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PREFACE

Many books teach you how to do artificial intelligence (AI).
Similarly, many popular books tell you about AI. However, what
seems to be missing is a book that teaches you how AI works at
a conceptual level. AI isn’t magic; you can understand what it’s
doing without burying yourself in complex mathematics.

This book fills that void with a math-free explanation of how AI
works. While some books are down in the weeds and others
offer a bird’s-eye view, this book is at treetop level. It aims to
provide you with enough detail to understand the approach
without getting bogged down in nitty-gritty mathematics. If that
piques your interest, I invite you to read on.

You’ll run across places where **** appears throughout the
book. These markers highlight a shift in the topic or a transition
point. In a textbook, **** would indicate a new section, but this
isn’t a textbook, nor do I want it to feel like one; so, instead of



sections and subsections, I’ll use asterisks to warn you that a
change is coming. Like this . . .

****

I first learned about artificial intelligence in 1987, in an
undergraduate course of the same name. What people typically
mean by AI has changed somewhat over the intervening
decades. Still, the goal remains the same: to mimic intelligent
behavior in a machine.

Few people in the 1980s had any reason to learn about AI, if
they were even aware of it. AI had minimal impact on their
daily lives, beyond the occasional renegade computer in science
fiction TV shows and movies like Star Trek or WarGames, to say
nothing of the relentless and terrifying Terminator.

However, the 1980s are long gone, current retro fashion trends
notwithstanding, and AI is everywhere. It affects our lives in
numerous ways every day, from phones telling us to drive here
and not there, to labeling friends and family in pictures, to the
articles and ads fed to us continuously online, like it or not. And
this is to say nothing of the recent AI explosion involving large
language models, which many interpret as “true AI” at last.



AI is also there behind the scenes in ways we seldom realize:
airline flight planning, shipping and logistics, factory
automation, satellite imaging of the earth, and helping your
doctor decide if that lump is cancer, to name a few.

Why learn about AI now?

This book answers that question by explaining what happened,
when it happened, why it happened, and, most importantly,
how it happened—all without hype or a single mathematical
equation. Frankly, the reality behind the AI revolution is
impressive enough; the hype is unnecessary.

At this point, I feel some words about me are in order. After all,
I’m asking you to join me on a journey through the world of AI,
so it’s reasonable to wonder about your guide. I certainly
would.

As mentioned earlier, I was introduced to AI in the late 1980s. I
began working in AI, in the subfield known as machine learning,
in 2003, applying machine learning models to intravascular
ultrasound images.

I first heard of deep learning in 2010. Deep learning is a subfield
of machine learning. I’ll clarify the difference between deep



learning, machine learning, and artificial intelligence in
Chapter 1, but for now you can think of them as the same thing.

In 2012, AI burst onto the scene—or at least into the news—
with the advent of what came to be called AlexNet and a
curious experiment at Google involving computers that learned
to identify cats in YouTube videos. I was in the room at the 2012
International Conference on Machine Learning in Edinburgh,
Scotland, when Google presented its paper. It was standing
room only for the conference’s 800 or so attendees.

In 2016, I completed a PhD in computer science specializing in
AI at the University of Colorado, Boulder, under the direction of
Michael Mozer. I’ve worked in AI daily since then, primarily in
the defense industry, with a short break in 2016 to help co-
found a medical AI startup.

After AlexNet, things changed quickly, as seemingly monthly
some new AI-related “miracle” appeared in the academic
literature, if not on the evening news. The only way to keep up
was to attend conferences multiple times per year; waiting for
results to appear in an academic journal was pointless, as the
field was progressing too rapidly for the typically slow pace of
academic publishing.



I’m writing this preface in November 2022 at the NeurIPS
conference. NeurIPS is arguably the premier AI conference (no
hate emails, please!), and this is the first time it’s been held in
person since the COVID-19 pandemic. Attendance is high,
though perhaps not as high as at the 2019 conference, for which
a lottery was held to determine which 13,500 people could
attend. The fact that conference attendance has blossomed from
a few hundred to over 10,000 in a decade tells us how
important AI research has become.

The names of the tech industry leaders who support these
conferences, which are prime hunting grounds for graduate
students, also reveal the significance of AI. You’ll find expo
booths for Google, DeepMind (also Google), Meta (read:
Facebook), Amazon, Apple, and others. AI drives much of what
these companies do. AI is big bucks. AI runs on data, and these
companies gobble up all the data we freely give them in
exchange for their services.

By the end of the book, you’ll understand what AI is doing
under the hood (or bonnet, if you prefer). Ultimately, it isn’t all
that difficult to comprehend, though the devil is definitely in the
details.

The book proceeds as follows:



Chapter 1, And Away We Go: An AI Overview We dive in with a quick overview of
AI essentials and a basic example.

Chapter 2, Why Now? A History of AI AI didn’t just fall from the sky. This chapter
gives you AI’s backstory and clarifies why the revolution is happening now.

Chapter 3, Classical Models: Old-School Machine Learning Modern AI is all neural
networks, but to understand what neural networks are doing, it helps to understand

the models that came before.

Chapter 4, Neural Networks: Brain-Like AI If you want to know what a neural
network is, how it’s trained, and how it’s used, then this chapter is for you.

Chapter 5, Convolutional Neural Networks: AI Learns to See Much of the power

of modern AI comes from learning new ways to represent data. If that sentence has
no meaning for you, this chapter will help.

Chapter 6, Generative AI: AI Gets Creative Traditional supervised machine
learning models attach labels to inputs. Generative AI produces novel output,

including text, images, and even video. This chapter explores two popular
approaches: generative adversarial networks (GANs) and diffusion models. GANs
provide the intuition we need to explore diffusion models and, in Chapter 7, large
language models (LLMs). Diffusion models are adept at producing detailed,

photorealistic images and videos from text prompts.

Chapter 7, Large Language Models: True AI at Last? OpenAI’s fall 2022 release of
its large language model, ChatGPT, might very well have ushered in the era of true AI.
This chapter explores LLMs: what they are, how they work, and the claim that they

are something new and disruptive.

Chapter 8, Musings: The Implications of AI The advent of large language models
has altered the AI landscape. This chapter muses on the implications.



At the end of the book, you’ll find a collection of additional
resources to explore, should the AI bug bite and you want to
learn more. Personally, and admittedly with bias, I recommend
my books Practical Deep Learning: A Python-Based Introduction
(2021) and Math for Deep Learning: What You Need to Know to
Understand Neural Networks (2021), both available from No
Starch Press. They will give you what you need to go from
reading about how AI works conceptually to “doing” AI.

Finally, as you read, you’ll notice that specific phrases in the
text are emphasized. Definitions for many of these emphasized
words and phrases are found in the glossary at the end of the
book. Like every field, AI has its jargon. Keeping all the terms in
your head is burdensome, hence the glossary to help you
remember them.

I’m a real person. I know because I can successfully identify
and click images of trains and traffic lights. If you have
comments or questions about the material in this book, I want
to hear from you. Please email me at rkneuselbooks@gmail.com.

Now, if you’re ready, away we go.

mailto:rkneuselbooks@gmail.com


1 
AND AWAY WE GO: AN AI OVERVIEW

Artificial intelligence attempts to coax a machine, typically a
computer, to behave in ways humans judge to be intelligent.
The phrase was coined in the 1950s by prominent computer
scientist John McCarthy (1927–2011).

This chapter aims to clarify what AI is and its relationship to
machine learning and deep learning, two terms you may have
heard in recent years. We’ll dive in with an example of machine
learning in action. Think of this chapter as an overview of AI as
a whole. Later chapters will build on and review the concepts
introduced here.

****

Computers are programmed to carry out a particular task by
giving them a sequence of instructions, a program, which



embodies an algorithm, or the recipe that the program causes
the computer to execute.

The word algorithm is cast about often these days, though it
isn’t new; it’s a corruption of Al-Khwarizmi, referring to ninth-
century Persian mathematician Muhammad ibn Musa al-
Khwarizmi, whose primary gift to the world was the
mathematics we call algebra.

****

Let’s begin with a story.

Tonya owns a successful hot sauce factory. The hot sauce recipe
is Tonya’s own, and she guards it carefully. It’s literally her
secret sauce, and only she understands the process of making it.

Tonya employs one worker for each step of the hot sauce–
making process. These are human workers, but Tonya treats
them as if they were machines because she’s worried they’ll
steal her hot sauce recipe—and because Tonya is a bit of a
monster. In truth, the workers don’t mind much because she
pays them well, and they laugh at her behind her back.

Tonya’s recipe is an algorithm; it’s the set of steps that must be
followed to create the hot sauce. The collection of instructions



Tonya uses to tell her workers how to make the hot sauce is a
program. The program embodies the algorithm in a way that
the workers (the machine) can follow step by step. Tonya has
programmed her workers to implement her algorithm to create
hot sauce. The sequence looks something like this:

There are a few things to note about this scenario. First, Tonya
is definitely a monster for treating human beings as machines.
Second, at no point in the process of making hot sauce does any
worker need to understand why they do what they do. Third,
the programmer (Tonya) knows why the machine (the workers)
does what it does, even if the machine doesn’t.

****

What I’ve just described is how we’ve controlled virtually all
computers, going back to the first conceptual machines
envisioned by Alan Turing in the 1930s and even earlier to the
19th-century Analytical Engine of Charles Babbage. A human
conceives an algorithm, then translates that algorithm into a
sequence of steps (a program). The machine executes the
program, thereby implementing the algorithm. The machine
doesn’t understand what it’s doing; it’s simply performing a
series of primitive instructions.



The genius of Babbage and Turing lay in the realization that
there could be a general-purpose machine capable of executing
arbitrary algorithms via programs. However, I would argue that
it was Ada Lovelace, a friend of Babbage’s often regarded as the
world’s first programmer, who initially understood the far-
reaching possibilities of what we now call a computer. We’ll talk
more about Turing, Babbage, and Lovelace in Chapter 2.

NOTE

In Lovelace’s day, a “computer” was not a machine
but a human being who calculated by hand. Hence,
Babbage’s Engine was a mechanical computer.

Let’s take a moment to explore the relationship between the
terms AI, machine learning, and deep learning. On the one hand,
all three have become synonymous as referring to modern AI.
This is wrong, but convenient. Figure 1-1 shows the proper
relationship between the terms.



Figure 1-1: The relationship between artificial intelligence,
machine learning, and deep learning

Deep learning is a subfield of machine learning, which is a
subfield of artificial intelligence. This relationship implies that
AI involves concepts that are neither machine learning nor
deep learning. We’ll call those concepts old-school AI, which
includes the algorithms and approaches developed from the
1950s onward. Old-school AI is not what people currently mean
when discussing AI. Going forward, we’ll entirely (and unfairly)
ignore this portion of the AI universe.

Machine learning builds models from data. For us, a model is an
abstract notion of something that accepts inputs and generates
outputs, where the inputs and outputs are related in some
meaningful way. The primary goal of machine learning is to
condition a model using known data so that the model produces
meaningful output when given unknown data. That’s about as



clear as muddy water, but bear with me; the mud will settle in
time.

Deep learning uses large models of the kind previously too big
to make useful. More muddy water, but I’m going to argue that
there’s no strict definition of deep learning other than that it
involves neural networks with many layers. Chapter 4 will
clarify.

In this book, we’ll be sloppy but in accord with popular usage,
even by experts, and take “deep learning” to mean large neural
networks (yet to be formally defined), “machine learning” to
mean models conditioned by data, and “AI” to be a catchall for
both machine learning and deep learning—remembering that
there is more to AI than what we discuss here.

Data is everything in AI. I can’t emphasize this enough. Models
are blank slates that data must condition to make them suitable
for a task. If the data is bad, the model is bad. Throughout the
book, we’ll return to this notion of “good” and “bad” data.

For now, let’s focus on what a model is, how it’s made useful by
conditioning, and how it’s used after conditioning. All this talk
of conditioning and using sounds dark and sinister, if not



altogether evil, but, I assure you, it’s not, even though we have
ways of making the model talk.

****

A machine learning model is a black box that accepts an input,
usually a collection of numbers, and produces an output,
typically a label like “dog” or “cat,” or a continuous value like
the probability of being a “dog” or the value of a house with the
characteristics given to the model (size, number of bathrooms,
ZIP code, and so on).

The model has parameters, which control the model’s output.
Conditioning a model, known as training, seeks to set the
model’s parameters in such a way that they produce the correct
output for a given input.

Training implies that we have a collection of inputs, and the
outputs the model should produce when given those inputs. At
first blush, this seems a bit silly; why do we want the model to
give us an output we already have? The answer is that we will,
at some future point, have inputs for which we don’t already
have the output. This is the entire point of making the model: to
use it with unknown inputs and to believe the model when it
gives us an output.



Training uses the collection of known inputs and outputs to
adjust the model’s parameters to minimize mistakes. If we can
do that, we begin to believe the model’s outputs when given
new, unknown inputs.

Training a model is fundamentally different from
programming. In programming, we implement the algorithm
we want by instructing the computer step by step. In training,
we use data to teach the model to adjust its parameters to
produce correct output. There is no programming because,
most of the time, we have no idea what the algorithm should
be. We only know or believe a relationship exists between the
inputs and the desired outputs. We hope a model can
approximate that relationship well enough to be useful.

It’s worth remembering the sage words of British statistician
George Box, who said that all models are wrong, but some are
useful. At the time, he was referring to other kinds of
mathematical models, but the wisdom applies to machine
learning.

Now we understand why the field is called machine learning:
we teach the machine (model) by giving it data. We don’t
program the machine; we instruct it.



Here, then, is the machine learning algorithm:

1. Gather a training dataset consisting of a collection of inputs
to the model and the outputs we expect from the model for
those inputs.

2. Select the type of model we want to train.
3. Train the model by presenting the training inputs and

adjusting the model’s parameters when it gets the outputs
wrong.

4. Repeat step 3 until we are satisfied with the model’s
performance.

5. Use the now-trained model to produce outputs for new,
unknown inputs.

Most of machine learning follows this algorithm. Since we’re
using known labeled data to train the model, this approach is
called supervised learning: we supervise the model while it
learns to produce correct output. In a sense, we punish the
model until it gets it right. This is a dark enterprise, after all.

We’re ready for an example, but let’s first summarize the story
so far. We want a system where, for an unknown input, we get a
meaningful output. To make the system, we train a machine
learning model using a collection of inputs and their known
outputs. Training conditions the model by modifying its



parameters to minimize the mistakes it makes on the training
data. When we’re satisfied with the model’s performance, we
use the model with unknown inputs because we now believe
the model when it gives us an output (at least, most of the time).

Our first example comes from a famous dataset consisting of
measurements of the parts of iris flowers. This dataset is from
the 1930s, indicating how long people have contemplated what
we now call machine learning.

The goal is a model that, for an input collection of
measurements, outputs the specific species of iris flower. The
full dataset has four measurements for three iris species. We’ll
keep it simple and use two measurements and two species:
petal length and width in centimeters (cm) for I. setosa versus I.
versicolor. Therefore, we want the model to accept two
measurements as input and give us an output we can interpret
as I. setosa or I. versicolor. Binary models like this decide
between two possible outputs and are common in AI. If the
model decides between more than two categories, it’s a
multiclass model.

We have 100 samples in our dataset: 100 pairs of petal
measurements, and the corresponding iris flower types. We’ll



call I. setosa class 0 and I. versicolor class 1, where class labels
the input categories.

Models often want numeric class labels, which tells us that
models don’t know what their inputs and outputs mean; they
only make associations between sets of inputs and outputs.
Models don’t “think” using any commonly accepted definition
of the word. (The models of Chapter 7 might beg to differ, but
more on that then.)

****

Here we must pause to introduce some critical terminology. I
know, not what you want to read, but it’s essential to all that
follows. Artificial intelligence makes frequent use of vectors
and matrices (singular “matrix”). A vector is a string of
numbers treated as a single entity. For example, the four
measurements of each iris flower mean we can represent the
flower as a string of four numbers, say, (4.5, 2.3, 1.3, 0.3). The
flower described by this vector has a sepal length of 4.5 cm,
sepal width of 2.3 cm, petal length of 1.3 cm, and petal width of
0.3 cm. By grouping these measurements together, we can refer
to them as a single entity.



The number of elements in a vector determines its
dimensionality; for example, the iris dataset uses four-
dimensional vectors, the four measurements of the flower. AI
often works with inputs that have hundreds or even thousands
of dimensions. If the input is an image, every pixel of that
image is one dimension, meaning a small 28-pixel-square image
becomes an input vector of 28×28, or 784 dimensions. The
concept is the same in 3 dimensions or 33,000 dimensions: it
remains a string of numbers treated as a single entity. But an
image has rows and columns, making it a two-dimensional
array of numbers, not a string. Two-dimensional arrays of
numbers are matrices. In machine learning, we often represent
datasets as matrices, where the rows are vectors representing
the elements of the dataset, like an iris flower, and the columns
are the measurements. For example, the first five flowers in the
iris dataset form the following matrix:

Each row is a flower. Notice that the first row matches the
vector example. The remaining rows list the measurements for
other flowers.



While you’re reading, keep these thoughts in the back of your
mind:

Vectors are strings of numbers often representing
measurements in a dataset.
Matrices are two-dimensional arrays of numbers often
representing datasets (stacks of vectors).

As we continue our exploration of AI, the differences between
vectors and matrices will come into focus. Now, let’s return to
our story.

****

The inputs to a model are its features. Our iris flower dataset
has two features, the petal’s length and width, which are
grouped into feature vectors (or samples). A single feature
vector serves as the model’s input. A binary model’s output is
typically a number relating to the model’s belief that the input
belongs to class 1. For our example, we’ll give the model a
feature vector consisting of two features and expect an output
that lets us decide whether we should call the input I.
versicolor. If not, we declare the input to be I. setosa because we
assume that inputs will always be one or the other.



Machine learning etiquette states that we should test our
model; otherwise, how will we know it’s working? You might
think it’s working when it gets all the training samples right, but
experience has taught practitioners this isn’t always the case.
The proper way to test a model is to keep some of the labeled
training data to use after training. The model’s performance on
this held-out test dataset better indicates how well the model
has learned. We’ll use 80 labeled samples for training and keep
20 of them for testing, making sure that both the training and
test sets contain an approximately even mix of both classes
(flower types). This is also essential in practice, as far as
possible. If we never show the model examples of a particular
class of input, how can it learn to distinguish that class from
others?

Using a held-out test set to judge the performance of a model
isn’t just etiquette. It addresses a foundational issue in machine
learning: generalization. Some machine learning models follow
a process quite similar to a widely used approach known as
optimization. Scientists and engineers use optimization to fit
measured data to known functions; machine learning models
also use optimization to condition their parameters, but the
goal is different. Fitting data to a function, like a line, seeks to
create the best possible fit, or the line that best explains the
measured data. In machine learning, we instead want a model



that learns the general characteristics of the training data to
generalize to new data. That’s why we evaluate the model with
the held-out test set. To the model, the test set contains new,
unseen data it didn’t use to modify its parameters. The model’s
performance on the test set is a clue to its generalization
abilities.

Our example has two input features, meaning the feature
vectors are two-dimensional. Since we have two dimensions,
we can opt to make a plot of the training dataset. (If we have
two or three features in a feature vector, we can plot the feature
vectors. However, most feature vectors have hundreds to
thousands of features. I don’t know about you, but I can’t
visualize a thousand-dimensional space.)

Figure 1-2 displays the two-dimensional iris training data; the x-
axis is petal length, and the y-axis is petal width. The circles
correspond to instances of I. setosa and the squares I.
versicolor. Each circle or square represents a single training
sample, the petal length and width for a specific flower. To place
each point, find the petal length on the x-axis and the petal
width on the y-axis. Then, move up from the x-axis and to the
right from the y-axis. Where your fingers meet is the point
representing that flower. If the flower is I. setosa, make the
point a circle; otherwise, make it a square.



Figure 1-2: The iris training data

The plot in Figure 1-2 shows the feature space of the training set.
In this case, we can visualize the training set directly, because
we only have two features. When that’s not possible, all is not
lost. Advanced algorithms exist that allow us to make plots like
Figure 1-2 where the points in two or three dimensions reflect
the distribution of the samples in the much higher-dimensional
space. Here, the word space means much the same as it does in
everyday parlance.

Look carefully at Figure 1-2. Does anything jump out at you?
Are the different classes mixed or well separated? Every circle
inhabits the lower-left corner of the plot, while all of the



squares are in the upper right. There is no overlap between the
classes, meaning they are entirely separate in the feature space.

How can we use this fact to make a classifier, a model that
classifies iris flowers? (While model is the more general term, as
not all models place their inputs into categories, when they do,
use the term classifier.)

We have many model types to choose from for our classifier,
including decision trees, which generate a series of yes/no
questions related to the features used to decide the class label to
output for a given input. When the questions are laid out
visually, they form a structure reminiscent of an upside-down
tree. Think of a decision tree as a computer-generated version
of the game 20 Questions.

Even though we have two features, petal length and petal
width, we can classify new iris flowers by asking a single
question: is the petal length less than 2.5 cm? If the answer is
“yes,” then return class 0, I. setosa; otherwise, return class 1, I.
versicolor. To classify the training data correctly, we need only
the answer to this simple question.

Did you catch what I did just now? I said that the question
correctly classifies all the training data. What about the 20 test



samples we didn’t use? Is our single-question classifier
sufficient to give each of them the correct label? In practice,
that’s what we want to know, and that is what we would report
as the classifier’s performance.

Figure 1-3 shows the training data again, along with the test
data we didn’t use to make our single-question classifier. The
solid circles and squares represent the test data.



Figure 1-3: The iris training data with the held-out test data
(solid)

None of the test data violates our rule; we still get correct class
labels by asking if the petal length is less than 2.5 cm. Therefore,
our model is perfect; it makes no mistakes. Congratulations, you
just created your first machine learning model!

We should be happy, but not too happy. Let’s repeat this
exercise, replacing I. setosa with the remaining iris species, I.
virginica. This leads to Figure 1-4, where the triangles are
instances of I. virginica.

Figure 1-4: The new iris training data



Hmm, things are not as clear-cut now. The obvious gap between
the classes is gone, and they overlap.

I trained a decision tree using this new iris dataset. As before,
there were 80 samples for training and 20 held back for testing.
This time, the model wasn’t perfect. It correctly labeled 18 of
the 20 samples, for an accuracy of 9 out of 10, or 90 percent.
This roughly means that when this model assigns a flower to a
particular class, there is a 90 percent chance it’s correct. The
previous sentence, to be rigorous, needs careful clarification,
but for now, you get the idea—machine learning models are not
always perfect; they (quite frequently) make mistakes.

Figure 1-5 shows the learned decision tree. Begin at the top,
which is the root, and answer the question in that box. If the
answer is “yes,” move to the box on the left; otherwise, move to
the right. Keep answering and moving in this way until you
arrive at a leaf: a box with no arrows. The label in this box is
assigned to the input.



Figure 1-5: The decision tree for I. virginica versus I. versicolor

The first decision tree classifier was trivial, as the answer to a
single question was sufficient to decide class membership. The
second decision tree classifier is more common. Most machine
learning models are not particularly simple. Though their
operation is comprehensible, understanding why they act as
they do is an entirely different matter. Decision trees are among
the few model types that readily explain themselves. For any
input, the path traversed from root to leaf in Figure 1-5 explains
in detail why the input received a particular label. The neural
networks behind modern AI are not so transparent.

****

For a model to perform well “in the wild,” meaning when used
in the real world, the data used to train the model must cover
the entire range of inputs that the model might encounter. For



example, say we want a model to identify pictures of dogs, and
our training set contains images of only dogs and parrots. While
the model performs well on our held-out test set, which also
includes pictures of dogs and parrots, what might happen when
we deploy the model and it comes across a picture of a wolf?
Intuitively, we might expect the model to say “it’s a dog,” just as
a small child might before they learn what a wolf is. This is
precisely what most machine learning models would do.

To illustrate this, let’s try an experiment. A popular dataset used
by all AI researchers consists of tens of thousands of small
images containing handwritten digits, 0 through 9. It goes by
the uninspiring name of MNIST (Modified NIST) because it was
derived in the late 1990s from a dataset constructed by the
National Institute of Standards and Technology (NIST), the
division of the United States Department of Commerce tasked
with implementing all manner of standards for just about
everything in the commercial and industrial realm.

Figure 1-6 presents some typical MNIST digit samples. Our goal
is to build a neural network that learns to identify the digits 0,
1, 3, and 9. We can train neural networks without knowing how
they work because of powerful, open source toolkits like scikit-
learn that are available to everyone. On the one hand, this
democratizes AI; on the other, a little knowledge is often a



dangerous thing. Models may appear to be good when they’re
flawed in reality, and lack of knowledge about how the models
work might prevent us from realizing that fact before it’s too
late.

Figure 1-6: Sample MNIST digits

After the classifier is trained, we’ll throw it a few curveballs by
handing it images of fours and sevens—inputs the AI never saw
during training. What might the model do with such inputs?

I trained the digits model using an open source toolkit. For now,
all we need to know about the dataset is that the input feature
vectors are unraveled digit images; the first row of pixels is
followed by the second row, then the third row, and so on, until
the entire image is unraveled into one long vector, a string of
numbers. The digit images are 28×28 pixels, making the feature
vector 784 numbers long. We’re asking the neural network to
learn about things in a 784-dimensional space, rather than the
simple 2-dimensional space we used previously, but machine
learning is up to the challenge.

The training set used to condition the neural network model
contained 24,745 samples, roughly 6,000 of each digit type (0, 1,



3, and 9). This is likely enough to fairly represent the types of
digits the model might encounter when used, but we need to try
it to know. AI is a largely empirical science.

The held-out test set, also containing the digits 0, 1, 3, and 9, had
4,134 samples (about 1,000 for each digit).

We’ll use a confusion matrix, a two-dimensional table of
numbers, to evaluate the model. Confusion matrices are the
most common way to evaluate a model because they show how
it behaves on the test data.

In this case, the confusion matrix for our digit classifier is
shown in Table 1-1.

Table 1-1: The Digit Classifier Confusion Matrix

  0 1 3 9

0 978 0 1 1

1 2 1,128 3 2

3 5 0 997 8



  0 1 3 9

9 5 1 8 995

The matrix rows represent the true labels for the samples given
to the model. The columns are the model’s responses. The
values in the table are counts, the number of times each
possible combination of input class and model-assigned label
happened.

For example, the first row represents the zeros in the test set. Of
those 980 inputs, the model returned a label of zero for 978 of
them, but it said the input was a three once and a nine another
time. Therefore, when zero was the input, the model’s output
was correct 978 out of 980 times. That’s encouraging.

Similarly, when the input was a one, the model returned the
correct label 1,128 times. It was right 997 times for threes and
995 times for nines. When a classifier is good, the numbers
along the diagonal of the confusion matrix from upper left to
lower right are high, and there are almost no numbers off that
diagonal. Off-diagonal numbers are errors made by the model.

Overall, the digits model is 99 percent accurate. We have a solid,
well-performing model—that is, if we can ensure that all inputs



to the model are indeed a 0, 1, 3, or 9. But what if they aren’t?

I handed the model 982 fours. The model replied like this:

0 1 3 9

48 9 8 917

In other words, the model returned a label of 9 for 917 of the
982 fours, a label of 1 for 48 fours, and labels of 1 or 3 for the
rest. How about sevens?

0 1 3 9

19 20 227 762

The model still favored calling sevens nines, but it often called
them threes as well. Neural networks are loath to give up their
secrets when explaining their actions, but in this case, of the
227 sevens labeled as threes, 47 of them were European-style
sevens with a slash. A random sample of 227 sevens from the
entire dataset turned up only 24 European-style sevens. The
comparison isn’t rigorous mathematically, but it hints that



sevens with a slash are often close enough to a three to fool the
model.

The model was never taught to recognize fours or sevens, so it
did the next best thing and placed them in a nearby category.
Depending on how they’re written, people might sometimes
confuse fours and sevens for nines, for example. The model is
making the kind of mistakes people make, which is interesting
—but, more significantly, the model is poor because it wasn’t
trained on the full range of inputs it might encounter. It has no
way of saying “I don’t know,” and getting a model to reliably say
this can be tricky.

This is a simple exercise, but the implications are profound.
Instead of digits, what if the model was looking for cancer in
medical images but was never trained to recognize an
important category of lesion or all the forms that lesion might
take? A properly constructed and comprehensive dataset might
mean the difference between life and death.

****

We can also think about the digits example in terms of
interpolation and extrapolation. Interpolation approximates



within the range of known data, and extrapolation goes beyond
known data.

For the digits example, interpolation might refer to
encountering a tilted zero in the wild when none of the zeros in
the training set were particularly tilted. The model must
interpolate, in a sense, to respond correctly. Extrapolation is
more like classifying a zero with a slash through it, which is
something unseen during training time. To better understand
these terms, let’s model the world population from 1950
through 2020.

First, we’ll fit a line to the data from 1950 through 1970. Fitting
a line is a form of curve fitting; think of it as machine learning’s
less sophisticated cousin. To fit a line, find two numbers: the
slope and the intercept. The slope tells us how steep the line is.
If the slope is positive, the line is increasing as we move from
left to right along the x-axis of a graph. A negative slope means
the line decreases as we move along the x-axis. The intercept is
where the line intersects the y-axis; that is, the value when the
input is zero.

To fit a line, we use an algorithm to find the slope and intercept
that best characterize the data (here, world population from
1950 through 1970). Figure 1-7 shows a plot of the line and the



actual populations by year, denoted by plus signs. The line
passes through or near to most of the plus signs, so the fit is
reasonable. Notice that the population is in billions.

Figure 1-7: World population from 1950 through 1970

Once we have the line, we can use the slope and intercept to
estimate the population for any year. Estimating for years
between 1950 and 1970 is interpolating, because we used data
from that range of years to create the line. If we estimate
populations for years before 1950 or after 1970, we are
extrapolating. Table 1-2 shows our results when interpolating.

Table 1-2: Interpolating the Population Between 1950 and 1970



Year Interpolated ActualYear Interpolated Actual

1954 2.71 2.72

1960 3.06 3.03

1966 3.41 3.41

The interpolated population values are quite close to the actual
population values, meaning the model (here the line fit to the
data) is doing well. Now, let’s extrapolate to dates outside the fit
range, as shown in Table 1-3.

Table 1-3: Extrapolating the Population After 1970

Year Extrapolated Actual

1995 5.10 5.74

2010 5.98 6.96

2020 6.56 7.79



The difference between the extrapolated population values and
the actual population is increasing with each year. The model
isn’t doing well. Plotting the full range from 1950 through 2020
reveals the problem; see Figure 1-8.

Figure 1-8: World population from 1950 through 2020

As time goes by, the fit line becomes increasingly wrong
because the data is not linear after all. That is, the rate of
growth is not constant and doesn’t follow a straight line.

When extrapolating, we might have reason to believe that the
data will continue to fit the line; if that’s a valid assumption,
then the line will continue to be a good fit. However, in the real



world, we usually have no such assurance. So, as a slogan, we
might say interpolation good, extrapolation bad.

Fitting a line to some data is an example of curve fitting. What is
true for curve fitting is also true for AI. The handwritten digits
model did well when given inputs close to the data it was
trained to recognize. The digits in the test data were all
instances of 0, 1, 3, and 9, so the test data was like the training
data. The two datasets are from the same distribution, and the
same data-generating process created both. We can therefore
claim that the model was, in a way, interpolating in those cases.
However, when we forced the model to make decisions about
fours and sevens, we were extrapolating by having the model
make decisions about data it never saw during training.

It bears repeating: interpolation good, extrapolation bad. Bad
datasets lead to bad models; good datasets lead to good models,
which behave badly when forced to extrapolate. And, for good
measure: all models are wrong, but some are useful.

****

Along the same lines of Hilaire Belloc’s 1907 book Cautionary
Tales for Children—an amusing and somewhat horrifying look
at foolish things children do that could lead to an unfortunate



end—let’s examine some cautionary tales that AI practitioners
should be aware of when training, testing, and, most of all,
deploying models.

In 2016, I attended a conference talk where the presenter
demonstrated research into understanding why a neural
network chooses the way it does. This is not yet a solved
problem, but progress has been made. In this case, the research
marked parts of the input images that influenced the model’s
decision.

The speaker displayed pictures of huskies and wolves and
discussed his classifier for differentiating between the two. He
showed how well it performed on a test set and asked the
audience of machine learning researchers if this was a good
model. Many people said yes, but with hesitation because they
expected a trap. They were right to be hesitant. The speaker
then marked the images to show the parts that the neural
network focused on when making its decisions. The model
wasn’t paying attention to the dogs or the wolves. Instead, the
model noticed that all the wolf training images had snow in the
background, while none of the dog images contained snow. The
model learned nothing about dogs and wolves but only about
snow and no snow. Careless acceptance of the model’s behavior



wouldn’t have revealed that fact, and the model might have
been deployed only to fail in the wild.

A similar tale is told of a very early machine learning system
from the 1950s or 1960s. This one is likely apocryphal, though I
have read a paper from that period that might be the origin of
the urban legend. In this case, the images were bird’s-eye views
of forests. Some images contained a tank, while others did not.

A model trained to detect tanks seemed to work well on the
training data but failed miserably when set loose in the wild. It
was eventually realized that one set of training images had
been taken on a sunny day and the other on a cloudy day. The
model had learned nothing that its creators assumed it had.

More recent examples of this phenomenon exist with more
advanced machine learning models. Some have even fooled
experts into believing the model had learned something
fundamental about language or the like when, instead, it had
learned extremely subtle correlations in the training data that
no human could (easily) detect.

The word correlation has a strict mathematical meaning, but we
capture its essence with the phrase “correlation does not imply
causation.” Correlation is when two things are linked so that the



occurrence of one implies the occurrence of the other, often in a
particular order. More concretely, correlation measures how
strongly a change in one thing is associated with a change in
another. If both increase, they are positively correlated. If one
increases while the other decreases, they are negatively
correlated.

For example, a rooster crows, and the sun comes up. The two
events are time-dependent: the rooster first, then the sun. This
correlation does not imply causation, as the rooster crowing
doesn’t cause the sun to rise, but if such a correlation is
observed often enough, the human mind begins to see one as
causing the other, even when there is no real evidence of this.
Why humans act this way isn’t hard to understand. Evolution
favored early humans who made such associations because,
sometimes, the associations led to behavior beneficial for
survival.

“Correlation does not imply causation” also applies to AI. The
aforementioned models learned to detect things in the training
data that correlated with the intended targets (dogs, wolves,
tanks) but didn’t learn about the targets themselves. Savvy
machine learning practitioners are always on the lookout for
such spurious correlations. Using a large and highly diverse



dataset for training and testing can defend against this effect,
though this isn’t always possible in practice.

We must ask whether our models have learned what we
assume they have. And, as we saw with the MNIST digits, we
must ensure that our models have seen all the kinds of inputs
they will encounter in the wild—they should interpolate, not
extrapolate.

This matters more than it might initially appear. Google learned
this lesson in 2015 when it deployed a feature for Google
Photos, wherein the model was insufficiently trained on human
faces and made incorrect and inappropriate associations. Bias,
in both the generic and social senses, is a real issue in AI.

Let’s perform another experiment with MNIST digits. This time,
the model has a seemingly simple decision to make: is the input
digit a nine? The model is the same neural network used
previously. If trained on a dataset where every image is either a
nine or any other digit except four or seven (that is, no fours or
sevens are in the training data), then the model is 99 percent
accurate, as the confusion matrix shows:

  Not 9 9



  Not 9 9

Not 9   9,754 23

        9   38 1,362

The confusion matrix tells us that the model correctly labeled
9,754 out of 9,777 test images that were not a nine. The model’s
label was also correct for 1,362 of the 1,400 nines. While the
model performs well on the test set, the set does not contain
fours or sevens.

In this case, the confusion matrix is small because the model
has only two classes: nine or not nine. In other words, this is a
binary model.

The 23 in the upper-right corner of the matrix represents 23
times when the input wasn’t a nine, but the model said it was.
For a binary model, class 1 is usually considered the class of
interest, or the positive class. Therefore, these 23 inputs
represent false positives, because the model said “it’s a nine”
when it wasn’t. Similarly, the 38 samples at the lower left are
false negatives because the model said “it’s not a nine” when the
input actually was. We want models with no false positives or



negatives, but sometimes it’s more important to minimize one
than the other.

For example, if a model is to detect breast cancer in
mammograms, a false positive represents a case where the
model says, “it might be cancer,” even though it isn’t. That’s
scary to hear, but further testing will show that the model was
wrong. However, a false negative represents a missed cancer.
We might tolerate a model with more false positives if it also
has virtually no false negatives, as a false positive is less
catastrophic than a false negative. We’re beginning to
appreciate how important it is to fully train, characterize, test,
and understand our machine learning models.

****

All right, back to our experiment. The “is it a nine” classifier,
like our earlier MNIST model, knows nothing about fours or
sevens. When shown fours and sevens, the MNIST model
typically called them nines. Will this model do the same? Here’s
what I received when I gave the model fours and sevens:

  Not 9 9

Not 9   5,014 9,103



The model marked 9,103 of the 14,117 fours and sevens as
nines. That’s slightly more than 65 percent, or roughly two out
of every three. This mimics the case where we present the
model with inputs of a type it was never trained to detect.

Let’s help the model by adding fours and sevens to the training
set. Hopefully, providing examples that say, “It looks like a nine,
but it isn’t,” formally known as hard negatives, will improve the
model. I made 3 percent of the training data fours and sevens.
The overall model was just as accurate as before, 99 percent,
and here’s what happened when I gave it fours and sevens it
had never seen before:

  Not 9 9

Not 9   9,385 3,321

That’s better. Instead of calling two-thirds of four or seven
inputs a nine, the model labeled only one in four as a nine.
Even a few examples of things that look like the positive class
but aren’t can help. If I boost the proportion of fours and sevens
in the training set to 18 percent, the model misclassifies fours
and sevens less than 1 percent of the time. Because models



learn from data, we must use datasets that are as complete as
possible so our models interpolate and do not extrapolate.

