
®

A P R O J E C T - B A S E D I N T R O D U C T I O N
F O R T H E I N T R E P I D P R O G R A M M E R

F A I S A L I S L A M

K O T L I N
F R O M S C R A T C H

KOTLIN FROM SCRATCH

®

KO T L I N F R O M
S C R AT C H

A P r o j e c t - B a s e d I n t r o d u c t i o n
f o r t h e I n t r e p i d P r o g r a m m e r

by Faisal Is lam

San Francisco

[E]

KOTLIN FROM SCRATCH. Copyright © 2025 by Faisal Islam.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0352-6 (print)
ISBN-13: 978-1-7185-0353-3 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www​.nostarch​.com; info@nostarch​.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editors: Nathan Heidelberger and Abigail Schott-Rosenfield
Cover Illustrator: Josh Kemble
Interior Design: Octopod Studios
Technical Reviewer: Anton Arhipov
Copyeditor: James Brook
Proofreader: Audrey Doyle
Indexer: BIM Creatives, LLC

Figure 9-3, created by Aiyaan Faisal, has been reproduced with permission.

Library of Congress Cataloging-in-Publication Data

Names: Islam, Faisal (Author of books on computer programming), author.
Title: Kotlin from scratch : A project-based introduction for the intrepid programmer /

by Faisal Islam.
Description: San Francisco : No Starch Press, [2025] | Includes index.
Identifiers: LCCN 2024023794 (print) | LCCN 2024023795 (ebook) |

ISBN 9781718503526 (paperback) | ISBN 9781718503533 (ebook)
Subjects: LCSH: Kotlin (Computer program language) | Functional programming

(Computer science)
Classification: LCC QA76.73.K68 I85 2025 (print) | LCC QA76.73.K68

(ebook) | DDC 005.13/3--dc23/eng20240805
LC record available at https://lccn.loc.gov/2024023794
LC ebook record available at https://lccn.loc.gov/2024023795

For customer service inquiries, please contact info@nostarch​.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch​.com. For permission to translate this work:
rights@nostarch​.com. To report counterfeit copies or piracy: counterfeit@nostarch​.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective owners.
Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the
names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

®

https://lccn.loc.gov/2024023794
https://lccn.loc.gov/2024023795
https://www.nostarch.com

To Saila and Aiyaan, for their unwavering patience and steadfast support,
and to all the curious minds

About the Author
Faisal Islam is a manager, educator, developer, and author of both fiction
and nonfiction. With over two decades of coding experience in languages
such as C, Java, Python, and Kotlin, he thrives on solving complex real-
world challenges. Faisal’s background in engineering and economics equips
him with a unique perspective, allowing him to apply computational think-
ing, modeling, simulation, and optimization techniques effectively.

Beyond his technical pursuits, Faisal is an advocate for STEM educa-
tion, particularly among young learners. His passion lies in inspiring the
next generation of coders. In his spare time, Faisal enjoys photography,
sci-fi novels, and traveling with his family.

About the Technical Reviewer
Anton Arhipov is a developer advocate for the Kotlin team at JetBrains.
With a professional background in server-side development, Anton has
been building tools for developers for over a decade. Recognized as a Java
Champion since 2014, he often presents as a speaker at large software devel-
opment conferences.

B R I E F C O N T E N T S

Acknowledgments . xix

Introduction . xxi

PART I: PROGRAMMING FUNDAMENTALS . 1

Chapter 1: Kotlin Basics . . 3

Chapter 2: Arrays, Collections, and Classes . . 47

Chapter 3: Visualizing with JavaFX . 87

PART II: APPLICATIONS IN MATH AND SCIENCE 125

Chapter 4: Solving Mathematical Problems with Code . . 127

Chapter 5: Modeling and Simulation . . 175

PART III: RECURSION, SORTING, AND SEARCHING 223

Chapter 6: Recursive Functions and Fractals . 225

Chapter 7: Sorting and Searching . . 265

PART IV: OPTIMIZATION WITH NATURE-INSPIRED ALGORITHMS 303

Chapter 8: The Genetic Algorithm . . 305

Chapter 9: Agent-Based Algorithms . . 345

Afterword . 379

Appendix . . 381

Index . . 389

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 xix

INTRODUCTION	 xxi
The Power of Coding . . xxii
Why Kotlin? . xxii
Who Is This Book For? . xxiii
What’s in This Book? . xxiv
The Projects . xxvi
Getting Started . xxx
Resources . . xxx

PART I: PROGRAMMING FUNDAMENTALS	 1

1
KOTLIN BASICS	 3
Using Comments . 4
Variables . 5

Constants . 6
Common Data Types . 7

Operators . 10
Arithmetic . 10
Assignment . 12
Unary . 12
Relational . 12
Logical . 13

Working with Strings . 14
Concatenation . 14
String Templates . . 15
Escape Sequences . 16

Null and Nullable Types . 17
Flow Control . . 18

Conditional Statements . 18
Loops . 22

Functions . 27
Built-in Mathematical Functions . 28
Custom Functions . 29

Scope Functions . 34
Lambda Expressions . 35
Basic Input and Output . 37

Console-Based Input and Output . 37
Simple File Operations . 39

Project 1: Build a Console-Based Calculator . 40
The Code . 41
The Result . 44

xii Contents in Detail

Summary . 45
Resource . 45

2
ARRAYS, COLLECTIONS, AND CLASSES	 47
Arrays . 48

Primitive Arrays . 49
The Array Constructor . . 49
Array Operations . . 50
Multidimensional Arrays . 51

Collections . 52
Lists . 52
Sets . 54
Maps . 56

An Introduction to Classes . 57
Constructors . 58
The init Block . 61
Methods . 62
Encapsulation . 63
The this Keyword . 64
Inheritance and Polymorphism . 65

Common Classes and Custom Types . 67
Data Classes . 68
Pairs and Triples . 70
Abstract Classes . . 71
Interfaces . 72
Enum Classes . 74

Copying Objects . . 75
Shallow Copy . 75
Deep Copy . 76

Project 2: Build a Versatile Task Manager . 78
The Code . 78
The Result . 84

Summary . 85
Resource . 86

3
VISUALIZING WITH JAVAFX	 87
Data Visualization Tools for Kotlin . 88
An Overview of JavaFX . 89

Key Functionalities . 89
Setup . 90

Project 3: Build “Hello, World!” in JavaFX . 90
The Code . 92
The Result . 95

The JavaFX Object Hierarchy . 96
The Stage . 96
Scenes . 96
Layout Containers . 97
Child Nodes . 98

Contents in Detail xiii

Creating JavaFX Charts . 98
Project 4: Visualize Data as a Bar Chart . 99

The Code . 99
The Result . 101

Project 5: Create a Multiseries Line Chart . 102
The Code . 103
The Result . 105

Drawing with the Canvas . 107
A Simple Shape . . 107
Common Graphics Context Methods . 109

Project 6: Draw a Spiral Seashell . 110
The Strategy . 110
The Code . 111
The Result . 115

Animation in JavaFX . 115
Project 7: Animate a Square . 116

The Code . 116
The Result . 117

Project 8: Animate a Bouncing Ball . 118
Setting Keyframes Explicitly . 118
Using an Action Event Listener . 120

Summary . 124
Resources . . 124

PART II: APPLICATIONS IN MATH
AND SCIENCE	 125

4
SOLVING MATHEMATICAL PROBLEMS WITH CODE	 127
Project 9: Find the Square Root with the Babylonian Algorithm 128

The Code . 129
The Result . 130

Project 10: Create Pythagorean Triples with Euclid’s Formula . 130
The Code . 131
The Result . 132

Project 11: Identify Prime Numbers with the Sieve of Eratosthenes 133
The Strategy . 133
The Code . 134
The Result . 135

Project 12: Calculate Earth’s Circumference the Ancient Way . 136
The Code . 138
The Result . 139

Project 13: Code the Fibonacci Sequence . 139
The Golden Ratio . 141
The Fibonacci Spiral . . 141
The Code . 143
The Result . 147

Project 14: Find the Shortest Distance Between Two Locations on Earth 148
The Code . 150
The Result . 153

xiv Contents in Detail

Project 15: Do Encryption with the Hill Cipher . 154
How It Works . 154
The Code . 157
The Result . 163

Project 16: Simulate a One-Dimensional Random Walk . . 164
A One-Dimensional Model . 165
The Code . 166
The Result . 170

Summary . 173
Resources . . 174

5
MODELING AND SIMULATION	 175
Project 17: Predict the Flight of a Cannonball . 175

The Strategy . 178
The Code . 179
The Result . 181

Project 18: Design a Fountain with Water Jets . . 182
The Strategy . 184
The Code . 184
The Result . 188

Project 19: Track a Pendulum’s Motion and Phase . 189
The Motion of a Simple Pendulum . 190
The Strategy . 191
The Code . 192
The Result . 197

Project 20: The Physics of Coffee Cooling . 200
Newton’s Law of Cooling . 200
The Effect of Mixing Liquids . 201
The Strategy . 201
The Code . 202

Project 21: Simulate a Binary Star System . 209
The Science of Binary Star Systems . 210
The Strategy . 211
The Code . 212
The Result . 220

Summary . 221
Resources . . 221

PART III: RECURSION, SORTING,
AND SEARCHING	 223

6
RECURSIVE FUNCTIONS AND FRACTALS	 225
The Concept of Fractals . 226
Recursive Functions . 227

Contents in Detail xv

Project 22: The “Hello, World!” of Fractals . 229
The Strategy . 230
The Code . 231

Project 23: Draw the Sierpiński Triangle . 234
The Strategy . 235
The Code . 236

Project 24: Create a Fractal Tree . . 239
The Strategy . 239
The Code . 240

The L-System and Turtle Graphics . 241
Formalizing the L-System . 242
Drawing L-System Patterns with Turtle Graphics . 243

Project 25: Design an L-System Simulator . 245
The Code . 245
The Result . 251

The Mighty Mandelbrot Set . 252
Project 26: Code and Visualize the Mandelbrot Set . 254

The Code . 255
The Result . 259

Summary . 262
Resources . . 262

7
SORTING AND SEARCHING	 265
Sorting Algorithms . . 266
Project 27: Space-Efficient Sorting with Insertion Sort . 268

The Code . 269
The Result . 270

Project 28: Faster Sorting with Merge Sort . 270
The Code . 271
The Result . 273

Project 29: High-Efficiency Sorting with Quick Sort . 274
The Code . 275
The Result . 277

Search Algorithms . . 278
What Is a Graph? . 278
How to Search a Graph . 279

Project 30: Stack-Based Searching with Depth-First Search . 280
The Code . 281
The Result . 282

Project 31: Queue-Based Searching with Breadth-First Search . 284
The Code . 285
The Result . 286

Project 32: Heuristic Searching with A* . . 288
The Heuristic Function . 289
The Algorithm . 291
The Code . 292
The Result . 298

Summary . 300
Resources . . 301

xvi Contents in Detail

PART IV: OPTIMIZATION WITH
NATURE-INSPIRED ALGORITHMS	 303

8
THE GENETIC ALGORITHM	 305
Nature-Inspired Algorithms . 306

The Optimization Problem . 306
When to Use NIAs . 310

An Overview of the Genetic Algorithm . 310
Genetic Operators . 311

Selection . 312
Crossover . 314
Mutation . 315
Elitism . . 315

Project 33: Evolve Gibberish into Shakespeare . 316
The Strategy . 316
The Code . 316
The Result . 321

Project 34: Solve the Knapsack Problem . 323
The Strategy . 323
The Code . 324
The Result . 330

Project 35: Optimize a Multivariate Function with the Genetic Algorithm 332
The Strategy . 333
The Code . 333
The Result . 338

Stopping Condition for Genetic Algorithms . 341
Summary . 343
Resources . . 343

9
AGENT-BASED ALGORITHMS	 345
An Overview of Particle Swarm Optimization . . 346
Implementing PSO for Function Minimization . 348
Project 36: Optimize a Multivariate Function with a Particle Swarm 350

The Code . 350
The Result . 354

Ant Colony Optimization . 356
The ACS Algorithm . . 358
Symbols and Their Meanings . . 358
The Steps of ACS . 359

Project 37: Solve the Traveling Salesman Problem with an Ant Colony System 361
The Code . 361
The Result . 373

Summary . 376
Resources . . 376

Contents in Detail xvii

AFTERWORD	 379

APPENDIX	 381
Key Definitions . 381
Workflow for Creating an App . 383
Setting Up Shop . 384

Step 1: Download and Install IntelliJ IDEA . 384
Step 2: Download and Set Up the JDK . 385
Step 3: Create a New Project . 385

INDEX	 389

A C K N O W L E D G M E N T S

My heartfelt gratitude goes out to the remarkable team at No Starch,
including Bill Pollock, Jill Franklin, Nathan Heidelberger, and Abigail
Schott-Rosenfield. Without their support, I could not have transformed
my fledgling idea into the very book you now hold. Nathan’s and Abigail’s
meticulous editing and diligence have made this book eminently read-
able. No Starch’s commitment to excellence in publishing was evident
throughout. During the production stage, I had the pleasure of working
with Sabrina Plomitallo-González, Jennifer Kepler, and James Brook—they
ensured that the book met the highest publishing standards.

I extend my sincere appreciation to my technical reviewer, Anton
Arhipov. His thorough technical review and insightful suggestions helped
address coding issues I might have overlooked. His guidance allowed me to
embrace idiomatic Kotlin styles and best practices.

Finally, I am profoundly thankful to my wife, Saila, and my son, Aiyaan.
Their unconditional support and encouragement during the book-writing
process were invaluable. Aiyaan, as an early reader of some of the book
chapters, contributed a beautiful illustration for the section on ant colony
optimization. I hope that witnessing the final product will motivate him to
explore the entire book—he possesses a genuinely curious mind.

This book will teach you to code from
scratch using Kotlin, one of the most exciting

programming languages used today. Along
the way, you’ll learn to think like a problem solver

and programmer. Through 37 hands-on projects, you’ll
develop applications that can tackle a wide range of
fun and challenging problems, from basic math and
science to advanced applications in algorithms and
optimization.

You’ll learn the most from this book if you have a curious mind. You
embrace thinking systematically and are not hesitant to ask why things
behave the way they do, challenge commonly held assumptions, and explore
unique perspectives. This book will help you use those skills to uncover the
inherent complexities of real-world problems and build simplified math-
ematical models to explore what-if scenarios. Kotlin, a simple, elegant, and
powerful general-purpose language, is an excellent tool for these purposes.

I N T R O D U C T I O N

xxii Introduction

Prepare for a journey where coding isn’t just a skill but a way to unlock
your imagination and problem-solving capabilities. With code, you can
tackle problems that would be intractable without a computer, conduct in-
depth analysis, and generate fascinating and useful insights.

The Power of Coding
Coding is the process of creating instructions that computers can under-
stand and execute. It has revolutionized the way we live and work. Coding
powers almost every modern device, from software, websites, mobile apps,
smartwatches, and smartphones to the Mars rover exploring a distant world
140 million miles away.

Here are some reasons you may want to learn to code:

Build valuable skills   In today’s digital age, coding is a highly sought-
after ability that opens up numerous career opportunities. It also helps
you improve your critical-thinking and problem-solving abilities.

Automate tasks   You can code programs that perform repetitive tasks
faster and more accurately than humans. For example, many manufac-
turing processes are now done by robots that follow coded instructions.

Quickly analyze large amounts of data   Coding skills are essential for
analysts working with increasingly large quantities of data. You can use
coding to extract insights from large datasets and to help make data-
driven decisions.

Build your own projects   Programming your own software, websites,
or mobile apps can be a fun and rewarding way to bring your ideas to
life, express your creativity, and earn some extra money.

Have fun   Coding can be a fun and rewarding hobby that allows you
to create something from scratch and see it come to life.

Coding is for everyone, regardless of age, background, or interest. All
you need is a computer, an internet connection, and a willingness to learn.
Why not give it a try?

Why Kotlin?
Kotlin is a modern, general-purpose programming language first officially
released in 2016 by JetBrains, its parent company. Kotlin was named after
Kotlin Island, near Saint Petersburg in the Baltic Sea. This follows the tra-
dition of Kotlin’s parent language, Java, which, according to some sources,
was named after an island in Indonesia.

Kotlin runs on the same platform as Java, the Java Virtual Machine,
and is fully compatible with Java. However, Kotlin is much more concise and
expressive, with its own unique features. As a relatively new programming
language, it has had the benefit of 20/20 hindsight, meaning it incor
porates some of the best features from other popular languages that
predate it. It provides many ways to reuse code between multiple platforms,

Introduction xxiii

and its clean language design and powerful features offer a pleasant devel-
oper experience.

Here are some of the key advantages of Kotlin:

Easy to learn   Because Kotlin’s syntax is concise and easy to read, you
can learn it more quickly than many other programming languages.

Versatile   Kotlin is widely used for mobile applications (especially
Android apps), but you can also use it to develop full-stack web and
cross-platform applications that run on Windows, Mac, or Linux
devices.

Safe   Kotlin’s type system helps you avoid null pointer exceptions and
common errors that are difficult to handle in other programming lan-
guages such as Python, C, and C++.

Supports multiple programming styles   You can choose your pre-
ferred way to code in Kotlin, whether procedural, structured, object
oriented, or functional. You can also combine different styles as needed.
(Projects in this book use elements of all these styles.)

Interoperable with Java   You can use Kotlin alongside Java, meaning
you can use Java code and libraries in Kotlin programs, which makes
it easier to migrate from Java to Kotlin. Many enterprise-level applica-
tions were written in Java and are now being migrated to Kotlin for easy
maintenance. As an additional benefit, Java libraries are more mature,
and Kotlin can use them while new Kotlin-specific libraries are being
developed.

Popular   Kotlin is one of the fastest-growing programming lan-
guages and has become very popular since Google recognized it as the
preferred language for Android app development. Kotlin developers
are in high demand in the software industry.

In short, Kotlin is a versatile programming language that can be
used for both commercial and noncommercial applications. It’s beginner-
friendly and suitable for first-time learners who want to explore its features
and build their programming skills while solving real-world problems.

Who Is This Book For?
This book is for anyone who wants to learn how to use a fun, modern pro-
gramming language to tackle real-world problems that cannot be solved
manually. It does not assume any prior coding knowledge, though familiar-
ity with another programming language will help you move through the
covered topics more quickly.

This book is not a traditional textbook on coding, nor is it a compre-
hensive reference manual on Kotlin. Instead, it teaches you to think system-
atically and strategically, helping you develop problem-solving strategies
before diving into code development.

This book takes a hands-on approach. Throughout the book, you’ll
learn by working through numerous examples, full-length projects, and

xxiv Introduction

exercises. You’ll use fundamental principles from math and science to con-
struct simplified mathematical descriptions of the underlying problems
(we call them models), and then develop Kotlin applications to solve those
problems efficiently and quickly. In addition, the book’s projects demon-
strate core concepts from numerical analysis and computer science, such
as convergence and stability, time and space complexity, recursion, sorting,
searching, and several nature-inspired stochastic optimization techniques.

This book does not cover advanced Kotlin topics such as generics,
extensions, type aliases, or coroutines, which are more suitable for com-
plex applications. It also does not cover computer science concepts such as
advanced data structures and design patterns, or how to develop Android
apps with Kotlin. It’s impossible to cover all that ground in a single book.
Instead, this book will help you master essential Kotlin features and skills
that will prepare you for further learning and exploration.

What’s in This Book?
This book is organized into four parts and nine chapters. Each chapter
includes core concepts, examples, one or more full-length projects, and
exercises.

Part I covers essential coding skills in the first three chapters. Read
these chapters sequentially to build a foundational understanding of Kotlin
and its core features.

Chapter 1: Kotlin Basics ​  ​Introduces Kotlin basics like comments,
variables, operators, flow control, functions, lambdas, and input/
output. Teaches you to write clear, concise, and reusable code via many
examples and exercises, and walks you through a console-based calcula-
tor project.

Chapter 2: Arrays, Collections, and Classes ​  ​Introduces data manipu-
lation and object-oriented programming. Explains how to use arrays,
lists, mutable lists, classes, encapsulation, inheritance, polymorphism,
abstract classes, interfaces, and enum classes. Discusses the benefits and
trade-offs of each concept and how to apply them in your programs.
The project in this chapter involves developing a simple console-based
task management app.

Chapter 3: Visualizing with JavaFX ​  ​Covers the basics of JavaFX, a
toolkit for creating graphical user interfaces and data visualization.
Explores JavaFX components such as Stage, Scene, layout containers, and
nodes. Teaches you to use various types of charts, add dynamic simula-
tion in your code using JavaFX’s animation feature, and use the Canvas
tool for free-form drawing through a series of projects.

Part II, “Applications in Math and Science,” contains a series of short
projects that introduce new concepts and allow you to apply your newly
acquired coding skills to real-world problems.

Introduction xxv

Chapter 4: Solving Mathematical Problems with Code ​  ​Demonstrates
how to use Kotlin code and algorithms to solve mathematical problems
with real-world applications. Covers various concepts and tools from
mathematics, such as arithmetic, trigonometry, the Pythagorean theo-
rem, the Fibonacci sequence, the haversine formula, modulo opera-
tions, and linear algebra. Explores stochastic processes and random
number generation and leverages many core features of Kotlin, such as
variables, data classes, conditional and iterative structures, and library
functions.

Chapter 5: Modeling and Simulation ​  ​Shows how to model and simu-
late the motion of various physical systems, such as cannonballs, water
fountains, pendulums, thermal heating and cooling, and binary stars.
Uses math, visualization, and animation to help you understand the
dynamics and behavior of these systems over time.

Part III, “Recursion, Sorting, and Searching,” presents more advanced
concepts and tools that will require significant effort to master, resulting in
significant rewards. All key concepts are developed and explored as inde-
pendent projects.

Chapter 6: Recursive Functions and Fractals ​  ​Introduces the fan-
tastic world of fractals, self-similar patterns that repeat at different
scales. Teaches you how to use recursive functions, L-systems, and
the Mandelbrot set to generate fractals, then render the fractals and
explore their properties with JavaFX.

Chapter 7: Sorting and Searching ​  ​Focuses on sorting and searching,
two fundamental topics in computer science and data science. Shows
you how to implement and compare three common sorting algorithms
(insertion sort, merge sort, and quick sort) and explore three graph
traversal algorithms (depth-first search, breadth-first search, and A*).
Explains how to use stacks, queues, lists, and maps to store and manipu-
late data for sorting and searching. Also discusses the time and space
complexities of these algorithms using big O notation.

Finally, Part IV, “Optimization with Nature-Inspired Algorithms,” intro-
duces cutting-edge ideas learned from the natural world that will help you
solve difficult optimization problems. These methods will also introduce
you to the world of stochastic (probabilistic) and heuristic algorithms.

Chapter 8: The Genetic Algorithm ​  ​Discusses the advantages and
challenges of using stochastic algorithms, which exploit randomness
to deal with intractable or complex problems. Explores genetic algo-
rithms, a class of process-based nature-inspired algorithms (NIAs) that
have been used to solve problems involving text matching, combinato-
rial optimization (the knapsack problem), and finding global optima
for a multivariate function by developing three separate applications.

Chapter 9: Agent-Based Algorithms ​  ​Covers two agent-based NIAs:
particle swarm optimization and ant colony systems. Shows how to

xxvi Introduction

harness the power of these algorithms in Kotlin by creating appli-
cations for function optimization and solving a traveling salesman
problem.

Afterword ​  ​A short section that tells you where to go next to continue
your coding journey by enhancing your coding skills and learning
other advanced features of Kotlin.

The Projects
The 37 projects in this book are designed to help you flex your coding and
problem-solving skills. Each project poses an interesting challenge, system-
atically outlines a strategy for solving it, and walks you through implement-
ing that strategy as a Kotlin app. All code and background information
relevant to the problem are thoroughly explained. Here’s a look at each of
the projects and everything you’ll accomplish as you work through them:

Project 1: Build a Console-Based Calculator ​  Learn to think through
a problem systematically and develop a well-organized program to solve
it. Utilize core Kotlin language features such as conditionals and func-
tions to design an interactive calculator and practice validating user
input.

Project 2: Build a Versatile Task Manager ​  Design and implement
a console-based task manager application that enables users to add
and delete tasks, display the task list, update task statuses, and more.
Structure the app and its data using lists, classes, and data classes and
incorporate robust error handling as well.

Project 3: Build “Hello, World!” in JavaFX ​  Discover the classes and
layout containers that form the fundamental building blocks of any
JavaFX visualization. This project serves as a basic template for subse-
quent projects requiring more elaborate visualization schemes.

Project 4: Visualize Data as a Bar Chart ​  Learn about the core chart-
ing tools of JavaFX by creating a bar chart using the monthly sales data
from a fictitious company. Plot text data on one axis and numeric data
on the other.

Project 5: Create a Multiseries Line Chart ​  Visualize multiple datasets
at once by developing a line chart that compares the average heights of
men and women of different ages. Plot numeric data to both the x- and
y-axes.

Project 6: Draw a Spiral Seashell ​  Use Kotlin’s built-in trigonometric
functions along with the JavaFX canvas to draw a spiral seashell. This is
the first of many projects where you’ll leverage the powerful free-form
drawing features of JavaFX to create a complex two-dimensional image.

Project 7: Animate a Square ​  Define the start and end state of a solid
red square and let JavaFX transitions do their magic by smoothly mov-
ing the square back and forth inside the graphics window.

Introduction xxvii

Project 8: Animate a Bouncing Ball ​  Harness JavaFX’s powerful time-
line and keyframe features and manipulate object properties to create
captivating motion. Animate a ball gracefully gliding inside a rectangu-
lar box.

Project 9: Find the Square Root with the Babylonian Algorithm ​ 
Develop a simple app that converges on the square root of any positive
number by iteratively refining an approximation of its value. Try to fig-
ure out what technique Kotlin’s built-in square root function employs to
do the same.

Project 10: Create Pythagorean Triples with Euclid’s Formula ​ 
Implement Euclid’s method for generating Pythagorean triples (sets of
integers where the sum of the squares of the first two numbers equals
the square of the third number).

Project 11: Identify Prime Numbers with the Sieve of Eratosthenes ​ 
Take a peek into the world of prime numbers and utilize an ingenious
method developed by Eratosthenes to reveal them up to a given integer.

Project 12: Calculate Earth’s Circumference the Ancient Way ​  Time
travel back to ancient Egypt to re-create an experiment that uses
simple trigonometry to estimate Earth’s circumference and radius with
remarkable accuracy.

Project 13: Code the Fibonacci Sequence ​  Generate a list of Fibonacci
numbers from scratch and then draw the Fibonacci spiral. Use advanced
JavaFX features to explore how these concepts are embedded in both
natural and man-made systems.

Project 14: Find the Shortest Distance Between Two Locations on
Earth ​  Utilize the haversine formula and an understanding of latitude
and longitude to calculate the shortest distance between any two loca-
tions on Earth’s surface while accounting for Earth’s spherical shape.

Project 15: Do Encryption with the Hill Cipher ​  Implement a clas-
sic encryption algorithm that’s based on the linear transformations of
texts. Convert plaintext into ciphertext and vice versa using vectors,
matrices, and modular arithmetic while employing multidimensional
array operations.

Project 16: Simulate a One-Dimensional Random Walk ​  Learn to
simulate random processes by investigating how far an entity will
travel after taking n random steps. Use the root-mean-squared (RMS)
distance to measure how far the walker goes, and run the simulation
thousands of times to compare the simulated RMS values with theo-
retical ones.

Project 17: Predict the Flight of a Cannonball ​  Employ the bisection
numerical method to find the root of a nonlinear function in order to
tackle the age-old problem of determining the correct firing angle for a
cannonball.

xxviii Introduction

Project 18: Design a Fountain with Water Jets ​  Continue exploring the
physics of projectiles by designing a multitier water fountain. Combine
core Kotlin skills with advanced JavaFX techniques to generate and dis-
play the fountain’s structure and the water jets’ trajectories.

Project 19: Track a Pendulum’s Motion and Phase ​  Leverage
Newtonian laws of motion and gravity to calculate and plot a pendu-
lum’s angular displacement and velocity along with its phase-space
over time. Incorporate the impact of air drag to make the pendulum’s
motion more realistic.

Project 20: The Physics of Coffee Cooling ​  Create a Kotlin app that
tackles a quintessential dilemma: Should you add cream to your coffee
when you buy it at the coffee shop or when you get back to the office?
Apply principles of Newtonian cooling to keep your coffee as warm as
possible.

Project 21: Simulate a Binary Star System ​  Animate the intricate
dance of two stars orbiting each other. As time progresses, the stars
gracefully trace their paths, allowing a delightful exploration of stellar
dynamics.

Project 22: The “Hello, World!” of Fractals ​  Learn the features of
fractal geometry by drawing a series of concentric squares. Write your
first recursive function and set its stopping condition.

Project 23: Draw the Sierpiński Triangle ​  Realize a classic fractal
pattern named after mathematician Wacław Sierpiński. Translate the
pattern’s geometry into a codable strategy and make multiple recursive
calls from within the same function.

Project 24: Create a Fractal Tree ​  Develop a Kotlin program that
draws a fractal tree, starting with a trunk and recursively generating
smaller branches in opposite directions.

Project 25: Design an L-System Simulator ​  Code an interactive
L-system simulator from scratch, including a Kotlin implementation
of Turtle Graphics. L-systems generate fractals using an alphabet of
symbols, a starting axiom, and a set of rules defining how symbols are
iteratively replaced.

Project 26: Code and Visualize the Mandelbrot Set ​  Calculate and
draw the Mandelbrot set, a captivating two-dimensional fractal defined
in the complex plane. This mesmerizing image emerges from simple
iterative rules and reveals intricate structures when magnified ad
infinitum.

Project 27: Space-Efficient Sorting with Insertion Sort ​  Explore the
world of sorting algorithms and big O notation. Though it’s slower than
other popular sorting methods, insertion sort operates in place, result-
ing in a low-space complexity.

Project 28: Faster Sorting with Merge Sort ​  Implement merge sort,
a speedy sorting algorithm that’s stable but less memory efficient than

Introduction xxix

insertion sort. Recursively divide an array of values into smaller subar-
rays, sort them, and merge them back together.

Project 29: High-Efficiency Sorting with Quick Sort ​  Code the quick
sort algorithm, a fast and memory-efficient algorithm perfect for large
datasets. Recursively select a pivot element in an array and divide the
other elements into subarrays with values less than and greater than
the pivot.

Project 30: Stack-Based Searching with Depth-First Search ​ 
Implement depth-first search (DFS), one of several algorithms for tra-
versing or searching a graph data structure. Use a stack to explore each
path to its fullest, and backtrack when a dead end is reached.

Project 31: Queue-Based Searching with Breadth-First Search ​  Use a
queue to realize the breadth-first search (BFS) algorithm. BFS explores
all nodes at the current depth before moving on to nodes at the next
level of depth.

Project 32: Heuristic Searching with A* ​  Implement A*, an informed
search algorithm that uses a heuristic function to guide its search.
Given a weighted graph, a source node, and a goal node, A* finds the
shortest path from the source to the goal.

Project 33: Evolve Gibberish into Shakespeare ​  Use principles of
heuristics and natural evolution to go from random strings to a famous
line from Shakespeare. Develop modular, reusable code for the genetic
algorithm, modeling genetic operators like elitism, selection, crossover,
and mutation.

Project 34: Solve the Knapsack Problem ​  Unleash your genetic algo-
rithm code on the knapsack problem, one of a class of combinatorial
optimization problems where the global optimal solution is notoriously
hard to achieve.

Project 35: Optimize a Multivariate Function with the Genetic
Algorithm ​  Adapt the genetic algorithm to solve an optimization prob-
lem with a complex, multivariate, nondifferentiable mathematical func-
tion. Employ real-valued genes to represent the decision variables and
locate the global optimal solution within a given decision space.

Project 36: Optimize a Multivariate Function with a Particle Swarm ​ 
Implement the particle swarm optimization (PSO) algorithm, a nature-
inspired, agent-based method that seeks optimal solutions to complex
problems by emulating swarm behavior. Write code that actively pursues
continuous improvement through individual and collective learning.

Project 37: Solve the Traveling Salesman Problem with an Ant Colony
System ​  Use an ant colony system, another nature-inspired algorithm,
to tackle Berlin52, a notoriously challenging optimization problem.
Discover the optimal route through 52 stations in Berlin from among
the astronomical 1.551119 × 1066 distinct ways to arrange the tour.

xxx Introduction

Getting Started
To get the most out of this book, read the text carefully and run the code
examples yourself. You can run the code on any Windows, Mac, or Linux
operating system. You can also run the code online if it does not require
any graphics elements.

If you’re completely new to coding, you’ll need to familiarize yourself
with some key terms before you start, such as text editor, integrated develop-
ment environment (IDE), library, compiler, debugging, and executing or running
a program.

To help you get started, this book’s appendix includes instructions on
how to run Kotlin programs, as well as definitions of the aforementioned
key terms. If you’re already familiar with these concepts and know how to
install and set up an IDE, you can skip this section. Otherwise, make sure
you’ve completed all the steps listed there before you begin your coding
journey in Kotlin.

You can find the code examples discussed in this book on GitHub at
https://github.com/imfaisalgit/KotlinFromScratch.

Resources
Kotlin. “Kotlin Docs.” (The official Kotlin documentation.) Accessed

June 15, 2024. https://kotlinlang​.org​/docs​/home​.html.

Kotlin Playground. Online Kotlin editor and compiler. Accessed June 15,
2024. https://tinyurl​.com​/59hauntd.

https://github.com/imfaisalgit/KotlinFromScratch
https://kotlinlang.org/docs/home.html
https://tinyurl.com/59hauntd

PART I
P R O G R A M M I N G F U N D A M E N T A L S

This chapter will guide you through the fun-
damental building blocks of the Kotlin pro-

gramming language. We’ll explore essential
language features such as comments, variables,

operators, flow control structures, functions (includ-
ing lambda expressions), and basic input and output
techniques.

Together, these elements allow you to manage and manipulate data
within your code, govern the program’s behavior so that it responds dynam-
ically to different scenarios, and keep your code well organized and easy
to maintain. Understanding these basic elements will also pave the way for
the more sophisticated language features discussed in Chapter 2, such as
arrays, collections, and custom data structures (including classes).

The topics covered here are core elements in any programming lan-
guage, serving as the foundational elements for application development.
If you’ve already worked with another language, these elements will look
familiar in Kotlin. Conversely, if Kotlin is your first language, what you

1
K O T L I N B A S I C S

4 Chapter 1

learn here will be readily transferable to other languages. We’ll explore
these components in a practical way, with short code snippets illustrating
each new idea. At the end of the chapter, we’ll tie everything together with
a simple project.

I’m assuming you’re using the free version of IntelliJ IDEA as your inte-
grated development environment (IDE) for developing and running code.
See the appendix for instructions on installing, setting up, and using this
tool with a basic “Hello, world!” program.

Using Comments
A comment is a line (or several lines) of explanatory text in a code file that
the compiler will ignore when it runs the code. The text is meant to provide
helpful hints, such as what the next code segment does, why a particular
method was chosen, or how to properly use a language feature in a code
segment. When you’re coding, you should insert comments to remind
yourself what each piece of code is about. Experienced coders know that
documenting code is essential to guard against forgetting important details
down the road. Also, when others use or build on your code, your com-
ments can be a lifesaver.

In Kotlin, you have two main ways to add comments. The first is to use
// to start a single-line comment. The compiler will ignore anything on the
line after the two slashes. The other way is to use /* and */ to start and end
a comment that spans multiple lines. Here’s an example of how these two
commenting styles work:

// This is a single-line comment.

/*
 This code block will be ignored by the compiler
 as it is inside a multiline comment block.
*/

Kotlin also provides a third type of comment, which is used for auto-
matically generating documentation. This sort of comment begins with /**
and ends with */. Documentation comments are used to describe variables,
functions, and classes more formally, and they often include tags such as
@param, @return, and @throws to explain standard aspects of a piece of code.
Here’s an example that compares multiline and documentation comments:

/* This is a multiline comment
 used for providing useful tips or reminders. */

/**
 * This is a documentation comment.
 *
 * @param name The name of the person
 * @return The greeting string
 */

Kotlin Basics 5

fun greet(name: String): String {
 return "Hello, $name!"
}

While these two types of comments use a similar syntax, they serve dif-
ferent purposes. Multiline comments are intended to be read within the
code file itself. Documentation comments, on the other hand, are intended
to be exported from the code file to generate official documentation for
production-ready code that other developers can consult.

Variables
In coding, a variable is a name given to a data element. For simplicity, we
can think of variables as containers that hold various data types in a com-
puter’s memory. Once assigned, the variable name can be used as a stand-in
for the value it represents. In this way, variables allow us to store and man-
age data, enabling the persistence of information within a program.

Every variable should have a meaningful name that clearly describes its
purpose or function or otherwise reflects the nature of the data assigned
to it. For example, a variable holding a person’s name could be called
name, and a variable holding a person’s age could be called age. By conven-
tion, variable names should consist of a lowercase word or use camelCase to
join multiple words. In the latter case, no spaces appear between words,
and every word after the first starts with a capital letter, as in lastName or
ageInYears.

In Kotlin, you create a new variable by declaring its name with a keyword
such as val or var and initializing it (assigning it to a value). (A keyword is a
reserved word that has a special meaning in a programming language. A
keyword can’t be used as an identifier—for example, as a variable or func-
tion name.) Which keyword you use depends on whether you want the
variable’s value to stay the same or change during program execution. A
variable declared with val is read-only, meaning its value can’t change after
it’s been initialized. A variable declared with var is mutable, meaning the
variable can be assigned a different value after it’s been initialized. You can
change the value of a mutable variable as many times as needed.

Consider this example, where we use two variables to create a message:

fun main() {
 val name = "John Sinclair"
 val age = 30
 println("$name is $age years old")
}

We declare two variables, name and age, and assign them the values "John
Sinclair" and 30, respectively. Both variables are declared with the val key-
word, so they can’t be reassigned to different values later. We then include
both variables in a message to be printed to the console by adding a dollar
sign ($) before each variable name. (We’ll discuss how this syntax works in

6 Chapter 1

more detail in “Working with Strings” on page 14.) If you run this code
(using ctrl-shift-F10 in IntelliJ IDEA), the output should look like this:

John Sinclair is 30 years old

Notice how the output shows the values assigned to the name and age
variables rather than the variable names themselves. But what if we want
to assign new values to these variables over the course of the program? For
that, we have to use the var keyword instead of val, as shown here:

fun main() {
 var name = "John Sinclair"
 var age = 30
 println("$name is $age years old")
 1 name = "John Sinclair Jr."
 age = 12
 println("$name is $age years old")
}

Here we declare the name and age variables with the var keyword, giving
them the same initial values as before. Then we assign them new values 1.
Notice that the second time around, we no longer need the var (or val)
keyword when setting the values of the variables. Once we’ve declared and
initialized a variable for the first time, we can work with the variable using
only its name.

If you now run the program, this is what you should see:

John Sinclair is 30 years old
John Sinclair Jr. is 12 years old

We’ve successfully reassigned the variable names because they were declared
with the var keyword. Try changing the var keyword back to val for one or
both variables and running the code again. The IDE will instantly gener-
ate an error message about how you can’t assign a new value to a variable
declared with val, and it won’t let you run the program until you fix the error.

Constants
Kotlin also provides the const keyword (short for constant) for setting the
immutable value of a variable at the beginning of a file. The value must be
known during compilation of the code. Declaring a variable with const is
allowed only for primitive types or strings. (We discuss the common data
types in Kotlin in the next section.) The judicious use of constants has two
important benefits: it improves program efficiency in accessing fixed values,
and it improves code clarity by avoiding hardcoded “magic numbers” deep
inside the code without clear context. Here’s an example of creating a vari-
able with the const keyword:

const val PI = 3.14159265359

Kotlin Basics 7

In this case, we know the value of the mathematical constant pi, and we
know that this value won’t change over the course of a program, so it makes
sense to declare it using the const keyword at the start of the program. In
Kotlin, it’s customary to use all caps for top-level constant names, as we’ve
done here for PI. Multiple words can be joined using an underscore.

Kotlin has many other naming conventions for various code constructs.
Table 1-1 summarizes the most common ones.

Table 1-1: Naming Conventions in Kotlin

Name Convention Example

Package name Use lowercase letters with no
underscores.
Join multiple words or use camelCase.
Use reverse domain notation (auto-
generated by the IDE).

org.example.myProject

Class name Use PascalCase for class and inheri-
tance names.
Choose words that are nouns or noun
phrases.

FlightSimulation

Function name Use camelCase for function and
method names.
Use verbs or verb phrases.

calculateShortestPath()

Variable name Use a single word or camelCase to
join multiple words.
Choose a word that describes the
purpose, function, or property of the
variable (make it meaningful).

username

Constant and final
variable name

Use uppercase letters with under-
scores to separate words.

MAX_VALUE

These naming conventions are based on the recommendations in the
official Kotlin documentation at https://kotlinlang​.org. We’ll revisit them as
we discuss the code constructs they relate to.

Common Data Types
A value in code can be of various data types. For example, a value might
represent a number, some text, or a logical value (true or false). In Kotlin,
each variable is associated with a specific data type, and once a variable’s
data type has been set, it can’t hold values of other types. A variable with
a numeric value can be associated with different types, such as Int for
whole numbers only or Double or Float for numbers with decimal com-
ponents. A variable holding text values can be of type Char for a single
character or type String for multiple characters. A logical value will have
a Boolean type. Table 1-2 lists the common data types in Kotlin and their
key characteristics.

https://kotlinlang.org

8 Chapter 1

Table 1-2: Common Kotlin Data Types

Data type Description
Size
(in bits) Range of values

Byte Signed integer 8 –128 to 127

Short Signed integer 16 –32,768 to 32,767

Int Signed integer 32 –2,147,483,648 to
2,147,483,647

Long Signed integer 64 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Float Floating point
(single precision)

32 –3.4028235E+38 to
3.4028235E+38

Double Floating point
(double precision)

64 –1.7976931348623157E+308 to
1.7976931348623157E+308

Char 16-bit Unicode character 16 0 to 65,535 (in decimal)

Boolean Represents true or false 1 true or false

String A sequence of characters Varies N/A

We choose the data type for a variable based on problem-specific
needs, focusing on factors such as the data type’s ability to accommodate
values, its level of precision, and its memory utilization. If you know a
numeric variable will hold only integer values, for example, Int would be a
better choice than Float. If those values need to be exceptionally large, Long
would be more appropriate than Int.

Type Inference

When declaring a variable in Kotlin, it isn’t mandatory to explicitly specify
its data type. The Kotlin compiler excels at inferring the variable’s data type
based on the assigned value. Here, for example, Kotlin infers that name is
of type String, since its value is a series of characters enclosed in quota-
tion marks:

val name = "John Sinclair"

You also have the option to explicitly declare a variable’s data type.
Here’s how to explicitly declare name as a String:

val name: String = "John Sinclair"

To declare the data type, we place a colon after the variable name, fol-
lowed by the desired type. This can be any acceptable data type, including
custom data types you might have created to represent complex structures
with specific properties and behaviors (for example, classes or data classes,
which we’ll discuss in Chapter 2).

For numeric values, Kotlin infers the Int type if a variable is first
assigned a whole-number value or the Double type if it’s assigned a value

Kotlin Basics 9

with a decimal component. If you need a different numeric type, you can
explicitly indicate it by using a type suffix at the end of the value itself, such
as L for Long and f for Float. For example:

val regularInt = 42
val floatNumber = 3.14f
val longNumber = 123456789L

In this code, regularInt is inferred as Int by default, while floatNumber
and longNumber are explicitly declared to be of types Float and Long, respec-
tively, using the f and L suffixes.

Type Casting

Type casting, also known as type conversion, is the process of changing a vari-
able’s or expression’s data type to another compatible data type. (An expres-
sion is a code snippet that evaluates to a particular data type.) This process
is primarily used to resolve type mismatches. In general, Kotlin enforces
strict type checking to prevent common sources of runtime errors, such
as unintended type conversions. Implicit type casting may be allowed only
when no risk of data loss or unexpected behavior exists. For example,
smaller numeric types can be implicitly promoted to larger numeric types
since no risk of data loss exists, as shown here:

val intNumber = 22 // type inferred as Int
val longNumber: Long = intNumber // implicit type casting

We take the value of the intNumber variable and assign it to the longNumber
variable, implicitly converting the value from type Int to Long. This may work,
but the default setting of most IDEs is to prevent the use of implicit type
casting altogether. Instead, you’re encouraged to use explicit type-casting
methods to achieve type conversion. Some of the common type-casting meth-
ods supported in Kotlin include toByte(), toInt(), toLong(), toShort(),
toDouble(), toFloat(), toChar(), and toString(). Here is an example of explicit
type casting:

val intNumber = 44 // type inferred as Int
val doubleNumber: Double = intNumber.toDouble()

We first create the intNumber variable and assign it a value of 44. The
compiler will infer intNumber to be of the Int type. Then we explicitly cast it to
type Double using the toDouble() method before assigning it to doubleNumber.

Since type casting is allowed only when the associated data types are
compatible, not all conversions are possible. For example, you can’t always
convert a text type into a numeric or logical type. To illustrate, try running
the following lines of code:

val message: String = "Hello, world!"
val intValue: Int = message.toInt()

10 Chapter 1

Here we try to take the string in the message variable and cast it to an
integer with the toInt() method. This will throw a NumberFormatException
error at runtime, indicating the conversion isn’t possible due to the incom-
patible data types. This error seems reasonable: How should Kotlin know
the numeric equivalent of the "Hello, world!" string?

F UNC T IONS A ND ME T HODS

In Kotlin, a function is a block of code that performs a specific task, such as
adding two numbers and returning their sum. It’s the basic unit of code organi-
zation. A method is a specific type of function that’s declared as part of a class
or data type. Type-casting functions like toInt() and toString() are technically
methods because they’re associated with values of a particular data type.

Whereas a regular function is invoked simply by using the function name,
as when we call the println() function, a method is invoked using dot notation.
With this syntax, you provide a value, followed by a period, followed by the
name of a method associated with that value. For example, age.toString()
calls the toString() method on the value stored in the age variable (presumably
an integer), creating a string version of that value.

We’ll discuss functions in detail later in this chapter, and we’ll discuss meth-
ods in Chapter 2, when we study classes.

Operators
Operators are special symbols for manipulating variables and other values in
your code. Each operator performs a specific mathematical, logical, or text-
based operation. In this section, we’ll review the most common categories
of operators in Kotlin.

Arithmetic
Arithmetic operators are for performing basic mathematical operations
such as addition (+), subtraction (-), multiplication (*), and division (/).
Here are some examples of how to use arithmetic operators in Kotlin:

val a = 20
val b = 7
val sum = a + b // addition, yields 27
val difference = a – b // subtraction, yields 13
val product = a * b // multiplication, yields 140
val quotient = a / b // division, yields 2

Here we apply the four main arithmetic operations to the a and b vari-
ables. Notice that when you divide two integers using the division operator /,

Kotlin Basics 11

the result is also an integer, with any fractional part discarded. In this case,
20 / 7 gives a result of 2, not 2.857143. If you need to retain the fractional
part, you must convert one of the numbers into a floating-point number, as
shown here:

val a = 20
val b = 7
val quotientInt = a / b // integer division
val quotientFloat = a.toFloat() / b // real division

Here, quotientInt will have a value of 2, but quotientFloat will have a
value of 2.857143 since we use toFloat() to convert a from an integer to a
floating-point number.

The remainder or modulo operator is another mathematical operator
we’ll use many times in this book. It’s designated by the % symbol. This
operator returns only the remainder from the integer division of two num-
bers. Here’s an example:

val a = 20
val b = 7
val result = a % b // The result is 6.

In this example, a % b returns the remainder when a is divided by b.
Since 20 divided by 7 has a remainder of 6, the value of result is 6. Can you
guess what the result would be if we flipped the numbers around—that is,
if we calculated 7 % 20? Additionally, what would be the result of the integer
division 7 / 20? These questions may sound trivial, but I encourage you to
write a few lines of code to verify your guesses.

Kotlin uses the same order of operations for arithmetic operators as
regular mathematics: division and multiplication take precedence over
addition and subtraction. To avoid confusion about the order of operations,
it’s good practice to use parentheses to clearly isolate different operational
blocks. For example:

fun main() {
 // example without parentheses
 val resultWithoutParentheses = 5 + 3 * 2
 println("Result without parentheses: $resultWithoutParentheses")

 // example with parentheses
 val resultWithParentheses = (5 + 3) * 2
 println("Result with parentheses: $resultWithParentheses")
}

In the first calculation, 5 + 3 * 2, multiplication takes precedence over
addition, so it evaluates to 5 + (3 * 2), resulting in 11. In the second calcu-
lation, (5 + 3) * 2, the addition inside the parentheses is performed first,
and then the multiplication, resulting in 16. This demonstrates how using
parentheses can clarify and control the order of operations in mathemati-
cal expressions.

12 Chapter 1

Assignment
Assignment operators are used to assign values to variables. We’ve already
been using the main assignment operator (=) throughout this chapter’s
examples to set a variable’s value from scratch. Other assignment opera-
tors, like += and -=, take a variable’s existing value and modify it. Here are
some examples:

var a = 10
a += 5 // equivalent to a = a + 5 (a becomes 15)
a -= 5 // equivalent to a = a – 5 (a becomes 5)
a *= 5 // equivalent to a = a * 5 (a becomes 50)
a /= 5 // equivalent to a = a / 5 (a becomes 2)

The assignment a += 5 is equivalent to saying, “Take the value of a, add
5 to it, and put the result back in the a variable.” Similar assignment opera-
tors exist for the other three arithmetic operations.

You can try using += with a string variable too, if it was declared with
var. For example:

var s = "John Smith"
s += " Jr." // The s becomes "John Smith Jr."

Be mindful that this operation essentially creates a new string and
assigns it to the previously used variable name, rather than directly modify-
ing the old string (which is discarded). For strings, other assignment opera-
tors (for example, -=) will generate errors.

Unary
Whereas most operators have two operands, unary operators have just one.
The increment (++) and decrement (--) unary operators increase or decrease a
variable’s value by 1, respectively. Here’s how to use these operators in Kotlin:

var a = 10
a++ // equivalent to a = a + 1 (a becomes 11)
a-- // equivalent to a = a – 1 (a becomes 10 again)

Essentially, a++ is a shorter way of writing a += 1, itself a shorter way of
writing a = a + 1. Likewise, a-- is equivalent to a -= 1.

Relational
Relational operators compare two values and return a Boolean value (true
or false) based on the comparison. These operators include == and != for
equality and inequality, and > and < for greater than and less than. Here are
some examples of these operators in action:

val a = 10
val b = 5
val isEqual = (a == b) // equality check

Kotlin Basics 13

val isNotEqual = (a != b) // inequality check
val isGreater = (a > b) // greater than check
val isLesser = (a < b) // less than check

In this code segment, isEqual will be false because a and b aren’t equal,
and isNotEqual will be true. Meanwhile, isGreater will be true because a is
greater than b, and isLesser will be false. Notice how we put each compari-
son in parentheses. This isn’t strictly necessary, but it helps visually separate
the comparison from the assignment operation it’s a part of.

The preceding examples used numeric values, but relational operators
can also be used for comparing strings:

val text1 = "Hello"
val text2 = "World"
val isNotEqual = (text1 != text2) // true
val isGreater = (text1 > text2) // false

In Kotlin, strings are compared lexicographically, character by char-
acter, based on their Unicode values. The comparison starts from the first
character of each string and continues until a difference is found or one of
the strings ends. The string with the smaller Unicode value at the first dif-
fering character is considered lesser. This implies that earlier letters in the
alphabet are considered lesser than later letters and that uppercase letters
are considered lesser than lowercase letters.

Logical
Logical operators are used to perform logical operations such as AND (&&),
OR (||), and NOT (!) on Boolean values. Here are some examples of how
to use logical operators in Kotlin:

val x = true
val y = false

val andResult = (x && y) // logical AND operation (returns false)
val orResult = (x || y) // logical OR operation (returns true)
val notResult = !x // logical NOT operation (returns false)

The result of a logical operation involving two Boolean values can be
summarized in a truth table like the one shown in Table 1-3. A truth table
shows the output corresponding to every possible combination of input values.

Table 1-3: Truth Table for Two Logical Values

Value 1 Value 2 AND OR

true true true true

true false false true

false true false true

false false false false

14 Chapter 1

In this table, the operands are Boolean values, which can be either true
or false. For example, in the first row, both Value 1 and Value 2 are true.
The result of an AND operation on these operands is true, and the result
of an OR operation is also true. Unlike AND and OR, a NOT operation
has just one Boolean operand, which gets inverted. For instance, the NOT
operator turns true into false.

Working with Strings
In Kotlin, a string is a sequence of characters represented by the String
data type. Strings are helpful for storing and manipulating text data in a
program. They’re commonly used to represent words, sentences, and other
textual information. User input data is also initially read as strings and
then converted as needed into other types using functions such as toInt(),
toDouble(), and toBoolean().

The individual characters in a string are numbered, or indexed, start-
ing from zero. You can access a specific character in a string by placing its
index in square brackets after the variable name representing that string.
For example, to get the second character of a string in the msg variable, use
msg[1]. Alternatively, you can use the get() method of the String class to
retrieve the character at a specific index. For example, msg.get(1) returns
the same second character as msg[1].

In this section, we’ll discuss some common techniques for working
with strings. Keep in mind as you read that strings are immutable objects
in Kotlin, so once a string is created, its content can’t be changed. Any
operation that appears to modify a string creates a new string, and the
original value is discarded.

Concatenation
Concatenation is the process of combining two or more strings into a single
string. In Kotlin, you can do this in multiple ways. For example, you can use
the + operator, or you can use a string’s plus() method. Both techniques are
demonstrated here:

val a = "Hello,"
val b = "world!"

// Use the plus (+) operator.
var c = a + " " + b
println(c) // output: Hello, world!

// Use the plus() method of the String class.
c = a.plus(" ").plus(b)
println(c) // output: Hello, world!

In this code segment, we first create two string variables, a and b,
with values "Hello," and "world!", respectively. Then we use the + operator
to concatenate (join) the two strings and add a space (the string " ") in

Kotlin Basics 15

between, assigning the resulting string to the c variable. The output of
println(c) is:

Hello, world!

Notice how we call the plus() method twice in the same expression to
concatenate string a with a space and string b. This technique is known as
method chaining; the second method call is applied to the result of the first.

Another way to join multiple strings is to use the buildString function,
as in this example:

val c = buildString {
 append("Hello,")
 append(" ")
 append("world!")
 }
println(c) // output: Hello, world!

We create a variable c to hold the concatenated string and append all
the string segments through a single call to the buildString function.

String Templates
Most characters that appear between the opening and closing quotation
marks of a string are interpreted literally as ordinary text. String templates,
however, are a powerful feature in Kotlin that allow you to embed code
within a string. They’re a concise and expressive way to combine static text
with dynamic values resulting from variables, expressions, or even function
calls. As hinted at when we first discussed variables, string templates use
dollar signs ($) to signal that what follows should be treated as code rather
than as literal text. For example, consider the following code snippet:

val name = "John"
val age = 30
val message = "My name is $name and I'm $age years old."
println(message)

Here we embed the variables name and age within the message string tem-
plate using the $ symbol. The values of these variables are automatically
substituted into the resulting string when it’s evaluated. When you run this
code snippet, the output should therefore look like this:

My name is John and I'm 30 years old.

Notice how John and 30 have been inserted into the string in place of
$name and $age. Compare the string template syntax with how we might gen-
erate the same message using string concatenation:

val message = "My name is " + name + " and I'm " + age + " years old."

16 Chapter 1

The string template version is much more readable and spares us from the
tedium of including all the + operators and remembering to add spaces to
the strings before and after each variable. This isn’t to say that string con-
catenation is never useful, but if your goal is to inject values from your code
into a string, a string template is likely the better choice.

String templates can also handle more complex expressions by enclos-
ing them within braces (the { and } symbols) after the dollar sign. This
allows you to perform calculations, access object properties, or invoke func-
tions directly within the template. Here’s an example:

val x = 20
val y = 15
val result = "$x + $y = ${x + y}"
println(result) // output: 20 + 15 = 35

The ${x + y} in this string template tells Kotlin to add the values in the
x and y variables and insert the result into the string.

Escape Sequences
Escape sequences are special character combinations used in strings to rep-
resent characters such as whitespace that are difficult to input directly.
They’re prefixed with a backslash. For example, the escape sequence \n
represents a newline character, and \t represents a tab character. Escape
sequences are often used within string templates to format the output.
Here’s an example:

fun main() {
 val name = "John"
 val age = 30

 // using escape characters in string template
 val message = "Name: $name\nAge: $age"

 println(message)
}

In this example, the \n in the middle of the message string adds a line
break between the name and age, improving the formatting of the output.
If you run the code, the output should break across two lines, like this:

Name: John
Age: 30

Other common escape sequences include \\ for a backslash and \$ for
a dollar sign. These are needed because otherwise a backslash in a string is
interpreted as the start of an escape sequence and a dollar sign as the start
of some Kotlin code to be inserted into a string template.

Kotlin Basics 17

Null and Nullable Types
Null represents the absence of a value. By default, Kotlin’s type system
assumes that a variable can’t hold null. Consider this example:

var str: String = "Hello, world!" // valid initialization
str = null // invalid, will result in compilation error

The str variable is declared to be of the String type, so its value must be
a string. Trying to set the variable to null will therefore trigger an error.
If you want to allow a variable to be null, you must explicitly declare the
variable to be of a nullable type by appending ? to the type declaration, as
shown here:

var str: String? = "hello world" // valid initialization
str = null // reassigned to null, no compilation error

The type declaration str: String? indicates that the str variable can hold
either a string or null. Because the variable is of the String? nullable type,
setting it to null is now valid and won’t cause an error.

Kotlin’s not-nullable-by-default type system is designed to prevent null
pointer exceptions, which are common runtime errors in languages that freely
allow variables to have null values. A null pointer exception occurs when
a program tries to access or manipulate data using a null reference, which
doesn’t point to a valid memory location or object. Proper handling of null
values is essential to prevent these exceptions and the code from crashing.

You can ensure null safety in Kotlin in multiple ways. One way is to
explicitly check whether a nullable variable holds null, before accessing its
properties or methods. For instance:

val str: String? = "Hello, world!"
val len = if (str != null) str.length else -1

In this example, we check whether the variable str is null by using an if...
else conditional statement. If str is not null, its length property is accessed;
otherwise, -1 is assigned to len. (We’ll discuss conditional statements in the
next section.)

Another mechanism is Kotlin’s safe call operator (?.), which allows us to
call a method on a nullable object without risking an error. If the object
contains null, the result is null as well. Otherwise, the method is called as
usual. For example:

val len = str?.length

In this case, if str is null, len will be assigned null; otherwise, len will be
assigned the length (number of characters) of str.

Kotlin also provides the Elvis operator (?:). Used in conjunction with
the safe call operator, it allows you to give a default value (instead of null)
for an expression involving a nullable object. If the object isn’t null, the

18 Chapter 1

expression will be evaluated as normal; otherwise, the default value will be
used. For example:

val len = str?.length ?: -1

In this case, if str isn’t null, its length will be assigned to the len variable;
otherwise, the value after the ?: operator (-1) will be assigned.

N O T E 	 The examples we’ve discussed so far have focused on the String? nullable type, but
note that the ? operator can be applied to other data types, such as Int, Double, or
even Boolean. This flexibility in using nullable types is particularly helpful when
working with user input.

Finally, Kotlin has another related operator called the null assertion
operator (also called the double-bang operator), denoted by two exclamation
points (!!). It can be used to assert that a nullable variable doesn’t contain
null even though the compiler can’t guarantee this to be true. Using !! is a
way of saying that you’re sure a particular nullable variable isn’t null so that
the compiler will skip checking for nullability. Here’s an example:

val name: String? = "John"
val length = name!!.length

We declare name as a nullable string, but by using !! while accessing the
string’s length, we’re asserting that it’s not null. If name actually were null,
this snippet would result in a NullPointerException. As such, it’s best to avoid
or limit the use of the null assertion operator and favor safer constructs like
safe calls (?.) and null checks (?:). Alternatively, aim to design your code to
reduce nullable types, for increased reliability and predictability.

Flow Control
Flow control is an essential aspect of programming, providing mechanisms
to regulate when and how code is executed. Kotlin’s flow control constructs
enable developers to create flexible and dynamic programs by effectively
managing the sequence of statements and controlling the program’s behav-
ior. In this section we’ll discuss two important types of control structures:
conditionals and loops. These concepts are foundational to any program-
ming language.

Conditional Statements
Conditional statements allow you to determine what a program should do
based on certain tests. Kotlin has two primary conditional statements: if
and when. They both introduce branching into code, the idea that a pro-
gram can take different forks depending on the circumstances. In general,
if statements are appropriate for straightforward binary decisions or when
facing a limited number of conditions. On the other hand, if you need to

Kotlin Basics 19

manage several conditions, handle various cases, or strive for cleaner and
more structured code when implementing branching logic, when could be
your preferred tool.

if Statements

An if statement runs a block of code when a given condition evaluates to
true. Here’s a simple example:

val x = 10
if (x > 0) println("x is positive")

The condition for an if statement, in this case x > 0, must be an expres-
sion that evaluates to a Boolean true or false value, and it must be given in
parentheses after the if keyword. The code after the condition will run if
the condition is true, so this snippet prints a message only when the vari-
able x has a positive value. If x isn’t positive, the println statement will simply
be skipped.

An if statement can have an optional else clause that gets executed if
the test expression evaluates to false. Once an else clause is included (or if
there’s just an if clause but it includes multiple lines of code), the body of
each clause should be indented and enclosed in braces, as shown here:

val x = -10
if (x > 0) {
 println("x is positive")
} else {
 println("x is not positive")
}

This time, since the x > 0 condition evaluates to false, the code in the
else clause will run. Notice how the opening brace goes on the same line as
the if or else keyword, while the closing brace goes on a new line after the
last statement in that clause.

You can extend an if...else structure to include three or more possible
branches by adding else if clauses between the initial if and the final else.
Each else if clause adds a new condition to test if the previous condition is
found to be false. Here’s an example:

fun main() {
 val a = 100
 val b = -30
 1 val max: Int

 if (a > b) {
 max = a
 println("a is greater than b.")
 println("max of $a and $b is: $max")
 } else if (a < b) {
 max = b
 println("b is greater than a.")

20 Chapter 1

 println("max of $a and $b is: $max")
 } else
 println("a and b have the same value: $a")
}

Here, we initialize two variables, a and b, with the values 100 and -30,
respectively. Subsequently, we declare a variable max of type Int without pro-
viding an initial value 1. (In Kotlin, this is allowed as long as the variable
will eventually be initialized before using it for the first time.) We then use
an if...else if...else structure to compare the values of a and b and print
an appropriate message. First, the if clause tests if a is greater than b. If this
fails, the else if clause tests if a is less than b. If this also fails, a and b must
be equal, as the else clause says.

The syntax for this kind of control structure is:

if (condition 1) {
 // code to execute when condition 1 is true
} else if (condition 2) {
 // code to execute when condition 2 is true
} else {
 // code to execute when conditions 1 and 2 are not true
}

You can adjust this template by adding more else if blocks or deleting them
altogether, depending on your needs.

when Statements

A when statement checks a value against multiple conditions and executes
the code block of the first matching condition. If you’re familiar with switch
statements from languages like Java, C, or C++, the concept is similar. A
when statement can also have an else clause for when none of the conditions
match, as shown here:

fun main() {
 val x = 5

 when {
 x > 0 -> println("x is positive")
 x == 0 -> println("x is zero")
 x < 0 -> println("x is negative")
 else -> println("x is not a real number")
 }
}

We assign a value of 5 to the variable x, then use a when statement to test
this variable’s value. Each line of the when statement has its own conditional
test (such as x > 0) followed by the -> symbol, which points to the expres-
sion that should be executed if the condition is true. As soon as a true con-
dition is found, the remainder of the when statement is skipped, even if it
contains additional tests that would pass. In this case, since x is greater than
0, the when statement will print "x is positive".

Kotlin Basics 21

As with if statements, including an else clause in a when statement is
optional. However, it’s considered good practice to provide an else clause;
it improves the robustness of your code by offering a fallback option for
unmatched cases.

It’s also possible to provide the variable to be tested in parentheses
immediately after the when keyword. In this case, the when statement con-
ducts tests based on exact values or ranges of values for that variable, with-
out repeating the variable name. For example:

fun main() {
 val hour = 13

 when (hour) {
 in 0..11 -> println("Good morning")
 in 12..16 -> println("Good afternoon")
 in 17..23 -> println("Good evening")
 else -> println("Invalid hour")
 }
}

Here, we pass the hour variable to the when statement, which prints dif-
ferent greetings based on the variable’s value. For example, the condition
in 0..11 tests whether the value of hour is between 0 and 11, inclusive. We’ll
look more closely at how to use the .. operator to specify a range of values
in the next section, when we discuss loops.

E X ERCISE

Create a program that determines a user’s eligibility to vote based on their age.
Follow these steps to complete the exercise:

1.	 Prompt the user to enter their age as an integer. As we’ll discuss in “Basic
Input and Output” on page 37, this can be done as follows:

println("Enter your age:")
val age = readln()

2.	 Use a conditional if...else statement to check the user’s age and provide
an appropriate response:

a.	 If the age is less than 18, display a message saying, “You are not
eligible to vote yet.”

b.	 If the age is between 18 and 120 (inclusive), display a message say-
ing, “You are eligible to vote.”

c.	 If the age is greater than 120, display a message saying, “Please
enter a valid age.”

(continued)

22 Chapter 1

3.	 Run the program and test it with various ages to verify that it accurately
determines eligibility to vote based on the age entered.

4.	 Repeat these steps using a when statement instead of if...else.

Loops
Loops are essential constructs in programming that allow you to repeat a
block of code multiple times. Kotlin offers a few types of loops, each with its
own use cases and advantages. In this section, we’ll explore loops in Kotlin,
including how to specify ranges for iteration.

for Loops

A for loop iterates through the elements in a collection, such as an array,
list, or range. One common usage is to loop through a range of numbers,
effectively creating a loop with a fixed number of repetitions. As we just saw
with when statements, an inclusive range is specified in Kotlin using the ..
operator. Here’s how this syntax fits with a for loop:

// inclusive range (1 to 4)
for (i in 1..4) {
 println("Current value of i is: $i")
}

The logic governing a for loop is given in parentheses immediately
after the for keyword. In this case, we create the loop variable i, which takes
on values 1 through 4 (inclusive). In the body of the loop, which is enclosed
in braces, we print the current value of i using a string template. This for
loop should produce the following output:

Current value of i is: 1
Current value of i is: 2
Current value of i is: 3
Current value of i is: 4

If you want to create a range that excludes the last value, use the until
keyword instead of the .. operator. Additionally, with either style of range,
you can specify a step value to increment the loop variable by some amount
other than 1. Here we use an until range with a step size of 3:

// exclusive range with step
for (i in 1 until 10 step 3) {
 println("Current value of i is: $i")
}

Kotlin Basics 23

In this example, the loop variable i begins with a value of 1 and then
increases by 3 each time through the loop, taking on the values 4 and 7
before the loop terminates. The output should look like this:

Current value of i is: 1
Current value of i is: 4
Current value of i is: 7

Notice that there’s no output line for when i is 10. This is because we used
until, which excludes the upper bound of the range.

If you need a for loop to iterate in reverse order, create a range with the
downTo keyword. This keyword allows you to specify a range where the loop
variable starts at a higher value and counts down to a lower value. Like the
.. operator, downTo ranges are inclusive. Here’s how it works:

for (i in 4 downTo 1) {
 println("Current value of i is: $i")
}

This for loop should output the following:

Current value of i is: 4
Current value of i is: 3
Current value of i is: 2
Current value of i is: 1

Thanks to the downTo keyword, the looping variable i counts down from 4 to 1.

continue and break Statements

Kotlin makes it possible to disrupt the flow of a for loop using the continue
and break keywords. Usually, these keywords work in conjunction with an if
statement to interrupt the loop when some condition is met. The continue
keyword halts the current iteration of the loop and immediately skips ahead
to the next iteration. Here’s an example:

for (i in 1..4) {
 if (i == 3) {
 // Skip the current iteration when i is 3.
 continue
 }
 println("Current value of i is: $i")
}

When the loop variable is set to 3, the loop will continue by moving on
to the next value of the loop variable. As a result, the println() function
won’t execute when i is 3, yielding the following output:

Current value of i is: 1
Current value of i is: 2
Current value of i is: 4

24 Chapter 1

The break keyword, by contrast, completely terminates a for loop, as
shown here:

for (i in 1..4) {
 if (i == 3) {
 // Exit the loop when i is 3.
 break
 }
 println("Current value of i is: $i")
}

This loop will “break” when the loop variable equals 3. As a result, the out-
put should look like this:

Current value of i is: 1
Current value of i is: 2

Even though the range had a few values to go, the break keyword ended the
loop early.

Nested and Named for Loops

It’s common to nest one for loop inside another such that the entire inner
for loop executes multiple times, as determined by the outer loop. Here’s
an example of a nested set of for loops that prints a pattern of asterisks in a
square shape:

fun main() {
 val size = 4 // Change this value to adjust the size of the square.

 // nested for loops to print a square pattern of asterisks
 for (i in 1..size) {
 for (j in 1..size) {
 1 print("* ")
 }
 2 println() // Move to the next line after each row.
 }
}

In this example, the outer loop for (i in 1..size) iterates over the rows,
and the inner loop for (j in 1..size) iterates over the columns within each
row. The print("* ") statement prints an asterisk followed by a space for each
element in a row. Unlike println(), the print() function 1 doesn’t add a new-
line character each time it’s called, so each time through the outer loop, the
inner loop will print a series of asterisks all together on one line. The empty
println() statement after the inner loop 2 moves the cursor to the next line
to separate the rows. The output of this code, with size set to 4, should look
like this:

* * * *
* * * *

Kotlin Basics 25

* * * *
* * * *

When you have nested loops, it can be helpful—though not strictly
necessary—to assign each loop a name. The name comes before the for key-
word and must be followed by an at sign (@). If the loops are named, you can
explicitly apply keywords like continue and break to one loop or the other by
adding the loop’s name after the keyword. This gives you more control over
when and how the nested loops can be disrupted. Here’s an example:

loop1@ for (i in 1..5) {
 loop2@ for (j in 1..5) {
 print("$i,$j ")
 1 if (i == j) break@loop2
 }
 println()
}

We have two nested for loops, named loop1 and loop2. The loop vari-
ables, i and j, both vary from 1 to 5 inclusive. Ignoring the conditional logic
inside loop2 for a moment, this nested loop would iterate for a total of
25 (5 × 5) times, printing each (i,j) pair, starting with (1,1) through (1,5)
for the first time through loop1, then (2,1) through (2,5) for the second,
and so on. The output would look like this, with the println() after each
full cycle of the inner loop again ensuring that each group of five pairs is
printed on its own line:

1,1 1,2 1,3 1,4 1,5
2,1 2,2 2,3 2,4 2,5
3,1 3,2 3,3 3,4 3,5
4,1 4,2 4,3 4,4 4,5
5,1 5,2 5,3 5,4 5,5

Now consider what the conditional logic in the inner loop does 1. It
applies the break keyword specifically to loop2 (using the syntax break@loop2)
if i and j are equal, halting the inner loop and returning to the outer loop
for the call to println(). (Notice how the @ symbol follows the loop name
when the name is being assigned but precedes it when the name is being
referenced.) This logic prints only the lower-left portion of the grid of (i,j)
pairs, up to the main diagonal, where i and j are equal:

1,1
2,1 2,2
3,1 3,2 3,3
4,1 4,2 4,3 4,4
5,1 5,2 5,3 5,4 5,5

In truth, specifying that break applies to loop2 isn’t necessary here, since
by default, keywords like break and continue apply to the innermost loop
that contains them—in this case, loop2. Still, including the loop name helps
clarify the intent behind the code. Furthermore, consider that another way to

26 Chapter 1

achieve a similar result would be to replace break@loop2 with continue@loop1, in
which case referencing the loop name becomes necessary. I encourage you to
try making this change as an exercise—you’ll also need to think about what
to do with the call to println() to keep the output nicely formatted.

while Loops

A while loop is best employed when you need to repetitively execute a code
block but you don’t know the exact number of iterations in advance. It
keeps looping until a termination condition is satisfied. The condition is
given in parentheses after the while keyword, before the start of the loop
body. Here’s an example:

var count = 0
while (count < 4) {
 println("Current value of count: $count")
 count++
}

We initialize the count variable to 0, then create a while loop that will
continue repeating as long as the condition count < 4 remains true. The
loop checks this condition before each repetition. Inside the loop, we print
the current value of count and then increase its value by 1 using a unary
++ operator to get ready for the next iteration. This should produce the fol-
lowing output:

Current value of count: 0
Current value of count: 1
Current value of count: 2
Current value of count: 3

At the end of the fourth time through the loop, count increments from
3 to 4. Then, when the loop gets ready to start its fifth iteration, it finds that
the loop condition is no longer true and the loop terminates.

Another style of while loop uses the condition while (true). Since true
always evaluates to true, this theoretically sets up an infinite loop. The real
conditional logic of halting the loop is instead moved inside the loop body
itself. Here’s the same while loop as before, implemented in this other style:

var count = 0
while (true) {
 println("Current value of count: $count")
 count++
 if (count >= 4) break
}

This time we use an if statement at the end of the loop body to trig-
ger the break keyword and terminate the loop when count is greater than or
equal to 4. Without this conditional, the program would get stuck in an infi-
nite loop, causing it to run indefinitely.

Kotlin Basics 27

One further variation on the while loop is the do...while loop, which has
the following syntax:

do {
 // code to be executed
} while (condition)

A do...while loop checks the stopping condition after each iteration, rather
than before. This ensures that the loop will be executed at least once. By
contrast, if the condition for a regular while loop is already false before the
loop begins, it won’t execute at all.

Just like for loops, you can nest multiple while loops and use them with
the continue keyword as well as with break.

E X ERCISES

Use for and while loops to do the following:

1.	 Write a for loop that prints a right-angled triangle pattern using asterisks
(*). The number of rows in the triangle should be given by a variable
called n. For example, if n is 5, the output should be:

*
**

2.	 Write a while loop that checks if a given string is a palindrome. A palin-
drome is a word or phrase that’s the same when read forward or back-
ward, such as radar or madam. The loop should compare the first and
last characters of the string, and then move inward until either the char-
acters don’t match or the middle of the string is reached. The loop should
print “Palindrome” if the string is a palindrome or “Not a palindrome”
otherwise.

Functions
A function is a reusable block of code that performs a specific task or compu-
tation. Functions are a fundamental building block of any Kotlin program
and are used to encapsulate logic, promote code reusability, and improve
code organization. Kotlin’s standard library comes with many built-in func-
tions to simplify common programming tasks. One example is the println()

28 Chapter 1

function we’ve been using throughout this chapter to output text to the
console; other examples include various mathematical functions, some of
which we’ll explore shortly. For more specialized tasks particular to the
application at hand, you’ll have to create your own custom functions. We’ll
discuss how to do that as well.

Built-in Mathematical Functions
Throughout this book, we’ll leverage a multitude of mathematical functions
that come prepackaged in the standard Kotlin library. For example, you
can effortlessly compute the square root of a number with the sqrt() func-
tion or raise a value to a specific power (exponent) using the pow() function.
These functions are part of the kotlin.math package and must be imported at
the start of a program using the import keyword. Here’s a simple program
that uses these two functions:

import kotlin.math.sqrt
import kotlin.math.pow

fun main() {
 val x = 100.0
 val y = 10.0

 val squareRoot = "The square root of $x is: ${sqrt(x)}"
 val toThePower2 = "$y raised to the 2nd power is: ${y.pow(2.0)}"

 println(squareRoot)
 println(toThePower2)
}

First, we import the two math functions we need. Then we use them
to calculate the square root of x (squareRoot) and y to the second power
(toThePower2) inside the string templates using the ${} syntax discussed
in “String Templates” on page 15. The code segment should produce the
following output:

The square root of 100.0 is: 10.0
10.0 raised to the 2nd power is: 100.0

In some cases, you may need to use many built-in functions in the same
module. Technically, it’s possible to import the entire collection by includ-
ing an asterisk (*) in the import statement. For example, import kotlin
.math.* would import every function in the kotlin.math module. It’s consid-
ered good practice to import only the functions you need, however. This
approach helps avoid namespace pollution, where your code gets cluttered
with unnecessary—or worse, conflicting—identifiers like variable and func-
tion names. Importing only what you need gives you more flexibility to
name your own variables and functions without causing conflicts with the
names of the built-in functions.

Kotlin Basics 29

The remaining functions in the kotlin.math module handle trigonom-
etry and other useful mathematical computations. For a comprehensive
list of standard mathematical functions available and instructions on how
to use them, search for kotlin.math in the official Kotlin documentation at
https://kotlinlang​.org.

Custom Functions
When you have some code that accomplishes a particular task in your
application—especially a task that will be repeated—it’s common to encap-
sulate that code in a custom function. This keeps your code well organized
and efficient. Each custom function must be declared, or defined, before it
can be used. Here’s Kotlin’s syntax for a function declaration:

fun functionName(parameter1: Type,
 parameter2: Type, ...): ReturnType {
 // function body
}

The declaration begins with the fun keyword, followed by the func-
tion name and a set of parentheses. Inside the parentheses, you provide
the names of the function’s parameters, if any, along with their data types.
These parameters serve as placeholders for values that the function expects
to receive when it’s called. They allow you to pass data into the function.
A function can have many parameters of different data types (including
parameters that are other functions) or no parameters at all, in which case
the function name will be followed by a set of empty parentheses. When
a function is called, specific values, called arguments, are provided for the
parameters. Notice that function parameters are implicitly treated as read-
only (immutable) variables within the function body. Using val or var on
function parameters is not allowed.

After the parameter list, the function declaration continues with a
colon (:) followed by the function’s return type. This specifies the data type
of the value the function will generate and provide to its caller. The built-
in sqrt() function we discussed in “Built-in Mathematical Functions” on
page 28 returns the square root of its parameter as either a Double or a
Float, for example. If a function returns nothing, you can omit the return
type. It will be assumed to be Unit, akin to the void type in other languages.
A function would return nothing if, for example, its purpose is to print
output to the console, make changes to global variables, make changes to
elements of an array or object supplied to the function as an argument, or
call other functions.

Taken together, the function name and the parameter names and types
define the signature of the function. The compiler uses function signatures
to determine which function to use when multiple functions have the same
name but different parameters (a practice called function overloading that
we’ll discuss shortly). The return type isn’t part of the function signature,
but it’s an important part of the function declaration nonetheless.

https://kotlinlang.org

30 Chapter 1

Once the function signature and the return type are specified (when
applicable), all that remains is to declare the function body, which is enclosed
in braces. This is the block of code that will be executed when the function is
called. It may include additional variable declarations, conditional state-
ments, loops, and expressions—anything necessary for the function to do
its work.

Let’s now examine a real function that performs a simple task: adding two
integers together and returning the result. Here’s the function’s declaration:

fun add(x: Int, y: Int): Int {
 return x + y
}

We declare a function named add() that takes two parameters, x and y,
both of type Int, and returns a value also of type Int. The function body
calculates x + y and uses the return keyword to deliver that result to the func-
tion caller. Note that if the return type implied by the value being returned
is different from the function’s declared return type, the compiler will gen-
erate an error. In this case, since both x and y are integers, x + y will be an
integer as well.

With the add() function declared, we can call it from main() as follows:

fun main() {
 // Declare the variables.
 val a = 3
 val b = 6

 // Call the function to add two integers.
 val sum = add(a, b)
 println("The sum of $a and $b is $sum.")
}

We declare the a and b variables and initialize them to 3 and 6, respec-
tively. Next, we declare sum and assign it the value returned by add(). Running
this code should yield the following output:

The sum of 3 and 6 is 9.

Kotlin enforces strong typing, so the compiler will flag errors for mis-
matches between declared parameter types and the types of the arguments
passed to the function. The number of arguments should also match the
number of parameters, unless some parameters are assigned default values.

SINGL E-E X PR ESSION F UNC T IONS

In Kotlin, when the compiler can infer a function’s return type and the func-
tion body consists of a single expression, you can declare the function using a

Kotlin Basics 31

concise syntax known as a single-expression function. For example, here’s how
to declare a simple add() function using this syntax:

fun add(x: Int, y: Int) = (x + y)

The function declaration is compressed to one line, without the need for
braces around the function body or a declared return type. In this case, the
return type is inferred to be Int, and the function body (x + y) is a single
expression that directly represents the result of the function—with no need for
the return keyword. This shorthand is particularly useful for simple functions
with a short, one-line expression.

Providing Default Parameter Values

If a parameter has the same value most of the time a function is called, it
can be given a default, preset value when the function is declared. This way,
you need to provide an argument for that parameter only when you want it
to be something other than the default. The parameters with default values
should be listed last in the function declaration. Here’s an example of how
to declare a default parameter value:

fun greet(name: String, greeting: String = "Hello") {
 println("$greeting $name!")
}

The greet() function takes two parameters, name and greeting, and com-
bines them to print out a customized greeting. A value for name will need
to be provided each time the function is called, but if no value for greeting
is specified, the function will use the default value of "Hello". This default
value is set in the parameter list, after the parameter’s data type.

If we call the function with greet("Nathan"), supplying an argument only
for the name parameter, it should result in the following output, including
the default value for greeting:

Hello Nathan!

Consider how you would call this function if you wanted it to instead print
"Good morning, Nathan!" as a message.

Using Named Arguments

When a function has many parameters, keeping track of their order and
type can be a hassle. Using named arguments comes in handy in such situa-
tions. This is a style of function call where you include the parameter names
along with the desired argument values. With the names included, the
arguments can be given in any order.

32 Chapter 1

Say you’ve declared this function with four parameters:

fun printPersonInfo(firstName: String, lastName: String,
 age: Int, gender: String) {
 println("Person info: $firstName $lastName, " +
 "Age: $age, Gender: $gender")
}

Calling the function using named arguments relieves you from the burden
of remembering the order in which the parameters were declared:

printPersonInfo(lastName = "Keller", firstName = "Jeffrey",
 age = 40, gender = "Male")

Here each argument is given in the form parameterName = value. This
function call will work just fine, even though the parameters are out of
order, thanks to the use of named arguments. This is allowed as long as you
provide names for all arguments or the compiler is able to figure out the
order of the arguments.

Overloading a Function

Function overloading in Kotlin allows you to define multiple functions
with the same name in the same scope but with different parameter lists.
Perhaps they have a different number of parameters, or the parameters are
of different data types. Here’s an example of function overloading:

// function to add two integers
fun add(a: Int, b: Int): Int {
 return a + b
}

// function to add two doubles
fun add(a: Double, b: Double): Double {
 return a + b
}

We declare two functions called add() with different parameter lists;
one adds two integers, and the other adds two floating-point numbers.
When the add() function is called, the compiler will determine which ver-
sion of the function to invoke by comparing the argument types to the
declared function signatures. This is how you would call both functions:

val result1 = add(2, 3)
val result2 = add(40.5, 23.9)

With function overloading, you can use the same function name for
operations that conceptually do the same thing (in this case, addition) but
with different parameter types. This makes your code more readable, intui-
tive, and error resistant. In this example, we’ve anticipated that we may

Kotlin Basics 33

want to add floating-point numbers as well as integers. Overloading the
function gives us the flexibility to do either without triggering an error.

Referencing a Function Without Calling It

In Kotlin, you can use the member reference operator (::) to refer to a
function by its name without actually invoking it. This is helpful in many
situations, such as when you need to assign a function reference to a vari-
able. Say you have two functions and you’re trying to decide which to use in
your code. Perhaps they’re both ways of accomplishing the same task and
you want to see which is more efficient, or perhaps they implement two dif-
ferent operations that would be appropriate in different situations. Rather
than rewriting all the code to call one function or the other, you can assign
to a variable a reference to the appropriate function and then call the func-
tion (whichever one you choose) via the variable, minimizing the changes
to the code. Here’s an example illustrating how this works:

fun add(x: Double, y: Double): Double {
 return x + y
}

fun multiply(x: Double, y: Double): Double {
 return x * y
}

// Change this condition to use add() or multiply().
val useAdd = true

fun main() {
 // Declare a function variable using member reference.
 1 val selectedFunction = if (useAdd) ::add else ::multiply

 val x = 3.0
 val y = 4.0

 // Calculate the value of the selected function.
 2 val result = selectedFunction(x, y)

 // Print the result.
 println("Result: $result")
}

We first declare two functions: add() calculates the sum of x and y, and
multiply() calculates the product of x and y. We’ll want to use only one
of these functions in main(). To control which one, we declare a Boolean
variable useAdd and set it to true. Inside the main() function, we then create
another variable named selectedFunction and use conditional expression syntax
to set its value to one of the functions 1. This syntax uses an if...else struc-
ture to return a value and assign it to a variable based on a condition—​in
this case, the state of the useAdd variable. If useAdd is true, selectedFunction
is assigned a reference to add(); otherwise, it references multiply(). Notice
how we precede each function name with the :: operator and don’t include

34 Chapter 1

parentheses after the function name, since we’re referencing rather than
invoking the functions. With the selectedFunction variable holding a reference
to a function, we can now invoke that function by calling selectedFunction()
rather than by calling add() or multiply() directly 2. We store the returned
value in the result variable and print it to the console.

Try changing the value of useAdd from true to false to switch between
using add() and multiply(). Then consider how convenient this solution is for
toggling between two functions, especially if you need to use the function
in multiple places in the code. Instead of updating the function name at
each usage, we can simply change the value of useAdd and rely on the selected​
Function variable to stand in for whichever function we want.

The :: operator is particularly useful when you need to pass a function
reference as an argument to another function. Here’s an example:

fun printMessage(message: String) {
 println(message)
}

fun applyFunction(function: (String) -> Unit, input: String) {
 function(input)
}

fun main() {
 // using :: to reference the printMessage function
 applyFunction(::printMessage, "Hello, Kotlin!")
}

We define a function called printMessage() that takes a string param-
eter and prints it to the console. We also define another function called
applyFunction() with two parameters: function, which will hold a reference
to a function, and input, a string. The function parameter’s type needs to
match the parameter and return types of the function it will reference;
(String) -> Unit indicates that the function will take a string as a parameter
and return nothing. In the body of applyFunction(), we call whatever func-
tion was passed in, using the input string as its argument.

In main(), we create a reference to printMessage() using :: and pass it to
applyFunction() along with the string "Hello, Kotlin!" as the second argu-
ment. This will effectively make applyFunction() call printMessage() with the
given string and print it to the console. The output should be:

Hello, Kotlin!

Of course, you can do more with the :: operator than we’ve discussed
here. I encourage you to consult the official Kotlin documentation to
explore the operator’s other use cases.

Scope Functions
In Kotlin, scope functions are a set of built-in functions used to manage the
scope of variables, access properties of objects, and execute a block of code

Kotlin Basics 35

in a specific context. The scope functions in Kotlin are run, with, let, also,
and apply. They’re often used to simplify and improve the readability of
code, especially when working with objects or managing the flow of opera-
tions. Here is a simple example of how to use the run function:

val result = run {
 val x = 10
 val y = 20
 x + y // The value of this final expression is returned.
}
println("Result: $result") // prints "Result: 30"

We begin by declaring a variable called result. Its value is determined
by the last expression within a code block executed using the run scope
function. Inside this block, we define and assign values to two integers, and
the final expression computes their sum. The resulting value from this final
expression is returned by the code block and assigned to the result vari-
able. Finally, we use println() to print the value of result, which will display
Result: 30.

Lambda Expressions
Lambda expressions, often referred to simply as lambdas, are a way to define and
pass around blocks of function-like code in a flexible and concise manner.
They’re essentially anonymous functions, allowing you to create functions on
the fly without giving them a name. Lambda expressions are a fundamental
part of functional programming, a programming style or paradigm that
uses functions as the main building blocks. They make it easier to work with
higher-order functions, functions that can take functions as arguments, return
functions as values, or both. Higher-order functions can help create reusable
and modular code that can be customized with different functions.

Here’s an example of a simple lambda that takes in a name and gener-
ates a greeting:

val greet : (String) -> String = { name -> "Hello, $name!" }

The lambda itself is the part of the code enclosed in braces: { name -> "Hello,
$name!" }. It consists of input parameters (in this case, just one, name) and
a body ("Hello, $name!"), separated by an arrow (->) symbol. Think of this
arrow as passing the parameters along to the lambda body. The return
keyword is implied in the lambda body; if the body consists of a single
expression, that expression will automatically be returned.

In this example, we assign the lambda to the greet variable. The
(String) -> String before the assignment operator specifies the lambda’s
parameter and return types, again using the -> symbol to separate the two.
We can also incorporate these type declarations into the lambda itself, in
which case we’d write the entire expression as:

val greet = { name: String -> "Hello, $name!" }

36 Chapter 1

Here we specify that the name parameter is of the String type from within
the braces. With this syntax, the return type, like the return keyword itself,
is implied.

Whichever syntax we use, we now have a function that returns a string
greeting inside the greet variable. We can therefore call the lambda via this
variable, just like we would call an ordinary function:

println(greet("Alice")) // output: Hello, Alice!
println(greet("Bob")) // output: Hello, Bob!

Lambdas are often used for quick manipulation of data, such as adding
two numbers or calculating the square of a number:

val sum: (Int, Int) -> Int = { a, b -> a + b }
println(sum(3, 4)) // output: 7

val square: (Int) -> Int = { it * it }
println(square(5)) // output: 25

Lambda parameters can be explicitly typed or inferred. For simple
lambdas, Kotlin can infer types automatically. Also, if a lambda has a single
parameter, you can omit the parameter declaration and use the implicit
it keyword directly in the lambda’s body as a stand-in for the parameter.
This is what we’ve done for the square lambda: { it * it } indicates that the
lambda will take a single unnamed parameter and multiply it by itself.

Lambdas can span multiple lines to carry out more complex tasks and
can be nested like for loops. We’ll use multiline, nested lambdas in the next
section in relation to copying the content of a file.

E X ERCISES

Use the following exercises to practice creating lambda expressions:

1.	 Write a lambda expression that takes two integers as parameters and
returns the larger one. If the integers are equal, return either one. Assign
the lambda expression to a variable called max, and use it to find the maxi-
mum of some pairs of integers.

2.	 Write a lambda expression that takes a string as a parameter and returns
a new string that’s the reverse of the original string (without using Kotlin’s
built-in reversed() method). For example, if the input is Kotlin, the output
should be niltoK. Hint: Inside the body of the lambda, define a variable
called reversed as an empty string, then use a for loop to iterate over the
characters of the input string in reverse order, appending them to reversed.
When done, use reversed as the last line inside the lambda block to return
the reversed string.

