
®

early

early

access

access

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

Welcome to the Early Access edition of the as yet unpublished Hacks, Leaks,
and Revelations by Micah Lee! As a prepublication title, this book may be
incomplete and some chapters may not have been proofread.

Our goal is always to make the best books possible, and we look forward
to hearing your thoughts. If you have any comments or questions, email us
at earlyaccess@nostarch.com. If you have specific feedback for us, please
include the page number, book title, and edition date in your note, and
we’ll be sure to review it. We appreciate your help and support!

We’ll email you as new chapters become available. In the meantime,
enjoy!

http://earlyaccess@nostarch.com

H A C K S , L E A K S , A N D
R E V E L A T I O N S

M I C A H L E E

Early Access edition, 07/19/2023

Copyright © 2023 by Micah Lee.

ISBN-13: 978-1-7185-0312-0 (print)
ISBN-13: 978-1-7185-0313-7 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Abigail Schott-Rosenfield
Cover Illustrator: Glenn Sorentino
Interior Design: Octopod Studios
Technical Reviewer: Jennifer Helsby
Copyeditor: Rachel Monaghan

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0) license. To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons,
PO Box 1866, Mountain View, CA 94042, USA.

https://creativecommons.org/licenses/by-nc-sa/4.0/

C O N T E N T S

Acknowledgments . v
Introduction . vii
Part I: Sources and Datasets . 1
Chapter 1: Protecting Sources and Yourself 3
Chapter 2: Acquiring Datasets . 33
Part II: Tools of the Trade . 53
Chapter 3: The Command Line Interface 55
Chapter 4: Exploring Datasets in the Terminal 87

 . . 119
 . 149

Chapter 5: Docker, Aleph, and Making Datasets Searchable
Chapter 6: Reading Other People’s Email
Part III: Python Programming . 167
Chapter 7: An Introduction to Python 169
Chapter 8: Working with Data in Python 199
Part IV: Structured Data . 235
Chapter 9: BlueLeaks, Black Lives Matter,

and the CSV File Format . 237
Chapter 10: BlueLeaks Explorer . 277
Chapter 11: Parler, the January 6 Insurrection,

and the JSON File Format . 301
Chapter 12: Epik Fail, Extremism Research,

and SQL Databases . 347
Part V: Case Studies . 387
Chapter 13: Pandemic Profiteers and COVID-19

Disinformation . 389
Chapter 14: Neo-Nazis and Their Chat Rooms 427
Afterword . 471
Appendix A: Solutions to Common WSL Problems 473
Appendix B: Scraping the Web . 483
Index

The chapters in red are included in this Early Access PDF.

A C K N O W L E D G M E N T S

I’d like to express my sincere thanks to the following people:
To Abigail Schott- Rosenfield, my editor at No Starch Press, who did an

amazing job helping me revise each chapter and encouraging me to slow
down when I would have other wise lost readers with too much technical
detail too quickly. Did you know that it takes a lot of work to write a book?
I’d also like to thank every one else at No Starch Press that helped make this
book a real ity.

To Jen Helsby, my amazingly talented technical reviewer, who double-
checked all of my work and suggested many improvements. Thanks to Jen
(who also happens to be my Dungeon Master!), I feel incredibly confident
in the technical accuracy of this book.

To my Signal group of beta readers, who gave me excellent early feed-
back: Akil Harris, Kushal Das, Mara Hvistendahl, and Yael Grauer. I’d also
like to thank the Aleph developers and the fine journalists at Unicorn Riot
for giving feedback on specific chapters.

To my wife, Crystal, for supporting me throughout writing this book
even though it cost us quite a few nights and weekends. Thank you also for
encouraging me to publish it under a Creative Commons license in order
to remove barriers to access for every one who needs the skills it teaches, no
 matter their income or what country they live in.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Unlike any other point in history, hackers, whistle-
blowers, and archivists now routinely make off with
terabytes of data from governments, corporations,
and extremist groups. These datasets often contain
gold mines of revelations in the public interest, and
in many cases are freely available for anyone to down-
load. Yet these digital tomes can prove extremely diffi-
cult to analyze or interpret, and few people today have
the skills to do so.

I wrote this book for journalists, researchers, hacktivists, and anyone
 else who wants to learn the technologies and coding skills required to
investigate these troves of hacked or leaked data. I don’t assume any prior
knowledge. Along with lessons on programming and technical tools, I’ve
incorporated many anecdotes and firsthand tips from the trenches of inves-
tigative journalism. In a series of hands-on proj ects, you’ll work with real
datasets, including those from police departments, fascist groups, militias,

I N T R O D U C T I O N

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

viii Introduction

a Russian ransomware gang, and social networks. Throughout, you’ll
engage head-on with the dumpster fire that is 21st- century current events:
the rise of neofascism and the rejection of objective real ity, the extreme
partisan divide, and an internet overflowing with misinformation.

By the end of the book, you’ll have gained the skills to download and
analyze your own datasets, extracting the revelations they contain and
transforming previously unintelligible information into your own ground-
breaking reports.

Why I Wrote This Book
I’ve worked as an investigative journalist for The Intercept since 2013,
reporting on a large variety of leaked datasets. The first dataset I cut my
teeth on was the Snowden Archive: a collection of top- secret documents
from National Security Agency whistle blower Edward Snowden revealing
that the NSA spies on pretty much every one in the world who uses a phone
or the internet. I wrote a dozen articles and helped publish over 2,000
secret documents from that dataset, helping bring the issues of privacy and
government surveillance to the forefront of public consciousness and lead-
ing to the widespread adoption of privacy- protecting technologies.

Huge data leaks like these used to be rare, but today they’re increas-
ingly common. In my work at The Intercept, I encounter datasets so fre-
quently I feel like I’m drowning in data, and I simply ignore most of them
 because it’s impossible for me to investigate them all. Unfortunately, this
often means that no one will report on them, and their secrets will remain
hidden forever. I hope this book helps to change that.

Revelations based on leaked datasets can change the course of history.
In 1971, Daniel Ellsberg’s leak of military documents known as the Pentagon
Papers led to the end of the Vietnam War. The same year, an under ground
activist group called the Citizens’ Commission to Investigate the FBI broke
into a Federal Bureau of Investigation field office, stole secret documents,
and leaked them to the media. This dataset mentioned COINTELPRO.
NBC reporter Carl Stern used Freedom of Information Act requests to pub-
licly reveal that COINTELPRO was a secret FBI operation devoted to sur-
veilling, infiltrating, and discrediting left- wing political groups. This stolen
FBI dataset also led to the creation of the Church Committee,
a Senate committee that investigated these abuses and reined them in.
More recently, Chelsea Manning’s 2010 leaks of Iraq and Afghanistan docu-
ments helped spark the Arab Spring, and documents and emails stolen by
 Russian military hackers helped elect Donald Trump as US president in
2016.

As you make your way through this book, you’ll download a variety of
real hacked and leaked datasets for yourself, learning how they’re struc-
tured and how to extract their secrets— and perhaps, someday, you’ll
change history yourself. You’ll read stories from many more datasets as well,
some of which are private and not available for the public to download.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Introduction ix

What You’ll Learn
This book is split into five parts, with each building on the previous part.
You’ll begin with security and privacy considerations, including how to
verify that datasets are au then tic and how to safely communicate with
sources. You’ll then work with datasets in your computer’s terminal and on
remote servers in the cloud and learn how to make vari ous kinds of data-
sets searchable, including how to scour email dumps for information. You’ll
get a crash course in Python programming, with a focus on writing code to
automate investigative tasks. These coding skills will allow you to analyze
datasets that contain millions of files, which is impossible to do manually.
Fi nally, I’ll discuss two exciting real- world case studies from some of my
own investigations.

The following outline describes each chapter in greater detail.

Part I: Sources and Datasets
Part I discusses issues you should resolve before you start analyzing datasets:
how to protect your sources, how to keep your datasets and your research
secure, and how to acquire datasets safely.

In Chapter 1, you’ll learn about how to protect your sources from retali-
ation. This includes how to safely communicate with sources, how to store
sensitive datasets, and how to decide what information to redact. It also
covers the critical step of how to authenticate datasets, using the example of
chat logs from WikiLeaks and patient rec ords from a far- right anti- vaccine
group. You’ll learn how to secure your own digital life, and by exten-
sion, how to secure the data- driven investigations you’re working on. This
includes using a password man ag er, encrypting hard disks and USB disks,
sanitizing potentially malicious documents using the Dangerzone applica-
tion, and more.

In Chapter 2, you’ll learn how to acquire copies of hacked and leaked
datasets. I’ll introduce Distributed Denial of Secrets (DDoSecrets), a trans-
parency collective I’m involved with that hosts copies of all of the datasets
you’ll work with in this book, and you’ll learn how to download datasets
from DDoSecrets using BitTorrent. I’ll explain several ways to acquire
datasets directly from sources and introduce security and anonymity tools
like Signal, Tor Browser, OnionShare, and SecureDrop. As an example, I’ll
explain how I communicated with a source who leaked data from the con-
servative activist group Tea Party Patriots.

You’ll also download a copy of the BlueLeaks dataset, one of the pri-
mary datasets you’ll work with in this book. BlueLeaks is a collection of
270GB of data hacked from hundreds of US law enforcement websites in
the summer of 2020, in the midst of the Black Lives Matter uprising. As
you’ll see, it’s full of evidence of police misconduct. BlueLeaks has been
widely covered in the press, but most of it hasn’t been reported on yet. By
the end of this book, you’ll have the tools you need to conduct your own
BlueLeaks investigations.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

x Introduction

Part II: Tools of the Trade
In Part II, you’ll practice using the command line interface (CLI) to quickly
assess leaked datasets and to use tools that don’t have graphical interfaces,
developing skills you’ll apply extensively throughout the rest of the book.

In Chapter 3, you’ll learn the basics of controlling your computer
through CLI commands, as well as vari ous tips and tricks for quickly
 measuring and searching datasets like BlueLeaks from the command
line. You’ll also write your first shell script, a file containing a series of CLI
commands.

In Chapter 4, you’ll expand your basic command line skills, learning
new commands and setting up a server in the cloud to remotely analyze
hacked and leaked datasets. As an example, you’ll work with the Oath
Keepers dataset, which contains emails from the far- right militia that par-
ticipated in a seditious conspiracy to keep Trump in power after he lost the
2020 election.

In Chapter 5, you’ll learn to use Docker, technology that lets you run a
variety of complex software crucial for analyzing datasets. You’ll then use
Docker to run Aleph, software that can analyze large datasets, find connec-
tions for you, and search the data for keywords.

Chapter 6 focuses on tools and techniques for investigating email
dumps. You’ll read emails from Nauru Police Force about Australia’s off-
shore detention centers, including many messages about refugees seek-
ing Australian asylum, and from the president of Nauru himself. You’ll
also investigate emails from a conservative think tank called the Heritage
Foundation, which include homophobic arguments against gay marriage.
Using the skills you learn, you’ll be able to research any email dumps you
acquire in the future.

Part III: Python Programming
In Part III, you’ll get a crash course in writing code in the Python program-
ming language, focusing on the skills required to analyze the hacked and
leaked datasets covered in future chapters.

Chapter 7 introduces you to basic programming concepts: you’ll learn
to write and execute Python scripts and commands in the interactive
Python interpreter, doing math, defining variables, working with strings
and Boolean logic, looping through lists of items, and using functions.

Chapter 8 builds on the Python fundamentals covered previously. You’ll
learn to traverse filesystems and work with dictionaries and lists. Fi nally,
you’ll put theory into practice by writing several Python scripts to help you
investigate BlueLeaks and explore leaked chat logs from the Russian ran-
somware gang Conti.

Part IV: Structured Data
In Part IV, you’ll learn to work with some of the most common file formats
in hacked and leaked datasets.

In Chapter 9, you’ll learn the structure of the CSV (comma- separated
value) file format, viewing CSV files in both graphical spreadsheet software
and text editors. You’ll then write Python scripts to loop through the rows

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Introduction xi

of a CSV file and to save CSV files of your own, allowing you to further
investigate the CSV spreadsheets in the BlueLeaks data.

Chapter 10 introduces a custom application called BlueLeaks Explorer
that I developed and released along with this book, outlining how I built
the app and showing you how to use it. You can use this app to investigate
the many parts of BlueLeaks that haven’t yet been analyzed, hunting for
new revelations about police intelligence agencies across the United States.
If you ever need to develop an app to investigate a specific dataset, you can
also use this chapter as inspiration.

Chapter 11 focuses on the JSON file format and the Parler dataset of
over a million videos uploaded to the far- right social networking site Parler,
including thousands of videos of the January 6, 2021, insurrection at the
US Capitol. This dataset includes metadata for each video in JSON format,
including information like when the video was filmed and in what location.
Some of these videos were used as evidence during Donald Trump’s second
impeachment inquiry. You’ll write Python scripts to filter through these
videos and plot the GPS coordinates of Parler videos on a map, so you can
work with similar location data in future investigations.

In Chapter 12, you’ll learn to extract revelations from SQL databases by
working with the Epik dataset. Epik is a Christian nationalist com pany that
provides domain name and web hosting services to the far right, including
sites known for hosting the manifestos of mass shooters. The Epik data-
set contains huge databases full of hacked customer data, along with the
true owner ship information for domain names for extremist websites—
information that’s supposed to be hidden behind a domain name privacy
 service. You’ll use your new skills to discover domain names owned by one
of the people behind QAnon and the far- right image board 8kun. If you’re
interested in extremism research, the Epik dataset might be useful for
 future investigations.

Part V: Case Studies
Part V covers two in- depth case studies from my own career, describing how
I conducted major investigations using the skills you’ve learned so far. In
both, I explain my investigative process: how I obtained my datasets, how I
analyzed them using techniques described in this book, what Python code
I wrote to aid this analy sis, what revelations I discovered, and what social
impact my journalism had.

In Chapter 13, I discuss my investigation into Amer i ca’s Frontline
Doctors (AFLDS), a right- wing anti- vaccine group founded during the
COVID-19 pandemic to oppose public health measures. I’ll explain how I
turned a collection of hacked CSV and JSON files into a major news report,
revealing that a network of shady telehealth companies swindled tens of
millions of dollars out of vaccine skeptics. My report led to a congressional
investigation of AFLDS.

In Chapter 14, I describe how I analyzed and reported on massive data-
sets of leaked neo- Nazi chat logs. I also discuss my role in developing a pub-
lic investigation tool for such datasets, called DiscordLeaks. This tool aided
in a successful lawsuit against the organizers of the deadly Unite the Right

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

xii Introduction

rally in 2017, resulting in a settlement of over $25 million in damages against
the leaders of the American fascist movement.

Appendixes
Appendix A includes tips for Win dows users completing the exercises in
this book to help your code run more smoothly. Appendix B teaches you
web scraping, or how to write code that accesses websites for you so that you
can automate your investigative work or build your own datasets from pub-
lic websites.

What You’ll Need
This book is an interactive tutorial: every chapter other than the case stud-
ies in Part V includes exercises. Many later exercises require you to have
completed earlier ones, so I recommend reading this book sequentially. For
example, in Chapter 2, you’ll encrypt a USB disk to which you’ll download a
copy of the BlueLeaks dataset in Chapter 3.

Read this book with your computer open next to you, completing the
exercises and trying out technologies and software as you learn about them.
The source code for every assignment, as well as the code used in case stud-
ies and appendixes, is available in an online repository organized by chapter
at https:// github . com / micahflee / hacks - leaks - and - revelations.

To make this book as accessible as pos si ble, I’ve tried to keep the
requirements simple and affordable. You will need the following:

•	 A computer that’s running Win dows, macOS, or Linux. Win dows is
very dif fer ent from macOS and Linux, but I’ll explain all the extra
steps Win dows users will need to take to set up their computers appro-
priately. If you’re a Linux user, I assume that you’re using Ubuntu; if
 you’re using a dif fer ent version of Linux, you may need to slightly mod-
ify the commands.

•	 A USB hard disk with at least 1TB of disk space. You’ll use this to store
the large datasets you’ll work with.

•	 An internet connection that can download roughly 280GB of datasets
and several more gigabytes of software. If you live in a country with
decent internet service, your home internet should work fine, though
it may take hours or days to download the largest datasets in the book.
Alternatively, you might find more power ful internet connections at
local libraries, coffee shops, or university campuses.

•	 For the two exercises in which you’ll work with datasets from servers in
the cloud, you’ll also need a few US dollars (or the equivalent) and a
credit card to pay a cloud hosting provider.

Now grab your laptop, your USB hard disk, and perhaps a coffee or tea,
and get ready to start hunting for revelations.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations

PART I
S O U R C E S A N D D A T A S E T S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Most of us aren’t very aware of it, but we’re all under
surveillance. Telecom companies and tech giants have
access to a massive amount of private data about every-
one who uses phones and the internet, from our exact
physical locations at any given time to the content of
our text messages and email, and they can share this
data with leak investigators.

Even when our private data doesn’t get sent directly to tech companies,
our devices still rec ord our every move locally. Can you name every single
web page you visited last month? Your web browser prob ably can, and so can
web trackers that follow your activity across the internet.

In addition to the constant background surveillance that every one
 faces, workers with access to sensitive datasets are often under even stricter
corporate or government surveillance. Their work computers and phones
come preinstalled with spyware that monitors every thing the employees do.
Database systems keep track of exactly who searches for which search terms
and when, and which documents they open, download, or print.

1
P R O T E C T I N G S O U R C E S

A N D Y O U R S E L F

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

4 Chapter 1

It’s in this environment that ordinary people find themselves becoming
sources. Through the course of their work, they witness something unethi-
cal or disturbing. They might make a folder with incriminating documents,
or take screenshots of the com pany chat, or do some searches on internal
databases to learn more and make sure their suspicions are correct. They
might email themselves some documents or copy files to a USB stick that
they plug into their work computer. They might text their friends or family
for advice while thinking about what to do next. Most sources aren’t aware
of the massive digital trail that they’ve already left by the time they reach
out to a journalist or regulator.

In this chapter, you’ll learn about protecting sources and securing the
datasets you obtain from them. I’ll go over the editorial and ethical consid-
erations involved in redacting documents and deciding what information
to publish, as well as where you should store datasets based on how sensitive
they are. I’ll show you how to verify that datasets are au then tic, describing
how I’ve done so in the past for hacked data from COVID-19 pandemic
profiteers and chat logs from WikiLeaks. Verifying the authenticity of
datasets is not only impor tant to writing accurate stories but also critical
to protecting your reputation as a journalist. Fi nally, you’ll learn how to
use password man ag ers, encrypt disks, and protect yourself from malicious
documents.

Safely Communicating with Sources
 Because every thing we do leaves a data trail, protecting sources is com-
plicated and difficult. After you publish a blockbuster report based on
information you’ve obtained from an anonymous whistle blower, you should
expect the target of your investigation to launch an investigation of their
own into your source’s identity. The balance of power between a confiden-
tial source and the investigators on their trail is extremely asymmetric. If
 you’re a journalist or researcher trying to protect your source, even doing
all the right things perfectly isn’t always enough. Because so much of source
protection is beyond your control, it’s impor tant to focus on the handful of
 things that aren’t.

As a journalist or researcher, verifying that data you’ve obtained is
au then tic is one of your core responsibilities. The simplest way to authenti-
cate documents is to ask the com pany or government that produced them if
 they’re real, but this is fraught with risk to your source. In some cases, you
 don’t want to give up any details that might reveal your source’s identity.
I’ll discuss this further in the “Authenticating Datasets” section later in the
chapter. You also might not want to reveal that specific documents have
been leaked, a topic you’ll learn more about in this chapter’s “Redaction”
section.

In this section, I’ll describe which sources face risks and which don’t,
as well as strategies for reducing those risks. I’ll also discuss the differences
between working with confidential sources who have legitimate access to
inside information and hackers who break the law to obtain it. It’s impor tant

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 5

to carefully consider how your own choices as an investigator could impact
your source, preferably before you even begin speaking with one.

Working with Public Data
Some datasets don’t pose any risk to the source at all. When the govern-
ment publishes a set of documents in response to a public rec ords request
or when documents are made public as part of a lawsuit, you can include as
much of the data as you like in your report. This data might contain revela-
tions that power ful people don’t want anyone to know, but sharing those
 won’t put anyone at risk of retaliation, since the data is already public.

Similarly, you don’t need to worry about source protection for datasets
that may contain sensitive data but are public and widely available, such as
the BlueLeaks dataset you’ll download in Chapter 2. Any information you
discover from that dataset has already been scoured by the FBI investigators
trying to determine who the hacker was. In these cases, it doesn’t matter
how many people had access to the documents. There’s no chance of acci-
dentally burning your source by providing too many details to a govern-
ment or corporate media office when you ask if the data is real and if they
have a statement. Since the dataset is already public, any damage to the
source has already been done.

Protecting Sensitive Information
If you’re dealing with a dataset from a confidential source, revealing their
identity could cause your source to be fired, arrested, or even murdered.
The most basic step you should take to protect your source is to simply not
talk about them with anyone that isn’t closely collaborating with you on
your investigation. Don’t post to social media any details about your source
that you’re not planning on making public, don’t talk about them to your
friends at parties, and don’t even talk about them to colleagues who aren’t
involved in the investigation.

If you’re interviewing a com pany or government agency about a leaked
dataset you’ve obtained, don’t give them any details about your confiden-
tial source, even if they directly ask. If you get arrested and the police are
demanding to know who your source is, you have the right to remain silent,
and you should exercise it: don’t give the police any information they don’t
already have. The only time that you’re obligated to reveal information about
your source is if a judge orders you to— and even then, you can resist it.

Minimizing the Digital Trail
Be sure to leave the smallest digital trail pos si ble when communicating with
your source. As much as you can, avoid communication by email, SMS mes-
sages, phone calls, direct messages in social media apps, and so on. Don’t
follow your confidential source on social media, and make sure they
 don’t follow you.

If you must send messages or make calls, use an encrypted messaging
app like Signal, which I’ll cover in Chapter 2, and make sure your source

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

6 Chapter 1

deletes any rec ords of their chats with you. You’ll often need to rec ord what
your source told you in order to report on it, but take steps to protect those
rec ords, such as removing them from messaging apps on your phone and
keeping them locally on your computer rather than in a cloud service. If you
no longer need your own rec ords of conversations after you’ve published
your report— for potential follow-up stories, for example— then delete them.

Make sure your source knows not to search the internet for you or for
the reports you’ve published in a way that could be associated with them.
Google search history has been used as evidence against sources in the
past. For example, in 2018, Treasury Department whistle blower Natalie
Mayflower Sours Edwards was indicted for allegedly providing a secret data-
set to BuzzFeed journalist Jason Leopold. The documents she was accused
of leaking detailed suspicious financial transactions involving Republican
Party operatives, senior members of Donald Trump’s 2020 election cam-
paign, and a Kremlin- connected Russian agent and Russian oligarchs.
During the leak investigation, the FBI obtained a search warrant to access
her internet search history, and her indictment accused her of searching
for multiple articles based on the contents of her alleged leaks shortly after
they were published.

Working with Hackers and Whistle blowers
The steps you must take to protect your source vary greatly depending
on the person’s technical sophistication. Not all sources are whistle blowers,
 people with inside access to datasets or documents who leak evidence of
wrongdoing for ethical reasons. Sometimes your source may be a hacktivist
who wants to bring down companies or government agencies that they find
unjust.

Unlike most whistle blowers, hackers tend to understand that they’re
 under surveillance and that every thing they do leaves a digital trail, so they
usually take countermea sures to hide their tracks. It’s common for whistle-
blowers to reveal their identities to journalists for verification reasons, even
if they aren’t publicly named, but hackers typically remain fully anonymous.
However, hackers can often provide technical information you can use to
in de pen dently authenticate a dataset using open source intelligence. As
with any source, you can’t necessarily trust what hackers tell you, but their
expertise can help you in de pen dently verify that the data they sent you is
au then tic. For these reasons, there’s often less risk to your source when you
publish documents from hackers rather than from whistle blowers.

When communicating with a hacker source, it’s impor tant that you
stick to your role as a journalist or researcher. In the US, you’re not break-
ing any laws just by speaking with a source who’s a hacker, but your source
is almost certainly breaking laws by hacking into companies or governments
and stealing data. Don’t do anything that could be construed as conspir-
ing with them. For example, don’t ask them to get specific data for you; let
them give you whatever data they choose. If you’re a journalist working with
an established newsroom, you might fare better against legal threats than

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 7

a freelancer would. While every one should be protected equally under the
law, newsrooms often have resources like lawyers and defense funds. When
 you’re not sure whether something you’re doing could get you in trou ble,
consult a lawyer.

Sometimes sources pretend to be hacktivists or whistle blowers but are
actually state- sponsored hackers. For instance, Russian military hackers
posed as hacktivists when they compromised the Demo cratic Party and
Hillary Clinton’s presidential campaign in 2016, interfering with the US
election by sending hacked datasets to WikiLeaks. This sort of dataset might
be au then tic and newsworthy, but you don’t want to end up being a pawn
in someone else’s information warfare. If you’re unsure about your source’s
credibility or believe that they might have ulterior motives—or if you’re con-
fident that they’re being dishonest with you— it’s impor tant to mention your
skepticism about your source, and why you have doubts, in your reporting.
WikiLeaks did the opposite: it insisted its source wasn’t Russian intelligence
when it knew other wise, and it even spread the conspiracy theory that Seth
Rich, a Demo cratic Party employee who was murdered, was the group’s real
source, leading to years of harassment against Rich’s family members.

Secure Storage for Datasets
As you prepare to receive a dataset from a source, first assess how sensitive
you think that dataset is, since this will inform how you should go about
protecting it, as well as how you’ll continue protecting your source. As men-
tioned, some datasets are completely public, while others are highly clas-
sified national security secrets, and others are somewhere in between. You
might encounter a dataset with unique challenges that doesn’t fit into one
of these categories, but in general, there are three dif fer ent levels of sensi-
tivity: low, medium, and high.

Low- Sensitivity Datasets
A dataset might be low sensitivity if it meets one of the following criteria:

•	 It’s already completely public, such as documents in response to a pub-
lic rec ords request or public datasets that anyone can download from a
transparency collective like Distributed Denial of Secrets. (You’ll learn
more about DDoSecrets in Chapter 2.)

•	 Law enforcement or an adversarial corporation has already gained
access to the dataset, meaning how you store it won’t lead to retaliation
against your source.

•	 It doesn’t contain personal identifiable information, or PII, which I describe
in detail in the “Redaction” section.

Basically, if you can’t think of any harm that would result if a given
dataset is shared more widely than you intended, including with law
enforcement or leak investigators, it’s prob ably low sensitivity.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

8 Chapter 1

It’s safe to work with low- sensitivity datasets in the cloud, by which I
mean storage services like Google Drive, iCloud, and Dropbox; hosting
 services like Amazon Web Services (AWS); and any other service where
anyone besides you and the people you’re working with will have access to
the data. Cloud services are all vulnerable to legal requests, however, so if
 you’re investigating governments or corporations with power ful lawyers,
they can send subpoenas to cloud providers to get data associated with your
account. Additionally, the data you store in the cloud is only as safe as your
account itself. Make sure you have a strong password and turn on features
like two- factor authentication to make your account significantly more dif-
ficult to hack.

Medium- Sensitivity Datasets
Most datasets that aren’t low sensitivity are medium sensitivity; that is,
 they’re not already public, but securing them doesn’t require you to go
to extreme measures. For example, a dataset I describe later in this chap-
ter that includes medical rec ords of hundreds of thousands of patients
is medium sensitivity. These datasets should be stored on disks that are
encrypted, or locked in such a way that only the owner should be able to
unlock them to access the data. This way, if your laptop is stolen, lost, or
seized in a police raid, no one can access your files. If you haven’t already
encrypted your disk, you’ll do so in Exercise 1-3.

Medium- sensitivity data should also stay on your computer’s hard
disk or a removable disk. Avoid storing it in cloud services unless you have
a good reason to do so or you’re able to encrypt it in way that the cloud
 service can’t decrypt it. Storing datasets on local, encrypted disks greatly
reduces the risk of anyone else gaining unauthorized access to them.

You can work with medium- sensitivity data on your typical work com-
puter, as long as you secure your machine. Here’s how:

•	 Make sure your computer’s hard disk is encrypted.

•	 Take steps to protect your computer physically. Make sure the screen
locks automatically after a short amount of inactivity and requires a
password to unlock.

•	 Install software updates promptly, and be wary of what programs you
install and what documents you open on your computer. If you acciden-
tally run malicious software or open a malicious document, someone
could hack your computer and gain access to your datasets.

•	 Store the dataset on an external USB disk, which allows you to store
more data than will fit on your computer and means you can travel
with your laptop without worrying about protecting the datasets stored
on it. Make sure your external disk is encrypted as well (see the “Disk
Encryption” section for instructions).

•	 Don’t store files in parts of your computer that are automatically
uploaded to the cloud. For example, many Mac users configure their
computers to upload their Documents folder to iCloud, Apple’s cloud

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 9

storage service. If your computer is set up this way, don’t put files
related to these investigations in that folder.

In general, work with medium- security data locally, meaning as files
stored on your hard disk that aren’t exposed to any online services. In
some cases it’s reasonable to work with medium- security datasets remotely.
If you’re working with other people, you may need to use an encrypted
file- sharing solution so that the service you’re using can’t decrypt the files,
but you and your colleagues can. One simple option is to send files back
and forth using the Signal messenger app. And if you or your organization
is hosting a secure tool for searching datasets, such as Aleph (covered in
Chapter 5), it’s also reasonable to copy the data into that tool.

All of the datasets you’ll be working with in this book are low sensitiv-
ity, since they’re already public. The techniques you’ll learn throughout the
book will apply for medium- sensitivity datasets as well, however, as you’ll
work with the data locally on your computer. While it’s fine to work with
 these par tic u lar datasets in the cloud, learning to work with them locally
 will give you the practice you need for handling more sensitive datasets.

High- Sensitivity Datasets
High- sensitivity datasets are by far the most difficult to work with, for good
reason. The Snowden Archive, for example, is high sensitivity. I spent years
reporting on this massive trove of secret government documents from
National Security Agency (NSA) whistle blower Edward Snowden, who
exposed the fact that US and allied spy agencies were conducting warrant-
less surveillance and privacy invasions on an unimaginable scale. We didn’t
want the FBI or NSA to gain access to it, which made cloud services out
of the question, but more impor tant, we didn’t want foreign intelligence
 services to access it either. We assumed that nation- state attackers had the
capability to remotely hack pretty much any computer we used unless we
took steps to make sure it never connected to any remote network.

 Going into detail on how to conduct high- sensitivity investigations
is beyond the scope of this book, and you won’t need such skills to work
through later chapters. However, for future reference, this section outlines
how you should proceed if you find yourself working with a cache of top-
secret documents.

If a dataset is high sensitivity, until you are close to publishing your
report, store it or access it only using air- gapped computers— those that
never connect to the internet. Move files off the air- gapped computer
only when they’re already redacted and necessary for publishing. In short,
buy a new computer, never connect it to the internet, and use that. Or, if
you have an old computer that would work, you can format its disk, reinstall
the operating system, and use that computer while never connecting it to
the internet. These steps will help you ensure that you’re starting from a
clean system free of existing trackers or malware. To make it even more
secure, unscrew the computer’s case and physically remove the wireless
hardware.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

10 Chapter 1

You’ll run into all sorts of challenges related to moving data between
your air- gapped computer and your normal work computer— for example,
installing or updating software on your air- gapped computer requires
downloading it on another computer, carefully verifying that it’s legitimate
software, and then transferring it to your air- gapped computer to install
it. The extra steps are worth it, though, when a breach might have severe
consequences.

It’s also impor tant that the disk in your air- gapped computer and any
USB disks that you use with it are encrypted with strong passphrases. Also
consider the physical security of where you store your air- gapped computer
and USB disks. If pos si ble, keep them in a safe or vault with a good lock. If
that’s not pos si ble, at least keep them in a locked room to which few people
have keys. Always power off your air- gapped computer when you’re not using
it to make it harder for attacks against the disk encryption to work.

When working on air- gapped computers, be mindful of nearby internet-
connected electronic devices with microphones or cameras. Avoid having
conversations related to highly sensitive documents within earshot of micro-
phones, and consider whether any nearby cameras (including smartphones)
could capture photo graphs of your screen.

Authenticating Datasets
You can’t believe every thing you read on the internet, and juicy documents or
datasets that anonymous people send you are no exception. Disinformation is
prevalent. It’s impor tant to explain in your published report, at least briefly,
what makes you confident in the data. If you can’t authenticate it but still
want to publish your report in case it’s real, or in case others can authenticate
it, make that clear. When in doubt, err on the side of transparency.

How you go about verifying that a dataset is au then tic completely
depends on what the data is. You have to approach the prob lem on a case-
by- case basis. The best way to verify a dataset is to use open source intelligence
(OSINT), or publicly available information that anyone with enough skill
can find. This might mean scouring social media accounts, consulting
the Internet Archive’s Wayback Machine (https:// web . archive . org), inspect-
ing metadata of public images or documents, paying services for historical
domain name registration data, or viewing other types of public rec ords.
If your dataset includes a database taken from a website, for instance, you
might be able to compare information in that database with publicly avail-
able information on the website itself to confirm that they match.

This book’s discussion of OSINT focuses on how I’ve used it in my
own investigations. If you want to learn more, see Michael Bazzell’s OSINT
Techniques: Resources for Uncovering Online Information, along with the com-
panion tools listed at https:// inteltechniques . com / tools. Bazzell describes a large
number of tools and techniques for discovering details that might help you
verify datasets using OSINT.

In this section, I’ll share two examples of authenticating data from my
own experience: one about a dataset from the anti- vaccine group Amer i ca’s

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://web.archive.org
https://inteltechniques.com/tools

Protecting Sources and Yourself 11

Frontline Doctors, and another about leaked chat logs from a WikiLeaks
Twitter group.

Authenticating the AFLDS Dataset
In late 2021, in the midst of the COVID-19 pandemic, an anonymous hacker
sent me hundreds of thousands of patient and prescription rec ords from
telehealth companies working with Amer i ca’s Frontline Doctors (AFLDS).
AFLDS is a far- right anti- vaccine group that misleads people about COVID-19
vaccine safety and tricks patients into paying millions of dollars for drugs
like ivermectin and hydroxychloroquine, which are in effec tive at preventing
or treating the virus. The group was initially formed to help Donald Trump’s
2020 reelection campaign, and the group’s leader, Simone Gold, was
arrested for storming the US Capitol on January 6, 2021. In 2022, she served
two months in prison for her role in the attack.

My source told me that they got the data by writing a program that
made thousands of web requests to a website run by one of the telehealth
companies, Cadence Health. Each request returned data about a dif fer ent
patient. To see whether that was true, I made an account on the Cadence
Health website myself. Every thing looked legitimate to me. The informa-
tion I had about each of the 255,000 patients was the exact information I
was asked to provide when I created my account on the service, and vari ous
category names and IDs in the dataset matched what I could see on the
website. But how could I be confident that the patient data itself was real,
that these people weren’t just made up?

I wrote a simple Python script to loop through the 72,000 patients
and put each of their email addresses in a text file. I then cross- referenced
 these email addresses with a totally separate dataset containing PII from
members of Gab, a social network popular among fascists, anti- democracy
activists, and anti- vaxxers. In early 2021, a hacktivist who went by the name
“JaXpArO and My Little Anonymous Revival Proj ect” had hacked Gab
and made off with 65GB of data, including about 38,000 Gab users’ email
addresses. Thinking there might be overlap between AFLDS and Gab users,
I wrote another simple Python program that compared the email addresses
from each group and showed me all of the addresses that were in both lists.
 There were several.

Armed with this information, I started scouring the public Gab timelines
of users whose email addresses had appeared in both datasets, looking for
posts about AFLDS. Using this technique, I found multiple AFLDS patients
who posted about their experience on Gab, leading me to believe that the
data was au then tic. For example, according to consultation notes from the
hacked dataset, one patient created an account on the telehealth site and
four days later had a telehealth consultation. About a month after that, they
posted to Gab saying, “Front line doctors fi nally came through with HCQ/
Zinc delivery” (HCQ is an abbreviation for hydroxychloroquine).

Chapter 13 focuses entirely on my AFLDS investigation and describes
the technical details of my Python script in greater depth. By the time

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

12 Chapter 1

 you’ve worked through the intervening chapters, you’ll have the Python
knowledge to understand how that script worked.

Authenticating the WikiLeaks Twitter Group Chat
In late 2017, journalist Julia Ioffe published a revelation in the Atlantic:
WikiLeaks had slid into Donald Trump Jr.’s Twitter direct messages. Among
other things, before the 2016 election, WikiLeaks suggested to Trump Jr.
that even if his father lost the election, he shouldn’t concede. “Hi Don,” the
verified @WikiLeaks Twitter account wrote, “if your father ‘loses’ we think
it is much more in ter est ing if he DOES NOT conceed [sic] and spends time
CHALLENGING the media and other types of rigging that occurred—as
he has implied that he might do.”

A long- term WikiLeaks volunteer who went by the pseudonym Hazelpress
started a private Twitter group with WikiLeaks and its biggest supporters
in mid-2015. After watching the group become more right- wing, conspira-
torial, and unethical, and specifically after learning about WikiLeaks’
secret direct messages (DMs) with Trump Jr., Hazelpress de cided to blow
the whistle on the whistleblowing group itself. She has since publicly come
forward as Mary- Emma Holly, an artist who spent years as a volunteer legal
researcher for WikiLeaks.

To carry out the WikiLeaks leak, Holly logged into her Twitter account,
made it private, unfollowed every one, and deleted all of her tweets. She also
deleted all of her DMs except for the private WikiLeaks Twitter group and
changed her Twitter username. Using the Firefox web browser, she then
went to the DM conversation— which contained 11,000 messages and had
been going on for two and a half years— and saw the latest messages in the
group. She scrolled up, waited for Twitter to load more messages, scrolled
up again, and kept doing this for four hours, until she reached the very first
message in the group. She then used Firefox’s Save Page As function to save
an HTML version of the web page, as well as a folder full of resources like
images that were posted in the group.

Now that she had a local, offline copy of all the messages in the DM
group, Holly leaked it to the media. In early 2018, she sent a Signal mes-
sage to the phone number listed on The Intercept’s tips page. At that
time, I happened to be the one checking Signal for incoming tips. Using
OnionShare— software that I developed for this purpose, which I describe
in detail in Chapter 2— she sent me an encrypted and compressed file,
along with the password to decrypt it. After extracting it, I found a 37MB
HTML file—so big that it made my web browser unresponsive when I tried
opening it, and which I later split into separate files to make it easier to
work with— and a folder with 82MB of resources.

How could I verify the authenticity of such a huge HTML file? If I could
somehow access the same data directly from Twitter’s servers, that would do
it; only an insider at Twitter would be in a position to create fake DMs that
show up on Twitter’s website, and even that would be extremely challeng-
ing. When I explained this to Holly (who, at the time, I still knew only as
Hazelpress), she gave me her Twitter username and password. She had

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 13

already deleted all the other information from that account. With her con-
sent, I logged in to Twitter with her credentials, went to her DMs, and found
the Twitter group in question. It immediately looked like it contained the
same messages as the HTML file, and I confirmed that the verified account
@WikiLeaks frequently posted to the group.

Following these steps made me extremely confident in the authentic-
ity of the dataset, but I de cided to take verification one step further. Could
I download a separate copy of the Twitter group myself in order to com-
pare it with the version Holly had sent me? I searched around and found
dmarchiver, a Python program that could do just that. Using this program,
along with Holly’s username and password, I downloaded a text version of
all of the DMs in the Twitter group. It took only a few minutes to run this
tool, rather than four hours of scrolling up in a web browser.

N O T E After this investigation, the dmarchiver program stopped working due to changes on
Twitter’s end, and today the proj ect is abandoned. However, if you’re faced with a
similar challenge in a future investigation, search for a tool that might work for you.
You could also consider developing your own, using programming skills that you’ll
learn in Chapters 7 and 8.

The output from dmarchiver, a 1.7MB text file, was much easier to work
with compared to the enormous HTML file, and it also included exact time-
stamps. Here’s a snippet of the text version:

[2015-11-19 13:46:39] <WikiLeaks> We believe it would be much better for GOP
to win.
[2015-11-19 13:47:28] <WikiLeaks> Dems+Media+liberals woudl then form a block
to reign in their worst qualities.
[2015-11-19 13:48:22] <WikiLeaks> With Hillary in charge, GOP will be pushing
for her worst qualities., dems+media+neoliberals will be mute.
[2015-11-19 13:50:18] <WikiLeaks> She's a bright, well connected, sadistic
sociopath.

I could view the HTML version in a web browser to see it exactly as it
had originally looked on Twitter, which was also useful for taking screen-
shots to include in our final report, as shown in Figure 1-1.

Figure 1-1: A screenshot of the leaked HTML file

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

14 Chapter 1

Along with the talented reporter Cora Currier, I started the long
 process of reading all 11,000 chat messages, paying closest attention to the
10 percent of them from the @WikiLeaks account— which was presumably
controlled by Julian Assange, WikiLeaks’ editor— and picking out every-
thing in the public interest. We discovered the following details:

•	 Assange expressed a desire for Republicans to win the 2016 presidential
election.

•	 Assange and his supporters were intensely focused on discrediting two
Swedish women who had accused him of rape and molestation, as well
as discrediting their lawyers. Assange and his defenders spent weeks
discussing ways to sabotage articles about his rape case that feminist
journalists were writing.

•	 Assange tried to discredit filmmaker Laura Poitras because of how she
portrayed him in Risk, the 2016 documentary about WikiLeaks. The
film includes a scene in which Assange tells his lawyer that his accusers
 were part of a “thoroughly tawdry radical feminist political positioning
 thing,” and in another scene he says, “Part of the prob lem in this case is
 there’s two women, and the public just can’t even keep them separate.
If there was one, you could go, ‘She’s a bad woman.’ I think that would
have happened by now.”

•	 Assange used transphobic and misogynistic language when talking
about Chelsea Manning, his source from 2010, and her friends. I dis-
cuss Manning’s relationship with WikiLeaks further in Chapter 2.

•	 After Associated Press journalist Raphael Satter wrote a story about
harm caused when WikiLeaks publishes personal identifiable informa-
tion, Assange called him a “rat” and said that, “he’s Jewish and engaged
in the ((())) issue,” referring to an antisemitic neo- Nazi meme. He then
told his supporters to “Bog him down. Get him to show his bias.”

You can read our reporting on this dataset at https:// theintercept . com / 2018 /
 02 / 14 / julian - assange - wikileaks - election - clinton - trump / . After The Intercept pub-
lished this article, Assange and his supporters also targeted me personally
with antisemitic abuse, and Rus sia Today, the state- run TV station, ran a
segment about me. I discuss WikiLeaks and its history in greater depth in
Chapter 2.

The techniques you can use to authenticate datasets vary greatly
depending on the situation. Sometimes you can rely on OSINT, sometimes
you can rely on help from your source, and sometimes you’ll need to come
up with an entirely dif fer ent method.

Redaction
Once you’ve authenticated your dataset, you must consider whether or how
you want to redact— that is, hide or delete— sensitive information before
publishing the results of your investigation. In some cases it might be safe
to publish original documents without any redaction, and in others you

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2018/02/14/julian-assange-wikileaks-election-clinton-trump/
https://theintercept.com/2018/02/14/julian-assange-wikileaks-election-clinton-trump/

Protecting Sources and Yourself 15

might choose not to publish any documents at all. In this section I’ll discuss
how to make these decisions and the reasons you might choose to redact, or
not redact, information.

Deciding What Data to Publish
When deciding how much data to publish, consider whether your method
of reporting the revelations will enable leak investigators to uncover your
source. For example, if a com pany’s human resources department sends
an email to all of its 10,000 employees and one of them leaks the message to
you, it will be very hard for the com pany to find the culprit. But if only
10 people have access to a document—or database logs show a list of 10 people
 who recently accessed it— the com pany has a real suspect list to work from.

How many people had access to the data you’ve obtained, how sensitive
it is, what your source is risking, and what they’re comfortable with are all
 factors that will determine the dif fer ent types or quantities of data you pub-
lish. The following list provides options to consider, ordered from the most
risk to your source to the least:

•	 Publish unaltered documents or datasets.

•	 Publish documents after you’ve redacted them and stripped them of
metadata.

•	 Publish documents after re- creating them from scratch by typing them
by hand into new separate documents and publishing those instead.
When you re- create documents, you remove any hidden trackers and
make it impossible to tell from the documents themselves whether your
source obtained them by photographing their screen, copying them to
a USB stick, uploading them to a website, or using some other method.

•	 Don’t publish the documents at all; only describe and quote from them.

•	 Don’t even quote from the documents, just describe the revelations
they contain. If leak investigators don’t know what documents were
compromised, only that an accurate news story somehow reveals con-
fidential information, they’ll have a harder time making pro gress in
their investigation.

Publishing documents is more transparent to your readers, and provid-
ing direct evidence makes your work more credible, but doing so has to be
weighed against protecting your source. You’ll make these decisions on a
case- by- case basis, but always keep in mind the risks that your source faces.

Determining What to Redact
If you’ve carefully considered the risks to your source and de cided to pub-
lish documents rather than just describing them, the next step is to decide
what, if any, information in those documents to redact before publishing.
 There are three reasons for redaction: to continue protecting your source,
to protect the privacy of others involved, or to protect government or corpo-
rate information that should justifiably remain secret.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

16 Chapter 1

Protecting Your Source

If your dataset includes archives of a private website or databases that your
source was logged into, you’ll want to redact their username or any other
identifying information before publishing. In addition, make sure you don’t
accidentally publish metadata that could reveal your source. This book
 won’t describe the many ways that could happen, but here are two common
examples: Word documents often include the name of the author, and pho-
tos often include GPS coordinates and the type of camera that was used.

In 2012, John McAfee, the controversial millionaire software executive,
was on the run. Police raided his home in Belize, and he fled the country.
In a blog post, he wrote, “I am currently safe and in the com pany of two
intrepid journalist [sic] from Vice Magazine . . . We are not in Belize, but
not quite out of the woods yet.” That day, Vice published its article about
McAfee, which included a photo graph. According to the photo’s metadata,
it was taken on an iPhone 4S and included GPS coordinates to a specific
 house in Guatemala. By not stripping the photo of metadata, Vice acciden-
tally published his exact location. If Vice had simply taken a screenshot of
the image and published that instead, the magazine would have erased the
metadata and kept the location secret.

In 2017, when President Donald Trump constantly called the accusa-
tions that Rus sia interfered in the US elections “fake news,” NSA whistle-
blower Real ity Winner anonymously mailed a top- secret document to The
Intercept with evidence that the NSA had, in fact, witnessed a Russian
cyberattack against local election officials. The Intercept published the doc-
ument, and a short time later Real ity Winner was arrested. The published
document included a type of metadata called printer dots, nearly invisible
yellow dots that printers add to paper that include the serial number of the
printer and the timestamp of when it was printed. While there’s no evi-
dence that leak investigators even noticed them until after Real ity Winner
was arrested (she was one of six people who had printed this document,
and the only one who had written an email to The Intercept), the printer
dots could have outed her as well. The Intercept could have mitigated this
by re- creating the document (retyping it and re- creating the artwork) and
publishing that instead of a scanned version of the original.

Protecting Personal Information in Datasets

Many datasets include names, email addresses, usernames, phone num-
bers, home addresses, passwords, and other similar personal identifiable
information of people who aren’t public figures. Many government and
corporate documents include PII for random employees that won’t add
anything to your story, but could make these people targets of harassment.
Even when dealing with public figures, in most cases it’s still responsible to
redact their PII unless publishing it adds value to your report. For example,
if the focus of your investigation is a lavish mansion owned by a billionaire,
it might be reasonable to publish the address of that mansion. If you’re

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 17

writing an unrelated story about that billionaire, however, there’s no reason
to include their home address.

Even if you believe the targets of your investigation are jerks, it’s better
to redact their PII if including it doesn’t add to your report. Even jerks have
privacy rights, and needlessly publishing PII could be used to discredit your
report regardless of the revelations it contains.

The exception to this rule is if publicly outing someone is an impor tant
part of your story and could keep other people safe. For example, it’s ethical
to name someone who is abusive in a workplace or industry, or to out some-
one as a member of a hate group. Even when you’re publicly outing someone,
though, don’t publish unnecessary PII about them, like their home address.
If you do, you might be accused of harassment, which could distract the
conversation from the wrongdoing you’re trying to expose.

Protecting Legitimate Secrets

Occasionally, governments and companies do in fact have legitimate rea-
sons to keep secrets. In my experience, this is rare— the US government
has a severe overclassification prob lem. This is one reason it’s impor tant to
ask related parties for comment before you publish your story, though: a
government agency or com pany may give you context that could make you
decide not to publicize the data. For example, I was once part of a decision
to redact details from a top- secret US government document related to
another country’s nuclear weapons program.

Making Requests for Comment
Always give the people or companies on which you’re reporting a chance to
tell their side of the story. Even if you’re confident that they won’t respond
truthfully or at all, you should still attempt to contact them, explain what
 you’re going to publish, and give them a chance to defend themselves. If
they do respond, quote their response in your published report (and if you
know they aren’t telling the truth, explain that alongside their quote). If
they don’t respond or they decline to comment, include that in your report
as well.

For example, in 2017, I reported on leaked chat logs from neo- Nazis,
which I cover in Chapter 14. In my article, I named a member of the pro-
slavery hate group League of the South who was arrested during the deadly
Charlottesville, Virginia, Unite the Right protest for carry ing a concealed
handgun. He had posted messages in a chat room saying that he had
“scores to settle” with local antifascists because they had gotten him fired
from his job. Using public rec ords, I tracked down his phone number. I set
up a new virtual phone number using Google Voice and called him with
that, since I didn’t want to give him my private number. I left messages, but
he never responded.

If your investigation is adversarial— that is, the people you’re looking
into aren’t going to be happy about it— wait until shortly before you publish

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

18 Chapter 1

your report to contact them and tip your hand. It’s polite to give them at
least 24 hours to respond, while giving them less time to sabotage your
story. They might leak your story to a friendly publication to publish first
with a positive spin, announce to their followers that a hit piece is com-
ing, or attempt to use legal means to stop you from publishing. I’ve been
involved in investigations where all of those scenarios have happened.

Chances are, you’re not an expert in all aspects of what you’re reporting
on, so it’s often a good idea to consult outside experts (university profes-
sors, authors, scientists, and so on) and include quotes from them in your
published reports. In my own reporting, I’ve interviewed cryptography pro-
fessors, disinformation researchers, medical doctors, and civil rights advo-
cates who work for nonprofits. Even if you’re an expert on the topic of your
investigation, providing outside voices often adds to your story, helping you
make stronger arguments.

As long as you trust the experts you’re talking with, it’s fine to contact
them early in the reporting process. It’s also common to share confiden-
tial documents with them, so long as they agree to keep them secret until
you publish. In the case of highly sensitive documents, you might need to
arrange for outside experts to visit you in person and view the files on your
air- gapped computer. Sometimes these experts can point you in research
directions that you wouldn’t think to go yourself.

Now that you’ve seen how to protect your sources and authenticate the
information they give you, let’s go over some ways to secure your computer
and online accounts to keep your datasets and other sensitive rec ords safe.

Password Man ag ers
Most people’s passwords aren’t unique, meaning they’re reused in multiple
places. This is a very bad idea, since any duplicate password is only as secure
as the least secure place you’ve used it. Go to https:// haveibeenpwned . com,
search for your email address or phone number, and you’ll see a list of data
breaches that you’re included in. If your LinkedIn password was exposed
in a data breach a few years ago but it’s the same password you use for your
Twitter account, to log into your laptop, or to unlock your encrypted USB
disk full of sensitive datasets, you may be in trou ble.

The solution is to make all your passwords unique as well as strong, which
 really just means long and random enough that they’re impossible to predict.
Unfortunately, strong passwords are hard to memorize, and it’s impossible
for humans to memorize hundreds of passwords that are both strong and
unique. Yet we’re required to use hundreds of passwords in our daily lives.

Fortunately, we can have computers memorize most of our passwords
for us. Password man ag ers are programs that keep track of an encrypted
database of passwords that you unlock using a master password, the only
one you have to memorize. Password man ag ers often allow you to sync
your password database to the cloud, which is fine so long as you’re using
a strong master password. If a hacker steals your encrypted password

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://haveibeenpwned.com

Protecting Sources and Yourself 19

database, or if your password man ag er com pany hands it to the FBI or
other authorities, they won’t be able to unlock it without your master pass-
word. An encrypted password database is completely inaccessible to anyone
without the master password. If your master password is strong, it will be
literally impossible for them to guess it, and your other passwords will be
safe. Encryption is cool like that.

DON A L D T RUMP’S T W IT T ER PA SS WOR D

I learned from an episode of the excellent podcast Darknet Diaries, hosted by
Jack Rhysider, that Donald Trump’s LinkedIn password was exposed in a 2012
data breach. His password, yourefired, was his signature phrase from The
Apprentice, the real ity TV show he hosted. While he was running for president
in 2016, three Dutch hackers, Victor, Edwin, and Matt, who are part of a group
called the Guild of the Grumpy Old Hackers, discovered his LinkedIn password
in the dataset from that breach. They tried it on Trump’s @realDonaldTrump
Twitter account and . . . it worked.

You might be thinking, “ Isn’t using a password man ag er just putting all
my eggs in one basket? If it gets hacked, doesn’t that give the hacker access
to every thing?” This is true— it’s very impor tant to secure your password
man ag er— but not using one at all is like trying to hold hundreds of eggs
with just your hands, without using a basket, and without breaking any of
them. If you try that, you’re bound to drop a lot of your eggs eventually. You
also always have the option of using multiple password man ag ers (multiple
baskets) for dif fer ent proj ects so that if one gets hacked, the others remain
secure.

 There are several good password man ag ers available, and if you already
know of one you like, by all means use it. Here are three that I recommend:

Bitwarden This man ag er is free and open source, and it syncs pass-
words between your computers and phone. It has browser extensions
to fill in passwords automatically when you log into websites. It’s a
good choice for a day- to- day password man ag er. Download it at https://
bitwarden . com.

1Password Like Bitwarden, 1Password syncs passwords between your
computer and phone and has a browser extension. It’s also a good choice
for a day- to- day password man ag er. It costs money, but 1Password gives
 free licenses to journalists. Download it at https:// 1password . com, or see
https:// 1password . com / for - journalism / for more information about the free
license program.

KeePassXC This software is great for high- security situations. Unlike
Bitwarden and 1Password, KeePassXC doesn’t sync your encrypted
password database to the cloud, which makes it less convenient but

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://bitwarden.com
https://bitwarden.com
https://1password.com
https://1password.com/for-journalism/

20 Chapter 1

potentially more secure. It works well on air- gapped computers.
Download it at https:// keepasscx . org.

If you’d like to use Bitwarden, 1Password, or a similar password man-
ag er that syncs between devices, follow the installation instructions on its
website to install the program on your computer, your phone, and as an
extension in your web browser. If you’re using a local- only password man-
ag er like KeePassXC, just install it on your computer.

When you first set up your password man ag er, it’s extremely impor tant
that you not forget your master password. Unlike most website passwords,
a master password can’t be reset. If you forget it, you’re locked out of your
password man ag er forever and you lose all your passwords. Write the master
password on a piece of paper until you’ve memorized it, and then destroy
the paper.

The best master passwords are passphrases, a sequence of words picked
at random from a dictionary. They’re also easier to remember than com-
pletely random passwords. An example of a good passphrase is movie-
flanked- census6- casino- change. It has no meaning at all, but with practice
it’s not too hard to memorize.

Once you’ve set up your password man ag er account, add your other
passwords to the man ag er. Start by adding the passwords you use the most:
perhaps your email password or passwords to social media accounts. If
 you’ve ever reused these passwords, take this opportunity to change them and
make them better. Whenever you create a new password, use your password
man ag er’s password generator, a tool included to help you create strong
passwords. Typically, password generators have settings that let you choose
 whether it should generate a password or a passphrase, whether it should
contain numbers or special characters, how long it should be, and so on.

Bitwarden, for example, can create both passwords or passphrases.
Figure 1-2 shows Bitwarden’s password generator, which is configured to
create a passphrase with five words, separated by dashes, capitalized, and
including a number.

Bitwarden can also make strong passwords, such as Frz6ioX4o@cCY. All
of your passwords should either be strong passphrases or passwords like this.

The password generators included in 1Password, KeePassXC, and other
password man ag ers all include similar features. While Bitwarden allows you
to open the password generator tool in de pen dently, some password man-
ag ers require you to add a new item in your password database or edit an
existing one to access the generator.

When you need to come up with a new password, it doesn’t matter if you
choose to use a password or a passphrase so long as it’s strong and unique.
However, passphrases tend to be easier to memorize and to enter. For this
reason, I tend to use passwords to log into websites (my password man ag er
fills them in for me) and passphrases for anything that I might need to mem-
orize or enter, such as a disk encryption passphrase or the passphrase to log
into my computer.

 Every time you create a new account or log into an existing one, add the
password to your password man ag er.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://keepasscx.org

Protecting Sources and Yourself 21

Disk Encryption
Disk encryption allows you to protect your data from people who have
physical access to your phone, laptop, or USB disk. It prevents anyone from
accessing data on a device if you lose it, someone steals it, it gets confiscated
at a border crossing or checkpoint, or your home or office is raided. For
example, when the internal disk in your laptop isn’t encrypted, anyone with
physical access to it can unscrew your laptop’s case, remove the disk, and
plug it into their own computer, accessing all of the data without needing
to know any of your passwords. But when your disk is encrypted, all of this
data is completely inaccessible to anyone who doesn’t have the right key. If
disk encryption is enabled, they’ll need to first unlock the disk, typically
using a password, a PIN, or biometrics like a fingerprint or face scan. You’ll
learn how to encrypt your internal disk and your 1TB USB disk in this chap-
ter’s exercises.

Although disk encryption is an impor tant part of protecting your data,
it doesn’t protect against remote attacks. For example, if your laptop is
encrypted but someone tricks you into opening a malicious Word docu-
ment that attacks your computer, disk encryption won’t stop them from
accessing your files. Disk encryption also won’t help much if the attack-
ers get access to your device while it’s unlocked— for example, if you step
away from your laptop at a coffee shop without locking your screen, or if

Figure 1-2: Bitwarden’s password generator

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

22 Chapter 1

attackers can easily unlock your phone by forcing you to use biometrics. For
instance, after arresting you, a cop might wave your phone in front of your
face to unlock it with a face scan.

You, of course, won’t be relying on disk encryption to commit crimes,
but the story of Ross Ulbricht, the creator of the darknet market website
Silk Road, is a good illustration of how it can fail you. In 2013, Ulbricht was
using his encrypted laptop at the San Francisco Public Library when two
undercover FBI agents distracted him by pretending to be lovers in a fight.
Making sure his screen was unlocked, they quickly arrested him, then cop-
ied impor tant files off of his computer. If his screen had been locked and
he’d had a strong password, the disk encryption might have prevented them
from accessing his data at all. Ulbricht was charged with money laundering,
hacking, drug trafficking, and other crimes.

Encrypting your laptop’s internal disk is a basic security measure that
every one should take. It’s quick and easy to set up, doesn’t require you to do
any extra work on a regular basis, and protects your privacy if you lose your
device. You can think of it like wearing a seatbelt: there’s really no good rea-
son not to do it. Encrypting your laptop’s internal disk is especially impor-
tant if you’re going to be working with sensitive data.

Exercise 1-1: Encrypt Your Internal Disk
This exercise shows you how to encrypt the internal disk in your computer,
 whether you have a Win dows, Mac, or Linux machine. Skip to the appropri-
ate section for your operating system.

Win dows
Dif fer ent Win dows versions and PC models have support for dif fer ent types
of disk encryption. Pro editions of Win dows include BitLocker, Microsoft’s
disk encryption technology, and Home editions include device encryption,
which is basically BitLocker with limited features. These features work only
if your PC is new enough, though. If your computer came with at least Win-
dows 10 when it was new, it should support disk encryption, but if it came
with an earlier version of Win dows, it might not. I go over options for how
to proceed in this case at the end of this section.

BitLocker

To find out whether your computer includes BitLocker, click Start (the Win-
dows icon in the bottom left of your computer), search for bitlocker, and
open Manage BitLocker. If your version of Win dows supports it, the win dow
should show whether BitLocker is enabled on your C: system drive, and you
should have the option to enable it. If so, do that now.

When you enable BitLocker, it makes you save a recovery key to either
your Microsoft account, a file on a nonencrypted USB disk, or a printed
document. Saving your recovery key to your Microsoft account is the sim-
plest option, but it does mean that Microsoft or anyone with access to your
Microsoft account can access the key needed to unlock your disk. If you’d

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 23

prefer to not give Microsoft this access, print the recovery key. You should
also save your key in your password man ag er. If your computer breaks, you’ll
need your recovery key to access any of the data on your encrypted disk.

Device Encryption

If your version of Win dows doesn’t include BitLocker, try device encryption.
Click Start, then navigate to SettingsUpdate & Security (or Privacy &
Security, depending on your Win dows version). Then go to the Device
encryption tab to check whether it’s enabled; if not, enable it.

If you see no Device encryption tab, your PC doesn’t support device
encryption, unfortunately. You have a few options. The easiest option is to
upgrade to the Pro version of Win dows, which typically costs about $100,
and then use BitLocker. Alternatively, use VeraCrypt.

VeraCrypt

VeraCrypt is free and open source disk encryption software. To begin,
download VeraCrypt from https:// veracrypt . fr, install it on your computer,
and open it.

Click Create Volume to open the VeraCrypt Volume Creation Wizard.
VeraCrypt lets you choose from three types of encrypted volumes. Select
Encrypt the System Partition or Entire System Drive and click Next.

On the Type of System Encryption page, choose Normal and click
Next. On the Area to Encrypt page, choose Encrypt the Win dows System
Partition and click Next. On the Number of Operating Systems page,
choose Single- Boot and click Next (unless you have multiple operat-
ing systems on your computer, in which case choose Multi- boot). On the
Encryption Options page, use the default settings and click Next.

The next page is the Password page. You’ll need to come up with a
strong passphrase that you’ll have to enter each time you boot up Win dows.
If that password is weak, your disk encryption will be weak. I recommend
generating a strong passphrase and saving it in your password man ag er—
this way, if you forget it the next time you reboot your computer, you can
look it up in your password man ag er on your phone. Enter the passphrase
twice and click Next.

The next page is called Collecting Random Data. VeraCrypt includes a
feature where you move your mouse around the win dow randomly so that it
can collect information from your mouse movements to make the encryp-
tion more secure. Move your mouse around until the bar at the bottom
of the screen is green, and then click Next. Click Next again on the Keys
Generated page.

The Rescue Disk page prompts you to create a VeraCrypt Rescue Disk,
which you can use in the event that your disk gets damaged and you have
issues booting Win dows. Creating a rescue disk is outside the scope of
this book, so check Skip Rescue Disk Verification and click Next. On the
Rescue Disk Created page, click Next again.

On the Wipe Mode page, select None (Fastest) as the Wipe mode
and click Next. On the System Encryption Pretest page, click Test to test that

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://veracrypt.fr

24 Chapter 1

disk encryption will work properly on your computer— this will reboot your
computer, and you’ll need to enter your VeraCrypt passphrase to boot up.

