something like ["1","3","+","2",""]
and then folding over that list by starting out with an empty stack and
then using a binary folding function that adds numbers to the stack or
manipulates numbers on the top of the stack to add them together and
divide them and such.

This was the main body of our function:

import Data.List

solveRPN :: String -> Double

solveRPN = head . foldl foldingFunction [] . words

We made the expression into a list of strings, folded over it with our folding function and then
when we were left with just one item in the stack, we returned that item as the answer. This was
the folding function:

foldingFunction :: [Double] -> String -> [Double]

foldingFunction (x:y:ys) "*" = (x * y):ys

foldingFunction (x:y:ys) "+" = (x + y):ys

foldingFunction (x:y:ys) "-" = (y - x):ys

foldingFunction xs numberString = read numberString:xs

The accumulator of the fold was a stack, which we represented with a list of Double values. As the
folding function went over the RPN expression, if the current item was an operator, it took two
items off the top of the stack, applied the operator between them and then put the result back on
the stack. If the current item was a string that represented a number, it converted that string into
an actual number and returned a new stack that was like the old one, except with that number
pushed to the top.

266

Let's first make our folding function capable of graceful failure. Its type is going to change from
what it is now to this:

foldingFunction :: [Double] -> String -> Maybe [Double]

So it will either return Just a new stack or it will fail with Nothing.

The reads function is like read, only it returns a list with a single element in case of a successful
read. If it fails to read something, then it returns an empty list. Apart from returning the value that
it read, it also returns the part of the string that it didn't consume. We're going to say that it always
has to consume the full input to work and make it into a readMaybe function for convenience.
Here it is:

readMaybe :: (Read a) => String -> Maybe a

readMaybe st = case reads st of [(x,"")] -> Just x

_ -> Nothing

Testing it out:

ghci> readMaybe "1" :: Maybe Int

Just 1

ghci> readMaybe "GO TO HELL" :: Maybe Int

Nothing

Okay, it seems to work. So, let's make our folding function into a monadic function that can fail:

foldingFunction :: [Double] -> String -> Maybe [Double]

foldingFunction (x:y:ys) "*" = return ((x * y):ys)

foldingFunction (x:y:ys) "+" = return ((x + y):ys)

foldingFunction (x:y:ys) "-" = return ((y - x):ys)

foldingFunction xs numberString = liftM (:xs) (readMaybe numberString)

The first three cases are like the old ones, except the new stack gets wrapped in a Just (we used
return here to do this, but we could have written Just just as well) . In the last case, we do read-
Maybe numberString and then we map (:xs) over it. So if the stack xs is [1.0,2.0] and readMaybe
numberString results in a Just 3.0, the result is Just [3.0,1.0,2.0] . If readMaybe numberString
results in a Nothing then the result is Nothing. Let's try out the folding function by itself:

ghci> foldingFunction [3,2] "*"

Just [6.0]

ghci> foldingFunction [3,2] "-"

Just [-1.0]

ghci> foldingFunction [] "*"

Nothing

ghci> foldingFunction [] "1"

Just [1.0]

ghci> foldingFunction [] "1 wawawawa"

Nothing

It looks like it's working! And now it's time for the new and improved solveRPN. Here it is ladies
and gents!

267

import Data.List

solveRPN :: String -> Maybe Double

solveRPN st = do

[result] <- foldM foldingFunction [] (words st)

return result

Just like before, we take the string and make it into a list of words. Then, we do a fold, starting
with the empty stack, only instead of doing a normal foldl, we do a foldM.The result of that foldM
should be a Maybe value that contains a list (that's our final stack) and that list should have only
one value. We use a do expression to get that value and we call it result. In case the foldM returns
a Nothing, the whole thing will be a Nothing, because that's how Maybe works. Also notice that
we pattern match in the do expression, so if the list has more than one value or none at all, the
pattern match fails and a Nothing is produced. In the last line we just do return result to present
the result of the RPN calculation as the result of the final Maybe value.

Let's give it a shot:

ghci> solveRPN "1 2 * 4 +"

Just 6.0

ghci> solveRPN "1 2 * 4 + 5 *"

Just 30.0

ghci> solveRPN "1 2 * 4"

Nothing

ghci> solveRPN "1 8 wharglbllargh"

Nothing

Thefirst failure happens because the final stack isn't a list with one element in it and so the pattern
matching in the do expression fails. The second failure happens because readMaybe returns a
Nothing.

Composing monadic functions

When we were learning about the monad laws, we said that the <=< function is just like compo-
sition, only instead of working for normal functions like a -> b, it works for monadic functions
like a -> m b. For instance:

ghci> let f = (+1) . (*100)

ghci> f 4

401

ghci> let g = (\x -> return (x+1)) <=< (\x -> return (x*100))

ghci> Just 4 >>= g

Just 401

In this example we first composed two normal functions, applied the resulting function to 4 and
then we composed two monadic functions and fed Just 4 to the resulting function with >>=.

If we have a bunch of functions in a list, we can compose them one all into one big function by just
using id as the starting accumulator and the . function as the binary function. Here's an example:

ghci> let f = foldr (.) id [(+1),(*100),(+1)]

ghci> f 1

201

268

The function f takes a number and then adds 1 to it, multiplies the result by 100 and then adds
1 to that. Anyway, we can compose monadic functions in the same way, only instead normal
composition we use <=< and instead of id we use return. We don't have to use a foldM over a
foldr or anything because the <=< function makes sure that composition happens in a monadic
fashion.

When we were getting to know the list monad in the previous chapter, we used it to figure out if
a knight can go from one position on a chessboard to another in exactly three moves. We had a
function called moveKnight which took the knight's position on the board and returned all the
possible moves that he can make next. Then, to generate all the possible positions that he can
have after taking three moves, we made the following function:

in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

And to check if he can go from start to end in three moves, we did the following:

canReachIn3 :: KnightPos -> KnightPos -> Bool

canReachIn3 start end = end `elem` in3 start

Usingmonadic function composition, we canmake a function like in3, only instead of generating
all the positions that the knight can have after making three moves, we can do it for an arbitrary
number of moves. If you look at in3, we see that we used moveKnight three times and each time
we used >>= to feed it all the possible previous positions. So now, let's make it more general.
Here's how to do it:

import Data.List

inMany :: Int -> KnightPos -> [KnightPos]

inMany x start = return start >>= foldr (<=<) return (replicate x moveKnight)

First we use replicate to make a list that contains x copies of the function moveKnight. Then, we
monadically compose all those functions into one, which gives us a function that takes a starting
position and non-deterministically moves the knight x times. Then, we just make the starting
position into a singleton list with return and feed it to the function.