Kotlin Basics 37

Basic Input and Output
Most commercial software these days has a graphical user interface (GUI)
so that you can easily interact with it. You can create a GUI for your Kotlin
app using third-party tools such as JavaFX or Jetpack Compose, but we
won’t cover that in this book. Instead, in this section we’ll focus on how to
work with text-based input and output in Kotlin. This helps you quickly test
and debug your code. Text-based output is also useful for tasks like script-
ing, keeping logs, and watching what’s happening on networks of comput-
ers and devices, which is what system administrators often do.

Console-Based Input and Output
To get user input from the console in Kotlin, use the readln() function. It
returns whatever text the user enters into the console or an empty string if
the user simply presses the enter key. Here’s an example:

println("Enter some text:")
val userInput = readln()
println("You entered: $userInput")

Here, the user input (a line of text) is read into the userInput variable
and then displayed as output to the console using the familiar println()
function. If the user just presses enter, then readln() will return an empty
string, and the program will end normally after printing the following:

You entered:

When reading input from the console in Kotlin, keep in mind that
all input is initially treated as text, resulting in a String data type. If you
require a different data type, you must perform type casting, assuming the
types are compatible. It’s also helpful to inform users about the expected
input type by using prompts such as Enter your name or Enter an integer.

Even with a clear prompt, though, you shouldn’t automatically assume
that the input will be valid. The user may input incorrect characters that
can’t be successfully type-cast into the desired format. To prevent the pro-
gram from crashing due to potential errors, it’s essential to implement
error-handling mechanisms when receiving input from users. This extra
step ensures robustness and a smoother user experience. Here’s a complete
example of a fail-safe method for reading an integer from the console:

fun main() {
 while (true) {
 print("Enter an integer: ")
 val num = readln()

 // Validate using a try...catch block.
 try {
 val intValue = num.toInt()
 println("You entered: $intValue")

38 Chapter 1

 break // Stop the loop on success.
 } catch (e: NumberFormatException) {
 println("Invalid input. Try again.")
 }
 }
}

We begin by creating a while loop that continues to run until a valid
input is provided. Next, we read the user input as a string and assign that to
a variable called num. We check the validity of the input inside a try...catch
construct for graceful error handling. This construct consists of two code
blocks: a try block containing the code you’d like to run and a catch block
containing an alternative code path or fallback option in case an error
occurs during the try block. The catch block prevents the entire program
from crashing abruptly from an error. This mechanism helps with debug-
ging during testing and improves the overall user experience in commer-
cial applications.

In this case, the try block attempts to convert the user’s input, stored in
the variable num, into an integer using toInt(). If this conversion is success-
ful, a message containing the integer value is printed.

However, if the conversion fails and a NumberFormatException is raised, the
catch block is activated, printing an error message before the next iteration
of the while loop begins. Notice the (e: NumberFormatException) immediately
after the catch keyword. This specifies the particular type of exception that
the catch block is designed to handle.

A SNE A K PEEK AT OBJEC T- OR IEN T ED PROGR A MMING

“Simple File Operations” on page 39 references terms and concepts that will
be discussed in detail in Chapter 2 in relation to classes and object-oriented
programming. For now, you can think of classes, such as the File and Scanner
classes discussed in the section, as blocks of code that have associated properties
(variables) and methods (functions). An object is a particular instance of a class,
created using the blueprint that the class provides. Likewise, Kotlin’s built-in data
types are essentially classes, and instances of those data types are objects of
those classes. For example, a string such as "Hello, world!" is an instance of
the String class. This means it automatically has properties such as length (to
report the number of characters in the string) and methods such as plus() (for
concatenation with another string).

Kotlin Basics 39

Simple File Operations
Kotlin provides simple and effective ways to read and write files, a feature
that’s very helpful when you want to retrieve previously saved data or save
the data from the current run of a program. For this functionality, Kotlin
relies on the Java standard library. For example, here’s how to read data
from a file using Java’s File and Scanner classes:

import java.io.File
import java.util.Scanner

fun main() {
 // Replace the path below with the path to your file.
 val inputFile = "inputfile.txt"

 try {
 1 val file = File(inputFile)
 2 val sc = Scanner(file)
 while (sc.hasNextLine()) {
 val line = sc.nextLine()
 println(line)
 }
 } catch (e: Exception) {
 println("An error occurred: ${e.message}")
 }
}

The example shows how to read a text file line by line. After import-
ing the File and Scanner classes, we assign a string containing the full path-
name of the input file to the inputFile variable. We then use this variable
to create the File object called file 1, which in turn is used to create a
Scanner object called sc 2 that gives us access to the file’s contents. Then,
in a while loop, we read the content of the file one line at a time using
the Scanner object’s nextLine() method and print the result to the console.
The loop continues until we reach the end of the file, indicated when the
Scanner object’s hasNextLine() method returns false. We place all this code
in a try block and use a corresponding catch block to handle any errors
that arise while trying to access the file—for example, if the filename or
filepath is wrong. The (e: Exception) indicates the catch block can handle
any kind of exception, unlike the earlier catch block that was designed
specifically for exceptions of type NumberFormatException. In this case, the
catch block prints the default error message associated with the exception,
accessible as e.message.

My test file at location inputfile.txt contained a limerick, and the pro-
gram reproduced it on the console line by line:

There once was a man named Bob
Who loved to eat corn on the cob
He ate so much corn
That he grew a horn
And now he is known as Corn-Bob

40 Chapter 1

To read from and write to a file, you can’t use the Scanner class, since
it doesn’t support writing output. Instead, you can use the appendText()
method of the File class. Here’s a simple example:

import java.io.File

fun main() {
 // Replace the file locations as needed.
 1 val inputFile = File("inputfile.txt")
 2 val outputFile = File("outputfile.txt")

 // Read all lines from the input file.
 3 val lines = inputFile.readLines()

 // Write all lines to the output file.
 4 for (line in lines) {

outputFile.appendText("$line\n")
 }
 println("Copied inputfile.txt to outputfile.txt")
}

This Kotlin code reads all the lines from an input file (inputfile.txt) and
writes them to an output file (outputfile.txt). The input file is represented
using one File object 1 and the output file with another 2. We use the
File class’s readLines() method to read all the lines from the input file and
return them as a list of strings 3. (A list in Kotlin is a collection of items;
in this case it’s a collection of strings, one for each line of the file. We’ll
discuss lists in detail in Chapter 2.) We store this list of strings in the lines
variable. We then use a for loop to iterate over the lines list, with the loop-
ing variable line standing for one line at a time 4. For each line, we use
the appendText() method to add the line to the output file. We also append
a newline character (\n) to the end of each line to ensure it’s written on its
own line of the output file. We conclude the code by printing a message to
the console, indicating that the input file has been copied to the output file.

Notice that we didn’t use the try...catch block in this example, as the
goal was to quickly show how to write data to a file. In real-world applica-
tions, file operations may have to be wrapped in a try...catch block to handle
potential exceptions or errors, depending on your specific requirements.

You can use many other techniques for reading from and writing to
files in Java and Kotlin. See the official Kotlin documentation for informa-
tion about other methods.

Project 1: Build a Console-Based Calculator
Now that we’ve explored some of the basic features of Kotlin, let’s put that
knowledge to work in a real project. We’ll develop an interactive, console-
based calculator application. The application will take a pair of valid num-
bers as input, ask the reader to choose an arithmetic operation (addition,
subtraction, multiplication, or division), and then display the result of that

Kotlin Basics 41

operation in the console. We’ll also program the application to show help-
ful error messages when required.

At the start of any coding project, it’s crucial to begin by creating a
mental map of the application’s structure. This involves identifying the
necessary variables and data structures, as well as pinpointing the essential
functionalities that the program should include. Once these components
are identified, we can move forward by generating a list of the key compo-
nents that need to be implemented, followed by the actual coding phase.

For more complex projects, it can also be beneficial to create a flow-
chart visualizing the application logic or to develop detailed pseudocode
offering step-by-step instructions for coding the entire project. However,
given the relatively straightforward nature of the calculator project, we’ll
start by listing its key components:

	 1.	Input collection: We’ll gather user input for two numbers and ensure
the inputs are valid.

	 2.	Operation selection: The user will choose addition, subtraction, multi-
plication, or division.

	 3.	Calculation: The selected operation will be applied to the input
numbers.

	 4.	Result display: The calculated result will be presented to the user via
the console.

	 5.	Error messages: Throughout steps 1 through 3, we’ll display helpful
error messages for invalid inputs, such as nonnumerical characters for
the number inputs or an unrecognized mathematical operation.

We’ll use these five key components to guide the development process
as we start coding our first mini project.

The Code
We’ll discuss the code from the top down, starting with the main() function,
which coordinates the program’s actions through a series of helper func-
tions. This approach allows us to align the code with the key components
we outlined.

import kotlin.system.exitProcess

fun main() {
 println("*** Console Calculator ***")

 // step 1: input collection
 println("\nEnter two numbers:\n")
 val number1 = readDoubleInput("Number 1: ")
 val number2 = readDoubleInput("Number 2: ")

 // step 2: operation selection
 showChoices()
 val operation = getArithmeticOperation()

42 Chapter 1

 // step 3: calculation
 val result = performCalculation(number1, number2, operation)

 // step 4: result display
 println("\nResult:\n" +
 "$number1 $operation $number2 = $result")
}

We begin by importing the exitProcess() function from Kotlin’s stan-
dard library. We’ll use this method to exit the program if the user provides
invalid input or if the code comes across an invalid operation type (for
example, division by zero).

The main() function itself is divided into four clear steps, each related to
one of the key project functions. In the first step, we ask the user to provide
two numbers, which we store in the number1 and number2 variables. To manage
and verify the input, we use the readDoubleInput() function, declared here:

fun readDoubleInput(prompt: String): Double {
 print(prompt)
 val num = readln()

 // Check input validity.
 try {
 return num.toDouble()
 } catch (e: Exception) {
 println("Error reading input: ${e.message}")
 exitProcess(1) // Exit with error code 1.
 }
}

This function takes a single argument, a string serving as a prompt for
user input in the console. It returns a numeric value (of type Double) if the
user provides a valid input. The function displays the prompt using print()
rather than println() so that the user’s response will go on the same line.
Then it reads the user’s input with readln() and processes the string input
inside a try...catch block. When the string is successfully converted into a
numeric value of type Double, its value is returned. Otherwise, we enter the
catch part of the block, where an error message is printed, and the pro-
gram exits with an error code of 1.

N O T E 	 When using the exitProcess() function, any integer can be used as an error code.
However, it’s important to first decide on a scheme for error codes based on the differ-
ent types of errors that the application might generate. This will allow you to quickly
locate the source of the error. In more complex projects, creating and maintaining a
log or wiki of error codes is recommended.

After the main() function receives two valid numeric values (number1 and
number2), we move on to step 2, choosing the mathematical operation. For
that, we first call the showChoices() function, which offers a list of arithme-
tic operations to the user. This function is simply made up of a number of
println() calls:

Kotlin Basics 43

fun showChoices() {
 println("\nOperation Options:")
 println("1. Addition (+)")
 println("2. Subtraction (-)")
 println("3. Multiplication (*)")
 println("4. Division (/)")
}

Next, we use the getArithmeticOperation() function to take in a valid oper-
ation from the user. The result is assigned to the string variable operation in
main(). Here’s what the getArithmeticOperation() function looks like:

fun getArithmeticOperation(): String {
 print("\nEnter an arithmetic operation (+, -, *, /): ")
 val operation = readln()

 if(!"+​-*​/"​.contains(operation, true)){
 println("\nInvalid operation. Exiting.")
 exitProcess(2) // Exit with error code 2.
 }
 return operation
}

Within this function, the user is prompted to select one of the four
valid arithmetic operators. This choice is captured using the readln()
method. Subsequently, we use an if statement to verify whether the user
input is valid. Specifically, if the string "+-*/" does not include the user’s
input, an error message is printed, indicating that an invalid operator has
been provided. The program then terminates with an error code of 2.

Back in main(), we can now move to step 3 and call the perform​
Calculation() function to carry out the selected arithmetic operation and
return the result. Here’s that function’s declaration:

fun performCalculation(number1: Double, number2: Double,
 operation: String): Double {
 return when (operation) {
 "+" -> number1 + number2
 "-" -> number1 - number2
 "*" -> number1 * number2
 "/" -> if (number2 != 0.0) number1 / number2
 else {
 println("\nDivision by zero is not allowed. Exiting.")
 exitProcess(3)
 }
 1 else -> {
 println("\nUnexpected error encountered. Exiting.")
 exitProcess(4)
 }
 }
}

44 Chapter 1

This function takes in the two input numbers and the string containing
the desired operation as parameters and returns the result of the calcula-
tion as a number of type Double. It employs a when statement to execute the
desired calculation based on the value of operation. By this stage, both the
numbers and the operation type have been validated. However, one poten-
tial source of error remains: division by zero. We address this with an if...
else block in the "/" case of the when statement, which prints an error mes-
sage and exits the program if number2 is 0.0.

Notice that we also include an else clause for the overall when state-
ment 1, even though no further errors should remain at this point (hence
the “Unexpected error encountered” message). Having this clause as a
fallback is good practice in case unexpected issues or compiler bugs lead to
unpredictable errors.

With the calculation performed, our main() function moves on to step 4
and displays the result using a string template. Looking back at main(),
notice how our use of custom functions to encapsulate the various individ-
ual tasks of the program has kept the main() function itself tidy and easy to
read. In this way, functions help us maintain well-organized applications.

The Result
Here’s a sample run of the program to multiply two numbers, 37 and 9. The
user input is shown in bold.

*** Console Calculator ***

Enter two numbers:

Number 1: 37
Number 2: 9

Operation Options:
1. Addition (+)
2. Subtraction (-)
3. Multiplication (*)
4. Division (/)

Enter an arithmetic operation (+, -, *, /): *

Result:
37.0 * 9.0 = 333.0

Notice that even though the inputs are integers, they get converted to
the Double type before conducting the multiplication. That is, 37 becomes
37.0 and 9 becomes 9.0, as shown at the end of the output under Result. Feel
free to experiment with invalid numbers or operators and observe how the
program behaves. We can learn a lot from our mistakes!

Kotlin Basics 45

E X ERCISE

In Project 1, you created a basic calculator. Now it’s time to level up your cal-
culator’s capabilities. In this exercise, you’ll add more advanced mathematical
operations and scientific functions, making your calculator a more versatile tool.
Here are some tasks to enhance the program:

1.	 Implement the modulo (%) operation, allowing users to find the remainder
when one integer is divided by another.

2.	 Add the ability to raise an input number x to a given power n (that is, xn)
and display the result.

3.	 Allow the calculation of the square root of a positive number.

4.	 Incorporate the ability to calculate and display the sine (sin), cosine (cos),
and tangent (tan) of a given angle x. Users should provide the angle in
degrees.

5.	 Take in a value x and calculate ex (the exponential function).

6.	 Enable the natural logarithm (loge) function, allowing users to find the natu-
ral logarithm of x.

Hint: Notice that some of these operations require two input numbers,
while others require just one. You should therefore prompt the user for the oper-
ation they want to perform first, and then request the necessary numeric inputs.
You’ll need mathematical functions from the kotlin.math module to implement
many of these operations.

Summary
In this chapter, we covered an array of fundamental elements of the Kotlin
language. You learned how to use comments to enhance code clarity, vari-
ables to store and manage data, and operators to manipulate that data.
You explored flow control structures like conditionals and loops to dictate
your program’s behavior, and functions to encapsulate and reuse code
effectively. With lambda expressions, you saw a way to write and use func-
tions on the fly and got a glimpse of the functional programming style. You
also practiced receiving input and providing output, for both console- and
file-based interactions. To conclude the chapter, you gained hands-on prac-
tice bringing these elements together through a project implementing a
console-based calculator.

Resource
Kotlin. “Kotlin Docs.” (The official Kotlin documentation.) Accessed

June 15, 2024. https://kotlinlang​.org​/docs​/home​.html.

https://kotlinlang.org/docs/home.html

In this chapter, we’ll continue to explore
the fundamentals of the Kotlin language by

learning how to store and manipulate data in
various ways. We’ll move beyond the simple data

types of Chapter 1 and explore data structures that can
hold multiple values in a single unit. We’ll start with
arrays, then move on to collections such as lists, sets,
and maps, which provide more functionality and flex-
ibility for working with data. Then we’ll learn how to
create custom containers in the form of classes. We’ll
investigate various kinds of classes, including regular,
data, abstract, and enum classes.

Classes are the foundation of the object-oriented style of program-
ming, allowing us to model and manipulate data by defining our own data

2
A R R AY S , C O L L E C T I O N S ,

A N D C L A S S E S

48 Chapter 2

types with specific properties and behaviors. As we discuss classes, we’ll also
demystify other object-oriented concepts, such as encapsulation, inheri-
tance, polymorphism, and interfaces. At the end of the chapter, we’ll syn-
thesize the topics we’ve covered into a project where we create a basic task
manager app to help you track and organize your daily tasks.

Arrays
A Kotlin array is a collection of elements in a contiguous block of memory.
The number of elements in the array is determined when the array is
created; therefore, it can’t be changed, meaning you can’t add an extra
element to an array once it is created. However, the values of an array’s ele-
ments are mutable, so they can be modified as needed. An array can hold
elements of any type, including user-created types, as long as all elements
within the same array have the same type or are derived from a common
parent type (supertype).

Each array element has an index that allows you to access it individu-
ally. By default, the first element of an array will have an index of 0, the sec-
ond element an index of 1, and so on. The index of an array’s last element
is therefore always one less than the array’s size. For example, if we create
an array of size 10 (that is, containing 10 elements), the index of the last
element would be 9. To access an array element, place its index in square
brackets after the name of the array.

Here we create two different arrays, one comprising integers and one
comprising string values, and print the last element of the first array and
the first element of the second:

val arrInt = arrayOf(10, 20, 30, 40)
println(arrInt[3]) // output: 40
val arrString = arrayOf("one", "two", "three", "four", "five")
println(arrString[0]) // output: one

We create each array with the arrayOf() function, passing the initial
values for the array’s elements as arguments. Notice that we don’t have to
specify the data type (Int or String) explicitly; the compiler can infer the
array type from the values provided.

In Kotlin, we can create an array with elements of different subtypes as
long as they’re all derived from the same supertype. For example, Any is a
Kotlin supertype that encompasses all other data types, such as Int, String,
and Boolean. Therefore, if we create an array of type Any, we’re free to mix
these data types, as shown here:

val myArray: Array<Any> = arrayOf(1, "bye", false)

We use the Array<Any> type declaration to indicate that myArray can con-
tain elements of any data type. Indeed, it contains an integer (1), a string
("bye"), and a Boolean (false). Since all these types are derived from the
common supertype Any, they can be stored in the same array. We could have
skipped declaring the array type using Array<Any> in this case; Kotlin is smart

Arrays, Collections, and Classes 49

enough to figure it out on its own. However, if you’re creating an array of
elements with a user-defined type, it may be a good idea to declare the type
explicitly to remind yourself that you’re working with elements of a nonstan-
dard type. For example, if you have a custom Person class and want to create
an array of objects of this class, you could declare the type as follows:

val people: Array<Person> = arrayOf(...)

This indicates that the elements in the people array will all be Person objects.

W H AT IS A N OBJEC T ?

An object is a fundamental concept in object-oriented programming (OOP). It is
an instance of a class, which is a blueprint for creating objects. Each object can
have its own set of properties and functions, which are defined by the class. In
general, objects are used to organize code into reusable, modular components.
We’ll cover classes and objects in detail later in this chapter.

Primitive Arrays
Kotlin provides specialized array types for select data types including Byte,
Short, Int, Long, Char, Float, Double, and Boolean. For example, we can use
IntArray for integers, DoubleArray for floating-point values, and CharArray
for individual characters. Primitive arrays are more memory efficient
than their nonprimitive counterparts, making them a good choice for
performance-critical operations. The syntax for creating primitive arrays is
similar to that of regular arrays, with a specialized function, equivalent to
arrayOf(), for each type of primitive array:

val intArray = intArrayOf(1, 2, 3, 4, 5)
val doubleArray = doubleArrayOf(1.0, 2.0, 3.0, 4.0, 5.0)
val charArray = charArrayOf('a', 'b', 'c', 'd', 'e')
val booleanArray = booleanArrayOf(true, false, true, false)

No primitive array for the String type exists in Kotlin, since String is
a reference type, not a primitive type, and is handled differently by the
Java Virtual Machine (JVM) compared to primitive types during runtime.
Because of this, creating a special primitive string array wouldn’t provide
any significant memory or performance advantage in the way something
like intArray or booleanArray does.

The Array Constructor
Another way to create an array is with the Array constructor. As we’ll discuss
in more detail later in the chapter when we look at classes, a constructor is a

50 Chapter 2

function for creating an object of a particular class—in this case, the Array
class. In Kotlin, you can use the Array constructor to create an array of a
given size and set its elements to values determined using a lambda expres-
sion or function. Once the array elements are initialized, you can access
them later and update their values as required. Using a lambda expression
or a function to initialize a large array can be more efficient than hardcod-
ing the values as arguments to the arrayOf() function or reading them from
an input file.

The Array constructor takes two parameters: the size of the array and a
function that returns the initial value for each array element based on its
index. For example:

val num = Array(4, {i -> i * 2})

Here, we call the Array constructor to create an array of size 4 and initialize
its elements using a lambda expression. The lambda takes the index of each
element (i) and doubles it to set the element’s value. The result is an array
of the integer values 0, 2, 4, and 6.

Array Operations
Arrays in Kotlin offer a variety of methods that can help you access and
manipulate their elements. Table 2-1 summarizes some of the commonly
used methods for array manipulation.

Table 2-1: Commonly Used Array Methods

Operation Description Example

Access Retrieve an element by its index. val element = array[index]

Update Modify an element at a specific
index.

array[index] = newValue

Size Get the number of elements in
the array.

val size = array.size

Iterate Loop through each element in
the array.

for (element in array)
{/* ... */ }

Search/find Check if an element exists in the
array (true or false).

val found = array​
.contains(element)

Slice Extract a portion of the array. val subArray = array​
.slice(startIndex..endIndex)

Sort Arrange elements in ascending
or descending order.

array.sort() or
array.sortDescending()

Filter Create a new array with elements
that meet a condition.

val filteredArray = array.filter
{/* condition */ }

Map/transform Apply a function to each element
and create a new array with the
results.

val mappedArray = array.map
{/* transformation */ }

Join Combine elements into a single
string with a delimiter.

val joinedString = array
​.join​ToString(", ")

Arrays, Collections, and Classes 51

Notice that when we apply methods such as filter and map to a data
container such as an array, and the method name is followed by a lambda
expression, we don’t have to include parentheses after the method name
like we typically would when calling a function. I encourage you to try out
these operations by creating and manipulating different types of arrays.

Multidimensional Arrays
A multidimensional array is an array whose elements are themselves arrays.
Nested arrays are widely used in scientific and numerical computation. For
instance, a two-dimensional array can represent a grid of pixels in an image
or the coordinates of locations on a map. Similarly, a three-dimensional array
can be used to track the location and movements of an object in space, such
as in three-dimensional gaming or for real-world objects like satellites.

In Kotlin, you can create multidimensional arrays using the built-in
array creation functions. Here’s how to create a two-dimensional array
using the Array constructor:

val numRow = 3
val numCol = 4
// Create a (3x4) array.
val twoDimArray = Array(numRow) { Array(numCol) { 0 } }
// Access and modify an element using its indices.
twoDimArray[2][3] = 99

In this example, we use the Array constructor to create a two-dimensional
array with 3 rows and 4 columns and initialize all 12 of its elements to 0. We
then replace the value of the last element, which has a row index of 2 and
a column index of 3, with a new value (99). Notice that we use separate sets
of square brackets for the two indices. Creating and manipulating a three-
dimensional array follows the same pattern:

// Create a 3D array.
val threeDimArray = Array(2) { Array(3) { Array(4) { "" } } }
// Access and modify an element using its indices.
threeDimArray[1][2][3] = "Hello, world!"

In this example, we first create an array of dimensions 2×3×4 and
initialize its elements to empty strings. As before, we access and change the
last element in the array using its dimensional indices.

We can also use nested calls of the arrayOf() function (or equivalent
primitive array functions) to create a multidimensional array. Here’s an
example of creating a two-dimensional array of integers:

val arr2D = arrayOf(
 intArrayOf(0, 1, 1),
 intArrayOf(2, 0, 2),
 intArrayOf(3, 3, 0)
)
println(arr2D[2][2]) // output: 0

52 Chapter 2

We use arrayOf() to create an array of arrays called arr2D. Each element
of arr2D is an array of integers created using intArrayOf(). For example, the
first element of arr2D is an array containing integers 0, 1, and 1. Printing the
value of the last element of arr2D, designated by arr2D[2][2], will produce an
output of 0.

E X ERCISES

Try your hand at the following array-based problems:

1.	 Find the second-largest element in an array of integers, and print it to the
console. For example, if the array is [1, 2, 3, 4, 5, 6], the code should
print 5.

2.	 Given an array of integers, find the contiguous subarray with the largest
sum, and return that sum. For example, given the array [-2, 1, -3, 4, -1,
2, 1, -5, 4], the contiguous subarray with the largest sum is [4, -1, 2, 1],
and its sum is 6.

3.	 Given an array of integers and a positive integer k, rotate the array to the
right by k positions. For example, given the array [1, 2, 3, 4, 5] and a
k of 2, the rotated array should be [4, 5, 1, 2, 3].

Collections
Kotlin collections are containers that can hold data or objects of the same
type or different subtypes of a common supertype (for example, Any).
Collections can be resized as needed when declared as mutable. This is
in contrast to arrays, whose size can’t be changed once they’re initialized.
Kotlin provides various types of collections, such as lists, sets, and maps,
each with distinct properties and use cases.

Lists
A list in Kotlin is an ordered collection of elements that can be either read-
only or mutable. A read-only list is an immutable collection of elements that
can’t be modified once created. You can perform only read operations like
size, contains, indexOf, and subList on a read-only list. On the other hand, a
mutable list is an ordered collection of elements that supports adding and
removing elements or changing the value of a particular element.

Read-Only

You create a read-only list using the listOf() function:

val list = listOf(1, 2, 3, 2)

Arrays, Collections, and Classes 53

Notice that this list includes the value 2 twice. The potential for duplicate
values is a key feature that distinguishes lists from sets, another type of
Kotlin collection. A list created using listOf() can contain only one type of
data, which will be inferred from the elements of the list.

The elements of a list can be accessed the same way we access array ele-
ments: using an index system that starts with 0. Lists also provide the first()
and last() methods for convenient access to the first and last elements
directly, without the need for an index. Here’s an example:

val names = listOf("Mary", "Sam", "Olivia", "Mike", "Ian")
println(names[1]) // output: Sam
println(names.first()) // output: Mary
println(names.last()) // output: Ian

Since lists are zero indexed like arrays, name[1] returns the second ele-
ment in the array. Meanwhile, names.first() and names.last() return the first
and last array elements, respectively.

Mutable

If you want the flexibility to modify a list, use mutableListOf() to create a
mutable list. This way, you can change both the list’s content and its size, as
shown here:

val mutableList = mutableListOf(1, 2, 3)
mutableList.add(4) // Add an element.
mutableList.removeAt(1) // Remove an element.
mutableList[0] = 5 // Modify an element.
println(mutableList)

After creating a list with three elements, we use the add() method to
append a fourth element to the end of the list and the removeAt() method
to delete the element at index 1; the later elements in the list slide over to
fill in the gap. We also set a new value for the list’s first element (index 0).
When you run this code, the output should look like this:

[5, 3, 4]

Another way to append an element to the end of a mutable list is to use
the += operator, and you can likewise remove the first instance of an element
with the -= operator. You can also use the removeAll() method to delete all
the elements of a list that meet a specific condition. Here’s another example:

val fruits = mutableListOf("apple", "banana", "berry", "cherry")
// Add an element using the += operator.
fruits += "plum"
// Remove all elements that start with the letter "b".
fruits.removeAll { it.startsWith("b") }

54 Chapter 2

We create a mutable list of fruits and use += to add an extra element
to it. Then we call removeAll(), providing a lambda expression that checks
if each list element starts with b. Remember that if a lambda has a single
parameter, the it keyword can stand in as that parameter. In this case, it is
a proxy for each element of the list.

One method that’s particularly helpful while working with mutable lists
is clear(), which deletes the list’s entire contents:

mutableList.clear()

This method allows us to reuse a mutable list repeatedly instead of creating
new lists that would take up additional memory resources.

It’s common to initially create an empty mutable list and to then fill it
with elements as needed. In this case, you must include a type declaration
for the list when calling the mutableListOf() function, as shown here:

1 val list = mutableListOf<Any>()
list.add("hello")
list.add(2)
list.add(33.33)
println(list.joinToString(", "))

We use <Any> when creating the list 1 to indicate it can contain any of
this supertype’s subtypes, including String, Int, and Double. When you run
this code, the output should look like this:

hello, 2, 33.33

Notice how we’ve used the joinToString() method to merge the list elements
into a single string that’s printed out, with a comma separating each element.

Sets
A set is a collection of unique elements, meaning each element can occur
only once. Sets don’t have a defined order, so two sets are considered equal
if they contain the same elements in any order. Sets come in read-only
and mutable varieties, created with the setOf() or mutableSetOf() functions,
respectively. Here’s an example of each:

val readonlySet = setOf(1, 2, 3, 4, 5)
val mutableSet = mutableSetOf("apple", "banana", "cherry")

When assigning values to a set in Kotlin, the compiler automatically
ignores any duplicate elements. Consider the following code snippet:

val mySet = setOf(1, 3, 3, 4, 5, 5, 6)
println(mySet)

Arrays, Collections, and Classes 55

When you run this code, the output should be:

[1, 3, 4, 5, 6]

The duplicate values (3 and 5) have been filtered out while creating mySet.
In this way, sets ensure that each element appears only once, making them
useful for maintaining unique collections of data.

Every set has a size property that reports its number of elements. Sets
also have standard methods like add(), remove(), and contains(). In addition,
you can use the union(), intersect(), and subtract() methods to create a new
set based on the contents of two other sets, as shown here:

val set1 = setOf(1, 2, 3)
val set2 = setOf(3, 4, 5)
// set operations
val unionSet = set1.union(set2)
val intersectionSet = set1​.intersect(set2)
val differenceSet = set1.subtract(set2)

We call the methods on one set, passing the second set as an argument.
In this example, unionSet holds {1, 2, 3, 4, 5}, all the unique elements from
both input sets; intersectionSet holds {3}, the only element present in both
input sets; and differenceSet holds {1, 2}, the elements from set1 that aren’t
in set2.

E X ERCISES

1.	 Create two sets, mathStudents and scienceStudents, containing the names
of students who have chosen to take math and science courses, respec-
tively. (Assume that students can take both courses if they wish.) Perform
the following operations on these sets to analyze the data:

a.	 Find and print the students who have chosen both math and science
courses (intersection).

b.	 Find and print the students who have chosen math courses, science
courses, or both (union).

c.	 Find and print the students who have chosen math but not science
courses (difference).

d.	 Find and print the students who have chosen science but not math
courses (difference).

e.	 Calculate and print the total number of students who have chosen
math or science courses.

2.	 Given a set of integers, write a code snippet to find all possible subsets
of the set and return them. For example, given the set {1, 2}, the possible
subsets are {}, {1}, {2}, and {1, 2}.

56 Chapter 2

Maps
A map is a collection of key-value pairs, where each key is a label associated
with a value. If you’ve encountered dictionaries in Python or hash maps in
Java, the idea is similar. The keys in a map must be unique. As with lists and
sets, you can create a map using the mapOf() or mutableMapOf()   functions, as
shown here:

val ages = mapOf("Alice" to 30, "Bob" to 25, "Charlie" to 35)
val vertices = mutableMapOf("circle" to 0, "triangle" to 3,
 "rectangle" to 4, "pentagon" to 5)

We use ages to map people’s names to their ages and vertices to map differ-
ent shapes to their number of vertices. When creating each map, notice how
we use to for pairing each key (such as "Alice") with a value (such as 30).
The key-value pairs are separated by commas.

Common properties and methods for maps include size to return the
number of key-value pairs, get() to return the value associated with a key,
remove() to delete a key and its value, put() to add a new key-value pair, and
containsKey() to check if a key is present. Here are a few examples based on
the maps created in the previous snippet:

val bobAge = ages.get("Bob") // returns the associated value: 25
vertices.put("hexagon", 6) // adds a new key-value pair
vertices.remove("circle") // removes the circle-0 pair
val testForCircle = vertices​.containsKey("circle") // returns false
println(bobAge)
println(vertices)
println(testForCircle)

We retrieve a value from the ages map with get() and add a new key-
value pair to vertices with put(). Then we delete the "circle" entry from
vertices with remove(), meaning that vertices​.containsKey("circle") should
return false. This code snippet should produce the following output:

25
{triangle=3, rectangle=4, pentagon=5, hexagon=6}
false

Notice that when we call the put() method, we don’t use the same key
to value syntax used when creating a map. Instead, we provide the key and
value as individual arguments, separated by a comma.

We’ve only scratched the surface of Kotlin’s various collections and
their properties and methods. For more, I recommend consulting the offi-
cial Kotlin documentation at https://kotlinlang​.org​/docs​/home​.html.

https://kotlinlang.org/docs/home.html

Arrays, Collections, and Classes 57

E X ERCISES

Use maps and their methods to solve the following problems:

1.	 Given an array of integers, find the most frequent element in the array and
return it. For example, given the array [1, 2, 3, 2, 1, 4, 2], the most fre-
quent element is 2. (Hint: Make each unique element in the array a key in
a map, paired with a value counting how many times that element occurs.)

2.	 Given a string, create a map where the keys are individual characters from
the string and the values represent the count of each character. Return the
resulting map.

An Introduction to Classes
A class in Kotlin is a template for creating custom objects. It specifies the
properties (variables) and methods (functions) that all objects of that class
should have. When you use a class in your code to make an object, you cre-
ate an instance of that class. This process is called instantiation. Classes are
the core building blocks of the object-oriented style of programming. While
objects are codified models of real-world entities or concepts, you can also
think of the classes used to create them as custom containers that encapsu-
late data and functionality into a single unit.

Classes simplify building complex systems by providing abstraction
levels. When we categorize objects into classes, we can abstract their com-
mon features and behaviors into a single unit. For example, consider a
Person class representing any person in code. It has properties like name and
age, along with methods like speak() and walk(). Instances of this class (rep-
resenting specific people) fill in their own values for properties and have
access to the shared methods.

Classes further help us model complex systems in a modular way using
subclasses. For instance, the Person class can have subclasses like Teacher,
Student, and Athlete. Each subclass inherits general properties and methods
from the Person superclass while adding new features specific to the sub-
class. For example, a Teacher might have an isTenured property, and a Student
might have a gradeLevel property.

To create a class in Kotlin, you declare it with the class keyword, fol-
lowed by the name of the class and its body, which is enclosed in braces. By
convention, class names should begin with a capital letter. Here’s an exam-
ple of a simple class declaration:

class Person {
 var name: String = ""
 var age: Int = 0
}

58 Chapter 2

Here, we define a class called Person that has two properties: name and
age. These properties are declared just like regular variables in the class
body and are assigned initial values of "" (an empty string) and 0, respec-
tively. With the Person class declared, we can now create an individual
instance of the class and change its properties, like this:

val person1 = Person()
person1.name = "John"
person1.age = 25

Here we create a new Person object and store it in the person1 variable.
We do this by invoking the Person() constructor, which returns a new object
of the Person class (you’ll find more on constructors in the next section). We
then assign values to the object’s name and age properties, accessing these
properties using dot notation. Why limit ourselves to just one Person object,
however? The beauty of classes is that we can use them to create as many
different objects of that class as we want. Let’s create another Person object:

val person2 = Person()
person2.name = "Irina"
person2.age = 21

This time we store the object in the person2 variable and give it its own
values for the name and age properties, distinct from those of person1.

Constructors
In the previous example, you saw how class properties can be initialized
directly in the class body, but it’s more common to initialize class proper-
ties using a constructor. This is a special function that’s automatically called
when a new object of a class is created. In Kotlin, you can initialize proper-
ties using a primary constructor or a secondary constructor, both of which
we’ll discuss in this section.

Primary Constructors

A primary constructor is defined in the class header, a set of parentheses after
the class name. The primary constructor lays out the names and data types
of class properties using the following syntax:

class MyClass(val property1: Type1, val property2: Type2) {
// class body
}

In this syntax, class properties are listed as a sequence of name: type
entries, similar to declaring function parameters. All property names must
be preceded by val or var. With the class properties declared in this way, we
can then provide specific values for the properties when creating an object
of the class, much like passing argument values to a function.

Arrays, Collections, and Classes 59

Besides declaring the name and type of each property, we can also
provide default values for the properties in the class header as part of the
primary constructor. To illustrate, let’s redefine the Person class, adding a
header with a primary constructor. We’ll then create a couple of instances
of the class and initialize their properties through the constructor:

class Person(val name: String = "", val age: Int = -99) {
 override fun toString(): String {
 return "Person(name=$name, age=$age)"
 }
}

fun main() {
 val person1 = Person("John", 25)
 val person2 = Person("Irina", 21)
 println(person1)
 println(person2)
}

This code segment defines a class named Person with two properties,
name and age, specified in the class header, which serves as the primary
constructor. We give name a default value of "" (an empty string) and age
a default value of -99. The class also overrides (redefines) the toString()
method; we’ll discuss this in more detail shortly.

In the main() function, we create two objects of the Person class, passing
values for the name and age properties as arguments to the constructor. This
saves us from having to write separate statements setting these property
values, as we did in our original implementation of the class. We then print
the two Person objects to the console. When you run this code, the output
should be as follows:

Person(name=John, age=25)
Person(name=Irina, age=21)

When you pass an object to println(), Kotlin automatically invokes that
object’s toString() method to display some kind of string representation of the
object. All classes come with a default implementation of this method, inher-
ited from the general Any class, but this default implementation displays only
the class name and the object’s hash code (a unique integer identifier), which
is not very informative or readable. Overriding the Person class’s toString()
method with a customized definition allows us to display the properties of the
object in a more meaningful way. We’ll learn more about overriding methods
inherited from a parent class later in this chapter.

Secondary Constructors

Kotlin classes can also have one or more secondary constructors containing
additional parameters or logic that should be invoked when new objects
are created. The secondary constructor isn’t part of the class header but
is instead defined inside the class body with the constructor keyword. If a

60 Chapter 2

primary constructor also exists, a secondary constructor must always dele-
gate to it (that is, call it), either directly or indirectly through other second-
ary constructors, using the this keyword.

A class can have just a primary constructor, primary and secondary
constructors, or just secondary constructors. While secondary constructors
aren’t mandatory, they can be useful in certain scenarios. For instance,
when we need to initialize too many class properties, it may be more con-
venient to initialize them inside a secondary constructor. This mechanism
also allows you to set default values for properties that aren’t initialized in
the primary constructor. Moreover, secondary constructors allow you to cre-
ate instances of the class with different combinations of properties. This is
like function overloading, where you have multiple functions with the same
name but different parameters.

The following example shows how to create and use secondary con-
structors. In the process, it illustrates all three ways of initializing class
properties: inside the class body, using a primary constructor, and using
secondary constructors.

class Car(val make: String, val model: String, val year: Int) {
 // property initialization inside class body
 1 var color: String = "Unknown"

 // 1st secondary constructor (no args)
 constructor() : this("Unknown", "Unknown", 0)

 // 2nd secondary constructor (1 arg)
 2 constructor(make: String) : this(make, "Unknown", 0)

 // 3rd secondary constructor (2 args)
 constructor(make: String, model: String) : this(make, model, 0)

 override fun toString(): String =
 "Make: ${make}, Model: ${model}, Year: ${year}, Color: ${color}"
}

fun main() {
 val c1 = Car()
 val c2 = Car("Nissan")
 val c3 = Car("Toyota", "Prius")
 val c4 = Car("Ford", "Mustang", 2024)

 c1​.color = "Blue"
 c2​.color = "Red"
 c3​.color = "Black"
 c4​.color = "Yellow"

 println(c1)
 println(c2)
 println(c3)
 println(c4)
}

Arrays, Collections, and Classes 61

In this example, the Car class has a primary constructor with three
parameters: make, model, and year. It also has three secondary constructors
with zero, one, and two parameters, respectively. These secondary construc-
tors use the this keyword (after a colon) to call the primary constructor,
passing along the received parameter values while filling in default values
for the missing ones. For example, the second secondary constructor 2
takes in a value for the make property while providing default values of
"Unknown" and 0 for the model and year properties. Notice how the Car class
also has a color property that’s initialized to "Unknown" in the class body 1,
separate from any of the constructors. This property can be set to a differ-
ent value after a Car object is created, because it was declared with a var.

In the main() function, we create four Car objects using the different
constructors. Kotlin determines which one to invoke based on the number
of arguments supplied. For example, c1 will be created with the first second-
ary constructor, since no arguments are provided, while c4 will be created
with the primary constructor, since all three arguments are provided. We
then set the color property of each object and print out the details of each
object using the class’s toString() method, which we’ve again overridden.
The code should produce the following output:

Make: Unknown, Model: Unknown, Year: 0, Color: Blue
Make: Nissan, Model: Unknown, Year: 0, Color: Red
Make: Toyota, Model: Prius, Year: 0, Color: Black
Make: Ford, Model: Mustang, Year: 2024, Color: Yellow

Notice how the objects range from having all default values when no
arguments were supplied to having all custom values when three arguments
were supplied.

The init Block
In Kotlin, you can use an init block within a class to run a code segment
during object construction. The init block is automatically executed when
an object of the class is created. If you have multiple init blocks, they’ll run
in the same order in which they appear inside the class.

Here’s an example of how to use the init block to initialize properties
within a class:

class Person (var name: String, var age: Int) {
 // additional property
 var isMinor: Boolean = false

 // init block for custom initialization
 init {
 if (age < 18) isMinor = true
 }
}

We give the Person class an init block that changes the isMinor property
from false to true when the age property of the Person object is less than 18.

62 Chapter 2

This block will be executed whenever a Person object is created to adjust the
isMinor value as needed.

Both init blocks and secondary constructors can be used to initialize
class properties or run additional logic when an object is created. The init
block is preferred over the secondary constructor when we need to run
additional code after initializing certain properties. (In the previous exam-
ple, we changed the value of the isMinor property after initializing it using
an init block.) The init block can use primary constructor parameters and
is executed immediately after the primary constructor but before executing
any secondary constructors.

On the other hand, secondary constructors are more useful when you
need to provide additional ways to instantiate a class with different com-
binations of properties. Still, the two mechanisms share many similarities;
when coding, you often have multiple ways to complete a task.

Methods
Methods are functions associated with a class that can be called through
objects of that class to perform certain actions. A class’s methods are declared
as part of the class body. To illustrate, let’s add a sayHello() method to our
Person class:

class Person (var name: String = "Unknown", var age = -99) {
 fun sayHello() {
 println("Hello, my name is $name, " +
 "and I am $age years old.")
 }
}

Inside the class body, we declare a sayHello() method that uses string
templates to print a greeting that includes the person’s name and age proper-
ties. Notice that declaring a method follows the same syntax as declaring an
ordinary function, with the fun keyword and a body enclosed in braces.

To use this method, create a Person object and invoke the method via
dot notation, like so:

val person = Person("John", 25)
person.sayHello()

This will output:

Hello, my name is John, and I am 25 years old.

You can add more methods to the Person class to perform other actions
or calculations based on the object’s properties. Methods can also take
parameters and return values, just like regular functions.

Arrays, Collections, and Classes 63

Encapsulation
Encapsulation is a fundamental principle of object-oriented programming
that helps you control access to the internal state of an object. This control
is achieved through access modifiers, keywords that specify the visibility or
accessibility of a property or method. Access modifiers allow you to hide
(encapsulate) the implementation details of a class and maintain the integrity
of the objects of a class by reducing the risk of unintended modifications.
The two most important access modifiers in Kotlin are public and private.

Unless declared otherwise, all properties and methods of a class are
considered public by default. This means they can be accessed from any-
where in the code. Private properties and methods, by contrast, can be
accessed only within the class declaration itself. For instance, if you desig-
nated the Person class’s age property as private, you could reference it within
the declarations of Person class methods, but you couldn’t use it in code
outside the class declaration, such as to update a Person object’s age value
from the main() function. This protects the age property from being altered
in unintended ways.

Here’s an example of how to harness encapsulation and the private
access modifier within the Person class:

class Person(private var name: String, private var age: Int) {
 fun introduce() {
 println("Hi, I'm $name, and I'm $age years old.")
 }

 fun haveBirthday() {
 age++
 }
}

fun main() {
 val person = Person("Alice", 30)

 // Access and modify properties using public methods.
 person​.introduce()
 person.haveBirthday()
 person​.introduce()

 // Trying to access private properties directly
 // will result in a compilation error.
 1 // println(person.name)
 // person.age++
}

In the Person class header, we use the private access modifier to desig-
nate the name and age properties as private. This way, the properties can be
accessed and modified only within the class itself. We also give the class
two methods, introduce() and haveBirthday(), which are considered public
by default. These methods provide controlled access to the private proper-
ties, with introduce() displaying the values of name and age, and haveBirthday()

64 Chapter 2

incrementing age. In effect, this restricts how a Person object’s age property
can be updated; it can increase by only one year at a time, rather than by
jumping abruptly from, say, 30 to 40.

In the main() function, we create a Person object, passing initial values for
name and age (it’s still possible to set the values of private properties through
the constructor). Then we call the public introduce() and haveBirthday() meth-
ods, and introduce() again, producing the following output:

Hi, I'm Alice, and I'm 30 years old.
Hi, I'm Alice, and I'm 31 years old.

In this way, we’re able to access and modify the object’s private properties
indirectly through its public methods. However, we can’t access or modify
the private properties directly, as we attempt to do in the commented-out
lines of code 1. If you try removing these comments to execute these state-
ments, you’ll get compilation errors because the properties are private.

Kotlin also has two additional access modifiers, protected and internal.
Protected properties and methods are like private ones, except they can be
accessed within subclasses of a class, as well as within the class itself (more
on subclasses shortly). Internal properties and methods can be accessed only
within the same module.

N O T E 	 A module is a set of Kotlin files that must be processed together during compilation.
Files or functions accessed through an import statement aren’t considered part of the
module itself but rather external dependencies used by the module.

The this Keyword
Inside a Kotlin class declaration, the this keyword is a reference to the cur-
rent instance of the class. For example, if you see this.name inside a method
definition for the Person class, it simply refers to the value of the name prop-
erty of whatever Person object the method is called on. We haven’t used the
this keyword in our Person class examples so far, because it’s been clear
from the code that variables like name and age are properties of the class.
The keyword becomes important when we need to distinguish between
class properties and method parameters with the same name. Here’s an
example of a Book class where this is necessary:

class Book(var title: String, var author: String) {
 fun displayInfo() {
 println("Title: $title")
 println("Author: $author")
 }

 fun updateInfo(title: String, author: String) {
 this.title = title
 this.author = author
 }
}

Arrays, Collections, and Classes 65

fun main() {
 val book1 = Book("The Great Gatsby", "F. Scott Fitzgerald")
 // Display book information.
 book1.displayInfo()

 // Update book information.
 book1.updateInfo("To Kill a Mockingbird", "Harper Lee")

 println("\nUpdated book information:")
 book1.displayInfo()
}

In this example, we have a Book class with title and author properties
and two methods. The displayInfo() method displays the book’s title and
author, and the updateInfo() method takes in new values for title and author
as arguments and updates the properties of the class with these values.
Notice how we use the this keyword in the updateInfo() method to distin-
guish this.title and this.author (the title and author properties of the class)
from title and author (the method’s parameters). In this way, we can update
the book’s information correctly without any naming conflicts.

In the main() function, we instantiate a Book object and then use its
updateInfo() method to change its title and author, displaying the book’s
properties before and after the change with displayInfo(). The output should
appear as follows:

Title: The Great Gatsby
Author: F. Scott Fitzgerald

Updated book information:
Title: To Kill a Mockingbird
Author: Harper Lee

Try removing the this keywords from the updateInfo() method, leaving
title = title and author = author. The code will no longer work: Kotlin will
try to interpret title and author as local variables being declared without
a val or var, and it won’t be able to initialize those local variables with the
arguments supplied (which wouldn’t be our intention anyway).

While the this keyword refers to the current instance of the class when
it appears inside a class method, it has other meanings in other contexts.
As we’ve already seen, when this appears after a colon in a secondary con-
structor, it serves to delegate to the primary constructor of the same class.
For information about additional uses of the this keyword, see the official
Kotlin documentation.

Inheritance and Polymorphism
Inheritance and polymorphism are interrelated tenets of object-oriented pro-
gramming. Inheritance allows a more specialized subclass, or child class,
to take on properties and methods from a more general superclass, or
parent class; polymorphism enables the child class to override and extend
the behavior of its parent. Together, inheritance and polymorphism foster

66 Chapter 2

flexibility and code reusability, and they enable different child classes to
extend the same inherited parent method in distinct ways.

Unlike some other programming languages, Kotlin classes aren’t
inheritable by default. Instead, you need to explicitly mark the parent class
with the open keyword to make it inheritable by child classes. Then, after
the header in the child class declaration, you specify the parent class name
(with a colon before its name). This establishes the inheritance relationship.

Here is a simple example of creating a child class that has its own
unique property in addition to what it inherits from the parent class:

open class ParentClass(val name: String, val age: Int) {
 init {
 println()
 println("Hello, I am $name, and I am $age years old.")
 }
}

class ChildClass(name: String, age: Int, val occupation: String)
 : ParentClass(name, age) {

 init {
 println("My occupation is $occupation.")
 }
}

fun main() {
 // Create instances of parent and child classes.
 val person1 = ParentClass("John", 33)
 val person2 = ChildClass("Sarah", 24, "accountant")
}

Notice that we’ve used the open keyword before the parent class. This
indicates that the class can be inherited by a child class. The primary con-
structor of the parent class requires two properties: name of type String and
age of type Int. Since no default values are provided for these properties,
their values must be supplied when instantiating a child class. Additionally,
the child class introduces a new property called occupation, which also
requires a value during instantiation.

In the main() function, we create person1 as an instance of the parent
class and person2 as an instance of the child class. Since both classes have init
blocks, when you run this program the output should resemble the following:

Hello, I am John, and I am 33 years old.

Hello, I am Sarah, and I am 24 years old.
My occupation is accountant.

If you intend to customize or override properties or methods from
the parent class in the child class, you also need to mark them individu-
ally with the open keyword in the parent class. Then, in the child class, use

Arrays, Collections, and Classes 67

the override keyword before these properties or methods. This ensures
that the compiler recognizes your intention to override the parent class’s
implementation.

Here is a simple example of overriding a parent class’s method within
the child class:

// parent class
open class Vehicle {
 open fun startEngine() {
 println("Vehicle engine started")
 }
}

// child class
class Car : Vehicle() {
 override fun startEngine() {
 println("Car engine started")
 }
}

fun main() {
 val myCar = Car()
 myCar.startEngine()
}

In this example, we employed the open keyword twice—once preced-
ing the parent class (Vehicle) and once when declaring the startEngine()
method within the parent class. Then, within the child class (Car), we modi-
fied the method using the override keyword. As a result, when you run this
code, it should yield the following output:

Car engine started

While we’ve covered the basics of inheritance and polymorphism, you
still have much more to explore. I recommend consulting the official Kotlin
documentation for additional use cases.

Common Classes and Custom Types
Now that we’ve outlined some basic principles of classes and object-oriented
programming, in this section we’ll explore several commonly used classes
and custom types in Kotlin. These include data classes, pairs and triples,
abstract classes, interfaces, and enum classes. If you’re new to classes and
haven’t used any of these features before, you might want to start with a
quick overview before getting into the details. Table 2-2 provides names,
short descriptions, and use cases of the features we’ll cover. You can refer to
this table if you need to refresh your memory or clarify any concepts.

68 Chapter 2

Table 2-2: Commonly Used Classes and Custom Types

Class Definition Use cases

Data class A simple class primarily used
to hold data. It doesn’t have
any user-defined methods. Data
classes are marked with the data
keyword.

Used as basic building blocks
for modeling data by provid-
ing descriptive names to pair
with values. They often serve
as building blocks for more
complex data structures.

Pair and Triple Simple classes for holding two
(Pair) or three (Triple) values of
the same or different data types.

Used to store or return two or
three values in a single instance,
especially when you don’t
need descriptive names for the
values.

Abstract class A class that can’t be instantiated
and can have abstract members
that must be overridden by its
subclasses.

Used for defining a common
set of features for a group of
related classes.

Interface A collection of functions and
properties that must be imple-
mented by inheriting classes or
types.

Used to enforce methods and
properties on other types
(classes, functions, custom
types).

Enum class A special class type that repre-
sents a group of constants with
optional properties and methods.

Used for representing a fixed
set of values.

We’ll review each of these concepts with detailed examples in the sec-
tions that follow.

Data Classes
In Kotlin, a data class is a class whose main purpose is to hold data and not to
perform complex operations or logic. Essentially, it’s a class with properties
but no custom methods (although adding such methods isn’t prohibited). To
declare a data class, you need to add the data keyword before the class key-
word and include at least one parameter in the primary constructor.

Based on the properties declared in the primary constructor, a data
class can automatically generate a number of methods, including:

equals() ​  ​Compares two data class instances for equality.

toString() ​  ​Returns a human-readable string representation of the
object.

copy() ​  ​Creates a shallow copy of the data class instance. (See “Copying
Objects” on page 75 for information about shallow copies.)

hashCode() ​  ​Generates a hash code, a unique integer based on a hashing
algorithm applied to one or more properties of a class. This method
is used in conjunction with equals() to determine if two objects are
equivalent.

By contrast, a regular class in Kotlin doesn’t autogenerate such methods;
you would have to manually implement them if required.

Arrays, Collections, and Classes 69

Here’s an example of how to create and use a simple data class in Kotlin:

// Declare a data class.
data class Person(val name: String, val age: Int)

fun main() {
 // Create an instance.
 val person = Person("Steve", 40)
 println(person)
}

We create a Person data class with name and age properties. Since these
properties are declared in the class header, a class body isn’t needed. In
main() we create an instance of the data class, person, and pass it directly to
the println() function. When println() encounters an instance of a data
class, Kotlin calls the object’s toString() method automatically, which gener-
ates the following output:

Person(name=Steve, age=40)

Data classes are extremely useful for modeling and working with data
in a clean and efficient manner by grouping related values into a single,
custom-designed object. They share some similarities with maps, which use
key-value pairs rather than class properties to associate names with data
values. However, while maps are primarily used to store and retrieve values
by key, data classes are better suited to modeling data in a more meaningful
and structured way. Data classes also provide those useful autogenerated
methods we just discussed.

DECONS T RUC T ION

Deconstruction is a feature in Kotlin that allows you to extract multiple proper-
ties of an object and assign them to individual variables in a single statement.
This way, you can use those properties independently of the object. Say you
have a Person data class with name and age properties, and an instance of that
class called person. You could use deconstruction to extract the values of those
properties from the object as follows:

val (name, age) = person // deconstruction

The variables that receive the deconstructed values go on the left side of
an assignment statement, within parentheses, while the object to be decon-
structed goes on the right side. The object’s properties are extracted in the
order in which they’re declared in the constructor, so here the value of the name
property goes to the name variable and the age property goes to the age vari-
able. (The names happen to match, but this doesn’t have to be the case.)

(continued)

70 Chapter 2

After deconstruction, the values are available through the simple variables—​
for example, for printing:

println("Name: $name") // Print the value of name.
println("Age: $age") // Print the value of age.

Notice how we’re using the name and age variables in the println() calls, with-
out having to reference the person object.

Pairs and Triples
A pair in Kotlin is a data class that can store exactly two values, which can
be of the same or different types. Pairs are useful for storing two related
values in a single object, such as the x- and y-coordinates for a point on a
graph or the name and age of a person. They also provide a way to associ-
ate a key with a value. In the latter case, the first value in the pair is a string
descriptor of the second value. You can create a pair with the Pair() con-
structor, passing the two values as arguments, or without the constructor
by placing to between the two values in an assignment statement. Here’s an
example of each technique:

val pair1 = Pair("Alice", 20)
val pair2 = "Bob" to 25

A triple is a similar structure for storing three related values in a single
object, such as the name, age, and gender of a person, or the RGB color
components of a pixel. You can create a triple with the Triple() constructor
as follows:

val triple1 = Triple("Alice", 20, "Female")

Once a pair or triple is created, it’s immutable, so its values can’t be
updated. Those values are accessible using dot notation as the first, second,
and third properties. For example:

val pair = "Hello" to "World"
val triple = Triple(1, 2, 3)

println(pair.first) // Hello
println(triple.third) // 3

You can also use deconstruction syntax (see the “Deconstruction” box)
to extract the data elements of a pair or triple into individual variables.
Here’s an example:

Arrays, Collections, and Classes 71

val pair = Pair("John", 29)
val (name, age) = pair // deconstruction
println("Name: $name") // Print the value of name.
println("Age: $age") // Print the value of age.

We create a Pair called pair with two values: John and 29. We then use
deconstruction to extract these values and assign them to the name and age
variables. From there, we can use the variables independently to print out
the name and age of the pair object.

Abstract Classes
In Kotlin, an abstract class is a class that can’t be instantiated on its own.
Instead, it serves as a blueprint for other classes to extend through inheri-
tance and polymorphism. You can use abstract classes when you want to
provide a common foundation or framework—including methods and
properties—that must be implemented and fleshed out by various child
classes but that wouldn’t itself hold up as a fully functional class. In this
sense, an abstract class serves much like a regular parent class declared
with open in that it allows inheritance and permits the overriding of proper-
ties and methods. The key difference lies in the fact that you can’t directly
instantiate an abstract class.

You declare an abstract class using the abstract keyword. It can have
abstract properties (with no initial values, just names and data types)
and abstract methods (with no implementation, just names and return
types). Abstract properties and methods are declared using the abstract
keyword, just like the class itself. Abstract classes can also have concrete
(nonabstract) properties and methods—complete variable or function dec-
larations that provide default behavior.

Any class that inherits from an abstract class must implement the inher-
ited abstract properties and methods, giving them concrete values and defi-
nitions. If the child class doesn’t do this, it must be declared as an abstract
class as well. Subclasses also have the option to override the concrete mem-
bers of the abstract class.

Here’s an example of how all of this works, where we create an abstract
Shape class and use it as a model for Circle and Square classes:

abstract class Shape {
 abstract fun area(): Double // abstract method
 val name: String = "Shape" // concrete property

 fun describe() {
 println("This is a $name")
 }
}

class Circle(val radius: Double): Shape() {
 override fun area(): Double {
 return Math.PI * radius * radius
 }
}

72 Chapter 2

class Square(val side: Double): Shape() {
 override fun area(): Double {
 return side * side
 }
}

fun main() {
 val circle = Circle(5.0)
 val square = Square(4.0)

 circle.describe()
 println("Area of the circle: ${circle.area()}")

 square.describe()
 println("Area of the square: ${square.area()}")
}

We use the abstract keyword to designate Shape as an abstract class.
It has an abstract area() method that should return a value of type Double
and a concrete name property with a value of "Shape", as well as a concrete
describe() method that prints a message. We then declare both Circle and
Square as nonabstract subclasses of Shape. Each is given a property unique to
the subclass (radius for Circle and side for Square), and each inherits the name
property and describe() method from Shape. The subclasses must also pro-
vide a concrete implementation for the inherited area() method using the
override keyword. In this way, the abstract Shape class serves as a common
structure for both types of shape, enforcing that any subclass must imple-
ment a method that calculates the shape’s area.

In main() we create an instance of each concrete class and invoke its
area() method within a string template. The code should produce the fol-
lowing output:

This is a Shape
Area of the circle: 78.53981633974483
This is a Shape
Area of the square: 16.0

In addition to ensuring consistency through a shared structure between
the parent and the child classes, abstract classes reduce code duplication,
improve code readability, and simplify code maintenance.

Interfaces
An interface is a collection of methods and properties that form a common
set of behaviors that the types implementing the interface must follow.
These methods and properties are abstract in the sense that we can’t use
them directly, but we don’t use the abstract keyword when defining them.
Interfaces can contain declarations of abstract methods and properties, as
well as method implementations. However, they can’t store state, meaning
they can’t contain any fields or properties that store data.

Arrays, Collections, and Classes 73

A class or object can implement one or more interfaces. When a class
implements an interface, it must provide full definitions for all the abstract
methods and properties declared in that interface. In this sense, the inter-
face acts as a common contract for the classes that implement it, laying out
the features that any implementing class must agree to have.

Here’s an example of how to define and use an interface in Kotlin:

import kotlin.math.PI

interface Properties {
 fun area(): Double
 fun perimeter(): Double
}

class Circle(val radius: Double): Properties {
 override fun area() = PI * radius * radius
 override fun perimeter() = 2 * PI * radius
}

fun main() {
 val circle = Circle(4.0)
 val area = circle.area()
 val perimeter = circle.perimeter()

 println("Properties of the circle:")
 println(" radius = ${circle.radius}\n area = $area\n" +
 " perimeter = $perimeter")
}

We use the interface keyword to declare the Properties interface. It
defines two abstract methods, area() and perimeter(), both of which return
a floating-point value. Any class that implements the interface, such as the
Circle class declared here, must include definitions for both methods.

The syntax for implementing an interface is similar to that of inheri-
tance: a colon after the class header, followed by the name of the interface.
Notice that we also need to use the override keyword when implementing
the functions from the interface.

In main(), we create an instance of the Circle class and invoke its area()
and perimeter() methods, storing the results in the local area and perimeter
variables. Then we print these values to the console, generating the follow-
ing output:

Properties of the circle:
 radius = 4.0
 area = 50.26548245743669
 perimeter = 25.132741228718345

Kotlin interfaces can also inherit from other interfaces, meaning they
can provide implementations for the inherited members and declare new
functions and properties. However, classes implementing such an interface
are required to define only the missing implementations.

74 Chapter 2

A BS T R AC T CL A SSES V S. IN T ER FACES

Abstract classes and interfaces share some common features, but they also
have some important differences. An abstract class is a higher-level framework
(superclass) for a group of related classes. It can have functions and proper-
ties, and it can hold state. Methods and properties designated as abstract in
an abstract class must be fully implemented in the inheriting class. An abstract
class can inherit multiple interfaces but can extend only one class. Furthermore,
an abstract class can’t be directly instantiated.

An interface is a collection of methods and properties that an inheriting
type is forced to implement. Like an abstract class, an interface can’t be instan-
tiated directly (it’s not a class at all but rather a custom type). Its purpose is
limited to forcing the implementation of its methods and properties. Unlike an
abstract class, an interface can’t hold state.

Enum Classes
An enum (short for enumeration) is a special kind of class that defines a finite
set of constant values. Enums are typically used to represent a fixed set of
related values, like days of the week, cardinal directions, status codes, playing
card suits, and seasons. In Kotlin, we use the enum class keywords to define an
enum, followed by the class name. Then comes a comma-separated list of the
enum’s constants, enclosed in braces. Here’s an example of an enum in Kotlin:

// Define an enum class for days of the week.
enum class DayOfWeek {
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 FRIDAY, SATURDAY, SUNDAY
}

fun main() {
 // using the enum values
 val today = DayOfWeek.MONDAY

 when (today) {
 DayOfWeek.MONDAY -> println("It's a manic Monday!")
 else -> println("It's some other day.")
 }
}

In this example, we defined an enum class called DayOfWeek representing
the days of the week. The body of the class contains a comma-separated list
of the enum’s constant values, which, by convention, are written in all caps.
In the main() function, we create a variable today and assign it the value
DayOfWeek.MONDAY from the enum. Enum constants are always accessed this
way, using dot notation that couples the enum class name with the specific

Arrays, Collections, and Classes 75

constant name. We then use a when expression to check the value of today
and print a message based on the day. The program should print It's a
manic Monday! because today is set to DayOfWeek.MONDAY.

E X ERCISE

Create a simple game that involves different types of characters (wizards and
warriors). Each character has a name, a level, and a set of abilities. Some char-
acters can fly, while others can’t. This is an open-ended problem, so use your
imagination!

1.	 Create an abstract class called Character that defines the basic properties
and methods of any character.

2.	 Create an interface called Flyable that defines a fly() method.

3.	 Create two subclasses of Character called Wizard and Warrior. The Wizard
class should implement the Flyable interface, while the Warrior class
should not.

4.	 Create a Game class that creates instances of Wizard and Warrior and calls
their respective methods.

5.	 Finally, create an instance of the Game class in the main() function and play
the game.

Copying Objects
In many cases, you’ll need to copy an object, meaning you create a new
instance of an object with the same or modified values compared to the
original object. In Kotlin, you can create either a shallow copy or a deep
copy of an object. The difference comes down to whether and how the orig-
inal and the copy are connected. Which type of copy you use depends on
the circumstances and the structure or complexity of the original object.

Shallow Copy
A shallow copy in Kotlin involves creating a new object that mirrors an exist-
ing one. However, the copy doesn’t fully replicate any nested objects within
the original object. Instead, the copied object retains the same references
to the nested objects as the original one. Therefore, a change to a nested
object in the original version affects the copied version as well, and vice
versa. As noted earlier, the copy() method that comes built in to any data
class creates shallow copies.

To illustrate, say we define a Person data class with a name property and a
hobbies property, the latter being a MutableList<String>. The hobbies property
is considered to be nested, since a list of strings is itself an object within

76 Chapter 2

the overarching Person object. If we use the class’s built-in copy() method to
copy a Person object, the copy will be shallow. The new instance will share
the same list reference as the original one, so whether we modify the origi-
nal list or the shallow-copied list, both instances of the data class will be
affected. Here’s some code that demonstrates this behavior:

data class Person(val name: String,
 val hobbies: MutableList<String>)
fun main() {
 val person1 = Person("Bob", mutableListOf("Reading", "Gaming"))
 1 val person2 = person1​.copy()

 // Print both objects.
 println(person1)
 println(person2)

 // Add a new element to the mutable list of person1.
 person1.hobbies.add("Coding")

 // Print both objects again.
 println(person1)
 println(person2)
}

We declare the Person data class as described and create two instances
of the class. The first, person1, is instantiated from scratch, while person2 is
created by copying person1 1. To see the implications of shallow copying, we
print both objects, add one more hobby to the person1 object’s hobbies list,
and print both objects again. The code should generate the following output:

Person(name=Bob, hobbies=[Reading, Gaming])
Person(name=Bob, hobbies=[Reading, Gaming])
Person(name=Bob, hobbies=[Reading, Gaming, Coding])
Person(name=Bob, hobbies=[Reading, Gaming, Coding])

Notice that even though we modified the hobbies property only of person1,
person2 was affected in the same way. This is because the hobbies property
of person2 isn’t a true clone; it references the same memory location as the
hobbies property of person1. Keep in mind this applies only to nested objects;
if we updated the name property of person1, the change would apply only to
person1, since this property isn’t nested.

Shallow copying can be useful for performance optimization as it avoids
duplicating large amounts of data and taking up additional memory space.
But what if you need the two instances of the Person class to be entirely inde-
pendent of each other? This is where deep copies come into play.

Deep Copy
A deep copy creates a new, completely independent object from an existing
object by copying all its nested objects as well as its nonnested properties.

Arrays, Collections, and Classes 77

This results in two separate and unrelated objects, so changes to one won’t
affect the other. In Kotlin, you usually have to write a custom function tai-
lored to the class at hand to make deep copies. Here’s a simple example:

data class Address(var street: String, val city: String)
data class Person(val name: String, val address: Address)

fun deepCopyPerson(person: Person): Person {
 1 val clonedAddress = Address(person.address.street,
 person.address.city)
 return Person(person.name, clonedAddress)
}

fun main() {
 val originalPerson = Person("Alice", Address("123 Main St", "Cityville"))
 val copiedPerson = deepCopyPerson(originalPerson)

 // Modify the original address.
 originalPerson.address.street = "456 Elm St"

 // Check if the copied address remains unchanged.
 println(originalPerson.address.street) // output: 456 Elm St
 println(copiedPerson.address.street) // output: 123 Main St
}

We declare two data classes, Address and Person. Notice how the Person
class has an address property of type Address, meaning this property is a
nested object. To achieve deep copying for the Person class, we declare a
deepCopyPerson() function. The function first creates a new Address object
by manually extracting the nested address properties from the original
Person object 1. Then it returns a new Person object containing the original
object’s name property along with the deep-copied Address object.

In main(), we create a Person object, then use deepCopyPerson() to copy
it. At that point, we can modify the address property of the original Person
object and it won’t have any effect on the copy, since the nested object has
been copied during the deep-copying process.

It’s also common to have to make a deep copy of a list of objects. This
can be done with just one line of code by using the list’s map() method to
call copy() on each object. Here’s how it works:

data class Person(var name: String, var age: Int)

fun main() {
 // original mutable list
 val originalList =
 mutableListOf(Person("Alice", 30), Person("Bob", 25))

 // Deep-copy the list using map() and copy().
 val deepCopyList =
 originalList.map{ it​.copy() }.toMutableList()
}

78 Chapter 2

In this example, we have a mutable list of Person data class objects,
where each Person has two properties: name and age. We create a deep copy of
the list using the map() method, which iterates through the elements of the
original list, applies a function to each one, and stores the results in a new
list. In this case, the applied function is the lambda expression it​.copy(),
which copies the current Person objects (this is possible because the Person
class doesn’t have any nested objects). We chain a call to toMutableList()
after the lambda, since map() results in a regular, read-only list rather than a
mutable list.

I invite you to add a few more lines of code to the previous listing, mod-
ifying the properties of a Person object in the original list and then printing
both lists. You should find that making changes to the original list doesn’t
affect the copied list (and vice versa).

Project 2: Build a Versatile Task Manager
Let’s apply what we’ve learned about data structures in this chapter to a
simple project: we’ll create a console-based task manager application. The
application will allow users to keep track of their daily tasks, with the fol-
lowing key functionalities:

•	 Adding tasks to the task list

•	 Displaying a list of all the tasks

•	 Marking a task as done

•	 Deleting unwanted or completed tasks

•	 Exiting the program

Our primary challenge is to maintain a list of tasks. Since tasks can be
added and removed, a mutable list is an appropriate structure. We also must
decide on the attributes that define each task. We can encapsulate these in
a data class. Additionally, we need to handle user interactions effectively,
providing users with options and ensuring robust error handling for invalid
inputs, concepts we touched on in Chapter 1.

The Code
Let’s start with a high-level overview of the program’s structural components
before getting into the details of individual pieces and how they interact.
Here’s an outline of the data structures, functions, and logic that we’ll need:

// macro view of the task manager program

data class Task(val title: String,
 val description: String,
 var status: String = "not done"
)

class TaskManager {
 1 val taskList = mutableListOf<Task>()

Arrays, Collections, and Classes 79

 fun addTask(task: Task) {...}
 fun listTasks() {...}
 fun markTaskAsDone(taskIndex: Int) {...}
 fun deleteTask(taskIndex: Int) {...}
}

fun printOptions() {...}
fun readIndex(taskListSize: Int): Int? {...}

fun main() {
 val taskManager = TaskManager()

 while (true) {
 printOptions()
 when (readln()) {
 "1" -> {...}
 "2" -> {...}
 "3" -> {...}
 "4" -> {...}
 "5" -> return // breaks the while loop
 else -> println("\nInvalid choice. Please try again.")
 }
 }
}

The project comprises five main code blocks. First, the Task data class
defines the structure of each individual task; each task will have a title,
a description, and a status property set to "not done" by default. Next, the
TaskManager class holds methods responsible for all task management work,
like adding, listing, and deleting tasks. Notice its taskList property 1, a
mutable list for storing all the current tasks. Two stand-alone helper func-
tions, printOptions() and readIndex(), support user interaction and input
handling. Finally, the main() function oversees presenting options to the
user and directing flow based on user choices.

We’ll now explore the main() function and its components in a top-
down manner. As we go, we’ll implement the missing code blocks desig-
nated by {...} in the previous listing.

The main() function begins by creating an instance of the TaskManager
class named taskManager. This class, in turn, initializes a mutable list of type
Task as its taskList property. This list starts out empty, but it’s a mutable list,
so we can add or remove elements as needed.

Next, we invoke a while loop to repeatedly present the user with a menu
of task management options and respond to the user’s requests. The loop’s
condition is simply true, meaning it will repeat indefinitely unless the user
chooses the option for exiting the program (more on this mechanism
later). The first part of the loop is a call to the printOptions() function,
defined here:

fun printOptions() {
 println("\nTask Manager Menu:")
 println("1. Add Task")

80 Chapter 2

 println("2. List Tasks")
 println("3. Mark Task as done")
 println("4. Delete Task")
 println("5. Exit")
 print("Enter your choice (1-5): ")
}

The function simply displays the five available commands the user can
enter, denoted by the numbers 1 through 5.

Adding a Task

After printing the options, the while loop uses a when expression to trigger
the appropriate code based on which number was entered. Here’s a look at
the when expression again, including the implementation of the "1" branch
for adding a task:

1 when (readln()) {
 "1" -> {
 print("\nEnter task title: ")
 val title = readln()
 print("Enter task description: ")
 val description = readln()
 2 val task = Task(title, description)
 3 taskManager.addTask(task)
 }
 "2" -> {...}
 "3" -> {...}
 "4" -> {...}
 "5" -> break // breaks the while loop
 4 else -> println("\nInvalid choice. Please try again.")
}

The when expression initiates by using readln() to take in a line of input
(a string) from the console representing the user’s menu choice 1. If the
entered value doesn’t match any of the five options ("1", "2", "3", "4", or "5"),
the else block within the when expression is triggered 4, signaling to the user
that their choice was invalid and they should make another selection.

When the user selects option "1", the code block under "1" -> is
executed. Since this choice is associated with adding a task, the user is
prompted to provide a task title and description. We use these input values
(or empty strings if the user simply presses enter) to create a new instance
of the Task data class 2, which is then passed as an argument to the task​
Manager object’s addTask() method 3. This method appends the task to the
taskList mutable list, like this:

fun addTask(task: Task) {
 taskList.add(task)
}

We call the list’s add() method to insert the new task at the end of the list.

Arrays, Collections, and Classes 81

Listing the Tasks

When the user selects option "2" (listing the tasks), the code block under
"2" -> of the when expression is executed. This makes a call to the listTasks()
method of the taskManager object:

when (readln()) {
--snip--
 "2" -> taskManager.listTasks()

Let’s take a look inside the listTasks() method, which is the second
method defined in the TaskManager class:

fun listTasks() {
 if (taskList.size > 0) {
 println("\nTasks:")
 for ((index, task) in taskList.withIndex()) {
 1 println("${index+1}. ${task.title} - " +
 "${task.description} - ${task.status}")
 }
 } else
 println("Task list is empty.")

}

Inside listTasks(), we first check if the taskList has any tasks. If it does,
we iterate over the tasks and print them out, showing their indices, titles,
descriptions, and completion statuses. While Kotlin lists are indexed from 0,
most humans think of the first item in a list as item 1, so we add 1 to each
index before printing it 1. If the task list is empty, we print a simple mes-
sage indicating this.

Marking a Task as Done

When the user selects option "3" to mark a task as done, the code block
under "3" -> is executed, as shown here:

when (readln()) {
--snip--
 "3" -> {
 taskManager.listTasks()
 1 if (taskManager.taskList.size <= 0) {
 continue
 } else {
 print("\nEnter the task number to mark as done: ")
 2 val taskNumber =
 readIndex(taskManager.taskList.size)
 if (taskNumber != null) {
 taskManager.markTaskAsDone(taskNumber -1)
 }
 }
 }

82 Chapter 2

Within this code block, we first call the listTasks() method to display
the current list of tasks. Then, if taskList is found to be empty 1, the
program will continue, meaning the remaining code will be skipped, the
overarching while loop will restart, and the user will be presented with the
menu options again. Otherwise, the user is prompted to select a task by
its index, from the displayed list of tasks. We process the user input using
the readIndex() function 2, which validates the data as follows:

fun readIndex(taskListSize: Int): Int? {
 val input = readln()
 1 if (input.isBlank()) {
 println("Invalid input. Please enter a valid task number.")
 return null
 }

 2 val taskNumber = input.toIntOrNull()
 if (taskNumber != null && taskNumber >= 1 &&
 taskNumber <= taskListSize) {
 return taskNumber
 } else {
 println("Invalid task number. Please enter a valid task number.")
 return null
 }
}

In this code, we initially read a line of text from the console. If the
input is empty 1, we display an Invalid input message, and a null value is
returned. This null return value will result in no task being marked as done.

If the input isn’t empty, we convert it to the IntOrNull type 2. Then we
perform further checks to ensure that the Int value is greater than or equal
to 1 and less than or equal to the size of the taskList (which was passed as an
argument to the function). If these conditions are met, the user’s input value
is returned; otherwise, we return null, which again will skip the remainder of
the option "3" code.

Returning to the when expression’s "3" branch, if the user input is valid
and not null, we call the markTaskAsDone() method from the TaskManager class,
passing in taskNumber - 1 as an argument (remember, we added 1 to each
task’s index number before displaying the tasks to the user). The method is
defined here:

fun markTaskAsDone(taskIndex: Int) {
 1 if (taskIndex in taskList​.indices) {
 taskList[taskIndex].status = "done"
 } else {
 println("Invalid task index. Task not found.")
 }
}

Arrays, Collections, and Classes 83

We verify whether the taskIndex parameter falls within the valid range
of indices in the taskList, which we access using the list’s built-in indices
property 1. If taskIndex is within this range, we set the status property of
the corresponding task to "done". The else block in this method, which
handles the case when the taskIndex is out of range, is included for potential
unforeseen circumstances, even though it isn’t strictly necessary since the
readIndex() function has already verified that the chosen index is within the
valid range of indices.

Deleting a Task

When the user selects option "4" to delete a task, the code block under "4" ->
in the when expression is executed, as shown here:

when (readln()) {
--snip--
 "4" -> {
 taskManager.listTasks()
 if (taskManager.taskList.size <= 0) {
 continue
 } else {
 print("\nEnter the task number to be deleted: ")
 val taskNumber =
 readIndex(taskManager.taskList.size)
 if (taskNumber != null) {
 taskManager.deleteTask(taskNumber - 1)
 }
 }
 }

This code block is nearly identical to the one for option "3": we display
the task list, skip the remainder of the code if the list is empty, and other-
wise take in a task number from the user with the readIndex() function. The
difference is that for a valid, nonnull input, we call the deleteTask() method
from the TaskManager class rather than the markTaskAsDone() method. Here’s
the deleteTask() definition:

fun deleteTask(taskIndex: Int) {
 if (taskIndex in taskList​.indices) {
 taskList.removeAt(taskIndex)
 } else {
 println("Invalid task index. Task not found.")
 }
}

This time, if taskIndex is within the valid range, we use removeAt() to
delete the corresponding task from taskList.

84 Chapter 2

Exiting the Program

The last available option is "5", to exit the program. This triggers the "5" ->
branch of the when expression, which terminates the while loop and returns
the program flow to outside the loop:

when (readln()) {
--snip--
 "5" -> break // breaks the while loop

As no more code remains to execute in the main() function after the while
loop, disrupting the loop results in the program terminating normally.

The Result
Try launching and experimenting with the task manager program for an
extended period. Here’s some sample output for various arbitrary choices I
made while trying out the program:

Task Manager Menu:
1. Add Task
2. List Tasks
3. Mark Task as done
4. Delete Task
5. Exit
Enter your choice (1-5): 1

Enter task title: Task 1
Enter task description: Reply to Nathan's email

Task Manager Menu:
1. Add Task
2. List Tasks
3. Mark Task as done
4. Delete Task
5. Exit
Enter your choice (1-5): 1

Enter task title: Task 2
Enter task description: Complete Chapter 2 by this weekend

Task Manager Menu:
1. Add Task
2. List Tasks
3. Mark Task as done
4. Delete Task
5. Exit
Enter your choice (1-5): 2

Tasks:
1. Task 1 – Reply to Nathan's email - not done
2. Task 2 – Complete Chapter 2 by this weekend - not done

Arrays, Collections, and Classes 85

The output you’ll see will likely be different because your choices will
differ from mine. Despite its somewhat limited capabilities, this program
successfully integrates some of the fundamental features found in real task
management tools. We’ve accomplished all of this with just around 110 lines
of Kotlin code, while using structures like mutable lists and classes with
their own properties and methods to keep the code organized.

E X ERCISE

Try expanding the features of the task manager application we developed in
Project 2 to turn it into a program that you can use to manage your own tasks.
Here are some suggested improvements to try:

•	 The main limitation of the task manager program is that it doesn’t save the
list of tasks for future use. Once you exit the program, all information is
lost. Use the file input/output methods we discussed in Chapter 1 to add a
feature that allows the user to save the data before exiting and reload the
data the next time they launch the program. You can also allow the user
to choose which saved datafile to use, which would allow multiple users to
save and work with their own files.

•	 Add more attributes to the Task data class so you can store additional
information about each task. Extra attributes might include a due date, a
task priority level, and a task reminder. The last feature can be added by
changing the value of the status property to "Overdue" when the due date
has passed (based on the current date).

•	 Add further functionalities to the program. Among the many possibilities,
you can try adding the following: the ability to edit a task’s description;
the ability to sort tasks based on priority, due date, or status (for example,
not started, in progress, or done); and the ability to search and filter tasks
using keywords in the title or description.

Adding these features won’t just make the program more useful; it will also
hugely improve your coding skills in Kotlin and strengthen your ability to plan
and implement a complete project with multiple interactive components.

Summary
In this chapter, we explored essential aspects of data manipulation and
object-oriented programming. We began with arrays, which store values
of a specific type or its subtypes. Arrays are rigid in size but can have their
values modified. Lists, in contrast, are immutable in both content and size,
though mutable lists offer flexibility when needed. Lists are a type of collec-
tion, along with sets and maps.

86 Chapter 2

We ventured into the world of user-defined classes, which store data in
the form of properties, along with methods for manipulating that data. We
saw how encapsulation safeguards data within a class, while inheritance and
polymorphism enable code reuse and modular design. We also covered top-
ics like abstract classes, data classes, interfaces, and enum classes, each of
which has distinct roles and advantages. For example, an abstract class pro-
vides a higher-level framework (superclass) for a group of related classes,
whereas an interface enforces a consistent implementation of methods and
properties across all inheriting types.

You learned these concepts through examples and exercises, reinforc-
ing your understanding. The chapter culminated in a practical project in
which you studied and then transformed a text-based task manager into a
versatile tool (assuming you completed the exercise).

This chapter, along with Chapter 1 on Kotlin basics, equips you with
the essential concepts and foundational knowledge necessary to begin an
exciting journey into the world of Kotlin applications. You’re now well pre-
pared to explore a wide array of fun and progressively complex challenges
in the fields of mathematics, science, modeling, algorithms, and optimi-
zation. First, though, we’ll explore the basics of data visualization with
JavaFX, a tool we’ll use in many of our upcoming projects.

Resource
Kotlin. “Kotlin Docs.” (The official Kotlin documentation.) Accessed

June 15, 2024. https://kotlinlang​.org​/docs​/home​.html.

https://kotlinlang.org/docs/home.html

Data visualization is the art of presenting
complex data in a visually accessible format,

allowing for quick and effective understand-
ing. Through charts, graphs, maps, and other

graphical representations, data visualization not only
simplifies data interpretation but also uncovers patterns,
trends, and insights that might otherwise be overlooked.

By transforming raw data into meaningful and actionable knowledge,
visualization plays a pivotal role in decision-making across various domains,
such as business analytics and scientific research. Another facet of data visu-
alization involves the creation and presentation of intricate objects and pat-
terns on a screen, often incorporating dynamic or moving elements within
simulations or optimization processes.

In this chapter, we’ll explore creating data visualization and other
output with Kotlin code. We’ll focus on the JavaFX library, allowing us
to build standard charts, free-form drawings, and even animations. The

3
V I S U A L I Z I N G W I T H J A V A F X

88 Chapter 3

programming patterns we cover in this chapter will pay dividends in later
chapters when we work on projects with more elaborate visual components.

Data Visualization Tools for Kotlin
Several data visualization tools, both commercial and free, are available to
run with Kotlin on the JVM. These tools make it possible to create inter-
active plots and charts and, in some cases, free-form drawings and fully
featured user interfaces (UIs). They offer a variety of features and custom-
ization options to suit your needs. Here’s an overview of some of the visual-
ization tools available:

Lets-Plot

A multiplatform plotting library for Kotlin that can be used to create
interactive plots and charts. It’s primarily used to access graphics fea-
tures within a Jupyter Notebook, a web application that facilitates the
creation and sharing of documents containing live code, narrative text,
and visualizations. You can access Lets-Plot’s graphics library through
application programming interface (API) calls with predefined syntax.
Lets-Plot doesn’t have a free-form drawing or sketching tool compa-
rable to Tkinter in Python or the Canvas class in JavaFX.

Plotly

Another tool for creating interactive plots and charts for Kotlin applica-
tions. Plotly works on various platforms, including the JVM, JavaScript,
and Python. Plotly is user friendly, has a simple API, and offers many
customization options. Like Lets-Plot, it lacks a free-form drawing tool.

Jetpack Compose

A modern UI toolkit for building native Android, desktop, and web
applications using a single codebase. While Jetpack Compose doesn’t
have built-in support for charting, third-party libraries are available for
creating interactive plots and charts. Jetpack Compose provides a can-
vas API that can be used to draw custom graphics and shapes.

JavaFX

An open source framework that lets you use Java to create applications
for desktop, mobile, and embedded systems. It results from a collab-
orative effort by many individuals and companies that aim to provide
a modern, efficient, and fully featured toolkit for developing rich
client applications. You can use JavaFX to create user interfaces and
interactive visualizations, as well as various charts such as line charts,
bar charts, pie charts, and scatterplots. JavaFX works well with Kotlin
because of its compatibility with Java.

In this book, we’ll use JavaFX as the graphics library of choice. This
is because it’s a mature and feature-rich library that’s well documented

Visualizing with JavaFX 89

and can seamlessly integrate with both Java and Kotlin applications. Most
important, it has built-in features for charting and free-form drawing,
including pixel-level manipulation of the display screen. These features will
be useful in some projects we’ll work on later in the book.

An Overview of JavaFX
JavaFX was first introduced by Sun Microsystems in 2007 as a modern
replacement for the aging Java Swing framework. It marked a significant
step forward in Java’s capabilities for creating GUIs and multimedia-rich
applications. Initially, JavaFX was shipped as part of the Java Development
Kit (JDK). However, Oracle, the company that acquired JavaFX from Sun
Microsystems, announced in 2018 that JavaFX would be open sourced and
moved to the OpenFX project. The same year, JavaFX 11 was released as a
stand-alone framework, decoupled from the JDK.

JavaFX has evolved over the years, thanks to numerous updates and
improvements from its developers. It continues to thrive as an open source
project under the stewardship of the OpenJFX community and is included
as a standard library in many Java distributions.

Key Functionalities
JavaFX is a comprehensive toolkit for building cross-platform applications.
While this chapter focuses on its charting and drawing features, JavaFX
offers many other features that you can use in your projects. Here’s a quick
overview of its key functionalities:

UI development

JavaFX enables the developer to simplify and enhance the development
of visually rich and interactive user interfaces for desktop, web, and
mobile applications. It provides a wide variety of UI controls, layouts,
and styles, allowing the creation of visually appealing and highly cus-
tomizable interfaces.

Cross-platform compatibility

JavaFX is designed to create applications that can run on various plat-
forms, including Windows, macOS, Linux, and mobile devices, without
major modifications. This cross-platform compatibility reduces develop-
ment effort and allows for broader application distribution.

Charts and data visualization

JavaFX includes built-in support for creating various charts and graphs,
making it a preferred choice for data visualization applications.

3D graphics

JavaFX provides versatile 3D graphics capabilities for developing math-
ematical and scientific applications that require 3D visualizations.

90 Chapter 3

Rich media support

JavaFX is known for its robust multimedia support, making it suitable
for applications that require video, audio, animations, and 2D or 3D
graphics.

High performance

JavaFX provides hardware acceleration and optimizations for improved
rendering performance, making it suitable for applications demanding
smooth animations and responsive interfaces.

Integration with Java and Kotlin

JavaFX seamlessly integrates with the Java programming language,
leveraging the robustness, security, and ecosystem of Java. Since Kotlin
is fully interoperable with Java, JavaFX is a natural choice for develop-
ing desktop and web-based applications in Kotlin.

For more information about JavaFX features, see the project website at
https://openjfx​.io.

Setup
If you’ve followed the steps for installing IntelliJ IDEA and the Azul Zulu
JDK as described in the appendix, you’re all set to start using JavaFX with
Kotlin. You can access JavaFX features just as you’ve been accessing Kotlin
features from the IDE. While the support for Kotlin is integrated within the
IDE itself, the access to JavaFX is gained through the installed JDK.

If you haven’t followed the instructions in the appendix, I recommend
using a JDK with JavaFX prepackaged so you can avoid the extra steps
needed to link the library to your code. For example, Azul JDK FX and
Liberica Full JDK are well-known distributions with integrated JavaFX sup-
port. Alternatively, you can download and install JavaFX separately from
the OpenJFX website. There you’ll find detailed instructions on how to
set up JavaFX for various operating systems, such as Windows, macOS, and
Linux, including how to access JavaFX from your IDE.

Once both Kotlin and JavaFX are accessible from the IDE, you can
focus on creating new JavaFX applications in Kotlin. The process is similar
to creating regular Kotlin programs, except that you need to add some boil-
erplate JavaFX code, which I’ll explain in detail next.

Project 3: Build “Hello, World!” in JavaFX
In this project, I’ll walk you through the process of building a simple
“Hello, world!” application using JavaFX and Kotlin. This will serve as
the foundation for constructing other applications that leverage JavaFX’s
charting and visualization features. First, follow these steps to create a new
JavaFX-enabled application from scratch:

https://openjfx.io

Visualizing with JavaFX 91

	 1.	Open IntelliJ IDEA and create a new Kotlin project by navigating to
FileNewProject. You’ll be taken to the project setup window shown
in Figure 3-1.

Figure 3-1: Configuration options for JavaFX-based Kotlin projects

	 2.	Name the project HelloWorld and note its location. Then select Kotlin
as the language and Maven as the build system and choose a JDK that
includes integrated support for JavaFX. (If you’ve followed the instruc-
tions in the appendix, that’ll be the latest long-term support version
of Azul Zulu JDK FX.) For all JavaFX-based projects covered in this
book, we’ll use these same settings (apart from the project name), as
they eliminate the need for additional steps, such as manually linking a
separate JavaFX library to the project.

N O T E 	 You may notice that the left-hand panel of IntelliJ IDEA has an option to autogen-
erate a new JavaFX project, complete with a default “Hello!” window. This preconfig-
ured setup comes with objects and files that may not be necessary for each project, so I
recommend creating a project from scratch and including only the required code and
objects, as outlined here.

	 3.	Click Create to create a new project with the correct configuration.

	 4.	In the project panel on the left side of the IDE, expand the project tree
by navigating to HelloWorldsrcmainkotlin.

92 Chapter 3

	 5.	Right-click the kotlin folder and choose NewKotlin Class/File. Then
choose File and enter HelloWorld as the name of the Kotlin file. (For
other projects, you can choose any other meaningful name.) Note that
including the file extension, .kt, is optional. At this stage, the project
screen should look like Figure 3-2.