When you reboot your computer it should boot up to the VeraCrypt
bootloader, and you’ll need to enter the VeraCrypt passphrase to proceed.
 Under PIM, just press enter. If all goes well, it will succeed, Win dows will
boot up, and VeraCrypt will open on the Pretest Completed page again
 after you log in. Click Encrypt to begin encrypting your internal disk with
VeraCrypt. From now on, you’ll need to enter your VeraCrypt passphrase
each time you boot your computer, but all of your data will also be pro-
tected with this passphrase.

macOS
Apple’s disk encryption technology is called FileVault. If you’re using
macOS Ventura or newer, open the System Settings app, click Privacy &
Security on the left, and scroll down to the FileVault section. (If you’re
using a version of macOS older than Ventura, open the System Preferences
app, click Security & Privacy, and make sure you’re on the FileVault tab.) If
FileVault is turned off, turn it on.

The password that unlocks your Mac’s disk is the password you use to
log into your account. Make sure your Mac password is strong; if it’s weak,
your disk encryption is weak.

When you enable FileVault, it makes you save a recovery key. Save that
key in your password man ag er. If you forget your Mac password, you’ll need
the recovery key to access any of your data. If you’re using a local password
man ag er that doesn’t sync to the cloud, like KeePassXC, store a copy of your
recovery key somewhere else as well, such as on a piece of paper kept in a
secure location.

Linux
Linux uses technology called LUKS for disk encryption. You can check the
Disks program (in most versions of Linux, press the Win dows key to open this
program, type disks, and press enter) to see whether your internal disk is
encrypted. The program shows you all of the disks attached to your computer
and allows you to format them (see Figure 1-3). If your internal disk has an
unlocked partition with LUKS encryption, disk encryption is enabled.

In this case, my internal disk is the 500GB Samsung SSD listed on the
left. My disk is partitioned into four parts, and the last part (Partition 4) is
499GB and is encrypted with LUKS. Your disk might look dif fer ent from
mine, but you’ll know it’s encrypted if the main partition says LUKS.

Unfortunately, you can’t just turn LUKS on or off. If your disk isn’t
encrypted, the only way to encrypt it is to reinstall Linux, this time mak-
ing sure to encrypt the disk. When you’re installing Linux, one of the first
steps in the installation process will be to partition your disk; make sure
to enable encryption during that step. If you’re going to reinstall Linux,
always back up your data first. After choosing your encryption passphrase,
save a copy of it in your password man ag er; you’ll need it every time you
boot up your computer.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 25

Exercise 1-2: Encrypt a USB Disk
Your internal disk alone likely isn’t large enough to store all of the datasets
you’ll need to work with. As mentioned in the book’s introduction, in order
to complete the exercises in this book and work with the massive datasets,
you need a USB disk that’s at least 1TB. To encrypt that USB disk, you also
need to format it, which deletes any data already on it. This exercise shows
you how to do that for whichever operating system you’re using.

Before you get started, let’s go over some background on how mass
storage devices (like hard disks, SD cards, and so on) work. Storage devices
are typically split into one or more partitions, also called volumes, with each
partition using a format called a filesystem. You can think of partitions as
cabinets that use dif fer ent shelving systems (filesystems) to organize data.
Dif fer ent operating systems use dif fer ent filesystems. Win dows often uses a
filesystem called NTFS, macOS often uses APFS, and Linux often uses ext4.
 There are also filesystems that all three operating systems can use, such as
ExFAT.

When you erase a storage device, you delete all of the partitions on it
so that it contains unallocated space. You can then create a new partition—
with USB disks, you’ll typically create a single partition that takes up all
of the unallocated space— and format it using the filesystem that matches
your operating system.

 Whether you’re working in Win dows, macOS, or Linux, begin by plug-
ging your USB disk into your computer. Open your password man ag er
and save a new strong passphrase, created using your password man ag er’s
password generator. Name the password something like datasets USB disk
encryption.

To begin encrypting your disk, skip to the appropriate subsection for
your operating system.

Figure 1-3: Managing disks and partitions using Disks in Linux

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

26 Chapter 1

Win dows
Win dows users with BitLocker should work through the following subsec-
tion; if you don’t have BitLocker, skip to the VeraCrypt section.

BitLocker

If you have a Win dows computer with BitLocker, use that to encrypt your
USB. First, make sure to format the USB disk as NTFS. To do so, click Start,
search for disk management, and open Create and Format Hard Disk
Partitions. This opens the Win dows Disk Management app, as shown in
Figure 1-4, which lists all of the disks connected to the PC and lets you for-
mat them.

Figure 1-4: The Disk Management app in Win dows

The bottom part of the win dow in the screenshot shows each disk
attached to your computer and how they’re separated into partitions. Disk 0
is my internal hard disk (as you can see, one of the partitions is C:), and
Disk 1 is a USB disk (one of those partitions is D:). On my computer, Disk 1
has a single 32GB partition, as well as about 86GB of unallocated space.

Find the USB disk you need to format. Right- click on every partition
and choose Delete Volume until you’ve deleted all the partitions on the
disk. Then right- click on the unallocated space in your disk and choose
New Simple Volume, which should open a wizard to help you create the
volume. Choose the full amount of disk space and format it as NTFS. The
wizard will ask you for a volume label, which is just a name for your partition;
in Figure 1-4, the label for D: is data. I recommend calling this disk datasets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 27

Once the disk is formatted, click Start, search for bitlocker, and open
Manage BitLocker. You should now see your USB disk and have the option
to turn on BitLocker. When you enable BitLocker on your USB disk, a win-
dow should pop up asking how you would like to unlock this drive. Choose
Use a Password to Unlock the Drive, then copy and paste your USB disk
encryption passphrase from your password man ag er into the password
field. You’ll need to paste it into the field to re- enter the password as well.
When you enable BitLocker, you’ll be required to save a recovery key to a
file. Since you’re saving the passphrase in a password man ag er, however,
you don’t need your recovery key, and you can delete the file.

VeraCrypt

If you use Win dows Home and don’t have BitLocker available on your com-
puter, use VeraCrypt to encrypt your USB disk.

If you don’t already have VeraCrypt, download it from https:// veracrypt . fr,
install it on your computer, and open it. Click Create Volume to open
the VeraCrypt Volume Creation Wizard. On the first page of the wizard,
VeraCrypt lets you choose from three types of encrypted volumes. Select
Encrypt a Non- system Partition/Drive and click Next.

On the Volume Type page, VeraCrypt asks if you want a standard vol-
ume or a hidden one. Select Standard VeraCrypt Volume and click Next.
On the Volume Location page, click Select Device, choose the USB disk
you want to encrypt, and click Next. On the Volume Creation Mode page,
select Create Encrypted Volume and Format It and click Next. On the
Encryption Options page, use the default settings and click Next. You can’t
do anything on the Volume Size page, since you’re encrypting a whole parti-
tion rather than creating an encrypted file container, so just click Next.

On the Volume Password page, copy and paste your USB disk encryp-
tion passphrase from your password man ag er into the Password field, and
paste it again into the Confirm field. Then click Next. On the Large Files
page, VeraCrypt asks if you intend to store files larger than 4GB in your
VeraCrypt volume. Select Yes and click Next. On the Volume Format page,
 under the Filesystem drop- down menu, select exFAT and check the box
next to Quick Format. VeraCrypt also includes a feature where you move
your mouse around the win dow randomly so that it can collect information
from your mouse movements to make the encryption more secure. Move
your mouse around until the bar at the bottom of the screen is green, and
then click Format.

A win dow should pop up, warning you that all of the data on your USB
disk will be erased and asking if you’re sure you want to proceed. Click
Yes, and then wait while VeraCrypt creates an encrypted partition on your
USB disk. As long as you selected Quick Format on the previous page, this
should only take a few seconds. On the Volume Created page, click Exit to
exit the wizard and get back to the main VeraCrypt win dow.

 After you encrypt a USB disk with VeraCrypt, you need to use VeraCrypt
to mount it, or make it available on your computer as a drive letter. In the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://veracrypt.fr

28 Chapter 1

main VeraCrypt win dow, select an available drive letter (such as F:), click
Select Device, select your VeraCrypt- encrypted USB disk, and click OK,
then Mount. After you provide the encryption passphrase to unlock it,
VeraCrypt will mount your encrypted USB disk so you can use it. Now any
files that you save to this drive will be stored encrypted on disk.

Before unplugging your USB disk, unmount it by selecting the drive let-
ter in VeraCrypt and clicking Dismount.

N O T E VeraCrypt also comes in handy if you need to access the same encrypted disk across
operating systems— for example, if you need to use it on both a Win dows PC and
a Mac. However, for the purposes of this book, only Win dows users who don’t have
BitLocker should use VeraCrypt. In general, you’ll have fewer headaches if you stick
with the disk encryption software built into your operating system.

macOS
Open the Disk Utility app, which you can find in the Applications/Utilities
folder. This app lists all of the disks attached to your computer and lets you
format them.

In Disk Utility, select the USB disk you plugged in and click the Erase
button. Name the disk datasets and choose APFS (Encrypted) for format.
You will then be prompted for the password to unlock the encrypted disk.
Copy and paste the USB disk encryption passphrase that you created at the
beginning of this exercise from your password man ag er into Disk Utility.
Disk Utility will also prompt you for a password hint, but because you’re sav-
ing this passphrase in your password man ag er and not bother ing to memo-
rize it anyway, you can leave the password hint blank.

Linux
Open the Disks app as you did in Exercise 1-1. Select your USB disk in the
list of disks on the left, then click the menu button and choose Format
Disk. This will delete all of the data on the USB.

Click the ++ button to add a new partition and set the partition size to
the largest option. Name your disk datasets, choose Internal Disk for Use
with Linux Systems Only, and check the box Password Protect Volume
(LUKS). It will prompt you to enter a password. Copy and paste the USB
disk encryption passphrase that you created at the beginning of this exer-
cise from your password man ag er into Disks.

Protecting Yourself from Malicious Documents
Before you start working with any datasets on your encrypted USB disk, you
should know how to protect yourself from potentially malicious documents
they contain.

Have you ever been told to avoid opening email attachments from
unknown senders? This is solid computer security advice, but unfortunately

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 29

for researchers, journalists, activists, and many other people, it’s impossible
to follow. In these lines of work, it’s often your job to open documents from
strangers, including leaked or hacked datasets.

Opening documents you don’t trust is dangerous because it may allow
 others to hack your computer. PDFs and Microsoft Office or LibreOffice
documents are incredibly complex. They can be made to automatically load
an image from a remote server, tracking when a document is opened and
from what IP address. They can contain JavaScript or macros that, depending
on how your software is configured, could automatically execute code when
opened, potentially taking over your computer. And like all software, the pro-
grams you use to open documents, like Microsoft Office and Adobe Reader,
have bugs, which can sometimes be exploited to take over your computer.

This is exactly what Russian military intelligence did during the 2016
US election, for example. First, the Main Directorate of the General Staff
of the Armed Forces of the Russian Federation (GRU) hacked a US elec-
tion vendor known as VR Systems and got its client list of election workers
in swing states. It then sent 122 email messages to VR Systems’ clients from
the email address vrelections@gmail . com, with the attachment New EViD User
Guides.docm. If any of the election workers who got this email opened the
attachment using a vulnerable version of Microsoft Word in Win dows, the
malware would have created a backdoor into their computer for the Russian
hackers. (We don’t know for sure whether any of the targets opened the
malicious attachment.)

Sending malicious email to specific targets in this way as part of a
hacking operation is called spearphishing. Figure 1-5 shows a spearphishing
email message targeting an election worker in North Carolina, which The
Intercept obtained using a public rec ords request.

In 2017, Real ity Winner leaked a classified document describing this
spearphishing attack to The Intercept. Thanks to her whistleblowing, the
public knows considerably more about Rus sia’s attacks on the US election in
2016 than it other wise would. In fact, US states like North Carolina learned
that they were under attack by Russian hackers only by reading The Intercept.
In 2022, two former election officials told 60 Minutes that Real ity Winner’s
disclosure helped secure the 2018 midterm elections against similar hack-
ing attempts.

To make it safer to untrusted open documents, I developed an open
source app called Dangerzone. When you open an untrusted document in
Dangerzone, the app converts it into a known- safe PDF— one that you can be
confident is safe. Using technology called Linux containers— which are like
quick, small, self- contained Linux computers running inside your normal
computer—it converts the original document into a PDF if it’s not already
one, splits the PDF into dif fer ent pages, and converts each page into raw
pixel data. Then, in another Linux container, it converts the pixel data back
into a PDF. You can also ask Dangerzone to use optical character recognition
(OCR) technology, software that looks at an image of text and figures out
what the characters are, to add a text layer back to the PDF so you can still
search the text.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://vrelections@gmail.com

30 Chapter 1

Dangerzone is essentially the digital equivalent of printing out a docu-
ment and rescanning it, stripping anything malicious from it and removing
the original document’s digital metadata. If you opened the malicious New
EViD User Guides.docm document using Dangerzone, it would create a new
document called New EViD User Guides- safe.pdf. You could then safely open
this PDF without risk. As an added benefit, you don’t need internet access to
use Dangerzone, so it works well on air- gapped computers.

You’ll learn more about Dangerzone and Linux containers in
Chapter 5, which covers how to make datasets searchable. In the meantime,
Exercise 1-3 will show you how to get started with it.

Figure 1-5: A spearphishing email targeting an election worker

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Protecting Sources and Yourself 31

Exercise 1-3: Install and Use Dangerzone
In this exercise, you’ll install Dangerzone and use it to convert documents
into known- safe versions. Figure 1-6 shows a screenshot of Dangerzone in
action, in this case converting the untrusted document D&D 5e - Players
Handbook.pdf to a known- safe version called D&D 5e - Players Handbook- safe.
pdf, which is also OCR’d and searchable.

Figure 1-6: Dangerzone in action

Download and install Dangerzone from https:// dangerzone . rocks.
Dangerzone relies on Linux containers. If you’re working on a Win dows or
macOS machine, the easiest way to get containers running is to use soft-
ware called Docker Desktop, which you’ll be prompted to install the first
time you open Dangerzone. (You don’t need to do anything with Docker
Desktop for now; simply install and open it. You’ll learn more about Docker
in Chapter 5.)

Now that Dangerzone is installed, try it out. Open any PDF, Microsoft
Office document, LibreOffice document, or image on your computer
in Dangerzone and convert it to a safe PDF. If someone attaches a docu-
ment to an email and you don’t trust it, download a copy of it first, open
Dangerzone, and click Select Suspicious Documents. Then browse for the
document you downloaded and use Dangerzone to convert it into a known-
safe version.

V IR T UA L M ACHINES

Another option, which is a bit more complicated, is setting up a virtual machine
(VM). VMs are like a stronger version of Linux containers. They isolate the
software running inside the VM more than Linux containers can, and they can
run on any operating system. If you choose this option, make sure to disable

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://dangerzone.rocks

32 Chapter 1

internet access in your VM before opening documents. This way, if the docu-
ment is malicious, it won’t let any attackers know the document was opened.

Giving detailed instructions on using VMs is outside the scope of this book.
However, if you want to try them on your own, the easiest way to get started is
to use the free and open source virtualization software VirtualBox (https:// www
. virtualbox . org). VirtualBox works for Intel- based Macs, Linux, and Win dows
computers. At the time of writing, there’s a beta version of VirtualBox that sup-
ports Apple Silicon Macs, but it has issues. If you have an Apple Silicon Mac,
I recommend you try Paralells (https:// www . parallels . com) or VMware Fusion
(https:// www . vmware . com / products / fusion . html) instead; note, however, that
neither is free.

Dangerzone works great with PDFs and Word documents, but not
so great with spreadsheets. No matter what type of file you open in
Dangerzone, you always end up with a safe PDF, and spreadsheets really
 aren’t meant to be read in that format.

If Dangerzone doesn’t do a good enough job with a document you’d
like to read, you can open it a few other ways while containing the damage.
If you don’t believe the document is sensitive, upload it to Google Drive and
open it there, using Google’s web interface. This way, technically Google is
opening the malicious document on its computers instead of you opening
it on yours.

Summary
In this chapter, you’ve learned how to think about source protection in
 today’s world of widespread digital surveillance. You’ve also learned about
securely storing datasets, depending on their sensitivity; verifying that your
datasets are au then tic; and redacting information from documents before
you publish your final report. You started using a password man ag er to keep
your passwords safe, and you encrypted your internal disk and set up your
encrypted datasets USB disk. Fi nally, you practiced turning potentially mali-
cious documents into ones you know are safe to open using Dangerzone.

In the next chapter, you’ll put your datasets disk to good use by down-
loading your first hacked dataset.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.virtualbox.org
https://www.virtualbox.org
https://www.parallels.com
https://www.vmware.com/products/fusion.html

In early January 2010, 22- year- old Chelsea Manning
sat at a Win dows computer in a temporary Sensitive
Compartmented Information Fa cil i ty (SCIF)—an
enclosed area or room suitable for working with secret
documents—in eastern Baghdad. She was download-
ing half a million secret “significant activity” reports
from the military network SIPRNet, a Department of
Defense computer network used for transmitting clas-
sified information.

As an intelligence analyst working for the US Army, Manning needed
regular access to these databases, so she downloaded them for work pur-
poses. Having a local copy would be useful in a war zone where network
access can be unreliable. It wasn’t until later that month that she de cided
to leak them to the public, after realizing they documented American war
crimes in Iraq and Afghanistan. They would soon become some of the most
significant public datasets of the 21st century. “I believe that if the general

2
A C Q U I R I N G D A T A S E T S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

34 Chapter 2

public, especially the American public, had access to the information con-
tained within the [Iraq War Logs and Afghan War Logs], this could spark
a domestic debate on the role of the military and our foreign policy in gen-
eral,” she later said at her court martial hearing.

At the SCIF computer, Manning compressed the files using a program
called WinRAR, burned them to a rewritable CD, and left them in the
SCIF for easy reference. A few weeks later, at the end of her shift on a Friday
night, she slipped the CD into her cargo pocket and headed to her dorm,
where she copied the data to her laptop. Eventually, she copied it to the
SD card in her digital camera, and on January 23 she flew into the Reagan
National Airport just outside of Washington, DC, with the SD card in hand.

In 2010, massive leaks like this were unpre ce dented. Today, they hap-
pen all the time. Back then, WikiLeaks was the only place for sources to
go— traditional newsrooms weren’t prepared to handle leaks like this. Now,
however, there are lots of options: sources can send documents to a trans-
parency collective like Distributed Denial of Secrets (DDoSecrets), they can
contact journalists directly using tools like Signal and OnionShare, or they
can get in touch with a newsroom by following instructions on its public
tips page.

In this chapter, you’ll learn best practices for safely acquiring public
and private datasets. You’ll learn more about the history of WikiLeaks and
DDoSecrets, then use a technology called BitTorrent to obtain your own
copy of the BlueLeaks dataset from DDoSecrets. You’ll download the Signal
instant messaging app to securely communicate with sources and learn
about PGP encryption, an alternative method of securing messages. You’ll
practice sending data anonymously with Tor and OnionShare, then read
the story of how I communicated with a source using several of these tools.
Fi nally, I’ll outline several more ways to securely receive data from sources,
including techniques appropriate for professional newsrooms rather than
individual reporters.

The End of WikiLeaks
 After deciding she wanted to leak the War Logs, Manning first called a
reporter at the Washington Post, but she didn’t feel like they took her seri-
ously. She tried the New York Times but managed only to leave a voicemail,
and the paper never returned her call. Fi nally, she settled on WikiLeaks,
a leak site founded in 2006 by Australian information activist Julian
Assange. This turned out to be a great choice at the time. In addition to
publishing the documents, WikiLeaks worked in partnership with news-
papers across the world, including the New York Times, the Guardian, and
Der Spiegel, to break major stories about US imperialism. Along with the
dataset of 250,000 State Department cables known as Cablegate, the two
datasets that Manning leaked were a catalyst for the Arab Spring, the 2011
pro- democracy movement that led to the toppling of governments in the
 Middle East and North Africa, including the authoritarian regimes in
Egypt and Tunisia.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Acquiring Datasets 35

Back then, WikiLeaks was revolutionary, initiating the document- based
transparency movement by making massive datasets accessible to the pub-
lic. The documents that Manning leaked were its first major releases with
international consequences, making WikiLeaks a proof- of- concept for sites
that allow anyone to anonymously submit leaked documents. Today, nearly
 every major newsroom in the US and many throughout the world have
this capability using open source software like SecureDrop, though news
 organizations rarely publish raw datasets like WikiLeaks did.

Manning sent these datasets to WikiLeaks several years before the
transparency group and its editor, Assange, shifted from a journalism
outfit based on the premise that “information wants to be free” to an ethi-
cally dubious political organization working to get Donald Trump elected
president in 2016. During that US election, WikiLeaks and Assange went
off the rails. The group published a dataset full of hacked Demo cratic
National Committee (DNC) and Clinton campaign email messages just in
time to distract the news cycle from the infamous Access Hollywood audio
clip of Trump bragging about committing sexual assault. Assange lied
to the public about his source for this data (it was Russian military intel-
ligence), boosting the conspiracy theory that Seth Rich, an unrelated
Demo cratic Party staffer who was murdered in Washington DC, was his real
source. WikiLeaks also promoted the Pizzagate conspiracy theory claiming
that high- ranking Demo cratic Party officials were involved in a child sex-
trafficking ring run out of a pizza shop in DC.

 Today, WikiLeaks is little more than a Twitter account. Its document
submission systems have stopped working and its website is no longer
maintained. The loss of WikiLeaks to the online fever swamp was tragic
for investigative journalism around the world, but a new and better
 organization has grown to take its place: DDoSecrets.

Distributed Denial of Secrets
Distributed Denial of Secrets, or DDoSecrets, is a nonprofit transpar-
ency collective in the US founded by Emma Best in 2018. It’s similar to
WikiLeaks, but without the toxic ego of Julian Assange and with consider-
ably more transparency around the group’s decision- making, and it’s largely
run by queer people.

DDoSecrets hosts data previously published by WikiLeaks, like the DNC
Emails dataset, as well as those WikiLeaks declined to publish, like the Dark
Side of the Kremlin dataset, which contains over 100GB of documents and
emails from Russian oligarchs and politicians. Notably, it also hosts a great
deal of data leaked in the months following Rus sia’s invasion of Ukraine
in February 2022. At that time, hackers— mostly claiming to be hacktivists,
many identifying with the Anonymous hacktivist movement— bombarded
Rus sia with cyberattacks. They hacked dozens of Russian organizations,
including government agencies, oil and gas companies, and finance institu-
tions, and submitted tens of terabytes of data to DDoSecrets to distribute to
the public and to journalists.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

36 Chapter 2

N O T E I work closely with DDoSecrets as an adviser and sometimes volunteer.

Anyone can download the following datasets from DDoSecrets:

BlueLeaks

BlueLeaks is a collection of 270GB of documents from hundreds of US
law enforcement and police fusion center websites, released during the
height of 2020’s Black Lives Matter uprising. You’ll know this dataset
well by the end of this book, and you’ll download a copy of it in this
chapter’s first exercise.

Parler

The Parler dataset contains 32TB (yes, terabytes) of video scraped
from the right- wing social network Parler, including many from the
January 6, 2021, anti- democracy riot at the US Capitol. Many of these
videos were used as evidence in Donald Trump’s second impeachment
inquiry. You’ll learn more about this dataset in Chapter 11.

Epik Fail

The Epik Fail dataset includes 10 years of domain name registrar data
from Epik, a com pany that’s notorious for hosting domain names and
websites for neo- Nazis and other extremist groups. You’ll explore this
dataset in Chapter 12.

In addition to public datasets like these, DDoSecrets hosts many private
datasets available only to journalists and researchers who request access.
Datasets containing large quantities of PII, like names, email addresses,
birth dates, or passwords, are often kept private. For example, the Oath
Keepers dataset includes gigabytes of data from the American far- right
paramilitary organization, including spreadsheets full of the group’s mem-
ber and donor rec ords. That part of the release is limited only to journalists
and researchers who request access, but another part, 5GB of email and
chat logs, is available to the public. You’ll download part of this release in
Chapter 4 and work with it in Chapter 6.

DDoSecrets publishes many more datasets than these, and it continues
to release new ones all the time. For an inventory of all of those available,
as well as instructions on how to request access to the limited- distribution
datasets, visit https:// ddosecrets . com.

N O T E You won’t be able to share that DDoSecrets link on Twitter. Shortly after DDoSecrets
released BlueLeaks, Twitter permanently suspended the @DDoSecrets account
and censored all links to https:// ddosecrets . com, citing its selectively enforced
policy against posting hacked data. Twitter prevents tweets or even DMs includ-
ing DDoSecrets links from going through, though WikiLeaks has faced no such
censorship.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ddosecrets.com
https://ddosecrets.com

Acquiring Datasets 37

DDoSecrets distributes public datasets using a protocol called
BitTorrent. To download datasets, you’ll need to learn how to use it.

Downloading Datasets with BitTorrent
At the turn of the 21st century, long before services like Netflix and Spotify
made online entertainment cheap and accessible to the public, peer- to- peer
file sharing services like Napster, LimeWire, and Kazaa enjoyed immense
popularity because they made downloading pirated media and software so
easy. The copyright industry quickly shut down these centralized services
with lawsuits, but decentralized technologies rose from their ashes. The
most popular of these is BitTorrent. In addition to piracy, BitTorrent is also
frequently used to legally distribute large files like Linux operating systems,
as well as massive datasets.

BitTorrent works well for sharing controversial data like BlueLeaks,
 because no one— not the US government, police departments, tech com-
panies, internet service providers, or anyone else— can easily censor it.
Traditionally, one computer on the internet hosts data (on a website, for
example), and all other computers connect to that host to download it. If
someone wants to censor that data, they only have to bring down that single
host. With BitTorrent, however, data is hosted in swarms, a collection of
computers currently sharing a specific set of files. If you want to download
some data, you join the swarm by opening a link to the data, called a tor-
rent, in your BitTorrent software, and become a peer. Your BitTorrent soft-
ware downloads pieces of the data that you need from other peers in the
swarm, and in return, you upload pieces of data you already have to peers
who need it. Once you have all of the data you need, you can remain in the
swarm and continue sharing with peers as long as you keep your BitTorrent
software open, making you a seed. If you have the internet bandwidth and
are allowed to share the files, it’s generally good practice to keep seeding,
especially if there are few other seeds.

 Every BitTorrent swarm needs to have at least one seed in order to
enable the peers to finish downloading all the data. The more popular the
data, the bigger the swarm, the faster the downloads— and the more dif-
ficult censorship becomes. It’s hard to block access to every peer in a swarm
(swarms can grow to have tens of thousands of peers), and nothing stops
more peers from joining. There’s no single entity to sue or pressure finan-
cially. Swarms often consist of computers distributed around the world, so
national laws also can’t achieve the censorship they might other wise aim for.

 There is nothing illegal about using BitTorrent to share files that you’re
legally allowed to share. Blizzard Entertainment has even adopted the
technology itself to distribute large video games like World of Warcraft to its
users, and the Internet Archive, the nonprofit digital library at https:// archive
. org, uses BitTorrent to distribute large files like radio and TV shows. The
structure of BitTorrent hosting makes for faster downloads, and bandwidth
costs are shared throughout the swarm.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://archive.org
https://archive.org

38 Chapter 2

Most publicly available DDoSecrets datasets are distributed through
BitTorrent. In order to download something with BitTorrent, you’ll need
the following:

•	 A program installed in your computer called a BitTorrent client. You can
use whatever client you prefer, including a command line version, but I
like one called Transmission. It’s free and open source and works great
in Win dows, macOS, and Linux.

•	 Either a .torrent file that you can open in your BitTorrent client or a mag-
net link, a type of URL that starts with magnet: and tells your BitTorrent
client where to find the full .torrent file.

•	 Roughly 1TB of storage space, at least if you want to download the
datasets used in this book. I recommend downloading to the encrypted
datasets USB disk that you set up in Exercise 1-2.

In a moment, you’ll use BitTorrent to download a copy of the BlueLeaks
dataset, but first let’s take a look at where that data originated.

The Origins of BlueLeaks
The disparate surveillance systems of local, state, and federal law enforce-
ment agencies in the United States collected enough intelligence to learn
critical clues about the September 11, 2001, terrorist attack before it hap-
pened. However, each agency kept this information to itself, failing to
prevent the attack. Afterward, the US government de cided these agencies
needed to improve how they share information with each other. Congress
directed the newly formed Department of Homeland Security (DHS) to
create fusion centers across the country, collaborations between federal agen-
cies like the DHS and FBI with state and local police departments, to share
intelligence and prevent future terrorist attacks. These fusion centers are
the source of much of the BlueLeaks data.

According to a 2012 Senate report, these fusion centers have “not pro-
duced useful intelligence to support Federal counterterrorism efforts,”
and the intelligence reports they produced were “oftentimes shoddy, rarely
timely, sometimes endangering citizens’ civil liberties and Privacy Act
protections, occasionally taken from already- published public sources,
and more often than not unrelated to terrorism.” Fusion centers had also
been caught infiltrating and spying on anti- war activists, and in 2008,
the American Civil Liberties Union published a report about fusion cen-
ter abuses, including spying on religious groups in violation of the First
Amendment.

In June 2020, a hacktivist self- identifying with the Anonymous move-
ment hacked 251 law enforcement websites, most of them fusion centers
and related organizations. The hacked data, known as BlueLeaks, includes
thousands of police documents and spreadsheets with over 16 million rows of
data. The data spans from 2007 to June 14, 2020, when the Black Lives Matter
uprising triggered by the police murder of George Floyd was in full swing.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Acquiring Datasets 39

While the hacktivist from Anonymous violated the law when they broke
into these police websites and stole all this data, in the US it’s legal for you
to download BlueLeaks, investigate it, and publish your findings.

Exercise 2-1: Download the BlueLeaks Dataset
In this exercise, you’ll download a local copy of the BlueLeaks dataset onto
the 1TB USB disk you encrypted in the previous chapter. You’ll be investi-
gating the contents of this dataset later in the book.

Download Transmission (https:// transmissionbt . com) or any other
BitTorrent client of your choice and install it on your computer following
the instructions for your operating system. Load the BlueLeaks page on the
DDoSecrets website at https:// ddosecrets . com / wiki / BlueLeaks. From there, find
the magnet link for the BlueLeaks torrent and copy that to your clipboard.

Next, open Transmission. Click FileOpen Torrent Address, paste the
magnet link, and click Open to start downloading the data. When you first
add this torrent to your client, it will ask where you want to save it. Save it
to your datasets USB disk, then sit back and watch BitTorrent do its thing. It
should connect you to the swarm, start downloading chunks of BlueLeaks
from other peers (while possibly uploading chunks to other peers as well),
and alert you when it’s done downloading. When the download completes,
you’ll be seeding the BlueLeaks torrent and letting others download from
you, until you remove the torrent from Transmission.

The 269GB download might take several hours, or even days if you have
a slow internet connection. While you’re waiting, read on.

Communicating with Encrypted Messaging Apps
Most ways you communicate online aren’t very secure, even when you send
messages that are ostensibly private. This is fine if you’re discussing non-
sensitive information over Slack, SMS messages, or DMs on social media.
However, when communicating with a confidential source who might face
retaliation for talking with you, you should always use an encrypted messag-
ing app.

Among encrypted messaging apps like WhatsApp and iMessage, Signal
stands out as the best choice for source communications. Unlike other apps,
Signal can’t be forced to share most information about its users with law
enforcement or leak investigators, because it can’t access that user data in
the first place. The only information the com pany can retrieve is the date
that a user created their Signal account, and the date that account most
recently connected to Signal. Not even those who might typically be able
to spy on your communications, like the messaging app’s employees, cloud
hosting provider, or internet monitoring agencies, can access your Signal
messages. Signal is the primary app I use for sensitive work communica-
tion, as well as for personal messaging. If I start out chatting with people on
other platforms— SMS, DMs on social media, or anything else— I tend to
move the conversation to Signal as soon as pos si ble.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://transmissionbt.com
https://ddosecrets.com/wiki/BlueLeaks

40 Chapter 2

In more detail, here’s how Signal ensures that it has as little informa-
tion about its users as pos si ble:

•	 Since messages and calls are end- to- end encrypted, the Signal service can’t
access their contents. This means if you type a Signal message to me
on your phone (your end) and hit send, the Signal app will encrypt it
for me or create a totally scrambled version of the message so that it’s
impossible for anyone but me to unscramble it. The encrypted message
then goes to Signal’s servers, which forward it to my phone (my end).
Once it’s on my phone, the Signal app can then decrypt it so I can read
the original message. Signal’s servers themselves never have access to the
original message, only the encrypted version, and they never have the
ability to decrypt it— only message recipients do.

•	 Signal servers don’t store metadata, the rec ords of when you send mes-
sages and to whom. They also can’t access your list of contacts, or even
the name and avatar associated with your own phone number.

•	 Signal in ven ted a technology called sealed sender, which uses crypto-
graphy to prevent anyone besides you and the recipient of your message
from knowing who you’re communicating with. Even if Signal secretly
wanted to store your metadata (or if someone hacked Signal’s servers to
monitor for metadata), they still wouldn’t have access to it.

•	 Signal doesn’t know which phone numbers are part of which Signal
groups, or any metadata about the group, such as its name or avatar.

Signal’s code is open source, which lets experts inspect it for flaws and
backdoors, and its encryption protocol has been peer reviewed by crypto-
graphy experts.

Signal’s security protocols stand in stark contrast to those of other
encrypted messaging apps. WhatsApp, for example, routinely shares
metadata with law enforcement, like exactly which phone numbers a sur-
veillance target communicates with and when the target has used them.
WhatsApp can even share this data in real time, allowing it to be used as
evidence against whistle blowers like Treasury Department employee Natalie
Mayflower Sours Edwards, mentioned in Chapter 1. When she was indicted
in 2018 and accused of sharing a secret dataset to BuzzFeed journalist Jason
Leopold, the evidence against her included real- time metadata from an
encrypted messaging app. The metadata showed Edwards and Leopold
exchanging hundreds of messages right as Leopold published multiple
articles based on this dataset. Edwards and Leopold would have been better
off if they had used Signal.

N O T E The web page https:// signal . org / bigbrother / lists the handful of times that
Signal has been ordered to share data with law enforcement and how they responded.
In all cases, Signal either didn’t share any data (because, as the organization says,
“It’s impossible to turn over data that we never had access to in the first place”) or
shared only the date that the target Signal account was created and the date that it
most recently connected to the service.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://signal.org/bigbrother/

Acquiring Datasets 41

For additional security, you can compare Signal safety numbers with
another Signal user, allowing you to verify that the end- to- end encryption
with that person is secure and isn’t being actively tampered with by the
Signal service, your internet service provider, or anyone else. From a Signal
conversation, you can tap on the name of the person you’re talking to at
the top, then tap View Safety Number. This should show you your safety
number, both as a number and as a QR code. If your safety number is the
same as the other person’s, you can be sure that the end- to- end encryption
is secure. If you’re physically in the same room, you can both use the safety
number screen to scan each other’s QR codes to confirm. To confirm
remotely, you can copy the safety number and paste it into a dif fer ent mes-
saging app (not Signal), then send it to the same person. If you confirm
that your safety number matches, tap Mark as Verified. Once you’ve verified
your safety number with a contact, Signal will make it clear that it’s verified
and warn you if it ever changes— this could mean the encryption is under
attack, but more likely it just means the person you’re talking to got a new
phone, and you’ll have to verify them again.

Once Signal messages are on your device, they’re only as safe as your
phone itself. Leak investigators searching your phone or your source’s
phone will have access to all the messages on each device. To protect
against device searches, always use Signal’s disappearing messages feature,
which automatically deletes messages a set amount of time after you view
them, unless you have a good reason to retain messages for a specific con-
versation. You can choose to delete messages anywhere between 30 seconds
and 4 weeks after viewing, or set a custom time. I typically set disappearing
messages to 4 weeks, change it to an hour or so if I’m sending secret infor-
mation like a password, and then change it back to 4 weeks. In your Signal
privacy settings, I recommend choosing to make all new conversations start
with disappearing messages. You should also take steps to lock down your
phone itself, like using a strong random passcode so that no one but you
can easily unlock your device.

Signal is not only very secure but also very easy to use. Any two people
with the app installed can send each other encrypted text messages, share
encrypted files, and make encrypted voice and video calls or group chats
for multiple users.

Exercise 2-2: Install and Practice Using Signal
In this exercise, you’ll install Signal on your phone and computer and prac-
tice using it.

Start with your phone: open the iPhone App Store or the Android Play
Store and download the Signal Private Messenger app. After you open the
app, you’ll need to verify your phone number and set a PIN (save this PIN
in your password man ag er). Signal will also request some permissions. In
my opinion, it’s perfectly safe to grant all of them. Signal uses the Contacts
permission to discover which of your contacts also use the app, but in

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

42 Chapter 2

such a way that it can’t access your contact list itself. (If you grant access to
your contacts, the app will notify you when one of them creates a Signal
account.)

Next, download Signal on your computer from https:// signal . org. After
installing it, you’ll need to scan a QR code from your phone to set up your
computer as a linked device. Keep in mind that your Signal messages will
now be copied to both devices, so make sure to keep them both secure.

To practice sending encrypted messages, get some friends to install
Signal too. Send them messages, play with disappearing messages, and try
out encrypted voice calls and video calls. If you have enough friends on
Signal, start a Signal group.

Encrypting Messages with PGP
In addition to communicating via secure messaging apps, you can also
encrypt messages with PGP (“pretty good privacy”) encryption. This
encryption method was first developed in 1991 to encrypt email. It has
historically been very impor tant in securely communicating with sources
and other journalists; I used it extensively while reporting on the Snowden
archive. Compared to modern encrypted messaging apps like Signal, PGP
is complicated and error- prone, so I recommend that you avoid it if you can
and choose one of the better alternatives instead. However, you may find it
useful in future investigations if one of your sources uses it.

PGP works like this: a user creates a file on their computer called a
PGP key, which can be split into two parts, a public key and a secret key. If you
have a copy of this user’s public key, you can use it to encrypt a message so
that it can be decrypted only with that secret key. You can then email this
scrambled message to the PGP user with the secret key. If anyone else gets
access to that email, the message is scrambled and they can’t read it. When
the person with the secret key checks it, though, they can decrypt it and
read the original message.

 People sometimes still send me PGP- encrypted email, and I use PGP to
respond to them securely. You can find my PGP public key on my personal
website, https:// micahflee . com. I keep my PGP secret key on a USB device
called a YubiKey, which looks kind of like a USB stick with a button on it.
YubiKeys (and other security keys) are mainly used to lock down online
accounts. Even if a hacker knows the username and password to my Google
account, for example, they won’t be able to log in without first physically
stealing my YubiKey, plugging it into their computer, and pressing its but-
ton while they try to log in. YubiKeys can also be used to securely store PGP
secret keys.

Staying Anonymous Online with Tor and OnionShare
Tor and OnionShare are both impor tant tools for working with sources
who want to send you data anonymously, and for conducting investigations
where you need to remain anonymous yourself.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://signal.org
https://micahflee.com

Acquiring Datasets 43

Tor is a decentralized network of volunteer servers called nodes. It keeps
you anonymous online by bouncing your internet connection through a
series of these nodes. Tor Browser is a web browser that sends all web traffic
through the Tor network. Using Tor Browser works much like using Chrome
or Firefox. Let’s say you want to anonymously visit the Organized Crime
and Corruption Reporting Proj ect’s (OCCRP) website at https:// www . occrp
. org. You simply open Tor Browser (which you can download from https://
www . torproject . org), wait for it to connect to the Tor network, type occrp . org
in the address bar, and hit enter, and the page will load.

N O T E I’ve been a volunteer in the Tor community for a long time, attending the nonprofit’s
physical gatherings around the world, sometimes running Tor nodes to contribute to
the network, and developing software related to Tor.

Tor Browser operates more slowly than a normal browser, because it
bounces your web traffic between three random Tor nodes around the
world before sending it to the OCCRP website. No single node knows both
your real IP address, which would reveal your location, and what website
 you’re visiting. This means you don’t need to trust the nodes to use them.
Even if a Tor node is run by criminals or spies, they won’t be able to de-
anonymize you, at least not without exploiting a vulnerability in the Tor
network itself. When you close Tor Browser, every thing about your browsing
session gets deleted without leaving a trace on your local computer.

Since Tor allows users to be anonymous online, people routinely use
it for hacking websites, creating accounts to spam or phish people, or
engaging in similar activities. For this reason, plenty of websites (including
Google) are often extremely suspicious of Tor traffic, and make Tor users
jump through additional hurdles like filling out CAPTCHAs or even block
them altogether. Unfortunately, this is the price of online anonymity.

In addition to allowing internet users to remain anonymous, Tor can
keep servers themselves anonymous. These servers are called Tor onion
 services (sometimes referred to as the dark web) and have domain names
ending in .onion. You can load onion services only by using Tor. Like Tor
Browser, onion services also pick three random Tor nodes to route their
traffic through. When a user loads an onion site in Tor Browser, it actually
requires six hops through the Tor network: three on the Tor Browser side
and three on the onion service side.

N O T E The .onion domain name is derived from a cryptographic fingerprint of the public
key that belongs to the onion service. The Tor protocol ensures that no one else can use
that same name without knowing that onion service’s secret key.

OnionShare, which I first developed in 2014 and have been adding fea-
tures to ever since, is software that makes it easy for anyone to run onion
 services, allowing them to anonymously and securely send and receive files. It
runs a web server directly on your computer, makes that server accessible to
 others as an onion service, and shows you a .onion address to send to someone
 else. When you start an OnionShare service, you can choose between Share

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.occrp.org
https://www.occrp.org
https://www.torproject.org
https://www.torproject.org
http://occrp.org

44 Chapter 2

mode, which allows others to download specific files from your computer, or
Receive mode, which allows others to upload files to your computer.

OnionShare also supports other modes. With Chat mode, for instance,
you can spin up an anonymous chat room. It doesn’t have as many features
as a Signal group, but it keeps you significantly more anonymous. With
Website mode, you can quickly host a static website— a simple website made
up of HTML files and resources like images and JavaScript, but without any
databases or code running on the server—as an onion service. If someone
loads that address in Tor Browser, their connection bounces through the
Tor network until it reaches your computer, then loads the website hosted
by OnionShare.

Figure 2-1 shows the OnionShare software configured as an anonymous
dropbox, allowing my URL recipient (such as a source) to anonymously and
securely upload files directly to my computer.

Figure 2-1: OnionShare in Receive mode

For example, to use OnionShare to let a source send me data, I’d open
OnionShare on my computer, connect to the Tor network, click Receive
Files, and then click Start Receive Mode. The service would give me a URL
like http:// ic2kaoao3fspynexwxlajxhb3zwcwrjuf57ykfuq7tsrhzlveeamkrid . onion.
I would send that URL to my source and wait. My source would then open
Tor Browser; load that URL, which would load a website hosted directly on
my computer; and then upload their files. Because OnionShare uses Tor,
I’d have no way of learning my source’s IP address, and my source would
have no way of learning mine.

Figure 2-2 shows what that web page would look like for my source.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://ic2kaoao3fspynexwxlajxhb3zwcwrjuf57ykfuq7tsrhzlveeamkrid.onion

Acquiring Datasets 45

Figure 2-2: Using Tor Browser to access the OnionShare Receive mode site shown in
Figure 2-1

The URL I sent to my source starts with http:// and not https:// . HTTPS
encrypts traffic between the web browser and the web server; normally, with
just plain HTTP, anyone monitoring the network can spy on exactly what
 you’re doing, what files your uploading, and what passwords you’re submit-
ting into forms. Onion services are an exception to this rule, though, since
the connection between Tor Browser and an onion service is already end-
to- end encrypted. It’s pos si ble to add HTTPS to an onion service, but doing
so would be redundant and unnecessary. Also notice that the domain name
part of the URL in Figure 2-2 is 56 random- looking letters and numbers fol-
lowed by .onion. Unlike with normal domain names, you don’t get to choose
onion service names. They all look like this.

OnionShare runs a web server directly on your computer. This means
third- party companies don’t have access to any of the files that are shared in
it, but also that you have to time things right. If I sent that OnionShare link
and then closed my laptop so it went to sleep, my source wouldn’t be able to
load the website until I woke my computer up again. OnionShare works best
when you’re working with people in real time. However, because it uses the
Tor network, it’s really slow. It might take many hours or even days to trans-
fer gigabytes of data. To transfer especially large datasets, consider using a
non- Tor method like those described later in this chapter.

N O T E For more information, read the detailed documentation for OnionShare at https://
docs . onionshare . org.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.onionshare.org
https://docs.onionshare.org

46 Chapter 2

If you’re using OnionShare to send sensitive data, I recommend that
you share OnionShare URLs only using encrypted messaging apps like
Signal and avoid sending them over insecure communication channels like
email or social media DM. This will prevent anyone who has access to those
insecure channels from loading the OnionShare URL first, or from modify-
ing the OnionShare URL to trick your source into uploading documents to
them, for example.

Exercise 2-3: Play with Tor and OnionShare
In this exercise, you’ll install Tor Browser and OnionShare on your
computer and practice using them. Download OnionShare from https://
onionshare . org and Tor Browser from https:// www . torproject . org, and follow the
instructions for your operating system.

Open Tor Browser, search for anything you like, and visit vari ous web-
sites to see how the online experience differs. The default Tor Browser
search engine is DuckDuckGo, which works great over Tor. However, you’ll
find that it’s frustrating to use Google, because it constantly forces you to
prove you’re not a robot by filling out CAPTCHAs. Several websites have
both clearnet versions (those accessible using normal web browsers) and
.onion versions. If you’re using Tor Browser and visit a website that supports
both, like https:// freedom . press, you’ll see a “.onion available” button in the
top right of the address bar. Clicking it should bring you to the onion ver-
sion of that site.

Figure 2-3 shows the Freedom of the Press Foundation’s website in Tor
Browser with the “.onion available” button.

Figure 2-3: The Freedom of the Press Foundation’s home page

Next, try using OnionShare. Open a Share Files tab, browse for some
files on your computer, and start the service. Then open Tor Browser, load
the OnionShare URL, and download those files. Test out small files, large
files, and dif fer ent settings. Then try setting up an anonymous dropbox
to receive files: open OnionShare, open a Receive Files tab, and start the
 service. In Tor Browser, load the OnionShare URL and upload files to your
computer. Again, test out small files, large files, and dif fer ent settings.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://onionshare.org
https://onionshare.org
https://www.torproject.org
https://freedom.press

Acquiring Datasets 47

Communicating with My Tea Party Patriots Source
This section describes a real- world example of how I gathered data from
an anonymous source using several tools you’ve seen so far: Twitter DMs, a
PGP- encrypted message, communicating via Signal, and receiving a dataset
through OnionShare.

In the summer of 2021, a journalist sent me a DM on Twitter, passing
along a note from someone else. The journalist had no idea what the note
said, because it was PGP- encrypted. The note looked something like this:

- - - - - BEGIN PGP MESSAGE- - - -

[lots of scrambled letters and numbers]
- - - - - END PGP MESSAGE- - - -

I plugged in my YubiKey and used it to decrypt the PGP message. It sim-
ply said:

interested in data?
signal: [redacted phone number]

At the time, I didn’t publish my phone number directly on my social
media bios or in my staff profile page on The Intercept’s website. If I had,
this source could have just contacted me directly on Signal, which would
have been much simpler. Nevertheless, using PGP ensured that all com-
munication between us was end- to- end encrypted, and even though Twitter
DMs were involved, Twitter didn’t have any communication metadata
between my source and me.

I opened Signal Desktop on my computer, typed in the phone number
I’d found in the PGP- encrypted message, and turned on disappearing mes-
sages for the conversation. I said hello and that I was interested in data. At
this point I had a secure communication channel with my new source.

The source told me that they had hacked the Tea Party Patriots, a
major US conservative organization that bills itself as one of the largest
grassroots groups on the right. They wanted to send me a dataset that
included membership lists, donation history, and petition data, and asked
how they should send it. I sent them an OnionShare link to upload the
dataset directly to my computer.

I later learned from this dataset that the Tea Party Patriots organization
 isn’t nearly as grassroots as it claims: three ultra- wealthy donors, two of
them billionaires, provided the bulk of the group’s donations. I also learned
that the group’s claim of being a network of “over 3 million patriots” was
wildly exaggerated: only 144,000 members were marked “active” in the
hacked database. (Read my analy sis of this dataset at https:// theintercept . com
/ 2021 / 08 / 05 / tea - party - patriots - hacked - billionaire - donors .)

Other Options for Acquiring Datasets from Sources
In this section, you’ll learn a couple more ways to communicate with
sources when the skills you’ve learned so far don’t fit your needs.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2021/08/05/tea-party-patriots-hacked-billionaire-donors
https://theintercept.com/2021/08/05/tea-party-patriots-hacked-billionaire-donors

48 Chapter 2

Sending Encrypted USB Drives
Some of your future sources may want to send you more data than is
feasible to transfer over Tor. In that case, you can consider sending an
encrypted USB drive through postal mail.

First, your source encrypts a USB hard drive or a small USB stick using
a strong passphrase, via the technologies covered in Chapter 1, and then
copies the dataset to the drive. Then they physically mail the USB drive to
you. To remain anonymous, they can write your address on the package
or envelope but leave the return address blank (at least in the US), attach
the right amount of postage, and drop it in a public mailbox. Using an
encrypted messaging app like Signal, your source can send you the encryp-
tion passphrase. When you receive the drive in the mail, you can use the
passphrase to unlock the drive and access the dataset.

If the drive gets intercepted in the mail, the data is encrypted and
impossible to access without the passphrase. However, the postal service will
know exactly which public mailbox it was mailed from, and if your source
 isn’t careful they might leave handwriting, fingerprints, DNA, or other clues
to their identity in the package.

Keep in mind that sending an encrypted drive costs money, since you
need to buy a hard drive and pay for postage, and the package might take a
long time to arrive, so this isn’t the best option for time- sensitive data.

SENDING ENCRY P T ED DATA V I A

PUBL IC F IL E- SH A R ING SERV ICES

Rather than using an encrypted USB, your source can encrypt their data and
upload it to a public file- sharing service like Mega or WeTransfer, if they have
the technical skill to do so. The exact process is outside the scope of this book,
but here’s the gist:

First, your source would need to encrypt the dataset, using one of the fol-
lowing methods:

• Compress the dataset in a password- protected ZIP file, using a strong pass-
phrase. This protects only the file contents, not the filenames themselves,
meaning your source may not want to use this method if the filenames in
the dataset are sensitive.

• Use software like VeraCrypt (discussed in Chapter 1) to create an
encrypted container that’s locked with a strong passphrase.

• Use some other disk encryption software that you and the source agree
upon. For example, if you both use Macs, you can create an encrypted
DMG file using macOS’s built-in Disk Utility instead of VeraCrypt.

Once they’ve encrypted the dataset, the source uploads it to a public file-
sharing service. Depending on which service they use, they may need to create

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Acquiring Datasets 49

an account. If they want to remain anonymous to that service, they might create
a temporary email address just for this task and take steps to protect their
IP address with a VPN service or Tor Browser. (Uploading a huge dataset to a
file- sharing service over Tor is still faster than uploading it to an onion service,
 because the data takes fewer hops over the Tor network.) Once the encrypted
dataset is uploaded, the source sends you a link to it, along with the dataset’s
passphrase. After you download the dataset, use the passphrase to decrypt it.

If anyone else gets access to the data stored on the file- sharing
 service— such as an employee of the service, or law enforcement after sending
a subpoena demanding that the service hand over data—it will be impossible
for them to decrypt the dataset without knowing the passphrase.

Using Virtual Private Servers
A virtual private server (VPS) is a virtual computer on the internet, hosted by
a com pany like Amazon Web Services (AWS) or DigitalOcean and normally
 running the Linux operating system, that your source can use to share
their data. You’ll learn the details of how to set up and work with a VPS
in Chapter 4, but here we’ll discuss when they might be appropriate for a
given investigation.

The VPS option has a few downsides: it works only if your source has the
necessary technical skills, it costs a small amount of money, and it’s easy for
your source to make mistakes if they’re trying to remain anonymous. On the
upside, a VPS allows your source to use extremely reliable tools to transfer
large amounts of data. These tools also support resuming the transfer if it
fails midway, and you can even use a VPS anonymously over Tor.

It costs just a few dollars a month to rent a VPS—if you need to use
it for only a day or two it’s even cheaper— and you can specify how big its
hard disk needs to be depending on how much data your source wants to
send you. You can then enable your source to upload data to the server
remotely using a technology called SSH, which stands for Secure Shell.
Your source could encrypt the dataset before uploading it if they feel it’s
sensitive.

Throughout this chapter, you’ve learned ways individual journalists
can receive data from their sources. In the next section, I’ll introduce addi-
tional tools and techniques appropriate for established newsrooms.

Whistle blower Submission Systems
As mentioned earlier, when Chelsea Manning tried to contact the
Washington Post and the New York Times to leak the War Logs to the public,
neither paper was receptive or even really prepared to accept leaked data-
sets. Today that’s no longer the case. Dozens of major newsrooms now run

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

50 Chapter 2

their own whistle blower submission systems, making it simple to securely
and anonymously submit leaked datasets or other tips.

Go to your favorite news site and see if you can find its tips page, which
explains to potential sources and whistle blowers how to contact the news-
room securely. Here are a few examples:

•	 The Intercept: https:// theintercept . com / source/

•	 Washington Post: https:// www . washingtonpost . com / anonymous - news - tips/

•	 New York Times: https:// www . nytimes . com / tips

•	 ProPublica: https:// www . propublica . org / tips/

•	 CNN: https:// www . cnn . com / tips/

•	 Guardian: https:// www . theguardian . com / securedrop

•	 Globe and Mail: https:// sec . theglobeandmail . com / securedrop/

The guidelines on these tips pages are all similar, instructing sources to
securely contact the newsroom by either sending a message to a dedicated
Signal phone number, physically mailing their documents using the postal
 service, or reaching out over the open source whistle blower submission soft-
ware called SecureDrop.

The late information activist Aaron Swartz, along with journalist
Kevin Poulsen, developed a platform in 2013 called DeadDrop for sources
to securely communicate with and send documents to journalists. After
Swartz’s death, Poulsen handed the proj ect over to Freedom of the Press
Foundation, which renamed it to SecureDrop. At the time, I was the chief
technology officer for Freedom of the Press Foundation and contributed a
significant amount of code to the proj ect.

Like OnionShare, SecureDrop turns computers into anonymous drop-
boxes (also powered by Tor onion services) to enable file sharing. However,
it’s designed for professional newsrooms. It runs on a dedicated server that’s
always online and available for sources to use, and it forces more secure
and paranoid be hav ior than OnionShare does— for example, it’s designed
so that you can open documents sent through SecureDrop only in an air-
gapped environment.

SecureDrop’s increased security protects sources who are potentially
risking their lives, but that security comes at a cost. The platform requires
a significant amount of work to set up and maintain, including the ongo-
ing daily work of checking it for new submissions. I spent years checking
SecureDrop for The Intercept, and I know that it can be frustrating jump-
ing through security hoops when the vast majority of submissions are
nonsense or could have been sent in an email. But the effort is worth it if it
protects just one genuine whistle blower.

If you work with a newsroom or an organization that wants to accept
datasets from sources or whistle blowers, create a tips page on your website
and look into SecureDrop. You can learn more about the SecureDrop proj-
ect at https:// securedrop . org and read detailed documentation at https:// docs
. securedrop . org.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/source/
https://www.washingtonpost.com/anonymous-news-tips/
https://www.nytimes.com/tips
https://www.propublica.org/tips/
https://www.cnn.com/tips/
https://www.theguardian.com/securedrop
https://sec.theglobeandmail.com/securedrop/
https://securedrop.org
https://docs.securedrop.org
https://docs.securedrop.org

Acquiring Datasets 51

Summary
In this chapter, you learned about the demise of WikiLeaks and the genesis
of DDoSecrets and you downloaded a copy of the BlueLeaks dataset using
BitTorrent. You’ve seen some common tools for securely communicating
with sources, like Signal, Tor, and OnionShare. You’ve also learned about
a few other techniques for securely and anonymously transferring large
amounts of data, as well as about tips pages and SecureDrop.

The next chapter marks the beginning of Part II, where you’ll learn
how to use the command line interface, a power ful text- based method of
controlling your computer. This will prove essential for digging into data-
sets like BlueLeaks.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

PART II
T O O L S O F T H E T R A D E

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

If you’re like most people, you interface with your com-
puter primarily via its graphical desktop environment:
you move the pointer with your mouse or trackpad
and click icons to run programs and open documents.
Programs open in win dows that you can resize, maxi-
mize, minimize, and drag around the screen. You can
run vari ous programs at once in separate win dows and
switch between them. However, there’s an alternative,
incredibly power ful interface you can use to commu-
nicate with your computer and give it instructions: the
command line interface (CLI).

Command line interfaces are text- based, rather than graphical, inter-
faces to interact with your computer. Instead of clicking on icons, you enter
commands to run programs in a terminal emulator (normally referred to just

3
T H E C O M M A N D L I N E I N T E R F A C E

Back in the days of the command- line interface, users were all Morlocks who had to convert
their thoughts into alphanumeric symbols and type them in, a grindingly tedious process

that stripped away all ambiguity, laid bare all hidden assumptions, and cruelly
punished laziness and imprecision.

— Neal Stephenson, In the Beginning . . . Was the Command Line

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

56 Chapter 3

as a terminal). After running a command, you’ll typically see text- based out-
put displayed in the terminal.

In this chapter, you’ll learn the basic command line skills you need
to follow along with the rest of this book. Whether you’re using Win dows,
macOS, or Linux, you’ll learn how to install and uninstall software via the
command line, how filepaths work, how to navigate around the folders on
your computer, and how to use text editors. You’ll also write your first shell
script, a file containing a series of CLI commands.

Introducing the Command Line
To prepare you to start working on the command line, this section explains
some fundamentals: what shells are, how users and paths work in dif fer ent
operating systems, and the concept of privilege escalation.

The Shell
The shell is the program that lets you run text- based commands, while the
terminal is the graphical program that runs your shell. When you open a
terminal and see a blinking text cursor waiting for commands, you’re using
a shell. When hackers try to break into a computer, their initial goal is to
“pop a shell,” or access the text- based interface that allows them to run
 whatever commands they want.

All operating systems, even mobile ones like Android and iOS, have
shells. This book focuses on Unix shells, the kind that come with macOS
and Linux (but Win dows users can also use them). Most versions of Linux
use a shell called bash, and macOS uses one called zsh. These shells are
very similar, and for the purposes of this book you can think of them as
interchangeable.

Win dows, on the other hand, comes with two shells: an older one called
Command Prompt (or cmd.exe) and a newer one called PowerShell. The
syntax— rules that define what dif fer ent commands mean— used by Win-
dows shells is very dif fer ent from that used by Unix shells. If you’re a
Win dows user, you’ll primarily work in a Unix shell for the examples in this
book. Setting up your computer to run Linux directly in Win dows will be
this chapter’s first exercise.

To make your shell do something, such as run a program, you care-
fully enter the desired command and then press ENTER (or RETURN
on Mac keyboards). To quit the shell, enter exit and press ENTER. Shells
are finicky: you need to enter commands using the correct capitalization,
punctuation, and spacing, or they won’t work. Typos usually result in noth-
ing more serious than error messages, however, and it’s easy to go back
and fix a mistake in a command. I’ll explain how to do so in the “Editing
Commands” section later in the chapter.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 57

Users and Paths
Although operating systems like Win dows, macOS, and Linux are dif fer-
ent in some ways, they all share basic building blocks, including users and
paths.

All operating systems have users, separate accounts that dif fer ent
 people use to log into the same computer. Users generally have home fold-
ers, also known as home directories, where their files live. Figure 3-1 shows
my terminal in Ubuntu, a popular Linux distribution.

Figure 3-1: My Ubuntu terminal

My username is micah and the name of my Ubuntu computer is rogue.
Your terminal will look dif fer ent depending on your operating system, user-
name, and computer name.

All operating systems also have filesystems, the collection of files and
folders available on the computer (you got a brief introduction to filesys-
tems in Chapter 1 while encrypting your USB disk). In a filesystem, each file
and folder has a path, which you can think of like the location, or address,
of that file. For example, if your username is alice, the path of your home
folder in dif fer ent operating systems would look as follows:

•	 Win dows: C:\Users\alice

•	 macOS: /Users/alice

•	 Linux: /home/alice

Win dows filesystems operate differently from macOS or Linux filesys-
tems in a few key ways. First, in Win dows, disks are labeled with letters. The
main disk, where Win dows itself is installed, is the C: drive. Other disks,
like USB disks, are assigned other letters. In Win dows, folders in a path are
separated with a backslash (\), while other operating systems use forward
slashes (/). In macOS and Linux, paths are case sensitive, but not in Win-
dows. For example, in macOS you can store one file called Document.pdf and
another called document.pdf in the same folder. If you try to do the same in
Win dows, saving the second file overwrites the first.

Let’s look at some example paths. If your username is alice and you
download a file called Meeting Notes.docx into the Downloads folder, here’s
what that path would look like:

•	 Win dows: C:\Users\alice\Downloads\Meeting Notes.docx

•	 macOS: /Users/alice/Downloads/Meeting Notes.docx

•	 Linux: /home/alice/Downloads/Meeting Notes.docx

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

58 Chapter 3

When you plug in a USB disk, it’s mounted to dif fer ent paths for dif fer-
ent operating systems. If your disk is labeled datasets, the path representing
the location of that disk might look as follows:

•	 Win dows: D: (or whatever drive letter Win dows decides to mount the
disk to)

•	 macOS: /Volumes/datasets

•	 Linux: /media/alice/datasets

It’s impor tant to understand how to read paths, since you’ll need to
include the location of your dataset or files it contains in the commands you
run.

User Privileges
Most users have limited privileges in an operating system. However, the root
user in Linux and macOS and the administrator user in Win dows have abso-
lute power. While alice may not be able to save files into bob’s home folder,
for example, the root user has permissions to save files anywhere on the
computer. When a Mac asks you to enter your user password to change sys-
tem preferences or install software, or when a Win dows machine asks if you
want to allow a program to make changes to your computer, the operating
system is asking for your consent before switching from your unprivileged
user account to the root or administrator user account.

Most of the time when you’re working in a terminal, you run commands
as an unprivileged user. To run a command that requires root (or admin-
istrative) privileges in Linux and macOS, such as to install a new program,
just put sudo in front of it and press ENTER, and you’ll be prompted to
enter the password for your regular user account.

As an example, the whoami command tells you which user just ran a com-
mand. On my computer, if I enter whoami without sudo, the output is micah.
However, if I enter sudo whoami, which requires me to type my password, the
output is root:

micah@rogue:~$ whoami
micah
micah@rogue:~$ sudo whoami
 [sudo] password for micah:
root

If you recently ran sudo, you can run it again for a few minutes without
having to re- enter your password.

W A R N I N G Be very careful when running commands as root, since running the wrong com-
mands as the root user can accidentally delete all of your data or break your operating
system. Before using sudo, make sure you have a clear understanding of what you’re
about to do.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 59

You can use sudo to gain root access only if your current user has admin-
istrator access. If you’re the only user on your computer, you’re prob ably an
administrator. To find out, try using sudo and see whether you get a “permis-
sion denied” error.

Figure 3-2 shows a comic by Randall Munroe from his XKCD website
that succinctly demonstrates the power of sudo.