Now, we can change our canReachIn3 function to be more general as well:

canReachIn :: Int -> KnightPos -> KnightPos -> Bool

canReachIn x start end = end `elem` inMany x start

13.6 Making monads

269

In this section, we're going to look at an example of how a type gets made, identified as a monad
and then given the appropriate Monad instance. We don't usually set out to make a monad with
the sole purpose of making a monad. Instead, we usually make a type that whose purpose is to
model an aspect of some problem and then later on if we see that the type represents a value with
a context and can act like a monad, we give it a Monad instance.

As we've seen, lists are used to represent non-deterministic values. A list like [3,5,9] can be viewed
as a single non-deterministic value that just can't decide what it's going to be. When we feed a list
into a function with >>=, it just makes all the possible choices of taking an element from the list
and applying the function to it and then presents those results in a list as well.

If we look at the list [3,5,9] as the numbers 3, 5 and 9 occurring at once, we might notice that
there's no info regarding the probability that each of those numbers occurs. What if we wanted
to model a non-deterministic value like [3,5,9], but we wanted to express that 3 has a 50% chance
of happening and 5 and 9 both have a 25% chance of happening? Let's try and make this happen!

Let's say that every item in the list comes with another value, a probability of it happening. It
might make sense to present this like this then:

[(3,0.5),(5,0.25),(9,0.25)]

In mathematics, probabilities aren't usually expressed in percentages, but rather in real numbers
between a 0 and 1. A 0 means that there's no chance in hell for something to happen and a 1
means that it's happening for sure. Floating point numbers can get real messy real fast because
they tend to lose precision, so Haskell offers us a data type for rational numbers that doesn't lose
precision. That type is called Rational and it lives in Data.Ratio. To make a Rational, we write it
as if it were a fraction. The numerator and the denominator are separated by a

ghci> 1%4

1 % 4

ghci> 1%2 + 1%2

1 % 1

ghci> 1%3 + 5%4

19 % 12

The first line is just one quarter. In the second line we add two halves to get a whole and in the
third line we add one third with five quarters and get nineteen twelfths. So let'use throw out our
floating points and use Rational for our probabilities:

ghci> [(3,1%2),(5,1%4),(9,1%4)]

[(3,1 % 2),(5,1 % 4),(9,1 % 4)]

Okay, so 3 has a one out of two chance of happening while 5 and 9 will happen one time out of
four. Pretty neat.

We took lists and we added some extra context to them, so this represents values withs contexts
too. Before we go any further, let's wrap this into a newtype because something tells me we'll be
making some instances.

import Data.Ratio

newtype Prob a = Prob { getProb :: [(a,Rational)] } deriving Show

270

Alright. Is this a functor? Well, the list is a functor, so this should probably be a functor as well,
because we just added some stuff to the list. When we map a function over a list, we apply it to
each element. Here, we'll apply it to each element as well, only we'll leave the probabilities as they
are. Let's make an instance:

instance Functor Prob where

fmap f (Prob xs) = Prob $ map (\(x,p) -> (f x,p)) xs

We unwrap it from the newtype with pattern matching, apply the function f to the values while
keeping the probabilities as they are and then wrap it back up. Let's see if it works:

ghci> fmap negate (Prob [(3,1%2),(5,1%4),(9,1%4)])

Prob {getProb = [(-3,1 % 2),(-5,1 % 4),(-9,1 % 4)]}

Another thing to note is that the probabilities should always add up to 1. If those are all the things
that can happen, it doesn't make sense for the sum of their probabilities to be anything other than
1. A coin that lands tails 75% of the time and heads 50% of the time seems like it could only work
in some other strange universe.

Now the big question, is this a monad? Given how the list is a monad, this looks like it should be a
monad as well. First, let's think about return. How does it work for lists? It takes a value and puts
it in a singleton list. What about here? Well, since it's supposed to be a default minimal context, it
should also make a singleton list. What about the probability? Well, return x is supposed tomake
a monadic value that always presents x as its result, so it doesn't make sense for the probability to
be 0. If it always has to present it as its result, the probability should be 1!

What about >>=? Seems kind of tricky, so let's make use of the fact that m >>= f always equals
join (fmap f m) for monads and think about how we would flatten a probability list of probability
lists. As an example, let's consider this list where there's a 25% chance that exactly one of 'a' or 'b'
will happen. Both 'a' and 'b' are equally likely to occur. Also, there's a 75% chance that exactly one
of 'c' or 'd' will happen. 'c' and 'd' are also equally likely to happen. Here's a picture of a probability
list that models this scenario:

What are the chances for each of these letters
to occur? If we were to draw this as just four
boxes, each with a probability, what would
those probabilities be? To find out, all we have
to do is multiply each probability with all of
probabilities that it contains. 'a' would occur
one time out of eight, as would 'b', because if

we multiply one half by one quarter we get one eighth. 'c' would happen three times out of eight
because three quarters multiplied by one half is three eighths. 'd' would also happen three times
out of eight. If we sum all the probabilities, they still add up to one.

Here's this situation expressed as a probability list:

thisSituation :: Prob (Prob Char)

thisSituation = Prob

[(Prob [('a',1%2),('b',1%2)] , 1%4)

,(Prob [('c',1%2),('d',1%2)] , 3%4)

]

271

Notice that its type is Prob (Prob Char) . So now that we've figure out how to flatten a nested
probability list, all we have to do is write the code for this and then we can write >>= simply as
join (fmap f m) and we have ourselves a monad! So here's flatten, which we'll use because the
name join is already taken:

flatten :: Prob (Prob a) -> Prob a

flatten (Prob xs) = Prob $ concat $ map multAll xs

where multAll (Prob innerxs,p) = map (\(x,r) -> (x,p*r)) innerxs

The function multAll takes a tuple of probability list and a probability p that comes with it and
then multiplies every inner probability with p, returning a list of pairs of items and probabilities.
We map multAll over each pair in our nested probability list and then we just flatten the resulting
nested list.