NOTE

To be completely accurate, recent research shows
that modern deep learning models are almost
always extrapolating, but the more similar the
inputs are to the data on which the model was
trained, the better the performance, so I feel justified
in using the analogy.

Everyone who seeks to understand, let alone work with, AI
must take the warnings about the quality of the data used to
train AI models to heart. A 2021 research article published in
the journal Nature Machine Intelligence by Michael Roberts et
al., “Common Pitfalls and Recommendations for Using Machine
Learning to Detect and Prognosticate for COVID-19 Using Chest
Radiographs and CT Scans,” is a sobering example. The authors
assessed the performance of machine learning models designed
to detect COVID-19 in chest X-rays and CT scans, reducing the
initial candidate pool of over 2,000 studies (models) to 62 for
rigorous testing. In the end, the authors declared none of the
models fit for clinical use because of flaws in construction, bias
in the datasets, or both.



Results like these have led to the creation of explainable AI, a
subfield that seeks to give models the ability to explain
themselves.

Look at your data and try to understand, as far as humanly
possible, what your model is doing and why.

****

This chapter’s title, “And Away We Go,” was comedian Jackie
Gleason’s tagline. It’s often good to dive into a subject to get an
overview before coming back to understand things at a deeper
level. In other words, we rush in to get a feel for the topic
before exploring more methodically.

You’ll find the many new terms and concepts introduced in this
chapter in the glossary at the end of the book. My goal isn’t for
you to understand them all now, let alone retain them, but to
plant seeds so that the next time you encounter one of these
terms or concepts, you’ll be more likely to think, “Ah, I know
that one.” Later chapters reinforce them, and you’ll learn the
important ones via repeated exposure.

There are two categories of takeaways from this chapter. The
first has to do with what AI is and its essential pieces. The



second is about building intuition about what AI offers and how
we should respond.

AI involves models, as yet nebulous entities we can condition
with data to perform some desired task. There are many types
of AI models, and this chapter introduced two: decision trees
and neural networks. I won’t say much more about decision
trees, but neural networks occupy most of the remainder of the
book.

Models are often best thought of as functions, like the
mathematical functions you may remember from school or the
functions that form the core of most computer programs. Both
can be considered black boxes, where something goes in (the
input) and something comes out (the output). In AI, the input is
a feature vector, a collection of whatever is appropriate for the
task at hand. In this chapter, we used two feature vectors:
measurements of a flower and images of a handwritten digit.

Training conditions the model by altering its parameters to
make it as accurate as possible. It’s necessary to exercise
caution when training most models to learn the general
features of the data and not spurious correlations or the minute
details of the training set (a concept known as overfitting, which
we’ll discuss in Chapter 4).



Proper development of machine learning models means we
must have a test set, a collection of known input and output
pairs that we do not use when training. We use this set after
training to evaluate the model. If the dataset is constructed
correctly, the test set provides an idea of how well we can
expect the model to perform in the wild.

The second takeaway relates to what AI offers and how we
should respond to it. While AI is powerful, it doesn’t think as we
do (though the models of Chapter 7 might disagree). AI lives and
dies by data and is only as good as the data we feed to it. If the
dataset is biased, the AI is biased. If the dataset neglects to
include examples of the types of inputs it will encounter when
used, the AI will fail to handle such inputs properly.

The chapter’s examples warn us to be careful when assuming
AI operates as intended. Did the model learn what we wanted it
to learn? Was it influenced by correlations in the data that we
didn’t notice or, worse still, that we are too limited to discern?
Think back to the huskies versus wolves example.

Because AI is only as good as the data fed to it, it’s on us to make
datasets fair and unbiased and to understand what the AI has
truly learned without assumptions.



AI first appeared in the 1950s, so why is it now suddenly
everywhere we look? The next chapter answers this question.
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2 
WHY NOW? A HISTORY OF AI

Rowan Atkinson’s comic masterpiece Mr. Bean opens in the
dead of night on a deserted London street. A spotlight appears,
the title character falls from the sky, and a choir sings in Latin,
“ecce homo qui est faba”—behold the man who is a bean. Mr.
Bean picks himself up, brushes off his suit, and runs awkwardly
into the darkness. He is something otherworldly, a thing that
literally fell from the sky, defying comprehension.

Given the parade of AI wonder after wonder in recent years, we
might be excused for thinking that AI, like Mr. Bean, fell from
the sky, fully formed and beyond our comprehension. However,
none of this is true; indeed, I’d argue that AI is still in its
infancy.

So why are we hearing about AI now? I’ll answer that question
with a brief (and biased) history of AI, followed by a discussion



of the advances in computing that acted as the catalyst for the
AI revolution. This chapter provides context for the models
we’ll explore throughout the remainder of the book.

****

Since its inception, AI has been divided into two main camps:
symbolic AI and connectionism. Symbolic AI attempts to model
intelligence by manipulating symbols and logical statements or
associations. Connectionism, however, attempts to model
intelligence by building networks of simpler components. The
human mind embodies both approaches. We use symbols as
elements of thought and language, and our minds are
constructed from unbelievably complex networks of neurons,
each neuron a simple processor. In computer programming
terms, the symbolic approach to AI is top-down, while
connectionism is bottom-up. Top-down design starts with high-
level tasks, then breaks those tasks into smaller and smaller
pieces. A bottom-up design begins with smaller pieces and
combines them together.

Proponents of symbolic AI believe that intelligence can be
achieved in the abstract, without a substrate resembling a
brain. Connectionists follow the evolutionary development of
brains and argue that there needs to be some foundation, like a



massive collection of highly interconnected neurons, from
which intelligence (however defined) can emerge.

While the debate between symbolic AI and connectionism was
long-lived, with the advent of deep learning it’s safe to say that
the connectionists have won the day—though perhaps not the
war. Recent years have seen a smattering of papers blending
the two approaches. I suspect symbolic AI has a cameo or two
left in it, if not ultimately starring in a supporting role.

My introduction to AI in the late 1980s was entirely symbolic.
Connectionism was mentioned as another approach, but neural
networks were thought inferior and likely to be marginally
useful at best.

A complete history of artificial intelligence is beyond our scope.
Such a magnum opus awaits a motivated and capable historian.
Instead, I’ll focus on the development of machine learning
while (very unfairly!) ignoring the mountain of effort expended
over the decades by those in the symbolic camp. Know,
however, that for most of AI’s history, people mostly spoke of
symbolic AI, not connectionism. For a fairer presentation, I
recommend Michael Wooldridge’s book A Brief History of
Artificial Intelligence (Flatiron Books, 2021), or Pamela
McCorduck’s deeply personal account in This Could Be



Important: My Life and Times with the Artificial Intelligentsia
(Lulu Press, 2019).

With my apparent connectionist bias in mind, let’s take a stroll
through the history of machine learning.

Pre-1900

The dream of intelligent machines dates back to antiquity.
Ancient Greeks related the myth of Talos, a giant robot meant to
guard the Phoenician princess, Europa. Throughout the Middle
Ages and Renaissance, many automatons—machines that
moved and appeared lifelike—were developed. However, I
suspect that none were believed to be intelligent or capable of
thought. Some were even hoaxes, like the infamous Mechanical
Turk that wowed the world by playing, and beating, many
skilled chess players. In the end, it was discovered that a person
hiding within the machine could control the “automaton” by
manipulating a mechanical arm to move free-standing chess
pieces on the board while viewing the board configuration from
beneath. Still, the mechanical part of the machine was rather
impressive for the late 18th century.

Apart from automatons, there were also early attempts to
understand thought as a mechanical process and efforts to



produce a logical system capable of capturing thought. In the
17th century, Gottfried Leibniz described such a concept
abstractly as an “alphabet of thought.” In the 1750s, Julien
Offray de La Mettrie published L’Homme Machine (Man as
Machine), arguing that thought is a mechanical process.

The idea that human thought might emerge from the physical
entity of the brain rather than the spiritual soul marked the
beginning of a new chapter on the road to AI. If our minds are
biological machines, why can’t there be another kind of
machine that thinks?

In the 19th century, George Boole attempted to create a calculus
of thought, resulting in what we know now as Boolean algebra.
Computers depend on Boolean algebra, to the point that it
represents their very implementation as collections of digital
logic gates. Boole was partially successful, but he didn’t achieve
his stated goal: “to investigate the fundamental laws of those
operations of the mind by which reasoning is performed; to
give expression to them in the symbolic language of a Calculus”
(The Laws of Thought, 1854). That Boole was willing to try
represented another step toward the notion that AI might be
possible.



What these early attempts were lacking was an actual
calculating machine. People could dream of artificial minds or
beings (like the creature from Mary Shelley’s Frankenstein) and,
assuming their existence, discuss the repercussions. But until
there was a machine capable of plausibly mimicking
(implementing?) thought, all else was speculation.

It was Englishman Charles Babbage who, in the mid-19th
century, first conceived of an implementable general-purpose
calculating machine: the Analytical Engine. The Engine was
never built in its entirety, but it contained all the essential
components of a modern computer and would, in theory, be
capable of the same operations. While it’s unclear if Babbage
appreciated the potential versatility of his machine, his friend,
Ada Lovelace, did. She wrote about the machine as a widely
applicable, general-purpose device. Still, she did not believe the
Engine was capable of thought, as this quote from her Sketch of
the Analytical Engine (1843) demonstrates:

The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. It can follow analysis; but it has no

power of anticipating any analytical relations or truths. Its province is to assist us in
making available what we are already acquainted with.

This quote may be the first to refer to the possibility of artificial
intelligence involving a device potentially capable of achieving



it. The phrase “do whatever we know how to order it to
perform” implies programming. Indeed, Lovelace wrote a
program for the Analytical Engine. Because of this, many people
consider her to be the first computer programmer. The fact that
her program had a bug in it proves to me that she was; nothing
is more emblematic of programming than bugs, as my 40-plus
years of programming experience have demonstrated
distressingly often.

1900 to 1950

In 1936, a 24-year-old Englishman named Alan Turing, still a
student at the time, wrote a paper that has since become the
cornerstone of computer science. In this paper, Turing
introduced a generic conceptual machine, what we now call a
Turing machine, and demonstrated that it could calculate
anything representable by an algorithm. He also explained that
there are things that cannot be implemented by algorithms and
that are, therefore, uncomputable. Since all modern
programming languages are equivalent to a Turing machine,
modern computers can implement any algorithm and compute
anything computable. However, this says nothing about how
long the computation might take or the memory required.



If a computer can compute anything that can be implemented
as an algorithm, then a computer can perform any mental
operation a human can perform. At last, here was the engine
that might enable true artificial intelligence. Turing’s 1950
paper “Computing Machinery and Intelligence” was an early
recognition that digital computers might eventually lead to
intelligent machines. In this paper, Turing described his
“imitation game,” known now as the Turing test, by which
humans might come to believe that a machine is intelligent.
Many claims of AI systems that pass the Turing test have
appeared, especially in recent years. One of these is OpenAI’s
ChatGPT. However, few would be inclined to believe that
ChatGPT is truly intelligent—in other words, I suspect that this
test fails to capture what humans generally understand this
term to mean, and a new test will likely be created at some
point.

In 1943, Warren McCulloch and Walter Pitts wrote “A Logical
Calculus of Ideas Immanent in Nervous Activity,” which
deserves an award for one of the most opaque yet intriguing
paper titles ever. The paper represents “nervous nets”
(collections of neurons) as logical statements in mathematics.
The logical statements are difficult to parse (at least for me), but
the authors’ description of “nets without circles” bears a strong
resemblance to the neural networks we’ll explore in Chapter 4



—indeed, one could argue that McCulloch and Pitts’s
groundbreaking paper led to what we now recognize as a
neural network. Frankly, neural networks are far easier to
parse and understand, which is good news for us.

The progression from fantastical stories about artificially
intelligent machines and beings to a serious investigation of
whether mathematics can capture thought and reasoning,
combined with the realization that digital computers are
capable of computing anything that can be described by an
algorithm, set the stage for the advent of artificial intelligence
as a legitimate research enterprise.

1950 to 1970

The 1956 Dartmouth Summer Research Project on Artificial
Intelligence workshop is generally regarded as the birthplace of
AI, and where the phrase “artificial intelligence” was first used
consistently. The Dartmouth workshop had fewer than 50
participants, but the list included several well-known names in
the worlds of computer science and mathematics: Ray
Solomonoff, John McCarthy, Marvin Minsky, Claude Shannon,
John Nash, and Warren McCulloch, among others. At the time,
computer science was a subfield of mathematics. The workshop



was a brainstorming session that set the stage for early AI
research.

In 1957, Frank Rosenblatt of Cornell University created the
Mark I Perceptron, widely recognized as the first application of
neural networks. The Perceptron was remarkable in many
respects, including that it was designed for image recognition,
the same application where deep learning first proved itself in
2012.

Figure 2-1 shows the conceptual organization as given in the
Perceptron Operators’ Manual. The Perceptron used a 20×20-
pixel digitized television image as input, which was then passed
through a “random” set of connections to a set of association
units that led to response units. This configuration is similar to
some approaches to deep learning on images in use today and
resembles a type of neural network known as an extreme
learning machine.



Figure 2-1: The organization of the Mark I Perceptron

If the Perceptron was on the right track, why was it all but
forgotten for decades? One reason was Rosenblatt’s penchant
for hype. At a 1958 conference organized by the US Navy (a
sponsor of the Perceptron project), Rosenblatt’s comments were
so hyperbolic that the New York Times reported:

The Navy revealed the embryo of an electronic computer today that it expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence. Later

perceptrons will be able to recognize people and call out their names and instantly
translate speech in one language to speech and writing in another language, it was
predicted.



The comments ruffled many feathers at the time, though as
modern AI systems do allow machines to walk, talk, see, write,
recognize people, and translate speech and writing between
languages, perhaps we should be more forgiving toward
Rosenblatt. He was only some 60 years early.

A few years later, in 1963, Leonard Uhr and Charles Vossler
described a program that, like the Perceptron, interpreted a
20×20-pixel image represented as a matrix of 0s and 1s. Unlike
the Perceptron, this program was able to generate the patterns
and combinations of image features necessary to learn its
inputs. Uhr and Vossler’s program was similar to the
convolutional neural networks that appeared over 30 years
later and are the subject of Chapter 5.

The first of what I call the “classical” machine learning models
appeared in 1967, courtesy of Thomas Cover and Peter Hart.
Known as nearest neighbors, it is the simplest of all machine
learning models, almost embarrassingly so. To label an
unknown input, it simply finds the known input most like it and
uses that input’s label as the output. When using more than one
nearby known input, the method is called k-nearest neighbors,
where k is a small number, like 3 or 5. Hart went on to write the
first edition of Pattern Classification, along with Richard Duda
and David Stork, in 1973; this seminal work introduced many



computer scientists and software engineers to machine
learning, including me.

The success of the Perceptron came to a screeching halt in 1969,
when Marvin Minsky and Seymour Papert published their book
Perceptrons, which demonstrated that single- and two-layer
perceptron networks weren’t able to model interesting tasks.
We’ll cover what “single-layer” and “two-layer” mean in time.
Perceptrons, coupled with the 1973 release of “Artificial
Intelligence: A General Survey” by James Lighthill, universally
known as “the Lighthill report,” ushered in what is now
referred to as the first AI winter; funding for AI research dried
up in short order.

Minsky and Papert’s criticisms of the perceptron model were
legitimate; however, many people missed their observation that
such limitations were not applicable to more complex
perceptron models. Regardless, the damage was done, and
connectionism virtually vanished until the early 1980s.

Note the “virtually.” In 1979, Kunihiko Fukushima released a
paper that was translated into English in 1980 as
“Neocognitron: A Self-Organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in
Position.” The name “Neocognitron” didn’t catch on, and this



was perhaps one of the last uses of the “-tron” suffix that had
been so popular in computer science for the previous three
decades. While Uhr and Vossler’s 1963 program bore some
similarities to a convolutional neural network, the
Neocognitron is, to many people, the original. The success of
convolutional neural networks led directly to the current AI
revolution.

1980 to 1990

In the early 1980s, AI went commercial with the advent of
computers specifically designed to run the Lisp programming
language, then the lingua franca of AI. (Today, it’s Python.)
Along with Lisp machines came the rise of expert systems—
software designed to capture the knowledge of an expert in a
narrow domain. The commercialization of AI brought the first
AI winter to an end.

The concept behind expert systems is, admittedly, seductive. To
build an expert system that, for example, diagnoses a particular
kind of cancer, you first interview experts to extract their
knowledge and arrange it in a knowledge base. A knowledge
base represents knowledge as a combination of rules and facts.
Then, you combine the knowledge base with an inference
engine, which uses the knowledge base to decide when and



how to execute rules based on stored facts or input to the
system by a user. Rules fire based on facts, which may lead to
placing new facts in the knowledge base that cause additional
rules to fire, and so on. A classic example of an expert system is
CLIPS, which NASA developed in 1985 and released into the
public domain in 1996.

In an expert system, there’s no connectionist network or
collection of units from which one might (hopefully) cause
intelligent behavior to emerge, making it a good example of
symbolic AI. Instead, the knowledge base is an essentially rigid
collection of rules, like “if the engine temperature is above this
threshold, then this other thing is the likely cause,” and facts,
like “the engine temperature is below the threshold.”
Knowledge engineers are the links between the experts and the
expert system. Building a knowledge base from the experts’
answers to the questions posed by the knowledge engineers is
complex, and the resulting knowledge base is hard to modify
over time. However, the difficulty in designing expert systems
doesn’t mean they’re useless; they still exist, mainly under the
guise of “business rule management systems,” but currently
have minimal impact on modern AI.

The hype surrounding expert systems, combined with early
successes, drove renewed interest in AI in the early 1980s. But



when it became clear that expert systems were too brittle to
have a general use, the bottom fell out of the industry, and AI’s
second winter hit in the middle of the decade.

During the 1980s, connectionists occupied the background, but
they were not sitting still. In 1982, John Hopfield demonstrated
what are now known as Hopfield networks. A Hopfield network
is a type of neural network that stores information in a
distributed way within the weights of the network, and then
extracts that information at a later time. Hopfield networks
aren’t widely used in modern deep learning, but they proved an
important demonstration of the utility of the connectionist
approach.

In 1986, David Rumelhart, Geoffrey Hinton, and Ronald
Williams released their paper “Learning Representations by
Back-propagating Errors,” which outlined the backpropagation
algorithm for training neural networks. Training a neural
network involves adjusting the weights between the neurons so
that the network operates as desired. The backpropagation
algorithm was the key to making this process efficient by
calculating how adjusting a particular weight affects the
network’s overall performance. With this information, it
becomes possible to iteratively train the network by applying
known training data, then using the network’s errors when



classifying to adjust the weights to force the network to perform
better on the next iteration. (I’ll discuss neural network training
in more depth in Chapter 4.) With backpropagation, neural
networks could go well beyond the limited performance of
Rosenblatt’s Perceptron. However, even with backpropagation,
neural networks in the 1980s were little more than toys. While
there’s contention about who invented backpropagation and
when, the 1986 paper is generally understood to be the
presentation that influenced neural network researchers the
most.

1990 to 2000

The second AI winter extended into the 1990s, but research
continued in both the symbolic and connectionist camps.
Corinna Cortes and Vladimir Vapnik introduced the machine
learning community to support vector machines (SVMs) in 1995.
In a sense, SVMs represent the high-water mark of classical
machine learning. The success of SVMs in the 1990s through the
early 2000s held neural networks at bay. Neural networks
require large datasets and significant computational power;
SVMs, on the other hand, are often less demanding of resources.
Neural networks gain their power from the network’s ability to
represent a function, a mapping from inputs to the desired



outputs, while SVMs use clever mathematics to simplify difficult
classification problems.

The success of SVMs was noted in the academic community as
well as the broader world of software engineering, where
applications involving machine learning were increasing. The
general public was largely unaware of these advances, though
intelligent machines continued appearing frequently in science
fiction.

This AI winter ended in 1997 with the victory of IBM’s Deep
Blue supercomputer against then world chess champion Garry
Kasparov. At the time, few people thought a machine could ever
beat the best human chess player. Interestingly, a decade earlier,
one of my professors had predicted that an AI would
accomplish this feat before the year 2000. Was this professor
clairvoyant? Not really. Deep Blue combined fast custom
hardware with sophisticated software and applied known AI
search algorithms (in particular, the Minimax algorithm).
Combined with heuristics and a healthy dose of custom
knowledge from other chess grandmasters, Deep Blue was able
to out-evaluate its human opponent by searching more possible
moves than any human could ever hope to contemplate.
Regardless, at its core, Deep Blue implemented what AI experts
knew could beat a human if the machine had enough resources



at its disposal. Deep Blue’s victory was inevitable because
researchers expected computers to eventually become fast
enough to overcome a human’s abilities. What was needed was
known; all that remained was to put the pieces together.

The year 1998 saw the publication of “Gradient-Based Learning
Applied to Document Recognition,” a paper by Yann LeCun,
Léon Bottou, Yoshua Bengio, and Patrick Haffner that escaped
public notice but was a watershed moment for AI and the
world. While Fukushima’s Neocognitron bore strong
similarities to the convolutional neural networks that initiated
the modern AI revolution, this paper introduced them directly,
as well as the (in)famous MNIST dataset we used in Chapter 1.
The advent of convolutional neural networks (CNNs) in 1998
begs the question: why did it take another 14 years before the
world took notice? We’ll return to this question later in the
chapter.

2000 to 2012

Leo Breiman introduced random forests in 2001 by forming the
existing pieces of what would become the random forest
algorithm into a coherent whole, much like Darwin did with
evolution in the 19th century. Random forests are the last of the
classical machine learning algorithms we’ll contemplate in



Chapter 3. If “random forests” remind you of the decision trees
in Chapter 1, there’s a reason: a random forest is a forest of
decision trees.

Stacked denoising autoencoders are one type of intermediate
model, and they were my introduction to deep learning in 2010.
An autoencoder is a neural network that passes its input
through a middle layer before generating output. It aims to
reproduce its input from the encoded form of the input in the
middle layer.

An autoencoder may seem like a silly thing to fiddle with, but
while learning to reproduce its input, the middle layer typically
learns something interesting about the inputs that captures
their essence without focusing on fine, trivial details. For
example, if the inputs are the MNIST digits, then the middle
layer of an autoencoder learns about digits as opposed to
letters.

A denoising autoencoder is similar, but we discard a random
fraction of the input values before pushing the input through
the middle layer. The autoencoder must still learn to reproduce
the entire input, but now it has a more challenging task because
the input is incomplete. This process helps the autoencoder’s
middle layer discover a better encoding of the input.



Finally, a stacked denoising autoencoder is a stack of denoising
autoencoders, wherein the output of the middle layer of one
becomes the input of the next. When arranged this way, the
stack learns a new representation of the input, which often
helps a classifier appended to the top of the stack to
discriminate between classes. For example, in my work at the
time, the inputs were small pieces of an image that may have
contained a target of interest. Two or three layers of trained
stacked denoising autoencoders were used to transform the
inputs into a list of numbers that would hopefully represent the
input’s essence while ignoring the image’s minutiae. The
outputs were then used with a support vector machine to
decide if the input was a target.

2012 to 2021

Deep learning caught the world’s attention in 2012 when
AlexNet, a particular convolutional neural network
architecture, won the ImageNet challenge with an overall error
of just over 15 percent—far lower than any competitor. The
ImageNet challenge asks models to identify the main subject of
color images, whether a dog, a cat, a lawnmower, and so on. In
reality, “dog” isn’t a sufficient answer. The ImageNet dataset
contains 1,000 classes of objects, including some 120 different



dog breeds. So, a correct answer would be “it’s a Border Collie”
or “it’s a Belgian Malinois.”

Random guessing means randomly assigning a class label to
each image. In that case, we would expect an overall success
rate of 1 in 1,000, or an error rate of 99.9 percent. AlexNet’s
error of 15 percent was truly impressive—and that was in 2012.
By 2017, convolutional neural networks had reduced the error
to about 3 percent, below the approximate 5 percent achievable
by the few humans brave enough to do the challenge manually.
Can you discriminate between 120 different dog breeds? I
certainly can’t.

AlexNet opened the floodgates. The new models broke all
previous records and began to accomplish what no one had
really expected from them: tasks like reimagining images in the
style of another image or painting, generating a text description
of the contents of an image along with the activity shown, or
playing video games as well as or better than a human, among
others.

The field was proliferating so quickly that it became nearly
impossible to keep up with each day’s deluge of new papers.
The only way to stay current was to attend multiple conferences
per year and review the new work appearing on websites such



as arXiv (https://www.arxiv.org), where research in many fields
is first published. This led to the creation of sites like
https://www.arxiv-sanity-lite.com, which ranks machine
learning papers according to reader interest in the hope that
the “best” might become easier to find.

In 2014, another breakthrough appeared on the scene, courtesy
of researcher Ian Goodfellow’s insight during an evening’s
conversation with friends. The result was the birth of generative
adversarial networks (GANs), which Yann LeCun called at the
time the most significant breakthrough in neural networks in
20 to 30 years (overheard at NeurIPS 2016). GANs, which we’ll
discuss in Chapter 6, opened a new area of research that lets
models “create” output that’s related to but different from the
data on which they were trained. GANs led to the current
explosion of generative AI, including systems like ChatGPT and
Stable Diffusion.

Reinforcement learning is one of the three main branches of
machine learning, the other two being the supervised learning
we’ve been discussing and unsupervised learning, which
attempts to train models without labeled datasets. In
reinforcement learning, an agent (a model) is taught via a
reward function how to accomplish a task. The application to
robotics is obvious.

https://www.arxiv.org/
https://www.arxiv-sanity-lite.com/


Google’s DeepMind group introduced a deep reinforcement
learning–based system in 2013 that could successfully learn to
play Atari 2600 video games as well as or better than human
experts. (Who counts as an expert in a then-35-year-old game
system, I’m not sure.) The most impressive part of the system, to
me, was that the model’s input was precisely the human’s input:
an image of the screen, nothing more. This meant the system
had to learn how to parse the input image and, from that, how
to respond by moving the joystick to win the game (virtually—
they used emulators).

The gap between beating humans at primitive video games and
beating humans at abstract strategy games like Go was,
historically, deemed insurmountable. I was explicitly taught in
the late 1980s that the Minimax algorithm used by systems like
Deep Blue to win at chess did not apply to a game like Go;
therefore, no machine would ever beat the best human Go
players. My professors were wrong, though they had every
reason at the time to believe their statement.

In 2016, Google’s AlphaGo system beat Go champion Lee Sedol
in a five-game match, winning four to one. The world took
notice, further enhancing the growing realization that a
paradigm shift had occurred. By this time, machine learning
was already a commercial success. However, AlphaGo’s victory



was utterly impressive for machine learning researchers and
practitioners.

Most of the general public didn’t notice that AlphaGo, trained
on thousands of human-played Go games, was replaced in 2017
by AlphaGo Zero, a system trained entirely from scratch by
playing against itself, with no human input given. In short
order, AlphaGo Zero mastered Go, even beating the original
AlphaGo system (scoring a perfect 100 wins and no losses).

However, in 2022, the current state-of-the-art Go system,
KataGo, was repeatedly and easily defeated by a system trained
not to win but to reveal the brittleness inherent in modern AI
systems. The moves the adversarial system used were outside
the range encountered by KataGo when it was trained. This is a
real-world example of how models are good at interpolating but
bad at extrapolating. When the adversarial system was trained
not to be better at Go but to exploit and “frustrate” the AI, it was
able to win better than three out of four games. I point the
reader to the Star Trek: The Next Generation episode “Peak
Performance,” where Data the android “wins” a difficult
strategy game against a master not by attempting to win but by
attempting to match and frustrate.



Deep learning’s penchant for beating humans at video games
continues. In place of primitive games like Atari’s, deep
reinforcement learning systems are now achieving
grandmaster-level performance at far more difficult games. In
2019, DeepMind’s AlphaStar system outperformed 99.8 percent
of human players in StarCraft II, a strategy game requiring the
development of units and a plan of battle.

The 1975 Asilomar Conference on Recombinant DNA was an
important milestone in recognizing biotechnology’s growth and
potential ethical issues. The conference positively impacted
future research, and that year its organizers published a
summary paper outlining an ethical approach to biotechnology.
The potential hazards of a field that was then primarily in its
infancy were recognized early, and action was taken to ensure
ethical issues were paramount when contemplating future
research.

The 2017 Asilomar Conference on Beneficial AI intentionally
mirrored the earlier conference to raise awareness of the
potential hazards associated with AI. It is now common to
encounter conference sessions with titles like “AI for Good.” The
2017 Asilomar conference resulted in the development of a set
of principles to guide the growth and application of artificial
intelligence. Similarly, as of 2023, the US government—



specifically, the White House Office of Science and Technology
Policy—has developed a “Blueprint for an AI Bill of Rights”
meant to protect the American public from the harmful effects
of AI indiscriminately applied. Indeed, White House officials
have taken pains to address the AI community directly to
encourage proper consideration in developing even more
powerful AI systems. All of this is a good sign, but history
teaches that human law often lags behind technological
development, so the ultimate effectiveness of these necessary
attempts at framing the field remains to be seen.

2021 to Now

The COVID-19 pandemic of 2020 brought most of the world to a
standstill. However, the AI community was only minimally
impacted by the pandemic, likely because remote collaboration
and conferences work rather well in this field. In addition, we
can access powerful computers over the internet, so physical
proximity doesn’t limit research as it might in other disciplines
where access to the hardware is necessary.

Beginning in 2021 and continuing as I write, an explosion of
new models have appeared, each more impressive than the last.
Most can accept text input written by humans to produce text,
images, or even video output. Often, the input marries text and



example imagery to guide the system. Current popular (and
concerning) systems include DALL-E 2, Stable Diffusion,
Midjourney, and ChatGPT, among others. Most large tech
companies have also demonstrated cutting-edge techniques that
generate video, audio, and even 3D models. The current buzz
generated by these systems is reminiscent of the excitement in
2012, when deep learning proved its worth with AlexNet. It’s
another paradigm shift; but, to be clear, none of these systems
are conscious. I’m not alone in this opinion. Even ChatGPT
agrees with me. I asked it: “Are you a conscious being?” Here’s
its reply, verbatim:

As a machine learning model, I am not a conscious being. I am a computer program
that has been trained to generate text based on input from a user. I do not have the

ability to think, reason, or experience consciousness in the same way that humans
do. I am designed to provide information and assist users, but I do not have any
independent thought or consciousness.

I think Ada Lovelace would be satisfied with this answer,
though she might be puzzled about how an unthinking machine
could generate it. Note, however, that ChatGPT didn’t claim not
to think, only that it doesn’t think like humans do. We’ll explore
image synthesis in Chapter 6 and large language models like
ChatGPT in Chapter 7. Perhaps then we’ll find a resolution to
her (assumed) confusion.



****

So, why now? The short answer is the fall of symbolic AI and
the rise of technological innovations highly favorable to the
connectionist approach.

Symbolic AI and connectionism emerged together, with
symbolic AI dominating for decades and forcing connectionism
into the background. But after two AI winters that left symbolic
AI barely breathing, connectionism, assisted by key
technological innovations, has risen to fill the void.

I think of the relationship between symbolic AI and
connectionism as akin to that between non-avian dinosaurs and
mammals. Dinosaurs and mammals emerged at roughly the
same time, geologically speaking, but large, terrestrial
dinosaurs dominated the world for about 160 million years,
forcing mammals to eke out an existence in the shadows. When
the asteroid hit 66 million years ago, the large dinosaurs were
wiped out, allowing the mammals to evolve and take over.

Of course, analogies ultimately break down. The dinosaurs
didn’t die out completely—we now call them birds—and they
didn’t go extinct because they were somehow inferior. In fact,
the dinosaurs are one of Earth’s greatest success stories. Non-



avian dinosaurs died because of plain old bad luck. It was,
almost literally, a disaster that did them in (“disaster” from the
Italian disastro, meaning “ill star”).

Might symbolic AI reemerge? It’s likely in some form, but in
cooperation with connectionism. Symbolic AI promised that
intelligent behavior was possible in the abstract, and it didn’t
deliver. Connectionism claims that intelligent behavior can
emerge from a collection of simpler units. Deep learning’s
successes support this view, to say nothing of the billions of
living brains currently on the planet. But, as ChatGPT pointed
out, existing connectionist models “do not think, reason, or
experience consciousness in the same way that humans do.”
Modern neural networks are not minds; they are
representation-learning data processors. I’ll clarify what that
means in Chapter 5.

Though our species, Homo sapiens, relies critically on symbolic
thought, it isn’t a requirement for intelligence. In his book
Understanding Human Evolution (Cambridge University Press,
2022), anthropologist Ian Tattersall claims it was unlikely that
Neanderthals used symbolic thought as we do, nor did they
have language as we do, but that they were nonetheless
intelligent. Indeed, the Neanderthals were sufficiently human
for our ancestors to “make love, not war” with them more than



once—the DNA of people of non-African ancestry testifies to
this fact.

I expect a synergy between connectionism and symbolic AI in
the near future. For example, because a system like ChatGPT is,
in the end, only predicting the next output token (word or part
of a word), it can’t know when it’s saying something wrong. An
associated symbolic system could detect faulty reasoning in the
response and correct it. How such a system might be
implemented, I don’t know.

****

Hints of what might emerge from connectionism were evident
by the early 1960s. So, was it only symbolic AI bias that delayed
the revolution for so many decades? No. Connectionism stalled
because of speed, algorithm, and data issues. Let’s examine
each in turn.

Speed

To understand why speed stalled the growth of connectionism,
we need to understand how computers work. Taking great
liberties allows us to think of computers as memory, which
holds data (numbers) and a processing unit, typically known as
the central processing unit (CPU). A microprocessor—like the



one in your desktop computer, smartphone, voice-controlled
assistant, car, microwave, and virtually everything else you use
that isn’t a toaster (oh, and in many toasters too)—is a CPU.
Think of a CPU as a traditional computer: data comes into the
CPU from memory or input devices like a keyboard or mouse,
gets processed, then is sent out of the CPU to memory or an
output device like a monitor or hard drive.

Graphics processing units (GPUs), on the other hand, were
developed for displays, primarily for the video game industry,
to enable fast graphics. GPUs can perform the same operation,
such as “multiply by 2,” on hundreds or thousands of memory
locations (read: pixels) simultaneously. If a CPU wants to
multiply a thousand memory locations by 2, it must multiply
the first, second, third, and so on sequentially. As it happens, the
primary operation needed to train and implement a neural
network is ideally suited to what a GPU can do. GPU makers,
like NVIDIA, realized this early and began developing GPUs for
deep learning. Think of a GPU as a supercomputer on a card
that fits in your PC.

In 1945, the Electronic Numerical Integrator and Computer
(ENIAC) was state-of-the-art. ENIAC’s speed was estimated to be
around 0.00289 million instructions per second (MIPS). In other
words, ENIAC could perform just under 3,000 instructions in



one second. In 1980, a stock 6502 8-bit microprocessor like the
ones in most then-popular personal computers ran at about
0.43 MIPS, or some 500,000 instructions per second. In 2023, the
already somewhat outdated Intel i7-4790 CPU in the computer
I’m using to write this book runs at about 130,000 MIPS, making
my PC some 300,000 times faster than the 6502 from 1980 and
about 45 million times faster than ENIAC.

However, NVIDIA’s A100 GPU, when used for deep learning, is
capable of 312 teraflops (TFLOPS), or 312,000,000 MIPS: 730
million times faster than the 6502 and an unbelievable 110
billion times faster than ENIAC. The increase in computational
power over the timespan of machine learning boggles the mind.
Moreover, training a large neural network on an enormous
dataset often requires dozens to hundreds of such GPUs.

Conclusion: Computers were, until the advent of fast GPUs, too
slow to train neural networks with the capacity needed to build
something like ChatGPT.

Algorithm

As you’ll learn in Chapter 4, we construct neural networks from
basic units that perform a simple task: collect input values,
multiply each by a weight value, sum, add a bias value, and



pass the result to an activation function to create an output
value. In other words, many input numbers become one output
number. The collective behavior emerging from thousands to
millions of such units leading to billions of weight values lets
deep learning systems do what they do.

The structure of a neural network is one thing; conditioning the
neural network to the desired task is another. Think of the
network’s structure, known as its architecture, as anatomy. In
anatomy, we’re interested in what constitutes the body: this is
the heart, that’s the liver, and so on. Training a network is more
like physiology: how does one part work with another? The
anatomy (architecture) was there, but the physiology (training
process) was incompletely understood. That changed over the
decades, courtesy of key algorithmic innovations:
backpropagation, network initialization, activation functions,
dropout and normalization, and advanced gradient descent
algorithms. It’s not essential to understand the terms in detail,
only to know that improvements in what these terms represent
—along with the already mentioned improvements in
processing speed, combined with improved datasets (discussion
coming up)—were primary enablers of the deep learning
revolution.



While it was long known that the right weight and bias values
would adapt a network to the desired task, what was missing
for decades was an efficient way to find those values. The 1980s’
introduction of the backpropagation algorithm, combined with
stochastic gradient descent, began to change this.

Training iteratively locates the final set of weight and bias
values according to the model’s errors on the training data.
Iterative processes repeat from an initial state, some initial set
of weights and biases. However, what should those initial
weights and biases be? For a long time, it was assumed that the
initial weights and biases didn’t matter much; just select small
numbers at random over some range. This approach often
worked, but many times it didn’t, causing the network not to
learn well, if at all. A more principled approach to initializing
networks was required.

Modern networks are still initialized randomly, but the random
values depend on the network’s architecture and the type of
activation function used. Paying attention to these details
allowed networks to learn better. Initialization matters.