Figure 3-2: Demanding a sandwich with sudo

Before learning more command line code, Win dows users must install
Ubuntu (see Exercise 3-1). Mac or Linux users can skip to the “Basic
Command Line Usage” section on page XX.

Exercise 3-1: Install Ubuntu in Win dows
To work with Ubuntu on a Win dows machine, you could install both Win-
dows and Linux or use a virtual machine within Win dows, as mentioned
in Chapter 1. However, for this book’s purposes, it’s simplest to use the
Win dows Subsystem for Linux (WSL), a Microsoft technology that lets you run
Linux programs directly in Win dows. Opening an Ubuntu win dow in WSL
 will, in turn, open a bash shell and let you install and run Ubuntu software.
(Technically, WSL does use a VM, but it’s fast, managed by Win dows, and
unobtrusive, running entirely behind the scenes.)

To install WSL, open a PowerShell win dow as an administrator: click
Start, search for powershell, right- click Win dows PowerShell, choose Run
as Administrator, and click Yes. Figure 3-3 shows this process, which may
look slightly dif fer ent depending on your version of Win dows.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

60 Chapter 3

Figure 3-3: Running PowerShell as an administrator in Win dows

In your administrator PowerShell win dow, enter the following com-
mand and press ENTER:

wsl - - install - d Ubuntu

This installs the Win dows Subsystem for Linux, then downloads and
installs Ubuntu Linux on your computer.

Your screen should now look something like this:

PS C :\Windows\system32> wsl - - install - d Ubuntu
Installing: Win dows Subsystem for Linux
Win dows Subsystem for Linux has been installed.
Downloading: WSL Kernel
Installing: WSL Kernel
WSL Kernel has been installed.
Downloading: GUI App Support
Installing: GUI App Support
GUI App Support has been installed.
Downloading: Ubuntu
The requested operation is succession. Changes will not be effective until the
system is rebooted.
PS C:\Windows\system32>

The final line of this output tells you to reboot your computer. Enter
exit and press ENTER (or just close the win dow) to quit PowerShell, then
reboot. After you log into Win dows again, you should see an Ubuntu win-
dow informing you that the installation may take a few more minutes to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 61

complete. Then the win dow should pre sent you with a prompt asking you to
create a new user:

Please create a default UNIX user account. The username does not need to match
your Win dows username.
For more information visit: https:// aka . ms / wslusers
Enter new UNIX username:

Ubuntu needs to keep track of its own users rather than the existing
users on your Win dows computer.

With the Ubuntu terminal win dow in focus, enter a username
and press ENTER. The terminal should then prompt you to create a
password:

New password:

 Either use the same password you use to log into your Win dows account
or create a new one and save it in your password man ag er. Enter your pass-
word and press ENTER. While you’re typing, nothing will appear in the
Ubuntu terminal.

The terminal should now prompt you to re- enter your new password;
do so and press ENTER, which should drop you into an Ubuntu shell with
a prompt and a blinking cursor. My prompt says micah@cloak:~$ because my
username is micah and the name of my Win dows computer is cloak:

New password:
Retype new password:
passwd: password updated successfully
Installation successful!
- - snip- -
micah@cloak:~$

You can now open Ubuntu in your Win dows computer. From this point
on, when instructed to open a terminal or run some command line code,
use an Ubuntu terminal win dow unless I specify other wise.

From within your Ubuntu shell, you can access your Win dows disks in
the /mnt folder. For example, you can access the C: drive in /mnt/c and the
D: drive in /mnt/d. Suppose I download a document using my web browser
and want to access it from Ubuntu. The path to my Downloads folder in
Win dows is /mnt/c/Users/micah/Downloads, so the document would be in that
folder. If I want to access the BlueLeaks data that I downloaded to my USB
disk from Ubuntu, then assuming that D: is the USB disk’s drive, the path
would be /mnt/d/BlueLeaks.

For more details on using Win dows and WSL, including information
on common prob lems related to using USB disks in WSL, as well as disk
 performance issues and vari ous ways to deal with them, check out Appendix A.
Wait until you’ve worked through at least Chapter 4 to start implementing
 these solutions, since the instructions involve more advanced command line
concepts introduced in that chapter.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://aka.ms/wslusers

62 Chapter 3

Basic Command Line Usage
In this section, you’ll learn to use the command line to explore files and
folders on your computer. This is a prerequisite to working with datasets,
which are just folders full of files and other folders. You’ll learn how to open
a terminal, list files in any folder, distinguish between relative and absolute
paths, switch to dif fer ent folders in your shell, and look up documentation
on commands from within your terminal.

N O T E When learning command line skills, you can always look things up if you run into
prob lems— I still do this every day. You’re likely not the first person to encounter any
given command line issue, so with a few well- worded internet searches, you can find
someone else’s solution.

Opening a Terminal
To get started, skip to the subsection for your operating system to learn how
to open a terminal. Throughout this chapter, keep a terminal open while
 you’re reading to test all the commands.

The Win dows Terminal

If you’re using Win dows, open the Ubuntu app by clicking Start in the
bottom- left corner of the screen, searching for ubuntu, and clicking Ubuntu.

You’ll use Ubuntu most often for this book, but you may need to open
the native Win dows terminals occasionally as well. You can likewise open
PowerShell and Command Prompt by clicking Start and searching for
them. Check out the Microsoft program Win dows Terminal (https:// aka . ms /
terminal), which lets you open dif fer ent terminals in dif fer ent tabs, choosing
between PowerShell, Command Prompt, Ubuntu, and others. If you choose
to install it, you can open it the same way.

Pin the Ubuntu app or Win dows Terminal app to your taskbar so you can
quickly open it in the future: right- click its icon and select Pin to Taskbar.

The macOS Terminal

On macOS, open the Terminal app by opening Finder, going to the
Applications folder, double- clicking the Utilities folder, and double- clicking
Terminal. Figure 3-4 shows my macOS terminal running zsh, the default
macOS shell. My username is micah, and the name of my Mac is trapdoor.

Figure 3-4: My macOS terminal

Snap the Terminal app to your dock so you can quickly open it in
the future. To do so, after you open Terminal, press CTRL and click the
Terminal icon on your dock, then choose OptionsKeep in Dock.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://aka.ms/terminal
https://aka.ms/terminal

The Command Line Interface 63

The Linux Terminal

If you’re using Linux, open the Terminal app. In most Linux distributions,
you can do so by pressing the Win dows key, typing terminal, and press-
ing ENTER. If you’re running Ubuntu (or any other Linux distribution
that uses the GNOME graphical environment), pin the Terminal app to
your dock so you can quickly open it in the future. To so so, right- click the
Terminal icon and select Add to Favorites.

Clearing Your Screen and Exiting the Shell
As you practice using the terminal in the following sections, you’ll some-
times want to start fresh, without having to see all the previous commands
you ran or their output or error messages. Run this simple command to
declutter your terminal:

clear

This clears every thing off the screen, leaving you with nothing but a
blank command prompt. Make sure to do this only if you no longer need
to see the output of your previous commands. (In the Win dows Command
Prompt and PowerShell, use cls instead of clear.)

When you’re done using the CLI, exit your shell by running this command:

exit

You can also close the terminal win dow to exit. If you’re running a pro-
gram when you close the terminal, that program will quit as well.

Exploring Files and Directories
When you open a terminal, your shell starts out in your user’s home folder,
represented as a tilde (~). The folder you’re currently in is your current work-
ing directory, or just working directory. If you ever forget what directory you’re
in, run the pwd command (short for “print working directory”) to find out.

 Running the ls command in your terminal lists all of the files in your
working directory. You can use this command to check the contents of fold-
ers you’re working with. If there are no files or only hidden files, ls won’t list
anything. To check for hidden files, modify the ls command using - a (short
for - - all):

ls - a

When you add anything to the end of a command, like - a, you’re using
a command line argument. Think of arguments as settings that change how
the program you’re running will act—in this case, by showing hidden files
instead of hiding them.

By default, the ls command displays files in a format intended to take
up as few lines in your terminal as pos si ble. However, you may want to
display one file per line for easier reading and to get more information

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

64 Chapter 3

about each file, such as its size, when it was last modified, permissions, and
 whether it’s a folder. Using the - l argument (short for - - format=long) formats
the output as a list.

You can use both - a and - l at the same time like so:

ls - al

 Running this command on my Mac gives me the following output:

total 8
drwxr- x- - - + 13 micah staff 416 Nov 25 11:34 .
drwxr- xr- x 6 root admin 192 Nov 9 15:51 ..
- rw- - - - - - - 1 micah staff 3 Nov 6 15:30 .CFUserTextEncoding
- rw- - - - - - - 1 micah staff 2773 Nov 25 11:33 .zsh_history
drwx- - - - - - 5 micah staff 160 Nov 6 15:31 .zsh_sessions
drwx- - - - - - + 3 micah staff 96 Nov 6 15:30 Desktop
drwx- - - - - - + 3 micah staff 96 Nov 6 15:30 Documents
drwx- - - - - - + 3 micah staff 96 Nov 6 15:30 Downloads
drwx- - - - - - + 31 micah staff 992 Nov 6 15:31 Library
drwx- - - - - - 3 micah staff 96 Nov 6 15:30 Movies
drwx- - - - - - + 3 micah staff 96 Nov 6 15:30 Music
drwx- - - - - - + 3 micah staff 96 Nov 6 15:30 Pictures
drwxr- xr- x+ 4 micah staff 128 Nov 6 15:30 Public

The first column of this output describes the type of file— whether it’s
a directory (another name for a folder) or an ordinary file—as well as the
file’s permissions. Directories start with d, and ordinary files start with a
hyphen (-). The second column represents the number of links in the file,
which isn’t relevant for the purposes of this book.

The third and fourth columns represent the user and the group that
owns the file. In addition to users, operating systems have groups of users
that can have their own permissions. For example, in Linux, all users
allowed to use sudo are in the sudo group. If you create or download a file, its
user and group are normally your username. The fifth column is the file size
in bytes. For example, in the file called .zsh_history, my output is 2,773 bytes.

The next three columns of the output represent the time and date
when the file was last modified, and the final column shows the filename.

To see a listing of files in a folder other than the working directory, add
the path to that folder to the end of the ls command. For example, this is
how I’d create a listing of files in my code/hacks- leaks- and- revelations folder,
which contains the files released with this book:

micah@trapdoor ~ % ls -la code/hacks- leaks- and- revelations

I’d get the following output:

total 120
drwxr- xr- x 22 micah staff 704 Dec 21 14:11 .
drwxr- xr- x 73 micah staff 2336 Dec 6 16:45 ..
- rw- r- - r- - @ 1 micah staff 8196 Dec 9 16:12 .DS_Store

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 65

drwxr- xr- x 15 micah staff 480 Dec 21 14:41 .git
- rw- r- - r- - 1 micah staff 30 Dec 21 14:22 .gitignore
- rw- r- - r- - 1 micah staff 35149 Sep 23 14:54 LICENSE
- rw- r- - r- - 1 micah staff 6717 Dec 21 14:17 README.md
drwxr- xr- x 4 micah staff 128 Sep 23 14:54 appendix- a
drwxr- xr- x 8 micah staff 256 Dec 9 16:18 appendix- b
drwxr- xr- x 6 micah staff 192 Dec 21 14:23 chapter-1
drwxr- xr- x 5 micah staff 160 Dec 21 14:35 chapter-10
drwxr- xr- x 12 micah staff 384 Dec 21 14:35 chapter-11
drwxr- xr- x 12 micah staff 384 Dec 21 14:39 chapter-12
drwxr- xr- x 8 micah staff 256 Nov 23 18:51 chapter-13
drwxr- xr- x 4 micah staff 128 Dec 21 14:23 chapter-2
drwxr- xr- x 10 micah staff 320 Dec 21 14:24 chapter-3
drwxr- xr- x 13 micah staff 416 Dec 21 14:25 chapter-4
drwxr- xr- x 13 micah staff 416 Dec 21 14:26 chapter-5
drwxr- xr- x 10 micah staff 320 Dec 21 14:28 chapter-6
drwxr- xr- x 13 micah staff 416 Dec 21 14:30 chapter-7
drwxr- xr- x 18 micah staff 576 Dec 21 14:32 chapter-8
drwxr- xr- x 15 micah staff 480 Dec 21 14:34 chapter-9

You’ll download your own copy of these files in Exercise 3-7.

Navigating Relative and Absolute Paths
Programs often require you to provide paths to files or folders, usually when
you run a program that works with specific files on your computer. The path
that I passed into ls in the previous section, code/hacks- leaks- and- revelations,
is a relative path, meaning it’s relative to the current working directory, my
home folder. Relative paths can change. For example, if I change my work-
ing directory from my home folder (/Users/micah) to just /Users, the relative
path to that folder changes to micah/code/hacks- leaks- and- revelations.

The absolute path to the code/hacks- leaks- and- revelations folder is /Users/
micah/code/hacks- leaks- and- revelations, which always provides the location of
that folder regardless of my working directory. Absolute paths start with a
forward slash (/), which is also known as the root path.

You can use two keywords to access relative paths to specific folders:
.(dot), which represents a relative path to the current folder, and .. (dot
dot), which represents a relative path to the parent folder (the folder that con-
tains the current folder).

Changing Directories
The cd command (which stands for “change directory”) allows you to change
to a dif fer ent folder. To change your working directory to the folder, run:

cd path

For path, substitute the path to the folder to which you’d like to move.
You can use either a relative or an absolute path.

Suppose I’m using macOS and have downloaded BlueLeaks to a datasets
USB disk plugged into my machine. After opening a terminal, I can run the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

66 Chapter 3

following command to change my working directory to the BlueLeaks folder,
using the absolute path to the folder:

cd /Volumes/datasets/BlueLeaks

Alternatively, I can use a relative path to the folder, running the follow-
ing command from my home folder:

cd ../../Volumes/datasets/BlueLeaks

Why does the relative path start with ../.. in this example? When
I open the terminal, the working directory is my home folder, which in
macOS is /Users/micah. The relative path .. would be its parent folder, /Users;
the relative path ../.. would be /; the relative path ../../Volumes would be
/Volumes; and so on.

As noted earlier, the tilde symbol (~) represents your home folder. No
 matter what your working directory is, you can run the following to go back
to your home folder:

cd ~

Use the following syntax to move to a folder inside your home folder:

cd ~/folder_name

For example, the following command would move you to your Documents
folder:

cd ~/Documents

If you run ls again after a cd command, the output should show you the
files in the folder to which you just moved.

Using the help Argument
Most commands let you use the argument - h, or - - help, which displays
detailed instructions explaining what the command does and how to use it.
For example, try running the following:

unzip - - help

This command should show instructions on all of the dif fer ent argu-
ments that are available to you when using the unzip command, which is
used to extract compressed ZIP files.

 Here’s the output I got when I ran that command on my Mac:

UnZip 6.00 of 20 April 2009, by Info- ZIP. Maintained by C. Spieler. Send
bug reports using http:// www . info - zip . org / zip - bug . html; see README for details.
- - snip- -

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://www.info-zip.org/zip-bug.html

The Command Line Interface 67

 - p extract files to pipe, no messages - l list files (short format)
 - f freshen existing files, create none - t test compressed archive data
 - u update files, create if necessary - z display archive comment only
 - v list verbosely/show version info - T timestamp archive to latest
 - x exclude files that follow (in xlist) - d extract files into exdir
- - snip- -

This output briefly describes what each argument for the unzip command
does. For example, if you use the - l argument, the command shows a list of
all of the files and folders inside the ZIP file without actually unzipping it.

Accessing Man Pages
Many commands also have manuals, other wise known as man pages, which
give more detail about how to use those commands. Run the following to
access a command’s man page:

man command_name

For example, to read the manual for the unzip command, run:

man unzip

The output should display a longer explanation of how to use the unzip
command and its arguments.

Use the up and down arrows and the page up and page down keys to
scroll through the man pages, or press / and enter a term to search. For
example, to learn more details about how the unzip command’s - l argument
works, press / and enter - l, then press ENTER. This should bring you to the
first time - l appears on the man page. Press n to move on to the next occur-
rence of your search term.

When you’re finished, press q to quit the man page.

Tips for Navigating the Terminal
This section introduces ways to make working on the command line more
 convenient and efficient, along with tips for avoiding and fixing errors. It
also shows how to handle problematic filenames, such as those with spaces,
quotes, or other special characters. A basic understanding of these concepts
 will save you a lot of time in the future.

Entering Commands with Tab Completion
Shells have a feature called tab completion that saves time and prevents errors:
enter the first few letters of a command or a path, then press the TAB key.
Your shell will fill in the rest if pos si ble.

For example, both macOS and Ubuntu come with a program called
hexdump. In a terminal, enter hexd and press TAB. This should automatically

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

68 Chapter 3

fill in the rest of the hexdump command. Tab completion also works for paths.
For example, Unix- like operating systems use the /tmp folder to store tem-
porary files. Enter ls /tm and press TAB. Your shell should add the p to fin-
ish typing out the full command.

If you enter only the first couple letters of a command or a path, there
may be more than one way for your shell to complete your line of code.
Assuming that you have both Downloads and Documents folders in your home
folder, type ls ~/Do and press TAB. You’ll hear a quiet beep, meaning that
the shell doesn’t know how to proceed. Press TAB one more time, and it
should display the options, like this:

Documents/ Downloads/

If you enter a c so that your command so far is ls ~/Doc and press TAB,
the command should complete to ls ~/Documents/. If you enter a w so that
your command so far is ls ~/Dow and press TAB, it should complete to
ls ~/Downloads/.

If you’ve already typed out the path of a folder, you can also press TAB
to list files in that folder, or to automatically complete the filename if there’s
only one file in the folder. For example, say I have my datasets USB disk, on
which I’ve downloaded BlueLeaks, plugged into my Ubuntu computer. If I
want to change to my BlueLeaks folder, I can enter the following and press
TAB:

cd /Vo

This completes the command as follows:

cd /Volumes/

I press TAB again, and my computer beeps and lists the folders in
/Volumes, which in my case are Macintosh HD and datasets. I enter d, so my
command is cd /Volumes/d, and press TAB, and the shell completes the com-
mand as follows:

cd /Volumes/datasets/

I press TAB again. My computer beeps again and lists all of the files
and folders in my datasets USB disk. I enter B (the first letter of BlueLeaks)
and press TAB, which gives me:

cd /Volumes/datasets/BlueLeaks/

Fi nally, I press ENTER to change to that folder.

Editing Commands
You can also edit commands. When you start typing a command, you can
press the left and right arrow keys to move the cursor, allowing you to edit

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 69

the command before running it. You can also press the HOME and END
keys—or, if you’re using a Mac keyboard, CONTROL- A and CONTROL- E—
to go to the beginning and end of a line, respectively. You can also cycle
between commands you’ve already run using the up and down arrows. If
you just ran a command and want to run it again, or to modify it and then
run it, press the up arrow to return to it. Once you find the command
 you’re looking for, use the arrow keys to move your cursor to the correct
position, edit it, and then press ENTER to run it again.

For example, I frequently get “permission denied” errors when I acci-
dentally run commands as my unprivileged user when I should have run
them as root. When this happens, I press the up arrow, then CONTROL- A
to go to the beginning of the line, add sudo, and press ENTER to success-
fully run the command.

Dealing with Spaces in Filenames
Sometimes filenames contain multiple words separated by spaces. If you
 don’t explic itly tell your shell that a space is part of a filename, the shell
assumes that the space is there to separate parts of your command. For
example, this command lists the files in the Documents folder:

ls -lh ~/Documents

 Under the hood, your shell takes this string of characters and splits it
into a list of parts that are separated by spaces: ls, - lh, and ~/Documents. The
first part, ls, is the command to run. The rest of the parts are the com-
mand’s arguments. The - lh argument tells the program to display the out-
put as a list and make the file sizes human- readable. That is, it will convert
the file sizes into units that are easier to read, like kilobytes, megabytes, and
gigabytes, rather than a large number of bytes. The ~/Documents argument
means you want to list the files in that folder.

Suppose you want to use the same command to list the files in a folder
with a space in its name, like ~/My Documents. You’ll run into prob lems if
you enter this command:

ls -lh ~/My Documents

When your shell tries to separate this command into parts, it will come
up with ls, - lh, ~/My, and Documents; that is, it sees ~/My Documents as two sep-
arate arguments, ~/My and Documents. It will try to list the files in the folder ~/
My (which doesn’t exist), then also list files in the folder Documents, which
 isn’t what you intended.

To solve this prob lem, put the name of the folder in quotes:

ls -lh "~/My Documents"

The shell sees anything within quotes as a single entity. In this case, ls
is the command and its arguments are - lh followed by ~/My Documents.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

70 Chapter 3

Alternatively, you can use a backslash (\) to escape the space:

ls -lh ~/My\ Documents

In the Unix family of operating systems, the backslash is called the
escape character. When the shell parses that string of characters, it treats an
escaped space (\ followed by a space) as a part of the name. Again, the shell
reads ls as the command and - lh and ~/My Documents as its arguments.

Using Single Quotes Around Double Quotes
You can use the escape character to escape more than spaces. Suppose you
want to delete a filename that has a space and quotes in it, like Say “Hello”.
txt. You can use the rm command to delete files, but the following syntax
 won’t work:

rm Say "Hello".txt

Your shell will split this command into the words rm, Say, and Hello.txt.
You might think you could solve this by simply adding more quotes

rm "Say "Hello".txt"

but that won’t work either, since you’re quoting something that contains
quotes already. Instead, surround the argument with single quotes ('), like
this:

rm 'Say "Hello".txt'

When your shell sees an escaped quote (\"), it won’t treat it as a normal
quote. It will read the command as rm and the argument as Say "Hello".txt,
exactly as you intended.

Avoid putting spaces, quotes, or other troublesome characters in file-
names whenever pos si ble. Sometimes you can’t avoid them, especially when
working with datasets full of someone else’s files. Tab completion helps
in those cases, allowing you to enter just enough of the filename so that
when you press TAB, your shell will fill out the rest for you. To delete a file
in your working directory called Say “Hello”.txt, for example, entering
rm Sa<TAB> completes the command to rm Say\ \"Hello\".txt with the correct
escape characters included, so you don’t have to provide the proper syntax
yourself.

Installing and Uninstalling Software with Package Man ag ers
Of the many power ful command line tools that let you quickly work with
datasets, only some come preinstalled; you’ll need to install the rest your-
self. While you’re likely used to installing software by downloading an
installer from a website and then running it, the command line uses package

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 71

man ag ers, programs that let you install, uninstall, and update software.
Nearly all CLI software is free and open source, so Linux operating systems
come with large collections of software that you can easily install or unin-
stall with a single command. Package management proj ects are also avail-
able for macOS (Homebrew) and Win dows (Chocolately).

If you’re using Linux, you likely use a package man ag er called apt. This
is what the popular Linux operating systems like Ubuntu and Debian use,
as well as all of the Linux distributions based on them (including Ubuntu
in WSL). If your Linux distribution doesn’t use apt, you’ll need to look up
the package man ag er documentation for your operating system.

PACK AGE M A N AGEMEN T FOR NON- UBUN T U L INU X USERS

You should be able to follow along with this book no matter what version of
Linux you’re using. Several other Debian- based Linux distributions also rely
on apt, like Linux Mint, Pop! OS, and others. If you’re using one of these,
the apt commands in this book should work, though the names of software
packages may be slightly dif fer ent. If you encounter that issue, run apt search
software_name to find the name of the package that you should be installing
 for your operating system.

If you’re using a version of Linux that doesn’t use apt as its package man-
ag er, you’ll need to slightly modify this book’s commands to use your Linux
distribution’s package man ag er. For example, if you’re running Fedora, Red
Hat, CentOS, or other similar Linux distributions, you’ll use a package man ag er
called DNF (for older versions of these distributions, the package man ag er is
called yum). See Fedora’s documentation at https:// docs . fedoraproject . org / en
- US / quick - docs / dnf / for more details on using DNF. Arch Linux uses a package
man ag er called pacman (https:// wiki . archlinux . org / title / Pacman).

If you’re using a Linux distribution not mentioned here, read your operating
system’s package management documentation and learn how to search for,
install, uninstall, and update software from the terminal. When you come across
an apt command in this book, use your operating system’s package man ag er
software instead. Other Linux commands covered in this book should be the
same regardless of your distribution.

If you’re using a Mac, start with Exercise 3-2 to learn how to
use Homebrew. If you’re using Linux or Win dows with WSL, skip to
Exercise 3-3 to learn how to use apt. This book mostly uses Unix shells and
 doesn’t cover Chocolately, which installs Win dows software instead of Linux
software.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.fedoraproject.org/en-US/quick-docs/dnf/
https://docs.fedoraproject.org/en-US/quick-docs/dnf/
https://wiki.archlinux.org/title/Pacman

72 Chapter 3

Exercise 3-2: Manage Packages with Homebrew on macOS
To install Homebrew, macOS’s package man ag er, open a browser and go to
Homebrew’s website at https:// brew . sh, where you should find the command
to install the tool. Copy and paste the installation command into your ter-
minal and press ENTER:

/bin/bash - c "$(curl - fsSL https:// raw . githubusercontent . com / Homebrew / install / HEAD / install . sh)"

This command uses a program called cURL, which I’ll discuss later in
this chapter, to download a shell script from GitHub. It then runs that script
using the bash shell. The script itself uses sudo, meaning that if you enter
your password, it will run commands as root on your computer.

This is what the output looks like on my Mac:

==> Checking for 'sudo' access (which may request your password)...
Password:

Enter the password you use to log into your Mac and press ENTER
to change your status from unprivileged user to root. No characters will
appear in the terminal while you’re typing.

 After you enter your password, Homebrew should show you a list of
paths for files that it will install. The output should end with the following
message:

Press RETURN to continue or any other key to abort:

Press ENTER and wait for Homebrew to finish installing. If any prob-
lems arise, Homebrew will fail and show you an error message.

W A R N I N G Copying and pasting commands into your terminal can be dangerous: if a hacker
tricks you into running the wrong shell script, they could hack your computer. Copy
and paste commands in your terminal only from sources you trust.

Now that you’ve installed Homebrew, you have access to the brew com-
mand, which you can use to install more software. To check whether
Homebrew has a certain program available to install, run:

brew search program_name

For example, Neofetch is a CLI program that displays information
about your computer. To see if it’s available in Homebrew, run:

brew search neofetch

The output should list the packages that have neofetch in their names
or descriptions; in this case, Neofetch should be listed. Similarly combine

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://brew.sh
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh

The Command Line Interface 73

brew search with other program names to check whether they’re available to
install.

When you find a package you want to install, run:

brew install program_name

For example, to install Neofetch, run:

brew install neofetch

This should download and install the neofetch tool. Try running it:

neofetch

Figure 3-5 shows Neofetch running on my Mac. The figure is black- and-
white in print, but if you run the command on your computer, you should
see a rainbow of colors.

Figure 3-5: Running Neofetch on my Mac

Uninstall programs with the brew uninstall command. For example, run
the following to uninstall Neofetch:

brew uninstall neofetch

To update all programs you’ve installed with Homebrew to their latest
versions, run:

brew update

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

74 Chapter 3

Run brew help to see some examples of how to use this command.
Now that you have a package man ag er installed, you’ll practice using

the command line in Exercise 3-4.

Exercise 3-3: Manage Packages with apt on Win dows or Linux
You must run most apt commands as root. Before installing or updating
software, make sure your operating system has an up- to- date list of available
software by opening a terminal and running the following:

sudo apt update

When I run that command on my Linux computer, I get this output:

Hit:1 http:// us . archive . ubuntu . com / ubuntu jammy InRelease
Hit:2 http:// security . ubuntu . com / ubuntu jammy- security InRelease
Hit:3 http:// us . archive . ubuntu . com / ubuntu jammy- updates InRelease
Hit:4 http:// us . archive . ubuntu . com / ubuntu jammy- backports InRelease
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
178 packages can be upgraded. Run 'apt list - - upgradable' to see them.

This tells me I have 178 packages that can be upgraded. Run the follow-
ing to upgrade your own software:

sudo apt upgrade

 Here’s the output when I run that command:

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
Calculating upgrade... Done
The following packages will be upgraded:
- - snip- -
178 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
64 standard security updates
Need to get 365 MB of archives.
 After this operation, 2,455 kB of additional disk space will be used.
Do you want to continue? [Y/n]

Type Y and press ENTER to install the updates.
 You’re now ready to install new software. To check whether the package

man ag er has a certain program available to install, run:

apt search program_name

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://us.archive.ubuntu.com/ubuntu
http://security.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu
http://us.archive.ubuntu.com/ubuntu

The Command Line Interface 75

You don’t need to use sudo with this search command because it’s not
installing or uninstalling anything. However, once you find a package you
want to install, run:

sudo apt install program_name

For example, Neofetch is a CLI program that displays information
about your computer. To see if Neofetch is available in your package man-
ag er, run:

apt search neofetch

The output should show a list of packages that have neofetch in their
names or descriptions—in this case, Neofetch should be listed.

To install the neofetch tool, run:

sudo apt install neofetch

You should see a list of packages that you must install in order to use
Neofetch. Press Y and then ENTER to download and install them all.

Once installation is complete, try running Neofetch:

neofetch

Figure 3-6 shows Neofetch running on my Ubuntu computer. The fig-
ure is black- and- white in print, but if you run the command on your com-
puter, the output should appear in several dif fer ent colors.

Figure 3-6: Running Neofetch on my Ubuntu computer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

76 Chapter 3

Uninstall packages with the sudo apt remove command. For example, to
uninstall Neofetch, run:

sudo apt remove neofetch

Now that you have a package man ag er installed, you’ll practice using
the command line in Exercise 3-4.

Exercise 3-4: Practice Using the Command Line with cURL
In this exercise, you’ll learn how to determine whether you have a com-
mand installed, download web pages, save the output from a file using redi-
rection, and view the contents of files directly from the terminal.

The cURL program is a common way to load web pages from the
command line. To load all of the HTML code for the website https:// www
. torproject . org, for example, run the following command:

curl https:// www . torproject . org

To see if cURL is installed, use the which command:

which curl

If cURL is installed, the output should show you the path where the
program is installed on your computer (something like /usr/bin/curl). If not,
the output should return you to the shell prompt.

If you don’t have cURL, use your package man ag er to install it. Enter
sudo apt install curl for Win dows with WSL and Linux machines, or brew
install curl for Macs. Then run which curl again, and you should see the
path to the cURL program.

Download a Web Page with cURL
When you load a web page, your web browser renders a human- readable
version of its content based on the page’s HTML, CSS, and JavaScript code.
To see the raw HTML content from the web page hosted at https:// example
. com, run the following command in your terminal:

curl example . com

If you load that site in a browser and then view the HTML source by
pressing CTRL- U in Win dows or Linux, or z- U in macOS, you should
see the same HTML code that this command displays in your
terminal.

Some websites are designed to show you text that’s easy to read in a
terminal when you access them through cURL, as opposed to showing you
HTML. For example, https:// ifconfig . co will tell you your IP address, geolocate

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.torproject.org
https://www.torproject.org
https://www.torproject.org
https://example.com
https://example.com
http://example.com
https://ifconfig.co

The Command Line Interface 77

it, and tell you what country and city it thinks you’re in. Try running the
following command:

curl https:// ifconfig . co

This should display your IP address. Next, run the following:

curl https:// ifconfig . co / country

When I run this command, my output is United States. You can try con-
necting to a VPN server in another country and then run it again; it should
detect your web traffic as coming from that other country.

Save a Web Page to a File
Run the following commands to load https://example . com and save it to a file:

cd /tmp
curl example . com > example . html

The first line of code changes your working directory to /tmp, a tempo-
rary folder where files you store get deleted automatically. The second line
loads https://example . com, but instead of displaying the site’s contents for you
in the terminal, it redirects them into the file example . html and doesn’t dis-
play anything in the terminal.

The > character takes the output of the command to its left and saves
it into the filename to its right. This is called redirection. Since you changed
to the /tmp folder before running the curl command, and the filename you
provided was a relative path, it saved to the file /tmp/example . html.

Run a directory listing to make sure you’ve stored the file correctly:

ls - lh

This should list all the files in /tmp, which should include a file called
example . html. Try displaying the contents of that file in your terminal using
the cat command:

cat /tmp/example . html

The terminal isn’t always a good place to view a file’s contents. For
example, long lines will wrap, which may make them difficult to compre-
hend. In the following section, you’ll learn more about the dif fer ent types
of files and how to work with them more easily in the command line.

Text Files vs. Binary Files
 There are many dif fer ent types of files, but they all fit into one of two cat-
egories: text files and binary files.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ifconfig.co
https://ifconfig.co/country
https://example.com
http://example.com
http://example.html
https://example.com
http://example.html
http://tmp/example.html
http://example.html
http://tmp/example.html

78 Chapter 3

Text files are made up of letters, numbers, punctuation, and a few spe-
cial characters. Source code, like Python scripts (discussed in Chapters 7
and 8); shell scripts; and HTML, CSS, and JavaScript files are all examples
of text files. Spreadsheets in CSV (comma- separated value) format and
JSON files (discussed in Chapters 9 and 11, respectively) are also text files.
 These files are relatively simple to work with. You can use the cat command
to display text files, as you did in the previous exercise.

Binary files are made up of data that’s more than just letters, numbers,
and punctuation. They’re designed for computers programs, not humans,
to understand. If you try to view the contents of a binary file using the cat
command, you’ll just see gibberish. Instead, you must use specialized pro-
grams that understand those binary formats. Office documents like PDFs,
Word documents, and Excel spreadsheets are binary files, as are images
(like PNG and JPEG files), videos (like MP4 and MOV files), and com-
pressed data like ZIP files.

N O T E The term binary file is technically a misnomer, because all files are represented by
computers as binary— strings of ones and zeros.

Text files aren’t always easy to understand (if you’re not familiar with
HTML, viewing it might look like gibberish), but it’s at least pos si ble to dis-
play them in a terminal. This isn’t true for binary files. For example, if you
try using cat to display the contents of binary files like PNG images in your
terminal, the output will look something like this:

?PNG

IHDR?L??
?D?ؐ???? Pd@?????Y????????u???+?2???ע???@?!N???? ^?K??Eׂ?(??U?N????E??ł??.?ʛ?u_??|?????g?s?ܙ{?@;?
?sQ
 ?x?)b?hK'?/??L???t?+???eC????+?@????L??????/@c@웗7?qĶ?F
 ?L????N??4Ӈ4???!?????
- - snip- -

Your terminal can’t display all of the characters that make up PNG
images, so those characters just don’t get displayed. If you want to see
the information stored in a PNG, you need to open it in software that’s
designed to view images.

To work with the files in datasets or write shell scripts and Python code,
you’ll need a text editor, a program designed to edit text files. You’ll install a
text editor in Exercise 3-5 to prepare for writing your first shell script.

Exercise 3-5: Install the VS Code Text Editor
In this exercise, you’ll download the free and open source text editor Visual
Studio Code (VS Code) and practice using it to view a file. Download VS
Code from https:// code . visualstudio . com and install it. (If you’re already famil-
iar with another text editor, feel free to keep using that one instead.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://code.visualstudio.com

The Command Line Interface 79

VS Code comes with a command called code that makes it easy to open
files in VS Code directly from your terminal. Once VS Code is finished
installing, run the following commands:

curl example . com > /tmp/example . html
code /tmp/example . html

The first line of code saves the HTML from example . com in the file /tmp
/example . html, just like you did in Exercise 3-4. The second line opens this
file in VS Code.

When you open new files and folders in VS Code, it asks whether you
trust each file’s author, giving you the option to open the file in Restricted
Mode. For the exercises in this book, you can open files without using
Restricted Mode.

When you open example . html, it should look something like this:

<!doctype html>
<html>
<head>
 <title>Example Domain</title>

 <meta charset="utf-8" />
 <meta http - equiv = "Content - type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device- width, initial- scale=1" />
 <style type="text/css">
 body {
 background- color: #f0f0f2;
 margin: 0;
 padding: 0;
 font- family: - apple- system, system-ui, BlinkMacSystemFont, "Segoe UI", "Open Sans",
"Helvetica Neue", Helvetica, Arial, sans- serif;

 }
- - snip- -

The output shows the same HTML code that you saw in your terminal
when you ran cat/tmp/example . html in Exercise 3-4, but this time it should be
much easier to read. VS Code and many other text editors have a feature
called syntax highlighting, where dif fer ent parts of the file appear in dif fer-
ent colors. This makes it far quicker and easier for your brain to interpret
source code, and also for you to catch mistakes in syntax.

VS Code is highly customizable and includes a wide variety of exten-
sions that add extra functionality and make the program more pleasant to
use. When you open new types of files, for instance, VS Code might ask if
you’d like to install extensions to better support those files.

N O T E To learn more about VS Code’s other features, including when to use Restricted Mode,
check out the documentation at https:// code . visualstudio . com / docs.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://example.com
http://tmp/example.html
http://tmp/example.html
http://example.com
http://tmp/example.html
http://tmp/example.html
http://example.html
http://http-equiv="Content-type
http://cat/tmp/example.html
https://code.visualstudio.com/docs

80 Chapter 3

Now that you have some experience running commands in a shell and
have set up a text editor, you’ll write your first shell script in Exercise 3-6.

Exercise 3-6: Write Your First Shell Script
As mentioned earlier, a shell script is a text file that contains a list of shell
commands. When you tell your shell to run the script, it runs those com-
mands one at a time. Many commands are themselves shell scripts, such as
the man command you used earlier in this chapter.

Navigate to Your USB Disk
Make sure your datasets USB disk is plugged in and mounted, and open up a
terminal. To change your working directory to the datasets disk, skip to the
subsection for your operating system.

Win dows

 After mounting your USB disk, open File Explorer by clicking This PC on
the left. This page will show all of your connected drives and their drive let-
ters. Note your USB disk’s drive letter, then change your working directory
to the disk by running the following command, substituting d for the cor-
rect drive letter:

cd /mnt/d/

Your shell’s working directory should now be your datasets USB disk. To
check, run ls to view the files on this disk.

macOS

 After mounting your datasets USB disk, open a terminal and change your
working directory to the disk by running the following command:

cd /Volumes/datasets

Your shell’s working directory should now be your datasets USB disk. To
check, run ls to view the files on this disk.

Linux

 After mounting your datasets USB disk, open a terminal and change your
working directory to the disk. In Linux, the path to your disk is prob ably
something like /media/<username>/datasets. For example, my username is
micah, so I would run this command:

cd /media/micah/datasets

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 81

Your shell’s working directory should now be your datasets USB disk. To
check, run ls to view the files on this disk.

Create an Exercises Folder
The mkdir command creates a new folder. Now that you’re in your USB disk
drive in your terminal, run the following commands to create a new folder
called exercises, and then switch to it:

mkdir exercises
cd exercises

Now make a folder for your Chapter 3 homework:

mkdir chapter-3

Next, you’ll open the exercises folder in VS Code.

Open a VS Code Workspace
Each VS Code win dow is called a workspace. You can add folders to your
workspace, which allows you to easily open any files in that folder or create
new ones. To open a VS Code workspace for your exercises folder, run the
following command:

code .

If the argument that you pass into code is a folder, like . (the current
working directory), VS Code will add that folder to your workspace. If the
path is a file, like in Exercise 3-5 when you opened /tmp/example . html, it will
open just that file.

Next, create a new file in the chapter-3 folder. To do this, right- click the
chapter-3 folder, choose New File, name your file exercise-3-6.sh, and press
ENTER. This should create a new file that you can edit. Since the file exten-
sion is .sh, VS Code should correctly guess that it’s a shell script and use the
right type of syntax highlighting.

Figure 3-7 shows a VS Code workspace with the exercises folder added
and the empty file exercise-3-6.sh created.

The VS Code win dow is split into two main parts. The Explorer panel
on the left shows the contents of all of the folders added to your workspace.
In this case, it shows exercises and every thing it contains: a chapter-3 folder
and the exercise-3-6.sh file you just created. The right side of the win dow is
the editor, where you’ll enter your shell script.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://tmp/example.html

82 Chapter 3

Write the Shell Script
Enter the following text into exercise-3-6.sh in VS Code and save the file:

#!/bin/bash
echo "Hello world! This is my first shell script."
Display the current user
echo "The current user is:"
whoami
Display the current working directory
echo "The current working directory is:"
pwd

The first line that starts with #! is called the shebang, and it tells the shell
which interpreter— the program that opens and runs the script—to use. In
this case, the shell will use /bin/bash, meaning you’re writing a bash script.
In this book, you’ll add that same shebang to the top of all of your shell
scripts. Even if you’re working from a shell besides bash, this shebang tells
your computer to run the current script using bash.

In shell scripts, lines that start with the hash character (#) are called
comments, and they don’t affect how the code itself works; if you removed the
comments from this script, it would run the same way. The first character
of the shebang is a hash character, which means that it’s technically a com-
ment in bash and zsh.

Comments like # Display the current user work as notes to remind you
what your code does when you come back to a script you wrote months or
years earlier. Anyone else who works with your code, perhaps trying to fix
something or add features, will appreciate your comments for the same
reason.

Figure 3-7: VS Code with the exercises folder open in a workspace

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The Command Line Interface 83

The echo command displays text to the terminal. The whoami command
displays the name of the user running the script. The pwd command displays
the current working directory.

Run the Shell Script
Before you can run a script, you need to make it executable by giving it per-
mission to run as a program. The chmod command lets you change permis-
sions on files with the following syntax:

chmod permissions filename

To mark a file as executable, use +x as the permissions argument. Run
the following command in your terminal (from within your exercises folder):

chmod +x ./chapter-3/exercise-3-6.sh

You can now run the script by entering either its absolute path or its
relative path:

./chapter-3/exercise-3-6.sh

Starting your command with ./ tells your shell that you’re entering the
relative path to a script.

 Here’s the output I get when I run this script on my Mac:

Hello world! This is my first shell script.
The current user is:
micah
The current working directory is:
/Volumes/datasets/exercises

The current user is micah and the current working directory is /Volumes/
datasets/exercises.

This script shows you dif fer ent output depending on your working direc-
tory. To demonstrate the differences, here’s what happens when I switch to
my home folder and then run it again:

micah@trapdoor exercises % cd ~
micah@trapdoor ~ % /Volumes/datasets/exercises/chapter-3/exercise-3-6.sh
Hello world! This is my first shell script.
The current user is:
micah
The current working directory is:
/Users/micah

This time, the current working directory in the output has changed to
/Users/micah. Try switching to your own home folder with cd ~ and running
the script again.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

84 Chapter 3

The script also shows dif fer ent output depending on which user is
 running it. So far I’ve been running it as micah, but here’s what the output
looks like when I run it as root:

micah@trapdoor ~ % sudo /Volumes/datasets/exercises/chapter-3/exercise-3-6.sh
Password:
Hello world! This is my first shell script.
The current user is:
root
The current working directory is:
/Users/micah

This time, the output lists the current user as root. Try running the
script as root on your own computer.

You’ll write many more scripts throughout this book. I’ve included
a copy of the code for every exercise in this book’s online resources. In
Exercise 3-7, you’ll download a copy of all of this code.

Exercise 3-7: Clone the Book’s GitHub Repository
Programmers store source code in git repositories (or git repos for short),
which are composed of a collection of files (usually source code) and the
history of how they have changed over time. By storing your scripts this way,
you can host them on GitHub, a popular website for hosting git repos. Git
repos help you share your code with others, and they make it easier for mul-
tiple people to write code for the same proj ect. When you clone a git repo,
you download a copy of it to your computer.

This book comes with a git repo at https:// github . com / micahflee / hacks - leaks
- and - revelations containing the code for every exercise and case study in this
book, along with additional instructions and source code related to the
book’s appendixes. In this assignment, you’ll clone this repo and store the
copy locally on your computer.

First, check whether the git program is installed on your machine:

which git

If git is installed, you’ll see its path in the output, like /usr/bin/git. If it’s
not installed, this command won’t display anything in the terminal. In that
case, install git by entering the appropriate command for your operating
system: brew install git for macOS users, or sudo apt install git for Linux
and WSL users.

Next, in your terminal, change to your USB disk folder. On my macOS
computer, I do this with the following command:

cd /Volumes/datasets

If necessary, replace the path in my command with the appropriate
path to your datasets USB disk for your operating system.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations
https://github.com/micahflee/hacks-leaks-and-revelations

The Command Line Interface 85

Once you’re in the datasets disk, run this command to clone the repo:

git clone https:// github . com / micahflee / hacks - leaks - and - revelations . git

This should create a new folder called hacks- leaks- and- revelations contain-
ing all of the code from the book’s repo.

Fi nally, add the book’s git repo folder to your VS Code workspace. In
VS Code, click FileAdd Folder to Workspace, then browse for the hacks-
leaks- and- revelations folder on your USB disk. This will add the book’s code
to your VS Code workspace so you can easily browse through all of the files.

You now have access to solutions for all future exercises! In the follow-
ing chapters, I’ll walk you through the process in all of the programming
exercises, but you can also run the complete scripts taken from the git repo
or copy and paste their code into your own programs.

Summary
In this chapter, you’ve learned the basics of command line theory, includ-
ing how to use the shell in a terminal, run vari ous shell commands, and
navigate the shell using features like tab completion. You installed software
directly in the terminal using a package man ag er, and you wrote your first
 simple shell script.

In the next chapters, you’ll put these techniques into practice to
explore hundreds of gigabytes of data, make datasets searchable, convert
email from a proprietary format to an open format, and write Python
code. You’ll start in the following chapter by taking a deeper dive into the
BlueLeaks dataset.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations.git

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

In this chapter, you’ll build on the command line skills
 you’ve learned so far and begin investigating real data-
sets. You’ll use for loops to unzip the BlueLeaks files,
then search the files to determine which fusion centers
have the most data and which documents contain the
keywords antifa and Black Lives Matter. I’ll also give an
overview of the mysterious encrypted data in the data-
set and describe my hypothesis of how the hacker col-
lected the data.

You’ll also learn to create Linux cloud servers and connect to them
securely for faster internet and extra disk space. As practice, you’ll use
a remote server to download and briefly examine hacked data from the
Oath Keepers militia, a far- right extremist group that participated in the
January 6, 2021, US Capitol insurrection.

4
E X P L O R I N G D A T A S E T S

I N T H E T E R M I N A L

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

88 Chapter 4

Introducing for Loops
The BlueLeaks torrent you downloaded in Exercise 2-1 is 269GB and con-
tains 168 dif fer ent ZIP files ranging from 49GB to half a kilobyte each. In
theory, you could manually unzip these 168 files one at a time to access the
data. However, this slow, tedious process becomes impractical with even
larger datasets (imagine individually extracting 10,000 ZIP files). In this
section, you’ll learn to speed up this task by automating it with for loops.

A for loop is a type of command that runs a piece of code once for
 every item in a list. Each time the code loops, it stores the current item in a
variable, which you can think of as a placeholder for some value. Code vari-
ables are similar to those in math, where the value of x might be dif fer ent
for dif fer ent prob lems, but in shell scripting, the values can be text or num-
bers. Even though each loop runs the same code, the results may be dif fer-
ent, because the value of the variable changes with each loop.

For example, the following for loop displays the numbers 1, 2, and 3:

for NUMBER in 1 2 3
do
 echo $NUMBER
done

This for loop starts with the syntax for variable_name in list_of_items,
followed by do, followed by the commands to run for each item in the list,
followed by done. In this case, variable_name is NUMBER and list_of_items is 1 2 3.
The value of the NUMBER variable will be 1 the first time the code loops, 2 dur-
ing the second loop, and 3 during the third loop.

The echo command displays something to the terminal, in this case
$NUMBER. The dollar sign ($) means the code should display the value of the
NUMBER variable, rather than the word NUMBER.

N O T E Using all caps is a common convention for variable names, but it’s not required. For
example, you could call the variable number instead of NUMBER and display it with echo
$number instead of echo $NUMBER. Variable names are case sensitive.

When you run the previous for loop in your terminal, you should see
the following output:

1
2
3

You can also use a for loop to loop through the output of another shell
command, as shown in the following code:

for FILENAME in $(ls *.zip)
do
 echo "ZIP filename: $FILENAME"
done

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 89

The variable name in this code is FILENAME. Next, $(ls *.zip) tells your
machine to run the ls *.zip command. This command outputs a list of all
of the ZIP files in the current folder, producing a list of filenames. The for
loop cycles through that list and runs the code between do and done for each
filename. In this case, the echo command prints the filenames to the termi-
nal in ZIP filename: filename format.

For example, here’s what it looks like when I run this code in the
BlueLeaks folder in my terminal on macOS:

micah@trapdoor BlueLeaks % for FILENAME in $(ls *.zip)
for> do
for> echo "ZIP filename: $FILENAME"
for> done
ZIP filename: 211sfbay.zip
ZIP filename: Securitypartnership.zip
ZIP filename: acprlea.zip
- - snip- -

Each loop, the value of FILENAME is the name of one of the ZIP files.
When the echo command runs, it displays those filenames, one after
another.

Exercise 4-1: Unzip the BlueLeaks Dataset
In this exercise, you’ll write a script to unzip all the ZIP files in BlueLeaks
so you can work with the data they contain. Once unzipped, the files will
take 271GB of additional space on your datasets USB.

If you’re using macOS or Linux, follow the instructions in “Unzip Files
on macOS or Linux” next. If you’re using Win dows, read that subsection to
learn how to write for loops in bash since you’ll need that skill later in the
book, but you won’t need to follow along until “Unzip Files on Win dows” on
page XX.

Unzip Files on macOS or Linux
Open a terminal and navigate to your BlueLeaks folder by running the fol-
lowing command, replacing blueleaks_path with your own folder path:

cd blueleaks_path

On Linux, I’d use this command (your path will be dif fer ent):

cd /media/micah/datasets/BlueLeaks

On macOS, I’d use the following (again, your path will vary):

cd /Volumes/datasets/BlueLeaks

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

90 Chapter 4

Run ls to see the list of files in this folder and ls - lh to see detailed
information about these files, like their sizes.

To unzip single files, you use the following syntax:

unzip filename

For example, run this command to unzip the first file in BlueLeaks:

unzip 211sfbay.zip

This should extract the 2.6GB 211sfbay.zip file into the folder called
211sfbay. Run ls again and you should see the new folder containing all of
the hacked data from one of the BlueLeaks sites.

However, you want to unzip all of the BlueLeaks files. Delete the
211sfbay folder:

rm - r 211sfbay

The rm command on its own deletes files; to delete entire folders, you
include - r (short for - - recursive). The - r option deletes all the files in that
folder, and all the files in folders in that folder, and so on, before fi nally
deleting the target folder.

Navigate to your text editor, create a new folder in your exercises folder
called chapter-4, and create a new file in the chapter-4 folder called exercise-
4-1- unzip.sh. (Storing your script in a separate folder prevents you from pol-
luting the dataset with your own files.) In your new file, enter the following
code:

#!/bin/bash
for FILENAME in $(ls *.zip)
do
 echo "Unzipping $FILENAME..."
 unzip - o $FILENAME
done

Since exercise-4-1- unzip.sh is a shell script, it begins with the same
#!/bin/bash shebang as the script in Chapter 3. After you define this for
loop, the script starts it with do and ends it with done, running the echo
"Unzipping $FILENAME..." and unzip - o $FILENAME commands over and over.
The echo command displays the value of the FILENAME variable, which
changes to a new filename with each loop, and the unzip command unzips
that file. The - o argument tells unzip to overwrite files if necessary, meaning
that if any file being unzipped already exists, the script will replace it with
the newer version.

For example, when you run this code on BlueLeaks, the value of
FILENAME during the first loop is 211sfbay.zip. The code that runs in this loop
is equivalent to the following commands:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 91

echo "Unzipping 211sfbay.zip..."
unzip - o 211sfbay.zip

The second time the code loops, it runs the same code with acprlea.zip
as the FILENAME value, and so on.

Change to your BlueLeaks folder. On my Mac, I do this by running the
following command:

cd /Volumes/datasets/BlueLeaks

Next, make this shell script executable and run it as follows:

chmod +x ../exercises/chapter-4/exercise-4-1- unzip.sh
../exercises/chapter-4/exercise-4-1- unzip.sh

 These commands assume that your exercises folder is in the same folder
as the BlueLeaks folder. The relative path to your exercises folder is ../exercises,
and the relative path to the shell script you just saved is ../exercises/chapter-4/
exercise-4-1- unzip.sh.

 After you run these commands, your script should begin unzipping all
168 BlueLeaks files. Sit back, relax, and perhaps enjoy a beverage while you
wait for it to finish, which could take hours.

LOOPING T HROUGH F IL EN A MES W IT H SPACES

Looping over the output of ls as you’ve just done works only if the filenames
 don’t contain spaces. If they did, your script would fail due to invalid filenames.
For example, if you had a file called Work Documents.zip in the folder, the
for loop would consider it two files, Work and Documents.zip, as discussed in
Chapter 3.

The output of the ls command is a string— that is, a list of characters— with
each filename separated by a newline character (\n), which represents a line
break. If you have two files in a folder, readme.txt and Work Documents.zip,
the ls command outputs a string like readme.txt\nWork Documents.zip.

The bash shell includes an environment variable called IFS (short for
“internal field separator”), which the shell uses to figure out how to split strings
in a for loop. By default, strings are split by any whitespace: spaces, tabs, or
newlines. This is why, if you loop through the string 1 2 3, you get three smaller
strings— 1, 2, and 3— separated with spaces. Likewise, looping through the string
readme.txt\nWork Documents.zip results in the smaller strings readme.txt, Work,
and Documents.zip, separated with a newline character and a space.

To work with filenames with spaces, you change the value of the IFS vari-
able so that it splits strings only on newline characters, but not on spaces or
tabs. Then you change it back after the loop. Here’s an example:

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

92 Chapter 4

#!/bin/bash
ORIGINAL_IFS=$IFS
IFS=$(echo - n "\n")
for FILENAME in $(ls)
do
 echo "$FILENAME"
done
IFS=$ORIGINAL_IFS

Inside the for loop, the FILENAME variable will contain the full filename,
even if it includes spaces. You can use code like this to unzip files (as long as
 they’re all ZIP files) or open them using any other CLI program.

None of the ZIP filenames in the BlueLeaks data have spaces, but you may
need to use this script on filenames with spaces for future proj ects.

If you’re not using Win dows, skip ahead to the “ Organize Your Files”
subsection on page XX. Other wise, read on.

Unzip Files on Win dows
Unzipping files in WSL from a USB disk formatted for Win dows might be
very slow, due to WSL performance prob lems. Fortunately, there’s a much
faster way to unzip all 168 files in BlueLeaks, using PowerShell and a pro-
gram called 7- Zip.

Install 7- Zip

The open source Win dows archiving program 7- Zip lets you extract
vari ous types of compressed files. Download and install 7- Zip from https://
www . 7 - zip . org. You’ll receive a warning saying that the program is made by
an unknown publisher, but it’s safe to install as long as you’ve downloaded it
from the official website.

 After you install 7- Zip, you can use its 7z.exe program to extract files
directly from PowerShell. By default, 7z.exe should be located in C:\Program
Files\7- Zip\7z.exe. However, to run the program from any directory, add
C:\Program Files\7- Zip to your Path environment variable.

Environment variables are variables that already exist when you open
your shell, as opposed to ones that you create in a for loop or by other
methods. The Path environment variable is a list of folders that contain pro-
grams. It contains some folders by default, but you can also add your own.
When you run 7z, PowerShell looks in each folder listed in Path and checks
for a file called 7z.exe, then runs that program for you.

To add 7z.exe to Path, click Start, search for environment variables, and
click Edit the System Environment Variables. In the win dow that opens,
click Environment Variables, and you should see a win dow with lists of user
variables and system variables. Double- click Path in the User Variables box,
which should show you all of the folders stored in Path. Click New, add

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.7-zip.org
https://www.7-zip.org

Exploring Datasets in the Terminal 93

C:\Program Files\7- Zip, and click OK to save. If you have a PowerShell win dow
open, close PowerShell and open it again, forcing the shell to use the new
changes to the Path environment variable.

You can now use the 7z command to run 7- Zip.

Unzip in PowerShell with 7- Zip

In a PowerShell terminal, change to the BlueLeaks folder on your datasets
USB disk. For example, on my computer, I run:

cd D:\BlueLeaks

Next, run the following PowerShell commands (this is the PowerShell
version of the exercise-4-1- unzip.sh shell script in the previous subsection):

$ZipFiles = Get- ChildItem - Path . - Filter "*.zip"
foreach ($ZipFile in $ZipFiles) {
 7z x $ZipFile.FullName
}

The first line sets the PowerShell variable $ZipFiles to the list of ZIP files
it finds in the current folder, represented by the dot (.). This is followed by
a foreach loop, which loops through this list, setting the variable $ZipFile to
the name of each file. The 7z command runs over and over again for each
dif fer ent filename, unzipping each file.

When I run these commands in my PowerShell terminal, I get the fol-
lowing output:

Scanning the drive for archives:
1 file, 2579740749 bytes (2461 MiB)

Extracting archive: D:\BlueLeaks\211sfbay.zip
- -
Path = D:\BlueLeaks\211sfbay.zip
Type = zip
Physical Size = 2579740749
- - snip- -

Your PowerShell win dow should likewise begin unzipping all 168
BlueLeaks files.

N O T E Once you’re finished with this chapter, read Appendix A and implement one of the
solutions it describes for avoiding WSL performance prob lems to make it easier to
work with big datasets like BlueLeaks in Win dows going forward. You’ll use WSL for
the remainder of the book, so you’ll need a plan to resolve any issues you encounter.

 Organize Your Files
Your BlueLeaks folder should now be full of both ZIP files and extracted
folders. Now you’ll make a separate BlueLeaks- extracted folder for the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

94 Chapter 4

extracted data and keep the ZIP files themselves in the BlueLeaks folder so
that you can continue to seed the torrent with them if you like.

Open a terminal (if you’re in Win dows, switch to a WSL Ubuntu termi-
nal again), change folders to your datasets USB disk, and run the following
commands:

mv BlueLeaks BlueLeaks- extracted
mkdir BlueLeaks
mv BlueLeaks- extracted/*.zip BlueLeaks

The mv command moves or renames files. On the first line, it renames
the BlueLeaks folder BlueLeaks- extracted. The mkdir command, which you
used in Chapter 3, creates a new empty folder called BlueLeaks. The third
command moves all of the ZIP files in the BlueLeaks- extracted folder into the
newly created BlueLeaks folder.

Your datasets USB disk should now contain a folder called BlueLeaks with
250GB of ZIP files, along with another folder called BlueLeaks- extracted with
269GB of extracted hacked police data.

How the Hacker Obtained the BlueLeaks Data
We don’t know how the hacker hacked and leaked the BlueLeaks files, but
we can make an educated guess based on clues from the dataset.

Imagine that it’s June 6, 2020, less than two weeks after Minneapolis
cop Derek Chauvin murdered George Floyd by kneeling on his neck for
over nine minutes while Floyd strug gled to breathe, triggering the sum-
mer’s Black Lives Matter uprising against police vio lence. Millions of people
took to the streets to demand police accountability and the end of racist
police vio lence in what was “the largest movement in the country’s history,”
according to the New York Times.

Now imagine you’re a hacktivist. In addition to confronting police in
the streets, you’re confronting them on the internet. Using OSINT, you’ve
discovered that hundreds of police websites use the same shoddy web appli-
cation developed by the Texas web development firm Netsential. All these
sites run on Win dows, use Microsoft’s Internet Information Services (IIS)
web server software, and are programmed using Microsoft’s web framework
ASP . NET. They’re also all hosted from IP addresses in the same data center
in Texas.

 After you spend some time poking around one of these sites, the
Arizona High Intensity Drug Trafficking Area (AZHIDTA), you find what
you were looking for: a remote code execution vulnerability, a type of bug
that lets you run commands on a remote server, like the Win dows server
 running the AZHIDTA website. (My guess is that the vulnerability started
with SQL injection, a technology beyond the scope of this book.)

To open a shell on this web server, you use a web shell, a web page that,
when you submit a form with a command in it, runs that command on the
web server and responds with its output. Using the vulnerability you discov-
ered, you save a web shell into a file called blug.aspx on the web server’s disk.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://blug.aspx

Exploring Datasets in the Terminal 95

Loading https:// www . azhidta . org / blug . aspx in your browser allows you to run
 whatever commands you want on the server.

W A R N I N G Don’t actually try loading that URL in your browser, because it might be illegal. It
appears to be the location of the web shell left behind by the hacker, and attempting to
access someone else’s hacking tools is definitely a legal gray area.

The web shell blug.aspx is included in the BlueLeaks dataset. In order
to understand how this web shell works, I set up a Win dows virtual machine
with an IIS server to test it, as shown in Figure 4-1. The left side of the
screenshot is the shell (in which I ran the command dir c:\). The right side
let me browse the server’s filesystem and upload new files.

Figure 4-1: Testing the blug.aspx web shell in a Win dows VM

I don’t know for sure if this is how the BlueLeaks hack happened, but
I think it’s very likely. While researching BlueLeaks, I found the follow-
ing web shell files, all timestamped late on June 6, 2020, making them the
among the most recently created files in the dataset:

azhidta/ntdaddy.aspx The Classic ASP web shell NTDaddy, developed
around 2001 by a hacker named obzerve

azhidta/blug.aspx The ASP . NET web shell called ASPX Shell, devel-
oped in 2007 by a hacker named LT

azhidta/pscp64.exe A program that comes with PuTTY, a popular Win-
dows tool for securely logging into and copying files to remote servers

icefishx/7z.exe A copy of the 7- Zip compression and extraction
program

My guess is that the hacktivist first tried to create a ntdaddy.aspx web
shell, but found that it didn’t work because it was developed using an earlier
version of ASP called Classic ASP, while the BlueLeaks site used the modern
version, ASP . NET. They then created the blug.aspx web shell instead, used
that shell to upload pscp64.exe and 7z.exe, used 7z.exe to compress all of the
files for a given police website, and uploaded that data to their own server
with pscp64.exe.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.azhidta.org/blug.aspx
http://blug.aspx
http://blug.aspx
http://azhidta/ntdaddy.aspx
http://azhidta/blug.aspx
http://ntdaddy.aspx
http://blug.aspx

96 Chapter 4

 After manually hacking one of the BlueLeaks sites, the hacker likely
automated the process for the rest of the BlueLeaks sites. Perhaps they
created a shell script that used cURL instead of a web browser to perform
the same steps. They could have run that script in a for loop targeting all
251 websites, uploading hundreds of gigabytes of data to themselves, in
a single Saturday evening. They then likely forgot to delete the blug.aspx,
pscp64.exe, 7z.exe, and ntdaddy.aspx files before submitting the dataset to
DDoSecrets.

Exercise 4-2: Explore BlueLeaks on the Command Line
In this exercise, you’ll start exploring the contents of your unzipped
BlueLeaks files, using commands and advanced shell features that let you
quickly measure file and folder size and sort and count lines of output.

Calculate How Much Disk Space Folders Use
The du command (short for “disk usage”) is a power ful tool for assessing a
new dataset. Linux and macOS come with slightly dif fer ent versions of du.
The Linux version, which is part of a software package called GNU
coreutils, is better and more up- to- date at the time of writing, so you’ll use
it for this exercise.

Users of Linux and Win dows with WSL should already have the correct
built-in du tool. If you’re using macOS, run brew install coreutils in the ter-
minal to install coreutils. After this, the du command will run the macOS
version of the tool, while the gdu command will run the coreutils version
that you just installed. In the following commands, macOS users should
replace du with gdu.