Figure 3-2: Creating the Kotlin file for a JavaFX application

	 6.	Once you’ve typed in the Kotlin filename, press enter to create the
file, which also takes you to the code editor window.

With that, we’re ready to start coding our basic JavaFX application. For
more complex projects, you may have to create additional classes or files.
You can do so by using the same method outlined here.

The Code
The center of any JavaFX project is the Application class, an abstract class
built into JavaFX that provides a framework for managing a graphical
application. It features an abstract start() method that serves as the applica-
tion’s entry point, much like the main() function is the point of entry for a
console-based program. The project must feature a new class—what we’ll
call HelloWorld, in this case—that extends the Application class and overrides
the start() method. In the overridden method, you write the code for set-
ting up and configuring the graphics window for data visualization and
other aspects of your application. The project still needs a separate main()

Visualizing with JavaFX 93

function as well, but the sole purpose of that function is to call the built-in
launch() method of the Application class, which in turn launches the JavaFX
application and calls the start() method.

With that in mind, here’s the code to create a simple graphical applica-
tion that displays a “Hello, world!” message to the user:

import javafx.application.Application
import javafx.geometry.Pos
import javafx.stage.Stage
import javafx.scene.Scene
import javafx.scene.layout.VBox
import javafx.scene.text.Font
import javafx.scene.text.Text

class HelloWorld : Application() {
 1 override fun start(primaryStage: Stage) {
 primaryStage.title = "Primary Stage"
 val text = Text("Hello, world!")
 text.font = Font.font("Verdana", 20.0)

 val vbx = VBox(text)
 vbx.alignment = Pos.CENTER
 val scene = Scene(vbx, 300.0, 300.0)
 primaryStage.scene = scene
 primaryStage.show()
 }
}

fun main() {
 2 Application.launch(HelloWorld::class.java)
}

We first import several JavaFX classes, including Application, Pos, Stage,
Scene, VBox, Font, and Text. These are required to create and manage the
graphical elements for the “Hello, world!” application. Any JavaFX applica-
tion will begin with a long import block like this, though the specifics will
vary depending on the application’s functionality.

Next, we declare the HelloWorld class to inherit from the Application
class, which, as mentioned, is standard practice in JavaFX applications.
Inside the class, we override the start() method 1 to define the entry point
for the application that will be executed when the program is launched.
The start() method takes an argument called primaryStage, an object of the
JavaFX Stage class, representing the application’s primary viewing window.
Within the method, we do the following:

•	 Use primaryStage.title to set the title of the application window to
"Primary Stage".

•	 Create a Text object named text containing the message "Hello, world!"
with a custom font of Verdana size 20.0.

•	 Create a VBox object named vbx and add the text object to it. In JavaFX,
a VBox is a layout container that arranges its contents (in this case, text)

94 Chapter 3

in a vertical column. We set its alignment property to Pos.CENTER to ensure
the text will be centered within the window.

•	 Create a Scene object named scene with the vbx attached to it and a size
of 300.0×300.0 pixels. (The dimensions have to be given in the floating-
point format as they’re of type Double.)

•	 Assign the Scene object to the primaryStage parameter’s scene property,
which adds the scene to the viewing window.

•	 Call the show() method of the primaryStage object to display the JavaFX
application window.

We’ll discuss the significance of these JavaFX constructs in more detail shortly.
The final segment of the program is the main() function, which consists of

just a single line of code 2. As mentioned earlier, its sole purpose is to call the
launch() method of the Application class, which activates the start() method
of the HelloWorld application. The parameter inside the launch() method,
HelloWorld::class.java, specifies the Java class corresponding to the HelloWorld
Kotlin class that serves as the entry point for the JavaFX application.

HOW TO HIDE ::CL A SS.JAVA

Some Kotlin developers may prefer not to use constructs such as ::class.java
inside the main() function. We can avoid doing that by creating an inline func-
tion in a second file inside the kotlin folder (where other Kotlin files are located).
Let’s name this new file Inline.kt and add the following lines to this file:

import javafx.application.Application

inline fun <reified T : Application> runApplication() {
 Application.launch(T::class.java)
}

Here, <reified T: Application> introduces a type parameter T whose type
is determined at runtime based on the actual argument passed to the function.
Now we can call the inline function from the main() function as follows:

fun main() {
 runApplication<HelloWorld>()
}

You can use this trick if you think this will make the main body of the code
look nicer!

Visualizing with JavaFX 95

The Result
Try running the application in IntelliJ IDEA. The output window shown in
Figure 3-3 should pop up.

Figure 3-3: The minimal “Hello, world!” application in Kotlin
and JavaFX

Let’s highlight a few details in this output. First, the window has a title,
“Primary Stage,” which is what the title property of primaryStage was set to.
Second, the text “Hello, world!” is neatly centered inside the window. This
was achieved by setting the alignment property of vbx to Pos.CENTER so that
its contents would be aligned centrally within its boundaries. Third, the
initial size of the window was set by specifying the width and height of the
scene. However, you can change the window size by dragging any of its
boundaries. Finally, the application continues to run in the background as
long as the display window is open. Once you close the window, the applica-
tion terminates normally.

This code will be the foundational template for all our JavaFX-based
applications, requiring only minor modifications. For example, you’ll be
replacing the Text object with a LineChart or a Canvas object to adapt the code
for creating a graph or a free-form drawing, respectively. JavaFX is a feature-
rich framework, and I highly recommend exploring the resources listed at
the end of this chapter to gain a thorough understanding of its core com-
ponents and their relationships. For now, I’ll provide a brief overview of key
features that we’ll be using in our upcoming JavaFX-based projects.

96 Chapter 3

The JavaFX Object Hierarchy
JavaFX uses a hierarchy of objects to represent the structure of a GUI and
the elements that make up a visual display. At the top of this hierarchy is
the Stage, which serves as the primary window for an application. The Stage
is a container for one or more Scene objects, and each Scene is a container
for various graphical elements, including other layout containers, con-
trols, and shapes. All these components are considered nodes in the JavaFX
object hierarchy.

We’ve already worked with several of these objects in our “Hello, world!”
application. Let’s now take a closer look at what they are and how they relate
to each other. Understanding and manipulating JavaFX’s object hierarchy is
fundamental to creating visually appealing and interactive applications.

The Stage
The Stage is the top-level container in a JavaFX application. It represents
the application window, complete with its title bar, borders, and any native
OS-level components. The Stage serves as the primary object for creating a
graphical window. You create a Stage and set its properties, such as the win-
dow title and dimensions:

val myStage = Stage()
myStage.title = "This is a secondary window"
myStage.width = 800.0 // in pixels
myStage.height = 600.0 // in pixels

In JavaFX applications, at least one Stage object is essential. This pri-
mary Stage is created when you override the start() method. However, in
this example, we’re explicitly creating an additional Stage object, which will
appear as a second graphical window within our application. We achieve
this by invoking the Stage() constructor and assigning it to a new class mem-
ber, myStage.

Scenes
A Scene represents a single, self-contained GUI component within the
Stage. It acts as a container for all the visible elements in a specific part of
an application, such as the main menu, a settings screen, or a game level.
Typically, the root node of a Scene is set to a layout container, such as a Group,
Pane, VBox, or HBox object, which in turn contains other nodes, such as but-
tons, labels, or shapes. Here’s an example of creating a Scene and setting its
root node at the same time:

val root = Group()
val scene = Scene(root, 800.0, 600.0)

Visualizing with JavaFX 97

We pass root as the first arguments to the Scene constructor. This mir-
rors how we assigned a VBox as the root node of our “Hello, world!” applica-
tion’s Scene object.

Layout Containers
Layout containers like Group and VBox often serve as the root or parent node
for a Scene. They’re used to position and size other child nodes displayed
in the application window. In this way, layout containers are essential for
designing the structure and layout of a user interface in JavaFX. In upcom-
ing projects, we’ll use a few of these containers, so it’s worth taking a closer
look at their properties to see which is most appropriate for different appli-
cations. Sometimes more than one type can be equally suitable.

Group

A Group is a container that groups other nodes together without providing any
layout capabilities. This can be useful when you want to apply a transforma-
tion or effect to a set of shapes collectively. For example, you can group multi-
ple shapes together and apply a rotation or scaling effect to the entire group.

Pane

A Pane is a layout container that serves as a building block for organizing
and positioning nodes in a user interface. It’s not specialized for a particu-
lar layout, which makes it a versatile choice for various UI design scenarios.
JavaFX provides several subclasses of Pane that you can choose from based
on the requirements of your application. These subclasses include:

FlowPane ​  ​A container for arranging nodes in a fluid manner, auto-
matically wrapping when the container’s boundaries are reached. By
default, a FlowPane is horizontal, meaning it lays out nodes in rows, start-
ing from the left boundary. When the right boundary is reached, nodes
wrap (move) to the next row.

StackPane ​  ​A container for stacking nodes on top of one another, such
that one node blocks another. This enables creative layering of ele-
ments. All child nodes are automatically centered both horizontally and
vertically within the available space.

BorderPane ​  ​A container for positioning nodes in a structured manner
in the top, bottom, left, right, and center positions.

AnchorPane ​  ​Similar to BorderPane, except it allows nodes to attach to the
top, bottom, left, and right edges of the pane.

GridPane ​  ​A container for arranging nodes in a grid of rows and columns.

Panes are essential components of JavaFX applications, as they provide
the layout and structure for the user interface. By using panes, you can
create flexible and responsive UIs that can adapt to different screen sizes
and resolutions.

98 Chapter 3

VBox and HBox

VBox and HBox are layout containers designed to organize their child nodes
neatly. VBox arranges its children in a vertical column, while HBox places
them in a horizontal line.

Child Nodes
Child nodes are the fundamental building blocks of a JavaFX application.
They represent specific visual elements, including shapes (for example,
rectangles or circles), images, text, and interactive controls like buttons or
text fields. The different types of chart objects that we’ll soon create are
also considered nodes in JavaFX. By adding, removing, and modifying
nodes within the application’s hierarchy of objects, you can design intuitive
and engaging user interfaces.

You can add child nodes to parent nodes such as a Group, Pane, VBox, or
HBox to create complex hierarchies of UI components. Here’s an example:

// Create a rectangle object (child node).
val rectangle = Rectangle(100.0, 100.0, Color.BLUE)

// Pass the child node to its parent node.
val root = Group(rectangle)

We create a blue Rectangle object that’s 100×100 pixels. We then assign
the rectangle as a child node of a Group object called root. In this case, we
assign the child node by passing it as an argument to the parent node’s con-
structor, but children don’t always have to be assigned immediately upon
the creation of the parent. You can also assign a child node to a parent later
by using the children.add() method:

// Create a Button object with the text "Click me".
val button = Button("Click me")

// Create a Pane object.
val pane = Pane()

// Add the Button as a child node to the Pane.
pane.children.add(button)

In this example, we create a Button object (button) and a Pane object
(pane). Then we add the button as a child node of the pane by using the
children.add() method. This method takes a single node as an argument
and appends it to the list of children of the pane. We could also add or pass
multiple children to the pane by using the children.addAll() method.

Creating JavaFX Charts
JavaFX provides a set of built-in features for creating visually appealing
charts. You can feed a dataset into a chart for visualization and customize

Visualizing with JavaFX 99

the result by changing the colors, fonts, and other properties. Here are the
basic steps for creating a chart with JavaFX and Kotlin:

	 1.	Create objects to represent the x-axis and y-axis of the chart. These can
be of two types: NumberAxis and CategoryAxis. Use the former for visual-
izing numerical data and the latter for string-type data.

	 2.	Create an instance of a class representing the type of chart you want to
design, such as LineChart, BarChart, ScatterChart, PieChart, or BubbleChart.
You pass the objects created in step 1 as arguments to the chart’s
constructor.

	 3.	Create one or more Series objects to represent the data series you want
to display in the chart.

	 4.	Add data points to each series by using the data.add() method for a
single data point or the data.addAll() method for several data points
at once.

	 5.	Add each series to the chart also by using the data.add() method.

	 6.	Create a new Scene object and add the chart to it. Although you can
directly assign a chart object as the root of a scene, you may want to
first assign the chart as a child of a layout container and make that con-
tainer the root of the scene. This way, you can have better control over
the result.

	 7.	Assign the Scene to the Stage object where the chart should be displayed.
Don’t forget to display the Stage by using its show() method!

These steps are generic and can be used to create any of the chart types
available in JavaFX. We’ll now look at two representative examples of creat-
ing different chart objects that use actual data: a bar chart and a line chart.

Project 4: Visualize Data as a Bar Chart
In this project, we’ll generate a bar chart to visualize the monthly sales data
for a fictitious company named ABC & Co. over the first quarter of a year.
The chart will feature the months of January through March along the
x-axis, with vertical bars illustrating the sales total for each month along the
y-axis. The code will follow the same general outline we used for the simple
“Hello, world!” application, with modifications to implement the charting
steps we discussed.

The Code
Here’s the code for creating a bar chart:

import javafx.application.Application
import javafx.geometry.Side
import javafx.scene.Scene
import javafx.scene.chart.CategoryAxis
import javafx.scene.chart.BarChart

100 Chapter 3

import javafx.scene.chart.NumberAxis
import javafx.scene.chart.XYChart
import javafx.stage.Stage

class BarChartExample : Application() {
 override fun start(primaryStage: Stage) {
 1 primaryStage.title = "Bar Chart Example"

 2 // Create XYAxis objects and set their properties.
 val xAxis = CategoryAxis()
 val yAxis = NumberAxis()
 xAxis.label = "Months"
 yAxis.label = "Sales in thousands of dollars"

 3 // Create BarChart object and set its properties.
 val barChart = BarChart(xAxis, yAxis)
 barChart.title = "Monthly Sales"
 barChart.legendSide = Side.TOP

 4 // Create Series, populate with data, and assign to chart.
 val dataSeries = XYChart.Series<String, Number>()
 dataSeries.name = "Q1 Data for ABC & Co."
 5 getData(dataSeries)
 barChart.data.add(dataSeries)

 val scene = Scene(barChart, 400.0, 400.0)
 primaryStage.scene = scene
 primaryStage.show()
 }
}

fun main() {
 Application.launch(BarChartExample::class.java)
}

We begin by importing the necessary JavaFX classes. In addition to the
general Application, Scene, and Stage classes common to any JavaFX applica-
tion, we import some classes specific to charting, such as Side, CategoryAxis,
BarChart, NumberAxis, and XYChart. After the import block, we declare the
BarChartExample class, which once again extends JavaFX’s abstract Application
class. Much like the “Hello, world!” application, we override the start()
method with a custom definition. This time we use the method to create a
bar chart.

The start() method is organized into several blocks. In the first block,
we set the title of primaryStage (the Stage object passed into the start()

Visualizing with JavaFX 101

method) to "Bar Chart Example" 1. In the second block 2, we create two
objects representing the chart’s x- and y-axes. We use the CategoryAxis class
for the x-axis, where the data points will be months of the year (strings),
and the NumberAxis class for the y-axis, where the data points will be numeric
sales totals. We also use the label property of each axis object to give the
axis a descriptive label. In the third block 3, we create the BarChart object,
passing the xAxis and yAxis objects as arguments. We also assign the chart a
title and position its legend at the top of the chart. The legend explains the
significance of the colors or patterns used to visualize the data.

In the fourth code block 4, we create a series called dataSeries of type
XYChart.Series. Each data point of this series will have a pair of elements
of type <String, Number>, representing a month and its corresponding sales
total in thousands of dollars. We set the name for the series; this name will
appear in the chart’s legend. Then, to keep the start() method itself con-
cise, we call a custom getData() function 5 to add data points to the series
before adding the series to the BarChart object to plot the data on the chart.
Here’s a look at the getData() function:

fun getData(dataSeries: XYChart.Series<String, Number>) {
 dataSeries.data.addAll(
 XYChart.Data("Jan", 150),
 XYChart.Data("Feb", 100),
 XYChart.Data("Mar", 225)
)
}

This function’s sole job is to add the data points to the dataSeries object
in bulk by using the data.addAll() method. Each data point is an instance of
the XYChart.Data class, which encapsulates the x- and y-axis values of a data
point together in one container. In particular, each data point has a string
month abbreviation for the x-value and an integer sales total for the y-value.
We could also provide the sales totals as floating-point values; JavaFX recog-
nizes both forms as numbers.

The remaining part of the application class is standard JavaFX template
code, virtually identical to that of our “Hello, world!” application. We con-
struct a Scene object, assigning barChart as its root node. Then we assign the
Scene object to primaryStage and call the latter’s show() method, which displays
the bar chart we’ve created on the screen.

The Result
If you run this code, the resulting bar chart should look like Figure 3-4.

102 Chapter 3

Figure 3-4: A bar chart drawn using JavaFX

Notice how JavaFX has automatically generated a bar with the correct
height for each data point, with the months spaced evenly along the x-axis
and ticks labeled in increments of 25 along the y-axis, stopping just past the
maximum value displayed in the chart. You can also verify that the chart
correctly displays the properties we set explicitly, such as the title (“Monthly
Sales”), the x- and y-axes labels (“Months” and “Sales in thousands of dol-
lars”), and the legend (“Q1 Data for ABC & Co.”), which is positioned cor-
rectly at the top.

Project 5: Create a Multiseries Line Chart
In this next project, we’ll create a line chart in JavaFX that displays the aver-
age heights of males and females at different ages. In a line chart, both axes
are numeric, and their properties can be adjusted—for example, by setting
the tick intervals and bounds. We’ll visualize age on the x-axis and height
(in inches) on the y-axis. A key feature of the chart is that it will have two
datasets, one for males and one for females, each in its own Series object.
JavaFX will automatically plot the datasets separately, giving each a differ-
ent colored line.

Visualizing with JavaFX 103

The Code
Our code will follow the same structure as the code for the bar chart, with
modifications to instead make a line chart with two series. The program
can be easily extended to chart three or more series. Here’s the code:

import javafx.application.Application
import javafx.geometry.Side
import javafx.scene.Scene
import javafx.scene.chart.LineChart
import javafx.scene.chart.NumberAxis
import javafx.scene.chart.XYChart
import javafx.stage.Stage

class LineChartExample : Application() {
 override fun start(primaryStage: Stage) {
 primaryStage.title = "Multiseries Line Chart Example"

 // Create XYAxis objects and set their properties.
 val xAxis = NumberAxis()
 xAxis.label = "Age"
 val yAxis = NumberAxis()
 yAxis.label = "Height (inches)"

 1 // Adjust tick interval and lower/upper bounds.
 xAxis.isAutoRanging = false
 xAxis.tickUnit = 5.0 // custom tick interval
 xAxis.lowerBound = 0.0 // minimum value for x-axis
 xAxis.upperBound = 35.0 // maximum value for x-axis

 yAxis.isAutoRanging = false
 yAxis.lowerBound = 20.0 // minimum value for y-axis
 yAxis.upperBound = 75.0 // maximum value for y-axis

 // Create LineChart object and set its properties.
 2 val lineChart = LineChart(xAxis, yAxis)
 lineChart.title = "Average Heights at Different Ages"
 lineChart.legendSide = Side.TOP

 // Create Series, populate with data, and assign to chart.
 val maleData = XYChart.Series<Number, Number>()
 maleData.name = "Male"
 3 getMaleData(maleData)
 val femaleData = XYChart.Series<Number, Number>()
 femaleData.name = "Female"
 4 getFemaleData(femaleData)

 5 lineChart.data.addAll(maleData, femaleData)

 val scene = Scene(lineChart, 800.0, 600.0)
 primaryStage.scene = scene
 primaryStage.show()
 }
}

104 Chapter 3

fun main() {
 Application.launch(LineChartExample::class.java)
}

We begin with a typical JavaFX import block, this time importing the
LineChart class instead of BarChart. Then we declare an application class
called LineChartExample and override its start() method as usual. Inside the
method, we first set the primaryStage title to "Average Heights at Different
Ages", create the x- and y-axes, and set their labels. We use the NumberAxis
class for both axes, since ages and heights are both numerical data.

In the next code block 1, we further customize the axes. For both axes,
we turn off the autoranging capability by setting the isAutoRanging property
to false (this is necessary for the subsequent changes to take effect). Then
we set the lower and upper bounds for the axes: ages 0.0 to 35.0 on the
x-axis and heights 20.0 to 75.0 on the y-axis. We also set a tick interval of 5.0
on the x-axis. We let JavaFX work out all these settings automatically for
the bar chart, but here we exert more control to remove the unnecessary
autogenerated space and better position the two series in the chart window.
In particular, JavaFX defaults to a lower bound of 0.0 for any numeric axis
(when x- and y-values are positive), which in this case would create a lot of
extra space near the bottom of the chart since the lowest height in the data-
set is 36.0.

The next few blocks are very similar to the bar chart example. We cre-
ate a LineChart object 2, set its title, and set the position of the legend. Then
we create two XYChart.Series objects, maleData and femaleData, and call two
helper functions, getMaleData() 3 and getFemaleData() 4, to populate the
series with data. Here are the definitions of those functions:

fun getMaleData(maleData: XYChart.Series<Number, Number>) {
 maleData.data.addAll(
 XYChart.Data(5, 38.0),
 XYChart.Data(10, 50.0),
 XYChart.Data(15, 62.0),
 XYChart.Data(20, 68.0),
 XYChart.Data(30, 69.0)
)
}

fun getFemaleData(femaleData: XYChart.Series<Number, Number>) {
 femaleData.data.addAll(
 XYChart.Data(5, 36.0),
 XYChart.Data(10, 48.0),
 XYChart.Data(15, 60.0),
 XYChart.Data(20, 64.0),
 XYChart.Data(30, 65.0)
)
}

Visualizing with JavaFX 105

Much like the bar chart project, we use the data.addAll() method to add
all the data points to each series in one go. As before, the x- and y-values for
each data point are packaged into an XYChart.Data object.

Returning to the main code, once both series (maleData and femaleData)
are populated, we add them to the lineChart object by using the data.addAll()
method 5. Finally, we assign lineChart to scene and scene to primaryStage, and
call the primaryStage object’s show() method to display the line chart, follow-
ing our normal pattern of displaying a JavaFX visualization.

The Result
Figure 3-5 shows the line chart that results from running the code.

Figure 3-5: A multiseries line chart drawn using JavaFX

The line chart displays the average heights for males and females of
different age groups as a set of two series plotted on the same x- and y-axes.
JavaFX uses the chart’s legend to distinguish one plot from the other. You
can verify that the chart has been configured based on the properties we’ve
set manually; for example, the y-axis has a lower bound of 20, and the x-axis
ticks are labeled in increments of 5.

You can do a lot more customization beyond the basic settings we’ve
adjusted in this project. I’ll leave it to you to explore other options based on
your additional reading and experimentation with JavaFX.

106 Chapter 3

E X ERCISE

Try developing a simple pie chart application using JavaFX and Kotlin. It should
show the market shares of four different products as percentages. Use these
data points:

•	 Product A: 13.0 percent

•	 Product B: 28.0 percent

•	 Product C: 35.0 percent

•	 Product D: 24.0 percent

Here are some tips on how to proceed:

•	 Be sure to import the javafx.scene.chart.PieChart class. You can also
leave out some of the other typical imports, since pie charts don’t have
x- and y-axes.

•	 You can create a PieChart object without passing any arguments to the
constructor:

 val pieChart = PieChart()

•	 You don’t have to create a series for the data points. Instead, you can
provide the data points directly to the PieChart object by using its data
.addAll() method. I recommend writing a helper function to fetch the data
instead of doing it all from within the start() method.

•	 Inside the helper function, add data points to the pieChart object as
follows:

pieChart.data.addAll(
 PieChart.Data("Product A", 13.0),
 --snip--
 PieChart.Data("Product D", 24.0),
)

Notice that the data points are supplied using a <String, Double> format—
that is, for a given data point we specify the product name as a string and
the percent share as a floating-point value.

•	 Experiment with turning the pie chart’s data labels off (they’re on by
default). This can be done by setting the labelsVisible property of
pieChart to false.

•	 JavaFX will assign default colors to the pie chart slices. Try changing those
colors or using patterns instead of colors, since patterns are easily rec-
ognized even in grayscale images. Search for “change PieChart color in
JavaFX” online for more information on how to do this.

Visualizing with JavaFX 107

Drawing with the Canvas
In JavaFX, a canvas is a region that provides a drawing surface for render-
ing custom 2D graphics. Whereas JavaFX’s charting features handle much
of the drawing automatically, a canvas allows you to write low-level code for
drawing individual lines, shapes, text fields, and more. You create a canvas
by instantiating the Canvas class. Then you draw to the canvas object by
accessing its graphics context.

In this section, we’ll look at a simple first example of working with a
JavaFX canvas and explore some commonly used drawing methods. Then
we’ll get better acquainted with the canvas through a more elaborate draw-
ing project.

A Simple Shape
Let’s get started with the JavaFX Canvas class by using it to draw a simple
shape. Here’s the code for an application that draws a rectangle to the canvas:

import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.canvas.Canvas
import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.Pane
import javafx​.scene​.paint​.Color
import javafx.stage.Stage

class CanvasExample_1 : Application() {
 override fun start(primaryStage: Stage) {
 primaryStage.title = "Canvas Example"

 1 val canvas = Canvas(400.0, 200.0)
 2 val gc = canvas.getGraphicsContext2D()
 val pane = Pane(canvas)
 val scene = Scene(pane)
 primaryStage.setScene(scene)
 primaryStage.show()

 3 drawRectangle(gc)
 }

 fun drawRectangle(gc: GraphicsContext) {
 4 with(gc) {
 stroke = Color.RED
 strokeRect(100.0, 50.0, 200.0, 100.0)
 }
 }
}

fun main() {
 Application.launch(CanvasExample_1::class.java)
}

108 Chapter 3

Inside the application class’s start() method, we create an instance of
the Canvas class with a size of 400×200 pixels and call it canvas 1. Then we
call the canvas object’s getGraphicsContext2D() method. It returns a reference
to the canvas’s GraphicsContext object, which we store in the gc variable 2.
This object provides the interface for drawing to the canvas. We then follow
the usual steps of assigning the canvas to a layout container (a Pane object),
the container to a scene, and the scene to the primary stage, which we
display with the show() method. We need the Pane since Canvas isn’t a parent-
type node and thus can’t be passed directly to a scene. Also, by making the
Canvas object a child node to a container such as a Pane or VBox, we can fur-
ther customize its placement and size if needed.

To draw the rectangle, we call a custom drawRectangle() method 3 that
takes one argument, the graphics context. In the method’s definition, we
use Kotlin’s with scope function to group the actions requiring access to the
graphics content, gc 4. This saves us from adding gc. to the start of each line
of code, which is a big help in longer drawing methods. We set the stroke
color of the graphics context to red (in computer graphics, a stroke is the out-
line of a geometric shape), then call JavaFX’s strokeRect() method to draw a
rectangle. The first two arguments (100.0 and 50.0) set the x- and y-coordinates
of the rectangle’s top-left corner, and the remaining arguments (200.0 and
100.0) define its width and height (in pixels). By default, the origin of the
coordinate system (0.0, 0.0) is positioned at the top-left corner of the canvas.

Figure 3-6 shows the result of running this simple canvas application.

Figure 3-6: A red-outlined rectangle (shown here in gray) on a canvas

In this example, we’ve defined the drawRectangle() method within the
CanvasExample_1 class. Alternatively, we could have created it as an indepen-
dent function, similar to the getData() functions in the bar chart and line
chart examples. Both approaches are valid. When a function is generic and
could be reused by other classes or modules, consider making it a stand-
alone function. Otherwise, creating it as an internal method of a class
enhances data encapsulation.

Visualizing with JavaFX 109

E X ERCISE

Modify the rectangle-drawing code to achieve the following:

1.	 Write a drawSquare() method to draw a filled square in the middle of a
canvas. You’ll need to use the gc.fill feature to set the fill color and the
gc.fillRect() method to draw the square.

2.	 Write a drawTriangle() method that will draw a filled triangle in the middle
of a canvas. You’ll again need to use the gc.fill feature to set the fill color,
plus the gc.fillPolygon() method to draw the triangle. This method takes
three arguments: an array of x-coordinates for the polygon’s vertices, an
array of corresponding y-coordinates, and an integer specifying the number
of vertices. In this case, use doubleArrayOf(x1, x2, x3), doubleArrayOf​
(y1, y2, y3), and n, where x1, x2, and x3 are the x-coordinates; y1, y2, and
y3 are the y-coordinates; and n is 3.

Common Graphics Context Methods
The graphics context is an essential tool associated with any canvas that
enables you to design 2D graphics in JavaFX. Before moving on to more
advanced projects involving the canvas, let’s consider some of the key features
and capabilities of the GraphicsContext class and how to apply them in Kotlin.
The most commonly used features are listed in Table 3-1 for ease of reference.

Table 3-1: Commonly Used Graphics Context Methods

Feature Description Usage in Kotlin

Drawing shapes Draw various 2D shapes, such as lines,
rectangles, circles, and polygons.

gc.strokeRect(x, y, width, height)
gc.fillOval(x, y, radiusX, radiusY)
gc.fillPolygon(x-array, y-array, n)

Setting colors Set stroke (outline) and fill colors for shapes. gc.stroke = Color.RED
gc.fill = Color.BLUE

Line width Set line width and line style. gc.lineWidth = 2.0
gc.setLineDashes(dash, gap)

Text rendering Draw text on the canvas with specified fonts
and sizes.

gc.font = Font("Arial", 14.0)
gc.fillText("Hello, world!", x, y)

Image rendering Draw images on the canvas. val image = Image("image.png")
gc.drawImage(image, x, y)

Transformations Translate (move the origin of the coordinate
system by the specified x- and y-values) and
rotate (rotate the subsequent drawings by a
specified angle).

gc.translate(x, y)
gc.rotate(angle)

Clearing canvas Clear the entire canvas or a specific region. gc.clearRect(0.0, 0.0,
canvas.width, canvas.height)
gc.clearRect(x, y, width, height)

110 Chapter 3

Table 3-1 shows the rich set of capabilities that the graphics context
provides. For example, we can draw and fill geometric shapes such as rect-
angles and ovals with different colors. We can also adjust the width and
style of a line. We have many options for rendering text as well. Besides
shapes, we can use images of various formats (for example, JPG, PNG, or
GIF) and creatively place them on the canvas. Moreover, we can move the
origin of the coordinate system and rotate objects drawn on the canvas,
altering their orientation relative to the current coordinate system. And
finally, we can wipe the entire canvas clean, providing a fresh starting point
for dynamic simulations.

In the projects to follow in this chapter and elsewhere in the book, we’ll
use many of these features and see how they work in more detail.

Project 6: Draw a Spiral Seashell
In this project, we’ll dive deeper into the drawing capabilities of the JavaFX
canvas and its 2D graphics context. We’ll create a complex figure with many
circles of increasing sizes, arranged in a spiral around the center of the can-
vas. By changing the key parameters, we can produce various visual effects.
Here we’ll use the parameters to make a figure that resembles a seashell
with a spiral growth pattern.

The Strategy
Before diving into the code, let’s strategize the approach required to
generate a spiral pattern. A spiral resembles a circle, with one important
difference: its leading edge never returns to the origin point. Instead, it
continuously moves farther away from the center while encircling the ini-
tial starting point. To achieve this mathematically, we’ll employ a method
involving a sequence of lines, as illustrated in Figure 3-7.

x-axis

y-axis

r
 r sin θ

 r cos θ w

h

C

F

F = Fixed end of a radius
C = Center of circle
r = Radius of circle
θ = Angle of rotation for r
(w, h) = Coordinates of the fixed point F
(w + r cos θ, h + r sin θ) = Coordinates of C

θ

Figure 3-7: The strategy for making a spiral pattern

Visualizing with JavaFX 111

Each line has one end anchored at a specific point F, which we’ll set
to the center of the canvas. The position of the other end of the line, C, is
determined by two key factors: the length r of the line and an angle of rota-
tion θ relative to the positive x-axis (or another fixed reference). Given the
values of r and θ, we can use some basic trigonometry to calculate the coor-
dinates of point C. By gradually increasing both the angle of rotation and
the length of the line by preset amounts, the successive values of C will form
a spiral as the points simultaneously circle around the fixed point F and
grow more distant from it. We’ll repeat this until the spiral has achieved the
desired number of turns (one turn equals 360 degrees).

To create the spiral pattern, we’ll treat each point C as the center of a
circle with a radius of length r. These circles will grow larger and move far-
ther away from the starting point as we repeat the process.

The Code
Here’s the general structure of the code that will be used to draw the sea-
shell spiral:

import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.canvas.Canvas
import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.Pane
import javafx​.scene​.paint​.Color
import javafx.stage.Stage

import kotlin​.math​.cos
import kotlin.math.sin

class MultiTurnSpiral : Application() {
 override fun start(primaryStage: Stage) {
 primaryStage.title = "Multi-Turn Spiral"

 // Create a canvas and set its graphics context.
 val canvas = Canvas(600.0, 600.0)
 val gc = canvas.graphicsContext2D

 1 primaryStage.scene = Scene(Pane(canvas))
 primaryStage.show()

 // Call helper function to draw the spiral.
 drawMultiTurnSpiral(gc, canvas.width, canvas.height)
 }

 fun drawMultiTurnSpiral(
 gc: GraphicsContext,
 width: Double, height: Double) {
 --snip--
 }

 fun printParams(
 gc: GraphicsContext,

112 Chapter 3

 radiusStep: Double, numCircles: Int) {
 --snip--
 }

 fun drawCircle(
 gc: GraphicsContext,
 x: Double, y: Double, radius: Double) {
 --snip--
 }
}

fun main() {
 Application.launch(MultiTurnSpiral::class.java)
}

We begin by importing the required graphics-related classes, as well as
the cos() and sin() trigonometric functions from Kotlin’s math library. Then
we declare the MultiTurnSpiral application class. Much like the rectangle
example, we first create and set the graphics elements, then call a custom
method, in this case drawMultiTurnSpiral(), to coordinate the actual drawing.
This approach keeps the overridden start() method concise. Notice that
we’ve condensed the creation of the necessary JavaFX nodes by setting the
scene property of the primaryStage object to Scene(Pane(canvas)) 1. Nested
assignments like this can help eliminate a few lines of code when the inter-
mediate objects aren’t needed for other purposes.

Beyond the start() method, the application class contains three
methods that collectively define and render the spiral pattern. Among
them, drawMultiTurnSpiral() is the primary method, while the other two,
printParams() and drawCircle(), are helpers. We’ll look at each of these
methods in detail, starting with drawMultiTurnSpiral().

fun drawMultiTurnSpiral(
 gc: GraphicsContext,
 width: Double, height: Double) {

 1 // Set key parameters for the spiral.
 val numCircles = 70 // number of circles
 val turns = 2.0 // 360 degrees per turn
 val maxAngle = 360.0 * turns
 // rotation in degrees per step
 val rotationStep = (maxAngle / numCircles)

 // Ensure the circles stay inside the canvas boundaries.
 val maxRadius = minOf(width, height) / 10.0
 // Set the amplification factor.
 val spacingFactor = 2.0
 val radiusStep = (maxRadius / numCircles) * spacingFactor

 2 printParams(gc, radiusStep, numCircles)

 3 for (i in 0..< numCircles) {
 val angle = i * rotationStep
 val radius = i * radiusStep

Visualizing with JavaFX 113

 val x = (width / 2.0) + radius * cos(Math.toRadians(angle))
 val y = (height / 2.0) + radius * sin(Math.toRadians(angle))

 // Draw circles with increasing radii.
 4 drawCircle(gc, x, y, radius)
 }
}

The drawMultiTurnSpiral() method takes three parameters: gc, width,
and height, which are the graphics context and the width and height of
the canvas, respectively. We first set some key parameters for the spiral 1.
The numCircles variable sets the number of circles we’ll draw and turns
dictates the number of rotations we’ll make around the center of the spi-
ral. Multiplying turns by 360 gives us the maximum angle of rotation we’ll
achieve, and dividing that value by numCircles gives us rotationStep, the
amount we’ll rotate between drawing each circle. Similarly, we set maxRadius,
the radius of the largest circle, to one-tenth the width or height of the canvas
(whichever is lower), then divide this by numCircles and multiply the result
by spacingFactor to get radiusStep, the amount by which the radius will grow
from one circle to the next. Dividing the minimum of the width and height
by 10 gives us some space to play with, and varying the spacingFactor allows us
to better utilize that space by adjusting the distance between the circles. I’ve
used a spacingFactor of 2 to create a visually pleasing pattern, but feel free to
experiment with the values to understand how they affect the final figure.

With these parameters set, we call the printParams() method 2, which
prints some key parameter values to the canvas. (We’ll look at this method
shortly.) Then we use a for loop 3 to iterate over the desired number of
circles and draw them on the canvas. For each circle, we multiply looping
variable i by rotationStep to calculate the current angle of rotation relative
to the positive x-direction, and we multiply i by radiusStep to get the circle’s
radius. We then calculate the coordinates of the circle’s center (x, y) by
using trigonometric functions, taking the center of the canvas as the fixed
point at the center of the spiral. (See Figure 3-7 for how these calculations
are derived.) Note that the cos() and sin() functions expect angles mea-
sured in radians rather than degrees, so we call toRadians() on the angle.
Finally, we pass along the circle’s parameters to the custom drawCircle()
method to actually draw the circle, including its center 4.

Now let’s look at the definitions of the two helper methods, printParams()
and drawCircle():

fun printParams(gc: GraphicsContext, radiusStep: Double, numCircles: Int) {

 val msg1 = "Base radius: " + "%.4f".format(radiusStep) + " pixels"
 val msg2 = "Number of shapes (circles): $numCircles"
 gc.fillText(msg1, 25.0, 555.0)
 gc.fillText(msg2, 25.0, 575.0)
}

fun drawCircle(
 gc: GraphicsContext,
 x: Double, y: Double, radius: Double) {

114 Chapter 3

 1 // Set draw parameters.
 val topLeftX = x - radius
 val topLeftY = y - radius
 val pointSize = 8.0

 with (gc) {
 lineWidth = 2.0
 stroke = Color.LIGHTBLUE
 fill = Color.RED
 2 fillOval(x – pointSize / 2, y - pointSize / 2,
 pointSize, pointSize)
 3 strokeOval(topLeftX, topLeftY, radius * 2, radius * 2)
 }
}

The printParams() method takes in the graphics context and two key
parameters of the spiral: the radius step and the number of circles. We
create two string templates by using these parameters in the msg1 and msg2
variables. In msg1, we format radiusStep, a floating-point number, to four
decimal places. In msg2, the number of circles, numCircles, is an integer, so no
formatting is needed. We then pass the messages along to the gc.fillText()
method, which displays the text at a specified location on the canvas (we’re
using coordinates near the bottom-left corner). This method offers a valu-
able alternative to using the println() function, which is limited to display-
ing text in the console. With fillText(), we have the capability to print text
directly on the canvas, enhancing the visual representation of the pro-
gram’s output.

The drawCircle() method draws an individual circle in the spiral in two
ways: as a light blue outline of the full circle and as a smaller red dot to
mark the center of the circle. The method takes in the graphics context, the
x- and y-coordinates of the circle’s center, and the circle’s radius. There’s
a catch, however: the canvas’s methods for drawing a circle, fillOval() and
strokeOval(), position the circle not from its center but from the top-left
corner of a rectangle that surrounds the circle. We therefore subtract the
radius from x and y to get the coordinates for the top-left corner 1. We also
set pointSize, which defines the diameter of the small, filled circle marking
the circle’s center.

For the rest of the method, we use the scoping function with to access
the properties and methods of the graphics context more easily. We set the
line width and stroke color for the outlined circle and the fill color for the
central circle. Then we draw the small central circle by using fillOval() 2
and the larger outlined circle by using strokeOval() 3. The first two argu-
ments are the coordinates of the bounding rectangle’s top-left corner, and
the remaining two are the desired width and height (which for a circle are
both twice the radius).

Visualizing with JavaFX 115

The Result
We’re now ready to run the code. It should produce the output shown
in Figure 3-8.

Figure 3-8: A two-turn spiral created with circles of increasing radii

Take a few moments to appreciate the spiral’s visual intricacy. By plot-
ting the centers of the circles with a contrasting color, we can clearly see
how the successive circles get bigger and farther away from the center of the
canvas (recall that the radius was a linear function of radiusStep). Ignoring
the trajectory of the central dots for a moment, the circles create a visual
illusion of a spiral seashell. This is no coincidence: some real-life seashells
grow in spirals based on precise mathematical rules.

Animation in JavaFX
Animation is a powerful tool for creating engaging and interactive applica-
tions. JavaFX offers various animation options, from simple transitions to
complex sequences. You can animate onscreen objects in JavaFX in two
main ways: by using the TranslateTransition class or by using the Timeline and
KeyFrame classes. In the following projects, we’ll explore both of these meth-
ods through hands-on examples.

116 Chapter 3

Project 7: Animate a Square
Transition-based animation treats animation as a gradual shift from one state
to another. You define the start and end states of a visual object, and JavaFX
works out a way to smoothly transition between the two. With transitions, you
can make objects move, rotate, scale, fade, and so on, creating simple effects
such as sliding, bouncing, flipping, and fading in or out. Transitions are easy
to use and require minimal coding, but they’re more limited than the time-
line and keyframe approach we’ll consider in the next project.

To use a transition, you need to create an instance of a transition class,
such as TranslateTransition to move an object or RotateTransition to make it
spin. You pass the node you want to animate as an argument to the transi-
tion’s constructor. Then you set transition properties such as the duration,
cycle count, and autoreverse. Finally, you call the transition object’s play()
method to start the animation.

The Code
Here’s a simple example that uses transitions to move a square back and
forth from one side of the screen to the other:

// graphics-related imports
import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.layout.Pane
import javafx​.scene​.paint​.Color
import javafx.scene.shape.Rectangle
import javafx.stage.Stage

// animation-related imports
import javafx.animation.Transition
import javafx.animation.TranslateTransition
import javafx.util.Duration

class TransitionExample : Application() {
 override fun start(primaryStage: Stage) {
 primaryStage.title = "Transition Example"

 // Create a square.
 1 val square = Rectangle(50.0, 50.0, Color.RED)
 square.y = 100.0
 // Create a pane to hold the square.
 val pane = Pane(square)

 // Create a scene and show the stage.
 2 val scene = Scene(pane, 300.0, 300.0)
 primaryStage.scene = scene
 primaryStage.show()

 // Create a TranslateTransition class instance
 // and set its properties.

Visualizing with JavaFX 117

 3 val transition =
 TranslateTransition(Duration.seconds(2.0), square)

 with (transition) {
 fromX = 0.0
 toX = pane.width - square.width
 cycleCount = Transition​.INDEFINITE
 isAutoReverse = true
 4 play()
 }
 }
}

fun main() {
 Application.launch(TransitionExample::class.java)
}

We begin with the import block, which is now organized into imports
related to graphics and imports related to animation. The application class,
TransitionExample, has the same familiar structure we’ve seen throughout the
chapter. I’ll highlight only the problem-specific parts.

To animate a square, we first create one by using the Rectangle class 1.
We set the side lengths of the square to 50 pixels and its color to red. By
default, the square would be positioned at the top-left corner of the win-
dow, but we update the square’s y property to put it 100 pixels lower. We cre-
ate a Pane layout, place the square inside it, and set it as the root node for a
300×300-pixel scene 2.

To set the transitions, we create an instance of the TranslateTransition
class named transition 3. In the constructor, we set the duration of the
animation to two seconds and assign the square object as the node to be
animated. We then use with (transition) to set the properties controlling
the movements of the square. We specify the starting x-position for anima-
tion by using the fromX property (we’ll move the square only from side to side)
and the end position by using the toX property. For the latter, we use pane
.width - square.width to ensure the square won’t move outside the scene’s
boundaries. The transition will interpolate the value of the x-position of the
square from the fromX value to the toX value over the duration of the ani-
mation. Since we set cycleCount to Transition​.INDEFINITE and isAutoReverse
to true, the transition will reverse direction when it ends and start inter-
polating back to the fromX value—it will continue repeating as long as the
window remains open. Finally, we set the transition in motion by using its
play() method 4.

The Result
When you run this code, you should see a red square initially positioned
next to the left boundary of the scene. It should start moving toward the
right boundary, then reverse its course once it hits the right boundary. This
back-and-forth movement should continue until you close the window to
terminate the program.

118 Chapter 3

Project 8: Animate a Bouncing Ball
The timeline and keyframe approach to animation offers exceptional versa-
tility and is ideal for creating complex and precisely controlled animations.
Each KeyFrame object defines a specific point in time where you set the val-
ues of certain properties, while the Timeline class manages the progression
between keyframes. In JavaFX, you can find two approaches to this anima-
tion method. One is to define the properties of each KeyFrame object explic-
itly. The other is to set the properties of each KeyFrame programmatically by
using an action event handler, a block of code similar to a lambda expression.
This block of code is called periodically and contains rules for updating the
scene. In this project, we’ll look at examples of both methods.

Setting Keyframes Explicitly
In the first example, we’ll create an animated circle that grows and shrinks
continuously. We’ll explicitly define the starting and ending KeyFrame
objects, representing the circle at its smallest and largest sizes. Then we’ll
use the Timeline class to interpolate back and forth between the keyframes.
Here’s the code:

// graphics-related imports
import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.layout.StackPane
import javafx​.scene​.paint​.Color
import javafx.scene.shape.Circle
import javafx.stage.Stage

// animation-related imports
import javafx.animation.KeyFrame
import javafx.animation.KeyValue
import javafx.animation.Timeline
import javafx.util.Duration

class KeyframeAnimationExample : Application() {
 override fun start(primaryStage: Stage) {
 primaryStage.title =
 "Animation Example: A Growing and Shrinking Circle"
 // Create a circle.
 1 val circle = Circle(50.0, Color.BLUE)

 2 val root = StackPane(circle) // autocenters child node
 val scene = Scene(root, 600.0, 600.0)
 primaryStage.scene = scene
 primaryStage.show()

 // Create a Timeline for the animation.
 val timeline = Timeline()
 // Define keyframes.

Visualizing with JavaFX 119

 val startFrame = KeyFrame(
 Duration.ZERO,
 KeyValue(circle.radiusProperty(), 50.0))

 val endFrame = KeyFrame(
 Duration.seconds(5.0),
 KeyValue(circle.radiusProperty(), 250.0))

 // Add keyframes to the timeline.
 3 timeline.keyFrames.addAll(startFrame, endFrame)

 // Set and play the timeline.
 with (timeline) {
 cycleCount = Timeline​.INDEFINITE
 isAutoReverse = true
 4 play()
 }
 }
}

fun main() {
 Application.launch(KeyframeAnimationExample::class.java)
}

We create a blue Circle object with an initial radius of 50.0 pixels 1 and
attach it to a StackPane 2, which automatically centers the node it contains.
We manage the animation through a Timeline and two KeyFrame objects:
startFrame and endFrame. For startFrame, we set the initial state of the circle’s
radius property to 50.0 pixels at the start time of the animation (0 seconds).
Notice how we set the radius through an instance of the KeyValue class,
which we pass to the KeyFrame constructor. Any property of an object that
should be animated between keyframes must be defined through a separate
KeyValue object. The second keyframe, endFrame, sets the circle’s radius prop-
erty to 250.0 pixels at the end time (five seconds) of the animation. We use
the keyFrames.addAll() method to attach the two keyframes to the Timeline
object 3.

In the final code block, inside the with scoping function, we configure
the animation to keep repeating by setting the Timeline object’s cycleCount
property to Timeline​.INDEFINITE, and we turn on autoreversing so that the
circle will start shrinking once it’s grown to its maximum size. Then we ini-
tiate the animation by invoking the play() method 4.

If you run this code, an application window should open up where
you’ll see a blue circle repeatedly grow and shrink, with each cycle lasting
five seconds. The animation should continue indefinitely until you close the
application window.

120 Chapter 3

F R A ME R AT E

An animation is nothing more than a series of still images, or frames, strung
together in rapid succession to create the illusion of motion. The frame rate
controls how many frames unfold each second. By default, JavaFX uses a frame
rate of 60 frames per second, which as of this writing is the maximum possible
rate. In the case of the growing and shrinking circle, where one cycle of grow-
ing or shrinking lasts five seconds, this means 5 × 60 = 300 frames will be cre-
ated and displayed per cycle. JavaFX automatically generates the intermediate
frames between the start and end times, using linear interpolation to calculate
the radius of the circle for each frame.

Using an Action Event Listener
We’ll now explore a second example of creating animations with a timeline
and keyframes. Unlike the previous example, where we specified distinct
starting and ending keyframes for each animation cycle, we’ll rely on an
action event listener block to execute the animation code. Specifically,
we’ll create a red ball that continually traverses the scene, bouncing off the
window boundaries. We’ll use the action event listener to set general rules
for how the ball should move and when it should bounce. We’ll also encap-
sulate all the animation-related code within a dedicated method instead
of putting it all in start(). This is a more structured and efficient coding
method, which is particularly useful if we want to animate multiple balls by
using the same method.

Here’s the code for animating a bouncing red ball:

// graphics-related imports
import javafx.application.Application
import javafx.scene.layout.Pane
import javafx.scene.Scene
import javafx​.scene​.paint​.Color
import javafx.scene.shape.Circle
import javafx.stage.Stage

// animation-related imports
import javafx.animation.Animation
import javafx.animation.KeyFrame
import javafx.animation.Timeline
import javafx.util.Duration

class BouncingBall : Application() {
 override fun start(primaryStage: Stage) {
 primaryStage.title = "Bouncing Red Ball"
 1 val redBall = Circle(250.0, 200.0,
 30.0, Color.RED)

Visualizing with JavaFX 121

 val root = Pane(redBall)
 val scene = Scene(root, 500.0, 400.0)
 primaryStage.scene = scene
 primaryStage.show()

 // Call the bouncyBall method.
 2 bouncyBall(redBall, scene)
 }

 fun bouncyBall(redBall: Circle, scene: Scene) {
 // displacement parameters
 var dx = 2
 var dy = 2

 // Timeline-KeyFrame with ActionEvent
 3 val tl = Timeline()
 4 val moveBall = KeyFrame(
 Duration.seconds(0.015),
 {
 // Get min/max boundary coordinates.
 val xMin = redBall.boundsInParent.minX
 val xMax = redBall.boundsInParent.maxX
 val yMin = redBall.boundsInParent.minY
 val yMax = redBall.boundsInParent.maxY

 // Change direction if boundary is hit/crossed.
 if (xMin < 0 || xMax > scene.width) {
 dx = - dx
 }
 if (yMin < 0 || yMax > scene.height) {
 dy = - dy
 }
 // Continue to move.
 redBall.translateX += dx
 redBall.translateY += dy
 })

 with (tl) {
 5 keyFrames.add(moveBall)
 cycleCount = Animation​.INDEFINITE
 6 play()
 }
 }
}

fun main() {
 Application.launch(BouncingBall::class.java)
}

Inside the start() method of the BouncingBall application class, we first
instantiate a red ball (redBall) with a radius of 30 pixels, positioning it at
coordinates (250, 200) relative to the top-left corner (0, 0) of the scene 1.
To prevent the ball from constantly occupying the center of the scene,
we assign it to a Pane instead of a StackPane. The rest of the code up to

122 Chapter 3

calling the show() method of primaryStage is practically the same as in the
previous example.

Once we’re done with setting the graphics part of the application, we
call the custom bouncyBall() method, passing redBall and scene as its argu-
ments 2. This method encapsulates the process of setting up the Timeline
and KeyFrame objects and maneuvering the ball inside the scene. Inside the
method, we first define two displacement parameters, dx and dy, which set
the horizontal and vertical distance (in pixels) that the red ball should
travel in each animation frame. We initialize these values to 2, but if you
modify them, the speed of the ball will change. For example, using 4 would
double the ball’s speed, but this adjustment might introduce a perceptible
jitter in the ball’s motion.

Next, we create tl, an instance of the Timeline class 3, and define a
single KeyFrame object named moveBall 4. We set the duration of the KeyFrame
to 0.015 seconds (you can play with this value to get a sense of what happens
when the duration is increased or decreased). The rest of the code block,
surrounded by braces, is the action event handler block. This block, which
we pass as the second argument to the KeyFrame constructor, is executed
each time the KeyFrame is visited along the timeline.

The first few lines inside the action event handler block get the ball’s
minimum and maximum coordinates in the x- and y-directions based on its
current position. This is done by checking the corresponding coordinates
of the parent container (a square, in this case) that holds the child (the
circular ball). We then use these values to check if the ball has crossed the
boundary of the scene during the last update of its position. For example, if
xMin < 0 is true, the leftmost edge of the ball will be outside the left bound-
ary of the scene. Similarly, if xMax > scene.width is true, the rightmost edge
of the ball will be beyond the right boundary of the scene. For any such
situations, we reverse the ball’s direction of movement along the appropri-
ate axis by negating the corresponding displacement parameter (dx or dy),
which creates a bouncing effect. The last step inside the action event block
is to update the ball’s position by adding the displacement parameters to
the coordinates of the ball, which are accessed by using the redBall object’s
translateX and translateY properties.

We conclude the bouncyBall() method by using the with scoping func-
tion to assign the moveBall keyframe to the timeline 5, set the timeline to
cycle indefinitely, and call the play() method 6 to start moving the ball on
its bouncy path. Although we can’t show the dynamic motion of the ball
on the static page of a book, Figure 3-9 gives you a sense of what to expect
when you run this code.

Visualizing with JavaFX 123

Figure 3-9: Animating a bouncing red ball (shown here in gray)

If you run this code several times and carefully observe the motion of
the ball, you’ll notice that it actually follows the exact same path every time.
In other words, its path is predetermined. Can you explain why that’s the
case? What could we do to make its path less predictable?

E X ERCISE

Enhance the bouncing ball code by adding new features. Here are some ideas
to try:

•	 Add more balls to the screen, each with a different color, speed, and
starting location. You can vary these properties randomly by using Kotlin’s
built-in random number generator function. For example, to generate a
random integer between 0 and 10 (inclusive), you could use this code:

val randInt = (0..10).random()

•	 Introduce collisions between the balls. That is, instead of the balls simply
moving past each other, they should bounce off each other according to
the rules of physics. This is a common feature in many games.

•	 Introduce additional walls inside the canvas, and allow the balls to bounce
off these walls as well.

124 Chapter 3

Summary
In this chapter, we explored how to integrate JavaFX with Kotlin to create
data visualizations. We covered fundamental JavaFX components such as
Stage, Scene, and various layout containers and nodes. We also discussed
using the Canvas class and its graphics context to create free-form drawings,
and how to implement animations by using transitions or the Timeline and
KeyFrame classes. We practiced these concepts through projects drawing vari-
ous charts, generating a seashell-like spiral pattern, and even animating a
bouncing ball. Throughout the book, we’ll continue to draw on the basic
JavaFX tools covered here to add visual components to our various projects.

Resources
Balasubramanian, Anirudh. “Crash Course into JavaFX: The Best Way to

Make GUI Apps.” (Free tutorial.) Accessed June 15, 2024. https://www​
.udemy​.com.

Dea, Carl, Gerrit Grunwald, José Pereda, Sean Phillips, and Mark Heckler.
JavaFX 9 by Example. 3rd ed. New York: Apress, 2017.

JavaFX. The Official Website for the Open JavaFX Project. Accessed
June 15, 2024. https://openjfx​.io.

Lowe, Doug. JavaFX for Dummies. Hoboken, NJ: John Wiley & Sons, 2015.

https://www.udemy.com
https://www.udemy.com
https://openjfx.io

PART II
A P P L I C A T I O N S I N M A T H

A N D S C I E N C E

After our thorough overview of the funda-
mentals of the Kotlin programming lan-

guage and the JavaFX graphics tools adapted
for use in Kotlin, we’re now prepared to tackle

a series of math problems in the form of mini projects.
The projects will grow in complexity over the chap-
ter, but they require only high school math skills. Our
journey will take us from the ancient civilizations of
Babylon, Greece, and Egypt to the modern-day world
of cryptography.

The main goal of these projects is to enhance your Kotlin program-
ming skills. We’ll discuss the context and mathematics behind each
problem in detail, but the heart of each project will be developing an
appropriate algorithm or problem-solving strategy and then implementing
it in well-organized code. In doing so, you’ll gain a deeper understanding

4
S O L V I N G M A T H E M A T I C A L

P R O B L E M S W I T H C O D E

128 Chapter 4

of both programming and math, preparing you to solve the more sophisti-
cated problems introduced later in this book.

Project 9: Find the Square Root with the Babylonian Algorithm
We have several methods of finding the square root of a number. In this
project, I’ll focus on the Babylonian square root algorithm, one of the most
widely used methods today.

The Babylonian square root algorithm dates back to around 1800 bce.
It’s believed the Babylonians used it for practical purposes, such as land
surveying. The algorithm was later refined by the Greeks, who used it to cal-
culate square roots to a high degree of accuracy. The Greek mathematician
Heron of Alexandria described the algorithm in his work Metrica, written in
the first century ce.

Despite its ancient origins, the Babylonian square root algorithm
remains a valuable tool for understanding the history of mathematics and
the development of numerical methods. The algorithm’s enduring useful-
ness is a testament to the ingenuity of ancient mathematicians and the
power of mathematical techniques.

T HE OR IGIN OF T HE BA BY LONI A N A LGOR IT HM

The Yale Babylonian Collection, part of the Yale University Library in New
Haven, Connecticut, houses a Babylonian clay tablet called YBC 7289, which
contains the earliest known description of the Babylonian square root algorithm.
This tablet has been a significant object of study for scholars of ancient math-
ematics and the history of science since it was acquired in the early 20th cen-
tury. The Yale Babylonian Collection also includes a number of other important
artifacts, including cuneiform tablets, cylinder seals, and other objects that pro-
vide insight into the culture, society, and technology of ancient Mesopotamia.

We can use the Babylonian algorithm to approximate the square root
of a positive number in a few simple and iterative steps. The algorithm
starts with an initial guess and then refines that guess until it’s close enough
to the actual square root. Here’s how the algorithm works:

	 1.	Start with an initial estimate, guess, for the square root of a positive
number, N. This is customarily set to N / 2.

	 2.	Check to see if the absolute value of (guess * guess - N) is less than the
tolerance value. If yes, then terminate the loop and return the esti-
mated square root.

	 3.	Otherwise, update the guess using the formula guess = (guess + N
/ guess) / 2.0.

	 4.	Repeat steps 2 and 3 until the stopping condition is met.

Solving Mathematical Problems with Code 129

The Code
The Babylonian algorithm is simple enough that we can write a concise
code segment to find a square root. However, it’s a good practice to create
a separate function for a process like this and then call that function from
main(). This makes the code more reusable and easier to read.

Here’s an example Kotlin function for calculating the square root of a
positive number using the Babylonian algorithm:

fun babylonianSquareRoot(num: Double): Double {
 val TOL = 0.000001
 var iter = 1
 var guess = num / 2.0

 while(Math.abs(guess * guess - num) > TOL) {
 println("iter: $iter guess=$guess")
 guess = (guess + num / guess) / 2.0
 iter ++
 }
 return guess
}

This babylonianSquareRoot() function takes a positive double-precision
number num as its single argument. It sets the tolerance value TOL to 0.000001,
initializes a variable iter to 1 to track the number of iterations, and makes
a starting guess of num / 2.0. The function then follows the Babylonian algo-
rithm I described, using a while loop to refine the value of guess until the
result is within the tolerance. To help visualize the convergence process, the
intermediate values of iter and guess are printed at each iteration.

To use this function, call it from the main() function and provide the
value of the number you want to find the square root of, like so:

fun main() {
 println("\n*** Finding Square Root Using Babylonian Algorithm ***\n")
 println("Enter a number (>=1) to find its square root:")
 val num = readln().toDouble()
 println("You have entered: $num\n")
 val squareRoot = babylonianSquareRoot(num)
 println("\nThe estimated square root of $num is: $squareRoot\n")
}

In this case, the user is asked to enter the value of a positive number,
which is read as a string and converted into a number of type Double before
its square root is estimated. We’re assuming that the user will enter a valid
number, which is greater than or equal to 1. If the user enters characters
that cannot be converted into a number of type Double, the program is
terminated with an error message. Also, if the user enters a valid negative
number, the algorithm will not converge to a real solution.

In Chapter 1, you learned how to handle such errors or exceptions.
Feel free to experiment with this code and to make it error-proof by using a
try...catch block.

130 Chapter 4

The Result
Without further ado, let’s try running the algorithm! If N is set to 25, the
code should output the following:

*** Finding Square Root Using Babylonian Algorithm ***

Enter a number (>=1) to find its square root:
25
You have entered: 25.0

iter: 1 guess=12.5
iter: 2 guess=7.25
iter: 3 guess=5.349137931034482
iter: 4 guess=5.011394106532552
iter: 5 guess=5.000012953048684

The estimated square root of 25.0 is: 5.000000000016778

Of course, the exact value of the square root of 25 is 5. The Babylonian
algorithm, like any other numerical algorithm, provides only an approxi-
mation. The accuracy of this approximation is determined by the value of
tolerance (TOL), which can be adjusted to make the approximation more or
less precise.

Keep in mind that a more accurate square root approximation will take
longer to compute since the algorithm needs to go through more iterations.
This sort of trade-off between accuracy and computational time is common.

Project 10: Create Pythagorean Triples with Euclid’s Formula
Pythagoras was a Greek philosopher and mathematician who lived in the
sixth century bce. He believed in the idea of a harmonious universe and
saw numbers, mathematics, and geometry as key elements in revealing
the universe’s mysteries. He’s best known for the Pythagorean theorem,
which states that in a right-angled triangle, the square of the length of the
hypotenuse is equal to the sum of the squares of the other two sides (see
Figure 4-1). Perhaps you’ve seen this theorem summarized as a2 + b2 = c2.

Pythagorean triples are sets of three positive integers (a, b, c) that satisfy
the Pythagorean theorem. A familiar example is (3, 4, 5): 32 + 42 equals
9 + 16, which equals 25, or 52. Pythagorean triples are used in many areas
of mathematics, science, and engineering, including geometry, number
theory, cryptography, physics, and computer graphics. Throughout history,
mathematicians have come up with different ways of generating Pythagorean
triples. In this project, we’ll check out one of the earliest methods, Euclid’s
formula, and use it to create Pythagorean triples. Here are the steps involved:

	 1.	Choose an arbitrary positive integer k.

	 2.	Choose a pair of positive integers m and n, such that m > n > 0.

	 3.	Calculate a = k(m2 – n2), b = 2kmn, and c = k(m2 + n2).

	 4.	The values a, b, and c form a Pythagorean triple (a, b, c).

Solving Mathematical Problems with Code 131

 ΔABC = Right-angled triangle
 a, b = Sides adjacent to the right angle

 c = Hypotenuse

b

90°

a

B

C

c

A

Figure 4-1: The Pythagorean theorem

A Pythagorean triple is considered primitive if its members are all
coprime, meaning they share no common factors other than 1. For exam-
ple, (3, 4, 5) and (6, 8, 10) are both Pythagorean triples, but only (3, 4, 5)
is primitive, since 6, 8, and 10 have a common factor of 2. Euclid’s formula
will generate a primitive Pythagorean triple if and only if the two integers m
and n are coprime, and one of them is even. If both m and n are odd, then
the values of a, b, and c will all be even, and the triple won’t be primitive.
However, as long as m and n are coprime, dividing the values of a, b, and c
by 2 will result in a primitive Pythagorean triple.

The Code
Here’s a Kotlin function that generates a Pythagorean triple using Euclid’s
formula:

fun generatePythagoreanTriple(m: Int, n: Int):
 Triple<Int, Int, Int> {
 val a = m * m - n * n
 val b = 2 * m * n
 val c = m * m + n * n
 return Triple(a, b, c)
}

The function takes in two integers m and n, then uses them to calculate
and return a, b, and c. By not explicitly including a value for k here, we’re
implicitly assuming k = 1.

We can call this function repeatedly from the main() function, using a
for loop to generate Pythagorean triples for an arbitrary number of pairs of
successive integers, as shown in the following code:

fun main() {
 var m = 2 // value of m
 var n = 1 // value of n
 val numTriples = 10 // number of triples

132 Chapter 4

 println("\n*** Pythagorean Triples Using Euclid's Formula ***\n")
 println("Number of Pythagorean triples: $numTriples\n")

 // Generate the first "numTriples" triples.
 for (i in 1..numTriples) {
 val pythagoreanTriple =
 generatePythagoreanTriple(m, n)
 print("i=${"%2d".format(i)} " +
 "m=${"%2d".format(m)} n=${"%2d".format(n)} ")
 println("Pythagorean triple: $pythagoreanTriple")
 n++
 m++
 }
}

Notice that the first triple is generated using an m of 2 and an n of 1.
These are the smallest possible values of m and n. (Recall the stipulation in
Euclid’s formula that m and n must be positive integers such that m > n > 0.)
These values are passed on as arguments to the generatePythagoreanTriple()
function, which returns the elements of the Pythagorean triple as a Triple
object in Kotlin. Successive inputs are generated by incrementing both m
and n inside the for loop that repeats numTriples times. Since m and n are con-
secutive, one of them will always be even, and they can’t possibly share any
factors, so every triple will be primitive.

The Result
If you don’t change any of the program parameters, the program will pro-
duce the following output that shows the first 10 Pythagorean triples:

*** Pythagorean Triples Using Euclid's Formula ***

Number of Pythagorean triples: 10

i= 1 m= 2 n= 1 Pythagorean triple: (3, 4, 5)
i= 2 m= 3 n= 2 Pythagorean triple: (5, 12, 13)
i= 3 m= 4 n= 3 Pythagorean triple: (7, 24, 25)
i= 4 m= 5 n= 4 Pythagorean triple: (9, 40, 41)
i= 5 m= 6 n= 5 Pythagorean triple: (11, 60, 61)
i= 6 m= 7 n= 6 Pythagorean triple: (13, 84, 85)
i= 7 m= 8 n= 7 Pythagorean triple: (15, 112, 113)
i= 8 m= 9 n= 8 Pythagorean triple: (17, 144, 145)
i= 9 m=10 n= 9 Pythagorean triple: (19, 180, 181)
i=10 m=11 n=10 Pythagorean triple: (21, 220, 221)

In this example, the starting values of m and n were hardcoded in the
main() function. You might modify the code to allow the user to input val-
ues of m and n (ensuring m > n > 0). That would allow the user to generate a
wider range of Pythagorean triples based on their requirements.

Solving Mathematical Problems with Code 133

Project 11: Identify Prime Numbers with the Sieve of Eratosthenes
Eratosthenes was an ancient Greek scholar who lived in the third century
bce. He was an accomplished mathematician, astronomer, geographer, and
poet. In this project, we’ll explore one of Eratosthenes’s many mathemati-
cal discoveries: the sieve of Eratosthenes, an intuitive algorithm for identify-
ing all the prime numbers up to a given limit. (We’ll explore another of
his ingenious discoveries in the next project.) It’s remarkable to think that
Eratosthenes conceived this strategy more than two millennia ago, during
a time when few individuals could read or write, let alone think about algo-
rithms and solve abstract mathematical problems.

W H AT IS A PR IME NUMBER?

A prime number is a positive integer greater than 1 that has no positive integer
divisors other than 1 and itself. In other words, the number can be divided
evenly only by 1 and itself. For example, 5 is a prime number because it can
be divided evenly only by 1 and 5. It has no other positive integer divisors. On
the other hand, 6 isn’t a prime number, because it can be divided evenly by 1,
2, 3, and 6. Instead, we call it a composite number. The first several prime num-
bers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, and so on. Prime numbers
have many interesting properties and play a central role in number theory and
cryptography, among other fields.

The Strategy
To sieve for primes like Eratosthenes, start by creating a list of all integers
from 2 up to some limit. Then, starting from 2, iteratively mark off all mul-
tiples of each prime number as composite. The unmarked numbers that
remain at the end of the process are all prime numbers. Here are the steps
to implement this algorithm:

	 1.	Create a list of consecutive integers from 2 through the given limit.

	 2.	Starting with 2 (the first prime number), mark all its multiples as
composite.

	 3.	Find the next number in the list that isn’t marked as composite. This
will be the next prime number.

	 4.	Mark all multiples of the prime number found in step 3 as composite.

	 5.	Repeat steps 3 and 4 until the square of the next prime number
exceeds the given limit.

	 6.	The unmarked numbers in the list are all prime numbers.

134 Chapter 4

We can optimize the sieve algorithm by marking multiples of each
prime number, starting from its square. For example, when marking multi-
ples of 3, we can start at 32 = 9, since all multiples of 3 less than 9 will already
have been marked as composite. In this case, 6 will have been marked while
going through the multiples of 2. Similarly, when we get to multiples of 5,
we can skip 10, 15, and 20 as being multiples of either 2 or 3 and start mark-
ing off composites from 25.

The Code
As before, we’ll start by writing a function to implement the algorithm and
then use the main() function to call this function and list the prime num-
bers. Here’s the Kotlin code for the sieveOfEratosthenes() function:

fun sieveOfEratosthenes(n: Int): List<Int> {
 // Create a Boolean array with all values set to true.
 val primes = BooleanArray(n + 1) { true }
 // Create a mutable list of integers to save prime numbers.
 val primeNumbers = mutableListOf<Int>()

 // Set 0 and 1 to not be prime.
 primes[0] = false
 primes[1] = false

 // Iterate over all numbers until i^2 > N.
 var i = 2
 1 while (i*i <= n) {
 // If i is prime, mark all multiples of i as not prime.
 2 if (primes[i]) {
 3 for (j in i * i..n step i) {
 primes[j] = false
 }
 }
 i++
 }

 // Collect all prime numbers into a list and return it.
 4 for ((index, value) in primes.withIndex())
 if (value) primeNumbers.add(index)

 5 return primeNumbers
}

The sieveOfEratosthenes() function takes an integer n as input and returns
a list of prime numbers up to n. For that, the function creates a Boolean array
primes with a length of n + 1 and initializes each element’s value to true. Over
the course of the function, we’ll change elements to false if their indices
aren’t prime. The function also creates a mutable list primeNumbers of type Int
to save the prime numbers.

Solving Mathematical Problems with Code 135

To begin, we set the first two values of the primes array to false because
0 and 1 aren’t prime. We then iterate over the numbers from 2 to the square
root of n (we do this by ensuring i*i <= n) 1. For each number i in this
range, if i is marked as prime (that is, true) in the primes array 2, the func-
tion marks all multiples of i in the primes array as composite (false). To
reach all the multiples of i, we use a for loop with a step size of i 3.

To collect the prime numbers, we use a for loop 4 to go over all primes
elements and add the corresponding index to primeNumbers when the value
of the element is true. Finally, we return the prime numbers to main() as a
list of integers for postprocessing 5.

Now that our sieving function is good to go, we can use the main() func-
tion to retrieve a list of prime numbers up to n and print it out. We’ll also
create a printPrimes() helper function to manage the printing.

fun main() {
 println("\n*** Find All Prime Numbers Up to 'n' ***\n")
 println("Enter a number > 2 to generate the list of primes:")
 val num = readln().toInt()
 println("You have entered: $num")

 val primeNumbers = sieveOfEratosthenes(num)
 println("\nThe prime numbers <= $num are:")
 printPrimes(primeNumbers)
}

fun printPrimes(primeNumbers: List<Int>) {
 for (i in primeNumbers​.indices) {
 if (i != 0 && i % 6 == 0) println()
 print("${"%8d".format(primeNumbers[i])} ")
 }
}

The main() function is similar to the one we used for the Babylonian
square root algorithm in Project 9. It takes a user input for the limit num,
uses it to create a list of prime numbers with the sieveOfEratosthenes() func-
tion, and then calls printPrimes() to print the list. To make the output look
nice, printPrimes() organizes the numbers into rows of six and uses string
formatting to create neatly aligned columns.

The Result
Here’s a look at the program output up to an arbitrary limit num of 251:

*** Find All Prime Numbers Up to 'n' ***

Enter a number > 2 to generate the list of primes:
251
You have entered: 251

136 Chapter 4

The prime numbers <= 251 are:
 2 3 5 7 11 13
 17 19 23 29 31 37
 41 43 47 53 59 61
 67 71 73 79 83 89
 97 101 103 107 109 113
 127 131 137 139 149 151
 157 163 167 173 179 181
 191 193 197 199 211 223
 227 229 233 239 241 251

Other methods for generating prime numbers include the sieve of
Sundaram, the sieve of Atkin, and trial division. I encourage you to do some
online research and experiment with these methods to enhance your Kotlin
coding skills and gain additional insight into prime number generation.

Project 12: Calculate Earth’s Circumference the Ancient Way
One of Eratosthenes’s most famous achievements was calculating Earth’s
circumference. He accomplished this by measuring the angle of the sun’s
rays at noon on the summer solstice at two locations, Alexandria and
Syene (modern-day Aswan), which were known to be on the same merid-
ian, or longitude. Figure 4-2 shows an abstraction of some of the geometry
involved in this brilliant experiment.

C

Ray 1Ray 2

F

E

D

B

A

θ

θ

θ2

2

1

α

Figure 4-2: Measuring Earth’s circumference

In this diagram, we can think of points E and B as two locations on
Earth’s surface (for example, Alexandria and Syene). We’ll assume for the
sake of simplicity that Earth is a perfect sphere and that both of these loca-
tions are on the same meridian. Let’s also assume that AB and DE are two
tall poles or towers that are sufficiently far apart that when extended to
Earth’s center (C), they create a small but measurable angle α. Two paral-
lel rays coming from the sun just miss the tops of the poles and will hit
the ground at slightly different angles. Because Earth’s surface is curved,

Solving Mathematical Problems with Code 137

the angle θ2 between ray 2 and DE will be slightly greater than the angle θ1
between ray 1 and AB. As a result, the shadow of DE on the ground will be
longer than that of AB, even if the poles themselves have the same height.

We also assume that at both locations the poles are positioned vertically
relative to the ground surface, which can be thought of as flat in the vicin-
ity of the poles. This last assumption allows us to measure the angle of a ray
of light relative to a pole. Assuming that the length of the shadow is s and
the height of the pole is h, the angle θ between the ray and the pole can be
expressed as follows:

	 θ = tan–1(s
h)	 (4.1)

Finally, consider triangle ACF in Figure 4-2. According to the exterior
angle theorem, the triangle’s exterior angle AFE must be equal to the sum of
the two interior opposite angles, ACF and CAF. Meanwhile, AFE and θ2 are
equal because these are the alternate interior angles of the line DF that inter-
sects the two parallel solar rays. Therefore, the following must be true:

	 ∠AFE = ∠ACF + ∠CAF

	 θ2 = θ1 + α

Rearranging the latter, we get:

	 α = θ2 – θ1	 (4.2)

This final equation is what we need to estimate Earth’s circumference.
We’ll achieve that by using another geometric relationship that connects
the length d of an arc of a circle to the angle α (in radians) that the arc cre-
ates at the center of the circle:

	 = 2π
Circumferenced

α

Solving for the circumference gives us this equation:

	 = 2πd
αCircumference 	 (4.3)

What Eratosthenes did was quite ingenious. He knew that at noon on
the summer solstice, the sun would be directly overhead at Syene (point B
in Figure 4-2), so a vertical pole there would cast no shadow, meaning θ1 = 0,
and therefore α = θ2 per Equation 4.2. In Alexandria (point E), however, the
sun would be at an angle, so a pole would cast a shadow on the ground. By
measuring the length of this shadow, Eratosthenes was able to calculate the
angle between the sun’s ray (ray 2) and the pole (DE) using Equation 4.1.
He found this angle to be about 7.2 degrees, or 0.12566370614 radians.

Eratosthenes was aware of the distance between Alexandria and Syene—
he estimated it to be 5,000 stadia (about 800 kilometers). With this informa-
tion and the angle of the shadow, he calculated Earth’s circumference (using
Equation 4.3) and arrived at a value of approximately 40,000 kilometers. Once

138 Chapter 4

he determined the circumference, he could also calculate Earth’s radius. For
any circle, the radius r can be calculated from the circumference as:

	
2π

Circumferencer =

Filling in the circumference formula from Equation 4.3, Earth’s radius R is:

	 R = α
d	 (4.4)

This calculation gave Eratosthenes a value of 6,370 kilometers, which is
remarkably close to the actual value of approximately 6,371 kilometers.

The Code
Let’s write some code to imitate the method Eratosthenes used to calculate
Earth’s circumference and radius. We’ll make our program more flexible
by allowing the sun to not be directly overhead at the first location. To do
this, we’ll use Equation 4.1 to figure out the shadow angles, Equation 4.2 to
get the arc angle, Equation 4.3 to calculate the circumference, and finally,
Equation 4.4 to calculate the radius.

import kotlin.math.atan

data class Earth(
 val alpha: Double,
 val circumference: Int,
 val radius: Int
)

fun calculateEarthMetrics(s1: Double, h1: Double,
 s2: Double, h2: Double, d: Double): Earth {
 // Calculate the angles of the shadows.
 val theta1 = atan(s1 / h1)
 val theta2 = atan(s2 / h2)

 // Calculate the angle at the center of Earth.
 val alpha = theta2 - theta1

 // Calculate the circumference and radius.
 val circumference = (2 * Math.PI * d / alpha).toInt()
 val radius = (d / alpha).toInt()

 return Earth(alpha, circumference, radius)
}

fun main() {
 // known values
 val shadow1 = 0.0 // m
 val height1 = 7.0 // m
 val shadow2 = 0.884 // m
 val height2 = 7.0 // m
 val distanceBetweenCities = 800.0 // in km
 val (alpha, circumference, radius) =

Solving Mathematical Problems with Code 139

 calculateEarthMetrics(s1=shadow1, h1=height1,
 s2=shadow2, h2=height2,
 d=distanceBetweenCities)

 // Output the estimated circumference and radius.
 println("\n*** Measuring Earth's Circumference and Radius ***\n")
 println("Angle (alpha): ${"%7.5f".format(alpha)} radian")
 println("Circumference: $circumference kilometers")
 println("Radius: $radius kilometers")
}

The code segment starts by importing the required math function
and defining a data class Earth with three properties: alpha, circumference,
and radius. This data class allows us to conveniently package up the values
estimated inside the calculateEarthMetrics() function and return them via a
single Earth object.

The calculateEarthMetrics() function has five named parameters that
represent the shadow lengths (s1 and s2) and heights (h1 and h2) for the two
locations, and the distance (d) between these two locations. Then the func-
tion follows the steps described on page 137: calculating theta1 and theta2,
using them to calculate alpha, and using alpha to estimate circumference and
radius. Since these are large numbers (when expressed in kilometers), we
convert both circumference and radius into integers (which is how they were
defined in the Earth class).

The main() function’s job is quite simple: call the calculateEarthMetrics()
function; receive the values of alpha, circumference, and radius by deconstruct-
ing the returned object; and print them with appropriate annotations and
format.

The Result
For the given parameter values in this example—the same ones Eratosthenes
used—the output of our program looks like this:

*** Measuring Earth's Circumference and Radius ***

Angle (alpha): 0.12562 radian
Circumference: 40013 kilometers
Radius: 6368 kilometers

Feel free to use this tool to experiment with different parameter values.
For example, you could try using shadow lengths and angles measured on
an exoplanet and find out how large or small the planet is!

Project 13: Code the Fibonacci Sequence
Leonardo of Pisa, commonly known as Fibonacci, was an Italian math-
ematician born c. 1170. From an early age, he showed a keen interest in
mathematics, and his travels to North Africa and the Middle East exposed

140 Chapter 4

him to advanced mathematical concepts that weren’t yet known in Europe.
Fibonacci’s most significant contribution to mathematics was the intro-
duction of the Indo-Arabic numeral system to the Western world, which
included the use of zero. This system replaced the previously used Roman
numerals and revolutionized arithmetic calculations, making them signifi-
cantly more efficient.

Fibonacci is widely recognized for introducing the Fibonacci sequence,
a series of numbers where each number is the sum of the two preceding
numbers. To explain this concept in his book Liber Abaci, Fibonacci used a
colorful analogy involving a pair of rabbits. Imagine placing a pair of rabbits
in an enclosed area. The rabbits can mate when they’re one month old and
can produce a new pair of rabbits when they’re two months old. Therefore,
it takes one month for each new pair to mature and an additional month to
give birth to a new pair. If the rabbits never die and the mating continues,
how many pairs of rabbits will there be after each month?

The solution to this problem forms the Fibonacci sequence. If we
start with (1, 1) representing the starting pair over the first two months,
the sequence will look like this: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, and so on.
These numbers can be linked to Fibonacci’s rabbit example as explained
in Table 4-1.

Table 4-1: Fibonacci’s Rabbits

Month
Young
pairs

Mature
pairs

Total
pairs Explanation

0 1 0 1 Start with a newborn pair, no mature pair, and no offspring.

1 0 1 1 The first pair becomes mature and will reproduce at the end of
this period.

2 1 1 2 The first pair of offspring is born. One mature pair will reproduce
again at the end of this period.

3 1 2 3 The second pair of offspring is born. Two mature pairs will
reproduce at the end of this period.

4 2 3 5 Two new pairs are born. Three mature pairs will reproduce at
the end of this period.

5 3 5 8 Three new pairs are born. Five mature pairs will reproduce at
the end of this period.

Say we want to determine how many rabbit pairs will exist after a cer-
tain number of generations. Here are the steps we can take, using the
Fibonacci sequence:

	 1.	Set the first two numbers in the sequence. By convention, these are usu-
ally 0 and 1 rather than 1 and 1.

	 2.	Add the first two numbers to get the third number in the sequence.

	 3.	Generate the next number by adding the two preceding numbers. This
step can be mathematically expressed as Fn = Fn – 1 + Fn – 2, where n ≥ 2.

	 4.	Repeat step 3 until the stopping condition is met.

Solving Mathematical Problems with Code 141

The Fibonacci sequence has become a classic example of recursive
sequences and is used to illustrate many mathematical concepts in various
fields. Before getting into how to code this sequence, I’ll introduce you to
two other related concepts: the golden ratio and the Fibonacci spiral. These
concepts will be illustrated in our Fibonacci code.

The Golden Ratio
The golden ratio, also known as the golden mean, is a mathematical ratio
commonly found in nature, art, and architecture. The ratio is approxi-
mately 1.61803398875 and is denoted by the Greek letter φ.

The golden ratio is linked to the Fibonacci sequence: as the sequence
continues, the ratio between each successive pair of numbers approaches
the golden ratio. Starting with 1 (we can’t start with 0, as the ratio of 1 over 0
is infinity), if we calculate and plot this ratio for each successive pair, it will
rapidly converge on φ, as shown in Figure 4-3.

0

0.5

1

1.5

2

2.5

1 10 100 1000

Ra
tio

 o
f s

uc
ce

ss
iv

e
nu

m
be

rs

Fibonacci numbers (log scale)

Figure 4-3: Convergence to the golden ratio

Well-known manifestations of the golden ratio in nature include nau-
tilus shells, the arrangements of seeds in a sunflower and scales on a pine
cone, and the proportions of the human body (for example, the ratio of the
length of the forearm to the hand, and the ratio of the overall height to the
height of the navel). The ratio has also been extensively exploited by artists,
musicians, photographers, product designers, and architects in their work.
In architecture, for example, it might determine the ratio of width to height
for a building’s facade.

The Fibonacci Spiral
The Fibonacci spiral is a geometric pattern derived from the Fibonacci
sequence. It’s created by drawing a series of quarter circles inside squares

142 Chapter 4

that are based on the numbers in the Fibonacci sequence. To draw the
Fibonacci spiral, follow these steps:

	 1.	Draw a small square with a side length of 1.

	 2.	Draw another square of side length 1 adjacent to the first square, shar-
ing a side.

	 3.	Draw a third square of side length 2 adjacent to the second square,
sharing a side.

	 4.	Draw a fourth square of side length 3 adjacent to the third square, shar-
ing a side.

	 5.	Continue this process, drawing squares with side lengths equal to the
sum of the two preceding squares, adjacent to the last drawn square,
sharing a side.

	 6.	Draw a quarter circle inside each of the squares, connecting the oppo-
site corners of each square. The quarter circles will form a smooth
curve: the Fibonacci spiral.

If you follow these steps and draw the spiral for the first eight numbers
(starting from 1), the result will look like Figure 4-4.

21

13

8

5

3

2

1 1

Figure 4-4: A Fibonacci spiral for the first eight numbers

The Fibonacci spiral, often associated with the golden ratio, is a recur-
ring pattern in nature, appearing in various forms such as seashells, leaf
arrangements, and even the spirals of distant galaxies! While the golden
ratio is not an absolute prerequisite for beauty or efficiency in design, it
undeniably holds an enduring charm as a mathematical concept that con-
tinues to capture our imagination.

Solving Mathematical Problems with Code 143

The Code
Generating and printing the Fibonacci sequence up to a certain limit
can be accomplished with just a few lines of code. Let’s take this project a
step further: along with generating the sequence itself, we’ll also draw the
Fibonacci spiral. This way, we’ll be able to practice some of the data visu-
alization techniques covered in the previous chapter and anticipate future
projects where we’ll gain deeper insight into a problem by visualizing the
program output.

Setting Up

To begin, we’ll write the global components of the code, including the
import block needed for the visualization, the FibonacciSpiral application
class, and the main() function.

import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.canvas.Canvas
import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.Pane
import javafx​.scene​.paint​.Color
import javafx.scene.shape.ArcType
import javafx.scene.text.Font
import javafx.stage.Stage

// number of Fibonacci numbers in the list
val N = 9
val fibs = mutableListOf<Int>()

// canvas-related parameters
val canvasW = 1000.0
val canvasH = 750.0

// Scaling parameters: adjust as needed.
val xOffset = 150
val yOffset = 50
val amplify = 25.0

class FibonacciSpiral : Application() {
 override fun start(stage: Stage) {
 val root = Pane()
 val canvas = Canvas(canvasW, canvasH)
 val gc = canvas.graphicsContext2D
 gc.translate(canvas.width / 2 + xOffset,
 canvas.height / 2 + yOffset)
 root.children.add(canvas)

 val scene1 = Scene(root, canvasW, canvasH)
 scene1.fill = Color.WHITE
 with(stage) {
 title = "Fibonacci Spiral"

144 Chapter 4

 scene = scene1
 show()
 }

 // code for Fibonacci sequence and spiral
 generateFibonacciNumbers()
 drawFibonacciSpiral(gc)
 printFibonacciSequenceAndRatios()
 }
}

fun main() {
 Application.launch(FibonacciSpiral::class.java)
}

The code segment starts with an import block that provides access to a
number of JavaFX graphics features that we’ll use to draw the Fibonacci spi-
ral on a canvas object. See Chapter 3 for a review of these features. Coding
in IntelliJ IDEA means you don’t need to memorize which library features
you need to import; as you use the default template and add code that may
require additional graphics elements, the IDE will import those features
automatically.

Following the import block, we set up some global parameters. First,
we create a variable called N to set how far into the Fibonacci sequence
we’ll go (starting from 0). Then, we create a mutable list of type Int named
fibs, which will store the Fibonacci sequence as we calculate it. We also set
several parameters to create a canvas where we’ll draw the Fibonacci spiral.
To define the size of the canvas, we use the values canvasW and canvasH, and
to set the starting location of the origin of the coordinate system, we use
xOffset and yOffset. For this particular project, I’ve set the canvas size to
1,000 pixels wide and 750 pixels high, which should be suitable for most
screen sizes and resolutions.

It’s important to note that the length of a line or the side of a rectangle
on the canvas is measured in pixels. To plot the Fibonacci spiral, we’ll start
with a square of size 1. However, drawing a square of 1 pixel would result
in a tiny dot on the screen, which we don’t want. To avoid this, we’ll use
an amplification factor called amplify and set it to 25. Therefore, the first
square will be 25 pixels in size, and all subsequent squares will be amplified
by the same factor. This ensures that the end result is a Fibonacci spiral that
fills the canvas nicely.

In the FibonacciSpiral application class, we first create a layout container
called root of type Pane(), which is the most basic layout container in JavaFX
to hold and position nodes (user interface components) in a scene. We use
root to hold the canvas on which the spiral will be drawn. Notice how we use
the translate property of the graphics context gc to shift the initial position
of the origin from the top-left corner (the default) to a position offset a bit
from the middle of the canvas, where we’ll draw the first Fibonacci square
(see Figure 4-4 to get a sense of where that is). The rest of the class is rou-
tine JavaFX: we assign canvas to root, which is assigned to scene1, which con-
nects to stage, the primary display window for this application.

Solving Mathematical Problems with Code 145

Next, we move to the problem-specific segment of the application class,
which consists of calls to three separate functions: generateFibonacciNumbers(),
drawFibonacciSpiral(), and printFibonacciSequenceAndRatios(). These functions
do exactly what their names suggest, and we’ll discuss them in detail shortly.

Finally, the main() function contains a single line of code that launches
a JavaFX application by calling the launch() method of the Application class,
passing it the FibonacciSpiral class as an argument.

Generating the Fibonacci Sequence

The generateFibonacciNumbers() function generates the Fibonacci sequence as
discussed earlier.

fun generateFibonacciNumbers() {
 // Add the starting pair.
 fibs.add(0)
 fibs.add(1)

 // Generate the sequence.
 for (i in 2 until N) {
 fibs.add(fibs[i-1] + fibs[i-2])
 }
}

First, F(0) and F(1) are set to 0 and 1, respectively, and then the rest of
the sequence is generated using Fn = Fn – 1 + Fn – 2, where n ≥ 2. We add all
generated numbers to the mutable list fibs using its fibs.add() method.

Drawing the Fibonacci Spiral

The drawFibonacciSpiral() function drives the process of drawing the Fibonacci
spiral using the generated sequence of Fibonacci numbers, with support from
two other helper functions that label each square with its corresponding
Fibonacci number and draw the quarter circles.

fun drawFibonacciSpiral(gc: GraphicsContext) {
 for (i in 1 until N) {
 1 val side = fibs[i] * amplify
 2 with(gc) {
 strokeRect(0.0, 0.0, side, side)
 drawText(i, gc, side)
 drawArc(gc, side)
 // Move to the opposite corner by adding
 // side to both x- and y-coordinates.
 translate(side, side)
 // Rotate the axes counterclockwise.
 rotate(-90.0)
 }
 }
}

146 Chapter 4

fun drawText(i: Int, gc: GraphicsContext, side: Double) {
 gc.fill = Color.BLACK
 with(gc) {
 3 font = when {
 i <= 2 -> Font.font(12.0)
 else -> Font.font(24.0)
 }
 fillText(fibs[i].toString(), side/2, side/2)
 }
}

fun drawArc(gc: GraphicsContext, side: Double) {
 val x = 0.0
 val y = -side
 with(gc) {
 lineWidth = 3.0
 strokeArc(x, y, 2*side, 2*side,
 -90.0, -90.0, ArcType.OPEN)
 }
}

The drawFibonacciSpiral() function uses a for loop that starts with 1 (we
cannot draw a square of size 0) to iterate over the sequence of numbers.
In the loop, we retrieve the current number and multiply it by amplify to
properly scale the squares on the screen 1. Then we implement the rest of
the process inside a with(gc) block 2 where we draw a square, annotate it,
and draw an arc. At the end of each cycle, we move the canvas’s origin to
the next location and rotate the coordinate system counterclockwise by
90 degrees. This way, the squares will spiral outward, as shown in Figure 4-4,
but we’ll still be able to draw each one with the same strokeRect(0.0, 0.0,
side, side) call.