Now we have all that we need, we can write a Monad instance!

instance Monad Prob where

return x = Prob [(x,1%1)]

m >>= f = flatten (fmap f m)

fail _ = Prob []

Because we already did all the hard work, the instance is very simple.
We also defined the fail function, which is the same as it is for lists,
so if there's a pattern match failure in a do expression, a failure occurs
within the context of a probability list.

It's also important to check if the monad laws hold for the monad that
we just made. The first one says that return x >>= f should be equal to
f x. A rigorous proof would be rather tedious, but we can see that if we
put a value in a default context with return and then fmap a function
over that and flatten the resulting probability list, every probability that
results from the function would be multiplied by the 1%1 probability
that we made with return, so it wouldn't affect the context. The rea-
soning for m >>= return being equal to just m is similar. The third
law states that f <=< (g <=< h) should be the same as (f <=< g) <=<
h. This one holds as well, because it holds for the list monad which
forms the basis of the probability monad and because multiplication is
associative. 1%2 * (1%3 * 1%5) is equal to (1%2 * 1%3) * 1%5.

Now that we have a monad, what can we do with it? Well, it can help
us do calculations with probabilities. We can treat probabilistic events
as values with contexts and the probability monad will make sure that
those probabilities get reflected in the probabilities of the final result.

Say we have two normal coins and one loaded coin that gets tails an astounding nine times out of
ten and heads only one time out of ten. If we throw all the coins at once, what are the odds of all
of them landing tails? First, let's make probability values for a normal coin flip and for a loaded
one:

data Coin = Heads | Tails deriving (Show, Eq)

coin :: Prob Coin

272

coin = Prob [(Heads,1%2),(Tails,1%2)]

loadedCoin :: Prob Coin

loadedCoin = Prob [(Heads,1%10),(Tails,9%10)]

And finally, the coin throwing action:

import Data.List (all)

flipThree :: Prob Bool

flipThree = do

a <- coin

b <- coin

c <- loadedCoin

return (all (==Tails) [a,b,c])

Giving it a go, we see that the odds of all three landing tails are not that good, despite cheating
with our loaded coin:

ghci> getProb flipThree

[(False,1 % 40),(False,9 % 40),(False,1 % 40),(False,9 % 40),

(False,1 % 40),(False,9 % 40),(False,1 % 40),(True,9 % 40)]

All three of them will land tails nine times out of forty, which is less than 25%. We see that our
monad doesn't know how to join all of the False outcomes where all coins don't land tails into
one outcome. That's not a big problem, since writing a function to put all the same outcomes into
one outcome is pretty easy and is left as an exercise to the reader (you!)

In this section, we went from having a question (what if lists also carried information about prob-
ability?) to making a type, recognizing a monad and finally making an instance and doing some-
thing with it. I think that's quite fetching! By now, we should have a pretty good grasp onmonads
and what they're about.

Chapter 14 Zippers

While Haskell's purity comes with a whole bunch of benefits, it makes us
tackle some problems differently than we would in impure languages. Be-
cause of referential transparency, one value is as good as another in Haskell
if it represents the same thing.

So if we have a tree full of fives (high-fives, maybe?) and we want to change
one of them into a six, we have to have some way of knowing exactly which
five in our tree we want to change. We have to know where it is in our
tree. In impure languages, we could just note where in our memory the five
is located and change that. But in Haskell, one five is as good as another,
so we can't discriminate based on where in our memory they are. We also
can't really change anything; when we say that we change a tree, we actually
mean that we take a tree and return a new one that's similar to the original
tree, but slightly different.

One thing we can do is to remember a path from the root of the tree to
the element that we want to change. We could say, take this tree, go left,
go right and then left again and change the element that's there. While this
works, it can be inefficient. If we want to later change an element that's near
the element that we previously changed, we have to walk all the way from
the root of the tree to our element again!

In this chapter, we'll see how we can take some data structure and focus
on a part of it in a way that makes changing its elements easy and walking
around it efficient. Nice!

14.1 Taking a walk

Like we've learned in biology class, there are many different kinds of trees, so let's pick a seed that
we will use to plant ours. Here it is:

data Tree a = Empty | Node a (Tree a) (Tree a) deriving (Show)

So our tree is either empty or it's a node that has an element and two sub-trees. Here's a fine
example of such a tree, which I give to you, the reader, for free!

freeTree :: Tree Char

freeTree =

Node 'P'

(Node 'O'

(Node 'L'

(Node 'N' Empty Empty)

(Node 'T' Empty Empty)

)

(Node 'Y'

(Node 'S' Empty Empty)

(Node 'A' Empty Empty)

274

)

)

(Node 'L'

(Node 'W'

(Node 'C' Empty Empty)

(Node 'R' Empty Empty)

)

(Node 'A'

(Node 'A' Empty Empty)

(Node 'C' Empty Empty)

)

)

And here's this tree represented graphically:

Notice that W in the tree there? Say we want to change it into a P. How would we go about doing
that? Well, one way would be to patternmatch on our tree until we find the element that's located
by first going right and then left and changing said element. Here's the code for this:

changeToP :: Tree Char -> Tree Char

changeToP (Node x l (Node y (Node _ m n) r)) = Node x l (Node y (Node 'P' m n) r)

Yuck! Not only is this rather ugly, it's also kind of confusing. What happens here? Well, we
pattern match on our tree and name its root element x (that's becomes the 'P' in the root) and
its left sub-tree l. Instead of giving a name to its right sub-tree, we further pattern match on it.
We continue this pattern matching until we reach the sub-tree whose root is our 'W'. Once we've
done this, we rebuild the tree, only the sub-tree that contained the 'W' at its root now has a 'P'.