To find out how much space the extracted BlueLeaks dataset takes,
open your terminal and run this command, using the path to the BlueLeaks-
extracted folder on your computer:

du -sh - - apparent- size /media/micah/datasets/BlueLeaks- extracted

The - s argument in this command (short for - - summarize) displays the
total disk space of a folder rather than how much space each file inside it
takes up. The - h argument (short for - - human- readable) shows file sizes in
units like kilobytes, megabytes, or gigabytes, rather than in terms of system
blocks (a unit that changes depending on how your disk is set up). Fi nally,
the - - apparent- size argument shows you how big the files actually are, as
opposed to how much space they take up on your disk.

The command checks the size of every file in BlueLeaks and adds them
all together, so it takes a while to run. When it’s done, it should tell you that
the BlueLeaks- extracted folder takes up 269GB.

N O T E In addition to using - h to generate human- readable units, you can specify which
units you want to use. The - b argument, short for - - bytes, shows file sizes in bytes,
- k shows them in kilobytes, and - m shows them in megabytes.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://blug.aspx
http://ntdaddy.aspx

Exploring Datasets in the Terminal 97

Next, you’ll measure the size of an individual folder in BlueLeaks.
Change to your BlueLeaks- extracted folder; for example, I’d run cd /media/
micah/datasets/BlueLeaks- extracted on my Linux computer. From there,
run the following command to measure the size of the ncric folder, which
contains documents from the Northern California Regional Intelligence
Center (NCRIC), the fusion center I’ve spent the most time researching:

du -sh - - apparent- size ncric

The output should tell you that the ncric folder takes 19GB.
To find out the size of each folder in BlueLeaks, you could run the

du -sh - - apparent- size path command for each folder, but it’s quicker to use
another for loop. Run the following code in the terminal:

for FOLDER in $(ls); do du -sh - - apparent- size $FOLDER; done

As shown here, you can run multiple commands on the same line by
separating them with semicolons (;). This one- liner loops through the
output of the ls command, which, since you’re currently in the BlueLeaks-
extracted folder, is the name of each BlueLeaks folder. The code stores these
names in the FOLDER variable and then, inside each iteration of the loop,
runs the du -sh - - apparent- size $FOLDER command.

 Here are the first few lines of output:

2.8G 211sfbay
29M Securitypartnership
216M acprlea
65M acticaz
748M akorca
- - snip- -

This shows you how much disk space each folder uses.

Use Pipes and Sort Output
You now know the size of each folder in the BlueLeaks dataset. Next, you’ll
sort the 168 folders in order of disk space. By determining which folders are
the largest, you can quickly tell which fusion centers have the most data and
therefore are prob ably the biggest or most active.

To sort this list of folders by the smallest file size to the largest, use the
sort command, which takes a list of text lines and, by default, sorts them
alphanumerically; that is, text is sorted alphabetically and numbers are sorted
by their first numeral. For example, the list file1, file10, file2,... , file9 is
sorted alphanumerically: since text lines are sorted one character at a time,
and since 1 is less than 2, file10 comes before file2.

To sort your BlueLeaks files by file size, modify the command with the
- h (- - human- numeric- sort) argument. This argument pays attention to the
value of numbers, not just characters, so it correctly places smaller numeri-
cal values before larger ones. It also takes file size units into account,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

98 Chapter 4

meaning it will place 2MB before 1GB, even though 2 is numerically greater
than 1.

In shell scripting, the pipe operator (|) lets you take the output of a
command to the left of the operator and pipe it into the command on the
right. When you pipe input into the sort command, it outputs a sorted ver-
sion of that input. Run the for loop from the previous subsection, this time
piping the output into sort:

for FOLDER in $(ls); do du -sh – apparent- size $FOLDER; done | sort - h

This line first runs the for loop that measures the space each BlueLeaks
folder takes up. The output of this code is a list of lines of text, where each
line starts with the human- readable size of a folder. Piping those lines of
text as input into the sort - h command sorts those lines numerically while
paying attention to the file size units.

Your output should look like this:

256 miacxold
256 ncric- history- good
256 ncricSteveBackup
259K terrorismtip
548K oaktac
625K sccpca
- - snip- -
13G lacleartraining
14G jric
19G ncric
36G miacx
46G repo

The folders that have the least data should be at the top: miacxold, ncric-
history- good, and ncricSteveBackup contain only empty subfolders. The repo
folder, the largest folder in BlueLeaks, should appear at the bottom of the
list, right after miacx, the second largest folder.

F IL E SIZE UNIT S A ND CON V ERSIONS

 You’re likely familiar with file size units like megabytes and gigabytes, and
might have a mental model of how much information those units can hold:
office documents are often a few megabytes, a two- hour video file might be
a gigabyte or two, and a video game might be hundreds of gigabytes. Being
able to convert between the dif fer ent units of disk space is an impor tant skill for
working with large datasets.

Units like kilobyte, megabyte, gigabyte, and terabyte sound metric, but
 they’re not. For instance, the kilo- prefix denotes a factor of 1,000, but there are
1,024 bytes in a kilobyte. Here’s a list of common conversions:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 99

1 byte (B) is 8 bits, or eight ones and zeros in binary

• 1 kilobyte (KB): 1,024 bytes

• 1 megabyte (MB): 1,024 kilobytes

• 1 gigabyte (GB): 1,024 megabytes

• 1 terabyte (TB): 1,024 gigabytes

• 1 petabyte (PB): 1,024 terabytes

As an example, the ncric folder in BlueLeaks is 20,008,051,852 bytes,
which is 19,539,113.1KB, or 19,081.2MB, or 18.6GB— about 160 billion bits.

Create an Inventory of Filenames in a Dataset
When you’re working with an enormous dataset like BlueLeaks, it’s help-
ful to create an inventory of all of the files it contains by listing them in a
text file. This way you can easily count the number of files in the dataset or
search for filenames without having to go through the much slower process
of looping through the dataset itself.

You can create this inventory with the find command, which outputs a
list of files and folders in a folder. From within the BlueLeaks- extracted folder,
run the following command to list all of the files in BlueLeaks:

find . - type f

The first argument after find is the folder whose contents you want to
list. This command uses a dot to find files in the current folder, but you
could use any relative or absolute path. The - type f arguments filters the list
so it includes only files. (To include only folders, add the - type d arguments.)

When you run this command, the names of the many files in BlueLeaks
should start rapidly scrolling across your terminal. To make the output
more manageable, run the command again, this time redirecting the out-
put into the file ../BlueLeaks- filenames.txt:

find . - type f > ../BlueLeaks- filenames.txt

As discussed in Chapter 3, redirection tells your shell to take the output
from the left side of the redirection operator (>) and save it into the file
at the path you specify on the right. In this case, the shell sends the list of
filenames from the find command to the BlueLeaks- filenames.txt file on your
datasets USB disk, rather than displaying the filenames across your terminal.

To read through these filenames at your leisure, open BlueLeaks-
filenames.txt in VS Code by running this command:

code ../BlueLeaks- filenames.txt

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

100 Chapter 4

It’s easier to slowly scroll through these files in your text editor, but
 there are too many to count with the naked eye.

Count the Files in a Dataset
The wc command takes some input and tells you how many characters,
words, or lines it contains. When used with the - l (or - - lines) argument, it
counts the number of lines. To count the lines in the BlueLeaks- filenames.txt
file you created, and by extension count the number of files in BlueLeaks,
run the following command:

cat ../BlueLeaks- filenames.txt | wc - l

The cat command outputs the contents of a file—in this case, BlueLeaks-
filenames.txt. Instead of displaying it, the command pipes the output into wc
to count the number of lines that it contains. It should tell you that there
are just over one million files in BlueLeaks.

Another way to get the same result is to run the find command from
the previous section again, and pipe its output into wc, like this:

find . - type f | wc - l

That command takes longer to run, though, since it searches through
the whole dataset again (press ctrl- C to cancel this command before it
finishes).

Exercise 4-3: Find Revelations in BlueLeaks with grep
In the summer of 2020, while American society was going through a long-
due reckoning about the scale of racist police killings, right- wing media
(and police) instead focused on the dangers of the protesters themselves.
They lumped the modern civil rights movement into two categories: “Black
Lives Matter” and “antifa,” the latter a label used by antifascist activists since
the 1930s. The modern American antifa movement grew in response to the
2016 election of Donald Trump and the mainstreaming of white supremacy
in the US.

The grep command will filter input for keywords, letting you search the
content of datasets for newsworthy information. In this exercise, you’ll use
grep to find out what police had to say about antifa during the protests.

Filter for Documents Mentioning Antifa
You’ll start by grepping your list of filenames to find any that include
the word antifa. From the BlueLeaks- extracted folder, search the BlueLeaks-
filenames.txt file that you created in Exercise 4-2 by running the following
command:

cat ../BlueLeaks- filenames.txt | grep antifa

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 101

This command pipes the output of cat ../BlueLeaks- filenames.txt,
which is a list of a million filenames, into grep antifa. This should filter the
huge list of filenames to show you only those that include the word antifa.
However, it returns no results.

Since the grep command is case sensitive, try again using the - i (or
- - ignore- case) argument:

cat ../BlueLeaks- filenames.txt | grep - i antifa

When I run this command on my macOS computer, I get the following
output:

./ociac/files/EBAT1/U- FOUO_CFIX__OCIAC_JRA_DVE Use of Social Media_ANTIFA_ANTI- ANTIFA MOVEMENTS

.pdf

./arictexas/files/DDF/ARIC- LES - Situational Awareness - Antifa Activity.pdf

./arictexas/files/DDF/SWTFC- LES - Situational Awareness - ANTIFA Event Notification.pdf

./arictexas/files/DPI/ARIC- LES - Situational Awareness - Antifa Activity.png

./arictexas/files/DPI/SWTFC- LES - Situational Awareness - ANTIFA Event Notification.png

./dediac/files/DDF/ANTIFA - Fighting in the Streets.pdf

./dediac/files/DDF/ANTIFA Sub Groups and Indicators - LES.pdf

./dediac/files/DDF/FBI_PH_SIR_Tactics_and_Targets_Identified_for_4_November_2017_ANTIFA_Rally_in_
Philadelphia_PA-2
.pdf
./dediac/files/EBAT1/ANTIFA - Fighting in the Streets.pdf
./dediac/files/EBAT1/ANTIFA Sub Groups and Indicators - LES.pdf
./dediac/files/DPI/ANTIFA - Fighting in the Streets.png
./dediac/files/DPI/FBI_PH_SIR_Tactics_and_Targets_Identified_for_4_November_2017_ANTIFA_Rally_in_
Philadelphia_PA-2
.png

This command returns 12 results, all files that have the term antifa in
their filenames. The grep command might highlight your search terms in
each line of output by coloring them differently; I’ve highlighted them here
in bold. Open a few of the documents in this list to see what they contain.

N O T E You can run BlueLeaks documents through Dangerzone if you like, but the risks are
low with this dataset. These documents are now all public, so if any have tracking
technology that lets the original file owner know someone is looking at the document,
it doesn’t matter much. Given that these are hacked documents from police fusion cen-
ters, not attachments on phishing email or something similar, they’re also unlikely to
be malicious.

I often combine find and grep to make lists of filenames and filter those
lists down, which allows me to locate files on my computer more quickly
and precisely than with my operating system’s graphical file search tools.
For example, suppose you’re looking into the azhidta folder for the Arizona
High Intensity Drug Trafficking Area site. To quickly find any documents
that have the word marijuana in their filename, you could run find azhidta
| grep - i marijuana. To count the number of files with marijuana in the file-
names, you could pipe all of that into the wc - l command.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

102 Chapter 4

Filter for Certain Types of Files
In addition to searching for keywords like antifa or marijuana, grep can
help you filter a list of filenames to include only certain file types. Grep for
Microsoft Word documents, filenames that end in .docx, by running the fol-
lowing command:

cat ../BlueLeaks- filenames.txt | grep - i .docx

This command uses cat to display the list of filenames in BlueLeaks,
then filters it down for those that contain .docx. You should see thousands
of filenames scroll by. To learn exactly how many, run the command again,
this time piping the output into wc - l:

cat ../BlueLeaks- filenames.txt | grep - i .docx | wc - l

The wc command should tell you that the previous command had 8,861
results.

Use grep with Regular Expressions
If you scroll through the .docx filenames you just found, you’ll see that a few
of them aren’t actually Word documents. For example, the filename ./aric-
texas/files/DDF/2014 Austin City Limits Festival - APD Threat Overview.docx.pdf
contains .docx but is actually a PDF.

When you use grep, you can pass a regular expression (regex for short)
into it as an argument. A regex is a character or sequence of characters that
defines a search pattern. For example, the caret character (̂) represents the
beginning of a line, and the dollar sign character ($) represents the end
of a line. Grepping for something$ will show you only results that end with
something. Grepping for ^something will show you only results that begin with
something.

To search just for filenames that end with .docx, add a dollar sign ($) to
the end of the text you’re grepping for. For example, try running the follow-
ing command:

cat ../BlueLeaks- filenames.txt | grep - i .docx$ | wc - l

The output should tell you that there are 8,737 results, 124 less than the
previous command. That means there are 8,737 Word docs in this dataset.

Run the following command to find out how many Word docs are in
the ncric folder:

cat ../BlueLeaks- filenames.txt | grep ^./ncric/ | grep - i .docx$ | wc - l

The cat command outputs the list of filenames in BlueLeaks, which is
then piped into the first grep command, which in turn filters your output
down to files that begin with ./ncric, using .̂ Next, that output is piped into
the second grep command, which further filters the output to files that end

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 103

with .docx, using $. Fi nally, the remaining output is piped into the wc - l
command, which tells you how many lines are left. The output of the full
command should tell you that there are 600 Word docs in the ncric folder.

On your own, try using find, grep, and wc to find out how many PDFs
(.pdf) and Excel documents (.xlsx) are in the dataset. You can also experi-
ment with other file types.

Search Files in Bulk with grep
In addition to piping output from other commands into grep, you can use
grep to search directly within text files by using the following syntax:

grep search_term filename

For example, Linux comes with a file called / etc/passwd, which includes
a list of users on the system. To find just the line about my own user in that
file, I can use one of the following commands:

 grep micah / etc/passwd
 cat / etc/passwd | grep micah

The grep command opens the / etc/passwd file and then searches it, while
the cat command opens that file and then pipes its contents into grep, which
searches it. Both of these commands output the following result:

micah:x:1000:1000:,,,:/home/micah:/bin/bash

You can use grep to search multiple files, or even folders full of files,
for hits all at once. As noted earlier, to search a folder, you use the - r (or
- - recursive) argument and specify the name of a folder. To specify multiple
files at once, use an asterisk (*) as a wildcard character. For example, you
can use *.txt as the filename to search all text files in your current folder.

 There are CSV spreadsheets in every BlueLeaks folder that contain the
contents of the websites’ databases. Now that you’ve grepped for filenames
that contain the keyword antifa, use the following command to bulk- search
the term Black Lives Matter in the contents of the files, not just in their
filenames:

grep - i "black lives matter" */*.csv

The - i argument in this command makes the search case- insensitive.
The black lives matter argument is the search term (in quotation marks,
 because it has spaces). The */*.csv argument is the path to search, which
uses two wildcard characters. These arguments tell grep to open every
folder, then each file within those folders that ends in .csv, and search for
the black lives matter keyword.

This command takes some time to run because it’s searching all
158,232 CSV files in BlueLeaks. When it’s finished, it should show you the
lines from CSV files that mention black lives matter and tell you in which files

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

104 Chapter 4

it found those lines. For example, here are snippets from a few of the lines
of the output from that command:

arictexas/IncidentMap.csv:834,"10/26/16 00:00:00",-9.7735716800000006e+01,3.0267881299999999e+0
1,"TX",,"TLO","An APD Police Explorer received a call from a blocked number in which the caller
identified himself as an activist for Black Lives Matter, and identified the recipient by name,
address, and personal descriptors before calling him a racist for having an interest in a LE
 career. No explicit threats were made during the call...
bostonbric/EmailBuilder.csv:<p>
BRIC SHIELD Alert: To promote public safety and situational awareness for
events taking place in the City of Boston tonight, the BRIC is sharing the information below
regarding planned activities. </p>... <p>Known COB Activities for Tuesday, June 2nd</p>
Vio lence in Boston Inc & Black Lives Matter Rally and Vigil - 4:45 PM at 624 Blue Hill
Ave nue. Not One More! - 5:00 PM to 8:00 PM. Meeting at Franklin Park Road & Blue Hill
Ave and marching to Franklin Park. ...
chicagoheat/Blog.csv:Media sources report that the online activist group Anonymous, or a group
claiming to be Anonymous, has called for a collective 'Day of Rage' to take place in numerous
cities across the United States on Friday, July 15th. The action has been called in solidarity
with the Black Lives Matter movement in light of the recent controversial officer- involved
shootings that resulted in the deaths of Alton Sterling and Philando Castile. The group that
posted the call for action states that acts of vio lence or rioting are to be condemned.
ncric/Requests.csv: Organizer of a Black Lives Matter Protest for 06/02. Currently scheduled
1PM meet time at Sears parking lot of Newpark Mall. They plan to march to City Hall and then
to Fremont PD. She has repeated she intends for a peaceful protest. She further claims she
reached out to City and PD to join the march. Recent graphics encourage non- descript clothing,
heat resistant gloves, turning off Face Id on iPhone etc.

The command finds a total of 178 lines in BlueLeaks CSVs that contain
the term black lives matter. Each is a potential lead for further investigative
research.

N O T E The grep command is a great tool for searching the content of text files, but it doesn’t
work with binary files, like Microsoft Office documents or PDFs. To search those in
bulk, you’ll need more sophisticated tools, which you’ll learn about in Chapter 5.

On your own, try using grep to filter the list of BlueLeaks filenames for
specific words or bulk- search terms within the CSV files. If you find any
in ter est ing documents, read them to see if they’re newsworthy. Consider
narrowing your searches once you find a lead by looking for other related
documents. You might focus on a single fusion center or a topic like
antifa that spans dif fer ent centers. Individual documents may contain law
enforcement lingo you can use as search terms for related documents. Take
detailed notes on what’s most revealing in each document, then rely on
 these notes if you decide to write about your findings.

Encrypted Data in the BlueLeaks Dataset
As you dig around in the BlueLeaks dataset, you’ll notice some patterns.
Most folders contain many CSVs, as well as .aspx files, the source code of
the hacked websites. They also contain files subfolders containing the bulk

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 105

of the files and folders uploaded to each site, including PDFs and Microsoft
Office documents.

However, one folder, repo, contains just a config file and data, index, keys,
locks, and snapshots subfolders. Inside those subfolders are other subfolders
and files with apparently random names. There are no documents that
can be opened—no spreadsheets or similar files. As you discovered in
Exercise 4-2, the repo folder is the largest folder in BlueLeaks, at 46GB. Its
timestamps are from June 8, 2020, although the latest timestamps for most
of the rest of the dataset are from June 6. Without more information, it’s
not clear what these files mean or how to access them.

When I discover a mystery like this in a dataset, I search the internet.
In this case, I searched for the names of the files and folders within the repo
folder by entering config data index keys locks snapshots into a search engine,
and found documentation for a CLI program called restic. A restic reposi-
tory, according to the documentation I found at https:// restic . readthedocs . io / en
/ latest / 100 _ references . html, is a folder that holds backup data. Restic reposito-
ries contain a config file and folders called data, index, keys, locks, and snap-
shots, as shown in Figure 4-2.

Figure 4-2: The layout of a restic respository

This suggests that the repo folder in BlueLeaks contains backup data
in restic format. To find out what’s inside this backup, I installed the restic
package. Users of Linux or Win dows with WSL can install restic using apt:

sudo apt install restic

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://restic.readthedocs.io/en/latest/100_references.html
https://restic.readthedocs.io/en/latest/100_references.html

106 Chapter 4

Mac users can install restic from Homebrew with the following
command:

brew install restic

I ran restic - - help and found that I could view the snapshots in a repos-
itory with the restic snapshots command, which I then used to try to view
the snapshots in the repo folder like so:

restic snapshots - - repo repo/

I was then confronted with a password prompt:

enter password for repository:

This prompt indicates that the backup is encrypted. The only way to
proceed is to guess the password, which I haven’t been able to do.

While a 46GB folder full of encrypted data in a public leak is rare, it’s not
uncommon to stumble upon other encrypted files in datasets like Office doc-
uments or ZIP files. I can’t help but imagine that the most in ter est ing details
in any dataset might be the encrypted parts. Password- cracking is outside the
scope of this book, but if you can figure out the password for repo, please let
me know.

Data Analy sis with Servers in the Cloud
So far, you’ve used the CLI locally on your own computer, but you can also
use it remotely via servers to which you connect through a cloud network.
DigitalOcean, AWS, Microsoft Azure, and countless other cloud hosting
companies rent virtual private servers (VPSes) to the public, usually for
a few dollars a month or a few cents an hour. All the command line skills
 you’ve learned so far apply to remote servers, too.

 There are many advantages to working with massive datasets in the cloud:

•	 Instead of dealing with USB hard disks, you can attach virtual hard
disks to your virtual servers, increasing their size if you’re running low
on disk space.

•	 VPS bandwidth is generally much better than residential or commercial
internet service, speeding up large dataset downloads.

•	 You can also pay for more power ful VPSes for scripts that require sig-
nificant computational resources, so they no longer take hours or days
to finish running.

•	 Rather than being forced to wait while a script runs on your local
machine, you can do whatever you want on your computer, even suspend-
ing it or shutting it down, while your remote server is crunching data.

•	 If your source has the required technical skills, you can ask them to
upload data to a VPS with a large hard disk, as discussed in Chapter 2.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 107

They can even do this anonymously using Tor. You can then download
the dataset or choose to analyze it remotely on the VPS.

W A R N I N G Avoid working on cloud servers with high- or medium- sensitivity datasets. The cloud
hosting provider has total access over your VPS and the data on it and can even give
copies of that data to law enforcement or other parties in response to legal requests.

This section will go into more detail on SSH (Secure Shell) software
(introduced in Chapter 2), which allows you to securely get a shell on a VPS,
as well as two tools that are essential for working remotely on the command
line: text- based win dow man ag ers and CLI text editors. This should prepare
you to set up a VPS in the next exercise.

The SSH protocol is a method for securely logging into another com-
puter remotely. You can connect to a VPS remotely by running the ssh com-
mand with a username and the IP address or domain name of the server
to which you want to connect. For example, to log in as the root user to the
server with the hostname example . com, you run:

ssh root@example . com

You then need to authenticate to the server, or prove that you have per-
mission to log in, by typing the user password or using SSH keys. Similar to
PGP keys (discussed in Chapter 2), generating an SSH key on your com-
puter gives you two files: a public key and a secret key. Once you put your
public key on the remote server, only people with your secret key on their
computer (hopefully just you) can remotely log into that server using SSH.
If someone spies on your internet, they can’t see anything you’re doing
in your SSH session— they’ll just see garbled encrypted data. Every SSH
key also has a fingerprint, a unique string of characters that identifies that
specific key. SSH keys are more secure than passwords, so cloud provid-
ers often require that you use them. Once you SSH into a remote server,
you’ll be dropped into a shell just like the one on your own computer, but
 running on a computer across the internet.

A text- based win dow man ag er is software that lets you open and switch
between separate shells in the same terminal win dow, all in the same SSH
session. Text- based win dow man ag ers also allow you to keep programs
 running in the background even if you disconnect from SSH, by maintain-
ing an active terminal session on your VPS. This protects your work if, for
example, your laptop dies, you lose internet access, or you close your termi-
nal win dow by mistake.

For example, say you want to download BlueLeaks on your VPS and
then unzip it with a for loop. If you close your terminal win dow before the
loop is done, you’ll quit the remote shell, which will close the unzip pro-
gram, and your remote work will stop. However, if you SSH to your VPS,
connect to a win dow man ag er session, and then start unzipping BlueLeaks
files, you can safely close the terminal win dow without stopping your work.
If you open a new terminal later, SSH back into your server, and open
your win dow man ag er again, your previous session with all your running

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://example.com
http://root@example.com

108 Chapter 4

programs should reappear. In the upcoming exercise, you’ll use the Byobu
win dow man ag er, which comes with Ubuntu.

When you SSH into a remote server, you don’t have easy access to a
graphical text editor like VS Code. To edit files—to modify a shell script,
for example— you’ll need to use a CLI text editor instead. Two popular CLI
text editors are nano and vim. Nano is relatively easy to use but doesn’t have
advanced features, while vim is more power ful but has a steeper learning
curve. For simplicity’s sake, in the following exercise you’ll use nano.

N O T E Technically, you can use VS Code to edit files remotely over SSH, but there are some
limitations. See https:// code . visualstudio . com / docs / remote / ssh for more infor-
mation on VS Code’s support for editing files over SSH.

Exercise 4-4: Set Up a VPS
In this exercise, you’ll create an account on a cloud hosting provider,
generate an SSH key, create a VPS on your cloud provider, SSH into it,
start a Byobu session, and install updates. To follow along you’ll need to
spend a small amount of money. I provide detailed instructions for using
DigitalOcean in this exercise, but use whatever cloud hosting provider you
prefer, keeping in mind that the initial steps will likely be slightly dif fer ent.

Go to https:// www . digitalocean . com and create an account, providing a
credit card number while signing up. Use a strong password, store it in your
password man ag er, and turn on two- factor authentication.

Generate an SSH Key
To generate an SSH key, open a terminal on your local computer (if you’re
using Win dows, use a WSL terminal), and run:

ssh- keygen - t ed25519

The ssh- keygen command generates an SSH key, while the options spec-
ify the type of encryption key you want to generate—in this case, ed25519,
which uses modern elliptic curve encryption and is the most secure option.

 After you run this command, the program will ask you a few questions,
starting with where you want to save your key. For example, I get the follow-
ing output on my Mac:

Generating public/private ed25519 key pair.
Enter file in which to save the key (/Users/micah/.ssh/id_ed25519):

Press enter to use the default location for the key, ~/.ssh/id_ed25519.
Next, the program should ask you for a passphrase:

Enter passphrase (empty for no passphrase):

I recommend generating a random passphrase in your password man-
ag er, saving it as SSH key passphrase, then copying and pasting the password

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://code.visualstudio.com/docs/remote/ssh
https://www.digitalocean.com

Exploring Datasets in the Terminal 109

into your terminal. After pressing enter, re- enter your passphrase and
press enter again.

When you’re done, the ssh- keygen command should have created two
new files: your SSH secret key in ~/.ssh/id_ed25519 and your SSH public key
in ~/.ssh/id_ed25519.pub.

N O T E If you’re using Win dows and prefer to SSH from PowerShell, you can install the
OpenSSH client directly in Win dows. Open a PowerShell win dow as an administra-
tor and run Add- WindowsCapability - Online - Name OpenSSH.Client~~~~0.0.1.0 to
enable using the ssh command from PowerShell.

Add Your Public Key to the Cloud Provider
Next, add your public key to your new DigitalOcean account. After logging
into the web console, go to the Settings page and switch to the Security tab.
Click Add SSH Key, then copy and paste your SSH public key into the form.

Back in your terminal, display the content of your public key by
 running this command:

cat ~/.ssh/id_ed25519.pub

 Here’s the output I get:

ssh- ed25519 AAAAC3NzaC1lZDI1NTE5AAAAILxYgUq1ePSRSv7LTITG5hecwNBQzs3EZmo4PRzsV4yT micah@trapdoor
.local

Your output should look similar, with the last word being your user-
name and the hostname of your own computer. Copy this whole string,
starting with ssh- ed25519, and paste it into DigitalOcean, then give it a
name, as shown in Figure 4-3.

Figure 4-3: The form for adding a new SSH key to a DigitalOcean account

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

110 Chapter 4

Name your SSH keys after the computer on which you generated them,
since they’re allowing this specific computer to access remote computers.
For example, I’ve called my key trapdoor, the name of my Mac.

Create a VPS
Now that DigitalOcean has your SSH public key, you can create a new VPS.
Click Create at the top of the DigitalOcean console and follow the instruc-
tions to create a new droplet, DigitalOcean’s term for a VPS. Choose the fol-
lowing settings for your VPS:

 1. For Choose an Image, pick Ubuntu.

 2. For Choose a Plan, pick Shared CPUBasic and choose how much mem-
ory, CPU power, hard disk space, and internet bandwidth you want. Less
power ful machines are cheaper; more power ful ones are more expensive.
For this assignment, choose a relatively cheap option like 1GB of RAM,
1 CPU, 25GB of disk space, and 1TB of bandwidth for $7 per month.

 3. For Add Block Storage, you can choose to attach an additional hard
disk to your droplet. You don’t need to do this now, but in the future, to
work with a large dataset like BlueLeaks, you can add more disk space.

 4. For Choose a Datacenter Region, choose the host city for your VPS.
File transfers between your computer and your server will be fastest if
you choose a nearby location, but feel free to create your VPS anywhere
you’d like.

 5. For Authentication, choose SSH Keys and select the SSH key that you
just added to your DigitalOcean account.

 6. For Select Additional Options, check the box beside Monitoring to
see statistics about how much memory and pro cessor power the VPS is
using over time from the DigitalOcean console.

 7. For Finalize and Create, choose one droplet and give it the hostname
test- vps.

Click Create Droplet and wait a minute or two for DigitalOcean to
provision your new VPS, then find its IP address. Figure 4-4 shows the
Droplets page of my DigitalOcean account with my new server’s IP address,
178.128.22.151.

Figure 4-4: My test- vps IP address

Click the IP address to copy it to your clipboard.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 111

SSH into Your Server
Run the following command to SSH into your server:

ssh username@hostname

where username is the user you want to connect to on the remote server, and
hostname is either the hostname or IP address of the remote server. With
DigitalOcean, the username is root, and the hostname is the IP address of
your server.

 Here’s what it looks like when I SSH into my server for the first time:

micah@trapdoor ~ % ssh root@178.128.22.151
The authenticity of host '178.128.22.151 (178.128.22.151)' can't be established.
ED25519 key fingerprint is SHA256:062oSOXq+G1sGLIzoQdFnQvJE/BU8GLLWnNr5WUOmAs.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

A remote server has its own SSH key, a server key. This output shows
you the server key’s fingerprint and asks whether you want to trust it. If you
enter yes, your SSH software will store this fingerprint in the ~/.ssh/known_
hosts file containing all the fingerprints for the SSH servers to which you’ve
connected in the past, so that when you SSH into your server in the future,
it shouldn’t prompt you again. You can also enter no to cancel, or copy and
paste the fingerprint of the server key that you’re expecting.

N O T E If you SSH into a server and the fingerprint isn’t what your software expects it to be,
SSH will show you a warning message, which could mean that the server key has
changed or that your SSH connection is being attacked. This authentication scheme
is known as trust on first use (TOFU): you trust the first fingerprint you see and
deny all other fingerprints for that server in the future.

Enter yes and press enter to continue. You should be dropped into a
root shell on your remote server:

root@test- vps:~#

Since you provided DigitalOcean with your SSH public key, you don’t
need to enter a password to log in. If anyone else tries SSHing to your
server, they’ll get the Permission denied (publickey) error.

Take a look around your new cloud- based system. Run ls to list files, ls
- al to see hidden files, and cd to change to folders.

Start a Byobu Session
If you used the Ubuntu image to set up your droplet, the Byobu win dow
man ag er should be installed. Run the byobu command to start a Byobu ses-
sion. (If you’re using a dif fer ent operating system, or if for some reason
Byobu isn’t installed, you’ll get a Command 'byobu' not found error message.
Run apt update, followed by apt install byobu, to install the program.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

112 Chapter 4

The byobu command should drop you into a shell inside of your new
session. A line at the bottom of your terminal shows which win dow you’ve
opened, along with information like the date and time. Each Byobu win dow
is like its own separate shell in the same Byobu session, and you can open as
many win dows as you want.

To demonstrate how Byobu works, run whoami (which should tell you
that you’re the root user) and ls - l / (which should show you a list of files
in your server’s root folder). Now press ctrl- A. Byobu will ask you how you
want this keyboard command to operate:

Configure Byobu's ctrl- a be hav ior...

When you press ctrl- a in Byobu, do you want it to operate in:
 (1) Screen mode (GNU Screen's default escape sequence)
 (2) Emacs mode (go to beginning of line)

Note that:
 - F12 also operates as an escape in Byobu
 - You can press F9 and choose your escape character
 - You can run 'byobu- ctrl- a' at any time to change your se lection

Select [1 or 2]:

Enter 1 and press enter. This allows you to open a new win dow in
Byobu by pressing ctrl- A, followed by C (for “create”). Try that now to
open a new empty shell. Press ctrl- A followed by N (for “next”) to switch
back to your first win dow. To exit a Byobu win dow, you run the exit com-
mand in that shell.

N O T E See https:// www . byobu . org for more complete documentation for this program,
including a video tutorial.

Completely close your terminal win dow and click through any warn-
ings saying that your active programs will close if you do this. Open a new
terminal win dow and SSH back into your server using the ssh username@
hostname command. Then run byobu again to attach your previous session.
Any programs you run inside this Byobu session won’t quit when you dis-
connect from SSH.

Install Updates
Always install updates when you set up a new server to keep it secure. Run the
following commands (you don’t need to use sudo, since you’re the root user):

apt update
apt upgrade

Follow the instructions to finish installing updates.
If you ever need to reboot your server (such as after updating the Linux

kernel), run the reboot command. You’ll get kicked out of your SSH session,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.byobu.org

Exploring Datasets in the Terminal 113

but you should be able to SSH back in shortly when the reboot completes.
You can also reboot your VPS from DigitalOcean’s web console— for exam-
ple, if the entire server crashed and you can’t SSH into it.

Exercise 4-5: Explore the Oath Keepers Dataset Remotely
In this exercise, you’ll use BitTorrent to download the Oath Keepers data-
set to your cloud server and explore it using the skills you’ve gained in this
chapter. You’ll also learn to copy data from your remote server to your
laptop using the rsync command. Fi nally, you’ll delete your VPS to avoid get-
ting charged for time when you’re not using it.

The Oath Keepers dataset contains data from the far- right extremist
group that participated in the January 6, 2021, US Capitol insurrection. In
September 2021, a hacktivist broke into the Oath Keepers servers and made
off with the group’s email messages, chat logs, membership lists, and other
data, and then leaked it to DDoSecrets. You’ll continue working with this
dataset when you learn to analyze email dumps in Chapter 6.

N O T E This book works only with the publicly available part of the Oath Keepers dataset,
which contains email messages and chat logs. To access content like the Oath Keepers’
donor and membership lists, which contain PII, contact DDoSecrets.

 Because your home or office internet connection is likely significantly
slower than a cloud provider’s, it’s inefficient to download a dataset to
your laptop, then upload it to your remote server. To download the dataset
directly to your VPS, you’ll use transmission- cli, the command line version
of the BitTorrent client you used to download BlueLeaks in Chapter 2. In
your VPS, run the following command to install transmission- cli:

apt install transmission- cli

You can now use the transmission- cli command to download files. You
must pass in either the path to a .torrent file or a magnet link as an argu-
ment. In this exercise, you’ll use the torrent file available at https:// ddosecrets
. com / wiki / Oath _ Keepers.

Run the following commands:

mkdir ~/datasets
cd ~/datasets

This creates a new folder called datasets on your server, then changes
to it. Download the torrent file from the link on the DDoSecrets page and
load it into your BitTorrent client with the following commands:

wget https:// ddosecrets . com / images / 0 / 02 / Oath _ Keepers . torrent
transmission- cli - w . Oath_Keepers.torrent

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ddosecrets.com/wiki/Oath_Keepers
https://ddosecrets.com/wiki/Oath_Keepers
https://ddosecrets.com/images/0/02/Oath_Keepers.torrent

114 Chapter 4

The wget command downloads files—in this case, Oath_Keepers.torrent—
and saves them in the current folder. The transmission- cli command
downloads the 3.9GB torrent to your server from the BitTorrent swarm
and uploads parts of it to other parts of the swarm. The - w . arguments tell
transmission- cli to download the torrent into the current working folder.
(You could change that to - w ~/Downloads, for example, if you wanted to
download it into the ~/Downloads folder instead.)

N O T E If no torrent file is available for a dataset, you can replace the torrent filename with a
magnet link in double quotes as an argument in the transmission- cli command.

When you’ve finished downloading the torrent, your server will be a
seed until you quit the program by pressing ctrl- C. While you’re waiting
for the dataset to finish downloading, or if you’ve finished but want to con-
tinue seeding the torrent, you can work on your VPS in a separate Byobu
shell.

To check how much free space your server has left, run the following
command after the download is complete:

df - h

The df command tells you how much disk space is free on each con-
nected drive, and the - h argument displays these numbers in human-
readable units. After downloading the Oath Keepers dataset, I got the
following output from these commands on my server:

Filesystem Size Used Avail Use% Mounted on
tmpfs 98M 1000K 97M 2% /run
/dev/vda1 25G 5.8G 19G 24% /
tmpfs 486M 80K 486M 1% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
/dev/vda15 105M 5.3M 100M 5% /boot/efi
tmpfs 98M 4.0K 98M 1% /run/user/0

As shown in bold, my root partition mounted on / has 25GB of space, has
used 5.8GB, and has 19GB free.

Change your working directory to ~/datasets/Oath Keepers, remembering
to put the filepath in quotes or escape the space in the path. For example,
you could run this command from the ~/datasets folder:

cd Oath\ Keepers

Run the following command to find that the Oath Keepers dataset
takes up 3.9GB of space:

root@test- vps:~/datasets/Oath Keepers# du -sh - - apparent- size .
3.9G .

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 115

Next, run the ls command to list the files in the Oath Keepers folder:

root@test- vps:~/datasets/Oath Keepers# ls - lh
total 13M
drwxr- xr- x 2 root root 4.0K Aug 2 23:47 'Oath Keepers.sbd'
- rw- r- - r- - 1 root root 12M Aug 2 23:47 messages.json
- rw- r- - r- - 1 root root 1.4M Aug 2 23:44 messages_old.json

The output shows that this folder contains a folder called Oath Keepers.
sbd, a 12MB file called messages.json, and a 1.4MB file called messages_old.json.
 These JSON files are chat logs.

Switch to the Oath Keepers.sbd folder and run ls again:

root@test- vps:~/datasets/Oath Keepers# cd Oath\ Keepers.sbd/
root@test- vps:~/datasets/Oath Keepers/Oath Keepers.sbd# ls - lh
total 3.9G
- rw- r- - r- - 1 root root 2.2M Aug 2 23:45 Archive
- rw- r- - r- - 1 root root 23K Aug 2 23:44 'Saved Correspondence'
- rw- r- - r- - 1 root root 25K Aug 2 23:44 Systems
- rw- r- - r- - 1 root root 2.8M Aug 2 23:44 ak
- - snip- -

The output shows that this folder contains 100 files, each representing a
dif fer ent inbox full of email.

Since you’ll use the Oath Keepers dataset later in the book, next you’ll
copy it from your VPS to your datasets USB disk with the rsync program,
which synchronizes local folders and remote folders using SSH.

N O T E The scp command (short for “secure copy”) also copies files and folders from your com-
puter to a remote server, or vice versa, over SSH. The BlueLeaks hacker likely used a
Win dows version of scp, pscp64.exe, to exfiltrate data from the hacked police web
servers to a server they controlled. For very large folders, however, rsync is often a
better choice than scp, since if it fails halfway through, you can rerun the command
and it will start where it left off.

Open a terminal running locally on your computer (not SSHed to your
VPS) and run which rsync to check whether rsync is installed. If so, the com-
mand returns the path to the program, something like /usr/bin/rsync. If not,
you’ll see no output. Win dows with WSL and Linux users can install rsync
with the following command:

sudo apt install rsync

macOS users can install it with the following command:

brew install rsync

To copy a file from a remote server to your local computer, run the fol-
lowing command:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

116 Chapter 4

rsync -av - - progress remote_user@remote_host:remote_path local_path

The - av argument is a combination of - a (short for - - archive), which
preserves the file permissions in the copy you’re making, and - v (short for—
verbose), which outputs each filename as it copies the files. The - - progress
argument displays pro gress bars for each file as it’s copying. The rsync com-
mand will SSH into the server remote_host with the username remote_user. If
it authenticates successfully, it will download the file or folder at remote_path
and save it on your computer at local_path.

For example, here’s how I’d download the Oath Keepers dataset from
my VPS to my datasets USB disk:

rsync -av - - progress root@178.128.22.151:"~/datasets/Oath\ Keepers" /Volumes/datasets/

In this case, root@178.128.22.151:"~/datasets/Oath\ Keepers" is the remote_
user@remote_host:remote_path argument, since the Oath Keepers folder is in the
datasets folder in the root user’s home folder on my VPS. I put the remote
path in quotes and escape the space in the filename, telling my local shell
that root@178.128.22.151:"~/datasets/Oath\ Keepers" is a single argument. The
local_path argument is the /media/micah/datasets/ path to my datasets USB
disk.

N O T E You can also use rsync to upload files from your computer to a remote server— just
put the local_path argument first, as the source, and put the remote_user@remote_
host:remote_path argument second, as the destination.

 Here’s the output I get when I run this command:

receiving incremental file list
Oath Keepers/
Oath Keepers/messages.json
 12,109,624 100% 1.89MB/s 0:00:06 (xfr#1, to- chk=102/104)
Oath Keepers/messages_old.json
 1,393,296 100% 1.65MB/s 0:00:00 (xfr#2, to- chk=101/104)
Oath Keepers/Oath Keepers.sbd/
Oath Keepers/Oath Keepers.sbd/Archive
 2,288,916 100% 1.81MB/s 0:00:01 (xfr#3, to- chk=99/104)
Oath Keepers/Oath Keepers.sbd/Saved Correspondence
 23,192 100% 111.02kB/s 0:00:00 (xfr#4, to- chk=98/104)
Oath Keepers/Oath Keepers.sbd/Systems
 25,382 100% 121.51kB/s 0:00:00 (xfr#5, to- chk=97/104)
Oath Keepers/Oath Keepers.sbd/ak
 2,921,276 100% 4.33MB/s 0:00:00 (xfr#6, to- chk=96/104)
Oath Keepers/Oath Keepers.sbd/al
 41,772,536 100% 6.57MB/s 0:00:06 (xfr#7, to- chk=95/104)
- - snip- -

The rsync command copies every file, one at a time, from the remote
folder to the local folder over SSH, displaying a line after each filename

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Exploring Datasets in the Terminal 117

that shows the file’s download speed and pro gress. You can press ctrl- C to
cancel the command, then rerun that command, and rsync should continue
where it left off. This is especially useful when you need to copy gigabytes or
terabytes of data spread across millions of files—if the file transfer fails, you
can pick up where you left off.

Once rsync finishes running, you’ll have downloaded a local copy of the
Oath Keepers dataset to your datasets USB disk. You’ll use this dataset again
in Chapter 6, when you learn techniques for researching email dumps.

W A R N I N G Destroy your VPS from the DigitalOcean web console when you’re done with it. Using
it for an hour or two should cost you only a few cents, but the bill can get expensive if
you don’t pay attention.

Summary
In this chapter, you’ve put your command line skills to the test, unzipping
the compressed files in BlueLeaks and learning to quickly search and sort
datasets. You also worked with servers in the cloud and briefly explored the
Oath Keepers dataset.

In the next chapter, you’ll continue expanding your command line
skills and learn two new tools: Docker, which allows you to run Linux soft-
ware on any operating system, and Aleph, which allows you to search data-
sets by keyword.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

When I get my hands on a new dataset, the first thing
I do is search it for any juicy, easy- to- find revelations.
Depending on the dataset, I might look for politicians,
 organizations, or the city where I live. In the previous
chapter, you learned to search text files like CSV or
JSON files using grep, but grep won’t work on binary
files like PDFs or Office documents. In this chapter,
you’ll expand your search capabilities with Aleph, an
open source investigation tool.

Aleph is developed by the Organized Crime and Corruption Reporting
Proj ect, a group of investigative journalists largely based in Eastern Europe
and Central Asia. The tool allows you to index datasets, extracting all the
text they contain so they’re easy to search. You can use Aleph to search for
keywords or entities (like people, companies, organizations, or addresses)
and discover related entities in other datasets. Aleph also performs optical

5
D O C K E R , A L E P H , A N D M A K I N G

D A T A S E T S S E A R C H A B L E

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

120 Chapter 5

character recognition (OCR), which, as mentioned in Chapter 1, takes flat
images like scanned documents or screenshots, uses artificial intelligence to
recognize any words, and converts those words into text that you can search
or copy and paste.

In the first half of this chapter, you’ll learn the ins and outs of using
Docker and Docker Compose, the software required for running Aleph. In
the second half, you’ll use your new Docker skills to run an Aleph server,
then index and search part of the BlueLeaks dataset.

Introducing Docker and Linux Containers
Docker is the most popular software for running Linux containers, a type
of software package. Linux containers can organize ready- to-go Linux
software— complete with all of its dependencies, configuration, and source
code— into a single bundle called a container image that you can quickly and
easily run. The software inside containers is isolated from the rest of your
computer; it can’t access any of those files unless you allow it to do so.

For example, let’s say you want to set up the popular WordPress blog-
ging software in Linux. You use a package man ag er like apt or Homebrew
to install the software WordPress depends on. You then put the WordPress
source code in a location on your disk with the right permissions, configure
your web server software so it knows where to look for that source code, and
configure a database to store the blog’s data. You can then save all this work
in a Linux container called wordpress and reuse that container to spin up
new WordPress sites with a single Docker command.

 Because Linux containers are isolated from the rest of your computer,
multiple WordPress containers can run at the same time without interfer-
ing with each other. If someone hacks the software running in your con-
tainer, they won’t be able to access any of the data located elsewhere on
your computer—at least, not without also hacking Docker itself. This is why
Dangerzone relies on Linux containers: if a malicious document manages
to hack the Dangerzone container you’re using, your computer should still
be safe. In addition to software like WordPress, you can use Linux contain-
ers to run commands in most Linux distributions without having to install
 those operating systems.

Docker comes with two commands you’ll use in this chapter: docker,
which runs individual containers, and docker- compose, which lets you run
multiple containers at once. You’ll practice using the docker command
by running Linux containers for the Ubuntu and Ka li Linux operating sys-
tems, as well as for the data science software Jupyter Notebook. You’ll then
use docker- compose to run a WordPress server and an Aleph server. Aleph
requires a small network of services that communicate with each other, but
as with WordPress, you can use a single Docker command to start up all
 these individual servers in their own containers. This process should pre-
pare you to run Linux containers with Docker for other purposes later in
the book.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 121

This chapter covers two applications for running Docker containers:
Docker Desktop and Docker Engine. Docker Desktop runs Docker con-
tainers on workstation computers in a Linux VM. Docker Engine, on the
other hand, runs Docker directly on a Linux computer. Win dows and Mac
users, turn to Exercise 5-1 to set up Docker Desktop. Linux users, turn to
Exercise 5-2 to install Docker Engine.

N O T E It’s pos si ble for Linux users to install Docker Desktop, but I don’t recommend it for
this chapter. Without a VM, Docker will be free to use all of your computer’s memory
and pro cessors, which will make indexing datasets in Aleph much faster.

Exercise 5-1: Initialize Docker Desktop on Win dows and macOS
When you installed Dangerzone in Exercise 1-3, Docker Desktop also
should have been installed, since Dangerzone requires it. Confirm that
Docker Desktop is installed by checking whether your Applications folder in
macOS or Start menu in Win dows has a Docker program; if not, download
it from https:// www . docker . com / products / docker - desktop / .

Open Docker and follow the on- screen instructions to initialize the
software. You may need to reboot your computer. Before you can use
Docker, Docker Desktop’s Linux VM should be up and running. If you click
the Docker icon in your system tray and it tells you that Docker Desktop is
 running, you’re ready to proceed.

If you’re using Win dows, you can use either PowerShell or Ubuntu with
WSL for this chapter, since the docker and docker- desktop commands should
run fine in either. Even when you use Docker from PowerShell, it techni-
cally relies on WSL under the hood.

If you’re using macOS, click the Docker icon in your system tray and
choose Preferences. Switch to the Resources tab and make sure that the
Memory resource is set to at least 6GB— higher if you have more to spare—
to be sure Docker’s Linux VM has enough memory to handle Aleph. Click
Apply & Restart.

For either operating system, to test whether Docker is working, open a
terminal and run this command:

docker run hello- world

This command should run a Docker container image called hello- world.
If you don’t already have the hello- world image on your computer, Docker
should download it first. The output should look something like this:

Unable to find image 'hello- world:latest' locally
latest: Pulling from library/hello- world
2db29710123e: Pull complete
Digest: sha256:10d7d58d5ebd2a652f4d93fdd86da8f265f5318c6a73cc5b6a9798ff6d2b2e67
Status: Downloaded newer image for hello- world:latest

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.docker.com/products/docker-desktop/

122 Chapter 5

Hello from Docker!
This message shows that your installation appears to be working correctly.
- - snip- -

Your computer is ready to run Linux containers. Skip to the “ Running
Containers with Docker” section on page XX.

Exercise 5-2: Initialize Docker Engine on Linux
Follow the detailed instructions for Server rather than Desktop at

https:// docs . docker . com / engine / install / to install Docker Engine for your version
of Linux. In Ubuntu, the installation process involves adding a new apt
repository to your computer and installing some Docker packages.

Docker Engine on Linux requires root access to run containers. After
completing this exercise, if you’re using Linux, add sudo to the beginning of
all docker or docker- compose commands in this book. To run all your Docker
commands as root automatically without using sudo, check the Docker
Engine documentation for instructions on adding your Linux user to the
docker group; however, keep in mind that doing so decreases your computer’s
security and isn’t recommended.

Once Docker is installed, open a terminal and run:

sudo docker run hello- world

This command runs a Docker container image called hello- world. If you
 don’t already have the hello- world image on your computer, Docker down-
loads it first. The output should look something like this:

Unable to find image 'hello- world:latest' locally
latest: Pulling from library/hello- world
2db29710123e: Pull complete
Digest: sha256:507ecde44b8eb741278274653120c2bf793b174c06ff4eaa672b713b3263477b
Status: Downloaded newer image for hello- world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
- - snip- -

If the hello- world container ran successfully, you can now use the docker
command on your computer. Next, run the following command to install
the docker- compose package, which will give you access to the docker- compose
command:

sudo apt install docker- compose

Your computer is now ready to run Linux containers.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.docker.com/engine/install/

Docker, Aleph, and Making Datasets Searchable 123

PODM A N

Podman (https:// podman . io) is another software solution for running Linux con-
tainers. It’s lightweight and doesn’t require root access, which makes it more
secure than Docker. I prefer Podman—in fact, Dangerzone for Linux uses it
instead of Docker. However, Docker is more popular, and some containers that
work in Docker may not run properly in Podman. I recommend sticking with
Docker while you follow along with this chapter. If you become a Linux con-
tainer nerd, you can try out Podman on your own later.

 Running Containers with Docker
The docker command you’ve just installed allows you to run Linux contain-
ers on your computer. In this section you’ll learn how to use this command
to open a shell inside containers, force running containers to quit, mount
volumes to save per sis tent data or access certain files, set environment vari-
ables, and publish ports so your computer can connect to network services
inside your container. This foundational understanding of Docker will
prepare you to run Docker containers in Exercise 5-3 and help you trouble-
shoot any prob lems you later encounter with Aleph.

N O T E For additional information on Docker commands, run docker help or check the docu-
mentation at https:// docs . docker . com.

 Running an Ubuntu Container
You’ll begin by learning how to run a Linux container with the Ubuntu
operating system in it. People often base more complicated container
images on the Ubuntu container image to access all Ubuntu software that
apt can install. An Ubuntu container is also a convenient way to access
a shell on a clean Ubuntu system, allowing you to install software or test
programs.

Docker commands use the docker command syntax. Run the following to
start your own Ubuntu container (if you’re using Linux, remember to add
sudo):

docker run -it ubuntu:latest bash

This command runs ubuntu:latest, the latest version of the ubuntu image.
If that image isn’t already on your computer, Docker automatically down-
loads it from Docker Hub, a library of public container images at https:// hub
. docker . com. Next, the bash command runs, giving you shell access inside that

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://podman.io
https://docs.docker.com
https://hub.docker.com
https://hub.docker.com

124 Chapter 5

container. Include the - it argument, which is short for - i (or - - interactive)
and - t (or - - tty), after docker run whenever you plan to open a shell in a con-
tainer, so that any commands you type in the terminal run in the container.
Without the - it argument, the bash shell would immediately quit before
you could run any commands, as would the container.

This command gives me the following output:

micah@trapdoor ~ % docker run -it ubuntu:latest bash
Unable to find image 'ubuntu:latest' locally
latest: Pulling from library/ubuntu
d19f32bd9e41: Pull complete
Digest: sha256:34fea4f31bf187bc915536831fd0afc9d214755bf700b5cdb1336c82516d154e
Status: Downloaded newer image for ubuntu:latest
root@5661828c22a2:/#

Since I didn’t already have the ubuntu:latest image, the command
downloaded that image, started the container, and dropped me into a bash
shell. I can now run whatever commands I want inside this container, such
as installing software or running programs.

 Running the exit command quits the container. If you start a new
ubuntu:latest container, it contains none of the old container’s data. For
example, with the following commands, I create a file called test.txt in one
container, quit the container, and start a new one:

root@5661828c22a2:/# echo "Hacks, Leaks, and Revelations" > test.txt
root@5661828c22a2:/# cat test.txt
Hacks, Leaks, and Revelations
root@5661828c22a2:/# exit
exit
micah@trapdoor ~ % docker run -it ubuntu:latest bash
root@e8888f73a106:/# cat test.txt
cat: test.txt: No such file or directory
root@e8888f73a106:/#

The output shows that test.txt no longer exists. For data in a container
to persist when you rerun the container image, you need to use volumes, as
 we’ll discuss in “Mounting and Removing Volumes” on page XX.

Listing and Killing Containers
If you’ve exited your Ubuntu container, run a new one. With that container
 running in the background, open a second terminal win dow and run the
docker ps command. This should show you a list of all containers currently
 running. Here’s the output I get, for example:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
337a795a53b2 ubuntu:latest "bash" 9 minutes ago Up 9 minutes
nostalgic_keldysh

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 125

When you start a container with docker run, you can give it a name with
the arguments - - name your_container_name. Other wise, it will be assigned a ran-
dom name. The container in my docker ps output is called nostalgic_keldysh.

To kill a container, or force it to quit, you run docker kill your_container_
name. For example, running the following command in my other terminal
win dow quits my nostalgic_keldysh container:

docker kill nostalgic_keldysh

Run this command for your own container. If you switch back to your
other terminal win dow, the container should have quit, and you should be
back in your normal shell.

When you exit a container, Docker still keeps track of it, allowing you to
restart it if you want. To see all of the containers Docker is tracking, includ-
ing ones that aren’t running anymore, you run docker ps - a (short for - - all).
 Here’s the output I get when I run this command:

CONTAINER ID IMAGE ... STATUS PORTS NAMES
337a795a53b2 ubuntu:latest ... Exited (0) 43 minutes ago nostalgic_keldysh

It’s good practice to run docker rm container_name to prune your stopped
Docker containers when you’re done using them. For example, I’d run
docker rm nostalgic_keldysh to remove my nostalgic_keldysh container.

You can run docker container prune to remove all stopped containers at
once. When I ran this command, I saw the following output:

WARNING! This will remove all stopped containers.
Are you sure you want to continue? [y/N]

I entered y and got the following output:

Deleted Containers:
337a795a53b25e6c28888a44a0ac09fac9bf6aef4ab1c3108844ca447cce4226

Total reclaimed space: 5B

This displays the container ID, a long string of random- looking text, for
each container that’s deleted. In my case, I deleted a single container.

Mounting and Removing Volumes
Containers support volumes, which you can think of as folders in your
container designed to store per sis tent data. You can use volumes to save
changes you’ve made to your container after you quit and remove it.

For example, suppose you start a container without any volumes that
runs the PostgreSQL database software. Any data you add to it is saved
to the /var/lib/postgresql/data folder inside your container. When you quit
and remove the container, you’ll lose all of your data. If you instead mount
a folder on your host operating system into /var/lib/postgresql/data on the
container, when software in the container accesses that folder, it’s actually

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

126 Chapter 5

accessing the folder on your host operating system. You’ll still have all of
your data when the container closes and is removed, and you can start the
container again in the future with the same data.

Docker has two main types of volumes: bind mounts, or folders from
your host machine mounted into a container, and normal Docker volumes,
where Docker keeps track of your per sis tent folders without your having to
provide a path on your host operating system. For example, if you want to
store your database container’s data in the /Volumes/datasets/volumes/db- data
folder on your host filesystem, you would mount this folder as a bind mount.
If you don’t need your data to be stored in a specific folder on your host,
just use a normal volume, and Docker will keep track of where it’s stored.

N O T E Storing volumes in a Linux VM with Docker Desktop makes them faster than bind
mounts, but your VM might run out of disk space if your volumes get too big (if
you index large datasets into Aleph, for example). In macOS, you can increase the
amount of disk space available to your VM in the Docker Desktop preferences under
the Resources tab. In Win dows, your VM will use as much space on the C: drive as it
needs, but again, this drive could run out of disk space if you’re dealing with large
amounts of data. Alternatively, you could use bind mounts instead of volumes, stor-
ing data on external disks.

You can also use volumes to access data outside of a container while
that container is running. In Exercise 5-5, you’ll bind- mount your datasets
USB disk as a folder in an Aleph container. This way, your container can
access the BlueLeaks dataset, allowing you to index it.

Use this command to start a container with a volume:

docker run - - mount type=volume,src=volume- name,dst=/container/path image

Use this command to start a container with a bind mount:

docker run - - mount type=bind,src=/path/on/host,dst=/container/path image

The - - mount argument tells Docker that you’re going to mount a vol-
ume and is followed by comma- separated details about that volume. The
type parameter specifies the type of mount: volume for volumes and bind for
bind mounts. The src parameter specifies the source of the volume or bind
mount. For volumes, its value is the volume name; for bind mounts, its value
is the absolute path on your host filesystem to the folder you want to mount.
The dst parameter specifies the destination of the volume or bind mount,
in both cases the absolute path of the folder inside the container to which
 you’re mounting.

Let’s practice these two commands, starting with mounting a volume.
Run the following code (your prompt will be dif fer ent from mine):

micah@trapdoor ~ % docker run -it - - mount type=volume,src=test- data,dst=/mnt
ubuntu:latest bash

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 127

root@50b8b6f86e4d:/# echo "Hacks, Leaks, and Revelations" > /mnt/test.txt
root@50b8b6f86e4d:/# exit

This code starts an Ubuntu container and mounts a volume called
test- data into the /mnt folder in the container. It then saves some data into
the /mnt/test.txt file and exits the container.

Use the following commands to open a separate container, mounting
the same volume into it to see whether your data is still there (again, your
command prompt will be dif fer ent):

micah@trapdoor ~ % docker run -it - - mount type=volume,src=test- data,dst=/mnt
ubuntu:latest bash
root@665f910bb21c:/# cat /mnt/test.txt
Hacks, Leaks, and Revelations
root@665f910bb21c:/# exit

This time, because you mounted /mnt in the test- data volume, the data
persisted.

To see a list of the volumes that Docker is managing, run the docker
volume ls command. You should get the following output:

DRIVER VOLUME NAME
local test- data

You can remove volumes only from containers that have been com-
pletely removed from Docker. If you’ve just stopped a container but Docker
is still tracking it, it won’t let you remove the volume. Completely remove all
 stopped containers by running docker container prune, which then allows you
to remove any volumes attached to those containers. You should get the fol-
lowing output:

WARNING! This will remove all stopped containers.
Are you sure you want to continue? [y/N]

Enter y to continue:

Deleted Containers:
665f910bb21ca701be416da94c05ee6a226117923367d2f7731693062683a402
50b8b6f86e4d0eab9eb0ba9bf006ae0473525d572ea687865f8afca8a92e7087

Total reclaimed space: 82B

You can now run docker volume rm volume- name to remove any volumes
attached to those containers, or run docker volume prune to delete all vol-
umes that Docker containers aren’t currently using. Run docker volume rm
test- data to remove the test- data volume, then run the docker volume ls com-
mand again. This time, you shouldn’t see any volumes listed in the output.

Next, you’ll practice bind mounting by mounting the folder on your
host system containing the BlueLeaks dataset into a container running Ka li
Linux. This Linux distribution is designed for penetration testing, in which

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

128 Chapter 5

 people hack into systems with permission from the system owners to find
and fix security flaws.

If you’re a Mac or Linux user, run the following command, replacing
the path with the appropriate path on your machine:

docker run -it - - mount type=bind,src=/Volumes/datasets/BlueLeaks- extracted,dst=/blueleaks
kalilinux/kali- rolling bash

This should run a kalilinux/kali- rolling container, mounting your
BlueLeaks- extracted folder in it at the path /blueleaks, and drop you into a
bash shell.

Win dows users might have trou ble bind- mounting a folder on the data-
sets USB disk into a container, because Docker Desktop for Win dows runs
Linux containers using WSL, and WSL doesn’t always have access to your
USB disks. To avoid this prob lem, if you plugged in your USB disk after
opening a WSL terminal or using Docker, restart WSL by running
wsl - - shutdown in PowerShell. You should see a notification from Docker
Desktop asking if you want to restart it. Click Restart. After you restart WSL
with the USB disk already plugged in, Docker should be able to mount it.
(See Appendix A for more information.)

If you’re using Win dows with PowerShell to work through this chap-
ter, run the following command to mount the folder that contains the
BlueLeaks data into /datasets, replacing D:/BlueLeaks- extracted with the
appropriate path:

docker run -it – mount type- bind,src=D:/BlueLeaks- extracted,dst=/blueleaks kalilinux/
kali- rolling bash

If you’re using Ubuntu with WSL in Win dows, mount the BlueLeaks
folder by accessing the D: drive from /mnt/d with the following syntax:

docker run -it - - mount type=bind,src=/mnt/d/BlueLeaks- extracted,dst=/blueleaks kalilinux/
kali- rolling bash

From within your Ka li container, you can now use the tools that come
with Ka li on the BlueLeaks dataset. By default, Ka li customizes your bash
shell to look slightly dif fer ent than Ubuntu does. The prompt will look
something like this:

┌──(root㉿6a36e316663c)-[/]
└─#

Docker containers are assigned random hostnames. In this case, root is
the name of the current user, 6a36e316663c is the hostname of the computer,
and / is the current working directory. From here, run ls /blueleaks/ to list
the files in the BlueLeaks folder:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 129

211sfbay iowaintex pleasantonpolice
Securitypartnership jerseyvillagepd prvihidta
acprlea jric pspddoc
acticaz kcpers publicsafetycadets
- - snip- -

N O T E You can learn more about volumes at https:// docs . docker . com / storage / volumes /
and about bind mounts at https:// docs . docker . com / storage / bind - mounts / .

Passing Environment Variables
You can also use environment variables, introduced in Chapter 4, to pass
sensitive information like database credentials into containers. When start-
ing up a container, you pass an environment variable into it using the
- e variable_name=value (the - e is short for - - env) arguments. Programs in the
container can then access the value of that variable.

For example, run the following command:

docker run -it - e DB_USER=root - e DB_PASSWORD=yourefired ubuntu:latest bash

This starts an Ubuntu container with the variable DB_USER set to root
and the variable DB_PASSWORD set to yourefired. From inside the container, try
displaying the values of those variables to confirm that you can access this
information there, using the echo $variable_name command like so:

bash-5.1# echo $DB_USER
root
bash-5.1# echo $DB_PASSWORD
yourefired

You’ll practice passing environment variables to containers further in
Exercise 5-3.