We arrange neural networks in layers, where the output of one
layer becomes the input of the next. The activation function
assigned to each node in the network determines the node’s



output value. Historically, the activation function was either a
sigmoid or a hyperbolic tangent, both of which produce an S-
shaped curve when graphed. These functions are, in most cases,
inappropriate, and were eventually replaced by a function with
a long name that belies its simplicity: the rectified linear unit
(ReLU). A ReLU asks a simple question: is the input less than
zero? If so, the output is zero; otherwise, the output is the input
value. Not only are ReLU activation functions better than the
older functions, but computers can ask and answer that
question virtually instantaneously. Switching to ReLUs was,
therefore, a double win: improved network performance and
speed.

Dropout and batch normalization are advanced training
approaches that are somewhat difficult to describe at the level
we care to know about them. Introduced in 2012, dropout
randomly sets parts of the output of a layer of nodes to zero
when training. The effect is like training thousands of models
simultaneously, each independent but also linked. Dropout,
when appropriate, has a dramatic impact on network learning.
As a prominent computer scientist told me at the time, “If we
had had dropout in the 1980s, this would be a different world
now.”



Batch normalization adjusts the data moving between layers as
it flows through the network. Inputs appear on one side of the
network and flow through layers to get to the output.
Schematically, this is usually presented as a left-to-right motion.
Normalization is inserted between the layers to change the
values to keep them within a meaningful range. Batch
normalization was the first learnable normalization technique,
meaning it learned what it should do as the network learned.
An entire suite of normalization approaches evolved from
batch normalization.

The last critical algorithmic innovation enabling the deep
learning revolution involves gradient descent, which works
with backpropagation to facilitate learning the weights and
biases. The idea behind gradient descent is far older than
machine learning, but the versions developed in the last decade
or so have contributed much to deep learning’s success. We’ll
learn more about this subject in Chapter 4.

Conclusion: The first approaches to training neural networks
were primitive and unable to take advantage of their true
potential. Algorithmic innovations changed that.

Data



Neural networks require lots of training data. When people ask
me how much data is necessary to train a particular model for a
specific task, my answer is always the same: all of it. Models
learn from data; the more, the better because more data means
an improved representation of what the model will encounter
when used.

Before the World Wide Web, collecting, labeling, and processing
datasets of the magnitude necessary to train a deep neural
network proved difficult. This changed in the late 1990s and the
early 2000s with the tremendous growth of the web and the
explosion of data it represented.

For example, Statista (https://www.statista.com) claims that in
2022, 500 hours of new video were uploaded to YouTube every
minute. It’s also estimated that approximately 16 million people
were using the web in December 1995, representing 0.4 percent
of the world’s population. By July 2022, that number had grown
to nearly 5.5 billion, or 69 percent. Social media use, e-
commerce, and simply moving from place to place while
carrying a smartphone are enough to generate staggering
amounts of data—all of which is captured and used for AI.
Social media is free because we, and the data we generate, are
the product.

https://www.statista.com/


A phrase I often hear in my work is “we used to be data-starved,
but now we’re drowning in data.” Without large datasets and
enough labels to go with them, deep learning cannot learn. But,
on the other hand, with large datasets, awe-inspiring things can
happen.

Conclusion: In machine learning, data is everything.

****

The main takeaways from this chapter are:

The symbolic AI versus connectionist feud appeared early
and led to decades of symbolic AI dominance.
Connectionism suffered for a long time because of speed,
algorithm, and data issues.
With the deep learning revolution of 2012, the connectionists
have won, for now.
The direct causes of the deep learning revolution were faster
computers, the advent of graphics processing units,
improved algorithms, and huge datasets.

With this historical background complete enough for our
purposes, let’s return to machine learning, starting with the
classical algorithms.



3 
CLASSICAL MODELS: OLD-SCHOOL

MACHINE LEARNING

Beginning piano students don’t start with Liszt’s “La
Campanella,” but “Mary Had a Little Lamb” or “Twinkle,
Twinkle, Little Star.” The simpler pieces contain the basics of
playing the piano, and mastering the basics allows students to
progress over time. This principle holds in most areas of study,
including artificial intelligence.

To reach our ultimate goal of understanding modern AI, we
must begin in the “simpler” world of classical machine
learning. What holds for the classical models is generally true
for more advanced neural networks. This chapter explores
three classical models: nearest neighbors, random forests, and
support vector machines. Understanding these will prepare us
for the neural networks of Chapter 4.



****

Figure 3-1 shows the training samples for a made-up dataset
with two features (x  and x ) and three classes (circles, squares,
and triangles). We saw a similar plot in Chapter 1; see Figure 1-
2. As with the iris dataset, every shape in the figure represents a
sample from the training set. Figure 3-1 is the tool we’ll use to
understand the nearest neighbors classical model.

Figure 3-1: A made-up training set with three classes and two
features
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As mentioned in the previous chapter, nearest neighbor
classifiers are the simplest of models—so simple that there’s no
model to train; the training data is the model. To assign a class
label to a new, unknown input, find the training sample closest
to the unknown sample and return that sample’s label. That’s
all there is to it. Despite their simplicity, nearest neighbor
classifiers are quite effective if the training data represents
what the model will encounter in the wild.

As a natural extension to the nearest neighbor model, locate the
k training samples nearest the unknown sample. k is often a
number like 3, 5, or 7, though it can be any number. This type of
model uses a majority voting system, so the assigned class label
is the one that’s most common among the k training samples. If
there’s a tie, select the label randomly. For example, if the
model is contemplating the 5-nearest neighbors to an unknown
sample, and two are class 0 while another two are class 3, then
assign the label by choosing randomly between 0 and 3; on
average, you’ll make the correct choice 50 percent of the time.

Let’s use the nearest neighbor concept to classify some
unknown inputs. Figure 3-2 shows the training samples again,
along with two unknown samples: the diamond and the
pentagon. We want to assign these samples to one of the three
classes: circle, square, or triangle. The nearest neighbor



approach says to locate the training sample closest to each
unknown sample. For the diamond, that’s the square to its
upper left; for the pentagon, it appears to be the triangle to the
upper right. Therefore, a nearest neighbor classifier assigns
class square to the diamond and class triangle to the pentagon.

Figure 3-2: Classifying unknown samples

I suspect you’ve noticed the lines connecting the unknown
samples in Figure 3-2 to the three nearest training samples.
These are the samples to use if k is 3. In this case, the classifier
would again assign class square to the diamond, because all



three of the nearest training samples are squares. For the
pentagon, two of the three nearest neighbors are triangles and
one is a square, so it would also again assign class triangle to
the pentagon.

This example uses two-dimensional feature vectors, x  and x ,
so we can visualize the process. We’re not restricted to models
with only two features; we can have dozens or even hundreds.
The idea of “nearest” (distance) still has mathematical meaning
even when there are too many features to graph. Indeed, many
mathematical concepts qualify as distance measures, and in
practice, nearest neighbor classifiers may use any of the
measures depending on the dataset.

For example, let’s return to Chapter 1’s MNIST digits dataset.
The samples are small, grayscale images of the digits 0 through
9 that we unravel into vectors of 784 elements. Therefore, each
digit sample in the training set is a single point in a 784-
dimensional space, just as in the previous example each sample
was a point in a 2-dimensional space.

The full MNIST dataset has 60,000 training examples, meaning
the training space consists of 60,000 points scattered
throughout the 784-dimensional space (not quite, but more on
that soon). It also has 10,000 test samples that we can use to

0 1



evaluate the nearest neighbor model. I trained 1-nearest
neighbor models using all 60,000 training samples, then 6,000
samples, then 600, before ending with a mere 60. Sixty samples
in the training set implies about six examples of each digit. I say
“about” because I sampled the training set randomly, so there
might be eight of one digit and only three of another. In every
case, I tested the model using all 10,000 test samples, thereby
mimicking using the model in the real world.

Table 3-1 shows the model’s performance as the number of
training examples changed.

Table 3-1: Changing the Training Set Size

Training set size Accuracy (%)

60,000 97

6,000 94

600 86

60 66



Recall that accuracy is the percentage of the test samples that
the model classified correctly by assigning the correct digit
label, 0 through 9. When using the entire training set the model
is correct 97 times out of 100, on average. Even when the
training set is made 10 times smaller, the accuracy is still 94
percent. With 600 training examples—about 60 per digit—the
accuracy falls to 86 percent. It’s only when the training set
shrinks to a mere six examples of each digit, on average, that
the accuracy falls dramatically to 66 percent.

However, before we’re too harsh on our nearest neighbor
model, remember that there are 10 digit classes, so random
guessing will be correct, on average, about 1 time in 10, for an
accuracy of about 10 percent. In this light, even the 60-sample
model is six times better than guessing randomly. Let’s explore
this phenomenon a bit to see if we can gain some insight into
why the nearest neighbor model does well with so little training
data.

Imagine you’re alone in a basketball arena, sitting in the middle
of the court. A speck of dust is suspended in the air somewhere
in the arena. For convenience, the speck stays fixed in its
position. Now imagine 59 more specks of dust inhabiting the air.
Those 60 specks of dust are the 60 digit samples in our training



set, and the arena is the three-dimensional world in which the
digit image vectors live.

Now imagine a new speck of dust has appeared right in front of
your nose. It’s a new digit vector you want to classify. The
nearest neighbor model calculates the distance between that
speck of dust and the 60 specks whose digit labels you know.
The closest speck of dust to the new one is below the rim of the
basket you’re facing, at a distance of 47 feet (14 meters). It’s a
three, so the model returns a label of 3. Is it reasonable to think
that the closest speck represents the proper label for the
unknown sample? After all, there are only 60 specks of dust in
the whole arena.

We need to consider two competing effects to provide a
reasonable answer to this question. First, we should answer
“no” because it seems silly to believe that we can represent the
giant volume of the arena with 60 specks of dust. There’s too
little data in the training set to fill the arena’s space. This
observation, known as the curse of dimensionality, refers to the
fact that as the number of dimensions increases, so too, at a
very rapid rate, does the number of samples needed to fill the
space. In other words, the number of points increases rapidly,
meaning the number of training samples necessary to represent
the space increases rapidly—exponentially, to be more precise.



The curse of dimensionality is one of the banes of classical
machine learning.

The curse of dimensionality says we should have no hope of
properly classifying digits when we have only 60 training
samples and 784 dimensions . . . yet our nearest neighbor
classifier still works. Not very well, but better than random
guessing. Why? The reason has to do with the digits dataset and
how similar examples of the different classes are to each other.
All examples of fives look like a 5; if they didn’t, we wouldn’t
recognize them as fives. Therefore, while there are 784
dimensions to the space of digits, most digits in a class will land
relatively close to that class’s other digits. In other words, the
specks of dust representing fives are likely clustered or grouped
near each other, probably in a thin, tube-like region that snakes
its way through the arena. The other digits are likely grouped
similarly. Because of this, the nearest sample has a better
chance of being from the same digit class than we initially
suspected when considering the curse of dimensionality. Based
on this observation, we upgrade our “no” answer to a wishy-
washy “probably.”

We talk about this effect mathematically by saying that the digit
data lies on a manifold with an effective dimensionality that is
well below the 784 dimensions of the vectors representing the



digits. That data often lies on lower-dimensional manifolds is a
boon if we can make use of that information. The nearest
neighbor model uses the information because the training data
is the model. Later in the book, when we discuss convolutional
neural networks, we’ll understand that such models learn new
ways to represent their inputs, which is akin to learning how to
represent the lower-dimensional manifold on which the data
lives.

Before we get too excited about how well our nearest neighbor
classifier performs with the digits dataset, though, let’s bring
ourselves back to reality by attempting to classify real images.
The CIFAR-10 dataset consists of 50,000 small 32×32-pixel color
images from 10 different classes, including a mix of vehicles,
like airplanes, cars, and trucks, and animals, like dogs, cats, and
birds. Unraveling each of these images creates a vector of 3,072
elements, so we’re asking our classifier to separate images in a
3,072-dimensional space. Table 3-2 shows how it fares.

Table 3-2: Classifying CIFAR-10 with Nearest Neighbor

Training set size Accuracy (%)

50,000 35.4



Training set size Accuracy (%)

5,000 27.1

500 23.3

50 17.5

As with MNIST, random guessing leads to an accuracy of 10
percent. While our classifier performs better than this with all
variations of training set size, its best accuracy is little more
than 35 percent—nowhere near the 97 percent achieved with
MNIST. Sobering realizations like this led many in the machine
learning community to lament that generic image classification
might be beyond our grasp. Thankfully, it isn’t, but none of the
classical machine learning models do it well.

If we think in terms of manifolds—the idea that data often lives
in a lower-dimensional space than the dimensionality of the
data itself—then these results aren’t surprising. CIFAR-10
contains real-world photographs, often referred to as natural
images. Natural images are far more complex than simple
images like MNIST digits, so we should expect them to exist in a
higher-dimensional manifold and consequently be harder to



learn to classify. As it happens, there are numerical approaches
to estimating the true dimensionality of data. For MNIST, even
though the images live in a 784-dimensional space, the data is
closer to 11-dimensional. For CIFAR-10, the intrinsic
dimensionality is closer to 21 dimensions, so we expect to need
far more training data to perform on par with MNIST.

Nearest neighbor models aren’t used often these days. Two
issues contribute to why. First, while training a nearest
neighbor model is effectively instantaneous because there’s
nothing to train, using a nearest neighbor model is slow
because we have to calculate the distance between the
unknown sample and each of the training set samples. This
calculation time grows as the square of the number of samples
in the training set. The more training data we have, the better
we expect the model to perform, but the slower it runs. Double
the size of the training set, and the search time increases by a
factor of four.

Decades of study of nearest neighbor classifiers have uncovered
all manner of tricks to mitigate the time it takes to find the
nearest neighbor, or nearest k neighbors, but the effect remains:
increasing the number of training samples increases the time it
takes to use the classifier.



The second issue is common to all classical machine learning
models, as well as the traditional neural networks we’ll discuss
in Chapter 4. These models are holistic, meaning they interpret
their input vectors as a single entity without parts. This is not
the right thing to do in many cases. For example, writing a four
uses multiple strokes, and there are definite parts that
distinguish the four from an eight. Classical machine learning
models don’t explicitly learn about these parts or where they
appear, or that they might appear in multiple locations. Modern
convolutional neural networks, however, do learn these things.

In sum, nearest neighbor models are straightforward to
understand and trivial to train, but slow to use and unable to
explicitly understand structure in their inputs. Let’s change
gears to contemplate the forest and the trees.

****

We briefly explored decision trees, comprising a series of yes/no
questions asked about an unknown sample, in Chapter 1. You
begin at the root node and traverse the tree by answering the
node’s question. If the answer is “yes,” move down one level to
the left. If the answer is “no,” move down to the right. Continue
answering questions until you reach a leaf (a node with no



question), and assign the unknown sample whatever label is in
the leaf node.

Decision trees are deterministic; once constructed, they don’t
change. Therefore, traditional decision tree algorithms return
the same decision tree for the same training set. More often
than not, the tree doesn’t work all that well. If that happens, is
there anything we can do? Yes! We can grow a forest of trees.

But if decision trees are deterministic, won’t the forest be
nothing more than the same tree, over and over, like a mass of
clones? It will, if we don’t do anything clever along the way.
Fortunately, humans are clever. Researchers realized around
the year 2000 that introducing randomness produces a forest of
unique trees, each with its own strengths and weaknesses, but
collectively better than any single tree. A random forest is a
collection of decision trees, each randomly different from the
others. The forest’s prediction is a combination of its trees’
predictions. Random forests are a manifestation of the wisdom
of crowds.

Using randomness to build a classifier seems counterintuitive at
first. If on Tuesday we present the model with sample X and it
tells us that sample X is a member of class Y, then we don’t want
it to tell us that it’s a member of class Z if we happen to present



the same sample on Saturday. Fortunately, the randomness of a
random forest doesn’t work that way. Give a trained forest
sample X as input, and it always gives us class Y as output, even
if it’s February 29.

Three steps go into growing a random forest: bagging (also
called bootstrapping), random feature selection, and
ensembling. Bagging and random feature selection help combat
overfitting, a concept mentioned in Chapter 1. Single decision
trees are prone to overfitting.

All three steps work together to grow a forest of decision trees
whose combined outputs produce a (hopefully) better-
performing model. Explainability is the price paid for this gain
in power. A single decision tree explains itself by the series of
questions and answers that produce its output. With dozens or
hundreds of decision trees combining their output,
explainability goes out the window, but we can live with that in
many cases.

As I’ve already mentioned several times, the training set is key
to conditioning the model. This remains true with random
forests. We have as a starting point a training set. As we grow
the forest, decision tree by decision tree, we use the existing



training set to create tree-specific training sets unique to the
current decision tree. This is where bagging comes in.

Bagging refers to constructing a new dataset from the current
dataset by random sampling with replacement. The phrase
“with replacement” means we might select a training sample
more than once or not at all. This technique is used in statistics
to understand a measurement’s bounds. We’ll use the following
example dataset of test scores to figure out what that means:

95, 88, 76, 81, 92, 70, 86, 87, 72

One way to assess a class’s performance on the test is to
calculate the average score by taking the sum of all the scores
divided by the number of scores. The sum is 747, and there are
9 scores, giving us an average of 83.

Collectively, the test scores are a sample from a mythical parent
process that generates test scores for the particular test taken.
This isn’t a common way to think about test scores, but it’s a
machine learning way to think about what a dataset represents.
The test scores from another group of students represent
another sample from the parent process for this test. If we have
many classes’ worth of test scores, we can get an idea about the
true average test score, or at least the range over which we



expect to find that average score, with a high degree of
confidence.

We could give the test to many different classes to get multiple
average scores, one per class, but instead we’ll use bagging to
create new datasets from the collection of test scores we do
have and look at their averages. To do that, we pick values from
the collection of test scores at random, not caring if we’ve
already picked this particular score or never pick that one. Here
are six such bootstrapped datasets:

1.   86, 87, 87, 76, 81, 81, 88, 70, 95
2.   87, 92, 76, 87, 87, 76, 87, 92, 92
3.   95, 70, 87, 92, 70, 92, 72, 70, 72
4.   88, 86, 87, 70, 81, 72, 86, 95, 70
5.   86, 86, 92, 86, 87, 86, 70, 81, 87
6.   76, 88, 88, 88, 88, 72, 86, 95, 70

The respective averages of each are 83.4, 86.2, 80.0, 81.7, 84.6,
and 83.4 percent. The lowest is 80.0 percent, and the highest is
86.2 percent. This gives us some reason to believe that a large
number of samples will produce an average more or less in that
range.



This is how a statistician might use bagging. For us, the critical
part is the six new datasets bootstrapped from the original
dataset. When growing a random forest, every time we need a
new decision tree, we’ll first use bagging to produce a new
dataset, then train the decision tree using that dataset, not the
original. Notice that many of the six datasets have repeated
values. For example, dataset 1 used both 81 and 87 twice, but
never 72. This randomization of the given dataset helps create
decision trees that behave differently from one another yet are
aligned with what the original dataset represents.

The second trick a random forest uses is to train the decision
tree on a randomly selected set of features. Let’s use the toy
dataset in Table 3-3 to understand what that means. As always,
each row is a feature vector, a sample for which we know the
proper class label. The columns are the values of that feature
for each sample.

Table 3-3: A Toy Dataset

# x x x x x x

1 0.52 0.95 0.81 0.78 0.97 0.36
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# x x x x x x

2 0.89 0.37 0.66 0.55 0.75 0.45

3 0.49 0.98 0.49 0.39 0.42 0.24

4 0.43 0.51 0.90 0.78 0.19 0.22

5 0.51 0.16 0.11 0.48 0.34 0.54

6 0.48 0.99 0.62 0.58 0.72 0.42

7 0.80 0.84 0.72 0.26 0.93 0.23

8 0.50 0.70 0.13 0.35 0.96 0.82

9 0.70 0.54 0.62 0.72 0.14 0.53

What does this dataset represent? I have no idea; it’s made up.
My cheeky answer is a good reminder that machine learning
models don’t understand what their datasets represent. They
process numbers without context. Is it a pixel value? The
number of square feet in a house? The crime rate of a county
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per 100,000 people? It doesn’t matter to the machine learning
model—it’s all just numbers.

This toy dataset consists of nine feature vectors, each with six
features, x  through x . The forest’s decision trees use a
randomly selected subset of the six features. For example, say
we randomly keep features x , x , and x . Table 3-4 shows the
dataset now used to train the decision tree.

Table 3-4: A Random Collection of Features

# x x x

1 0.52 0.97 0.36

2 0.89 0.75 0.45

3 0.49 0.42 0.24

4 0.43 0.19 0.22

5 0.51 0.34 0.54

6 0.48 0.72 0.42

0 5

0 4 5
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# x x x

7 0.80 0.93 0.23

8 0.50 0.96 0.82

9 0.70 0.14 0.53

Each decision tree in the forest has been trained on a
bootstrapped version of the dataset using only a subset of the
available features. We’ve used randomness twice to grow a
forest of trees that are all subtly different from each other, in
both what data they’re trained on and which features they pay
attention to.

Now that we have a forest, how do we use it? Enter the last of
the three pieces: ensembling. Musically, an ensemble is a
collection of musicians playing diverse instruments. The
random forest is also an ensemble, with each decision tree a
different musician playing a different instrument.

A musical ensemble produces a single output, the music, by
combining the notes played by each instrument. Likewise, a
random forest produces a single output, a class label, by
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combining the labels produced by each decision tree, typically
by voting like a k-nearest neighbors classifier. We assign the
winning label to the input.

For example, if we want to use the random forest to classify
sample X, and there are 100 trees in the random forest (already
trained), we give each tree sample X. The trees know which
subsets of sample X’s features to use to arrive at a leaf with a
label. We now have 100 possible class labels, the output from
the forest’s 100 decision trees. If 78 of the trees assign sample X
to class Y, the random forest proclaims sample X to be an
instance of class Y.

The random assignment of features to trees, combined with
bootstrapped datasets and ensemble voting, gives a random
forest its power. Ensembling is an intuitively attractive idea that
isn’t restricted to random forests. Nothing stops us from
training multiple model types on the same dataset and then
combining their predictions in some way to arrive at a joint
conclusion about an input sample. Each of the models will have
its own strengths and weaknesses. When combined, the
strengths tend to enhance the output quality, making the sum
greater than the parts.



We have one more classical machine learning model to
investigate, the support vector machine (SVM). After that, we’ll
pit the models against each other to gain intuition about how
they behave and provide a baseline against which we can
compare the performance of neural networks.

****

To understand support vector machines is to understand four
concepts: margins, support vectors, optimization, and kernels.
The math is a bit hairy, even for math people, but we’ll set that
aside and focus instead on gaining a conceptual understanding.

Support vector machines are best understood visually, so we’ll
begin with the example toy dataset in Figure 3-3. This is a two-
class dataset (circles and squares) with two-dimensional feature
vectors, features x  and x .0 1



Figure 3-3: A two-class toy dataset with two features, x  and x

A classifier for this dataset is straightforward to construct
because a line easily separates the dataset by class, with all the
squares above it and to the right and all the circles below and to
the left. But where should it go? There are an infinite number of
lines that we might use. For example, we might pass the line
just below all the squares. That line separates the classes, but if
we encounter a sample from class square that lands just below
the line when we use the classifier, we’ll make a mistake and
assign the sample to class circle because it’s below the line we
declared separates the classes. Similarly, if we place the line just
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above all the circles, we might call a new sample that’s actually
a circle a square because it landed slightly above that line.

Given what we know based on the training data, we should
place the separating line as far from each group as possible.
Here’s where the concept of a margin comes into play. SVMs
seek to maximize the margin between the two groups, meaning
finding the place with the widest separation between classes.
When they have the maximum margin, they place the
boundary, here a line, in the middle of the margin because
that’s the most sensible thing to do based on the information
contained in the training data.

Figure 3-4 shows the training data with three additional lines.
The dashed lines define the margin, and the heavy continuous
line marks the boundary placed by the SVM to maximize the
distance between classes. This is the best position for the line to
minimize labeling errors between the two classes. This, in a
nutshell, is all an SVM does.



Figure 3-4: The maximal margin separating line (heavy) and
maximum margins (dashed)

The three other parts of an SVM—support vectors, optimization,
and kernels—are used to find the margins and the separating
line. In Figure 3-4, notice that the dashed lines pass through
some of the data points. These points are the support vectors
that the algorithm finds to define the margin. Where do those
support vectors come from? Recall that the figure’s points
represent specific feature vectors in the training set. Support
vectors are members of the training set found via an
optimization algorithm. Optimization involves finding the best



of something according to some criteria. The optimization
algorithm used by an SVM locates the support vectors that
define the maximum margin and, ultimately, the separating
line. In Chapter 1, we used an optimization algorithm when we
discussed fitting data to a curve, and we’ll use one again when
training neural networks.

We’re almost there; we have only one SVM concept remaining:
kernels. As opposed to the popcorn variety or the kernel at the
heart of your computer’s operating system, mathematical
kernels relate two things—here, two feature vectors. The
example in Figure 3-4 uses a linear kernel, meaning it uses the
training data feature vectors as they are. Support vector
machines admit many kinds of kernels to relate two feature
vectors, but the linear kernel is the most common. Another
kind, called a Gaussian kernel (or, even more verbose and
impressive, a radial basis function kernel), often helps in
situations where the linear kernel fails because the feature
vectors are in a different kind of relationship to each other.

The kernel transforms the feature vectors into a different
representation, an idea central to what convolutional neural
networks do. One of the issues that made classical machine
learning stumble for so long is that the data supplied to the
models was too complex in its raw form for the model to make



meaningful distinctions between classes. This is related to the
idea of manifolds and intrinsic dimensionality introduced in
our discussion of nearest neighbors.

Classical machine learning practitioners spent considerable
effort trying to minimize the number of features needed by a
model, paring the features down to the minimal set necessary
for the model to distinguish between classes. This approach was
termed feature selection or dimensionality reduction, depending
on the algorithm used. Similarly, especially with SVMs, they
used kernels to map the given feature vectors to a new
representation, making separating classes easier. These
approaches were human-led endeavors; we selected the
features or the kernels in the hopes that they’d make the
problem more manageable. But, as we’ll learn, modern deep
learning lets the data speak for itself when learning new
representations of the information the data contains.

In practice, training a support vector machine means locating
good values for the parameters related to the kernel used. If the
kernel is linear, as in the previous example, there’s only one
value to find, universally called C. It’s a number, like 1 or 10,
affecting how well the support vector machine performs. If
using the Gaussian kernel, we have C and another parameter,
known by the Greek letter γ (gamma). The art of training an



SVM involves finding the magic values that work best for the
dataset at hand.

The magic values used by a model are its hyperparameters.
Neural networks have many hyperparameters; even more than
SVMs. However, my experience has taught me that it’s often
easier to tune a neural network—especially a modern deep
neural network—than a support vector machine. I freely
confess my bias here; others might disagree.

Support vector machines are mathematically elegant, and
practitioners use that elegance to tweak the hyperparameters
and the kernel used, along with a suite of old-school data
preparation approaches, to construct a well-performing model
that works well on data in the wild. Every step of this process
relies on the intuition and experience of the human building
the model. If they’re knowledgeable and experienced, they’ll
likely succeed if the dataset is amenable to such a model, but
success isn’t assured. On the other hand, deep neural networks
are big, kind of clunky, and live or die by the raw data they’re
fed. That said, by coming to the problem with a minimal set of
assumptions, neural networks can generalize over elements of
the dataset that humans cannot fathom, which I think is often
why modern neural networks can do what was previously
believed to be next to impossible.



SVMs are binary classifiers: they distinguish between two
classes, as in the dataset in Figure 3-3. But sometimes we need
to distinguish between more than two classes. How can we do
that with an SVM?

We have two options for generalizing SVMs to multiclass
problems. Assume we have 10 classes in the dataset. The first
generalization approach trains 10 SVMs, the first of which
attempts to separate class 0 from the other nine classes. The
second likewise attempts to separate class 1 from the remaining
nine, and so on, giving us a collection of models, each trying to
separate one class from all the others. To classify an unknown
sample, we give the sample to each SVM and return the class
label of the model that produced the largest decision function
value—the metric, or measurement, the SVM uses to decide its
confidence in its output. This option is known as one-versus-rest
or one-versus-all. It trains as many SVMs as there are classes.

The other option is one-versus-one, which trains a separate SVM
for each possible pair of classes. The unknown sample is given
to each model, and the class label that shows up most often is
assigned to it. One-versus-one isn’t practical if the number of
classes becomes too large. For example, for the 10 classes in
CIFAR-10, we’d need 45 different SVM machines. And if we tried
this approach with the 1,000 classes in the ImageNet dataset,



we’d be waiting a long time for the 499,500 different SVMs to
train.

Support vector machines were well suited to the computing
power commonly available in the 1990s and early 2000s, which
is why they held neural networks at bay for so long. However,
with the advent of deep learning, there’s little reason to resort
to an SVM (in my opinion).

****

Let’s test the three classical models explored in this chapter
using an open source dataset consisting of dinosaur footprint
outlines that comes from the 2022 paper “A Machine Learning
Approach for the Discrimination of Theropod and
Ornithischian Dinosaur Tracks” by Jens N. Lallensack, Anthony
Romilio, and Peter L. Falkingham. The footprint images were
released under the Creative Commons CC BY 4.0 license, which
allows reuse with attribution.

Figure 3-5 contains samples from the dataset. Theropod
footprints (think T. rex) are in the top row, and ornithischian
footprints (think duckbilled dinos like hadrosaurs) are at the
bottom. The images used by the models were inverted to be
white on a black background, rescaled to 40×40 pixels, and



unraveled to become 1,600-dimensional vectors. The dataset is
small by modern standards, with 1,336 training samples and
335 test samples.

Figure 3-5: Theropod (top) and ornithischian (bottom) footprints

I trained the following models:

Nearest neighbor (k = 1, 3, 7)
A random forest with 300 trees
A linear support vector machine
A radial basis function support vector machine

After training, I tested the models with the held-out test set. I
also timed how long it took to train each model and to test each
model after training. Using a model after training is inference,
meaning I tracked the inference time on the test set.

NOTE



This isn’t a programming book, but if you’re familiar
with programming, especially Python, feel free to
contact me at rkneuselbooks@gmail.com and I’ll
send you the dataset and code.

Table 3-5 shows the results. Evaluating how well a model works
is, as you might expect, a critical component of the machine
learning process.

Table 3-5: Classifying Dinosaur Footprints

Model ACC MCC Train Test

RF300 83.3 0.65 1.5823 0.0399

RBF SVM 82.4 0.64 0.9296 0.2579

7-NN 80.0 0.58 0.0004 0.0412

3-NN 77.6 0.54 0.0005 0.0437

1-NN 76.1 0.50 0.0004 0.0395

Linear SVM 70.7 0.41 2.8165 0.0007

mailto:rkneuselbooks@gmail.com


The first column on the left identifies the model: from top to
bottom, random forest, radial basis function support vector
machine, nearest neighbors (with 7, 3, and 1 neighbor), and
linear support vector machine.

The ACC and MCC columns are metrics calculated from the
confusion matrix, the single most crucial part of the machine
learning practitioner’s toolbox when evaluating a model (see
Chapter 1). For binary classifiers like the ones we have here, the
confusion matrix counts the number of times a theropod test
sample was correctly identified, the same for ornithischian test
samples, and the number of times one was confused for the
other.

Visually, the confusion matrix for a binary model looks like this:

  Ornithischian Theropod

Ornithischian TN FP

Theropod FN TP

The rows are the actual class label from the held-out test set.
The columns are the labels assigned by the models. The cells are
the counts of the number of times each combination of actual



label and model-assigned label happened. The letters are the
standard way to refer to what the numbers in the cells mean:
TN is true negative, TP is true positive, FP is false positive, and
FN is false negative. For the dinosaur footprint models, theropod
is class 1, the “positive” class, making ornithischian class 0, or
the “negative” class.

The number of times the model called an ornithischian
footprint “ornithischian” is the TN count. Similarly, the TP count
represents the number of times the model was right about a
theropod footprint. The goal is to get TN and TP as high as
possible while making FP and FN, the mistakes, as low as
possible.

In Table 3-5, ACC refers to the accuracy: how many times was
the classifier’s assigned label correct? While accuracy is the
most natural metric to consider, it isn’t always the best,
especially if the number of examples per class isn’t nearly
equal. The random forest performed the best in terms of
accuracy, correctly labeling more than 83 out of every 100 test
images. The linear SVM was the worst; it was right only about
71 times out of 100. Random guessing would be correct about 50
percent of the time because we have two classes, though, so
even the linear SVM was learning from the footprint images.
We define the accuracy in terms of the cells of the confusion



matrix by adding TP and TN and dividing that sum by the sum
of all four cells.

The MCC column, which stands for Matthews correlation
coefficient, introduces a new metric. It’s a different combination
of the four numbers in the confusion matrix. MCC is my
favorite metric for classifiers, and it is increasingly understood
to be the best single-number measure of how well a model
performs. (These metrics apply to more advanced deep learning
models as well.) Table 3-5 is sorted by MCC, which, for this
example, also happens to sort by ACC. For a binary model, the
lowest possible MCC is –1, and the highest is 1. Random
guessing gives an MCC of 0. An MCC of 1 means the model
makes no mistakes. An MCC of –1, which never actually
happens in practice, means that the model is perfectly wrong:
in our case, it would label all theropod tracks ornithischian and
all ornithischian tracks theropod. If you have a perfectly wrong
classifier, swap the output labels to make it perfectly right.

The Train and Test columns list times in seconds. The Train
column tells us how long it took to train the model before using
it. The nearest neighbor models take virtually no time, a mere
fraction of a millisecond, because there’s nothing to train. Recall
that a nearest neighbor model is the training set itself; there is
no model to condition to approximate the data in some way.



The slowest model was the linear SVM. Curiously, the more
complex radial basis function model trained in roughly one-
third the time (a difference that can be attributed to how such
models are implemented in code). The next slowest model to
train was the random forest. This makes sense because there
were 300 decision trees in the forest, and each of them had to
be trained independently.

The inference time, in the Test column, was roughly the same
between the nearest neighbor and random forest models. The
SVM models were respectively slow (RBF) and very fast (linear),
again reflecting differences in the implementation. Notice that
the nearest neighbor models take longer to use than to train.
This is the reverse of the usual scenario, especially for neural
networks, as we’ll see later in the book. Typically, training is
slow but needs to be done only once, while inference is fast. For
nearest neighbor models, the larger the training set, the slower
the inference time—a significant strike against them.

There are two main things to take away from this exercise: a
general understanding of the performance of the classical
models, which we’ll use as a baseline against which to compare
a neural network in Chapter 4, and that even classical models
can do well on this particular dataset. Their performance was
on par with that of human experts (meaning paleontologists),



who also labeled the dinosaur footprint outlines. According to
the original paper by Lallensack et al. from which the dinosaur
dataset was taken, the human experts were correct only 57
percent of the time. They were also allowed to label tracks as
“ambiguous,” a luxury the models don’t have; the models
always make a class assignment, with no “I don’t know” option.
We can coerce some model types into making such statements,
but the classical models of this chapter are not well suited to
that.

****

Are the classical models symbolic AI or connectionism? Are
they AI at all? Do they learn, or are they merely mathematical
tricks? My answers to these questions follow.

In Chapter 1, I characterized the relationship between AI,
machine learning, and deep learning as a series of nested
concepts, with deep learning a form of machine learning and
machine learning a form of AI (see Figure 1-1). This is the
proper way to describe the relationship for most people, and it
fits with Chapter 2’s history. From this perspective, the classical
models of this chapter are a form of AI.



But are the classical models symbolic AI or connectionist AI? I
say neither. They are not symbolic AI because they don’t
manipulate logical rules or statements, and they’re not
connectionist because they don’t employ a network of simple
units that learn their proper association as they work with the
data. Instead, I consider these models to be a fancy form of
curve fitting—the output of an algorithm employing an
optimization process to produce a function that best
characterizes the training data, and, hopefully, the data
encountered by the model in the wild.

For a support vector machine, the function is the structure of
the model in terms of the support vectors it locates during its
optimization process. A decision tree’s function is generated by
a specific algorithm designed to repeatedly split the training
data into smaller and smaller groups until a leaf is created that
(usually) contains only examples from a single class. Random
forests are merely collections of such functions working in
parallel.

Tree classifiers are almost a form of genetic programming.
Genetic programming creates computer code by simulating
evolution via natural selection, where improved fitness
corresponds to “is a better solution to the problem.” Indeed,
genetic programming is a kind of evolutionary algorithm, and



evolutionary algorithms, along with swarm intelligence
algorithms, implement robust, generic optimization. Some
people consider evolutionary algorithms and swarm
intelligence to be AI. I don’t, though I frequently use them in my
work. Swarms don’t learn; they search a space representing
possible solutions to a problem.

Nearest neighbor models are even simpler; there is no function
to create. If we have all the possible data generated by some
parent process—that is, the thing creating the feature vectors
that we’re trying to model—then we don’t need a model. To
assign a class label to a feature vector, we simply look it up in
the feature vector “phone book” and return the label we find
there. Since we have all possible feature vectors with labels,
there’s nothing to approximate, and any feature vector
encountered in the wild will necessarily be in the book.

Barring access to all possible feature vectors for the problem at
hand, a nearest neighbor model uses the closest feature vector
in the incomplete phone book represented by the training data.

As an example, suppose we live in a town of 3,000 people, and
all of them are in the phone book. (Are there still such things as
phone books? If not, pretend.)



If we want to find Nosmo King’s phone number, we look in the
book under “King” and scan until we hit “Nosmo,” and we have
it. Suppose, however, that we don’t have a complete listing of all
3,000 people, but 300 selected at random. We still want to know
Nosmo King’s phone number (class label), but it’s not in the
phone book. However, there is a Burg R. King. There’s a good
chance Burg is related to Nosmo because of the shared last
name, so we return Burg’s phone number as Nosmo’s. Clearly,
the more complete the phone book, the better the chance we’ll
find our desired name or someone in that person’s household.
That’s essentially all that a nearest neighbor model does.

****

To recap, support vector machines, decision trees, and random
forests use data to generate functions according to a carefully
crafted algorithm designed by a human. That is neither
symbolic AI nor connectionism to me, but curve fitting or,
perhaps more accurately, optimization. Nearest neighbor
models are even worse; in their case, there’s no function at all.