In the drawText() function, we use the argument i, which represents the
index of the current Fibonacci number, to set the font size of the text used
for annotation 3. This ensures that the first two numbers fit inside a square
of size 25 pixels. We then use the fillText() method of the graphics context
gc to draw the number in the middle of its corresponding square.

The drawArc() function sets up the parameter values needed by the
strokeArc() method of the graphics context. These parameters include the
top-left corner of the rectangle, its width and height, the starting angle with
respect to the x-axis in degrees, and the length of the arc in degrees. We
also specify the arc type as OPEN, which means the two endpoints won’t be
connected with a line.

For drawing the arc, think of the imaginary box inside which the arc will
be drawn as a stand-alone object that has its own coordinate system whose
origin is at the center of the box. Inside this box, the positive x-axis points
east and the positive y-axis points north. (Note that this isn’t the same as the
default convention used by the JavaFX canvas.) Taking this into account,
drawing an arc counterclockwise is considered the positive direction, and
this is how the starting angle and arc length are specified. For example, we’ve
specified the start angle as –90 degress and the arc length as –90 degrees
(both in the clockwise direction relative to the positive x-axis). Alternatively,

Solving Mathematical Problems with Code 147

we could have specified the start angle as +180 degress and the arc angle as
+90 degrees (both counterclockwise) to produce the same result.

Printing the Sequence

We have one more function that prints the Fibonacci sequence, as well as
the ratios between successive terms in the sequence, to illustrate how these
values converge on the golden ratio.

private fun printFibonacciSequenceAndRatios() {
 println("\n*** Fibonacci sequence and ratios ***\n")
 println("Length of Fibonacci sequence=${fibs.size}")
 println("Generated sequence:")
 1 println(fibs)
 println("\nRatio F(n+1)/F(n) [starting from (1,1) pair]:")
 for (i in 2 until fibs.size) {
 println("%5d".format(fibs[i-1]) +
 "%5d".format(fibs[i]) +
 "%12.6f".format(fibs[i].toDouble()/fibs[i-1])
)
 }
}

The function first prints a header message and the length of the gener-
ated Fibonacci sequence. Next, it prints the generated sequence itself using
println() 1. Finally, a for loop calculates and prints the ratios of adjacent
numbers in the sequence, using format() to show the values with appropri-
ate spacing and precision.

The Result
When you run the code, the text portion of the output should appear as
follows:

*** Fibonacci sequence and ratios ***

Length of Fibonacci sequence=9
Generated sequence:
[0, 1, 1, 2, 3, 5, 8, 13, 21]

Ratio F(n+1)/F(n) [starting from (1,1) pair]:
 1 1 1.000000
 1 2 2.000000
 2 3 1.500000
 3 5 1.666667
 5 8 1.600000
 8 13 1.625000
 13 21 1.615385

Notice how the ratios initially zigzag around the value of 1.61803398875
but quickly approach the golden ratio once we reach the 10th pair in the
sequence.

148 Chapter 4

Of course, the app also displays a beautiful Fibonacci spiral drawn on
the canvas using JavaFX. It should look exactly like Figure 4-4—that figure
was generated with this very code!

E X ERCISE

A concept related to the Fibonacci sequence and the golden ratio is Pascal’s
triangle, named after the French mathematician Blaise Pascal (although it was
known to Chinese mathematicians over 500 years earlier). It has many interest-
ing properties and applications in mathematics, including its use in calculating
binomial coefficients, which arise in probability theory and other fields.

Pascal’s triangle starts with a row containing a single number 1. Each
subsequent row has one more number than the row above it. Each number is
determined by adding the adjacent pair of numbers directly above it (except
for a 1 on either end of each row). The first seven rows of Pascal’s triangle are
shown here:

1

2
3 3

4 46
5 51010

15 20 15 66

1
1

1
1

1
1

1
1

1
1

1
1

Try writing the Kotlin code to generate Pascal’s triangle up to some arbi-
trary length (say, 10 rows). Display the result as text output formatted to look
like a triangle.

Project 14: Find the Shortest Distance Between Two Locations on Earth
We use the Pythagorean theorem to calculate distances between points on
the same plane. However, for points on Earth’s surface, this method isn’t
accurate over long distances, because it doesn’t consider Earth’s curved
shape. That’s where the haversine formula comes in. It calculates the shortest
distance between two points on the surface of a sphere using the latitude
and longitude coordinates of the points. In the case of Earth, the formula
isn’t totally accurate, since Earth isn’t perfectly spherical, but it still offers a
reasonable distance approximation for many practical applications, includ-
ing in navigation, astronomy, and geography.

The haversine formula revolves around the concept of a great circle, the
largest circle that can be drawn on a sphere. It’s formed by the intersection
of the sphere’s surface with a plane that passes through the sphere’s center.

Solving Mathematical Problems with Code 149

The great circle divides the sphere into two equal halves, and its circumfer-
ence matches the circumference of the sphere itself.

Figure 4-5 showcases two prominent great circles: the equator and
the prime meridian. The equator acts as a dividing line between the
northern and southern hemispheres, while the prime meridian (which
passes through Greenwich, England) separates the Eastern and Western
Hemispheres on Earth’s surface. These two great circles serve as references
for latitude and longitude, which together define the locations of points on
Earth’s surface.

P

Equator

Prime meridian

A

B

C

D

A = Point at the intersection of the
prime meridian and the equator

B = Point at the intersection of the
great circle DB and the equator

C = Center of Earth

D = North Pole

ϕ

λ

Figure 4-5: The latitude and longitude of a point P

Latitude measures the distance north or south of the equator. It’s
expressed in degrees, with the equator being 0 degrees latitude, the North
Pole 90 degrees north (90°N), and the South Pole 90 degrees south (90°S).
In Figure 4-5, the latitude of point P would be denoted as φ°N, as it lies
φ degrees north of the equator along a great circle that intersects with P
and the North Pole. Longitude measures the distance east or west of the
prime meridian. The prime meridian itself has a longitude of 0 degrees,
and longitude values range from –180 degrees west of the prime meridian
to 180 degrees east of the prime meridian. In the case of point P, its longi-
tude would be λ°E, indicating its great circle is λ degrees east of the prime
meridian.

N O T E 	 You may be used to seeing all latitude and longitude values expressed as positive
numbers, but for the haversine formula to work, southern latitudes and western lon-
gitudes must be negative. Our program will automatically convert coordinates that
don’t follow this convention.

Given any two points on the surface of a sphere, you can draw a great
circle that intersects with both points, and that great circle will define the
shortest path between the two points. If you know the angle θ (in radians)

150 Chapter 4

between the points—that is, the angle formed at the sphere’s center by
the arc connecting the points—and if you know the radius r of the sphere,
you can calculate the distance along the sphere’s surface between the two
points as follows:

	 d = rθ	 (4.5)

In the case of Earth, we know the radius R to be about 6,371.009
kilometers, but how do we know the angle between two points on Earth’s
surface? This is where the haversine formula comes in. It uses the points’
latitude and longitude coordinates, and a bit of trigonometry, to determine
that angle, which in turn lets us calculate the distance between the points.
The formula involves a little-known trigonometric function called the
haversine function. The haversine of an angle θ is defined as follows:

	 hav(θ) = sin2()2
θ

	 (4.6)

The haversine formula calculates a, the haversine of the angle between
two points on Earth’s surface, as follows:

	 a = hav(φ2 – φ1) + cos(φ1) cos(φ2) hav(λ2 – λ1)

Here (φ1, λ1) and (φ2, λ2) are the latitude and longitude coordinates of the
two points, expressed in radians. To convert from degrees to radians, sim-
ply multiply by π and divide by 180.

We now have the haversine of the angle between the two points, but not
the angle itself. For that, we can use the a we just calculated and the defini-
tion of haversine (Equation 4.6) to solve for the arc angle c:

	 c = 2 sin–1(√a)	

Now that we have the angle c, we have everything we need to calculate the
distance between the points using Equation 4.5:

	 d = Rc

There’s one catch, however: d works out to a real number only when
0 ≤ a ≤ 1, but sometimes a can be pushed outside this range due to a floating-
point error. To avoid this, we should instead express c as:

	 c = 2 sin–1√max(0.0, min(a, 1.0))	

This constrains the value of a to a range from 0 to 1, preventing any unreal-
istic results.

The Code
We now have everything we need to write a Kotlin program that calculates
the shortest distance between two locations on Earth. For this example, I’ve
hardcoded the locations of two well-known landmarks, Big Ben in London

Solving Mathematical Problems with Code 151

and the Statue of Liberty in New York, but you can use any locations you
want. The code consists of four main segments: an import block and global
declarations, the main() function, the printLatLong() function, and the
haversineDistance() function. I’ll discuss them in the same order.

// Import math functions.
import kotlin.math.sin
import kotlin.math.asin
import kotlin​.math​.cos
import kotlin.math.PI
import kotlin.math.max
import kotlin.math.min
import kotlin.math.pow
import kotlin.math.sqrt

// Define a Location data class.
data class Location(
 val name: String = "",
 var lat: Double,
 val latDir: String,
 var lon: Double,
 val lonDir: String
)

// global variables and parameters
// N = north, S = south, E = east, W = west
val L1 = Location(name = "Big Ben", lat=51.5004,
 latDir = "N", lon=0.12143, lonDir = "W")
val L2 = Location(name="Statue of Liberty", lat = 40.689978,
 latDir = "N", lon = 74.045448, lonDir = "W")
val locations = listOf(L1, L2)

val R = 6371.009 // radius of Earth in km

fun main() {
 println("\n*** Measuring Distance Between Two Locations on Earth ***\n")
 printLatLong(category = "input", locations)
 val d = haversineDistance()
 printLatLong(category = "adjusted", locations)
 println("\nThe distance between the two given locations:")
 println("d = ${"%10.2f".format(d)} km")
}

fun printLatLong(category: String, locationsToPrint: List<Location>) {
 when(category) {
 "input" ->
 println("​.​.​.inputted coordinates...\n")
 "adjusted" ->
 println("\n...adjusted coordinates...\n")
 }
 locationsToPrint.forEach { location -> println(location)}
}

152 Chapter 4

fun haversineDistance(): Double {
 // Adjust signs based on N-S and E-W directions.
 1 for (location in locations) {
 with(location) {
 if(latDir == "S" && lat > 0.0) lat = - lat
 if(lonDir == "W" && lon > 0.0) lon = - lon
 }
 }
 // Calculate the angles in radians.
 val phi1 = L1.lat * PI/180
 val phi2 = L2.lat * PI/180
 val delPhi = phi2 - phi1
 val delLambda = (L2.lon - L1.lon) * PI/180

 // Calculate the distance using haversine formula.
 2 val a = sin(delPhi/2).pow(2) +
 cos(phi1) * cos(phi2) *
 sin(delLambda/2).pow(2)
 // Ensure that 0 <= a <= 1 before calculating c.
 3 val c = 2 * asin(sqrt(max(0.0, min(1.0, a))))
 4 val d = R * c
 return d
}

Since the haversine formula needs to use quite a few math functions, we
begin by importing those from the kotlin.math package. Next, we declare a
data class Location with five properties: name (the name of the location), lat (the
latitude), latDir (the direction of the latitude), lon (the longitude), and lonDir
(the direction of the longitude). We then create two Location objects, L1 and L2,
representing Big Ben and the Statue of Liberty. We store them together in a
list called locations so we can efficiently iterate over the locations.

Notice that I’ve provided the latitude and longitude values as positive
numbers in degrees, regardless of which direction they’re in. I’m relying
on the latDir and lonDir properties to communicate that extra information.
The convention is N for north, S for south, E for east, and W for west. In cases
where the latitude or longitude of a location is exactly 0, the corresponding
direction can be set to EQ (equator) or PM (prime meridian), although this
won’t impact the final result. Later, in the haversineDistance() function, we
ensure that when the lat or lon direction is S or W, respectively, the corre-
sponding values are always negative 1.

The main() function prints the provided latitude and longitude values
before and after adjustments (if any) using the printLatLong() function,
makes a single call to the haversineDistance() function, and prints the result.

The printLatLong() function takes one argument, category, which is of
type String. The category parameter is passed to a when block to determine
which of two messages to print, indicating whether the coordinates have
been adjusted for their direction properties. The locations themselves are
then printed one at a time using the forEach() method of the locationsToPrint
list. We could have used a regular for loop here, but some Kotlin enthusi-
asts consider forEach() to be more idiomatic.

Solving Mathematical Problems with Code 153

Finally, the haversineDistance() function calculates the shortest distance
between the two locations on a spherical surface. It first iterates over the
locations and negates the latitudes and longitudes if needed 1, then con-
verts all the latitude and longitude values from degrees to radians. Next,
it steps through the equations we discussed on page 150, using the coordi-
nates to calculate a 2, using a (constrained to between 0 and 1) to calculate
the angle c 3, and using c to calculate and return the haversine distance d
between the points 4.

The Result
When you run the program for the set location and parameter values, the
output should appear as follows:

*** Measuring Distance Between Two Locations on Earth ***

​.​.​.inputted coordinates...

Location(name=Big Ben, lat=51.5004, latDir=N, lon=0.12143, lonDir=W)
Location(name=Statue of Liberty, lat=40.689978, latDir=N, lon=74.045448,
lonDir=W)

...adjusted coordinates...

Location(name=Big Ben, lat=51.5004, latDir=N, lon=-0.12143, lonDir=W)
Location(name=Statue of Liberty, lat=40.689978, latDir=N, lon=-74.045448,
lonDir=W)

The distance between the two given locations:
d = 5575.08 km

As mentioned on page 148, the haversine calculation assumes that
Earth is a perfect sphere, which is not true. In fact, Earth is an oblate spher-
oid, slightly flattened at the poles and bulging at the equator. To get around
this wrinkle, you could use Vincenty’s formula, which takes into account
the oblate spheroidal shape of Earth by considering Earth’s equatorial and
polar diameters. Which formula to use really depends on the nature of the
problem, as both methods have their strengths and their weaknesses.

E X ERCISE

Every time you fly to a distant location for business or pleasure, you might
wonder about the minimum flight distance between the departing and arriving
cities. Now that you know how to calculate the haversine distance, you can find
the answer if you know the latitude and longitude coordinates of the locations.
Try finding the shortest distance between the locations listed here. (You can
look up the coordinates for these locations online; for the last two cases, you
should already know what they are.)

(continued)

154 Chapter 4

•	 Tokyo, Japan, and Sydney, Australia

•	 Paris, France, and Lima, Peru

•	 Dublin, Ireland, and Ankara, Turkey

•	 The North Pole and South Pole

•	 Two points where the equator and the prime meridian intersect, located on
opposite sides of the globe

As an added step, use the calculated distances and an average speed of
air travel to estimate the flight times between these locations.

Project 15: Do Encryption with the Hill Cipher
In today’s interconnected world, we constantly share sensitive data like per-
sonal information, financial details, and confidential messages. What’s to
stop unauthorized parties from accessing that information? The answer is
encryption, a set of techniques for scrambling our data into gibberish that
can be deciphered only with the right key. Encryption protects our privacy,
safeguards against hackers and cybercriminals, and secures our online
transactions.

There are a variety of encryption algorithms in use today. In this
project, we’ll focus on a particular algorithm called the Hill cipher, devel-
oped by American mathematician Lester S. Hill in 1929. According to
this method, the plaintext (text in plain English or any other language) is
divided into blocks of fixed size and represented as vectors. These vectors
are then multiplied by a square matrix called the encryption key, modulo a
specified number, to obtain the ciphertext (encrypted text). For decryption,
the ciphertext vectors are multiplied by the inverse of the encryption key
matrix, modulo the same specified number.

Hill’s encryption method can be vulnerable to attacks if we don’t
choose the encryption key matrix carefully. While it’s no longer employed
as the sole encryption mechanism, it can still be incorporated into more
sophisticated methods and remains a valuable concept to grasp. Plus,
exploring Hill’s method provides an excellent opportunity to apply and
enhance our coding skills in the crucial field of cryptography.

How It Works
The Hill cipher revolves around concepts from linear algebra and modulo
operations. I don’t expect you to have an in-depth knowledge of these areas
of mathematics, but you may wish to review these topics to gain a better
insight into how the Hill cipher actually works, as well as its strengths and
weaknesses. Here are brief definitions of the key terms that we’ll use in this
project:

Solving Mathematical Problems with Code 155

Vector

A one-dimensional sequence of values. For example, [1, 3, 5] is a row
vector with three elements.

Matrix

A two-dimensional collection of values, arranged in rows and columns.
For example, a 3×3 matrix has three rows and three columns, and a
total of nine elements (numbers) that can be real or complex.

Determinant

A single value calculated using the elements of a matrix. The matrix
must be square, meaning it has the same number of rows and columns.
Say we have the following square matrix A:

	 A = d e f
a b c

g h i
	

Its determinant, denoted by det(A), det A, or |A|, can be calculated as
follows:

	 det(A) = aei + bfg + cdh – ceg – bdi – afh

Identity matrix

A square matrix, often denoted as I, where all the elements along a
diagonal from the top left to the bottom right have a value of 1 and all
other elements have a value of 0. A 3×3 identity matrix looks like this:

	 I = 0 1 0
1 0 0

0 0 1

Inverse matrix

For a given matrix A, its inverse A–1 is another matrix such that multi-
plying the two matrices results in the identity matrix (that is, AA–1 = I).
A matrix must be square to have an inverse, although not all square
matrices have one.

Modulo

An operation represented by the symbol % that finds the remain-
der when one number is divided by another. For example, 5 % 2 is 1.
Modulo (mod for short) is a multipurpose operator used in various
applications, such as determining divisibility, cycling through a range
of values, and handling periodic patterns. Hill’s algorithm relies on the
modulo operation to keep the encrypted and decrypted texts within
the same alphabet as the plaintext. Thus, the size of the alphabet serves
as the base or modulus (the number after the % operator) for these oper-
ations, guaranteeing valid ciphertext and plaintext representations.

156 Chapter 4

Modular multiplicative inverse (MMI)

For a given integer a and a modulus m, the MMI is positive integer x
such that ax % m = 1. The value of x must be less than the modulus. For
example, the MMI for 5 modulo 11 is 9, because (5 * 9) % 11 = 1, and
9 is less than 11.

Armed with these definitions, let’s now dive into the core encryption
and decryption steps employed by the Hill cipher and highlight some of our
Kotlin implementation.

For Encryption

	 1.	Define the alphabet. Choose which letters are to be used for writ-
ing plain and encrypted messages. For messages written in English,
the alphabet size should be at least 26 to include all lowercase letters.
We’ll also include a period, a space, and a question mark, giving us an
alphabet of 29 characters total. The size of the alphabet serves as the
modulus.

	 2.	Choose a block size. During encryption and decryption, the message is
divided into small blocks of characters, each of the same length. In this
exercise, we’ll have three characters per block.

	 3.	Generate the encryption key matrix. For the purposes of this project,
I’ve generated the encryption key matrix for you, but if you’re curious,
it must adhere to these rules:

a.	 The matrix must be square and have the same dimension as the
block size chosen in step 2. In this case, with a block size of 3, we
need a 3×3 matrix.

b.	 The determinant of the matrix can’t be 0.

c.	 The determinant must not share a factor, other than 1, with the
modulus from step 1.

	 4.	Prepare the plaintext. Divide the plaintext message into blocks based
on the chosen block size. If the last block is smaller than the fixed size,
pad it with filler characters. We’ll use spaces for padding to ensure that
the message remains the same after decryption, with no extra visible
characters.

	 5.	Create vectors from the plaintext. Each block of the plaintext must be
converted into a numerical vector with the same length as the block
size. To assign numerical values to characters, we’ll save the alphabet
in a single String object. We can then map each character in the plain-
text to that character’s corresponding index in the string. For example,
a will be mapped to 0, b to 1, and so on. This way, the block cab will
become (2, 0, 1), a vector of size 3.

	 6.	Encrypt the message. For each block, carry out the following steps:

a.	 Multiply the block’s plaintext vector by the key matrix, modulo 29,
to generate a ciphertext vector.

Solving Mathematical Problems with Code 157

b.	 Convert the numerical values in the ciphertext vector back to text
characters using the reverse mapping scheme.

c.	 Add the ciphered characters to a mutable list of characters, which
will become the encrypted message (ciphertext) once all the blocks
have been processed.

For Decryption

	 1.	Generate the decryption key matrix. To decipher the encrypted text,
we must first create the inverse of the encryption key matrix modulo
the specified number. This process involves multiple linear algebraic
steps and modulo operations; for simplicity, I’ve provided the inverse
matrix. If you want to work with a different set of key and inverse matri-
ces, you can look up the online tools that will generate those for you.

	 2.	Prepare the ciphertext. Divide the ciphertext into blocks of the speci-
fied size used during encryption (3 for this project). This time, no pad-
ding is needed, since the padding was already done during encryption.

	 3.	Create vectors from the ciphertext. Use the same character-numbering
scheme to convert the ciphertext blocks into ciphertext vectors of size 3.

	 4. Decrypt the message. For each block, carry out the following steps:

a.	 Multiply the ciphertext vector by the decryption key matrix, modulo
29, to generate a deciphered vector.

b.	 Convert the numerical values in the deciphered vector back to text
characters using the reverse mapping scheme.

c.	 Add the deciphered characters to a mutable list of characters, which
will become the decrypted message (plaintext) once all the blocks
have been processed.

Finally, keep in mind that it’s customary to pick an encryption key matrix
made up of only integers, preferably falling between 0 and the modulus.

The Code
We’re ready to implement the Kotlin code for Hill’s encryption and decryp-
tion method. The code is organized in a top-down manner, starting with
global declarations, continuing with the main() function, and ending with a
series of short helper functions. We’ll review everything in sequence.

Variables and Data Structures

We begin by declaring the variables and data structures needed to imple-
ment Hill’s method.

/* --- Hill's method for encrypting and decrypting texts --- */

// Declare the key matrix and its inverse.
// keyInv is based on mod 29.
val key = arrayOf(

158 Chapter 4

 intArrayOf(13, 11, 6),
 intArrayOf(15, 21, 8),
 intArrayOf(5, 7, 9)
)

val keyInv = arrayOf(
 intArrayOf(1, 12, 8),
 intArrayOf(20, 0, 6),
 intArrayOf(0, 3, 20)
)

val dim = key.size
const val alphabet = "abcdefghijklmnopqrstuvwxyz .?"

data class Block(
 val t1: Char,
 val t2: Char,
 val t3: Char,
)

val indexVector = IntArray(dim)
val processedVector = IntArray(dim)
val blocks = mutableListOf<Block>()
val processedText = mutableListOf<Char>()

First, we create the matrices for encryption and decryption (key and
keyInv). For this project, we’ll accept these as given, but you can use online
tools to create a different encryption key matrix that meets the required
conditions and calculate the corresponding inverse matrix. The size of these
square matrices is captured in the parameter dim, which is later used as the
block size for processing messages. We also define a string called alphabet that
stores all the valid letters that can be used in the plaintext and ciphertext.

Next, we introduce a data class called Block, which we’ll use to store the
text blocks generated while processing the message. These blocks will be
stored as a mutable list named blocks. We also create a few other collections
to temporarily hold and manipulate the vectors created during encryption
and decryption operations, along with a mutable list named processedText to
store the final list of characters. Since the encryption and decryption pro-
cesses are very similar, we’ll be able to use these variables and collections
during both processes to store the intermediate and final values.

The main() Function

The main() function calls a series of helper functions to coordinate the over-
all encryption or decryption process.

fun main() {
 println("\n*** Cryptography with Hill's Method ***\n")
 runValidation()
 println("\nEnter 1 for encryption or 2 for decryption:")

 1 when(val choice = readln().toInt()) {
 1 -> {

Solving Mathematical Problems with Code 159

 println("You have chosen encryption\n")
 getText()
 encrypt()
 printProcessedText(choice)
 }
 2 -> {
 println("You have chosen decryption\n")
 getText()
 decrypt()
 printProcessedText(choice)
 }
 else -> println("\nInvalid choice...exiting program\n")
 }
}

In main(), we first call the runValidation() function, which uses matrix
multiplication (mod 29) to ensure that the encryption and decryption
matrices are valid. We then prompt the user to choose which operation
to carry out: encryption (enter 1) or decryption (enter 2). Based on the
choice, we use a when block 1 to implement the steps to encrypt or decrypt
a message.

For both choices, we start with the getText() function, which takes in
the message to be encrypted or decrypted from the user as a text string
and divides it into blocks. We then call encrypt() or decrypt(), depending
on the choice made earlier. Finally, we display the result with help from the
printProcessedText() function.

The Helper Functions

There are several helper functions called from within the main() function.
We’ll turn to those next, starting with the functions that help validate the
matrices.

fun runValidation() {
 println("key matrix dimension:")
 println("${key.size} x ${key[0].size}\n")

 // validation of key and keyInv
 val productMatrix = multiplyMatricesMod29(key, keyInv,
 r1=dim, c1=dim, c2=dim)
 displayProduct(productMatrix)
}

fun multiplyMatricesMod29(firstMatrix: Array <IntArray>,
 secondMatrix: Array <IntArray>,
 r1: Int,
 c1: Int,
 c2: Int): Array <IntArray> {
 val product = Array(r1) { IntArray(c2) }
 for (i in 0 until r1) {
 for (j in 0 until c2) {

160 Chapter 4

 for (k in 0 until c1) {
 product[i][j] += (firstMatrix[i][k] *
 secondMatrix[k][j])
 }
 1 product[i][j] = product[i][j] % 29
 }
 }
 return product
}

fun displayProduct(product: Array <IntArray>) {
 println("[key * keyInv] mod 29 =")
 for (row in product) {
 for (column in row) {
 print("$column ")
 }
 println()
 }
}

The runValidation() function displays the size of the key matrices. It then
calls multiplyMatricesMod29() to do the validation check and shows the results
with displayProduct(). The matrices are considered valid if one is the inverse
of the other, modulo 29. If this is the case, the product of the two matrices,
modulo 29, should be an identity matrix where all elements are zeros, except
for ones along the diagonal from the top left to the bottom right.

In multiplyMatricesMod29(), we test this out, using three nested for loops
to multiply the encryption and decryption key matrices, taking modulo 29
of each resulting value before putting it in the product matrix 1. See
the “Multiplying Two Matrices” box for details about the math behind
this process.

MULT IPLY ING T WO M AT R ICES

To multiply two matrices, we must first ensure that their shapes (number of rows
and columns) are compatible: the number of columns in the first matrix must
be equal to the number of rows in the second matrix. As a result, the product
matrix will have the same number of rows as the first matrix and the same num-
ber of columns as the second matrix.

Once this condition is met, we work through the rows of one matrix and
the corresponding columns of the other, multiplying and summing the values.
Say we have the following two 3×3 matrices, A and B:

A = 4 5 6 ,
1 2 3

7 8 9
B = 6 5 4

9 8 7

3 2 1

Here are the steps to find their product matrix C:

Solving Mathematical Problems with Code 161

1.	 Multiply the elements in the first row of matrix A by the elements in the first
column of matrix B and add the results together: (1 × 9) + (2 × 6) + (3 × 3)
= 9 + 12 + 9 = 30. This is the value at C[1,1], the first row and first column
of the product matrix.

2.	 Multiply the elements in the first row of matrix A by the elements in the
second column of matrix B and add the results together: (1 × 8) + (2 × 5)
+ (3 × 2) = 8 + 10 + 6 = 24. This is the value at C[1,2], the first row and
second column of the product matrix.

3.	 Multiply the elements in the first row of matrix A by the elements in the
third column of matrix B and add the results together: (1 × 7) + (2 × 4)
+ (3 × 1) = 7 + 8 + 3 = 18. This is the value at C[1,3], the first row and third
column of the product matrix.

4.	 Repeat steps 1 through 3 for the second and third rows of matrix A to get
the values in the second and third rows of the product matrix C.

After performing all these calculations, we get this result:

A =
30 24 18
84 69 54

138 114 90

The displayProduct() function neatly formats and prints the contents
of the product matrix. As you’ll later see in the example output, the result
should indeed be an identity matrix.

Here’s the getText() function, which we call from main() at the start of
the encryption or decryption process:

fun getText() {
 println("Enter text for processing:")
 var text = readln().lowercase()
 val tmp = " " // Use a space for padding.

 1 when(text.length % 3) {
 1 -> text = text + tmp + tmp
 2 -> text += tmp
 }
 for (i in text​.indices step 3)
 blocks.add(Block(text[i], text[i+1], text[i+2]))
}

The function uses readln() to take in the plaintext or ciphertext from
the user. We convert all the characters to lowercase since we have only low-
ercase letters in our alphabet. We then check if the input string is divisible
by 3 1 and pad it with spaces if not. Finally, we use a for loop with a step
size of 3 to break the text into three-character blocks. Each one is stored in
a Block object and added to the blocks mutable list.

162 Chapter 4

The remainder of the helper functions do the work of actually encrypt-
ing and decrypting the text.

fun encrypt() {
 for (block in blocks) {
 getIndexBlock(block)
 encryptIndexBlock()
 addToProcessedText()
 }
}

fun decrypt() {
 for (block in blocks) {
 getIndexBlock(block)
 decryptIndexBlock()
 addToProcessedText()
 }
}

fun getIndexBlock(block: Block) {
 val (x,y,z) = block
 indexVector[0] = alphabet​.indexOf(x)
 indexVector[1] = alphabet​.indexOf(y)
 indexVector[2] = alphabet​.indexOf(z)
}

fun encryptIndexBlock() {
 for (j in 0 until 3) {
 var sum = 0
 for (i in 0 until 3) {
 sum += indexVector[i] * key[i][j]
 }
 processedVector[j] = sum % 29
 }
}

fun decryptIndexBlock() {
 for (j in 0 until 3) {
 var sum = 0
 for (i in 0 until 3) {
 sum += indexVector[i] * keyInv[i][j]
 }
 processedVector[j] = sum % 29
 }
}

fun addToProcessedText() {
 processedVector.forEach { i ->
 processedText += alphabet[i]
 }
}

Solving Mathematical Problems with Code 163

fun printProcessedText(choice: Int) {
 when(choice) {
 1 -> println("\nHere is the encrypted text:")
 2 -> println("\nHere is the decrypted text:")
 }
 print(processedText.joinToString(""))
}

The encrypt() and decrypt() functions both iterate through the Block
objects in the blocks list and call a series of helpers to process them. The
first helper called is the getIndexBlock() function, which looks up each char-
acter’s index in the alphabet string, thereby converting each character to an
integer. The values are stored in the indexVector array.

Next, we call encryptIndexBlock() or decryptIndexBlock(), which converts
the plaintext vector into a cipher (encrypted) vector or vice versa by mul-
tiplying the vector by the appropriate matrix (key or keyInv), modulo 29.
Multiplying a vector by a matrix is much like multiplying two matrices, but
in this case, we need only two levels of for loops. The result goes in the
processedVector array.

Our last encryption and decryption helper is the addToProcessedText()
function, which takes each number from the processedVector array, looks up
the corresponding character from the alphabet string, and adds that character
to processedText, a mutable list. In the end, once all the vectors are processed,
this list contains the final encrypted or decrypted text. Back in main(), we
call the printProcessedText() function, which concatenates all the characters
stored in the processedText list into a single string for easy printing.

The Result
Here’s a sample run of the program in encryption mode:

*** Cryptography with Hill's Method ***

key matrix dimension:
3 x 3

[key * keyInv] mod 29 =
1 0 0
0 1 0
0 0 1

Enter 1 for encryption or 2 for decryption:
1
You have chosen encryption

Enter text for processing:
Code is like humor. It is bad code when you have to explain it.

Here is the encrypted text:
tsgsiomjjnhtvwpqxs.ahk?ru gbn tsgbtynurosksdoqfb a?ujsmtexvjcji

164 Chapter 4

First, notice the validation check: the product of the two matrices is
indeed an identity matrix, with ones running along the diagonal and zeros
everywhere else. Then notice the final output, where the program has
turned the readable plaintext into unreadable gibberish. The process also
works in reverse: if you choose the decryption option (enter 2) and input
the encrypted text, the program will instantly convert the ciphertext back
to the original plaintext.

Currently, the final result is displayed in all lowercase letters. I invite
you to improve the printProcessedText() function so that the final result is
capitalized as needed before printing. If you’re thorough, you’ll soon real-
ize that implementing a complete set of capitalization rules isn’t as simple
as it sounds.

Project 16: Simulate a One-Dimensional Random Walk
So far in this chapter, the projects have all been deterministic, meaning
there’s a unique solution for a given set of input parameters. If we were to
run the code multiple times with the same input, the output would remain
unchanged. In this project, we’ll explore a different kind of problem, one
that’s stochastic in nature. In a stochastic problem, the output for a given set of
inputs isn’t predetermined. We may be aware of various possible outcomes, or
a range within which the output will fall, but the specific value generated by
an individual instance of the experiment is determined purely by chance. To
illustrate this concept, we’ll probe the idea of a random walk.

A random walk is a process made up of a series of random steps, actions
with multiple possible outcomes. We know the probability of each potential
outcome, but the actual outcome is determined randomly. For example,
rolling a die is a type of random step. Assuming the die is fair, each of its
six sides will have the same likelihood of landing face up (one-sixth, or
approximately 16.67 percent). Therefore, when we actually roll the die, we
can’t know for sure what number we’ll get. Our guesses will be correct only
16.67 percent of the time.

Random walks can be described using a mathematical space with a cer-
tain number of dimensions, depending on the nature of the random step.
Let’s say we’re considering the movement of a heavily inebriated person
who has just come out of a pub. The street in front of the pub runs east–
west. This person is totally disoriented and is taking random steps along the
street in both directions. We can mathematically describe the distance the
person travels over time as the sum of individual steps along the x-direction
(the x-axis being the east–west line). We could record each step toward
the east as +1 and a step in the opposite direction as −1 (assuming all steps
cover the same distance). This is an example of a one-dimensional random
walk—we need only the x-axis to describe it mathematically.

Now suppose the person has been drinking in the middle of an open
field and has started to wander randomly in different directions. The
person’s steps can now have both an x-component (east or west) and
a y-component (north or south). In this case, to measure the distance

Solving Mathematical Problems with Code 165

traveled from the center of the field, we’ll have to track the person’s move-
ments in a two-dimensional space, which will make this a two-dimensional
random walk problem.

A well-known example of a random walk is Brownian motion, named
for Robert Brown, a 19th-century Scottish botanist. Using a microscope,
Brown was observing grains of pollen immersed in water when he noticed
that the grains were constantly moving in random directions. In fact, we
can find similar movements whenever very small particles are injected in a
fluid medium, such as dust or smoke particles in the air or the movement
of particles in a colloidal suspension such as milk or paint. Brown’s observa-
tion was an important scientific discovery that remained unexplained for
more than half a century until 1905, when Albert Einstein explained that
Brownian motion was caused by the continuous bombardment of the pol-
len grains by the surrounding water molecules.

In this exercise, we’ll build and simulate a 1D random walk model
in Kotlin. This will allow us to gain a deeper insight into how particles or
objects move in one dimension through random steps. In particular, by
repeating the simulation many times and plotting the results, we’ll be able
to identify patterns and explore the statistical properties that underlie this
dynamic behavior.

A One-Dimensional Model
Imagine a single particle moving randomly along a line in small steps. For
simplicity’s sake, we’ll assume that the particle’s step size remains constant
and that steps are made at steady time intervals (we do not need to use time
as an explicit variable in our model). Physicists often call this scenario a free
diffusion problem in one dimension. The process is schematically shown in
Figure 4-6.

2 0 146 3 5

x = 0

∆x = –1 ∆x = +1

Figure 4-6: A random walk in one dimension, starting at x = 0

The particle starts at location x = 0 and moves in discrete steps of
length Δx = ±1. The direction of the particle’s movement is random, so its
next position after 0 can be either 1 (with a displacement of +1) or 2 (with a
displacement of −1). The probability p of choosing either direction is equal,
so p = 0.5. Notice that at any given location, the particle can change its
direction, so it’s possible for the particle to take several random steps and
end up back where it started.

The question we’re interested in exploring is this: After making an arbi-
trary number of steps, n, how far on average will the particle have moved
from its starting position? To answer this question, we’ll need to simulate

166 Chapter 4

many random walks—say, 500 walks of 1,000 steps each—and analyze the
results. We can’t simply take the average of the cumulative distances trav-
eled in the different simulations, however; the particle can drift in both
the positive and negative x-directions, so the net-positive and net-negative
distances would likely cancel each other out, giving us an average distance
of roughly 0. Instead, we’ll use the root-mean-square (RMS) distance, which is
calculated in three steps:

	 1.	Square all the distances from all the simulations after a given number
of steps n. This converts any negative numbers to positive numbers.

	 2.	Add all the results from step 1 and divide by the number of simulations
to find the mean (average) of the squared distances.

	 3.	Take the square root of step 2’s result to arrive at the RMS distance.

Based on past research conducted on one-dimensional random walks,
we know that the RMS distance exhibits a nonlinear relationship with
the number of steps taken; in theory, the RMS distance after the nth step
should equal the square root of n. To validate this notion, we’ll compute
the RMS distance (the simulated RMS) and the square root of n (the theoretical
RMS) and plot them both against the number of steps, n. Hopefully, the
two plots will be similar. We’ll also plot the mean distance traveled at each
time step, which should remain close to 0.

In a separate graph, we’ll visualize the trajectories of the 500 random
walks themselves. This should help illustrate the random nature of the out-
comes and give further support to our theories about the cumulative and
RMS distances traveled.

The Code
I’ll present the code segments for this project in a top-down sequence, start-
ing with some general setup code. Since we want to visualize the random
walks from different simulations and examine the relationship between the
cumulative, mean, and RMS distances with the number of steps, we’ll use
the JavaFX template that we developed and used in Chapter 3.

// import block
import javafx.application.Application
import javafx.scene.Node
import javafx.scene.Scene
import javafx.scene.chart.LineChart
import javafx.scene.chart.NumberAxis
import javafx.scene.chart.XYChart
import javafx​.scene​.control​.ScrollPane
import javafx.scene.layout.Background
import javafx.scene.layout.BackgroundFill
import javafx​.scene​.layout​.CornerRadii
import javafx​.geometry​.Insets
import javafx.scene.layout.VBox

Solving Mathematical Problems with Code 167

import javafx​.scene​.paint​.Color
import javafx.stage.Stage
import kotlin.math.sqrt

// data class
1 data class State(
 var step: Double,
 var dist: Double
)

// global parameters
val numStep = 1000
val numSim = 500

2 // Create lists needed for plotting line charts.
val xList : List<State> = List(numStep) { State(0.0, 0.0) }
val avgList: List<State> = List(numStep) { State(0.0, 0.0) }
val rmsList: List<State> = List(numStep) { State(0.0, 0.0) }
val expList: List<State> = List(numStep) { State(0.0, 0.0) }

val states1 = mutableListOf<List<State>>()
val states2 = mutableListOf<List<State>>()

class RandomWalk1D : Application() {
 override fun start(primaryStage: Stage) {
 3 val root = VBox()
 /*--*/
 4 root.styleClass.add("color-palette")
 root.background = Background(BackgroundFill(Color.WHITE,
 CornerRadii.EMPTY, Insets.EMPTY))
 /*--*/
 5 val scroll = ScrollPane()
 scroll.setContent = root
 val scene = Scene(scroll, 550.0, 850.0, Color.WHITE)
 primaryStage.title = "1D random Walk Simulation"
 primaryStage.scene = scene
 primaryStage.show()

 // ----- Random walk simulation starts here. -----
 // Call random walk function.
 randomWalk1d()
 // Get the theoretical RMS values.
 calcRMS1d()
 // Create line charts.
 createRWChart1(root)
 createRWChart2(root)
 }
}

fun main() {
 Application.launch(RandomWalk1D::class.java)
}

168 Chapter 4

The code segment starts with the import block. Since this project will
use the XY charting features of JavaFX instead of the canvas feature, the
import block is somewhat different from what we needed for Project 13, and
it includes a few extra lines of code to import the Background, BackgroundFill,
CornerRadii, and Insets features, which we’ll use to set the chart background
to white.

Next, we declare a simple data class State 1 for holding individual data
points during the simulation. Its step property represents the number of
steps taken since the beginning of the random walk, and dist is the cumu-
lative distance traveled after that many steps. We then declare two global
parameters: numStep, to specify the maximum number of steps per simula-
tion, and numSim, to set the maximum number of simulations.

We’ll accumulate data in a number of lists 2, each of size numStep and
type State, as follows:

xList ​  ​Stores the cumulative distance traveled after each step for a par-
ticular simulation

avgList ​  ​Stores the arithmetic average (mean) of the cumulative dis-
tances traveled across all simulations after each step

rmsList ​  ​Stores the RMS distance calculated across all simulations after
each step

expList ​  ​Stores the theoretical (exponential) RMS distance after
each step

All these lists are initialized to (0.0, 0.0), meaning all simulations start at
step number 0 and position 0. In addition to these lists, we also create two
mutable lists, states1 and states2, which we’ll use for charting purposes.

Inside the RandomWalk1D application class, we use a VBox container 3
to hold the chart objects, as we’ll generate two sets of charts that will be
placed vertically inside the VBox. Notice the additional lines of code for set-
ting the background of the container to white programmatically 4, without
using the cascading style sheets needed for more extensive customizations.
We’ve also introduced the ScrollPane feature 5, which will allow us to scroll
the chart window to view the top or the bottom chart, as needed. We can
also enlarge the window to make both charts visible at the same time.

After setting up the graphics window, we call three custom functions
that will run the simulation and help visualize the results. The first call is
to the randomWalk1d() function, which simulates numSim one-dimensional ran-
dom walks over numStep steps. Here’s how it works:

fun randomWalk1d() {
 // Create local arrays.
 1 val s = Array (numSim) {DoubleArray(numStep)}
 val sumX = DoubleArray(numStep)
 val sumX2 = DoubleArray(numStep)

 // Walk numStep steps numSim times.
 for (i in 0 until numSim) {
 var draw: Int
 var step: Int

Solving Mathematical Problems with Code 169

 for (j in 1 until numStep) {
 2 draw = (0..1).random()
 step = if (draw == 0) -1 else 1
 3 s[i][j] = s[i][j-1] + step
 sumX[j] += s[i][j]
 sumX2[j] += (s[i][j] * s[i][j])
 xList[j].step = j.toDouble()
 xList[j].dist = s[i][j]
 }
 4 states1.add(xList.map {it​.copy()})
 }

 // Create average (mean) and RMS for distances traveled.
 for (j in 0 until numStep) {
 avgList[j].step = j.toDouble()
 avgList[j].dist = sumX[j] / numSim
 rmsList[j].step = j.toDouble()
 rmsList[j].dist = sqrt(sumX2[j] / numSim)
 }
 5 states2.addAll(listOf(avgList, rmsList))
}

The function body starts by creating three local arrays of type
DoubleArray. The first, s, is a two-dimensional array that stores the cumula-
tive distance traveled at each step of each simulation 1. The others are
one-dimensional arrays, sumX and sumX2, to save the running sums of the
cumulative distances at each step and the sums of squared distances at each
step, respectively. We’ll use these values to get the mean and RMS distances.

The random walks are implemented inside a nested for loop. The outer
loop controls the number of simulations, and the inner loop makes the
particle take numStep steps in succession. During each step, a local variable
draw is randomly set to either 0 or 1 with equal likelihood 2. Based on the
outcome, step (referred to as Δx in Figure 4-6) is set to -1 or 1, which is then
added to the cumulative distance traveled up to the previous step of the
simulation 3. These cumulative distances are used to create the elements
of xList, which is then copied and passed on to states1 once per simulation 4.
Notice how we’re reusing the memory allocated for xList during each simu-
lation by overwriting the values of its elements. In the end, states1 has all
the data we need to visualize the random walks themselves.

Once we’re done with the random walks, we use the resulting lists, sumX
and sumX2, to create the avgList and rmsList inside another for loop by divid-
ing the elements of sumX and sumX2 by numSim. Here sumX[j] is the sum of all
the elements in column j of the s[i][j] matrix, where i represents the simu-
lation number and j represents the number of steps taken so far. (Likewise,
sumX2[j] is the same, squared.) Finally, avgList and rmsList are passed on as
elements of states2 5, which we defined earlier as a list of lists.

The second function call inside the application class is calcRMS1d(). It
generates the theoretical RMS distance at each step:

fun calcRMS1d() {
 // Create the theoretical (exponential) rms/list.

170 Chapter 4

 for (j in 0 until numStep) {
 expList[j].step = j.toDouble()
 1 expList[j].dist = sqrt(j.toDouble())
 }
 states2.add(expList)
}

We know from the theoretical analysis of the one-dimensional random
walk problem that the RMS distance is a nonlinear function of the number
of steps n, which can be expressed as xn = √n, where xn is the RMS distance
for the nth step (n is equivalent to looping variable j in the code). We use
this relationship in the calcRMS1d() function to calculate the theoretical
RMS distances and update expList 1. We’ll use this list to create a side-by-
side plot of the theoretical and simulated RMS distances to see how closely
they follow each other.

In the last two lines of the application class, we make two successive
calls to the createRWChart1() and createRWChart2() functions, shown here:

fun createRWChart1(root: VBox) {
 val xyChart1 =
 singleXYChart(states1,
 title = "Random Walk 1D Experiment",
 xLabel = "Steps",
 yLabel = "Cumulative distance traveled")
 root.children.add(xyChart1)
}

fun createRWChart2(root: VBox) {
 val xyChart2 =
 singleXYChart(states2,
 title = "Random Walk 1D Experiment",
 xLabel = "Steps",
 yLabel = "Mean and RMS distance traveled")
 root.children.add(xyChart2)
}

Other than the chart labels, the only difference between these two
functions is that the first one uses states1 and the second one uses states2 to
generate the respective charts. Both of these functions call the singleXYChart()
function (which we discussed and used in Chapter 3) to draw the line
charts and stack them inside a scroll pane.

The Result
When you run the full code on your device, you should see a single scrol-
lable window pop up with two separate charts. Let’s first consider the visual-
ization of the random walks themselves, shown in Figure 4-7.

Solving Mathematical Problems with Code 171

Figure 4-7: The random walk paths from 500 simulations
of 1,000 steps

This chart shows all 500 random paths generated by the randomWalk1d()
function (one per simulation, based on our global numSim parameter). These
paths show a number of key features of one-dimensional random walks:

•	 Each random path is unique, evident from the tangled web of lines
moving across the chart.

•	 Most random walks tend to stay close to their starting position, even
after many steps. We can see this in the darker band along the x-axis.

•	 The paths are equally dispersed on both sides of x = 0, as expected. You
could confirm this by creating histograms of the cumulative distances
traveled at different numbers of steps. (I’ll leave this for you to try out
as an exercise.)

•	 For any given number of steps, if we add the cumulative distances from
all simulations, the sum will be close to zero because positive and nega-
tive distances will cancel each other. For the same reason, the arithme-
tic mean will also be close to zero.

•	 The RMS distance increases with the number of steps, as confirmed by
the gradual widening of the band that envelops all random paths. The
RMS distance is therefore a better measure for the average distance
traveled than the arithmetic mean, as we don’t care about the direction
of the movement.

All these points collectively provide the answer we were seeking at
the start of this project. A particle moving randomly in one dimension
will likely trace a path that will initially stay close to its starting position.

172 Chapter 4

However, if we follow the particle for a long time, it may gradually move far-
ther away. Again, we can’t predict exactly how far a particular particle will
move, but if we measure the RMS distance from many different particles,
we’ll see that the RMS distance increases with the number of steps. Our
other chart, shown in Figure 4-8, helps us explore this last point further.

Theoretical RMS

Simulated RMS

Simulated mean

Figure 4-8: The mean and RMS distances traveled for a given
number of steps

Figure 4-8 charts three lines. First, we have the line labeled “Simulated
mean,” generated from the data in avgList. This line stays very close to
zero, confirming one of the key points made based on Figure 4-7: that the
arithmetic average or mean for any number of steps will be zero if we have
a sufficiently large number of observations. Second, we have the “Simulated
RMS” line, generated from the data in rmsList, which clearly shows the RMS
distance increasing (although at a decreasing rate) with the number of
steps. Third, the smooth “Theoretical RMS” line represents the theoretical
RMS distances from expList, calculated by simply taking the square root of
the number of steps. Again, we can visually confirm that the simulated RMS
values are very close to the theoretically expected RMS values.

The minor discrepancies we see between the simulated and theoretical
RMS values are to be expected. The simulated RMS values will approach
the theoretical values as the number of simulations approaches infinity.
I invite you to run the code again, this time setting numSim to 5000. Make
sure that you comment out the call to the createRWChart1() function before
doing that. The default implementation of JavaFX is memory and computa-
tion intensive, and trying to plot 5,000 lines, each with 1,000 data points,
can take a while depending on your processor and memory configuration.
However, if you do this experiment as suggested, you’ll see that with the added

Solving Mathematical Problems with Code 173

random walks, the simulated and theoretical RMS lines become virtually the
same. If you go further by setting numSim to 50000, you’ll see only one line.

E X ERCISE

Now that you’ve seen how to model a random walk in one dimension, try
extending your random walk app to model molecular diffusion in two dimen-
sions. The effect should be similar to adding a drop of food coloring to the cen-
ter of a dish of water and watching the color spread.

Hint: To be able to track distances in 2D, the State data class has to be
changed to replace dist with two values for the x- and y-components—say,
distX and distY. At each step in the random walk, treat these values sepa-
rately. For the x-component, for example, assume that a particle can either stay
still, move toward the positive x-direction, or move toward the negative x-direction.
You can code this as stepX = (-1..1).random(), meaning stepX is equally likely
to be -1, 0, or 1. Repeat the same for the y-component.

Define how large you want the dish to be (set an appropriate diameter),
and decide what happens when a particle hits the boundary of the dish.
(Perhaps the particle should bounce off the wall.) Update the particle posi-
tions inside a nested for loop, and update the series for charting using the
ScatterChart feature of JavaFX. Start with 300 particles. To show particle
positions dynamically (which looks really cool), run the random walk function
and update the data points as an animation, using Timeline and KeyFrame, as
discussed in Chapter 3.

Summary
In this chapter, we used Kotlin code and custom algorithms to solve math-
related problems. The problems weren’t just theoretical; they also had
practical applications in fields like mathematics, geodesy, navigation, and
cryptography. Throughout our journey, we employed various mathematical
concepts, operations, and tools, including basic arithmetic, math and trigo-
nometric functions, the Pythagorean theorem, the Fibonacci sequence, the
haversine formula, modulo operations, and linear algebra. We also probed
the realm of stochastic processes, exploring the generation and utilization
of random numbers to simulate random phenomena.

Along the way, we used many core features of Kotlin, such as variables
and collections, data classes, and conditional and iterative structures like
if, when, for, and while. We also discovered the convenience of functions and
lambdas, along with the rich set of mathematical and graphics library func-
tions at our disposal.

174 Chapter 4

Resources
Ayars, Eric. “Stochastic Methods.” In Computational Physics with Python,

131–139. August 18, 2013. Accessed June 15, 2024. https://belglas​.files​
.​wordpress​.com​/2018​/03​/cpwp​.pdf.

Dutka, Jacques. “Eratosthenes’ Measurement of the Earth Reconsidered.”
Archive for History of Exact Sciences 46, no. 1 (1993): 55–66. Accessed
June 15, 2024. http://www​.jstor​.org​/stable​/41134135.

Eisenberg, Murray. “Hill Ciphers and Modular Linear Algebra.” November 3,
1999. Accessed June 15, 2024. https://apprendre​-en​-ligne​.net​/crypto​/hill​/
Hillciph​.pdf.

Harder, Douglas. “Project H.1: Sieve of Eratosthenes.” University of
Waterloo. Accessed June 15, 2024. https://ece​.uwaterloo​.ca​/~ece150​/
Programming​_challenges​/H​/1​/.

Kereki, Federico. “A Modern Look at Square Roots in the Babylonian Way.”
Cantor’s Paradise. December 7, 2020. Accessed June 15, 2024. https://
medium​.com​/cantors​-paradise​/a​-modern​-look​-at​-square​-roots​-in​-the​-babylonian​
-way​-ccd48a5e8716.

“Pythagorean Triples.” Prime Glossary. Accessed June 15, 2024. https://t5k​
.org​/glossary​/page​.php​?sort​=PrmPythagTriples.

Reich, Dan. “The Fibonacci Sequence, Spirals and the Golden Mean.”
Department of Mathematics, Temple University. Accessed June 15, 2024.
https://math​.temple​.edu​/~reich​/Fib​/fibo​.html.

Van Brummelen, Glen. Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton, NJ: Princeton University Press, 2013.

https://belglas.files.wordpress.com/2018/03/cpwp.pdf
https://belglas.files.wordpress.com/2018/03/cpwp.pdf
http://www.jstor.org/stable/41134135
https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf
https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf
https://ece.uwaterloo.ca/~ece150/Programming_challenges/H/1/
https://ece.uwaterloo.ca/~ece150/Programming_challenges/H/1/
https://medium.com/cantors-paradise/a-modern-look-at-square-roots-in-the-babylonian-way-ccd48a5e8716
https://medium.com/cantors-paradise/a-modern-look-at-square-roots-in-the-babylonian-way-ccd48a5e8716
https://medium.com/cantors-paradise/a-modern-look-at-square-roots-in-the-babylonian-way-ccd48a5e8716
https://t5k.org/glossary/page.php?sort=PrmPythagTriples
https://t5k.org/glossary/page.php?sort=PrmPythagTriples
https://math.temple.edu/~reich/Fib/fibo.html

In this chapter, we’ll venture into several
mini science projects that will further

strengthen your coding abilities in Kotlin. In
addition, the mini projects of this chapter will

enhance your problem-solving skills by showing how
to apply basic laws of nature and mathematics to solve
problems that are very difficult to answer without the
help of a computer.

Since visualization is a key part of scientific investigation, we’ll also use
the graphics templates we developed in Chapter 3 to visualize our program
outputs.

Project 17: Predict the Flight of a Cannonball
Imagine an old castle surrounded by thick defensive walls. The walls
have notches where vigilant soldiers stand ready to fire cannons on any

5
M O D E L I N G A N D S I M U L A T I O N

176 Chapter 5

encroaching enemy. Typically, a castle is located on high ground to allow for
better visibility over the surrounding area, and the cannons themselves are
placed at a higher elevation relative to the base of the castle to maximize
their firing range. Within that range, the soldiers can hit targets at a variety
of distances by adjusting parameters of the cannon. Our question is, how
can the soldiers aim a cannon to hit a target on the ground x distance away?

Assuming no air resistance for now and assuming that the impact of
wind is negligible, the distance a cannonball travels is affected by three fac-
tors: the cannon’s height above ground level, its angle of fire, and the exit
velocity of the cannonball. The soldiers can’t easily change the height of
the cannon or the exit velocity of the cannonball, but they can adjust the
angle of fire, so that’s where we’ll focus our efforts. Figure 5-1 diagrams the
nature of the problem.

v0y

v0

v0x

θ

x

H

H0

A

B

C

Figure 5-1: The path of a cannonball

The cannonball is fired from point A, which has an elevation of H0 rela-
tive to the ground surface, and the goal is to hit point B. The exit velocity of
the cannonball is v0, and its angle of fire is θ.

Once the cannonball is fired, it becomes a projectile, an object in motion
that has only one force acting upon it: gravity. To arrive at the correct value
for θ, we need to know a little bit about the science of projectiles. First, let’s
assume that the cannonball is moving in only two dimensions: horizontally
and vertically. We’ll place the origin of this two-dimensional coordinate
system at point A. Given the initial velocity of the ball v0, which is projected
at an angle θ, we can write the corresponding x- and y-components of the
initial velocity as:

	 v0x = v0 cosθ

	 v0y = v0 sinθ

These velocity components tell us how fast the ball will be traveling in
the horizontal and vertical directions solely due to its initial velocity. Again,
disregarding the effects of air or wind resistance, no other force is acting

Modeling and Simulation 177

on the ball horizontally. Therefore, we could say that the velocity in the
x-direction, vx, remains constant:

	 vx = v0x = v0 cosθ

In the vertical direction, however, the acceleration due to gravity will slow
the ball’s rise and eventually bring it down to the ground. Thus, we can
express the resultant velocity in the y-direction, vy, as:

	 vy = v0y − g t = v0 sinθ − g  t

Here g is the acceleration due to gravity, and t is time.
Using these expressions for vx and vy, we can write the displacement

equations for the projectile, which express its x- and y-coordinates, or how
far the ball has traveled horizontally and vertically, as of a given time t:

	 x = v0 cosθ t	 (5.1)

	 y = (v0 sinθ) t − g t 21
2 	 (5.2)

If we now assume that the time to reach the target at point B is tB, then
the horizontal distance to the target is:

	 xB = v0 cosθ tB	 (5.3)

Over the same time period tB, the projectile will also move vertically.
It will pass through point C (shown in Figure 5-1, the ball’s highest eleva-
tion, at H + H0) and then free-fall to the ground while continuing to move
horizontally at velocity vx. When the projectile reaches point B (meaning
it hits the target), its net vertical displacement yB will be −H0, which can be
expressed using Equation 5.2 as:

	 1
2−H0 = (v0 sinθ) tB − g tB

2 	 (5.4)

We don’t actually know how long it will take the cannonball to reach
the target, however, so we need a way to express tB in terms of the other
variables. Equation 5.4 is a quadratic equation, where the highest power of a
variable is 2. It can be solved for the positive value of tB as:

	 1
gtB = (v0 sinθ + √(v0 sinθ)2 + 2gH0) 	 (5.5)

We can now use Equation 5.5 to substitute for tB in Equation 5.3, which
gives us the following equation for xB as a function of θ:

	 xB = (v0 sinθ + √(v0 sinθ)2 + 2g H0)
v0 cosθ

g 	 (5.6)

This equation establishes a relationship between the distance to the
target xB and the firing angle θ, but it still doesn’t allow us to calculate θ for
a given xB. What we need is an equation that expresses θ in terms of xB, not
the other way around.

178 Chapter 5

We have two options to resolve this situation. One is analytical, involv-
ing rearranging Equation 5.6 and deriving an expression for θ in terms of
xB. It can be done, but it would require a significant amount of mathemati-
cal juggling. The other option is to use a numerical method, which involves
solving the problem through an iterative process following an algorithm.
A numerical method is also an approximate method, meaning it won’t
produce the exact same solution as the theoretical one. However, we can
choose the desired degree of precision, and often that’s close enough. In
fact, for many real-world problems of this nature, we may not have any
known theoretical solution, in which case a numerical method is the only
viable option for solving the problem. This is why we’ll use a numerical
method to answer our cannonball question.

The Strategy
We need to take one additional step to make the problem amenable to a
numerical method: getting xB onto the right-hand side of Equation 5.6 and
turning it into a function of θ. In other words, we’ll define function f(θ) as:

	
v0 cosθ

gf(θ) = xB – (v0 sinθ + √(v0 sinθ)2 + 2gH0)	 (5.7)

To solve our cannonball problem, we now need to find a value of the
independent variable θ that, for a given value of xB, will make the right-
hand side of Equation 5.7 equal to zero. In mathematical terms, this value is
known as the root of the function. We’ve turned the projectile problem into
a root-finding problem.

We could use a number of methods to find the root for Equation 5.7. In
this case, we’ll use a simple method called bisection, as illustrated in Figure 5-2.

f (x1) < 0

x1

f (x)

x
x*

x2x
f (x2) > 0
x = (x1 + x2)/2
f (x*) = 0

Figure 5-2: The elements of the bisection method for root finding

Let’s assume we’re trying to find the root of a simple linear function
f(x), which is a continuous function of variable x, as shown in Figure 5-2.
The root is the value of x that makes the function equal zero. Here are the
simple bisection steps for finding the root x* so that f(x*) = 0:

Modeling and Simulation 179

	 1.	Locate two values x1 and x2 such that they are on the opposite side of
the root, meaning f(x1) < 0 and f(x2) > 0.

	 2.	Find the midpoint x between x1 and x2 such that x = (x1 + x2)/2.

	 3.	If the absolute value of f(x) is less than some tolerance factor (for exam-
ple, 0.0000001), then x is the root, so we’re done.

	 4.	Otherwise, if f(x) * f(x2) > 0, set x2 = x, else set x1 = x.

	 5.	Repeat steps 2 through 4 until the condition in step 3 is met.

This method is guaranteed to converge to the root if f(x) is continuous
within the initial range [x1, x2], which also includes the root or roots. Without
further ado, let’s start coding!

The Code
The bisection method involves only a few lines of code, as shown here:

1 // Import Kotlin math functions.
import kotlin.math.sin
import kotlin​.math​.cos
import kotlin.math.PI
import kotlin.math.sqrt
import kotlin.math.pow
import kotlin.math.abs

2 // Set global parameters.
val v0 = 70 // m/s
val g = 9.8 // m/s2
val h0 = 25 // m
val target = 400 // m
val TOL = 1.0e-7

private val f = :: projectile

3 // The interval [x1, x2] needs to enclose the root.
val x1 = 10.0 // in degrees
val x2 = 30.0 // in degrees

fun main() {
 println("\n*** Firing angle for hitting a target ***\n")

 4 if (f(x1) * f(x2) < 0) {
 println("​.​.​.Initial guesses are valid...")
 val root = bisection(x1, x2)
 val rootFormatted = String.format("%.2f", root)
 println("The firing angle to hit the target is:" +
 "\n$rootFormatted degrees")
 } else {
 println("\n​.​.​.Initial guesses are not valid...\n")
 }
}

180 Chapter 5

fun projectile(angle: Double): Double {
 5 val x = angle * PI / 180.0
 return target - (v0 * cos(x) / g) *
 (v0 * sin(x) + sqrt((v0 * sin(x)).pow(2) + 2 * g * h0))
}

fun bisection(_x1: Double, _x2: Double): Double {
 var x1 = _x1
 var x2 = _x2
 6 var x = (x1 + x2) / 2.0

 7 while (abs(f(x)) >= TOL) {
 if (f(x) * f(x2) > 0) {
 x2 = x
 } else x1 = x
 x = (x1 + x2) / 2.0
 }
 return x
}

We start by importing the math library functions 1 and providing the
global parameter values 2. Notice that we import only the math functions
we need, separately, instead of using import kotlin.math.* to import all math
functions. It’s good coding etiquette to use only what you need, as it helps
keep the namespace clean and reduces the chance of introducing bugs,
especially when the code is reused.

In this example, we’ve set the target distance to 400 m, the cannon’s
height to 25 m, and the cannonball’s initial velocity to 70 m/s. Next, we
guess initial values for x1 and x2 for the bisection method 3 and set the
function parameter f to projectile. Treating projectile as a parameter
allows us to reuse the code to find the roots of other functions.

The main() function uses an if...else block to confirm that the initial
x1 and x2 guesses are located on opposite sides of the root 4. If true, it calls
the bisection() function to find the root. If the test fails, the program prints
a message indicating that the initial guesses weren’t valid.

The next code block defines the projectile() function, which calculates
the right-hand side of Equation 5.7 for a given angle, after first converting
the angle to radians 5 as required for the sin() and cos() functions.

The final code block is the bisection() function that implements the
steps outlined earlier. The function takes the two initial guesses as argu-
ments, finds the midpoint between them 6, and then uses a while loop 7 to
make smaller and smaller bisections until the midpoint is within the speci-
fied tolerance range. The function returns the root as x (of type Double).

Modeling and Simulation 181

The Result
If you run the program, the output should look like this:

*** Firing angle for hitting a target ***

​.​.​.Initial guesses are valid...
The firing angle to hit the target is:
21.91 degrees

Finally, we have the answer to the cannonball question! For the given ini-
tial velocity and height of the cannon above the ground, the soldiers need to
fire the cannon at an angle of 21.91 degrees to hit a target 400 m away.

Let’s think about this solution a bit more. Is this the only possible way
to hit the target? Figure 5-3 shows how f(θ) varies with θ (for the given
parameter values).

–200

–100

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100

f (
θ)

θ (degrees)

A B

Figure 5-3: The relationship between f(θ) and θ

The function follows a parabolic curve, passing through the x-axis
twice, so it has two different roots for θ ≥ 0. From the given initial guesses,
we’ve found the first root at point A, but another root is found at point B,
where θ = 64.51 degrees. This is a much steeper angle than the first solu-
tion, θ = 21.91 degrees. Figure 5-4 shows the paths, or trajectories, the can-
nonball will take for both firing angles.

182 Chapter 5

-50

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450

El
ev

at
io

n
(m

)

Distance (m)

θ = 21.91 degrees

θ = 64.51 degrees

Figure 5-4: Two trajectories for the cannonball solutions

While cannonballs fired at either angle will hit the target, the ball will
reach a much higher elevation and take longer to hit the target when
θ = 64.51 degrees. Which option do you think the soldiers will prefer,
and why?

E X ERCISE

Using your understanding of projectiles and the equations we’ve discussed,
write a program to generate the data required to plot Figures 5-3 and 5-4.
Then try creating these figures by using the data and the visualization tools pre-
sented in Chapter 3.

Project 18: Design a Fountain with Water Jets
In this project, we’ll continue to explore the path of a projectile, but instead
of chasing a cannonball, we’ll follow a jet of water. Water jets have many
familiar applications, such as washing cars, watering lawns, and fighting

Modeling and Simulation 183

fires. We’ll explore a more artistic example: running the water jet through a
nozzle assembly to create a decorative fountain.

A nozzle is a narrow opening through which a jet of fluid comes out at
a high velocity (the fluid can be a gas or a liquid). For a given pressure, the
narrower the opening of the nozzle, the faster the velocity of the jet. In the
nozzle assembly used in fountains, several nozzles of different sizes or with
adjustable openings can be placed at different angles. Designers vary these
parameters to create beautiful patterns with the water jets. In this case,
we’ll try to adjust the nozzle to shoot jets into different levels of a multilevel
fountain. Figure 5-5 illustrates the problem.

θ

v

Nozzle spacing (base width)

ymax

xmax

Figure 5-5: Pointing a nozzle toward a multilevel water fountain

The objective of this exercise is to estimate the velocity of a jet v and
its angle of ejection θ, given the desired highest point of the jet’s trajectory,
(xmax, ymax ). This high point is set so that the jet will just pass over the edge
of the water basin at a particular level, as shown in Figure 5-5. The fountain
has four levels, so we have four sets of (xmax, ymax ), shown in Table 5-1.

Table 5-1: Fountain Parameters

Level xmax (meters) ymax (meters)

1 2.25 1.5

2 2.55 3.0

3 2.85 4.25

4 3.0 5.5

The values in this table are defined relative to the nozzle at point (0, 0).
We’ll use them to calculate the corresponding values of v and θ. Further,

184 Chapter 5

we’ll draw the trajectories of the jets by using the canvas feature of JavaFX
so that we can visualize the solution relative to the water fountain.

Notice that Figure 5-5 shows only a cross section of the fountain sys-
tem, which is circular in shape in three dimensions. The nozzles are placed
at diametrically opposite positions along the base of the fountain system,
which is made up of the ground-level basin (not shown), the nozzles, and
the four-level middle structure. We’ll use the spacing between the nozzles
as the base width of this fountain system.

The Strategy
We need to use three specific equations to solve this problem, all of which
can be derived from the projectile equations discussed in Project 17 (search
online for “projectile motion” or “equations of motion” to learn about the
derivations, or see the resources listed at the end of the chapter).

	
v sinθ

gtmax = 	 (5.8)

	 v2 sinθ cosθ
gxmax = 	 (5.9)

	
v2 sin2θ

2gymax = 	 (5.10)

We’ve already defined the variables in these equations, except for tmax,
which is the time needed for a water particle leaving the nozzle to reach
the highest point (xmax, ymax). We can use Equations 5.9 and 5.10 to find the
expressions for θ and v as:

	 2ymax
xmax

θ = arctan ()	 (5.11)

	
√2gymax

sinθv = 	 (5.12)

We’ll use these equations to calculate the angles of ejection and
velocities for the four levels of the fountain, based on the data provided
in Table 5-1. We’ll also use Equation 5.8 to calculate the trajectories to be
drawn with the JavaFX library.

The Code
Our project uses the same basic JavaFX template that’s discussed in detail
in Chapter 3. We begin with some overall setup.

// Import JavaFX features.
import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.canvas.Canvas

Modeling and Simulation 185

import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.Pane
import javafx​.scene​.paint​.Color
import javafx.stage.Stage

// Import required math functions.
import kotlin.math.sin
import kotlin​.math​.cos
import kotlin.math.tan
import kotlin.math.atan
import kotlin.math.pow
import kotlin.math.PI
import kotlin.math.sqrt

// Set global parameters and variables.
val baseWidth = 6.5 // m
val xMaxJet = doubleArrayOf(2.25, 2.55, 2.85, 3.0)
val yMaxJet = doubleArrayOf(1.5, 3.0, 4.25, 5.5)
val angle = DoubleArray(4)
val vel = DoubleArray(4)
val g = 9.8 // m/s2

// Set canvas properties.
val xMin = -0.5
val xMax = baseWidth + 0.5
val yMin = -0.5
val yMax = 6.0
val xRange = xMax - xMin
val yRange = yMax - yMin
val canvasW = 700.0
val canvasH = (canvasW/ xRange) * yRange

The first half of the import block imports the necessary graphics fea-
tures from the JavaFX library, and the second half imports the required
math functions from the kotlin.math library.

Next, we define the global parameters and variables. The base width
of the fountain system has been set to 6.5 m. The coordinates for the high-
est points of the parabolic jets (xMaxJet and yMaxJet) are set by using type
DoubleArray. We also create arrays to hold the angles and velocities that we’ll
be calculating. As we’re imagining this fountain to be on Earth, the acceler-
ation due to gravity, g, has been set to 9.8 m/s2. Finally, we set the required
dimensions for the canvas based on the width and height of the fountain,
with some margins on the sides.

The remainder of the project code has three core segments: the
ShapeOfWater application class and two helper functions, getAngleAndVel() and
getTrajectories(). We’ll look at these in turn.

The ShapeOfWater Application Class

The ShapeOfWater application class manages the canvas and calls the helper
functions.

186 Chapter 5

// the primary application class
class ShapeOfWater : Application() {
 override fun start(stage: Stage) {
 val root = Pane()
 val canvas = Canvas(canvasW, canvasH)
 val gc = canvas.graphicsContext2D
 gc.translate(0.0, canvas.height)
 gc.scale(1.0, -1.0)
 root.children.add(canvas)
 val scene = Scene(root, canvasW, canvasH)
 scene.fill = Color.WHITE
 stage.title = "Shape of Water"
 stage.scene = scene
 stage.show()

 // problem-specific section
 getAngleAndVel()
 getTrajectories(gc)
 println("\nNozzle velocities:")
 for (v in vel) print(String.format("%.2f ", v))
 println("\nNozzle angles:")
 for (theta in angle)
 print(String.format("%.2f ", theta))
 }
}

fun main() {
 Application.launch(ShapeOfWater::class.java)
}

The class follows the standard JavaFX block we developed in Chapter 3,
which we’ll use throughout this book. Notice the two function calls. The
first call to getAngleAndVel() calculates the θ and v for the four sets of coordi-
nates provided for the four levels of the fountain. Calling getTrajectories()
calculates the corresponding trajectories for the water jets and draws them
on the canvas.

The class declaration ends with a few lines of print statements to
display the calculated values of θ and v (as angle and vel) for the four pairs
of (xmax, ymax) provided. The values are rounded to two decimal places for
ease of reading.

The getAngleAndVel() Function

The getAngleAndVel() function uses Equations 5.11 and 5.12 to calculate
θ and v for the four water jets.

fun getAngleAndVel() {
 var index = 0

 1 xMaxJet.zip(yMaxJet) { x, y ->
 val theta = atan(2 * y / x)
 2 angle[index] = theta * 180/ PI
 vel[index] = sqrt(2 * g * y) / sin(theta)

Modeling and Simulation 187

 index += 1
 }
}

We use zip() with a lambda expression 1 to work through the pairs of
(xmax, ymax) values, calculating theta and vel for each and storing those values
in the appropriate arrays. We could have also used a for loop to iterate over
the coordinates, and you might try that as an exercise. The atan() function
gives us angles in radians, but we convert the values to degrees before stor-
ing them in the angles array to make the output more intuitive 2.

The getTrajectories() Function

The getTrajectories() function calculates the trajectories of the jets based
on the data from getAngleAndVel() and visualizes the results.

fun getTrajectories(gc: GraphicsContext) {
 // Generate trajectories by iterating over time.
 vel.zip(angle) {v, _theta ->
 val theta = _theta * PI / 180
 1 val tmax = 1.1 * v * sin(theta)/g
 val delt = tmax/50

 // Calculate trajectory coordinates.
 var t = 0.0
 2 while (t <= tmax) {
 val x = v * cos(theta) * t
 val y = x * tan(theta) -
 (g / (2 * (v * cos(theta)).pow(2))) * x.pow(2)

 // Draw points on canvas.
 3 gc.fillOval(canvasW * (x - xMin)/ xRange,
 canvasH * (y - yMin)/ yRange, 3.0, 3.0)
 4 gc.fillOval(
 canvasW * ((baseWidth - x) - xMin)/ xRange,
 canvasH * (y - yMin)/ yRange, 3.0, 3.0)
 t += delt
 }
 }
}

First, we calculate tmax for each (xmax, ymax) pair by using Equation 5.8.
We deliberately extend tmax by 10 percent so that when the trajectory is
drawn up to that time, we’ll see the jet starting to bend downward toward
the water basin 1. Next, we use a while loop 2 to iterate over 50 even time
steps between 0 and tmax. Using while allows us to work with a real-valued
(noninteger) increment per time step. We couldn’t do that with a for loop,
whose iterator can only be an integer.

Inside the while loop, we use the original displacement Equations 5.1
and 5.2 introduced in Project 17 to calculate the successive locations of a
water particle at each time step, giving us the entire trajectory for the water

188 Chapter 5

jet from the nozzle to the basin. Instead of saving the values in an array for
future use, we use them instantly to draw small circles on the canvas 3. By
repeating the process for all (θ, v) pairs and for all time steps, we create
the two-dimensional profile of the water jets. Notice that we take advantage
of the symmetric nature of the problem to draw a second set of jets from
another nozzle on the opposite side of the ground-level basin 4. For this
extra set of jets, we only need to adjust the x-coordinates by subtracting x
from baseWidth.

The Result
If you run the downloadable version of the code, the complete 2D solu-
tion should resemble Figure 5-6. This version of the code includes two
additional functions: drawFountain() and drawNozzles(). The former is used
to draw the four-level fountain from the given arrays of xmax and ymax for
the water jets, while the latter is used to display the positions of the nozzles
as shown in Figure 5-5. I encourage you to study these two functions and
understand the logic used to calculate the dimensions of the fountain and
the positions of the nozzles.

To change the shape of the trajectories, you can adjust the values of
xmax and ymax for the water jets. The shape of the fountain will be automati-
cally adjusted. However, it’s important to ensure that the values of xmax and
ymax are consistent and reasonable. For example, the xmax and ymax for level 2
should be greater than those of level 1, and similar conditions apply to levels 3
and 4. Additionally, all values must be nonnegative.

Figure 5-6: Water jet profiles around a multilevel fountain

The values of the nozzle velocities (in m/s) and angles (in degrees) are
directly printed onscreen as text output when you run the code. The output
should look like this:

Modeling and Simulation 189

Nozzle velocities:
6.78 8.33 9.63 10.76
Nozzle angles:
53.13 66.97 71.46 74.74

It’s not difficult to use this 2D solution to build a real-world 3D foun-
tain. Since we previously imagined the fountain system to be circular in
shape, all we need to do is repeat the solution at certain intervals along the
perimeter of the circle that passes through the nozzle assemblies. You can
also play with the code to generate your own unique fountain designs.

E X ERCISE

Using the idea and techniques discussed in Project 18, design a water fountain
so that the nozzles are placed along the outer edges of the water tanks of
the same four-level structure. Make the nozzles point away from the center of
the structure and then draw the water jets. You can decide how far and high
those jets should travel before coming down, but be realistic and pay attention
to aesthetics. The shape and size of the jets should match the size of the foun-
tain. A water fountain is an object of beauty, after all.

Project 19: Track a Pendulum’s Motion and Phase
A pendulum is a body or weight hung from a fixed point with the help of a
string, chain, or rod. When the pendulum is moved from the stable equi-
librium of its vertical position, it can freely swing under the influence of
gravity. In ideal conditions, when no friction or air resistance interferes,
the pendulum will continue to swing indefinitely once it’s set in motion.
Clockmakers have long used pendulums to steadily drive mechanical
clocks—picture, for example, the swinging pendulum of an antique grand-
father clock. Other examples of real-life pendulums include swings, wreck-
ing balls, and church bells.

Pendulums exhibit simple harmonic motion (SHM), defined as the motion
of an object that is periodic, or repeating, and that is driven by two oppos-
ing forces: an inertial force that moves the object away from its equilibrium
position and a restoring force that tries to return the object to its equilibrium
position. The maximum displacement of the object relative to the mean
or equilibrium position is called the amplitude, and the number of cycles
the object goes through per unit time is called the frequency. The inverse of
frequency, which is the time it takes to complete one cycle or oscillation, is
called the period.

The simple harmonic motion of a pendulum provides a starting point
for understanding the more complex periodic motions found in nature,

190 Chapter 5

from the vibration of an electron to the orbit of a planet about a star. This
project introduces the equation for the motion of a simple pendulum. It
shows you how to use a numerical method to solve this equation and cal-
culate the state of the pendulum—that is, its velocity and displacement
angle—at any given time once the pendulum is set in motion. For added
realism, we’ll factor in the effect of air resistance to show how it gradually
dampens the pendulum’s motion. Of course, we’ll codify our model pendu-
lum in Kotlin and visualize the results by using the JavaFX tools we learned
in Chapter 3. Our visualization will consist of three charts: one showing the
change of the pendulum’s velocity over time, one showing the change of its
displacement angle over time, and one showing the relationship between
the two.

The Motion of a Simple Pendulum
A simple pendulum has a single weight, or bob, of mass m that hangs from
a thin string of length l fixed at point A. It’s assumed that the mass of the
string is negligible compared with the mass of the bob. It’s also assumed
that the string doesn’t stretch due to the weight of the bob and that the bob
can move back and forth indefinitely without any friction or loss of energy
(meaning the total energy of the system is conserved, once set in motion).
As the pendulum swings, its angular displacement (θ) changes, as measured
relative to the pendulum’s stable equilibrium position (the vertical line
passing through point A). Figure 5-7 shows these components of a simple
pendulum.

θ

mg
mg cos(θ)

mg sin(θ)

l

A

B

Figure 5-7: Components of
a simple pendulum

At any point in time, the force of gravity, mg, acts on the bob to set it in
motion. The gravitational force has two components. The first, mg cos(θ),
acts along the line of the string and is countered by the tension in the
string. The second, mg sin(θ), acts perpendicularly to the string. This is the
part that isn’t balanced by any other force (assuming no air resistance) and
is responsible for the harmonic motion of the pendulum.

Modeling and Simulation 191

Let ω denote the rate of change of angular displacement, also called
the angular velocity:

	 dθ
dt

ω = 	 (5.13)

The right-hand side of Equation 5.13 is called the derivative of θ with
respect to time t. Mathematically speaking, the time derivative of a variable
gives us the instantaneous rate of change of that variable with respect to time.

We can now express the equation of motion for this simple pendulum
in terms of its angular acceleration as follows:

	 dω
dt

 = – sinθg
l

	 (5.14)

An analytical solution to Equation 5.14 would give us an expression
for the angular displacement θ in terms of time t and other parameters.
However, the analytical solution isn’t easy to derive unless we make an addi-
tional assumption that the maximum displacement θmax is relatively small—
say, less than 15 degrees. This would allow us to replace sin(θ) with θ, since
the two are equivalent for small angles.

We don’t want to be limited to just this special case, however. Instead,
we’ll use the Euler-Cromer numerical method to incrementally solve
Equation 5.14 for a small time step. This method maintains the conserva-
tion of energy inherent in simple harmonic motion, and it yields stable
solutions (a solution is stable when the numerical approximation doesn’t
deteriorate and move away from the theoretical solution over time).

The Strategy
To apply the Euler-Cromer method, we need to change Equation 5.14 from
its continuous-time form to its discrete-time form:

	 ωt + 1 = ωt – sinθ
t δt

g
l

	 (5.15)

Here δt is a small, discrete time step. Next, we’ll incorporate the impact
of air resistance on the pendulum. Air resistance slows down the angular
velocity as a decelerating force, which can be assumed to be proportional to
the angular velocity. Assuming γ to be the proportionality constant, we can
modify Equation 5.15 as:

	 ωt + 1 = ωt – sinθ
t δt – γ ωt δt

g
l

	 (5.16)

Finally, we’ll write another expression for updating the angular dis-
placement θ, which follows directly from the definition of angular velocity ω
in Equation 5.13 as:

	 θt + 1 = θt + ω(t)δt	 (5.17)

192 Chapter 5

Here, we are assuming that over a small time interval δt, θ is changing
from θt to θt + 1. In reality, ω also continues to change over this small time
period. We recognize this fact by denoting ω as a function of time—that is,
ω(t)—in Equation 5.17. However, in discrete-time representation, we can
use only one discrete value of ω, and the Euler-Cromer method requires
that it be ωt + 1 to ensure numerical stability. Thus, the final numerical form
for the equation of motion of a simple pendulum is:

	 θt + 1 = θt + ωt + 1 δt	 (5.18)

By starting with initial values for θ and ω, and by repeatedly using
Equations 5.16 and 5.18, we can calculate the state of a simple pendulum
and plot the changes of its angular displacement and velocity over time.

The Code
The program for modeling our simple pendulum has three main code
segments: the main application segment coordinating the model, a simple​
PendulumWithDrag() function implementing the equations we’ve discussed,
and a singleXYChart() function to draw each plot. We’ll review these segments
in detail in the same order, starting with the main application segment.

// import block
import javafx.application.Application
import javafx.scene.Scene
import javafx​.scene​.control​.ScrollPane
import javafx.scene.layout.VBox
import javafx​.scene​.paint​.Color
import javafx.scene.chart.*
import javafx.stage.Stage
import java.text.DecimalFormat
import kotlin.math.PI
import kotlin.math.sin
import kotlin.math.sqrt

// data classes
data class XYChartData(val x: Double, val y: Double)
data class PendulumData(val theta: Double, val omega: Double,
 val t: Double)

// problem definition and global parameters
val theta0 = -PI/6 // angular displacement at t = 0, rad
val omega0 = 0.0 // angular velocity at t = 0, rad/s
val l = 0.4 // length, m
val g = 9.81 // acceleration due to gravity, m/s2
val n = 100 // intervals
val gamma = 0.6 // drag coefficient

class SimplePendulum : Application() {
 override fun start(primaryStage: Stage) {
 val root = VBox()
 val scroll = ScrollPane()

Modeling and Simulation 193

 scroll​.content = root
 val scene = Scene(scroll, 550.0, 600.0, Color.WHITE)
 primaryStage.title = "Simple Pendulum"
 primaryStage.scene = scene
 primaryStage.show()

 // Generate pendulum state data.
 1 val state: List<PendulumData> =
 simplePendulumWithDrag(theta0, omega0,
 l, g, n, gamma)

 // Create (x, y) series for plotting.
 val list1 = mutableListOf<XYChartData>()
 val list2 = mutableListOf<XYChartData>()
 val list3 = mutableListOf<XYChartData>()

 2 for (item in state) {
 val (theta, omega, t) = item
 list1 += XYChartData(t, theta) // t along x-axis
 list2 += XYChartData(t, omega) // t along x-axis
 list3 += XYChartData(theta, omega)
 }

 // Call singleXYChart() to generate plots.
 val xyChart1 =
 singleXYChart(list1,
 title = "Angular Displacement over Time",
 xLabel = "Time (sec)",
 yLabel = "Angular displacement (rad)")
 val xyChart2 =
 singleXYChart(list2,
 title = "Angular Velocity over Time",
 xLabel = "Time (sec)",
 yLabel = "Angular velocity (rad/sec)")
 val xyChart3 =
 singleXYChart(list3,
 title = "Phase-Space Plot (omega vs. theta)",
 xLabel = "Angular displacement (rad)",
 yLabel = "Angular velocity (rad/sec)",
 sort = "NONE")

 // Add the charts to the root (VBox) object.
 3 root.children.addAll(xyChart1, xyChart2, xyChart3)
 }
}

fun main() {
 Application.launch(SimplePendulum::class.java)
}

As usual, the main application segment starts with the boilerplate
import block required for a JavaFX-based app. This time, we’re also going
to use a class called ScrollPane that can hold a graphics element and provide
a scrollable view of it. This will help us view all three charts in the same

194 Chapter 5

window. The import block also includes the math functions we’ll need for
this project.

The second code block declares two data classes. We’ll use the
XYChartData class to hold (x, y) data points for creating the line charts and
the PendulumData class to store the state of the pendulum (angular displace-
ment θ and velocity ω) for a specific time t. Each XYChartData data point will
be fetched from the values in a particular PendulumData instance.

Next, we provide problem-specific and global parameter values. For
example, we’ve set the initial displacement to -PI/6 (–30 degrees) and the
initial velocity to 0. The length of the pendulum, measured in meters, is 0.4,
and n = 100 means we’ll determine the value of the time step (δt) by dividing
the period of oscillation into 100 intervals. We’ve also set the coefficient for
air resistance to 0.6 (a value of 0 would mean no air resistance).

Inside the SimplePendulum application class, the problem-specific part
of the code starts with a call to simplePendulumWithDrag() 1 that takes in the
following arguments: the initial displacement θ0, the initial velocity ω0, the
length of the pendulum l, the acceleration due to gravity g, the number of
time intervals per period n, and the air resistance coefficient γ. As you’ll see
shortly when we look at the inner workings of this function, it returns a list
of PendulumData instances, one for each time step, which we store as state.

Next, we create three mutable lists to hold the XYChartData instances that
we’ll need to draw the line charts illustrating the pendulum’s state vari-
ables. We build these lists by extracting the elements from each PendulumData
instance as needed for the three charts 2. Charts 1 and 2 both show time
on the x-axis and displacement and velocity on the y-axis, respectively;
chart 3 shows displacement on the x-axis and velocity on the y-axis.

We generate the three charts by making successive calls to the singleXY​
Chart() function. The function takes five arguments, four of which have
default values assigned in the function definition. Thus, we only need to
provide a list of type XYChartData (for example, list1) and optionally supply
values of the other named parameters. Notice that for xyChart3, we specify
sort = "NONE" so that we can correctly plot the (velocity, displacement) pairs
without changing their sequence. This is a requirement when we con-
sider the air resistance that alters the cyclic relationship between the two
state variables.

We plot the charts by attaching them to root 3, which we previously
assigned to a ScrollPane. This scheme allows us to view all three charts
inside the same window by scrolling up and down or sideways as needed.
Finally, the main() function’s only job in a JavaFX application is to launch
the main application class—in this case, SimplePendulum.

The simplePendulumWithDrag() Function

In the simplePendulumWithDrag() function, we use the Euler-Cromer method
to calculate the values of the pendulum’s state variables for a specified num-
ber of time steps, given the initial conditions and global parameter values.

fun simplePendulumWithDrag(
 theta0 : Double,
 omega0 : Double,

Modeling and Simulation 195

 l: Double, g: Double, n: Int,
 gamma: Double = 0.0): List<PendulumData> {

 // Set local variables, parameters, and list.
 val alpha = g / l
 // Calculate period for small displacement.
 1 val T = 2 * PI * sqrt(l/g)
 2 val dt = T / n
 val Nmax = 4 * n
 val df = DecimalFormat("##.####")

 var omegaOld: Double; var omegaNew: Double
 var thetaOld: Double; var thetaNew: Double
 var timeOld: Double; var timeNew: Double
 val pList = mutableListOf<PendulumData>()

 // Initialize for t = 0.
 thetaOld = theta0
 omegaOld = omega0
 timeOld = 0.0
 pList += PendulumData(theta0, omega0, 0.0)

 // Calculate and save state variables.
 3 for (k in 1..Nmax) {
 omegaNew = omegaOld –
 (alpha * sin(thetaOld) + gamma * omegaOld) * dt
 thetaNew = thetaOld + omegaNew * dt // Euler-Cromer
 timeNew = timeOld + dt
 4 pList += PendulumData(thetaNew, omegaNew, timeNew)

 5 omegaOld = omegaNew
 thetaOld = thetaNew
 timeOld = timeNew
 }

 println("\n*** Simple Pendulum Simulation ***\n")
 println("length l: $l m")
 println("theta0: ${df.format(theta0*180/PI)} degrees")
 println("omega0: ${df.format(omega0*180/PI)} rad/sec")
 println("gamma: ${df.format(gamma)}")
 println("dt: ${df.format(dt)} sec")
 println("Nmax: $Nmax intervals")
 println("Simulation length: ${df.format(Nmax*dt)} sec")

 return pList
}

Our first order of business is to determine the value of the time step
dt (δt). For that, we need to estimate the pendulum’s period of oscillation
T 1, using the following formula:

	
T = 2π l

g 	

196 Chapter 5

Technically, this formula is valid only for initial displacement angles under
15 degrees, but it provides a good starting approximation. Dividing T by
the number of time intervals per period n gives us the length of each time
interval 2.

Notice that we also arbitrarily set the maximum number of time steps,
Nmax, to 4 * n intervals to ensure that the simulation period includes at least
three full cycles of the pendulum’s oscillation (the period of a pendulum
gets longer as the initial displacement or amplitude gets larger). Feel free to
try out other values for these parameters, but keep in mind that a larger n
(and thus a smaller dt), or a longer simulation period, will increase the
number of computations and require more memory to store all the inter-
mediate values of the state variables.

After initializing the local variables, parameters, and the mutable list
pList that saves the state variables (including time), we implement the Euler-
Cromer method by using a for loop 3. Inside this loop, we use Equations 5.16
and 5.18 to calculate omegaNew and thetaNew, along with the updated time
timeNew. We store these in an instance of PendulumData and add it to pList 4.
Then we assign these “new” state variables back to the “old” state variables
(for example, setting omegaOld = omegaNew 5) for the next time through the
loop. In all, these steps are repeated for each time interval, for a total of Nmax
times.

The code segment includes several print statements that summarize the
global values and parameters used to solve the problem. Then the segment
ends by returning pList to the calling function.

The singleXYChart() Function

The singleXYChart() function creates a line chart with JavaFX. In this case,
using the JavaFX charting tools is a more natural choice for creating our
visualization than using the canvas feature, as we did in Project 18. This
time we want to be able to read off the values of the state variables directly
from the charts, and this would not be easy to do from scratch using the
canvas (we’d essentially have to write our own charting library).