 Running Server Software
You can also run robust, fully configured software on the operating systems
 running in containers. This technique is mostly used to access server software,
software to which you can connect over a network using web browsers, data-
base clients, or other similar programs. You’ll need this skill for Exercise 5-3
and, eventually, to run Aleph.

Dif fer ent computers (or VMs, or containers), called hosts, are identified
by IP addresses or hostnames. Your own computer’s IP address is always
127.0.0.1, and its hostname is always localhost. Hosts can listen on dif fer ent
ports for incoming network connections, meaning the host is available for
other hosts to connect to over a network. A port is a number that the com-
puter uses to sort out which network traffic should go to which application.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/bind-mounts/

130 Chapter 5

Dif fer ent services have dif fer ent default ports. For example, HTTP and
HTTPS services are two types of websites that use port 80 and port 443,
respectively. When you load the URL http:// example . com in your browser, it
 will try to connect to the host example . com on port 80 using HTTP. If you
load https:// example . com, it will try to connect on port 443 using HTTPS.

However, you can change the default ports that services use. If you’re
 running an HTTP service on localhost on port 5000, the URL for that
 service would be http:// localhost:5000, where http:// means you’re using the
HTTP protocol, localhost means you’re connecting to the localhost host,
and :5000 means you’re connecting to port 5000 instead of the default
HTTP port, 80.

To connect to a network port inside your Docker container, you must
publish a network port when you run your container, making that port
available on the host operating system. To do so, use the arguments
- p host_port:container_port (- p is short for - - publish). Once the container
starts up, your host operating system will listen on host_port. If you connect
to that port, your connection will be forwarded to container_port inside the
container.

Let’s look at an example of running server software and publishing a
port so that you can connect to it from your host computer. Run the follow-
ing command:

docker run - p 8000:8888 jupyter/scipy- notebook:latest

This command should download and run the latest version of the
jupyter/scipy- notebook container image, which includes the most popular
science- related Python libraries. (Jupyter Notebook is a power ful data sci-
ence tool for creating and sharing computational documents.) The syntax
to publish ports is - p host_port:container_port. Jupyter Notebook starts an
HTTP service on port 8888, so in this command, host_port is 8000 and
container_port is 8888. If you connect to localhost on port 8000, using either
the URL http:// localhost:8000 or http:// 127 . 0 . 0 . 1:8000, you’ll now actually con-
nect to port 8888 inside the container.

 Here’s the output from the previous command:

Unable to find image 'jupyter/scipy- notebook:latest' locally
latest: Pulling from jupyter/scipy- notebook
08c01a0ec47e: Pull complete
- - snip- -
Status: Downloaded newer image for jupyter/scipy- notebook:latest
Entered start.sh with args: jupyter lab
Executing the command: jupyter lab
- - snip- -

 To access the server, open this file in a browser:
 file:// / home / jovyan / . local / share / jupyter / runtime / jpserver - 7 - open . html
 Or copy and paste one of these URLs:
 http:// cc4a555569e4:8888 / lab ? token = d570e7d9ecc59bbc77536ea4ade65d02dd575ff3c6713dd4
 or http:// 127 . 0 . 0 . 1:8888 / lab ? token = d570e7d9ecc59bbc77536ea4ade65d02dd575ff3c6713dd4

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://example.com
http://example.com
https://example.com
http://localhost:5000
http://localhost:8000
http://127.0.0.1:8000
http://file:///home/jovyan/.local/share/jupyter/runtime/jpserver-7-open.html
http://cc4a555569e4:8888/lab?token=d570e7d9ecc59bbc77536ea4ade65d02dd575ff3c6713dd4
http://127.0.0.1:8888/lab?token=d570e7d9ecc59bbc77536ea4ade65d02dd575ff3c6713dd4

Docker, Aleph, and Making Datasets Searchable 131

The output shows that this command downloaded the latest version of
the jupyter/scipy- notebook container image from Docker Hub and then ran it.
This time, instead of starting a shell in the container, the container runs
only the service it was designed for, which is Jupyter Notebook. Each time
Jupyter Notebook outputs a log message, the terminal win dow now
displays it.

The end of the output shows three dif fer ent URLs to access the server.
Copy the final URL, paste it in your browser, and change the port number
from 8888 to 8000 before you load it. When you connect to your own com-
puter on port 8000 (127.0.0.1:8000), your connection will be forwarded to
the container on port 8888. Your browser should load the Jupyter Notebook
 service running in your container. When this happens, you should see more
log messages appear in the terminal.

Figure 5-1 shows a web browser running on my Mac, connected to a
Jupyter Notebook server, which is running in my Linux container.

Figure 5-1: Jupyter Notebook running in a container

The container keeps running until you press ctrl- C to quit it. If you
need to run any other terminal commands while the container is still
 running, you’ll need to open a separate terminal win dow. For now, press
ctrl- C in your terminal to exit the Jupyter Notebook container.

You won’t use Jupyter Notebook further in this book, but you’ll rely on
your new understanding of running server software to run a WordPress
website in Exercise 5-3.

N O T E For more information about Jupyter Notebook, visit https:// jupyter . org, and for
thorough documentation on running Jupyter Notebook in Docker, see https://
jupyter - docker - stacks . readthedocs . io.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://jupyter.org
https://jupyter-docker-stacks.readthedocs.io
https://jupyter-docker-stacks.readthedocs.io

132 Chapter 5

Freeing Up Disk Space
Docker images take up a lot of disk space. To free up space quickly, use
the following command to delete all of the container images you’ve down-
loaded from Docker Hub and other data that Docker stores (besides
volumes):

docker system prune - a

Since this command doesn’t delete volumes, it won’t delete any of your
impor tant data. The next time you use docker run commands, you’ll just
redownload the container images you need from Docker Hub.

Exercise 5-3: Run a WordPress Site with Docker Compose
More complicated software like Aleph requires running multiple containers
that interact with each other. To do that, you’ll need to learn to use Docker
Compose, as the docker run command’s arguments quickly become hard to
keep track of when used to run more complicated containers— those with
volumes, environment variables, publishing ports, and so on. It’s especially
unwieldy to run a single application that requires multiple containers at
once.

Docker Compose makes it easier to define and run such Docker appli-
cations. The tool allows you to configure your containers (choosing images,
volumes, environment variables, published ports, and so on) in a single file,
and to start and stop all of your containers with a single command. I often
use Docker Compose even for software that requires a single container,
 because it simplifies keeping track of all of the configuration. You’ll need to
be proficient in Docker Compose to run an Aleph server.

In this exercise, you’ll familiarize yourself with Docker Compose by
using it to run WordPress. You won’t need WordPress for the remainder of
this book, but here it serves as an example to prepare you for using Docker
Compose with Aleph.

Make a docker- compose.yaml File
The YAML file format (https:// yaml . org) is popular among programmers for
storing configuration files because it’s relatively human- readable. YAML
files have either a .yml or .yaml file extension. Docker Compose defines con-
tainers and their settings in a file called docker- compose.yaml.

Open a terminal and change to your exercises folder. Make a new folder
called wordpress for this exercise and then, using your text editor, make a
file in that folder called docker- compose.yaml. Enter the following code into
that file (or copy and paste it from https:// github . com / micahflee / hacks - leaks - and
- revelations / blob / main / chapter - 5 / wordpress / docker - compose . yaml):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://yaml.org
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-5/wordpress/docker-compose.yaml
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-5/wordpress/docker-compose.yaml

Docker, Aleph, and Making Datasets Searchable 133

 services:
 wordpress:
 image: wordpress:latest
 volumes:
 - wordpress_data:/var/www/html
 ports:
 - 8000:80
 restart: always
 1 environment:
 - WORDPRESS_DB_HOST=db
 - WORDPRESS_DB_USER=wordpress
 - WORDPRESS_DB_PASSWORD=yourefired
 - WORDPRESS_DB_NAME=wordpress
 db:
 image: mariadb:10.9
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 2 environment:
 - MYSQL_ROOT_PASSWORD=supersecurepassword
 - MYSQL_USER=wordpress
 - MYSQL_PASSWORD=yourefired
 - MYSQL_DATABASE=wordpress

volumes:
 db_data:
 wordpress_data:

YAML files are whitespace sensitive, meaning that indentations affect
the meaning of the code. This file defines two containers named wordpress
and db. For each container, it defines which container image to use, what
volumes to mount, which ports to publish (in the case of the wordpress
container), which environment variables to set, and other settings.

The wordpress container uses the wordpress:latest image to create an
instance of the WordPress web application. The db container uses the
mariadb:10.9 container image to create an instance of a MySQL database
server. (MySQL is a popular data management system that you’ll learn
more about in Chapter 12.)

 Because these two containers are defined in the same docker- compose.
yaml file, by default they’re part of the same Docker network so that they can
communicate with each other. The wordpress container sets WORDPRESS_DB_HOST
to db, the name of the other container, because it connects to that hostname.
The wordpress environment variables 1 also match the db environment vari-
ables 2. If these database credentials aren’t the same, WordPress gets a “per-
mission denied” error when trying to connect to the database.

N O T E The WordPress docker- compose.yaml file in this example is a slightly modified
version of a sample file in the Docker documentation at https:// docs . docker . com
/ samples / wordpress / . See the documentation for a more thorough description of
how to use Docker Compose.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.docker.com/samples/wordpress/
https://docs.docker.com/samples/wordpress/

134 Chapter 5

Start Your WordPress Site
In your terminal, change to the folder you created for this exercise and run
the following command to start both containers at the same time:

docker- compose up

The first time you run it, Docker should download the mariadb:10.9
and wordpress:latest container images from Docker Hub. The command
should then run a MySQL container and a web server container running
WordPress, and you should see logs from both containers scroll by in your
terminal. Logs from the db container start with db_1, while logs from the
wordpress container start with wordpress_1.

The db container doesn’t need to publish any ports for WordPress to
connect to it, since both containers share a Docker network. However,
the wordpress container publishes ports 8000:80. This means that loading
http:// 127 . 0 . 0 . 1:8000 in your browser connects to your host operating system
on port 8000 and loads the web server in the wordpress container running
on port 80.

Enter http:// 127 . 0 . 0 . 1:8000 in your browser, and you’re running
WordPress! Figure 5-2 shows the WordPress installation process that appears
when I load that URL on my Mac after selecting English as my language.

Figure 5-2: WordPress running in two containers, with Docker Compose

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://127.0.0.1:8000
http://127.0.0.1:8000

Docker, Aleph, and Making Datasets Searchable 135

Fill out the form with your WordPress site’s title, a username, and a
password, and then explore your new WordPress site.

To open a shell and run commands in an active container with Docker
Compose, you use the docker- compose exec container_name command syntax. For
example, this is how you’d get a shell in the wordpress container:

docker- compose exec wordpress bash

While docker- compose run starts a new container, docker- compose exec runs
a command in an active container— a little like opening a new terminal
win dow inside a running container.

Exit the shell when you’re done. Back in the terminal running docker-
compose up, press ctrl- C to shut down the containers. Now you’re ready to
use your new Docker and Docker Compose skills to make your datasets
searchable with Aleph.

Introducing Aleph
Truth cannot penetrate a closed mind. If all places in the universe are in the Aleph,

then all stars, all lamps, all sources of light are in it, too.
— Jorge Luis Borges, “The Aleph”

The Organized Crime and Corruption Reporting Proj ect (OCCRP),
founded in 2006, has a history of publishing high- profile investigations into
corruption, often leading to criminal investigations, arrests, and seizure of
stolen funds. In partnership with dozens of newsrooms around the world, the
group relies on large datasets for its investigations. For example, OCCRP,
along with the International Consortium of Investigative Journalists (ICIJ),
was part of a co ali tion investigating the Panama Papers, an offshore tax
haven dataset that led to over 40 stories about corruption. One of those
stories implicated a close friend of Vladimir Putin who had embezzled
$230 million from Russian taxpayers. Because OCCRP deals with so much
data, it developed Aleph as an investigation tool to make it easier to track
white collar crime, follow the money, and cross- reference vari ous datasets.

OCCRP runs an Aleph server available to the public at https:// data . occrp
. org. This server includes over 250 public datasets with documents from
139 dif fer ent countries and territories. While there’s some overlap with
datasets published by DDoSecrets, most public datasets in OCCRP’s Aleph
server are dif fer ent. Many of them are regularly updated datasets of public
rec ords: registries of com pany owner ship around the world, lists of people
and organizations facing international sanctions, and court rec ords. These
datasets might not seem exciting on their own, but when your investigation
leads you to a specific person or com pany, they can be crucial for helping
you fill in the gaps. OCCRP’s Aleph server also contains many more private
datasets, which are available to journalists who apply for access.

Take some time to check out OCCRP’s Aleph server, explore which
public datasets are available, and make some searches. For example, if you

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.occrp.org
https://data.occrp.org

136 Chapter 5

search for Rudy Giuliani (Donald Trump’s confidant and lawyer, and the
former mayor of New York City) and filter by the US Federal Courts Archive
dataset, you’ll find a series of court documents that reference Giuliani.

You can upload your own datasets to OCCRP’s Aleph server only if
OCCRP makes an account for you. Even if you do have an account, you
 won’t be able to upload medium- or high- security datasets without sharing
this data with a third party: OCCRP. That’s why I help run a private Aleph
server for The Intercept. You won’t use OCCRP’s public Aleph server fur-
ther in this book. Instead, in Exercise 5-4, you’ll run a small Aleph server
and bring up Aleph containers on your own laptop.

Exercise 5-4: Run Aleph Locally in Linux Containers
This exercise prepares you to run your own server directly on your com-
puter with Docker Compose. Instead of accessing Aleph at https:// data . occrp
. org, you’ll bring up your Aleph containers and access your private server at
http:// 127 . 0 . 0 . 1:8080. You’ll use Docker Compose to run the many dif fer ent
 services Aleph requires on your computer with a single command.

Make a new folder called aleph to use for this exercise and the next.
Save a copy of docker- compose.yml and aleph.env.tmpl from Aleph’s git repo,
located at https:// github . com / alephdata / aleph / , into the aleph folder.

The docker- compose.yml file describes the nine containers that Aleph
requires and all of their configuration, including the volumes that will save
the indexed versions of your datasets. One of these containers, called shell,
includes a bind mount that maps your home folder (~) on your host filesys-
tem to /host in the container:

- "~:/host"

In your copy of docker- compose.yml, delete this line or comment it out by
prepending a hash mark (#) to make Aleph run faster and avoid giving the
container access to your home folder.

Now rename aleph.env.tmpl to aleph.env, and open that file in your text
editor. This file contains the settings for your Aleph instance on dif fer ent
lines, in the format SETTING_NAME=setting_value, which you’ll need to modify
in a few ways.

First, run the following command to generate a random value for ALEPH_
SECRET_KEY (Win dows users, run this in your Ubuntu terminal):

openssl rand - hex 24

Since you’re running Aleph on your computer instead of setting it up
on a server for others to use, change ALEPH_SINGLE_USER in aleph.env to true
instead of false, which allows you to use Aleph without having to create an
admin user for yourself. Save the file.

Aleph relies on many dif fer ent services to run, including three data-
bases: PostgreSQL, Redis, and Elasticsearch. Elasticsearch is designed to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.occrp.org
https://data.occrp.org
http://127.0.0.1:8080
https://github.com/alephdata/aleph/

Docker, Aleph, and Making Datasets Searchable 137

search large amounts of data for text strings. For it to operate quickly, it
needs to hold lots of data in memory. Linux’s default memory management
setting vm.max_map_count is far too low for Elasticsearch to work properly. If
 you’re using Linux or Win dows with WSL, run the following command to
increase the value of vm.max_map_count:

sudo sysctl - w vm.max_map_count=262144

If you’re using macOS, run sysctl - w vm.max_map_count=262144 inside of
your Linux VM managed by Docker Desktop. Then run the following com-
mand to start a shell directly in your Linux VM:

docker run -it - -rm - - privileged - - pid=host alpine:edge nsenter - t 1 - m - u - n - i sh

Once you’re in this shell, run this command:

sysctl - w vm.max_map_count=262144

Run exit to exit the Linux VM shell. Each time you restart Docker
Desktop, this change is undone, so you’ll need to run these commands again
to continue using Elasticsearch. (Refer to the “Increasing Elasticsearch
Memory in Docker Desktop” box to speed up this process in the future.)

INCR E A SING EL A S T ICSE A RCH MEMORY

IN DOCKER DESK TOP

If you’re using macOS, you’ll need to change settings before starting the Aleph
containers. Instead of referring to this chapter to remember what commands to
run, store them as the following shell script (which you can also find at https://
github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 5 / aleph / fix
- es - memory . sh):

#!/bin/bash
docker run -it - -rm - - privileged - - pid=host alpine:edge \
 nsenter - t 1 - m - u - n - i \
 sysctl - w vm.max_map_count=262144

Save a copy of this script in the same folder as your docker- compose.yml file for
Aleph, and run chmod +x fix- es- memory.sh to make sure it’s executable. You
can now run the script before starting the Aleph containers with just these two
commands:

./fix- es- memory.sh
docker- compose up

You’ll need to run this script only once each time you restart Docker Desktop.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-5/aleph/fix-es-memory.sh
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-5/aleph/fix-es-memory.sh
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-5/aleph/fix-es-memory.sh

138 Chapter 5

Fi nally, for all operating systems, run the following command to start
Aleph:

docker- compose up

The first time you run this command, you’ll download a few gigabytes
of container images. Text will scroll past in the terminal while Aleph boots
up; wait for it to stop.

You also need to run an upgrade command the first time you use Aleph
and whenever you upgrade your version of it. Once Aleph finishes booting,
open a second terminal, change to the exercises folder, and run:

docker- compose run - -rm shell aleph upgrade

This command initializes the databases that Aleph uses by running the
command aleph upgrade inside the shell container. Wait for this command to
completely finish; you’ll know it’s done when the program stops displaying
output and you end up back at your terminal’s command prompt.

N O T E For more detailed documentation for Aleph, see https:// docs . alephdata . org.

Using Aleph’s Web and CLI Interfaces
Now that you have a local Aleph server, you can explore its two dif fer ent
interfaces: the web interface, which you’ll use to investigate datasets, and
the CLI interface, which you’ll use to index new datasets or administer your
Aleph server.

With your Aleph containers up, open http:// 127 . 0 . 0 . 1:8080 / in a browser
to see the web interface. For example, Figure 5-3 shows Aleph running in
Linux containers on my Mac.

Figure 5-3: Aleph hosted in Docker containers

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.alephdata.org
http://127.0.0.1:8080/

Docker, Aleph, and Making Datasets Searchable 139

You’ll use this interface to search data you upload into Aleph. The
search bar at the top allows you to search every dataset you’ve indexed in
your Aleph server at once, and the slider icon just to the right of the search
box lets you perform advanced searches.

The Datasets and Investigations buttons at the top show you the data-
sets in Aleph; for now, both of those pages will be empty. In Aleph, datasets
and investigations are both collections of documents, with dif fer ent user
interfaces for exploring each. A dataset should be static, while an investiga-
tion is a collection of documents that you might still be adding to.

 After performing a search in Aleph, you can optionally save your search
query as an alert. This feature is useful only on servers that have multiple
users and are configured to send email. In those cases, the server automati-
cally searches any new data indexed into the server for all of the user’s saved
alerts. If it gets a hit, it sends an email to the user. In the example, you set
ALEPH_SINGLE_USER to true, so that feature doesn’t apply.

In addition to the web- based user interface you just explored, designed
for journalists and researchers, Aleph has a CLI interface designed for
 running the Aleph server itself. You must use the command line interface
for administrative tasks like creating Aleph users (if you aren’t using the
ALEPH_SINGLE_USER setting in future proj ects) or indexing folders of data,
which you’ll do later in this chapter.

To use the CLI interface, run bash inside the container called shell to
start an Aleph shell like so:

docker- compose run - -rm shell bash

When you first opened a shell in a container using Docker Compose,
you used docker- compose exec, which executes a command in an already
 running container. Here, docker- compose run runs a new container in which
to execute your command. The - - rm argument tells Docker to remove the
container as soon as your command finishes running. In this case, your
command is bash, so you can run exit in the bash shell to remove this tem-
porary container.

You can now use the aleph command. Run aleph - - help to see a list of all of
the commands that Aleph supports. To learn more about a specific command,
run - - help on it. For example, to learn more about the crawldir command
(which we’ll discuss in Exercise 5-5), you’d run aleph crawldir - - help.

Run exit to quit the Aleph shell. Back in your other terminal win dow,
press ctrl- C to shut down all the Aleph containers when you’re not using
them. When you run docker- compose up to start the containers again, all the
data in Aleph— including any datasets that you’ve added to it— will still be
 there, because that data is stored in Docker volumes, making it per sis tent.

Indexing Data in Aleph
Adding data to Aleph is called indexing. By loading and pro cessing every file
in a dataset, Aleph allows you to extract useful information, which you can
browse and search via its web- based user interface.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

140 Chapter 5

Indexing works differently for dif fer ent types of files:

Office documents and PDFs Aleph extracts all of the searchable text
from these documents and attempts to find anything that looks like a
person’s name, a com pany name, or other types of data that Aleph calls
entities. It also extracts any metadata it can find.

Email messages Aleph again extracts searchable text and entities.
This time, the entities it finds are likely to include both names and
email addresses, which it determines by checking the sender and recipi-
ent of each email. It also extracts email attachments and indexes those
individually.

Compressed files, such as ZIP files Aleph decompresses these files,
then indexes each file inside them individually, which can become as
recursive as necessary. For example, a ZIP file might contain an email
file with an attachment that contains another ZIP file, and so on.

Indexing datasets can take hours, days, or weeks, depending on the
size of the dataset and the computational resources available to your Aleph
server. In Exercise 5-5, you’ll index a single BlueLeaks folder called icefishx.

Exercise 5-5: Index a BlueLeaks Folder in Aleph
The icefishx folder contains data from an American police intelligence
network called Intelligence Communications Enterprise for Information
Sharing and Exchange (ICEFISHX), a partnership between law enforce-
ment in Minnesota, North Dakota, and South Dakota. I’ve selected this data
 because it covers the state where Minneapolis cop Derek Chauvin murdered
George Floyd, sparking the 2020 Black Lives Matter uprising. Searching
this dataset for George Floyd might reveal some in ter est ing internal docs
about police vio lence or the protests that it triggered.

Mount Your Datasets into the Aleph Shell
If you don’t already have Aleph running, change to your aleph folder and
enter the following command:

docker- compose up

Wait for Aleph to boot up.
In a separate terminal, start an Aleph shell. This time, however, bind-

mount your datasets USB disk into the container, using the following com-
mand, substituting the correct path for your USB disk:

docker- compose run - -rm - v /Volumes/datasets:/datasets:ro shell bash

The arguments in this command are similar to the - - mount argument
you used earlier to mount a volume with the docker command. The - v argu-
ment (short for - - volume) is followed by the colon- separated list /Volumes/

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 141

datasets:/datasets:ro containing three parts: the absolute path to the folder
on the host operating system (on my computer, this is /Volumes/datasets), the
absolute path to the folder in the container (/datasets), and the ro option.
Short for read- only, ro gives the container permission to access the files in
the bind mount but not to change any of them or create new files.

When you run this command, make sure to use the correct path for
your USB disk. In macOS, the path is /Volumes/datasets or similar; in Linux,
it’s /media/micah/datasets or similar; and in Win dows with WSL, it’s /mnt/d or
similar. If you’re using Win dows with PowerShell, mount the D: drive into
the container at the path /datasets with this command:

docker- compose run - -rm - v D:/datasets:ro shell bash

Altogether, this command runs a new shell container and executes
the bash command inside of it. Your datasets folder on your host operating
system becomes accessible as the folder /datasets in the container, and it’s
mounted in read- only mode, preventing the container from modifying any-
thing on the USB disk.

Now that you have access to your datasets within the Aleph shell, you’ll
index the icefishx data.

Index the icefishx Folder
To index a dataset, you use the aleph crawldir command. Aleph’s use of the
term crawl means to open the folder and index each file in it, then open
each subfolder it finds and index each file in that, and so on, until every-
thing in the original folder has been indexed.

Run the following command to start indexing the icefishx folder:

aleph crawldir - l eng /datasets/BlueLeaks- extracted/icefishx

This command tells Aleph to index data in the /datasets/BlueLeaks-
extracted/icefishx folder in the container (which is actually /Volumes/datasets/
BlueLeaks- extracted/icefishx on my host operating system). The - l option
(short for - - language) helps you to use OCR on documents. Because dif fer-
ent languages use dif fer ent alphabets and words, using - l tells the OCR
software what language you’re dealing with—in this case, English (eng).

Aleph should begin to work its way through each of the 19,992 files in
the icefishx folder, totaling over 2GB. The output should display the file-
name of each file, which is added to a list of files to crawl. Even before the
aleph crawldir command finishes, Aleph begins to index each file.

Switch to your other terminal win dow running Docker Compose and
watch the output as it indexes and performs OCR on each file.

N O T E You can use OCR for documents in languages other than English, too. To index
a Russian dataset, for example, you’d use - l rus so that Aleph recognizes Russian
words in the Cyrillic alphabet. Under the hood, Aleph uses software called Tesseract
to do the OCR; for a list of valid language codes in Tesseract’s documentation, see
https:// tesseract - ocr . github . io / tessdoc / Data - Files - in - different - versions . html.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://tesseract-ocr.github.io/tessdoc/Data-Files-in-different-versions.html

142 Chapter 5

The icefishx folder took about an hour and a half to index on my Mac. It
also used about 17GB worth of Docker volumes. Indexing larger quantities
of data could take days and require much more disk space.

Check Indexing Status
 After aleph crawldir has finished running, while you’re waiting for the
indexing to complete, try a few more Aleph commands to query your Aleph
server and check the indexing status.

First, run the following command to see a list of all of the datasets and
investigations (known together as collections) in your Aleph server:

root@26430936533f:/aleph# aleph collections
Foreign ID ID Label
- - - - - - - - - - - - - - - - - - - - - - -
28c82cbe1ba247e6a16e3fb4b7d50a67 1 Test Investigation
directory:datasets- blueleaks- extracted- icefishx 2 icefishx

The Foreign ID field is the unique identifier for each dataset, and the
Label field is the human- readable name for the dataset displayed in the
Aleph web application. I used the Aleph web interface to create a new inves-
tigation called Test Investigation before I started indexing ICEFISHX, so
I have two collections. When you use the web interface to make investiga-
tions, they get assigned completely random foreign IDs. When you use aleph
crawldir to create them, the Foreign ID is based on the filesystem path that
 you’re indexing; alternatively, you can use the - f foreign_id arguments to
specify your own if you like.

Next, run the following command while indexing ICEFISHX to check
the status of the indexing:

root@26430936533f:/aleph# aleph status
 Collection Job Stage Pending Running Finished
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 2 19263 4 3387
 2 a4bb59c4e23b4b96b14d747ff78c69e2 ingest 19239 3 1145
 2 a4bb59c4e23b4b96b14d747ff78c69e2 analyze 24 1 1123
 2 a4bb59c4e23b4b96b14d747ff78c69e2 index 0 0 1119

This command displays a table of data that tells you the number of
pending, running, and finished tasks for each collection that’s indexing,
split into analyze, ingest, and index phases. The Collection column shows the
ID of the collection—if you look back at the output of aleph collections,
the ID of the ICEFISHX dataset is 2. When I ran aleph status, based on the
total pending and finished numbers, indexing was roughly 15 percent com-
plete (though this might be misleading; for example, one of those pending
files could be a ZIP file containing another 1,000 files).

If Aleph breaks in the middle of indexing a dataset, you can recover your
pro gress. If you’re seeing a lot of error messages in the Docker Compose
logs or in the Aleph web interface, the simplest solution is to restart the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 143

containers. In your Docker Compose terminal win dow, you’d press ctrl- C
to quit all of the containers, and then run docker- compose up to start them
again. After a few minutes, your containers should finish booting and the
indexing should commence where it left off. If something failed before
your aleph crawldir command finished running in the Aleph shell, you
can run aleph crawldir again. This will reindex the entire dataset, but it
should be quicker the second time around, because it won’t redo time-
consuming tasks like performing OCR on documents that have already
been pro cessed.

You can also check the indexing status via the Aleph web interface.
In your browser, navigate to the Investigations page. From there, click the
ICEFISHX investigation, and you should see a pro gress bar showing you
how the indexing is doing. Figure 5-4 shows the indexing status from inside
the web application.

Figure 5-4: The ICEFISHX dataset in the process of indexing

While you’re here, click the gear icon in the top- right corner of the
screen and go to Settings. From there you can change the label, category,
and summary of this dataset. For example, you can change the label
from icefishx to something more descriptive, like BlueLeaks: Intelligence
Communications Enterprise For Information Sharing and Exchange (ICEFISHX).
The default category is Investigations. If you change it to anything else, like
Leaks, Court Archives, or Other Material, ICEFISHX will appear under
Datasets instead of Investigations. For now, stick with the Investigations
category.

Sit back and wait for Aleph to finish indexing the ICEFISHX dataset
before moving on to the next section, where you’ll begin to use Aleph to
explore the data.

N O T E It’s pos si ble to start looking through datasets in Aleph before indexing is complete, but
it’s best to wait for the full index to finish before digging too deep. If you don’t, you’ll
search only the data that’s been indexed to that point, so your searches might miss
impor tant documents.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

144 Chapter 5

Explore BlueLeaks with Aleph
Once you’ve finished indexing the icefishx folder, navigate to the ICEFISHX
dataset you’ve just imported in the Aleph web interface. It should be listed
 under the Investigations link at the top of the page. The Documents link in
the left sidebar lets you manually browse the files in the dataset and open
vari ous documents, but where Aleph really shines is its search engine.

When you enter a term in the search field, Aleph searches every dataset
 you’ve imported. You can filter your results in a variety of ways, using the
left sidebar: for example, you can filter to a specific dataset, a specific date
range, or even to documents that mention specific email addresses, phone
numbers, or names. Once you’ve filtered the search results, you can click on
documents to preview them.

Figure 5-5 shows some of the 335 search results for the term George
Floyd in the ICEFISHX dataset.

Figure 5-5: Aleph’s search interface with results returned for George Floyd

The document selected in Figure 5-5, classified as U//LES
(Unclassified, Law Enforcement Sensitive), was created by the Minnesota
Fusion Center on May 27, 2020. It warns of an increase in threatening activ-
ity toward law enforcement officers in response to George Floyd’s murder
in police custody two days earlier. According to the document, two of the
four officers involved had been doxed, and people protested outside one

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Docker, Aleph, and Making Datasets Searchable 145

of their homes. Thousands of people began marching in the streets, and
 there were “increased discussions on White Supremacist Extremist (WSE)
online forums.” The document recommends that police “avoid wearing
organizationally- affiliated clothing outside of work settings,” “reduce social
media footprint and use an alias,” and consider “varying travel patterns to
avoid surveillance.”

Aleph makes it easy to find connections between documents. If you
click Expand in the top left of the selected document, you should end up at
that document’s detail page. This page shows the document’s metadata on
the left, as well as any names or email addresses it finds that are also men-
tioned in other documents. If you click on one of those— for example, on
someone’s name or email— you should be taken to search results that list all
of the documents mentioning that person.

When you’re done exploring icefishx, try indexing additional folders in
BlueLeaks or even the entire BlueLeaks- extracted folder.

Additional Aleph Features
 There’s a lot more to Aleph than what we’ve covered so far. This section
 will introduce a few of the other cool things it can do, which you’ll find use-
ful in the future as you continue to analyze hacked and leaked datasets.
As you’ve seen, Aleph is great at indexing folders full of a wide variety of
documents, but it also supports importing structured data— data that fol-
lows a consistent and well- defined data model. Entities in Aleph, which I
mentioned earlier, are an example of structured data. Specifically, Aleph
uses a data model called FollowTheMoney, which contains types of entities
like Person, Com pany, Organization, or Address. Learn more about the
FollowTheMoney data model, and how to import these entities directly into
Aleph, at https:// followthemoney . tech / .

When you index a dataset in Aleph, it automatically extracts its best
guess at entities— data like the names of people and companies, and phone
numbers and addresses— but its guesses are far from perfect. Aleph also
allows you to manually create and edit entities in more detail. You can add
a list of people to an investigation, for example, providing not just their
names but also their contact information and any relationships they have to
other entities like their employers. When you’re viewing an entity in Aleph’s
web interface, it shows you all of the data about that entity and links to all of
its related entities.

You can also generate entities from data in spreadsheets like CSV or
Excel files. For example, the ICEFISHX dataset has a spreadsheet called
Registrations.csv that lists the name, rank, agency, home address, email
address, phone number, supervisor, and other information about all 6,000
 people who had accounts on the site. From the detail page of this file in the
Aleph web interface, you can click Generate Entities to define exactly how
this data should map to entities, and even how these entities should relate
to other entities. This could help you build an organization chart of who
reports to whom, for example.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://followthemoney.tech/

146 Chapter 5

In addition to the aleph crawldir command you used in Exercise 5-5,
 there are other ways to index data into Aleph. First, you can use a dif fer ent
CLI program called alephclient, which allows you to index data and push it
into a remote Aleph server over the internet using Aleph’s application pro-
gramming interface (API), without opening an Aleph shell. APIs are designed
to allow software, rather than humans, to communicate. Every user on an
Aleph server (or, if it’s a server with users disabled, the whole server) has
an API secret access key, a credential that allows software to add data to,
or other wise interact with, the Aleph server. You can pass this API key into
alephclient as an argument to index large datasets on an Aleph server that
someone else runs. The command to install alephclient is python3 - m pip
install alephclient.

Alternatively, you can create a new investigation directly in the web
interface by clicking Investigations at the top, then New Investigation. You’ll
be prompted to give your investigation a title and an optional summary and
language. You can upload files to your investigation directly from your web
browser. This is useful if you want to upload a spreadsheet of names and
email address and cross- reference it with the rest of the data in your Aleph
server. For uploading big datasets like BlueLeaks, however, using the Aleph
shell or alephclient is easier and less error- prone.

One of Aleph’s most power ful features is its ability to search multiple
datasets at once. For example, you could index the BlueLeaks dataset, the
Oath Keepers dataset you downloaded in Chapter 4, and several others
to search them all for someone’s name, email address, or phone number.
Since the BlueLeaks dataset is full of PII of law enforcement officers and the
Oath Keepers militia is known to recruit retired police, you could check if
any Oath Keepers members or donors are mentioned in BlueLeaks. (I recom-
mend waiting to try this until you further explore the Oath Keepers dataset
in Chapter 6.)

Aleph can also cross- reference the entities from one dataset with
entities in all of the other datasets that have been indexed in a server.
Navigating to an investigation and clicking Cross- Reference in the left
sidebar allows you to compare each entity in the investigation with entities
in every other dataset or investigation. For example, you could upload a
spreadsheet of people you’re investigating— say, every one who works at the
White House— into an investigation, use the Generate Entities feature to
convert it into a detailed list of Person entities, and then cross- reference this
list with all of the other datasets you’ve indexed to see if any White House
employees show up in them.

Spend some time experimenting with Aleph and getting to know its
features on your own. When DDoSecrets publishes a dataset that you’re
interested in, try downloading it and indexing it in Aleph. Explore search-
ing multiple datasets at once as well as using the cross- referencing feature.
Aleph’s documentation is available at https:// docs . alephdata . org.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.alephdata.org

Docker, Aleph, and Making Datasets Searchable 147

Dedicated Aleph Servers
 Running Aleph in containers on your computer works well if you want
to search just a few small datasets yourself. However, to index a large
amount of data (such as all of BlueLeaks) that will stretch your laptop’s
computational resources, or to work with others on the same datasets,
consider setting up a dedicated Aleph server instead. Full instructions on
 doing that are outside the scope of this book, but this section provides an
introduction.

In Chapter 4, you learned how to create servers in the cloud; earlier
in this chapter, you learned how to set up your own Aleph server. By com-
bining those skills, you should be able to set up Aleph running in Docker
containers on a cloud server. However, you’ll also need to decide how to
secure the server and make sure it stays updated. How will you manage
its users, and how will you restrict access to the server? How will you know
and what will you do if someone hacks it? To run an Aleph server for your
 organization, I recommend that you bring in a professional system adminis-
trator or DevOps engineer to set it up and maintain it over time.

As you set up your server, consider the security levels of the datasets
on which you plan to use Aleph. For low- to medium- security datasets, you
can host Aleph in a cloud server, which allows you to temporarily give your
server more RAM or pro cessing power to index a dataset more quickly. For
medium- to high- security datasets, host Aleph on physical hardware, like
a server in an office or in a server closet in a data center. Decide whether
to require people to come into the office to use Aleph or to configure it
so that they can access it over the internet. If you choose the latter, you’ll
need to secure your Aleph server and the data it contains. For the highest-
security datasets, you’ll have to download Linux containers on a computer
with internet access, export the datasets, and import them on an air-
gapped server.

IN T EL L A A ND DATA SH A R E

You can also use software besides Aleph to help you make datasets search-
able. As mentioned in Chapter 1, the first leaked dataset I worked on was
the Snowden Archive. At that time, Aleph didn’t exist. To index and search the
Snowden Archive, we used proprietary software called Intella, installed on air-
gapped Win dows laptops. Intella, developed by Vound Software, is investiga-
tion software that was designed for law firms and law enforcement to explore
large datasets, like email dumps or the contents of seized computers.

The Intercept used to have a license for Intella Connect, a web- based ver-
sion of Intella. This software has a few advantages over Aleph: it rarely has
technical issues, it comes with tech support, and it allows you to index and
search large datasets faster. Like Aleph, Intella Connect supports collaborating
with multiple users. After Rus sia invaded Ukraine in 2022 and hackers started

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

148 Chapter 5

dumping terabytes of data from Russian companies online, I began download-
ing and indexing all of these datasets into Intella Connect. I quickly found that
this proj ect was far too complicated for The Intercept alone to handle, espe-
cially considering that all of the data was in Russian. I helped spearhead a proj-
ect to invite outside journalists who spoke Russian or were interested in these
datasets to use our Intella service. This proj ect grew into a major international
collaboration with OCCRP and dozens of reporters around the world, including
both Russian and Ukrainian journalists, to research the Russian datasets. The
proj ect’s collaborators used both Intella Connect and OCCRP’s Aleph server,
and we organized our findings on an internal wiki.

The Intercept has now de cided to stop paying for Intella Connect and
uses Aleph exclusively instead. Intella has some disadvantages: it doesn’t have
Aleph’s ability to cross- reference between datasets and map out relationships
between entities, it’s quite expensive, and it requires Win dows.

Another open source tool for indexing datasets is Datashare, developed
by ICIJ, the group that worked in a co ali tion on the Panama Papers dataset
along with OCCRP. Datashare is similar to Aleph but is designed for a single
user to run it locally on their computer, rather than on a server. Like Aleph,
Datashare runs inside of Docker containers. While it’s a very promising proj ect,
I ran into issues trying to install it at the time of writing. Because it’s open source
and actively developed, however, I expect this will improve over time. You can
read more about Datashare at https:// datashare . icij . org and https:// github . com
/ ICIJ / datashare.

Summary
In this chapter, you’ve learned how to run software in Linux containers
using Docker, then applied those skills to run Aleph on your computer and
index the icefishx folder from BlueLeaks, making it searchable. A search for
the keyword George Floyd uncovered in ter est ing law enforcement documents
about the 2020 racial justice protests that you couldn’t have uncovered with
just grep. You’ve also learned about some Aleph features you can explore
on your own, the possibility of running a dedicated Aleph server instead of
 running it on your laptop, and dataset- indexing tools other than Aleph.

You’ll revisit Docker in Chapter 10, when you learn to use BlueLeaks
Explorer, and in Chapter 12, when you learn about SQL databases. In the
following chapter, you’ll learn the tools and techniques required to dig
through one of the most prevalent forms of data leaks: email dumps.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://datashare.icij.org
https://github.com/ICIJ/datashare
https://github.com/ICIJ/datashare

 After Rus sia invaded Ukraine in February 2022, hack-
ers started flooding DDoSecrets with stolen data from
 Russian organizations. The data came in many formats,
but the bulk of it— several terabytes’ worth— was email.
The entire inboxes of government agencies, oil and gas
companies, and investment firms were laid bare.

Email leaks are among the most common types of data leaks, and
they can have serious consequences. In the 2016 US presidential election
between Hillary Clinton and Donald Trump, leaked email messages from
the DNC and Clinton campaign chair John Podesta— both hacked by the
 Russian government— played a major role in Trump’s election. The 2020
US presidential election between Trump and Joe Biden also involved email
leaks, in this case stolen from the laptop of Biden’s son Hunter.

With so many messages to sort through in email leaks, though, find-
ing a place to start can be overwhelming. Depending on how the email was
obtained and what software was running on the hacked server, the leaked

6
R E A D I N G O T H E R P E O P L E ’ S

E M A I L

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

150 Chapter 6

data could be in any of several dif fer ent formats, and it may not be clear
how to access the messages it contains.

In this chapter, you’ll learn about common formats for leaked email,
the benefits and shortcomings of indexing and searching email with Aleph,
and how to import email datasets into Thunderbird and Microsoft Outlook.
You’ll sift through leaked email from the Oath Keepers dataset you down-
loaded in Chapter 4, in addition to datasets from Australian offshore deten-
tion centers and the conservative US think tank the Heritage Foundation.
 We’ll begin by taking a look at the standard composition of an email
message.

The Email Protocol and Message Structure
A protocol is a shared language that software developers agree upon to make
their code interoperate. The email protocol we use today was first imple-
mented in the early 1980s, got a major revamp in 1995, and hasn’t changed
much since. Unlike modern centralized messaging systems (Facebook
Messenger, for example), this protocol allows anyone to run an email server
with their own software. For example, Google runs a server at gmail . com,
the Russian search engine Yandex runs one at mail . yandex . com, and the
Swiss com pany Proton runs one at proton.me. These servers are powered by
dif fer ent software but communicate using the same protocol, meaning they
can all send messages to one another. Internet standards, specifications for
how certain types of software should behave, ensure that all email software
communicates with a shared protocol and a shared message format.

 Because the email message format is an internet standard, all messages
have a similar structure. To see what this format looks like, open any email
and choose Show Original or View Source. Each message is a text file with
two sections: the headers and body. The headers contain an email’s meta-
data in Header- Field: Value format, while the body contains the main text of
the message.

The following headers are included in nearly every email message:

Subject: What's up?
From: Alice <alice@example . com>
To: Bob <bob@example . com>

 There are many more headers than these; your email software shows
only a few of them. When email servers send, forward, or receive mes-
sages, they add headers describing these actions. For example, the com-
mon header DKIM- Signature allows you to verify, using cryptography, that
an email actually came from the server that it claims sent it. Messages also
typically include a Content- Type header, which describes the format of the
body text.

 After the headers, the email includes a blank line followed by the body.
The body is typically in plaintext (text with no formatting), HTML, or
Multipurpose Internet Mail Extensions (MIME) format. In MIME email,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://gmail.com
http://mail.yandex.com
http://alice@example.com
http://bob@example.com

Reading Other People’s Email 151

the most common format, the body is split into parts for text, HTML com-
ponents, and email attachments.

Though email messages are text files, you can send binary files like
PNGs or ZIPs as attachments. Your email client converts the binary file into
text using Base64 encoding and includes that encoded attachment in the
message. Just as you can convert any decimal number (that is, one conveyed
using 10 digits) into a binary number (conveyed using 2 digits) and back,
you can convert any binary data into Base64 data (conveyed using 64 char-
acters). For example, here’s how a PNG image containing a 1 × 1 trans-
parent pixel looks with each of its 86 bytes of data represented as binary
digits:

10001001 01010000 01001110 01000111 00001101 00001010 00011010 00001010 00000000 00000000
00000000 00001101 01001001 01001000 01000100 01010010 00000000 00000000 00000000 00000001
00000000 00000000 00000000 00000001 00001000 00000110 00000000 00000000 00000000 00011111
00010101 11000100 10001001 00000000 00000000 00000000 00000110 01100010 01001011 01000111
01000100 00000000 11111111 00000000 11111111 00000000 11111111 10100000 10111101 10100111
10010011 00000000 00000000 00000000 00001011 01001001 01000100 01000001 01010100 00001000
11010111 01100011 01100000 00000000 00000010 00000000 00000000 00000101 00000000 00000001
11100010 00100110 00000101 10011011 00000000 00000000 00000000 00000000 01001001 01000101
01001110 01000100 10101110 01000010 01100000 10000010

And here’s the Base64- encoded version of the same binary file:

iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAABmJLR0QA/wD/AP+gvaeTAAAAC0lE
QVQI12NgAAIAAAUAAeImBZsAAAAASUVORK5CYII=

Base64- encoded data looks like a block of seemingly random text
that includes capital letters, lowercase letters, numbers, plus signs (+), and
forward slashes (/), and sometimes ends with equal signs (=). The Base64-
encoded version of some data conveys the same information as the decoded
version, but it can be included more compactly in a text file, like an email.
When the recipient of the email loads it, their email client will convert it
from Base64 text back into a binary file. Sometimes plaintext or HTML email
is encoded in Base64 as well (for example, hello world is aGVsbG8gd29ybGQ=
in Base64). Although email messages are text files, you can’t rely on grep
to search them, because much of the content you’re hunting for might be
Base64- encoded.

Keeping in mind those basics, let’s turn now to the specific formats
typically encountered in email leaks.

File Formats for Email Dumps
The most common file formats for email dumps, or collections of email mes-
sages, are EML files, MBOX files, and PST Outlook data files. You’ll down-
load email in each format in the upcoming exercise.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

152 Chapter 6

EML Files
The simplest type of email dump is a folder full of EML files, the standard
email message format. An EML file is a text file with the extension .eml that
contains the raw email message— the headers followed by the body.

When you download an email from your personal account, it will be
in EML format. If you have a Gmail account, for example, open a message,
click the More menu (the three dots icon) in the upper- right corner, and
choose Download Message. Other email clients should likewise allow you
to download individual messages in EML format. You can sometimes read
an EML file in a text editor, but you’ll frequently be stymied by the Base64-
encoded parts, so it’s more useful to open it in an email program like
Thunderbird, Outlook, or the Mail app on macOS.

You can forward an email inline or as an attachment. Most email sys-
tems default to forwarding inline, copying the text of the body of the email
 you’re forwarding into the body of the email you’re writing. When you
instead forward as an attachment, you attach the raw EML file to the email
 you’re writing. From a Gmail inbox, for example, select the box next to an
email message, click the More menu, and choose Forward as Attachment.
Other email clients should allow you to forward email as attachments as
well. EML files include information that isn’t included in inline forwarded
email, such as the original email headers.

EML files don’t include information on how the email was organized
in the user’s inbox, such as the folder where the email was stored. For this
reason, people who leak email dumps in EML format often organize the
files into folders, with each folder representing a dif fer ent user’s inbox.
Sometimes they organize the files from each inbox into subfolders, too.

In Exercise 6-1, you’ll download email messages in EML format from
the Nauru Police Force dataset.

MBOX Files
In an MBOX email dump, each file is a collection of many email messages,
generally representing a full folder of email. MBOX files often have the file
extension .mbox, but sometimes they have no file extension at all.

Like EML files, MBOX files are text files that are viewable in a text edi-
tor but not very human- readable because of the Base64 encoding. However,
you can’t just open an MBOX file in an email client to read the email like
you can with an EML file. Instead, you’ll need to import the file.

The Oath Keepers dataset is a series of MBOX files, one for each
hacked inbox. I’ll give more detail on the structure of this dataset in
Exercise 6-1.

PST Outlook Data Files
Email dumps may also come in the form of PST files, a proprietary for-
mat that represents a Microsoft Outlook inbox with the .pst file exten-
sion. Microsoft’s email server is called Microsoft Exchange. Whenever an

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Reading Other People’s Email 153

Outlook user wants to create a backup of their email, or when an Exchange
server is hacked, the data is downloaded in PST format.

A PST file represents a full email inbox, complete with a hierarchy
of folders and their contents. These files can get big. For example, in
April 2022 hackers made off with 786GB of data from the All- Russia State
 Television and Broadcasting Com pany (VGTRK), the largest state- owned
media com pany in Rus sia, and leaked it to DDoSecrets. This dataset
includes 252 PST files, each representing a dif fer ent email address. One
file, intercoord@vgtrk.ru.pst, is 48GB alone.

In Exercise 6-1 you’ll download a 1GB PST file containing email from
the Heritage Foundation.

Exercise 6-1: Download Email Dumps from Three Datasets
In this exercise, you’ll work with three dif fer ent datasets from the Nauru
Police Force, the Oath Keepers, and the Heritage Foundation. You should
already have the Oath Keepers dataset from Chapter 4, so you’ll down-
load the other two next. You’ll also learn more about their contents and
structure.

The Nauru Police Force Dataset
Nauru is a tiny island in the Pacific with a population of about 10,000.
While technically it’s an independent country, it hosts abuse- ridden off-
shore detention centers that the Australian government uses to hold immi-
grants and asylum seekers. The Nauru Police Force dataset (https:// ddosecrets
. com / wiki / Nauru _ Police _ Force) is a 54GB torrent full of 127 ZIP files, each
a copy of all of the email from a specific email address at npf . gov . nr, the
domain for the Nauru Police Force. Inside each ZIP file is a collection of
folders containing EML files. This dataset contains over 285,000 messages.

For this chapter, you’ll be working with the file iven- notte.zip, which
is about 2.9GB. Download the file directly from https:// data . ddosecrets . com
/ Nauru%20Police%20Force / npf . gov . nr / iven - notte . zip. Once you’ve done so, save it
into a folder called Nauru Police Force on your datasets USB disk and unzip
it. You should end up with a folder called iven- notte containing the subfolders
calendar, contacts, deleteditems, drafts, inbox, and more. Each of these subfold-
ers is full of EML files.

The Oath Keepers Dataset
The public part of the Oath Keepers dataset is a 3.9GB torrent of MBOX
files taken from the server that hosted email for the oathkeepers . org
domain. This dataset has a folder called Oath Keepers.sbd, containing sub-
folders called ak, al, alb, ar, Archive, az, and many others, each of which is
an MBOX file (without the .mbox file extension) that contains several email
messages. Each US state chapter of the Oath Keepers militia has its own
inbox, so, for example, you can find the Arizona chapter’s email in the
MBOX file az. There are a few other MBOX files, including volunteers and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ddosecrets.com/wiki/Nauru_Police_Force
https://ddosecrets.com/wiki/Nauru_Police_Force
http://npf.gov.nr
https://data.ddosecrets.com/Nauru%20Police%20Force/npf.gov.nr/iven-notte.zip
https://data.ddosecrets.com/Nauru%20Police%20Force/npf.gov.nr/iven-notte.zip
http://oathkeepers.org

154 Chapter 6

stewart.rhodes (Stewart Rhodes is the founder of the militia, and was con-
victed of seditious conspiracy and sentenced to 18 years in prison for his
group’s role in the January 6, 2021, attack on the US Capitol). DDoSecrets
distributes an additional part of the dataset, which contains donor and
membership rec ords, only to journalists and researchers who request
access, because it contains so much PII.

If you didn’t already download the Oath Keepers dataset in Chapter 4,
visit the DDoSecrets page for the Oath Keepers at https:// ddosecrets . com / wiki
/ Oath _ Keepers. This page includes a link to the torrent file as well as the
magnet link. Add the torrent to your BitTorrent client and download the
full dataset, saving it to your datasets USB disk.

The Heritage Foundation Dataset
The Heritage Foundation is a conservative think tank that played a major
role in US politics during the Reagan administration. This dataset, a 1GB
file called backup.pst, is a backup of a personal email account used by an
employee on the foundation’s major gifts team. His email address was
hosted with his residential ISP at the domain embarqmail . com. In 2015, the
Twitter user @jfuller290 noticed that the foundation had accidentally put
this backup in PST format on a public Amazon S3 bucket—an Amazon
cloud service that hosts files— and he tweeted the link to it. (The Heritage
Foundation at first claimed that it was hacked, but in fact it had inadver-
tently made the file public itself.) The email backup was made in 2009, six
years before @jfuller290 noticed it.

Visit the DDoSecrets page for the Heritage Foundation at https://
ddosecrets . com / wiki / Heritage _ Foundation. This page includes links to the tor-
rent as well as a direct download for this dataset. Because the dataset is just
a single, relatively small Outlook Data File, directly download it from https://
data . ddosecrets . com / Heritage%20Foundation / backup . pst and save it into a folder
called Heritage Foundation on your datasets USB disk.

While you’re waiting for these email dumps to finish downloading, read
on to learn about the tools you can use to research them.

Researching Email Dumps with Thunderbird
Before you start reading the email you’ve downloaded, you’ll install and
configure Thunderbird, an open source email program for Win dows, macOS, and
Linux that allows you to work with email dumps in dif fer ent formats. You
can use Thunderbird to import folders full of EML or MBOX files and
search and read every thing inside them. When you open an EML file in
Thunderbird, the program will parse the file, Base64- decode every thing for
you, and let you see HTML email and download attachments.

Thunderbird users typically use the program just to check their per-
sonal email, sometimes for multiple email accounts. If you want, you can
add your existing email accounts to it and use it to read and write email

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ddosecrets.com/wiki/Oath_Keepers
https://ddosecrets.com/wiki/Oath_Keepers
http://embarqmail.com
https://ddosecrets.com/wiki/Heritage_Foundation
https://ddosecrets.com/wiki/Heritage_Foundation
https://data.ddosecrets.com/Heritage%20Foundation/backup.pst
https://data.ddosecrets.com/Heritage%20Foundation/backup.pst

Reading Other People’s Email 155

yourself. For research purposes, though, you’ll use Thunderbird to import
email into local folders, which will allow you to work with the email locally on
your computer without connecting to an email server. You don’t need inter-
net access when using Thunderbird to research email dumps in this way,
which means you can use an air- gapped computer.

Like its sister proj ect, the Firefox web browser, Thunderbird sup-
ports third- party extensions that add functionality to the program. The
ImportExportTools NG extension is crucial to working with email dumps; it
adds support for importing MBOX files and for bulk- importing folders full
of EML files, keeping their folder structure intact. However, to import PSTs
into Thunderbird, you must first convert them into EMLs using the readpst
program. You’ll import all three file types into Thunderbird later in the
chapter.

 After importing email dumps into Thunderbird, you can click through
all of the folders and read the email messages as if you were reading
your own email. You can also use Thunderbird’s built-in search feature
to bulk- search all of the email you’ve imported. However, you can’t use
Thunderbird to search the content of attachments— for that, you’ll need a
tool like Aleph, which we’ll discuss in “Other Tools for Researching Email
Dumps” on page XX.

Exercise 6-2: Configure Thunderbird for Email Dumps
In this exercise, you’ll install Thunderbird and configure it in order to ana-
lyze the three email dumps you’ve downloaded.

Download Thunderbird from https:// www . thunderbird . net and install it
on your computer. When you open the program the first time, it asks if you
want to set up an existing email account. While you won’t need to use a real
email account to research email dumps, adding an account to Thunderbird
makes it easier to import these data dumps later on. If you don’t want to use
Thunderbird to check your real email, I recommend that you create a new
email account just for this purpose. Click the Get a New Email Address
link to create a new free email account directly within Thunderbird on
an email provider called Mailfence. Select an email address and generate
a random password in your password man ag er, then provide an existing
email address to activate your new account. After creating your account, log
in to it with Thunderbird, and you should see the message “Account success-
fully created.”

Next, switch to the main Thunderbird tab. In the Folders sidebar on
the left, you should see the email address you added, and beneath it a sec-
tion called Local Folders. You added an email address just to create the
Local Folders section, so if you don’t plan on using Thunderbird to check
this email account, you can delete it. To do so, click the menu icon in the
top- right corner and choose Account Settings. Make sure your new email
account is selected, click Account Actions in the bottom left, and choose
Remove Account. Select the Remove Message Data box and click Remove.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.thunderbird.net

156 Chapter 6

Now switch back to the main Thunderbird win dow, and only Local Folders
should remain in the left sidebar.

Next, to install the ImportExportTools NG Thunderbird add-on, click
the menu icon in the top- right corner and choose Add- ons and Themes.
Switch to the Extensions tab, search for ImportExportTools NG, and
install the add-on. A lot of this add- on’s functionality appears in the Tools
menu bar at the top, which appears automatically in macOS. To access it in
Win dows or Linux, click the menu icon in the top- right corner and choose
ViewToolbarsMenu Bar. A menu bar should appear at the top of the
Thunderbird win dow. Go to ToolsImportExportTools NG to access the
add- on’s features.

Fi nally, click the Thunderbird menu icon and choose Settings. Switch
to the Privacy & Security tab and make sure that Allow Remote Content in
Messages is unchecked (it should be unchecked by default). Remote content
is any content hosted on the internet instead of inside of the email, like
images loaded from URLs. When you open an email with remote content,
like an HTML email with images, loading those images will leave a trace
that the email was opened from a certain IP address.

N O T E Thunderbird will always give you the chance to load remote content on individual
email messages if you’d like, but I recommend that you connect to a VPN beforehand
so that the VPN’s IP address, rather than your IP address, will be tracked (see the
“Covering Your Tracks with a VPN Service” box in Chapter 9).

Reading Individual EML Files with Thunderbird
During your own investigations, you may find only a few EML files in a
dataset, or someone might forward email messages to you as attachments.
Thunderbird is a good tool for inspecting these messages individually with-
out needing to import them.

Once your downloads from Exercise 6-1 have finished, try using
Thunderbird to view some individual messages. Open your file man ag er
app, like Explorer in Win dows or Finder in macOS, and browse to the
extracted iven- notte folder in the Nauru Police Force dataset. Open the
inbox folder, right- click one of the EML files, and open it in Thunderbird.
Thunderbird should show you the headers, like the date the email was
sent, and the From, To, and Subject lines. You can also read the email
exactly as it was originally formatted, and if it has attachments, you can
open them.

Just as you shouldn’t blindly open attachments you receive in your per-
sonal email, don’t blindly open attachments that you find in email dumps,
 because they could hack your computer. Refer back to Chapter 1 for tips on
how to open such documents safely.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Reading Other People’s Email 157

E X T R AC T ING AT TACHMEN T S F ROM EML F IL ES

A single EML file could contain several file attachments, all Base64- encoded.
The munpack program lets you extract these attachments without needing to use
an email client. Install munpack with sudo apt install mpack in Linux or Win-
dows with WSL, or use brew install mpack in Homebrew on macOS. You can
then run the command munpack filename.eml to extract the attachments from an
email.

For example, the Nauru Police Force dataset contains an EML file called
68.eml. When I run munpack 68.eml, it extracts the attachments from that
email—in this case, RegistrationXForm.pdf and COPXPassport.pdf— into the cur-
rent working folder. You could also use munpack in a script to extract all of the
attachments from every email message in an email dump, all from the terminal.

In the following exercises, you’ll import each of the email dumps you
just downloaded into Thunderbird, starting with the EML files from the
Nauri Police Force dataset.

Exercise 6-3: Import the Nauru Police Force Email Dump in EML Format
To import an email dump with the ImportExportTools NG add-on, select
the folder into which you’d like to import it. Always import email dumps
into a local folder, rather than a remote folder on an email server. From the
Folders sidebar on the main Thunderbird tab, right- click Local Folders and
choose New Folder, as shown in Figure 6-1.

Figure 6-1: Creating a new local folder in Thunderbird

Name your folder Nauru Police Force and click Create Folder. You
should now see the Nauru Police Force folder in your Local Folders list.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

158 Chapter 6

Right- click the Nauru Police Force folder you just created and choose
New Subfolder. Name your subfolder iven- notte, the name of the email
account whose inbox data you’ll be importing, and click Create Folder.
Right- click the new iven- notte subfolder that you just created and choose
ImportExportTools NGImport All Messages from a DirectoryAlso
from Its Subdirectories. A dialog will pop up, allowing you to browse for a
folder. Select your iven- notte subfolder.

This subfolder should immediately start filling up with the 14,964 email
messages that you’re importing. It will prob ably take a few minutes to finish
(importing all 127 inboxes in this dataset would take considerably longer).

Figure 6-2 shows Thunderbird with the iven- notte inbox loaded up. You
can see all of the folders and the number of unread messages in each. (If
you’d like, you can mark all of these messages as unread to keep track of
which messages you have left to read.)

Figure 6-2: An email dump imported in Thunderbird

The email selected in Figure 6-2 is in the inbox folder and was sent
from Lionel Aingimea, at that time the president of Nauru. In the email,
he instructs Iven Notte, the Nauru police chief and the inbox owner, to not
respond to Australian journalist Eden Gillespie, who had asked about two

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Reading Other People’s Email 159

Nauru men who had allegedly attacked a refugee worker, possibly run him
over, and stolen his motorbike. “Leave it,” President Aingimea wrote. “ Don’t
answer them.”

Cam Wilson, a reporter for the Australian news site Crikey, dug into the
Nauru Police Force dataset and revealed “the appalling disregard for refu-
gees and asylum seekers detained there.” You can read Wilson’s reporting
on Crikey’s website, https:// www . crikey . com . au / .

Searching Email in Thunderbird
Now that you’ve got Thunderbird configured and loaded with data,
 you’re ready to explore that data. For example, you may want to search
the Nauru Police Force dataset for other email from President Aingimea
or from Australian politicians. You could also search for email that con-
tains keywords like refugee or was written on specific days. This section
covers search methods you can use on any email dump you import into
Thunderbird.

Quick Filter Searches
The simplest search option is to filter the email that shows up in the
currently selected folder. When viewing a folder, near the top of the
Thunderbird win dow, make sure the Quick Filter button is toggled on so
that an extra toolbar appears. This toolbar has buttons to quickly filter
out only messages that are unread, contain attachments, or have other
properties.

The Quick Filter toolbar also has a search box that you can use to find
only messages that include certain text. You can also filter for messages that
include the search term in the sender field, recipient field, subject line, or
body. This is the most common way I search in Thunderbird. For example,
I entered Aingimea in the Quick Filter search box to quickly find all of
the email related to President Aingimea in the inbox folder. I could also
put his email address in the search box and filter for messages where he’s
the sender or the recipient (though he won’t be the recipient of any of this
email, because this is Iven Notte’s inbox, not his).

The Search Messages Dialog
The Quick Filter search is essentially a more limited version of the Search
Messages dialog, which is the most power ful way to search for email in
Thunderbird. Open this dialog by clicking the Edit menu and choosing
FindSearch Messages. You can choose which folder to search, or you can
elect to search all the email in an account at once. You can then choose
more granular search queries. For example, you could find all email mes-
sages that mention asylum in the body. You can then filter those results by
adding further criteria, such as showing only email sent from or to a spe-
cific email address, or only email with attachments.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.crikey.com.au/

160 Chapter 6

 There’s also a search box in the top right of the Thunderbird win dow,
above the Quick Filter search box, that will quickly search the full email
account. I find this feature less useful than the Search Messages dialog.
If I can’t find what I’m looking for with Quick Filter, I move on to
Search Messages, which lets me make my searches as granular as
necessary.

Exercise 6-4: Import the Oath Keepers Email Dump in MBOX Format
In this exercise, you’ll import email from the Oath Keepers dataset into
Thunderbird. The Oath Keepers dataset contains the files messages.json
and messages_old.json, which are chat logs, and the Oath Keepers.sbd folder,
which contains 100 files in MBOX format. You’ll focus on the latter here.
As mentioned previously, you can’t open MBOX files in an email client to
read the messages like you can with EML files; you must import them into
Thunderbird first.