Is there a better way of doing this? How about we make our function take a tree along with a list
of directions. The directions will be either L or R, representing left and right respectively, and
we'll change the element that we arrive at if we follow the supplied directions. Here it is:

275

data Direction = L | R deriving (Show)

type Directions = [Direction]

changeToP :: Directions-> Tree Char -> Tree Char

changeToP (L:ds) (Node x l r) = Node x (changeToP ds l) r

changeToP (R:ds) (Node x l r) = Node x l (changeToP ds r)

changeToP [] (Node _ l r) = Node 'P' l r

If the first element in the our list of directions is L, we construct a new tree that's like the old tree,
only its left sub-tree has an element changed to 'P'. When we recursively call changeToP, we give
it only the tail of the list of directions, because we already took a left. We do the same thing in
the case of an R. If the list of directions is empty, that means that we're at our destination, so we
return a tree that's like the one supplied, only it has 'P' as its root element.

To avoid printing out the whole tree, let's make a function that takes a list of directions and tells
us what the element at the destination is:

elemAt :: Directions -> Tree a -> a

elemAt (L:ds) (Node _ l _) = elemAt ds l

elemAt (R:ds) (Node _ _ r) = elemAt ds r

elemAt [] (Node x _ _) = x

This function is actually quite similar to changeToP, only instead of remembering stuff along the
way and reconstructing the tree, it ignores everything except its destination. Here we change the
'W' to a 'P' and see if the change in our new tree sticks:

ghci> let newTree = changeToP [R,L] freeTree

ghci> elemAt [R,L] newTree

'P'

Nice, this seems to work. In these functions, the list of directions acts as a sort of focus, because
it pinpoints one exact sub-tree from our tree. A direction list of [R] focuses on the sub-tree that's
right of the root, for example. An empty direction list focuses on the main tree itself.

While this techniquemay seem cool, it can be rather inefficient, especially if we want to repeatedly
change elements. Say we have a really huge tree and a long direction list that points to some
element all the way at the bottom of the tree. We use the direction list to take a walk along the
tree and change an element at the bottom. If we want to change another element that's close to
the element that we've just changed, we have to start from the root of the tree and walk all the way
to the bottom again! What a drag.

In the next section, we'll find a better way of focusing on a sub-tree, one that allows us to efficiently
switch focus to sub-trees that are nearby.

14.2 A trail of breadcrumbs

Okay, so for focusing on a sub-tree, we want something better than just a list of directions that we
always follow from the root of our tree. Would it help if we start at the root of the tree and move
either left or right one step at a time and sort of leave breadcrumbs? That is, when we go left, we
remember that we went left and when we go right, we remember that we went right. Sure, we can
try that.

276

To represent our breadcrumbs, we'll also use a list of Direction
(which is either L or R), only instead of calling it Directions, we'll
call it Breadcrumbs , because our directions will now be reversed
since we're leaving them as we go down our tree:

type Breadcrumbs = [Direction]

Here's a function that takes a tree and some breadcrumbs and
moves to the left sub-tree while adding L to the head of the list
that represents our breadcrumbs:

goLeft :: (Tree a, Breadcrumbs) -> (Tree a, Breadcrumbs)

goLeft (Node _ l _, bs) = (l, L:bs)

We ignore the element at the root and the right sub-tree and just return the left sub-tree along
with the old breadcrumbs with L as the head. Here's a function to go right:

goRight :: (Tree a, Breadcrumbs) -> (Tree a, Breadcrumbs)

goRight (Node _ _ r, bs) = (r, R:bs)

It works the same way. Let's use these functions to take our freeTree and go right and then left:

ghci> goLeft (goRight (freeTree, []))

(Node 'W' (Node 'C' Empty Empty) (Node 'R' Empty Empty),[L,R])

Okay, so now we have a tree that has 'W' in its root and 'C'
in the root of its left sub-tree and 'R' in the root of its right
sub-tree. The breadcrumbs are [L,R] , because we first went
right and then left.

To make walking along our tree clearer, we can use the -:
function that we defined like so:

x -: f = f x

Which allows us to apply functions to values by first writing the value, then writing a -: and then
the function. So instead of goRight (freeTree, []) , we can write (freeTree, []) -: goRight. Using
this, we can rewrite the above so that it's more apparent that we're first going right and then left:

ghci> (freeTree, []) -: goRight -: goLeft

(Node 'W' (Node 'C' Empty Empty) (Node 'R' Empty Empty),[L,R])

Going back up

What if we now want to go back up in our tree? From our breadcrumbs we know that the current
tree is the left sub-tree of its parent and that it is the right sub-tree of its parent, but that's it. They
don't tell us enough about the parent of the current sub-tree for us to be able to go up in the tree.
It would seem that apart from the direction that we took, a single breadcrumb should also contain
all other data that we need to go back up. In this case, that's the element in the parent tree along
with its right sub-tree.

In general, a single breadcrumb should contain all the data needed to reconstruct the parent node.
So it should have the information from all the paths that we didn't take and it should also know

277

the direction that we did take, but it must not contain the sub-tree that we're currently focusing
on. That's because we already have that sub-tree in the first component of the tuple, so if we also
had it in the breadcrumbs, we'd have duplicate information.

Let's modify our breadcrumbs so that they also contain information about everything that we
previously ignored when moving left and right. Instead of Direction, we'll make a new data type:

data Crumb a = LeftCrumb a (Tree a) | RightCrumb a (Tree a) deriving (Show)

Now, instead of just L, we have a LeftCrumb that also contains the element in the node that we
moved from and the right tree that we didn't visit. Instead of R, we have RightCrumb, which
contains the element in the node that we moved from and the left tree that we didn't visit.

These breadcrumbs now contain all the data needed to recreate the tree that we walked through.
So instead of just being normal bread crumbs, they're now more like floppy disks that we leave as
we go along, because they contain a lot more information than just the direction that we took.

In essence, every breadcrumb is now like a tree node with a hole in it. When we move deeper into
a tree, the breadcrumb carries all the information that the node that we moved away from carried
except the sub-tree that we chose to focus on. It also has to note where the hole is. In the case of
a LeftCrumb, we know that we moved left, so the sub-tree that's missing is the left one.