Most of the code in this segment is boilerplate JavaFX code used for
creating a line chart. Since this process was discussed in detail in Chapter 3,
we’ll focus only on the problem-specific elements in this code.

fun singleXYChart(data: List<XYChartData>,
 title: String = "",
 xLabel: String = "x-axis",
 yLabel: String = "y-axis",
 sort: String = "default"): LineChart<Number, Number> {

 // Define axes.
 val xAxis = NumberAxis()
 val yAxis = NumberAxis()
 xAxis.label = xLabel
 yAxis.label = yLabel

Modeling and Simulation 197

 // Create LineChart.
 val lineChart = LineChart(xAxis, yAxis)
 lineChart.title = title
 1 lineChart.createSymbols = false
 2 lineChart.isLegendVisible = false
 3 if (sort == "NONE")
 lineChart.axisSortingPolicy = LineChart.SortingPolicy.NONE

 // Define series.
 val series = XYChart.Series<Number, Number>()

 // Populate series with data.
 4 for (item in data) {
 val (x, y) = item
 series.data.add(XYChart.Data(x, y))
 }

 // Assign series with data to LineChart.
 lineChart.data.add(series)

 // Return LineChart object.
 return lineChart
}

The first thing to notice is that the function takes five arguments,
four of which are named arguments. We’ve provided default values for the
named arguments in the function definition, and these defaults will be
used unless we supply problem-specific values when calling the function.

To keep the chart clean and simple, we turn off markers 1 and the
legend 2. We also turn off the default sorting of x-values when the sort
parameter is set to "NONE" 3. As you saw in the main application code, we
use this option when creating the chart of angular velocity over displace-
ment, because we need to maintain the order of (ω, θ) pairs to correctly
capture the cyclic nature of this relationship. Finally, we extract the data
points for the line chart from data (which is a list of XYChartData instances) by
deconstructing each item in data into a set of x and y values 4.

The Result
The program generates a few lines of text output and a scrollable window
that contains our line charts. The text output should look like this:

*** Simple Pendulum Simulation ***

length l: 0.4 m
theta0: -30 degrees
omega0: 0 rad/sec
gamma: 0.6
dt: 0.0127 sec
Nmax: 400 intervals
Simulation length: 5.075 sec

198 Chapter 5

This output provides a reminder of the parameter values used and
especially shows the time interval δt that we’ve calculated internally based
on the estimated period of the pendulum. You need to monitor this value if
accuracy is a concern.

Regarding the content of the chart window, the first line chart shows
how the angular displacement varies with time, and the second chart shows
the same for angular velocity (see Figure 5-8).

Figure 5-8: The angular displacement (left) and angular velocity (right) of a pendulum facing air resistance

The charts show the pendulum’s periodic pattern decaying, or dampen-
ing, due to air resistance; otherwise, the maximum displacement and the
maximum velocity would remain unchanged. Notice the phase difference
between θ (displacement) and ω (velocity): ω lags θ by a fixed distance along
the time axis. Specifically, whenever θ is at its most extreme, ω is 0, and vice
versa. For example, at t = 0, θ is at its maximum displacement, –π/6 (to the
left of the equilibrium position), but ω = 0; then, at approximately t = 0.32,
the pendulum passes through its equilibrium position (θ = 0) and ω reaches
its maximum magnitude. This is because at this location, all of the pendu-
lum’s potential energy becomes kinetic energy. Beyond that point, ω begins
to drop as the kinetic energy converts back into potential energy, until ω
becomes 0 again at the point of maximum displacement on the opposite side.

This relationship can be shown directly by plotting ω against θ, which
is exactly what we’ve done in our third plot. This kind of visualization is
known as a phase-space plot; for a dynamic system in two dimensions, it plots
velocity v(t) over displacement x(t), the common denominator being time, t.
Also called a phase portrait, a phase-space plot helps in studying complex sys-
tem behaviors and uncovering relationships between the state variables that
might otherwise remain undetected. Figure 5-9 shows our phase-space plot
for the pendulum, with θ on the x-axis and ω on the y-axis.

Modeling and Simulation 199

Figure 5-9: A phase-space plot of a simple pendulum with
damped motion

The main point to notice in the plot is that while ω and θ are still
related through the parameter t, both are decreasing due to air resistance.
With each time step, the pendulum gets a bit slower and its swing a bit
narrower—hence the distinctive spiral shape of the plot. If you’re wonder-
ing what the pattern might look like for an undamped pendulum that isn’t
experiencing any air resistance, you can simply set the drag coefficient γ to
0 and run the program again to investigate.

E X ERCISE

For many periodic systems, the Euler-Cromer method, which is first-order conver-
gent (the global error is proportional to the step size), isn’t suitable, because it will
require too many computations to produce results of acceptable accuracy. The
Runge-Kutta (R-K) method offers significant computational efficiency and accuracy
over the Euler-Cromer method. Study the R-K method and implement the algorithm
in Kotlin to solve the simple pendulum problem. (Detailed instructions can be found
in any introductory resource on numerical analysis, including those provided at
the end of this chapter.) You’ll notice that the R-K method will allow you to use
larger time steps to achieve the same level of accuracy as the Euler-Cromer
method.

200 Chapter 5

Project 20: The Physics of Coffee Cooling
Now we’ll turn our attention from the physics of motion to the physics of
heat transfer. Imagine you’ve picked up a cup of coffee from your favorite
coffee shop on your way to work in the morning. It’s a 25-minute drive
from the coffee shop to your office, during which the coffee will get colder
due to heat loss. You like to have milk in your coffee, but the milk is kept
refrigerated, so adding it will further lower the temperature of the coffee.
You could add milk right away at the coffee shop or wait to add milk from
your office refrigerator. Which option should you use to keep your coffee as
warm as possible?

We’ll write a Kotlin application to plot the coffee’s change in tem-
perature over time in both scenarios. For that, we’ll first need to review
Newton’s law of cooling, which defines how an object cools due to the loss
of heat energy to its surroundings. We also have to consider the science
of mixing two different liquids so we can figure out how to calculate the
change of temperature when we add cold milk to hot coffee.

Newton’s Law of Cooling
Newton’s law of cooling states that the rate of change of the temperature of
an object is proportional to the difference between the object’s temperature
and the ambient temperature. It can be mathematically expressed as follows:

	 dT
dt

 = –k (T – Ta)	 (5.19)

T is the temperature of the object at time t, Ta is the ambient tempera-
ture, which is assumed to remain constant, and k is the heat transfer coef-
ficient. For situations where T is greater than Ta, the greater the value of k,
the quicker the object will cool.

The value of the coefficient k depends on the material and surface
properties of the object, as well as on the temperature of the object itself.
When the primary method of heat loss is conduction, and convective
and radiative losses are negligible, k can be assumed to remain constant
for a small range of temperature variations. Our coffee cooling problem
meets these requirements well: most of the heat loss happens conductively
through the wall of the cup, convection is minimized by keeping a lid on
the cup, and electromagnetic radiation in this temperature range is negli-
gible compared to the other two factors.

Let’s now look at the solution of Equation 5.19, which is a first-order
ordinary differential equation. For the initial temperature T0 (at t = 0) > Ta,
the solution can be expressed as:

	 T(t) = Ta + (T0 – Ta) e−kt	 (5.20)

Equation 5.20 will allow us to calculate the temperature of the coffee
(with or without milk) given the initial coffee temperature T0, the ambient
temperature Ta, the elapsed time t, and the heat transfer coefficient k.

Modeling and Simulation 201

The Effect of Mixing Liquids
When two liquids of different temperatures are mixed together, the hot-
ter liquid gets cooler by releasing heat energy, and the colder liquid gets
warmer by absorbing the released heat. This exchange of heat energy will
continue until both liquids attain the same temperature.

Mathematically, the amount of heat Q absorbed or released by one of
the liquids, and its corresponding change in temperature ΔT, are related as
follows:

	 Q = CΔT, where C = ρVs	 (5.21)

The term C in Equation 5.21 is called the thermal mass of the object,
which is the product of its density ρ, volume V, and specific heat capacity s. In
SI units, Q is measured in joules (J), temperature T in degrees Celsius (°C),
ρ in kg/m3, V in m3, and s in J/(kg °C). As a result, the unit for C will be J/°C.
For the coffee cooling problem, since we’ll be working with small quantities
of liquids, we’ll use grams per milliliter (g/mL) for density, mL for volume,
and J/(g °C) for specific heat capacity.

Say we’re mixing two liquids such that C1, T1, and Tf are the thermal
mass, initial temperature, and final temperature for liquid 1, and C2, T2, and
Tf are the same for liquid 2. (Notice that the final temperature for both liq-
uids is the same.) If the mixing happens quickly, with no heat exchange with
the surrounding environment, and if the liquids don’t chemically react and
generate or absorb heat, the principle of conservation of energy suggests that
the net change in energy in the system will be zero—that is, Q1 + Q 2 = 0. After
substituting for Q1 and Q 2 using Equation 5.21 and simplifying the results, we
get the following expression for the final temperature:

	
C1T1 + C2T2

C1 + C2

Tf = 	 (5.22)

You can use Equation 5.22 to calculate the temperature of the coffee
after adding milk, either at the coffee shop or when you arrive at the office.
Finally, we have all the science worked out to solve our problem and enjoy
the optimal cup of coffee.

The Strategy
To identify the right time for adding milk, we need some data on the prop-
erties of the coffee and milk, as well as the ambient temperature of the
environment. This data is summarized in Table 5-2.

202 Chapter 5

Table 5-2: Coffee Cooling Problem Data

Item Value and unit

Initial temperature of black coffee 92°C

Volume of black coffee 250 mL

Density of black coffee 1 g/mL

Specific heat capacity of coffee 4.19 J/(g °C)

Initial temperature of refrigerated milk 4°C

Volume of milk added to the coffee 25 mL

Density of milk 1.035 g/mL

Specific heat capacity of milk 3.89 J/(g °C)

Length of the drive from the coffee shop to the office 25 minutes

Heat transfer coefficient for coffee (assumed to be the
same with or without milk)

0.0116/minute

Ambient temperature everywhere 20°C

Armed with the science of coffee cooling and the data presented in
Table 5-2, we can now solve the problem by following these steps:

Option 1: Add milk later

	 1.	Calculate the temperature of black coffee after 25 minutes, starting
with the initial temperature of 92°C.

	 2.	Calculate the final temperature of the coffee after adding 25 mL of
milk (assuming that mixing and heat exchange happen instantly).

Option 2: Add milk at the coffee shop

	 1.	Calculate the initial temperature of the coffee when milk is added
immediately at the coffee shop (assuming that mixing and heat
exchange happen instantly).

	 2.	Calculate the final temperature of the coffee after 25 minutes.

By comparing the final temperatures from options 1 and 2, we’ll know
which option will keep the coffee warmer.

The Code
We’ll develop this program as a JavaFX application so we can plot the coffee’s
temperature profile over time for both options. For this, we’ll use the same
template as in Project 19, with some changes to the problem-specific parts.

Let’s start with the problem definition and global parameters, along
with the problem-specific components in the main application class,
MixCoffeeAndMilk.

// import block
import javafx.application.Application
import javafx.scene.Scene

Modeling and Simulation 203

import javafx​.scene​.control​.ScrollPane
import javafx.scene.layout.VBox
import javafx​.scene​.paint​.Color
import javafx.scene.chart.*
import javafx.stage.Stage
import java.text.DecimalFormat
import kotlin.math.exp
import kotlin.math.ln
import java.text.DecimalFormat

// data classes
1 data class State(
 val time: Double,
 val Temp: Double
)

// problem definition and global parameters
val coffeeT0 = 92.0 // degrees Celsius
val coffeeV = 250.0 // mL
val coffeeS = 4.190 // J/(gm C) - assumed same as water
val coffeeD = 1.0 // gm/mL - assumed same as water
val coffeeK = 0.0116 // 1/min

val milkT0 = 4.0 // degrees Celsius
val milkV = 25.0 // mL
val milkS = 3.890 // J/(gm C)
val milkD = 1.035 // gm/mL

val T_ambient = 20.0 // degrees Celsius
val timeMax = 25.0 // min (length of drive)
2 val timeStep = 0.25 // min
val df = DecimalFormat("#.##")

// application class
class MixCoffeeAndMilk : Application() {
 override fun start(primaryStage: Stage) {
 val root = VBox()
 val scroll = ScrollPane()
 scroll​.content = root
 val scene = Scene(scroll, 550.0, 600.0, Color.WHITE)
 primaryStage.title = "Coffee Cooling Profile"
 primaryStage.scene = scene
 primaryStage.show()

 // Execute steps for coffee cooling process.
 println("\n *** Coffee Cooling Problem *** \n")

 // step 1:
 3 val state1 =
 newtonCooling(T0 = coffeeT0, Ta = T_ambient,
 k = coffeeK,tMax = timeMax, dt = timeStep)
 printTimeAndTemp(state1.last(), 1)

204 Chapter 5

 // step 2:
 4 val finalT1 =
 tempAfterMixing(d1 = coffeeD, v1 = coffeeV, s1 = coffeeS,
 T1 = state1.last().Temp,
 d2 = milkD, v2 = milkV,
 s2 = milkS, T2 = milkT0)
 println("step 2: final temp with milk: " +
 "${df.format(finalT1)} degrees Celsius\n")

 // step 3:
 5 val initT2 =
 tempAfterMixing(d1 = coffeeD, v1 = coffeeV, s1 = coffeeS,
 T1 = coffeeT0, d2 = milkD, v2 = milkV,
 s2 = milkS, T2 = milkT0)
 println("step 3: initial temp with milk: " +
 "${df.format(initT2)} degrees Celsius")

 // step 4:
 6 val state2 =
 newtonCooling(T0 = initT2, Ta = T_ambient, k = coffeeK,
 tMax = timeMax, dt = timeStep)
 printTimeAndTemp(state2.last(), 4)

 // step 5:
 7 val state3 =
 newtonCooling(T0 = finalT1, Ta = T_ambient,
 k = coffeeK,tMax = timeMax, dt = timeStep,
 start = timeMax)

 8 val state4 =
 newtonCooling(T0 = state2.last().Temp,
 Ta = T_ambient, k = coffeeK,
 tMax = timeMax, dt = timeStep, start = timeMax)

 val states =
 listOf(state1, state2, state3, state4)

 createCoolingChart(root, states = states)
 }
}

fun main() {
 Application.launch(MixCoffeeAndMilk::class.java)
}

The import block for this code segment is similar to that of Project 19,
except that we need fewer math functions. In addition to initializing the
values from Table 5-2, we declare a data class called State 1 to save the tem-
perature at a given time. This will help us organize the data to be plotted.
Among the parameters, notice that we set timeStep to 0.25 minutes 2. This
way, we’ll track and plot the coffee’s cooling progress in 15-second intervals.
This time step may seem surprisingly long compared to the very short time
intervals from Project 19, but it’s adequate for this problem because the

Modeling and Simulation 205

temperature drops smoothly and slowly. Besides, we’re using an analytical
solution and not a numerical approximation; thus, this choice doesn’t affect
the accuracy of the calculations.

The problem-specific part of the code in the main application class fol-
lows the same order as the steps outlined in “The Strategy” on page 211,
except that we’ve added an extra step (step 5) to further track the coffee as
it continues to cool at the office (more on that shortly). The code here relies
on two main helper functions: the newtonCooling() function, which calculates
how the coffee cools over time, and the tempAfterMixing() function, which
calculates the immediate temperature after adding the milk. We deploy
these functions as follows:

•	 For step 1, we call newtonCooling() and save the result as state1 3. This
produces a list of type State containing the data points needed to show
how the black coffee gets colder over time between the coffee shop and
the office.

•	 For step 2, we call tempAfterMixing() to get the final temperature of
the coffee when milk is added after arriving at the office 4. This is
how warm the coffee will be before you take the first sip if you chose
option 1 (add milk later).

•	 For step 3, we call tempAfterMixing() to calculate the temperature of the
coffee after adding milk at the coffee shop, before the drive to work 5.

•	 For step 4, we call newtonCooling() and save the resulting list of State data
points as state2 6. The temperature property of the last element of this
list will tell us how warm the coffee will be when you arrive at the office
after choosing option 2 (add milk first).

During each step, we display some output from the simulation either
by using the println() function or by calling the custom printTimeAndTemp()
function, defined here:

fun printTimeAndTemp(datapoint: State, step: Int) {
 val (endTime, endTemp) = datapoint

 println("step $step: end time: ${df.format(endTime)} minutes")
 println("step $step: end temp: ${df.format(endTemp)} " +
 "degrees Celsius")
}

We have everything we need to solve the problem after step 4, and the
results are printed on the console. Let’s have a look at the results first, then
come back to step 5 and the code for visualizing the cooling process.

 *** Coffee Cooling Problem ***

step 1: end time: 25 minutes
step 1: end temp: 73.87 degrees Celsius
step 2: final temp with milk: 67.75 degrees Celsius

206 Chapter 5

step 3: initial temp with milk: 84.29 degrees Celsius
step 4: end time: 25 minutes
step 4: end temp: 68.1 degrees Celsius

The final temperature of the coffee is 67.75°C when you add milk at
the office versus 68.1°C when you add milk at the coffee shop. Though the
difference isn’t that significant (just 0.35°C), you’ll be better off adding the
milk at the coffee shop.

Of course, you could figure this out for yourself without any math or
code by investing in a good-quality thermometer and brewing two cups of
coffee. The benefit of building a mathematical model of the process, how-
ever, is that it not only tells us what the temperature will be after 25 minutes
but also how the system will get there, starting from an initial state and
considering interventions such as adding milk. Once we have the model,
we can play with the parameter values and generate answers to many other
questions, without making more coffee, adding more milk, and taking
many temperature measurements.

For example, say you get pulled into a meeting right after you arrive at
work. You have just enough time to add milk to your coffee (if you haven’t
added it already), but you don’t have time to enjoy said coffee until the
meeting ends—another 25 minutes later. What will the temperature of
the coffee be at that point, a full 50 minutes after you bought it? Since we
already have a mathematical model for how the coffee cools over time, this
question is quite easy to answer.

This brings us to step 5, where we use the final temperatures after the
first 25 minutes as the initial temperatures for running the simulation for
a further 25 minutes. For this, we use an additional named parameter start
in the newtonCooling() function. This parameter lets us offset the time values
by 25 instead of starting the simulation time over at 0. We call the function
twice, generating lists state3 7 (for option 1—milk added at the office) and
state4 8 (for option 2—milk added at the coffee shop).

Once all four states are calculated, we create a list of type State by using
the listOf() method and pass this list to the createCoolingChart() function
for plotting the temperature profiles for the entire 50-minute period.

Calculating the Temperature Changes

Now let’s review our two helper functions for calculating the temperature
changes in the coffee. The newtonCooling() function tracks the temperature
change of the coffee over a period of time. The tempAfterMixing() function
calculates the instantaneous temperature change when the milk is mixed in.

fun newtonCooling(T0: Double, Ta: Double, k:Double,
 tMax: Double, dt: Double,
 start: Double = 0.0): List<State> {
 val state = mutableListOf<State>()
 var t = 0.0

 while (t <= tMax) {
 1 val temp = Ta + (T0 - Ta)*exp(-k * t)
 2 state += State(t+start, temp)

Modeling and Simulation 207

 t += dt
 }
 return state
}

fun tempAfterMixing(
 d1: Double, v1: Double, s1: Double, T1: Double,
 d2: Double, v2: Double, s2: Double, T2: Double
): Double {

 return (d1 * v1 * s1 * T1 + d2 * v2 * s2 * T2) /
 (d1 * v1 * s1 + d2 * v2 * s2)
}

In the newtonCooling() function, we use Equation 5.20 to calculate the
temperature of the coffee at point t in time 1. We do this in a while loop,
incrementing t by dt (set to timeStep) each iteration, until we get to tMax,
giving us time and temperature data points in 15-second intervals, up to
25 minutes, which we store in a list called state 2.

Notice that we add start to each t before storing it in the list. When
start isn’t set during the function call, it defaults to 0 and has no effect.
However, when we call the function to create state3 and state4 (as part of
step 5, discussed earlier), we set start = timeMax so the timestamps will range
from 25 to 50. This allows us to plot all the data in a single chart.

The tempAfterMixing() function takes in the separate density, volume,
specific heat capacity, and premixing temperatures for the milk and coffee
and returns the final equilibrium temperature once the milk is mixed in,
using Equation 5.22.

Plotting the Temperature Profiles

We’re now ready to plot the two temperature profiles of the cooling coffee.
For that, we’ll define the createCoolingChart() function.

fun createCoolingChart(root: VBox, states: List<List<State>>) {

 val xyChart =
 singleXYChart(states,
 title = "Temperature of Coffee over Time",
 xLabel = "Time",
 yLabel = "Temperature (degrees Celsius)")

 root.children.add(xyChart)
}

We use this short function mainly to preprocess the information
needed by the singleXYChart() function, also used in Project 19. This helps
keep the body of the main application class less cluttered. Since we’ve dis-
cussed how to use singleXYChart() previously, I’ll skip that part here, except
to mention that we’re now passing a list of lists rather than one single list as
a collection of data points. Inside the singleXYChart() function, we therefore

208 Chapter 5

create four different series (from the list of lists, states) and plot them on
the same chart instead of creating four separate charts. See Chapter 3 for a
review of how to plot a single series versus multiple series in the same chart.

The last line of this function adds the chart object xyChart returned by
the singleXYChart() function to the root node for display. Figure 5-10 shows
the result.

Milk added at the shop

Black coffee cooling

Coffee with milk cooling

Milk added at the office

Figure 5-10: The temperatures of black coffee and coffee with milk over time

The plot spans the entire 50-minute period of the simulation. We can
see the sudden temperature drops when the milk is added either at the
coffee shop (at time 0) or at the office (at time 25). After the latter, the tem-
perature profiles appear to be almost identical. When we zoom in, however,
as in Figure 5-11, we find a slight difference (less than 1°C).

Milk added at t = 0 min

Milk added at t = 25 min

Figure 5-11: A closer look at the coffee cooling problem for t > 25 minutes

Modeling and Simulation 209

The gap between the two lines indicates that the coffee with milk
added at the shop will always be a tad warmer. If we continue this experi-
ment for a long time, will these temperature profiles still stay separate from
each other? Why or why not?

E X ERCISE

In this exercise, you’ll apply Newton’s law of cooling to help with a forensic
investigation into the death of a person whose body was found in a locked
apartment. This is what you know so far: The body was found at 2:00 PM, when
the core body temperature was recorded as 25°C. A second body temperature
reading two hours later (in the same room) yielded 23.6°C. The temperature
inside the apartment was set to a constant 20°C. Assuming the person died in
the same room where the body was found, estimate the approximate time of
death.

Hint: Start by writing a new function getHTC() to estimate the heat transfer
coefficient k based on the two recorded body temperatures postmortem. Use
the following equation:

T1 – Ta

T2 – Ta

k = ln
1
∆t ()

Here Δt is the elapsed time between the two temperature readings, T1 is
the first reading, T2 is the second reading, and Ta is the ambient temperature.
Next, write a second function using the same equation, but solve it for Δt when
k is given. This time, T1 is the average body temperature of a live human (37°C),
and T2 is the first temperature reading taken at 2:00 PM.

If you do the calculations correctly, you should get Δt = 7.45 hours, which
would place the time of death at approximately 6:33 AM. If this was your
finding, congratulations! You have a bright future ahead of you as a forensic
investigator.

Project 21: Simulate a Binary Star System
In this project, we’ll explore the moves made by “star couples”—not the lat-
est objects of celebrity gossip, but rather the stars we can see when we look
up at the night sky. Many of the bright objects in the universe that appear to
the naked eye like a single star are in fact two stars in close proximity that
“dance” or orbit around a common center of rotation. Depending on the
stars’ mass, orbital velocity, and distance from each other, these binary star
systems can create interesting and unique orbital patterns. We’ll visualize
these patterns by creating a binary star system Kotlin app.

210 Chapter 5

The Science of Binary Star Systems
Binary star systems are governed by Newton’s laws of gravity and motion. Let’s
consider the model binary system in two dimensions shown in Figure 5-12.

y

x

F1

F2

M1(x1, y1)

M2(x2, y2)
r

(0, 0)

Figure 5-12: A two-body system under gravity

Our binary system is made up of two astronomical bodies, shown as
dark circles in the figure. The first body, located at (x1, y1), has a mass of
M1, and the second body, located at (x2, y2), has a mass of M2. The distance
from the center of M1 to the center of M2 is r, which we can calculate using
the Pythagorean theorem:

	 r = √(x2 – x1)
2 + (y2 – y1)

2	 (5.23)

The law of gravity says that these two bodies will be pulled toward each
other. In this example, F1 and F2 are the gravitational forces acting on body 1
and body 2, respectively. Notice that these forces are vectors, meaning they
have both magnitude and direction. (We indicate vectors with boldface
type.) According to the law of gravity, the force acting on body 1 (F1) can be
expressed as:

	 F1 = G = F()r̂
M1M2

r2
(r)ˆ 	 (5.24)

In Equation 5.24, G is a gravitation constant, F is the magnitude of
the force vector, and ! is a unit vector pointing from body 1 toward body 2.
Further, Newton’s second law of motion says that the force F1 acting on
body 1 of mass M1 will create an acceleration a1 along the direction of the
force such that:

	 F1 = M1 a1	 (5.25)

We can combine Equations 5.24 and 5.25 to write expressions for the
x- and y-components of acceleration a1 as:

Modeling and Simulation 211

	 a1x = ()()F
M1

x2 – x1
r 	 (5.26)

	 a1y = ()()F
M1

y2 – y1
r 	 (5.27)

Finally, Newton’s third law of motion requires that F1 = −F2. Thus, we
can add a negative sign to the right-hand side of Equations 5.26 and 5.27
and replace M1 with M2 to calculate the acceleration components acting on
body 2 due to F2 as:

	 a2x = –()()F
M2

x2 – x1
r 	 (5.28)

	 a2y = –()()F
M2

y2 – y1
r 	 (5.29)

To simulate the orbits of a binary system, we’ll first use these equations
for the x- and y-components of acceleration to calculate the respective
velocity components of the stars, then use those velocities to update the
positions of the stars of our binary system.

The Strategy
In this section, we’ll develop a simple algorithm to track the stars in a
binary system once they’re set in motion. First, however, we need to con-
sider what units of measurement are appropriate to the cosmic scale of our
astronomical calculations. We’ll use the following:

•	 For mass, we’ll use Mʘ, which is the mass of our sun. One solar mass is
approximately 2 × 1030 kg, about 333,000 times the mass of Earth.

•	 For distance, we’ll use the astronomical unit (AU), which is the average
distance between the sun and Earth. One AU equals 149,597,870.7 km.

•	 For time, we’ll use the solar year (yr) as the standard unit, which is equal
to 365 days, 5 hours, 48 minutes, and 46 seconds.

Given these basic units, the unit for velocity will be AU/yr, and the unit for
acceleration will be AU/yr2. This, in turn, gives us a gravitational constant
G of 4π2 AU3 yr–2 Mʘ

–1.
Now we’re ready to move on to the algorithm, which is similar to the

algorithm used in Project 19. Here are the steps we’ll follow to calculate the
positions of the binary stars:

	 1.	Get the initial position and velocity vectors (in terms of x- and
y-components) for the binary stars (including their masses and the
gravitation constant, G). Use the system of units we just discussed.

	 2.	Calculate the distance r between the stars at a given time t, using
Equation 5.23.

	 3.	Calculate x- and y-components of the accelerations, using Equations 5.26
through 5.29.

212 Chapter 5

	 4.	Choose a small enough time step dt and update the velocity and posi-
tion vectors, using the Euler-Cromer rule. The components of the
velocity and position vectors along the x-axis can be calculated as:

	 vx, t + 1 = vx, t + ax, t dt	 (5.30)

	 xt + 1 = xt + vx, t + 1 dt	 (5.31)

	 5.	Repeat step 4 for the components along the y-axis for both stars.

	 6.	Repeat steps 2 through 5 until the stopping condition is met. We’ll set
the maximum number of iterations as the stopping condition.

Of course, the whole point of making all these calculations is to be able
to sit back and enjoy watching the dance steps of the stars. After each cycle
through the algorithm, we’ll animate the stars’ motion by plotting the new
positions by using the canvas feature of JavaFX. We’ll also give each star
a trail to better illustrate the orbital paths. A significant part of the code
for this app is devoted to displaying and managing the moving objects on
the canvas.

The Code
We’ll review the code segments for this project in the same order as they
appear in the app. Let’s start with the imports and declarations that come
before the SimulateBinarySystem application class.

// animation-related tools
import javafx.animation.KeyFrame
import javafx.animation.Timeline
import javafx.util.Duration

// graphics-related tools
import javafx.application.Application
import javafx.scene.Scene
import javafx.scene.canvas.Canvas
import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.Pane
import javafx​.scene​.paint​.Color
import javafx.stage.Stage

// math functions
import kotlin.math.*

// data class
data class Star(
 val mass: Double,
 val size: Double,
 var x: Double,
 var y: Double,
 var vx: Double,
 var vy: Double,
 var xOld: Double = 0.0,
 var yOld: Double = 0.0,

Modeling and Simulation 213

 var trailCount: Int = 0,
 val color: Color = Color.GOLD
)

// problem definition and global declarations
// initial state of the binary system
val stars = listOf(
 Star(mass = 0.73606507, size = 40.0, x = -35.0, y = 0.0,
 vx = 0.0, vy = 0.3045865, color = Color.BLACK),
 Star(mass = 0.50121162, size = 25.0, x = 51.4, y = 0.0,
 vx = 0.0, vy = -0.447307098, color = Color.BLACK)
)
val G = 4 * PI * PI

// Set canvas/animation parameters.
val canvasW = 800.0
val canvasH = 800.0
val durationMillis = 4.0
val frameCountMax = 50_000

// parameters related to star trails
val TRAIL_CODE = "YES"
val trails = Array(2) { ArrayList<Pair<Double,Double>>() }
val trailMAX = 6500
val trailSize = 2.0
val scaleFactor = 4

The first three lines of the import block load important tools (KeyFrame,
Timeline, and Duration) for creating frame-by-frame animations with
JavaFX. The remaining imports are similar to what we’ve used previously
in this chapter.

After the imports, we declare a Star data class to hold the properties
needed for representing a star, including its mass, x- and y-coordinates, and
velocity components. The size property, specified in pixels, is the diameter
of the circle that will represent a particular star; xOld and yOld will hold
a copy of the star’s current position vector before updating it (needed to
generate its trails); trailCount sets the number of small dots that will follow
a star to mark its trail; and color defines the color used to draw the star and
its trail. Because this book is printed in black and white, all figures have
been generated with the default color (BLACK), but feel free to experiment
with any color you like when you run the code on your device.

The problem definition and global declaration section starts with cre-
ating stars as a list of two Star objects. We initialize each with its mass, size,
current x- and y-coordinates (x, y), components of the velocity vector along
the positive x- and y-axes (vx, vy), and color for drawing the star on the can-
vas. Since we’re not going to draw the stars to proper scale, I’m just using
two arbitrary sizes that might look reasonable given the size of the canvas.
You could make them proportional to their masses if you have reason to
believe that the stars have similar densities. Also, notice that we’ve set the
gravitational constant G to 4π2 because we’re using the astronomical units
mentioned earlier.

214 Chapter 5

In the next part of the code, we first set the width (canvasW) and height
(canvasH) of the canvas to 800 pixels (without any scaling, this would be
equivalent to 800 AU in both directions). The durationMillis parameter sets
the duration per animation frame to 4.0 milliseconds. The frameCountMax =
50_000 means the app will stop simulating the binary system after 50,000
frames. If dt = 1 year, that will be equivalent to observing the system for
50,000 years! You may not need to simulate the system for such a long time
(you can terminate the app at any time by closing the animation window).
However, it’s a good idea to run a simulation for several rounds of full orbits
(when the expected orbit is either a circle or an ellipse) to confirm that the
simulated orbits are stable. Once this is confirmed, you can play God with
the parameters and see how the movements of the stars go crazy!

The final code segment in this block sets parameters for the trails, allow-
ing us to visualize the path traced by the stars during live simulations. By
default, the TRAIL_CODE is set to YES, which means that trails for both stars will
be drawn on the canvas alongside their parent stars. Each trail is composed
of small dots or tracers that follow the parent star. The dots’ coordinates are
saved in a two-dimensional array called trails, where each element repre-
sents x- and y-coordinates stored as a Pair of type <Double, Double>. To ensure
that the full orbital path is traced out by the trails when the orbit is stable,
we set the number of trail elements to 6500. Try to keep this number to a
minimum, however; otherwise, too many dots in the trails can slow down the
animation and force you to adjust the duration of the frame.

The SimulateBinarySystem Application Class

The core part of the app is the SimulateBinarySystem application class, where
we combine Kotlin with JavaFX to drive the key parts of the app and run
the animation.

class SimulateBinarySystem : Application() {
 override fun start(stage: Stage) {
 val root = Pane()
 val canvas = Canvas(canvasW, canvasH)
 val gc = canvas.graphicsContext2D
 1 gc.translate((canvas.width)/2.0, (canvas.height)/2.0)
 2 gc.scale(1.0, -1.0)
 root.children.add(canvas)

 val scene = Scene(root, canvasW, canvasH)
 //scene.fill = Color.WHITE
 stage.title = "Binary System Simulation"
 stage.scene = scene
 stage.show()

 // -----------simulation block-----------
 // Set the background and initial positions.
 3 initialPositions(gc)

 // Start animation.
 4 val t = Timeline()
 var frameCount = 0

Modeling and Simulation 215

 val dt = 1.0
 val iterMax = 1

 5 val k = KeyFrame(Duration.millis(durationMillis), {
 for (i in 1..iterMax)
 updateStarPositions(stars, dt)
 drawStars(gc)
 if (TRAIL_CODE == "YES")
 updateAndDrawTrails(gc)
 frameCount += 1
 // Check the stopping condition.
 6 if (frameCount >= frameCountMax) {
 println("maximum limit for frameCount reached")
 t.stop()
 }
 })
 7 t.keyFrames.add(k)
 t.cycleCount = Timeline​.INDEFINITE
 t.play()
 }
}

fun main() {
 Application.launch(SimulateBinarySystem::class.java)
}

The first section of this code segment is boilerplate JavaFX code that
we’ve used before. Notice that this time we’re setting the origin of the coor-
dinate system to the center of the canvas 1. Also, the positive y-axis direc-
tion is set to point upward 2.

Inside the simulation block, we first call the initialPositions() func-
tion 3, which draws the x- and y-axes on the canvas, places the stars on the
canvas based on their position vectors, and initializes an array of type Pair
called trails if the TRAIL_CODE is set to YES. Since this function is very short,
I’ll show it and the drawAxes() function, which is called from within the
initialPositions() function, right here:

fun initialPositions(gc: GraphicsContext) {
 drawAxes(gc)
 stars.forEachIndexed {index, star ->
 gc.fill = star​.color
 gc.fillOval(
 scaleFactor * star.x - star.size/2,
 scaleFactor * star.y - star.size/2,
 star.size, star.size)

 // Place the tracers to initial star position.
 if (TRAIL_CODE == "YES") {
 for (i in 1..trailMAX) {
 trails[index].add(Pair(star.x, star.y))
 }
 }
 }
}

216 Chapter 5

fun drawAxes(gc: GraphicsContext) {
 // Draw the x- and y-axes.
 with(gc) {
 setLineDashes()
 lineWidth = 0.25
 stroke = Color.BLACK
 strokeLine(-canvasW/2,0.0, canvasW/2,0.0)
 strokeLine(0.0,-canvasH/2, 0.0,canvasH/2)
 }
}

Notice that we use a forEachIndexed structure for iteration instead of
a standard for loop in the initialPositions() function. This is because we
need the index property of the stars to create the respective trails in the
second part of the function. Each star’s trail consists of trailMAX number of
dots, or tracers, which for now we initialize to the same starting position as
the star itself.

Regarding the drawAxes() function, notice how all the graphics commands
involving the graphics context gc have been grouped together using the scop-
ing function with(). This saves us from having to type gc multiple times.

Getting back to the application class, the animation of the binary star
system is implemented by using a combination of Timeline and KeyFrame with
a {lambda} expression. We first create a Timeline variable t 4 and set a few
other local parameters. The parameter frameCount is initially set to 0 and
later incremented by 1 per frame. The dt parameter is the time step used in
updating the velocity and position vectors. We’ve set it to 1, meaning each
animation frame represents 1 year (this may seem too large, but it’s all rela-
tive; the period for this star system is 722 Earth years long). Notice that the
iterMax parameter is set to 1, which means the position and velocity vectors
are updated only once per frame. If we wanted, we could use a different dt
and iterMax combination to carry out iterMax updates of the position and
velocity vectors before changing frames.

Inside the KeyFrame class instance 5, the {lambda} expression specifies
what happens between the frame updates at a frequency specified by the
Duration.millis() function. First, we call updateStarPositions() to calculate
each star’s acceleration, velocity, and position. We then call drawStars()
to update the positions of the stars on the canvas, and finally, we call
updateAndDrawTrails() to trace out the trails for both stars. (We’ll review
these functions separately.) Before exiting the KeyFrame block, we check
for the stopping condition: if frameCount (the number of frames displayed)
reaches frameCountMax, the timeline ends, and the animation is terminated 6.

The final three lines complete the Timeline implementation. First,
we supply the KeyFrame instance (k) to the timeline 7. Next, we set cycleCount
to INDEFINITE, which means continue the timeline until a stopping condi-
tion is met inside the KeyFrame or elsewhere in the program. Finally, t.play()
starts the animation and sets the stars in motion.

Modeling and Simulation 217

The updateStarPositions() Function

The updateStarPositions() function implements the physics of binary stars
in motion by using the formulas and algorithms we’ve discussed. The func-
tion takes in two arguments—a list of type Star called stars and the time
step dt—and doesn’t return anything, since the function makes its updates
directly to the globally accessible properties of the stars.

fun updateStarPositions(stars: List<Star>, dt: Double) {
 val rx = stars[1].x - stars[0].x
 val ry = stars[1].y - stars[0].y
 val r = sqrt(rx * rx + ry * ry)

 1 val force =
 G * stars[0].mass * stars[1].mass / (r * r)

 var sign = 1
 for (star in stars) {
 2 // Update the acceleration, velocity, and position of stars.
 val acceleration = force / star.mass
 val ax = acceleration * rx / r
 val ay = acceleration * ry / r
 star.vx += sign * ax * dt
 star.vy += sign * ay * dt

 3 // These will be needed for updating trails.
 star.xOld = star.x
 star.yOld = star.y

 star.x += star.vx * dt
 star.y += star.vy * dt
 4 sign = -1
 }
}

The function starts by calculating the distance between the two stars by
using Equation 5.23. We then use the scalar part of Equation 5.24 to calculate
the magnitude of the gravitational force that both stars will experience 1.
Next, we iterate over the stars list and update the acceleration, velocity, and
position for both stars per Equations 5.26 through 5.31 2. Notice that we
save the current position vectors in the xOld and yOld properties of the stars
before updating x and y 3. We’ll need these so the stars’ trails will lag the
stars themselves by one time step. Also notice how the variable sign switches
from 1 to -1 at the end of the first iteration 4. This inverts the direction of
the force acting on the second star to ensure that F1 = −F2.

The drawStars() Function

The drawStars() function simply updates the positions of the stars on the
canvas to make them move. It takes in one parameter, the graphics context,
and returns nothing.

218 Chapter 5

fun drawStars(gc: GraphicsContext) {
 1 gc.clearRect(-canvasW/2, -canvasH/2, canvasW, canvasH)
 2 drawAxes(gc)

 // Connect the centers of the stars.
 3 with (gc) {
 lineWidth = 0.5
 stroke = Color.BLACK
 setLineDashes(2.0,4.0,4.0,2.0)
 strokeLine(
 scaleFactor*stars[0].x,
 scaleFactor*stars[0].y,
 scaleFactor*stars[1].x,
 scaleFactor*stars[1].y)
 }

 // Draw the stars using updated positions.
 4 for (star in stars) {
 gc.fill = star​.color
 gc.fillOval(
 scaleFactor * star.x - star.size/2,
 scaleFactor * star.y - star.size/2,
 star.size, star.size)
 }
}

The function starts by clearing the canvas 1. Then we redraw the objects
in three stages. First, we call the drawAxes() function, which we’ve already
reviewed, to draw the axes 2. Since this happens first, the other objects (for
example, the stars and the trails) will be drawn on top of the axes.

Next, we connect the centers of the stars by using a dashed line 3.
The argument sequence (2.0, 4.0, 4.0, 2.0) means the dash lengths will
be set in cycles of 2, 4, 4, and 2 pixels. This line helps identify the center of
rotation (the point where it intersects the x-axis) and will grow and shrink
like a spring with the movements of the stars, making the simulation more
interesting. For a circular and concentric orbit, this line also helps visually
confirm that at any moment the binary stars are placed in diametrically
opposite positions about the center of rotation.

Finally, we use a for loop to iterate over the stars and draw them in
their new positions 4. Notice the use of scaleFactor while drawing the stars.
This is a global variable that allows us to change the scale of the simulation
on the fly without going through more complicated rescaling schemes that
we’ve used elsewhere in the book. For this problem, since the orbit shapes
and sizes can vary significantly during the simulations, I suggest that you
adjust this scale factor based on your own setup. I used scaleFactor = 4 for
the first simulation (for stable circular orbits) and scaleFactor = 1 for the sec-
ond simulation (for stable elliptical orbits). In the latter case, the distance
between the stars r varies significantly during the simulation, and we need
to allocate more space on the canvas to fully outline the orbits.

Modeling and Simulation 219

The updateAndDrawTrails() Function

The two-in-one updateAndDrawTrails() function updates the trails and
draws them at the same time. It takes one parameter, gc, and doesn’t
return anything, just like the drawStars() function.

fun updateAndDrawTrails(gc: GraphicsContext) {
 // Update the trails.
 stars.forEachIndexed { index, star ->
 1 if (star.trailCount >= trailMAX) star.trailCount = 0
 2 trails[index][star.trailCount] =
 Pair(star.xOld, star.yOld)
 star.trailCount += 1
 }

 // Draw the trails.
 trails.forEachIndexed { index, trail ->
 3 gc.fill = stars[index]​.color
 4 for (point in trail) {
 gc.fillOval(
 scaleFactor * point.first - trailSize / 2,
 scaleFactor * point.second - trailSize / 2,
 trailSize, trailSize
)
 }
 }
}

The first block in this function iterates over the stars list and updates
the positions of the trail elements. Recall that the initialPositions() func-
tion started all the tracers at the same position as the star itself, but we
haven’t drawn any of them yet. Now we move the tracers one at a time
(for each star). First, we check to see that unassigned tracers are ready to
be moved to a new location by ensuring that star.trailCount < trailMAX.
Otherwise, we reset trailCount to 0 1. Each time a star moves to a new posi-
tion, we assign the star’s old position to the next available tracer—the one
at position [index][star.trailCount] in the trails array 2. This is why we
always save the old positions of the stars before updating them in the update​
StarPositions() function.

This process continues as long as tracers remain to be moved from the
initial position. Once all the tracers have been assigned new positions on the
canvas (and the stars continue to move), resetting trailCount lets us recycle
them by bringing the last one to the first position (right next to the star).

Now that the tracer positions have been updated, the second block
in the function draws the trails for both stars. For each trail, we use the
same color as the color of the star it follows 3 to draw the tracers. Finally,
all the trails are drawn on the canvas, based on their most recent coordi-
nates 4. Once all the tracers are placed on the canvas, each trail will follow
its parent star.

220 Chapter 5

The Result
When you run the app, you should see a dynamic simulation of the binary
star system in motion, as opposed to a static image. You’ll see the stars con-
tinuously dancing around each other on the screen until you close the win-
dow or wait for the frameCount to hit its limit. Figure 5-13 shows screenshots
of two different runs of the app.

Center of
rotation

Center of
rotation

Figure 5-13: A binary star system with concentric, circular orbits (left) and a binary star system with elliptical
orbits (right)

The example on the left shows a binary star system with concentric,
circular orbits, meaning one star’s orbit is entirely contained within the
other. For this, we used the initial conditions shown in the code listings.
The example on the right simulates a system with elliptical orbits by using
the same initial conditions, except x = -50.0 for star 1, x = 90.0 for star 2, and
scaleFactor = 1.

I encourage you to play around with the simulation by tweaking the
initial conditions. Depending on the parameters, you may end up with an
unstable system, in which case the stars fly off the screen or crash into each
other. In fact, it’s much harder to create a stable system like the ones shown
in the figure. This instability also happens with real binary star systems as
they get perturbed by a variety of external forces that offset the delicate bal-
ance needed to maintain a stable orbit.

E X ERCISE

The 2D binary star system we developed in this section is helpful for explor-
ing the interactions between the stars driven solely by the gravitational forces
created by their own masses. However, many known binary star systems have

Modeling and Simulation 221

other companions, such as one or more planets orbiting the stars. Try modifying
the project code to add a third object, a planet, attached to one of the stars.
In other words, you’ll convert the two-body problem into a three-body problem
and solve the resulting system by using the same principles and tools.

Hint: Adding a planet is no different than adding another star with a small
mass. To create a stable system, you’ll have to do some online research to
find real astronomical examples and use that data to set the initial conditions.
Most of the functions in the app will require no change, as they’re written in
a generic fashion that can handle any number of stars or trails (subject to the
limits set by the CPU/GPU and memory of your device). However, you’ll need
to change the updateStarPositions() function to consider the impact of the
stars on the planet’s orbit, and vice versa. To be realistic, you could also add
a feature to check if the stars and the planet get too close or collide, and what
happens as a result.

Summary
In this chapter, we used Kotlin and laws of physics to solve a variety of sci-
ence problems—from the projectile motion of cannonballs and water jets,
to swinging pendulums and cooling cups of coffee, to the out-of-this-world
dance of a binary star system. Along the way, we developed increasingly
complex mathematical models of physical systems to study their behavior.
To do so, we went beyond the basics of Kotlin, harnessing JavaFX’s visualiza-
tion and animation tools to effectively display the results of our code.

Resources
Bate, Roger R., Donald D. Mueller, Jerry E. White, and William W. Saylor.

Fundamentals of Astrodynamics. 2nd ed. Mineola, NY: Dover, 2020.

Bennett, Andrew G. “Runge-Kutta Methods.” Accessed June 15, 2024.
https://onlinehw​.math​.ksu​.edu​/math340book​/chap1​/xc1​.php.

Cromer, Alan. “Stable Solutions Using the Euler Approximation.” American
Journal of Physics 49, no. 5 (May 1981): 455–459. https://doi​.org​/10​.1119​/1​
.12478.

Demanet, Laurent. “Introduction to Numerical Analysis.” MIT OpenCourse
Ware, 2012. Accessed June 15, 2024. https://ocw​.mit​.edu​/courses​/18​-330​
-introduction​-to​-numerical​-analysis​-spring​-2012/.

Halliday, David, Robert Resnick, and Jearl Walker. Fundamentals of Physics.
12th ed. New York: Wiley & Sons, 2021.

https://onlinehw.math.ksu.edu/math340book/chap1/xc1.php
https://doi.org/10.1119/1.12478
https://doi.org/10.1119/1.12478
https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2012/
https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2012/

222 Chapter 5

Seyr, Alexander Josef. “Numerical Simulation of the Planetary Motions in
the Solar System with Runge Kutta Methods.” November 6, 2020. https://
static​.uni​-graz​.at​/fileadmin​/​_Persoenliche​_Webseite​/puschnig​_peter​/unigrazform​/
Theses​/BachelorThesis​_Seyr​_2020​.pdf.

Young, Hugh, and Roger Freedman. University Physics. 15th ed. New York:
Pearson, 2020.

https://static.uni-graz.at/fileadmin/_Persoenliche_Webseite/puschnig_peter/unigrazform/Theses/BachelorThesis_Seyr_2020.pdf
https://static.uni-graz.at/fileadmin/_Persoenliche_Webseite/puschnig_peter/unigrazform/Theses/BachelorThesis_Seyr_2020.pdf
https://static.uni-graz.at/fileadmin/_Persoenliche_Webseite/puschnig_peter/unigrazform/Theses/BachelorThesis_Seyr_2020.pdf

PART III
R E C U R S I O N , S O R T I N G ,

A N D S E A R C H I N G

Fractals are enchanting geometric shapes
where the real meets the imaginary (imagi-

nary numbers, that is). Repeating patterns
keep emerging forever as we continue to zoom in

on them. Mathematicians are still trying to define frac-
tals precisely, but they agree on these key features: self-
similarity (the way smaller parts of a fractal echo the
whole) and the ability to scale ad infinitum.

In this chapter, we’ll use Kotlin to draw a variety of fractals and explore
their enigmatic beauty. Our main goal will be to codify the mathematical
logic embedded in the design of each fractal, re-create those fractals, and
possibly discover new ones by playing with the design parameters.

6
R E C U R S I V E F U N C T I O N S

A N D F R A C T A L S

226 Chapter 6

The Concept of Fractals
The notion of fractals is full of dualisms and contradictions. Benoit
Mandelbrot, considered the father of fractal geometry, coined the term
fractal from the Latin word fractus, meaning fractured or broken, yet detailed
images of fractals are hardly fractured, instead showing a continuous flow
of intricate patterns. Well-known fractals such as the Julia set and the
Mandelbrot set display extremely complex patterns, yet the equations that
generate those patterns are very simple. The fact that a fractal map con-
tains an infinite amount of information that can be condensed into a single
equation is a major discovery of the 20th century, a wonder that reveals the
hidden beauty of mathematics.

Fractals aren’t just exotic mathematical objects, however. They help us
see the “geometry of nature,” a term popularized by Mandelbrot. Indeed,
fractal patterns are abundant throughout nature, seen in snowflakes, the
branching of trees, the human nervous and circulatory systems, coastlines,
clouds, hurricanes, and the spiral shapes of galaxies. The theory of frac-
tals also has found applications in the physical and biological sciences,
engineering, and information technology and given birth to new areas
of research, such as chaos theory and its application in studying complex
dynamic systems.

Before we start coding, let’s review a simple fractal to explore a couple
of its key features. Figure 6-1 shows the Sierpiński triangle, a geometric
fractal named after the famous Polish mathematician Wacław Sierpiński,
who created it in 1915. This fractal is constructed by repeatedly connecting
the midpoints of the three sides of an equilateral triangle and all the result-
ing subtriangles.

A

B

D

C

E

Figure 6-1: The Sierpiński triangle

Recursive Functions and Fractals 227

The inherent beauty of this fractal derives from its self-similarity: look
at any of the smaller triangles inside the outermost triangle and you’ll see
a mini version of the original figure. Moreover, if we amplify or scale up
one of the smaller triangles, we’ll find many more of the same inside it. For
example, Figure 6-2 shows a zoomed-in view of just the triangle formed by
points A, D, and E from Figure 6-1. The result is the same as the original
triangle.

A

D E

Figure 6-2: A zoomed-in section of the Sierpiński triangle, illustrating
the fractal’s ability to scale

No theoretical limit is placed on how deep we can go—even the small-
est triangle from the original figure, when amplified, produces the same
result. A fractal can scale up forever.

Fractals also have an interesting property called fractal dimension.
Unlike familiar geometric objects such as lines, areas, and volumes that
have one, two, and three dimensions, respectively, a fractal can have a
fractional number of dimensions. The Sierpiński triangle, for example,
has 1.585 dimensions: it’s more than a one-dimensional line but less than
a two-dimensional area. This is because it fits in a 2D plane but doesn’t
completely fill the area that defines the fractal boundary. You can find a
more formal and in-depth discussion of this topic in many of the excellent
resources listed at the end of the chapter.

Recursive Functions
The most efficient way to draw a self-similar pattern that can theoretically
keep repeating itself forever is to use a recursive function. This is a function
that continues to call itself from within its own function body until a stop-
ping condition is met. Once we identify the basic building block of a fractal,

228 Chapter 6

we can write a function to draw that building block and then let the func-
tion repeatedly call itself, until the fractal pattern is sufficiently developed.
In the sections that follow, we’ll use this approach to generate several well-
known geometric fractals, including the Sierpiński triangle, the Sierpiński
carpet, and a fractal tree. But first, let’s get a feel for how recursion works
by writing a function to calculate the factorial of an arbitrary positive
integer n.

The factorial of a number n is defined as:

	 n! = n × (n – 1) × (n – 2) × . . . × 3 × 2 × 1

In other words, n! equals the product of all integers from 1 to n. For exam-
ple, 3! = 3 × 2 × 1 = 6, 4! = 4 × 3 × 2 × 1 = 24, and so on (by convention, 1! = 1).
Thinking recursively, we can also define the factorial of n as the product of
n and the factorial of the next smaller integer (n – 1):

	 n! = n × (n – 1)!

Using this modified form of the equation, we can write a recursive func-
tion to calculate the factorial of n.

fun main() {
 // Find the factorial of a positive integer.
 val n = 5
 val factorial = getFactorial(n)
 println("The factorial of $n is: $factorial")
}

fun getFactorial(n: Int) : Int {
 if (n <= 1) return 1
 1 else return n * getFactorial(n - 1)
}

Something interesting is happening here. The function getFactorial(n)
calls itself from inside the function body 1 and thus kicks off a loop that runs
until the most recent value of n equals 1. At that point, the last call to the func-
tion returns 1 and the loop terminates, returning the value of the factorial.

Table 6-1 shows how the key function parameters change at each itera-
tion, leading to the factorial value in the end.

Table 6-1: Anatomy of the Recursive Function getFactorial(n) for n = 5

Iteration Argument (n) Test (n == 1) Returned value

1 5 False 5 × getFactorial(4)

2 4 False 5 × 4 × getFactorial(3)

3 3 False 5 × 4 × 3 × getFactorial(2)

4 2 False 5 × 4 × 3 × 2 × getFactorial(1)

5 1 True 5 × 4 × 3 × 2 × 1 = 120

Recursive Functions and Fractals 229

Notice that a recursive function is essentially a loop that keeps on
calling itself. We must therefore provide a stopping condition (in this case,
n <= 1). Without one, the function will be trapped in an infinite loop.

It may not be obvious just yet, but recursive functions can make coding
significantly simpler (the alternative would be to use complex nested loops).
This becomes especially true when the recursive function needs to make
multiple calls to itself, using different state variables. We’ll see this idea in
the upcoming projects.

Tail recursion is a technique in which a recursive function implements
tail call optimization (TCO). This allows the compiler to avoid consuming
additional stack space (a region in memory that stores information in a last-
in, first-out order) for each recursive call. Instead, the compiler reuses the
same stack space for each call, which can help prevent stack overflow errors.

To use tail recursion in Kotlin, the recursive call must be the very last call
of the method. This means that the function must return the result of the
recursive call directly, without performing any additional operations on it.

Here’s an example of an alternative version of the code that calculates
the factorial of a number by using tail recursion:

fun main() {
 val n = 5
 val factorial = getFactorial(n)
 println("The factorial of $n is: $factorial")
}

1 tailrec fun getFactorial(n: Int, result: Int = 1): Int {
 return if (n <= 1) {
 result
 } else {
 getFactorial(n - 1, n * result)
 }
}

In this implementation, the main() function remains unchanged, but
the getFactorial() function has been modified.

Notice how the getFactorial() function is defined with the tailrec key-
word 1, which indicates that it should be optimized for tail call recursion.
The function takes two arguments: n, which is the number whose factorial
will be calculated, and result, which is the current result of the calculation.
If n is 0 or 1, the function returns result. Otherwise, it calls itself recursively
with n - 1 as the new value of n and n * result as the new value of result.
This continues until n is 0 or 1, at which point the final result is returned.

For large numbers (n), this implementation not only saves memory but
may also require less time to complete the computations.

Project 22: The “Hello, World!” of Fractals
Our first foray into the world of fractals will be a simple one: we’ll write a
recursive function to draw a series of concentric squares, each one smaller

230 Chapter 6

than and located symmetrically inside the previous one. We’ll visualize the
fractal by using the canvas feature of JavaFX.

The Strategy
The JavaFX canvas allows us to draw a polygon based on the coordinates of
its vertices. We need a way to calculate the four vertices of a square, given the
x- and y-coordinates of one of the vertices and the length of any side (for a
square, they’re all equal). We’ll use the scheme outlined in Figure 6-3. Keep in
mind that the default origin (0, 0) of the canvas is located at the top-left corner.

x-axis

y-
ax

is

d

s

(0, 0)

(x, y)

Figure 6-3: The strategy for drawing concentric squares

We’ll start by choosing the coordinates for the top-left vertex of the
outermost square, x and y. Given those, calculating the square’s other coor-
dinates is simply a matter of adding the side length s as appropriate. This
gives us everything we need to draw the outermost square.

Next, we’ll call a recursive function to draw the inner square or squares by
using the following function parameters: the x- and y-coordinates for the top-
left vertex of the most recently drawn square; the side length of that square,
s; and a shrinkage factor, k (a percentage setting how much smaller the sides
of the next square should be). We’ll use this information to calculate d in
Figure 6-3, the distance from the top of one square to the top of the next, as:

	 d = ks/2

That in turn will let us update the top-left coordinates and the side
length of the next square as follows:

	 x = x + d

	 y = y + d

	 s = s – 2d

Recursive Functions and Fractals 231

To prevent our recursive function from devolving into an infinite loop,
we’ll provide a stopping condition in the form of a global constant limiting
the number of iterations.

The Code
Following the steps we just discussed, we first create the required variables
and draw the outer square.

val x = 50.0
val y = 50.0
val s = 400.0
1 val k = 0.15 // Reduce the side by 15%.
gc.fill = Color.BLACK
2 gc.strokePolygon(doubleArrayOf(x, x, x + s, x + s),
 doubleArrayOf(y, y + s, y + s, y), 4)

// Call the resursive function.
drawSquares(x, y, s, k, gc)

This code places the top-left corner of the outer square at (50, 50)
relative to the origin and sizes the square to 400×400. (The canvas itself is
500×500, as we’ll see later.) At each iteration, the sides of the inner square
will be reduced by 15 percent 1; feel free to play with this value. The
squares will be drawn in black, as specified by Color.BLACK, on a white back-
ground (the default). Calling gc.strokePolygon() draws a square 2 (gc is the
GraphicsContext object needed to draw to the canvas). This method requires
that the coordinates of the vertices be passed in two separate DoubleArrays,
one for the x-values and one for the y-values; the last parameter indicates
the number of vertices—in this case, for a square, four.

Now let’s implement our recursive drawSquares() function.

fun drawSquares(_x: Double, _y: Double, _s: Double,
 k: Double, gc: GraphicsContext) {

 if (iter <= ITER_MAX) {
 val d = 0.5 * k * _s
 val x = _x + d
 val y = _y + d
 val s = _s – 2 * d

 gc.strokePolygon(doubleArrayOf(x, x, x + s, x + s),
 doubleArrayOf(y, y + s, y + s, y), 4)

 iter += 1
 1 drawSquares(x, y, s, k, gc)
 }
}

232 Chapter 6

The algorithm starts by checking the stopping condition: if iter, which
has an initial value of 1 and is incremented by 1 per recursion, exceeds the
maximum number of iterations set by ITER_MAX, then the loop will stop drawing
squares on the canvas, and the program will terminate normally. Otherwise,
we calculate a new set of parameters and proceed to draw another square.
Notice that we used an underscore as a prefix for the x- and y-coordinates of
the top-left vertex, as well as for the length of the side, while receiving param-
eter values. This naming convention allows us to use the same variable names
inside the function as we did outside in the application class.

We then recursively call the drawSquares() function with the updated
parameter values to draw the next inner square 1. Figure 6-4 shows the
program output with an ITER_MAX value of 22, which means that 22 squares
are inside the outermost square.

Figure 6-4: A simple fractal made from concentric, nonrotating
squares

Our concentric squares are a simple example of a geometric fractal. It
exhibits self-similarity in that if we removed a few of the outer squares, the
resulting image, when scaled up, would look the same, even if we iterated
many more times.

Here’s the complete code for the app, including the boilerplate JavaFX
components adapted for Kotlin.

import javafx.application.Application
import javafx.geometry.Pos
import javafx.scene.Scene

Recursive Functions and Fractals 233

import javafx.scene.canvas.Canvas
import javafx.scene.canvas.GraphicsContext
import javafx.scene.layout.FlowPane
import javafx​.scene​.paint​.Color
import javafx.stage.Stage

// global variables
val ITER_MAX = 22
var iter = 1

// beginning of the Application class
class GeometricFractal : Application() {
 override fun start(stage: Stage) {

 val canvas = Canvas(600.0, 600.0)
 val gc = canvas.graphicsContext2D

 val rootNode = FlowPane()
 rootNode.alignment = Pos.CENTER
 rootNode.children.add(canvas)

 val scene = Scene(rootNode, 600.0, 600.0)
 stage.title = "Geometric Fractal"
 stage.scene = scene
 stage.show()

 // problem-specific code segment
 val x = 50.0
 val y = 50.0
 val s = 400.0
 val k = 0.15
 gc.fill = Color.BLACK

 gc.strokePolygon(doubleArrayOf(x, x, x + s, x + s),
 doubleArrayOf(y, y + s, y + s, y), 4)

 drawSquares(x, y, s, k, gc)
 }
}

fun main() {
 Application.launch(GeometricFractal::class.java)
}

fun drawSquares(_x: Double, _y: Double, _s: Double,
 k: Double, gc: GraphicsContext) {

 if (iter <= ITER_MAX) {
 val d = 0.5 * _s * k
 val s = _s - 2 * d
 val x = _x + d
 val y = _y + d
 gc.strokePolygon(
 doubleArrayOf(x, x, x + s, x + s),
 doubleArrayOf(y, y + s, y + s, y), 4)

234 Chapter 6

 // Update counter.
 iter += 1
 // recursive call
 drawSquares(x, y, s, k, gc)
 }
}

By introducing minor variations to this code, you can create other,
similar geometric fractals, such as concentric rectangles or circles. Before
you attempt the practice exercise, I encourage you to experiment with
these variations.

E X ERCISE

Modify your Project 22 code to make the fractal more interesting by drawing
three squares during each iteration, rotating the second and the third by preset
amounts (for example, 30 degrees and 60 degrees with respect to the y-axis).
Here’s what the program output might look like:

Project 23: Draw the Sierpiński Triangle
For this project, we’ll draw the Sierpiński triangle (see Figure 6-1) using an
approach similar to Project 22. First, we’ll identify the defining features of

Recursive Functions and Fractals 235

the fractal, including its geometric properties, and then write a recursive
function to do most of the hard work. We’ll use the same JavaFX template
we used for Project 22 to create the graphical output.

Recall that the Sierpiński triangle is made by taking a triangle and
joining the midpoints of its sides, producing three child triangles, then
joining the midpoints of the child triangles’ sides, and so on, recursively, ad
infinitum. Typically, the triangles are equilateral, meaning they have three
equal sides and internal angles of 60 degrees. We’ll make use of these basic
properties to come up with an efficient strategy for creating the fractal.
However, working with equilateral triangles isn’t strictly required; you can
use the steps outlined in this section to create an isosceles Sierpiński tri-
angle, with minor adjustments to the code.

The Strategy
To draw the Sierpiński triangle, we need a few key parameters: the x- and
y-coordinates of the parent (outermost) triangle’s top vertex, where the
two inclined sides meet, and the parent triangle’s base (b) and height (h).
Figure 6-5 shows these parameters, including some additional ones for the
child triangles that will be used in our code.

x-axis

y-
ax

is

(0, 0)

(x1, y1)

(p1, q1) (p3, q3)

(p2, q2)

b

h For an equilateral triangle:
h = b sin(π/3)

1

2 3

Figure 6-5: The strategy for drawing the Sierpiński triangle

We’ll first draw the parent triangle, as we did for the concentric squares
example. We’ll then call a recursive function to connect the midpoints of
the triangle’s three sides, whose coordinates are calculated in terms of the
parent triangle’s base, height, and top vertex. Since this creates three smaller
child triangles (as opposed to one smaller square), the recursive function will
have to call itself multiple times, once for each of the child triangles 1 2 3.
We’ll keep using recursion until a stopping condition is met.

236 Chapter 6

The Code
We’ll discuss the code in three parts. First, we’ll import the required math
functions and declare some global parameters and a data class (we’ll reuse
the rest of the JavaFX-specific codes from Project 22).

import kotlin.math.sin
import kotlin.math.PI
import kotlin.math.pow

// global parameters
val BASE = 500.0
val DEPTH = 7
val baseMin = BASE * ((0.5).pow(DEPTH))

data class Vertices(var p1: Double, var q1: Double,
 var p2: Double, var q2: Double,
 var p3: Double, var q3: Double)

The first global parameter, BASE, represents the base of the parent
(outer) triangle, which is set to 500. The second parameter, DEPTH, is the
number of iterations (how many times inner triangles are drawn), but we
use it only to calculate our real stopping condition, baseMin. This is the
smallest base length of the inner triangles when we stop recursion. It’s more
practical to think in terms of a minimum side length because how small an
object we can draw is limited by the pixel size of the screen, as well as by our
ability to see small objects. It wouldn’t make sense to let the recursion run
an arbitrary number of times (say, 50 or 100 times) while creating a static
image.

The baseMin parameter is linked to the number of iterations DEPTH as:

	 baseMin = BASE × 1 DEPTH
2)(

This means baseMin decreases exponentially as DEPTH increases, which is why
just 5 to 10 iterations can be adequate for bringing out the key features of
simple geometric fractals. In this case, since we’re using a DEPTH value of 7
and a BASE of 500, baseMin will be 3.906.

We’ll use the data class Vertices to store and return the vertices of inter-
nal triangles, with the help of the getVertices() function (which we’ll discuss
shortly).

Next, let’s have a look at the problem-specific code segment that defines
and draws the parent triangle. The top vertex is set to (300.0, 50.0), and the
base b and height h are set to be 500.0 and 500 sin(θ), respectively, where θ
is π/3 radians (or 60 degrees).

// problem-specific component inside the application class
val b = BASE
val h = b * sin(PI / 3.0)
val x1 = 300.0
val y1 = 50.0

Recursive Functions and Fractals 237

val x = doubleArrayOf(x1, x1 - b/2, x1 + b/2)
val y = doubleArrayOf(y1, y1 + h, y1 + h)
// Draw the outermost triangle.
gc.strokePolygon(x, y, 3)
// Call the recursive function.
drawTriangle(x1, y1, b, h, gc)

We draw the parent triangle with a call to the gc.strokePolygon() function,
passing the x- and y-coordinates of the three vertices and the number of ver-
tices (in this case, three). We then make a single call to the recursive function
drawTriangle() to generate the child triangles. Notice we’re following the same
basic steps we used in Project 22 to draw the concentric squares.

Finally, we’ll define our recursive function to draw the inner triangles.
We’ll also define a helper function for calculating the midpoints of a triangle.

fun drawTriangle(x1: Double, y1: Double, base: Double,
 height: Double, gc: GraphicsContext) {

 1 if (base > baseMin) {
 val (p1, q1, p2, q2, p3, q3) =
 getVertices(x1, y1, base, height)

 val p = doubleArrayOf(p1, p2, p3)
 val q = doubleArrayOf(q1, q2, q3)
 gc.strokePolygon(p, q, 3)

 // recurse for nonempty child triangles
 2 drawTriangle(x1, y1, base/2, height/2, gc)
 3 drawTriangle(p1, q1, base/2, height/2, gc)
 4 drawTriangle(p3, q3, base/2, height/2, gc)
 }
}

fun getVertices(x1: Double, y1: Double, base: Double, height: Double) =
 Vertices(x1 - base/4, y1 + height/2, x1, y1 + height,
 x1 + base/4, y1 + height/2)

Our drawTriangle() function follows a similar pattern to our drawSquares()
function from Project 22, but a couple of important differences exist. First,
the stopping condition is now set with respect to baseMin 1 instead of the
maximum number of iterations (we’ve already discussed why that is the case).
Second, we make three separate recursive calls inside the drawTriangle()
function (instead of a single recursive call as in the previous project) to
make sure that all three child triangles generated at each step contribute
to creating the final fractal image. To see how this works, have a look
at Figure 6-6.

238 Chapter 6

First recursive call:
create top subtriangles

First and second recursive calls:
create top and left subtriangles

Three recursive calls: create the
complete Sierpinski triangle´

Figure 6-6: Evolution of the Sierpiński triangle with recursive calls (n = 7)

If we made only the first recursive call 2 from inside the drawTriangle()
function, the final figure will subdivide only the top child triangles, as
shown on the left side of Figure 6-6. The center image shows what would
happen if we made two recursive calls 2 3; now the top and left child tri-
angles are subdivided. Finally, the image on the right is what we want—the
complete Sierpiński triangle, created by making three back-to-back recur-
sive calls to the drawTriangle() function, 2 3 4, with updated parameter
values for the child triangles.

E X ERCISE

Taking a cue from Project 23, develop a strategy and program for drawing the
Sierpiński carpet, shown here:

Recursive Functions and Fractals 239

Hint: Start by noting the similarity with the Sierpiński triangle. Instead of
connecting midpoints of the sides, divide the parent square into nine equal child
squares, and color the square at the center black. Continuing with the analogy,
make eight recursive calls with updated parameters, one call for each of the
unfilled child squares. (Instead of making eight separate calls, use a couple
of nested for loops to make those calls more efficient.) As with the Sierpiński
triangle, the sides of the child squares will shrink exponentially as the number of
iterations goes up. The image shown above was generated with n = 5.

Project 24: Create a Fractal Tree
As the final project on simple geometric fractals, we’ll draw a beautiful frac-
tal tree. The tree will start as a single line (the trunk) that splits into two
branches. Then each branch will itself split into two more branches, and
so on.

The Strategy
The core strategy for this project is straightforward: draw a line, then recur-
sively draw two more lines from the endpoint of that line, each at an angle
relative to the parent line. Figure 6-7 outlines the strategy and the features
we’ll have to incorporate into the code.

(x1, y1)

(x2, y2)

l cos(θ)

l sin(θ)
l

θ

+φ
–φ

x-axis

y-
ax

is

(0, 0)

Figure 6-7: The strategy for drawing the fractal tree

First, we’ll choose a starting point (x1, y1) for the parent line, a
length l, and θ, the parent line’s angle with respect to the x-axis. Using

240 Chapter 6

trigonometry, we calculate the coordinates for the endpoint of the parent
line (which is also the starting point of the two child lines) as x1 + l cos(θ)
and y1 + l sin(θ). The child lines are shorter than the parent line (we’ll
choose a shrinkage factor) and branch out from the parent line by some
arbitrary angle φ, such that the new lines will be drawn at angles (θ + φ)
and (θ – φ) relative to the x-axis, respectively. Keep calculating endpoints,
drawing new lines, and branching out until a stopping condition is met (for
example, when the new branches become too small).

The Code
In this example, we do not have any global variables or parameters, and the
import block for math functions looks like this:

import kotlin.math.PI
import kotlin.math.sin
import kotlin​.math​.cos

Hence, the first code snippet we’ll discuss covers the problem-specific
parameter values within the application class and the call to the recursive
function drawTree().

val x = canvas.width / 2.0
val y = canvas.height - 100
val len = 55.0
val angle = -PI / 2
val phi = PI / 10

gc.stroke = Color.GRAY
drawTree(x, y, angle, len, phi, gc)

We center the starting point of the parent line horizontally on the
canvas and place it 100 pixels above the bottom (we’re assuming a canvas
size of 600×600). The starting angle (angle) of –π/2 draws the tree in an
upright position. We set the branch-out angle of the child lines relative to
the parent line, φ (phi), to π/10, which produces optimal branching for the
given parameters. Unlike in our previous fractal projects, we haven’t drawn
anything yet. This time, the parent line is drawn inside the recursive func-
tion, since it uses the same code as drawing the child lines. We’ll define that
function next.

private fun drawTree(x1: Double, y1: Double, theta: Double,
 len: Double, phi: Double,
 gc: GraphicsContext) {

 1 if (len > 10) {
 val x2 = x1 + len * cos(theta)
 val y2 = y1 + len * sin(theta)
 gc.strokeLine(x1, y1, x2, y2)

 2 drawTree(x2, y2, theta + phi, len - 4, phi, gc)
 3 drawTree(x2, y2, theta - phi, len - 4, phi, gc)

Recursive Functions and Fractals 241

 } else {
 gc.fill = Color.BLACK
 gc.fillOval(x1 - 2, y1 - 2, 4.0, 4.0)
 }
}

The termination condition stops recursion when the len parameter
passed into the function becomes less than or equal to 10 1. At each itera-
tion, we calculate the endpoint of the current line and draw it with the
gc.strokeLine() function. We then make two recursive calls 2 3, reducing
the length of the child lines by four pixels (approximately 7 percent of the
original parent line length). When the stopping condition is met, instead
of terminating the drawTree() function immediately, the app draws small
circles at the end of all final child lines. With a proper selection of colors,
the result can resemble a blossoming cherry tree. The grayscale version of
this tree is shown in Figure 6-8.

Figure 6-8: A blossoming fractal tree

For all the fractal projects we’ve worked on so far, and for this project
in particular, the parameter values you choose will have a significant effect
on the final appearance of the image. If you copy the parameter values ver-
batim from the book’s code snippets, you’ll be able to reproduce the exact
same figures presented in this chapter. However, there are numerous pos-
sible combinations of parameter values you could use. I encourage you to
play with the parameters; who knows, you might discover a whole new frac-
tal family that no one has seen yet!

The L-System and Turtle Graphics
Closely related to fractals is the L-system, a technique for generating com-
plex strings of characters over a series of iterative steps. The characters
are then interpreted as different geometric operations, such as drawing
lines or turning left or right. The L-system was introduced by Aristid
Lindenmayer, a Hungarian biologist, in 1968 to study the development of

242 Chapter 6

simple organisms and model plant morphology and growth. Lindenmayer
proposed that plant development over time can be described by “natural”
algorithms that are responsible for the geometric features seen in the
arrangements of branches, leaves, petals, and flowers. (We’ll discuss several
other nature-inspired algorithms in Chapters 8 and 9.) Another feature of
plant growth (incorporated in the L-system) that researchers were quick to
notice was the prevalence of self-similarity—the same pattern being rep-
licated at different scales. No wonder the L-system was soon picked up by
mathematicians and computer scientists to study and visualize the beautiful
geometry of nature that Mandelbrot succinctly called fractals.

In this section, we’ll study the components of an L-system and develop
our own L-system simulator in Kotlin. We’ll also learn about Turtle
Graphics, a common computer programming model used for visualizing
the shapes and patterns created by L-systems. Since Kotlin’s standard
library doesn’t include a Turtle Graphics package, we’ll combine JavaFX
canvas with Kotlin to create our own Turtle class.

Formalizing the L-System
An L-system requires a few ingredients to generate a string of characters
interpretable as geometric instructions for drawing fractal objects: an
alphabet, an axiom, a set of rules, and a depth. The alphabet is the set of
characters that are available for use in the string, each with an associated
meaning. For example, F might signify drawing a line, + might signify turn-
ing right, and so on (we’ll define our full alphabet later). The axiom is an
initial sequence of characters that the L-system starts from, and the rules
establish techniques for transforming the axiom (or subsequent strings)
over a series of iterations. When there are multiple rules, they’re applied in
sequence, and the substrings created by each rule are concatenated in the
same order to form the new string. The depth sets the number of iterations
over which to apply the rules before you arrive at the final string. Table 6-2
summarizes the components of an L-system.

Table 6-2: L-System Components

Feature Function Example Interpretation

Alphabet A set of allowable characters F, G, J, +, -, [,], X See Table 6-3.

Axiom An initial set of characters to
start off production (to apply
the rules recursively)

F++F Move forward from the current posi-
tion, turn right by a specified angle
twice, and move forward again.

Rules Directions on how to create a
new string from a given axiom
or string

F -> F-F++F-F Replace every instance of F in a string
with the set of characters that follow
the arrow (->); add other characters
not specified in the rule as is.

Depth The number of times the rules
are applied (axiom is assumed
to have a depth of zero)

5 Apply the rules five times before cre-
ating the corresponding figure.

Recursive Functions and Fractals 243

In addition to the components mentioned in Table 6-2, we need to set
two other parameters: the length of the lines to be drawn (or the distance
to jump over without drawing a line) and the angle of rotation. Typically,
the length decreases with each iteration because the larger (outer) ele-
ments of a fractal are often drawn first, followed by finer (inner) elements.
Reducing the length may also be required to limit the size of the final
figure. The angle of rotation θ for a particular fractal remains constant
throughout the process.

Let’s look at a simple example to illustrate how to use L-system nota-
tions and procedures: drawing a triangle. For this exercise, the L-system
parameters and associated steps are outlined in Figure 6-9.

(x1, y1) (x2, y2)

(x3, y3)

l

l l

++= 2 degrees

++= 2θ

θ

degrees

x-axis

y-
ax

is

(0, 0)

Figure 6-9: The L-system for drawing an equilateral triangle

We start at (x1, y1) on the canvas, facing in the positive x-axis direction,
at angle 0 relative to the x-axis. Our axiom is just a single character, F, and
our rule, F -> F++F++F, tells us that with each iteration we should replace
any instance of the character F with the string F++F++F. After applying the
rule for a depth of 1 (meaning apply the rule only once to the axiom before
stopping), we have our final string: F++F++F.

We now follow this string of instructions: from our initial position,
move forward (F) a specified length, l, to arrive at (x2, y2), then perform
two right turns (++), each by a specified angle, θ, and move forward (F)
again to arrive at (x3, y3). Finally, take two more right turns (++) and move
forward (F), which brings us back to the starting point and completes the
triangle. Each time we move forward from one point to another, we trace
the path (connect the two points) with a line.

Drawing L-System Patterns with Turtle Graphics
Turtle Graphics is a drawing system that imagines a turtle moving around a
graphics window. The turtle has at least two properties: its location in terms

244 Chapter 6

of x- and y-coordinates and its orientation measured by an angle relative to
the positive direction of the x-axis. The turtle drags around a pen. When
the pen is down, it draws lines on the window as the turtle moves; when the
pen is up, the turtle moves without tracing its path.

Turtle Graphics was originally part of an educational programming
language called Logo, but the idea has also been implemented in other
languages, including Python. It’s used to teach concepts related to pro-
gramming and the movement and animation of simple objects in a graphics
window. It can also be used creatively to teach Euclidian geometry and
to generate interesting patterns through recursion. Perhaps the most
well-known application of Turtle Graphics in research is for visualizing the
strings of instructions created by L-systems of geometric fractals.

When a language has built-in support for Turtle Graphics, we only
need to import the relevant package or class and make use of its methods
or functions to move the turtle around and draw lines, shapes, and pat-
terns. Since the Kotlin standard library doesn’t include a Turtle package,
we’ll develop a simple Turtle class that will work seamlessly with the Canvas
object of JavaFX and deliver the same functionality. The broader goal of
this exercise is to build a minimalist L-system simulator capable of generat-
ing L-system strings of arbitrary depth and realizing them with the help of
the Turtle class to produce well-known geometric fractals. Table 6-3 shows
the L-system notations (characters) we’ll work with and the corresponding
Turtle class methods that we’ll need to implement.

Table 6-3: L-System Characters and Turtle Graphics Methods

Character(s) Desired action Turtle command

F, G Move the turtle forward, and draw a line to con-
nect old and new positions. Though F and G have
identical actions, rules may not apply the same
way to F and G.

turtle.lineTo()

J Jump forward to a new position without drawing
a line.

turtle.moveTo()

+ Turn the turtle to the right by a specified angle. turtle.turnRight()

- Turn the turtle to the left by a specified angle. turtle.turnLeft()

[Push (save) the turtle’s current state (location,
angle) to the stack.

turtle.push()

] Pull the last saved state from the stack (while also
removing it from the stack) and set that as the
turtle’s current state.

turtle.pop()

X Do nothing. Skip to the next instruction. No turtle call

While drawing complex shapes, the L-system strings may require the
turtle to branch out in different directions from a base location. For this,
the turtle needs to save its current state so it can later return to the base
and choose another direction. The push() method helps with saving the cur-
rent state, while the pull() method retrieves a saved state so that the turtle
can start a new branch from there. These methods will rely on a stack, a

Recursive Functions and Fractals 245

data structure where the most recent item added is the first to be retrieved,
commonly called last in, first out (LIFO). This way, the turtle will return to
more recent states first, to complete subbranches, before returning to ear-
lier saved states to start drawing new main branches.

Project 25: Design an L-System Simulator
An L-system simulator is made up of several functions or classes that help
interpret L-system rules, generate the final string of instructions, and draw
the resulting image on a graphics window. Ideally, these components would
be coded in a problem-independent manner, with some mechanism for the
user to input the initial parameters for the L-system, perhaps through a
file or at the command line. For simplicity’s sake, we’ll instead embed these
parameters into the code itself, using values that will generate a snowflake
pattern, but the rest of the code will be generic. All you’ll have to do is update
these problem-specific parameters to simulate different L-system objects.

The Code
We’ll begin our L-system simulator code with some global declarations to
keep our data organized, then define the problem-specific parameters for
generating a particular L-system object. Next, we’ll declare some helper
functions to generate the L-system string based on rules and draw the
final L-system string on the canvas. We’ll also declare our Turtle class with
methods for rendering the image and then tie everything together with an
LSystemApp class.

Global Declarations

We’ll start by declaring two data classes to organize L-system data, plus a
special array type to create the stack functionality required for the push()
and pull() methods.

// global declarations
data class Rule(val key: String, val apply: String)
data class State(val x: Double, val y: Double, val angle: Double)
val stack = ArrayDeque<State>()

The Rule data class will define each L-system rule by using the key and
apply members, both of type String. The key property will hold the character
that will be replaced if present when a rule is applied, and the apply prop-
erty will hold the string that will replace the key. For example, for a rule
F -> F++F++F, the values of key and apply would be F and F++F++F, respectively.

The second data class, State, saves the state of the turtle—specifically,
its x- and y-coordinates and the direction it’s facing relative to the x-axis.
Finally, stack is declared by using Kotlin’s ArrayDeque class, which implements
a resizable (mutable) array of the deque (short for double-ended queue) data
structure. This class has methods to facilitate the LIFO feature of the stack.
The array’s members will be of our custom State data type.

246 Chapter 6

Problem Definition

Next, we’ll declare the problem-specific parameters of an L-system, including
its axiom and rules. The parameters we’re using here will generate a simple
fractal pattern that looks like a snowflake. Feel free to replace them with
parameters for other well-known L-systems or to experiment with your own.

// problem definition
1 val axiom = "F++F++F"
2 val rules: List<Rule> = listOf(
 Rule("F", "F-F++F-F"),
 // Rule(),
 // Rule()
)

var line = 100.0 // in pixels
val scaling = .33 // shrinkage factor per iteration
val ANGLE = 60.0 // turning angle in degrees (fixed)
val depth = 5 // number of iterations

3 val turtle = Turtle(150.0, 200.0, 0.0)

var finalString = ""

First, we define the axiom, or starting string, for a snowflake fractal 1.
Earlier, we used this same string, F++F++F, to draw an equilateral triangle.
We then create a list of type Rule called rules, where we keep all the rules per-
taining to the L-system 2. The snowflake requires only a single rule, but the
comments inside listOf() show how to add more rules if needed. We set the
initial value of line to 100 pixels based on a canvas size of 600×600, but
the line length will shrink by one-third with each iteration. We also set the
turning angle, ANGLE, to 60 degrees and the number of iterations, depth, to 5.

We only need to create a single instance of the Turtle class 3. We set its
initial position to (150.0, 200.0), with an initial angle of 0.0 (facing toward
the positive x-direction). Notice that as the turtle begins to move, both its
location and its orientation (angle) may change. Finally, we set finalString
to an empty string at the start; its content will change after each iteration,
and only the final value will be used to draw the fractal.

The generate() Function

The generate() function is a core component of the simulator. It executes
the L-system rules for a given axiom and depth.

// function to generate final L-system string
fun generate() {
 var nextString = ""
 1 for (letter in finalString) {
 var match = false
 2 for (rule in rules) {
 3 if (letter.toString() == rule.key) {
 match = true

Recursive Functions and Fractals 247

 nextString += rule.apply
 break
 }
 }
 4 if (!match) nextString += letter
 }
 5 finalString = nextString
}

We first declare an empty string called nextString, where we’ll save
interim values of the final string. We then use two for loops to iterate one
character at a time through the most recent version of finalString 1 and
apply any relevant rules to that character 2. The Boolean variable match
tracks if a particular rule should be applied. When a selected character
matches the key of the current rule 3, we set match to true and add the
replacement string specified by the apply element of the rule to nextString.
This is followed by the break statement to break out of the inner for loop
(only one rule will be applicable to a character for each iteration of the
outer for loop). If none of the rules apply, we add the current character
to nextString unchanged 4. Once we’ve iterated over all the characters in
finalString, we reset its value to nextString 5.

The draw() Function

The draw() function draws the final image on the canvas by reading the
characters in finalString and making corresponding calls to the methods of
our Turtle class.

// function to draw per finalString instructions
fun draw(gc: GraphicsContext) {
 1 for (letter in finalString) {
 2 when (letter.toString()) {
 "F", "G" -> turtle.lineTo(line, gc)
 "J" -> turtle.moveTo(line)
 "+" -> turtle.turnRight(ANGLE)
 "-" -> turtle.turnLeft(ANGLE)
 "[" -> turtle.push()
 "]" -> turtle.pop()
 "X" -> { /* do nothing */ }
 }
 }
}

We elegantly implement the drawing process inside a single for loop 1
and a compact when block 2, which is much less verbose than a traditional
multilevel if...else block. The for loop scans the characters of the variable
finalString one at a time and passes them to the when block as letter. Next,
we conduct a series of tests until a match is found with one of the possible
L-system codes. Based on the match, we call the related Turtle method to
draw or move on the canvas. For example, we match characters F and G to
the lineTo() method and J to the moveTo() method. Notice that different
method calls require different parameters, and the last three calls inside

248 Chapter 6

the when block don’t require any! We’ll see what happens when those meth-
ods are called next.

The Turtle Class and Its Methods

Now we’ll implement our Turtle class, where all the methods for carrying
out the final drawing live. To keep the main body of our L-system applica-
tion short and tidy, we’ll declare this class in a separate file called Turtle.kt.
We begin the file here:

import javafx.scene.canvas.GraphicsContext
import kotlin.math.*

1 class Turtle (var x: Double, var y: Double, angle: Double) {
 var angleRad = angle * PI /180
 --snip--
}

The import block gives us access to the required JavaFX and Kotlin
library components. The primary class constructor, which is part of the
class header 1, creates an instance of the Turtle class using three values:
the turtle’s starting x- and y-coordinates and its initial orientation (angle of
the turtle). We set the first two parameters as var because their values will
be updated each time the turtle moves or changes its direction. We keep
the third parameter angle as val (not explicitly declared but implied), which
is used to define a mutable property, angleRad.

The rest of the class body defines the seven different methods that can
be called to perform different Turtle object tasks. See Table 6-3 for a sum-
mary of these methods and their corresponding L-system characters.

fun lineTo(line: Double, gc: GraphicsContext) {
 val xBegin = x
 val yBegin = y
 x += line * cos(angleRad)
 y += line * sin(angleRad)
 gc.strokeLine(xBegin, yBegin, x, y)
}

fun moveTo(line: Double) {
 x += line * cos(angleRad)
 y += line * sin(angleRad)
}

fun turnRight(delta: Double) {
 // origin @ bottom left
 angleRad += delta * PI /180
}

fun turnLeft(delta: Double) {
 // origin @ bottom left
 angleRad -= delta * PI /180
}

Recursive Functions and Fractals 249

fun push() {
 stack.addLast(State(x, y, angleRad))
}

fun pop() {
 val (xPop, yPop, anglePop) = stack.removeLast()
 x = xPop
 y = yPop
 angleRad = anglePop
}

fun printTurtle() {
 print("x: ${round(x * 100) / 100.0} y: ${round(y * 100) / 100.0} ")
 println("angle: ${round((angleRad * 180 / PI) * 100) / 100.0} degrees")
}

The lineTo() method is the only one that actually draws anything on the
canvas. It draws a straight line of length line, based on the same sine and
cosine calculations we used to draw segments of the fractal tree in Project 24.
All the other methods either move the turtle without drawing a line, change
its direction, or save or restore its state. The final method simply prints the
current state of the turtle, which is useful for debugging purposes.

The push() and pop() methods rely on methods of the ArrayDeque class,
which we used to implement our stack. The push() method calls the addLast()
function, while pop() calls the removeLast() function to add or remove an
item to the end of the stack array, enforcing the LIFO rule. In both cases, we
encapsulate the state information by using our custom State data class.

The LSystemApp Class

Finally, we’ll bring the different components of the L-system simulator
together to form a complete application, organized around an LSystemApp
class. The following listing shows the full body of this class, as well as the
main() function. The listing also shows where all the other components we
discussed earlier fit (except for the Turtle class, which is in a separate file).

// import statements
--snip--

// global declarations
--snip--

// problem definition
--snip--

// function to generate final L-system string
fun generate() {
--snip--
}

// function to draw per finalString instructions
fun draw(gc: GraphicsContext) {

250 Chapter 6

--snip--
}

// JavaFX-Kotlin Application class
class LSystemApp : Application() {
 override fun start(stage: Stage) {
 val canvas = Canvas(600.0, 600.0)

 val gc = canvas.graphicsContext2D
 // Move the origin to bottom left.
 1 gc.translate(0.0, canvas.height)
 // Let positive y-axis point up.
 2 gc.scale(1.0, -1.0)

 val pane = Pane()
 pane.children.add(canvas)
 val scene = Scene(pane, 600.0, 600.0)
 stage.title = "L-system Simulator"
 stage.scene = scene
 stage.show()

 // ---L-system-related code---
 finalString = axiom

 3 if (depth > 0) {
 for (i in 1..depth) {
 generate()
 }
 4 line *= (scaling).pow(depth - 1.0)
 }
 draw(gc)
 }
}

fun main() {
 Application.launch(LSystemApp::class.java)
}

Other than the generate() and draw() functions, much of the LSystemApp
consists of the boilerplate JavaFX code. What’s different this time is the
addition of a couple of extra lines that relocate the origin of the canvas
to the bottom-left corner 1 and let the positive direction of the y-axis
point upward 2. These simple changes make testing previously published
L-systems that provide axioms, rules, and initial conditions for many well-
known fractals very convenient. Published L-system parameters are almost
always based on the assumption that we draw the resulting fractals in the
first quadrant of the coordinate system.

The code managing the L-system revolves around an if block that
checks if depth is greater than 0 3. If not, we simply draw the axiom itself,
without applying any rules. Otherwise, we call the generate() function depth
times to apply the rules over the appropriate number of iterations. We
then use the final content of finalString to draw the fractal. Notice that
we set the length of the lines to be drawn based on depth 4. This dynamic

Recursive Functions and Fractals 251

adjustment allows us to keep the size of the fractal limited to the size of
the canvas. If you prefer to use a larger or smaller canvas size (we’re using
600×600), you may have to adjust the initial line length, as well as the initial
position of the turtle.

The Result
We’re now ready to put our brand-new L-system simulator to the test. Since
we’ve already included problem-specific parameters for a snowflake fractal, we
can run the simulator with different depths to see how the image gets
more complex and manifests self-similar patterns as the depth increases.
Figure 6-10 shows the evolution of the snowflake for depths 1, 3, and 5.