To keep your dif fer ent datasets separate in Thunderbird, you’ll cre-
ate a new folder for the Oath Keepers data. In the left panel, right- click
Local Folders and choose New Folder. Name your folder Oath Keepers
and click Create Folder. You should now see the Oath Keepers folder in your
Local Folders list. Right- click the Oath Keepers folder you just created and
choose ImportExportToolsImport MBOX File. A pop-up dialog with
more options should appear. Choose Import Directly One or More MBOX
Files and click OK. Browse for your Oath Keepers.sbd folder and select all of
the files in it.

Thunderbird might become unresponsive while it imports the
3.9GB of email, not allowing you to click on anything, but be patient.
When the import is complete, you should have 100 separate folders full
of email.

The Oath Keepers folder with the most email, by far, is oksupport,
the Oath Keepers support email account. Figure 6-3 shows an email in
this folder from a member renouncing his membership shortly after the
January 6 attack.

I haven’t found many major revelations in this email dump; most of
 those are contained in the private part of the Oath Keepers database, the
membership and donor lists that DDoSecrets distributes only to journalists
and researchers. The publicly available email contains many people writing
about joining the militia or complaining that they paid their membership
dues but haven’t had any further communication. There’s also a massive
amount of spam, including right- wing extremist, conspiratorial, and anti-
vaccine bulk email. Look through the vari ous email accounts you imported
and try out Thunderbird’s search tools to see if you can find anything in ter-
est ing I missed.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Reading Other People’s Email 161

Exercise 6-5: Import the Heritage Foundation Email
Dump in PST Format

In this exercise, you’ll import the Heritage Foundation email dump, a
Microsoft Outlook PST file called backup.pst, into Thunderbird. Since the
ImportExportTools NG add-on doesn’t support PST files, first you’ll need to
convert the PST into an EML or MBOX file.

The readpst program can convert a PST file into several dif fer ent
formats, including EML and MBOX files. You can access the program by
installing the libpst package in macOS or the pst- utils package in Ubuntu.
Start by opening a terminal. Mac users, run the following command:

brew install libpst

Linux and Win dows with WSL users, run this command:

sudo apt update
sudo apt install pst- utils

Figure 6-3: An email from the Oath Keepers email dump

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

162 Chapter 6

Next, change to the folder that contains the backup.pst file. For example,
on my macOS computer, I run:

cd /Volumes/datasets/Heritage\ Foundation

To convert a PST file into EML file, you use the following command,
where the - e argument tells readpst to output as EML files:

readpst - e filename.pst

Run that command on the backup.pst file like so:

readpst - e backup.pst

This command creates a folder called Personal Folders, which contains
additional Contacts, Heritage, Inbox, Junk E- mail, and other subfolders (this
is how the email in backup.pst is organized). Within each folder are several
EML files, one for each email message.

N O T E I’ve found it easier to import EML files generated by readpst into Thunderbird, but
you can also convert PSTs into MBOX files with the readpst - r filename.pst
command.

In the left panel, right- click Local Folders and choose New Folder, as
you did in the previous exercises. Name your folder Heritage Foundation
and click Create Folder. You should now see the Heritage Foundation folder
in your Local Folders list.

Right- click the Heritage Foundation folder, choose New Subfolder,
and name your new subfolder backup.pst. Right- click the backup.pst sub-
folder and choose ImportExportTools NGImport All Messages from a
DirectoryAlso from Its Subdirectories. Browse for the Personal Folders
folder that you just created using readpst and start the import. This folder
should start filling up with over a thousand email messages.

 These email messages, all belonging to the former Heritage
Foundation fundraiser Steve DeBuhr, are meticulously organized into fold-
ers. In addition to Heritage Foundation work, this email dump also includes
DeBuhr’s personal email. This email dump is very old— the latest messages
are from 2009—so it’s unlikely you’ll find very many revelations in here.
Since DeBuhr worked with major donors, though, the email in the Heritage
folder contains many attachments full of financial details. Figure 6-4 shows
this email dump in Thunderbird.

Particularly, I noticed as I browsed through this email that the Social
Issues folder contains homophobic and other wise bigoted messages that
DeBuhr had forwarded from his official heritage . org address account to
his personal one.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://heritage.org

Reading Other People’s Email 163

Other Tools for Researching Email Dumps
This chapter has focused on using Thunderbird as a tool for researching
email dumps, but in your future work, you might find two alternative tools
helpful: Microsoft Outlook and Aleph. In this section I’ll go over how you can
use each tool to import and search email dumps. You don’t need to follow the
instructions in this section to work through the rest of the book, but reading
along will give you a sense of what the options are and when to use them.

Microsoft Outlook
Unlike Thunderbird, Microsoft’s desktop email program, Outlook, sup-
ports importing email dumps directly in PST format. However, Outlook
has some downsides. First, it’s not free; the cheapest way to get Outlook is
to buy a Microsoft 365 license, which at the time of writing costs around
$7 per month or $70 per year. Second, Outlook is available only for Win-
dows and macOS, not Linux (though Linux users can run Outlook in a
Win dows VM). Still, you might find Outlook useful if you’re familiar with

Figure 6-4: A Heritage Foundation email in Thunderbird

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

164 Chapter 6

the program and understand its advanced features, or just want to see an
email in its original interface.

Let’s look at how to import PST files directly into Outlook, using a real
example from a hacked Russian email dump. First, set up a Win dows VM
for Outlook. Do this even if you’re a Win dows or macOS user who already
uses Outlook for email, in order to avoid mixing up your actual email and a
leaked email dump. Microsoft publishes free Win dows VM images for several
dif fer ent VM programs like VirtualBox, VMWare, and Parallels. Download
the VM image at https:// developer . microsoft . com / en - us / windows / downloads / virtual
- machines and import it into your VM software. You’ll also need to install
Microsoft Office in your VM. If you have a Microsoft 365 license, download
Office from https:// www . office . com by logging in and clicking the Install Office
link. If you don’t have a license, Microsoft offers a free trial.

When you open Outlook the first time, it prompts you to log in to your
Office 365 account to check your license. After that, it prompts you to set
up an email account. At the bottom, click the link Create an Outlook . com
Email Address to Get Started in order to create a new account. Make sure
to save your email and password in your password man ag er. Once you’re
finished, click Done. Outlook should open with the empty inbox of the new
email account you just created.

With Outlook set up, add the PST email dumps to it. Click File
Account SettingsAccount Settings, then click Data FilesAdd and browse
for the PST file you want to add. If you have the disk space to spare, make
a copy of the PST file and add the copy instead. All information about this
inbox, including details like which messages are marked read, is stored in this
file, so working from a copy will prevent you from modifying the original.

The PST file you added should appear in the left sidebar. You can now
sift through this inbox as if it were your own. Even the unread email counts
you’ll see are the actual counts of unread email for each folder at the time
the PST file was exported.

As an example, I set up a Win dows VM, installed Outlook, logged into
it using my Microsoft 365 account, and added intercoord@vgtrk.ru.pst (the
48GB PST file hacked from VGTRK mentioned earlier in the chapter).

Figure 6-5 shows this VGTRK inbox, where I’ve used Outlook’s search
feature to search for Такер Карлсон. This is the Cyrillic spelling of Tucker
Carlson, the American white nationalist and former Fox News host.

The subject line of the selected email in Figure 6-5 translates roughly to
“Tucker Carlson sync.” The email body contains a translated quote in which
Carlson claims that Ukraine is not an independent country, but rather is
controlled by the US Demo cratic Party. The quote also includes the false
claim that in 2016, then Vice President Joe Biden fired Ukraine’s attorney
general for investigating Biden’s son Hunter. (In fact, Biden leveraged $1 bil-
lion in US aid to persuade Ukraine to oust its top prosecutor, Viktor Shokin,
who refused to investigate corruption from power ful Ukrainians. Biden
worked in tandem with anti- corruption efforts across Europe: European
leaders, as well as civil society groups within Ukraine, urged Shokin to
resign for the same reason.) Russian TV likely aired this Tucker Carlson clip,
and this email was likely the translation for their Russian dubbed version.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines
https://www.office.com
http://Outlook.com

Reading Other People’s Email 165

N O T E When working with data dumps in foreign languages that you don’t read, you can
rely on machine translation tools like DeepL or Google Translate— assuming, of
course, that you’re comfortable sharing the contents of the leak with a third- party
 service. I’ve also found the Google Translate phone app useful: if you hold your
phone’s camera up to your screen, it will translate text in real time. This works even
with scanned documents that aren’t OCR’d.

Aleph
As you learned in Chapter 5, you can use Aleph to index and browse a wide
variety of email, including PST or EML files. When you index a folder con-
taining PSTs, Aleph recognizes the file format and indexes all of the indi-
vidual messages inside of each PST file, keeping the folder hierarchy intact.
Aleph also has the following benefits for working with email dumps:

•	 Unlike Thunderbird and Outlook, Aleph will also index, make search-
able, and even add OCR to email attachments.

•	 As with any dataset it pro cesses, Aleph will automatically list all of the
 people and organizations it finds in the dataset, and you can use it to
cross- reference that data with other datasets you’ve indexed.

Figure 6-5: Researching a PST file in Outlook

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

166 Chapter 6

•	 If you run an Aleph server for a group of researchers, you can easily
enable them to search email dumps; all they need is a web browser and
an Aleph account.

Using Aleph for email dumps has a few downsides. First, it requires
a lot of technical work to spin up an Aleph server and to index datasets,
especially if you plan on putting it on the internet for others to use. In my
experience, if you try to import large datasets like email dumps into Aleph,
 you’re likely to run into technical hurdles with your Docker setup. Using
Thunderbird is a simpler solution.

Aleph also can’t properly index MBOX files; it tries to index them as
text files rather than as collections of dif fer ent email messages. It won’t do
any Base64- decoding of the data inside MBOX files, so it’s not much more
useful than grep for this task. If you want an MBOX- formatted email dump
indexed in your Aleph server, import it into Thunderbird and then export
it again (using ImportExportTools NG) in EML format.

Aleph has other quirks that make working with email dumps more
complicated. For example, if there’s an email attachment in a format Aleph
 doesn’t understand, it just won’t display the attachment at all when you
view that email message. If you want to be sure you’re seeing every thing
in the email, download an individual EML file from Aleph and open it in
Thunderbird.

In sum, Outlook is a reasonable choice for PST files, and Aleph is
a good choice if you’re working with groups of people or want to cross-
reference an email dump with other datasets. However, Thunderbird is the
simplest way to quickly start your email dump investigation, and it supports
all email formats.

Summary
In this chapter, you learned how to import email dumps in the EML,
MBOX, and PST formats into Thunderbird to read and search them. You
read an email from the president of Nauru, got insights into the type of
email the Oath Keepers receive, and explored an old email dump from the
Heritage Foundation. You also saw how to use Microsoft Outlook and Aleph
as alternatives to Thunderbird. You can use the skills you’ve learned here in
your future email dump investigations.

In the next chapter, you’ll level up your technical skills for analyzing
datasets by taking a crash course in Python programming.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

PART III
P Y T H O N P R O G R A M M I N G

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The skills you’ve learned in the last few chapters are
instrumental for investigating leaked datasets, but
having basic programming knowledge is even more
power ful. Using Python or other programming lan-
guages, you can give your computer precise instruc-
tions for performing tasks that existing tools or shell
scripts don’t allow. For example, you could write a
Python script that scours a million pieces of video
metadata to determine where the videos were filmed.
In my experience, Python is also simpler, easier to
understand, and less error- prone than shell scripts.

This chapter provides a crash course on the fundamentals of Python
programming. You’ll learn to write and execute Python scripts and use the
interactive Python interpreter. You’ll also use Python to do math, define
variables, work with strings and Boolean logic, loop through lists of items,

7
A N I N T R O D U C T I O N T O P Y T H O N

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

170 Chapter 7

and use functions. Future chapters rely on your understanding of these
basic skills.

Exercise 7-1: Install Python
Some operating systems, including most versions of Linux and macOS,
come with Python preinstalled, and it’s common to have multiple versions
of Python installed at once. This book uses Python 3. After you follow the
Python installation instructions for your operating system in this exercise,
you should be able to run Python scripts with the python3 (for Linux and
Mac) or python (for Win dows) command.

Win dows
Download and install the latest version of Python 3 for Win dows from
https:// www . python . org. During installation, check the box Add Python 3.x to
PATH (where 3.x is the latest Python 3 version), which allows you to run the
python command in PowerShell without using the Python program’s abso-
lute path.

Wherever this chapter instructs you to open a terminal, use PowerShell
instead of an Ubuntu terminal. You can also learn to use Python in Ubuntu
with WSL by following this chapter’s Linux instructions, but running
Python directly in Win dows makes reading and writing data on your
Windows- formatted USB disk much faster.

Win dows users should replace all instances of python3 with python when
 running the example code in this chapter.

Linux
Open a terminal and make sure the python3, python3- pip, and python3- venv
packages are installed, using this apt command:

sudo apt install python3 python3- pip python3- venv

This command either installs the latest version of Python 3 available in the
Ubuntu repositories (as well as a few related packages you’ll need for this
chapter) or does nothing if the packages are already installed.

macOS
Open a terminal and run the following Homebrew command to make sure
python3 is installed:

brew install python3

This command either installs the latest version of Python 3 available in
Homebrew or does nothing if it’s already installed.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.python.org

An Introduction to Python 171

Exercise 7-2: Write Your First Python Script
Now that you’ve downloaded Python, you’ll write and run a simple Python
script that displays some text in your terminal.

In your text editor, create a new file called exercise-7-2.py (all Python scripts
end in .py). The first time you open a Python script in VS Code, it asks if you
want to install the Python extension. I recommend doing so in order to enable
VS Code to make suggestions as you’re typing. The extension also has vari ous
features for highlighting syntax errors and helping you format your code nicely.

Enter the following code (or copy and paste it from https:// github . com
/ micahflee / hacks - leaks - and - revelations / blob / main / chapter - 7 / exercise - 7 - 2 . py), then
save the file:

print("hacks")
print("leaks")
revelations = "revelations".upper()
print(revelations)

As with shell scripts, Python scripts run instructions one line at a time,
starting at the top. When you run this code, print("hacks") calls a function
called print() and passes the string hacks into it, displaying hacks in your ter-
minal win dow. The second line similarly displays leaks. (I’ll explain strings
in greater detail in the “Python Basics” section on page XX, and functions
in the “Functions” section on page XX.)

Next, the script defines a variable called revelations and sets its value to
the uppercase version of the string revelations. To find the uppercase ver-
sion of that string, the program calls the upper() method, which is a type of
function. The final line then displays what’s stored in the revelations vari-
able: REVELATIONS.

N O T E I have fond memories of retyping snippets of code from books. When I was a teenager,
I taught myself web and video game development by reading programming books and
typing the code samples I found into my own editor. I always found that actually
retyping the code, rather than copying and pasting it, helped make the concepts stick,
so I recommend doing that for the exercises in this book.

In a terminal, change to your exercises folder for this exercise and run
the script you just created with the following command (Win dows users,
remember to replace python3 with python):

micah@trapdoor chapter-7 % python3 exercise-7-2.py

The argument in this command is the path to the script that you want
to run, exercise-7-2.py. You should get the following output:

hacks
leaks
REVELATIONS

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-2.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-2.py

172 Chapter 7

Try making the following changes to your script, running it after each
change to see the results:

•	 Change the text in the print() functions.

•	 Add new print() functions to display more text.

•	 Use the string methods lower() and capitalize() instead of upper().

Python Basics
In this section, you’ll learn to write code in the interactive Python inter-
preter, comment your code, start doing simple math in Python, and use
strings and lists. This gentle introduction to Python syntax will let you
quickly try out some code on your own, before you dive into more advanced
topics.

As you read, don’t be shy about searching online for answers to any
Python questions you might have beyond what this book covers. I frequently
find solutions to Python prob lems on websites like Stack Overflow, a forum
where people can ask technical questions and others can answer them.

The Interactive Python Interpreter
The Python interpreter is a command line program that lets you run Python
code in real time, without writing scripts first, allowing you to quickly test
commands. To open the Python interpreter, you run the python3 command
without any arguments, like so:

micah@trapdoor ~ % python3
- - snip- -
Type "help", "copyright", "credits" or "license" for more information.
>>>

The interpreter starts by telling you exactly which version of Python
 you’re using. Similar to a command line interface, it gives you the prompt
>>> and waits for you to enter a Python command.

Run the following command:

>>> print("Hello World!")
Hello World!
>>>

Entering print("Hello World!") and pressing ENTER should immediately
run your code, displaying Hello World! on the next line. Exit the interpreter
and return to the shell by running exit() or pressing CTRL- D.

In the remainder of this book, if my examples include the >>> prompt,
that means they’re running in the Python interpreter. Run the same code
in your own interpreter as you follow along.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 173

Comments
Writing code can be confusing even to experienced programmers, so it’s
always a good idea to comment your code: add inline notes to yourself or
to others who might read your program. If you describe the purpose of a
specific portion of code in plain English (or whatever language you speak),
whoever looks at this code in the future can understand the gist of what it’s
 doing at a glance.

If a line of code starts with a hash mark (#), the whole line is a com-
ment. You can also add a hash mark after some code, followed by your com-
ment. For example, run the following lines of code:

>>> # This is a comment
>>> x = 10 # This sets the variable x to the value 10
>>> print(x)
10

This is exactly the same as comments in shell scripting, which you
learned about in Chapter 3. Python ignores comments, since they’re
intended for humans.

Math with Python
Computers, which are technically complicated calculators, are great at
 doing math. It might not be immediately apparent, but investigating datas-
ets means constantly dealing with basic math: calculating disk space, count-
ing files, searching for keywords, and sorting lists. Here’s how a few basic
mathematical operations work in Python:

Operators

The arithmetic operators for addition (+), subtraction (−), multiplica-
tion (×), and division (/) are mostly the same in Python: +, - , and /,
with an asterisk * for multiplication.

Variables

In math, a variable is a placeholder, normally a letter like x. Variables in
math often represent something unknown and it’s your job to solve for
it, but Python variables are never unknown— they always have a
value. Name your Python variables something descriptive like price or
number_of_retweets rather than single letters without clear meanings.
Variables in Python can represent much more than just numbers, as
you’ll see later in this chapter.

Expressions

An expression is a bit like a sentence made up of numbers, variables,
and operators. For example, here are a few expressions:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

174 Chapter 7

1 + 1
100 / 5
x * 3 + 5

Like sentences, expressions need to have the correct syntax. Just like
“potato the inside” isn’t a valid sentence, 1 1 + isn’t a valid expression.
Enter the following expressions in the Python interpreter to see how it
evaluates them:

>>> 1 + 1
2
>>> 100 / 5
20.0
>>> 3.14 * 2
6.28

Just like a calculator, Python re spects the order of operations. It also
supports using parentheses:

>>> 100 - 12 * 2
76
>>> (100 - 12) * 2
176

As in the rest of math, Python won’t allow you to divide by zero:

>>> 15 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

You define a variable in Python by saving a value inside that variable
with the equal sign (=). Try defining price and sales_tax variables and then
using them in an expression:

>>> price = 100
>>> sales_tax = .05 # 5% sales tax
>>> total = price + (price * sales_tax)
>>> print(total)
105.0

You can’t use variables that you haven’t yet defined. For example, if you
use an undefined variable x in an expression, you’ll get an error:

>>> x * 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 175

Instead of just setting a variable equal to some value, you’ll often want
to modify its existing value by a certain amount. For example, if you’re
keeping track of the total price of items in a shopping cart in the total vari-
able and want to add 10 dollars to that total, you would define the variable
like so:

total = total + 10

Python’s += operator performs the same operation:

total += 10

The += operator adds the number on the right to the variable on the left.
The Python operators - =, *=, and /= work the same way. In your Python
interpreter, define a variable, then try changing its value using these
operators.

Strings
A string is a sequence of characters. Any time you need to load, modify, or
display text, you store it in a string. If you load the contents of a text file
into a variable in Python (for example, a 5MB EML file that includes attach-
ments), that’s a string. But strings are also often very short: in Exercise 7-2,
you used the strings "hacks", "leaks", and "revelations".

In Python, strings must be enclosed in either single quotes (') or dou-
ble quotes ("). Run the following examples, which demonstrate how to use
each type of quote:

>>> "apple" # A string with double quotes
'apple'
>>> 'apple' # The same string with single quotes
"apple'
>>> # Use double quotes if you have single quotes within the string
>>> "She's finished!"
"She's finished!"
>>> # Use single quotes if you have double quotes within the string
>>> 'She said, "Hello" '
'She said, "Hello" '

Some of the same techniques you learned in Chapter 3 to work with
strings in your shell also apply to strings in Python. If your string uses dou-
ble quotes, you can escape them like so:

>>> "She said, \"Hello\" "

You can similarly escape single quotes in a single- quote string:

>>> 'She\'s finished!'

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

176 Chapter 7

Like numbers, strings can be stored in variables. Run the following
code to define first_name and last_name variables, replacing my name with
yours:

>>> first_name = "Micah"
>>> last_name = "Lee"

In Python, f- strings are strings that can contain variables. To use an
f- string, put the letter f before the quotes, then put variable names in
braces ({ and }). For example, run the following commands to display the
values of the variables you just defined:

>>> print(f"{first_name} {last_name}")
Micah Lee
>>> full_name = f"{first_name} {last_name}"
>>> print(f"{first_name}'s full name is {full_name}, but he goes by {first_name}")
Micah's full name is Micah Lee, but he goes by Micah

Place expressions inside f- strings in order to evaluate them:

>>> print(f"1 + 2 + 3 + 4 + 5 = {1 + 2 + 3 + 4 + 5}")
1 + 2 + 3 + 4 + 5 = 15

Python will evaluate the expression for you, in this case 1 + 2 + 3 + 4 + 5,
and just print the result, which is 15.

Exercise 7-3: Write a Python Script with Variables, Math,
and Strings

In this exercise, you’ll practice the concepts you’ve learned so far by writ-
ing a simple Python script that uses variables and a few basic math expres-
sions and prints some strings. The script calculates how old a person is in
months, days, hours, minutes, and seconds, given their name and an age (in
years), and then displays this information. In your text editor, create a new
file called exercise-7-3.py and define these two variables:

name = "Micah"
age_years = 37

Replace the values of name and age_years with your own name and age.
Next, define some more variables that represent age in dif fer ent units:

months, days, hours, minutes, and seconds. Start with months:

age_months = age_years * 12

Add a days variable:

age_days = age_years * 365

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 177

Fi nally, define variables for hour, minutes, and seconds:

age_hours = age_days * 24
age_minutes = age_hours * 60
age_seconds = age_minutes * 60

Now that you’ve defined the variables, you can display them to the user.
Since the numbers in this exercise are going to get big, you’ll include com-
mas to make them easier to read. For example, run this code in the inter-
preter to display the variable number with commas using an f- string, adding :,
 after the variable name within the braces:

>>> number = 1000000
>>> print(f"the number is: {number}")
the number is: 1000000
>>> print(f"the number is: {number:,}")
the number is: 1,000,000

Back in the Python script, add code to display all of the values, like this:

print(f"{name} is {age_years:,} years old")
print(f"That would be {age_months:,} months old")
print(f"Which is {age_days:,} days old")
print(f"Which is {age_hours:,} hours old")
print(f"Which is {age_minutes:,} minutes old")
print(f"Which is {age_seconds:,} seconds old")

This code uses {name} to display the value of the name variable. That
variable is a string, so it doesn’t make sense to try to separate it with commas.
The rest of the variables are numbers, though, so the code includes :, inside
the braces for all of them to include commas in the output. (The age_years
values don’t need commas, unless you happen to be older than 1,000, but it
 doesn’t hurt to use the :, syntax—it adds a comma only if one is needed.)

Save the file in your text editor. (A complete copy of the script is avail-
able at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter
- 7 / exercise - 7 - 3 . py .) In a terminal, change to your exercises folder for this exer-
cise and run the script. Here’s what happens when I do so:

micah@trapdoor chapter-7 % python3 exercise-7-3.py
Micah is 37 years old
That would be 444 months old
Which is 13,505 days old
Which is 324,120 hours old
Which is 19,447,200 minutes old
Which is 1,166,832,000 seconds old

When you run the script with your name and age, try changing the age
and running it again to see how the numbers change.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-3.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-3.py

178 Chapter 7

Lists and Loops
You’ll often need to manage lists when investigating datasets. For example,
you might work with lists of filenames or rows in a spreadsheet. In this sec-
tion, you’ll learn how to store lists as variables and loop through those lists
in order to run the same code for each list item. You did something similar
in Chapter 4 with for loops in the shell, but this time, you’ll be working in
Python.

Defining and Printing Lists
In Python, lists are defined with brackets ([and]), with each item in the list
separated by commas (,). You might have a list of numbers:

[1, 2, 3]

Or of strings:

["one", "two", "three"]

Or an empty list:

[]

Just as variables can contain numbers or strings, they can also contain
lists. Use this line of code to store a list of letters in the Hebrew alphabet,
spelled out using Latin characters, in the hebrew_letters variable:

>>> hebrew_letters = ["aleph", "bet", "gimel", "dalet", "he", "vav", "zayin",
"chet", "tet", "yod", "kaf", "lamed", "mem", "nun", "samech", "ayin", "pe",
"tsadi", "qof", "resh", "shin", "tav"]

Now use the print() function to display the items in the hebrew_letters
variable:

>>> print(hebrew_letters)
['aleph', 'bet', 'gimel', 'dalet', 'he', 'vav', 'zayin', 'chet', 'tet', 'yod',
'kaf', 'lamed', 'mem', 'nun', 'samech', 'ayin', 'pe', 'tsadi', 'qof', 'resh',
'shin', 'tav']

You can make long lists easier to read by entering each item in the list
on its own line, indented, like this:

hebrew_letters = [
 "aleph",
- - snip- -
 "tav"
]

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 179

Each item in a list has an index, a number that represents where in the
list that item is located. The index of the first item is 0, the second is 1, the
third is 2, and so on. To select a list item, you append brackets with the
item’s index to the end of the list. For example, to select the first letter in
the hebrew_letters list, use hebrew_letters[0]:

>>> print(hebrew_letters[0])
aleph
>>> print(hebrew_letters[1])
bet

The first line of code uses the print() function to display the item from
the hebrew_letters list at index 0 (aleph), and the second line displays the
item at index 1 (bet).

Now use negative numbers to select items starting from the end of the
list, like so:

>>> print(hebrew_letters[-1])
tav
>>> print(hebrew_letters[-2])
shin

You can use the len() function to count the number of items in a list.
For example, run this code to get the number of items in the hebrew_letters
list:

>>> print(len(hebrew_letters))
22

This code uses the print() function to display the output of the len()
function. You could get the same result by storing the output of the
len() function in a variable:

>>> length_of_hebrew_alphabet = len(hebrew_letters)
>>> print(length_of_hebrew_alphabet)
22

The first line of code runs len(hebrew_letters) and stores the result in
the length_of_hebrew_alphabet variable. The second line uses the print() func-
tion to display that result.

You don’t have to store a list in a variable to select items from it. For
example, run this code to display the second item (at index 1) in the list
[1,2,3]:

>>> print([1,2,3][1])
2

The append() method lets you add items to lists. For example, run the
following code to add a new color to a list of favorites:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

180 Chapter 7

>>> favorite_colors = ["red", "green", "blue"]
>>> favorite_colors.append("black")
>>> print(favorite_colors)
['red', 'green', 'blue', 'black']

This code defines the variable favorite_colors as a list of strings contain-
ing red, green, and blue. It then adds another string, black, to the list by using
the append() method, before fi nally displaying the value of the favorite_colors
variable, using the print() function.

When writing code that analyzes datasets, you’ll often create an empty
list and then append items to that list to make the data easier to work with.
For example, you’ll learn in Chapter 13 about the code I wrote while inves-
tigating Amer i ca’s Frontline Doctors, an anti- vaccine group. To properly
analyze a dataset of hundreds of thousands of files containing patient
information, I wrote code that created an empty list, opened each file, and
appended the pertinent patient data to that list.

 Running for Loops
In Chapter 4, you used a for loop to unzip each BlueLeaks ZIP file. Python
also has for loops, and they work the same way they do in shell scripting: by
 running a snippet of code, called a block, on each item in a list. A for loop
has the following syntax:

for variable_name in list_name:

followed by a block of indented code. Once you choose a new variable to
define in variable_name, you can use it in your code block.

For example, run this code to loop through the hebrew_letters list, store
each item in the variable letter, and then display that item:

>>> for letter in hebrew_letters:
... print(letter)
...

 After you enter the for loop, which ends in a colon (:), the Python inter-
preter changes the prompt from >>> to ... and waits for you to enter the
code block that will run for each item. Indent every line in your block with
the same number of spaces, then end your block with a blank line. In this
example, the code block that runs is just one line: print(letter).

The code should return the following output:

aleph
bet
- - snip- -
shin
tav

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 181

In this example, the for loop runs 22 times, once for each item in the
list, and stores the item in the variable letter. The first time it loops, the
value of letter is aleph. The second time, the value is bet, and so on.

N O T E Indentation tells Python which lines of code are part of your code blocks. If some lines
are indented with four spaces, but others with two or three spaces, your Python code
 won’t work. To keep things simple, I recommend always indenting with four spaces.
When writing scripts in VS Code, you can indent multiple lines of code by selecting
them with your mouse and then pressing TAB (which indents four spaces for you) or
Unindent by selecting a line and pressing SHIFT- TAB.

The following, slightly more complicated, example uses the len()
function to count not the number of items in a list, but characters in
a string:

>>> for letter in hebrew_letters:
... count = len(letter)
... print(f"The letter {letter} has {count} characters")
...
The letter aleph has 4 characters
The letter bet has 3 characters
The letter gimel has 5 characters
- - snip- -
The letter resh has 4 characters
The letter shin has 4 characters
The letter tav has 3 characters

This code tells you how many characters are used to spell the word for
each Hebrew letter in the Latin alphabet.

You can use for loops to loop through strings as well, since a string is
essentially a list of characters:

>>> word = "hola"
>>> for character in word:
... print(character)
...
h
o
l
a

You can run a single for loop as many times as you need for the dataset
 you’re working on. For example, in Chapter 9, you’ll write code that can
open each of the hundreds of spreadsheets in the BlueLeaks dataset and
uses a for loop to run your block of code on each row.

In the next section, you’ll learn to make your programs more dynamic
and useful by determining which blocks of code should run under which
circumstances.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

182 Chapter 7

Control Flow
Python scripts start at the top and run one line of code at a time, but they
 don’t always run these lines consecutively. In for loops, for example, the
same block of code might run over and over again before the loop com-
pletes and the program continues to the next line. The order in which your
lines of code run is your program’s control flow.

As you start writing code, you’ll often alter the control flow by telling
your computer to do dif fer ent things in dif fer ent situations. If you write a
program that loops through a list of files in a dataset, for instance, you may
want to run dif fer ent code when the program reaches a PDF document
than when it encounters an MP4 video.

This section teaches you how to run certain blocks of code under certain
conditions. To do this, you’ll learn how to compare values, use if statements
based on these comparisons, and express arbitrarily complicated conditions
using Boolean logic, all of which allow you to control the flow of your pro-
gram. You’ll need this sort of logic whenever you write code that searches a
dataset for something specific and then responds according to what it finds.

Comparison Operators
As mentioned earlier in this chapter, expressions that use the arithmetic
operators +, - , /, and * generally evaluate to numbers: 1 + 1 evaluates to 2, for
example. Expressions in Python also use the following comparison operators
to compare terms:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to (not to be confused with a single equal sign (=), which
defines a variable)

!= Not equal to

A Boolean is a type of variable that is either True or False. Expressions
that use comparison operators evaluate to Booleans instead of numbers, as
in the following examples:

>>> 100 > 5
True
>>> 100 < 5
False
>>> 100 > 100
False
>>> 100 >= 100
True
>>> 0.5 < 1
True
>>> 0.999999 == 1
False

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 183

You can use these same operators to compare strings, too. In Python,
saying that one string is less than another means that the former comes
before the latter in alphabetical order, as in the following examples:

>>> "Alice" == "Bob"
False
>>> "Alice" != "Bob"
True
>>> "Alice" < "Bob"
True
>>> "Alice" > "Bob"
False

Strings are case sensitive. If you don’t care about capitalization and
want to just see whether the strings are made up of the same words, make
them both lowercase before you compare them:

>>> name1 = "Vladimir Putin"
>>> name2 = "vladimir putin"
>>> name1 == name2
False
>>> name1.lower() == name2.lower()
True

This technique allows you to determine whether strings of data fulfill
a given condition. For example, in Chapter 11, you’ll write code to analyze
the metadata of over a million videos uploaded to the far- right social net-
work Parler. Using comparison operators, you’ll determine which videos
 were filmed on January 6, 2021, in Washington, DC, during the insurrec-
tion after Trump lost the 2020 election.

if Statements
You use if statements to tell your code to do something under certain con-
ditions but not others. The syntax for an if statement is if expression: fol-
lowed by an indented block of code. If the expression evaluates to True, then
the code block runs. If the expression evaluates to False, the code doesn’t
run, and the flow moves on to the next line.

For example, run the following code:

>>> password = "letmein"
>>> if password == "letmein":
... print("ACCESS GRANTED")
... print("Welcome")
...
ACCESS GRANTED
Welcome
>>>

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

184 Chapter 7

This code sets the value of the password variable to letmein. That means
the expression in the if statement (password == "letmein") evaluates to True
and the code block runs, so it displays ACCESS GRANTED and Welcome.

Now try including the wrong password in your if statement:

>>> password = "yourefired"
>>> if password == "letmein":
... print("ACCESS GRANTED")
... print("Welcome")
...
>>>

This time, because you set the password to "yourefired", the expression
password == "letmein" evaluates to False, and Python doesn’t run the if state-
ment’s code block.

An if statement can optionally incorporate an else block so that
if the condition is true, one code block runs, and if it’s false, another
block runs:

if password == "letmein":
 print("ACCESS GRANTED")
 print("Welcome")
 else:
 print("ACCESS DENIED")

You can also incorporate elif blocks, short for “ else if.” These let you
make another comparison if the first comparison is false, as shown in
Listing 7-1.

if password == "letmein":
 print("ACCESS GRANTED")
 print("Welcome")
elif password == "open sesame":
 print("SECRET AREA ACCESS GRANTED")
 else:
 print("ACCESS DENIED")

Listing 7-1: Comparing if, elif, and else statements

In this code, the if statement evaluates the password == "letmein" expres-
sion. If it evaluates to True, the code block runs and displays the ACCESS
GRANTED and Welcome messages. If the expression evaluates to False, the
program moves on to the elif block, which evaluates the password == "open
sesame" expression. If that evaluates to True, it runs the block of code that
displays SECRET AREA ACCESS GRANTED. If it evaluates to False, the program
moves on to the else code block, which displays ACCESS DENIED.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 185

Nested Code Blocks
You can also accomplish the results of Listing 7-1 with multiple if state-
ments and no elif, using nested code blocks, or indented blocks of code
inside other indented blocks of code:

if password == "letmein":
 print("ACCESS GRANTED")
 print("Welcome.")
 else:
 if password == "open sesame":
 print("SECRET AREA ACCESS GRANTED")
 else:
 print("ACCESS DENIED")

This code is functionally the same as Listing 7-1.
The more complicated your code, the more nested code blocks may

come in handy. You might include for loops inside your if statement code
blocks, or if statements inside for loops, or even for loops inside for loops.

You might prefer elif statements to nested if statements purely for read-
ability purposes: it’s easier to read and write code with 100 elif statements
than code that’s indented 100 times because it has 100 nested if statements.

Searching Lists
The Python in operator, which tells you whether an item appears in a list, is
useful for working with lists. For example, to check whether the number 42
appears in a list of numbers, you can use in as follows:

favorite_numbers = [7, 13, 42, 101]
if 42 in favorite_numbers:
 print("life, the universe, and every thing")

To the left of the in operator is a potential item inside a list, and to the
right is the list name. If the item is in the list, then the expression evaluates
to True. If not, it evaluates to False.

You can also use not in to check if an item isn’t in a list:

if 1337 not in favorite_numbers:
 print("mess with the best, die like the rest")

Additionally, you can use in to search for smaller strings inside of larger
strings:

sentence = "What happens in the coming hours will decide how bad the Ukraine
crisis gets for the vulnerable democracy in Russian President Vladimir Putin's
sights but also its potentially huge impact on Americans and an already deeply
unstable world."
if "putin" in sentence.lower():
 print("Putin is mentioned")

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

186 Chapter 7

This code defines the variable sentence, then checks to see if the string
putin is inside the lowercase version of that sentence.

Logical Operators
It’s pos si ble to describe any scenario, no matter how complicated, using the
logical operators and, or, and not. Like comparison operators, logical operators
also evaluate to True or False, and they let you combine comparisons.

For example, say you like astronomy and want to know if it’s a good
time for stargazing. Let’s set this up as a logical expression: if ((it’s dark out)
and (it’s not raining) and (it’s not cloudy)) or (you have access to the James
Webb Space Telescope), then yes. Other wise, no. Logical operators let you
define this sort of logic in your Python code.

Like other operators, the and and or operators compare an expression
on the left with an expression on the right. With and, if both sides are true,
the whole expression is true. If either is false, the whole expression is false.
For example:

True and True == True

True and False == False

False and True == False

False and False == False

With or, if either expression is true, the whole expression is true. The
 whole expression is false only when both expressions are false. For example:

True or True == True

True or False == True

False or True == True

False or False == False

The not expression differs from the others in that it doesn’t use an
expression to the left, just to the right. It flips true to false, and false to
true. For example:

not True == False

not False == True

In sum, use and to determine whether two things are both true, use
or to determine whether at least one of two things is true, and use not to
change a true to a false or vice versa. For example, consider this code:

if country == "US" and age >= 21:
 print("You can legally drink alcohol")
 else:
 if country != "US":
 print("I don't know about your country")
 else:
 print("You're too young to legally drink alcohol")

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 187

The first if statement has an expression that compares two other
expressions, country == "US" and age >= 21. If country is US and age is greater
than or equal to 21, the expression simplifies to True and True. Since
both Booleans are true, this evaluates to simply True, and the code block
 after the if statement runs, printing You can legally drink alcohol to
the screen.

The first else block determines what happens if that expression evalu-
ates to False. For example, if country is Italy, but age is 30, the expression
simplifies to False and True. Since at least one of the Booleans is false, this
evaluates to simply False, so the code block after else runs. Likewise, if
country is US but age is 18, then the expression simplifies to True and False.
This, too, evaluates to False, so the code block after else runs.

Inside the second else block is a simple if statement without Boolean
logic: if country isn’t US, the screen displays I don't know about your country.
Other wise (meaning country is US), it displays You're too young to legally
drink alcohol.

Just like with math, you can use parentheses in if statements to com-
pare multiple expressions. For example, the drinking age in the US is 21
and the drinking age in Italy is 18. Let’s add Italy to this program, this time
incorporating an or operator:

if (country == "US" and age >= 21) or (country == "Italy" and age >= 18):
 print("You can legally drink alcohol")
 else:
 if country not in ["US", "Italy"]:
 print("I don't know about your country")
 else:
 print("You're too young to legally drink alcohol")

In plain English, the first if statement tells the program that if your
country is the US and you’re at least 21, or if your country is Italy and you’re
at least 18, then you can legally drink. In either case, the whole expression
in the if statement is true, and the program prints You can legally drink
alcohol. If just one of those is true and not the other (for instance, if you’re
a 19- year- old Italian), the whole statement is still true. That’s what or means:
if either of the things you’re comparing is true, then the whole expression is
true.

Use the operator not to turn True values into False or False values into
True. For example:

if country == "US" and not age >= 21:
 print("Sorry, the drinking age in the US is 21")

You could replace not age >= 21 with age < 21 for the same result.

Exception Handling
Python programs may abruptly quit with an error called an exception. This is
typically known as “throwing an exception.” Exception handling ensures that

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

188 Chapter 7

your Python code will run another code block when your code catches an
exception, instead of quitting with an error.

 You’ve seen a few examples of exceptions already in this chapter, like
when you tried dividing by zero (something you can’t do in math) or using
a variable that hasn’t been defined:

>>> 15 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> x * 10
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

In these cases, Python threw a ZeroDivisionError exception and a NameError
exception, respectively.

You can write code that catches exceptions when they’re thrown, allow-
ing you to handle them gracefully. For example, let’s say you have a list of
names called names, and you want display the first name in the list:

>>> names = ["Alice", "Bob", "Charlie"]
>>> print(f"The first name is {names[0]}")
The first name is Alice

This code displays the value at names[0], or the first item in the names list.
This works as expected if there are a few names in the list. But what if names
is empty?

>>> names = []
>>> print(f"The first name is {names[0]}")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

In this case, since the index 0 doesn’t exist because the list is empty,
Python throws an IndexError exception.

You can catch this exception using try and except statements, like this:

try:
 print(f"The first name is {names[0]}")
except:
 print("The list of names is empty")

This code first runs a try statement, followed by a code block. It
attempts to run the code in that block, and if it succeeds without hitting
an exception, it moves on to the next line of code after the except block.
However, if it hits an exception, then it runs the code in the except block
before moving on.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 189

 Here’s what it looks like when there’s no exception:

>>> names = ["Alice", "Bob", "Charlie"]
>>> try:
. . . print(f"The first name is {names[0]}")
. . . except:
. . . print("The list of names is empty")
. . .
The first name is Alice

In this case, the code block after the try statement ran successfully, so the
control flow moved on past the except block.

 Here’s what it looks like when the exception is thrown, but the code
catches it and handles it gracefully:

>>> names = []
>>> try:
. . . print(f"The first name is {names[0]}")
. . . except:
. . . print("The list of names is empty")
. . .
The list of names is empty

The code block after the try statement ran, but Python threw an
IndexError exception when it evaluated names[0]. Instead of crashing and
displaying an error, this code caught the exception and the except block
ran. In this case, the except statement runs if any exception is thrown in
the try block, but you can get more granular than that by using dif fer ent
except statements for dif fer ent types of exceptions. Consider the following
example:

try:
 - - snip- -
except ZeroDivisionError:
 # This catches ZeroDivisionError exception
 - - snip- -
except NameError:
 # This catches NameError exceptions
 - - snip- -
except IndexError:
 # This catches IndexError exceptions
 - - snip- -
except:
 # This catches any other exceptions that haven't been caught yet
 - - snip- -

By using except Exception:, where you replace Exception with a specific
exception you’re interested in catching, you can write dif fer ent code to
 handle dif fer ent types of exceptions. You’ll revisit exception handling
in Chapter 10, when you learn how to work with JSON data, and in the
Chapter 14 case study on neo- Nazi chat logs.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

190 Chapter 7

Now that you know how control flow works in Python, you’ll practice
some basic Python syntax and make comparisons using if statements and
Boolean logic in the next exercise.

Exercise 7-4: Practice Loops and Control Flow
In social media slang, a common form of mockery is to employ alternating
caps, or switching from uppercase to lowercase and back to uppercase, when
quoting people. For example, here’s the text of a viral tweet from the now-
suspended Twitter account account @BigWangTheoryy:

failing classes
Me: “Can I get some extra credit?”
Professor: “cAn i GEt SomE eXtRa creDiT?”

In this exercise, you’ll write a Python script that starts with some text and
converts it into alternating caps style, using the control flow concepts you
learned in the previous section.

In your text editor, create a new file called exercise-7-4.py, and start by
defining the variable text, like this:

text = "One does not simply walk into Mordor"

The simplest way to write this script is to start with an empty string,
called alternating_caps_text, and then loop through the characters in text,
adding characters to alternating_caps_text one at a time and alternating
their capitalization as you do so. Add a second line to your script defining
that variable, like this:

alternating_caps_text = " "

Next, you’ll define a Boolean variable called should_be_capital. Each
time you loop through a character in text, you’ll use this Boolean to keep
track of whether the current character should be capital or lowercase. For
this example, start with a capital letter:

should_be_capital = True

Beneath that line, add the main part of the script:

for character in text:
 if should_be_capital:
 alternating_caps_text += character.upper()
 should_be_capital = False
 else:
 alternating_caps_text += character.lower()
 should_be_capital = True

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 191

Using a for loop, this code loops through the characters in text, stor-
ing each character in the character variable. It then adds these characters to
alternating_caps_text, switching between upper- and lowercase.

During each iteration of the for loop, character is another character
in text, the variable containing the "One does not simply walk into Mordor"
string. The first time the code loops, character is O. When the code reaches
the if statement, should_be_capital evaluates to True for this character, so the
code block runs. The += operator adds character.upper() (or, the uppercase
version of character) to alternating_caps_text. Since the code began by adding
a capital letter, you want it to add a lowercase letter next, so you set should_be
_capital to False. The code block ends, and the code starts its second loop.

During the second iteration, character is n and should_be_capital evalu-
ates to False. When the code reaches the if statement, the expression
evaluates to False, so the else block runs. This is similar to the other block,
except that it appends the lowercase version of character, character.lower(),
to alternative_caps_text and sets should_be_capital back to True. So far,
alternating_caps_text is On.

During the third iteration, character is e and should_be_capital evaluates
to True. When the code reaches the if statement, the expression evaluates
to True, so that code block runs again, adding a capital E to alternating
_caps_text and setting should_be_capital to False again. The code continues
in this way for the rest of the characters in text. Note that the uppercase
and lowercase versions of the space character, " ".upper() and " ".lower(),
are identical. The upper() and lower() methods also don’t change punctua-
tion characters like ,, ., !, and so on.

When this for loop is finished, all you have left to do is display the value
of alternating_caps_text by adding this line to your script:

print(alternating_caps_text)

Your Python script is complete (you can also find a complete copy
at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 7
/ exercise - 7 - 4 . py). Run your script. Here’s the output I get:

micah@trapdoor chapter-7 % python3 exercise-7-4.py
OnE DoEs nOt sImPlY WaLk iNtO MoRdOr

Now change the value of text and run the script again. For example, I
changed the value to " There are very fine people on both sides":

micah@trapdoor chapter-7 % python3 exercise-7-4.py
 ThErE ArE VeRy fInE PeOpLe oN BoTh sIdEs

 You’ve gained a beginner’s understanding of using lists and loops and
controlling the flow of execution. I’ll conclude the chapter with one more
fundamental programming skill: breaking your code down into simpler
chunks using functions.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-4.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-4.py

192 Chapter 7

Functions
The more complicated your programs get, the more impor tant it is to break
the prob lems you’re trying to solve down into smaller chunks and work on
them individually. This allows you to focus on the bigger picture, using
 those smaller chunks of code as building blocks. In this section, you’ll learn
how to do this using functions.

Functions, fundamental building blocks of programming, are reusable
chunks of code. They take arguments— the variables that you pass into a
function—as input, and can return a value after they finish running. You’ve
already used a few functions that come with Python, like print() and len(), but
you can also define your own function and use it as many times as you want
without having to rewrite that code. You’ll learn how to do that in this section.

The def Keyword
You can define a new function using the def keyword. For example, this
code defines a function called test(), which prints a string to your terminal:

>>> def test():
... print("this is a test function")
...
>>> test()
this is a test function

Function definition lines end with a colon and are followed by an
indented code block that defines exactly what the function does: in this
case, it displays the string this is a test function. This test() function
 doesn’t include any arguments, which means every time you run it, it will do
the exact same thing.

Listing 7-2 defines a slightly more complicated function, sum(), that
adds two numbers together.

def sum(a, b):
 return a + b

Listing 7-2: Defining an example function

This new function takes a and b as arguments and returns the sum of
 those two variables. For any function that takes more than one argument,
like this one, you separate the arguments with commas (,).

Each variable has a scope, which describes which parts of your code can
use that variable. The arguments of a function (in this case, a and b), as
well as any variables defined inside the function, have a scope that can be
accessed only by code in that function’s code block. In other words, you can
use these a and b variables only inside the sum() function, and they won’t be
defined outside of that code block.

You can think of defining a function as telling Python, “I’m making a
new function with this name, and here’s what it does.” However, the func-
tion itself won’t run until you call it. Consider the following Python script:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 193

def sum(a, b):
 return a + b

red_apples = 10
green_apples = 6
total_apples = sum(red_apples, green_apples)

print(f" There are {total_apples} apples")

First, the code defines a function called sum() to be a code block with
just a return statement. This function doesn’t run yet. The code then defines
the red_apples variable, setting its value to 10, and the green_apples variable,
setting its value to 6.

The next line starts with total_apples =, but before Python can set
the value of that variable, it needs to learn what that value should be. To
do that, the code first calls the sum() function, passing in the arguments
red_apples and green_apples as a and b. Now that the code is fi nally calling
this function, return a + b runs. In this function call, a is red_apples and b is
green_apples. The function returns a + b, which is 16. Now that the sum() func-
tion has returned, the code defines a variable called total_apples, setting its
value to the return value of the sum() function, 16.

Fi nally, the code calls the print() function, passing in an f- string as an
argument, which displays the total_apples variable. It will display the mes-
sage There are 16 apples.

Default Arguments
Function definitions can also have default arguments, which means defining
their value is optional. If you haven’t passed in any values for them when
the function is called, the default value is used instead.

For example, consider this function, which, given a number and option-
ally a number of exclamation marks and question marks, prints a greeting
using its arguments:

def greet(name, num_exclamations=3, num_questions=2):
 exclamations = "!" * num_exclamations
 questions = "?" * num_questions
 print(f"Hello {name}{exclamations}{questions}")

The argument name is a positional argument, which means when you call
this function, the first argument you pass in always has to be name. However,
num_exclamations and num_questions are default arguments, so passing values
in for those is optional. The greet() function defines the strings exclamations
and questions and sets them to a series of exclamation points and question
marks. (In Python, when you multiply a string by a number, you get the
original string repeated multiple times; for example, "A" * 3 evaluates to
the string AAA.) The code then displays Hello, followed by the value of name,
followed by the number of exclamation points and question marks passed
into the function.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

194 Chapter 7

This function has one positional argument (name) and two default argu-
ments (num_exclamations and num_questions). You can call it just passing in
name, without passing values in for the default arguments, and they will auto-
matically be set to 3 and 2, respectively:

>>> greet("Alice")
Hello Alice!!!??

You can also keep the default value for one of the default arguments,
but choose a value for another. When you manually choose a value for a
default argument, you’re using a keyword argument. For example:

>>> greet("Bob", num_exclamations=5, num_questions=5)
Hello Bob!!!!!?????
>>> greet("Charlie", num_questions=0)
Hello Charlie!!!
>>> greet("Eve", num_exclamations=0)
Hello Eve??

The first function call uses keyword arguments for both num_exclamation
and num_questions; the second function call uses a keyword argument only
for num_questions and uses the default argument for num_exclamations; and the
third function call uses a keyword argument for num_exclamations and uses
the default argument for num_questions.

Return Values
Functions become a lot more useful when they take some input, do some com-
putation, and then return a value, known as the return value. The greet() func-
tion just described displays output, but it doesn’t return a value that I could
save in a variable or pass into further functions. However, the len() function
you used earlier takes input (a list or a string), does some computation (calcu-
lates the length of the list or string), and returns a value (the length).

 Here’s an example of a function that takes a string s as an argument
and returns the number of vowels in the string:

def count_vowels(s):
 number_of_vowels = 0
 vowels = "aeiouAEIOU"
 for c in s:
 if c in vowels:
 number_of_vowels += 1

 return number_of_vowels

This function brings together many of the concepts covered in this
chapter so far: it defines the variable number_of_vowels as 0, then defines the
variable vowels as a string containing lowercase and uppercase English vow-
els. Next, it uses a for loop to loop through each character in s, the string
that’s passed into the function.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 195

In each loop, the code uses an if statement to check whether the char-
acter is a vowel (since vowels contains both lowercase and uppercase letters,
this code considers both a and A to be vowels). If the character is a vowel,
the code increases the number_of_vowels variable by one. Fi nally, it returns
number_of_vowels, which equals however many vowels it counted in s.

 Here are a few examples of calling this function and passing in dif fer-
ent strings:

>>> count_vowels("THINK")
1
>>> count_vowels("lizard")
2
>>> count_vowels("zzzzzzz")
0
>>>

When you define a variable, you can set its value to the return value of a
function just by setting the variable equal to that function call:

>>> num_vowels_think = count_vowels("THINK")
>>> num_vowels_lizard = count_vowels("lizard")

This code defines the variable num_vowels_think and sets its value to the
return value of count_vowels("THINK"), or the number of vowels in the string
THINK. It also defines the variable num_vowels_lizard and sets its value to the
return value of count_vowels("lizard").

You can then use those variables to define new variables:

>>> total_vowels = num_vowels_think + num_vowels_lizard
>>> print(total_vowels)
3

This code adds those two variables together, saving their sum in a new
variable called total_vowels. It then prints the value of total_vowels to the
terminal.

When a return statement runs, the function immediately ends, so return
is also useful if you want to stop a function early. For example, the following
is_exciting() function loops through all the characters in a string s to check
 whether the character is an exclamation point:

def is_exciting(s):
 for character in s:
 if character == "!":
 return True

 return False

If the function finds an exclamation point, it returns True, immediately
stopping the function. If it checks each character and finds no exclamation
points, it returns False. For example, if you call this function and pass in

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

196 Chapter 7

the string !@#$, the function will return True during the first iteration of the
loop and immediately end—it will never even get to the second iteration.
If you pass in the string hello!, it won’t return True until the last iteration of
the loop, since it doesn’t find the ! until the end of the string. And if you
pass in the string goodbye, it will loop through the entire string and not find
an exclamation point, so it will return False.

Docstrings
In self- documenting code, documentation is defined as part of the code
as docstrings rather than in a separate document. Docstrings are strings
enclosed by three double quotes (" "") or three single quotes ('") on either
side, placed as the first line of code after a function definition. When you
run the function, the program ignores the docstring, but Python can use
it to pull up documentation about the function on request. Docstrings are
optional, but they can help other people understand your code.

For example, here’s how you’d define the sum() function with a docstring:

>>> def sum(a, b):
... " ""This function returns the sum of a and b" ""
... return a + b

This is exactly the same as the sum() function defined in Listing 7-2,
except it includes a docstring.

If you run the help() function, passing in the name of a function (with-
out arguments) as the argument, the Python interpreter will display docu-
mentation for that function. For example, running help(sum) gives you the
following output:

Help on function sum in module __main__:

sum(a, b)
 This function returns the sum of a and b

The help() function works for any function, though it’s useful only if
the programmer who wrote that function included a docstring. In this case,
it tells you that it’s showing you help for the function called sum() in the
__main__ module. You’ll learn more about modules in Chapter 8, but they’re
essentially functions you write yourself. Try running help(print) or help(len)
to view the docstrings for the print() and len() functions.

Press Q to get out of the help interface and back to the Python
interpreter.

Exercise 7-5: Practice Writing Functions
In this exercise, you’ll turn the script you wrote in Exercise 7-4 into a func-
tion. You can then call this function multiple times, passing text into it so
that it returns an alternating caps version of that text each time.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

An Introduction to Python 197

In your text editor, create a new file called exercise-7-5.py and create a
new function called alternating_caps(), which takes in the argument text,
like this:

def alternating_caps(text):
 " ""Returns an aLtErNaTiNg cApS version of text" ""

Next, copy the code from Exercise 7-4 and paste it into this function,
making sure to indent it so that it aligns with the docstring. Delete the line
that defines the text value; instead, define text by passing it into the func-
tion as an argument. Also change the last line of the Exercise 7-4 code from
print(alternating_caps_text) to return alternating_caps_text. This function
 shouldn’t display the alternating caps version of a string; it should create a
variable containing this version of a string and return it.

Your complete function should look like this (you can also find a copy
at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 7
/ exercise - 7 - 5 . py):

def alternating_caps(text):
 " ""Returns an aLtErNaTiNg cApS version of text" ""
 alternating_caps_text = " "
 should_be_capital = True

 for character in text:
 if should_be_capital:
 alternating_caps_text += character.upper()
 should_be_capital = False
 else:
 alternating_caps_text += character.lower()
 should_be_capital = True

 return alternating_caps_text

Now that you have a function— a reusable chunk of code— you can use
it as many times as you want. Call this function a few times, remembering to
display its return value using the print() function, like this:

print("Hacks, Leaks, and Revelations")
print(alternating_caps("This book is amazing"))
print(alternating_caps("I'm learning so much"))

You can change the text that you pass in to the alternating_caps() func-
tion calls to whatever you want.

 Here’s what it looks like when I run this script:

micah@trapdoor chapter-7 % python3 exercise-7-5.py
Hacks, Leaks, and Revelations
ThIs bOoK Is aMaZiNg
I'M LeArNiNg sO MuCh

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-5.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-7/exercise-7-5.py

198 Chapter 7

While the output of this script is displayed in a mocking tone, I hope
that the sentiment is true for you!

Summary
This chapter has covered several basic Python programming concepts
you’ll rely upon in future investigations. You learned to write simple Python
scripts that incorporate the major features of the language, including vari-
ables, if statements, for loops, and functions. You’re ready to continue your
Python programming journey in the next chapter, this time writing code to
directly investigate datasets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The basics of Python are behind you, but there’s still
a lot to learn. In this chapter, you’ll expand your pro-
gramming skills and start to directly investigate data-
sets, including BlueLeaks and chat logs leaked from
a pro- Putin ransomware gang after Rus sia invaded
Ukraine in 2022.

 We’ll go over some more advanced Python topics, like how to use mod-
ules, how to traverse the filesystem, and how to create your own command
line programs in Python. You’ll write programs that look through all of
the files in a folder, including the hundreds of thousands of files in the
BlueLeaks dataset, and learn to add arguments to your programs. You’ll
also start working with a new type of variable in Python, the dictionary,
which will prove handy for working with data that’s too complex to store
in simple lists. As with the previous chapter, future chapters rely on your
understanding of the topics covered here.

8
W O R K I N G W I T H D A T A

I N P Y T H O N

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

200 Chapter 8

Modules
As you learned in Chapter 7, functions are reusable blocks of code that
you can run as many times as you want without having to rewrite any code.
Python modules are similar, but instead of making a single block of code
reusable, they make an entire Python file (or multiple files) reusable. You
can think of a module as a separate Python file that you can load into the
file you’re currently working on.

Python includes a wealth of features, but most of them aren’t available
to every Python script by default. Instead, they’re stored in built- in modules,
 those that come with Python. Once you import a module into your script
using an import statement, you can access all of the functions, variables, and
other Python objects defined in that module using the syntax module_name
.item_name.

For example, the time module includes the function time.sleep() (pro-
nounced “time dot sleep”), which makes your program wait a given number
of seconds before continuing to the next line of code. Run the following
commands to import the time module and then have it tell Python to wait
five seconds:

>>> import time
>>> time.sleep(5)

Your Python interpreter should wait five seconds before the prompt
appears again.

 Here are a few of the built-in modules I use the most:

os Includes useful functions for browsing the filesystem, like
os.listdir() and os.walk(). It also includes the submodule os.path, which
is full of functions to inspect files. For example, it includes os.path
.isfile() and os.path.isdir(), which help determine whether a specific
path is a file or a folder.

csv Lets you work with CSV spreadsheet data.

json Lets you work with JSON data.

datetime Includes useful Python features for working with dates and
times. For example, it allows you to convert strings like February 24,
2022 5:07:20 UTC+3 (the exact time that Rus sia invaded Ukraine) into a
timestamp that Python can understand and compare with other time-
stamps, then convert it back into strings of any format you choose.

You’ll use the os module extensively later in this chapter, the csv mod-
ule in Chapter 9, and the json module in Chapter 11. You’ll briefly see how
datetime works later in this chapter when you take a look at chat logs from a
ransomware gang, as well as in the Chapter 14 case study, where you’ll ana-
lyze leaked neo- Nazi chat logs.

As your programs get more complex, you might find it useful to split
them up into multiple files, with each file containing a dif fer ent part of
your code. When you do this, you’re creating your own modules. The name

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 201

of the module is the same as its filename. For example, if you define some
functions in a file called helpers.py, another Python file can access those
functions by importing the helpers module. The helpers.py file could contain
the following code:

def get_tax(price, tax_rate):
 return price * tax_rate

def get_net_price(price, tax_rate):
 return price + get_tax(price, tax_rate)

This module contains two functions for calculating sales tax, get_tax()
and get_net_price(). The following Python script, price.py, imports
it like so:

import helpers
total_price = helpers.get_net_price(50, 0.06)
print(f"A book that costs $50, and has 6% sales tax, costs ${total_price}")

The first line, import helpers, makes the functions defined in the helpers
module accessible to this script. The second line calls the helpers.get_net
_price() function from that module and stores the return value in the vari-
able total_price. The third line displays the value of total_price.

 Here’s what it looks like when I run this script:

micah@trapdoor module % python3 price.py
A book that costs $50, and has 6% sales tax, costs $53.0

 Running the price.py script executes the code defined in the helpers
module. Inside that module, the get_net_price() function calls get_tax() and
uses its return value to calculate the net price, then returns that value back
into the price.py script.

Before you write your first advanced Python script in Exercise 8-1, let’s
look at the best way to start new Python scripts.

Python Script Template
I use the same basic template for all my Python scripts, putting my code
into a function called main(), then calling that function at the bottom of the
file. This isn’t required (you didn’t do this for any of the scripts you wrote in
Chapter 7, after all), but it’s a good way to organize your code. Here’s what
it looks like:

def main():
 pass

if __name__ == "__main__":
 main()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

202 Chapter 8

The template defines the main() function with a pass statement that
tells Python, “Skip this line.” I later replace pass with the real body of
the script.

Next, the if statement tells Python under which conditions it should
run main(). Python automatically defines the __name__ variable, and the defi-
nition differs depending on what Python file is being run. If you’re running
the currently executing Python file directly, then Python sets the value of
__name__ to the __main__ string. But if you imported the currently executing
Python file from another script, Python sets the value of __name__ to the
name of the imported module. Using the example from the previous sec-
tion, if you run the helpers.py script directly, the value of __name__ inside that
script will be __main__, but if you run the price.py script, then the value of
__name__ will be __main__ inside price.py and the value of __main__ will be
helpers inside helpers.py.

In short, if you run your script directly, the main() function will run. But
if you import your script as a module into another script or into the Python
interpreter, the main() function won’t run unless you call it yourself. This
way, if you have multiple Python scripts in the same folder, you can have
one script import another script to call the functions defined within it with-
out worrying about calling the latter script’s main() function.

 After I create this template script, I start filling in the main() function
with whatever I want the script to do. Putting the main logic of your script
inside a function allows you to use the return statement to end main() early,
which will quit the script early. You can’t use return when you’re not in a
function.

In the following exercise, you’ll put this into practice by writing a script
to start investigating BlueLeaks.

Exercise 8-1: Traverse the Files in BlueLeaks
To efficiently investigate datasets, you need to be able to write code that
looks through large collections— sometimes thousands or millions—of files
for you. In this exercise, you’ll learn vari ous ways to traverse the filesystem
in Python using functions in the os module, working with the BlueLeaks
dataset. You’ll also rely on the foundational skills you learned in Chapter 7,
like using variables, for loops, and if statements.

As you read along and run the scripts, feel free to modify the code
however you’d like and try running those versions too. You might discover
revelations I didn’t think to look for.