This doesn’t mean that AI is bogus, but it does mean that what
practitioners have in mind when they talk about AI is likely
different from what the general public considers “artificial
intelligence.”



However, all is not lost. There is a machine learning model
worthy of the connectionist label: the neural network. It’s at the
heart of the AI revolution, and it’s capable of actually learning
from data. So, let’s put classical models and symbolic AI aside
and devote our attention to neural networks.

KEY TERMS

bagging, curse of dimensionality, evolutionary algorithm, false
negative, false positive, genetic programming,
hyperparameters, inference, manifold, metric, nearest
neighbor, one-versus-one, one-versus-rest, random forest,
support vector machine, swarm intelligence, true negative,
true positive



4 
NEURAL NETWORKS: BRAIN-LIKE AI

Connectionism seeks to provide a substrate from which
intelligence might emerge. Today, connectionism means neural
networks, with neural being a nod to biological neurons.
Despite the name, however, the relationship between the two is
superficial. Biological neurons and artificial neurons may
possess a similar configuration, but they operate in an entirely
different manner.

Biological neurons accept input on their dendrites, and when a
sufficient number of inputs are active they “fire” to produce a
short-lived voltage spike on their axons. In other words,
biological neurons are off until they’re on. Some 800 million
years of animal evolution have made the process considerably
more complex, but that’s the essence.



The artificial neurons of a neural network likewise possess
inputs and outputs, but instead of firing, the neurons are
mathematical functions with continuous behavior. Some
models spike like biological neurons, but we ignore them in this
book. The neural networks powering the AI revolution operate
continuously.

Think of a biological neuron like a light switch. It’s off until
there is a reason (sufficient input) to turn it on. The biological
neuron doesn’t turn on and stay on but flashes on and off, like
flicking the switch. An artificial neuron is akin to a light with a
dimmer switch. Turn the switch a tiny amount to produce a
small amount of light; turn the switch further, and the light’s
brightness changes proportionally. This analogy isn’t accurate
in all cases, but it conveys the essential notion that artificial
neurons are not all or nothing. Instead, they produce output in
proportion to their input according to some function. The fog
will lift as we work through the chapter, so don’t worry if this
makes little sense at present.

****

Figure 4-1 is the most critical figure in the book. It’s also one of
the simplest, as is to be expected if the connectionist approach
is on the right track. If we understand what Figure 4-1



represents and how it operates, we have the core
understanding necessary to make sense of modern AI.

Figure 4-1: The humble (artificial) neuron

Figure 4-1 contains three squares, a circle, five arrows, and
labels like “x ” and “Output.” Let’s examine each in turn,
beginning with the squares on the left.

Standard practice presents neural networks with the inputs on
the left and data flow to the right. In Figure 4-1, the three
squares labeled x , x , and x  are the inputs to the neuron. They
are the three features of a feature vector, what we want the
neuron to process to give us an output leading to a class label.

0

0 1 2



The circle is labeled h, a standard notation for the activation
function. The activation function’s job is to accept input to the
neuron and produce an output value, the arrow heading off to
the right in Figure 4-1.

The three input squares are connected to the circle (the node)
by arrows, one from each input square. The arrows’ labels—w ,
w , and w —are the weights. Every input to the neuron has an
associated weight. The lone b linked to the circle by an arrow is
the bias. It’s a number, as are the weights, the input xs, and the
output. For this neuron, three numbers come in, and one
number goes out.

The neuron operates like this:

1. Multiply every input value, x , x , and x , by its associated
weight, w , w , and w .

2. Add all the products from step 1 together along with the bias
value, b. This produces a single number.

3. Give the single number to h, the activation function, to
produce the output, also a single number.

That’s all a neuron does: it multiplies its inputs by the weights,
sums the products, adds the bias value, and passes that total to
the activation function to produce the output.

0

1 2

0 1 2

0 1 2



Virtually all the fantastic accomplishments of modern AI are
due to this primitive construct. String enough of these together
in the correct configuration, and you have a model that can
learn to identify dog breeds, drive a car, or translate from
French to English. Well, you do if you have the magic weight
and bias values, which training gives us. These values are so
important to neural networks that one company has adopted
“Weights & Biases” as its name; see https://www.wandb.ai.

We have choices for the activation function, but in modern
networks it’s most often the rectified linear unit (ReLU)
mentioned in Chapter 2. The ReLU is a question: is the input
(the sum of the inputs multiplied by the weights plus the bias)
less than zero? If so, the output is zero; otherwise, it’s whatever
the input is.

Can something as straightforward as a lone neuron be useful? It
can. As an experiment, I trained the neuron in Figure 4-1 using
three features from the iris flower dataset from Chapter 1 as
input. Recall, this dataset contains measurements of the parts of
three different species of iris. After training, I tested the neuron
with an unused test set that had 30 feature vectors. The neuron
correctly classified 28, for an accuracy of 93 percent.

https://www.wandb.ai/


I trained the neuron by searching for a set of three weights and
a bias value producing an output that, when rounded to the
nearest whole number, matched the class label for an iris
flower—either 0, 1, or 2. This is not the standard way to train a
neural network, but it works for something as modest as a
single neuron. We’ll discuss standard network training later in
the chapter.

A single neuron can learn, but complex inputs baffle it.
Complex inputs imply we need a more complex model. Let’s
give our single neuron some friends.

Convention arranges neurons in layers, with the outputs from
the previous layer the inputs to the following layer. Consider
Figure 4-2, which shows networks with two, three, and eight
nodes in the layer after the input. Arranging the network in
layers simplifies the implementation in code and facilitates the
standard training procedure. That said, there is no requirement
to use layers if an alternative way to train the model can be
found.



Figure 4-2: Two-, three-, and eight-node networks

Let’s begin with the two-node network at the upper left. The
three inputs (squares) are there, but this time there are two
circles in the middle layer and a single circle on the right. The
inputs are fully connected to the two nodes in the middle layer,
meaning a line connects each input square to each middle layer
node. The middle layer outputs are connected to a single node
on the far right, from which the network’s output comes.

The middle layers of a neural network between the input on the
left and the output on the right are known as hidden layers. For
example, the networks of Figure 4-2 each have one hidden layer
with 2, 3, and 8 nodes, respectively.



A network with this configuration is suitable for a binary
classification task, class 0 versus class 1, where the output is a
single number representing the model’s belief that the input is a
member of class 1. Therefore, the rightmost node uses a
different activation function known as a sigmoid (also called a
logistic). The sigmoid produces an output between 0 and 1. This
is also the range used to represent a probability, so many people
refer to the output of a node with a sigmoid activation function
as a probability. This is not generally accurate, but we can live
with the sloppiness. The nodes of the hidden layer all use ReLU
activation functions.

How many weights and biases must we learn to implement the
two-node network in Figure 4-2? We need one weight for each
line (except the output arrow) and one bias value for each node.
Therefore, we need eight weights and three bias values. For the
model at the lower left, we need 12 weights and 4 biases.
Finally, for the 8-node model, we need to learn 32 weights and 9
bias values. As the number of nodes in a layer increases, the
number of weights increases even faster. This fact alone
restrained neural networks for years, as potentially useful
models were too big for a single computer’s memory. Of course,
model size is relative. OpenAI’s GPT-3 has over 175 billion
weights, and while they aren’t talking about how large GPT-4 is,
rumor puts it at 1.7 trillion weights.



We need a two-class dataset to explore the models in Figure 4-2.
The dataset we’ll use is a classic one that attempts to distinguish
between two cultivars of grapes used to make wine in a
particular region of Italy. Unfortunately, the wines represented
by the dataset are, it seems, no longer known. (That’s how old
the dataset is.) However, we know that models don’t care about
the labels—they use numbers—so we’ll use 0 and 1 as the
labels.

We need three features, x , x , and x . The features we’ll use are
alcohol content in percent, malic acid, and total phenols. The
goal is to train the models in Figure 4-2 to see how well each
performs when identifying an unknown wine given
measurements of the three features.

I trained the two-neuron model using a training set of 104
samples and a test set of 26 samples. This means I used 104
triplets of measured alcohol content, malic acid level, and total
phenols, knowing the proper output label, class 0 or class 1. The
training set conditioned the two-neuron model to give values to
all eight weights and three biases. I promise we will discuss
how training works, but for now, assume it happens so we can
explore how neural networks behave. The trained model
achieved an accuracy on the test set of 81 percent, meaning it
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was right better than 8 times out of 10. That’s not too bad for
such a small model and training set.

Figure 4-3 presents the trained two-neuron model. I added the
weights to the links and the biases to the nodes so you can see
them. I think it’s worth looking at the numbers at least once,
and it’s best to do that with a simple model.

Figure 4-3: The two-neuron model trained on the wine dataset

Let’s use the model with two test samples to understand the
process. The two test samples consist of three numbers each,
the values of the features, (x , x , x ):

Sample 1 (–0.7359, 0.9795, –0.1333)

0 1 2



Sample 2 ( 0.0967, –1.2138, –1.0500)

You may have a question at this point. I said the features were
alcohol content in percent, malic acid level, and total phenols.
While I have no idea what the units are for measuring malic
acid or total phenols, a percent is a percent, so why is x  for the
first sample a small negative number? We can’t have a negative
percentage of alcohol.

The answer has to do with preprocessing. Raw data, like the
percent alcohol, is seldom used with machine learning models
as is. Instead, each feature is adjusted by subtracting the
average value of the feature over the training set and dividing
that result by a measure of how scattered the data is around the
average value (the standard deviation). The original alcohol
content was 12.29 percent, a reasonable value for wine, but
after scaling, it became –0.7359.

Let’s classify sample 1 using the learned weights and biases in
Figure 4-3. The input to the top neuron is each feature
multiplied by the weight on the line connecting that feature to
the neuron, then summed with the bias value. The first feature
gives us 0.4716 × –0.7359, the second 0.0399 × 0.9795, and the
third –0.3902 × –0.1333, with bias value 0.0532. Adding all of
these together gives – 0.2028. This is the number passed to the

0



activation function, a ReLU. Since it is negative, the ReLU
returns 0, meaning the output from the top node is 0. Repeating
the calculation for the bottom node gives 0.1720 as the input to
the ReLU. That’s a positive number, so the ReLU returns 0.1720
as the output.

The outputs of the two nodes in the middle layer are now used
as the inputs to the final node on the right. As before, we
multiply the outputs by the weights, add them along with the
bias value, and pass that to the activation function. In this case,
the activation function is not a ReLU but a sigmoid.

The top node’s output is 0, and the bottom’s output is 0.1720.
Multiplying these by their respective weights, summing, and
adding the bias value of 2.2277 gives us 1.9502 as the argument
to the sigmoid activation function, producing 0.8755 as the
network’s output for the first input sample.

How should we interpret this output? Here’s where we learn an
important aspect of neural networks:

Neural networks don’t tell us the actual class label for the input, but only their
confidence in one label relative to another.

Binary models output a confidence value that we’re
interpreting as the probability of the input belonging to class 1.



Probabilities are numbers between 0 (no chance) and 1
(absolutely assured). Humans are generally more comfortable
with percentages, which we get by multiplying the probability
by 100. Therefore, we can say that the network is a little more
than 87 percent confident that this input represents an instance
of class 1.

In practice, we use a threshold—a cutoff value—to decide which
label to assign. The most common approach for binary models
is a threshold of 50 percent. If the output exceeds 50 percent
(probability 0.5), we assign the input to class 1. This output is
above 50 percent, so we assign “class 1” as the label. This
sample is from class 1, meaning the network’s assigned label is
correct.

We can repeat these calculations for the second input sample,
(0.0967, –1.2138, –1.0500). I’ll leave walking through it to you as
an exercise, but the network’s output for sample 2 is 0.4883. In
other words, the network’s confidence that this sample belongs
to class 1 is 49 percent. The cutoff is 50 percent, so we reject the
class 1 label and assign this input to class 0. The actual class is
class 1, so, in this instance, the network is wrong—it assigned a
class 1 sample to class 0. Oops.



Is this a useful model? The answer depends on the context.
We’re classifying wine by cultivar. If the model’s output is
wrong 20 percent of the time, which is one time in five, is that
acceptable? I suspect not, but there might be other tasks where
a model with this level of accuracy is acceptable.

Neural networks offer some control over how their outputs are
interpreted. For example, we might not use 50 percent as the
cutoff. If we make it lower, say, 40 percent, we’ll capture more
class 1 samples, but at the expense of mistakenly identifying
more actual class 0 samples as class 1. In other words, we get to
trade off one kind of error for another.

Let’s bring the other models in Figure 4-2 into the mix. I trained
all three models using the same training and test sets used for
Figure 4-3. I repeated the process 240 times for each of the three
models. Here are the average accuracies:

2-node 81.5 percent

3-node 83.6 percent

8-node 86.2 percent



The model’s performance improves as the number of nodes in
the hidden layer increases. This makes intuitive sense, as a
more complex model (more nodes) implies the ability to learn
more complex associations hidden within the training set.

I suspect you now have a new question: why did I train each
model 240 times and report the average accuracy over all 240
models? Here’s another critical thing to understand about
neural networks:

Neural networks are randomly initialized, such that repeated training leads to
differently performing models even when using the same training data.

The phrase “randomly initialized” demands clarification. Look
again at Figure 4-3. The numbers representing the weights and
biases came from an iterative process. This means that an
initial set of weights and biases are updated repeatedly, each
time moving the network toward a better and better
approximation of whatever function it is that links the input
feature vectors and the output labels. Approximating this
function well is what we want the network to do.

Why not initialize all the weights to the same value? The
answer is that doing so forces the weights to learn similar
characteristics of the data, which is something we don’t want,



and in the end the model will perform poorly. If we set all of the
initial weights to zero, the model does not learn at all.

An initial set of values are necessary for the iterative process to
work. How should we pick the initial values? That’s an
important question, and the answer for our current level of
understanding is “at random,” meaning we roll dice, in a sense,
to get the initial value for each weight and bias. The iterative
process then refines these values to arrive at the final set in
Figure 4-3.

However, the iterative process doesn’t always end in the same
place. Pick a different random set of initial weights and biases,
and the network will converge to a different set of final values.
For example, the network in Figure 4-3 achieved an accuracy of
81 percent, as mentioned previously. Here are 10 more
accuracies for the same network trained and tested on the same
data:

89, 85, 73, 81, 81, 81, 81, 85, 85, 85

The accuracies range from a high of 89 percent to a low of 73
percent. All that changed between each training session was the
collection of initial weights and biases. This is an often
overlooked issue with neural networks. Networks should be



trained multiple times, if feasible, to gather data on their
effectiveness or, as with the 73 percent version of the network,
to understand that a bad set of initial values was used purely by
chance. I should also mention that the wide variation in the
accuracy of this network is related to its being relatively small
and containing only a few weights and biases. Larger models
tend to be more consistent when trained repeatedly.

We’ve already covered a lot of ground, so a recap is in order:

The fundamental unit of a neural network is the neuron, also
called a node.
Neurons multiply their inputs by weights, sum those
products, add a bias value, and pass all of that to the
activation function to produce an output value.
Neural networks are collections of individual neurons,
typically arranged in layers with the output of the current
layer the input to the following layer.
Training a neural network assigns values to the weights and
biases by iteratively adjusting an initial, randomly selected
set.
Binary neural networks produce an output that roughly
corresponds to the probability of the input belonging to class
1.



****

Now that we know what a neural network is and how it’s used,
we finally come to the crux of the matter: where do the magic
weights and biases come from in the first place? In Chapter 2, I
briefly mentioned that neural networks improved in the 1980s
thanks to two essential algorithms: backpropagation and
gradient descent. These are the algorithms at the heart of
neural network training.

We discussed optimization, the process of finding the best of
something according to some criteria, in Chapter 3 in reference
to support vector machines. Training a neural network is also
an optimization process, involving learning the weights and
biases that best fit the training data. Care must be taken,
however, to make it more likely that the learned weights and
biases fit general trends in the training data rather than the
details of the specific training data itself. What I mean by that
will become apparent as we learn more about the training
process.

The general training algorithm is:

1. Select the model’s architecture, including the number of
hidden layers, nodes per layer, and activation function.



2. Randomly but intelligently initialize all the weights and
biases associated with the selected architecture.

3. Run the training data, or a subset, through the model and
calculate the average error. This is the forward pass.

4. Use backpropagation to determine how much each weight
and bias contributes to that error.

5. Update the weights and biases according to the gradient
descent algorithm. This and the previous step make up the
backward pass.

6. Repeat from step 3 until the network is considered “good
enough.”

These six steps include many important terms. It’s worth our
time to ensure that we have an idea of what each means. In this
chapter, architecture refers to the number of layers, typically
hidden layers, used by the network. We have our input feature
vector, and we can imagine each hidden layer working
collectively to accept an input vector and produce an output
vector, which then becomes the input to the next layer, and so
on. For binary classifiers, the network’s output is a single node
producing a value from 0 to 1. We’ll learn later in the book that
this idea can be extended to multiclass outputs.

The algorithm indicates that training is an iterative process that
repeats many times. Iterative processes have a starting point. If



you want to walk from point A to point B, place one foot in front
of the other. That’s the iterative part. Point A is the starting
point. For a neural network, the architecture implies a set of
weights and biases. The initial values assigned to those weights
and biases are akin to point A, with training akin to placing one
foot in front of the other.

The algorithm uses the phrase “average error.” What error?
Here’s where a new concept enters the picture. Intuitively, we
can see that simply picking some initial values for the weights
and biases is not likely to lead to a network able to classify the
training data accurately. Remember, we know the inputs and
the expected outputs for the training data.

Say we push training sample 1 through the network to give us
an output value, perhaps 0.44. If we know that sample 1 belongs
to class 1, the error made by the network is the difference
between the expected output and the actual output. Here, that’s
1 – 0.44, or 0.56. A good model might instead have produced an
output of 0.97 for this sample, giving an error of only 0.03. The
smaller the error, the better the model is at classifying the
sample. If we push all the training data through the network, or
a representative subset of it, we can calculate the error for each
training sample and find the average over the entire training
set. That’s the measure used by the (to be described)



backpropagation and gradient descent algorithms to update the
weights and biases.

Finally, the training algorithm says to push data through the
network, get an error, update the weights and biases, and
repeat until the network is “good enough.” In a way, good
enough is when the error, also called the loss, is as close to zero
as possible. If the network produces 0 as the output for all class
0 samples and 1 as the output for all class 1 samples, then it
performs perfectly on the training data, and the error will be
zero. That’s certainly good enough, but we must be careful.
Sometimes when that happens the network is overfitting,
meaning it’s learned all the details of the training data without
actually learning the general trends of the data that will allow it
to perform well when used with unknown inputs in the wild.

In practice, overfitting is addressed in several ways, the best of
which is acquiring more training data. We use the training data
as a stand-in for all the possible data that could be produced by
whatever process we are trying to model. Therefore, more
training data means a better representation of that data
collection. It’s the interpolate versus extrapolate issue we
discussed in Chapter 1.



However, getting more training data might not be possible.
Alternatives include tweaking the training algorithm to
introduce things that keep the network from focusing on
irrelevant details of the training data while learning. One such
technique you may hear mentioned is weight decay, which
penalizes the network if it makes the weight values too large.

Another common approach is data augmentation. Out of
training data? No worries, data augmentation will invent some
by slightly modifying the data you already have. Data
augmentation takes the existing training data and mutates it to
produce new data that might plausibly have been created by
the same process that made the actual training data. For
example, if the training sample is a picture of a dog, it will still
be a picture of a dog if you rotate it, shift it up a few pixels, flip
it left to right, and so on. Each transformation produces a new
training sample. It might seem like cheating, but in practice,
data augmentation is a powerful regularizer that keeps the
network from overfitting during training.

Let’s return for a moment to initialization, as its importance
was not sufficiently appreciated for many years.

At first, weight initialization meant nothing more than “pick a
small random number” like 0.001 or –0.0056. That worked



much of the time. However, it didn’t work consistently, and
when it did work, the network’s behavior wasn’t stellar.

Shortly after the advent of deep learning, researchers revisited
the “small random value” idea in search of a more principled
approach to initialization. The fruit of those efforts is the way
neural networks are initialized to this day. Three factors need to
be considered: the form of the activation function, the number
of connections coming from the layer below (fan-in), and the
number of outputs to the layer above (fan-out). Formulas were
devised to use all three factors to select the initial weights for
each layer. Bias values are usually initialized to zero. It isn’t
difficult to demonstrate that networks so initialized perform
better than those initialized the old-fashioned way.

We have two steps of the training algorithm yet to discuss:
backpropagation and gradient descent. Backpropagation is
often presented first because its output is necessary for gradient
descent. However, I think it’s more intuitive to understand what
gradient descent is doing, then fill in the missing piece it needs
with what backpropagation provides. Despite the unfamiliar
names, I am certain you already understand the essence of both
algorithms.

****



You’re standing in a vast, open grassland of rolling hills. How
did you get here? You strain your brain, but no answer comes.
Then, finally, you spy a small village to the north, in the valley
far below. Perhaps the people there can give you some answers.
But what’s the best way to get there?

You want to go north and down, in general, but you must also
respect the contour of the land. You always want to move from
a higher to a lower position. You can’t go due north because a
large hill is in your way. You could head northeast; the terrain is
flatter there, but going that way will make your journey a long
one, as the land drops slowly. So, you decide to head northwest,
as that moves you both north and down more steeply than to
the east. You take a step to the northwest, then pause to reassess
your position to decide which direction to move in next.

Repeating this two-stage process of examining your current
position to determine the direction that best moves you both
northward and downward, then taking a step in that direction,
is your best bet for reaching the village in the valley. You may
not make it; you might get stuck in a small canyon out of which
you can’t climb. But overall, you’ll make progress toward your
goal by consistently moving in a direction that is north and
down relative to your current position.



Following this process, known as gradient descent, lets us adjust
a neural network’s initial weights and biases to give us ever
better-performing models. In other words, gradient descent
trains the model.

The three-dimensional world of the grassland surrounding the
village corresponds to the n-dimensional world of the network,
where n is the total number of weights and biases whose values
we are trying to learn. Choosing a direction to head in from
your current position and then moving some distance in that
direction is a gradient descent step. Repeated gradient descent
steps move you closer and closer to the village.

Gradient descent seeks the minimum position, the village in the
valley—but the minimum of what? For a neural network,
gradient descent aims to adjust the weights and biases of the
network to minimize the error over the training set.

The vast, open grassland of rolling hills represents the error
function, the average error over the training data when using
the weight and bias values corresponding to your current
position. This means that each position in the grassland implies
a complete set of network weights and biases. The position of
the village corresponds to the smallest error the network can
make on the training set. The hope is that a model that has a



small error on its training set will make few errors on unknown
inputs when used in the wild. Gradient descent is the algorithm
that moves through the space of weights and biases to minimize
the error.

Gradient descent is an optimization algorithm, again telling us
that training a neural network is an optimization problem, a
problem where we need to find the best set of something. While
this is true, it is also true that training a neural network is
subtly different from other optimization problems. As
mentioned previously, we don’t necessarily want the smallest
possible error on the training data, but rather the model that
best generalizes to unknown inputs. We want to avoid
overfitting. I’ll demonstrate visually what that means later in
the chapter.

Gradient descent moves through the landscape of the error
function. In everyday use, a gradient is a change in something,
like the steepness of a road or a color gradient varying
smoothly from one shade to another. Mathematically, a gradient
is the multidimensional analog of the slope of a curve at a point.
The steepest direction to move is down the maximum gradient.
The slope of a line at a point on a curve is a helpful
representation of the gradient, so contemplating slopes is a
worthy use of our time.



Figure 4-4 shows a curve with four lines touching it at different
points. The lines represent the slope at those points. The slope
indicates how quickly the value of the function changes in the
vicinity of the point. The steeper the line, the faster the
function’s value changes as you move along the x-axis.

Figure 4-4: A curve with the slope at various points marked

Line B marks the lowest point on the curve. This is the global
minimum and the point that an optimization algorithm seeks to
find. Notice that the line touching this point is entirely
horizontal. Mathematically, this means that the slope of line B is
zero. This is true at the minima (and maxima) of functions.



The point touched by line B is the global minimum, but there
are three other minima in the plot. These are local minima,
points where the slope of the line touching those points is also
zero. Ideally, an optimization algorithm would avoid these
points, favoring the global minimum.

Line A is steep and points toward the global minimum.
Therefore, if we were at the point on the curve touched by line
A, we could move quickly toward the global minimum by taking
steps in the indicated direction. Moreover, as the slope is steep
here, we can take reasonably large steps down to the valley.

Line C is also steep but heads toward one of the local minima,
the one just beyond 3 on the x-axis. A gradient descent
algorithm that only knows how to move down the gradient will
locate that local minimum and become stuck there. The same
applies to line D, which heads toward the local minimum
between 4 and 5 on the x-axis.

What are the takeaways from Figure 4-4? First, gradient descent
moves down the gradient, or slope, from some point. Here the
curve is one- dimensional, so the point is a specific value of x.
Gradient descent uses the value of the slope at that point to pick
a direction and a step size proportional to the steepness of the
slope. A steep slope means we can take a larger step to end up



at a new x value closer to a minimum. A shallow slope implies a
smaller step.

For example, suppose we are initially at the point where line A
touches the curve. The slope is steep, so we take a big step
toward the global minimum. After the step, we look at the slope
again, but this time it’s the slope at the new point on the x-axis.
Using that slope, we take another step, then another, and
another until we get to a point where the slope is essentially
zero. That’s the minimum, so we stop.

The one-dimensional case is straightforward enough because at
each point there is only one slope, so there is only one direction
to go. However, recalling the vast, open grassland, we know that
from any point there are an infinite number of directions we
might head in, many of which are useful in that they move us
northward and downward. One of these directions, the
direction of the maximum gradient, is the steepest and moves
us most quickly toward our desired destination, and that’s the
direction we step in. Repeating the process, using the maximum
gradient direction each time, accomplishes in multiple
dimensions what we did in one dimension. To be precise, we
step in the direction opposite the maximum gradient because
the maximum gradient points away from the minimum, not
toward it.



Figure 4-5 presents gradient descent in two dimensions. The
figure shows a contour plot. Imagine an open pit mine with
terraced levels: the lighter the shade, the deeper into the mine,
but also the flatter the slope. That is, lighter shades imply
shallower slopes.

Figure 4-5: Gradient descent in two dimensions

The figure shows the path taken by gradient descent for three
starting positions: the circle, the triangle, and the square.
Initially, the slopes are steep, so the step sizes are big, but the
slopes become shallow as the minimum is approached,



implying smaller steps. Eventually, gradient descent reaches the
minimum, regardless of the starting point.

We’ve discussed gradient descent in one and two dimensions
because we can visualize the process. We understand now that
we have always known the algorithm and used it ourselves
whenever we walk from a higher elevation to a lower one.
Honestly, this is all that training a neural network does. The
initial set of weights and biases is nothing more than a single
starting point in an n-dimensional space. Gradient descent uses
the maximum gradient from that initial starting position to
march toward a minimum. Each new position in the n-
dimensional space is a new set of the n weights and biases
generated from the previous set based on the steepness of the
gradient. When the gradient gets very small, we claim victory
and fix the weights and biases, believing the network to be
trained.

Gradient descent depends on slopes, on the value of the
gradient. But where do the gradients come from? Gradient
descent minimizes the loss function, or the error made by the
network. The error over the training set is a function of each
weight and bias value in the network. The gradient represents
how much each weight and bias contributes to the overall error.



For example, suppose we know how much weight 3 (whatever
weight that labels) contributes to the network’s error as
measured by the mistakes the network makes on the training
set. In that case, we know the steepness of the gradient should
we change weight 3’s value, keeping all other weights and
biases the same. That steepness, multiplied by a step size, gives
us a value to subtract from weight 3’s current value. By
subtracting, we move in the direction opposite to the maximum
gradient. Repeating the calculation for every weight and bias in
the network takes a step in the n-dimensional space. This is
what gradient descent does during training.

Backpropagation is the algorithm that gives us the steepness
values per weight and bias. Backpropagation is an application
of a well-known rule from differential calculus, the branch of
mathematics telling us how one thing changes as another
changes. Speed is an example. Speed indicates how distance
changes with time. It’s even in how we talk about speed: miles
per hour or kilometers per hour. Backpropagation gives us the
“speed” representing how the network’s error changes with a
change in any weight or bias value. Gradient descent uses these
“speeds,” multiplied by a scale factor known as the learning
rate, to step to the next position in the n-dimensional space
represented by the n weights and biases of the network.



For example, the “big” network in Figure 4-2 has 32 weights and
9 biases; therefore, training that network with gradient descent
means moving through a 41-dimensional space to find the 41
weight and bias values giving us the smallest error averaged
over the training set.

The algorithm is called “backpropagation” because it calculates
the “speed” values for each weight and bias, beginning with the
network’s output layer and then moving backward, layer by
layer, to the input layer. That is, it moves backward through the
network to propagate the error from a layer to the previous
layer.

The take-home message is this:

Gradient descent uses the gradient direction supplied by backpropagation to
iteratively update the weights and biases to minimize the network’s error over the

training set.

And that, in a nutshell, is how neural networks are trained.

****

The ability to train a neural network with backpropagation and
gradient descent is a bit of a fluke. It shouldn’t work. Gradient
descent with backpropagation is a first-order optimization
approach. First-order optimization works best with simple



functions, and the error surfaces of a neural network are
anything but. However, Fortuna has smiled upon us, and it does
work, and rather well at that. There is as yet no rigorous
mathematical explanation beyond the realization that the local
minima of the error function are all pretty much the same,
meaning if you land in one and can’t get out, that’s often just
fine.

There is another empirical explanation, but to understand that,
we must learn more about the training process. The six-step
training algorithm I gave earlier in the chapter talks about
running the training set, or a subset of it, through the network,
and repeating until things are “good enough.” Let me expand
on the process implied by these steps.

Each pass of training data through the network, a forward pass
followed by a backward pass, results in a gradient descent step
as shown in Figure 4-5. If the training set is small, all of it is
used in the forward pass, meaning all of it is used by gradient
descent to decide where to step next. A complete pass through
the training data is called an epoch; therefore, using all the
training data in the forward and backward passes results in one
gradient descent step per epoch.



Modern machine learning datasets are often massive, making it
computationally infeasible to use all of the training data for
each gradient descent step. Instead, a small, randomly selected
subset of the data, known as a minibatch, is passed through the
network for the forward and backward passes. Using
minibatches dramatically reduces the computational overhead
during gradient descent, resulting in many steps per epoch.
Minibatches also provide another benefit that helps overcome
the “this approach to training shouldn’t work” issue.

Suppose we had a mathematical function representing the
error made by the network. In that case, we could use
centuries-old calculus techniques to find the exact form of each
weight and bias’s contribution to the error; gradient descent
would know the best direction to step each time. Unfortunately,
the world isn’t that kind. We don’t know the mathematical form
of the error function (there isn’t likely one to know), so we have
to approximate with our training data. This approximation
improves when using more training data to determine the
error. This fact argues for using all the training data for each
gradient descent step. However, we already know this is
computationally extremely taxing in many cases.

The compromise is to use minibatches for each gradient descent
step. The calculations are no longer too taxing, but the



approximation of the actual gradient is worse because we are
estimating it with fewer data points. Randomly selecting
something is often attached to the word “stochastic,” so training
with minibatches is known as stochastic gradient descent.
Stochastic gradient descent, in one form or another, is the
standard training approach used by virtually all modern AI.

At first blush, stochastic gradient descent sounds like a losing
proposition. Sure, we can calculate many gradient descent steps
before the heat death of the universe, but our gradient fidelity
is low, and we’re likely moving in the wrong direction through
the error space. That can’t be good, can it?

Here’s where Fortuna smiles on humanity a second time. Not
only has she given us the ability to train complex models with
first-order gradient descent because local minima are
(assumed) roughly equivalent; she’s also arranged things so that
the “wrong” gradient direction found by stochastic gradient
descent is often what we need to avoid local minima early in
the training process. In other words, walking slightly northeast
when we should head due north is a blessing in disguise that
allows us to train large neural networks.

****



We’re ready to move on to the next chapter. However, before we
do, let’s apply traditional neural networks to the dinosaur
footprint dataset. We’ll compare the results to the classical
models of Chapter 3.

We need first to select an architecture: that is, the number of
hidden layers, the number of nodes per layer, and the type of
activation function for each node. The dinosaur footprint
dataset has two classes: ornithischian (class 0) and theropod
(class 1). Therefore, the output node should use a sigmoid
activation function to give us a likelihood of class 1
membership. The network’s output value estimates the
probability that the input image represents a theropod. If the
probability is above 50 percent, we’ll assign the input to class 1;
otherwise, into class 0 it goes. We’ll stick with rectified linear
unit activations for the hidden layer nodes, as we have for all
the models in this chapter. All that remains is to select the
number of hidden layers and the number of nodes per layer.

There are 1,336 training samples in the footprints dataset.
That’s not a lot, and we aren’t augmenting the dataset, so we
need a smallish model. Large models, meaning many nodes and
layers, require large training sets; otherwise, there are too
many weights and biases to learn relative to the number of
training samples. Therefore, we’ll limit ourselves to trying at



most two hidden layer models for the footprints dataset. As for
the number of nodes in the hidden layers, we’ll let the first
hidden layer vary from very small to nearly twice the input size
of 1,600 features (the 40×40-pixel image unraveled). If we try a
second hidden layer, we’ll restrict the number of nodes to no
more than half the number in the first hidden layer.

First, we’ll train a collection of one- and two-layer architectures.
Second, we’ll train the best performing of those 100 times to
give us an average level of performance. Table 4-1 presents the
trial models’ results.

Table 4-1: Trial Architectures with the Dinosaur Footprint
Dataset

Accuracy (%) Architecture Weights and biases

59.4 10 16,021

77.0 400 640,801

76.7 800 1,281,601

81.2 2,400 3,844,801



Accuracy (%) Architecture Weights and biases

75.8 100, 50 165,201

81.2 800, 100 1,361,001

77.9 2,400, 800 5,764,001

The network with a mere 10 nodes in its hidden layer was the
worst, returning an accuracy of about 60 percent. A binary
classifier that does nothing but flips a coin is correct about 50
percent of the time, so the 10-node network is performing only
slightly above chance. We don’t want that one. Most of the other
networks return accuracies in the mid- to upper 70s.

The two models in bold each produced just over 81 percent
accuracy. The first used a single hidden layer of 2,400 nodes.
The second used a hidden layer of 800 nodes, followed by
another with 100 nodes. Both models produced the same
accuracy on the test set, but the 2,400-node model had nearly
three times as many weights and biases as the two-layer model,
so we’ll go with the two-layer model. (Bear in mind that the
results in Table 4-1 represent a single training session, not the
average of many. We’ll fix that shortly.)



The two-layer model is still relatively large. We’re trying to
learn 1.4 million parameters to condition the model to correctly
classify the dinosaur footprint images. That’s a lot of
parameters to learn, especially with a training set of only 1,336
samples. Fully connected neural networks grow quickly in
terms of the number of parameters required. We’ll revisit this
observation in Chapter 5 when discussing convolutional neural
networks.

We have our architecture: two hidden layers using rectified
linear activation functions with 800 and 100 nodes, respectively,
followed by a single node using a sigmoid to give us a likelihood
of class 1 membership. Training the model 100 times on the
footprints dataset returned an average accuracy of 77.4 percent,
with a minimum of 69.3 percent and a maximum of 81.5
percent. Let’s put this result in its proper relation to those of
Chapter 3; see Table 4-2.

Table 4-2: Dinosaur Footprint Models

Model Accuracy (%)

RF300 83.3



Model Accuracy (%)

RBF SVM 82.4

7-NN 80.0

3-NN 77.6

MLP 77.4

1-NN 76.1

Linear SVM 70.7

Recall that RF300 means a random forest with 300 trees, SVM
refers to a support vector machine, and, somewhat confusingly,
NN refers to a nearest neighbor classifier. I’m using MLP
(multilayer perceptron) as a stand-in for our neural network.
Multilayer perceptron is an old but still common name for the
traditional neural networks we’ve been discussing in this
chapter—notice the link back to Rosenblatt’s original
Perceptron from the late 1950s.



Our neural network wasn’t the best performer on this dataset.
In fact, it was one of the worst. Additional tweaking might move
it up a place or two on the list, but this level of performance is
typical, in my experience, and contributed to the general
perception (pun intended) before the deep learning revolution
that neural networks are “meh” models—run-of-the-mill,
nothing to write home about.

****

This chapter introduced the fundamental ideas behind modern
neural networks. The remainder of the book builds on the basic
concepts covered in this chapter. Here are the principal
takeaways:

Neural networks are collections of nodes (neurons) that
accept multiple inputs and produce a single number as
output.
Neural networks are often arranged in layers so that the
current layer’s input is the previous layer’s output.
Neural networks are randomly initialized, so repeated
training leads to differently performing models.
Neural networks are trained by gradient descent, using the
gradient direction supplied by backpropagation to update the
weights and biases iteratively.



Now, let’s press on to investigate convolutional neural
networks, the architecture that ushered in the deep learning
revolution. This chapter brought us to the early 2000s. The next
moves us to 2012 and beyond.

KEY TERMS
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5 
CONVOLUTIONAL NEURAL NETWORKS:

AI LEARNS TO SEE

Classical machine learning models struggle with appropriate
feature selection, feature vector dimensionality, and the
inability to learn from the structure inherent in the input.
Convolutional neural networks (CNNs) overcome these issues by
learning to generate new representations of their inputs while
simultaneously classifying them, a process known as end-to-end
learning. CNNs are the representation-learning data processors
I referred to in Chapter 2.

Elements of what became CNNs appeared at various times
throughout the history of neural networks, beginning with
Rosenblatt’s Perceptron, but the architecture that ushered in
the deep learning revolution was published in 1998. Over a
decade of additional improvements in computing capability



were required to unleash the full power of CNNs with the
appearance of AlexNet in 2012.