Let's also change our Breadcrumbs type synonym to reflect this:

type Breadcrumbs a = [Crumb a]

Next up, we have tomodify the goLeft and goRight functions to store information about the paths
that we didn't take in our breadcrumbs, instead of ignoring that information like they did before.
Here's goLeft:

goLeft :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)

goLeft (Node x l r, bs) = (l, LeftCrumb x r:bs)

You can see that it's very similar to our previous goLeft, only instead of just adding a L to the head
of our list of breadcrumbs, we add a LeftCrumb to signify that we went left and we equip our
LeftCrumb with the element in the node that we moved from (that's the x) and the right sub-tree
that we chose not to visit.

Note that this function assumes that the current tree that's under focus isn't Empty. An empty tree
doesn't have any sub-trees, so if we try to go left from an empty tree, an error will occur because
the pattern match on Node won't succeed and there's no pattern that takes care of Empty.

goRight is similar:

goRight :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)

goRight (Node x l r, bs) = (r, RightCrumb x l:bs)

We were previously able to go left and right. What we've gotten now is the ability to actualy go
back up by remembering stuff about the parent nodes and the paths that we didn't visit. Here's
the goUp function:

goUp :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)

goUp (t, LeftCrumb x r:bs) = (Node x t r, bs)

goUp (t, RightCrumb x l:bs) = (Node x l t, bs)

278

We're focusing on the tree t and we check what the latest
Crumb is. If it's a LeftCrumb, then we construct a new tree
where our tree t is the left sub-tree and we use the informa-
tion about the right sub-tree that we didn't visit and the ele-
ment to fill out the rest of the Node. Because we moved back
so to speak and picked up the last breadcrumb to recreate
with it the parent tree, the new list of breadcrumbs doesn't
contain it.

Note that this function causes an error if we're already at the
top of a tree and we want to move up. Later on, we'll use
theMaybemonad to represent possible failure whenmoving
focus.

With a pair of Tree a and Breadcrumbs a, we have all the information to rebuild the whole tree
and we also have a focus on a sub-tree. This scheme also enables us to easily move up, left and
right. Such a pair that contains a focused part of a data structure and its surroundings is called
a zipper, because moving our focus up and down the data structure resembles the operation of a
zipper on a regular pair of pants. So it's cool to make a type synonym as such:

type Zipper a = (Tree a, Breadcrumbs a)

I'd prefer naming the type synonym Focus because that makes it clearer that we're focusing on a
part of a data structure, but the term zipper is more widely used to describe such a setup, so we'll
stick with Zipper.

Manipulating trees under focus

Now that we can move up and down, let's make a function that modifies the element in the root
of the sub-tree that the zipper is focusing on:

modify :: (a -> a) -> Zipper a -> Zipper a

modify f (Node x l r, bs) = (Node (f x) l r, bs)

modify f (Empty, bs) = (Empty, bs)

If we're focusing on a node, we modify its root element with the function f. If we're focusing on
an empty tree, we leave it as it is. Now we can start off with a tree, move to anywhere we want and
modify an element, all while keeping focus on that element so that we can easily move further up
or down. An example:

ghci> let newFocus = modify (_ -> 'P') (goRight (goLeft (freeTree,[])))

We go left, then right and then modify the root element by replacing it with a 'P'. This reads even
better if we use -::

ghci> let newFocus = (freeTree,[]) -: goLeft -: goRight -: modify (_ -> 'P')

We can then move up if we want and replace an element with a mysterious 'X':

ghci> let newFocus2 = modify (_ -> 'X') (goUp newFocus)

Or if we wrote it with -::

ghci> let newFocus2 = newFocus -: goUp -: modify (_ -> 'X')

279

Moving up is easy because the breadcrumbs that we leave form the part of the data structure that
we're not focusing on, but it's inverted, sort of like turning a sock inside out. That's why when we
want to move up, we don't have to start from the root and make our way down, but we just take
the top of our inverted tree, thereby uninverting a part of it and adding it to our focus.

Each node has two sub-trees, even if those sub-trees are empty trees. So if we're focusing on an
empty sub-tree, one thing we can do is to replace it with a non-empty subtree, thus attaching a
tree to a leaf node. The code for this is simple:

attach :: Tree a -> Zipper a -> Zipper a

attach t (_, bs) = (t, bs)

We take a tree and a zipper and return a new zipper that has its focus replaced with the supplied
tree. Not only can we extend trees this way by replacing empty sub-trees with new trees, we can
also replace whole existing sub-trees. Let's attach a tree to the far left of our freeTree:

ghci> let farLeft = (freeTree,[]) -: goLeft -: goLeft -: goLeft -: goLeft

ghci> let newFocus = farLeft -: attach (Node 'Z' Empty Empty)

newFocus is now focused on the tree that we just attached and the rest of the tree lies inverted in
the breadcrumbs. If we were to use goUp to walk all the way to the top of the tree, it would be the
same tree as freeTree but with an additional 'Z' on its far left.

I'm going straight to the top, oh yeah, up where the air is fresh and clean!

Making a function that walks all the way to the top of the tree, regardless of what we're focusing
on, is really easy. Here it is:

topMost :: Zipper a -> Zipper a

topMost (t,[]) = (t,[])

topMost z = topMost (goUp z)

If our trail of beefed up breadcrumbs is empty, this means that we're already at the root of our
tree, so we just return the current focus. Otherwise, we go up to get the focus of the parent node
and then recursively apply topMost to that. So now we can walk around our tree, going left and
right and up, applying modify and attach as we go along and then when we're done with our
modifications, we use topMost to focus on the root of our tree and see the changes that we've
done in proper perspective.

14.3 Focusing on lists

Zippers can be used with pretty much any data structure, so it's no surprise that they can be used
to focus on sub-lists of lists. After all, lists are pretty much like trees, only where a node in a tree
has an element (or not) and several sub-trees, a node in a list has an element and only a single
sub-list. When we implemented our own lists, we defined our data type like so:

data List a = Empty | Cons a (List a) deriving (Show, Read, Eq, Ord)

Contrast this with our definition of our binary tree and it's easy to see how lists can be viewed as
trees where each node has only one sub-tree.