List the Filenames in a Folder
Start by using os.listdir() to list the files in the BlueLeaks- extracted folder. In
your text editor, create a file called list- files1.py and enter this short script (or
copy and paste it from https:// github . com / micahflee / hacks - leaks - and - revelations
/ blob / main / chapter - 8 / list - files1 . py):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/list-files1.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/list-files1.py

Working with Data in Python 203

import os

def main():
 blueleaks_path = "/Volumes/datasets/BlueLeaks- extracted"
 for filename in os.listdir(blueleaks_path):
 print(filename)

if __name__ == "__main__":
 main()

First, the script imports the os module. It then defines the variable
blueleaks_path with the path of the BlueLeaks- extracted folder (update the
script to include the path of this folder on your own computer). The os.
listdir() function takes the path to the folder as an argument and returns a
list of filenames in that folder. The code uses a for loop to loop through the
output of os.listdir(blueleaks_path), displaying each filename.

N O T E Win dows paths include the backslash character (\), which Python strings consider
an escape character. For example, if your BlueLeaks- extracted folder is located
at D:\BlueLeaks- extracted, Python will misinterpret the string "D:\BlueLeaks-
extracted", assuming that \B is a special character. To escape your backslashes for
any Win dows path you store as a string, use \\ instead of \. In this case, set the
blueleaks_path string to “D:\\BlueLeaks- extracted”.

Run this script. Here’s what the output looks like on my computer:

micah@trapdoor chapter-8 % python3 list- files1.py
211sfbay
Securitypartnership
acprlea
acticaz
akorca
- - snip- -

Next, you’ll try something slightly more advanced. Instead of just listing
the filenames in BlueLeaks, you’ll check each filename to see if it’s a folder,
and if so you’ll open each of those folders and count how many files and
subfolders they contain.

Count the Files and Folders in a Folder
Create a file called list- files2.py and enter the following code (or copy and
paste it from https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main
/ chapter - 8 / list - files2 . py):

import os

def main():
 blueleaks_path = "/Volumes/datasets/BlueLeaks- extracted"
 1 for bl_folder in os.listdir(blueleaks_path):
 bl_folder_path = os.path.join(blueleaks_path, bl_folder)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/list-files2.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/list-files2.py

204 Chapter 8

 2 if not os.path.isdir(bl_folder_path):
 continue

 3 files_count = 0
 folders_count = 0
 4 for filename in os.listdir(bl_folder_path):
 filename_path = os.path.join(bl_folder_path, filename)

 5 if os.path.isfile(filename_path):
 files_count += 1

 if os.path.isdir(filename_path):
 folders_count += 1

 6 print(f"{bl_folder} has {files_count} files, {folders_count} folders")

if __name__ == "__main__":
 main()

This script counts the number of files and folders it finds within each
BlueLeaks folder. It starts like list- files1.py does, importing os and defining
the blueleaks_path variable (remember to update the variable’s value to
match the correct path on your computer).

The first for loop cycles through the filenames in your BlueLeaks-
extracted folder, this time saving each filename in the bl_folder variable, so
its value will be something like miacx or ncric 1. The script then sets the
value of the new bl_folder_path variable accordingly. The os.path.join()
function connects filenames together to make complete paths. Its first argu-
ment is the starting path, and it adds all other arguments to the end of that
path. For example, if the value of bl_folder is miacx, then this function will
return the string /Volumes/datasets/BlueLeaks- extracted/miacx on my computer
(the output will be dif fer ent if your blueleaks_path is dif fer ent, or if you’re
using Win dows and your filenames use backslashes instead of slashes).

Since you want to look inside bl_folder_path and count the number of
files and folders it contains, the script needs to check that it’s actually a
folder and not a file, using the os.path.isdir() function 2. If bl_folder_path
 isn’t a folder, the script runs the continue statement. This statement, which
can run only inside of loops, tells Python to immediately continue on to the
next iteration of the loop. In short, if the script comes across a file instead
of a folder, it ignores it and moves on.

The script then prepares to count the number of files and folders
within each individual BlueLeaks folder as the code loops by defining the
variables files_count and folders_count with a value of 0 3.

A second for loop loops through the files in the BlueLeaks folder from
the first for loop, saving each filename in the filename variable 4. Inside
this loop, the script defines filename_path as the absolute path for the file-
name under consideration. For instance, if the value of filename is a string
like Directory.csv, then the value of filename_path would be a string like
/Volumes/datasets/BlueLeaks- extracted/211sfbay/Directory.csv.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 205

The script then checks to see if this absolute path is a file or a folder,
using the os.path.isfile() and os.path.isdir() functions 5. If the path is a
file, the script increments the files_count variable by 1; if it’s a folder, the
script increments folders_count by 1. When the second for loop finishes
 running, these two variables should contain the total count of files and
folder for the BlueLeaks folder you’re currently looping through in the first
for loop. Fi nally, the script displays an f- string that shows these numbers 6.

Try running the script. The output should show how many files and
folders are contained in each BlueLeaks folder, potentially with the list of
folders in a dif fer ent order:

micah@trapdoor chapter-8 % python3 list- files2.py
bostonbric has 506 files, 10 folders
terrorismtip has 207 files, 0 folders
ociac has 216 files, 1 folders
usao has 0 files, 84 folders
alertmidsouth has 512 files, 10 folders
chicagoheat has 499 files, 10 folders
- - snip- -

So far, you’ve combined vari ous functions in the os module to make a
list of filenames in your BlueLeaks folder and check whether each name
actually refers to a file or to another folder. Now it’s time to learn to write
code that can also traverse the BlueLeaks folder’s nested folders.

Traverse Folders with os.walk()
Let’s say you want to write a program that displays all of the files in a folder
and its subfolders, and its subsubfolders, and so on. When you have nested
folders but don’t actually know how deep the folder structure goes, listing
all of the filenames just by using os.listdir(), os.path.isfile(), and os.path
.isdir() isn’t so simple. Python’s os.walk() function solves this prob lem.

The os.walk() function takes a path to a folder as an argument and
returns a list of tuples, or multiple values contained in a single value. To
define a tuple, you place all of the values, separated by commas, within
parentheses. For example, (3, 4) is a tuple, as is ("cinco", "seis", "siete").
Tuples can also contain mixed types like (1, "dos") and can contain any
number of values.

The os.walk() function returns a list of tuples where each tuple contains
three values:

(dirname, subdirnames, filenames)

where dirname is a string, subdirnames is a list of strings, and filenames is a list
of strings. For example, the following code loops through the return value
of os.walk(path):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

206 Chapter 8

for dirname, subdirnames, filenames in os.walk(path):
 print(f"The folder {dirname} has subfolders: {subdirnames} and files: {filenames}")

When you use for loops to loop through lists, you normally assign just
a single variable to each item in the list. However, since each item is a tuple,
you can assign three variables to it: dirname, subdirnames, and filenames. In
each loop, the values for this set of variables will be dif fer ent: the value of
dirname is the path to a folder, the value of subdirnames is a list of subfold-
ers inside that folder, and the value of filenames is a list of files inside that
folder.

For example, suppose you have a folder called example that contains
 these subfolders and files:

example
├── downloads
│ ├── screenshot.png
│ └── paper.pdf
└── documents
 ├── work
 │ └── finances.xlsx
 └── personal

This folder has two subfolders: downloads (containing the files screenshot.
png and paper.pdf) and documents. The documents folder has its own subfold-
ers: work (containing finances.xlsx) and personal.

The following commands loop through the return value of os.walk("./
example"), where ./example is the path to this example folder, to find the values
of dirname, subdirnames, and filenames for each loop:

>>> for dirname, subdirnames, filenames in os.walk("./example"):
... print(f"The folder {dirname} has subfolders: {subdirnames} and files: {filenames}")
...

 Running this command returns the following output:

The folder ./example has subfolders: ['documents', 'downloads'] and files: []
The folder ./example/documents has subfolders: ['personal', 'work'] and files: []
The folder ./example/documents/personal has subfolders: [] and files: []
The folder ./example/documents/work has subfolders: [] and files: ['finances.xlsx']
The folder ./example/downloads has subfolders: [] and files: ['paper.pdf', 'screenshot.png']

This code loops once for each folder, including all subfolders, with the
path to that folder stored in dirname. The list of subfolders in that folder is
stored in subdirnames, and the list of files is stored in filenames. Once you’ve
looped through the folder and all of its subfolders, the for loop ends.

Any time you need to traverse all of the files in a dataset that contains
lots of nested folders, you’ll want to use os.walk(). With a single for loop,
you’ll be able to write code that inspects each file in the entire dataset. The
os.walk() function has many uses, including figuring out which files are the
largest or smallest, as you’ll see next.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 207

Exercise 8-2: Find the Largest Files in BlueLeaks
In this exercise, you’ll use os.walk() to write a script that looks through all
the files, folders, and subfolders in BlueLeaks; measures the size of each file;
and displays the filenames for files over 100MB. This code allows you to loop
through all of the files in a folder, no matter how deep the folder structure.

Create a file called find- big- files.py and enter the following code (or copy
and paste it from https:// github . com / micahflee / hacks - leaks - and - revelations / blob
/ main / chapter - 8 / find - big - files . py):

import os

def main():
 blueleaks_path = "/Volumes/datasets/BlueLeaks- extracted"
 for dirname, subdirnames, filenames in os.walk(blueleaks_path):
 for filename in filenames:
 absolute_filename = os.path.join(dirname, filename)
 size_in_bytes = os.path.getsize(absolute_filename)
 size_in_mb = int(size_in_bytes / 1024 / 1024)
 if size_in_mb >= 100:
 print(f"{absolute_filename} is {size_in_mb}MB")

if __name__ == "__main__":
 main()

Inside the main() function, the script first defines the blueleaks_path vari-
able as the path of the BlueLeaks- extracted folder and loops through all of
the files in the entire BlueLeaks dataset using the os.walk() function. Inside
each loop in the first for loop are the dirname, subdirnames, and filenames
variables. Each item in the list that os.walk() returns represents a dif fer ent
folder or subfolder in the BlueLeaks dataset, so by the time this loop fin-
ishes, the code will have traversed the entire dataset.

To find the biggest files, the next step is to look at each file with
another for loop, this time looping through filenames. Inside this second for
loop, the script defines absolute_filename to be the absolute path to the file-
name. Since dirname tells the script which folder it’s looking in, and filename
tells the script which file it’s looking at, the script passes these values into
os.path.join() to combine them, creating the absolute path to the filename.

A new function, os.path.getsize(), returns the size, in bytes, of the file
 under consideration, and stores it in the variable size_in_bytes. The script
then converts this value from bytes to megabytes (storing that in the vari-
able size_in_mb) and checks if it’s greater than or equal to 100MB. If it is,
the output displays its filename and file size in megabytes with the print()
function.

Try running the script. It will take longer than the previous scripts in
this chapter, because this time, you’re measuring the size of every single file
in BlueLeaks. Here’s what the output looks like when I run it (your output
may be displayed in a dif fer ent order):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/find-big-files.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/find-big-files.py

208 Chapter 8

micah@trapdoor chapter-8 % python3 find- big- files.py
/Volumes/datasets/BlueLeaks- extracted/usao/usaoflntraining/files/VVSF00000/001.mp4 is 644MB
/Volumes/datasets/BlueLeaks- extracted/chicagoheat/html/ZA- CHICAGO HEaT_LR-20160830-034_Final
Files.pdf is 102MB
/Volumes/datasets/BlueLeaks- extracted/nmhidta/files/RFIF300000/722.pdf is 148MB
/Volumes/datasets/BlueLeaks- extracted/nmhidta/files/RFIF200000/543.pdf is 161MB
/Volumes/datasets/BlueLeaks- extracted/nmhidta/files/RFIF100000/723.pdf is 206MB
/Volumes/datasets/BlueLeaks- extracted/fbicahouston/files/VVSF00000/002.mp4 is 145MB
/Volumes/datasets/BlueLeaks- extracted/fbicahouston/files/PSAVF100000/009.mp4 is 146MB
/Volumes/datasets/BlueLeaks- extracted/fbicahouston/files/PSAVF100000/026.mp4 is 105MB
- - snip- -

The script should display the absolute paths of the 101 files in
BlueLeaks that are at least 100MB, along with each file’s size.

Third- Party Modules
In addition to built-in modules, Python also supports third- party modules
that you can easily incorporate into your own code. Most Python scripts
that I write, even simple ones, rely on at least one third- party module (when
a Python program depends on third- party modules, they’re called dependen-
cies). In this section, you’ll learn how to install third- party modules and use
them in your own scripts.

The Python Package Index (PyPI) contains hundreds of thousands of
third- party Python packages, or bundles of Python modules, and subpackages.
Pip, which stands for Package Installer for Python, is a package man ag er simi-
lar to Ubuntu’s apt or macOS’s Homebrew used to install packages hosted
on PyPI. You can search for packages on PyPI’s website (https:// pypi . org), then
install a package by running the python3 - m pip install package_name command.

For example, I frequently use a package called Click, which stands for
Command Line Interface Creation Kit. The click Python module makes it
 simple to add command line arguments to your scripts. To see what hap-
pens when you try importing this module before you’ve installed it, open a
Python interpreter and run import click. Assuming you don’t already have
the package installed, you should see a ModuleNotFoundError error message:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'click'
>>>

Now exit the Python interpreter and install click with pip by running
the following command:

micah@trapdoor ~ % python3 - m pip install click
Collecting click
 Using cached click-8.1.3- py3- none- any.whl (96 kB)
Installing collected packages: click
Successfully installed click-8.1.3

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://pypi.org

Working with Data in Python 209

Open the Python interpreter again and try importing Click once more:

>>> import click
>>>

If no error messages pop up, you’ve successfully imported the click
module, and its additional features are now available for you to use.

The command to uninstall a package is python3 - m pip uninstall
package_name. Try uninstalling click:

micah@trapdoor ~ % python3 - m pip uninstall click
Found existing installation: click 8.1.3
Uninstalling click-8.1.3:
 Would remove:
 /usr/local/lib/python3.10/site- packages/click-8.1.3.dist- info/*
 /usr/local/lib/python3.10/site- packages/click/*
Proceed (Y/n)? y
 Successfully uninstalled click-8.1.3

As you can see, when I ran this command, the output listed the files
that pip would need to delete to uninstall the click module, then asked if
I wanted to proceed. I entered Y and pressed ENTER, and the files were
deleted and the module uninstalled.

You can install multiple Python packages at once like so:

python3 - m pip install package_name1 package_name2 package_name3

The same is true of uninstalling.
It’s common to define the Python packages that your script requires

inside a file called requirements.txt, then install all of them at once with the
python3 - m pip install - r requirements.txt command. For example, suppose
in addition to using click, you want to use the HTTP client httpx to load
web pages inside Python and the sqlalchemy module to work with SQL data-
bases. To include all three in your Python script, first create a requirements
.txt file with each package name on its own line:

click
httpx
sqlalchemy

Then run the following command to install them si mul ta neously:

micah@trapdoor chapter-8 % python3 - m pip install - r requirements.txt
Collecting click
 Using cached click-8.1.3- py3- none- any.whl (96 kB)
Collecting httpx
 Using cached httpx - 0 . 23 . 0 - py3 - none - any . whl (84 kB)
- - snip- -
Successfully installed anyio-3.6.1 certifi-2022.9.24 click-8.1.3 h11-0.12.0 httpcore - 0 . 15 . 0
httpx-0.23.0 idna-3.4 rfc3986-1.5.0 sniffio-1.3.0 sqlalchemy-1.4.41

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://httpx-0.23.0-py3-none-any.whl
http://httpcore-0.15.0

210 Chapter 8

As you can see, this command installs more than just those three
Python packages: rfc3986, certifi, sniffio, and so on are also included.
That’s because click, httpx, and sqlachemy have dependencies of their own.
For example, httpcore is a dependency of the httpx package, so it installs that
as well. To summarize, the requirements.txt file defines your proj ect’s depen-
dencies, each of which might depend on its own list of packages.

N O T E To learn more about how to use httpx and other Python modules to automate inter-
acting with websites, check out Appendix B. I recommend waiting until you complete
Chapters 7, 8, 9, and 11, however, since the instructions covered there rely on the
skills you’ll pick up in those chapters.

V IR T UA L EN V IRONMEN T S

It’s not unusual to have multiple versions of Python, and multiple versions of the
same dependencies for dif fer ent proj ects, installed on the same computer. If you
routinely install Python packages with pip for vari ous proj ects, this can get very
messy over time. For example, dif fer ent proj ects might depend on dif fer ent ver-
sions of the same module to work, but you can’t have two versions of a module
installed at the same time—at least not without virtual environments, which are
like stand- alone folders containing your Python dependencies for a specific
proj ect. This way, dif fer ent proj ects’ dependencies won’t trip each other up.

To keep things simple, this book doesn’t use virtual environments, and it
uses only pip to install Python packages. As long as you don’t have multiple
Python proj ects requiring specific versions of the few third- party modules this
book uses, you should be fine without using a virtual environment.

You can learn more about virtual environments at https:// docs . python . org
/ 3 / tutorial / venv . html. For larger Python proj ects, you might also consider using
Python package management programs such as Poetry (https:// python - poetry
. org) or Pipenv (https:// github . com / pypa / pipenv), which handle the complicated
parts of keeping track of Python packages and virtual environments for you.

Now that you know how to install third- party modules, you’ll practice
using Click.

Exercise 8-3: Practice Command Line Arguments with Click
As you learned in the previous section, the Click package makes it simple to
add command line arguments to your scripts. You can use it to define vari-
ables to pass into your main() function from the terminal, without having
to define those variables in your code. In this exercise, you’ll learn how to
use Click by writing a sample script in preparation for using this module in
 later exercises.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://python-poetry.org
https://python-poetry.org
https://github.com/pypa/pipenv

Working with Data in Python 211

First, install the Click package with pip again by running python3 - m pip
install click. Next, open your text editor and enter the following Python
script, exercise-8-3.py (or copy and paste it from https:// github . com / micahflee
/ hacks - leaks - and - revelations / blob / main / chapter - 8 / exercise - 8 - 3 . py):

import click

@click . command()
@click.argument("name")
def main(name):
 """ Simple program that greets NAME"""
 print(f"Hello {name}!")

if __name__ == "__main__":
 main()

First, the script imports the click module. It then runs a few decorators,
function calls that begin with @ and add functionality to another func-
tion you’re about to define— the main() function, in this case. The @click
. command() decorator tells Click that main() is a CLI command, and the
@click.argument("name") decorator tells Click that this command has a CLI
argument called name.

Next, the script defines the main() function, which takes name as an argu-
ment. This function has a docstring, Simple program that greets NAME. Click
uses this docstring for its commands when it builds the output for -- help, as
you’ll see shortly. The main() function simply displays a string with the name
you passed in as an argument.

Fi nally, the script calls the main() function. Notice that even though
main() requires an argument (name), the script doesn’t explic itly pass that
argument in when calling the function. This is where the magic of the Click
decorators comes in. When the script calls main(), Click will figure out what
arguments it needs to pass in, find their values from the CLI arguments,
and pass them in for you.

Run the script as follows:

micah@trapdoor chapter-8 % python3 exercise-8-3.py
Usage: click- example.py [OPTIONS] NAME
Try 'click- example.py - - help' for help.

Error: Missing argument 'NAME'.

When you run the program, if you don’t pass in the correct CLI argu-
ments, Click tells you what you did wrong. As you can see, you’re missing
the required NAME argument. Click also tells you that you can get help by
 running the script again with the --help argument.

Try running the -- help command:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-3.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-3.py
http://click.command
http://click.command
http://click.command

212 Chapter 8

micah@trapdoor chapter-8 % python3 exercise-8-3.py - - help
Usage: click- example.py [OPTIONS] NAME

 Simple program that greets NAME

Options:
 - - help Show this message and exit.

This time, the output shows a description of the program based on the
docstring. Any CLI program that uses Click will display the docstring for
the command when you run it with -- help.

Try running the command again, this time passing in a name. For
example, here’s what happens when I pass in Eve as the name:

micah@trapdoor chapter-8 % python3 exercise-8-3.py Eve
Hello Eve!

N O T E You can read more about using Click at https:// click . palletsprojects . com.

Avoiding Hardcoding with Command Line Arguments
As you’ve seen in previous chapters, CLI arguments let you run the same
program in many dif fer ent ways, targeting dif fer ent data. For example, in
Chapter 4, you used the du command to estimate the disk space of a folder
by adding the folder’s path as an argument. In du - sh -- apparent- size path,
the arguments are - sh, -- apparent- size, and path.

The du command would be much less useful if it could only measure
disk space for a single hardcoded folder. Hardcoding means embedding
information, like a path, directly into source code. You can avoid hardcod-
ing anything in your CLI programs by having the user provide this informa-
tion as arguments when running them.

Passing paths into scripts, rather than hardcoding them, makes for a
better user experience. In previous exercises in this chapter, you hardcoded
the path to your copy of the BlueLeaks dataset into your Python scripts. If
you were to pass the appropriate path in as an argument, however, other
 people could use your script without editing it— they could just pass in their
path when they ran it.

Using arguments rather than hardcoding can also make your scripts
more universally useful. For example, in Exercise 8-2, you wrote a script to
find all of the files that are at least 100MB in the BlueLeaks dataset. Using
CLI arguments, you could make this script work for any dataset you get your
hands on, not just BlueLeaks, and for any minimum file size, allowing you
to run it in a variety of situations. You’d just need to pass in the dataset path
and the minimum file size as CLI arguments. You’ll try this out in the next
exercise.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://click.palletsprojects.com

Working with Data in Python 213

Exercise 8-4: Find the Largest Files in Any Dataset
In this exercise, you’ll modify the script you wrote in Exercise 8-2 to make it
work for any dataset, and for any minimum file size, using CLI arguments.
In the following chapters you’ll write simple Python scripts that use Click
for CLI arguments, so you can provide the paths to the datasets you’ll be
working with.

Create a new file called exercise-8-4.py, and copy and paste the exer-
cise-8-2.py code into it. Next, make the following modifications to the code,
highlighted in bold (or find the full modified script at https:// github . com
/ micahflee / hacks - leaks - and - revelations / blob / main / chapter - 8 / exercise - 8 - 4 . py):

import os
import click

@click . command()
@click.argument("path")
@click.argument("min_file_size", type = click . INT)
def main(path, min_file_size):
 """Find files in PATH that are at least MIN_FILE_SIZE MB big"""
 for dirname, subdirnames, filenames in os.walk(path):
 for filename in filenames:
 absolute_filename = os.path.join(dirname, filename)
 size_in_bytes = os.path.getsize(absolute_filename)
 size_in_mb = int(size_in_bytes / 1024 / 1024)
 if size_in_mb >= min_file_size:
 print(f"{absolute_filename} is {size_in_mb}MB")

if __name__ == "__main__":
 main()

This code imports the click module at the top of the file. Next, it adds
Click decorators before the main() function: @click . command() makes the
main() function a Click command, and @click.argument() adds path and
min_file_size as CLI arguments. The script specifies with type = click . INT
that the min_file_size argument should be an integer, or a whole number, as
opposed to a string. Then it adds path and min_file_size as arguments to the
main() function and adds a docstring that describes what this command does.

The new script uses CLI arguments instead of hardcoded values. It
deletes the line that defines the blueleaks_path variable, and in the os.walk()
function call, it changes blueleaks_path to just path, which is the CLI argu-
ment. Fi nally, it changes 100 in size_in_mb >= 100 to min_file_size.

You can now use this program to find big files in any folder in the
BlueLeaks dataset or elsewhere. For example, here’s what it looks like when
I search for all files that are at least 500MB in /Applications on my Mac:

micah@trapdoor chapter-8 % python3 exercise-8-4.py /Applications 500
/Applications/Dangerzone.app/Contents/Resources/share/container.tar.gz is 692MB
/Applications/Docker.app/Contents/Resources/linuxkit/ser vices.tar is 577MB

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-4.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-4.py
http://click.command
http://click.command

214 Chapter 8

As you can see, I have only two apps installed that include files this big:
Dangerzone and Docker Desktop.

Now that you’ve seen how to add CLI arguments to your Python scripts
using Click, you should be able to avoid hardcoding information like data-
set paths in your future programs.

Next, we’ll switch gears and explore a new power ful type of Python
variable called dictionaries.

Dictionaries
In the course of your investigations, sometimes you’ll need to keep track of
data with more structure than a simple list. To do so, you can use Python
dictionaries. Instead of a collection of items, a dictionary (dict for short) is a
collection of keys that map to values. Keys are labels that you use to save or
retrieve information in a dictionary, and values are the actual information
being saved or retrieved. Nearly every Python script I write that deals with
data uses dictionaries. In this section, you’ll learn how to define dictionar-
ies, get values from them, add values to them, and update existing values in
them.

Defining Dictionaries
Dictionaries are defined using braces ({ and }), sometimes referred to as curly
brackets. Inside the braces is a list of key/value pairs in the format key: value,
where each pair is separated from the next by commas— for example,
{"country": "Italy", "drinking_age": 18}. For longer dictionaries, you can
make your code more readable by putting each key/value pair on its own line.

Listing 8-1 shows an example dictionary stored in the variable capitals.

capitals = {
 "United States": "Washington, DC",
 "India": "New Delhi",
 "South Africa": "Cape Town",
 "Brazil": "Brasília",
 "Germany": "Berlin",
 "Rus sia": "Moscow",
 "China": "Beijing"
}

Listing 8-1: A dictionary stored in the capitals variable

In this case, the keys are country names and the values are the capitals
of those countries.

Each key in a dictionary can have only one value. If you try to set the
same key more than once, Python will save the version you last set. For
example, if you define a dictionary and use the name key more than
once, the dictionary will overwrite the previous value with the most
recent one:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 215

>>> test_dict = {"name": "Alice", "name": "Bob", "hobby": "cryptography"}
>>> print(test_dict)
{'name': 'Bob', 'hobby': 'cryptography'}

However, you can also use lists, or other dictionaries, as values:

>>> test_dict = {"names": ["Alice", "Bob"], "hobby": "cryptography"}
>>> print(test_dict)
{'names': ['Alice', 'Bob'], 'hobby': 'cryptography'}

In this case, the value for the key names is ['Alice', 'Bob'], which itself is
a list. You can use a combination of lists and dictionaries to organize pretty
much any type of data, no matter how complicated, allowing you to more
easily work with it in Python.

Getting and Setting Values
To retrieve an item you’ve stored inside a dictionary, add square brackets
containing the item’s key to the end of the dictionary name. If you try to
use a key you haven’t defined, your script will crash with a KeyError. For
example, here’s how to look up the capitals of certain countries in the
capitals dictionary:

>>> capitals["United States"]
'Washington, DC'
>>> capitals["China"]
'Beijing'
>>> capitals[" Kenya"]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: ' Kenya'

When you run capitals[" Kenya"], Python throws the error message
KeyError: ' Kenya'. This means that Kenya isn’t a valid key in the capitals
dictionary. You can see that the only keys defined in Listing 8-1 are United
States, India, South Africa, Brazil, Germany, Rus sia, and China. Because Kenya
 isn’t a key in this dictionary, you can’t retrieve its value.

You can add new key/value pairs to a dictionary, or update an existing
one, like this:

>>> capitals[" Kenya"] = "Nairobi"
>>> capitals["United States"] = "Mar- a- Lago"
>>> print(capitals)
{'United States': 'Mar- a- Lago', 'India': 'New Delhi', 'South Africa': 'Cape Town', 'Brazil':
'Brasília', 'Germany': 'Berlin', 'Rus sia': 'Moscow', 'China': 'Beijing', ' Kenya': 'Nairobi'}

This code defines a new key, Kenya, with the value Nairobi. It also updates
an existing key, United States, to have the value Mar- a- Lago, overwriting its
old value, which used to be Washington, DC.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

216 Chapter 8

Navigating Dictionaries and Lists in the Conti Chat Logs
You can combine dictionaries and lists in a single flexible data structure
that allows you to represent a wide variety of information. If you’re writing
Python code to work with datasets, chances are you’re going to need both.
You might directly load the data in this format, or you might create your
own dictionaries and lists to store aspects of the data.

To describe how to use data structures that include a combination of
dictionaries and lists, I’ll use an example from a real dataset. The day after
Rus sia invaded Ukraine on February 24, 2022, the notorious Russian ran-
somware gang Conti, known for hacking companies around the world and
extorting millions of dollars from them, published a statement on its web-
site throwing its full support behind the Russian government. It threatened
any “ enemy” who launched cyberattacks against Rus sia with retaliation
against their “critical infrastructure.” Three days later, a Ukrainian security
researcher anonymously leaked 30GB of internal data from Conti: hacking
tools, training documentation, source code, and chat logs. The Conti chat
logs originally came in the form of JSON files, which is structured data,
so it can be stored inside dictionaries and lists. When you load JSON files
into Python, they’ll automatically be loaded as a combination of lists and
dictionaries.

In this section, you’ll look through some of these chat logs in order to
practice working with real leaked data stored in dictionaries and lists. Using
Python code, you’ll learn how to navigate these structures to access spe-
cific pieces of data as well as how to quickly loop through the chat logs and
select just the parts you’re interested in.

Exploring Dictionaries and Lists Full of Data in Python
You can download the complete Conti dataset from vx- underground (https://
share . vx - underground . org / Conti /), a website that hosts a database of malware
and other hacking information. However, for this section, you’ll use just one
file from the dataset, 2022-02-24- general.json, which the Ukranian security
researcher extracted from a chat system called RocketChat.

Download 2022-02-24- general.json from https:// github . com / micahflee / hacks
- leaks - and - revelations / blob / main / chapter - 8 / 2022 - 02 - 24 - general . json. Open a ter-
minal, change to the folder where you stored this file, and open a Python
interpreter. Load this file into a dictionary with the following commands:

>>> import json
>>> with open("2022-02-24- general.json") as f:
... data = json.load(f)
...

This code uses the json module and loads the data from
2022-02-24- general.json into the data variable. The chat logs from this file are
too long to display in their entirety, but Listing 8-2 shows a snippet of the
value of the data dictionary that demonstrates its structure:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://share.vx-underground.org/Conti/
https://share.vx-underground.org/Conti/
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/2022-02-24-general.json
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/2022-02-24-general.json

Working with Data in Python 217

{
 "messages": [1
 {
- - snip- -
 },
 {
 "_id": "FmFZbde9ACs3gtw27",
 "rid": "GENERAL",
 "msg": "Некоторые американские сенаторы предлагают помимо соцсетей блокировать в
Россииещё и PornHub!",
 "ts": "2022-02-24T22:02:38.276Z",
 "u": {"_id": "NKrXj9edAPWNrYv5r", "username": "thomas", "name": "thomas"},
 "urls": [],
 "mentions": [],
 "channels": [],
 "md": [
 {
 "type": "PARAGRAPH",
 "value": [
 {
 "type": "PLAIN_TEXT",
 "value": "Некоторые американские сенаторы предлагают помимо
соцсетейблокировать в России ещё и PornHub!",
 }
],
 }
],
 "_updatedAt": "2022-02-24T22:02:38.293Z",
 },
 {
- - snip- -
 },
],
 "success": True 2
}

Listing 8-2: Conti chat logs from RocketChat

The data variable is a dictionary with two keys, messages and success. You
access the value of the messages key, which is a list of dictionaries, using the
expression data["messages"] 1. You can tell that the value of data["messages"]
is a list because it’s enclosed in square brackets ([and]), and you can tell
that the items inside it are dictionaries because they’re enclosed in braces
({ and }). Almost all of the data in this file is stored in this list.

Each dictionary in the data["messages"] list describes a chat message.
This snippet of code includes only one of the dictionaries, the ninth chat
message in the list (I snipped out the first eight messages, so you can’t tell
that it’s the ninth without looking at the original file). You can access the
dictionary that contains that specific chat message using the expression
data["messages"][8]. (Remember, in programming we start counting at 0, not
1, so the first item is at index 0, the second item is at index 1, and so on.) If
you run the command print(data["messages"][8]) to display the dictionary

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

218 Chapter 8

for the ninth message, the output should match the message in the listing.
Notice that just as you place index numbers within brackets to select
from lists, you place keys within brackets to select from dictionaries, like
["messages"] or ["success"].

You can also access the value of the success key with data["success"]. Its
value is the Boolean True 1. I’m not entirely sure what this means, but I sus-
pect that the success key was left over from whatever system the Ukrainian
researcher used to export these chat messages from RocketChat, confirm-
ing that exporting the data was successful and that there were no errors.

The file from which I loaded this code contained 604 dif fer ent chat
messages, each in its own dictionary, that were sent in Conti’s #general
RocketChat channel on February 24, 2022. I discovered that this list has 604
items by measuring its length with the len() function, like this:

>>> len(data["messages"])
604

The dictionary for each chat message has many keys: _id, rid, msg, u,
urls, and so on.

You can find out what types of data these keys contain using the for
key_variable in dictionary syntax, and you can determine a variable’s data
type using the type() function. Try this out using the following commands:

>>> for key in data["messages"][8]:
... print(f"{key}: {type(data['messages'][8][key])}")
...

This command loops through the data["messages"][8] dictionary and
stores each key in the key variable. Then, using the print() function and an
f- string, it displays the key (key) and the type of data stored in that key, as
shown in the following output:

_id: <class 'str'>
rid: <class 'str'>
msg: <class 'str'>
ts: <class 'str'>
u: <class 'dict'>
urls: <class 'list'>
mentions: <class 'list'>
channels: <class 'list'>
md: <class 'list'>
_updatedAt: <class 'str'>

In the output, the values at the _id, rid, msg, ts, and _updatedAt keys are
all strings. The value at the u key is a dictionary. The value at the urls,
mentions, channels, and md keys are lists.

You can get the value of the data at the key using data['messages'][8]
[key]. Remember that to retrieve the value of a key in a dictionary, you put
the key in square brackets. In this case, the key itself is stored in the vari-
able key, so you can get its value by putting key inside the square brackets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 219

To find out what type of data that is, then, just pass the value into the type()
function.

Selecting Values in Dictionaries and Lists
When working with datasets, you often end up with structures like this: a
mess of dictionaries and lists that you need to make sense of. Being able to
select the exact values you’re looking for is an impor tant skill. To practice
navigating through dictionaries and lists, take a closer look at the value of
just one of these keys, the md key, by running the following command:

>>> print(data["messages"][8]["md"])

In the output, you can tell that this value is a list because it’s sur-
rounded by square brackets:

[{'type': 'PARAGRAPH', 'value': [{'type': 'PLAIN_TEXT', 'value': 'Некоторые американские
сенаторы предлагают помимо соцсетей блокировать в России ещё и PornHub!'}]}]

The list’s single item is a dictionary, which is surrounded by braces. The
dictionary has a type key whose value is PARAGRAPH, as well as a value key. The
value of value is another list with one item containing another dictionary;
that dictionary itself contains type and value keys, where the value of type is
PLAIN_TEXT.

 These data structures can have as many sublists and subdictionaries
as you’d like. To select specific values, after the data variable keep adding
square brackets containing an index (if it’s a list) or a key (if it’s a diction-
ary) until you get to the value you’re looking for. For example, use the fol-
lowing command to access the value of the value key in the inner dictionary
within the inner list, which is in another value key in the outer dictionary in
the outer list:

>>> print(data["messages"][8]["md"][0]["value"][0]["value"])

You already know that data["messages"][8] is a dictionary that repre-
sents a chat message. To find the value of the md key in that dictionary, you
include["md"] in the command. As you can tell from inspecting the struc-
ture in Listing 8-2, this is a list with one item, so adding [0] selects that
item. This item is a dictionary, and you select the value of its value key by
adding ["value"]. This item is another list with one item, so you again add
[0] to select that one item. This is yet another dictionary, so you can select
the value of the final inner value key by adding another ["value"].

You should get the following output:

Некоторые американские сенаторы предлагают помимо соцсетей блокировать в России ещё и PornHub!

In English, the message that you just displayed says, “Some American
Senators suggest blocking PornHub in Rus sia in addition to social net-
works!” It was posted right after Rus sia started its invasion of Ukraine, and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

220 Chapter 8

US and European leaders immediately began imposing economic sanctions
on Rus sia. After invading Ukraine, the Russian government censored access
to Twitter and Facebook from the Russian internet. Rumors spread that
PornHub, a popular American porn website, would block access to Russian
users (though this didn’t happen). This same user followed up their first
post with, “That’s it, we’re done,” and then “They will take away our
last joys!”

Analyzing Data Stored in Dictionaries and Lists
Whenever I work with any sort of structured data, I find myself looping
through a list of dictionaries and selecting specific pieces of data. As long as
you understand its structure, you can write your own similar code to quickly
pull out the relevant information, no matter what dataset you’re working
with. For example, you might want to view the chat logs in the format
timestamp username: message in order to hide the unimportant sections of
data so that you can directly copy and paste the relevant parts into machine
translation systems like DeepL or Google Translate. Run the following com-
mands to display all of the messages in data["messages"] in that format:

>>> for message in data["messages"]:
... print(f"{message['ts']} {message['u']['username']}: {message['msg']}")
...

You should get the following output:

- - snip- -
2022-02-24T22:02:49.448Z thomas: последние радости у нас заберут
2022-02-24T22:02:44.463Z thomas: ну все, приплыли)
2022-02-24T22:02:38.276Z thomas: Некоторые американские сенаторы предлагают помимо соцсетей
блокировать в России ещё и PornHub!
2022-02-24T22:00:00.347Z thomas:
2022-02-24T21:58:56.152Z rags: угу :(
- - snip- -

Since data["messages"] is a list, each time the for loop in this command
runs, it updates the value of the message variable to a dif fer ent item in that
list. In this case, each item is a dif fer ent dictionary. Inside the for loop, the
print() function displays three values: the timestamp (message['ts']), the
username (message['u']['username']), and the message itself (message['msg']).

You can change this command to display whatever information you’d
like from each message. Maybe you’re interested is the user’s ID rather than
their username. In that case, you could display message['u']['_id'].

The previous output shows the same messages about PornHub just dis-
cussed, as well as a message posted just before that from another user, rags.
If you’re interested in seeing only the messages posted by rags, view those by
 running the following commands:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 221

>>> for message in data["messages"]:
... if message["u"]["username"] == "rags":
... print(f"{message['ts']} {message['u']['username']}: {message['msg']}")
...

This code is similar to the previous example. A for loop loops through
each message in data["messages"], and then a print() statement displays spe-
cific pieces of information from that message. This time, though, each loop
also contains an if statement. Each time the code finds another message, it
checks to see if the username is rags, and if so, displays the message. Other-
wise, it moves on to the next message. You should get the following output:

2022-02-24T22:08:49.684Z rags: давай бро спокойной ночи
2022-02-24T22:03:50.131Z rags: сча посмотрю спасиб =)
2022-02-24T21:58:56.152Z rags: угу :(
- - snip- -

Fi nally, suppose you want to figure out how many messages each person
posted, perhaps to find the most active poster in the #general chat room
on this day. The simplest way to do this is to create a new empty dictionary
yourself and then write code to fill it up. Run the following command to
create an empty dictionary called user_posts:

>>> user_posts = {}

The keys in this dictionary will be usernames and the values will be the
number of posts from that user. Fill up the user_posts dictionary with the
following code:

>>> for message in data["messages"]:
... username = message["u"]["username"]
... if username not in user_posts:
... user_posts[username] = 1
... else:
... user_posts[username] += 1
...
>>>

Again, this code uses a for loop to loop through the messages. Next,
it defines the username variable as message["u"]["username"], the username of
the person who posted the message the code is currently looping through.
Next, using an if statement, the code checks to see if this username is
already a key in the user_posts dictionary. (It’s not checking to see if the
string username is a key, but rather if the value of the username variable, like
thomas or rags, is a key.)

If this user doesn’t exist in the user_posts dictionary, the program
adds a key to this dictionary and sets the value at that key to 1, with the
line user_posts[username] = 1. Other wise, it increases the value by 1, with

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

222 Chapter 8

user_posts[username] += 1. By the time the for loop finishes running, the
user_posts dictionary should be complete. The keys should be all of the user-
names found in the messages, and the values should be the total number of
messages for that user.

Use the following code to display the information inside the user_posts
dictionary, viewing the data you just collected:

>>> for username in user_posts:
... print(f"{username} posted {user_posts[username]} times")
...

You should get the following output:

weldon posted 64 times
patrick posted 62 times
rags posted 38 times
thomas posted 58 times
ryan posted 2 times
kermit posted 151 times
biggie posted 39 times
stanton posted 12 times
angelo posted 102 times
Garfield posted 61 times
jaime posted 2 times
grem posted 5 times
jefferson posted 1 times
elijah posted 6 times
chad posted 1 times

 These are the users who posted in the Conti’s #general chatroom, in
their RocketChat server, on the day Rus sia invaded Ukraine in 2022. The
user kermit posted 151 times, more than any other user.

In these examples, you looped through hundreds of chat messages, but
the same concepts would work with millions or billions of messages or with
data representing any sort of information.

R E V EL AT IONS IN T HE CON T I DATA SE T

This dataset includes far more chat logs than just a few messages worrying
about a porn site getting blocked. The example I used in this section included
the chat logs for the #general channel for a single day, but the logs for this
RocketChat server span from July 24, 2021, to February 26, 2022. The leak
also includes many logs from the chat service known as Jabber, including some
where Conti hackers discuss hacking a contributor to the OSINT- based investi-
gative journalism group Bellingcat. The hackers were hoping to find information

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 223

about Alexei Navalny, the imprisoned Russian opposition leader who survived
an FSB assassination attempt.

The anonymous Ukrainian researcher who leaked the Conti dataset told
CNN, “I cannot shoot anything, but I can fight with a keyboard and mouse.”
According to CNN, a few weeks after leaking the data, the researcher success-
fully slipped out of Ukraine during Rus sia’s invasion, laptop in hand.

From reading the chat logs, I learned that many of the Conti hackers are
 Russian ultranationalists. Many of them believe Putin’s conspiratorial lies about
Ukraine, like that it’s run by a “neo- Nazi junta,” while at the same time making
antisemitic comments about Volodymyr Zelenskyy, Ukraine’s Jewish president.
You can see my full reporting on this dataset at https:// theintercept . com / 2022 /
03 / 14 / russia - ukraine - conti - russian - hackers / .

In this section, you learned how to work with flexible data structures
that combine dictionaries and lists, including how to pick out specific ele-
ments that you’re interested in, and how to quickly traverse them by loop-
ing through them. These skills will often prove useful when you’re writing
Python scripts to help you analyze data.

Now that you’re familiar with data structures that combine dictionaries
and lists, it’s time to create your own to map out the CSV files in BlueLeaks.

Exercise 8-5: Map Out the CSVs in BlueLeaks
Each folder in BlueLeaks includes data from a single hacked law enforce-
ment website in the form of hundreds of CSV files. These files contain some
of the most in ter est ing information in all of BlueLeaks, such as the contents
of bulk email that fusion centers sent to local cops, or “suspicious activ-
ity reports.” In this exercise, you’ll construct a map of the contents of the
dataset.

By manually looking in dif fer ent BlueLeaks folders, I noticed that each
folder seems to have a file called Com pany.csv (each containing dif fer ent
content), but only one folder, ncric, has a file called 911Centers.csv. Clearly,
not all of the BlueLeaks sites have the same data. Which CSV files are in
 every folder in BlueLeaks, which are in some folders, and which are unique
to a single folder? Let’s write a Python script to find out.

As with most programming prob lems, there are multiple ways you
could write a script that answers this question. If you feel comfortable
enough with Python by now that you’d like a challenge, try writing one on
your own. Other wise, follow along with this exercise. Either way, the pro-
gram must meet the following requirements:

•	 Make the script accept a CLI argument called blueleaks_path using Click.

•	 Create an empty dictionary called csv_to_folders. Your script should
fill this dictionary with data. The keys should be CSV filenames, and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2022/03/14/russia-ukraine-conti-russian-hackers/
https://theintercept.com/2022/03/14/russia-ukraine-conti-russian-hackers/

224 Chapter 8

the values should be lists of BlueLeaks folders that contain this CSV
data.

•	 Loop through all of the files and folders in blueleaks_path. For each
folder, loop through all of the files it contains. For each CSV file, add
data to the csv_to_folders dictionary.

•	 Display the contents of the csv_to_folders dictionary.

In each step that follows, I’ll quote a snippet of code, explain how it
works, and give you a chance to run it as is. You’ll then add more features to
that code and run it again. It’s good practice to write code in small batches,
pausing frequently to test that it works as you expect. This will help you
catch bugs early, making the process of debugging much simpler.

Accept a Command Line Argument
Create an exercise-8-5.py file and enter the Python template:

def main():
 pass

if __name__ == "__main__":
 main()

Next, instead of hardcoding the path to the BlueLeaks data like you did
in Exercise 8-2, let’s use Click to pass in the path as a command line argu-
ment, blueleaks_path. To do so, make the following modifications to your
code (the added syntax is highlighted in bold):

import click

@click . command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 print(f"blueleaks_path is: {blueleaks_path}")

if __name__ == "__main__":
 main()

This code modifies the template to import the click module, adds the
correct decorators before the main() function, adds the blueleaks_path argu-
ment to the main() function, and adds a simple docstring to the main() func-
tion so that running this script with — help will be more useful. Fi nally, it
includes a line to display the value of blueleaks_path, so that you can confirm
the code is working when you run it.

Try running your script with — help to see if the help text works, and with
a value for blueleaks_path to see if the argument is successfully sent to the
main() function:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Working with Data in Python 225

micah@trapdoor chapter-8 % python3 exercise-8-5.py - - help
Usage: exercise-8-4.py [OPTIONS] BLUELEAKS_PATH

 Map out the CSVs in BlueLeaks

Options:
 - - help Show this message and exit.
micah@trapdoor chapter-8 % python3 exercise-8-5.py test- path
blueleaks_path is: test- path

If your output looks like this, every thing is working correctly so far.

Loop Through the BlueLeaks Folders
Now that you can use the blueleaks_path CLI argument, make the following
modifications to your code to have it loop through all of the folders it finds
in that path:

import click
import os

@click . command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 for folder in os.listdir(blueleaks_path):
 blueleaks_folder_path = os.path.join(blueleaks_path, folder)

 if os.path.isdir(blueleaks_folder_path):
 print(f"folder: {folder}, path: {blueleaks_folder_path}")

if __name__ == "__main__":
 main()

First, you import the os module in order to be able to list all of the files
 in the BlueLeaks- extracted folder using the os.listdir() function. Inside the
main() function, a for loop loops through the return value of os.listdir
(blueleaks_path), the list of filenames inside the folder at blueleaks_path.

Inside the loop, the code defines blueleaks_folder_path as the path of the
specific BlueLeaks folder for the current loop. For example, if the value of
blueleaks_path is /Volumes/datasets/BlueLeaks- extracted, and at this point in the
for loop, the value of folder is icefishx, then the value of blueleaks_folder_path
 will be /Volumes/datasets/BlueLeaks- extracted/icefishx.

You want to look inside subfolders in the BlueLeaks- extracted folder, not
inside files. If there are any files in that folder, you want to skip them. To
meet these requirements, the code includes an if statement that checks
 whether blueleaks_folder_path is actually a folder. Fi nally, the code displays
the current value of folder and blueleaks_folder_path.

Run your script again. This time, pass in the real path to your BlueLeaks-
extracted folder:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

226 Chapter 8

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks- extracted
folder: bostonbric, path: /Volumes/datasets/BlueLeaks- extracted/bostonbric
folder: terrorismtip, path: /Volumes/datasets/BlueLeaks- extracted/terrorismtip
folder: ociac, path: /Volumes/datasets/BlueLeaks- extracted/ociac
- - snip- -

The output should show that the folder variable holds just the name of
the folder, like bostonbric, and the blueleaks_folder_path variable includes the
full path to that folder, like /Volumes/datasets/BlueLeaks- extracted/bostonbric.
When you run this on your own computer, you may see these values in a dif-
fer ent order than what’s shown here.

Fill Up the Dictionary
You now have a script that accepts blueleaks_path as a CLI argument and
then loops through every folder in that path. This code creates the csv_to
_folders dictionary and starts to fill it up with data:

import click
import os

@click . command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 csv_to_folders = {}

 for folder in os.listdir(blueleaks_path):
 blueleaks_folder_path = os.path.join(blueleaks_path, folder)

 if os.path.isdir(blueleaks_folder_path):
 for filename in os.listdir(blueleaks_folder_path):
 if filename.lower().endswith(".csv"):
 if filename not in csv_to_folders:
 csv_to_folders[filename] = []

 csv_to_folders[filename].append(folder)

if __name__ == "__main__":
 main()

Your goal with this script is to map out which CSV files are in which
BlueLeaks folders. To store this data, the code creates the empty dictionary
csv_to_folders at the top of the main() function. The next step is to fill up
that dictionary.

The code loops through all of the filenames in blueleaks_path, checking
each to see if it’s a folder. Removing the print() statement in the previous
iteration of the code, this code instead adds a second for loop that loops
through all of the files in that specific BlueLeaks folder.

In this second for loop, an if statement checks whether the filename
ends in .csv. This if statement calls lower() method on the filename string,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Working with Data in Python 227

which returns a lowercase- only version of the string. The code then calls
the endswith() method on that lowercase string, which returns a Boolean
describing whether the string ends with the string that was passed in. If the
string filename ends with .csv, .CSV, .cSv, the lower() method will convert the
file extension to .csv, and endswith() will return True. If filename ends with
anything else, like .docx, then endswith() will return False.

Each time the code following this if statement runs, it means the pro-
gram has found a CSV (called filename) in the current BlueLeaks folder
(called folder). You want csv_to_folders to be a dictionary where the keys are
CSV filenames and the values are lists of folders. This code checks to see if
the key filename has been created in csv_to_folders, and if it hasn’t, creates it
and set its value to an empty list ([]). Fi nally, after the code has confirmed
that the filename key has been created and is a list, it appends the value of
folder to that list.

 These last lines are tricky, so let’s dig in a little more. The first time the
script comes across a CSV filename (like Cata logRelated.csv), the script sets
the value of that key in csv_to_folders to an empty list. If the same filename
exists in another BlueLeaks folder later on, the expression filename not in
csv_to_folders will evaluate to False (meaning csv_to_folders["Cata logRelated
.csv"] already exists), so the code following the if statement won’t run.
Fi nally, the code appends folder, the name of the BlueLeaks folder it’s cur-
rently looking in, to the list of folders that include that filename.

Pause and try running the script so far:

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks- extracted

This should take a moment to run but displays nothing, since you’re
not yet using the print() function anywhere. The code is simply creating the
csv_to_folders dictionary and filling it up with data.

Display the Output
By the time the previous version of the script runs, the csv_to_folders dic-
tionary should contain a complete set of CSV filenames, mapped to the
BlueLeaks sites where they were found. The following code should show you
what the program found:

import click
import os

@click . command()
@click.argument("blueleaks_path")
def main(blueleaks_path):
 """Map out the CSVs in BlueLeaks"""
 csv_to_folders = {}

 for folder in os.listdir(blueleaks_path):
 blueleaks_folder_path = os.path.join(blueleaks_path, folder)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

228 Chapter 8

 if os.path.isdir(blueleaks_folder_path):
 for filename in os.listdir(blueleaks_folder_path):
 if filename.lower().endswith(".csv"):
 if filename not in csv_to_folders:
 csv_to_folders[filename] = []

 csv_to_folders[filename].append(folder)

 for filename in csv_to_folders:
 print(f"{len(csv_to_folders[filename])} folders | {filename}")

if __name__ == "__main__":
 main()

The added code loops through all of the keys (each a CSV filename) in
csv_to_folders, then displays the number of BlueLeaks folders that contain
that file (len(csv_to_folders[filename])) along with the filename itself.

You can find this final script at https:// github . com / micahflee / hacks - leaks - and
- revelations / blob / main / chapter - 8 / exercise - 8 - 5 . py. When you run it, the output
should look like this:

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks- extracted
161 folders | Cata logRelated.csv
161 folders | Blog.csv
161 folders | EmailBuilderOptions.csv
- - snip- -
1 folders | HIDTAAgentCategory.csv
1 folders | Lost.csv
1 folders | AgencyContacts.csv

Since this script displays the number of folders at the beginning of each
line of output, you can pipe the output into sort - n to sort it numerically in
ascending order, like so:

micah@trapdoor chapter-8 % python3 exercise-8-5.py /Volumes/datasets/BlueLeaks- extracted | sort
- n
1 folders | 1Cadets.csv
1 folders | 1Mentors.csv
1 folders | 1Unit.csv
- - snip- -
161 folders | VideoDownload.csv
161 folders | VideoHistory.csv
161 folders | VideoOptions.csv

Most of the CSV files are in either a single folder or all 161 folders.
However, there are a few exceptions: Donations.csv should be in 10 folders,
SARs.csv should be in 25, and so on. This information would have taken you
many hours of busywork to find manually.

At this point, you’ve learned the basics of navigating the filesystem in
Python. You’ve seen how to loop through folders using os.listdir(), loop
through entire folder structures using os.walk(), and look up information

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-5.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-5.py

Working with Data in Python 229

about the files and folders you find. In the next section, you’ll learn
how to actually read the contents of a file you find and create new files
yourself.

Reading and Writing Files
To follow the rest of this book, you’ll need to know one more major
Python concept: how to read and write files. During a data investigation,
you’ll almost certainly need to read the contents of files, especially CSV
and JSON files. You’ll also prob ably want to be able to create new files,
by calculating some data of your own and saving it to a spreadsheet, for
example. In this section you’ll learn how to open files and write or read
content to them.

In programming, to work with a file, you first need to open it and spec-
ify the mode— that is, whether you’re planning on reading from or writing to
this file. To open an existing file and access its contents, open it for reading
using mode r. To create a new file and put data in it, open it for writing
using mode w.

Opening Files
To prepare to work with a file, whether for writing or reading, you use the
built-in Python function open(). To open it for reading, you use the follow-
ing code:

with open("some_file.txt", "r") as f:
 text = f.read()

This code uses a with statement, which tells Python that after the open()
function is done running, it should set the variable f to that function’s
return value. The f variable is a file object, a type of variable that allows you
to read or write data to a file. The first argument to the open() function is a
path, and the second argument is the mode, which in this example is "r" for
reading.

In the code block after the with statement, you can call methods on f to
interact with the file. For example, f.read() will read all of the data in the
file and return it, in this case storing it in the text variable.

To open a file for writing, you set the mode to "w" like so:

with open("output.txt", "w") as f:
 f.write("hello world")

The open() function returns the file object f. To write data into the file,
you can use the f.write() method. Here, this code is opening a file called
output.txt and writing the string hello world to it.

In the next two sections, you’ll learn more about using f.write() to
write to files, and f.read() and f.readlines() to read from files.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

230 Chapter 8

Writing Lines to a File
Text files are made up of a series of individual characters. Consider a text
file with these contents:

Hello World
Hola Mundo

You could also represent the entire contents of this file as a Python
string:

"Hello World\nHola Mundo\n"

The first character of the string is H, then e, then l, and so on. The
12th character (counting the space), \n, is a special character known as a
newline that represents a break between lines. As with shell scripting, the
backslash is the escape character in Python, so a backslash followed by
another character represents a single special character.

Newlines are used to write lines to a file. Try running these commands
in your Python interpreter:

>>> with open("output.txt", "w") as f:
... f.write("Hello World\n")
... f.write("Hola Mundo\n")
...
12
11

The 12 and 11 in the output represent the number of bytes written. The
first f.write() call wrote 12 bytes, because the string Hello World takes
11 bytes of memory: it has 11 characters, plus 1 for the newline character.
The second call wrote 11 bytes, since Hola Mundo takes 10 bytes of memory,
plus 1 for the newline character.

In your terminal, use the following command to view the file you just
wrote:

micah@trapdoor ~ % cat output.txt
Hello World
Hola Mundo

If you had written the same code but without the newlines, the output
would have been Hello WorldHola Mundo, with no line breaks.

Reading Lines from a File
Run the following command to read the file you just created:

>>> with open("output.txt", "r") as f:
... text = f.read()
...

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Working with Data in Python 231

This code reads all of the data from the file and saves it in the string
text. In fact, this might look familiar: earlier in this chapter, in the
“Exploring Dictionaries and Lists Full of Data in Python” section, we used
similar code to load the leaked Conti chat logs into a Python dictionary.

Since splitting text files into multiple lines is so common, file objects
also have a convenient method called readlines(). Instead of reading
all of the data into a file, it reads only one line at a time, and you can
loop over the lines in a for loop. Try this out by running the following
commands:

>>> with open("/tmp/output.txt", "r") as f:
... for line in f.readlines():
... print(line)
...
Hello World

Hola Mundo

This code opens the file for reading, then loops through each line in
the file. Each line is stored in the variable line, then displayed with the
print() function. Because the line variable in each loop ends in \n (for
example, the first line is Hello World\n, not Hello World), and the print() func-
tion automatically adds an extra \n, the output shows an extra hard return
 after each line.

If you don’t want to display these extra newlines, you can use the strip()
method to get rid of any whitespace (spaces, tabs, or newlines) from the
beginning and end of the string. Run the same code, but this time strip out
the newline characters on each line:

>>> with open("/tmp/output.txt", "r") as f:
... for line in f.readlines():
... line = line.strip()
... print(line)
...
Hello World
Hola Mundo

You’ll practice the basics of how to read and write files in Python in the
following exercise.

Exercise 8-6: Practice Reading and Writing Files
In Exercise 7-5, you wrote a function that converts a string to an alternating
caps version, like This book is amazing to ThIs bOoK Is aMaZiNg. To practice your
newfound reading and writing files, in this exercise, you’ll write a script to
create an alternating caps version of all of the text in an entire text file.

If you’d like a challenge, you can try programming your own script to
meet the following requirements:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

232 Chapter 8

•	 Accepts two CLI arguments, input_filename and output_filename, using
Click.

•	 Opens the file input_filename for reading and loads its contents into the
string text.

•	 Opens the file output_filename for writing and saves the alternating caps
version of text to that new file.

Other wise, follow along with my explanation of the following code,
which implements this iNcReDiBlY uSeFuL command line program.

Start by copying the alternating_caps() function that you wrote in
Exercise 7-5 into a new Python script called exercise-8-6.py. Next, make the
modifications highlighted in bold here (or copy the final script at https://
github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 8 / exercise - 8 - 6 . py):

import click

def alternating_caps(text):
 """Returns an aLtErNaTiNg cApS version of text"""
 alternating_caps_text = ""
 should_be_capital = True

 for character in text:
 if should_be_capital:
 alternating_caps_text += character.upper()
 should_be_capital = False
 else:
 alternating_caps_text += character.lower()
 should_be_capital = True

 return alternating_caps_text

@click . command()
@click.argument("input_filename")
@click.argument("output_filename")
def main(input_filename, output_filename):
 """Converts a text file to an aLtErNaTiNg cApS version"""
 with open(input_filename, "r") as f:
 text = f.read()

 with open(output_filename, "w") as f:
 f.write(alternating_caps(text))

if __name__ == "__main__":
 main()

This code first imports the click module, used for the CLI arguments,
and then defines the alternating_caps() function. Again, the main() function
is a Click command, but this time it takes two arguments, input_filename and
output_filename.

Once the main() function runs, the section for reading and writing
files runs. The code opens input_filename for reading and loads all of the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-6.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/exercise-8-6.py
http://click.command

Working with Data in Python 233

contents of that file into the string text. It then opens output_filename for
writing and saves the alternating caps version of that string into the new
file. It does so by running alternating_caps(text), which takes text as an
argument and returns its alternating caps version, and then passes that
return value directly into f.write(), writing it to the file.

To demonstrate how this script works, try running it on the famous
“To be, or not to be” soliloquy from Hamlet. First, save a copy of the solilo-
quy found at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main
/ chapter - 8 / shakespeare . txt to a file called shakespeare.txt. Here are the original
contents of shakespeare.txt, displayed using the cat command:

micah@trapdoor chapter-8 % cat shakespeare.txt
To be, or not to be, that is the question:
 Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take Arms against a Sea of trou bles,
And by opposing end them: to die, to sleep
No more; and by a sleep, to say we end
- - snip- -

Next, pass that filename into your script to create an alternating caps
version of that file. Here’s what happens when I do it:

micah@trapdoor chapter-8 % python3 exercise-8-5.py shakespeare.txt shakespeare- mocking.txt
micah@trapdoor chapter-8 % cat shakespeare- mocking.txt
To bE, oR NoT To bE, tHaT Is tHe qUeStIoN:
 wHeThEr 'TiS NoBlEr iN ThE MiNd tO SuFfEr
tHe sLiNgS AnD ArRoWs oF OuTrAgEoUs fOrTuNe,
Or tO TaKe aRmS AgAiNsT A SeA Of tRoU bLeS,
aNd bY OpPoSiNg eNd tHeM: tO DiE, tO SlEeP
No mOrE; aNd bY A SlEeP, tO SaY We eNd
- - snip- -

First, I ran the script, passing in shakespeare.txt as input_filename and
shakespeare- mocking.txt as output_filename. The script itself displayed no out-
put (it doesn’t include any print() statements), but it did create a new file.
I then used cat to display the contents of that new file, which is indeed an
alternating caps version of Hamlet’s soliloquy.

Summary
Congratulations on making it through a crash course in the fundamentals
of Python programming! You’ve learned how to bring extra functionality
to your scripts with built-in and third- party Python modules. You’ve also
learned how to make your own CLI programs using Click, how to write
code that traverses the filesystem, how to work with structured data using
dictionaries and lists, and how to read and write files.

You’ll use these skills throughout the following chapters as you dig
through vari ous datasets, uncovering revelations you’d never discover

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/shakespeare.txt
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-8/shakespeare.txt

234 Chapter 8

other wise. In the next chapter, you’ll write Python programs that loop
through rows in the BlueLeaks CSV spreadsheets, transforming the data
into a more workable format. You’ll get practice writing the content of law
enforcement bulk email messages to files, and you’ll use Python to create
your own CSV spreadsheets.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

PART IV
S T R U C T U R E D D A T A

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

The BlueLeaks dataset is full of an overwhelming
number of documents, but it’s not immediately obvi-
ous where to start or how to make sense of the data
they contain. Before beginning an investigation, I
needed a way to efficiently determine the significance
of these documents. After manually digging through
many files, I discovered that the context I needed
was in the hundreds of CSV spreadsheets in each
BlueLeaks folder. In this chapter, you’ll learn how to
investigate CSV files like these yourself.

You’ll view CSVs in both graphical spreadsheet and text editing soft-
ware, write Python code to loop through the rows of a CSV, and save
CSVs of your own. You’ll then put this knowledge into practice by digging
through the CSVs in the BlueLeaks dataset, focusing on data from the
NCRIC fusion center. This is the data I myself have primarily focused on

9
B L U E L E A K S , B L A C K L I V E S

 M A T T E R , A N D T H E
C S V F I L E F O R M A T

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

238 Chapter 9

since BlueLeaks was published years ago, but there are over a hundred
other folders in the dataset full of newsworthy revelations. By the end of
this chapter, you’ll have the tools to continue investigating these folders, as
well as similar datasets loaded with CSVs.

Installing Spreadsheet Software
The most user- friendly way to view the contents of a CSV file is to open
it using spreadsheet software such as LibreOffice Calc, Microsoft Excel,
Apple Numbers, or Google Sheets. Spreadsheet software is a great option
to see the data you’re dealing with in an organized way, and it can also be a
power ful tool to analyze CSVs. However, in many cases, depending on the
data you’re working with, you’ll need to go beyond such software and write
custom code to work with CSVs.

If you already have a favorite spreadsheet program, you can use that
for the proj ects in this book. If not, I suggest using LibreOffice Calc since
it’s free, open source, and available for Win dows, macOS, and Linux; it’s
also what I’ve used for the examples in this chapter. Installing LibreOffice
(https:// www . libreoffice . org) installs a whole suite of office software, including
Calc.