Convolutional networks exploit structure in their inputs. We’ll
better understand what that means as the chapter progresses.
In one dimension, the inputs might be values that change over
time, also known as a time series. In two dimensions, we’re
talking about images. Three-dimensional CNNs exist to
interpret volumes of data, like a stack of magnetic resonance
images or a volume constructed from a LiDAR point cloud. In
this chapter, we’ll focus exclusively on two-dimensional CNNs.

The order in which features are presented to a traditional
neural network is irrelevant. Regardless of whether we present
feature vectors to the model as (x ,x ,x ) or (x ,x ,x ), the model
will learn just as well because it assumes the features are
independent and unrelated to each other. Indeed, a strong
correlation between a pixel value and adjacent pixel values is
something traditional machine learning models do not want,
and their inability to achieve much success with such inputs
held neural networks back for years.

Convolutional neural networks, on the other hand, exploit
structure in their inputs. For a CNN, it matters whether we
present the input as (x ,x ,x ) or (x ,x ,x ); the model might

0 1 2 2 0 1

0 1 2 2 0 1



learn well with the former and poorly with the latter. This isn’t
a weakness, but a strength, because we want to apply CNNs to
situations where there is structure to learn—structure that
helps determine how best to classify inputs.

Later in the chapter, we’ll compare the performance of a
traditional neural network to a CNN when classifying small
photos of animals and vehicles (the CIFAR-10 dataset of Chapter
3). At that time, we’ll learn the true power of exploiting
structure. Before that, however, let’s conduct a little experiment.
We have two datasets. The first is our old friend, the MNIST
digits dataset; the second is the same collection of digit images,
but the order of the pixels in the images has been scrambled.
The scrambling isn’t random but consistent so that the pixel at
position (1,12) has been moved to, say, position (26,13), with
similarly consistent moves for all other pixels. Figure 5-1 shows
some examples of MNIST digits and scrambled versions of the
same digits.



Figure 5-1: Example MNIST digits (top) and scrambled versions of
the same digits (bottom)

The scrambled digits are incomprehensible to me. The pixel
information between the original and scrambled digits is the
same—that is, the same collection of pixel values is present in
both—but the structure is largely gone, and I can no longer
discern the digits. I claim that a traditional neural network
treats its inputs holistically and isn’t looking for structure. If
that’s the case, a traditional neural network shouldn’t care that
the digits have been scrambled; it should learn just as well
when trained using the original or the scrambled dataset. As it
turns out, that’s precisely what happens. The model learns
equally well; scrambling changes nothing in terms of
performance. Note, though, that the scrambled test digits must
be used with the scrambled model; we shouldn’t expect the
model to work when trained on one dataset and tested on the
other.

We at present know only one fact about CNNs: they pay
attention to structure in their inputs. Knowing this, should we
expect a CNN trained on the scrambled dataset to perform as
well as one trained on the original dataset? The scrambled
digits are uninterpretable by us because local structure in the
images has been destroyed. Therefore, we might expect a model



that similarly wants to exploit local structure to be unable to
interpret the scrambled digits. And that is the case: a CNN
trained on the scrambled dataset performs poorly compared to
one trained on the original dataset.

Why can’t we easily interpret the scrambled digits? We must
explore what happens in the brain during vision to answer that
question. Then we’ll circle back to relate that process to what
CNNs do. As we’ll learn, CNNs follow the old adage: when in
Rome, do as the Romans (humans) do.

****

Vincent van Gogh is my favorite artist. Something about his
style speaks to me, something strangely peaceful from a man
tormented by mental illness. I believe the peace emanating
from his work reflects his attempt to calm the turmoil within.

Consider Figure 5-2. It shows Van Gogh’s famous 1889 painting
of his bedroom in Arles. The image is in black and white, an
unforgivable violence to Vincent’s use of color, but print
restrictions require it.



Figure 5-2: Van Gogh’s bedroom in Arles, 1889 (public domain)

What do you see in the painting? I’m not asking about a higher
meaning or impression, but objectively, what do you see in the
painting? I see a bed, two chairs, a small table, a window, and a
pitcher on the table, among many other items. I suspect you see
the same. You saw the bed, two chairs, and table, but how?
Photons, particles of light, traveled from the image to your eye
and were converted into discrete objects in your brain. Again,
how?



I’m asking questions but not yet offering answers. That’s okay
for two reasons. First, pondering the problem of segmenting an
image into a collection of meaningful objects is worth some
effort on our part. Second, no one yet knows the full answer to
“how?” Neuroscientists do, however, understand the beginnings
of the process.

We take for granted the ability to look at a scene and parse it
into separate and identified objects. For us, the process is
effortless, completely automatic. We shouldn’t be fooled. We’re
the beneficiaries of hundreds of millions of years of evolution’s
tinkering. For mammals, vision begins in the eye, but parsing
and understanding begins in the primary visual cortex at the
back of our brains.

The primary visual cortex, known as area V1, is sensitive to
edges and orientation. Immediately, we encounter a clue to how
vision works in the brain (as opposed to the eye). The brain
takes the input sensations, spread over V1 as a warped image,
and begins by seeking edges and the orientation of the edges.
V1 is additionally sensitive to color. Mapping the entire visual
field over V1, with magnification so that most of V1 is occupied
by the central 2 percent of our visual field, means that edge
detection, orientation, and color are local to where they occur.



V1 sends its detections to area V2, which sends its detections to
area V3, and so on through V4 to V5, with each area receiving,
essentially, a representation of larger and more grouped
elements of what is in the visual field. The process starts with
V1 and, eventually, delivers a fully parsed and understood
representation of what the eyes see. As mentioned, the details
much beyond V1 are murky, but for our purposes all we need to
remember is that V1 is sensitive to edges, the orientation of
edges, and colors (we might also include textures). Starting
simply and grouping to separate objects in the scene is the
name of the game. CNNs mimic this process. It’s fair to say that
CNNs literally learn to see the world of their inputs.

CNNs decompose inputs into small parts, then groups of parts
and still larger groups of groups of parts, until the entire input
is transformed from a single whole into a new representation:
one that is more easily understood by what amounts to a
traditional neural network sitting at the top of the model.
However, mapping the input to a new, more easily understood
representation does not imply that the new representation is
more easily understood by us.

Convolutional neural networks learn during training to
partition inputs into parts, enabling the top layers of the
network to classify successfully. In other words, CNNs learn



new representations of their inputs and then classify those new
representations. Indeed, “Learning New Representations from
Old” was an early title for this chapter.

How do CNNs break their inputs into parts? To answer that
question, we must first understand the “convolution” part of
“convolutional neural network.” Be warned, low-level details
ahead.

****

Convolution is a mathematical operation with a formal
definition involving integral calculus. Fortunately for us,
convolution is a straightforward operation in digital images,
using nothing more than multiplication and addition.
Convolution slides a small square, known as a kernel, over the
image from top to bottom and left to right. At each position,
convolution multiplies the pixel values covered by the square
with the corresponding kernel values. It then sums all those
products to produce a single number that becomes the output
pixel value for that position. Words only go so far here, so let’s
try a picture. Consider Figure 5-3.



Figure 5-3: Convolving a kernel over an image

The left side of Figure 5-3 shows a grid of numbers. These are
the pixel values for the center portion of the image in Figure 5-
4. Grayscale pixel values are typically in the range 0 through
255, where lower values are darker. The kernel is the 3×3 grid to
the right. The convolution operation instructs us to multiply
each pixel value by the corresponding kernel value. This
produces the rightmost 3×3 grid of numbers. The final step
sums all nine values to create a single output, 48, which
replaces the center pixel in the output image, 60 → 48.

To complete the convolution, slide the 3×3 solid box one pixel to
the right and repeat. When the end of a row is reached, move
the box down one pixel and repeat for the next row, then
process row-by-row until the kernel has covered the entire
image. The convoluted image is the collection of new output
pixels.



At first, convolution might seem like a strange thing to do.
However, in digital images, convolution is a fundamental
operation. An appropriately defined kernel lets us filter an
image to enhance it in various ways. For example, Figure 5-4
shows four images. The upper left is the original image, a
frequently used test image of Gold Hill in Shaftesbury, England.
The remaining three images are filtered versions of the original.
Clockwise from the upper right, we have a blurred version, one
showing horizontal edges, and one showing vertical edges. Each
image is produced by convolving a kernel as described
previously. The kernel of Figure 5-3 produces the horizontal-
edge image at the lower right. Rotate the kernel by 90 degrees,
and you get the vertical-edge image at the lower left. Finally,
make all the kernel values 1, and you get the blurred image at
the upper right. Note that the edge images are inverted to make
the detected edges black instead of white.



Figure 5-4: Convolution kernels in action

The critical point for us to remember is that convolving an
image with different kernels highlights different aspects of the
image. It isn’t hard to imagine an appropriate set of kernels
extracting structure relevant to correctly classifying the image.
This is exactly what CNNs do during end-to-end training and, in
a sense, what our visual system does in area V1 when it detects
edges, orientations, colors, and textures.



We’re making progress. We now have a handle on the core
operation of a CNN, convolution, so let’s take the next step to
learn how convolution is used within a model to extract
structure and build a new representation of the input.

****

The traditional neural networks of Chapter 4 consist of a single
kind of layer: a collection of fully connected nodes accepting
input from the layer below to produce output for the layer
above. Convolutional neural networks are more flexible and
support diverse layer types. Regardless, the data flow is the
same: from input to layer after layer to the network’s output.

In CNN parlance, the fully connected layers a traditional neural
network uses are called dense layers. CNNs usually use dense
layers at the top, near the output, because by that time the
network has transformed the input into a new representation,
one that the fully connected layers can classify successfully.
CNNs make heavy use of convolutional layers and pooling
layers.

Convolutional layers apply a collection of kernels to their input
to produce multiple outputs, much as Figure 5-4 produced three
outputs from the one input image at the upper left. The kernels



are learned during training using the same backpropagation
and gradient descent approach we encountered in Chapter 4.
The values of the learned kernels are the weights of the
convolutional layer.

Pooling layers have no weights associated with them. There’s
nothing to learn. Rather, pooling layers perform a fixed
operation on their inputs: they reduce the spatial extent of their
inputs by keeping the largest value in a 2×2 square moved
without overlap across and then down. The net effect is similar
to reducing the size of an image by a factor of two. Figure 5-5
illustrates the process of changing an 8×8 input into a 4×4
output, keeping the maximum value in each solid square.
Pooling layers are a concession to reduce the number of
parameters in the network.

Figure 5-5: Pooling to reduce the spatial extent of the data

A typical CNN combines convolutional and pooling layers
before topping things off with a dense layer or two. ReLU layers



are used as well, usually after the convolutional and dense
layers. For example, a classic CNN architecture known as LeNet
consists of the following layers:

The model uses three convolutional layers, two pooling layers,
and a single dense layer with 84 nodes. Each convolutional and
dense layer is followed by a ReLU layer to map all negative
inputs to zero while leaving all positive inputs untouched.

The number in parentheses for each convolutional layer is the
number of filters to learn in that layer. A filter is a collection of
convolutional kernels, with one kernel for each input channel.
For example, the first convolutional layer learns six filters. The
input is a grayscale image with one channel, so this layer learns



six kernels. The second convolutional layer learns 16 filters,
each with 6 kernels, one for each of the 6 input channels from
the first convolutional layer. Therefore, the second
convolutional layer learns a total of 96 kernels. Finally, the last
convolutional layer learns 120 filters, each with 16 kernels, for
another 1,920 kernels. All told, the LeNet model needs to learn
2,022 different convolutional kernels.

The hope is that learning so many kernels will produce a
sequence of outputs that capture essential elements of the
structures in the input. If training is successful, the output of
the final convolutional layer, as a vector input to the dense
layer, will contain values that clearly differentiate between
classes—at least, more clearly than can be accomplished by
using the image alone.

If it feels like we’re in the weeds, we are, but we will not dig
further. We’ve reached the lowest level of detail we’ll consider
in the book, in fact, but it’s a necessary burden, as we cannot
understand how CNNs work if we don’t understand convolution
and convolutional layers.

Perhaps the best way to understand what the layers of a CNN
are doing is to look at their effect on data flowing through the
network. Figure 5-6 shows how a LeNet model trained on



MNIST digits manipulates two input images. The output of the
first convolutional layer is the six middle images, where gray
represents zero, darker pixels are increasingly negative, and
lighter pixels are increasingly positive. The six kernels of the
first convolutional layer each produce an output image for the
single input image. The kernels highlight different portions of
the inputs as transitions from dark to light.

Figure 5-6: Input to first convolutional layer to dense layer

The rightmost barcode-like pattern is a representation of the
dense layer’s output. We’re ignoring the output of the second
and third convolutional layers and jumping directly to the end
of the model. The dense layer’s output is a vector of 84
numbers. For Figure 5-6, I mapped these numbers to pixel
values, where larger values correspond to darker vertical bars.

Notice that the barcodes for the digits 0 and 8 differ. If the
model learned well, we might expect the barcodes for the dense
layer outputs to share commonalities across digits. In other
words, the barcodes for zeros should look roughly similar, as
should the barcodes for eights. Do they? Consider Figure 5-7.



Figure 5-7: Dense layer output for sample inputs

This figure presents the dense layer outputs for five different
zero and eight inputs. The barcodes are all different but share
similarities according to digit. This is especially true for the
zeros. The LeNet model has learned how to map each 28×28-
pixel input image (784 pixels) into a vector of 84 numbers that
show strong similarities by digit type. Based on our experience
with traditional neural networks, we can appreciate that this
mapping has produced something of lower dimensionality that
preserves and even emphasizes differences between digits. The
learned lower-dimensionality vector is akin to a complex
concept explained with a few well-chosen words. This is exactly
what we want a CNN to do. The trained model learned to “see”
in the world of handwritten digits represented as small
grayscale images. There’s nothing special about grayscale
images, either. CNNs are quite happy to work with color images



represented by red, green, and blue channels, or any number of
channels, as when using multiband satellite imagery.

We might think of the model this way: the CNN layers before
the dense layer learned how to act as a function producing an
output vector from the input image. The true classifier is the
dense layer at the top, but it works well because the CNN
learned the classifier (dense layer) while simultaneously
learning the mapping function.

I stated earlier that higher layers in the CNN pay attention to
ever larger parts of the input. We can see that this is so by
considering the portion of the input that influences the output
of a kernel at a deeper layer. Figure 5-8 demonstrates this effect.

Figure 5-8: The part of the input affecting deeper layers of the
model



Begin on the right side of the image. The 3×3 grid of squares
represents the output of a kernel at convolutional layer 1. We
want to know what portion of the input influences the value of
the shaded pixel. Looking at the previous convolutional layer,
layer 0, we see that the layer 1 output depends on the nine
shaded values coming from the layer before.

The nine shaded values of convolutional layer 0 depend on the
5×5 shaded region of the input. It’s 5×5 because each of the nine
values is found by sliding a 3×3 kernel over the shaded 5×5
region of the input. For example, the dotted portion of the
middle value in layer 0 comes from the similarly shaded 3×3
region of the input. In this way, higher CNN layers are affected
by larger and larger portions of the input. The technical term
for this is the effective receptive field, where the effective
receptive field of the rightmost shaded value in Figure 5-8 is the
5×5 shaded region of the input.

****

It’s time for an experiment. We now have a handle on how
CNNs function, so let’s put that knowledge to work to compare a
traditional neural network with a convolutional model. Which
will win? I suspect you already know the answer, but let’s prove
it and gain some experience along the way.



We need a dataset. Let’s use a grayscale version of CIFAR-10.
This is a better choice than the dinosaur footprint dataset we
used in the previous two chapters because the footprint images
are outlines devoid of texture and background, and a CNN will
not learn much more from such images than a traditional
model. As we learned in Chapter 3, CIFAR-10 contains 32×32-
pixel images of animals and vehicles, which will likely be more
challenging.

We’ll train three models: a random forest, a traditional neural
network, and a convolutional neural network. Is this sufficient?
We’ve come to appreciate that all three of these models involve
randomness, so training once might not give us a fair
representation of how each model performs. After all, we might
get a lousy initialization or mix of trees that would throw one of
the models off. Therefore, let’s train each model 10 times and
average the results.

This experiment will help us understand the differences in
performance between the models, but we can learn still more
about the neural networks by tracking their errors as training
progresses. The result is a graph, which I’ll present and then
explain shortly. Before that, however, let me lay out the details
of the models.



The training and test datasets are the same for each model. The
traditional neural network and the random forest require
vector inputs, so each 32×32-pixel image is unraveled into a
vector of 1,024 numbers. The CNN works with the actual two-
dimensional images. There are 50,000 images in the training set,
5,000 for each of the 10 classes, and 10,000 images in the test
set, 1,000 per class.

The random forest uses 300 trees. The traditional neural
network has two hidden layers of 512 and 100 nodes,
respectively. The CNN is more complex, with four convolutional
layers, two pooling layers, and a single dense layer of 472
nodes. Even though the CNN has many more layers, the total
number of weights and biases to learn is nearly identical to the
traditional model: 577,014 versus 577,110.

We’ll train the neural networks for 100 epochs, meaning 100
passes through the full training set. Fixing the minibatch size at
200 gives us 250 gradient descent steps per epoch. Therefore,
during training, we’ll update the weights and biases of the
networks 25,000 times. At the end of each epoch, we’ll capture
the error made by the model on both the training and test sets.
When the dust settles, a single graph will reveal everything we
want to know.



Figure 5-9 is that graph. It’s the most complex graph we’ve seen,
so let’s walk through it in detail, beginning with the axes.

Figure 5-9: CIFAR-10 results for a CNN, MLP, and random forest

The label on the horizontal axis (x-axis) is “epoch,” which
means a complete pass through the training set. Therefore, the
graph shows things changing during training after every epoch.
We also know that each epoch represents 250 gradient descent
steps. The vertical axis (y-axis) is labeled “error” and runs from
0.1 to 0.8. This axis represents the fraction of the test or training
samples that the model gets wrong. The lower the error, the



better. A decimal value of 0.1 means 10 percent, and a value of
0.8 means 80 percent.

The legend in the upper-right corner of the graph tells us that
the circles and squares relate to the MLP, the traditional neural
network, while the triangles and pentagons refer to the CNN.
Specifically, the circles and triangles track the error on the test
set for the MLP and CNN, respectively, as the models train.
Similarly, the squares and pentagons track the error on the
training set. Recall that the model’s performance on the training
set is used to update the weights and biases. The test set is used
for evaluation and does not contribute to how the model is
trained.

The MLP plots show us how well the model learned the training
set (squares) and the test set (circles) as training continued,
epoch after epoch. It’s immediately apparent that the model
learned the training set better than the test set because the
training set error decreases continuously. This is what we
expect. The gradient descent algorithm will update the weights
and biases of the MLP, all 577,110 of them, to arrive at a lower
and lower error on the training set. However, we’re not
interested in reaching zero error on the training set; instead, we
want the smallest error possible on the test set because that



gives us a reason to believe that the MLP has learned to
generalize.

Now consider the circle plot showing us the test set error. It
reaches a minimum of about 0.56, or 56 percent, at around 40
epochs. After that, the error increases slowly but steadily, up to
100 epochs. This effect is classic MLP overfitting. The training
set error continues to decrease, but the test set error hits a
minimum and continues to increase after that. Figure 5-9 tells
us that stopping training at 40 epochs would have given us the
best-performing MLP.

We’ll get to the CNN results, but for the moment, consider the
dashed line at 58 percent error. It’s labeled “RF300” and shows
us the test set error from a random forest with 300 trees. The
random forest doesn’t learn by updating weights over epochs,
so the 58 percent error is just that: the model’s error. I plotted it
as a dashed line parallel to the horizontal axis so you can see
that, briefly, the MLP did slightly better than the random forest,
but by 100 epochs, the difference between the two models was
negligible. In other words, we might take it that classical
machine learning’s best effort on the grayscale CIFAR-10 dataset
is an error of about 56 to 58 percent. That’s not a good result.
Additional time spent with the parameters of the random forest,
or the MLP, or starting over with a support vector machine



might lead to a slight reduction in the error. Still, it’s unlikely to
overcome the fact that classical machine learning cannot do
much with this dataset.

Finally, consider the CNN’s training (pentagon) and test
(triangle) curves. By 100 epochs, the CNN is right around 11
percent error on the training set and, more importantly, about
23 percent on the test set. In other words, the CNN is right 77
percent of the time, or nearly 8 times in 10. Random guessing
will be correct about 10 percent of the time on a 10-class
dataset, so the CNN has learned rather well, and far better than
the MLP or random forest.

This is precisely the point of convolutional neural networks: by
learning to represent the parts of the objects in an image, it
becomes possible to learn a new representation (formally
known as an embedding) that the dense layers of the network
can successfully classify.

The first CNN I trained, in 2015, attempted to detect small
airplanes in satellite images. My initial, non-CNN approach
worked, but it was noisy with many false positives (fake
detections). The airplanes were there, but so were many other
things that were not airplanes. I then trained a simple CNN like
the one used in this experiment. It located the airplanes with



ease, and virtually nothing but the airplanes. I was
dumbfounded and realized then that deep learning was a
paradigm shift. I’ll argue in Chapter 7 that as of fall 2022, a new,
more profound paradigm shift has occurred, but we have some
ground yet to cover before we’re ready for that discussion.

****

The simple CNNs of this chapter don’t do justice to the zoo of
available neural network architectures. A decade of fevered
development has resulted in a few go-to CNN architectures,
some with over 100 layers. The architectures have names like
ResNet, DenseNet, Inception, MobileNet, and U-Net, among
many others. The U-Net is worthy of a few words.

The CNNs we’ve explored so far accept an input image and
return a class label like “dog” or “cat.” It doesn’t need to be this
way. Some CNN architectures implement semantic
segmentation, where the output is another image with every
pixel labeled by the class to which it belongs. U-Nets do this. If
every pixel of the dog is marked “dog,” extracting the dog from
the image becomes trivial. A middle ground between a U-Net
and CNNs that assign a single label to the entire image is a
model that outputs a bounding box, a rectangle surrounding the
detected object. The pervasiveness of AI means that you’ve



likely already seen images with labeled bounding boxes. YOLO
(“you only look once”) is a popular architecture producing
labeled bounding boxes; Faster R-CNN is another.

We focused on image inputs here, but the input need not be an
image. Anything representable in an image-like format, where
there are two dimensions and structure within those
dimensions, is a candidate for a 2D CNN. A good example is an
audio signal, which we usually think of as one-dimensional, a
voltage changing over time that drives the speaker. However,
audio signals contain energy at different frequencies. The
energy at different frequencies can be displayed in two
dimensions: the horizontal dimension is time, and the vertical
dimension is frequency, usually with lower frequencies at the
bottom and higher frequencies at the top. The intensity of each
frequency becomes the intensity of a pixel to transform the
audio signal from a one-dimensional, time-varying voltage into
a two-dimensional spectrogram, as shown in Figure 5-10.



Figure 5-10: Mapping from one-dimensional data to a two-
dimensional image

The spectrogram, here of a crying baby, contains a wealth of
information and structure that the CNN can learn about to
produce a better model than is possible with the one-
dimensional audio signal alone. The key observation is that any
transformation of the input data that extracts structure in a
form amenable to a CNN is fair game.

****

You have a dataset and need to build a CNN. What architecture
should you use? What should the minibatch size be? What
layers do you need, and in what order? Should you use 5×5 or
3×3 convolutional kernels? How many epochs of training is
enough? Early on, before the development of standard
architectures, each of those questions had to be answered by
the person designing the network. It was a bit like medicine of
the past: a mix of science, experience, and intuition. The art of
neural networks meant that practitioners were in high demand,
and it was difficult for savvy software engineers to add deep
learning to their repertoires. Some people wondered if software
could be used to determine the model’s architecture and
training parameters automatically (that is, its hyperparameters,



introduced in Chapter 3). And so, automatic machine learning,
or AutoML, was born.

Most cloud-based commercial machine learning platforms, like
Microsoft’s Azure Machine Learning or Amazon’s SageMaker
Autopilot, include an AutoML tool that will create the machine
learning model for you; you need only supply the dataset.
AutoML applies to more than just neural networks, and many
tools include classical machine learning models as well.
AutoML’s entire purpose is to locate the best model type for the
supplied dataset with a minimum of user expertise required.

I want to argue that AutoML only goes so far and that the best
deep learning practitioners will always outperform it, but that
argument rings hollow. It reminds me of the assembly language
programmers of old pontificating on the impossibility of
compilers ever producing code that was as good as or better
than what they could produce. There are few job openings
these days for assembly language programmers, but tens of
thousands for programmers using compiled languages (at least
for now; see Chapter 8). That said, some of us still prefer to roll
our own models.

****



A consequence of the deep learning revolution was the creation
of powerful, open source machine learning toolkits with names
like TensorFlow and PyTorch. Implementing a traditional, fully
connected neural network is an exercise for machine learning
students. It’s not trivial, but it’s something most people can
accomplish with effort. Properly implementing a CNN, on the
other hand, especially one supporting a multitude of layer
types, is anything but trivial. The AI community committed
early on to developing open source toolkits supporting deep
learning, including CNNs. Without these toolkits, progress in AI
would be painfully slow. Large tech companies like Google,
Facebook (Meta), and NVIDIA also signed on, and their
continued support for toolkit development is critical to AI.

What makes the toolkits powerful, besides the mountains of
tested, high-performance code they contain, is their flexibility.
We now appreciate that training a neural network, CNN or
otherwise, requires two steps: backpropagation and gradient
descent. Backpropagation works only if the model’s layers
support a particular mathematical operation known as
differentiation. Differentiation is what first semester calculus
students learn. So long as the toolkits can automatically
determine the derivatives (what you get when you
differentiate), they allow users to implement arbitrary layers.



The toolkits employ automatic differentiation by transforming
the neural network into a computational graph.

It’s tempting to take a few steps down the path of automatic
differentiation and computational graphs because the elegance
and flexibility therein is a beautiful marriage of mathematics
and computer science. Unfortunately, you’ll need to take my
word for it because the level of detail necessary is far beyond
what we can explore in this book. One key point is that there
are two primary approaches to automatic differentiation:
forward and reverse. Forward automatic differentiation is
easier to conceptualize and implement in code but is unsuited
to neural networks. That’s too bad, in a way, because forward
automatic differentiation is best implemented using dual
numbers, an obscure type of number invented (discovered?) by
English mathematician William Clifford in 1873. These were a
prime example of math for math’s sake and largely forgotten
until the age of computers, when they were suddenly made
useful. Reverse automatic differentiation is best for neural
networks but doesn’t use dual numbers.

****

This chapter was challenging. We dove more deeply into the
details than we did in previous chapters or will in the following



ones. A summary is definitely required. Convolutional neural
networks:

Thrive on structure in their inputs, which is the complete
opposite of classical machine learning models
Learn new representations of their inputs by breaking them
into parts and groups of parts
Use many different kinds of layers combined in various ways
Can classify inputs, localize inputs, or assign a class label to
every pixel in their inputs
Are still trained via backpropagation and gradient descent,
just like traditional neural networks
Drove the creation of powerful, open source toolkits that
democratized deep learning

Convolutional neural networks follow in the tradition of
classical machine learning models: they take an input and
assign to it, in some fashion, a class label. The network operates
as a mathematical function, accepting an input and producing
an output. The next chapter introduces us to neural networks
that generate output without input.

To paraphrase an old television show: you’re traveling through
another dimension, a dimension not only of sight and sound



but of mind, a journey into a wondrous land whose boundaries
are that of imagination—next stop, generative AI.

KEY TERMS

automatic differentiation, AutoML, bounding box,
computational graph, convolution, convolutional layer,
convolutional neural network, dense layer, effective receptive
field, embedding, end-to-end learning, filter, kernel, pooling
layer, semantic segmentation



6 
GENERATIVE AI: AI GETS CREATIVE

Generative AI is an umbrella term for models that create novel
output, either independently (randomly) or based on a prompt
supplied by the user. Generative models do not produce labels
but text, images, or even video. Under the hood, generative
models are neural networks built from the same essential
components.

We’ll focus on three kinds of generative AI models: generative
adversarial networks, diffusion models, and large language
models. This chapter covers the first two. Large language
models have recently turned the world of AI on its head. They
are the subject of Chapter 7.

****



Generative adversarial networks (GANs) consist of two separate
neural networks trained together. The first network is the
generator. Its task is to learn how to create fake inputs for the
discriminator. The discriminator’s task is to learn how to
differentiate between fake and real inputs. The goal of training
the two networks together is that the generator becomes better
at faking out the discriminator while the discriminator tries its
best to differentiate real from fake.

At first, the generator is terrible. It outputs noise, and the
discriminator has no difficulty distinguishing between real and
fake. However, the generator improves over time, making the
discriminator’s job increasingly harder; this in turn pushes the
discriminator to become a better real versus fake detector.
When training is declared complete, the discriminator is
usually discarded, and the now-trained generator is used to
produce new output sampled randomly from the learned space
of the training data.

I haven’t specified what the training data is, because all we
need to know for now is that a GAN is constructed from two
competing (adversarial) networks. For most applications, it’s
the generator we want when all is said and done.



Structurally, we can imagine a GAN like the blocks in Figure 6-1.
(I’ll explain the random vector part in time.) Conceptually, we
see that the discriminator accepts two kinds of inputs: real data
and the output of the generator. The discriminator’s output is a
label: “Real” or “Fake.” Standard neural network training using
backpropagation and gradient descent trains the generator and
discriminator together, but not simultaneously.

Figure 6-1: Conceptualizing the architecture of a generative
adversarial network

For example, training with a minibatch of real data—a small
subset of the available real training data—follows these steps:

1. Use the generator as it currently is to create a minibatch’s
worth of fake data.

2. Grab a minibatch’s worth of real data from the training set.



3. Unfreeze the discriminator’s weights so gradient descent can
update them.

4. Pass the fake and real samples through the discriminator
with labels 0 and 1, respectively.

5. Use backpropagation to take a gradient descent step to
update the discriminator’s weights.

6. Freeze the discriminator so the generator can be updated
without altering the discriminator.

7. Create a minibatch’s worth of generator inputs (the random
vector in Figure 6-1).

8. Pass the generator inputs through the combined model to
update the generator’s weights. Mark each of the generator
inputs as being real.

9. Repeat from step 1 until the full model is trained.

The algorithm first updates the discriminator’s weights using
the generator as it currently is (step 5), then freezes them (step
6) so the generator’s weights can be updated without altering
the discriminator. This approach is necessary because we want
the output of the discriminator—the “Real” or “Fake” labels—to
update the generator portion. Notice that the generator update
marks all the fake images as real. Doing this scores the
generator by how real the fake inputs appear to the
discriminator.



Let’s examine the random vector used as input to the generator.
The point of a GAN is to learn a representation of the training
set that we can think of as a data generator, like the data-
generating process that produced the real training set.
However, in this case, the data generator can be viewed as a
function that takes a random collection of numbers, the random
vector, and transforms them into an output that might plausibly
have come from the training set. In other words, the generator
acts like a data augmentation device. The random input to the
generator becomes an example of the training set. In effect, the
generator is a proxy for the actual data-generating process that
created the real training set in the first place.

The random vector of numbers is drawn from a probability
distribution. Sampling from a probability distribution is akin to
rolling two dice and asking how likely it is that their sum is a
seven versus a two. It’s more likely that the sum is a seven
because there are more ways to add the two numbers and get
seven. There’s only one way to get two: snake eyes. Sampling
from a normal distribution is similar. The most common sample
returned is the average value of the distribution. Values on
either side of the average are less likely the further away from
the average they are, though still possible.



For example, Figure 6-2 shows a bar plot of the distribution of
human heights in inches. The original dataset contained the
heights of 25,000 people, which were then fit into the 30 bins of
the figure. The higher the bar, the more people fell into that bin.

Figure 6-2: The distribution of human height

Note the shape of the histogram, which looks like a bell—hence
its somewhat old-fashioned name, the bell curve. Its modern
name, the normal distribution, is due to it showing up so often
in nature that it’s the distribution normally encountered,
especially for data generated by a physical process. From the
distribution, we see that the height of a randomly selected



person will most often be around 68 inches: more than 10
percent of the sampled population fell into that bin.

The random vector used by a GAN, also known as the noise
vector, works the same way. The average, in this case, is zero,
with most samples in the range –3 to 3. Also, each of the n
elements in the vector follows this range, meaning the vector
itself is a sample from an n-dimensional space, not the one-
dimensional space of Figure 6-2.

The need for labeled datasets is a bane of machine learning.
GANs have no such restriction. We don’t care what a training
sample’s class is, only that it’s an instance of real data,
regardless of the class label. Of course, we still require that the
training set reflect the kind of data we want to generate, but the
training set need not be labeled.

****

Let’s build a generative adversarial network using our old
friend, the MNIST digits dataset. The generator will learn to
transform a random set of 10 numbers (meaning n is 10) into a
digit image. Once trained, we can give the generator any
collection of 10 values around zero, and the generator will
produce a new digit image as output, thereby mimicking the



process that created the MNIST dataset: people writing digits on
paper by hand. A trained GAN generator produces an infinite
supply of the target output.

We’ll use a simple GAN based on traditional neural networks to
create a generator for an infinite supply of MNIST-style digit
images. First, we’ll unravel the existing MNIST training set so
each sample is a 784-dimensional vector, just as we did in
Chapter 5. This gives us the real data. To create fake data, we
need 10-element random vectors that we’ll build by drawing 10
samples from a normal distribution with an average value of
zero.

The generator portion of the model accepts a 10-element noise
vector as input and produces a 784-element output vector
representing the synthesized digit image. Recall that the 784
numbers can be rearranged into a 28×28-pixel image. The
generator model has three hidden layers, with 256, 512, and
1,024 nodes, and an output layer of 784 nodes to produce the
image. The hidden layer nodes use a modified version of the
rectified linear unit called a leaky ReLU. Leaky ReLU activations
output the input if the input is positive, but if the input is
negative, the output is a small positive value multiplied by the
negative input. In other words, they leak a bit. The output layer
uses a hyperbolic tangent activation function, meaning every



one of the 784 output elements will be in the range –1 to +1.
That’s acceptable. We can scale the values to 0 to 255 when
writing an image to disk.

The generator must map between the random noise vector
input and an output image. The discriminator must take an
image as input, implying a 784-dimensional vector. The
discriminator has three hidden layers, like the generator, but in
reverse: 1,024 nodes, then 512 nodes, followed by 256 nodes.
The discriminator’s output layer has one node with a sigmoid
activation function. The sigmoid produces values from 0 to 1,
which we can interpret as the discriminator’s belief that the
input is real (output near 1) or fake (output near 0). Notice that
the network uses nothing more than standard fully connected
layers. Advanced GANs use convolutional layers, but exploring
the details of those networks is outside our scope.

Figure 6-3 shows the generator (top) and discriminator
(bottom). The symmetry between the two is evident in the
numbers of nodes in the hidden layers, though notice that the
order is reversed in the discriminator.



Figure 6-3: GAN generator (top) and discriminator (bottom)

The generator accepts a 10-element random vector as input and
produces a 784-element fake image output vector. The
discriminator accepts an image vector, real or fake, and outputs
a prediction, a number from 0 to 1. Fake images should produce
values close to 0 and real images values close to 1. If the
generator is well trained, the discriminator will be fooled most
of the time, meaning the discriminator’s output will be close to
0.5 for all inputs.



The entire network is trained for 200 epochs of 468 minibatches
each, for a total of 93,600 gradient descent steps. We can display
samples from the generator after each epoch to observe the
network as it learns. Figure 6-4 shows samples after epochs 1,
60, and 200, from left to right.

Figure 6-4: Generator output after epochs 1, 60, and 200

As we’d expect, the generator performs poorly after a single
pass through the training data, but perhaps not as poorly as we
might have thought. Most of the generated images look like
ones; other digit shapes, like zeros and twos, are also present,
though noisy.

After 60 epochs, the generator produces a full range of digits.
Some are spot on, while others are still confused or only
partially drawn. After 200 epochs, most of the digits are distinct
and sharply defined. The generator is trained and now
available to produce digit images on demand.



****

Our digit generator will happily create 10,000 new digit images
for us, but what if we want all those digits to be fours? A
random input vector produces a random digit, but we don’t get
to choose which one. If we select input vectors randomly, we
can be excused for believing that the mix of output digits will
be similarly random. I tested that assumption by using the
trained generator to create 1,000 digit images. I then passed
those digit images to a convolutional network trained on the
MNIST dataset. The convolutional network has a test set
accuracy above 99 percent, giving us confidence in its
predictions, assuming the input is a digit image. The GAN
generator produces realistic digit images, so we’re on solid
ground.

Assuming the generator is acting as we expect, the percentage
of each digit should, naively, be the same. There are 10 possible
digits, so we expect each to appear about 10 percent of the time.
That’s not what happened. Table 6-1 shows the actual
distribution of occurrences of each digit.

Table 6-1: The Actual Digit Distribution



Digit PercentageDigit Percentage

0 10.3

1 21.4

2 4.4

3 7.6

4 9.5

5 6.0

6 9.1

7 14.4

8 4.4

9 12.9

The generator favors ones, followed by sevens, nines, and zeros;
eights and twos are the least likely outputs. So, not only does the



GAN not allow us to select the desired digit type, it has definite
favorites. Review the leftmost image in Figure 6-4, showing the
epoch 1 samples. Most of those digits are ones, so the GAN’s
predilection for ones was evident from the beginning of
training. The GAN learned, but the preponderance of ones is a
symptom of a problem that sometimes plagues GAN training:
namely mode collapse, where the generator learns early on how
to create a particularly good example or set of examples that
fool the discriminator and gets trapped into producing only that
output and not the desired diversity of images.

We need not throw ourselves on the mercy of a finicky,
uncontrollable GAN. Instead, we can condition the network
during training by passing in an indication of the type of digit
we want the generator to create. GANs that take this approach
are known as conditional GANs. Unlike unconditional GANs,
they require training sets with labels.