280

A list like [1,2,3] can be written as 1:2:3: [] . It consists
of the head of the list, which is 1 and then the list's tail,
which is 2:3:[]. In turn, 2:3:[] also has a head, which is
2 and a tail, which is 3:[]. With 3:[], the 3 is the head and
the tail is the empty list [].

Let's make a zipper for lists. To change the focus
on sub-lists of a list, we move either forward or back
(whereas with trees we moved either up or left or right).
The focused part will be a sub-tree and along with that
we'll leave breadcrumbs as wemove forward. Nowwhat
would a single breadcrumb for a list consist of? When
we were dealing with binary trees, we said that a bread-
crumb has to hold the element in the root of the parent
node along with all the sub-trees that we didn't choose.
It also had to remember if we went left or right. So, it
had to have all the information that a node has except
for the sub-tree that we chose to focus on.

Lists are simpler than trees, so we don't have to remember if we went left or right, because there's
only one way to go deeper into a list. Because there's only one sub-tree to each node, we don't
have to remember the paths that we didn't take either. It seems that all we have to remember is
the previous element. If we have a list like [3,4,5] and we know that the previous element was 2,
we can go back by just putting that element at the head of our list, getting [2,3,4,5].

Because a single breadcrumb here is just the element, we don't really have to put it inside a data
type, like we did when we made the Crumb data type for tree zippers:

type ListZipper a = ([a],[a])

Thefirst list represents the list that we're focusing on and the second list is the list of breadcrumbs.
Let's make functions that go forward and back into lists:

goForward :: ListZipper a -> ListZipper a

goForward (x:xs, bs) = (xs, x:bs)

goBack :: ListZipper a -> ListZipper a

goBack (xs, b:bs) = (b:xs, bs)

When we're going forward, we focus on the tail of the current list and leave the head element as
a breadcrumb. When we're moving backwards, we take the latest breadcrumb and put it at the
beginning of the list.

Here are these two functions in action:

ghci> let xs = [1,2,3,4]

ghci> goForward (xs,[])

([2,3,4],[1])

ghci> goForward ([2,3,4],[1])

([3,4],[2,1])

ghci> goForward ([3,4],[2,1])

([4],[3,2,1])

281

ghci> goBack ([4],[3,2,1])

([3,4],[2,1])

We see that the breadcrumbs in the case of lists are nothing more but a reversed part of our list.
The element that we move away from always goes into the head of the breadcrumbs, so it's easy to
move back by just taking that element from the head of the breadcrumbs and making it the head
of our focus.

This also makes it easier to see why we call this a zipper, because this really looks like the slider of
a zipper moving up and down.

If you were making a text editor, you could use a list of strings to represent the lines of text that
are currently opened and you could then use a zipper so that you know which line the cursor is
currently focused on. By using a zipper, it would also make it easier to insert new lines anywhere
in the text or delete existing ones.

14.4 A very simple file system

Now that we know how zippers work, let's use trees to represent a very simple file system and
then make a zipper for that file system, which will allow us to move between folders, just like we
usually do when jumping around our file system.

If we take a simplistic view of the average hierarchical file system, we see that it's mostly made
up of files and folders. Files are units of data and come with a name, whereas folders are used to
organize those files and can contain files or other folders. So let's say that an item in a file system
is either a file, which comes with a name and some data, or a folder, which has a name and then
a bunch of items that are either files or folders themselves. Here's a data type for this and some
type synonyms so we know what's what:

type Name = String

type Data = String

data FSItem = File Name Data | Folder Name [FSItem] deriving (Show)

A file comes with two strings, which represent its name and the data it holds. A folder comes with
a string that is its name and a list of items. If that list is empty, then we have an empty folder.

Here's a folder with some files and sub-folders:

myDisk :: FSItem

myDisk =

Folder "root"

[File "goat_yelling_like_man.wmv" "baaaaaa"

, File "pope_time.avi" "god bless"

, Folder "pics"

[File "ape_throwing_up.jpg" "bleargh"

, File "watermelon_smash.gif" "smash!!"

, File "skull_man(scary).bmp" "Yikes!"

]

, File "dijon_poupon.doc" "best mustard"

, Folder "programs"

[File "fartwizard.exe" "10gotofart"

282

, File "owl_bandit.dmg" "mov eax, h00t"

, File "not_a_virus.exe" "really not a virus"

, Folder "source code"

[File "best_hs_prog.hs" "main = print (fix error)"

, File "random.hs" "main = print 4"

]

]

]

That's actually what my disk contains right now.

A zipper for our file system

Now that we have a file system, all we need is a zipper so we
can zip and zoom around it and add, modify and remove files
as well as folders. Like with binary trees and lists, we're go-
ing to be leaving breadcrumbs that contain info about all the
stuff that we chose not to visit. Like we said, a single bread-
crumb should be kind of like a node, only it should contain
everything except the sub-tree that we're currently focusing
on. It should also notewhere the hole is so that oncewemove
back up, we can plug our previous focus into the hole.

In this case, a breadcrumb should be like a folder, only it
should be missing the folder that we currently chose. Why
not like a file, you ask? Well, because once we're focusing on
a file, we can't move deeper into the file system, so it doesn't
make sense to leave a breadcrumb that says that we came
from a file. A file is sort of like an empty tree.

If we're focusing on the folder "root" and we then focus on the file "dijon_poupon.doc", what
should the breadcrumb that we leave look like? Well, it should contain the name of its parent
folder along with the items that come before the file that we're focusing on and the items that
come after it. So all we need is a Name and two lists of items. By keeping separate lists for the
items that come before the item that we're focusing and for the items that come after it, we know
exactly where to place it once we move back up. So this way, we know where the hole is.

Here's our breadcrumb type for the file system:

data FSCrumb = FSCrumb Name [FSItem] [FSItem] deriving (Show)

And here's a type synonym for our zipper:

type FSZipper = (FSItem, [FSCrumb])

Going back up in the hierarchy is very simple. We just take the latest breadcrumb and assemble
a new focus from the current focus and breadcrumb. Like so:

fsUp :: FSZipper -> FSZipper

fsUp (item, FSCrumb name ls rs:bs) = (Folder name (ls ++ [item] ++ rs), bs)

Because our breadcrumb knew what the parent folder's name was, as well as the items that came
before our focused item in the folder (that's ls) and the ones that came after (that's rs), moving up
was easy.