Depth = 1 Depth = 3 Depth = 5

Figure 6-10: The evolution of a snowflake, using the L-system simulator

Researchers have developed so many interesting L-systems over the
years that you could spend days playing with those systems in your simu-
lator and looking at the intriguing patterns they generate. For example,
Table 6-4 lists the L-system parameters necessary for creating three more
fractals with different features. Some of these incorporate a wider range of
symbols, and they all involve multiple rules.

Table 6-4: Additional L-System Examples

Property

Fractal name

Sierpiński triangle Pattern with rectangles Fractal plant

Axiom F+G+G F-F-F-F X

Rules F -> F+G-F-G+F
G -> GG

F -> F-J+FF-F-FF-FJ-FF+J-FF+F+FF+FJ+FFF
J -> JJJJJJ

X -> F+[[X]-X]-F[-FX]+X
F -> FF

Line +150.0 +15.0 +20.0

Scaling 0.5 0.5 0.7

Angle 120 90 25

Depth 6 2 6

Turtle 150.0, 200.0, 0.0 150.0, 450.0, 0.0 100.0, 50.0, 65.0

Canvas 600.0×600.0 600.0×600.0 600.0×600.0

252 Chapter 6

The first set of parameters in Table 6-4 will create the familiar
Sierpiński triangle. The second set, with a depth of only two, is for a geo-
metric pattern that involves drawing multiple unconnected rectangles (see
Figure 6-11, left). The third set is for a fractal plant, a popular object among
fractal enthusiasts (see Figure 6-11, right). It involves a number of push and
pull operations ([and]) to keep track of the plant’s various branches.

Figure 6-11: A rectangular pattern (left) and a fractal plant (right) generated by the
L-system simulator

You can extend the basic L-system simulator we’ve developed in this
section to generate 3D fractals, such as a space-filling Hilbert curve. Check
out the resources listed at the end of this chapter to learn more about those
advanced implementations. The primary benefit of the L-system simula-
tor, however, is that it allows you to experiment with your own axioms and
rules. Perhaps you’ll come up with a brand-new fractal that no one has seen
before and name it after yourself!

The Mighty Mandelbrot Set
No discussion of fractals would be complete without examining the
Mandelbrot set, or M-set, and appreciating its complexity and beauty. The
M-set differs from the other fractals we’ve discussed so far in two important
ways. First, it’s a nonlinear fractal, meaning its building blocks are made up
of pixels organized in complex patterns instead of only straight lines. Second,
it’s mapped on a complex plane, so it requires us to use complex numbers.

The M-set hinges on the iterative properties of the deceptively simple
quadratic function, shown in Equation 6.1.

	 f(z) = z2 + c	 (6.1)

Here c is a constant. By “iterative properties,” I mean the way the
value of f(z) changes if we start with some initial seed value for z and then

Recursive Functions and Fractals 253

recursively feed the value of the equation back into itself as the new z value.
Equation 6.2 shows the recursive form of this function.

	 zn = z2
n – 1 + c	 (6.2)

The list of numbers generated by repeated iterations of Equation 6.2,
given a particular seed value z0 and constant c, is known as the orbit
of the function. Table 6-5 shows the orbits for a few different (z0, c)
combinations.

Table 6-5: Selected Orbits of Quadratic Function f(z) = z2 + c

n
(iteration)

Case 1:
z0 = 0, c = 1

Case 2:
z0 = 0, c = –1

Case 3:
z0 = 0, c = –0.65

1 1 –1 –0.65

2 2 0 –0.22749999

3 5 –1 –0.59824375

4 26 0 –0.29210441

5 677 –1 –0.56467501

6 458,330 0 –0.33114213

7 Very large number! –1 –0.54034488

Each case in Table 6-5 uses a seed value of 0 but a different constant.
Notice how minor variations in the value of the constant can set the orbit
off on a completely different path. In general, the orbit will either diverge,
meaning the function values will become increasingly large due to exponen-
tial growth (as in case 1), or remain bounded, such that the orbit values
stay within a certain range. If the latter, several variations are possible:

•	 The orbit cycles through a fixed set of values (as in case 2, where the
cycle has a period of 2).

•	 The orbit converges toward a fixed value; in case 3, the function value
converges to –0.4486 after approximately 100 iterations.

•	 The orbit remains fixed on a single value (for example, when z0 = 0 and
c = 0).

•	 The orbit values remain bounded but behave chaotically, showing no
apparent pattern.

All this hidden complexity is governed by the constant c as it takes on
different values. So far, however, we’ve used only real numbers as values of
c. It’s time to introduce complex numbers into the mix—values of c that sat-
isfy this equation:

	 c = x + iy	 (6.3)

Here x and y are real numbers, and i is √–1. Table 6-6 shows a few exam-
ples of our quadratic function using complex values of c.

254 Chapter 6

Table 6-6: Selected Orbits of Quadratic Function f(z) = z2 + c, Where c = x + iy

n (iteration) Case 1: z0 = 0, c = 0 + i Case 2: z0 = 0, c = 0 + 2i

1 i 2i

2 –1 + i –4 + 2i

3 –i 12 – 14i

4 –1 + i –52 – 334i

5 –i –108,852 + 34,738i

6 –1 + i Far away from (0, 0)

7 –i Very far away from (0, 0)

M-set membership Member Nonmember

As with real values of c, complex values also produce two types of orbits:
bounded (like case 1) or unbounded (like case 2). Given this, we’re now
ready to define the Mandelbrot set as the set of all complex numbers c for
which the corresponding orbit generated by recursive function f(z) = z2 + c
remains bounded, given a seed of z0 = 0. Thus, looking at Table 6-6, c = 0 + i
is a member of the Mandelbrot set, while c = 0 + 2i is not.

We visualize the Mandelbrot set by plotting the set’s members on a
complex plane, a coordinate system where the x-axis represents the real com-
ponent of a complex number (x in Equation 6.3) and the y-axis represents
the imaginary component (y in Equation 6.3). Given these x- and y-values,
the magnitude of the orbit of a complex number is calculated as:

	 |a| = √x 2 + y 2	 (6.4)

When a complex number is plotted as a point on the complex plane, the
magnitude of the orbit would be the distance of that point from the origin.

Project 26: Code and Visualize the Mandelbrot Set
Let’s turn our attention to creating an app that will help us visualize
the M-set. Our definition of the M-set provides some clues about what’s
required: we need to find and plot the complex values of c that cause
our quadratic function (Equation 6.1) to remain bounded as it iterates.
However, we still need a few clarifications. First, what region of the complex
plane should we investigate? It would help to know if the M-set members are
clustered in a certain region or dispersed over a large area. Also, since the
quadratic function can continue iterating ad infinitum, it isn’t clear when
exactly we should conclude that an orbit is bounded or unbounded. We
could limit ourselves to a certain number of iterations, consult the magni-
tude of the orbit as defined by Equation 6.4, or both.

Fortunately, researchers have already uncovered helpful facts about
the M-set that we can draw on to make our search efficient and practical.
First, from numerous plots of the M-set already created, we know that the
search space can be limited to an area bounded by [–2.0, 1.0] along the real

Recursive Functions and Fractals 255

axis (x-axis) and [–1.5, 1.5] along the imaginary axis (y-axis). Second, it’s
also known that the M-set is a closed set entirely contained inside a circle
of radius 2 around the origin. This means that a complex number c can’t
be a member of the set if |zn| > 2 for any n > 0. We’ll use this as a termina-
tion condition for the bounded/unbounded test. Otherwise, if we complete
some threshold number of iterations (iterMax) without |zn| exceeding 2, we’ll
consider c to be a member of the M-set.

We’ll set iterMax to 400 for a relatively clean image of the M-set, but I
encourage you to experiment by setting iterMax lower or higher. In general,
lower iterMax values will likely show more noise as well as various zones
of convergence. As the number of iterations increases (the test condition
becomes more stringent), the fractal boundary tends to become crisper.

The Code
Despite the sophisticated nature of the concept, the code for creating the
M-set is relatively minimal. The app we’ll create will have the following fea-
tures and functionalities:

•	 The problem definition (done through a small number of global
variables)

•	 The ability to iterate over the search space point by point

•	 The ability to check M-set membership conditions for each of those
points

•	 The ability to draw the point on the canvas with a chosen color scheme

In addition, we’ll need to adjust the scale of the image to ensure that
the search space is properly mapped onto a canvas of a given size.

Declaring Global Variables

First, we’ll declare some global variables. This code segment defines the
bounds for the real and imaginary axes, sets the canvas size, determines the
search increment along the x- and y-axes, and limits the number of itera-
tions for the quadratic function.

// problem definition and global parameters
val xMin = -2.0
val xMax = 1.0
val yMin = -1.5
val yMax = 1.5
val xRange = xMax - xMin
val yRange = yMax - yMin

val canvasW = 600.0
val canvasH = (canvasW / xRange) * yRange
val increment = 0.003
val iterMax = 400

256 Chapter 6

We set xMin and xMax as the lower and upper bounds for the real values
of c; similarly, yMin and yMax are the lower and upper bounds for the imagi-
nary part of c. The corresponding ranges (xRange and yRange) define a rect-
angular search space we’ll explore to find potential M-set members.

Next, we set the width of the canvas, canvasW, to 600 pixels and the
height of the canvas, canvasH, to a value that will maintain the proportion-
ality of the image (meaning that the M-set, when plotted, won’t look dis-
torted). The benefit of this approach is that you only need to adjust canvasW
if you want to create a larger or smaller image.

We set the last two parameters, increment and iterMax, to 0.003 and 400,
respectively. These values will determine the overall image quality. It’s pos-
sible to link the increment parameter to canvasW and have it automatically
calculated—you’re welcome to try that out as a simple experiment.

Finding and Drawing M-Set Members

We’ll now declare a function to iterate over the search space, check whether
a particular complex number c is within the M-set, and mark the corre-
sponding points on the canvas by using a color scheme.

// function to iterate over the search space and draw
// nonmembers using a grayscale and members as black points

private fun drawMSet(gc: GraphicsContext) {
 var y = yMin
 1 while (y <= yMax) {
 var x = xMin
 2 while (x <= xMax) {
 3 val cval = getConvergence(x, y)
 4 val speed = cval.toDouble() / iterMax
 val factor = 1.0 - speed
 gc.fill = Color​.color(factor, factor, factor)
 5 gc.fillRect(canvasW * (x - xMin)/ xRange,
 canvasH * (y - yMin)/ yRange, 1.0, 1.0)
 x += increment
 }
 y += increment
 }
}

The drawMSet() function uses a nested pair of while loops to iterate over
the search space. The outer loop 1 iterates along the y-axis, starting with
the minimum y value, yMin, and ending when y reaches the upper bound,
yMax, incrementing y by increment (which we set to 0.003) each time. The
inner while loop 2 does the same along the x-axis. With each iteration, we
get an (x, y) pair representing a complex number (as defined by Equation 6.3),
which we pass to the getConvergence() function 3 to check if that number
belongs to the M-set (we’ll look at that function next).

Calling getConvergence() returns the number of iterations of the qua-
dratic function it carried out. We divide this by iterMax to measure how

Recursive Functions and Fractals 257

quickly the convergence decision was made 4. If this resulting value (speed)
is 1, the number of iterations must have been iterMax, indicating that the
orbit of c remained bounded. Therefore, we’ll count this particular complex
number as a member of the M-set. If speed is less than 1, however, that would
mean the orbit jumped outside the circle of radius 2 before reaching the
maximum number of iterations, so we won’t consider that number to be an
M-set member.

We subtract speed from 1 and use the result (factor) to set the color of the
corresponding point on the canvas, according to a grayscale scheme where
(1, 1, 1) means white and (0, 0, 0) means black. If the orbit diverged very
quickly, factor will be close to 1, so the point on the canvas representing this
number will be marked with a white or nearly white pixel. Conversely, if the
orbit diverged only after many more iterations (but before reaching the maxi-
mum allowed), factor will be closer to 0, so the corresponding point would
be marked with a darker pixel. Of course, if the orbit remains bounded,
factor will be exactly 0, and the corresponding point will be marked with a
pure black pixel, signifying that the point belongs to the M-set.

Finally, we plot the number by mapping its (x, y) coordinate pair onto
a pixel location on the canvas 5, using the scaling factor illustrated in
Figure 6-12.

xMin

0

xMax

600

 x – xMin

w
w

=
(x – xMin)

canvasW

canvasW

xRange

xRange

(x – xMin)

xRange
w = canvasW

Figure 6-12: Mapping the x-coordinate of c to the x-value of the pixel
on the canvas

We’re using the proportionality rule to map the x-coordinate to a
point on the canvas designated as w. We apply the same principle to the
y-coordinate as well.

Checking for Convergence

The getConvergence() function takes in an (x, y) pair as arguments and
checks if the corresponding complex number belongs to the M-set.

// function to check for membership in the M-set
private fun getConvergence(x: Double, y: Double): Int {
 var zx = 0.0
 var zy = 0.0
 1 for (i in 1..iterMax) {
 val X = zx * zx – zy * zy + x
 val Y = 2 * zx * zy + y
 2 if (X * X + Y * Y > 4.0) return i
 zx = X

258 Chapter 6

 zy = Y
 }
 return iterMax
}

To follow the logic of the code, we need a bit of algebra. Recall
from Equation 6.2 that the recursive form of our quadratic function is
zn = z2

n – 1 + c. For any value of n > 1, zn – 1 will be a complex number that can
be expressed as:

	 zn – 1 = zxn – 1 + (i zyn – 1)	 (6.5)

In Equation 6.5, zxn – 1 is the real part of zn – 1, and zyn – 1 is the complex
part. We can now rewrite Equation 6.2 by using Equations 6.3 and 6.5.
After simplification, we get:

	 zn = (zx2
n – 1 – zy2

n – 1 + x) + i (2zxn – 1 zyn – 1 + y)	 (6.6)

Equation 6.6 can be further simplified as:

	 zn = X + iY	 (6.7)

where X = (zx2
n – 1 – zy2

n – 1 + x) and Y = (2zxn – 1 zyn – 1 + y).
Thinking back to Equation 6.4, we check if the magnitude of zn lies out-

side a circle of radius 2 by confirming whether:

	 |zn| = √X 2 + Y 2 > 2, or X 2 + Y 2 > 4	 (6.8)

Returning to our code, we start by setting real and imaginary compo-
nents zx and zy to 0, the equivalent of setting seed value z0 to 0. Next, the
for loop 1 iterates over Equation 6.7, calculating the values of X and Y. With
each iteration, we check if the magnitude of zn exceeds 2 2, per Equation 6.8.
If so, the complex number c represented by the (x, y) pair isn’t a member
of the M-set, and we return the number of iterations it took to reach that
conclusion. Otherwise, the iteration continues until we reach iterMax. If
zn remains bounded the whole time, we return iterMax to indicate that the
number is a member of the M-set.

Bringing Everything Together

Let’s take a look at how all these code segments fit together.

// import statements
--snip--

// problem definition and global declarations
--snip--

// function to iterate over the search space and draw
// nonmembers using a grayscale and members as black points
fun drawMSet(gc: GraphicsContext) {
--snip--
}

Recursive Functions and Fractals 259

// function to check for membership in the M-set
fun getConvergence(x: Double, y: Double): Int {
--snip--
}

// Application class for drawing the M-set
class Mandelbrot : Application() {
 override fun start(stage: Stage) {
 val root = Pane()
 val canvas = Canvas(canvasW, canvasH)
 val gc = canvas.graphicsContext2D
 root.children.add(canvas)

 val scene = Scene(root, canvasW, canvasH)
 scene.fill = Color.WHITE
 stage.title = "Mandelbrot Set"
 stage.scene = scene
 stage.show()

 // Search for M-set members and draw them on the canvas.
 drawMSet(gc)
 }
}

// the main function to launch the application
fun main() {
 Application.launch(Mandelbrot::class.java)
}

Other than our global declarations and our two function definitions,
the only other problem-specific code is a single call to drawMSet() to create
and draw a fractal. It’s remarkable that despite the M-set’s complexity, only
a few lines of code are required to generate the fractal.

The Result
Let’s use our app to explore the Mandelbrot set, which remains one of the
most enigmatic mathematical objects ever discovered. Given the parameter
values we used in “Declaring Global Variables” on page 255, Figure 6-13
shows the core M-set (the dark region) and some of its features.

260 Chapter 6

Seahorse valley

Elephant valleyCardioidBulb

Figure 6-13: The Mandelbrot set

The central, heart-shaped part of the M-set is called the cardioid. The
circular part to the left of the cardioid is called the main bulb. It’s a circle
centered at (–1.0, 0.0), with a radius of 0.25. Numerous other bulbs are
attached to the main bulb and the cardioid all around their boundaries,
and those bulbs seem to have antennas or tentacles. When we zoom in on
them, we notice intricate patterns and even smaller cardioid-like features
with their own bulbs and tentacles. In other words, some features of the
M-set are replicated again and again, no matter how small the scale is (even
though the replication is not exact)—a defining feature of any fractal.

The finer patterns, visible after sufficient magnification, aren’t simple
geometric shapes; instead, they’re beautifully intricate and detailed in
nature. Figure 6-14 shows magnified versions of two specific regions of inter-
est, the seahorse valley and the elephant valley, as identified in Figure 6-13.

Figure 6-14: The seahorse valley (left) and the elephant valley (right)

Recursive Functions and Fractals 261

You can generate both of these figures by changing the search region
and using appropriate parameter values in your app, as summarized in
Table 6-7.

Table 6-7: Search Region and Parameter Values for Select
Regions of the M-set

Parameter Seahorse valley Elephant valley

xMin -0.8 0.275

xMax -0.7 0.325

yMin -0.2 -0.05

yMax -0.1 0.0

canvasW 600 600

increment 0.0001 0.00005

iterMax 200 200

Enjoy exploring the M-set by using these parameters, or come up with
your own parameter values and see what other features you can find.

E X ERCISE

Modify the code used for drawing the M-set to draw a Julia set, shown here:

Julia sets are drawn using the same equation as the M-set (Equation 6.2),
but instead of using (x, y) pairs to set the value of c, you use them to set the
initial value of z. That is, z0 = x + iy for a given value of c. For this exercise,
use c = –0.4 + (i × 0.6). Set canvas to 800.0, increment to 0.0025, and iterMax

(continued)

262 Chapter 6

to 200. The search space boundaries along the x- and y-axes should be (–2, 2)
and (–1,5, 1.5), respectively.

Hint: You’ll need to change the getConvergence() function. Additionally,
to ensure that the plot is created in the first quadrant of the coordinate system,
you’ll need to add two lines of code to handle the graphics (as we did for the
L-system simulator):

gc.translate(0.0, canvas.height)
gc.scale(1.0, -1.0)

Summary
In this chapter, you used Kotlin to explore the enigmatic beauty of fractals.
You learned how to design recursive functions to help draw simple geomet-
ric fractals, and you developed an L-system simulator to generate intricate
self-similar patterns based on strings of instructions and a few transforma-
tion rules. Finally, you created an application for visualizing the famous
Mandelbrot set.

No matter what the mathematical properties of a fractal are, you now
have the tools to put together a few lines of code in Kotlin and JavaFX to
render it. We’ve barely scratched the surface of fractal geometry, however.
In particular, you have a lot to learn about the M-set that’s beyond the
scope of this book. If this chapter has aroused your interest in fractals, I
encourage you to check out the listed resources for further reading.

Resources
Devaney, Robert L. An Introduction to Chaotic Dynamical Systems. 3rd ed. Boca

Raton, FL: CRC Press, 2022.

Feldman, David P. Chaos and Fractals: An Elementary Introduction. Oxford,
UK: Oxford University Press, 2012.

Flake, Gary William. The Computational Beauty of Nature: Computer Explorations
of Fractals, Chaos, Complex Systems, and Adaptation. Cambridge, MA: MIT
Press, 2000.

Mandelbrot, Benoit B. The Fractal Geometry of Nature. San Francisco:
W. H. Freeman & Co., 1982.

Ponce Campuzano, Juan Carlos. “The Mandelbrot Set.” Complex Analysis.
2019. Accessed June 15, 2024. https://complex​-analysis​.com​/content​/mandelbrot​
_set​.html.

https://complex-analysis.com/content/mandelbrot_set.html
https://complex-analysis.com/content/mandelbrot_set.html

Recursive Functions and Fractals 263

Prusinkiewicz, Przemyslaw, and Aristid Lindenmayer. The Algorithmic
Beauty of Plants. Electronic version, 2004. Accessed June 15, 2024. http://
algorithmicbotany​.org​/papers​/abop​/abop​.pdf.

Prusinkiewicz, Przemyslaw, Aristid Lindenmayer, and F. David Fracchia.
“Synthesis of Space-Filling Curves on the Square Grid.” In Fractals in
the Fundamental and Applied Sciences, edited by Heinz-Otto Peitgen, José
Marques Henriques, and Luís Filipe Penedo, 334–366. North-Holland:
Elsevier, 1991.

Weisstein, Eric W. “Mandelbrot Set.” Wolfram MathWorld. Accessed
June 15, 2024. https://mathworld​.wolfram​.com​/MandelbrotSet​.html.

http://algorithmicbotany.org/papers/abop/abop.pdf
http://algorithmicbotany.org/papers/abop/abop.pdf
https://mathworld.wolfram.com/MandelbrotSet.html

One of the fundamental skills that any
serious developer needs to learn is how to

efficiently sort and search through a given
dataset. This skill is invaluable for transforming

raw data into actionable insights, whether you’re work-
ing with a simple array or with complex data structures
spanning terabytes of multifield information extracted
from the vast expanse of the internet.

Sorting and searching are a dynamic duo that work hand in hand.
Sorting organizes data into a specific order, which enables meaningful
analysis of the dataset as a whole. Once the data is sorted, it becomes easier
to identify patterns, trends, and outliers. Sorting also improves the speed
and ease of searching for desired items within the dataset, especially when
working with large volumes of data. Indeed, many search algorithms, such
as binary search, interpolation search, and tree-based searches, rely on the
organization achieved through sorting. Searching further complements

7
S O R T I N G A N D S E A R C H I N G

266 Chapter 7

sorting by enabling targeted analysis, allowing for the quick location of spe-
cific data points or subsets within the dataset. Together, sorting and search-
ing streamline data exploration, optimize retrieval efficiency, and empower
decision-making processes.

A wide array of sorting and search algorithms are available. In this
chapter’s projects, we’ll focus on a selected group of algorithms that have
broad applications in fields that require working with large datasets. By
mastering these algorithms, you’ll be better equipped to tackle complex
data challenges and make the most of sorting and searching capabilities.

Sorting Algorithms
Sorting algorithms allow us to rearrange a collection of data elements into
a specific order, such as numerical or alphabetical or based on any other
desired criteria. We can sort various types of data, including numbers,
strings, records (lines of data in a database), and complex objects. Sorting
is a fundamental building block for a variety of operations, such as merg-
ing, joining, and aggregating datasets. It paves the way for efficient data
manipulation, which is crucial in domains like database management,
algorithms, and programming. By organizing data structures, sorting pro-
vides a structured framework that promotes clarity, consistency, and ease
of use. This streamlined approach enhances data management and main-
tenance, particularly in scenarios where data must be updated or modified
frequently.

Each sorting algorithm has its own advantages and disadvantages in
terms of time complexity, space complexity, and stability. Before we get into
specific algorithms, it’s important to review these concepts, as they’ll assist
us in selecting the appropriate algorithm for a given problem.

Time complexity refers to the estimation of the algorithm’s running time
based on the input size, which is denoted by n. It provides insight into how
the algorithm’s performance scales with larger datasets. Common nota-
tions like O(1), O(log n), O(n), O(n log n), O(n2), and O(2n) indicate differ-
ent growth rates of time complexity in increasing order. The smaller the
growth rate, the quicker the algorithm is in sorting a collection of data.

BIG O NOTAT ION

Big O notation is a mathematical notation that describes how a function
behaves when its argument approaches a specific value or tends toward infin-
ity. In computer science, it’s used to describe the performance or complexity of
an algorithm.

In the context of sorting algorithms, big O notation indicates how the time
or space complexity of an algorithm grows as the size of the input array grows.
For example, the merge sort algorithm has a time complexity of O(n log n).

Sorting and Searching 267

For an array size of 1,000, its time complexity would be O(1,000 log 1,000),
or approximately 9,966 (using a base of 2 for the logarithm). If the array size
doubles to 2,000, the time complexity increases to O(2,000 log 2,000), which
is approximately 21,932. This means that doubling the array size would, on
average, increase the time needed to sort the array with the merge sort algo-
rithm by a factor of 21,932/9,966 ≈ 2.2.

By contrast, the insertion sort algorithm has an average time complexity
of O(n2). Increasing the input array size from 1,000 to 2,000 therefore means
going from a time complexity of 1,0002 = 1 million to one of 2,0002 = 4 million.
In other words, doubling the size of the dataset quadruples the time complexity.

In practice, the actual runtime for merge sort, insertion sort, or any other
algorithm will depend on many other factors, such as the implementation
details, the hardware and software environment, and the specific input data.

Space complexity, on the other hand, describes the amount of additional
memory an algorithm requires to perform the sorting operation, beyond
the memory it needs to store the data being sorted. Some algorithms may
operate with minimal extra space, where the swapping of data elements
happens in place. Others may require significant auxiliary memory to per-
form sorting operations efficiently. This is also called out-of-place sorting,
where full or partial copies of the original dataset are needed to carry out
the sorting operation. The smaller the space complexity, the more efficient
(and scalable) that algorithm is in terms of memory requirements.

Stability is another important consideration. A sorting algorithm is
stable if it maintains the relative order of elements with equal values. In
certain situations, preserving the initial order of equal elements is required,
and a stable algorithm becomes essential.

Table 7-1 shows these properties for a selected group of sorting algo-
rithms that we’ll discuss in this chapter.

Table 7-1: Key Features of Selected Sorting Algorithms

Algorithm

Time complexity Space
complexity StabilityBest Average Worst

Insertion sort O(n) O(n2) O(n2) O(1) Stable

Merge sort O(n log n) O(n log n) O(n log n) O(n) Stable

Quick sort O(n log n) O(n log n) O(n2) O(log n)* Unstable

Heap sort O(n log n) O(n log n) O(n log n) O(1) Unstable

*The worst case can be O(n).

Of the sorting algorithms listed in Table 7-1, insertion sort is the sim-
plest and most intuitive, but it isn’t the most efficient in terms of average
time complexity. It tends to be slower than the other algorithms for larger

268 Chapter 7

datasets. Due to this limitation, insertion sort generally isn’t used as a stand-
alone algorithm, but rather as part of a hybrid sorting scheme that com-
bines multiple methods, depending on the characteristics of the data.

Both merge sort and heap sort have similar time complexities, typi-
cally O(n log n). However, heap sort has an advantage in terms of space
complexity because it’s an in-place algorithm, meaning it requires minimal
additional memory beyond the input array. On the other hand, merge sort
requires additional space proportional to the input size. If stability is a
desired property, then merge sort becomes the preferred choice over heap
sort. It’s a stable sorting algorithm, ensuring that elements with equal val-
ues maintain their original order.

In practice, quick sort often performs better than other sorting algo-
rithms, except when the data is already sorted or nearly sorted. Quick sort
benefits from lower space complexity, and it has smaller overhead, or fewer
hidden operations that don’t depend on the size of the input data. Many
programming language libraries provide built-in functions for quick sort,
making it easily accessible and widely used.

Project 27: Space-Efficient Sorting with Insertion Sort
Insertion sort is a simple and intuitive sorting algorithm that works by
building a sorted array one element at a time. The algorithm maintains a
sorted subarray within the given array and extends it by inserting elements
from the unsorted part of the array into the correct position in the sorted
part. At the beginning, the first element of the array is considered to be a
sorted subarray of size 1. The algorithm then iterates through the remain-
ing elements, one at a time, and inserts each element into its appropriate
position within the sorted subarray.

To insert an element, the algorithm compares it with the elements
in the sorted subarray from right to left. It shifts any larger elements one
position to the right until it finds the correct position for the current ele-
ment. Once the correct position is found, the element is inserted into that
position. This process continues until all the elements in the array are pro-
cessed, resulting in a fully sorted array.

Say we have the unsorted array [8, 3, 4, 5, 1, 2]. Here’s how the insertion
sort algorithm would process it:

	 1.	Imagine that the given array is made up of two subarrays—a sorted
array, which initially holds only the first element (8), and an unsorted
array made up of the remaining elements.

	 2.	Compare the second element of the array (index 1) with its preceding
element (index 0) as follows:

	 a.	 Compare 3 with 8. Since 3 is smaller, swap the elements.

	b.	 The array after the first pass is [3, 8, 4, 5, 1, 2].	

Sorting and Searching 269

	 3.	Move to the next element (index 2) and compare it with the previous
elements.

	 a.	 Compare 4 with 8. Since 4 is smaller, swap the elements.

	b.	 Compare 4 with 3. Since 4 is greater, stop comparing.

	 c.	 The array after the second pass is [3, 4, 8, 5, 1, 2].

	 4.	Repeat this process for the remaining elements of the array. In the end,
the array will be sorted in ascending order: [1, 2, 3, 4, 5, 8].

As indicated in Table 7-1, insertion sort has an average and worst-case
time complexity of O(n2), where n is the number of elements in the array.
However, it performs well for small lists or nearly sorted lists. It’s an in-place
sorting algorithm with space complexity of O(1) for all cases, meaning it
doesn’t require additional memory to perform the sorting.

The Code
Implementing the insertion sort algorithm in Kotlin takes only a few lines
of code. We’ll create a dedicated function called insertionSort() to handle
all the necessary steps for sorting an array and call this function from main()
to get the job done.

fun main() {
 // Define an array to be sorted.
 val arr = intArrayOf(8, 3, 4, 5, 1, 2)

 println("\n*** Sorting an Array Using Insertion Sort ***\n")
 println("original array:\n${arr​.contentToString()}")
 // Call the insertion sort function.
 insertionSort(arr)
 println("sorted array:\n${arr​.contentToString()}")
}

fun insertionSort(A: IntArray) {
 // Sorting happens in place.
 1 for (i in 1 until A.size) {
 val key = A[i]
 var j = i
 2 while(j > 0 && A[j-1] > key) {
 A[j] = A[j-1]
 j -= 1
 }
 3 A[j] = key
 }
}

This code snippet implements the insertion sort algorithm to sort an
array of numbers (in this case, integers) in ascending order. We create an
array called arr that holds the initial unsorted array elements. The content
of this array is printed to the console, allowing us to see the original order
of the numbers. We then call the insertionSort() function to perform the

270 Chapter 7

sorting operation. It takes the array as input and modifies it in place, so you
don’t have to return the sorted array to the calling function.

Within the insertionSort() function, we iterate through the unsorted
portion of the array by using a for loop 1, starting from the second ele-
ment (index 1) and continuing to the last element. For each element, we
temporarily store the value in a variable called key. Next, we use a while
loop 2 to move from right to left through the sorted portion of the array,
comparing key with each element. The while loop continues as long as two
conditions are met: more elements remain to the left (checked using j > 0),
and the current element is greater than key (checked using A[j-1] > key).
Inside the while loop, if an element is greater than key, it’s shifted one posi-
tion to the right. This makes space for key to be inserted at the correct
sorted position.

When the while loop ends, we assign the value of key to the current posi-
tion in the array 3, effectively inserting the element into the sorted portion
of the array at the correct position. The for loop then moves to the next
element, and the process repeats for all the elements in the array. Once the
sorting is complete, the code prints the sorted array to the console, display-
ing the numbers in ascending order.

The Result
If you run the code without changing the given unsorted array, the output
should look like this:

*** Sorting an Array Using Insertion Sort ***

original array:
[8, 3, 4, 5, 1, 2]
sorted array:
[1, 2, 3, 4, 5, 8]

The code can easily be tweaked to sort floating-point numbers by
assembling an array of either Float or Double data types. I encourage you
to modify the code to accept user input regarding the preferred sorting
order—either ascending or descending. After that, you can implement a
suitable function based on the user’s choice. Alternatively, you can use the
same function with two subfunctions, which can be implemented using
when(choice), one for sorting an array in ascending order and one for doing
the opposite.

Project 28: Faster Sorting with Merge Sort
Merge sort is a popular sorting algorithm that follows a divide-and-conquer
approach. It works by recursively dividing an array into smaller subarrays
until each subarray contains only one element. The subarrays are then
merged back into longer arrays, placing the elements in the correct order
in the process, eventually resulting in a fully sorted array. Figure 7-1 illus-
trates this process for the same [8, 3, 4, 5, 1, 2] array we used in Project 27.

Sorting and Searching 271

[8, 3, 4, 5, 1, 2]

[8, 3, 4] [5, 1, 2]

[8] [3, 4] [5] [1, 2]

[3] [4] [1] [2]

Given array:

[8] [3, 4] [5] [1, 2]

[3, 4, 8] [1, 2, 5]

[1, 2, 3, 4, 5, 8]

Sorted array:

Sp
lit

tin
g

in
to

 s
ub

ar
ra

ys
So

rti
ng

 a
nd

 m
er

gi
ng

Figure 7-1: Visualizing the merge sort algorithm

Notice how the given array is initially divided into two subarrays, and
then notice how each of those subarrays is further divided into two sub
arrays, and so on. The subarrays are then sorted and merged. When we
implement the algorithm by using a recursive function, we’ll first process
entirely the left subarray of the first pair of subarrays—in this example,
[8, 3, 4]—before moving on to the right subarray, [5, 1, 2]. Within each
branch, we’ll divide the subarrays into individual elements and then reas-
semble the sorted subarrays. Eventually, the final pair of sorted left and
right subarrays will be merged to generate the final sorted array.

Merge sort guarantees a consistent time complexity of O(n log n) in all
cases, making it efficient for large datasets. It’s also a stable sorting algo-
rithm, preserving the relative order of equal elements. However, it needs
additional space for the merging step, making its space complexity O(n).
Nonetheless, merge sort’s efficiency and stability make it a popular choice
for sorting in various applications.

The Code
We’ll follow a similar structure for the merge sort code as we did for the
insertion sort: a main() function that kicks off the sorting process by passing
an array to a mergeSort() function. This time, however, mergeSort() will recur-
sively call itself until it reaches a stopping condition (when each subarray
has only one element). To put everything back together, we’ll use a helper
function called merge(), which handles the task of sorting and merging
the subarrays.

272 Chapter 7

fun main() {
 val arr = intArrayOf(8, 3, 4, 5, 1, 2)

 println("\n*** Sorting an Array Using Merge Sort ***\n")
 println("original array:\n${arr​.contentToString()}")
 // Call the recursive function.
 1 mergeSort(arr)
 println("\nsorted array:\n${arr​.contentToString()}")
}

fun mergeSort(arr: IntArray) {
 val length = arr.size
 if (length < 2) return // done splitting subarrays

 2 val middle = length / 2
 val leftArray = arr​.copyOfRange(0, middle)
 val rightArray = arr​.copyOfRange(middle, length)

 3 mergeSort(leftArray)
 mergeSort(rightArray)
 merge(leftArray, rightArray, arr)
}

fun merge(leftArray: IntArray, rightArray: IntArray,
 arr: IntArray) {

 val leftSize = leftArray.size
 val rightSize = rightArray.size
 var i = 0 // for original array
 var l = 0 // for left array
 var r = 0 // for right array

 // Compare, sort, and merge.
 4 while(l < leftSize && r < rightSize) {
 if (leftArray[l] < rightArray[r]) {
 arr[i] = leftArray[l]
 l++
 } else {
 arr[i] = rightArray[r]
 r++
 }
 5 i++
 }

 // If all elements of a subarray are assigned, assign the
 // remaining elements of the nonempty array to "arr".
 while (l < leftSize) {
 arr[i] = leftArray[l]
 l++
 i++
 }

 while (r < rightSize) {
 arr[i] = rightArray[r]
 r++

Sorting and Searching 273

 i++
 }
}

In the main() function, we begin by initializing an array called arr with
a set of integer values. We also print the given array before proceeding so
that we’ll be able to compare this with the sorted array once it’s generated.
We then call the mergeSort() function 1, which is responsible for carrying
out the sorting process. This function takes an array arr as an argument.

Within mergeSort(), we first check the length of the incoming array. If it’s
less than 2, the subarray has a length of 1, so the function simply returns, and
the splitting process stops. This is the all-important stopping condition
that any recursive function needs. Next, we calculate the middle index of
the array 2 and create two subarrays: leftArray and rightArray. The former
contains elements from index 0 up to but not including middle, while the
latter contains elements from middle to the end of the array. To continue the
process, the mergeSort() function recursively calls itself on both leftArray and
rightArray 3. As mentioned, this recursive step continues until the base case
is reached—that is, when the length of the subarrays becomes 1. Finally, we
call merge() to reassemble leftArray and rightArray into a single, sorted array.

The merge() function accepts three parameters, leftArray, rightArray, and
arr, representing the two subarrays to be merged and the original array that
will be modified during the merging process. We start the function by initial-
izing variables to keep track of the indices within the arrays; i is for travers-
ing the original arr, l for the leftArray, and r for the rightArray. The actual
merging and sorting occur within a while loop 4 that continues as long as
elements remain in both leftArray and rightArray to compare. During each
iteration, the function compares the values at indices l and r in leftArray
and rightArray, respectively. If the value in leftArray is smaller, it’s assigned
to arr at index i, and the l index is incremented. Conversely, if the value in
rightArray is smaller, it’s assigned to arr at index i, and the r index is incre-
mented. Following each assignment, the i index is also incremented 5.

The while loop concludes when either leftArray or rightArray has been
fully processed. The remaining elements from the nonempty array are then
assigned to arr to complete the merging process. We use two separate while
loops for this task—one for leftArray and one for rightArray. Only one of
these loops will actually execute.

The Result
When you run the merge sort code for the given input array, it should pro-
duce the following output:

*** Sorting an Array Using Merge Sort ***

original array:
[8, 3, 4, 5, 1, 2]

sorted array:
[1, 2, 3, 4, 5, 8]

274 Chapter 7

I encourage you to repeat the same exercise you did with insertion sort,
allowing the user to choose the order of sorting (ascending or descending)
and then modifying the code to sort accordingly. I also recommend that
you think about arrays containing both positive and negative numbers.
You might soon realize that by selectively multiplying the entire array by
–1 before and after sorting, you can use the same code to sort an array in
ascending or descending order instead of writing two separate functions!

Project 29: High-Efficiency Sorting with Quick Sort
Quick sort is a well-known and highly efficient in-place sorting algorithm
that’s widely used in various real-world applications. It involves selecting a
pivot element from the array and dividing the remaining elements into two
subarrays, one for values less than the pivot and the other for values greater
than the pivot. This mechanism places the pivot element itself in the cor-
rect position in the final sorted array, while the remaining elements end up
on the appropriate side of the pivot. The process repeats recursively for the
subarrays, selecting new pivot elements and further portioning the array,
until everything is sorted.

Here’s a step-by-step example of how quick sort works, using the array
[8, 3, 4, 5, 1, 2]:

	 1.	Choose a pivot element, which can be any element from the array. In
this example, we’ll choose the last element, 2.

	 2.	Partition the array into two subarrays, the left subarray with elements
less than the pivot and the right subarray with elements greater than
the pivot. In this case, the left subarray becomes [1], and the right
becomes [4, 5, 8, 3]. I’ll explain where this order comes from later in
the project.

	 3.	Recursively apply quick sort to the subarrays. For the left subarray, no
further action is needed: it has only one element, so it’s already in its
final position. For the right subarray, we now pick 3 as the pivot. This
creates an empty left subarray as 3 is the smallest number. The right
subarray now has [5, 8, 4].

	 4.	Repeat step 3 until all subarrays are sorted, meaning each subarray has
only one element or is empty.

	 5.	Combine the sorted subarrays to get the final sorted array: [1, 2, 3,
4, 5, 8].

In this example, we always chose the last element of the array or subar-
ray as the pivot element. Another option could have been to choose the
first element as the pivot. For a wide range of inputs, choosing the first
or last element as the pivot will work well, especially if the input data is
randomly or uniformly distributed. However, if the array is already sorted
or nearly sorted, pivoting around the first or last element will yield the

Sorting and Searching 275

worst-case time complexity of O(n2). To avoid this, you can use one of the
following alternative techniques for choosing a pivot:

Choose a random element

Randomly selecting a pivot element helps mitigate the inefficiency of
choosing the first or the last element when the array is already mostly
sorted. This approach can provide a good average-case performance
since the pivot’s position is less predictable. It reduces the likelihood of
encountering worst-case scenarios, resulting in better overall efficiency.

Choose the median of three

This strategy involves using the median value among the first, middle,
and last elements of the array as the pivot. This approach aims to bal-
ance the pivot selection by choosing a value closer to the true median
of the dataset. It helps improve the algorithm’s performance on a wide
range of inputs, reducing the chance of worst-case behavior.

Compared to other sorting algorithms, quick sort is highly efficient
for large datasets, and its average and worst-case time complexity are
O(n log n) and O(n2), respectively. Quick sort has an average space com-
plexity of O(log n), which can degenerate to O(n) when the input array is
already sorted or nearly sorted and the first or the last element is chosen as
the pivot (worst case).

The Code
The code for quick sort is quite similar to that of merge sort in structure,
as both algorithms rely on a divide-and-conquer approach. In the code, the
main() function accepts an input array and passes it to the quickSort() func-
tion. Within quickSort(), we invoke a partition() helper function to deter-
mine the correct position for the pivot element. This allows us to divide the
original array into a left array containing elements less than the pivot and a
right array containing elements greater than or equal to the pivot. Finally,
quickSort() is recursively called on these subarrays as long as start is less
than end, which means at least two elements remain in the subarray.

fun main() {
 val arr = intArrayOf(8, 3, 4, 5, 1, 2)

 println("\n*** Sorting an Array Using Quick Sort ***\n")
 println("original array:\n${arr​.contentToString()}")
 // Call the recursive function.
 1 quickSort(arr, start = 0, end = arr.size -1)
 println("\nsorted array:\n${arr​.contentToString()}")
}

fun quickSort(arr: IntArray, start: Int, end: Int) {
 // Check that the termination condition for recursion
 // base case is when start = end.
 2 if (start < end) {

276 Chapter 7

 val pivotIndex = partition(arr, start, end)
 quickSort(arr = arr, start = start, end = pivotIndex - 1)
 quickSort(arr = arr, start = pivotIndex + 1, end = end)
 }
}

fun partition(arr: IntArray, start: Int, end: Int): Int {
 val pivot = arr[end]
 var i = start

 for (j in start until end) {
 3 if (arr[j] < pivot) {
 swap(arr, i, j)
 i++
 }
 }
 4 swap(arr, i, end)
 return i
}

fun swap(arr: IntArray, i: Int, j: Int) {
 val temp = arr[i]
 arr[i] = arr[j]
 arr[j] = temp
}

In the main() function, we call the quickSort() function by passing three
parameter values: the array to be sorted (arr) and the indices for its first
and last elements (start and end) 1. As before, we print the array before
and after sorting.

In the quickSort() function, we start by checking whether the starting
index of the incoming subarray is less than the ending index 2. When this
is no longer true, the subarray will have only one element, so the recursion
of that branch will stop. Otherwise, we call the partition() helper function,
which returns the final (sorted) position of the pivot element. We store this
position as pivotIndex and use it to divide the original array into left and
right subarrays. We then recursively call quicksort() on the left and right
subarrays until the stopping condition is met.

The real sorting work happens inside the partition() function. After
setting pivot to the value of the last element in the subarray, we use two
index variables, i and j, to swap the positions of the elements inside a for
loop. Both start at the beginning of the subarray, and then j steps through
the subarray looking for elements with values less than pivot 3. Each time
one is found, the values at i and j are swapped, and then i is incremented.
In effect, this moves elements less than the pivot to earlier in the array,
and elements greater than the pivot to later in the array. Once the for loop
is done, the pivot itself is swapped with the element at i 4, which puts
the pivot element into its final sorted position. Then the final value of i is
returned so that two new subarrays can be formed on both sides of the final
position of the last pivot element. The swaps themselves are relegated to a

Sorting and Searching 277

swap() helper function, which uses the temp variable to avoid overwriting the
value at i. Apart from this one extra variable, the sorting happens in place.

The Result
If you run the code with the example array, the output should look like this:

*** Sorting an Array Using Quick Sort ***

original array:
[8, 3, 4, 5, 1, 2]

sorted array:
[1, 2, 3, 4, 5, 8]

I mentioned earlier that I would explain how the order of the subarray
elements is determined. This has to do with the swapping algorithm in the
partition() function. During the first round of processing the [8, 3, 4, 5, 1, 2]
array, for example, 2 is the pivot, and the first element in the array less than
the pivot is 1. This element gets swapped with the 8 at the start of the array
(accessed using index variable i), yielding an array of [1, 3, 4, 5, 8, 2]. Then
the pivot itself (2) is swapped with the next element of the array (3—again
accessed via i), yielding [1, 2, 4, 5, 8, 3].

I encourage you to manually step through the entire process of sorting
the array with quick sort. You can refer to Figure 7-2, which shows the origi-
nal input array, the intermediate subarrays after each round of processing,
and the final sorted array. By going through the comparisons and swaps
yourself, you can visualize the partitioning and sorting process in a more
tangible way.

Given array: 8 3 4 5 1 2Given array: 8 3 4 5 1 2

Round 1: 1 2 4 5 8 3

Round 2: 3 5 8 4

Round 3: 4 8 5

Round 4: 5 8

Sorted array: 1 2 3 4 5 8

Final position

Pivot

Figure 7-2: The quick sort steps for [8, 3, 4, 5, 1, 2]

You can also autogenerate the subarrays at each stage by printing the
left and right arrays from inside the quicksort() function, just after the posi-
tion of the pivot is determined.

278 Chapter 7

E X ERCISE

Heap sort is an algorithm that sorts an array in ascending or descending order
by first converting it into a binary heap, a structure that organizes data in a
tree-like fashion. A binary heap has two main properties:

•	 It’s a complete binary tree: every node in the tree has at most two child
nodes, and all levels of the tree are fully filled, except possibly the last
level, where the nodes are as far to the left as possible.

•	 It satisfies either the max heap or the min heap property. For max heap,
the value of each node must be greater than or equal to the values of its
children. For min heap, the value of each node must be less than or equal
to the values of its children.

Heap sort involves building a heap from the input array, repeatedly
extracting the maximum (or minimum) element from the heap and placing it in
the sorted portion of the array. Heap sort has a time complexity of O(n log n)
on average and in the worst case. And as an in-place sorting algorithm, it has
a space complexity of O(1). Although it isn’t stable, heap sort is used for its
efficiency and minimal memory requirements.

Do some research to learn more about the heap sort algorithm. Then write
a Kotlin program to implement the algorithm.

Search Algorithms
Searching through a data structure is a fundamental operation in com-
puter science. It helps us track down specific elements or retrieve informa-
tion stored within a collection of data. While this task may seem trivial
for a small amount of data, as the volume of data increases—up to large
databases, filesystems, or even the whole internet—knowing how to choose
the right search algorithm becomes paramount to keeping our digital life
humming.

Search algorithms are intimately connected to the data structures
they’re designed to search, since how the data is organized affects how effi-
ciently a particular item can be found and accessed. For the purposes of the
coming projects, we’ll focus on several algorithms that are used to search
a graph, which is a type of data structure. Before we get to the algorithms
themselves, however, it’s important to establish how graphs are structured.

What Is a Graph?
In the field of graph theory, a graph is a mathematical structure consisting
of a set of vertices (also known as nodes) and a set of edges (also known as
arcs or links) that connect pairs of vertices. Vertices can represent any kind

Sorting and Searching 279

of objects, such as cities, people, or even more abstract concepts. Edges rep-
resent relationships or connections between the vertices. Mathematically, a
graph is denoted by G and defined as G = (V, E), where V is a set of vertices
or nodes, and E is a set of edges or links.

Figure 7-3 depicts a simple graph consisting of five nodes and five
edges. Each circle in the figure represents a vertex, and each line represents
an edge. The nodes are named with sequential numbers for convenience. In
real-world cases, most nodes would be names with strings, however. When
node names are designated by whole numbers, we can treat them as either
of type Int or of type String in the code.

0 3

2

1 4

Figure 7-3: A simple
graph with five nodes
and five edges

Graphs can be categorized into two main groups: undirected and
directed. In an undirected graph, the edges allow movement between vertices
in both directions. This type of graph is often used to represent scenarios
like a road network, where traffic can flow both ways. By contrast, each edge
in a directed graph has a specific direction associated with it, restricting the
way you can move between vertices. For example, a directed graph can rep-
resent a water or power distribution network, where the flow always moves
from areas of high pressure to areas of low pressure or from high voltage to
low voltage, respectively.

When the edges of a graph have weights associated with them, the
graph is called a weighted graph. The weight in this case could be a proxy for
cost, distance, or any other edge-related property. Weighted graphs can be
either directed or undirected.

How to Search a Graph
In the coming projects, we’ll consider three different algorithms for search-
ing a graph. The first, depth-first search (DFS), is a technique that starts at
a particular node and explores as far (or “as deep”) as possible along one
branch before backtracking and exploring the next. In this way, it tra-
verses the depth of a data structure before exploring its breadth. DFS is
often implemented by using a stack data structure (we explored stacks in
Chapter 6 while developing the L-system simulator). This way, DFS can
use the youngest node in the stack to extend the branch and explore each
adjacent node at the end of a branch before backtracking and moving to
the next branch. DFS is useful in many applications, including scheduling

280 Chapter 7

problems, detecting cycles in graphs, and solving puzzles with only one
solution, such as a maze or a sudoku puzzle.

The next algorithm, breadth-first search (BFS), takes the opposite
approach of DFS, exploring the data structure level by level. It starts at a
given node and visits all its immediate neighbors. Then it moves on to the
next level, visiting all the neighbors’ neighbors, and so on. In this way, BFS
prioritizes exploring the breadth of the entire data structure over the depth
of any individual branch. As we’ll discuss in Project 31, BFS typically uses
a queue data structure, allowing it to visit each level in order. It’s useful
for finding the shortest path, web crawling, analyzing social networks, and
exploring all reachable nodes in a graph while using the smallest number
of iterations.

The choice between DFS and BFS depends on the specific problem and
the characteristics of the data structure being searched. DFS is typically used
when we want to conduct a deep exploration and potentially find a target
item more quickly, while BFS is suitable for situations where we want to visit
all nodes at a certain distance from the starting point or find the shortest
path between nodes.

The final algorithm we’ll explore is called A* search (pronounced “A-star
search”). It excels in finding the shortest path in a graph or a maze by com-
bining heuristic decision-making with real-time exploration to guide the
search. The term heuristic refers to general decision-making strategies that
rely on intuition, educated guesses, or common sense to arrive at a plau-
sible solution or direction to explore. While heuristics can’t guarantee an
optimal or perfect outcome, they often provide an advantage in situations
where constraints such as limited information, time, or resources exist.

The A* algorithm’s heuristic is to consider both the cost of reaching a
specific node and an estimate of the remaining effort required to reach the
destination. In this way, A* is able to intelligently prioritize the most promis-
ing paths. This strategic approach, similar to having a GPS in a labyrinth,
helps save time and effort in the search process. Due to its versatility, A* is
frequently applied in fields such as pathfinding in video games, robotics,
navigation systems, and various optimization problems.

Project 30: Stack-Based Searching with Depth-First Search
In this project, we’ll explore the core steps of depth-first search and imple-
ment them in Kotlin. We’ll employ the stack data structure in the code,
although it’s worth noting the existence of other viable methods for imple-
menting the core DFS algorithm. Later on, I’ll share some hints on an alter-
native approach.

For a given graph (a network of nodes and edges), here are the steps to
perform a DFS by using a stack:

	 1.	Start by selecting a node as the starting node (it can be any node).

	 2.	Push the starting node onto the stack.

	 3.	While the stack is not empty, pop a node from the stack.

Sorting and Searching 281

	 4.	If the popped node is not yet visited, mark it as visited and push its
neighbors to the stack; or else pop the next node from the stack.

	 5.	Repeat steps 3 and 4 until the stack is empty.

Recall from Chapter 6 that a stack follows the LIFO principle, whereby
items are removed from the stack in the reverse order in which they were
added. The LIFO principle allows the DFS algorithm to backtrack from the
end of one branch before starting on a new, unvisited branch. This ensures
an exhaustive search of the entire graph, although it would also be benefi-
cial to include a stopping condition. When each node is visited, this condi-
tion would check if the desired goal of the search has been achieved, such
as finding a specific object or completing a particular task. Once the goal
is met, the search can be terminated early. For this project, we’ll use the
graph shown in Figure 7-3.

The time complexity of the DFS algorithm is O(V + E), where V is the
number of vertices and E is the number of edges in the graph. The space
complexity of DFS depends on the implementation (a stack versus a recur-
sive function); the worst-case space complexity is O(V).

The Code
Let’s now examine the code that implements the core steps of DFS. We’ll use
the code to traverse the entire example graph shown earlier in Figure 7-3.

import java.util.ArrayDeque

fun main() {
 1 val graph = mapOf(
 "0" to setOf("1", "2", "3"),
 "1" to setOf("0", "2"),
 "2" to setOf("0", "1", "4"),
 "3" to setOf("0"),
 "4" to setOf("2")
)
 println("\n*** Depth-First Search of a Graph ***\n")
 println("Graph to search:")
 for ((key,value) in graph)
 println("Node: $key, Neighbors: $value")

 2 val visited = dfsStack(graph, "0")
 println("\nVisited nodes:\n$visited")
}

fun dfsStack(graph: Map<String, Set<String>>, start: String):
 Set<String> {

 val visited = mutableSetOf<String>()
 val stack = ArrayDeque<String>()
 stack.push(start)

 3 while (stack.isNotEmpty()) {
 val node = stack.pop()

282 Chapter 7

 if (node !in visited) {
 // Do something as needed.
 visited.add(node)
 4 for (next in graph[node]!!) {
 stack.push(next)
 }
 }
 }
 return visited
}

First, we import the ArrayDeque class from java.util, which we’ll use to
implement the stack. Next, we declare the main() function, which serves
as the entry point of the program. It defines the graph as a map pairing
each node ("0" through "4") with a set of all its neighboring nodes 1. For
example, node "2" is paired with the set ["0", "1", "4"], since it’s connected
to those nodes. We print the graph to the console, then call the dfsStack()
function to perform the search, passing the graph and a starting node as
arguments 2. Upon completion of the search, the list of visited nodes is
returned, which is printed as the program’s final output.

Inside the dfsStack() function, we create a mutable set called visited to
keep track of the visited nodes and an ArrayDeque named stack to store the
nodes during traversal. We push the starting node to the stack, then enter a
while loop that iterates for as long as the stack is not empty 3. In each itera-
tion, the last node from the stack is removed by using pop() and assigned
to the variable node. If the node hasn’t been visited before, we could per-
form additional operations or processing specific to the application at this
point—for example, checking if the node matches our search criteria and
breaking from the loop if it does. The node is then added to the visited set
by using the add() function.

Next, we add all neighboring nodes, retrieved from graph by using node
as the key, to the stack via the push() function 4. We use the nonnull asser-
tion operator (!!) while adding graph[node] to the stack to avoid additional
null safety checks that aren’t required for undirected graphs (every node
will have at least one link or edge). The while loop terminates once the stack
is empty, at which point the set of visited nodes is returned to main().

Note that we could have used the ArrayDeque class from kotlin​.collections
(as we did in Chapter 6) instead of ArrayDeque from java.util to implement
the stack. In that case, we would replace push() with addLast() and pop() with
the removeLast() function. I’ve chosen to use the Java version in part to illus-
trate an alternative stack implementation and in part because the ArrayDeque
method names like push() and pop() fit naturally with the stack architecture.
Both techniques follow the LIFO principle, meaning that the last element
added to the stack is the first one removed.

The Result
If you run the code with the given graph, you should get the following
output:

Sorting and Searching 283

*** Depth-First Search of a Graph ***

Graph to search:
Node: 0, Neighbors: [1, 2, 3]
Node: 1, Neighbors: [0, 2]
Node: 2, Neighbors: [0, 1, 4]
Node: 3, Neighbors: [0]
Node: 4, Neighbors: [2]

Visited nodes:
[0, 3, 2, 4, 1]

The list of visited nodes [0, 3, 2, 4, 1] indicates the algorithm has tra-
versed the entire graph. To see where this order comes from, and to better
understand how the stack facilitates the DFS process, consider Table 7-2,
which shows the intermediate values at each step of the algorithm.

Table 7-2: Anatomy of the Depth-First Search Using Stack

Stage Node
Node not
visited? Visited nodes

Neighbor
nodes Nodes on stack

Initialization,
with start of 0

N/A N/A [] (empty) N/A [0] (start pushed to stack)

Inside the while
loop

0

3

0

2

4

2

1

2

0

0

1

true

true

false

true

true

false

true

false

false

false

false

[0]

[0, 3]

no change

[0, 3, 2]

[0, 3, 2, 4]

no change

[0, 3, 2, 4, 1]

no change

no change

no change

no change

[1, 2, 3]

[0]

N/A

[0, 1, 4]

[2]

N/A

[0, 2]

N/A

N/A

N/A

N/A

[1, 2, 3]

[1, 2, 0]

[1, 2]

[1, 0, 1, 4]

[1, 0, 1, 2]

[1, 0, 1]

[1, 0, 0, 2]

[1, 0, 0]

[1, 0]

[1]

[] (empty; while loop terminates)

Let’s take a look at a few rows from Table 7-2 to understand how DFS
works. In the first row, we see what happens during the initialization phase,
before entering the while loop. We set the starting node to "0" and push
it onto the stack. At this stage, node "0" hasn’t been marked as visited yet.
Next, we move inside the while loop, where the rest of the processing hap-
pens. First, we pop the last node from the stack, which is "0" (this makes
the stack momentarily empty). Since this node isn’t yet marked as visited,
we add it to the list of visited nodes, which goes from [] to [0]. We then add
all this node’s neighbors (accessed with graph["0"]) to the stack, which goes
from [] to [1, 2, 3].

284 Chapter 7

The next time through the loop, "3" is popped from the stack, since it’s
the last element. It hasn’t been visited yet, so it’s added to visited, and its
only neighbor "0" is pushed to the stack. The process continues until the
stack is found to be empty at the start of a while loop iteration. I strongly
encourage you to go over the remaining rows of the table to get a hands-on
feel for how the DFS algorithm works in practice.

E X ERCISE

In Project 30, we used a stack to search a graph. This process can be simplified
by using recursion, which repeats a few key steps until a stopping condition
is met. A recursive function can make the DFS process shorter and clearer. To
implement DFS by using recursion, do the following:

1.	 Write a recursive function for DFS called dfsRecursion() that replaces the
dfsStack() function. The function would have the three parameters: graph,
start, and visited (as a mutable list). The recursive part of the function
could look like this:

for (next in (graph[start]!! – visited)) {
 dfsRecursion(graph, next, visited)
}

The recursion will stop when no more unvisited nodes that are connected
to the current node remain. Notice that graph[start]!! - visited is a set
operation, not a regular subtraction operation.

2.	 In Project 30, we defined the graph as a Map object. We could also define
it by using instances of Kotlin’s Pair data class, one pair for each node
and its neighbors. Make this change.

3.	 Use integers instead of strings to denote each node in the graph.

4.	 Run the code after each change and compare your results with the original
output from the stack version of the code.

Project 31: Queue-Based Searching with Breadth-First Search
In this project we’ll continue our exploration of search algorithms by imple-
menting breadth-first search. BFS guarantees that all nodes at the same
level are visited before moving on to the next level. This process continues
until all nodes in the graph have been visited. As in Project 30, we’ll use
the ArrayDeque class from java.util to implement the BFS algorithm. This
time, however, we’ll use the class as a queue, a data structure that adheres
to the first in, first out (FIFO) principle. Whereas items are always added
(“pushed”) or removed (“popped”) from the end of a stack, items are added

Sorting and Searching 285

(“enqueued”) at the end of a queue and removed (“dequeued”) from the
beginning of the queue. This ensures that items are processed in the order
in which they were added to the queue.

To perform a BFS, we’ll follow these steps:

	 1.	Select a node as the starting node (it can be any node).

	 2.	Create a mutable list called visited and add the starting node to it.

	 3.	Create an empty queue and enqueue (add) the starting node.

	 4.	While the queue is not empty, perform the following steps:

	 a.	 Dequeue the front node from the queue.

	b.	 Process the dequeued node as needed (perhaps printing its value
or performing some operation).

	 c.	 Enqueue all the unvisited neighbors of the dequeued node and
mark them as visited.

We’ll use the graph shown in Figure 7-3 for this project as well.
The time complexity of the BFS algorithm is O(V + E), where V is the

number of vertices and E is the number of edges in the graph. The space
complexity of the BFS algorithm is typically O(V). Both DFS and BFS there-
fore have the same time complexity, but their space complexity can vary
depending on the implementation and the structure of the graph.

The Code
The code for BFS closely resembles that of DFS, but I’ll highlight a few
important distinctions as we discuss the program.

import java.util.ArrayDeque

fun main() {
 // Define the graph to be searched.
 val graph = mapOf(
 "0" to setOf("1", "2", "3"),
 "1" to setOf("0", "2"),
 "2" to setOf("0", "1", "4"),
 "3" to setOf("0"),
 "4" to setOf("2")
)

 println("\n*** Breadth-First Search of a Graph ***\n")
 println("Graph to search:")
 for ((key,value) in graph)
 println("Node: $key, Neighbors: $value")

 1 val visited = bfsQueue(graph, "0")
 println("\nVisited nodes:\n$visited")
}

fun bfsQueue(graph: Map<String, Set<String>>, start: String): Set<String> {
 val visited = mutableSetOf<String>()

286 Chapter 7

 visited.add(start)
 val queue = ArrayDeque<String>()
 queue.offer(start)

 2 while (queue.isNotEmpty()) {
 val node = queue.poll()
 for (next in graph[node]!!) {
 3 if (next !in visited) {
 queue.offer(next)
 visited.add(next)
 }
 }
 }
 return visited
}

The main() function is essentially the same as that of the previous proj-
ect. We define the input graph by using a map data structure and print the
graph, displaying each node and its neighbors. We then call the bfsQueue()
search function, passing the graph and the starting node as arguments 1.
The function returns the visited nodes, which are printed as the final out-
put of the program.

Inside the bfsQueue() function, we initialize a mutable list called visited
to keep track of visited nodes as before, along with an ArrayDeque called queue
to store the nodes to be visited. We then add the starting node to both the
visited set and the queue, using the offer() method for the latter. Next, we
initiate a while loop that continues until the queue becomes empty 2. Within
the loop, we dequeue a node from the front of the queue by using the poll()
method, placing it in the node variable. We then iterate over each neighbor of
the current node, obtained from the graph. If a neighbor hasn’t been visited
(meaning it isn’t present in the visited set), it’s enqueued by using the offer()
method and added to the visited set 3. After processing all the neighbors,
the loop continues until the queue becomes empty. The visited set is then
returned, containing all the nodes visited during the search.

The Result
For the given graph, if you run the code without any changes, the code will
produce the following output:

*** Breadth-First Search of a Graph ***

Graph to search:
Node: 0, Neighbors: [1, 2, 3]
Node: 1, Neighbors: [0, 2]
Node: 2, Neighbors: [0, 1, 4]
Node: 3, Neighbors: [0]
Node: 4, Neighbors: [2]

Visited nodes:
[0, 1, 2, 3, 4]

Sorting and Searching 287

Again, the list of visited nodes [0, 1, 2, 3, 4] indicates the algorithm
has successfully traversed the entire graph. This time, the nodes are
marked as visited in numerical order, a function of the FIFO principle of
the queue. Table 7-3 shows the intermediate values of the key variables as
the process unfolds and how the BFS algorithm works.

Table 7-3: Anatomy of the Breadth-First Search Using a Queue

Stage Node
Neighbor
nodes next node

Node not
visited? Nodes on queue Visited nodes

Initialization,
with start of 0

N/A N/A N/A N/A [0] [0]

Inside the while
loop

0 [1, 2, 3] 1

2

3

true

true

true

[1]

[1, 2]

[1, 2, 3]

[0, 1]

[0, 1, 2]

[0, 1, 2, 3]

1 [0, 2] 0

2

false

false

[2, 3]

[2, 3]

no change

no change

2 [0, 1, 4] 0

1

4

false

false

true

[3]

[3]

[3, 4]

no change

no change

[0, 1, 2, 3, 4]

3 [0] 0 false [4] no change

4 [2] 2 false [] (empty; while
loop terminates)

no change

Let’s go over a few of the rows in Table 7-3 to gain a better understand-
ing of how the BFS algorithm is implemented. At the initialization stage, we
identify node "0" as the start node and add it to both the visited list and the
queue. Both of these lists now contain "0" (see the first row).

Next, we move inside the while loop, which runs as long as queue is not
empty. We start with the front node "0" and fetch its neighboring nodes,
"1", "2", and "3". For each, we check that it hasn’t been visited before; when
this is true, we add that node to both queue and visited. Since none of these
nodes were visited, they’re all added to queue and visited when we’re done
with node "0".

The process continues by pulling the next front node, "1". This time
both its neighbors, "0" and "2", show up in the visited list, so nothing is
added to queue or visited. Each time we remove a node from queue, the
queue shrinks in size. In the final step, node "4" is pulled out, making queue
empty, which breaks the while loop. The code returns the visited list as the
final output.

Comparing Tables 7-2 and 7-3 will help you gain a deeper understand-
ing of the unique features of the DFS and BFS algorithms.

288 Chapter 7

Project 32: Heuristic Searching with A*
In this project, we’ll explore the A* search algorithm, an informed search
algorithm that uses a heuristic function to guide the search. Its primary
objective is to find the optimal path between two nodes in a graph by con-
sidering the cost of each path. To that end, it’s best suited for working with
weighted graphs, where each edge has an associated score. Figure 7-4 shows
the graph we’ll use for the project.

A

D
C

B

F
E

I

G
K

J

M

L

H

3

5

4

3

5

3

6

6

45

4
2

3

6

4

54

6
3

6

Figure 7-4: An example graph for Project 32
(start node = A, target node = J)

The graph in the figure has 13 nodes (A through M) and 20 edges,
making it significantly more substantial than the example graph we used in
the previous projects. The values along the edges represent the cost of trav-
eling between the two nodes connected by that edge. We’re assuming that
the graph is undirected, so travel along an edge can go in either direction,
and that the cost for each edge is symmetric, meaning it’s the same no matter
the direction of travel. For this project, we’re interested in determining the
lowest-cost route from node A (the start) to node J (the target).

As the A* algorithm traverses a graph, it uses two distinct functions to
help make decisions. One calculates the g-score, the actual cost of traveling
from the start node to the current node. The other calculates the h-score,
the estimated or heuristic cost of traveling from the current node to the
target node. Added together, these two scores give the f-score, the estimated
total cost of the path:

	 f-score = g-score + h-score

One of the key strengths of the A* algorithm is its efficiency in finding
the shortest path based on this informed approach. But for this to work, we
need a good heuristic function.

Sorting and Searching 289

The Heuristic Function
In the context of the A* search algorithm, a heuristic function, denoted as
h(n), is a function that estimates the cost from the current node to the tar-
get node in a graph. The purpose of the heuristic function is to guide the
search algorithm by providing an informed estimate of how far a node is
from the target, which helps A* make more efficient decisions about which
nodes to explore next.

An admissible heuristic function for the A* algorithm is a function that
never overestimates the cost of reaching the goal from any node. With an
admissible set of h-scores, A* is guaranteed to find the shortest or least
costly path. However, not all sets of admissible h-scores are equally good.
The algorithm’s performance depends on how close the h-scores are to the
true costs. The more accurate the h-scores are, the faster the algorithm will
find the optimal path.

Another desirable property of the heuristic function is consistency.
A consistent function satisfies this condition: the cost of reaching the goal
from a node is always less than or equal to the cost of reaching the goal
from any neighbor of that node, plus the cost of moving to that neighbor.
Consistency implies admissibility but not vice versa. A consistent set of
h-scores can make the A* algorithm more efficient, as it will expand fewer
nodes and converge to the optimal solution very quickly.

Consistent h-scores may be hard or impossible to obtain for large and
complex real-world problems. However, we can still estimate admissible
h-scores that are of high quality by using various techniques, depending on
the problem type. Here are some common approaches for generating heu-
ristic functions:

Ad hoc selection of h-scores

This method will work when the graph is small and it’s possible to make
conservative guesses about the h-scores depending on the depth of
a node. For example, one can set all h-scores to some arbitrary small
value that’s guaranteed to be both admissible and consistent.

Domain knowledge

In some cases, domain-specific knowledge can be used to craft heuris-
tic functions. This requires an understanding of the problem and what
makes a good heuristic based on expert insights. For example, in the
case of solving an eight-piece sliding puzzle with a 3×3 grid, a practical
heuristic is the Manhattan distance, determined by adding the horizon-
tal and vertical distances between each tile’s current position and its
target location.

Relaxation heuristics

This method involves simplifying a problem by temporarily ignoring
certain constraints. Relaxation frequently results in an admissible
heuristic because it tends to underestimate the actual cost. Take, for
example, pathfinding problems, where one can use the Euclidean

290 Chapter 7

distance between two points as a heuristic, ignoring any obstacles that
may lengthen the path.

Abstraction

This method involves simplifying the problem representation by group-
ing or abstracting specific elements within it. Abstraction can lead to
admissible and consistent heuristics. Consider, for example, a naviga-
tion problem, where you could choose to abstract the map by represent-
ing cities as nodes and major highways as edges, while ignoring smaller
streets.

Pattern databases

In problems with large state spaces, where the graph includes numer-
ous nodes and links (such as puzzle games), pattern databases can be
employed to precompute heuristic values for subsets of the state space.
These databases store the cost-to-goal for small subsets of the problem,
and the heuristic for a given state is estimated as the sum of the costs
associated with the relevant subsets.

In the context of the graph shown in Figure 7-4, we’ll employ a combi-
nation of abstraction and ad hoc heuristic approaches to estimate a set of
h-scores that are both admissible and consistent. Since we lack additional
information about the nodes, such as their coordinates, we’ll begin with a
simplifying assumption (abstraction): all edges or links within the graph
have the same weight or cost. Furthermore, we’ll assume this weight equals
the smallest weight found within the graph (ad hoc). Our approach can be
summarized as a three-step process:

	 1.	Edge weight assumption: Assume that all edges within the graph have
an identical weight, and set this value to the smallest weight found
within the graph.

	 2.	Minimum links count: For each node, determine the minimum number
of edges or links needed to traverse from that node to the target node.

	 3.	H-score estimation: The h-score for each node is estimated by multiply-
ing the smallest weight determined in step 1 with the minimum num-
ber of links needed to reach the target node, as found in step 2.

Given the relatively modest size of the graph, using this process to
calculate h-scores is straightforward and quick. A brief examination of
the weights reveals that the smallest one within the graph is 2 (for the link
connecting nodes B and C). Now let’s consider nodes I and K, immediate
neighbors of the target node J. Their h-scores will be 2 × 1 = 2, since both I
and K are only one link away from the target. Similarly, h-scores for nodes
E, F, G, H, and L, which are two links away from the target, can be esti-
mated as 2 × 2 = 4. Following this logical progression, the h-score for the
starting node A, located farthest from the target, is estimated to be 2 × 4
= 8 because at least four links must be traversed to reach the target. Once
these heuristic values are computed, you can easily incorporate them into

Sorting and Searching 291

the application’s getHScore() function, a lookup function that retrieves the
h-score for a given node. (We’ll discuss this function later, along with the
rest of the code.)

Given our approach of utilizing the minimum number of links neces-
sary to traverse from a given node to the target, along with our use of the
smallest weight present in the graph for h-score calculation, the resulting
h-scores meet the criterion of admissibility. They never overestimate the
cost of reaching the target. I invite you to verify that these h-scores also
meet the criterion of consistency as defined earlier in the section. You can
do this either manually or by writing a few lines of code.

The Algorithm
Given our heuristic function, here are the steps we’ll take to find the
optimal path between two nodes by using the A* algorithm. This method
assumes that at least one valid route exists between the starting node and
the target:

	 1.	Initialize two mutable maps to keep track of the visited and the unvis-
ited nodes, respectively. The visited map starts empty; the unvisited
map starts with all nodes in the graph.

	 2.	Initialize each unvisited node’s g-score and f-score to infinity (or the
maximum possible value of the corresponding type) and its previous
node property to “none.”

	 3.	Set the starting node’s g-score to 0 (as the journey starts here, no previ-
ous node exists to come from), calculate or look up its h-score, and set
its f-score equal to its h-score (since g-score = 0). Leave its previous node
property set to “none.”

	 4.	While the unvisited map is not empty:

a.	� Select the node with the lowest f-score from the unvisited nodes and
designate that as the current node. (The starting node will be the
first current node.)

b.	� If the current node is the target node, add the current node to the
visited map and terminate the loop (the target has been reached).

c.	� Otherwise (when the current node is not the target node), retrieve
the current node’s neighbors from the graph.

d.	� For each neighbor that has not already been visited, calculate a
new g-score by adding the weight of the edge between the current
node and the neighbor to the g-score of the current node. If this
new g-score is lower than the neighbor’s existing g-score, update the
neighbor’s attributes (g-score, f-score, previous node).

e.	� Add the current node to the visited map and remove it from the
unvisited map.

292 Chapter 7

	 5.	Once the loop ends, the visited map is returned, which contains infor-
mation about the nodes explored during the search, their directional
relationship (as captured in the “previous node” property), and the
associated costs (g-scores and f-scores).

	 6.	Use the information contained in the visited map to reconstruct the
entire optimal path.

These steps outline the essence of the A* algorithm. They involve main-
taining an open set of nodes to be explored and a closed set of nodes that
have been visited, and calculating the cost of each node based on the actual
cost from the starting node (g-score) and the estimated cost to the target
node (h-score). By iteratively selecting the node with the lowest total cost
(f-score), the algorithm efficiently finds the shortest path from the starting
node to the target node.

The time complexity of the A* search algorithm depends on the nature
of the problem and the quality of the heuristic function used. In the worst
case, the time complexity of A* is O(bd), where b is the branching factor (the
average number of edges per node) and d is the depth of the shallowest
target node (the minimum number of edges or steps needed to reach the
target from the starting node). The space complexity of the standard A*
algorithm depends on the data structure used for the open and closed lists
(for example, this could be implemented by using priority queues). In the
worst case, the space complexity can be very high, also up to O(bd), due to
the storage of nodes in the open and closed lists.

A well-chosen (admissible and consistent) heuristic can significantly
improve the performance of A*, however, by efficiently guiding the algo-
rithm to the target node, reducing the search space, and potentially mak-
ing the actual time and space complexities much lower in practice. In the
best-case scenario, when the heuristic function is perfect and the algorithm
efficiently explores the most promising paths first, for example, A* can have
a time complexity of O(d).

The Code
The code for A* search is more involved than the code for DFS and BFS.
For this reason, I’ll break it down into a number of segments, starting with
the global declarations and the main() function.

// no import block

data class Node(
 var gScore: Int,
 var fScore: Int,
 var previousNode: String
)

fun main() {
 // Define the graph to be searched.
 1 val graph = mapOf(

Sorting and Searching 293

 "A" to mapOf("B" to 4, "C" to 6, "D" to 5),
 "B" to mapOf("A" to 4, "C" to 2, "E" to 4, "F" to 4),
 "C" to mapOf("A" to 6, "B" to 2, "D" to 3, "F" to 3),
 "D" to mapOf("A" to 5, "C" to 3, "G" to 6, "H" to 4),
 "E" to mapOf("B" to 4, "I" to 6),
 "F" to mapOf("B" to 4, "C" to 3, "G" to 4, "I" to 5),
 "G" to mapOf("D" to 6, "F" to 4, "I" to 6, "K" to 3),
 "H" to mapOf("D" to 4, "K" to 3),
 "I" to mapOf("E" to 6, "F" to 5, "G" to 6, "J" to 6),
 "J" to mapOf("I" to 6, "K" to 5),
 "K" to mapOf("G" to 3, "H" to 3, "J" to 5, "L" to 3),
 "L" to mapOf("K" to 3, "M" to 5),
 "M" to mapOf("L" to 5)
)

 println("### A* algorithm ###")
 println("\nDisplay graph:")
 displayGraph(graph)

 val startNode = "A"
 val targetNode = "J" // Also, ensure its h-score is 0.
 2 val visitedList = aStar(graph, startNode, targetNode)

 println("\n--- Final Visited List ---")
 displayList(visitedList)
 displayShortestPath(visitedList, startNode, targetNode)
}

This application doesn’t require an import block, as the search algo-
rithm can be implemented without relying on any specialized library
functions. The sole global component is a data class that holds three key
attributes of a node: its g-score, its f-score, and the previous node along the
optimal path.

In the main() function, we first define the graph shown in Figure 7-4
as a Map 1. Each node is specified in terms of its name ("A", "B", "C", and so
on) along with an inner Map pairing each of the node’s neighbors with the
weight of the edge leading to that neighbor. You can think of graph as a map
of maps (similar to a list of lists) encapsulating all nodes in the network and
their interconnections. Once the graph is defined, it’s printed by calling the
displayGraph() function.

We next define the start and target nodes ("A" and "J" in this example)
and call the aStar() function by passing the start and target nodes and the
graph to be searched as arguments 2. A call to this function returns a list
of visited nodes (visitedList) as a Map of type <String, List<Any>>. This list
represents a subset of nodes that the algorithm explored while trying to
locate the optimal path. Crucially, A* search doesn’t need to visit all nodes
in the graph, as it relies on heuristic information to zoom in on the region
that includes the optimal solution. We use the displayList() function to
print this visited list and then call the displayShortestPath() function, which
reconstructs and displays the optimal path.

294 Chapter 7

The Display Functions

Let’s take a closer look at the various display helper functions called from
the main() function, starting with the displayGraph() function, which prints
the whole graph.

fun displayGraph(graph: Map<String, Map<String, Int>>) {
 for ((node, neighbors) in graph) {
 println("Node: $node")
 print("Neighbors: ")

 for ((nNode, cost) in neighbors) {
 print("$nNode:$cost ")
 }
 println()
 }
 println()
}

This function takes in graph as its sole argument, which as we’ve seen is
a Map of type <String, Map<String, Int>>. It uses two for loops to print the ele-
ments of graph. The outer loop cycles through the nodes, one at a time, print-
ing each one. The inner loop extracts and prints each of the current node’s
neighbors, along with the associated edge weights (labeled as Cost in the out-
put). You’ll see how the output looks later when we examine the results.

Now we’ll consider the displayList() function, which prints the charac-
teristics of each visited node after the A* search is complete.

fun displayList(mapList: Map<String, Node>) {
 println(" (g-score, f-score, previous)")

 for ((node, attributes) in mapList) {
 println("$node: $attributes")
 }
 println()
}

This simple function uses a for loop to extract and print the collection
of visited nodes and their attributes. Each element in this list, which is pre-
sented as a Map object, has two components: the name of the visited node
and a Node object with three data points linked to the node—its g-score
(Int), f-score (Int), and the previous node (String). The latter is the node
from which we would have departed to reach the current node, ensuring
the minimum f-score for the current node.

Finally, here’s the displayShortestPath() function, which takes in the list
of visited nodes, the start node, and the target node, and identifies the opti-
mal path:

fun displayShortestPath(visited: Map<String, Node>,
 startNode: String, targetNode: String) {

Sorting and Searching 295

 var currentNode = targetNode
 var path = targetNode
 println("path initialized from target: $path")

 while (currentNode != startNode) {
 1 val previousNode = visited[currentNode]!!.previousNode
 // previousNode is placed before "path" so no need to reorder.
 2 path = previousNode + path
 println("previousNode: $previousNode")
 println("path updated: $path")
 currentNode = previousNode
 }

 val cost = visited[targetNode]!!.gScore
 println("\nThe shortest path from $startNode to $targetNode is:")
 println("Path: $path")
 println("Cost: $cost")
}

The function reconstructs the path in reverse, working backward
from the target to the starting node. We start by initializing two variables
to targetNode: currentNode, representing the current position in the path, and
path, where the entire path is built up node by node. We then enter a while
loop that iterates until currentNode becomes startNode. In the loop, we access
currentNode from the list of visited nodes (supplied as a Map of type <String,
Node>) and use its previousNode property to look up its previous node 1. Next,
we concatenate previousNode with the current value of path 2 and update
currentNode to previousNode for the next iteration.

After the loop ends, we retrieve cost, the g-score of the target node,
from the list of visited nodes, using targetNode as the key. We then print the
reconstructed optimal path and its cost.

The aStar() Function and Its Helpers

Let’s now dive into the core of the A* algorithm implemented in aStar() and
its helper functions. This code very closely follows the steps outlined earlier
for implementing the A* algorithm.

fun aStar(graph: Map<String, Map<String, Int>>,
 startNode: String, targetNode: String):
 Map<String, Node> {

 // Define two mutable maps.
 val visited = mutableMapOf<String, Node>()
 val unvisited = mutableMapOf<String, Node>()

 // Initialize all unvisited nodes.
 for (node in graph.keys) {
 // The list is made of g-score, f-score, and previous node.
 1 unvisited[node] = Node(Int.MAX_VALUE, Int.MAX_VALUE, "none")
 }

296 Chapter 7

 // Update the start node attributes in the unvisited list.
 val hScore = getHScore(startNode)

 // for startNode: g-score = 0, f-score = 10, previous node = none
 2 unvisited[startNode] = Node(0, hScore, "none")

 println("--- Initialized state of unvisited list ---")
 displayList(unvisited)

 3 while (unvisited.isNotEmpty()) {
 // Set the node with minimum f-score to current node.
 4 val currentNode = getCurrentNode(unvisited)

 5 if (currentNode == targetNode) {
 // Add the targetNode to visited.
 visited[currentNode] = unvisited[currentNode]!!
 println("--- Target node:$currentNode reached ---")
 break
 }

 val neighbors = graph[currentNode]!!

 for (node in neighbors.keys) {
 6 if (node !in visited) {
 val newGScore =
 unvisited[currentNode]!!.gScore + neighbors[node]!!

 7 if (newGScore < unvisited[node]!!.gScore) {
 unvisited[node] = Node(
 newGScore,
 newGScore + getHScore(node),
 currentNode)
 }
 }
 }

 // Add currentNode to visited.
 visited[currentNode] = unvisited[currentNode]!!

 // Remove currentNode from unvisited.
 unvisited.remove(currentNode)
 }
 return visited
}

The algorithm begins by creating two mutable maps: visited and
unvisited. At first, unvisited contains all the nodes in the graph, each initial-
ized with the maximum possible g-score and f-score, and with a previous
node of "none" 1. The visited map, which is initially empty, keeps track of
the nodes that have been visited. Next, the startNode in the unvisited map
is updated to have a g-score of 0 and an f-score equivalent to its h-score 2,

Sorting and Searching 297

which is retrieved with the getHScore() helper function. As shown here, this
helper is implemented as a simple lookup function:

fun getHScore(node: String) = when (node) {
 "A" -> 8 // start node
 "B" -> 6
 "C" -> 6
 "D" -> 6
 "E" -> 4
 "F" -> 4
 "G" -> 4
 "H" -> 4
 "I" -> 2
 "J" -> 0 // target node
 "K" -> 2
 "L" -> 4
 "M" -> 6
 else -> 0
}

These scores were estimated by using the hybrid three-step process
explained earlier. Note that the h-score for the target node "J" is 0.

Returning to the aStar() function, we next display the list of unvisited
nodes and enter a while loop that continues until the unvisited map is empty
or the target node is reached 3. Within the loop, currentNode is set to the
unvisited node with the minimum f-score by using the getCurrentNode()
helper function 4. Here’s how that helper function is implemented by
using Kotlin’s built-in .minByOrNull method:

fun getCurrentNode(unvisited: Map<String, Node>) =
 unvisited.minByOrNull { it.value.fScore }!!.key

Back in aStar(), we check if currentNode is the same as targetNode 5. If it is,
we add the current node to the visited map and break the loop. Otherwise,
for each neighbor of the current node not already in the visited map 6,
we calculate a new g-score by adding the edge weight to the current node’s
g-score. If the new g-score is lower than the neighbor’s current g-score 7, the
neighbor’s attributes in the unvisited map are updated: its g-score is set to
newGScore, its f-score is set to its new g-score, plus its h-score (again retrieved
with the getHScore() function), and its previous node is set to currentNode.

After processing all neighbors, the currentNode is added to the visited
map and removed from the unvisited map. When the while loop terminates,
the visited map is returned with all the information needed to reconstitute
the optimal path.

298 Chapter 7

USING NOT-NUL L A SSER T ION

The implementation of the A* algorithm in this chapter uses the not-null asser-
tion operator (!!) multiple times. However, this is generally discouraged in favor
of the Elvis operator (?:), which allows for more graceful handling of null excep-
tions. For Project 32’s undirected graph problem, we can represent the graph
by using a map of maps data structure. This approach is straightforward, intui-
tive, and particularly well suited for educational purposes. In real-world code,
though, using the not-null assertion operator can be risky because it can lead to
a NullPointerException if the value is null.

Therefore, in production-ready code that is expected to be used by other
users, you should use safer options such as null-safe calls or the Elvis operator.
For example, you could replace

val neighbors = graph[currentNode]!!

with:

val neighbors = graph[currentNode] ?:
 error("No neighbors found for $currentNode")

Using this approach, you can replace all code segments using !! with code to
generate appropriate error messages.

The Result
We’re now ready to run the code and have a look at its console output.

*** A-star algorithm ***

Display graph:
Node: A
Neighbors: B:4 C:6 D:5
Node: B
Neighbors: A:4 C:2 E:4 F:4
Node: C
--snip--
Node: L
Neighbors: K:3 M:5
Node: M
Neighbors: L:5

--- Initialized state of unvisited list ---
 (g-score, f-score, previous)
A: Node(gScore=0, fScore=8, previousNode=none)
B: Node(gScore=2147483647, fScore=2147483647, previousNode=none)
C: Node(gScore=2147483647, fScore=2147483647, previousNode=none)
--snip--

Sorting and Searching 299

L: Node(gScore=2147483647, fScore=2147483647, previousNode=none)
M: Node(gScore=2147483647, fScore=2147483647, previousNode=none)

--- Target node:J reached ---

--- Final Visited List ---
 (g-score, f-score, previous)
A: Node(gScore=0, fScore=8, previousNode=none)
B: Node(gScore=4, fScore=10, previousNode=A)
D: Node(gScore=5, fScore=11, previousNode=A)
C: Node(gScore=6, fScore=12, previousNode=A)
E: Node(gScore=8, fScore=12, previousNode=B)
F: Node(gScore=8, fScore=12, previousNode=B)
H: Node(gScore=9, fScore=13, previousNode=D)
K: Node(gScore=12, fScore=14, previousNode=H)
G: Node(gScore=11, fScore=15, previousNode=D)
I: Node(gScore=13, fScore=15, previousNode=F)
J: Node(gScore=17, fScore=17, previousNode=K)

path initialized from target: J
previousNode: K
path updated: KJ
previousNode: H
path updated: HKJ
previousNode: D
path updated: DHKJ
previousNode: A
path updated: ADHKJ

The shortest path from A to J is:
Path: ADHKJ
Cost: 17

The output starts by printing the entire graph, node by node, along
with each node’s neighbors and edge weights. Next, the initial state of
the unvisited map is shown after updating the starting node’s attributes.
Apart from node "A", each node should have the maximum possible g- and
f-scores (2147483647) and a previous node of "none". Once the target node is
reached, a message is printed before exiting the while loop. Then the final
list of all visited nodes is printed. Looking over the list, we can see that not
every node as been visited—nodes "L" and "M", representing a dead end,
were skipped. Notice also that the target node’s g-score is the same as its
f-score because its h-score is 0. Also, as expected, all g-scores are less than
or equal to their corresponding f-scores. This is because the f-score is the
sum of the g-score and the h-score, and the latter is assumed to be greater
than or equal to 0.

Finally, the terminal output shows the step-by-step process of reconstruct-
ing the optimal path, followed by the full path and its total associated cost.

300 Chapter 7

E X ERCISES

Project 32 demonstrated a basic implementation of the A* algorithm, but you
can add or experiment with many more features. The following four challenges
outline different ways you could modify the program. For each challenge, you’ll
have to do additional online research to learn more about the key concept and
possible implementation schemes.

1.	 Implement and experiment with different custom heuristic functions
(h-scores) for a shortest-pathfinding problem, where each node represents
a geographic location and the weights are actual distances between the
connected nodes. Assume that the x- and y-coordinates for all nodes are
also available. Compare the different heuristic functions’ performance and
accuracy in finding optimal paths.

2.	 Modify the A* algorithm to allow dynamic weighting of the heuristic
function (h-score) relative to the cost so far (g-score). You can introduce
a parameter (for example, a weight, w) that can be adjusted to change
the relative importance of h- and g-scores. Typically, w > 1 increases the
importance of h-scores over g-scores (speed over optimality), whereas w < 1
implies assigning more importance to g-scores and exploring a broader
search space at the cost of speed of convergence. The default scheme
used in Project 32 is equivalent to w = 1, where the g-score and h-score
are considered equally important.

3.	 Implement A* by using different data structures for the unvisited and visited
sets of nodes, such as priority queues, Fibonacci heaps, or even custom
data structures. Measure the impact on the algorithm’s efficiency.

4.	 Explore memory-efficient variations of A*, such as memory-bounded A*
(MA*) or simplified versions like recursive best-first search (RBFS). Compare
their memory usage and computational efficiency.

Summary
In this chapter, we explored some representative concepts and algorithms
from two related domains: sorting and searching. These essential con-
cepts and tools have extensive use in the realms of computer and data sci-
ence, particularly in the context of information retrieval from databases,
search engine performance optimization, data visualization, data mining,
machine learning, and network routing.

Within the domain of sorting, we implemented the insertion sort,
merge sort, and quick sort algorithms and gained insight into their respec-
tive strengths, weaknesses, time and space complexities, and stability
characteristics. In the searching domain, our projects revolved around

Sorting and Searching 301

navigating graph data structures. We implemented the depth-first search
(DFS), breadth-first search (BFS), and A* algorithms.

Throughout these projects, we harnessed the power of various Kotlin
features, including both stack and queue data structures, as well as lists,
maps, and more intricate constructs like maps of maps. Last but not least, by
tackling the exercises, you’ll not only solidify your grasp of these core con-
cepts but also raise your sorting and searching skills to a professional level.

Resources
Bhargava, Aditya Y. Grokking Algorithms. 2nd ed. Shelter Island, NY:

Manning, 2024.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. 4th ed. Cambridge, MA: MIT Press, 2022.

Even, Shimon. Graph Algorithms. 2nd ed., edited by Guy Even. New York:
Cambridge University Press, 2012.

Heineman, George, Gary Pollice, and Stanley Selkow. Algorithms in a
Nutshell. 2nd ed. Sebastopol, CA: O’Reilly, 2016.

Kopec, David. Classic Computer Science Problems in Python. Shelter Island, NY:
Manning, 2019.