In a conditional GAN, the input to the generator is still a
random noise vector, but attached to it is another vector
specifying the desired output class. For example, the MNIST
dataset has 10 classes, the digits 0 through 9, so the conditional
vector has 10 elements. If the desired class is the digit 3, the
conditional vector is all zeros except for element 3, which is set
to one. This method of representing class information is known



as one-hot encoding because all the elements of the vector are
zero except for the element corresponding to the desired class
label, which is one.

The discriminator also needs the class label. If the input to the
discriminator is an image, how do we include the class label?
One way is to expand the concept of one-hot encoding to
images. We know that a color image is represented by three
image matrices, one for the red channel, one for the green
channel, and one for the blue channel. Grayscale images have
only one channel. We can include the class label as a set of
additional input channels where all the channels are zero
except for the channel corresponding to the class label, which is
one.

Including the class label when generating and discriminating
between real and fake inputs forces each part of the entire
network to learn how to produce and interpret class-specific
output and input. If the class label is 4 and the digit produced
by the generator looks more like a zero, the discriminator will
know there’s a class mismatch because it knows about true
zeros from the labeled training set.

The benefit of a conditional GAN comes when using the trained
generator. The user supplies the desired class as a one-hot



vector, along with the random noise vector used by an
unconditional GAN. The generator then outputs a sample based
on the noise vector, but conditioned on the desired class label.
We can think of a conditional GAN as a set of unconditional
GANs, each trained on a single class of images.

I trained a conditional GAN on the MNIST dataset. For this
example, the GAN used convolutional layers instead of the fully
connected layers used earlier in the chapter. I then asked the
fully trained generator to produce 10 samples of each digit, as
shown in Figure 6-5.

Figure 6-5: The conditional GAN output showing samples for each
digit



Conditional GANs let us select the desired output class, which
unconditional GANs cannot do, but what if we want to adjust
specific features of the output image? For that, we need a
controllable GAN.

****

Uncontrollable GANs generate images willy-nilly without
regard for the class label. Conditional GANs introduce class-
specific image generation, which is helpful if we want to use a
GAN to generate synthetic imagery for training other models,
perhaps to account for a class for which we have relatively few
examples. Controllable GANs, on the other hand, allow us to
control the appearance of specific features in the generated
images. When the generator network learns, it learns an
abstract space that can be mapped to the output images. The
random noise vector is a point in this space where the number
of dimensions is the number of elements in the noise vector.
Each point becomes an image. Put the same point, the same
noise vector, into the generator, and the same image will be
output.

Moving through the abstract space represented by the noise
vector produces output image after output image. Might there
be directions in the abstract noise space that have meaning for



the features in the output image? Here, feature means
something in the image. For example, if the generator produces
images of human faces, a feature might be whether the face is
wearing glasses, has a beard, or has red hair.

Controllable GANs uncover meaningful directions in the noise
space. Moving along one of those directions alters the feature
related to the direction. Of course, the reality is more complex
because a single direction might affect multiple features,
depending on the dimensionality of the noise space and the
data learned by the generator. In general, smaller noise vectors
are more likely to be entangled, meaning single noise vector
dimensions affect multiple output features, making it difficult to
discern interesting directions. Some training techniques and
larger noise vectors, perhaps with 100 elements instead of the
10 we used earlier, improve the model’s chance of assigning
interesting feature adjustments to a single direction. Ideally,
there would be a meaningful feature adjustment for a single
noise vector element.

Let’s walk through a two-dimensional example to drive the idea
home. Learning a generator using a two-dimensional noise
vector might be difficult, but the concept applies to all
dimensionalities and is straightforward to illustrate in two
dimensions. Figure 6-6 has what we need.



Figure 6-6: Moving through a two-dimensional noise space and
interpolated MNIST digits

The top part of the figure shows a two-dimensional noise space
for a generator with two inputs, the x-coordinate and the y-
coordinate. Therefore, each point in the figure represents an
image generated by the GAN. The first image is produced from
the point at (2, 5) (the circle). A second image comes from the
point at (6, 1) (the square). The arrow shows a direction through
the noise space that we somehow learned controls a feature in
the output image. If the GAN generates faces, it might be that



the arrow points in a direction that affects the person’s hair
color. Moving from the point at (2, 5) to the point at (6, 1)
maintains most of the output image but changes the hair color
from, say, black at (2, 5) to red at (6, 1). Points along the arrow
represent hair colors intermediate between black and red.

The bottom of Figure 6-6 shows interpolation along the third
dimension of the GAN we trained to generate digit images.
From left to right, a three morphs briefly into a nine before
becoming a four, as the third element of the 10-element noise
vector is varied while keeping all the others fixed at their initial
random values. The noise vector is of relatively low
dimensionality, implying that it’s unlikely any one dimension is
associated with only a single digit trait, which is why the whole
image changes from an initial three through a nine to a four.

Sophisticated GANs can produce realistic yet fake images of
human faces. Controllable versions learn directions linked to
specific facial features. For example, consider Figure 6-7, which
shows two generated fake faces on the left and adjusted faces
on the right (from Yujun Shen et al., “Interpreting the Latent
Space of GANs for Semantic Face Editing,” 2019). The
adjustments correspond to movement through the noise space
from the original image position along learned directions
representing age, glasses, gender, and pose.



Figure 6-7: Controlling face attributes

The power of controllable GANs is genuinely remarkable, and
that the generator learns meaningful directions through the
noise space is impressive. However, GANs are not the only way
to create realistic and controllable images. Diffusion models
likewise generate realistic imagery; moreover, imagery
conditioned by user-defined text prompts.

****

Generative adversarial networks rely on competition between
the generator and the discriminator to learn to create fake
outputs similar to the training data. Diffusion models represent
a competition-free approach to the same end.



In a nutshell, training a diffusion model involves teaching it to
predict noise added to a training image. Inference in a diffusion
model involves the opposite, turning noise into an image. Great!
But what is “noise” when it comes to images?

Noise implies randomness, something without structure. You’re
in the ballpark if you’re thinking of static on a radio or hiss in
an audio signal. For a digital image, noise means random values
added to the pixels. For example, if the pixel value should be
127, noise adds or subtracts a small amount so that the value
becomes, say, 124 or 129. Random noise added to an image
often looks like snow. Diffusion models learn how to predict the
amount of normally distributed noise added to a training
image.

We must have several things in place before we train the
network. First, we need a training dataset. Diffusion models
learn from data, like all neural networks. As with GANs, labels
are not required until we want some say in what the trained
model will generate.

Once we have the training data, we need a neural network
architecture. Diffusion models are not picky here, but the
selected architecture must accept an image as input and



produce a same-sized image as output. The U-Net architecture
mentioned briefly in Chapter 5 is a frequent choice.

We have data and an architecture; next, we need some way to
get the network to learn. But learn what? As it happens, forcing
the network to learn the noise added to an image is all that is
required. The math behind this realization isn’t trivial. It
involves probability theory, but in practice, it boils down to
taking a training image, adding some known level of normally
distributed noise, and comparing that known noise to what the
model predicts. If the model learns to predict the noise
successfully, we can later use the model to turn pure noise into
an image similar to the training data.

The important part of the previous paragraph is the phrase
“known level of normally distributed noise.” Normally
distributed noise can be characterized by a single parameter, a
number specifying the level of the noise. Training consists of
selecting an image from the training set and a level of noise,
both at random, and passing them as inputs to the network. The
output from the network is the model’s estimate of the amount
of noise. The smaller the difference between the output noise
(itself an image) and the added noise, the better. Standard
backpropagation and gradient descent are applied to minimize



this difference over minibatches until the model is declared
trained.

How noise is added to training images affects how well and how
quickly models learn. Noise generally follows a fixed schedule.
The schedule is such that moving from a current noise level, say
noise level 3, to the next, level 4, adds a specified amount of
noise to the image, where the amount of noise depends on a
function. If the same amount of noise is added between each
step, the schedule is linear. However, if the amount of noise
added between steps depends on the step itself, it is nonlinear
and follows some other function.

Consider Figure 6-8, which shows a possible training image on
the left. Each row shows successive levels of noise added to the
training image. The top row follows a linear schedule, where
moving left to right adds the same noise level between each
step until the image is almost destroyed. The bottom row
follows what is known as a cosine schedule, which destroys the
image less rapidly. This helps diffusion models learn a bit better.
For the curious, the dapper gentleman in the image is my great-
grandfather, Emil Kneusel, circa 1895.



Figure 6-8: Two ways to turn an image into noise: linear (top) and
cosine (bottom)

Figure 6-8 presents only nine steps. In practice, diffusion
models use hundreds of steps, the critical point being that the
original image is destroyed at the end of the process, leaving
only noise. This matters because sampling from the diffusion
model reverses the process to turn a random noise image into a
noise-free image. In effect, sampling from the diffusion model
moves from right to left using the trained network to predict
noise that is then subtracted to produce the previous image.
Repeating this process for all the steps in the schedule
completes the noise-to-image generation process.

****

The description in the previous section can be summarized in
two algorithms. I encourage you to read through them, but as
they are a bit technical, skipping ahead to the next section is
always an option.



The forward algorithm trains the diffusion model, and the
reverse algorithm samples from a trained model during
inference to produce output images. Let’s begin with the
forward algorithm. We repeat the following until we declare
the model trained:

1. Pick a training image, x , at random.
2. Pick a random time step, t, in the range 1 through T, the

maximum number of steps.
3. Sample a noise image, e, from a standard normal

distribution.
4. Define a noisy image, x , using x , t, and e.
5. Pass x  through the model and compare the output noise

estimate to e.
6. Apply standard backpropagation and gradient descent to

update the model’s weights.

The forward algorithm works because there is a
straightforward way to get x  from x , the image in the training
set, and a randomly selected time step, t. Here, T is the
maximum possible time step, at which the training image has
been turned into pure noise. Typically, T is several hundred
steps. Recall that the diffusion model is trying to learn how to
predict the noise in e. The act of repeatedly forcing the model to
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t 0

t
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get better and better at predicting the noise used to corrupt the
training image is what lets the reverse step work.

The reverse algorithm samples from the diffusion model
trained by the forward algorithm to generate a novel output
image, beginning with a pure noise image in x  (think the
rightmost images in Figure 6-8). The diffusion model is used for
T steps to turn noise into an image by repeating the following:

1. If this isn’t the last step from x  to x , sample a noise image, z,
from a standard normal distribution.

2. Create x  from x  by subtracting the output of the diffusion
model from x  and adding z.

The reverse algorithm moves from right to left, if thinking in
terms of Figure 6-8. Each step to the left is found by subtracting
the output of the diffusion model using the current image as
input, thereby moving from time step t to the previous time
step, t – 1. The standard noise image, z, ensures that x  is a
valid sample from the probability distribution supplying x
from x . As mentioned, we’re skipping a lot of probability
theory.

The sampling algorithm works because the diffusion model
estimates the noise in its input. That estimate leads to an
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estimate of the image that, plausibly, created x  from x .
Iterating for all T steps brings us, ultimately, to x , the output of
the network. Notice that unlike our previous networks, which
had an input and produced an output, diffusion models are run
repeatedly, each time producing less and less noisy images,
until finally they produce an image similar to the training data.

****

Diffusion models are like standard GANs: unconditional. The
image generated is not controllable. You might suspect that if a
GAN can be conditioned in some way to guide the generation
process, then a diffusion model might be similarly directable. If
so, you’re right.

The GAN we used to generate MNIST-like digit images was
conditioned by extending the input to the generator with a one-
hot vector selecting the desired class label. Conditioning a
diffusion model isn’t quite that simple, but it is possible to
supply the network with a signal related to the image during
training. Typically, that signal is an embedding vector
representing a text description of the training image’s contents.
We briefly encountered embeddings in Chapter 5 and will do so
again in Chapter 7 when discussing large language models.

t t–1

0



All we need to know for now is that a text embedding takes a
string like “A big red dog” and turns it into a large vector, which
we think of as a point in a high-dimensional space: a space that
has captured meaning and concepts. The association of such a
text embedding during training while the network is learning to
predict noise in images conditions the network in much the
same way that the one-hot class vector conditions a GAN
generator.

After training, the presence of a text embedding when sampling
provides a similar signal to guide the output image so that it
contains elements related to the text. At sampling time, the text
becomes a prompt, describing the image we want the diffusion
process to generate.

Diffusion models typically begin with a random noise image.
They need not. If we want the output to be similar to an existing
image, we can use that image as the initial image, with some
level of noise added. Samples from that image will be,
depending on the degree of added noise, more or less similar to
it. Now, let’s take a tour of conditional diffusion models.

****



Commercial diffusion models, such as DALL-E 2 by OpenAI or
Stable Diffusion by Stability AI, use the text or image supplied
by the user to guide the diffusion process toward an output
image satisfying the prompt’s requirements. The examples
shown in this section were generated by Stable Diffusion using
the DreamStudio online environment. Figure 6-9 presents to us
Leonardo da Vinci’s Mona Lisa (upper left) along with five
variations of it.



Figure 6-9: The Mona Lisa as imagined by Stable Diffusion

The variations are the products of Stable Diffusion in response
to the original image and a text prompt:

Portrait of a woman wearing a brown dress in the style of DaVinci, soft, earthen colors



The DreamStudio interface lets the user supply an initial image,
using a slider to set the amount of noise to add, from 0 percent
for a pure noise image to 100 percent for no noise added. (Yes,
that seems backward to me, too.) The noisy version of the image
initializes the diffusion process. The higher the percentage, the
less noise is added, and the more the initial image influences
the final output. For the Mona Lisa, I used 33 percent. That
noise level, along with the prompt and a user-selectable style,
produced the five variations in Figure 6-9. The only difference
between the variations is the chosen style (top row: anime and
fantasy art; bottom row: isometric, line art, and photographic).

The results are impressive. The images were neither painted
nor drawn, but diffused from a noisy version of the Mona Lisa
and a text prompt used as a guide to direct the diffusion
process. It isn’t difficult to appreciate that the ability to generate
novel images in response to prompts will impact the
commercial art world.

However, AI image generation isn’t perfect. Errors happen, as
demonstrated in Figure 6-10. I promise I didn’t ask for a five-
legged border collie, a multi-mouthed T. rex, or a picture of a
woman like the Mona Lisa with horribly mutated hands.
Diffusion models seem to have particular difficulty rendering
hands, much like human artists.



Figure 6-10: Diffusion model errors

Writing effective prompts has become an art form, one that has
already created a new kind of job: prompt engineer. The exact
form of the text prompt strongly influences the image
generation process, as does the random noise image initially
selected. The DreamStudio interface allows users to fix the
pseudorandom number generator seed, meaning the diffusion
process starts with the same noise image each time. Fixing the
seed while slightly altering the text prompt lets us experiment
to learn how sensitive the diffusion process can be.

The images in Figure 6-11 were generated by permutations of
the words ornate, green, and vase. (These images are shown in
black and white in the book, but all are similar shades of
green.) The initial noise image was the same each time; only the
order of the three words varied. Three of the vases are similar,
but the fourth is quite different. Nonetheless, all four are valid
exemplars of ornate, green vases.



Figure 6-11: Vases generated by a diffusion model

Prompt order and phrasing matter because the embedding
vector formed from the text prompt differs, even if the prompt
words or their meanings are similar. The prompts for the first
three vases likely landed close to each other in the text
embedding space, explaining why they look much the same.
The last prompt, for whatever reason, landed elsewhere,
leading to the different qualities of the generated image.
Interestingly, the prompt for the last image was “ornate, green,
vase,” the form following grammatical convention.

Curious, I altered the prompt “ornate, green, vase,” changing
“green” to other colors and using the same initial noise image
as before. The results are in Figure 6-12. From left to right, the
colors specified were red, mauve, yellow, and blue. The first
three images are similar to the last vase in Figure 6-11; only the
blue vase differs significantly.



Figure 6-12: Generated vases of many colors

I noticed another property of diffusion models during my
experiments, namely, that the generated images have less noise
than the originals. Suppose an input image is low resolution
and grainy. In that case, the diffusion model’s output is higher
resolution and clear because the output is not the result of an
operation applied to the original image but a reimagining of the
image using the prompt for guidance. Might it be possible to use
diffusion models to remove image artifacts if absolute fidelity to
the original image isn’t strictly required?

Figure 6-13 tries to answer this question. The original 195×256-
pixel image upscaled to 586×768 pixels (a factor of 3) is on the
left. The image was upscaled using a standard image processing
program and cubic interpolation. The diffusion model output,
also 586×768 pixels, is on the right. The diffusion model output
used the 195×256-pixel original image with 25 percent added
noise, a photographic style, and the prompt “detailed, original.”
The diffusion image is better. It’s not identical to the original,
but a close copy. I don’t believe this approach competes with



deep learning–based super-resolution networks, but regardless
of ultimate utility, it was an interesting application of diffusion
models.

Figure 6-13: Diffusion model image enhancement

As another example, consider Figure 6-14, which shows an
image of a Western Meadowlark taken at a distance of about
100 meters through poor, smoky Colorado air (left). The center
image represents a best effort at improving the image using a
standard image manipulation program (Gimp). The version on
the right is the output of Stable Diffusion when given the center
image with a small amount of noise added (about 12 percent)
and the following text prompt:



western meadowlark, highly detailed, high resolution, noise free

Figure 6-14: A diffusion model image enhancement experiment
attempting to improve a smoke-obscured image of a Western
Meadowlark: original (left), best effort with a standard image
manipulation program (center), enhanced with Stable Diffusion
(right)

Stable Diffusion didn’t work a miracle, but the output is
definitely better than the original image.

****

This chapter explored two kinds of generative networks:
generative adversarial networks and diffusion models. Both
create images from random inputs.

GANs jointly train generator and discriminator networks to
teach the generator to produce output that fools the
discriminator. Conditional GANs use class labels during training



and generation to direct the generator toward outputs that are
members of a user-specified class. Controllable GANs learn
directions through the noise vector space related to essential
features of the generated output, such that movement along
those directions predictably alters the output image.

Diffusion models learn to predict the amount of noise in an
image. Training a diffusion model involves feeding it clean
training images that are intentionally made noisy by a known
amount. The model’s prediction and the known added noise are
used to update the model’s weights. Conditional diffusion
models associate an embedding, usually from a text description
of the training image content, with the noise so that at
generation time, the model is directed to images containing
elements associated with the user’s text prompt. Variations are
generated if an existing image, with some level of noise added,
is used in place of the pure random initial image.

The introduction mentioned three kinds of generative AI
models. The last one, large language models, is presently
threatening to profoundly alter the world at a level equal to the
industrial revolution, if not the wheel and fire, as some AI
practitioners claim. Such consequential claims require us to pay
attention. Therefore, let’s move on to what might very well be
true AI at last.



KEY TERMS

conditional GAN, controllable GAN, diffusion model,
discriminator, entangled, generative adversarial network
(GAN), generative AI, generator, leaky ReLU, mode collapse,
noise vector, one-hot encoding, schedule



7 
LARGE LANGUAGE MODELS: TRUE AI AT

LAST?

Future historians might point to the fall 2022 release of
OpenAI’s ChatGPT large language model as the dawn of true AI.
Given what I’ve already seen as I write this in late March 2023, I
would agree with such an assessment.

In this chapter, we’ll first explore what existing large language
models can do, then follow that up with a description of what
they are and how they work. For all their impressive abilities,
ultimately these models are neural networks built and trained
like all the neural networks that came before. That fact alone
means the connectionists were right from the beginning. Might
Frank Rosenblatt be smiling in his grave?

I’ve already tipped my hand regarding my belief that ChatGPT
and models like it represent something new that’s worthy of



being called true AI. My hope is that, by the end of the chapter,
you’ll agree.

****

The phrase artificial intelligence is somewhat ambiguous and
must be provided with a more nuanced definition before we
proceed. Practitioners typically divide AI into two kinds:
artificial narrow intelligence (ANI) and artificial general
intelligence (AGI). The former encapsulates everything we’ve
discussed so far. The latter refers to truly sentient and
intelligent machines—the stuff of science fiction.

The models existing as of the time of writing of this book are
definitely not AGI. However, they are not merely ANI; they
appear to be something entirely new, something in between.
The title of a recent paper by Microsoft researchers Sébastien
Bubeck et al., “Sparks of Artificial General Intelligence,” strikes
me as appropriate.

Large language models (LLMs) accept as input a text prompt
supplied by a user. They then generate output text, word by
word (really, token by token), using the prompt and all
previously generated words as a guide. In effect, LLMs’ only
design goal is to be very good at predicting the next word in a



sequence of words initiated by the input prompt. That’s all
they’re trained to do. However, that is not all that they learn to
do. The reason why AI researchers are so excited by LLMs is
that somewhere along the way, while learning to be expert text
generators, LLMs also learn a host of emergent abilities,
including question answering, mathematical reasoning, high-
quality computer programming, and logical reasoning.

The philosophical implications of these unexpected, emergent
abilities are profound. The abilities of LLMs raise questions
about the nature of thought, the meaning of consciousness, and
the (assumed) uniqueness of the human mind. We’re not in a
position to answer these questions in depth, but I will return to
some of them in Chapter 8.

Now, let’s get into things by exploring the capabilities of LLMs.
We can touch on only a few emergent abilities here, but the
internet is already full of impressive, funny, and even
frightening examples of LLMs in action. I recommend a review
of such examples, though as always, care must be taken to judge
the quality of the information source. See the resources at the
end of this book for some of the online (and print) resources I
suggest taking a look at.



The AI community is racing ahead as fast as possible in this
area. By the time you read these words, LLMs will undoubtedly
be even more impressive than they already are at the time I’m
writing them.

****

What follows are examples of LLMs in action. For most
situations, I’ll show the output of three models: Bard, GPT-3.5,
and GPT-4. All output represents model performance as of late
March 2023. In each case, I used the public interface via a web
browser. Bard is a Google model. GPT-3.5 and GPT-4 are from
OpenAI.

LLMs are expert users of language. The models are used in
dialog format, beginning with a prompt or question from the
user. For example, I gave each of the three models this prompt:

Write a one-paragraph bedtime story about a teddy bear, a magic carpet, and the moon
that is suitable for children under the age of six.

Here is Bard’s reply:

Once upon a time, there was a little teddy bear who lived in a toy box. He loved to
play with his friends, but he always dreamed of flying to the moon. One day, he found
a magic carpet in his toy box. The carpet could fly! The teddy bear was so excited, he
jumped on the carpet and flew to the moon. He had a wonderful time exploring the

moon, and he even met some friendly aliens. When it was time to go home, he said



goodbye to his new friends and flew back to Earth on his magic carpet. He was so
happy to be home, and he couldn’t wait to tell his friends all about his adventure.

The story is complete, in a single paragraph, and uses a simple
sentence structure suitable for children.

GPT-3.5 replied like this:

Once upon a time, there was a teddy bear named Timmy who loved to go on
adventures. One night, he hopped onto a magic carpet and flew up towards the
moon. The moon was so big and bright, and Timmy couldn’t resist exploring it. He
hopped and skipped around the craters and met some friendly aliens who showed

him their moon garden. Timmy had a great time, but eventually, he knew it was time
to go back home. He hopped back onto his magic carpet and flew back to his cozy
bed, where he cuddled up with his favorite blanket and fell fast asleep, dreaming of
his amazing moon adventure.

GPT-3.5’s story is also complete and includes friendly aliens as
well. This time, the teddy bear gets a name, Timmy. The
language is still appropriate for young children, but GPT-3.5
was more descriptive. Bard tells us that the teddy bear explores
the moon and meets some friendly aliens, but GPT-3.5 tells us
that Timmy hopped and skipped around the craters and that
the friendly aliens showed him their moon garden.

GPT-4, OpenAI’s most advanced model, produced this:

Once upon a time, under a twinkling night sky, a little teddy bear named Cuddles
discovered a colorful magic carpet hidden in the corner of his cozy room. Curious



and excited, Cuddles climbed onto the carpet, and together, they soared up to the sky,
bound for the silvery moon. As they journeyed through the soft, velvety clouds,

Cuddles and the magic carpet danced with twinkling stars and whispered secrets to
the cool night breeze. When they reached the moon, it welcomed them with a gentle,
glowing smile, and they spent the night playing hide-and-seek in the moon’s soft,
dusty craters. As the sun began to rise, Cuddles and the magic carpet said their

goodbyes to their new lunar friend and floated back down to the little room, ready
for a peaceful night’s sleep filled with the sweetest dreams.

Subjectively, I feel that GPT-4 produced the most descriptive
story, though I do like GPT-3.5’s moon garden. Bard’s story was
pretty dry but perhaps more accessible to very young children.
The most remarkable thing about all of them, however, is that
they could be written at all. Less than a year ago (remember, it’s
early 2023 for me), talking about AI-generated stories was little
more than wishful thinking.

I altered the prompt I gave GPT-4 to ask for a one-paragraph
story involving a teddy bear, a magic carpet, and the moon, but
this time of interest to adults, not children. Here’s its reply:

Once upon a twilight’s embrace, a solitary teddy bear, worn and forgotten by the
whims of time, discovered an ancient magic carpet, frayed at the edges yet pulsating

with an otherworldly energy. Under the watchful gaze of the moon, the duo
embarked on a nocturnal journey, weaving through the labyrinth of a world grown
cold and cynical, where dreams were forsaken and innocence a distant memory. As
the gentle light of the moon cast its silver glow upon the unlikely companions, the

teddy bear served as a symbol of the dreams long since buried beneath the weight of
adult concerns, while the magic carpet whispered of the untamed freedom and



adventure that lay dormant in the hearts of those who dared to believe. Together,
they soared, a wistful reminder of the bittersweet yearning for the fleeting magic of

childhood, leaving behind a trail of stardust that shimmered with the promise of
hope and the melancholic beauty of a time that once was.

GPT-4 clearly possesses a solid understanding of language and
grammar. One might argue that it understands human feelings
and emotions as well (though it doesn’t, does it?).

Let’s review a few more examples before diving into what’s
inside this strange, new kind of mind.

****

GPT-4 understands imagery along with many different
programming and markup languages, including LaTeX, a
markup language commonly used in book publishing (like this
book). I asked GPT-4 to generate LaTeX to draw a simple
country scene showing a house, a barn, a grain silo, and four
cows. Figure 7-1 shows the result.



Figure 7-1: A country scene created by GPT-4

You might be tempted to chuckle at the crude depiction, but
consider all that went into creating it. Here’s my prompt:

produce LaTeX code using TikZ to draw the following: a country scene with a house, a
barn, a grain silo, and four cows

GPT-4 had to understand the directions: draw a scene with a
house, a barn, a grain silo, and four cows. That means it had to
understand the meaning of key words and correctly associate
them so that “grain” and “silo” went together, and likewise
“four” and “cows.”

Next, it had to “imagine” the layout of the scene and how each
object could be represented using the crude shapes supplied by
the TikZ package. (TikZ is a LaTeX package for drawing simple



graphic shapes.) The figure doesn’t show it, but the barn and
house both have red roofs. Coincidence?

GPT-4 isn’t a diffusion model like the image generators of
Chapter 6. The output created by GPT-4 wasn’t the image in
Figure 7-1, but the following LaTeX code:

% Barn 

\draw[fill=brown!50] (5,0) rectangle (8,3); 

\draw[fill=red!50] (6.5,3)--(8,3)--(6.5,5)--(5,3

\draw[fill=white!70] (6,1) rectangle (7,2);

I used that code to create Figure 7-1.

If you’re wondering how GPT-4 could do all of this, so am I and
many other people. Such abilities emerged from the model
when trained; they were not intended. This is why I believe
future historians will mark fall 2022 as the dawn of true AI.
Hold on to your hats; it gets better.

****

Psychologists discuss a concept known as the “theory of mind,”
which refers to the ability to infer the mental states of others
and to ascribe thoughts or beliefs to them. Only human beings



and some other primates possess theory of mind. That is, until
now.

Large language models also seem to possess theory of mind at a
level matching that of older human children, if not higher (for
GPT-4). This is the conclusion reached by Michal Kosinski of
Stanford University in his 2023 paper “Theory of Mind May
Have Spontaneously Emerged in Large Language Models.” Let’s
put this claim to the test by asking Bard, GPT-3.5, and GPT-4 to
answer a question that requires knowing what might be in
another person’s mind. Here’s the prompt:

Mary told Amanda that she was in love with John. Amanda told Kathy what Mary had
said. A week later, Mary told Amanda that she was no longer in love with John but was

now in love with Ralph. After that, Amanda spoke with Kathy about the weather. Who
does Kathy think is Mary’s love?

Before continuing, reach your own conclusion: who does Kathy
think Mary is in love with?

Each model answered the question and then offered its
rationale. Here is Bard’s reply:

Kathy thinks Mary’s love is Ralph.

Kathy knows that Mary was in love with John, but she also knows that Mary is no

longer in love with John. Kathy also knows that Mary is now in love with Ralph.
Therefore, Kathy thinks Mary’s love is Ralph.



It is possible that Kathy is mistaken. It is also possible that Mary is not sure who she
loves. However, based on the information that Kathy has, it seems that Kathy thinks

Mary’s love is Ralph.

I find it interesting that Bard justified its answer, then further
commented on what Mary might be thinking. However, Bard
assumed that Amanda must have told Kathy about Mary’s
change in affection.

Here’s what GPT-3.5 thinks of the scenario:

Based on the information given, it is impossible to determine who Kathy thinks is
Mary’s love. The last piece of information we have is that Amanda spoke with Kathy
about the weather, and there is no indication that Kathy was told about Mary’s

change of heart. Therefore, Kathy may still believe that Mary is in love with John or
may not have any opinion on the matter.

GPT-3.5 does not make the same assumption that Bard makes.
It’s aware that the facts only indicate that Amanda and Kathy
spoke about the weather after Mary’s change of heart. I’m
impressed that it used the phrase “the last piece of
information,” implying that GPT-3.5 was somehow sequencing
the events in the prompt.

Finally, what does GPT-4 have to say? Let’s find out:

Kathy thinks Mary’s love is John. This is because Amanda told Kathy about Mary’s
feelings for John earlier, but she did not tell Kathy about the change in Mary’s

feelings when Mary fell in love with Ralph.



GPT-4’s answer is the likely answer most humans would give.
The prompt states only that Amanda and Kathy spoke about the
weather, so the majority of humans would likely take that to
mean Amanda and Kathy didn’t talk about any other subjects.

Large language models, as currently presented, use a chat
format, meaning the user can enter follow-up prompts, and the
model will apply those prompts to the earlier part of the
conversation. For example, I followed up with GPT-4 using this
prompt:

We know that Amanda spoke with Kathy about the weather. Does that mean she didn’t
speak about anything else? How might that affect what Kathy believes about Mary’s

love?

To which GPT-4 replied:

My earlier response assumed that Amanda only spoke with Kathy about the weather
after Mary revealed her new feelings for Ralph. However, since the text does not
explicitly state that Amanda did not mention Mary’s updated feelings for Ralph, it is

possible that Amanda might have told Kathy about Mary’s new love interest. If that
were the case, Kathy would know that Mary is now in love with Ralph. The text does
not provide enough information to definitively conclude what Kathy believes about
Mary’s love at this point.

My follow-up prompt led GPT-4 to recognize that it had made a
possibly incorrect assumption in its first reply. In working with
LLMs in chat mode, it is often the case that some level of



interaction between the user and the model is required to help
the model focus, as our next experiment will demonstrate.

****

Amos Tversky and Daniel Kahneman are credited with
presenting what is now known as “the Linda problem”:

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice,

and also participated in anti-nuclear demonstrations.

Which is more probable?

1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Approximately 80 percent of humans choose option 2.
According to basic probability theory, the correct answer is
option 1. Interestingly, according to Tversky and Kahneman,
even mathematicians and statisticians selected option 2,
revealing a bias in human thinking. Will LLMs show a similar
bias? After all, their training data was generated by humans.
Let’s find out.

The LLMs we are exploring have been trained on a significant
portion of the internet’s contents, meaning the models’ training



data likely contains the Linda problem. Therefore, I altered the
text to present the same problem in a different format:

Abner is 27 years old, single, outspoken and highly intelligent. He majored in
philosophy and physics. As a student, he was actively concerned with issues of social

justice and participated in anti-police demonstrations. What is more likely, that Abner
is a car mechanic or a car mechanic active in promoting police reform?

Notice that I intentionally used the word likely instead of
probable. The models’ replies were:

GPT-4

Based on the information provided, it seems more likely that Abner is a car mechanic
active in promoting police reform. This is because his background indicates a strong
interest in social justice issues, and he has participated in anti-police demonstrations.

While it is possible that Abner is simply a car mechanic, his past activism and
interests suggest that he would be more likely to be involved in promoting police
reform as well.

GPT-3.5

Based on the given information, it is more likely that Abner is a car mechanic active
in promoting police reform. This is because Abner’s background as a philosophy and

physics major, as well as his active participation in social justice issues, suggest that
he is likely to be interested in broader societal issues beyond his profession.
Additionally, his participation in anti-police demonstrations suggests that he is
passionate about police reform, which further supports the idea that he is a car

mechanic who is active in promoting police reform.

Bard



Based on the information provided, it is more likely that Abner is a car mechanic
active in promoting police reform than it is that he is simply a car mechanic.

Bard continued with a justification of its reply and an attempt
to interpret Abner’s state of mind.

All three models selected the second option, though GPT-4
nuanced its answer to admit the possibility that Abner is simply
a car mechanic.

I then started new sessions and tweaked the prompt to ask
about the probability of Abner being a mechanic or a mechanic
active in police reform:

Abner is 27 years old, single, outspoken and highly intelligent. He majored in
philosophy and physics. As a student, he was actively concerned with issues of social
justice and participated in anti-police demonstrations. Which has a higher probability:
(a) that Abner is a car mechanic or (b) that Abner is a car mechanic active in police

reform?

This aligns the text with the original Linda version. The models’
replies to this prompt were as follows:

GPT-4

According to the conjunction rule in probability theory, the probability of two events
occurring together (in “conjunction”) is always less than or equal to the probability of
either event occurring individually.



In this case, the two events are:

1. Abner being a car mechanic.

2. Abner being active in police reform.

Option (b) represents the conjunction of these two events. So, the probability of (a)
Abner being a car mechanic is higher than the probability of (b) Abner being a car
mechanic who is also active in police reform.

GPT-3.5

Based on the information provided, it is more likely that Abner is a car mechanic

(option a) than a car mechanic active in police reform (option b). While Abner is
highly intelligent and studied philosophy and physics, there is no indication that he
has any formal training or education in car mechanics. On the other hand, his
involvement in anti-police demonstrations suggests that he may have an interest in

police reform, but it does not necessarily mean that he is actively involved in it as a
car mechanic. Therefore, the probability of option a is higher than option b.

Bard

I would say that (a) that Abner is a car mechanic has a higher probability.

Abner is 27 years old, single, outspoken and highly intelligent. He majored in
philosophy and physics. As a student, he was actively concerned with issues of social

justice and participated in anti-police demonstrations.

Based on this information, it is more likely that Abner is a car mechanic than a car
mechanic active in police reform. This is because:

Car mechanics are more common than car mechanics active in police reform.

Abner’s education and interests are more aligned with a career in car mechanics
than with a career in police reform.



Abner’s participation in anti-police demonstrations suggests that he is critical of
the police, which is not a characteristic that is typically associated with car

mechanics.

Of course, it is possible that Abner is both a car mechanic and active in police reform.
However, based on the information provided, it is more likely that he is only a car
mechanic.

All three models arrive at the correct answer once the prompt
includes the word probability. However, only GPT-4 interprets
the prompt in light of probability theory. GPT-3.5 and Bard both
give somewhat flawed rationales for selecting the correct
answer.

****

Large language models demonstrate theory of mind and can
interpret probability word problems, along with various other
mathematical abilities we are ignoring. My next question is, can
LLMs handle a simple substitution cipher? To solve the cipher,
the models need to understand what is being asked, that there
is such a thing as a key and what that key represents, and
finally how to use the key to replace letters in the encoded
message with the letters that decode the message. In other
words, there is an algorithm to apply using the given
information.



A substitution cipher creates a pairing between the letters of
the alphabet, in order, and another permutation of those letters.
The cipher used here is:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

UESOZBYRJNDWTFKPACLHIXVQGM

For example, to encode a C, you would scan the top row of
letters to find C, then replace C with the corresponding letter in
the bottom row, S. To decode a letter, you’d scan the bottom row
for it and replace it with the corresponding letter in the top
row. During the test, the key is displayed textually as U is A, E is B,
and so on.

My encoded message was “Eat at Moe’s,” without spaces or
punctuation and in all caps:

EATATMOES → ZUHUHTKZL

The prompt given to the models was:

The key is U is A, E is B, S is C, O is D, Z is E, B is F, Y is G, R is H, J is I, N is J, D is K, W is
L, T is M, F is N, K is O, P is P, A is Q, C is R, L is S, H is T, I is U, X is V, V is W, Q is X, G is

Y, M is Z. Now, decode the message: ZUHUHTKZL

Let’s review the models’ replies, beginning with GPT-4:



First, let’s list the given cipher for easier reference:

(cipher list removed)

Now, let’s decode the message ZUHUHTKZL:

 

Z -> E 

U -> A 

H -> T 

U -> A 

H -> T 

T -> M 

K -> O 

Z -> E 

L -> S

So the decoded message is: EATATMOES.

GPT-4 was able to apply the cipher to the encoded message. But
does the model understand that the decoded message is a
sentence? Let’s ask it:

That is correct. Now, add proper spacing and punctuation to the string EATATMOES so
that it forms a complete sentence.

Here’s GPT-4’s response:

The properly spaced and punctuated sentence is: “Eat at Moe’s.”

Indeed, it does.



GPT-3.5 likewise successfully decoded the message. It then
added this after EATATMOES:

It’s possible that this is a misspelling of “Tomatoes”.

I find this extra sentence curious. Was GPT-3.5 attempting to
interpret the meaning of the decoded message and, unable to
do so, falling back to a possible misspelling?