283

How about going deeper into the file system? If we're in the "root" and we want to focus on
"dijon_poupon.doc", the breadcrumb that we leave is going to include the name "root" along with
the items that precede "dijon_poupon.doc" and the ones that come after it.

Here's a function that, given a name, focuses on a file of folder that's located in the current focused
folder:

import Data.List (break)

fsTo :: Name -> FSZipper -> FSZipper

fsTo name (Folder folderName items, bs) =

let (ls, item:rs) = break (nameIs name) items

in (item, FSCrumb folderName ls rs:bs)

nameIs :: Name -> FSItem -> Bool

nameIs name (Folder folderName _) = name == folderName

nameIs name (File fileName _) = name == fileName

fsTo takes a Name and a FSZipper and returns a new FSZipper that focuses on the file with the
given name. That file has to be in the current focused folder. This function doesn't search all over
the place, it just looks at the current folder.

First we use break to break the list of items in a folder into those that pre-
cede the file that we're searching for and those that come after it. If you
remember, break takes a predicate and a list and returns a pair of lists. The
first list in the pair holds items for which the predicate returns False. Then,
once the predicate returns True for an item, it places that item and the rest
of the list in the second item of the pair. We made an auxilliary function
called nameIs that takes a name and a file system item and returns True if
the names match.

So now, ls is a list that contains the items that precede the item that we're searching for, item is
that very item and rs is the list of items that come after it in its folder. Now that we have this, we
just present the item that we got from break as the focus and build a breadcrumb that has all the
data it needs.

Note that if the name we're looking for isn't in the folder, the pattern item:rs will try to match on
an empty list and we'll get an error. Also, if our current focus isn't a folder at all but a file, we get
an error as well and the program crashes.

Now we can move up and down our file system. Let's start at the root and walk to the file
"skull_man(scary).bmp":

ghci> let newFocus = (myDisk,[]) -: fsTo "pics" -: fsTo "skull_man(scary).bmp"

newFocus is now a zipper that's focused on the "skull_man(scary) .bmp" file. Let's get the first
component of the zipper (the focus itself) and see if that's really true:

ghci> fst newFocus

File "skull_man(scary).bmp" "Yikes!"

Let's move up and then focus on its neighboring file "watermelon_smash.gif":

284

ghci> let newFocus2 = newFocus -: fsUp -: fsTo "watermelon_smash.gif"

ghci> fst newFocus2

File "watermelon_smash.gif" "smash!!"

Manipulating our file system

Now that we know how to navigate our file system, manipulating it is easy. Here's a function that
renames the currently focused file or folder:

fsRename :: Name -> FSZipper -> FSZipper

fsRename newName (Folder name items, bs) = (Folder newName items, bs)

fsRename newName (File name dat, bs) = (File newName dat, bs)

Now we can rename our "pics" folder to "cspi":

ghci> let newFocus = (myDisk,[]) -: fsTo "pics" -: fsRename "cspi" -: fsUp

We descended to the "pics" folder, renamed it and then moved back up.

How about a function that makes a new item in the current folder? Behold:

fsNewFile :: FSItem -> FSZipper -> FSZipper

fsNewFile item (Folder folderName items, bs) =

(Folder folderName (item:items), bs)

Easy as pie. Note that this would crash if we tried to add an item but weren't focusing on a folder,
but were focusing on a file instead.

Let's add a file to our "pics" folder and then move back up to the root:

ghci> let newFocus = (myDisk,[]) -: fsTo "pics" -: fsNewFile (File "heh.jpg" "lol") -: fsUp

What's really cool about all this is that when we modify our file system, it doesn't actually modify
it in place but it returns a whole new file system. That way, we have access to our old file system (in
this case, myDisk) as well as the new one (the first component of newFocus). So by using zippers,
we get versioning for free, meaning that we can always refer to older versions of data structures
even afterwe've changed them, so to speak. This isn't unique to zippers, but is a property ofHaskell
because its data structures are immutable. With zippers however, we get the ability to easily and
efficiently walk around our data structures, so the persistence of Haskell's data structures really
begins to shine.

14.5 Watch your step

So far, while walking through our data structures, whether they were binary trees, lists or file
systems, we didn't really care if we took a step too far and fell off. For instance, our goLeft function
takes a zipper of a binary tree and moves the focus to its left sub-tree:

goLeft :: Zipper a -> Zipper a

goLeft (Node x l r, bs) = (l, LeftCrumb x r:bs)

285

But what if the tree we're stepping off from is an empty tree? That is,
what if it's not a Node, but an Empty? In this case, we'd get a runtime
error because the pattern match would fail and we have made no
pattern to handle an empty tree, which doesn't have any sub-trees at
all. So far, we just assumed that we'd never try to focus on the left
sub-tree of an empty tree as its left sub-tree doesn't exist at all. But
going to the left sub-tree of an empty tree doesn't make much sense,
and so far we've just conveniently ignored this.

Or what if we were already at the root of some tree and didn't have
any breadcrumbs but still tried to move up? The same thing would
happen. It seems that when using zippers, any step could be our
last (cue ominous music) . In other words, any move can result in
a success, but it can also result in a failure. Does that remind you
of something? Of course, monads! More specifically, the Maybe
monad which adds a context of possible failure to normal values.