Skiena, Steven. The Algorithm Design Manual. 3rd ed. Cham, Switzerland:
Springer Nature, 2020.

Wengrow, Jay. A Common-Sense Guide to Data Structures and Algorithms.
2nd ed. Raleigh, NC: The Pragmatic Bookshelf, 2020.

PART IV
O P T I M I Z A T I O N W I T H

N A T U R E - I N S P I R E D A L G O R I T H M S

Many wonders of modern science were
inspired by nature. Airplane and glider

designs were based on the flight of birds.
Camouflage—a tactic for survival—derives

from mimicry, a form of antipredator adaptation. The
hooked barbs of a thistle led to the invention of Velcro.
Even rather dull-looking termite mounds teach us about
natural ventilation and cooling, an idea used in modern
architecture.

The world of computing is no different. The exciting field of machine
learning, especially deep learning, is inspired by how the human brain
processes information. By copying natural strategies that evolved over
millions of years, we’ve developed algorithms to solve problems that were
previously thought to be unsolvable with traditional mathematical tools.

In this chapter and the next, you’ll learn how these nature-inspired
algorithms work, about their advantages and limitations, and how to

8
T H E G E N E T I C A L G O R I T H M

306 Chapter 8

implement them in Kotlin. This chapter focuses on the genetic algorithm,
an evolutionary process–based method. The next chapter covers particle
swarm optimization and ant colony systems, two methods that mimic the
behavior of biological agents or species. For each method, I’ll start with the
key concepts and then show you how to code and apply them to real-world
problems.

Nature-Inspired Algorithms
Nature-inspired computing refers to observing how nature solves complex
biological or physical problems and then applying similar strategies to con-
temporary scientific, engineering, or management problems. The core of
nature-inspired computing is nature-inspired algorithms (NIAs), which rely on
strategies learned from nature.

Biology-based NIAs can be observed in natural processes, such as the
evolution of a species or the functioning of neurons in the human brain.
These processes led to the development of genetic algorithms and deep
neural networks. Individual and collective behaviors of members (or agents)
of a population can also form the basis for new NIAs. For example, the
foraging behavior of ants around their colony inspired the ant colony opti-
mization algorithm. Whereas ants tend to work independently without any
explicit collaboration with other members of the colony, the behavior of a
large school of fish or birds indicates swarm intelligence, which has led to
the development of the particle swarm optimization algorithm.

Even nonliving natural processes involve embedded strategies opti-
mized for meeting certain goals. Examples of such algorithms include grav-
itational search (based on Newton’s law of gravity) and simulated annealing
(based on thermodynamics). In general, these algorithms serve as powerful
tools for optimizing various processes or systems, resulting in significant
gains in efficiency and cost savings.

Before going into detail on genetic algorithms, I’ll introduce the
concepts of optimization and global solutions. Additionally, I’ll highlight
instances where NIAs prove more effective than traditional mathematical
tools for solving real-world problems.

The Optimization Problem
NIAs are well suited to solving optimization problems, in which we want to
find the best solution of all possible solutions. To solve such problems, we
minimize or maximize an objective function, a mathematical expression that
represents the goal of what we want to achieve through optimization. It is
expressed in terms of one or more decision variables, quantities we can adjust
to optimize the objective function.

For real-world problems, the decision variables will be bounded.
Additional constraints may limit and define the decision space within which
the optimal solution must be found.

Let’s consider a simple example with only one bounded decision variable:

The Genetic Algorithm 307

	 Minimize f(x) = x2 – 2	 (8.1)

	 –3 ≤ x ≤ 3

In Equation 8.1, f(x) is an objective function of a single variable x. Our
goal is to find the value of x for which f(x) will be minimum, provided x
stays within ±3.

Since x in this case has an exponent of 2, x2 will always be positive (irre-
spective of whether x is positive or negative) and will continue to increase as
x increases in absolute terms. Therefore, the right-hand side of Equation 8.1
will have the smallest value when x = 0. In other words, the optimal solution
(marked by an asterisk) for this problem is x* = 0, and the corresponding
optimum value of the function is f(x)* = –2.

Figure 8-1 shows a visual representation of this function, which takes
the shape of a parabola with its vertex at (0, –2). We can also visually con-
firm that f(x) has its minimum at point C (the vertex of the parabola).

Figure 8-1: The optimal value for a parabolic function

A property of this function allows us to identify the optimal solution
without knowing its exact location. The dashed lines touching the function
at points A, B, and C in Figure 8-1 show the slope, also called the gradient, of
the function at those locations. The slope of a function measures how much
the value of a function changes when the value of the decision variable
changes by a small amount. Notice that the gradient at point C, where the
function value is minimum, is 0 (the dashed line is horizontal). Thus, if we
randomly started our search for the optimal solution at point A, we could
have moved in the direction of decreasing gradient (for example, from A
to B or from B to C) until the gradient becomes 0. If we continue to move
beyond the vertex to the opposite side, the slope will change its direction

308 Chapter 8

and start increasing. This will cause the function value to increase, and
we’ll move away from the optimal solution.

For a function that is smooth (no kinks) and continuous (no jumps)
and has only one maximum or minimum within the decision space, the
gradient-based search strategy will always work in finding the global optimum—
the best possible solution for a given problem. In fact, for a well-behaved
function like this, we can find the optimal solution by simply setting the
slope of the function with respect to the decision variable (called the deriv-
ative in differential calculus) to 0 and solving the resulting equation for the
optimal solution. This approach will also work for functions with two or
more decision variables as long as the function is well behaved, meaning it is
both smooth and continuous.

Things get messier when we deal with a multimodal function with mul-
tiple locations where the gradient is 0, as shown in Figure 8-2.

Local minima

Global minima

E

D

C

A

B

y

x

Figure 8-2: Local and global minima for a univariate function

Figure 8-2 shows four local minima at points A, C, D, and E, and one
global minimum at point B within the decision space. In a situation like
this, whether an algorithm based on gradient descent will converge to the
global minimum depends on the point from which we start the search.
Nothing guarantees that we’ll find the global minimum unless we make
multiple attempts from different starting points (initial conditions).

 For a better appreciation of the challenge involved when we try to find
global optima for a multivariate function, consider the graph in Figure 8-3.
This shows the results of the two-variable Eggholder function, discussed
further in the final project of this chapter. For a problem like this, a simple
gradient-based algorithm can easily get stuck at one of the many local
minima. To make things worse, the equations defining such functions are

The Genetic Algorithm 309

typically not differentiable, and we cannot use calculus-based tools to esti-
mate the global optima.

Figure 8-3: The Eggholder function with numerous local minima

Functions of two decision variables have a silver lining, however: we can
create 3D plots of these functions for a bounded decision space. Based on
a visual inspection of the surface or contour plots, it may then be possible
to narrow down the search space to a number of smaller subzones where we
can conduct an extensive local search to uncover the global minima (more
than one global minimum could exist).

What about functions of higher dimensions? In fact, complex real-world
optimization problems can have hundreds of decision variables. It is not
humanly possible to conceive what a function of several hundred variables
might look like in a hyperspace (a higher-dimensional space beyond human
comprehension). Our best bet for identifying an optimal or near-optimal
solution in a hyperspace is to conduct a broad-based search combining
heuristics (special knowledge about the nature of the problem) and random-
ization (selecting initial conditions or intermediate values randomly). This
strategy is likely to allow the algorithm to escape local optima and find solu-
tions that are superior to what a pure random search might reveal. We typi-
cally repeat this process numerous times and accept the best-so-far solution
as a proxy for the unknown global optima.

Even when looking for an optimal combination of decision variables that
can have only discrete values (whole numbers), the brute-force approach
of trying out all possible combinations normally doesn’t work in higher
dimensions. This is because the number of combinations may be so large
that it is practically impossible to complete that search in a reasonable

310 Chapter 8

amount of time. It’s in this context that nature-inspired algorithms come
to our rescue.

When to Use NIAs
Compared to traditional mathematical tools, NIAs are less sensitive to the
nature or complexity of the optimization problem. An objective function
may be nonlinear, nonsmooth, multidimensional, and multimodal, but
these attributes are not a big concern for NIAs (though we still have to
choose the right tool from the basket of options). NIAs are especially suit-
able for solving very large optimization problems and finding near-optimal
solutions without expending too many resources (such as computational
time or energy use).

Traditional optimization methods, whether they employ a gradient
descent algorithm or not, are deterministic: if we start the search from a
given point, we’ll always reach the same solution or approximation after a
given number of steps. This feature makes deterministic algorithms more
prone to getting stuck at local optima because no built-in freedom exists to
explore a different path unless the initial condition is changed.

NIAs, on the other hand, are stochastic, meaning that their results can-
not be predicted beforehand. This is because NIAs typically have multiple
built-in steps that rely on random selection. For the same initial condition,
a stochastic algorithm can produce very different results. This innate ability
to randomly choose a different path allows NIAs to avoid getting stuck at
local optima and to eventually find the global or near-global optima.

In addition, some NIAs are based on the efforts of agents that operate
independently (for example, ants in the ant colony optimization algorithm).
This allows us to implement the algorithm so that it can benefit from paral-
lel processing to improve computational efficiency.

In sum, we can use NIAs to solve large, complex, multidimensional opti-
mization problems for which no known analytical solutions exist or for which
such solutions cannot be found due to the nature of the problem. However,
NIAs are not the ideal choice for solving the many optimization problems
that can be efficiently solved using deterministic methods (for example, using
linear or integer programming or various graph search algorithms).

An Overview of the Genetic Algorithm
The genetic algorithm is among the best-known NIAs. It is modeled after
the biological evolution of species driven by both the sexual reproduction
of parents, who contribute genetic materials, and natural selection (sur-
vival of the fittest). In addition to inheriting genes from its parents, the
offspring’s chromosomes (collections of genes) undergo random alterations
called mutation that introduce new features to its gene pool. The offspring
is then subjected to a selection process based on its fitness (a measure of
how well an individual contributes to reaching a certain goal) before it is
allowed to reproduce. The process eventually leads to a generation of indi-
viduals with a significantly enhanced gene pool.

The Genetic Algorithm 311

Figure 8-4 shows the main components of the genetic algorithm.

Evaluate
population

Termination
condition

met?

Selection

Crossover

Mutation

Yes

NoNew
generation

Initial
population

Best-so- far
solution

Figure 8-4: The key components of the genetic algorithm

All genetic algorithms start with a population of randomly created indi-
viduals. Each individual is essentially a potential solution represented by
its gene pool. These individuals are evaluated and screened based on their
fitness, which we attempt to maximize or minimize until a termination
condition is met. Otherwise, we choose a batch of individuals with better
fitness values who are then allowed to mate, produce offspring, and replace
their parents as the next generation. I’ll explain these steps further in the
upcoming sections.

Genetic Operators
Genetic operators include the three core components of genetic algorithms—​
selection, crossover, and mutation—that work in tandem and allow the algo-
rithm to converge toward a solution. Selection refers to the process of choosing
an individual from a population based on their fitness (their potential con-
tribution to finding the optimal solution). Selection may involve the entire
population or a subset of the population, as individuals are drawn at random
based on specific strategies. Crossover involves combining genetic materials
from parents to create offspring. In the genetic algorithm, it always involves
two parents and is therefore a binary operator. Mutation is a random altera-
tion of an individual’s genetic information. It is a unary operator because it is
applied to one individual at a time.

312 Chapter 8

Selection
The selection operation ensures that better genes are passed on from
one generation to the next. The implementation of this process may vary
depending on the problem, but the end goal is to select two parents (chro-
mosomes) to participate in the reproduction through crossover. The com-
monly used strategies for selection include tournament, roulette wheel, and
rank-based selection.

Tournament

The tournament selection process is based on running fitness-based compe-
titions among randomly selected individuals, as shown in Figure 8-5.

Crossover

Individual 1

Individual 2

Individual 3

Individual 4
Parent 2

Parent 1

Offspring

Best of two candidates One or more
offspring

Random picks

Tournament

Tournament

Figure 8-5: Using tournaments to select parents

To create a new child, the process starts by randomly selecting four indi-
viduals grouped into two pairs. From each pair, the individual with better
fitness is selected as a parent. The process selects two parents per round who
will reproduce via crossover (explained later) to give birth to an offspring.

Roulette Wheel

As the name implies, roulette wheel selection is comparable to spinning
a dial on a board divided into segments. The area of these segments is
proportional to the relative fitness of the members of the population from
which parents are to be chosen. Let me explain the process with a numeri-
cal example, as shown in Table 8-1.

Table 8-1: Roulette Wheel Data

Individual Fitness Relative fitness (RF) Cumulative RF

P1 12 0.286 0.286

P2 5 0.119 0.405

P3 8 0.190 0.595

P4 10 0.238 0.833

P5 4 0.095 0.929

The Genetic Algorithm 313

Individual Fitness Relative fitness (RF) Cumulative RF

P6 3 0.071 1.000

SUM = 42 1.000

Figure 8-6 shows the graphical representation of the example in Table 8-1.

P1, 0.286

P2, 0.119

P3, 0.190

P4, 0.238

P5, 0.095

P6, 0.071
Start

Random
spin = 0.68

Figure 8-6: Selecting parents using the roulette wheel method

In this example, we consider a population of six individuals, P1 through
P6. Their fitness values are given in the second column of Table 8-1. The
relative fitness (RF) values are calculated by dividing individual fitness
values by the sum of all individual fitness values (for example, RF for
P1 = 12/42). The last column represents the cumulative RF (CRF), which is
created by adding all RF values up to a certain row. For example, the CRF
corresponding to P2 = 0.286 + 0.119 = 0.405. The last CRF, which is the sum
of all individual RF values, will be 1.0. In the roulette wheel scheme, RF val-
ues are used as proxy probabilities for individuals to be selected at random
when an unbiased virtual dial is spun.

In Figure 8-6, these six individuals are represented by six different
segments whose areas are the same as their RF values (shown next to the
individual names). To implement the roulette wheel method, we draw a ran-
dom number between 0 and 1 from a uniform distribution, which has the
same effect as spinning the dial. (This is done programmatically by using
the random() method in the standard Kotlin math library.) Let’s say that
the value of this random number is 0.68, equivalent to having the dial stop
inside the fourth segment (between CRFs of 0.595 and 0.833). Based on
this draw, we would select P4 as parent 1 and repeat the process one more
time to choose parent 2.

314 Chapter 8

Rank-Based Selection

The third selection method, rank-based selection, is very similar to the
roulette wheel method. Here, we order the individuals in ascending or
descending order, depending on the problem, and assign each individual
a rank based on their fitness. If two or more individuals have the same fit-
ness, they are assigned an average value (based on their positions in the
ordered list) as their rank. Finally, the ranks are used to calculate RF values
and select the mating parents as we would using the roulette wheel scheme.

Crossover
The crossover operation is designed to intermix the genes of two parents to
create one or two offspring who become members of the next generation.
As with the selection operator, many ways of splitting the chromosomes and
recombining the genes are available. Figure 8-7 shows the schema for a sim-
ple but effective approach to this operation, called a single-point crossover.

001001

110110

Parent 1

Parent 2

000110

111001

Before crossover

After crossover

Location of random split

Child 1

Child 2

Figure 8-7: The single-point crossover operation

We start the process by identifying two parents through the selection
operation. These parents would normally have chromosomes consisting of
different genes. In the example in Figure 8-7, both parents have chromo-
somes made of binary genes denoted by 0 or 1. Parent 1’s genes are shown
as white cells, whereas parent 2’s genes are gray cells.

The first step of the crossover operation is to draw a random integer
from a uniform distribution between 1 and the number of genes minus 1,
which would be between 1 and 5 (inclusive) in our example. Let’s say the
integer drawn is 4. We’d then split chromosomes of both parents at this
location (between the fourth and fifth genes shown in Figure 8-7). Finally,
we’d swap the split parts by adding the last two genes from parent 2 to par-
ent 1 (the two gray cells of child 1) and adding the last two genes from
parent 1 to parent 2 (the two white cells of child 2).

In this example, we used two parents to create two children. However,
we could also decide to produce only one child per iteration to keep the
algorithm simple and easy to code. For real-coded genes—genes represented
by real numbers—a crossover operation will produce only one child

The Genetic Algorithm 315

because of the way the method is implemented. We’ll discuss real-coded
genes further in the final project of this chapter.

Many other types of crossover operations, such as multipoint crossover
and ordered crossover, exist. For real-coded genes used in mathematical
function optimization, crossover operations could be based on an arithme-
tic, geometric, or weighted mean of fitness values.

Mutation
Mutation involves randomly changing the values of genes or, for real-coded
genes, adding a small noise to those values before adding a child to the
next generation. Mutation is applied to every gene in the chromosome
one at a time. First, we randomly draw a real number between 0 and 1 and
compare that with a mutation threshold (probability), typically set to a very
small value. If the random value drawn is less than or equal to the mutation
threshold, we alter the genetic content for that gene. For a binary chromo-
some where the genes are either 1 or 0 (indicating inclusion or exclusion
of some entity in the solution), this alteration is conducted by flipping the
gene value from 0 to 1 or vice versa.

Figure 8-8 visually explains this process.

101001

Chromosome before mutation

101001

Genes selected for mutation

111011

Chromosome after mutation

Figure 8-8: Mutation in a binary
chromosome

In Figure 8-8, the second and fifth genes have been randomly selected
for mutation. Given that these are binary genes, their gene values have been
flipped from 0 to 1.

Elitism
Before we move on to tackling our first genetic algorithm project, I’ll intro-
duce one more important concept—elitism. This technique involves sorting
the current population based on their fitness, then adding a fraction of that
sorted population to the next generation before attempting crossover and
mutation. This operation is called elitism because it favors the fittest individu-
als. Elitism generally helps reduce the number of computations needed to
locate the optimal solution because it protects some of the best chromosomes
from getting altered or diluted by crossover and mutation operations.

316 Chapter 8

Project 33: Evolve Gibberish into Shakespeare
In our first coding project, we’ll create a population with random collec-
tions of genes as their chromosomes. We’ll then use a genetic algorithm to
refine those chromosomes until one of the individuals becomes as eloquent
as Shakespeare and repeats Hamlet’s famous line “To be, or not to be: that
is the question,” expressed in its gene sequence!

The Strategy
To solve this problem, we’ll create a population of size 100. No hard-and-
fast rule applies on this, and a bit of experimentation is required to esti-
mate a reasonable size for a given problem. Many factors are at play that
will determine the convergence rate of the algorithm, including popula-
tion size, the way the genetic operators are implemented, and the stopping
condition. One possible strategy is to start with a smaller population size
and then gradually increase it until further improvements in the solution
become negligible.

Next, we need to determine the size of the chromosomes. For this
specific problem, each individual’s chromosome will have 42 genes—the
length of the text we aim to reproduce using the algorithm. These genes
will be randomly selected from a pool of 87 genes, which in this case is a
collection of alphanumeric characters (including punctuation and paren-
theses). Since our goal is to exactly match the target text, this collection
includes both uppercase and lowercase letters.

In our genetic algorithm implementation, we’ll use elitism and
tournament-based selection as our operators. Additionally, we’ll employ
a single-point crossover scheme. For mutation, we will use a threshold of
1/42 to ensure that on average one gene will mutate for each new child
created via crossover.

The Code
The overall structure of the code closely resembles the general structure of
the genetic algorithm described in Figure 8-4. We’ll discuss each of its com-
ponents in the following sections.

Global Declarations

In this code segment, we create a data class, and declare and/or set required
global parameters and collections. We also create two mutable lists of data
objects to store population states for the current and next generations.

data class Solution(
 val chromosome: String,
 val fitness: Int
)

1 val TARGET = "To be, or not to be: that is the question."
2 val VALID_GENES: String =

The Genetic Algorithm 317

 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" + // letters
 "1234567890" + // numbers
 ", .-;:_!/?#%&()={[]}$*@\"\'" // symbols
val chromosomeLength = TARGET.length
val POP_SIZE = 100
val MAX_GEN = 1000
val ELITISM = 0.15
val eliteSize = (POP_SIZE * ELITISM).toInt()
3 val MUTATION_THRESHOLD = 1.0/chromosomeLength

val population: MutableList<Solution> = mutableListOf()
val nextgen: MutableList<Solution> = mutableListOf()

Let’s walk through this segment step by step. At the top of the block, we
create a Solution object (data class) that will be used to create the individu-
als who will make up the population and undergo genetic alterations.

Next, we define the target string or the desired end state for the fittest
individual in the population 1. The target string has 42 characters (includ-
ing spaces), which are stored in a string named TARGET. The target string is
built from a pool of genes—characters that we typically use while compos-
ing phrases in English. This gene pool is saved as VALID_GENES 2.

We set the population size (POP_SIZE) to 100 and the number of gen-
erations (MAX_GEN) to 1,000. We also employ elitism. Fifteen percent of the
population (the top 15 fittest individuals) will be automatically included in
the next generation. The remaining members of the next generation will
be produced through selection, crossover, and mutation. The threshold for
mutation has been set to 1.0/chromosomeLength 3 so that on average 1 gene
out of 42 will undergo mutation per offspring. (You may need to adjust this
rule of thumb for other optimization problems. For example, you may have
to explicitly set the mutation threshold from 1 to 3 percent when too few
genes exist in the chromosome.)

The last two lines create two mutable lists of type Solution, which store
the individuals belonging to the current generation (population) and to the
next generation (nextgen).

Initializing Population and Fitness Evaluation

The initial population is created by making a call to the initPopulation()
function, which in turn relies on the getFitness() helper function.

fun initPopulation() {
 // Initialize a population of POP_SIZE individuals.
 for (i in 0 until POP_SIZE) {
 var chromosome = ""
 for (j in 0 until chromosomeLength) {
 1 chromosome += VALID_GENES.random()
 }
 // Calculate fitness of the new chromosome.
 val fitness = getFitness(chromosome)
 // Add the new individual to the population.
 2 population += Solution(chromosome, fitness)
 }

318 Chapter 8

 // Sort population (in place) in descending order.
 population.sortByDescending {it.fitness}
 println("\nBest solution from initial population:")
 println(population[0].toString())
 println("\n... initPopulation done ...\n")
}

fun getFitness(chromosome: String): Int {
 var fitness = 0
 val pairs = TARGET.zip(chromosome)
 for (pair in pairs) {
 3 if (pair.first == pair.second)
 fitness += 1
 }
 return fitness
}

The initPopulation() function creates the number of individuals speci-
fied by POP_SIZE (100, in this case) whose chromosomes are created by ran-
domly picking individual genes (all 42 of them) from the supplied gene
pool, VALID_GENES 1. Once the chromosome is complete, its fitness is evalu-
ated by calling the getFitness() function. A new Solution is created using the
chromosome and fitness value and then added to the population 2.

Before exiting this function, we sort the population in descending
order and print the best solution from the initial population. This presort-
ing is needed to check for the termination condition and implement elitism
for the first generation inside the runGA() function. For subsequent genera-
tions, sorting is done at the end of each iteration inside runGA().

Within the getFitness() function, we create a list named pairs of type
Pair<Char, Char> and calculate the fitness value for the given chromosome
based on pair-wise comparisons. For each matching gene, fitness is incre-
mented by 1 3. If a chromosome matches the target string exactly, it will
have a maximum fitness value of 42.

The Driver Function

In the code block for the runGA() function, we implement the core com-
ponents of the genetic algorithm. This includes iterating over multiple
generations, checking for the termination condition, and creating the next
generation by using elitism, selection, crossover, and mutation—the entire
collection of genetic operators.

fun runGA() {

 // Iterate for a specified number of generations.
 1 for (generation in 1 .. MAX_GEN) {

 // Step 1: Check for termination condition.
 2 if (population[0].fitness >= chromosomeLength) {
 println("\n*** Target reached at generation = " +
 "${generation - 1} ***\n")

The Genetic Algorithm 319

 break
 }

 // Step 2: Implement elitism.
 3 selectElites()

 // Step 3: Implement crossover and mutation.
 4 for (i in eliteSize until POP_SIZE) {
 // Select parents for crossover.
 val parent1 = tournament()
 val parent2 = tournament()

 // Produce a child by using crossover and mutation.
 val child = crossover(parent1, parent2)

 // Add the child to nextgen.
 nextgen += child
 }

 // Step 4: Transfer nextgen to the current population.
 5 for (i in nextgen​.indices)
 population[i] = nextgen[i]​.copy()

 // Step 5: Clear nextgen for the next iteration.
 nextgen.clear()

 // Step 6: Sort population in descending order (in place).
 6 population.sortByDescending {it.fitness}

 // Step 7 (optional): Print the best solution per generation.
 val formatString = "%5d %44s %4d"
 7 println(formatString.format(generation,
 population[0].chromosome, population[0].fitness))
 }
}

The outermost for loop 1 runs the genetic processes for the specified
number of generations. Inside this loop, we first check for the termination
condition by comparing the best fitness value from the current population
with the maximum possible fitness 2. If the condition is met, the program
terminates after printing a message that it has reached the target. If the
condition is not met, we implement elitism by calling the selectElites()
function 3, discussed in detail in the next section.

We then move on to the first inner for loop 4, which creates the remain-
ing members of the next generation by selecting new parents by tournament,
creating a child by calling the crossover() function (which also applies
mutation to the newly created chromosome, as discussed in the next section),
and then adding the child to the mutable nextgen list.

We use a second inner for loop 5 to individually copy the next-generation
solutions (nextgen) to population before nextgen is cleared for the next iteration.
Notice that given the simple structure of the Solution data class, the copy()
method applied to the elements of nextgen creates a deep copy and prevents
cross-referencing between population and nextgen. In addition, transferring

320 Chapter 8

nextgen values to population at the end of each iteration eliminates the need to
store multiple generations of solutions, which saves a lot of memory.

In the final segment of the outermost for loop, we sort the newly
updated population in descending order 6 and print three key values per
generation: the iteration number, the chromosome with the best fitness,
and the corresponding fitness 7.

The Operator Functions

The runGA() function relies on several operator functions that perform the
key genetic operations.

fun selectElites() {
 // Assign top eliteSize individuals to nextgen.
 1 for (i in 0 until eliteSize)
 nextgen += population[i]​.copy()
}

fun tournament(): Solution {
 // random sampling with replacement
 // Use the entire population, including elites.
 val candidate1 = population​.random()​.copy()
 val candidate2 = population​.random()​.copy()
 // Return the winner of the tournament.
 2 return if (candidate1.fitness >= candidate2.fitness) candidate1
 else candidate2
}

fun crossover(parent1: Solution, parent2: Solution): Solution {
 // random single-point split crossover
 val split = (1 until chromosomeLength).random()

 // Use slice to extract segments from a string.
 3 val crossChromosome =
 parent1.chromosome.slice(0 until split) +
 parent2.chromosome.slice(split until chromosomeLength)

 // Apply mutation to crossChromosome.
 4 val newChromosome = mutation(crossChromosome)

 5 return Solution(newChromosome, getFitness(newChromosome))
}

fun mutation(crossChromosome: String): String {
 // A String object is immutable in Kotlin.
 // Create a char array whose elements can be modified.
 val chars = crossChromosome.toCharArray()
 for (i in 0 until chromosomeLength) {
 6 if ((0..1000).random()/1000.0 <= MUTATION_THRESHOLD)
 chars[i] = VALID_GENES.random()
 }
 7 return String(chars)
}

The Genetic Algorithm 321

The selectElites() function is a one-liner. It promotes the top 15 indi-
viduals (eliteSize = 15) from the current generation to the next generation
without subjecting them to further genetic processes 1.

The tournament() function randomly picks two individuals from the cur-
rent population and returns the winner of the competition based on their
fitness values 2.

The crossover() function takes in two parents as arguments, splits their
chromosomes at a random location, and combines the split parts from both
parents to create a new chromosome for the offspring 3. Next, this newly
created chromosome (crossChromosome) is passed to the mutation() function 4,
which returns the final chromosome saved as newChromosome. A single off-
spring is then returned once the fitness value for the newly created chromo-
some is calculated by making a call to getFitness() 5.

Finally, the mutation() function applies mutation to randomly selected
genes. It first converts the chromosome from a string object to a character
array because strings are immutable in Kotlin. The mutation operation, trig-
gered by the MUTATION_THRESHOLD parameter 6, is applied to each gene in the
chromosome. Once the mutation operation is done, the character array is
converted back to a string and returned as the new (mutated) chromosome 7.

The main() Function

The main() function simply prints a few key problem-specific parameters
and makes two function calls to finish the job.

fun main() {
 println("\n*** Text-matching using the genetic algorithm ***\n")
 println("Target string: $TARGET")
 println("Population size: $POP_SIZE, Generations: $MAX_GEN, " +
 "Chromosome length: $chromosomeLength")
 println("Mutation threshold: $MUTATION_THRESHOLD")

 // Initialize the population.
 initPopulation()
 // Run the genetic algorithm.
 runGA()
}

The first call to initPopulation() initializes the current population with
random chromosomes. The second call to runGA() conducts the necessary
genetic operations.

The Result
Each time you run this program, it will take a different number of itera-
tions to exactly match the target string. This is because we’re using a sto-
chastic method that depends on many internal levels of random selection.
This is a very helpful feature for solving large real-world problems that may
not have a deterministic or known solution.

322 Chapter 8

Here is some sample output from the program:

*** Text-matching using the genetic algorithm ***

Target string: To be, or not to be: that is the question.
Population size: 100, Generations: 1000, Chromosome length: 42
Mutation threshold: 0.023809523809523808

Best solution from initial population:
Solution(chromosome=u[n_ebJvtj=J[h5j{bNx:BhPch'qyM/)3RVz"K_]P:, fitness=3)

... initPopulation done ...

 1 u[n_ebJvtj=J[h5j{bNx:BhPch'qyM/)3RVz"K_]P: 3
 2 c_g-i1KpZQn[[qXq%hwp:,shb]7k?PEL_ol @izl. 4
 3 C@eSnKo7T_b6o@thqvgL Kh=FU[(&bCF{veDP"4/d 5
 4 C@eSnKo7T_b6o@thqvgL Kh=FU[(&bCF{veDP"4/d 5
 5 rnkFi6Z8U /NP An%d]m&vSZSS{&6F/e=qJ9*iio#k 6
 6 yT;_e}Jvtj=J[h5j{bNx:BhPch[(&bF qJS @iz/d 7
 7 yT;_e}Jvtj=J[h5j{bNx:BhPch[(&bF qJS @iz/d 7
 8 342y"BZo@_b6o@thqvgL Kh=FD[(&bCFqJSq@izl. 8
 9 342y"BZo@_b6o@thqvgL Kh=FD[(&bCFqJSq@izl. 8
 10 p42y"BZo;bTcXxD?{bNL BhPcU[(&bCF{veDPiol. 9
 11 342y"aZo@_b6o@thqvgL Kh=FD[(?/e qJ9*iio#k 10
 12 =[eSnKo8U XNP thqvgL Kh=FD[(?/e qJ9*iio#k 11

--snip--

 370 To be, or not to be: that i(the question. 41
 371 To be, or not to be: that i(the question. 41
 372 To be, or not to be: that i(the question. 41
 373 To be, or not to be: that i(the question. 41
 374 To be, or not to be: that i(the question. 41
 375 To be, or not to be: that i(the question. 41
 376 To be, or not to be: that i(the question. 41
 377 To be, or not to be: that i(the question. 41
 378 To be, or not to be: that i(the question. 41
 379 To be, or not to be: that is the question. 42

*** Target reached at generation = 379 ***

In this instance, starting with chromosomes that had no resemblance
to the target string, it took 379 generations for the algorithm to re-create
the target string exactly. We haven’t made any attempt to fine-tune the
global parameter values to increase the speed of convergence, yet the code
converges to the optimal solution almost instantly (the processing time will
depend on the configuration of your device). Pretty impressive!

The Genetic Algorithm 323

E X ERCISE

Modify the crossover() function to create and return two children rather than
one child. You’ll now need half as many calls to the crossover() function to
create the next generation. This will, among other things, require you to modify
the inner for loop of the runGA() function. While this will reduce the number of
computations, its impact on the efficiency of the algorithm is not certain. You
can run both versions of the program by using the same set of global param-
eters to test whether one version consistently outperforms the other. To be sure,
solve several test problems instead of just one.

Project 34: Solve the Knapsack Problem
You’re likely familiar with Noah’s ark, the vessel Noah and his followers
built to save themselves from a great deluge. The challenge that Noah faced
was massive: he had to build a vessel of unprecedented size and choose who
or what to take on board. To a mathematician, this latter decision is a clas-
sic example of an optimization problem where one tries to maximize the
value of the objects that can be accommodated within a limited space.

Let’s build a miniature version of this challenge and solve it using the
genetic algorithm. We’ll name this project Jonah’s ark. Jonah lives in a
flood plain that faces the risk of flash floods. Jonah knows he must be ready
to leave the area at short notice. His quickest route to safety involves using
a small-engine boat to get away from the rising river through a tributary
beyond the reach of flood waters. Of course, the boat is small and can carry
only so many items without sinking. Jonah must decide which of the valu-
able objects in his possession he should take with him without exceeding
the capacity of the boat.

Jonah was able to come up with a short list of the 12 objects most valu-
able to him—which is still too many to take on board. Now he needs to
figure out which combination of those objects he should choose so that
their total worth (sum of assigned values) to him will be maximized without
exceeding the capacity of his boat.

The Strategy
The Jonah’s ark problem is a variation of what is known in mathematics as
the knapsack problem:

Let n be the number of objects one has to choose from. Let V = [v1, v2, . . . ,
vn] be the list of values (worth) of those objects and W = [w1, w2, . . . , wn] be
the list of weights of those objects. Also, let Wmax be the maximum weight
that the knapsack can carry. The goal is to find a subset of m objects so

324 Chapter 8

that the sum of values for that subset is maximized while ensuring that the
sum of corresponding weights remains ≤ Wmax.

We’ll leverage the genetic algorithm to address this problem. It’s evi-
dent that we’ll have to make changes to the problem definition part of the
code. First, given that Jonah now has a choice among 12 distinct objects,
we’ll set the number of chromosomes to 12. Each gene in the chromosome
will assume a binary value, where 1 signifies the inclusion of an object in
the solution and 0 denotes its exclusion. We’ll also calculate the fitness of a
solution differently based on which objects are included and their respec-
tive values and weights. I’ll explain this further when we discuss the related
code segment.

One important consideration is the composition of the initial popula-
tion. We need to ensure that the initial population has some diversity. If all
genes are randomly assigned, we might get a population with zero fitness.
This would make crossover useless, and we would be relying solely on muta-
tion, which is a very slow process. Therefore, while initiating the popula-
tion, we’ll force each member to have a nonzero fitness.

Before we start coding, we need to address a few technical considerations.
First, we’ll adopt a 0-1 approach to solve this problem, meaning we’ll either
include an object or completely exclude it in the solution. We’re not allowed
to take a fraction of an object (and a fraction of its value). Second, we assume
that we have only one copy of each object, so we cannot repeat any object in
our solution. Third, we assume that we have only one knapsack to fill.

The Code
We developed a fully functional genetic algorithm program in Project 33.
For the most part, we’ll reuse that code and make a few adjustments needed
to describe and solve the knapsack problem (or the Jonah’s ark problem).

Problem Definition and Global Parameters

This code segment is composed of an import statement, data class declara-
tions, the creation of a list of items to choose from, global parameters, and
the creation of mutable lists to track population states for both the current
and the next generations, as well as the best solutions from each generation.

import kotlin.math.roundToInt

// Define required data classes.
data class Solution(val chromosome: IntArray, val fitness: Int)
data class Item(val value: Int, val weight: Int)

// Define the basket of items.
1 private val items: List<Item> = listOf(
 Item(75, 15),
 Item(55, 32),
 Item(50, 30),
 Item(68, 43),
 Item(62, 54),

The Genetic Algorithm 325

 Item(45, 38),
 Item(68, 62),
 Item(84, 85),
 Item(87, 87),
 Item(95, 83),
 Item(35, 21),
 Item(63, 53)
)
val chromosomeLength = items.size
2 val maxWeight = 175

// global parameters and declarations
val POP_SIZE = 25
val MAX_GEN = 30
val ELITISM = 0.1
val eliteSize = (POP_SIZE * ELITISM).toInt()

// Limit the mutation threshold value to three decimal places.
3 val MUTATION_THRESHOLD =
 ((1.0/chromosomeLength)*1000.0).roundToInt() / 1000.0

val population: MutableList<Solution> = mutableListOf()
val nextgen: MutableList<Solution> = mutableListOf()
val bestSolutions: MutableList<Solution> = mutableListOf()

The code segment begins with a single import statement for the round​
ToInt() method that we’ll use shortly. We then define two simple data
classes, Solution and Item, which are used to create individual members of
the population and objects with their key attributes (value and weight).
Notice that we’re creating the chromosome as an integer array and not as a
string, as in Project 33.

N O T E 	 Depending on your IDE, you might encounter a “weak warning” while declaring the
first data class of this project (Solution). This is because we’re using a property with
an Array type (chromosome) in a data class (Solution). While this warning indicates
potential issues for certain use cases, it does not apply to the problems discussed
in this chapter and the next. If you find the warning bothersome, an alternative
approach would be to use regular classes instead of data classes. In that case, you can
manually add necessary custom methods that a data class generates automatically,
such as copy() and toString(). I encourage you to experiment with this approach as
a further learning opportunity.

Next, we create a List of type Item with the 12 objects 1. The capacity
limit for the boat (maxWeight) is set to 175 units 2 (we’ll assume this is in
addition to Jonah’s own weight).

Given the relatively small number of objects to choose from, we’ve
set the population size (POP_SIZE) to 25 and the number of generations
(MAX_GEN) to a modest 30. Elitism has been set to 0.1, or 10 percent. The
MUTATION_THRESHOLD value is set a bit differently (its value is rounded off to
three significant digits after the decimal point) 3, but it still complies with
the rule of thumb.

326 Chapter 8

Note that the mutation threshold can be rounded to a few decimal places
without affecting the results. This can speed up the calculations for more
complex problems that need larger populations and longer runs to converge.

The last three lines of code create three mutable lists to store members
of the current and next generations and the set of best solutions picked
from successive generations.

Initializing Population and Fitness Evaluation

This section differs in just a few ways to what we developed for Project 33.

fun initPopulation() {
 // Initialize a population of valid solutions (of nonzero fitness).
 // Each solution is represented by a chromosome.

 for (person in 0 until POP_SIZE) {
 1 val chromosome = IntArray(chromosomeLength)

 var not_done = true
 2 while (not_done) {
 for (gene in 0 until chromosomeLength) {
 chromosome[gene] = (0..1).random()
 }
 val fitness = getFitness(chromosome)
 3 if (fitness > 0) {
 population += Solution(chromosome, fitness)
 not_done = false
 }
 }
 }

 // Sort population (in place) in descending order.
 population.sortByDescending {it.fitness}

 println("\nBest solution from initial population:")
 print(population[0]​.chromosome​.contentToString())
 println(" " + (-population[0].fitness).toString())
 println("\n... initPopulation done ...\n")
}

fun getFitness(chromosome: IntArray): Int {
 // Get sum of values and weights.
 4 val sumValue = (chromosome.zip(items) {c, item -> c * item.value}).sum()
 5 val sumWeight = (chromosome.zip(items) {c, item -> c * item.weight}).sum()

 return if (sumWeight <= maxWeight) sumValue else 0
}

Within the initPopulation() function, we first create each chromosome
as an integer array 1. This is because we’re allowing only binary gene val-
ues (0 or 1) in individual chromosomes. Initially, all the genes will be set
to 0 while the chromosome is initialized. We then randomly change these

The Genetic Algorithm 327

values to 1 and 0 inside a while loop 2. Further, we add only solutions that
have nonzero or positive fitness values to the initial population 3. This
will help us get started with a better set of chromosomes and avoid a situa-
tion where all initial solutions have zero fitness values, which is difficult to
improve on!

The remaining part of the function is the same as before—we’re sort-
ing the initial population to get it ready for elitism inside the runGA() func-
tion and printing out the current best solution from the initial population.

The helper function getFitness() receives a chromosome as its param-
eter and evaluates its fitness. It calculates the fitness as the weighted sum
of values (sumValue), where weights are the genes from the chromosome 4.
It also calculates the weighted sum of weights as sumWeight 5. If the sum of
weights ≤ Wmax, the function returns the chromosome’s fitness; otherwise, 0
is returned.

As mentioned earlier, we must ensure that both sumWeight ≤ Wmax and
sumValue > 0. We enforce the former condition in this function. The latter is
enforced inside the while loop of the initPopulation() function. A chromo-
some is used only if its fitness, as returned by the getFitness() function, is
greater than zero 3.

The Driver Function

We likewise need to make only minor changes to this part of the code,
which was developed for Project 33. First, we’ll delete the termination con-
dition at the beginning. For knapsack problems, the optimal solution is
generally unknown beforehand. We have to run the code several times to
get a sense of what the best solution might be. Second, we’ll now save the
best solutions from all generations in a list and pick the best overall solution
from that list as the potential optimal solution.

Here is the revised code for the runGA() function:

fun runGA() {
 // Run the algorithm for a specified number of generations.
 for (generation in 1 .. MAX_GEN) {

 // Step 1: Implement elitism.
 selectElites()

 // Step 2: Implement crossover and mutation.
 for (i in eliteSize until POP_SIZE) {
 // Select parents for crossover.
 val parent1 = tournament()
 val parent2 = tournament()

 // Produce a child by using crossover and mutation.
 val child = crossover(parent1, parent2)
 // Add child to nextgen.
 nextgen += child
 }

328 Chapter 8

 // Step 3: Transfer nextgen to the current population.
 for (i in nextgen​.indices)
 population[i] = nextgen[i]​.copy()

 // Step 4: Clear nextgen for the next iteration.
 nextgen.clear()

 // Step 5: Sort the population in descending order (in place).
 population.sortByDescending {it.fitness}

 // Step 6: Add the fittest solution to bestSolutions.
 1 bestSolutions += population[0]

 // Step 7 (optional): Print the fittest solution.
 2 printSolution(generation, population[0])
 }
}

Apart from deleting the termination condition based on the fitness
value, both of the revisions to the code are at the end of the code segment.
First, the fittest solution from each generation is now added to the mutable
bestSolutions list 1. Second, we’ve added a new print function called
printSolution() 2 to tidy up the printing without adding clutter to runGA().
This function simply formats and prints the generation number along with
the chromosome and fitness of the fittest solution for each generation.

fun printSolution(generation: Int, solution: Solution) {
 val str1 = "%04d".format(generation).padEnd(10, ' ')
 val (c, f) = solution
 val str2 = c​.contentToString()
 val str3 = f.toString().padStart(6, ' ')
 println(str1 + str2 + str3)
}

This function prints a line composed of three substrings. The first sub-
string represents the generation or iteration number. We assign 10 charac-
ter spaces for this, of which 4 are allocated for displaying the number; the
remaining spaces will be added after the number as padding (white spaces).
The second substring simply contains the sequence of 12 genes converted
into a string. The third substring contains the fitness value. We assign six
spaces for the number, of which up to three will be used to display the fit-
ness value; the remaining spaces will be added as padding in front of the
characters displaying the fitness value.

The Operator Functions

We’ll skip discussing the selectElites() and tournament() functions as no
changes are required to use them in this example (you can copy them from
Project 33). However, we have a different chromosome structure for the

The Genetic Algorithm 329

knapsack problem and additional constraints to satisfy. This means we’ll
have to make changes to the crossover() and mutation() functions.

fun crossover(parent1: Solution, parent2: Solution): Solution {
 // random single-point split and crossover
 1 val split = (1 until chromosomeLength).random()

 // Use copyOfRange() to extract elements from an array.
 // .copyOfRange(a,b): a = start index, b = not inclusive
 val arr1 = parent1​.chromosome​.copyOfRange(0, split)
 val arr2 = parent2​.chromosome​.copyOfRange(split, chromosomeLength)

 2 val newChromosome = arr1 + arr2

 // Apply in-place mutation to the new chromosome.
 3 mutation(newChromosome)

 4 return Solution(newChromosome, getFitness(newChromosome))
}

fun mutation(newChromosome: IntArray) {
 // Carry out in-place mutation.
 for (i in 0 until chromosomeLength) {
 if ((0..1000).random()/1000.0 <= MUTATION_THRESHOLD) {
 // Simplest way to flip values between 0 and 1 is i = 1 - i.
 5 newChromosome[i] = (1 - newChromosome[i])
 }
 }
 // nothing to return
}

As before, the crossover() function starts with randomly locating a
point to split the chromosomes 1. We use the copyRangeOf() method to copy
different ranges of genes from parent 1 and parent 2 because the chromo-
somes are of type IntArray instead of String. The new chromosome is cre-
ated by combining the first part of parent 1 with the second part of parent 2
(creating one child per crossover) 2.

Next, we call the mutation() function to mutate this newly created chro-
mosome in place 3. Since arrays are passed by reference (memory loca-
tion) rather than by value, all the genetic alterations will be applied directly
to the selected elements of newChromosome, and we don’t need to return a
separate mutated chromosome to the calling function.

Once this step is complete, a new child (Solution) is created and
returned by using the newly created chromosome and its fitness 4.

Finally, the mutation() function scans every gene in the chromosome
and applies mutation to a gene by comparing a random number between
0 and 1 with the MUTATION_THRESHOLD. When the condition is met, it flips the
value of the gene from 0 to 1 or vice versa 5.

330 Chapter 8

The main() Function

The main() function for this project is similar to that of Project 33, with one
additional call to printBestSolution() to print the best overall solution. Here
is the code snippet including the print function:

fun main() {
 println("\n*** Solving the 0-1 knapsack problem " +
 "using the genetic algorithm ***\n")
 println("Population size: $POP_SIZE, Generations: $MAX_GEN")
 println("Number of items to pick from: $chromosomeLength")
 println("Mutation threshold: $MUTATION_THRESHOLD")

 // Initialize the population.
 initPopulation()
 // Run the genetic algorithm.
 runGA()
 // Print the best overall solution.
 printBestSolution()
}

fun printBestSolution() {
 1 bestSolutions.sortByDescending { it.fitness }
 println("\nBest solution found after $MAX_GEN generations:")

 2 val (chromosome, fitness) = bestSolutions[0]
 3 val sumWeight = (chromosome.zip(items)
 {c, item -> c * item.weight}).sum()
 println(bestSolutions[0].toString())
 println("Sum of weights: $sumWeight Sum of values: $fitness")
}

The main() function is very short. It starts with printing key global
parameters, then calls initPopulation() to create the initial population of
solutions and the driver function runGA() to run the genetic algorithm that
we’ve customized for the knapsack problem. Finally, it prints the best over-
all solution by calling the printBestSolution() function.

Next, the bestSolutions list is sorted in descending order so that the first
item represents the best overall solution 1. The properties of this item are
then deconstructed as chromosome and fitness 2. Finally, the sum of weights
of the objects in this optimal (or near-optimal) solution is calculated as a
weighted sum, the weights being the individual gene values (0, 1) 3. The last
line prints the sum of weights and fitness for the best overall solution.

The Result
The following sample output from a run of the code provides an indication
of what to expect when you run the code:

The Genetic Algorithm 331

*** Solving the 0-1 knapsack problem using the genetic algorithm ***

Population size: 25, Generations: 30
Number of items to pick from: 12
Mutation threshold: 0.083

Best solution from initial population:
Solution(chromosome=[1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1], fitness=285)

... initPopulation done

0001 [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1] 285
0002 [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1] 285
0003 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0004 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0005 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0006 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0007 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0008 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0009 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0010 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0011 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0012 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0013 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0014 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0015 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0016 [1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0] 296
0017 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0018 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0019 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0020 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0021 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0022 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0023 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0024 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0025 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0026 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0027 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0028 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0029 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311
0030 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1] 311

Best solution found after 30 generations:
Solution(chromosome=[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1], fitness=311)
Sum of weights: 173 Sum of values: 311

The optimal solution for Jonah is to choose objects 1, 2, 3, 4, and 12,
which will give Jonah a combined value of 311 units. The total weight of the
optimal choice is 173 units, just shy of the maximum allowable weight of
175 units.

332 Chapter 8

How do we know that no better solutions exist? In this case, you can
verify the solution by using a brute-force approach—generating all possible
combinations and checking corresponding sums of values and weights.
I encourage you to search online for relevant tools or code examples you
can use to confirm that 311 is indeed the best value Jonah can get under
the circumstances.

Again, remember that the genetic algorithm is a stochastic algorithm,
meaning no two runs will produce identical results. Moreover, nothing
guarantees that for a given set of parameter values, the algorithm will con-
sistently converge to the optimal solution every time you run the program.
You may have to run the program multiple times or adjust the program
parameters to eventually locate the optimal solution.

On the other hand, genetic algorithms can help solve real-world com-
binatorial problems with hundreds of decision variables, where checking
all possible combinations for the global optimal solution is impractical or
impossible. They take far less time and require significantly less computa-
tional effort to generate near-optimal solutions.

E X ERCISE

In the previous two projects, we’ve used the tournament selection method for
choosing parents for reproduction. We also discussed a couple of other selec-
tion methods: roulette wheel and rank-based selection.

For this exercise, develop a new function called rouletteWheel() based on
the roulette wheel selection algorithm, and incorporate that in the runGA() func-
tion to solve the Jonah’s ark problem. Use the same problem-specific param-
eters used in Project 34.

Based on the results, reflect on whether using roulette wheel selection
results in a quicker convergence to the global optimum. In this context, quicker
means finding the global optimum with fewer iterations.

Project 35: Optimize a Multivariate Function with the Genetic Algorithm
In this final project, we’ll learn how to apply the genetic algorithm to mul-
tivariate function optimization. The only requirement for the function is
that it be defined in terms of the independent variables within the decision
space. In contrast to gradient-based algorithms, this function does not have
to be smooth or differentiable.

We’ll use a sufficiently challenging two-dimensional function known as
the Eggholder function, defined by two independent variables: x1 and x2.

	 f(x) = ‒(x2 + 47) sin(√| + x2 + 47|) – x1 sin√|x1 – (x2 + 47)|
x1

2
� (8.2)

The Genetic Algorithm 333

We’ll find the minimum value of this function in the decision space
defined as follows:

	 xi ∈[–512, 512] for i = 1, 2

As shown earlier in Figure 8-3, the Eggholder function has a very com-
plex shape with numerous peaks and troughs. Because of this, determin-
istic gradient-based algorithms will have a hard time finding the global
minimum. Deterministic search attempts will usually get stuck at local
optima unless we use a hybrid approach that incorporates some random
search features. In contrast, given enough diversity (population size) and
time (number of generations), a genetic algorithm can locate the global
minimum fairly quickly for this problem.

The Strategy
To implement function optimization in a genetic algorithm, the deci-
sion variables are treated as individual genes, meaning the two-variable
Eggholder function will have two genes. This time, however, these genes
will be represented as real numbers, including fractions, instead of charac-
ters (as in Project 33) or binary values (as in Project 34).

We also need to address the fact that this is a minimization problem,
not a maximization problem as in the previous two projects. In those
cases, the goal was to find a solution with the greatest fitness, whereas now
we want to find the solution with the smallest fitness. Fortunately, we can
easily handle this case by multiplying the objective function by –1. This
adjustment allows us to continue using the existing code developed for
maximization problems. Notably, if we were to switch back to a maximiza-
tion problem, we could use the same code without needing to multiply the
objective function by –1.

Finally, we need a new way to implement mutation for function optimi-
zation. In previous projects, we introduced mutation by randomly replacing
a character or a binary value, but that approach does not make sense for a
real number. Digits in a real number cannot be arbitrarily replaced, as their
relative position within the number has additional significance. Therefore,
for real-valued genes, mutation is introduced as a small noise that is ran-
domly added to or subtracted from the genes (we still use a probability
threshold). The magnitude of the noise is calculated as a small fraction of
the range for a specific gene (decision variable). By doing so, we can prop-
erly scale the magnitude of the noise or mutation without having to worry
about the underlying units used for the corresponding decision variable in
the function.

The Code
The code for function optimization has the same general structure as
Projects 33 and 34. It is worth reiterating that for minimization of the objec-
tive function, we’ll have to multiply it by –1, whereas for maximization no
alteration to the objective function is needed.

334 Chapter 8

Problem Definition and Global Parameters

This code segment includes the import block, a data class, global param-
eters, and several collections of mutable lists:

// import block
import kotlin.math.sin
import kotlin.math.sqrt
import kotlin.math.abs
import kotlin.math.pow
import kotlin.math.min
import kotlin.math.max
import kotlin.random.Random

// Define required data classes.
data class Solution(
 1 val chromosome: DoubleArray,
 val fitness: Double)

// global parameters and declarations
2 val getFitness = :: eggHolder

3 val chromosomeLength = 2 // number of independent variables
val bounds = arrayOf(doubleArrayOf(-512.0, 512.0),
 doubleArrayOf(-512.0, 512.0))
val varRange = doubleArrayOf(bounds[0][1] - bounds[0][0],
 bounds[1][1] - bounds[1][0])
val POP_SIZE = 100
val MAX_GEN = 200
4 val MUTATION_THRESHOLD = 0.5 // On average, 1 of 2 genes will mutate.
val MUTATION_FACTOR = 0.02
val ELITISM = 0.1
val eliteSize = (POP_SIZE * ELITISM).toInt()

val population: MutableList<Solution> = mutableListOf()
val nextgen: MutableList<Solution> = mutableListOf()
val bestSolutions: MutableList<Solution> = mutableListOf()

The code segment begins by importing the necessary math functions to
calculate the function value or fitness. Remember to import only the meth-
ods you need, instead of importing all of them using an import kotlin.math.*
statement. We then declare the chromosome to be of type DoubleArray 1 to
deal with real-coded genes.

We also define getFitness as a variable and assign it a reference to
the Eggholder function 2. This approach allows us to define other func-
tions later. And to use those, we simply need to reassign getFitness to the
desired function.

Because the Eggholder function is a function of two independent vari-
ables (x1 and x2), we will need two real-coded genes per chromosome 3.

The next two lines set the bounds for the decision variables and calcu-
late the range for each. For real-coded genes, the magnitude of mutation is

The Genetic Algorithm 335

typically set to a small value relative to the range of the decision variables.
This approach has the benefit of being scale independent.

The remaining part of the code segment is similar to that of previous
projects. This time, the population is composed of 100 individuals (POP_SIZE),
and it will evolve for 200 generations (MAX_GEN). The MUTATION_THRESHOLD is now
set to 0.5 4, in line with the practice of setting the mutation probability
equal to the inverse of the number of genes.

Of course, we could’ve tried many other combinations of parameter
values. The values used in this code segment were chosen based on a num-
ber of trials to ensure that the global minima for the Eggholder function
can be found quickly.

Initializing Population and Fitness Evaluation

The general organization of this code snippet is very similar to that of the
two previous projects, with a few problem-specific adjustments:

fun initPopulation() {
 // Initialize a population of valid solutions (genes within bounds).
 // Each solution is represented by a chromosome.

 for (person in 0 until POP_SIZE) {
 1 val x = DoubleArray(chromosomeLength)
 for (i in 0 until chromosomeLength) {
 // The first argument is inclusive, but the second one is not.
 // It's possible to add a small bias term to the upper bounds.
 2 x[i] = Random.nextDouble(bounds[i][0], bounds[i][1])
 }
 population += Solution(x, getFitness(x))
 }

 // Sort the population (in place) in descending order.
 population.sortByDescending {it.fitness}

 println("\nBest solution from initial population:")
 3 println(population[0].toString())
 println("\n... initPopulation done ...\n")
}

fun eggHolder(x: DoubleArray): Double {
 val c1 = (x[1] + 47)
 val c2 = sin(sqrt(abs(0.5 * x[0] + c1)))
 val c3 = x[0] * sin(sqrt(abs(x[0] - c1)))

 // Multiply by -1 ONLY for minimization problems.
 4 return -1.0 * (-c1 * c2 - c3)
}

We generate the chromosome as a DoubleArray with two elements (x[0]
will be gene 1, and x[1] will be gene 2) 1. We then initialize the genes ran-
domly, ensuring they stay within their respective bounds (defined by the
decision space) 2. The rest of the code segment assigns the solutions to the

336 Chapter 8

mutable list population, sorts the population in descending order, and prints
the best solution from the initial population 3.

As mentioned earlier, this code doesn’t include a getFitness function;
instead, we had pointed getFitness to the eggHolder() function, which
returns the value of the objective function (fitness). For convenience, we’ve
broken down the objective function given by Equation 8.2 into three parts,
which are later combined to calculate the fitness value 4. Notice that we’re
multiplying the fitness by –1 before returning the value to getFitness. Doing
so enables us to use the code developed for maximization problems to solve
a minimization problem.

We’ll skip reviewing the runGA() function as it is identical to the one used
for Project 34. The same goes for the selectElites() and tournament() functions.
Therefore, we’ll move straight to the crossover() and mutation() functions.

Operator Functions for Crossover and Mutation

We’ll now move on to the two key operator functions performing crossover
and mutation to examine the differences introduced for the real-coded genes.

fun crossover(parent1: Solution, parent2: Solution): Solution {
 // Select a random weight within (0-1).
 // This could be generated separately for x- and y-components.
 1 val s = (0..1000).random()/1000.0

 // Generate randomly weighted genes.
 var x1 = parent1.chromosome[0]*s + parent2.chromosome[0]*(1-s)
 var x2 = parent1.chromosome[1]*s + parent2.chromosome[1]*(1-s)

 // Check that new genes stay within bounds (decision space).
 x1 = min(max(x1, bounds[0][0]), bounds[0][1])
 x2 = min(max(x2, bounds[1][0]), bounds[1][1])

 // Compose the new chromosome.
 2 val xNew = doubleArrayOf(x1, x2)
 // Mutate the new chromosome.
 3 mutation(xNew)

 4 return Solution(xNew, getFitness(xNew))
}

fun mutation(xNew: DoubleArray) {
 for (i in 0 until chromosomeLength) {
 if (((0..1000).random() / 1000.0) <= MUTATION_THRESHOLD) {
 // Get the random sign factor.
 5 val sign = if ((0..100).random()/100.0 <= 0.5) -1 else 1
 6 xNew[i] += sign * varRange[i] * MUTATION_FACTOR
 xNew[i] = min(max(xNew[i], bounds[i][0]), bounds[i][1])
 }
 }
 // nothing to return
}

The Genetic Algorithm 337

The purpose of the crossover function for real-valued genes remains
the same: to produce a new chromosome for the child by using genetic
materials from the parents. Several methods are available for creating the
new chromosome or genes. In this example, we’re using a random-weighted
scheme based on a randomly selected value s between 0 and 1 1. (If we
used a fixed weight, s=0.5, that would be equivalent to using the arithmetic
average of the gene values from two parents to create a new gene.)

We use the weighted average scheme to generate two new genes (x1 and
x2) and ensure that these values are within the bounds of the decision vari-
ables. We then compose the new chromosome xNew as a DoubleArray, with two
genes as its elements 2.

Next, we call the mutation() function to mutate this newly created
chromosome in place 3. Since arrays are passed by reference (memory
location), mutations can be directly applied to the elements (genes) of the
array, and we don’t need to return anything to the calling function. Once
mutation is applied, a new child (Solution) is created and returned using
the newly created chromosome and its fitness 4.

The mutation() function, similar to Project 34, scans each gene and
mutates it if a random number between 0 and 1 is less than MUTATION​
_THRESHOLD. It randomly picks the sign of the mutation (positive or nega-
tive) 5 and calculates the value as the sign times the decision variable’s
range times MUTATION_FACTOR 6. It also ensures that the mutated genes are
within the bounds of the corresponding decision variables.

Before we proceed to the main() function, we need to adjust the
printSolution() function from Project 34. It now takes a solution with a
chromosome of type DoubleArray instead of an IntArray. Use the following
updated function in your code:

fun printSolution(generation: Int, solution: Solution) {
 val str1 = "%04d".format(generation).padEnd(10, ' ')
 val (c, f) = solution
 val str2 = "%5.7f".format(c[0]).padEnd(14, ' ')
 val str3 = "%5.7f".format(c[1]).padEnd(14, ' ')

 // Multiply f (fitness) by -1 for minimization (for display only).
 val str4 = "%5.4f".format(-f)

 println(str1 + str2 + str3 + str4)
}

You can review this code and compare it with the program output as an
exercise, since you are familiar with these helper functions.

The main() Function

The code snippet for the main() function, including the printBestSolution()
function, is likewise similar to the main() functions in previous projects.

338 Chapter 8

fun main() {
 println("\n*** Real-valued function optimization using " +
 "the genetic algorithm ***\n")
 println("Number of dimensions: $chromosomeLength")
 println("Population size: $POP_SIZE, Generations: $MAX_GEN")
 println("Elitism: $ELITISM")
 println("Mutation threshold: $MUTATION_THRESHOLD")
 println("Mutation factor: $MUTATION_FACTOR")

 // Initialize the population.
 initPopulation()
 // Run the genetic algorithm.
 runGA()
 // Print the best overall solution.
 printBestSolution()
}

fun printBestSolution() {
 // Sort the bestSolutions to get the best-so-far solution.
 bestSolutions.sortByDescending {it.fitness}
 println("\nBest solution found after $MAX_GEN generations:")

 // Deconstruct for printing with formatting.
 val (chromosome, fitness) = bestSolutions[0]

 // Format and print the best-so-far properties.
 for (i in chromosome​.indices) {
 print("chromosome[$i]: ")
 println("%5.8f".format(chromosome[i]))
 }
 println("Fitness: " + "%5.5f".format(-fitness))
}

The main() function starts by printing key global parameters. It then calls
initPopulation() to initialize the population and launches the driver function
runGA() to carry out function minimization using a genetic algorithm.

In the printBestSolution() function, we format and print the two real-
valued genes on the same line by using a for loop. Finally, we print the
negative fitness value to get the correct sign for the minimum fitness.

The Result
We’re now ready to run the code and examine the results. If you use the
same global parameter values that I have used for this project, you are likely
to get the global optimal solution within five to seven attempts. Let’s look at
a sample output:

*** Real-valued function optimization using a genetic algorithm ***

Number of dimensions: 2
Population size: 100, Generations: 200
Elitism: 0.1

The Genetic Algorithm 339

Mutation threshold: 0.5
Mutation factor: 0.02

Best solution from initial population:
[439.9192360610284, 466.3475628354653] -809.6304961876202

... initPopulation done ...

0001 439.91923606 466.34756284 -809.63050
0002 439.91923606 466.34756284 -809.63050
0003 439.91923606 466.34756284 -809.63050
0004 421.26042117 431.81770471 -838.23597
0005 421.26042117 431.81770471 -838.23597

--snip--

0190 512.00000000 404.23184036 -959.64066
0191 512.00000000 404.23184036 -959.64066
0192 512.00000000 404.23184036 -959.64066
0193 512.00000000 404.23184036 -959.64066
0194 512.00000000 404.23184036 -959.64066
0195 512.00000000 404.23184036 -959.64066
0196 512.00000000 404.23184036 -959.64066
0197 512.00000000 404.23184036 -959.64066
0198 512.00000000 404.23184036 -959.64066
0199 512.00000000 404.23184036 -959.64066
0200 512.00000000 404.23184036 -959.64066

Best solution found after 200 generations:
chromosome[0]: 512.00000000
chromosome[1]: 404.23184036
Fitness: -959.64066

The first section of the results shows the global parameters used for
solving this problem—population size (100) and number of generations
(200). Elitism is set to 0.1, or 10 percent. We used a mutation threshold
of 0.5 because we have two genes, but we could have used a lower thresh-
old if this threshold caused the best solutions to oscillate rather than
converge. Due to the presence of many near-optimal solutions within the
decision space of this problem, a higher-than-usual mutation threshold
may have helped the algorithm to get out of local minima and explore
other regions.

The initial best fitness value was –809.63, which is not that close to
the global minimum of –959.64 located after 117 iterations (not shown in
the partial output above). Once this value was reached, the best solution
remained unchanged until the program ended after completing the maxi-
mum number of iterations.

We can see from the last part of the results that the optimal solu-
tion is located at x1 = 512.0 and x2 = 404.23. Figure 8-9 shows this point
as a white half-circle near the top-right corner of the contour plot of the
Eggholder function.

340 Chapter 8

Figure 8-9: The contour plot of the Eggholder function

In this case, the global solution is literally on the right-hand boundary of
the decision space in Figure 8-10. The grayscale bar indicates that the darker
regions are troughs and the lighter regions are peaks. Clearly, the fitness
values are close to the global minima in many cases (based on the darkness
of the shade). This is why it is so difficult to find the global minima for the
Eggholder function.

Figure 8-10 shows the convergence pattern for this problem. The fitness
value improves in a stepwise manner with the number of generations (itera-
tions) until it reaches the global minima.

–980

–960

–940

–920

–900

–880

–860

–840

–820

–800

–780

0 50 100 150 200

Be
st

fit
ne

ss
 v

al
ue

Number of generations

Figure 8-10: The convergence pattern for the Eggholder function using the
genetic algorithm

The Genetic Algorithm 341

We’ll revisit this problem using particle swarm optimization (another
NIA) and draw the corresponding convergence pattern in the next chapter.
You’ll see that while both methods are capable of identifying the global
optima, particle swarm optimization will do that much quicker!

Stopping Condition for Genetic Algorithms
When solving real-world optimization problems, we often lack knowledge
of the global optimal solution. Consequently, we cannot directly use it as a
stopping condition. To address this challenge, we can employ several strate-
gies. In this section, I’ll discuss commonly used approaches for defining
stopping conditions in genetic algorithms.

First, the stopping condition can be implemented as the maximum
number of generations, as we’ve done for all three projects on the genetic
algorithm. In general, you wouldn’t know how many iterations it might take
to solve a previously unsolved problem. This will depend on the nature of
the problem, the global parameter values, and the specific schemes used
for various operator functions. You’ll have to gradually adjust the number
of iterations (along with other parameters) to find a combination of values
that works for the problem at hand. Interestingly, we can use the genetic
algorithm to find optimal combinations of global parameters. In the field
of deep learning, the genetic algorithm has been used to optimize global
parameters and quickly train neural networks that produce high-quality
results.

Second, you could stop the algorithm from iterating if the best solu-
tion’s fitness does not show noticeable improvements for several generations
(for example, very little or no improvement over the past 30 or 50 genera-
tions). This will require additional coding to track improvements dynami-
cally, but this can be a strategy to let the algorithm stop automatically, even
when the maximum number of iterations has not been reached.

Third, for certain types of problems, you may be able to set a target
for the fitness and have the program terminate once that target is reached
(recall that we had a text-matching target for the first project). When the
target is difficult to reach, you could also terminate the program when a
predetermined percentage of that target is reached (instead of matching
the target exactly).

A lot more could be said about genetic algorithms, and researchers are
frequently developing new adaptive or hybrid strategies and finding new
applications. If you are interested in the state of the art, I suggest reviewing
recent journal articles on the application of the genetic algorithm in your
field of interest.

342 Chapter 8

E X ERCISE

One well-known crossover strategy used in genetic algorithms is called blend
crossover (BLX). Given two genes x1 and x2 from parent 1 and parent 2, respec-
tively, and assuming that x1 < x2, BLX randomly creates a gene in the range of
[x1 – α * (x2 – x1), x2 + α * (x2 – x1)]. The value of α lies between 0 and 1 (inclu-
sive). When α = 0, this strategy becomes the same as the random weighted
scheme used in Project 35. When α = 0.5, the random value will be chosen
from a range of 2 * (x2 – x1). This is the recommended value based on empiri-
cal results. Finally, α = 1 will result in choosing the random value from a range
of 3 * (x2 – x1).

For this exercise, develop a new function called crossoverBLX() based on
this scheme (use α = 0.5). Solve the Eggholder problem using this new cross-
over function for the set of parameters used in Project 35. Does the use of BLX
result in a quicker convergence to the global optimum compared with the ran-
dom weighted scheme?

In Project 35, we revised the code developed for function maximiza-
tion to handle a minimization problem. However, changing the code back
and forth can easily lead to errors. Therefore, in the next exercise you will
develop new code to directly handle function minimization problems.

E X ERCISE

Modify the previously developed code so that it can directly handle a mini-
mization problem. As a hint, you’ll have to change the selection method that
chooses the solution with the smallest fitness instead of choosing the one with
the greatest fitness. Additionally, whenever you sort the population, such as
to facilitate elitism or to identify the best solution from a generation, you must
sort in ascending order and pick the first solution which will have the smallest
fitness value.

If you want to use the roulette wheel scheme for a minimization problem,
you’ll need to add code to deal with negative fitness values that may arise.
This is because relative fitness values, which are calculated from actual fit-
ness values, are used as proxy probabilities in the roulette wheel scheme, and
probabilities cannot be negative. This issue can be handled by rescaling the
fitness values so that the smallest fitness value becomes zero (or a small positive
number). One alternative to using the roulette wheel or tournament selection is
to use a rank-based selection where the chromosome with the smallest fitness
value will be assigned the highest rank.

Happy coding!

The Genetic Algorithm 343

Summary
In this chapter, you explored the fascinating world of nature-inspired algo-
rithms, computational methods that mimic natural phenomena to solve com-
plex problems. One key feature of these algorithms is that they are stochastic
in nature: they exploit built-in randomness to tackle problems that are intrac-
table or too complex for conventional methods. You learned about the ben-
efits and challenges of using nature-inspired algorithms and focused on one
of the most popular and powerful examples: the genetic algorithm.

The genetic algorithm is inspired by the process of natural evolu-
tion and uses a population of candidate solutions that undergo selection,
crossover, and mutation to find the best solution for a given problem. You
learned several ways to implement these operations and adjust the param-
eters of the algorithm to achieve the best performance. You also applied
genetic algorithms to three different projects in order to:

•	 Generate a target string from a random population of characters

•	 Maximize the value of items in a knapsack with a limited capacity

•	 Find the global optimum solution for a real-valued and highly complex
multivariate objective function

In addition, you completed a set of exercises that cover additional tech-
niques for the crossover operation and dedicated methods for solving mini-
mization problems directly. By the end of this chapter, you gained a solid
understanding of the theory and practice of genetic algorithms, and how
they can be used to solve various types of optimization problems.

Resources
Brownlee, Jason. Clever Algorithms: Nature-Inspired Programming Recipes.

Electronic version, June 16, 2012. https://github​.com​/clever​-algorithms​/
CleverAlgorithms.

Buontempo, Frances. Genetic Algorithms and Machine Learning for
Programmers. Raleigh, NC: The Pragmatic Bookshelf, 2019.

Gen, Mitsuo, and Runwei Cheng. Genetic Algorithms and Engineering
Optimization. New York: John Wiley & Sons, 2000.

Goldberg, David. Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley Professional, 1989.

Haupt, Randy L., and Sue Ellen Haupt. Practical Genetic Algorithms. 2nd ed.
Hoboken, NJ: John Wiley & Sons, 2004.

Yang, Xin-She. Nature-Inspired Optimization Algorithms. 2nd ed. London:
Academic Press, 2021.

https://github.com/clever-algorithms/CleverAlgorithms
https://github.com/clever-algorithms/CleverAlgorithms

In this chapter, we’ll continue to explore
NIAs, focusing on two algorithms based on

the collective behavior of social animals: par-
ticle swarm optimization and ant colony systems.

These algorithms are designed for agent-based models,
in which a swarm of simple agents work together and
interact with their surroundings to create outcomes that
benefit the whole colony.

We’ll explain the key concepts and principles behind these algorithms
and implement them using pseudocode. We’ll also put these algorithms to
the test by developing two Kotlin applications to solve real-world problems.
The first is function minimization, which uses particle swarm optimization
to find the global minimum of a given function. The second is the traveling
salesman problem, which uses ant colony systems to find the shortest route
that connects a large number of cities.

9
A G E N T - B A S E D A L G O R I T H M S

346 Chapter 9

An Overview of Particle Swarm Optimization
The particle swarm optimization (PSO) algorithm has been used to solve
a wide range of optimization problems. PSO has a few similarities with the
genetic algorithm. Both methods involve working with a population (of
chromosomes or particles), members of which help us look for an optimal
solution until a stopping condition is met. Both methods are also stochastic
and rely on underlying processes with built-in elements of randomness.

That’s where the similarities end. Unlike the genetic algorithm, the
PSO algorithm does not depend on genetic operators such as selection,
crossover, and mutation. Instead, it is driven by autonomous agents that
update their positions in the decision space based on their current and past
positions, as well as the best position identified by the swarm. PSO involves
a deliberate effort to continuously move toward a better solution, which is
very different from the passive selection-driven upgrading of chromosomes
in the genetic algorithm. Individual chromosomes do not have any ability to
sense their neighborhood or make decisions to update their composition as
the particles do in PSO. Further, PSO is conceptually simpler and easier to
implement, involves fewer parameters, and tends to converge more quickly
on the global optima, compared with the genetic algorithm.

At its core, the PSO algorithm consists of three key steps:

	 1.	Initialize the position and velocity of the particles.

	 2.	Proceed through the time steps, and update particle velocities based on
the current velocity, the best-so-far individual position, and the global
best position identified by the swarm up to that time step.

	 3.	Update the current position by moving to a better position.

These steps are repeated for a set number of times or until a stopping con-
dition is met.

Let xi
0 and vi

0 be the position and velocity vectors at time t = 0, where
i ∈ I denotes the ith particle in a swarm of size N (I = [1, 2, . . . , N]). Also,
let xmax and xmin be the upper and lower bounds for the position vector and
r be a random value between 0 and 1 selected from a uniform distribution.

The first step of PSO is to initialize the position and velocity vectors as
shown in Equations 9.1 and 9.2.

	 = xmin + r (xmax – xmin)x 0i 	 (9.1)

	 = 0v 0i 	 (9.2)

In Equation 9.2, for the purposes of this chapter, we set the initial
velocities to zero. The alternative is to set them to small random values. In
most cases, the swarm will quickly move away from the randomly assigned
initial position, and the choice of initial velocity will not have a noticeable
impact on the convergence rate as long as the magnitude of the velocity
stays within the decision space.

Agent-Based Algorithms 347

The second step of PSO is to update the velocity vector vi
t + 1 for the par-

ticles by using the following equation:

	 = w v +1 t
i v + c1 r1 (t

i b –t
i x) + c2 r2 (t

i g – t
s x)ti 	 (9.3)

The variables and parameters in Equation 9.3 stand for the following:

w	 Inertia factor
c1	 Particle memory/cognitive factor
c2	 Swarm memory/social factor
r1, r2	 Random values between 0 and 1 chosen from a uniform distribution
b ti 	 Best position vector found by particle i up to time t
g ts 	 Best position vector found by the swarm up to time t
v ti , v t + 1

i 	 Velocity vectors of particle i at time t and t + 1, respectively
x ti 	 Position vector of particle i at time t

Figure 9-1 provides a visual and more intuitive interpretation of
Equation 9.3.

1 Influence of particle’s memory (best position)
2 Influence of swarm’s best position
3 Influence of particle’s velocity (inertia)

x + 1

2

1

3

t
i

v + 1t
i

v ti
g ts

x ti

b ti

Figure 9-1: A graphical representation of the strategy for updating velocity in PSO

Let’s consider an arbitrary particle i whose current position is x ti
(for simplicity’s sake, we’ll consider a one-dimensional problem). Because
of inertia, the particle will tend to move toward the direction of its current
velocity, v ti . However, PSO relies on learning from both particle- and swarm-
level best solutions found so far—b ti and g ts . As a result, the particle incor-
porates this information by moving a bit toward b ti 1 and then toward
g ts 2, as well as toward its own velocity v ti 3. Figure 9-1 shows the result
of all these movements as v t + 1

i . Equation 9.3 captures the same move-
ments symbolically in multiple dimensions, along with the relative weights
assigned to each of these components.

The inertia factor w is typically assigned a value between 0 and 1, where
a value of 0 would imply no impact of v ti on v t + 1

i and 1 would imply full

348 Chapter 9

impact. It is also possible to adjust the value of w over time, which can lead
to better convergence properties. This scheme is implemented by initially
setting w to ≥ 1 and gradually decreasing it per Equation 9.4.

	 w t = wmax – () (wmax – wmin)
t

tmax
	 (9.4)

The c1 and c2 factors in Equation 9.3 are also called acceleration coefficients.
Along with the random variables r1 and r2, these coefficients determine
the degree of influence of the particle-best and swarm-best positions on the
updated velocity of a particle.

As is evident from Equation 9.3, when both c1 and c2 = 0, particles will
keep moving at constant velocities until they hit the boundaries of the deci-
sion space. If c1 > 0 and c2 = 0, particles will behave as if they’re indepen-
dent (no information gathered from the swarm). When c1 = 0 and c2 > 0,
the entire swarm will move toward the best position found collectively so far.

While the optimal values for these parameters are likely to be problem
specific, the commonly used values found in the literature range from 0.5
to 2.5 for both c1 and c2. It is also common practice to keep c1 equal to c2
and ensure both values are relatively small to allow for a thorough explora-
tion of the decision space without causing velocity explosion, which refers to
excessive velocity and large jumps across the decision space. To avoid this,
an upper limit for the velocity of particle i along dimension j is set as follows
(for all time steps):

	 –v ≤ vi, j ≤ max
j vmax

j 	 (9.5)

where

	 = λ j (v max
j x – max

j x), λ j ∈ (0, 1)min
j 	 (9.6)

The final step for PSO is to update the position vector of particle i for
the next time step t + 1 as follows:

	 = +x t + 1
i x ti v t + 1

i 	 (9.7)

As with velocities, the updated position vectors will also have to be
checked against the specified bounds for the decision variables.

Implementing PSO for Function Minimization
We can use the PSO algorithm to either maximize or minimize a function.
In this chapter, we’ll apply PSO to function minimization. Consequently,
when aiming to minimize a multivariate function by using this implementa-
tion, we don’t need to multiply the objective function value by –1, as we did
for function minimization in Chapter 8.

In contrast to the other algorithms covered in this book, the PSO
algorithm involves more interlinked steps, which makes it difficult to

Agent-Based Algorithms 349

understand and code the algorithm without a thorough overview of the
entire process. To address this, I’ll provide pseudocode outlining the entire
process to guide us through actual code development. Pseudocode is a high-
level description of an algorithm or a computer program. It’s written in
plain language that closely resembles the structure of a programming lan-
guage, but it is not meant to be executed on a computer. It allows program-
mers to plan out and communicate the logic of a program without getting
bogged down in the details of a specific programming language.

Here’s the pseudocode for the PSO algorithm. Notice that we’ve used
boldface to mark where loops and conditional blocks begin and end, as well
as to emphasize specific tasks carried out by code segments.

Initialize swarm:
for i = 0 .. < swarm size
 for j = 0 .. < number of dimensions
 initialize position to random values per Equation 9.1
 initialize velocity to 0 per Equation 9.2
 end for
 create pBest[i] (with same position and fitness)
 create swarm[i]
 if fitness(swarm[i]) < fitness(gBest)
 update gBest
 end if
end for

Iterate over a preset number of time steps:
for time step = 0 .. < tmax
 update w per Equation 9.4
 for i = 0 .. < swarm size
 for j = 0 .. < number of dimensions
 update velocity per Equation 9.3
 check velocity within bounds per Equation 9.5
 update position per Equation 9.7
 check position within bounds
 end for
 update fitness of swarm[i]
 if fitness(swarm[i]) < fitness(pBest[i])
 update pBest[i]
 end if
 if fitness(swarm[i]) < fitness(gBest)
 update gBest
 end if
 end for
end for

We’ll follow this pseudocode closely as we develop the code for imple-
menting the PSO algorithm in the next project.

350 Chapter 9

Project 36: Optimize a Multivariate Function with a Particle Swarm
For this project, we’ll revisit the Eggholder function optimization problem
defined in Chapter 8, this time solving it with the PSO algorithm rather
than with the genetic algorithm.

The Code
We’ll develop the code for the PSO algorithm following the pseudocode
provided earlier and discuss its implementation in four segments: problem
definition and global parameters, initializing the swarm, the runPSO() driver
function, and the main() function.

Problem Definition and Global Parameters

This segment is composed of an import block, a collection of classes, global
variables and parameters, and lists to save particle states and best solutions.

import kotlin.math.sin
import kotlin.math.pow
import kotlin.math.abs
import kotlin.math.sqrt
import kotlin.math.min
import kotlin.math.max

1 data class Solution(
 var pos: DoubleArray,
 var fitness: Double
)

2 data class Particle(
 val id: Int,
 val pos: DoubleArray,
 val vel: DoubleArray,
 var fitness: Double,
 val pBest: Solution
)

// problem definition
3 val getFitness = ::eggHolder
val nDim = 2 // number of variables in the cost function
val xBbounds = arrayOf(doubleArrayOf(-512.0, 512.0),
 doubleArrayOf(-512.0, 512.0))
val xRange = doubleArrayOf(xBbounds[0][1] - xBbounds[0][0],
 xBbounds[1][1] - xBbounds[1][0])
val lambda = 0.5
val vMax = doubleArrayOf(lambda*xRange[0], lambda*xRange[1])

// global parameters
val TMAX = 50
val SWARMSIZE = 30
val wmax = 1.2
val wmin = 0.5

Agent-Based Algorithms 351

val wt = (wmax - wmin)/TMAX
var w = wmax
val c1 = 2.0 // cognitive coefficient
val c2 = 2.0 // social coefficient

// global objects and collections
val swarm = mutableListOf<Particle>()
val BestSolution = Solution(doubleArrayOf(0.0, 0.0), Double.MAX_VALUE)

The first block in the code snippet imports a number of math func-
tions from the standard Kotlin library. The next two blocks define the data
classes used for this project. The Solution() class is used to store particle-
best and swarm-best solutions 1. The Particle() class is the primary class
that is used to create a swarm 2. Each particle has an identification num-
ber (id), position and velocity vectors (pos and vel), a fitness property, and
a Solution property. The latter is used to store information on the best solu-
tion identified by the particle up to a certain point in time.

The next code block defines the eggHolder function 3 and its dimen-
sions in nDim (equal to 2 for the Eggholder function). It also defines the
bounds and ranges for pos and vel and then defines vMax per Equation 9.5 to
ensure that updated velocities remain within the set bounds.

The final code block defines PSO-specific global parameters. Currently,
the maximum number of time steps (iterations) is set to 50, and the swarm
size is set to 30. We’ll also dynamically adjust the inertia factor w per
Equation 9.4 for which wmax and wmin have been set to 1.2 and 0.5, respec-
tively. The cognitive and social factors c1 and c2 have been set to 2.0. These
parameter values were chosen based on the recommendations found in the
relevant literature.

The code block ends by creating a mutable list (swarm) and initializing
BestSolution, which we’ll use to store the swarm-best solution. Since we’re
framing the problem as a minimization problem, the fitness value of the
BestSolution has been set to Double.MAX_VALUE, which is the maximum possible
of type Double.

Initializing the Swarm

The initSwarm() function is responsible for initializing the PSO algorithm by
creating and initializing individual particles and adding them to the collec-
tion of particles (the swarm).

fun initSwarm() {
 println("\nStarting initialization...")

 1 for (i in 0 until SWARMSIZE) {
 // Define local objects.
 val pos = DoubleArray(nDim)
 val vel = DoubleArray(nDim)
 val fitness: Double
 val pBest: Solution

352 Chapter 9

 // Set initial positions (random, within bounds).
 2 for (j in 0 until nDim) {
 pos[j] = xBbounds[j][0] + (xBbounds[j][1] - xBbounds[j][0]) *
 (0..1000).random() / 1000.0
 vel[j] = 0.0
 }

 // Add new particles to the swarm.
 3 fitness = getFitness(pos)
 pBest = Solution(pos​.copyOf(), fitness)
 4 swarm += Particle(i, pos, vel, fitness, pBest)

 // Update BestSolution.
 5 if (fitness < BestSolution.fitness) {
 BestSolution.pos = pos​.copyOf()
 BestSolution.fitness = fitness
 }
 }
 println("\nBest solution after initialization:")
 println(BestSolution.toString())
}

The function begins by printing a message indicating the start of the
initialization process. It then iterates using a for loop over a specified swarm
size (SWARMSIZE) 1, creating individual particles with random initial posi-
tions within predefined bounds for each dimension 2. The initial velocities
for each particle are set to zero, per Equation 9.2.

The getFitness function allows us to calculate the fitness value for each
particle 3. Notice that during initialization, the personal best fitness is the
same as its current fitness, meaning that pBest initially has the same posi-
tion and fitness as the particle. These particles are characterized by identi-
fication number (id), position (pos) and velocity (vel) vectors, a fitness value
(fitness), and a personal best solution (pBest). We use these attributes to
create the particles and add them to the swarm 4.

The best solution across the entire swarm is updated if a particle’s fit-
ness is better than the current best 5. After initialization, the function
prints the best solution.

The Driver Function

The code block for the runPSO() driver function carries out all the core tasks
of PSO, including updating the velocity and position vectors and tracking
the personal- and swarm-level best solutions.

fun runPSO() {
 1 for (timeStep in 0 until TMAX) {
 // Update inertia factor as a function of time.
 val w = wmax - timeStep * wt

 // random coefficients for cognitive and social components
 val r1 = (0..100).random()/100.0
 val r2 = (0..100).random()/100.0

Agent-Based Algorithms 353

 // Iterate over each particle of the swarm.
 2 for (i in swarm​.indices) {
 // Update velocity and position vectors.
 for (j in 0 until nDim) {
 // Update velocity vector, and implement bounds.
 val C1 = w * swarm[i].vel[j]
 val C2 = c1 * r1 * (swarm[i].pBest.pos[j]-swarm[i].pos[j])
 val C3 = c2 * r2 * (BestSolution.pos[j] - swarm[i].pos[j])
 val vel = C1 + C2 + C3

 // Implement velocity bounds.
 swarm[i].vel[j] = min(max(vel, -vMax[j]), vMax[j])

 // Update position vector, and implement bounds.
 swarm[i].pos[j] += swarm[i].vel[j]
 swarm[i].pos[j] =
 min(max(swarm[i].pos[j], xBbounds[j][0]), xBbounds[j][1])
 }

 // Evaluate particle fitness.
 3 swarm[i].fitness = getFitness(swarm[i].pos)

 // Update the particle's best solution (pBest).
 4 if (swarm[i].fitness < swarm[i].pBest.fitness) {
 swarm[i].pBest.pos = swarm[i].pos​.copyOf()
 swarm[i].pBest.fitness = swarm[i].fitness
 }

 // Update the global best solution.
 5 if (swarm[i].fitness < BestSolution.fitness) {
 BestSolution.pos = swarm[i].pos​.copyOf()
 BestSolution.fitness = swarm[i].fitness
 }
 }
 }
}

Unlike the runGA() function for implementing the genetic algorithm, the
runPSO() function is self-sufficient and doesn’t rely on any helper functions
other than getFitness(), which simply calculates the value of the function
being minimized. It iterates over a fixed number of time steps (TMAX) 1,
beginning each iteration by initializing the inertia factor (w) and the random
factors r1 and r2.

For each time step, the code loops over each particle in the swarm 2 and
updates its velocity and position vectors according to the PSO formula. The
code also implements bounds for the velocity and position values, using the
minimum and maximum values defined in the arrays vMax and xBbounds.

The code evaluates the fitness of each particle by using the getFitness()
function 3, which takes the position vector as an input and returns the cor-
responding fitness as a scalar value.

The code then compares each particle’s current fitness with its personal
best fitness (pBest) and updates the latter if the former is lower 4. It also
compares the current fitness with the global best fitness (BestSolution) and

354 Chapter 9

updates the latter if the former is lower 5. The personal and global best
solutions store both the position and the fitness values.

The function terminates when it completes TMAX iterations. It doesn’t
return anything, since the best overall solution is saved as the global object
BestSolution.

The main() Function

This function is a short code block that prints values of key global param-
eters, calls other functions to initialize the swarm and run the PSO driver
function, and prints the best solution found.

fun main() {
 println("\n*** Real-valued function optimization using PSO ***\n")
 println("Function dimensions: $nDim")
 println("Swarm size: $SWARMSIZE, Max time steps: $TMAX")
 println("w_max: $wmax w_min: $wmin")
 println("Cognitive factor (c1): $c1")
 println("Social factor (c2): $c2")

 // Initialize the swarm.
 initSwarm()
 // Run PSO algorithm.
 runPSO()

 // Print final results.
 println("\nBest solution after $TMAX iterations:")
 println(BestSolution.toString())
}

The main() function is the entry point of the program that uses PSO
to perform real-valued function optimization. It prints some information
about the problem parameters, such as the function dimensions, the swarm
size, the maximum time steps, and the PSO coefficients.

The function then calls two other functions, initSwarm() and runPSO().
The first function initializes the swarm of particles with random positions
and velocities and evaluates their initial fitness values. The second func-
tion runs the PSO algorithm for a fixed number of iterations, updating the
particles’ velocities, positions, and fitness values, as well as the personal and
global best solutions.

The main() function finally prints the best solution found by the PSO
algorithm after the specified number of iterations, showing both the posi-
tion vector and the fitness value of the global best solution.

The Result
I’ve deliberately kept the output of the PSO program brief and to the point.
By now, you should be comfortable with writing your own additional lines
of code to print or save other intermediate results for further analysis or
visualization. If you run the code with the same parameters used in this
example, the output might look like this:

Agent-Based Algorithms 355

*** Real-valued function optimization using PSO ***

Function dimensions: 2
Swarm size: 30, Max time steps: 50
w_max: 1.2 w_min: 0.5
Cognitive factor (c1): 2.0
Social factor (c2): 2.0

Starting initialization...

BestSolution after initialization:
Solution(pos=[-429.056, 374.784], fitness=-742.3993203916232)

BestSolution after 50 iterations:
Solution(pos=[512.0, 404.2263191597745], fitness=-959.640628508424)

The first segment of the output shows the values of key global param-
eters. Next, it shows the best solutions at the start and the end of the
iterations. The PSO algorithm achieved a near-optimal solution for the
Eggholder function within the given decision space, matching the result
obtained by the genetic algorithm in Chapter 8.

Figure 9-2 shows the convergence behavior of the PSO algorithm over
time when applied to the Eggholder function. Unlike the genetic algo-
rithm discussed in Chapter 8, PSO achieves optimal solutions more rapidly,
requiring fewer iterations.

–1,000

–950

–900

–850

–800

–750

–700

–650

–600

0 10 20 30 40 50 60

Be
st

fit
ne

ss
 v

al
ue

Time steps

Figure 9-2: The convergence pattern for the Eggholder function, using the particle
swarm algorithm

356 Chapter 9

PSO seems to have an advantage over the genetic algorithm for this
problem. Though the PSO algorithm had a worse initial global best fit-
ness value of around –742, compared to –810 for the genetic algorithm, it
reached the global optimum in about 40 iterations, while the genetic algo-
rithm took 117 iterations. This suggests that the PSO algorithm can explore
and exploit the search space more efficiently than the genetic algorithm
for the Eggholder function. This efficiency likely stems from PSO’s unique
approach to exploring the solution space through collaborative particle
interactions.

I encourage you to use this code to solve other known test problems
and further investigate how the PSO algorithm performs vis-à-vis the
genetic algorithm.