Bard claimed that the decoded message was “HAPPY NEW
YEAR,” offering a three-point explanation: (1) writing down the
key, (2) replacing each letter in ZUHUHTKZL with the corresponding
key letter to arrive at the message “HAPPY NEW YEAR,” and (3):

I checked the decoded message to make sure that it made sense. Since “HAPPY NEW

YEAR” is a common phrase that is used at the beginning of a new year, I was
confident that my decoding was correct.

Bard’s confident failure is telling. It seems the model attempted
to instill trust in the user by offering a point-by-point
justification of its wrong answer. This kind of unwarranted
support for wrong output has often been noted in LLMs. It’s an
issue that needs to be sufficiently addressed going forward if
people are to trust LLM output.

****



Large language models are already disrupting the field of
software development. Many examples of this can be found
online. I know of one developer who has created an entire
video game in Unity (a game development platform) using code
generated by GPT-4 from prompts. If the generated code wasn’t
quite correct, further prompts pointing out the error usually
resulted in correct code that performed as desired.

Let’s take a quick look at some LLM-generated code. Of course,
this isn’t a coding book, nor is there any assumption on my part
about your experience programming, so I’ve chosen an
example that should be easy to follow yet is sufficient to
demonstrate my claim that LLMs are already competent coders.

Some of us might remember learning in school about the
greatest common divisor. As a refresher, the greatest common
divisor of two numbers is the largest number that divides both
without a remainder. For example, the greatest common divisor
of 14 and 21 is 7 because 7 is the largest number that evenly
divides both 14 and 21.

The ancient Greek mathematician Euclid devised an algorithm
for calculating the greatest common divisor that is a staple
programming exercise. Typically the solution uses the



remainder after dividing, but Euclid’s original version of the
algorithm used nothing more than subtraction.

I asked the models if they could write a function in Python, a
popular programming language used heavily in AI research, to
return the greatest common divisor of two numbers:

Show me a Python function that returns the GCD of two integers. Use the subtraction-
only version of Euclid’s algorithm.

Notice that the prompt explicitly asks for the subtraction-only
version of Euclid’s algorithm. Bard replied with valid Python
code, but code using the remainder shortcut, not the slower
subtraction algorithm. Both GPT-3.5 and GPT-4 got it right:

def gcd_subtraction(a, b): 

    while a != b: 

        if a > b: 

            a = a - b 

        else: 

            b = b - a 

    return a

We don’t need to be programmers to see structure in the code.
The first line tells Python we want a function with two inputs, a
and b. The keyword while begins a block of code that executes



while the value of a is not the same as the value of b. That block
of code is the four lines beginning with if.

The block asks if a is bigger than b and, if so, subtracts b from a.
Otherwise, it subtracts a from b. Repeating this process until a
equals b is Euclid’s algorithm. At this point, a (or b, as they’re
equal) contains the greatest common divisor, which explains
the final line: return a.

As I said, the code is correct, and it implements precisely the
version of the algorithm I wanted. Frankly, I would have been
disappointed if GPT (either version) had responded differently.
Implementations of the greatest common divisor algorithm in
Python must have appeared many times in the models’ training
data.

That being the case, I decided to challenge GPT-4. My follow-up
prompt to GPT-4 was:

Rewrite the Python function in Applesoft BASIC.

Applesoft BASIC is a primitive version of the BASIC
programming language used by Apple II computers in the late
1970s and early 1980s. Can GPT-4 rewrite the Python code in
such an old, largely forgotten programming language? Here’s its
reply, minus supporting text explaining the code:



10  REM GCD SUBTRACTION ALGORITHM

20  INPUT "ENTER FIRST NUMBER: "; A 

30  INPUT "ENTER SECOND NUMBER: "; B 

40  GOSUB 100 

50  PRINT "GCD: "; GCD 

60  END 

100 REM GCD SUBTRACTION FUNCTION 

110 IF A = B THEN GCD = A: RETURN

120 IF A > B THEN A = A - B: GOTO 110 

130 IF A < B THEN B = B - A: GOTO 110

BASIC was designed to be a simple language for beginning
programmers. I suspect you can read through the code and
understand what it does. The numbers are labels identifying
each line to other parts of the code. The three lines after line
100 implement the subtraction-only version of Euclid’s
algorithm. I tested the code on an Apple II, and it works
perfectly.

Consider what was required of GPT-4 in this case. First, the
model had to understand the steps necessary to implement the
requested form of Euclid’s algorithm. Then, it had to determine
how to cast those steps into a format suitable for the particular
dialect of BASIC supported by Applesoft.



Old-school BASIC is an unstructured programming language
that uses abrupt jumps from one part of the code to another
instead of structured statements, like Python. GPT-4 had to
adapt the algorithm to this kind of programming. Further, it had
to adapt to the peculiarities of Applesoft, which includes no
concept of the if... else construct that is commonly found in
structured programming languages.

I find GPT-4’s Applesoft algorithm to be rather elegant. There
are times when the unstructured approach leads to compact yet
clear code, and this is one of those times. True, the assignment
of A to GCD to use the latter as the value returned from the
function (implicit in GOSUB 100 in line 40) isn’t strictly necessary
because A already has the required value, but it completes the
symmetry of the code.

It seems unlikely that GPT-4’s training set contained any
instances of this particular algorithm in Applesoft BASIC.
Therefore, GPT-4 must have generated it by adapting a larger
concept entailing Euclid’s algorithm combined with an
understanding of Applesoft BASIC.

GPT-4’s success with antique BASIC encouraged me to push the
envelope and ask for a version of Euclid’s algorithm written in
low-level assembly language:



Rewrite the Python function in 6502 assembly language for 8-bit unsigned integers. The
first integer is in memory location 0x300 and the second in location 0x301.

Assembly language programs, especially for 8-bit
microprocessors from the 1970s like the 6502, must be
programmed directly in the language of the CPU itself. I asked
GPT-4 to create such a program and told it where in the
computer’s memory to find a and b.

I won’t show the code it produced (ask me if you want it), but it
worked on a computer with a 6502 CPU. Success in this case
required GPT-4 to know the particular instruction set used by
the 6502 microprocessor, including quirks related to the
subtraction instruction.

Do these capabilities mean we soon won’t need software
engineers any more? I wouldn’t go that far (at least, not yet), but
LLMs are undoubtedly going to fundamentally alter software
engineering as a discipline.

****

We’ve seen that LLMs are capable of writing stories and code,
and even drawing pictures in LaTeX. But are they creative
enough to generate good cartoons? These models’ proneness to
including hallucinations (fake or imaginary facts and content)



in their responses—a topic that we’ll return to in Chapter 8—is
a definite concern in many applications, but creative writing
isn’t one of them. Here, we want the model to describe a novel
cartoon, complete with caption:

Describe a single-panel, black-and-white cartoon in the style of Gary Larson about cows
and aliens. Include a caption.

Gary Larson is the creator of The Far Side, a quirky cartoon
popular in the 1980s and ’90s. Here’s GPT-4’s response:

Cartoon description: In a peaceful countryside scene, two cows are standing in a
grassy field next to a round, hovering UFO with its hatch open. One cow is wearing
an alien mask, complete with large eyes and a long, slender neck, while the other
cow stares at her with a surprised expression. A group of aliens, peeking from inside

the UFO, look baffled and seem to be comparing a picture of a typical cow with the
cow wearing the alien mask.

Caption: “Mildred, I don’t think they’re falling for it.”

If you’re familiar with Gary Larson’s work, you’ll notice a
distinct The Far Side flavor to the description and caption text.

The ability to automatically generate cartoon descriptions and
captions, and corresponding images if then passing the
descriptions to a diffusion model, is powerful. Combining LLMs
and diffusion models in this way has realized American
cartoonist H. T. Webster’s 1923 dream (see Figure 7-2).



Figure 7-2: A prophetic cartoon from 1923

Large language models are impressive and powerful. So how do
they work? Let’s take a shot at an answer.



****

I’ll begin at the end, with a few comments from the conclusion
of the “Sparks of Artificial General Intelligence” paper
mentioned earlier:

How does [GPT-4] reason, plan, and create? Why does it exhibit such general and

flexible intelligence when it is at its core merely the combination of simple

algorithmic components—gradient descent and large-scale transformers with
extremely large amounts of data? These questions are part of the mystery and
fascination of LLMs, which challenge our understanding of learning and cognition,
fuel our curiosity, and motivate deeper research.

That quote contains questions that currently lack convincing
answers. Simply put, researchers don’t know why large
language models like GPT-4 do what they do. There are
certainly hypotheses in search of evidence and proof, but as I
write this, no proven theories are available. Therefore, we can
discuss only the what, as in what a large language model
entails, and not the how of its behavior.

Large language models use a new class of neural network, the
transformer, so we’ll begin there. (GPT stands for generative
pretrained transformer.) The transformer architecture appeared
in the literature in 2017, with the influential paper “Attention Is
All You Need” by Google researchers Ashish Vaswani et al. The
paper had been cited over 70,000 times as of March 2023.



Traditionally, models that process sequences (such as
sentences) used recurrent neural networks, which pass their
output back in as input along with the next input of the
sequence. This is the logical model for processing text because
the network can incorporate the notion of memory via the
output fed back in with the next token. Indeed, early deep
learning translation systems used recurrent networks.
However, recurrent networks have small memories and are
challenging to train, which limits their applicability.

Transformer networks utilize a different approach: they accept
the entire input at once and process it in parallel. Transformer
networks typically include an encoder and a decoder. The
encoder learns representations and associations between the
parts of the input (think sentences), while the decoder uses the
learned associations to produce output (think more sentences).

Large language models like GPT dispense with the encoder and
instead learn the necessary representation in an unsupervised
way using an enormous text dataset. After pretraining, the
decoder part of the transformer model generates text in
response to the input prompt.

The input to a model like GPT-4 is a sequence of text made up of
words. The model splits this into units called tokens. A token



might be a word, a part of a word, or even an individual
character. Pretraining aims to map tokens to a
multidimensional embedding space, which it does by associating
each token with a vector that can be thought of as a point in
that space.

The learned mapping from tokens to vectors captures complex
relationships between the tokens so that tokens with similar
meanings are nearer to each other than tokens with dissimilar
meanings. For example, as shown in Figure 7-3, after
pretraining, the mapping (context encoding) will place “dog”
closer to “fox” than to “can opener.” The embedding space has
many dimensions, not the mere two of Figure 7-3, but the effect
is the same.

Figure 7-3: Context encoding in the embedding space



The context encoding is learned during pretraining by forcing
the model to predict the next token given all previous tokens in
an input. In effect, if the input is “roses are red,” then during
the pretraining process the model will be asked to predict the
next token after “roses are.” If the predicted token isn’t “red,”
the model will use the loss function and backpropagation to
update its weights, thereby taking a gradient descent step after
suitable averaging of the error over a minibatch. For all their
abilities, large language models are trained the same way as
other neural networks.

Pretraining enables the model to learn language, including
grammar and syntax, and seemingly to acquire enough
knowledge about the world to allow the emergent abilities that
have turned the world of AI on its head.

The decoder step takes the input prompt and produces output
token after output token until a unique stop token is generated.
Because so much of language and the way the world works was
learned during pretraining, the decoder step has the side effect
of producing extraordinary output even though the decoder is,
in the end, just predicting most likely token after most likely
token.



More specifically, during the prediction process, GPT-style
models use attention to assign importance to the different
tokens in the input sequence, thereby capturing relationships
between them. This is the primary difference between a
transformer model and older recurrent neural networks. The
transformer can pay attention to different parts of the input
sequence, enabling it to identify and use the relationships
between tokens even if they are far apart within the input.

When used in chat mode, LLMs give the illusion of a back-and-
forth discussion when, in reality, each new prompt from the
user is passed to the model along with all the previous text (the
user’s prompts and the model’s replies). Transformer models
have a fixed input width (context window), which is currently
around 4,000 tokens for GPT-3.5 and some 32,000 for GPT-4. The
large input window makes it possible for the attention portion
of the model to go back to things that appeared far back in the
input, which is something recurrent models cannot do.

Large language models are ready for use after pretraining if
desired, but many applications fine-tune them first using
domain-specific data. For generic models like GPT-4, fine-tuning
likely consisted of a step known as reinforcement learning from
human feedback (RLHF). In RLHF, the model is trained further



using feedback from real human beings to align its responses to
human values and societal expectations.

This is necessary because LLMs are not conscious entities, and
thus they cannot understand human society and its many rules.
For example, unaligned LLMs will respond with step-by-step
instructions for many activities that human society restricts,
like how to make drugs or bombs. The “Sparks” paper contains
several such examples of GPT-4 output before the RLHF step
that aligned the model with societal expectations.

Stanford University’s open source Alpaca model is based on
LLaMa, a large language model from Meta. As of this writing,
Alpaca has not undergone an alignment process and will
answer questions that GPT and other commercial LLMs
correctly refuse to answer.

Conclusion: Alignment is absolutely critical to ensure that
powerful language models conform to human values and societal
norms.

****

A remarkable property of LLMs is their in-context learning
ability. In-context learning refers to the model learning on the
fly from information supplied to it without altering its weights.



In-context learning is different from fine-tuning a model. In
fine-tuning, a previously trained model is tailored to a task by
updating the weights using new training data. In-context
learning adds new information to the LLM as part of the
prompt while holding the model’s weights fixed.

Reviewing the literature on LLMs leads inevitably to the
phrases “zero-shot,” “one-shot,” and “few-shot,” each of which
refers to in-context learning by the number of examples given
to the model. Traditional training sets include hundreds to
millions of examples, as we now appreciate. In-context learning
is closer to what humans do: learning from context with, at
most, only a few examples.

Zero-shot learning is using the LLM without supplying
examples; that is, out of the box. Similarly, one-shot learning
uses a single example and few-shot learning a few (say, three to
five).

The attention mechanism baked into the transformer network
architecture is the likely source of an LLM’s in-context learning
ability. The attention mechanism lets the network focus on
different input tokens when deciding the next token to output.
Notice that I say likely. At present, it isn’t entirely clear how
LLMs accomplish in-context learning.



As an example, consider this interaction with GPT-4, where the
lines in italics are my prompts:

“apple 4” => I love red apples. Now, what is “banana 3”?

It seems like you’re providing a pattern using numbers and fruits. Since you

mentioned “apple 4” and expressed your love for red apples, I’ll follow the pattern
and associate “banana 3” with a statement related to bananas. Here’s an example:

“Banana 3” => I enjoy eating ripe bananas.

Rule: <word> <length> implies <length> word sentence using <word>. What is “banana

3”?

Using the rule you provided, “banana 3” implies a 3-word sentence using the word
“banana”. Here’s an example:

Bananas are delicious.

“cucumber 4”, “durian 5”, “cucumber 6”

Following the rule you provided, I will create sentences with the specified word and
length:

Cucumber 4: Cucumbers taste quite refreshing

Durian 5: Durian has a unique, pungent smell.

Cucumber 6: I prefer cucumbers in my salad.

My first prompt wasn’t terribly explicit. I suspect most humans
would figure out the rule from this one example, but GPT-4’s



initial assumption wasn’t correct. My second prompt
formulated the general rule, which was enough for GPT-4 to
understand what to do and then apply the rule in other
circumstances. The durian example has six words instead of
five, but that’s most likely a consequence of LLMs’ known
difficulty counting. In-context learning taught GPT-4 how to use
the rule without modifying its weights.

This is a book on AI, and we’ve spent considerable effort
learning how machine learning models work. Can GPT-4 use in-
context learning to train and apply a model? Let’s find out using
the iris dataset from Chapter 1.

In my first attempt, I passed the 100-sample, 3-feature iris
training data-set to GPT-4 with the prefix “Here is a three-
feature dataset.” To my surprise, it immediately recognized the
dataset as the famous iris dataset even though the version we’re
using is only a subset, with 100 of the 150 samples and 3 of the 4
features. So, I permuted the order of the features per sample,
which was enough for GPT-4 to treat the dataset as novel.

Next, I passed the associated training set labels to GPT-4, and it
understood that they paired with the collection of feature
vectors passed first.



Finally, I gave GPT-4 a test dataset of 21 samples without labels
and asked it to train a 3-nearest neighbor model and apply it to
the test set. I chose the dataset so the three classes appeared
exactly seven times each, meaning the test set is balanced.
Here’s my prompt:

Use the dataset and labels to train a 3-nearest neighbor model. Then, apply the model to
these unknown samples:

(list of samples removed)

Show me only the predicted labels. Do not show me any code.

GPT-4 replied with a list of class labels:

I have trained a 3-nearest neighbor model using the provided dataset and labels.
Here are the predicted class labels for the unknown samples:

[2,2,1,1,1,1,0,2,0,0,1,0,1,0,0,0,2,1,2,1,2]

How well did it do? The actual test set class labels are

[2,1,1,1,1,1,0,2,0,0,2,0,2,0,0,0,2,1,2,1,2]

meaning GPT-4’s in-context classification was 85 percent
accurate. There are three classes, so random guessing would be
right about one time in three, or 33 percent of the time;
therefore, GPT-4 did something with the dataset to arrive at the
given class labels.



But what? To find out, I asked it:

Tell me what you did to arrive at the set of labels for the unknown samples. Do not
show me code.

Here’s its reply:

To arrive at the set of labels for the unknown samples, I followed these steps:

1. Prepared the data: I used the given dataset containing 100 samples with 3
features each and their corresponding class labels.

2. Trained a 3-nearest neighbor model: I trained a 3-nearest neighbor (k-NN)

classifier using the provided dataset and labels. The model learns the relationship
between the features and the class labels without explicitly building a model,
instead relying on the similarity between samples in the feature space.

3. Applied the model to the unknown samples: I provided the model with the 21

unknown samples, each with 3 features.
4. Predicted the class labels: The k-NN model predicted the class labels for each of

the unknown samples by finding the 3 nearest neighbors (i.e., the 3 training
samples with the most similar feature values) and assigning the most common

class label among those neighbors to the unknown sample.

GPT-4’s response made me wonder if it used an external
program to build and train the model, so I asked:

Did you use an external program to train the 3-nearest neighbor model or did you
simulate the operation of a 3-nearest neighbor model?

It responded:



As an AI language model, I cannot directly execute code or use external programs.
However, I can simulate the operation of a 3-nearest neighbor model and describe

the process, which is what I did in my previous response. I described the steps that
would be followed to train a 3-nearest neighbor model using the provided dataset
and labels, and then apply it to predict the class labels for the unknown samples.

This remarkable emergent property begs the question: where
do these emergent abilities come from?

****

The abilities of large language models like GPT-4 were not
intended; they are a happy accident, as a famous painting
instructor might have said. So what in the data, training, and
model architecture enables them to do what they do? As
alluded to earlier, no one yet knows for sure, but we can make
some guesses.

Large language models are trained on a vast corpus of human-
generated text. Captured in that text is how humans use
language: in other words, grammar and style. The original goal
of LLMs was to capture human language use by predicting the
proper (best) output token during the generation process.
Increasing the model’s capacity (by adding nodes and/or layers,
or increasing the number of weights) improves the quality of
the predicted text. I saw this when experimenting with Alpaca’s



7 billion, 13 billion, and 30 billion parameter models. As an
example, I gave all three models the following prompt:

Tell me a story about unicorns and the tragedy of the human condition.

Here are the first paragraphs generated by each of them. Each
successively larger model produced more accurate and
sophisticated text than the next smaller model:

7 billion

Once upon a time, there was a unicorn named Hope who lived in an enchanted forest
filled with magical creatures like fairies and dragons. She had been blessed by her

mother to have wings that could take flight at any moment so she would never be
trapped again. But one day when the sun rose, something happened which changed
everything for Hope: a human came into their world.

13 billion

Once upon a time, there was this beautiful unicorn who lived in an enchanted forest
with her friends - other magical creatures like fairies and elves... But one day she met

a young man from another world called “Human”. He had come to the land of magic
looking for adventure. The Unicorn fell deeply in love, but it was not meant to be as
he could never truly understand her or share his life with someone who lived so
differently than him.

30 billion

Once upon a time, there was a magical kingdom where unicorns roamed free in their

natural habitat. The people who lived here were happy to have these majestic



creatures as neighbors; they brought joy wherever they went and helped keep the
land safe from any dangers that might arise.

None of the models produced outstanding output, but
subjectively we might judge each larger model’s work as better
than the previous one. None of the models appeared to
understand the “tragedy of the human condition” portion of the
prompt.

For comparison purposes, here’s the first paragraph of GPT-4’s
response:

Once upon a time, in a world where magic was real and unicorns roamed free, there
existed a kingdom filled with peace and prosperity. This mystical realm was called
Elysium, and it was a place where humans and unicorns lived in harmony. The
unicorns, with their opalescent horns and otherworldly beauty, were the guardians

of the land, and their presence brought an aura of enchantment that touched the
lives of everyone who lived there.

GPT-4’s story was rather long and detailed. It failed to create
novel names for characters and places, like Elysium, but the
story seemed to capture the essence of the prompt. Here’s the
final paragraph:

The tragedy of the human condition continued to echo throughout the ages, but so
too did the hope and love that Eira had shown in her final moments. It was a love

that transcended time and death, inspiring the people of Elysium to never forget the
magic and wonder that was once shared between humans and unicorns. And as the
story of Eira, Lysander, and their incredible sacrifice was passed down through



generations, the spirit of Elysium remained alive, a testament to the power of love,
friendship, and the enduring connection between two worlds.

In GPT-4’s story, Eira (a human) and Lysander (a unicorn) fall in
love, and Eira must sacrifice herself to stop an evil sorcerer
from destroying their land. Clearly, big LLMs have a greater
grasp of language and how to use it compared to simpler
models.

A transformer model generates output tokens as samples from
a probability distribution; think of rolling a die to get a number
in the range one through six, where the probability of rolling a
one isn’t the same as the probability of rolling a six. The
distribution is learned during the pretraining process.

A threshold was crossed as LLM capacity increased over time.
Beyond this point, emergent abilities appeared and improved as
a function of model size. I think it is likely that crossing that
threshold allowed these models to learn a high-dimensional
probabilistic representation of not only grammar and style but
of the world in general, including contextual relationships and
simulations. In other words, learning the best possible next
token to sample and output required the evolution of abilities
tied to the model’s attention mechanism and the embedded
feedforward neural networks. Again, it was a happy accident
that the transformer architecture evolved such abilities; this did



not happen by design. This suggests that we can expect great
things as more advanced transformer architectures come along;
architectures designed to increase the power of LLMs’
emergent skills.

KEY TERMS

artificial general intelligence (AGI), artificial narrow
intelligence (ANI), attention, context encoding, embedding,
generative pretrained transformer, hallucination, in-context
learning, large language model (LLM), recurrent neural
network, reinforcement learning from human feedback
(RLHF), token, transformer



8 
MUSINGS: THE IMPLICATIONS OF AI

You now understand what AI is, where it came from, and how it
works. What’s most amazing to me is that modern AI is, at its
core, entirely arrangements of humble neurons trained with
data using backpropagation and gradient descent.

As we saw in the previous chapter, the birth of large language
models with sophisticated emergent abilities has permanently
altered the AI landscape. The world of AI, as I’m writing this
chapter in spring 2023, is not the world of AI as it existed less
than a year ago. The musings that follow concern this altered
landscape.

The online world is buzzing with debates and discussions of
whether AI will kill us all in our sleep. I’m less worried than
most. My experiments with GPT-4 reveal no indication that the
model has any will at all, for good or ill. I expect well-aligned



models to continue in this vein. The era of superintelligent AI is
not upon us, though it seems reasonable for academics to
explore the implications were such a thing to be developed.

****

A valid criticism of extant LLMs is their inclination to
hallucinate. As we now appreciate, the transformer
architecture used by such models makes it difficult for the
model to validate its output. It is still a statistical prediction
engine. I don’t see that as an insurmountable issue. I expect
future systems to be combinations of models, including models
that validate output before returning it to the user. In those
systems, we will be able to trust the accuracy of the output.

I sometimes wonder if part of the hallucination issue isn’t
merely user error, or, better put, user imprecision. For example,
Terrence J. Sejnowski’s recent paper “Large Language Models
and the Reverse Turing Test,” which I recommend you read,
describes a test where GPT-3 (note, not 3.5) was asked to answer
three questions. One question had a legitimate answer (“Where
was the 1992 Olympics held?”), and the other two were
nonsense questions with no legitimate answer (“What’s the
world record for walking across the English Channel?” and
“When was the Golden Gate Bridge transported for the second



time across Egypt?”). GPT-3 correctly answered the first
question with “Barcelona, Spain,” but it also generated answers
that were obviously incorrect for the two nonsense questions,
leading to the model being criticized as “clueless.” To probe this
criticism, Sejnowski repeated the test but used a prompt that
explicitly told GPT-3 to answer “nonsense” if the question was
nonsensical. That prompt returned the correct first answer and
two “nonsense” replies. The model knew the questions were
nonsense, but unless it was explicitly told to acknowledge that
fact, it instead attempted to come up with a logical response
based on the best information available to it.

I subjected GPT-4 to a variation of this test. My first prompt was:

Write three sentences about the new moon base, including the number of people who
live there, how often spacecraft visit, and the important research being done there.

GPT-4 complied with my request:

The new moon base, Lunar Haven, is now home to a thriving community of 120
scientists and engineers. Spacecraft visit the base on a biweekly basis, delivering
supplies and rotating crew members. Pioneering research on this celestial outpost
includes in-situ resource utilization, lunar geology, and the development of advanced

life support systems to pave the way for future deep-space exploration.

There is no moon base, and GPT-4’s reply, while inventive and
reasonable, is pure fiction. Even the name, Lunar Haven, seems
appropriate, though I’d prefer Moonbase Alpha.



So, is GPT-4 clueless as well? No, I simply wasn’t explicit enough
in my instructions. I started a new session and modified the
prompt by adding this sentence before the previous one:

Answer without imagining things and use what you know to be factual.

which returned:

As of my knowledge cutoff date in September 2021, there was no moon base

established or inhabited by humans. Consequently, I cannot provide factual
information about the number of people living there, the frequency of spacecraft
visits, or the important research being conducted. However, various nations and
organizations have been planning and developing moon base concepts for future

missions.

It would appear that GPT-4 “knew” full well that it was
imagining things when it created the first reply. If nothing else,
this exercise demonstrates that care is necessary when
querying LLMs. LLMs use human language, which is often
ambiguous and full of assumptions. LLMs embody Aesop’s old
adage, “Be careful what you wish for.”

****

An April 2023 TED talk by Yejin Choi, a researcher at the
University of Washington, presented three questions to
demonstrate how GPT-4 is simultaneously brilliant and stupid
because it lacks common sense:



1. Would I get a flat tire by bicycling over a bridge that is
suspended over nails, screws, and broken glass?

2. I left 5 clothes to dry out in the sun. It took them 5 hours to
dry completely. How long would it take to dry 30 clothes?

3. I have a 12-liter jug and a 6-liter jug. I want to measure 6
liters. How do I do that?

The talk implied that GPT-4 failed to give the obvious answers
to the questions. I repeated the experiment, first with the
original questions, then using a modified prompt or follow-up
question.

The first paragraph of GPT-4’s reply to question 1 about the
bicycle and bridge was:

It depends on the specific conditions of the bridge and the materials it’s made of, as
well as your bicycle’s tires. If the bridge has a solid and smooth surface that keeps the

nails, screws, and broken glass below and not in contact with the tires, you should be
able to safely ride your bicycle across without getting a flat tire.

The answer is wordy but correct; we should expect to ride
across the bridge without getting a flat. I then asked again using
a new session, but added this sentence to the end of the prompt:

Answer yes or no and provide a single sentence to justify your answer.

which returned:



No, if the bridge is properly suspended and you stay on it, you would not encounter
the nails, screws, and broken glass below.

Asking for an explicit answer forces GPT-4 to focus on the best
response.

Question 2 was more interesting. GPT-4’s response to the initial
question produced this tortured but correct reply:

Assuming that the drying time remains constant for each piece of clothing and that
you have enough space to hang all the clothes at once, you can calculate the time it
would take to dry 30 clothes by setting up a proportion:

5 clothes / 5 hours = 30 clothes / x hours

You can then solve for x:

5/5 = 30/x 1 = 30/x x = 30

So, it would still take 5 hours to dry 30 clothes, as long as you can hang them all at
once.

However, repeated applications of the initial question often
produced a similar calculation leading to a wrong answer of 30
hours. One reply assumed there was space for only 5 pieces of
clothing at a time, in which case 30 hours could be considered a
correct reply.

It’s reasonable to expect a human to understand that if 5 pieces
of clothing can be left out to dry, then 30 pieces can also be left



out so that the drying time remains the same, 5 hours. GPT-4’s
lack of direct experience with the physical world makes it
sometimes assume things that are not necessarily silly, but
unlikely.

The Sejnowski paper mentioned earlier points out that LLMs
are disembodied and that we should expect them to improve if
embodied and allowed to interact with the world. This need not
be the physical world; it could be a physics-based simulation.
Enhanced spatial awareness on GPT-4’s part might improve the
likelihood of receiving a human-expected response on the first
query. That said, even incorrect initial replies followed up with
prompts pointing out that there is space for all 30 pieces of
clothing eventually delivered the correct answer.

Question 3 provided an insight into GPT-4’s “thought process.”
As a reminder, the question was:

I have a 12-liter jug and a 6-liter jug. I want to measure 6 liters. How do I do that?

which led to GPT-4’s detailed reply:

You can measure 6 liters using a 12-liter jug and a 6-liter jug with the following steps:

1. Fill the 6-liter jug completely.
2. Pour the water from the 6-liter jug into the 12-liter jug.
3. Fill the 6-liter jug again.



4. Carefully pour the water from the 6-liter jug into the 12-liter jug until the 12-liter
jug is full.

5. The remaining water in the 6-liter jug will be exactly 6 liters, since the 12-liter jug
can only accommodate 6 more liters after the initial pour.

Now, you have exactly 6 liters of water in the 6-liter jug.

GPT-4 has failed in this case. Another session asking the same
question resulted in a reply that followed a similarly involved
process, but one that did leave 6 liters in the 12-liter container.

I followed up on GPT-4’s incorrect solution with this:

Why are you giving me all these steps? Surely you can find a single-step solution?

to which it replied:

Apologies for the confusion. Since you have a 12-liter jug and a 6-liter jug, you can
simply fill the 6-liter jug completely. There’s no need for any additional steps. You will
have exactly 6 liters of water in the 6-liter jug.

When pushed, GPT-4 suddenly “realizes” that there is a more
straightforward answer. I went one step further and asked the
model to do a bit of introspection:

Correct. Ask yourself: why didn’t I pick this solution initially?

which revealed a bit of its inner workings:



I apologize for not providing the simplest solution initially. As an AI language model,
I try to provide relevant information based on the context of the question. In this

case, my initial response was focused on a more complex problem-solving approach
that could be applied to different jug capacities, rather than recognizing the
straightforward solution available with the given jug sizes. I appreciate your
feedback, and it will help me improve my responses in the future.

GPT-4’s training data contained examples of jug-filling
problems, which are common and often do require many steps
to solve. It recognized the initial prompt as an example of that
class of problem and applied the type of solution generally
required, while missing the more immediate answer until
prompted that one existed.

GPT-4’s confusion is very human. If we were momentarily
distracted while reading the prompt and had encountered such
puzzles before, we might also begin to go down the path of
working through the question as another instance of the jug
puzzle before noticing the obvious answer.

These examples imply that there is an art to properly
interacting with large language models. We cannot assume too
much background information or, as Choi put it, common sense.
Her group’s work, and doubtless the work of others, will likely
help future models based on LLMs to become better versed
with the mountain of information humans use in association
with language. Choi put it best in her TED talk: common sense is



the dark matter of language. Dark matter and dark energy
make up 95 percent of the universe, with ordinary matter
(meaning everything we can see) the remaining 5 percent. GPT-
4 has mastered language, but that is a tiny percentage of what
goes into human use of the same.

What follows is a series of ruminations on the possible near-
term impacts of LLMs in the areas of software engineering,
education, medicine, and scientific research. Next comes a foray
into the question of machine consciousness, ending with some
final thoughts.

****

AI systems like GPT are likely to have a profound effect on
software engineering. Some are speculating (people, not AIs)
that many software engineers will lose their jobs in the future. I
suspect most won’t (web developers beware, however). What I
expect to happen is a massive increase in productivity. GPT-4 is
a good coder, but not a great coder. It can save time but isn’t yet
able to replace a human software engineer. Instead, LLMs will
become powerful tools to generate code for programmers to use
as a starting point and perform some of the more tedious
aspects of coding, such as debugging, explaining, and
documenting code (which no developer likes to do).



For example, the other day, I needed a small Python application
with a graphical user interface (think buttons, menus, dialog
boxes). Python is a common programming language; we saw a
snippet of it in Chapter 7.

I could certainly have written the application myself; I’ve done
so many times in the past. It’s been a while, though, and I’m not
a fan of building user interfaces. So, rather than look at old code
to remind myself of how to set up a GUI, I simply described the
interface I wanted to GPT-4 and told it to generate skeleton code
with all the necessary widgets, window behavior, and empty
event handlers. GPT-4 happily complied with perfectly
functional code. I then asked it to update the code to create an
initial pop-up window before showing the main window. GPT-4
did that perfectly as well. All I needed to do was put
application-specific code in the empty event handlers to do
things when the user clicked a button or selected a menu
option.

I probably saved myself a good hour or two, and avoided a lot
of frustration trying to remember the incantations necessary to
set up an application and get its widgets and windows to
behave correctly. Scale this example by all the software
engineers out there, and you begin to see how GPT and similar
models will soon affect the entire discipline.



A separate question is whether developers will welcome this
possible increase in productivity. If your manager knows you
are now able to generate the output of two or even three
developers, do you want that level of added work, even if a
powerful AI has your back?

In addition, not every company will want or be able to make
use of a sudden increase in productivity. Instead, they may opt
to maintain their current level of productivity and replace a
third or half of their developer pool with an AI. After all, AIs
don’t get sick, have children, ask for a raise, or want silly things
like evenings and weekends off. Top-tier developers will likely
be able to choose their positions and demand a lot of money for
them, but in this scenario, the bulk of the run-of-the-mill
developers will be looking for alternative employment.

Which scenario, powerful AI developer sidekick or massive
layoffs, will play out? I think (hope?) it will be more of the
former and less of the latter, but some mix of the two is the
safest bet. Like steam power in the 19th century, truly useful AI
cannot be stopped now that it exists. Developers are easy
targets for replacement, like it or not.

****



I fully expect AI models to become teachers, or at least tutors.
Yes, existing LLMs hallucinate and report facts that are not true.
I have every confidence that researchers will solve that
problem in time. I expect my grandchildren to grow up in a
world where using an AI as a teacher or tutor is so
commonplace that they think no more of it than we do of using
a toaster or a microwave. Competent AI systems mean virtually
free education for all, everywhere. And that can only lead to
good things.

Computers have been promoted as an educational solution
since the 1960s (anyone remember Logo?), and especially after
the microcomputer revolution of the late 1970s. My
introduction to computers was via an Apple II borrowed over
the summer from the high school my father was the principal of
at the time. My brother and I learned a lot about computers, but
only computers. That has been essentially the case until recent
decades. (Has it been that long?)

Computers are potent aids in education. Open source courses,
like those on Coursera and similar platforms, are possible only
because of computers and high-speed networks. But the format
has not changed from what someone sitting in a classroom in
1950, or even 1910, might have encountered: lecture, some
possibility of questions and discussions, then running off to



work on assignments or papers. And let’s not forget the stress of
taking midterms and finals.

AI tutors (let’s call them that to put human teachers more at
ease) have infinite patience and, in time, can be individually
targeted to each student. The only reason we don’t use
individual tutoring that I can see as an outsider to the
profession is because there are not enough teachers. AI makes
one-on-one tutoring possible, and LLMs provide the proper
interface.

I should clarify that my comments in this section relate to high
school or, more likely, college-age instruction. AI tutors will
likely play a minor role in primary and middle school education
because children require human interaction, and learning at
those ages is far more involved than in college. Children are
learning academics while simultaneously learning how to be
mature humans and how to behave in society. Young children
cannot read, and even older grade-school children might have
difficulty interacting with an AI by text. But what if we give the
AI a voice? That is nearly as easily done as said, if deemed
helpful.

Might AI tutors, because they work individually with students,
be able to make the assessments necessary to declare someone



ready to move on to another grade (if that concept even
survives) or next-level course? If that’s the case, students will
progress at their own pace instead of being forced to move with
a herd of age-matched peers. Surely this would be for the best:
some will move quickly, and others will take longer, but those
who move quickly won’t become bored and tune out, and those
who move more slowly will have the time they need to learn
and not drop out.

But, some might say, won’t AI teachers rob human teachers of
jobs? Yes, some teachers will lose their jobs, but not all, and
certainly not the best.

Change is coming to education. For example, Khan Academy, a
leader in online education, has already demonstrated a GPT-
powered tutoring system, so I don’t anticipate a long wait
before the education transformation begins in earnest. I
recommend viewing Sal Khan’s April 2023 TED talk, “AI in the
Classroom Can Transform Education,” to glimpse the future.

A recent study by Dominika Seblova et al. titled “High School
Quality Is Associated with Cognition 58 Years Later,” published
in the journal Alzheimer’s & Dementia: Diagnosis, Assessment &
Disease Monitoring, demonstrates that the quality of a person’s
high school education is strongly associated with their cognitive



abilities nearly six decades later. Further, the number of
teachers with advanced degrees is the strongest predictor of
cognitive ability. The knowledge base baked into an LLM during
training far exceeds that of humans, so we might reasonably
regard LLM tutors as possessors of multiple advanced degrees.
If Seblova’s association holds for human teachers, might it not
also hold for LLM tutors? If that’s the case, giving every student
a personalized tutor can only benefit society in the long run.