So let's use the Maybe monad to add a context of possible failure to our movements. We're going
to take the functions that work on our binary tree zipper and we're going to make them into
monadic functions. First, let's take care of possible failure in goLeft and goRight. So far, the
failure of functions that could fail was always reflected in their result, and this time is no different.
So here are goLeft and goRight with an added possibility of failure:

goLeft :: Zipper a -> Maybe (Zipper a)

goLeft (Node x l r, bs) = Just (l, LeftCrumb x r:bs)

goLeft (Empty, _) = Nothing

goRight :: Zipper a -> Maybe (Zipper a)

goRight (Node x l r, bs) = Just (r, RightCrumb x l:bs)

goRight (Empty, _) = Nothing

Cool, now if we try to take a step to the left of an empty tree, we get a Nothing!

ghci> goLeft (Empty, [])

Nothing

ghci> goLeft (Node 'A' Empty Empty, [])

Just (Empty,[LeftCrumb 'A' Empty])

Looks good! How about going up? The problem before happened if we tried to go up but we
didn't have any more breadcrumbs, which meant that we were already in the root of the tree.
This is the goUp function that throws an error if we don't keep within the bounds of our tree:

goUp :: Zipper a -> Zipper a

goUp (t, LeftCrumb x r:bs) = (Node x t r, bs)

goUp (t, RightCrumb x l:bs) = (Node x l t, bs)

Now let's modify it to fail gracefully:

goUp :: Zipper a -> Maybe (Zipper a)

goUp (t, LeftCrumb x r:bs) = Just (Node x t r, bs)

goUp (t, RightCrumb x l:bs) = Just (Node x l t, bs)

goUp (_, []) = Nothing

286

If we have breadcrumbs, everything is okay and we return a successful new focus, but if we don't,
then we return a failure.

Before, these functions took zippers and returned zippers, whichmeant that we could chain them
like this to walk around:

gchi> let newFocus = (freeTree,[]) -: goLeft -: goRight

But now, instead of returning Zipper a, they return Maybe (Zipper a), so chaining functions like
this won't work. We had a similar problem when we were dealing with our tightrope walker in
the chapter about monads. He also walked one step at a time and each of his steps could result in
failure because a bunch of birds could land on one side of his balancing pole and make him fall.

Now, the joke's on us because we're the ones doing the walking, andwe're traversing a labyrinth of
our own devising. Luckily, we can learn from the tightrope walker and just do what he did, which
is to exchange normal function application for using >>=, which takes a value with a context (in
our case, the Maybe (Zipper a), which has a context of possible failure) and feeds it into a function
while making sure that the context is taken care of. So just like our tightrope walker, we're going
to trade in all our -: operators for >>=. Alright, we can chain our functions again! Watch:

ghci> let coolTree = Node 1 Empty (Node 3 Empty Empty)

ghci> return (coolTree,[]) >>= goRight

Just (Node 3 Empty Empty,[RightCrumb 1 Empty])

ghci> return (coolTree,[]) >>= goRight >>= goRight

Just (Empty,[RightCrumb 3 Empty,RightCrumb 1 Empty])

ghci> return (coolTree,[]) >>= goRight >>= goRight >>= goRight

Nothing

We used return to put a zipper in a Just and then used >>= to feed that to our goRight function.
First, we made a tree that has on its left an empty sub-tree and on its right a node that has two
empty sub-trees. When we try to go right once, the result is a success, because the operation
makes sense. Going right twice is okay too; we end up with the focus on an empty sub-tree. But
going right three times wouldn't make sense, because we can't go to the right of an empty sub-tree,
which is why the result is a Nothing.

Nowwe've equipped our trees with a safety-net that will catch us should we fall off. Wow, I nailed
this metaphor.

Our file system also has a lot of cases where an operation could fail, such as trying to focus on a
file or folder that doesn't exist. As an exercise, you can equip our file system with functions that
fail gracefully by using the Maybe monad.

	[cover]
	1 Introduction
	1.1 About this tutorial
	1.2 So what's Haskell?
	1.3 What you need to dive in

	2 Starting Out
	2.1 Ready, set, go!
	2.2 Baby's first functions
	2.3 An intro to lists
	2.4 Texas ranges
	2.5 I'm a list comprehension
	2.6 Tuples

	3 Types and Typeclasses
	3.1 Believe the type
	3.2 Type variables
	3.3 Typeclasses 101

	4 Syntax in Functions
	4.1 Pattern matching
	4.2 Guards, guards!
	4.3 Where!?
	4.4 Let it be
	4.5 Case expressions

	5 Recursion
	5.1 Hello recursion!
	5.2 Maximum awesome
	5.3 A few more recursive functions
	5.4 Quick, sort!
	5.5 Thinking recursively

	6 Higher order functions
	6.1 Curried functions
	6.2 Some higher-orderism is in order
	6.3 Maps and filters
	6.4 Lambdas
	6.5 Only folds and horses
	6.6 Function application with \$
	6.7 Function composition

	7 Modules
	7.1 Loading modules
	7.2 Data.List
	7.3 Data.Char
	7.4 Data.Map
	7.5 Data.Set
	7.6 Making our own modules

	8 Making Our Own Types and Typeclasses
	8.1 Algebraic data types intro
	8.2 Record syntax
	8.3 Type parameters
	8.4 Derived instances
	8.5 Type synonyms
	8.6 Recursive data structures
	8.7 Typeclasses 102
	8.8 A yes-no typeclass
	8.9 The Functor typeclass
	8.10 Kinds and some type-foo

	9 Input and Output
	9.1 Hello, world!
	9.2 Files and streams
	9.3 Command line arguments
	9.4 Randomness
	9.5 Bytestrings
	9.6 Exceptions

	10 Functionally Solving Problems
	10.1 Reverse Polish notation calculator
	10.2 Heathrow to London

	11 Functors, Applicative Functors and Monoids
	11.1 Functors redux
	11.2 Applicative functors
	11.3 The newtype keyword
	11.4 Monoids

	12 A Fistful of Monads
	12.1 Getting our feet wet with Maybe
	12.2 The Monad type class
	12.3 Walk the line
	12.4 do notation
	12.5 The list monad
	12.6 Monad laws

	13 For a Few Monads More
	13.1 Writer? I hardly know her!
	13.2 Reader? Ugh, not this joke again.
	13.3 Tasteful stateful computations
	13.4 Error error on the wall
	13.5 Some useful monadic functions
	13.6 Making monads

	14 Zippers
	14.1 Taking a walk
	14.2 A trail of breadcrumbs
	14.3 Focusing on lists
	14.4 A very simple file system
	14.5 Watch your step