E X ERCISE

The Mishra Bird function is given by the following equation:

f (x1, x2) = sinx1e
(1 – cosx2)2 + cosx2e

(1 – sinx1)2 + (x1 – x2)
2

You’ll find the global minima for this function as well as the optimal solu-
tion (x1*, x2*) within a decision space bounded by [–2π, 2π] in both x1 and x2
dimensions. The function’s global minimum value within the decision space is
approximately −106.7645.

Hint: Define a new function mishraBird() and assign that to getFitness.
Change the xBounds accordingly. You can increase TMAX to 100 for a quicker
convergence without changing any other parameter values.

Notice that within this decision space are two global optimal solutions
for this function: (4.701056, 3.152946) and (−1.582142, −3.130247). The
global minimum fitness value is −106.764537 (all values rounded to six decimal
places). If you run the revised code multiple times, the algorithm will likely iden-
tify both global optimal solutions at random.

Ant Colony Optimization
Ant colony optimization (ACO) refers to a family of algorithms that are
based on lessons learned from real-world ants, especially from their forag-
ing behavior. The original algorithm, known as the ant system (AS), was
proposed by Marco Dorigo in 1992. Since then, the algorithm has been
modified several times to help it more effectively solve a class of problems
that requires finding the least-cost tour through all nodes of a weighted
graph. In discrete mathematics, a graph is a set of nodes or vertices that are
related, and the imaginary or real line connecting a pair of nodes is called

Agent-Based Algorithms 357

an edge. (You can revisit Chapter 7 for a review of graphs and conventional
graph-search algorithms.)

To demonstrate the basic concept of ACO, let’s review the simple illus-
tration in Figure 9-3 of ants exploring the best paths to a source of food.

(a) Ants looking
for food

(b) Ants exploring
different trails

(c) Most ants on
the shortest trail

Figure 9-3: Ants exploring different trails leading to the food source

When ants start looking for a food source, they initially disperse randomly
in all directions, as shown in Figure 9-3(a). As they move, they lay down a scent
(pheromone) to mark their trails. Once an ant finds a food source, it picks up
a piece of food and brings that back to the nest by following its scent mark. It
also lays down more pheromones as it returns to the nest.

In the meantime, other ants notice the trail. Given more than one
source, each trail will develop a scent mark of greater or lesser intensity,
depending on how many ants are traveling back and forth along that trail
and how far the source is from the nest. In general, the stronger the scent
mark of a trail, the greater the number of ants following that trail will
be. Once a food source is found, ants will therefore follow the most well-
defined trails, as shown in Figure 9-3(b).

Crucially, pheromones are not permanent—they tend to decay or evap-
orate over time. If a trail is not frequently visited, it gradually becomes less
traceable and eventually is forgotten. Additionally, the closest food source
will take the least amount of time to visit, which means the correspond-
ing trail will be traveled more frequently, which will result in a stronger
concentration of pheromone—which will create a positive feedback loop
and attract even more ants to choose the shortest route. Over time, most
of the ants will start to use this shortest route (the optimal path), as shown
in Figure 9-3(c). The ant colony will have used a very simple rule to solve a
very difficult combinatorial optimization problem!

In this ingenious natural scheme, individual agents (ants) do not
have any idea about the impact of their actions on the entire colony. And
yet by repeating their simple routine, they enable the colony to find its
food sources as efficiently as if the whole search process were centrally
coordinated.

358 Chapter 9

The ACS Algorithm
Based on the conceptual model presented in the previous section, we can
envision the key components of ACO as creating a colony of artificial ants,
moving ants from one node to the next based on pheromone intensity and
the distance between the nodes, and updating the pheromone trails until
the shortest route is found.

In this chapter, we’ll explore an enhanced version of ACO called the
ant colony system (ACS). The ACS algorithm is implemented in three key
steps: constructing a tour, updating a local pheromone trail, and updating
a global pheromone trail. We’ll discuss each of these steps in detail shortly.

We’ll use the ACS algorithm to solve a particular case of the traveling
salesman problem (TSP), which belongs to a class of hard-to-solve prob-
lems called the NP-hard problems. Mathematically speaking, a problem is
NP-hard if it is at least as hard as the hardest problem in NP, a class of prob-
lems for which a solution can be verified in polynomial time. It is beyond
the scope of this book to discuss the NP-hard problems further; instead, we
will focus on how to use ACS to solve TSPs.

Solving a TSP entails answering the following question:

Given a list of nodes and the distances between every pair of those nodes,
what is the shortest possible route a traveler can take that passes through
each node exactly once and brings the traveler back to the start node?

In other words, we’re looking for a closed-loop solution that goes through
each node and has the shortest possible length. Notice that it is theoretically
possible for multiple routes to have the same shortest length of travel.

We’ll make two additional assumptions regarding the form of TSP we’ll
try to solve:

•	 The network of nodes (graph) is fully connected, meaning a traveler
can visit from any particular node to all other remaining nodes (during
implementation, we’ll exclude the nodes that have already been visited).

•	 The distance between any pair of nodes is symmetric, meaning the dis-
tance does not change with the direction of travel (a pair of nodes are
connected by a single, unique path—an edge).

Symbols and Their Meanings
ACS is a fairly complex algorithm with many parameters and variables,
listed in Table 9-1 along with the symbols used to represent them.

Table 9-1: Symbols Used in the ACS Algorithm

Symbol Interpretation

Nk
i The neighborhood of ant k when it is at node i; it is a set of nodes that an

ant is allowed to visit given its current location.

τij The pheromone intensity of edge [i, j] connecting node i to node j.

Agent-Based Algorithms 359

Symbol Interpretation

τ0 Initial pheromone level for all edges, set to 1/(nCnn); n is the total number
of nodes in the nearest-neighbor tour and Cnn is the tour length.

dij The length of the edge from node i to node j (distance between these
nodes). Also, dij = dji.

ηij Heuristic information defined as 1/dij.

α Parameter, set to 1 for ACS.

ß Parameter [2.0–5.0], used as the exponent of η.

q A uniformly distributed random variable in [0, 1].

q0 A parameter in (0, 1); an ant explores the learned knowledge based on
the intensity of pheromone trails and heuristics when q ≤ q0.

pij The normalized probability for choosing edge [i, j] during roulette wheel
selection if q > q0.

ζ Parameter, set to a small value such as 0.005; used as the weighting fac-
tor for updating the local pheromone trail.

ρ Parameter, set to the recommended value of 0.1 for ACS; used as the
weighting factor for updating the best-so-far global pheromone trail.

Cnn Tour length for the nearest-neighbor tour used for estimating initial phero-
mone concentration.

Cbs Tour length for the best-so-far solution or tour.

T  bs The best-so-far tour (collection of edges that constitute the tour).

In addition to listing the parameters and variables, Table 9-1 also pro-
vides short descriptions of those elements. (You may need to revisit these
descriptions as you read the rest of this section.)

The Steps of ACS
In this section, we’ll explore the key steps of the ACS algorithm, expressed
mathematically. This will include three steps: tour construction, updating
the local pheromone trail, and updating the global pheromone trail.

Step 1: Tour Construction

The first step of ACS entails applying a pseudorandom proportional rule
used by an ant to choose its next location j given its current location i,
defined in Equation 9.8.

	 j = {argmaxl ∈ N k {τil ηil },i
ß

J,
if q ≤ q

0
otherwise

	 (9.8)

The argmax function in Equation 9.8 chooses an argument l from the
feasible set of nodes that can be visited from node i, for which the expres-
sion inside the curly brackets is maximized. This value of l is set to j as the
next destination for the ant provided q ≤ q0. The parameter q0 allows us to

360 Chapter 9

control the degree to which learned knowledge (pheromone trails and heu-
ristics) is prioritized over random exploration of new routes.

When q > q0, the next node j is set to J, which is a random variable
selected using a roulette wheel scheme. Equation 9.9 estimates the normal-
ized probabilities for the feasible paths from node i to node j for ant k:

	
∑l ∈ N k

 τil ηil i

ß

τij

ηij

ß

p = k
ij j ∈ Nk

i 	 (9.9)

For a refresher on the roulette wheel scheme, please review “Selection”
on page 312 in Chapter 8. This time, we’ll implement the scheme in our
final coding project.

Step 2: Updating the Local Pheromone Trail

As soon as an ant moves from node i to node j, the weighted average
scheme in Equation 9.10 is applied to update the local pheromone trail.

	 τij = (1 – ζ) τij + ζ τ0 	 (9.10)

In the original ACO, no local updates occur, which allows one to imple-
ment the tour construction either sequentially or concurrently. When tours
are built concurrently (in parallel), they can result in significant computa-
tional time savings for large real-world problems. Due to the local updating
rule of ACS, it is implied that the process will be implemented sequentially.
This is because the tour created by a specific ant is influenced by the pre-
ceding ants’ local updates to the pheromone trails.

Step 3: Updating the Global Pheromone Trail

Once all ants are done building their tours, the global pheromone update
rule is applied once per iteration and only along the edges of the best-so-far
tour, T bs, as shown in Equation 9.11.

	 τij = (1 – ρ) τij + ρ(), for all (i, j) ∈ T bs1
C bs

	 (9.11)

Equation 9.11 implies that T bs will need to be compared with the best
solution identified by the colony at the end of each iteration and then be
updated as needed.

The Pseudocode

The following pseudocode shows how the components of the ACS algo-
rithm come together to form a sophisticated heuristic algorithm:

Agent-Based Algorithms 361

// preprocessing - read and initialize
read nodes from file (name, number, coordinates)
calculate edge lengths (Euclidian distance)
calculate nearest-neighbor tour length (Cnn)
initialize pheromone levels to τ0 = 1/(nCnn)

// Iteratively apply ACS steps.
while stopping condition not met:
 initialize ants (assign id numbers and initial positions)
 for ant = 0 .. < number of ants
 set cities to visit for each ant
 while number of cities to visit > 0:
 construct tour per Equation 9.8 & Equation 9.9
 perform local pheromone update per Equation 9.10
 end while
 // Complete the loop.
 return to the start node
 update ant properties
 perform local pheromone update per Equation 9.10
 end for
 update best-so-far solution
 perform global pheromone update per Equation 9.11
end while

// postprocessing
print results

We’ll follow this pseudocode to develop a complete ACS application in
Kotlin in the next project.

Project 37: Solve the Traveling Salesman Problem with an Ant Colony System
In this project, we’ll solve the well-known test problem Berlin52. This is a
combinatorial optimization problem that involves finding the shortest route
through 52 destinations in Berlin, Germany. The dataset for this problem
was retrieved from TSPLIB, which is a collection of traveling salesman prob-
lems with known global optimal solutions. See “Resources” on page 377 for
the download link for these problems, which you can try solving by using
the ACS algorithm and other NIAs discussed in this book.

The Code
The Berlin52 TSP requires datasets for 52 different locations. It’s more con-
venient to create a separate datafile for this project (for example, a file in
CSV format) and read the location data from the file at runtime. So we’ll
adopt that approach for this project.

We’ll discuss the code segments in four primary blocks: problem defini-
tion and global parameters, the main() block, the runACS() driver function
and its helper functions, and additional intermediate and postprocessing
of results.

362 Chapter 9

Problem Definition and Global Declarations

This segment specifies the import block and defines the input file location,
global variables and parameters, and a collection of classes, lists, and arrays
required to implement the ASC algorithm.

// import block
import java.io.File
import kotlin.math.pow
import kotlin.math.sqrt

// Input file location: change the datafile location as needed.
1 const val datafile = "berlin52.csv"

2 // global parameters

val numCities = 52 // Set the number of cities.
val numAnts = 30 // Typically set to 10-30.
val rho = 0.1 // rho = 0.1 is recommended for ACS.
var pheromone0 = 0.0 // 1/(n*Cnn) for ACS
val q0 = 0.8 // argmax parameter (0.5-0.9)
val zeta = 0.005 // Set to a small value.
val alpha = 1.0 // alpha = 1 for ACS.
val beta = 2.0 // Set to 2-5.
val iterMax = 300 // maximum number of iterations
val maxRounds = 50 // number of times the entire process is repeated

3 // classes and collections

data class City(
 val name: String,
 val node: Int,
 val x: Double,
 val y:Double
)

class Ant(val id: Int, val start: Int) {

 var currentNode = start

 val citiesToVisit = mutableListOf<Int>()
 val pathNodes = ArrayList<Pair<Int, Int>>()
 val pathSegments = mutableListOf<Double>()

 // Set fitness to a very high value for function minimization.
 var fitness = Double.POSITIVE_INFINITY

 fun setCitiesToVisit() {
 for (i in 0 until numCities) {
 if (i != this.start)
 this.citiesToVisit += i
 }
 }
}

Agent-Based Algorithms 363

data class ArgMax(
 val index: Int,
 val value: Double
)

data class Solution(
 val iteration: Int,
 val antID: Int,
 val pathNodes: ArrayList<Pair<Int, Int>>,
 val segments: List<Double>,
 val fitness: Double
)

val cities = mutableListOf<City>()
val ants = mutableListOf<Ant>()
val antSolutions = mutableListOf<Solution>()
val bestSolutions = mutableListOf<Solution>()

val edges = Array(numCities) {DoubleArray(numCities)}
val pheromone = Array(numCities) {DoubleArray(numCities)}
val prob = Array(numCities) {DoubleArray(numCities)}
var bestOverallTour = ArrayList<Pair<Int, Int>>()

var bestOverallFitness = Double.POSITIVE_INFINITY
var optimaCount = 0

The code segment begins by importing the required methods from the
standard Kotlin and Java libraries. We’ll use java.io.File to read data from
an input file from a specified location (in this case, from berlin52.csv) 1.
(The input file you’ll use will likely have a different location, so you must
change the input file location as needed.)

The input file for the Berlin52 TSP follows a set format. The first value
in the initial line contains a brief title describing the problem, while subse-
quent values serve as column headers for the data points. From the second
line to the last, city-specific information is presented in groups of four
comma-separated values (hence the file extension .csv): city name, city iden-
tification, x-coordinate, and y-coordinate, respectively. Each row contains
data for a particular city or location.

In this case, the datafile consists of 53 lines, including the introductory
line that provides descriptive information. Table 9-2 shows how the file will
look when you open it with Microsoft Excel or another spreadsheet program.

Table 9-2: Input File Format for the Berlin52 TSP

Berlin52 ID X Y

C1 0 565 575

C2 1 25 185

C3 2 345 750

C4 3 945 685

(continued)

364 Chapter 9

Berlin52 ID X Y

C5 4 845 655

C6 5 880 660

.

C50 49 595 360

C51 50 1340 725

C52 51 1740 245

The next code block declares all the global parameters 2. For example,
the number of cities (numCities) is set to 52, the number of ants (numAnts) is
set to 30, the maximum number of iterations per round (iterMax) is set to
300, and the number of times the entire process is repeated (maxRounds) is
set to 50. The comments next to the parameters indicate suggested ranges
or values for these parameters.

Next, we define the classes and collections used in this project 3. The
City data class stores information on the locations to visit, including their
names, ID numbers, and coordinates.

The Ant class is used to create the ant colony, which is at the heart of
ACS. The Ant class has several properties required for managing and moni-
toring ant movements. In particular, citiesToVisit dynamically keeps track
of the remaining cities to visit, pathNodes stores the start and the end nodes
for each path (edge) already traversed, and pathSegments stores the corre-
sponding edge lengths. This class also has a method called setCitiesToVisit()
that defines the initial list of cities each ant can visit.

The ArgMax class is used during the tour construction phase. The
Solution class stores information on completed tours, including the nodes
and edges comprising a tour and its fitness value (length of the tour).

These classes are followed by a block that initializes a number of collec-
tions, arrays, and parameters. For example, cities is used to build a list of
locations to visit, and ants is used to create the ant colony. Others are used
to store ant solutions (antSolutions), best solutions (bestSolutions), and the
best overall tour (bestOverallTour).

We use two-dimensional arrays to store information on the edges
(edges) and corresponding pheromone levels (pheromone) and edge prob-
abilities (prob). The final two lines set the default values for the best overall
fitness (bestOverallFitness) and the counter variable optimaCount.

The main() Block

The main() block is a minimal block with a few function calls and print
functionalities.

fun main() {
 println("\n*** Solving Berlin52 TSP Using the Ant Colony System ***\n")
 // Conduct preprocessing.

Table 9-2: Input File Format for the Berlin52 TSP
(continued)

Agent-Based Algorithms 365

 readCities()
 calculateEdges()
 calculatePheromone0()

 // Repeat the process maxRounds number of times.
 1 for (round in 1..maxRounds) {
 2 initializePheromone()
 runACS()
 processInterimResults(round)
 // Prepare for next iteration.
 3 bestSolutions.clear()
 }

 // Print the best overall solution.
 printBestOverallFitnessAndTour()
 println("\noptimaCount: $optimaCount")
}

The function starts by printing a problem-specific message on the con-
sole and then moves on to the preprocessing block. It calls the readCities()
function to read off the location data from the input file. The calculateEdges()
function uses the location coordinates to estimate the distances between
pairs of nodes. The calculatePheromone0() function finds the nearest-neighbor
tour length Cnn and uses that to estimate the initial pheromone levels τ0 for
all edges.

Next, we introduce a for loop 1 to carry out the entire ACS process a
set number of times (maxRounds). The Berlin52 TSP is a challenging problem,
and the ACS algorithm may not be able to locate the global optimal solu-
tion during each round of the ACS process, which involves iterMax attempts.

Inside the for loop, the initializePheromone() function 2 sets the ini-
tial pheromone level for all edges of the graph. Next, the driver function
runACS() carries out the search for the optimal route. The processInterim​
Results() function updates the best overall fitness and best overall tour val-
ues, then prints the best solution for each round of search. Finally, the list
of best solutions is cleared before starting the next round 3.

The success rate of the ACS algorithm depends on the combination
of global parameter values and the random initialization of the ants and
their start nodes (in addition to the random selection of edges that happens
during the implementation of the algorithm). In general, when a heuristic
algorithm gets stuck at a local optimum even after attempting to find the
global optimal solution a reasonable number of times, it may be beneficial
to restart the entire process by resetting the initial conditions and chang-
ing the global parameters if needed, rather than increasing the number of
iterations. The for loop in the main() block helps us automatically reset and
restart the ACS process and carry it out maxRounds times.

Notice that we need to read the input data, calculate edge lengths, and
calculate the initial pheromone level only once. Thus, those tasks are com-
pleted before initiating the for loop inside the main() block. However, we need
to reset the pheromone levels to τ0 each time we call the runACS() function.

366 Chapter 9

The main() block ends with printing the best overall fitness and tour
(from all rounds and iterations). It also prints the number of times the algo-
rithm was successful in finding the global optimal solution.

The readCities() Function

The sole purpose of this function is to read the location data from an
input file.

fun readCities() {
 // Open input file and read location data.
 1 val file = File(datafile)
 2 val lines = file.readLines().filterNot{it.isEmpty()}

 for (i in lines​.indices) {
 3 val items = lines[i].split(",")
 if (i == 0) {
 println("Reading data for " + items[0] + "-TSP")
 } else {
 // Read Name, ID, x, y.
 4 cities += City(
 items[0],
 items[1].trim().toInt(),
 items[2].trim().toDouble(),
 items[3].trim().toDouble()
)
 }
 }
}

The Java File class 1 opens the input file from a location specified in
the datafile string. The entire content of the datafile is read into memory
as an array of strings (lines) 2. We are applying .filterNot{it.isEmpty()} to
file.readLines() to make reading the file safer with respect to empty lines.

Then, each line is split by using a comma (,) as the separator 3 (recall
that the input file was created as a comma-separated value, or CSV, file).
Finally, different parts of the split line are used to create a list of nodes
(cities) by using the City class 4.

The calculateEdges() Function

The purpose of this function is to calculate and save the edge lengths (path
segments) of a tour.

fun calculateEdges() {
 // Assume symmetry: edges[i][j] = edges[j][i].
 for (i in 0 until cities.size) {
 for (j in i until cities.size) {
 if (i == j) {
 1 edges[i][j] = 0.0
 } else {

Agent-Based Algorithms 367

 2 edges[i][j] = sqrt((cities[i].x - cities[j].x).pow(2) +
 (cities[i].y - cities[j].y).pow(2))
 3 edges[j][i] = edges[i][j]
 }
 }
 }
}

The edge lengths are saved in a two-dimensional array, where the diago-
nal elements (i = j) are set to 0.0 1 (the distance of a node from itself is zero),
and the off-diagonal elements are set to Euclidian distances between a pair of
nodes 2. We’re assuming that a pair of nodes is connected by a single edge
or path. This allows us to calculate only the upper triangle of the matrix and
set the lower triangle values by using the property of symmetry 3.

The calculatePheromone0() Function

This function calculates the nearest-neighbor tour length Cnn and uses that
to estimate the initial pheromone level, pheromone0.

fun calculatePheromone0() {
 // Start at node 0 (first city in the dataset).
 1 var i = 0 // Start node for the nearest-neighbor tour.
 val citiesToVisitList = (1 until numCities).toMutableList()
 var nearestNeighborTourLength = 0.0

 // Build the nearest-neighbor tour.
 2 while (citiesToVisitList.size > 0) {
 // Set initial search parameters.
 var nearestNode = -9999 // Use an unlikely value.
 var nearestNodeDistance = Double.MAX_VALUE

 for (j in citiesToVisitList) {
 if (edges[i][j] < nearestNodeDistance) {
 nearestNodeDistance = edges[i][j]
 nearestNode = j
 }
 }

 3 nearestNeighborTourLength += nearestNodeDistance
 4 citiesToVisitList.remove(nearestNode)
 i = nearestNode
 }
 // Add the edge connecting the last city visited and the starting city.
 5 nearestNeighborTourLength += edges[i][0]

 // Calculate initial pheromone value per ACS.
 6 pheromone0 = 1.0/(numCities * nearestNeighborTourLength)
}

This function finds the nearest-neighbor tour by starting the tour from
node 0 1 and moving to the nearest nodes with a while loop 2 until all

368 Chapter 9

nodes or cities are visited. At each step, the shortest edge is identified and
added to the nearest-neighbor tour length 3. Once the node is added to
the tour, it is removed from the list of cities to visit 4. The tour is closed
by connecting the last node visited to the start node and adding the corre-
sponding edge length to the total tour length 5. Finally, the initial phero-
mone level pheromone0 is calculated as equal to 1/(nCnn) 6.

The initializePheromone() Function

This function sets initial pheromone levels for all edges of the graph to
pheromone0.

fun initializePheromone() {
 // All edges have the same initial pheromone level.
 for (i in 0 until numCities) {
 for (j in i until numCities)
 if (i != j) {
 pheromone[i][j] = pheromone0
 pheromone[j][i] = pheromone0
 } else pheromone[i][j] = 0.0
 }
}

The pheromone levels are stored in a two-dimensional array (a matrix),
and the property of symmetry is used to calculate the lower triangle ele-
ments of the matrix by setting τji = τij. Notice that when i = j, the node is sim-
ply referring to itself, and the corresponding diagonal elements are set to
0.0. These values are not required or used by the ACS algorithm.

The runACS() Function

The runACS() function creates the ant colony, coordinates the tour construc-
tion for individual ants, saves intermediate results, and implements the
global pheromone update rule. We’ll begin by providing an overview of the
key elements of this function, which will be followed by discussions on the
individual helper functions.

fun runACS() {
 var iter = 1
 while(iter <= iterMax) {
 // Create a new ant colony.
 1 initializeAnts()

 // Generate tours for all ants.
 for (ant in ants) {
 2 ant.setCitiesToVisit()
 3 buildAntTour(ant)
 4 antSolutions += Solution(
 iter,
 ant.id,
 ant.pathNodes,
 ant.pathSegments,

Agent-Based Algorithms 369

 ant.fitness)
 }

 // Get the solution with minimum fitness.
 5 val bestAntSolution =
 antSolutions.minWith(compareBy {it.fitness})
 6 bestSolutions += bestAntSolution
 7 globalPheromoneUpdate()

 // Clear previously saved states of ants and solutions.
 ants.clear()
 antSolutions.clear()

 // Advance the counter.
 8 iter += 1
 }
}

The code segment begins by setting the iteration counter iter to 1.
A while loop is used to repeat the search iterMax times. Inside the loop,
initializeAnts() creates the ant colony for a specific iteration 1.

Once the ant colony is initiated, a tour for each ant is constructed
inside a for loop. The process starts with setting a list of cities to visit for
each ant 2 by invoking the setCitiesToVisit() method of the Ant class. The
actual tour is built by the buildAntTour() function 3.

Once the optimal tour for an individual ant is completed, relevant
information is saved in antSolutions 4. The best of all ant solutions (for
the current iteration) is found by using the minWith() function of Kotlin 5,
which is then added to the bestSolutions list 6. At this stage, the global​
PheromoneUpdate() function is called to apply the global pheromone update
rule 7. Next, ants and antSolutions are cleared in preparation for the next
iteration. Finally, iter is incremented by 1 8; the process will exit the while
loop when iter > iterMax.

The initializeAnts() Function

The code snippet for the initializeAnts() function is very short.

fun initializeAnts() {
 // Create a list of nodes (cities) to set start nodes for ants.
 val cityList = (0 until numCities).toList()
 // While creating a new Ant, set its start node randomly.
 for (i in 0 until numAnts) ants += Ant(i, cityList.random())
}

This code begins by creating a list of indices, each designating a city or
node. Next, it creates the ants one by one and assigns each ant a start node
selected randomly from the list of cities to visit.

This scheme allows multiple ants to have the same start node, while
some nodes may not have any ants assigned to them. This flexibility is ben-
eficial when the number of ants differs from the number of nodes.

370 Chapter 9

The buildAntTour() Function

This function identifies the next node to visit, updates relevant ant prop-
erties to reflect that choice, and recursively builds the entire tour. It also
calculates the ant fitness when the tour is complete and applies the local
pheromone update for each edge traveled.

fun buildAntTour(ant: Ant) {

 1 var i = ant.currentNode

 while (ant.citiesToVisit.size > 0) {
 // Find the next node to visit per ACS.
 2 val nextNode = selectNodeToVisit(i, ant)

 // edge-specific local pheromone update per ACS
 3 pheromone[i][nextNode] =
 (1- zeta) * pheromone[i][nextNode] +
 (zeta * pheromone0)
 ant.currentNode = nextNode
 ant.pathNodes += Pair(i, nextNode)
 ant.pathSegments += edges[i][nextNode]
 i = ant.currentNode
 4 ant.citiesToVisit.remove(nextNode)
 }

 // Close the loop by adding the last Pair() of nodes to the path
 // and adding the last path segment to the tour.
 ant.pathNodes += Pair(ant.currentNode, ant.start)
 ant.pathSegments += edges[ant.currentNode][ant.start]

 // Calculate the fitness of the entire loop (closed path).
 5 ant.fitness = ant.pathSegments.sum()

 // edge-specific local pheromone update for the last path segment
 6 pheromone[ant.currentNode][ant.start] =
 (1- zeta) * pheromone[ant.currentNode][ant.start] +
 (zeta * pheromone0)
}

The function starts with setting the current location index i to the ant’s
currentNode property (which is initially the same as startNode) 1. Subsequent
nodes to visit are found by using a while loop until the list of cities to visit is
exhausted. The process of selecting the next node is quite involved and is
implanted by selectNodeToVisit() 2, a function we’ll discuss in more detail
shortly.

After locating nextNode, the local pheromone update rule is applied 3,
and the currentNode property of the ant is set to nextNode. At this time, rele-
vant ant properties are updated based on the move from node i to nextNode.
Before repeating the iteration for the next node or city to visit, the current
node index i is updated to currentNode (that is, to the most recent nextNode)
and then nextNode is removed from the list of cities to visit 4.

Agent-Based Algorithms 371

Once the ant is done visiting all the cities it is allowed to visit, the tour
is closed by connecting the last city visited to the city from which the ant
started its tour. This is done by updating the ant’s pathNodes and pathSegments
properties. When the tour is complete, its fitness (length) is calculated 5,
and the local pheromone update rule is applied one more time for the last
segment of the tour 6.

The selectNodeToVisit() Function

This function implements the most mathematically involved part of the
ACS algorithm that uses both an argmax type function and the roulette
wheel scheme to decide which node to visit next.

fun selectNodeToVisit(i: Int, ant: Ant): Int {

 var chosenNode = -9999 // Use an unlikely value.
 val argmaxList = mutableListOf<ArgMax>()

 // Calculate edge probabilities and argMaxList elements.
 var sum = 0.0
 1 for (j in ant.citiesToVisit) {
 prob[i][j] = (pheromone[i][j]).pow(alpha) /
 (edges[i][j]).pow(beta)
 sum += prob[i][j]
 argmaxList += ArgMax(j, prob[i][j])
 }

 // Calculate normalized values of the edge probabilities.
 2 for (j in ant.citiesToVisit) {
 prob[i][j] = prob[i][j] / sum
 }

 // Use argmax or roulette wheel scheme to select j.
 3 val q = (0 until 1000).random()/1000.0

 if (q <= q0) {
 // Use accumulated experience more greedily per ACS.
 val maxArgMax = argmaxList.maxWith(compareBy {it.value})
 4 chosenNode = maxArgMax​.index
 } else {
 5 // Use roulette wheel scheme.
 val spin = (0 until 1000).random()/1000.0
 var sumProb = 0.0
 for (j in ant.citiesToVisit) {
 sumProb += prob[i][j]
 6 if (spin <= sumProb) {
 chosenNode = j
 break
 }
 }
 }
 7 return chosenNode
}

372 Chapter 9

The function first creates local variables for saving the chosen node
(chosenNode, initially set to an unlikely value) and a mutable list to which an
argmax operation will be applied per Equation 9.8. Next, edge-specific raw
probabilities are calculated inside the first for loop 1. This loop also popu-
lates the argmaxList, which stores the possible destination node index j as its
index property and the corresponding prob[i][j] (before being normalized)
as its value. The second for loop 2 converts the raw probabilities to normal-
ized probabilities.

After the initial processing, a random number q is drawn from a uni-
form distribution 3. If q <= q0, the argmax rule is used to choose the next
node index 4. Otherwise, Equation 9.9 is used to find the next node index
by using the roulette wheel scheme 5. In particular, when the spin value is
less than or equal to the sum of normalized probabilities up to index j, we
set chosenNode equal to j 6 and break out of the loop. Finally, the value of
chosenNode is returned 7.

The globalPheromoneUpdate() Function

This function applies the global pheromone update rule once all ants finish
building their tours for a particular iteration.

fun globalPheromoneUpdate() {
 val bestSoFar =
 bestSolutions.minWith(compareBy {it.fitness})
 for (pair in bestSoFar.pathNodes) {
 val (i,j) = pair
 pheromone[i][j] = (1 - rho) * pheromone[i][j] + rho/bestSoFar.fitness
 }
}

This function has two key steps. First, it identifies the best-so-far solu-
tion since the beginning of the iterations inside the while loop of runACS().
Next, pheromone levels are updated only for the edges (path segments)
that belong to the best-so-far tour.

Other Functions in the main() Block

The other functions in the main() block are not part of the ACS algorithm.
Instead, we use these functions to monitor the convergence of the algo-
rithm and to print final values of the best overall fitness and corresponding
solution at the end.

The processInterimResults() function helps save and print intermediate
results after the completion of each round of calculations inside the for
loop of the main() function.

fun processInterimResults(round: Int) {
 1 val bestSoFar =
 bestSolutions.minWith(compareBy {it.fitness})
 2 if (bestSoFar.fitness < bestOverallFitness) {
 bestOverallFitness = bestSoFar.fitness

Agent-Based Algorithms 373

 bestOverallTour = bestSoFar.pathNodes
 }

 3 // Print interim results.
 println("round: $round iter: ${bestSoFar.iteration}" +
 "ant: ${bestSoFar.antID}")
 println("bestSoFar.fitness: ${bestSoFar.fitness}")

 // Count the number of times global optima are found.
 4 if (bestSoFar.fitness - 7544.3659 < 0.0001)
 optimaCount += 1
 }

This function first sorts the bestSolutions to find the best-so-far solution
based on the fitness values of the solutions 1. Next, it updates the value of
bestOverallFitness, the best fitness found from all rounds up to this point 2.
The current number of rounds, the iteration number, and the antID are then
printed along with the best-so-far fitness 3. This helps us monitor how the
algorithm is doing as it proceeds through the number of rounds (as men-
tioned earlier, the maximum number of rounds is set by maxRounds).

Finally, we check to see if the fitness of bestSoFar matches the known
global optimal fitness for the Berlin52 problem (7544.3659) and count the
number of such matches 4 (which is later printed from the main() function).

The final function called from main() is printBestOverallFitnessAndTour(),
which prints the optimal function value and solution found by the ACS
algorithm.

fun printBestOverallFitnessAndTour() {
 println("\nbestOverallFitness: $bestOverallFitness")
 println("\nbestOverallTour: ")

 for (i in bestOverallTour​.indices) {
 print("${bestOverallTour[i]}".padEnd(10))
 if ((i+1) % 5 == 0) println()
 }
 println()
}

The first line inside the function prints the value of the best overall
fitness. The optimal solution in this case is a list of Pairs, where each pair
consists of the start and the end nodes for the edges that belong to the best
overall tour. We use a for loop and an if statement to print five pairs of nodes
per line so that the entire solution can be examined easily in the console.

The Result
Following is a sample output from a test run of the ACS application. I encour-
age you to compare this output with the various print statements and func-
tions used in the entire ACS code.

374 Chapter 9

*** Solving Berlin52 TSP Using the Ant Colony System ***

Reading data for Berlin52 TSP

round: 1 iter: 245 ant: 11
bestSoFar.fitness: 7994.43559098265
round: 2 iter: 105 ant: 0
bestSoFar.fitness: 7544.365901904086
round: 3 iter: 270 ant: 2
bestSoFar.fitness: 7842.717484844844

--snip--

round: 49 iter: 186 ant: 14
bestSoFar.fitness: 7544.365901904086
round: 50 iter: 226 ant: 9
bestSoFar.fitness: 7721.297918696817

bestOverallFitness: 7544.365901904086

bestOverallTour:
(14, 5) (5, 3) (3, 24) (24, 11) (11, 27)
(27, 26) (26, 25) (25, 46) (46, 12) (12, 13)
(13, 51) (51, 10) (10, 50) (50, 32) (32, 42)
(42, 9) (9, 8) (8, 7) (7, 40) (40, 18)
(18, 44) (44, 31) (31, 48) (48, 0) (0, 21)
(21, 30) (30, 17) (17, 2) (2, 16) (16, 20)
(20, 41) (41, 6) (6, 1) (1, 29) (29, 22)
(22, 19) (19, 49) (49, 28) (28, 15) (15, 45)
(45, 43) (43, 33) (33, 34) (34, 35) (35, 38)
(38, 39) (39, 36) (36, 37) (37, 47) (47, 23)
(23, 4) (4, 14)

optimaCount: 5

We can see that on this occasion, the first instance of global optima was
found in the second round (during iter = 105 and by ant number 0). A near-
optimal solution with a fitness of 7548.99 was found multiple times (not
shown). The best overall solution had a fitness of 7544.3659, which is the
known shortest tour length for the Berlin52 problem.

All the nodes that belong to the optimal (best overall) tour are also
shown in the output. Notice that the optimal tour is a closed loop, and it
returns to the same node it starts from. The sequence of the nodes in the
optimal solution may differ when you run the code. This will not affect the
tour length (therefore, its fitness will remain the same).

The final item in the output, optimaCount, indicates that during the entire
process, the global optimal solution was found 5 times out of 50 rounds
(although each of those rounds might have found the global optimal solu-
tion more than once). If you plot the nodes that belong to the best overall
tour by using their x- and y-coordinates, the optimal tour will look like the
path shown in Figure 9-4.

Agent-Based Algorithms 375

0

200

400

600

800

1,000

1,200

1,400

0 500 1,000 1,500 2,000

y-
co

or
di

na
te

s
of

 n
od

es

x- coordinates of nodes

Figure 9-4: The optimal tour for the Berlin52 traveling salesman problem

To visualize the convergence patterns for the rounds that found the
global optima, you can add a few additional lines of code to save the rel-
evant data from intermediate steps and plot the data. A typical convergence
plot will look like the patterns shown in Figure 9-5.

7,000

7,500

8,000

8,500

9,000

9,500

10,000

0 50 100 150 200 250 300 350

Be
st

fit
ne

ss
 v

al
ue

Number of iterations

Series 1

Series 2

Series 3

Series 4

Series 5

Figure 9-5: Convergence patterns for the Berlin52 problem

376 Chapter 9

Before concluding this project, I want to make a couple of points
regarding the success rate of the ACS algorithm and the accuracy of the
solution generated by the code we developed. These comments will clarify
some questions that you may have when you run the code on your device or
compare the results with the same published elsewhere.

First, recalling that the NIAs used in this book are stochastic, the
optimaCount will vary each time you run the program. For the given set of val-
ues for the global parameters, I found the average optimaCount to be around 5
(based on 10 runs). However, if you change the values of the global param-
eters, this average success rate will change. I encourage you to play with
those parameters to develop an understanding of their relative influence in
finding the global optima.

Second, you may find in the literature that the optimal (shortest) tour
length for the Berlin52 problem is 7542, which is slightly different from the
optimal value we found, 7544.3659. This does not indicate any issues with
the ACS algorithm or with the code developed in this project; it is due to
the fact that some algorithms convert the nodal (intercity) distances to the
nearest integer values before solving the problem, for mathematical effi-
ciency. Therefore, those methods essentially solve a slightly different prob-
lem. However, our ACS application has identified the exact same optimal
route as reported in the literature.

Ant colony optimization is an area of active research, just like other
NIAs. New modifications are being proposed and tested to improve the
convergence and accuracy of this algorithm. I strongly encourage you to
consult recently published literature if you are interested in using ACS or
similar algorithms to solve large real-world routing problems.

Summary
This chapter completes your introduction to the fascinating world of NIAs
and their applications. You discovered two more powerful tools—particle
swarm optimization and ant colony systems—and you learned how to har-
ness the power of these algorithms in Kotlin. You put your skills to the test
with two real-world optimization problems: finding the global minimum
of a complex mathematical function and solving the traveling salesman
problem for a network of 52 locations in Berlin. You explored how the algo-
rithms converged to the optimal solutions over time and how to measure
their performance. And of course, you challenged yourself with exercises to
reinforce your learning.

Resources
Brownlee, Jason. Clever Algorithms: Nature-Inspired Programming Recipes.

Electronic version, June 16, 2012. https://github​.com​/clever​-algorithms​/
CleverAlgorithms.

Clerc, Maurice. Particle Swarm Optimization. London: ISTE, 2006.

https://github.com/clever-algorithms/CleverAlgorithms
https://github.com/clever-algorithms/CleverAlgorithms

Agent-Based Algorithms 377

Dorigo, Marco, and Thomas Stützle. Ant Colony Optimization. Cambridge,
MA: MIT Press, 2004.

Olsson, Andrea E., ed. Particle Swarm Optimization: Theory, Techniques and
Applications. New York: Nova Science, 2011.

Parsopoulos, Konstantinos E. “Particle Swarm Methods.” In Handbook of
Heuristics, edited by Rafael Martí, Panos M. Pardalos, and Mauricio G. C.
Resende, 639–685. Cham, Switzerland: Springer, 2018.

Solnon, Christine. Ant Colony Optimization and Constraint Programming.
London: ISTE, 2013.

TSPLIB. Symmetric Traveling Salesman Problem (TSP). Accessed June 15,
2024. http://comopt​.ifi​.uni​-heidelberg​.de​/software​/TSPLIB95​/.

Yang, Xin-She. Nature-Inspired Optimization Algorithms. 2nd ed. London:
Academic Press, 2021.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

I sincerely hope this book has sparked
your curiosity and passion for coding and

problem-solving. However, this is just the
beginning of your journey in the fascinating

world of Kotlin and its applications. You can use Kotlin
to tackle practical problems in almost any field of study,
from science and engineering to art and entertainment.

This book has given you a solid foundation in Kotlin’s core features.
You’re now ready to dive deep and explore more advanced topics, such as
Java interoperability, generics, extension functions, and coroutines. If your
goal is to become an Android app developer, you will also have to learn how
to use Android Studio and Jetpack Compose for developing apps with mod-
ern and multiplatform user interfaces.

As before, your primary source of information is the official documen-
tation at https://kotlinlang​.org. However, you can choose from many excellent
books that address your specific needs. No matter where your coding jour-
ney takes you next, you’ll benefit from learning about the practice of clean

A F T E R W O R D

https://kotlinlang.org

380 Afterword

coding and design patterns for developing more complex, fully functional
applications. I’ve listed some related resources below that could be valuable
additions to your library.

So keep coding, keep learning, and keep a curious mind!

Resources
Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship.

Boston: Pearson, 2008.

Mayer, Christian. The Art of Clean Code. San Francisco: No Starch Press, 2022.

Petzold, Charles. Code: The Hidden Language of Computer Hardware and
Software. 2nd ed. Published with the authorization of Microsoft
Corporation by Pearson Education, Inc., 2023.

Soshin, Alexey. Kotlin Design Patterns and Best Practices. 3rd ed. Birmingham,
UK: Packt, 2024.

This appendix provides an overview of basic
computing terms and concepts you’ll need

to understand before creating programs and
apps. It also walks you through setting up your

computer so you can run the Kotlin code in projects
throughout this book.

If you are new to programming, I recommend reviewing this appendix
to be sure you have the necessary background knowledge and workspace
setup.

Key Definitions
In this section, I’ll introduce a few key terms that are fundamental to
understanding what a computer program is and how it works. The code we
write relies on a bigger ecosystem of software (other programs such as the
operating system and the compiler) and hardware (the computer) to be
able to run and generate the desired output.

A P P E N D I X

382 Appendix

An operating system (OS) is a software program that serves as an interme-
diary between computer hardware and user applications. Popular operat-
ing systems include Microsoft Windows, macOS, Linux, and Android, each
tailored to specific devices and computing environments. An OS manages
and controls various hardware resources—such as memory, processors,
input/output devices, and storage—which provide a standardized interface
for software programs to interact with the underlying hardware. It enables
multiple applications to run concurrently, ensuring efficient and secure uti-
lization of system resources.

A computer program, often referred to as software or an app, is a set of
instructions that directs a computer to perform specific tasks. Programmers
write these instructions to solve problems, automate processes, or execute
desired computations. Once written, the program is typically translated
into machine code or an intermediate code by a compiler or interpreter to make
it executable on a computer. Examples of computer programs include word
processors, web browsers, games, and operating systems.

To write computer programs, we use a programming language, a set of
rules and symbols that can be understood and executed by a computer
system. Examples include Kotlin, Python, Java, C/C++, JavaScript, Rust,
and Go. Programming languages differ in syntax (the rules for writing
programs), semantics (the meaning and behavior of programs), and level of
abstraction (how close the language is to the format that the hardware can
follow). Each language has its advantages and limitations, making it more
or less suitable for different tasks such as web development, system pro-
gramming, data analysis, or artificial intelligence.

A library is a collection of prewritten code modules or functions that
programmers can use to perform common tasks. A standard library is an
integral part of a programming language, bundled with its core distribu-
tion to provide the standardized functionality expected to be available on
any system. It includes essential modules for tasks like input/output, data
manipulation, printing, and networking. Libraries can facilitate reusing
code, save time, and allow developers to build on existing solutions.

A text editor is a software application designed for creating, modify-
ing, and formatting plain text files. Unlike word processors, which often
include advanced formatting and layout features, text editors are focused
on the fundamental task of working with unformatted text. Text editors are
commonly used by software developers for writing code, as they provide a
lightweight and distraction-free environment. Popular text editors include
Notepad on Windows, TextEdit on macOS, and Vim on Linux. Also avail-
able are editors that have been customized for multiple platforms, such as
Notepadd++ and Sublime Text.

An integrated development environment (IDE) is a comprehensive software
tool designed to streamline and enhance the process of software develop-
ment. It typically provides a unified environment that integrates various
essential tools and features, including a text editor, a debugger, a compiler,
and build automation tools. Modern IDEs also include features such as syn-
tax highlighting, code completion, and project management. Popular IDEs
include Visual Studio Code, Eclipse, and IntelliJ IDEA, each catering to

Appendix 383

specific programming languages and development environments. We’ll use
IntelliJ IDEA for completing all coding tasks in this book because it offers
built-in support for Kotlin.

A compiler is a software tool that translates source code written in a
high-level programming language into machine code or an intermediate
code that can be executed directly by a computer or in various environ-
ments, such as the Java Virtual Machine (which we’ll discuss shortly). The
compilation process involves several stages, including lexical analysis, syn-
tax analysis, semantic analysis, optimization, and code generation.

Debugging is the process of finding and fixing errors (bugs) in a com-
puter program. It involves analyzing the code and using debugging tools
and techniques to find the cause of unexpected or incorrect results.
Debugging is a systematic and iterative task that requires technical skills,
problem-solving abilities, and a good grasp of the software’s logic.

The Java Development Kit (JDK) is a software development kit used by
Java and Kotlin developers for building, testing, and deploying applications.
The JDK includes a set of tools and utilities that facilitate programming,
including a compiler, a debugger, and other development tools. It also
includes the Java Runtime Environment (JRE), which is necessary for running
Java/Kotlin applications. The JRE lacks a compiler and thus is used only to
run precompiled Java or Kotlin programs. To create new programs, you’ll
need a JDK.

The Java Virtual Machine (JVM) is a crucial component of the JRE and
the JDK, serving as an abstraction layer between Java/Kotlin applications
and the underlying hardware and operating system. It enables the execu-
tion of Java bytecode, the compiled form of Java or Kotlin source code. The
JVM provides platform independence, allowing Java/Kotlin programs to
run on any device with a compatible JVM. It manages memory and secu-
rity features, as well as provides an execution environment for compatible
applications by interpreting bytecode or using just-in-time compilation for
optimized performance.

An executable file is a stand-alone file that can run on a computer and
perform certain tasks. An executable file contains the machine code that
the computer’s hardware can understand and execute, as well as informa-
tion about how the code and data are organized in memory. Unlike a text
file, an executable file is not human readable, because it is compiled from
other files, such as source code files written in languages like Fortran, C, or
C++. Examples of executable files are EXE files on Windows and APP files
on macOS.

Workflow for Creating an App
Creating a Kotlin app typically involves the following steps:

	 1.	Set up the project. Use an IDE like IntelliJ IDEA to create a new Kotlin
project. Choose the target platform (such as the JVM) and build sys-
tem (such as Maven or Gradle). A build system automates compiling,

384 Appendix

testing, and packaging code into an executable form. Most of the time,
the IDE’s default choices work well.

	 2.	Code in Kotlin. Use Kotlin to write the app logic. The IDE will typically
autosave the code file in a designated folder before running the code or
exiting.

	 3.	Build and compile. Compile the Kotlin code into bytecode. You can
choose to build and run at the same time or to just build the project to
check for any build-time errors.

	 4.	Test. Check the app’s quality and reliability with unit and integration
testing. Unit testing ensures that each unit (for example, a function,
a method, or a class) works as expected and promotes modular and
clear code. Integration testing verifies the interactions and interfaces
between components or systems in a larger app.

	 5.	Debug. Use the IDE’s debugging tools to identify and fix any issues in
the code. Set breakpoints, inspect variables, and step through the code
to understand how it works. You can insert print statements in various
code segments to ensure that the program logic is working as expected.

	 6.	Deploy. Package the compiled code and any resources into a deployable
format. For this, you can create a Java Archive file from your app and its
dependencies. A Java Archive (JAR) file is a collection of files that can be
run as a Java application on a JVM.

Setting Up Shop
Before you can start working through the chapters in this book and build-
ing your own Kotlin applications, you’ll need to complete these three steps.

Step 1: Download and Install IntelliJ IDEA
Go to the IntelliJ IDEA download page (since the link to this page can
change, find the current site with a quick internet search). Select the
Community Edition, which is free to use for noncommercial purposes.

Download the .exe file for Windows, the .dmg file for macOS, or the
.tar.gz file for Linux. The file will be downloaded to your default download
folder. Windows and Mac users can double-click the downloaded file to
start the installation; the installation wizard will guide you through the pro-
cess. Installing IntelliJ IDEA on a Linux device requires additional steps,
depending on the type of Linux powering your device. You can look up
installation instructions for your specific system online.

Appendix 385

Step 2: Download and Set Up the JDK
Next, you’ll need to install a JDK. I recommend using a version of the Azul
Zulu JDK that comes bundled with the JavaFX graphics library, which will
let you work on this book’s visualization projects without any further instal-
lation steps. I’ll guide you through this process and show you an example of
how to do it on Windows devices. The steps for Mac devices should be very
similar, but you can always look online for more detailed instructions if you
need to.

Find the Download Azul JDKs page via a quick internet search. Choose
the latest Long-Term Support (LTS) version for Windows. Choose the type
of device (CPU)—the most common type at the time of writing is x86-64-bit—​
and choose JDK FX as the Java package type.

W A R N I N G 	 Be sure to choose JDK FX and and not just JDK as the package type or the installa-
tion won’t include JavaFX.

Select .msi as the file type for downloading. Once you select the file
type, the download process should start automatically, and the file should
be saved in your default download folder.

Finally, double-click the downloaded file to start the installation. The
installation wizard will take you through the process. You don’t have to
make any changes to the default settings.

Another JDK package that comes bundled with JavaFX is BellSoft
Liberica Full JDK. You can install it the same way. Alternatively, you can
separately install the core Java SDK and OpenFX, an open source ver-
sion of JavaFX. Refer to the respective websites for detailed instructions
on the installation process and how to configure your IDE to use these
installations.

Step 3: Create a New Project
You’re now ready to create your very first “Hello, world!” app in Kotlin. For
this, you’ll need to set up a new project. This section shows you how to pro-
ceed on a Windows device. The steps for other systems are very similar.

Launch IntelliJ IDEA by clicking the desktop icon or from the Start
menu (you can use the search box to locate the program). In the left panel,
Projects should be selected by default (if not, select this). Next, click the
New Project button in the top right of the window. Your screen should now
look similar to Figure A-1.

386 Appendix

Figure A-1: Setting up a new Kotlin project

Enter HelloWorld as the project name (no spaces), and then select
Kotlin as the Language and Maven or Gradle as the Build system.

You must also select the JDK required for compiling and running your
code. If the installed Azul Zulu JDK is not preselected, open the drop-down
menu by clicking the downward-pointing triangle, navigate to the folder
where the JDK is installed, and select that folder. The location of the JDK
might look like this: C:\Program Files\Zulu\zulu-xx (the last two digits repre-
sent the version number).

Click Create to make the IDE configure a new Kotlin project for you.
This should bring you to the next screen, which shows the newly created
project “HelloWorld” in the left panel.

Expand the Project tree by repeatedly clicking > next to the project and
its branch names until you see an empty folder named kotlin. Right-click
kotlin and select NewKotlin class/FileFile. Your screen should look
similar to Figure A-2.

Appendix 387

Figure A-2: Creating a Kotlin file

Enter HelloWorld in the filename box and press enter (the IDE should
add .kt as an extension to the filename). You should be taken to the IDE
code editor window, as shown in Figure A-3.

Figure A-3: Starting to code in the code editor window

388 Appendix

You’re only a few steps away from writing and running your first Kotlin
code. Enter the following lines of code in the code editor:

fun main() {
 // Print "Hello, world!" in the console.
 println("Hello, world!")
}

This code creates the main() function, the entry point for any Kotlin
program. We use the fun keyword to declare a function and define the func-
tion’s body within a pair of curly brackets.

Inside the function, we use // to write a comment, a block of text that is
ignored by the compiler but tells the human user what a particular line or
block of code will do. Finally, we use the println() method, which is part of
the standard Kotlin library, to print a message in the console (a text-based out-
put window).

You can run this code by pressing shift-F10 or by clicking the right-
pointing green triangle next to Current File in the top panel. You can also
use the Run menu to run this program. Why not try out all these options?
Once you’ve run the program, the screen should look something like that
shown in Figure A-4.

Figure A-4: Printing “Hello, world!” in Kotlin

Notice the console along the bottom of the window. It displays the sin-
gle line of output produced by this program: Hello, world!

Congratulations on successfully composing and running your first
Kotlin application! You’re now ready to start exploring the world of Kotlin.

I N D E X

Symbols
+ (addition operator), 10
&& (AND operator), 13
-> (arrow symbol), 20, 35
* (asterisk), 28
@ (at sign), 25
\\ (backslash escape sequence), 16
{ } (braces), 16
: (colon), 29
+ (concatenation operator), 14
-- (decrement operator), 12
/ (division operator), 10
$ (dollar sign), 15
\$ (dollar sign escape

sequence), 16
!! (double-bang or null assertion

operator), 18
?: (Elvis operator), 17–18
== (equality operator), 12
> (greater-than operator), 12
++ (increment operator), 12
!= (inequality operator), 12
< (less-than operator), 12
= (main assignment

operator), 12
:: (member reference

operator), 33
% (modulo operator), 11, 155
* (multiplication operator), 10
! (NOT operator), 13
+= operator, 53
-= operator, 53
.. operator, 22
|| (OR operator), 13
?. (safe call operator), 17–18
- (subtraction operator), 10

A
A* search algorithm, xxix, 288,

288–300
code for, 292–297

display helper functions,
294–295

g-score, h-score, and f-score, 288
heuristic functions, 289–291

admissible and consistent, 289
approaches for generating,

289–290
result, 298–299
steps in algorithm, 291–292

abstract classes, 68, 71–72
declaring, 71
interfaces vs., 74

abstraction, heuristic function
generation through, 290

abstract keyword, 71–72
acceleration coefficients, 348
access modifiers, 63–64
ACS algorithm. See ant colony system

algorithm
action event listeners, 120–123
addAll() method, 99, 101, 105, 119
add() function, 30–34, 53, 55, 80,

98–99, 145, 282
addition operator (+), 10
addTask() method, 80
addToProcessedText() function, 163
ad hoc selection of h-scores, 289–290
agent-based algorithms, xxv–xxvi,

345–377. See also ant
colony system algorithm;
particle swarm
optimization

Page numbers in italics refer to figures and tables.

390 Index

alphabet in L-system, 242, 242
amplitude, 189
AnchorPane container, 97
AND operator (&&), 13
angular displacement, 190–191, 198
angular velocity, 191, 198
animation

frame rate, 120
JavaFX, 115–123

bouncing ball animation,
118–123

square animation, 116–117
ant colony system (ACS) algorithm,

356–361, 357
NP-hard problems, 358
pseudocode, 360–361
symbols, 358, 358–359
tour construction, 359–360
traveling salesman problem,

361–376
updating pheromone

trails, 360
appendText() method, 40
Application class, 92
applyFunction() function, 34
apps. See computer programs
area() method, 72–73
argmax function, 358
arguments, 29

named, 31–32
arithmetic operators, 10–11
Array constructor, 49–50
ArrayDeque class, 282
arrayOf() function, 48, 50–52
arrays, xxiv, 48–52

Array constructor, 49–50
indexes, 48
methods, 50, 50–51
multidimensional, 51–52
operations, 50
primitive, 49

arrow symbol (->), 20, 35
assignment operators, 12
aStar() function, 295–297
asterisk (*), 28
astronomical unit (AU), 211
at sign (@), 25
axiom in L-system, 242, 242

Azul JDK FX, 90
Azul Zulu JDK, 90

B
Babylonian square root algorithm,

xxvii, 128–130
code for, 129–130
origin of, 128
result, 130
steps in, 128

babylonianSquareRoot() function, 129
backslash escape sequence (\\), 16
bar charts, xxvi, 99–102

code for, 99–101
result, 101–102, 102

BFS. See breadth-first search
bfsQueue() function, 286
big O notation, 266–267
binary star system simulation, xxviii,

209–220
code for, 212–219
result, 220, 220
science behind, 210, 210
strategy for, 211–212

bisection() function, 180
bisection method, 178, 178–180
Boolean data type, 7, 8
BorderPane container, 97
bouncing ball animation, xxvii,

118–123, 123
action event listeners, 120–123
setting keyframes explicitly,

118–119
bouncyBall() method, 122
braces ({ }), 16
breadth-first search (BFS), xxix,

284–287
code for, 285–286
FIFO principle, 284–285
result, 286–287, 287
steps in algorithm, 285
time and space complexity, 281

break keyword, 23–24
Brown, Robert, 165
Brownian motion, 165
buildAntTour() function, 370–371
bytecode, 383
Byte data type, 8

Index 391

C
calcRMS1d() function, 169–170
calculateEarthMetrics() function,

138–139
calculateEdges() function, 366–367
calculatePheromone0() function, 365,

367–368
calculator, console-based, xxvi, 40–44

code for, 41–44
result, 44

camelCase, 5
cannonball flight prediction, xxvii,

175–182, 176
bisection method, 178, 178–180
code for, 179
numerical method, 178
result, 181, 181
strategy for, 178–179
trajectories, 181, 182

canvas in JavaFX, 107–115
drawing simple shapes,

107–108, 108
graphics context, 107

common methods, 109,
109–110

spiral seashell drawing, 110–117
Char data type, 7, 8
charts, 98–105

bar charts, 99–102
multiseries line charts, 102–105
steps for creating, 99

child classes, 65–67
child nodes, 97–98
ciphertext, 154
circumference of Earth, calculating,

xxvii, 136, 136–139
classes, xxiv, 57

common, 67–75
abstract, 68, 71–72
data, 68, 68–69
enum, 68, 74–75
interface, 68, 72–73
pair, 68, 70–71
triple, 68, 70

constructors, 58–61
primary, 58–59
secondary, 59–61

declaring, 57–58
encapsulation, 63–64
inheritance, 65–67
init block, 61–62
instances and instantiation,

57–58
methods, 62
naming, 7
polymorphism, 65–67
subclasses, 57
this keyword, 64–65

::class.java construct, 94
class keyword, 57
clear() method, 54
coding, xxii

benefits of learning, xxii
code examples on GitHub, xxx
key terms, xxx
workflow, 383–384

coffee cooling physics, xxviii, 200–209
code for, 202–209

calculating temperature
changes, 206–207

plotting temperature profiles,
207–209, 208

effect of mixing liquids, 201
Newton’s law of cooling, 200
strategy for, 201–202, 202

collections, xxiv, 52–57
lists, 52–54

mutable, 53–54
read-only, 52–53

maps, 56
sets, 54–55

colon (:), 29
comments, 4–5

documentation, 4–5
multiline, 4–5
single-line, 4
syntax, 4–5

compilers, 383
computer programs (software;

apps), 382
creation workflow, 383–384

concatenation, 14–15
method chaining, 15
operator (+), 14–15
techniques for, 15–16

392 Index

conditional statements, 18–21
if statements, 19–20
when statements, 20–21

console-based calculator, xxvi, 40–44
code for, 41–44
result, 44

constants, 6–7, 7
const keyword, 6–7
constructors, 49–50, 58–61

primary, 58–59
secondary, 59–61

contains() function, 55
containsKey() function, 56
continue keyword, 23
copying objects, 75–78

deep copy, 76–78
shallow copy, 75–76

copy() method, 68, 75–78
deep copy, 77–78
shallow copy, 75–76

cos() function, 112–113
createCoolingChart() function, 207
createRWChart1() and createRWChart2()

functions, 170, 172
crossover, 311, 314–315

real-coded genes, 314–315
single-point crossover, 314, 314

crossover() function, 319, 321,
329, 336

D
data classes, 68, 68–69
data structures

arrays, 48–52
Array constructor, 49–50
methods, 50, 50–51
multidimensional, 51–52
primitive, 49

classes, 57–75
constructors, 58–61
encapsulation, 63–64
inheritance, 65–67
init block, 61–62
methods, 62
polymorphism, 65–67
this keyword, 64–65

collections, 52–57
lists, 52–54

maps, 56
sets, 54–55

console-based task manager, 78–85
copying objects, 75–78

deep copy, 76–78
shallow copy, 75–76

data types, 7–10
casting (conversion), 9–10
common, 8
inferring, 8–9
suffixes, 9

data visualization. See visualization
debugging, 383–384
deconstruction, 69
decrement operator (--), 12
decrypt() function, 163
decryptIndexBlock() function, 163
deepCopyPerson() function, 77
deleteTask() method, 83
depth-first search (DFS), xxix, 280–284
depth in L-system, 242, 242

code for, 281–282
LIFO principle, 281
result, 282–284, 283
steps in algorithm, 280–281
time and space complexity, 285

describe() method, 72
determinants in encryption, 155
deterministic systems, 164
dfsStack() function, 282
displayGraph() function, 294
displayInfo() method, 65
displayList() function, 294
displayProduct() function, 161
displayShortestPath() function,

294–295
division operator (/), 10
documentation comments, 4–5
dollar sign ($), 15
dollar sign escape sequence (\$), 16
domain-specific knowledge, 289
Dorigo, Marco, 356
dot notation, 10
double-bang operator (!!), 18
Double data type, 7, 8
do...while loops, 27
downTo keyword, 23
drawCircle() method, 112–114

Index 393

drawFibonacciSpiral() function,
145–146

drawFountain() function, 188
draw() function, 247–248
drawing

Fibonacci spiral, 141–142, 142,
145–147

JavaFX
canvas, 107–115
graphics context, 107, 109,

109–110
simple shapes, 107–108
spiral seashell, 110–115

drawMSet() function, 256, 259
drawMultiTurnSpiral() method,

112–113
drawNozzles() function, 188
drawRectangle() method, 108
drawSquares() function, 231–232
drawStars() function, 217–218
drawTree() function, 240–241
drawTriangle() function, 237

E
Earth’s circumference, xxvii, 136,

136–139
code for, 138–139
Eratosthenes’s calculation,

136–138
exterior angle theorem, 137
result, 139

Eggholder function, 308, 309, 332–336,
339–340, 340, 350–351,
355, 355–356

Einstein, Albert, 165
elitism, 315
else clause, 19–20
Elvis operator (?:), 17–18
encapsulation, 63–64

access modifiers, 63–64
encrypt() function, 163
encryptIndexBlock() function, 163
encryption, 154

Hill cipher, xxvii, 154–164
enums, 68, 74–75
equality operator (==), 12
equals() method, 68
Eratosthenes, 133, 136–138

escape sequences, 16
Euclid’s formula

code for, 130–131
creating Pythagorean triples with,

xxvii, 130–132
primitive triples, 131
result, 132
steps in, 130

Euler-Cromer numerical method,
191–192

evolving gibberish into Shakespeare,
xxix, 316–323

code for, 316
driver function, 318–320
global declarations, 316–317
initializing population

and fitness evaluation,
317–318

operator functions, 320–321
result, 321–322
strategy for, 316

executable files, 383
exitProcess() function, 42
expressions, 9

F
Fibonacci (Leonardo of Pisa), 139–140
Fibonacci sequence, xxvii, 139–148

code for, 143–147
drawing the spiral, 145–147
generating the sequence, 145
printing the sequence, 147
setting up, 143–145

Fibonacci spiral, 141–142, 142
golden ratio, 141, 141
rabbit analogy, 140, 140
result, 147–148
steps in sequence, 140

Fibonacci spiral, 141–142, 142
FibonacciSpiral application class,

143–144
File class, 39–40
fillOval() method, 114
fillText() function, 114
fitness, 310

initializing evaluation of, 317–318,
326–327, 335–336

Float data type, 7–8, 8

394 Index

flow control, 18–27
conditional statements, 18–21

if statements, 19–20
when statements, 20–21

loops, 22
break keyword, 23–24
continue keyword, 23
for loops, 22–23
named for loops, 24–26
nested for loops, 24–26
while loops, 26–27

FlowPane container, 97
for loops, 22–26

break keyword, 23–24
continue keyword, 23
named, 24–26
nested, 24–26
step value, 22

fractals, 225–263. See also L-system;
Mandelbrot set

concept of, 226
fractal dimension, 227
fractal trees, xxviii, 239–242

code for, 240–241, 241
strategy for, 239, 239–240

“Hello, World!” project,
229–234

recursive functions, 227–229, 228
Sierpiński triangles, 226, 226–227,

227, 234–239
frame rate, 120
free diffusion, 165
frequency, 189
function overloading, 29, 32–33
functions, 27–34

custom, 29–34
arguments, 29
conditional expression

syntax, 33
declaring, 29
named arguments, 31–32
overloading, 29, 32–33
parameters, 29
providing default parameter

values, 31
referencing functions without

calling, 33–34

return type, 29
signatures, 29
single-expression functions,

30–31
higher-order, 35
importing, 28
invoking, 10
mathematical, 28–29
methods vs., 10
naming, 7
scope, 34–35

G
generateFibonacciNumbers()

function, 145
generate() function, 246–247
generatePythagoreanTriple() function,

131–132
genetic algorithms, xxv, 305–343.

See also genetic operators;
nature-inspired
algorithms

chromosomes, 310
evolving gibberish into

Shakespeare, 316–323
fitness, 310
key components of, 310–311
knapsack problem, 323–332
multivariate function optimization,

332–341
stopping condition for, 341–342

genetic operators, 310, 311–315
crossover, 311, 314–315
elitism, 315
mutation, 310–311, 315
selection, 311–314

getAngleAndVel() function, 186–187
getArithmeticOperation() function, 43
getConvergence() function, 256–258
getData() function, 101
getFactorial() function, 228,

228–229
getFitness() function, 317–318, 321,

327, 334, 336, 353
getGraphicsContext2D() method, 108
getHScore() function, 291, 297
getIndexBlock() function, 163

Index 395

getMaleData() and getFemaleData()
functions, 104

get() method, 14, 56
getText() function, 159, 161
getTrajectories() function, 186–188
GitHub, xxx
global minima and optima, 308, 308
globalPheromoneUpdate() function, 372
golden ratio, 141, 141
graphical user interfaces (GUIs), 37
greater-than operator (>), 12
greet() function, 31
GridPane container, 97

H
hashCode() method, 68
hash codes, 68
hasNextLine() method, 39
haversineDistance() function, 152–153
haversine formula, 148–153
heap sort

compared to other sorting
algorithms, 268

features of, 267
“Hello, world!” projects

creating, 385–387, 386, 387, 388
fractals, xxviii, 229–234

code for, 231–234, 232
strategy for, 230, 230–231

JavaFX, xxvi, 90–95
code for, 91, 92, 92–94
result, 93, 95

Heron of Alexandria, 128
heuristic search, 288–300, 309
higher-order functions, 35
Hill, Lester S., 154
Hill cipher, xxvii, 154–164

code for, 157–163
helper functions, 159–163
variables and data structures,

157–158
decryption steps, 157
encryption steps, 156–157
multiplying two matrices, 160–161
result, 163–164
terminology, 155–156

hyperspaces, 309

I
identity matrices, 155
IDEs (integrated development

environments), 4,
382–383

if...else structure, 19–20
if statements, 19–20
import keyword, 28
increment operator (++), 12
indexed characters, 14
inequality operator (!=), 12
inheritance, 65–67
init block, 61–62
initializeAnts() function, 369
initializePheromone() function,

365, 368
initialPositions() function, 215–216
initPopulation() function, 317–318,

321, 326, 330, 338
initSwarm() function, 351–352, 354
input and output, 37–40

console based, 37–38
file operations, 39

insertion sort, xxviii, 268–270
code for, 269–270
compared to other sorting

algorithms, 267
features of, 267
result, 270
steps in algorithm, 268–269

insertionSort() function, 269–270
intArrayOf() function, 52
Int data type, 7–8, 8
integrated development environments

(IDEs), 4, 382–383
IntelliJ IDEA, 4, 90–91

creating new projects, 385–387,
386, 387, 388

downloading and installing, 384
interfaces, 68, 72–73

abstract classes vs., 74
defining, 73

intermediate code, 382
internal access modifier, 64
intersect() function, 55
introduce() method, 63
inverse matrices, 155

396 Index

J
Java, xxii
Java Archive (JAR) files, 384
Java Development Kit (JDK), 89, 383

downloading and setting up, 385
JavaFX, 88, 89–123. See also charts

animation, 115–123
bouncing ball animation,

118–123
square animation, 116–117

creating projects in, 91
drawing with the canvas, 107–115
“Hello, world!” project, 90–95
key functionalities of, 89–90
object hierarchy, 96–98

child nodes, 98
layout containers, 97–98
Scene objects, 96–97
Stage object, 96

overview, 89–95
setting up, 90

Java Runtime Environment (JRE), 383
Java Virtual Machine (JVM), xxii, 383
JDK. See Java Development Kit
JetBrains, xxii
Jetpack Compose, 88
joinToString() method, 54
JRE (Java Runtime Environment), 383
JVM (Java Virtual Machine), xxii, 383

K
KeyFrame objects, 118–119, 122
keywords, 5
knapsack problem, xxix, 323–332

code for, 324–330
driver function, 327–328
global parameters, 324–326
initializing population and

fitness evaluation,
326–327

operator functions, 328–329
problem definition, 324–326

result, 330–332
strategy for, 323–324

Kotlin
advantages of, xxiii
app creation workflow, 383–384

basic skills, xxiv, 3–45
comments, 4–5
flow control, 18–27
functions, 27–34
input and output, 37–40
lambda expressions, 35–36
null and nullable types, 17–18
operators, 10–14
scope functions, 34–35
strings, 14–16
variables, 5–10

code examples on GitHub, xxx
creating new projects, 385–387,

386, 387, 388
Java and, xxii–xxiii
origin of, xxii

L
lambda expressions (lambdas),

35–36
parameters, 36

layout containers, 96–98
Group container, 97
HBox container, 98
Pane container, 97
VBox container, 98

Leonardo of Pisa (Fibonacci),
139–140

less-than operator (<), 12
Lets-Plot, 88
Liber Abaci (Fibonacci), 140
Liberica Full JDK, 90
libraries, 382
Lindenmayer, Aristid, 241
listOf() function, 52–53
lists, 40, 52–54

mutable, 53–54
read-only, 52–53

listTasks() method, 81–82
local minima and optima, 308,

308–309, 309
logical operators, 13, 13–14
Long data type, 8, 8
loops, 22–27

do...while loops, 27
for loops, 22–26

break keyword, 23–24
continue keyword, 23

Index 397

named, 24–26
nested, 24–26

while loops, 26–27
L-system, 241–245

components of, 242, 242
drawing patterns with Turtle

Graphics, 243–245, 244
notations and procedures, 243, 243

LSystemApp class, 249–251
L-system simulator, xxviii, 245–252

code for, 245–251
global declarations, 245
problem definition, 246

fractal examples, 251, 252
result, 251, 251, 252

M
machine code, 382
main assignment operator (=), 12
Mandelbrot, Benoit, 226
Mandelbrot set, 252–254

bulbs, 260, 260
cardioid, 260, 260
complex plane, 254
elephant valley, 260, 260–261, 261
orbits, 253, 253–254, 254
other fractals vs., 252
quadratic and recursive functions,

252–253
seahorse valley, 260, 260–261, 261

Mandelbrot set project, xxviii, 254–262
code for, 255–259

checking for convergence,
257–258

combining code segments,
258–259

finding and drawing members,
256–257, 257

global variables, 255–256
result, 259–261, 260, 261

map() method, 77–78
mapOf() function, 56
maps, 56
markTaskAsDone() method, 82–83
mathematical problems, xxv, 127–174

Babylonian square root algorithm,
128–130

Earth’s circumference, 136–139

Euclid’s formula and Pythagorean
triples, 130–132

Fibonacci sequence, 139–148
Hill cipher, 154–164
one-dimensional random walk

simulation, 164–173
shortest distance between two

locations, 148–153
sieve of Eratosthenes and prime

numbers, 133–136
mathematical spaces, 164
matrices in encryption, 155

multiplying two, 160–161
member reference operator (::), 33
merge sort, xxviii–xxix, 270–274, 271

code for, 271–273
compared to other sorting

algorithms, 268
features of, 267
result, 273–274

mergeSort() function, 271–273
methods, 62

array operation, 50, 50–51
class, 62
common, for type casting, 9
functions vs., 10
invoking, 10
object-oriented programming, 38

Metrica (Heron), 128
modeling and simulation, xxv, 175–222

binary star system simulation,
209–220

cannonball flight prediction,
175–182

coffee cooling physics, 200–209
pendulum motion and phase

tracking, 189–199
water jet fountain design, 182–189

modular multiplicative inverse
(MMI), 155

modules, 64
modulo operator (%), 11, 155
modulus, 155
multidimensional arrays, 51–52
multiline comments, 4–5
multiplication operator (*), 10
multiply() function, 33–34
multiplyMatricesMod29() function, 160

398 Index

multiseries line charts, xxvi, 102–105
code for, 103–105
result, 105

multivariate function optimization
with genetic algorithm, xxix,

332–341
code for, 333–338
result, 338–341
strategy for, 333

with particle swarm, xxix,
350–356

code for, 350–354
result, 354–356

mutableListOf() function, 53–54
mutable lists, 53–54
mutableMapOf() function, 56
mutableSetOf() function, 54
mutation, 310–311, 315, 315
mutation() function, 321, 329, 336–337

N
named for loops, 24–26
namespace pollution, 28
nature-inspired algorithms (NIAs),

306–310. See also genetic
algorithms

decision variables, 306–307
global minima and optima, 308, 308
hyperspaces, 309
local minima and optima, 308,

308–309, 309
objective functions, 306–308, 307
optimization problems, 306–310
well-behaved functions, 308
when to use, 310

nested for loops, 24–26
newline escape sequence (\n), 16, 40
newtonCooling() function, 205–207
Newton’s law of cooling, 200
NOT operator (!), 13
NP-hard problems, 358
null, 17–18
nullable types, 17–18
null assertion operator (!!), 18
null pointer exceptions, 17
numerical method for predicting

trajectory of
projectiles, 178

O
objective functions, 306–308, 307
object-oriented programming, 38
objects, 38, 49
one-dimensional random walk

simulation, xxvii, 164–173
code for, 166–170
one-dimensional model, 165,

165–166
random walks, 164
result, 170–173, 171, 172
RMS distance, 166, 168–173, 172

OpenFX project, 89
open keyword, 66
operating systems (OSs), 382
operators, 10–14

arithmetic, 10–11
assignment, 12
logical, 13–14, 13
relational, 12–13
unary, 12

Oracle, 89
OR operator (||), 13
OSs (operating systems), 382
out-of-place sorting, 267
override keyword, 67

P
packages, naming, 7
pair classes, 68, 70–71
parameters, 29, 31
parent classes, 65–67
particle swarm optimization (PSO),

346–349
acceleration coefficients, 348
implementing for function

minimization, 348–349
initializing particle position and

velocity, 346
multivariate function optimization,

350–356
pseudocode, 349
updating particle position, 346, 348
updating particle velocity,

346–348, 347
velocity explosion, 348

partition() function, 275–277

Index 399

pattern databases, heuristic function
generation through, 290

pendulum motion and phase tracking,
xxviii, 189–199

angular displacement, 190–191, 198
angular velocity, 191, 198
code for, 192–197
Euler-Cromer numerical method,

191–192
result, 197–199, 198, 199
simple harmonic motion, 189–190
simple pendulum, 190, 190–191
strategy for, 191–192

performCalculation() function, 43
perimeter() method, 73
period, 189
periodic motion, 189
plaintext, 154
play() method, 119, 122
Plotly, 88
plus() method, 14
polymorphism, 65–67
pow() function, 28
primary constructors, 58–59
prime numbers, 133

identifying with sieve of
Eratosthenes, xxvii,
133–136

code for, 134–135
result, 135–136
steps in algorithm, 133
strategy for, 133–134

primitive arrays, 49
printBestOverallFitnessAndTour()

function, 373
printFibonacciSequenceAndRatios()

function, 147
print() function, 42
printLatLong() function, 151–152
println() function, 35, 42, 69, 114
printMessage() function, 34
printOptions() function, 79
printParams() method, 112–114
printPrimes() function, 135
printProcessedText() function,

163–164
printTimeAndTemp() function, 205
private access modifier, 63

processInterimResults() function, 365,
372–373

programming languages, 382
projectile() function, 180
projectiles, 176

cannonball flight prediction,
175–182

water jet fountain design, 182–189
properties, 38
protected access modifier, 64
PSO. See particle swarm optimization
public access modifier, 63
put() method, 56
Pythagoras, 130
Pythagorean triples, 130

creating with Euclid’s formula,
xxvii, 130–132

code for, 130–131
primitive triples, 131
Pythagorean theorem, 130, 131
result, 132
steps in formula, 130

Q
quadratic equations, 177
queue-based searching, 284–287
quick sort, xxix, 274–278

alternative techniques to avoid
time complexity, 275

code for, 275–277
compared to other sorting

algorithms, 268
features of, 267
result, 277, 277
steps in algorithm, 274

quickSort() function, 275–277

R
rabbit analogy by Fibonacci, 140, 140
randomization, 309
RandomWalk1D application class, 168
randomWalk1d() function, 168–169
random walks, 164

one-dimensional random walk
simulation, 164–173

code for, 166–170
one-dimensional model, 165,

165–166

400 Index

random walks (continued)
one-dimensional random walk

simulation (continued)
result, 170–173, 171, 172
RMS distance, 166,

168–173, 172
rank-based selection, 314
readCities() function, 366
readDoubleInput() function, 42
readIndex() function, 79, 82–83
readLines() method, 40
readln() function, 37, 44
read-only lists, 52–53
recursive functions, xxv, 227–229, 228.

See also fractals
relational operators, 12–13
relaxation heuristics, 289–290
removeAll() method, 53–54
removeAt() method, 53
remove() function, 55, 56
root-mean-square (RMS) distance, 165,

168–173
roulette wheel selection, 312,

312–313, 313
roundToInt() method, 325
rules in L-system, 242, 242
runACS() function, 365, 368–369
runGA() function, 318–319, 321,

327–328, 338
runPSO() function, 352–354
runValidation() function, 159–160

S
safe call operator (?.), 17–18
sayHello() method, 62
Scanner class, 39–40
Scene objects, 96–97
scope functions, 34–35
secondary constructors, 59–61
selectElites() function, 319–321
selection, 311

rank-based, 314
roulette wheel, 312, 312–313, 313
tournament, 312, 312

selectNodeToVisit() function, 370–372
setOf() function, 54
sets, 54–55
ShapeOfWater application class, 185–186

SHM (simple harmonic motion), 189
Short data type, 8
shortest distance between two locations,

finding, xxvii, 148–153
code for, 150–153
great circle concept, 148–149, 149
haversine formula, 148–153
latitude and longitude, 149
result, 153

showChoices() function, 42
show() method, 94, 99, 101, 105, 108, 122
Sierpiński triangles, xxviii, 226, 226–227,

227, 234–239
code for, 236–238, 238
L-system, 251, 252
strategy for, 235, 235

sieve of Eratosthenes, identifying prime
numbers with, xxvii,
133–136

code for, 134–135
result, 135–136
steps in algorithm, 133
strategy for, 133–134

sieveOfEratosthenes() function, 134–135
simple harmonic motion (SHM), 189
simplePendulumWithDrag() function,

194–196
SimulateBinarySystem application class,

212–216
simulation. See modeling and simulation
sin() function, 112–113
single-line comments, 4
single-point crossover, 314, 314
singleXYChart() function, 196–197
software. See computer programs
solar year (yr), 211
sorting and searching, xxv, 265–301

importance of, 265–266
search algorithms, 278–280

A* search algorithm, 288–300
breadth-first search, 284–287
depth-first search, 280–284
graphs, 278–279, 279
searching graphs, 279–280

sorting algorithms, 266–268
heap sort, 267, 268
insertion sort, 267, 267,

268–270

Index 401

merge sort, 267, 268, 270–274
quick sort, 267, 268, 274–278
space complexity, 267
stability, 267
time complexity, 266

spiral seashell drawing, xxvi, 110–115
code for, 111–114
result, 115, 115
strategy for, 110, 110–111

sqrt() function, 28–29
square animation, xxvi, 116–117

code for, 116–117
result, 117

square roots, finding with Babylonian
algorithm, xxvii, 128–130

code for, 129–130
origin of algorithm, 128
result, 130
stable solution, 191
steps in algorithm, 128

stack-based searching, 280–284
StackPane container, 97
stack space, 229
Stage object, 96
standard libraries, 382
start() method, 100–101, 108,

112, 120–121
stochasticity, 164, 310
String data type, 7, 8
strings, 14–16

concatenation, 14–15
escape sequences, 16
indexed characters, 14
string templates, 15–16

string templates, 15–16
complex expressions, 16
syntax, 15

strokeLine() function, 241
strokeOval() method, 114
strokePolygon() function, 231, 237
strokeRect() method, 108
subtract() function, 55
subtraction operator (-), 10
Sun Microsystems, 89

T
\t (tab escape sequence), 16
tail call optimization (TCO), 229

tail recursion, 229
task manager, console-based, xxvi,

78–85
code for, 78–84

adding tasks, 80
deleting tasks, 83
exiting program, 84
listing tasks, 81
marking tasks as done, 81–83

result, 84–85
TCO (tail call optimization), 229
tempAfterMixing() function,

205–207
text editors, 382
thermal mass, 201
this keyword, 64–65
Timeline class, 118–119, 122
toMutableList() function, 78
toRadians() function, 112–113
toString() method, 59, 68
tournament selection, 312, 312
TranslateTransition class, 117
traveling salesman problem, xxix,

361–376
code for, 361

buildAntTour() function,
370–371

calculateEdges() function,
366–367

calculatePheromone0()
function, 367–368

global declarations, 362–364
globalPheromoneUpdate()

function, 372
initializeAnts() function, 369
initializePheromone()

function, 368
main() block, 364–366
problem definition,

362–364, 363
readCities() function, 366
runACS() function, 368–369
selectNodeToVisit() function,

371–372
result, 373–376, 375

triple classes, 68, 70
truth tables, 13, 13
try...catch blocks, 38, 40

402 Index

Turtle class, 248–249
Turtle Graphics, 243–245, 244

U
unary operators, 12
union() function, 55
updateAndDrawTrails() function, 219
updateInfo() method, 65
updateStarPositions() function, 217

V
val keyword, 5
variables, 5–10. See also data types

constants, 6–7
declaring, 5–6
initializing, 5–6
mutable, 5
naming, 5, 7
read-only, 5
syntax, 5

var keyword, 5–6
vectors

in encryption, 155
forces with magnitude and

direction, 210
velocity explosion, 348
visualization, xxiv, 87–124

animation, 115–123
bouncing ball animation,

xxvii, 118–123
square animation, xxvi,

116–117
charts, 98–105

bar charts, xxvi, 99–102

multiseries line charts, xxvi,
102–105

drawing with the canvas, xxvi,
107–115

“Hello, world!” project, xxvi,
90–95

object hierarchy, 96–98
overview, 89–95
tools for, 88

W
Wacław, Sierpiński, 226
water jet fountain design, xxviii,

182–189
code for, 184

getAngleAndVel() function,
186–187

getTrajectories() function,
187–188

ShapeOfWater application class,
185–186

displacement equations, 177
nozzles, 183, 183
parameters, 183
result, 188, 188–189
strategy for, 184

well-behaved functions, 308
when expression, 80
when statements, 20–21
while loops, 26–27, 38, 80

Y
Yale University Library, 128
yr (solar year), 211

THE F INEST IN GEEK ENTERTA INMENT ™

nostarch.com
®

Kotlin isn’t just for building Android apps. As you’ll
learn in Kotlin from Scratch, it’s also a general
programming language for crafting both elegant
and effi cient code.

With the aid of 37 hands-on projects, you’ll move
quickly through the language basics while building
your problem-solving skills, even tackling advanced
concepts like fractals, dynamic systems, and nature-
inspired algorithms. You’ll explore the way Kotlin
handles variables, control structures, functions,
classes, and data structures, and you’ll learn to
create visualizations using Kotlin and the JavaFX
graphics library. Then you’ll build increasingly
sophisticated apps to practice what you’ve learned
while tackling challenges from math and science to
algorithms and optimization.

As you progress through the book, you will:

• Simulate physical systems, like the intricate dance
of binary stars

• Implement the classic Hill cipher for encryption and
decryption

• Generate beautiful fractals with recursive algorithms

• Program classic computer science algorithms for
sorting and searching

• Solve the infamous Berlin52 traveling salesman
problem

Expand your language repertoire and improve your
computational thinking with Kotlin from Scratch.

A B O U T T H E A U T H O R

Dr. Faisal Islam brings a wealth of interdisciplinary
expertise to Kotlin from Scratch. With an MS in civil
engineering and a PhD in resource economics, he
offers a unique perspective on applying computational
thinking to real-world challenges. Dr. Islam has over
20 years of experience in coding across multiple
languages (C, Java, Python, and Kotlin) to solve
complex problems and an extensive background in
simulation, modeling, and optimization.

$59.99 ($78.99 CDN)

L E A R N KO T L I N

T H R O U G H

3 7 P R O J E C T S

Covers Kotlin 2.x

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	The Power of Coding
	Why Kotlin?
	Who Is This Book For?
	What’s in This Book?
	The Projects
	Getting Started
	Resources

	Part I: Programming Fundamentals
	1. Kotlin Basics
	Using Comments
	Variables
	Constants
	Common Data Types

	Operators
	Arithmetic
	Assignment
	Unary
	Relational
	Logical

	Working with Strings
	Concatenation
	String Templates
	Escape Sequences

	Null and Nullable Types
	Flow Control
	Conditional Statements
	Loops

	Functions
	Built-in Mathematical Functions
	Custom Functions

	Scope Functions
	Lambda Expressions
	Basic Input and Output
	Console-Based Input and Output
	Simple File Operations

	Project 1: Build a Console-Based Calculator
	The Code
	The Result

	Summary
	Resource

	2. Arrays, Collections, and Classes
	Arrays
	Primitive Arrays
	The Array Constructor
	Array Operations
	Multidimensional Arrays

	Collections
	Lists
	Sets
	Maps

	An Introduction to Classes
	Constructors
	The init Block
	Methods
	Encapsulation
	The this Keyword
	Inheritance and Polymorphism

	Common Classes and Custom Types
	Data Classes
	Pairs and Triples
	Abstract Classes
	Interfaces
	Enum Classes

	Copying Objects
	Shallow Copy
	Deep Copy

	Project 2: Build a Versatile Task Manager
	The Code
	The Result

	Summary
	Resource

	3. Visualizing with JavaFX
	Data Visualization Tools for Kotlin
	An Overview of JavaFX
	Key Functionalities
	Setup

	Project 3: Build “Hello, World!” in JavaFX
	The Code
	The Result

	The JavaFX Object Hierarchy
	The Stage
	Scenes
	Layout Containers
	Child Nodes

	Creating JavaFX Charts
	Project 4: Visualize Data as a Bar Chart
	The Code
	The Result

	Project 5: Create a Multiseries Line Chart
	The Code
	The Result

	Drawing with the Canvas
	A Simple Shape
	Common Graphics Context Methods

	Project 6: Draw a Spiral Seashell
	The Strategy
	The Code
	The Result

	Animation in JavaFX
	Project 7: Animate a Square
	The Code
	The Result

	Project 8: Animate a Bouncing Ball
	Setting Keyframes Explicitly
	Using an Action Event Listener

	Summary
	Resources

	Part II: Applications in Math and Science
	4. Solving Mathematical Problems with Code
	Project 9: Find the Square Root with the Babylonian Algorithm
	The Code
	The Result

	Project 10: Create Pythagorean Triples with Euclid’s Formula
	The Code
	The Result

	Project 11: Identify Prime Numbers with the Sieve of Eratosthenes
	The Strategy
	The Code
	The Result

	Project 12: Calculate Earth’s Circumference the Ancient Way
	The Code
	The Result

	Project 13: Code the Fibonacci Sequence
	The Golden Ratio
	The Fibonacci Spiral
	The Code
	The Result

	Project 14: Find the Shortest Distance Between Two Locations on Earth
	The Code
	The Result

	Project 15: Do Encryption with the Hill Cipher
	How It Works
	The Code
	The Result

	Project 16: Simulate a One-Dimensional Random Walk
	A One-Dimensional Model
	The Code
	The Result

	Summary
	Resources

	5. Modeling and Simulation
	Project 17: Predict the Flight of a Cannonball
	The Strategy
	The Code
	The Result

	Project 18: Design a Fountain with Water Jets
	The Strategy
	The Code
	The Result

	Project 19: Track a Pendulum’s Motion and Phase
	The Motion of a Simple Pendulum
	The Strategy
	The Code
	The Result

	Project 20: The Physics of Coffee Cooling
	Newton’s Law of Cooling
	The Effect of Mixing Liquids
	The Strategy
	The Code

	Project 21: Simulate a Binary Star System
	The Science of Binary Star Systems
	The Strategy
	The Code
	The Result

	Summary
	Resources

	Part III: Recursion, Sorting, and Searching
	6. Recursive Functions and Fractals
	The Concept of Fractals
	Recursive Functions
	Project 22: The “Hello, World!” of Fractals
	The Strategy
	The Code

	Project 23: Draw the Sierpiński Triangle
	The Strategy
	The Code

	Project 24: Create a Fractal Tree
	The Strategy
	The Code

	The L-System and Turtle Graphics
	Formalizing the L-System
	Drawing L-System Patterns with Turtle Graphics

	Project 25: Design an L-System Simulator
	The Code
	The Result

	The Mighty Mandelbrot Set
	Project 26: Code and Visualize the Mandelbrot Set
	The Code
	The Result

	Summary
	Resources

	7. Sorting and Searchin
	Sorting Algorithms
	Project 27: Space-Efficient Sorting with Insertion Sort
	The Code
	The Result

	Project 28: Faster Sorting with Merge Sort
	The Code
	The Result

	Project 29: High-Efficiency Sorting with Quick Sort
	The Code
	The Result

	Search Algorithms
	What Is a Graph?
	How to Search a Graph

	Project 30: Stack-Based Searching with Depth-First Search
	The Code
	The Result

	Project 31: Queue-Based Searching with Breadth-First Search
	The Code
	The Result

	Project 32: Heuristic Searching with A*
	The Heuristic Function
	The Algorithm
	The Code
	The Result

	Summary
	Resources

	Part IV: Optimization with Nature-Inspired Algorithms
	8. The Genetic Algorithm
	Nature-Inspired Algorithms
	The Optimization Problem
	When to Use NIAs

	An Overview of the Genetic Algorithm
	Genetic Operators
	Selection
	Crossover
	Mutation
	Elitism

	Project 33: Evolve Gibberish into Shakespeare
	The Strategy
	The Code
	The Result

	Project 34: Solve the Knapsack Problem
	The Strategy
	The Code
	The Result

	Project 35: Optimize a Multivariate Function with the Genetic Algorithm
	The Strategy
	The Code
	The Result

	Stopping Condition for Genetic Algorithms
	Summary
	Resources

	9. Agent-Based Algorithms
	An Overview of Particle Swarm Optimization
	Implementing PSO for Function Minimization
	Project 36: Optimize a Multivariate Function with a Particle Swarm
	The Code
	The Result

	Ant Colony Optimization
	The ACS Algorithm
	Symbols and Their Meanings
	The Steps of ACS

	Project 37: Solve the Traveling Salesman Problem with an Ant Colony System
	The Code
	The Result

	Summary
	Resources

	Afterword
	Appendix
	Key Definitions
	Workflow for Creating an App
	Setting Up Shop
	Step 1: Download and Install IntelliJ IDEA
	Step 2: Download and Set Up the JDK
	Step 3: Create a New Project

	Index
	Back Cover