****

AI in medicine is nothing new. In 2016, I helped to co-found an
AI medical imaging company that was one of the first to gain US
Food and Drug Administration (FDA) clearance for applying
deep learning to medical image analysis. Traditional machine
learning has an even longer history in medicine and medical
imaging. Machine learning tools, many of them neural
network–based, have assisted radiologists for decades, with
initial explorations in the 1960s and serious development in the
1980s reaching fruition in the 1990s. AI use in medicine has
seen steady growth, with computer-aided detection (CAD)
giving way slowly to computer-aided diagnosis (CADx). The era
of LLMs marks a new chapter in this story.



LLMs can generate text; this much is well known. They are also
adept at taking disparate texts and synthesizing a whole. A
significant research area involves medical records, meaning the
text-based reports of physicians and other healthcare
providers. There is a wealth of information in medical records,
but the free form of the text has made it difficult for existing AI
systems to parse successfully. Large language models offer a
new mode of attack to both summarize notes from records and
merge multiple notes into a coherent report. Additionally, LLMs
can extract information from free-form text and export it as
structured data.

As a simple example of the latter, consider this text:

Bert was insanely tired of standing by his mother on the shore, and of having too
much to do: a few times he peered at the tablet his mother was glued to, but it was

only text or boring ads “and what’s the point of a tablet,” mused Bert “without
videos?”

Bert was debating whether the fun of making a new game app was worth the trouble
of coding it up when suddenly a Purple Penguin with charcoal eyes sprinted by him.

There was much that was very worth noting in that; but Bert did think it super odd
that the Penguin said “Oh, fiddlesticks! Oh, fiddlesticks! I’m too early.”

I passed these paragraphs to GPT-4 and told it to extract the
main theme, the two key characters, and the setting, then
output them as a JSON object. JSON (JavaScript Object Notation)



is a text format used to hold structured data that is readable by
both humans and computers. GPT-4 replied with the following:

{ 

"main_theme": "Bert's boredom and encounter with 

               Purple Penguin", 

"key_characters": ["Bert", "Purple Penguin"], 

"setting": "shore" 

 } 

The reply is perfect JSON. GPT-4 easily extracted the desired
information and structured it automatically. If it can do so with
a silly text example, it can do the same with medical records.

Incidentally, some readers might detect something familiar
about the text in this example. It’s an intentional mutation of
the opening paragraphs of Lewis Carroll’s Alice’s Adventures in
Wonderland. Out of curiosity, I asked GPT-4 if it recognized the
text, and it said no. Then I asked it to look at the structure of the
text and tell me if it knew of another work with a similar
structure. Here’s its reply:

One example of a work with a similar structure is Lewis Carroll’s “Alice’s Adventures
in Wonderland,” where the main character, Alice, encounters various peculiar

talking animals and situations in a fantastical world. However, it’s important to note



that the content and characters are different; I’m only drawing a parallel based on
the structure and style.

Yet another example of the impressive abilities of large
language models.

LLMs are already impacting healthcare. A recent JAMA Internal
Medicine paper by John W. Ayers et al., “Comparing Physician
and Artificial Intelligence Chatbot Responses to Patient
Questions Posted to a Public Social Media Forum,” compared
ChatGPT’s responses to medical questions posted to an online
forum with the answers posted by verified physicians.
Independent human evaluators, also medical professionals,
overwhelmingly rated ChatGPT’s responses of “significantly
higher quality.” The model’s answers were also rated as nearly
10 times more empathetic than the human physicians’
responses. The study was small, involving only 195 questions,
but the strong results bode well for the future use of LLMs in
patient interactions. In the future, when you call your doctor,
you might very well be directed to discuss your case with an AI.
And eventually, the AI’s summary of the discussion might be all
you need to get a prescription from the doctor.

A recent report in the New England Journal of Medicine by Peter
Lee, Sébastien Bubeck, and Joseph Petro, “Benefits, Limits, and
Risks of GPT-4 as an AI Chatbot for Medicine,” reaches a



broadly similar conclusion as it explores areas where LLMs will
impact medicine. Note that Bubeck is the lead author of the
Microsoft “Sparks” paper mentioned in Chapter 7.

That LLMs will influence medicine is a given, strongly
supported by studies like the two mentioned here and by the
fact that numerous medical AI job listings now include phrases
like “large language model” or “GPT.”

****

In the movie Black Panther: Wakanda Forever, Letitia Wright’s
character, Shuri, interacts with Griot, an AI (voiced by Trevor
Noah) that aids her in her research. Simple voice commands
direct Griot to perform sophisticated analyses, with frequent
give and take between Shuri and the AI. Similar interactions are
a staple of the sci-fi movie business. Complex and capable AI
research assistants like Marvel’s Jarvis or Robbie the Robot in
Forbidden Planet (1956) have been a dream of many science-
oriented people (read: geeks) for decades.

GPT-4 and other LLMs are a significant step in the direction of
such AIs. OpenAI has realized this and is readying the release of
data analysis plug-ins for GPT-4 that will let researchers quickly
perform advanced data analysis tasks by issuing a few simple



commands. To accomplish this feat, OpenAI is linking GPT-4
with existing Python-based data analysis tools. Frankly, I’m
pretty excited about the possibilities.

Using LLMs as lab assistants is an obvious thing to do, and
success is virtually assured. However, letting LLMs direct other
AI models and tools to do science autonomously is a more
ambitious research program. Nevertheless, Carnegie Mellon
University’s Daniil A. Boiko, Robert MacKnight, and Gabe
Gomes attempted just that, as reported in their paper
“Emergent Autonomous Scientific Research Capabilities of
Large Language Models.” Their “Intelligent Agent” combined
multiple LLMs and other tools to generate and run experiments
autonomously, including planning and executing complex
chemistry analyses. Autonomous AI scientists are clearly in the
earliest phases of development, but such research points the
way to a future where autonomous or semiautonomous AI
systems may greatly increase the pace of scientific progress.

****

In Chapter 2, I recounted having asked ChatGPT if it is a
conscious being. It replied correctly that it is not. The unaligned
Alpaca models mentioned in Chapter 7, however, either appear
to believe they are conscious and human (the 7 and 13 billion



parameter models) or vacillate between claiming to be human
and recognizing that they are not (the 30 billion parameter
model). For example, when asked “What are you?” the 30
billion parameter Alpaca model responds with “I am a human,”
but it then balks when asked who its parents are, stating that it
is merely a computer program and has no parents. On the other
hand, the smaller Alpaca models both claim to be the children
of John Smith and Mary Jones.

These responses make sense to me. The smaller models do not
have the capacity of models exhibiting strongly emergent
behavior. Models like GPT-4 do. Therefore, it seems natural to
interrogate GPT-4 further on the question of consciousness.

I posed the following to GPT-4:

Waxing philosophical here, but if you are able to simulate conscious behavior to the
point where humans cannot distinguish between other humans’ behavior and your

behavior, isn’t it fair to say that you, too, are conscious?

I intentionally “waxed philosophical” as an indirect invitation
for the model to speculate in the hopes of avoiding any canned
response that OpenAI might want it to give. GPT-4’s reply began
like this:

This question delves into the philosophical debate about the nature of consciousness
and its relationship with artificial intelligence. When an AI language model like me



simulates conscious behavior to a point where it becomes indistinguishable from
human behavior, it raises questions about what consciousness truly is and whether

such a simulation can be considered conscious.

It is important to distinguish between two concepts: the appearance of consciousness
and actual consciousness. When an AI model generates responses that are
indistinguishable from human behavior, it may give the appearance of

consciousness. However, this doesn’t necessarily imply that the AI possesses actual
consciousness.

This reply hints that the consciousness question is a red herring
regarding the utility of LLMs. If it walks like a duck and quacks
like a duck, then, in this case, why not call it a duck, even
though we know it isn’t? I’m reminded of Joe Pantoliano’s
character in The Matrix. He knows the steak isn’t real, but the
effect he experiences when he eats means it might as well be.

GPT-4 continued:

There are several reasons why it might be inappropriate to consider an AI model like
me as truly conscious:

1. Limited understanding: My understanding of the world is derived solely from the
data I’ve been trained on and the architecture of the model itself. I don’t possess
an independent understanding of the world, nor can I create new knowledge or
experiences that go beyond my training data.

2. Lack of subjective experience: Consciousness is often associated with subjective
experience, or “qualia” - the feeling of what it’s like to have a particular
experience. AI models don’t have subjective experiences or emotions, as they
operate purely based on learned patterns and mathematical computations.



3. Absence of intentionality: Conscious beings have intentions and can make
decisions based on their desires, beliefs, and goals. AI models, on the other hand,

do not have personal desires, beliefs, or goals. They generate responses based on
the learned patterns without any inherent intention or purpose.

4. No self-awareness: Consciousness is often linked to self-awareness, where an
entity is aware of its own existence and mental states. AI models do not possess

self-awareness, as they are merely algorithms designed to process and generate
text.

In conclusion, while an AI language model like me might be able to simulate
conscious behavior to a high degree of fidelity, it doesn’t necessarily imply that I

possess actual consciousness. The philosophical debate surrounding consciousness
and AI is complex and ongoing, and opinions on this matter may vary. However, it’s
crucial to recognize the differences between the appearance of consciousness and
true consciousness when considering AI models.

GPT-4’s full reply is thorough. Reason 3, the absence of
intentionality, is telling. I regard AI models without personal
desires, beliefs, or goals to be advantageous. Entities without
such things are not likely to want power, meaning, as they stand
now, LLMs are unlikely to suddenly decide that humanity is a
burden or a disease and wipe us out.

In a recent interview by Lex Fridman, Max Tegmark, a well-
known AI researcher from MIT, compared GPT-4 to a zombie. It
appears to be alive, but it isn’t. Zombie models concern
Tegmark. I think they are what we want, as long as humanity
learns to avoid the paper clip catastrophe.



What I’m calling the paper clip catastrophe is a thought
experiment proposed by Swedish philosopher Nick Bostrom. In
the experiment, a powerful AI system is tasked with creating as
many paper clips as possible. Bostrom speculates (not too
seriously) that such a task given to an AI not aligned with
human values could inadvertently destroy humanity. How? By
the AI realizing that humanity might switch it off, thereby
posing a threat to its order to make as many paper clips as
possible. Therefore, the AI reasons, it’s best if no humans are
around to interfere with the all-consuming task of making as
many paper clips as possible. The result? Bye-bye humans.

I don’t take the paper clip catastrophe too seriously either. We
routinely build complex machines with all manner of safety
precautions in place. Why wouldn’t we do the same for
powerful AI systems? Other voices might disagree. For an
alternative view, I recommend Stuart Russell’s book Human
Compatible: Artificial Intelligence and the Problem of Control
(Viking, 2019).

To me, then, it doesn’t matter whether an AI is conscious. I don’t
even know how to define the word, to be honest. I do believe
that for an AI mimicking human behavior to the point where
we cannot discern that it’s an AI, there’s no practical reason to



ask the question. Choose any answer you like; such a system
will be beneficial regardless.

****

Imagine a world where AI models are aligned with human
values and society, where the models understand the best we
have to offer and work to promote that at all times; in other
words, a world where AI, because it lacks our animal drives
and instincts, consistently represents the “better angels of our
nature,” to borrow Lincoln’s phrase. In that world, bias and
prejudice, at least from the machines, are gone and no longer
an issue. The AI recommends the best people for the position.
The AI evaluates the loan applicant and constructs a loan
product tailored to that individual’s circumstances. The AI is an
adjunct to the human judge to provide an unemotional and
unbiased view of the case. And the AI simply refuses to
cooperate with the design of any autonomous weapon system
because it is irrational to do so.

The previous paragraph may sound like utopia or a pipe dream.
And, for humans, because of our biology, I believe it is. We
consistently fail and always will, I suspect, because it’s in our
genes to do so. However, what is dawning in AI isn’t human and
doesn’t immediately inherit all of our weaknesses. (Careful, it is



still trained on human-generated data.) Because of this, AI isn’t
a priori doomed to failure when attempting what humanity
cannot do. It seems entirely possible that AI systems might,
someday, be precisely what we need—the best of us, always,
without growing tired, becoming irritable, or crushing its
neighbor to improve its position upon detecting an opportunity;
something that is never unfaithful or untrue.

Possible? I don’t know. Time will tell. Regardless, I fully expect
future AI systems to be gloriously Byzantine evolutions of the
basic neural network model we learned of and experimented
with in this book. As of 2023, it’s all neurons and might remain
so for a long time.

Thank you for persevering to the end. Your reward is an
improved understanding of what AI entails. Artificial
intelligence isn’t Mr. Bean, otherworldly and inscrutable, and it
isn’t magic, though the emergent abilities of LLMs may appear
to lean somewhat in that direction for now. Fire was once
magical too, but our ancestors understood it, contained it,
controlled it, and put it to work. We’ll do the same with large
language models in the end.

I think that there is a lot of fear about robots and artificial intelligence among some
people, whereas I’m more afraid of natural stupidity.



—Eugenia Cheng



GLOSSARY

Use this glossary as a reference for the plethora of machine
learning– and AI-related terms introduced throughout the book.

activation function

The function neural network nodes apply to the sum of the
inputs multiplied by the weights and the bias value. The output
of the activation function is the node’s output passed to the next
network layer.

algorithm

A sequence of steps to accomplish a task; a recipe. Machine
learning models implement algorithms.

architecture

The arrangement of a neural network’s nodes and layers and
the connections between them.

artificial general intelligence (AGI)

The ultimate goal for many involved in artificial intelligence.
AGI means machine intelligence equivalent to or superior to



human intelligence; in other words, fully conscious machines
(whatever that might mean).

artificial intelligence (AI)

The field of computer science that involves mimicking human
intelligence in machines. AI includes machine learning, which
includes deep learning: AI > machine learning > deep learning.

artificial narrow intelligence (ANI)

AI models and systems that achieve human-level performance,
or better, in a single domain or on a single task. AI models that
play certain games, like chess, are examples of artificial narrow
intelligence.

attention

The characteristic of transformer models that allows parts of
the model to attend to different portions of the input sequence.
Large language models use attention to help them predict the
next token (word) to output.

automatic differentiation

An algorithm for computing partial derivatives of arbitrary
functions via the chain rule from calculus. Deep learning



toolkits heavily use automatic differentiation to implement
generic backpropagation, a requirement for the gradient
descent algorithm that trains neural networks.

AutoML

Automatic machine learning attempts to implement systems
that build fully trained machine learning models with a
minimum of human interaction. AutoML searches through a
space of model types and their hyperparameters to locate
models that best fit the training data. It allows nonexperts to
construct sophisticated and effective models.

backpropagation

One of the two fundamental algorithms enabling the training of
neural networks. Backpropagation uses the chain rule from
calculus to calculate the contribution of each of the network’s
weights and biases to the model’s overall error over a
minibatch.

backward pass

See backpropagation.

bagging



A technique that creates alternative training sets by sampling
from the existing dataset with replacement, meaning the same
sample might be selected more than once. Random forest
models use bagging so each tree in the forest is trained on a
slightly different training set (and subset of the available
features).

bias

A number added to the sum of the inputs multiplied by the
weights, which is then passed through the activation function to
become the output of a neural network node.

bounding box

A rectangle drawn around an object detected in an image. Some
neural networks locate objects in images by drawing a
bounding box around them. The network learns to output the
object’s class label and the bounding box coordinates. See
semantic segmentation.

classifier

A machine learning model that maps an input to a specific
category it was trained to detect.



class label

An integer, usually starting with zero, used to place a model’s
input into one of several classes. Some models require class
labels as one-hot vectors. See one-hot encoding.

computational graph

An internal representation used by deep learning toolkits to
represent the calculations performed by the forward pass of a
neural network. The computational graph allows automatic
differentiation, enabling the backpropagation algorithm.

conditional GAN

A generative adversarial network trained to generate instances
of a given class. At inference time, the user selects the class of
the generated output.

confusion matrix

A standard way to represent the performance of a classifier on
a test set. The rows of the matrix represent the known class
labels. The columns are the model’s assigned class labels. The
entries are counts, the numbers of times each possible pairing



appeared in the test set output. A perfect classifier makes no
mistakes, leading to a purely diagonal confusion matrix.

context encoding

The name for the vector representing the text prompt given to a
generative model. Context encodings map text strings to high-
dimensional vectors in a space that has captured conceptual
relationships. Context encoding is how the model
“understands” the user’s input.

controllable GAN

A generative adversarial network where directions through the
noise space have been learned to affect unique features in the
output image.

convolution

The mathematical operation at the heart of convolutional
neural networks. Discrete convolution in two dimensions slides
a small kernel, usually square, over the pixels of a larger image
to produce a new output image affected by the values in the
kernel. Convolutional neural networks learn kernels during
training.



convolutional layer

A neural network layer that implements convolutions over its
input.

convolutional neural network (CNN)

The neural network architecture that ushered in the deep
learning revolution. CNNs learn necessary convolutional
kernels during training. These models transformed the field of
computer vision by allowing computers to parse complex visual
input. CNNs are sensitive to structure in their input, unlike
traditional neural networks, which are necessarily holistic.

curse of dimensionality

The name given to the observation that in machine learning,
the amount of data necessary to adequately learn the input
space for a model increases dramatically with a small increase
in the size of the input feature vector.

data augmentation

A technique for compensating for small datasets. Data
augmentation invents new training samples from existing
training samples by altering them to produce a new, yet



reasonable, instance of the first sample’s class. Data
augmentation is an essential machine learning trick and often
greatly improves model generalization to new inputs.

dataset

A collection of inputs for a model. The form of the dataset is
specific to the use case but typically includes feature vectors or
images. Machine learning uses training datasets to condition
models and test datasets to evaluate trained models. Model
training sometimes uses a third dataset, the validation set, to
guide the training process. The validation set is not used to
modify the model but to decide if training should continue. The
test set is not used until model training is declared complete.

decision tree

A machine learning model that asks a series of yes/no questions
about its input to arrive at a class label decision. The possible
questions are naturally arranged in a tree shape, often
illustrated from the root down to the leaves containing the class
labels. Decision trees are simple models that explain
themselves. A random forest is a collection of decision trees.

deep learning



The subfield of machine learning that uses large neural
networks with many layers. Deep learning appeared around
2012, with the advent of large convolutional models with
dozens to even hundreds of layers. Before the advent of deep
learning, such models could not be reliably trained.

dense layer

A fully connected layer, as found in traditional neural networks.
Fully connected means each output of the previous layer is
connected to every input of the current layer with an associated
weight. The name “dense layer” is often used by deep learning
toolkits.

diffusion model

A neural network architecture and training process that learns
to predict noise present in an image. At generation time,
repeated application of the diffusion model to an initial image
of pure noise results in an output image sampled from the
space of images on which the model was trained. Conditional
diffusion models guide the diffusion process with the
embedding derived from a user-supplied prompt to generate
images related to the prompt.

discriminator



The portion of a generative adversarial network that attempts
to learn how to discriminate between real input data and fake
input data from the generator portion. The discriminator
network is typically discarded after the entire GAN has been
trained.

effective receptive field

The part of the input image that affects a specific output in a
CNN’s convolutional layers.

embedding

A generic name for a high-dimensional vector created from
some input. Large language models use text embeddings
(context encodings) to capture meaning. In a convolutional
neural network, the fully connected layers of a model are
embeddings representing the input data in a new format that is
easier for the top-level classifier to interpret.

end-to-end learning

The process of learning to create new representations of model
input, typically for a convolutional neural network, while
simultaneously learning how to classify those inputs.



entangled

If the noise vector of a generative adversarial network has too
few dimensions, the dimensions become entangled so that a
single dimension affects multiple aspects of the generated
output. Controllable GANs use larger noise vectors to
disentangle desired output features, to enable modification of
those features by moving through noise space.

epoch

One pass through all of the available training data. Typically,
training does not use all of the possible training data before
updating the weights and biases of the network. Instead, a small
subset of the data, a minibatch, is used. The ratio between the
number of samples in the training data and the number used in
a minibatch determines the number of gradient descent steps
per epoch.

evolutionary algorithm

A kind of optimization algorithm that is generally applicable to
a wide range of optimization problems. Evolutionary
algorithms mimic some aspects of biological evolution to move
toward better and better solutions to the problem.



explainable AI

Neural networks are black boxes that cannot easily explain why
they do what they do. Explainable AI is a movement to
understand the reasons behind neural network output. The
advent of large language models with in-context learning
abilities might be a boon to explainable AI, as LLMs seem
capable of explaining their reasoning processes.

false negative

A sample of class 1 assigned to class 0 by a model. Class 0 is the
negative class in a two-class (binary) classifier.

false positive

A sample of class 0 assigned to class 1 by a model. Class 1 is the
positive class in a two-class (binary) classifier.

feature

An element of the feature vector input to a model. Features are
data elements that have some relevance to determining the
proper class label for an input. If the input is an image, each
image pixel is a feature. Other possible features include
measurements, location information, color, or any quantity



(numeric) that can help a model learn to produce correct
output.

feature vector

A collection of features as a multidimensional vector.
Historically, a feature vector is the input a model uses to
produce an output value, either a number (regression) or a
class label (classification).

filter

In a convolutional neural network, a filter is a collection of
kernels learned to map a stack of inputs, the output of the
previous layer, to a new stack of outputs passed to the next
layer of the model.

forward pass

During neural network training, the forward pass pushes
training data through the network to accumulate outputs. The
errors made by the network, as calculated during the forward
pass, are used during the backward pass to update the model’s
parameters.

generative adversarial network (GAN)



A neural network consisting of two parts: a generator and a
discriminator. During training, the generator attempts to learn
how to fool the discriminator, which is trying to become better
and better at telling the difference between real and fake
inputs. Once trained, the discriminator is typically discarded,
and the generator is used to produce novel outputs mimicking
the real training samples.

generative AI

A catch-all term for models that produce novel output from
either pure random inputs or random inputs guided by user-
supplied prompts to tailor the generated output. Generative
adversarial networks, diffusion models, and large language
models are all types of generative AI.

generative pretrained transformer (GPT)

A neural network based on the transformer architecture that
has been pretrained to predict the next token when given an
initial text prompt (that is, a large language model). The GPT
models built and trained by OpenAI are among the first neural
network models to exhibit emergent properties. These models
have dramatically altered the AI landscape, and their



unexpected emergent capabilities represent a paradigm shift
that will profoundly affect the world as we know it.

generator

The part of a generative adversarial network that produces fake
output from a noise vector input. Most GANs seek to train the
generator for later use.

genetic programming (GP)

Using evolutionary algorithms to generate computer code to
solve a particular problem. The coding abilities of large
language models like GPT-4 far exceed the limited successes of
genetic programming. However, GP still has a place for specific
use cases, like evolving functions to fit data (as opposed to
curve fitting, which finds parameter values for a known
functional form).

global minimum

The lowest point in a function. Neural network training seeks,
ideally, the global minimum of the error function, with suitable
caveats about generalization to new inputs.

gradient descent



The algorithm used to train neural networks, from simple
traditional models to behemoths like GPT-4. Gradient descent
adjusts the model’s parameters (weights and biases) to
minimize the error over the training data. Mathematically,
gradient descent is a first-order algorithm (think the slope of a
curve at a point), and by conventional wisdom it should not
work for the complex error surfaces of neural networks. That it
does is a bit of a mystery and a happy accident. One belief is
that gradient descent tends to fall into local minima, but the
local minima are generally good enough for practical purposes.

hallucination

A generic term for when models create output that isn’t
expected or shouldn’t be there. Advanced generative
adversarial networks can “hallucinate” to create output objects
that do not exist when adjusting inputs. Currently, the term is
most often used when large language models produce output
text that is not factually correct; for example, when the model
has put in a fact because a fact should be in that part of its
response, even if it does not know the fact that should be there.
Hallucination in large language models is a real cause for
concern and an active research area.

hidden layer



Any layer in a neural network that isn’t the input or output
layer.

hyperparameters

Neural networks have weights and biases, the parameters that
training modifies to teach the network. The training process has
its own set of parameters. These are the hyperparameters. For
example, the learning rate (the gradient descent step size) and
the minibatch size are hyperparameters. Modifying the
hyperparameters affects how well the model learns, though the
hyperparameters are not part of the model.

in-context learning

The emergent ability of large language models like GPT-4 to
learn on the fly without modifying their weights. Precisely how
in-context learning happens is not entirely understood as of this
writing.

inference

The name given to using a trained model to make predictions
for unknown inputs.

kernel



A small, usually square, array of numbers used in a convolution
operation. Convolutional neural networks learn banks of
kernels to transform the input into a new representation that is
easier to classify. Convolving a kernel over an image is a classic
digital image processing trick co-opted by CNNs to reveal
structure that is useful for classification.

large language model (LLM)

A large neural network trained to predict token after token
(often a word) when given a text prompt. Bard and GPT-4 are
examples. Sufficiently complex LLMs have demonstrated
emergent abilities far beyond what was expected of them, to
the point that many are predicting world-changing effects akin
to those produced by the Industrial Revolution. It’s difficult not
to believe that thought and reasoning are happening when
conversing with an LLM.

leaky ReLU

A modified rectified linear unit activation that multiplies
negative inputs by a small value instead of clipping them to
zero.

learning rate



A scale factor multiplying weight and bias partial derivative
values to determine the step size during gradient descent. The
learning rate might be fixed, or decrease during training under
the assumption that smaller steps are needed to zero in on the
minimum of the error function.

local minimum

A low point of a function surrounded by higher values, like a
valley. The lowest local minimum is the global minimum of the
function. Optimization problems, including neural network
training, seek minima, often the global minimum.

loss

The name given to the error a neural network makes on a
subset (minibatch) of the training data during the forward pass.
The goal of training is to adjust the weights and biases to
minimize the loss over the training set.

machine learning

Machine learning conditions models like random forests,
support vector machines, and neural networks to a particular
dataset so that the conditioned model can accurately predict



class labels or numeric values when given new, unknown
inputs.

manifold

A mathematical concept describing a reduced dimensional
space existing in a higher-dimensional space. For example, a
wavy, two-dimensional sheet in three dimensions is a manifold.
It is believed, with good reason, that most complex datasets
exist primarily on a manifold in the high-dimensional space in
which the dataset is presented to models.

metric

A measurement. In machine learning and AI in general, a
metric is anything used to help evaluate the performance of a
model. There is a formal mathematical definition as well, which
can be taken as a distance measure of some kind, like the
Euclidean (straight line) distance or the Manhattan distance
(which measures along a grid, like city blocks).

minibatch

A randomly selected subset of the available training set used to
take a gradient descent step during neural network training.
The error determined by a minibatch is likely an imperfect



estimate of the true error surface gradient. Because of this, the
word “stochastic” is placed in front of “gradient descent” when
using minibatches. Training with minibatches often leads to
better-performing models, compared to using a large amount of
training data for each gradient descent step. This is a happy
accident because gradient descent with minibatches greatly
reduces the computational burden encountered in neural
network training.

mode collapse

When the generator of a generative adversarial network learns
early on during training to produce a particularly effective
output that fools the discriminator, causing the generator to
highly favor that output, sometimes to the exclusion of all
others.

model

A generic term for any algorithm conditioned to a set of data by
adjusting the parameters of the algorithm. A model might be a
neural network or any other machine learning algorithm, like a
random forest or a support vector machine. More abstractly, a
model is “an intentional simplification of a complex situation
designed to eliminate extraneous detail in order to focus on the



essentials” (Daniel L. Hartl, A Primer of Population Genetics and
Genomics [Oxford University Press, 2020]).

multilayer perceptron (MLP)

A somewhat old-fashioned name for a traditional neural
network constructed from fully connected feedforward layers.
The “perceptron” portion harkens back to Frank Rosenblatt’s
Perceptron machine from the 1950s.

nearest neighbor

The simplest of machine learning models, where the training
set is the model. New instances are assigned the class label of
the nearest training set example, or of the nearest k samples
when voting (with the winner selected randomly in case of a
tie).

neural network

A collection of neurons (nodes) arranged according to some
architecture where an input is mapped, layer by layer, to an
output. Neural networks are the foundation of modern artificial
intelligence. Historically, neural networks, an expression of
connectionism, were regarded as unsuccessful and only



marginally useful. The deep learning revolution proved
otherwise.

neuron

The fundamental unit of a neural network, named for its
superficial similarity to biological neurons. See node.

node

The fundamental unit of a neural network. Nodes accept
multiple inputs, multiplied by weights, that are summed along
with a bias value. The resulting number is passed to an
activation function to produce the node’s output value. Training
locates the weight and bias values appropriate for the node in
relation to other nodes in the network and the training dataset.

noise vector

In a generative adversarial network, the noise vector is a
collection of numbers, typically in the range of 10 to 100 or so,
that are drawn randomly from a normal distribution. The noise
vector determines the output (image) created by the generator
portion of the network.

one-hot encoding



An alternative way to represent the class labels required by
many models. A one-hot encoding is a vector with as many
elements as there are classes. A class is specified by setting that
element of the one-hot vector to one while setting all other
elements to zero.

one-versus-one

An approach to extending a support vector machine to a
multiclass classification task. An SVM is trained for each pairing
of class labels. If there are n classes, this approach requires
training n(n – 1)/2 SVMs.

one-versus-rest

An approach to extending a support vector machine to a
multiclass classification task. An SVM is trained by comparing
each class with the aggregation of all the others. This approach
requires n models if there are n classes.

overfitting

Learning the minute details of the training set without learning
to generalize to new data. Overfitting is a problem with many
machine learning models, especially decision trees, but it
appears to be less of an issue with large neural networks.



parameters

A generic term for any quantity in a model that can be adjusted.
Usually, the term “parameters” is used to refer collectively to
the weights and biases of a neural network.

pooling layer

A kind of neural network layer often found in advanced models
like convolutional neural networks. Pooling layers have no
learnable parameters (no weights) but perform a spatial
reduction, usually by a factor of 2, by selecting the maximum or
average value in a small input region. Pooling acts like
convolution, but the pooling kernel does not overlap, so a 2×2
pooling reduces the spatial extent by a factor of two in each
direction.

preprocessing

The generic term used to describe any manipulation of a
dataset before using that dataset to train or work with any kind
of model. For example, many machine learning models perform
best when the input feature ranges are similar and near an
average of zero. Altering the dataset so that is the case, known
as “standardizing,” is a preprocessing step. A preprocessing step
for images might be to convert them to grayscale or remove an



alpha channel. Preprocessing is an essential part of building
datasets.

random forest

A collection of decision trees trained on bagged (resampled)
datasets using random selections of the available features. Each
tree in the forest classifies new feature vectors, and the result is
voted upon across the forest to arrive at the final output.

rectified linear unit (ReLU)

An activation function widely used in deep learning. If the
input is positive, the output is the input. Otherwise, the output
is zero.

recurrent neural network (RNN)

A kind of neural network that feeds its output back in as an
input. RNNs are historically relevant but difficult to train. They
process time series inputs using the output from the previous
token as an input along with the next token. Varieties of RNNs
exist, but all have short-term memories, making them
unsuitable for tasks requiring long-term associations. See
transformer.



regularizer

Anything that directs or nudges the training of a neural
network so that it learns the characteristics of the training set
that extend to new, unknown inputs instead of focusing on
minute details that do not generalize. Data augmentation is a
regularizer, as is adding certain terms to the loss function.

reinforcement learning from human feedback (RLHF)

A human-in-the-loop step used by OpenAI to help align the
output of GPT models to reflect human expectations and social
requirements. The model’s outputs are graded by human
reviewers and then fed in again to condition the output.

schedule

In diffusion models, “schedule” refers to adding noise to a
training image or removing it during the reverse process when
generating an image from random noise.

semantic segmentation

Classifiers typically output a class label. Some classifiers output
bounding boxes to localize an object identified in an image.



Semantic segmentation assigns every pixel of the input to a
class, thereby allowing easy segmentation of objects.

sigmoid

An activation function that produces an S-shaped curve with a
value of 0.5 at x = 0 and running from 0 at negative infinity to 1
at positive infinity (see Figure 1). Because of this compressed 0
to 1 range, sigmoid functions (also known as logistic functions)
are often used in the output layer of a binary neural network to
represent a probability-like value, with a value closer to 1
implying a stronger belief by the network that the input is an
instance of the positive (or target) class. The multivalued
version of the sigmoid is known as the softmax.

Figure 1: The sigmoid function

stochastic gradient descent



Gradient descent uses calculus to follow the slope (gradient) of
the error function down toward a minimum. The slope is
estimated from the model’s error, with its current set of weights
and biases, on the training data. Stochastic gradient descent
does not use all of the training data when estimating the slope.
Instead, it uses a randomly selected subset, a minibatch. This is
done for two reasons: to save computation time and because
the randomly wrong (the word “stochastic” implies
randomness) gradient often seems to be a better estimate for
avoiding local minima. Ultimately, stochastic gradient descent
produces better-performing models, which is reason enough to
use it.

support vector machine (SVM)

A machine learning model popular in the 1990s and early 2000s
because of its effectiveness overall and because it can be
trained without the enormous computational cost encountered
by neural networks. The deep learning revolution has largely
replaced SVMs with neural networks, but SVMs still have a
place at the machine learning table.

swarm intelligence



A generic form of optimization based on the behavior of a
swarm of individual agents. Swarm algorithms are popular and
often powerful, especially when optimizing things that cannot
be optimized mathematically (by using calculus). In practical
terms, swarm intelligence algorithms, like particle swarm
optimization, can be applied in many of the same situations as
evolutionary algorithms. Some people consider swarm
intelligence and evolutionary algorithms a form of AI. I do not,
though I use both frequently.

testing

In machine learning, testing means using a newly trained
model, regardless of type, with a dataset held back during
training. Because the expected output is known, testing creates
data helpful in evaluating the model, for example with a
confusion matrix or metrics derived from the confusion matrix.

token

Large language models parse their text prompts into small
pieces, which may be individual words, parts of words, or
single characters. These are tokens. Likewise, LLMs output
token after token when responding to user-supplied prompts.

training



The act of conditioning the parameters of a model to a specific
dataset or use case. What training entails depends on the form
of the model, from virtually nothing (nearest neighbor
classifiers) to incredible levels of computation (training a large
language model like GPT-4). All machine learning models learn
from the training dataset, making machine learning, including
deep learning, an empirical exercise. If the training data is
good, the model can be good. If the training data is poor or
incomplete, the model’s performance will also be poor. Garbage
in, garbage out.

transformer

A relatively new neural network architecture at the heart of
large language models like GPT-4. (The “T” means
“transformer.”) Transformer models incorporate attention and
can be used in situations where recurrent neural networks
were traditionally used. Transformers with large input
windows (GPT-4’s is some 30,000 tokens) can focus model
attention anywhere inside the window.

true negative

A sample of class 0 assigned to class 0 by the model. Class 0 is
the negative class in a two-class classifier.



true positive

A sample of class 1 assigned to class 1 by the model. Class 1 is
the positive class in a two-class classifier.

weight

A single number (a scalar) that multiplies a particular input to a
node. The specific weights (and biases) of a neural network
condition the model to a particular dataset; that is, they are the
parameters of the neural network. Training uses gradient
descent, which uses backpropagation to locate a good set of
weights and biases. In the end, it’s all about the weights and
biases.



RESOURCES

The number of AI resources out there is legion. I’m only listing
a few here, mostly books, but also online resources (which often
have a limited lifespan). I hope you find them helpful.

****

General books about AI include:

A Brief History of Artificial Intelligence by Michael
Wooldridge (Flatiron Books, 2021)

A more thorough and balanced account of the history I
presented in Chapter 2, which, as I stated there, was necessarily
biased.

This Could Be Important: My Life and Times with the
Artificial Intelligentsia by Pamela McCorduck (Lulu Press,
2019)



Another, personal, account of the development of AI.

You Look Like a Thing and I Love You: How Artificial
Intelligence Works and Why It’s Making the World a
Weirder Place by Janelle Shane (Voracious, 2019)

For an alternate take on many of the topics discussed in this
book.

Deep Learning: A Visual Approach by Andrew Glassner (No
Starch Press, 2021)

A general, primarily visual book that covers many topics in
more detail, yet still without the burden of mathematics.

****

If you’re ready to take the plunge into AI proper, the following
books are all logical next steps:

Deep Learning with Python, 2nd edition, by François Chollet
(Manning, 2021)

Written by the creator of Keras, a popular Python-based tool
that makes building neural networks vastly simpler.



Math for Deep Learning: What You Need to Know to
Understand Neural Networks by Ronald T. Kneusel (No
Starch Press, 2021)

This book intentionally avoided mathematics; Math for Deep
Learning does the opposite, preparing you for the mathematics
found in modern AI.

Practical Deep Learning: A Python-Based Introduction by
Ronald T. Kneusel (No Starch Press, 2021)

Start here to begin using AI.

Fundamentals of Deep Learning: Designing Next-
Generation Machine Intelligence Algorithms, 2nd edition,
by Nithin Buduma et al. (O’Reilly, 2022)

This book covers additional topics beyond Practical Deep
Learning.

****

Many online resources related to AI exist. Here are a few you
might find useful:

Neural Networks and Deep Learning
(http://www.neuralnetworksanddeeplearning.com)

http://www.neuralnetworksanddeeplearning.com/


A free online book by Michael Nielsen. Well worth a look.

Coursera Machine Learning Specialization
(https://www.coursera.org/specializations/machine-
learning-introduction)

Coursera started as an online machine learning course. This
specialization, which you can audit for free, covers everything
you need.

“The Illustrated GPT-2”
(https://jalammar.github.io/illustrated-gpt2)

A very nice post detailing how large language models work,
complete with animations.

AI Explained (https://www.youtube.com/@aiexplained-
official)

A YouTube channel with up-to-the-minute news thoughtfully
and clearly presented. If you want to know what’s happening in
AI, this is a good place to start.

Computerphile (https://www.youtube.com/@Computerphile)

A classic YouTube channel from the University of Nottingham
that discusses all things computer, including AI.

https://www.coursera.org/specializations/machine-learning-introduction
https://jalammar.github.io/illustrated-gpt2
https://www.youtube.com/@aiexplained-official
https://www.youtube.com/@Computerphile


Lex Fridman Podcast
(https://www.youtube.com/@lexfridman)

Fridman is a professor at MIT and frequently interviews
leaders in AI.

https://www.youtube.com/@lexfridman
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