Alternatively, Microsoft Excel is a good option, but it costs money and
 isn’t available for Linux. If you have a Mac, you can also use Apple’s free
spreadsheet software, Numbers. Fi nally, you can consider using Google
Sheets, the spreadsheet feature of Google Docs. Google Docs is free and
works in Win dows, macOS, and Linux, since it’s web- based. The prob lem
with Google Sheets and any other cloud- based spreadsheet software (like
the web- based version of Microsoft Excel) is that you have to upload a copy
of your CSV file to a third- party service before you can view it. For public
datasets like BlueLeaks, this is okay. However, it’s better to use desktop
spreadsheet software when you’re dealing with more sensitive datasets.

Spreadsheet software, when used with more complicated spreadsheet
formats such as Microsoft Excel files (.xlsx) or ODF Spreadsheet files (.ods),
is power ful and feature- rich. It can do math, like summing all of the val-
ues in a column, and visualize data, like creating pie charts or line graphs.
None of these features are supported in CSV files, though, so I won’t discuss
them in this book.

Once you have your spreadsheet software installed, you’re ready to
learn more about the structure of CSV files.

Introducing the CSV File Format
You can think of spreadsheets as tables of data. The top row normally
has headers for each column, and the rest of the rows represent data that
matches those headers. CSV is the simplest spreadsheet format. You can
open CSV files using software like Microsoft Excel or LibreOffice Calc, or
you can view them in a text editor and use CLI tools like grep to search them.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.libreoffice.org

Blueleaks, Black Lives Matter, and the CSV File Format 239

BlueLeaks is full of CSV files, but the original data from the fusion
center websites wasn’t in that format. The BlueLeaks dataset includes
source code for those websites, and by reviewing that I discovered that each
site had actually stored its data in a Microsoft Access database file. The
BlueLeaks hacker exported tables from the Access databases and saved that
data in CSV format before leaking it to DDoSecrets.

CSV files are simply text files made up of multiple lines representing
rows in a table. Each line contains a list of values, usually separated by com-
mas (hence the name comma- separated values), with each value representing
a cell in the spreadsheet. Sometimes a spreadsheet row is referred to as a rec-
ord, with each cell in that row referred to as a field in that rec ord. Typically,
each row contains the same number of cells.

 Here’s an example CSV file called city- populations.csv:

City,Country,Population
Tōkyō,Japan,37400000
Delhi,India,28514000
Shanghai,China,25582000
São Paulo,Brazil,21650000
Mexico City,Mexico,21581000
Cairo,Egypt,20076000

You can find a copy of this file in the book’s GitHub repository at https://
github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 9 / city - populations
. csv. I’ll use this file as an example CSV later in this chapter, so download it
now (or reenter it) and save it in a folder for this chapter’s exercises.

 Table 9-1 shows the data from the city- populations.csv file organized into
rows and columns.

 Table 9-1: City Populations

City Country Population

Tōkyō Japan 37,400,000

Delhi India 28,514,000

Shanghai China 25,582,000

São Paulo Brazil 21,650,000

Mexico City Mexico 21,581,000

Cairo Egypt 20,076,000

When a value includes commas, it must be surrounded by quotation
marks. For example, the values “Hello, World” and “Hola, Mundo” both
contain commas. Here’s how they look in a CSV file along with fields for
their respective languages:

Language,Greeting
 English,"Hello, World"
Español,"Hola, Mundo"

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/city-populations.csv
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/city-populations.csv
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/city-populations.csv

240 Chapter 9

 Table 9-2 shows this data organized into rows and columns.

 Table 9-2: Translations of “Hello, World”

Language Greeting

 English Hello, World

Español Hola, Mundo

It’s common to enclose every value in quotes, regardless of whether or
not it includes commas. Here’s another version of the previous spreadsheet,
now with every value in quotes:

"Language","Greeting"
" English","Hello, World"
"Español","Hola, Mundo"

As with shell scripting and Python programming, you can escape
quotes in CSVs by using a backslash and double quotes (\"). For example,
the value "Not I," said the cow contains both quotes and commas, so to add
it to a CSV file you would surround the entire value in quotes and escape
the inner quotes, like this:

"\"Not I,\" said the cow"

 Because the CSV file format is so simple, it’s one of the most commonly
used spreadsheet formats, especially for anyone working with spreadsheets
using code. Like CSVs, SQL databases also store tabular data (data that can
be represented in a table), so CSVs are a convenient format for exporting
 tables from them. In fact, all of the CSVs in BlueLeaks are exported SQL
 tables from the databases that power law enforcement and fusion center
websites. (You’ll learn about SQL databases in Chapter 12; for now, you’ll
work with the exported CSVs.)

Now that you understand a bit about the CSV file format, let’s take a
look at some real CSV data from BlueLeaks.

Exploring CSV Files with Spreadsheet Software
and Text Editors

In your graphical file browser (such as Explorer in Win dows or Finder in
macOS), browse to the BlueLeaks- extracted folder on your USB disk. You’ll
start by examining the dediac subfolder, which contains data from the
Delaware Information Analy sis Center. Scroll through the files in this
folder— nearly all of them are CSVs— and open Documents.csv in your graph-
ical spreadsheet software.

When you open a file in LibreOffice Calc or other spreadsheet soft-
ware, you’ll likely be presented with a win dow asking you to confirm the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 241

settings for this CSV. Figure 9-1 shows the win dow that pops up when I
open Documents.csv in LibreOffice Calc on my Mac.

Figure 9-1: The LibreOffice Calc Text Import settings

The most impor tant setting to select is the correct separator character,
which is, in this and most cases, a comma (,). Some CSVs separate values
with characters other than commas, like semicolons (;) or tabs (\t), though
this is rare. In the future if you aren’t sure which character your CSV uses,
you can open the CSV in a text editor first to check.

Click OK to open the spreadsheet. This one should open quickly, but
sometimes CSVs are huge— hundreds of mega- or gigabytes—so you may
need to wait several seconds, or even minutes, for a large CSV to finish
loading.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

242 Chapter 9

Figure 9-2 shows the Documents.csv spreadsheet in LibreOffice Calc.

Figure 9-2: Viewing Documents.csv in LibreOffice Calc

This spreadsheet has 23 columns and 6,934 rows (one of which is the
header row). At the top of the file, the dates in the DateEntered column
are from 2011. You can find the most recent data in a spreadsheet by sort-
ing it, either in ascending (from smaller to bigger) or descending (bigger
to smaller) order. I’ll show you how to sort this spreadsheet in LibreOffice
Calc, but the instructions should be similar for other spreadsheet software
and apply to any spreadsheet you want to sort.

First, since you don’t want to sort the header row, click ViewFreeze
CellsFreeze First Row. This should freeze the headers row, so now when
you scroll up and down, the headers will remain at the top of the file.

Next, you need to pick which column you want to sort by. To see the
most recent documents at the top, sort by DateEntered descending. Before
sorting this column, you must tell the spreadsheet software that those fields
are dates with times and specify how they’re formatted (other wise, the soft-
ware might assume they’re strings and sort them alphabetically). Click on
column D to select all of the cells in that column and then click DataText
to Columns. This pops up a win dow that lets you define what type of data is
in each column. At the bottom of the win dow, click the DateEntered column
and choose Date (MDY) from the Column Type drop- down, because the
dates in this data are formatted with month, then date, then year. Click OK.

Now that the spreadsheet software knows the correct format for the
DateEntered cells, you can sort it by this column. Click the DateEntered
header cell to select it (make sure not to select the whole column, just the
header cell) and then click DataSort Descending. This should reorder all
of the rows so that the row with the most recent DateEntered is at the top
and the one with oldest is at the bottom. In Documents.csv, the most recent
documents are from June 6, 2020, during the Black Lives Matter protests.
Some of the most recent document titles include “Special Bulletin Planned
Protests 060620 1800 UPDATE,” “ANTIFA Sub Groups and Indicators –
LES,” and “ANTIFA - Fighting in the Streets.”

I often use graphical spreadsheet programs to search CSVs. In
LibreOffice, as well as in other spreadsheet programs, you can find specific

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 243

cells using the Find feature. Press ctrl- F (or, in macOS, ζ- F), enter your
search term, and press enter. This should search every cell in the spread-
sheet for your term. You can use this method to find a row containing, for
example, a specific ID number or email address.

When you close the spreadsheet, don’t save your changes. It’s good
practice to avoid changing original documents in a dataset. If you want
to keep a rec ord of your changes, save the file as a copy in either the ODF
Spreadsheet (.ods) or Excel (.xlsx) format.

Now let’s look at the same CSV in a text editor instead of spreadsheet
software. Here are the first few lines of the Documents.csv file, as viewed in a
text editor like VS Code:

DocumentID,DocFilename,Author,DateEntered,SortOrder,DocTitle,Description,ShortDescription,
PageIdentifier,Keywords,DocumentCategoryID,URLLaunchNewBrowser,URL,Featured,YoutubeLink,
YoutubeVideoName,FrontPageText,YouTubeStartTime,DocFileName2,PreviewImage,ForceSaveAsDialog,
OpenInIframe,DeleteDate
84,"DDF00000\084.pdf",,"10/21/11 13:40:33",,"Daily Roll- Call Bulletin 102111",,,52,,36,0,,0,,,,
,,"DPI00000\084.png",0,0,
85,"DDF00000\085.pdf",,"10/24/11 13:40:33",,"Daily Roll- Call Bulletin 102411",,,79,,36,0,,0,,,,
,,"DPI00000\085.png",0,0,
86,"DDF00000\086.pdf",,"10/25/11 13:40:33",,"Daily Roll- Call Bulletin 102511",,,86,,36,0,,0,,,,
,,"DPI00000\086.png",0,0,
- - snip- -

 Because text editors show you only the text when you view a CSV file,
without lining up the columns like spreadsheet software does, it’s less clear
which value matches to which header for each row. There’s no simple way to
manipulate the data, either— you can’t sort it by DateEntered like you can
in LibreOffice Calc or Microsoft Excel. However, it’s simple to write code
that loads the data from CSVs into dictionaries, allowing you to manipulate
it in any way you choose, as you’ll do later in this chapter.

Now that you’re familiar with the structure of CSVs, you’re ready to see
how I began my investigation into the BlueLeaks dataset.

How I Started Investigating BlueLeaks
I didn’t even realize that my local police intelligence agency, the Northern
California Regional Intelligence Center (NCRIC, pronounced “nick- rick”),
existed until I discovered it in the BlueLeaks dataset in June 2020. In this
section I describe how I went about my investigation into BlueLeaks, what I
discovered in the NCRIC portion of the dataset, and a specific revelation
I found in one of the NCRIC CSV files.

Picking a Fusion Center to Focus On
 After downloading BlueLeaks, I indexed it in The Intercept’s Intella server
to make it easier to search. This allowed me and journalists I worked with
to quickly search it for keywords and find in ter est ing documents. However,
I could tell that searching for keywords would only get me so far. There

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

244 Chapter 9

was so much data that if I only searched terms like Black Lives Matter, I was
bound to miss a lot of it. Moreover, the searches I did make often led me to
CSVs, which would take more work to untangle.

BlueLeaks was split into hundreds of folders, each one belonging
to a dif fer ent law enforcement organization. Since almost all of these
 organizations were unfamiliar to me, though, I couldn’t tell from the names
which folder belonged to which organization. I started my own spreadsheet
to keep track of this, manually adding rows for each folder as I matched
 organizations and their websites to it. Eventually, I realized that I could
automate this with a Python script.

I also used shell scripting to figure out which folders had the most
data, because I guessed they were the largest or most active fusion centers.
I quickly discovered that the ncric folder, one of the largest in the dataset,
held documents for NCRIC, so that’s where I de cided to focus my digging.

Introducing NCRIC
NCRIC, based in San Francisco, shares information between federal agen-
cies, local police departments across Northern California, and private
industry partners, including tech companies. As I discovered by combing
through the CSVs in this dataset, it also provides services to local cops, like
monitoring social media or helping break into locked smartphones, and it
hosts events and classes for law enforcement officers.

Using a custom tool I developed called BlueLeaks Explorer, which I’ll
discuss in detail in Chapter 10, I examined every thing I could find in the
ncric folder dated within the 13 days between George Floyd’s murder and
when NCRIC was hacked. I discovered that twice a day, NCRIC emailed
over 14,000 cops an updated list of Black Lives Matter protests. Local police
and other partners could also log into NCRIC’s website and submit suspi-
cious activity reports (SARs) to distribute to the fusion center’s partners.
Local police also requested NCRIC’s help with monitoring the social media
accounts of protest organizers and, in two instances, with identifying
threats against white female teen agers who were facing harassment after
making racist statements and using anti- Black slurs.

Investigating a SAR
By investigating a row from a CSV file, I found a PDF of a scanned letter
that turned out to be newsworthy. The letter, written by an unhinged San
Francisco– area lawyer to a local district attorney’s office, called a polite
student from Oregon an “antifa terrorist.” In this section, I describe how I
found this revelation in BlueLeaks, what it contains, and how the BlueLeaks
CSVs reference other documents in the dataset.

When I grepped the CSV files in the ncric folder for the word antifa, I
found that there were only a handful of references in the files EmailBuilder.
csv, Requests.csv, SARs.csv, and Survey.csv. In par tic u lar, this row in SARs.csv
stood out because it referenced a student protester, allegedly a member of
an antifa group, and mentioned “Radicalization/Extremism”:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 245

micah@trapdoor ncric % grep -ri antifa *.csv
- - snip- -
SARs.csv:14277,"06/05/20 14:20:09","6/5/2020","Marin","The attached letter was received via US
Postal Service this morning. The letter was passed on from an anonymous party claiming to be a
 lawyer who was contacted by [redacted name] who is a University of Oregon student. [Redacted
name] appears to be a member of the Antifa group and is assisting in planning protesting
efforts in the Bay Area despite living in Oregon.","[redacted IP address]",,"NCRICLawEnforceme
ntReporting",,"Unknown",,"[redacted phone number]","f14e1d15- a052-489c-968b-5fd9d38544e1",
"20200596","0820",,"Bay Area",,0,,0,0,0,,0,0,,,0,0,0,0,,,,,"[redacted name]",,,,0,,,,,,,"
[redacted name]","[redacted name]","[redacted name]",,,"Marin County District Attorney's
Office",,,,,"SARF100014\277.pdf",,,,,"- Other - ",,,,,,"Letter . pdf",,,,,,,"[redacted]@marincounty
. org","AM","1",,,,,,0,0,"Radicalization / Extremism,Suspicious Incident",,"Emergency
 Services,Government Fa cil i ty",,,"No"
- - snip- -

Looking into the SARs.csv file, I found that it lists one month of SARs
submitted to NCRIC. The earliest report was May 6, 2020, and the latest was
June 6, 2020, so my guess is that NCRIC retains SARs only for a month.

Try opening this file, ncric/SARs.csv, in your spreadsheet software, and
you’ll see that it’s difficult to parse. There are 91 dif fer ent columns, and
some of the cells are filled with so much text that even with a large monitor,
you can see only part of a row at a time. To make it easier to read, I copied
the content of the BriefSummary cell from the spreadsheet and pasted it
into my text editor, something that I frequently needed to do with the CSVs
in this dataset before I developed BlueLeaks Explorer. Here are the rel-
evant fields from the row that caught my eye:

SARSid 14277

FormTimeStamp 06/05/20 14:20:09

IncidentDate 6/5/2020

ThreatActivity Radicalization/Extremism,Suspicious Incident

BriefSummary The attached letter was received via US Postal Service
this morning. The letter was passed on from an anonymous party
claiming to be a lawyer who was contacted by [redacted name] who is a
University of Oregon student. [Redacted name] appears to be a member
of the Antifa group and is assisting in planning protesting efforts in the
Bay Area despite living in Oregon.

Subjects [redacted name]

AgencyOrganizationNameOther Marin County District Attorney’s
Office

File1 SARF100014\277.pdf

File1Name Letter.pdf

EmailAddress [redacted]@marincounty . org

PhoneNumber [redacted phone number]

The SAR listed the full name, email address, and phone number of
the person who had submitted it. I looked them up online and discovered

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://Letter.pdf",,,,,,,"[redacted]@marincounty.org","AM","1",,,,,,0,0,"Radicalization/Extremism,Suspicious
http://Letter.pdf",,,,,,,"[redacted]@marincounty.org","AM","1",,,,,,0,0,"Radicalization/Extremism,Suspicious
http://redacted]@marincounty.org

246 Chapter 9

that they worked as an investigator for the district attorney’s office in
Marin County (just north of San Francisco). On June 5 at 2:20 PM (per
the FormTimestamp field), the day before NCRIC was hacked, they logged
into the NCRIC website and submitted the SAR form. They included a PDF
called Letter.pdf (per the File1Name field), though the website saved it in the
SARF100014 folder as 277.pdf (per the File1 field).

N O T E The server that hosted NCRIC’s website and all of the other BlueLeaks sites was
 running Win dows, which is why folders in paths are separated by backslashes (\), like
SARF100014\277.pdf, instead of forward slashes (/).

Each BlueLeaks folder has a subfolder called files, where you can find
the files referenced in the CSV. See if you can find the PDF referenced
in the File1 field in the ncric folder. It should be at the path ncric/files/
SARF100014/277.pdf (see Figure 9-3).

Figure 9-3: A PDF attachment in the SAR submitted by an investigator from the Marin
County DA’s office

The PDF shows a letter in all caps mailed to the Marin County
DA’s office by a Bay Area attorney: “PLEASE SEE THE ATTACHED
SOLICITATION I RECEIVED FROM AN ANTIFA TERRORIST
WANTING MY HELP TO BAIL HER AND HER FRIENDS OUT OF JAIL,
IF ARRESTED FOR RIOTING.” He explained that he was remaining

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 247

anonymous because he “CANNOT RISK THIS PIECE OF SHIT ANTIFA
[. . .] FILING A BAR COMPLAINT AGAINST ME,” and warned that “THE
SAN FRANCISCO PUBLIC DEFENDERS WILL VIGOROUSLY DEFEND
 THESE TERRORISTS.” He ended his letter, “HAPPY HUNTING.”

Further down in the PDF, the attorney included the solicitation from
the “antifa terrorist,” shown in Figure 9-4.

Figure 9-4: The letter that the Oregon student sent to the California lawyer

“I am a long time activist and ally of the Black Lives Matter move-
ment,” the Oregon student wrote. “Is there anyway[sic] that I could add
your firm, or consenting lawyers under your firm, to a list of resources who
 will represent protesters pro bono if they were/are to be arrested? Thank
you very much for your time.” The Marin County DA investigator appar-
ently believed that this was useful enough intelligence that they logged into
their account on NCRIC’s website and submitted it as “suspicious activity”
for other law enforcement officers around Northern California to access.
 Under threat activity, they chose Radicalization/Extremism.

N O T E You can read more about my findings from this SAR in the first article I wrote about
BlueLeaks, at https:// theintercept . com / 2020 / 07 / 15 / blueleaks - anonymous

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2020/07/15/blueleaks-anonymous-ddos-law-enforcement-hack/

248 Chapter 9

- ddos - law - enforcement - hack / . To learn more about what I discovered while
researching NCRIC in general, check out my in- depth article at https:// theintercept
. com / 2020 / 08 / 17 / blueleaks - california - ncric - black - lives - matter - protesters / .

In theory, I could have stumbled upon the PDF in Figure 9-3 on its
own; I might have just randomly clicked through documents and happened
to open ncric/files/SARF100014/277.pdf, the path to the PDF in question. I
could also have indexed the ncric folder in Aleph, OCRing all of the docu-
ments, and searched for antifa. However, the PDF alone doesn’t explain who
uploaded it to the NCRIC website, when and why they uploaded it, and how
they described the document. Moreover, if you’re interested in focusing on
activity in the fusion center from a specific time period, it’s easier to find
which documents are relevant by their timestamps in the CSV files. If you’re
researching BlueLeaks yourself, you can quickly find all of the documents
associated with a time period by sorting the spreadsheets by date, reading
all the rows in the CSVs for that time period, and looking at the documents
that those rows reference.

Whenever you find an in ter est ing document in BlueLeaks, search the
CSVs for its filename to figure out why that document is there to begin
with. It could be an attachment in a SAR, part of a bulk- email message
the fusion center sent to thousands of local police, or included for other
reasons. In the case of 277.pdf, now you know this document was uploaded
as an attachment to a SAR by an investigator in a DA’s office. The CSV pro-
vides the investigator’s summary of the document’s contents, along with
their contact information, which you can use to reach out to them for com-
ment before publishing your findings.

Now that you’ve seen the type of data SARs.csv contains, you need a way
to easily read the long blocks of text in those CSV cells without having to copy
and paste them into a text editor. We’ll cover that in Exercise 9-1, but first,
let’s have a quick tutorial on how to write code that works with CSV files.

Reading and Writing CSV Files in Python
As you learned in Chapter 8, Python modules bring extra functionality into
the script that you’re writing. It’s easy to load CSVs and turn each row into
a Python dictionary using Python’s built-in csv module. You’ll need csv for
this chapter’s exercises, so import it using the following command:

import csv

 After importing it, you can take advantage of its functionality. The csv
features I use the most are csv.DictReader(), which lets you parse rows of a
CSV as dictionaries, and csv.DictWriter(), which lets you save your own CSVs
from data stored in dictionaries.

The following code loads a CSV file and loops through its rows by using
csv.DictReader():

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2020/07/15/blueleaks-anonymous-ddos-law-enforcement-hack/
https://theintercept.com/2020/08/17/blueleaks-california-ncric-black-lives-matter-protesters
https://theintercept.com/2020/08/17/blueleaks-california-ncric-black-lives-matter-protesters

Blueleaks, Black Lives Matter, and the CSV File Format 249

with open(csv_path) as f:
 reader = csv.DictReader(f)
 for row in reader:
 print(row)

This code assumes the path to the CSV filename is in the csv_path vari-
able, which could be a string that you hardcoded or a CLI argument you
passed into your program. After opening the CSV file with open(csv_path)
and storing the file objects as f, the code defines a new variable called
reader and sets its value to csv.DictReader(f), which prepares you to read
rows from this CSV. The reader object acts a little like a list of dictionaries,
where each dictionary represents a row. Although it’s not actually a list, you
can use a for loop to loop through it as if it were. Inside the for loop, row is a
dictionary that represents the data in a row from the spreadsheet.

The process of saving new CSVs is similar, except you use csv.
DictWriter(). For example, the following code uses Python to save the city-
populations.csv file discussed in the “Introducing the CSV File Format” sec-
tion earlier in the chapter:

headers = ["City", "Country","Population"]
with open(csv_path, "w") as f:
 writer = csv.DictWriter(f, fieldnames=headers)
 writer.writeheader()
 writer.writerow({"City": "Tōkyō", "Country": "Japan", "Population": 37400000})
 writer.writerow({"City": "Delhi", "Country": "India", "Population": 28514000})
 writer.writerow({"City": "Shanghai", "Country": "China", "Population": 25582000})
 writer.writerow({"City": "São Paulo", "Country": "Brazil", "Population": 21650000})
 writer.writerow({"City": "Mexico City", "Country": "Mexico", "Population": 21581000})
 writer.writerow({"City": "Cairo", "Country": "Egypt", "Population": 20076000})

This code first defines the headers of the spreadsheet in the list headers,
then opens the output file (csv_path) for writing. Creating a csv.DictWriter()
object allows you to save data into the CSV. You must pass the headers
in as a keyword argument called fieldnames. You must also run writer
.writeheader(), which saves the header row to the CSV file, before writing
any of the data rows.

You can then add rows to the spreadsheet by running writer.writerow(),
passing in a dictionary whose keys match your headers. For example,
the first call of writer.writer() passes in the dictionary {"City": "Tōkyō",
"Country": "Japan", "Population": 37400000}. The keys for this dictionary are
the same as the headers for the CSV: City, Country, and Population.

In the following exercises, you’ll use your new CSV programming skills
to write scripts that make the data hidden in BlueLeaks CSVs easier to read
and understand.

N O T E To learn more about the csv module, you can find the full documentation, including
plenty of example code, at https:// docs . python . org / 3 / library / csv . html.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.python.org/3/library/csv.html

250 Chapter 9

Exercise 9-1: Make BlueLeaks CSVs More Readable
While it’s easier to read SARs.csv in a spreadsheet program than in a text
editor, it’s still quite difficult. As mentioned earlier, there are 91 columns
(though most of their values are blank), and some of the text fields, like
BriefSummary, contain way too much text to see at one time in a spreadsheet
cell. In this exercise, you’ll write a script that makes SARs.csv (or any CSV
with similar content) easier to read by showing you the data a single row at
a time.

This exercise is designed not just to show you how to work with the
SARs.csv file, but to give you practice looping through the rows and fields in
a CSV. These skills will come in handy whenever you write code that reads
data from CSVs.

For a challenge, you could try programming your own script to meet
the following requirements:

•	 Make this script accept a CLI argument called csv_path using Click,
which you first learned to use in Exercise 8-3.

•	 Import the csv module and loop through all of the rows in the CSV
located at csv_path, loading each row as a dictionary, as discussed in pre-
vious section.

•	 For each row, display all of the non- empty values for its columns. If a
value is empty, meaning it’s an empty string (""), skip it. There’s no
reason to display all of the columns when so many of them have blank
values.

•	 Display each field on its own line. For example, one line could show
SARSid: 14277 and the next line could show FormTimeStamp: 06/05/20
14:20:09.

•	 Output a separator line like === between each row so that you can tell
rows apart.

Alternatively, follow along with the rest of this exercise and I’ll walk you
through the programming process. Start with the usual Python script tem-
plate in a file called exercise-9-1.py:

def main():
 pass

if __name__ == "__main__":
 main()

Next, you’ll modify your script to accept the csv_path CLI argument.

Accept the CSV Path as a CLI Argument
Instead of hardcoding the path to a specific CSV, let’s use Click to accept
the path as a CLI argument. Here’s the code that does that (with modifica-
tions shown in bold):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 251

import click

@click . command()
@click.argument("csv_path")
def main(csv_path):
 """Make BlueLeaks CSVs easier to read"""
 print(f"CSV path: {csv_path}")

if __name__ == "__main__":
 main()

Just like in Exercise 8-4, this code imports the click module, adds
Click decorators before the main() function to turn it into a command that
accepts the csv_path argument, and adds a docstring. For now, it also dis-
plays the value of csv_path so you can test if the program works. Run the
code to test it as follows:

micah@trapdoor chapter-9 % python3 exercise-9-1.py some- csv- path.csv
CSV path: some- csv- path.csv

The script just displays the CSV path that was passed in. So far, so good.

Loop Through the CSV Rows
Next, you’ll modify the code to open the CSV in csv_path, and, using the
csv module, create a csv.DictReader() object to loop through the rows of
that CSV:

import click
import csv

@click . command()
@click.argument("csv_path")
def main(csv_path):
 """Make BlueLeaks CSVs easier to read"""
 with open(csv_path, "r") as f:
 reader = csv.DictReader(f)
 for row in reader:
 print(row)

if __name__ == "__main__":
 main()

This code now imports the csv module at the top. When the main()
function runs, the code opens the file at csv_path for reading, creating a file
object variable called f. As noted in “Working with CSV Files in Python,”
you can use csv.DictReader() to loop through a CSV file, getting access to
each row as a dictionary. The code does this next, creating a variable called
reader and setting it equal to csv.DictReader(f). Using reader, the code then
loops through each row and displays the dictionary containing its data.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command
http://click.command

252 Chapter 9

Test the code again, this time passing in the path to SARs.csv as the
CLI argument. Make sure you use the correct path for your copy of the
BlueLeaks dataset:

micah@trapdoor chapter-9 % python3 exercise-9-1.py /Volumes/datasets/BlueLeaks- extracted/ncric/
SARs.csv
{'SARSid': '14166', 'FormTimeStamp': '05/14/20 19:15:03', 'IncidentDate': '2020-05-11',
'County': 'Santa Clara', 'BriefSummary': '*INFO ONLY- no action required* \n\nThe San Francisco
PD was contacted by the CIA Threat Management Unit regarding a suspicious write-in to the
CIA\'s public website apparently by a subject [redacted name] (DOB: [redacted birthdate]). See
details below.\n\n- - - - - - - - Original message - - - - - - - - \nFrom: ADAMCP4 \nDate: 5/13/20 12:17
(GMT-08:00)\nTo: "[redacted name] (POL)" \nSubject: CIA Passing Potential Threat Information\
nThis message is from outside the City email system. Do not open links or attachments from
untrusted sources.\nGood after noon,\nPer our conversation, Mr. [redacted name] wrote in to
CIA's public website with the following two messages. A CLEAR report showed Mr. [redacted
name]'s address to be in Dixon, CA. Dixon, CA police made contact with the Subject's mother
who reported she has not had contact with him in quite some time and last knew him to be in the
Bay area, likely off his medi cation. She reported he suffers from bi- polar disorder.
- - snip- -

The output shows that during each loop, the row variable is a dictionary
containing the values for that row. So far, the code is simply displaying this
 whole dictionary. This is a good start, but it still doesn’t make the text much
easier to read. To do that, you’ll display each field on its own row.

Display CSV Fields on Separate Lines
The following modified code displays each row separately:

import click
import csv

@click . command()
@click.argument("csv_path")
def main(csv_path):
 """Make BlueLeaks CSVs easier to read"""
 with open(csv_path, "r") as f:
 reader = csv.DictReader(f)
 for row in reader:
 for key in row:
 if row[key] != "":
 print(f"{key}: {row[key]}")

 print("===")

if __name__ == "__main__":
 main()

Rather than just displaying the row dictionary, this code loops through
all of its keys, storing each in the variable key. Since key is the key to the
dictionary row, you can look up its value by using row[key]. You only want to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Blueleaks, Black Lives Matter, and the CSV File Format 253

display fields that aren’t blank, so after making sure that this key doesn’t
have a blank value, the code displays both it and the value. Fi nally, after it
has finished looping through all of the keys in each row, the code displays
the separator === between the rows.

You can find a copy of the complete script at https:// github . com / micahflee
/ hacks - leaks - and - revelations / blob / main / chapter - 9 / exercise - 9 - 1 . py. Run the final
script like so:

micah@trapdoor chapter-9 % python3 exercise-9-1.py /Volumes/datasets/BlueLeaks- extracted/
ncric/SARs.csv
SARSid: 14166
FormTimeStamp: 05/14/20 19:15:03
IncidentDate: 2020-05-11
County: Santa Clara
BriefSummary: *INFO ONLY- no action required*

The San Francisco PD was contacted by the CIA Threat Management Unit regarding a suspicious
write-in to the CIA's public website apparently by a subject [redacted name] (DOB: [redacted
birthdate]). See details below.

- - - - - - - - Original message - - - - - - - -
From: ADAMCP4
Date: 5/13/20 12:17 (GMT-08:00)
To: "[redacted name] (POL)"
Subject: CIA Passing Potential Threat Information
This message is from outside the City email system. Do not open links or attachments from
untrusted sources.
Good after noon,
Per our conversation, Mr. [redacted name] wrote in to CIA's public website with the following
two messages. A CLEAR report showed Mr. [redacted name]'s address to be in Dixon, CA. Dixon,
CA police made contact with the Subject's mother who reported she has not had contact with him
in quite some time and last knew him to be in the Bay area, likely off his medi cation. She
reported he suffers from bi- polar disorder.
- - snip- -
ThreatActivityOther: Suspicious write-in received by the CIA
ImpactedEntity: Government Fa cil i ty
===
SARSid: 14167
FormTimeStamp: 05/15/20 10:46:00
IncidentDate: 5/14/2020
County: Sonoma
BriefSummary: Handheld radio went missing. Radio was in the dozer tender or in the office of
the Santa Rosa shop at station 41. The dozer tender was parked outside of the shop. There has
been unknown individuals seen passing on the compound near the shop. Dozer tender did not
appear to have been broken into. Dozer tender is usually locked but could have been missed
while the operator was off duty. Unsure of when exactly the radio went missing. Could of been
anytime within the last month.
- - snip- -

This time, the output should display === between the rows and display
each field of a row on its own line. If there are any blank fields, the program
skips them.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/exercise-9-1.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/exercise-9-1.py

254 Chapter 9

Using the command line skills you learned in Chapters 3 and 4, redi-
rect the output into a file with the following command:

python3 exercise-9-1.py /Volumes/datasets/BlueLeaks- extracted/ncric/SARs.csv > SARs.txt

This should run your script again, this time saving the output into
SARs.txt instead of displaying it in your terminal. Now you can easily scroll
through the saved output in a text editor like VS Code and search it for
keywords to learn about the “suspicious activity” that occurred in Northern
California from May 6 to June 6, 2020.

Next we’ll move on from SARs to explore another impor tant spread-
sheet in NCRIC: EmailBuilder.csv.

How to Read Bulk Email from Fusion Centers
The primary purpose of fusion centers is to share information between
local, state, and federal law enforcement agencies. They do this, essentially,
by sending bulk email to a large list of local police officers. You can find
the content of this email for all sites in BlueLeaks, including NCRIC, in the
EmailBuilder.csv file located in each site’s folder. These files include the con-
tent of all of the bulk- email messages each fusion center sent until June 6,
2020, when it was hacked.

Some of these messages are security bulletins from federal agencies like
the FBI or the Department of Homeland Security (DHS). Others contain
content directly created by the fusion center— for example, NCRIC and
other fusion centers around the US generated detailed daily lists of pro-
tests against police brutality during the summer of 2020. For the 13 days
of NCRIC data I looked at in detail, over half of the bulk email contained
information about largely peaceful protests.

The SARs spreadsheet contains plaintext data, so it’s easy to read in
a text editor. But the bulk- email spreadsheet contains data in HyperText
Markup Language (HTML) format, making it difficult to read unless
you use a web browser. In this section, you’ll learn to more easily read the
HTML content of NCRIC’s bulk email, find the recipients of each email,
and find the documents attached to the email messages. Open ncric/
EmailBuilder.csv in your spreadsheet software to follow along.

Lists of Black Lives Matter Demonstrations
Most of the intelligence on Black Lives Matter protests flowed through
NCRIC’s Terrorism Liaison Officer (TLO) program, whose purpose is to
keep the intelligence center’s members “engaged & knowledgeable about
current terrorist tactics, techniques & trends, regional crime trends &
threats, and Officer safety information,” according to the TLO page on
NCRIC’s website. During the summer of 2020, this counterterrorism
program didn’t focus on terrorism so much as upcoming racial justice
protests.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 255

This section describes the twice- daily lists of upcoming protests that TLO
sent to thousands of local cops. Not only is this incredibly newsworthy— a
counterterrorism program abused to monitor racial justice protests— but
 these were the most common bulk- email messages that NCRIC sent during
the 13- day period I examined.

For example, here are the most in ter est ing fields from the most recent
row in ncric/EmailBuilder.csv (this CSV has 81 columns in total, most of
which didn’t contain any relevant information):

EmailBuilderID 6170

EmailFrom NCRIC <info@ncric . net>
EmailSubject NCRIC TLO Bulletin LES

EmailBody <base href	=	"https:// ncric . ca . gov / "><div style=	
"font- family: times; text- align: center;">	
UNCLASSIFIED//LAW ENFORCEMENT
SENSITIVE</div> [. . .]

Attachment1 EBAT1\Events_060620_1800.pdf

DateSent 06/06/20 20:25:06

EmailTable Registrations

SentEmailList EBSE00006\170.csv

This row tells us that on the evening of June 6, 2020, NCRIC sent
an email with the subject line “NCRIC TLO Bulletin LES” to the list of
 people described in EBSE00006\170.csv (LES stands for Law Enforcement
Sensitive). The email included the PDF attachment located at EBAT1\
Events_060620_1800.pdf.

The body of the email is the HTML in the EmailBody column. HTML
is the markup language that describes web pages, so it can be hard to
make sense of when you’re not viewing it in a web browser. To read this
email body, in your text editor, create a new file called EmailBuilder
- 6170 . html (since 6170 is the EmailBuilderID). Copy the content of the
EmailBody field from your spreadsheet software for this row, paste it into
this file, and save it. You can now open this file in a web browser to view
it, but before you do that, you may want to read the box “Covering Your
Tracks with a VPN Service” to consider mitigating what information you
might leak by opening it.

COV ER ING YOUR T R ACKS W IT H A V PN SERV ICE

The BlueLeaks CSV files are full of HTML code, such as the EmailBody field in
the EmailBuilder.csv files. Many of these blocks of HTML include embedded
images. If you read through the HTML code in the EmailBody cell in the preced-
ing example, you’ll see that it loads an image hosted on NCRIC’s server at the

(continued)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://info@ncric.net
href="https://ncric.ca.gov/"><div
http://EmailBuilder-6170.html
http://EmailBuilder-6170.html

256 Chapter 9

URL https:// ncric . org / html / Picture2 . jpg ? 135653. Viewing HTML from BlueLeaks
in a web browser makes it much easier to read and understand compared to
trying to read the HTML code directly, but it will also cause your computer to
make an internet request to the law enforcement servers themselves. These serv-
ers will most likely log your IP address, leaving clues that you’re investigating
them.

For the BlueLeaks dataset, it doesn’t matter much if the fusion center serv-
ers track your IP address. It’s not illegal to load images off of law enforcement
websites. For more sensitive datasets, however, it’s prudent to hide your IP
address from organizations you’re investigating. You can load these images
while hiding your real IP address by connecting to a virtual private network
(VPN) service, which reroutes your internet traffic through its own server, then
forwards your traffic to those websites. This leaves the VPN server’s IP address,
rather than your own, in the websites’ web logs.

For example, say you load the EmailBuilder - 6170 . html file in your web
browser from your home in San Francisco. If you load images hosted on https://
ncric . org, a San Francisco IP address from a residential neighborhood will show
up in the website’s logs. The site might be able to determine that this IP address
belongs to you by sending a data request to your internet service provider, for
example. If you first connect to a VPN, however— one in New York, let’s say—
then they’ll see a New York IP address from a data center in their logs instead.
 They’ll still know that someone loaded the image, but it won’t be immediately
obvious that you loaded the image. Every one using that VPN service shares its
IP address, making it harder to track down individual users.

While VPNs may make you anonymous from the websites you’re visit-
ing, they don’t make you anonymous from the VPN provider itself. Use a
trustworthy VPN provider that you believe isn’t logging your traffic and selling
it. Additionally, contrary to popular opinion, commercial VPN services don’t
prevent websites from tracking your browsing habits; that’s mostly done using
a technology called cookies. In other words, VPNs don’t stop the Googles and
Facebooks of the world from following you around the web.

Consumer Reports publishes in- depth reviews of dif fer ent VPN services,
comparing them on overall privacy and security, whether they’ve had public
security audits, whether they’re open source, and whether they include mislead-
ing marketing. VPN services normally cost a few dollars a month. For the most
part, I recommend avoiding free VPNs; they’re nearly all scams set up to spy on
their users and sell their data, or even to inject advertisements into web pages
users visit. The only exception I know of are VPNs powered by the open source
software Bitmask, like the one run by the Seattle- based tech collective Riseup.
You can learn more about Bitmask from https:// bitmask . net, and you can learn
about Riseup’s free VPN service at https:// riseup . net / en / vpn.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ncric.org/html/Picture2.jpg?135653
http://EmailBuilder-6170.html
https://ncric.org
https://ncric.org
https://bitmask.net
https://riseup.net/en/vpn

Blueleaks, Black Lives Matter, and the CSV File Format 257

 Whether or not you’ve connected to a VPN service (the choice is
yours), open EmailBuilder - 6170 . html using a web browser by double- clicking
on it in your file man ag er. Figure 9-5 shows what it looks like in a web
browser.

Figure 9-5: HTML from the EmailBody field in a row of EmailBuilder.csv, viewed in a web browser

As you can see from the screenshot, this email body is a template, not
the email itself. The HTML files stored inside CSVs for BlueLeaks sites
are all templates. When sending the email, the NCRIC site would replace
[AttachmentLinks] with the actual links to the email attachments as well as
replacing other placeholders in the template. The attachments themselves
are listed as fields in the CSV.

This email contained one attachment, as noted in the Attachment1
field of the most recent row in EmailBuilder.csv: the PDF file EBAT1\
Events_060620_1800.pdf. Figure 9-6 shows the first page of that
document.

The NCRIC Terrorism Liaison Officer program distributed this list
to local police across Northern California. The events included Novato
Peaceful Car Caravan, Taking a Knee for Change, and the Noe Valley
Police Vio lence Protest with Social Distancing (the protests took place dur-
ing the COVID-19 pandemic, after all).

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://EmailBuilder-6170.html

258 Chapter 9

Figure 9-6: A list of upcoming Black Lives Matter protests in the file Events_060620_1800.pdf

You can use the SentEmailList and EmailTable values to discover how
many, and exactly which, local police officers received these daily bulletins.
The value of SentEmailList is the path to a CSV file itself: EBSE00006\170.
csv. When you open that CSV file (it’s in ncric/files), you can see that it has
14,459 rows (one of which is the header) and looks like this:

IDs,Registrations
63861
63862
63929
63930
- - snip- -

In short, this CSV contains a huge list of ID numbers. The value of
EmailTable in the EmailBuilder.csv row is Registrations, which is a good hint.
Since I knew that these IDs must match up to rows in some other table, I
de cided to check the file Registrations.csv.

Open that spreadsheet yourself at ncric/Registrations.csv. It has 185 col-
umns and over 29,000 rows, apparently listing every one who had an account
on NCRIC’s website. It includes each user’s full name; the agency they work
for and whether it’s local, state, federal, or military; their email address,
physical address, and cell phone number; their supervisor’s name and con-
tact information; their password hash; and other details.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 259

The first column of Registrations.csv is called RegistrationsID. Each
ID in the EBSE00006\170.csv file can be cross- referenced with one of
 these registrations. For example, the person in Registrations.csv with the
RegistrationsID 63861 works at the Santa Clara County Sheriff’s Office,
lives in San Jose, has an email address at the domain pro . sccgov . org, and has
a phone number with a 408 area code. In other words, NCRIC sent the
email to this list of 14,458 contacts, whose contact details can be found in
the Registrations.csv file. The BlueLeaks dataset includes this information
about every one who received bulk email through any of the websites. In
Exercise 9-3, when you read through bulk email found in BlueLeaks, you’ll
be able to look up exactly who received these email messages.

“Intelligence” Memos from the FBI and DHS
As mentioned earlier, in addition to detailed lists of upcoming protests,
NCRIC also frequently forwarded memos from its federal partners—
agencies like the FBI and DHS—to its list of over 14,000 local cops. These
memos largely contained internet rumors, hoaxes that had already been
debunked but that federal agencies apparently fell for, and warnings about
vio lence from protesters that didn’t materialize.

For example, in the row in EmailBuilder.csv with the EmailBuilderID
of 6169, the email body says, “The NCRIC is disseminating this (U//LES)
Update on behalf of the FBI.” The Attachment1 value in that row is EBAT1\
SITREP-6- JUN-1300_OPE.pdf, an unclassified FBI document dated June 6,
2020. The document is full of cherry- picked quotes from social media posts
threatening vio lence, but without any context. There was no way of knowing
how many followers an account had, how much engagement their post had,
or even if they were parodies.

The “Social Media Exploitation (SOMEX)” section of this FBI docu-
ment describes people using Facebook, Snapchat, and Instagram to post
“flyers seeking to hire ‘professional anarchists.’ ” This appears to reference
an internet hoax from late May 2020. In fact, I found multiple articles
debunking this hoax on fact- checking sites, including Snopes, PolitiFact,
and Reuters, dated a week before the FBI distributed this memo. The fake
recruitment flyer offers to compensate “professional anarchists” with
$200 per direct action, and includes the text “Funded by George Soros.”
(Antisemitic right- wing Americans frequently and falsely claim that Soros,
a Jewish billionaire, funds left- wing protesters.) The flyer also included the
phone number for a local branch of the Demo cratic Party. Both this local
Demo cratic Party branch and Soros’s Open Society Foundations confirmed
that the flyer was a fake, but this didn’t stop the FBI from distributing it
to NCRIC, which disseminated it to 14,458 local police across Northern
California.

The DHS also sent several memos to NCRIC to distribute to the cen-
ter’s list. For example, take a look at the row in EmailBuilder.csv with the
EmailBuilderID of 6144. The email body says, “The NCRIC is disseminating
the Intelligence Note ‘(U//FOUO) Some Violent Opportunists Prob ably
Engaging in Organized Activities’ on behalf of DHS,” and the attached

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://pro.sccgov.org

260 Chapter 9

document is EBAT1\(U— FOUO) IN - Some Violent Opportunists Prob ably
Engaging in Organized Activities 06012020.pdf.

The attached PDF declares that “As the protests persist, we assess
that the organized violent opportunists— including suspected anarchist
extremists— could increasingly perpetrate nationwide targeting of law
enforcement and critical infrastructure.” (This didn’t happen.) The memo
goes on to say that an NYPD official “had strong evidence that suspected
anarchist groups had planned to incite vio lence at protests, including
by using encrypted communications.” Incidentally, if you completed
Exercise 2-2 and installed Signal, you too are now a user of encrypted
communications.

As noted in Chapter 1, it’s impor tant to reach out to the people you’re
investigating to get their side of the story. Mike Sena, NCRIC’s execu-
tive director, told me that his intelligence agency was monitoring Black
Lives Matters protests in order to make sure that they remained safe. “We
 weren’t keeping track of the protests themselves, but we were identify-
ing where we were gonna have gatherings of people,” he said. “That’s our
concern; we want to make sure the events are safe— and if there are any
threats that come up that may be associated with any of those events that
 we’re able to get that threat data to whatever agency may have protection
responsibilities.”

It’s also good practice to contact outside experts— those who know
more about the subject matter than you do— for comment. Vasudha Talla,
a senior staff attorney with the American Civil Liberties Union of Northern
California, told me, “ Really what we have here is overbroad collection and
dissemination of people’s protected First Amendment activity, and it’s unte-
thered to any basis in the law.”

As you can see, there are a lot of newsworthy details in EmailBuilder.csv.
However, it’s still somewhat difficult to work with, especially because of the
HTML email bodies. Soon you’ll write some code to make all of the bulk
email easier to read. To do that, first you’ll need to learn the basics
of HTML.

A Brief Primer on HTML
In the following exercise, you’ll write some Python code that in turn writes
some HTML code. This section covers just enough HTML syntax to get you
through this chapter.

HTML is made up of components called tags. For example, consider the
following HTML:

<p>Hello world</p>

This code opens a <p> tag (which represents a paragraph), includes
some content (the text Hello world), and then closes the <p> tag with </p>.
You open a tag with <tag- name> and close it with </tag- name>.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 261

HTML typically includes tags inside of tags inside of tags. It’s com-
mon to indent HTML code for legibility, but unlike in Python, indenting
is completely optional. Here’s an example of a simple web page in HTML,
indented to make it easier to read:

<html>
 <head>
 <title>My Super Cool Web Page</title>
 </head>
 <body>
 <h1> Under Construction</h1>
 <p>This web page is under construction!</p>
 </body>
</html>

The whole page is wrapped in the <html> tag. Inside that, there’s a <head>
tag, which includes metadata about the web page, and then a <body> tag,
which includes the content of the web page. The <title> tag is a metadata
tag that describes the title of the web page, which is what’s displayed in the
browser tab itself. Inside the <body>, the biggest heading is <h1>, followed by a
<p> paragraph.

 There are plenty of other tags in HTML, but in the following exercise,
you’ll use just two more: and . The tag stands for “unordered
list,” and it’s how you make bulleted lists in HTML. Inside the tag are
 tags, which stand for “list item.” For example, here’s some HTML for a
 simple bulleted list:

 Bash
 Python
 HTML

When displayed in a web browser, that HTML code would look like this:

•	 Bash

•	 Python

•	 HTML

The less than and greater than characters (< and >) are used to open
and close tags in HTML. If you want to display literal less than or greater
than characters in HTML, you have to HTML escape them. This is similar to
escaping in shell scripts and Python code, but the syntax is dif fer ent. Escape
< by replacing it with < and escape > by replacing it with >. For example,
 here’s some HTML code that displays the text I <3 you in a paragraph:

<p>I <3 you</p>

 There are a few other special characters in HTML that are each escaped
in their own way. For example, you’d use & to escape an ampersand (&).

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

262 Chapter 9

In the next exercise, you’ll make the email messages in EmailBuilder.csv
easier to read by writing a script that automatically saves an HTML file for
each one. This will also make it much simpler for you to find the newswor-
thy ones.

Exercise 9-2: Make Bulk Email Readable
For this exercise, you’ll write a script similar to the one you wrote in
Exercise 9-1, but instead of displaying text output to the screen, you’ll
save HTML output to files. This allows you to look through a folder full
of HTML files, each one a dif fer ent bulk email, open these files in a web
browser, and read them in a more legible format. While this par tic u lar exer-
cise is designed specifically for the EmailBuilder.csv files in BlueLeaks, it’s
common to find HTML in datasets, so being able to write a similar script
could help you in the future.

For a challenge, you can try programming your own script to meet the
following requirements:

•	 Make this script accept two CLI arguments called emailbuilder_csv_path
and output_folder_path using Click. The emailbuilder_csv_path argument
should be the path to an EmailBuilder.csv file, and the output_folder_path
argument should be the path to a folder in which to save the HTML files.

•	 Make sure the folder at output_folder_path exists by importing the os
module and running os.makedirs(output_folder_path, exist_ok=True).

•	 Import the csv module and loop through all of the rows in the CSV
located at emailbuilder_csv_path, loading each row as a dictionary.

•	 For each row, save a new HTML file. This file should include infor-
mation from the bulk- email fields most relevant for your purposes:
EmailBuilderID, EmailFrom, EmailSubject, DateSent, Attachment1,
and SentEmailList. It should also include the HTML body of the email
itself, EmailBody.

Other wise, follow along with the rest of this exercise and I’ll walk you
through the programming process. Start with the usual Python script tem-
plate in a file called exercise-9-2.py:

def main():
 pass

if __name__ == "__main__":
 main()

Next, you’ll modify your script to make the script accept command line
arguments using Click.

Accept the Command Line Arguments
The following code has been modified to import the Click module and
accept some command line arguments:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks, Black Lives Matter, and the CSV File Format 263

import click

@click . command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk email in BlueLeaks easier to read"""
 print(f"Path to EmailBuilder.csv: {emailbuilder_csv_path}")
 print(f"Output folder path: {output_folder_path}")

if __name__ == "__main__":
 main()

First, the code imports the click module, and then it uses Click deco-
rators to make the main() function a Click command that accepts two
arguments, emailbuilder_csv_path and output_folder_path. The code also has
two print() statements that display the values of the two arguments. The
emailbuilder_csv_path argument should point to the path of a BlueLeaks
EmailBuilder.csv, which you’ll load and loop through, and the output_folder
_path argument should be the path to a folder in which you’ll store the
HTML files for the bulk- email messages.

Test your code and make sure it’s working as expected so far, replacing
the path to EmailBuilder.csv with the appropriate path for your computer:

micah@trapdoor chapter-9 % python3 exercise-9-2.py /Volumes/datasets/BlueLeaks- extracted/
ncric/EmailBuilder.csv output
Path to EmailBuilder.csv: /media/micah/datasets/BlueLeaks- extracted/ncric/EmailBuilder.csv
Output folder path: output

As expected, the script displays the values of the two arguments.

Create the Output Folder
Next, use Python to create the folder in output_folder_path where you’ll save
the HTML files:

import click
import os

@click . command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk emails in BlueLeaks easier to read"""
 os.makedirs(output_folder_path, exist_ok=True)

if __name__ == "__main__":
 main()

To be able to use the os.makedirs() function, first the script imports the
os module. Then it uses the os.makedirs() function to create a new folder in
Python, passing in the path to the folder to create, output_folder_path.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command
http://click.command

264 Chapter 9

The exists_ok=True keyword argument tells this function that it’s fine
if that folder already exists; other wise, if the folder already existed, the
script would crash with an error message. This way, the first time you run
this script with a specific output folder, it will create that folder and use it
to store the HTML files. If you run the script again in the future with that
same output folder, it will use the folder that’s already there.

When you run the complete script at the end of this exercise, you’ll be
able to browse the files in this folder to read through the bulk- email mes-
sages sent by a fusion center.

Define the Filename for Each Row
The goal of this script is to save an HTML file for each row in the spread-
sheet. To do this, you’ll need to load the CSV, loop through its rows, and
figure out the filename for each HTML file that you’re going to save. Next,
define the filename variable, naming each HTML file based on data that you
found in that row. To do so, make the following modifications:

import click
import os
import csv

@click . command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk emails in BlueLeaks easier to read"""
 os.makedirs(output_folder_path, exist_ok=True)

 with open(emailbuilder_csv_path) as f:
 reader = csv.DictReader(f)
 for row in reader:
 filename = (
 f"{row['EmailBuilderID']} _ {row['DateSent']} _ {row['EmailSubject']} . html"
)
 filename = filename.replace("/", "- ")
 filename = os.path.join(output_folder_path, filename)
 print(filename)

if __name__ == "__main__":
 main()

The script starts by importing the csv module. As in the previous
exercise, the code then opens the CSV file and creates a CSV reader using
csv.DictReader(). Using a for loop, the code loops through each row in
the CSV.

Rather than just displaying information, you ultimately want to save
each row as an HTML file. To prepare to write the code that actually gen-
erates those files in the next section, this code defines a filename variable
with the name of the unique HTML file to be generated for each row. In

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command
http://f"{row['EmailBuilderID']}_{row['DateSent']}_{row['EmailSubject']}.html

Blueleaks, Black Lives Matter, and the CSV File Format 265

order to make it unique, the code defines filename using the current row’s
EmailBuilderID, DateSent, and EmailSubject fields, and ends it with the . html file
extension. For example, according to this format, the filename for the bulk
email described in the previous section would be 6170_06/06/20 20:25:06_
NCRIC TLO Bulletin LES . html.

The code defines filename as an f- string surrounded in double quotes
("). The variables inside it, like row["EmailSubject"], have quotes of their
own, but you can’t use the double- quote character inside a double- quoted
f- string without Python mistakenly thinking you’re closing the f- string.
Instead, this code uses single quotes (') for the variables within the f- string:
row['EmailSubject'].

The slash characters (/) contained in the DateSent column are invalid
characters for filenames because slashes separate folders in a path. To
address this, the line filename = filename.replace("/", "- ") replaces any
slashes it finds in the filename with dash characters (-). This generates the
valid filename 6170_06-06-20 20:25:06_NCRIC TLO Bulletin LES . html.

Fi nally, this code uses os.path.join(), discussed in Chapter 8, to append
filename to the end of output_folder_path, giving you the complete path to
the file you’re going to write. You’ll ultimately save the HTML file in this
path. For example, if the filename output_folder_path is output and filename
is 6170_06-06-20 20:25:06_NCRIC TLO Bulletin LES . html, os.path.join() updates
filename to be output/6170_06-06-20 20:25:06_NCRIC TLO Bulletin LES . html.

To make sure every thing is working so far, the code displays this final
filename. Pause and test your code, using the correct filepath for your oper-
ating system:

micah@trapdoor chapter-9 % python3 exercise-9-2.py /Volumes/datasets/BlueLeaks- extracted/
ncric/EmailBuilder.csv output
output/4867_09-04-18 09:13:49_2018 CNOA Training Institute . html
output/4868_09-04-18 14:33:27_SMS Impor tant . html
output/4869_09-04-18 14:47:52_Brian SMS from Netsential . html
output/4870_09-05-18 12:57:23_(U- - LES) Officer Safety- Welfare Check Bulletin - Wesley Drake
GRIFFIN . html
- - snip- -

The output should show a unique filename for each row in the
EmailBuilder.csv spreadsheet. All you need to do now is actually write those
HTML files.

Write the HTML Version of Each Bulk Email
The purpose of saving each row of EmailBuilder.csv as an HTML file is to
more easily read these bulk- email messages by loading the HTML in a
web browser. You’ll obviously want to see the email body, but it would also
be helpful to display some basic metadata about the email: the date it was
sent, the subject, and so on. The following code writes the HTML files,
 automatically filling in both the metadata and the email body with data
from the CSV:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://LES.html
http://LES.html
http://LES.html
http://LES.html
http://Institute.html
http://Important.html
http://Netsential.html
http://GRIFFIN.html

266 Chapter 9

import click
import os
import csv
import html

@click . command()
@click.argument("emailbuilder_csv_path")
@click.argument("output_folder_path")
def main(emailbuilder_csv_path, output_folder_path):
 """Make bulk emails in BlueLeaks easier to read"""
 os.makedirs(output_folder_path, exist_ok=True)

 important_keys = [
 "EmailBuilderID",
 "EmailFrom",
 "EmailSubject",
 "DateSent",
 "Attachment1",
 "SentEmailList",
]

 with open(emailbuilder_csv_path) as f:
 reader = csv.DictReader(f)
 for row in reader:
 filename = f"{row['EmailBuilderID']} _ {row['DateSent']} _ {row['EmailSubject']} . html"
 filename = filename.replace("/", "- ")
 filename = os.path.join(output_folder_path, filename)

 with open(filename, "w") as html_f:
 html_f.write("<html><body>\n")
 html_f.write("\n")
 for key in important_keys:
 html_f.write(f"{key}: {html.escape(row[key])}\n")
 html_f.write("\n")
 html_f.write(f"{row['EmailBody']}\n")
 html_f.write("</body></html>\n")
 print(f"Saved file: {filename}")

if __name__ == "__main__":
 main()

First, the code imports the html module, which will be used later on to
escape HTML code. The code starts by defining a list, called important_keys,
of all of the impor tant keys to include in the final HTML file. This code is
positioned near the top of the main() function, before the for loop, so that
this variable will be available inside each loop, and therefore every HTML
file will include these same fields.

Inside the for loop, the code stores each row of the spreadsheet in the
dictionary row, so you can access its fields using keys. Then, the code opens
the HTML file for writing with the command with open(filename, "w") as
html_f: (as you saw in “Reading and Writing Files” in Chapter 7). The file
object for the HTML file is the html_f variable. Inside this with statement,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command
http://f"{row['EmailBuilderID']}_{row['DateSent']}_{row['EmailSubject']}.html

Blueleaks, Black Lives Matter, and the CSV File Format 267

the code then starts writing the HTML file by calling html_f.write() and
passing in a string containing HTML, first for <html> and <body> tags and
then for a tag to represent a bulleted list.

Next, the code fills in the bulleted list with the impor tant metadata.
Using a for loop, it loops through the keys in important_keys, writing each
piece of metadata to the HTML file in its own tag, in the format

metadata_item: metadata_value

where metadata_item is the name of an impor tant piece of metadata in key,
and metadata_value is the value of that piece of metadata in row[key]. For
example, metadata_item might be EmailBuilderID, and metadata_value might
be 6170, as in the example CSV row in the “Lists of Black Lives Matter
Demonstrations” section.

Instead of displaying the value with row[key], though, this line of code
uses html.escape(row[key]). This is necessary because some of the fields you
want to include use angle brackets (< and >), which indicate tags in HTML.
For example, if the value of the FromEmail field is NCRIC <info@ncric . net>,
your web browser will interpret <info@ncric . net> as an HTML tag called
info@ncric . net, which isn’t a real tag so nothing will display. In Python,
the html.escape() function lets you HTML escape a string. For example,
html.escape("NCRIC <info@ncric . net>") returns the string NCRIC <info@ncric
. net> and that’s what gets saved to the HTML file, so that when you later
view that file, the string displays correctly as NCRIC <info@ncric . net>.

When the for loop finishes running, all of the impor tant metadata will
have been written to the HTML file. The code then writes to close the
bulleted list tag. After displaying the bulleted list of impor tant fields, the
code displays the EmailBody field in a <div> tag. This time, it doesn’t HTML
escape this field, because you want to load the email’s HTML in a browser.
Fi nally, the <body> and <html> tags are closed with </body></html>.

You can find the complete script at https:// github . com / micahflee / hacks - leaks
- and - revelations / blob / main / chapter - 9 / exercise - 9 - 2 . py. This is the most compli-
cated Python script you’ve written so far in this book, but it’s about to pay
off. Run it on the NCRIC data, using the filepath appropriate for your oper-
ating system:

micah@trapdoor chapter-9 % python3 exercise-9-2.py /Volumes/datasets/BlueLeaks- extracted/
ncric/EmailBuilder.csv output
Saved file: output/4867_09-04-18 09:13:49_2018 CNOA Training Institute . html
Saved file: output/4868_09-04-18 14:33:27_SMS Impor tant . html
Saved file: output/4869_09-04-18 14:47:52_Brian SMS from Netsential . html
Saved file: output/4870_09-05-18 12:57:23_(U- - LES) Officer Safety- Welfare Check Bulletin -
Wesley Drake GRIFFIN . html
- - snip- -

This output looks similar to the last time you ran the script, except
now it also creates a folder full of 5,213 new HTML files— one for every row
of NCRIC’s EmailBuilder.csv file—in the output folder you specified. The

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://info@ncric.net
http://info@ncric.net
http://info@ncric.net
http://info@ncric.net
http://lt;info@ncric.net>
http://lt;info@ncric.net>
http://info@ncric.net
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/exercise-9-2.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/exercise-9-2.py
http://Institute.html
http://Important.html
http://Netsential.html
http://GRIFFIN.html

268 Chapter 9

information now included in the filenames allows you to browse through
the files in your file man ag er, exploring those that look most in ter est ing.

Figure 9-7 shows the list of files generated when I ran this script.

Figure 9-7: Viewing the HTML files generated by our Python script in macOS Finder

This folder contains the thousands of HTML files that your Python
script just created. The first part of the filename is the EmailBuilderID,
followed by DateSent, followed by EmailSubject. To read one of these bulk
emails, just double- click the HTML file to open it in a web browser. If you
want more information about a specific bulk email, you can always look it
up by EmailBuilderID in the original spreadsheet.

To see what the final HTML output looks like, open one of these files
in your text editor. For example, here’s the final HTML output from the
6098_05-18-20 12/45/12_Chasing Cell Phones presented via Zoom Webinar . html file:

<html><body>

EmailBuilderID: 6098
EmailFrom: NCRIC <info@ncric . net>
EmailSubject: Chasing Cell Phones presented via Zoom Webinar
DateSent: 05/18/20 12:45:12
Attachment1:
SentEmailList: EBSE00006\098.csv

<div><base href = "https:// ncric . org / ">
<a style="font: bold 15px Arial" target="_blank" href = "https:// ncric . org / EBForms . aspx ? EBID = 5499
&EBType=R">- Click Here To Register -

<div><div style="font- weight: bold">Chasing
Cell Phones</div>
- - snip- -
</div>
</body></html>

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://Webinar.html
http://lt;info@ncric.net></li
href="https://ncric.org/
href="https://ncric.org/EBForms.aspx?EBID=5499

Blueleaks, Black Lives Matter, and the CSV File Format 269

All of the bolded parts have been filled in automatically by the Python
code. In the bulleted list at the top, EmailBuilderID, EmailFrom, and so on are
keys from the important_keys list, and 6098, NCRIC <info@ncric . net>, and
so on are HTML- escaped values from the row dictionary. Below the bulleted
list, inside the <div> tag, is the email body— the value of row["EmailBody"].

Figure 9-8 shows what these bulk email messages look like in a web
browser. In this case, I opened a bulk email sent out on May 18, 2020,
advertising a course called Chasing Cell Phones hosted by the Northern
California High Intensity Drug Tracking Area. The class was designed
to teach police how to get valuable evidence directly off of suspects’ cell
phones or from third- party sources like cell phone providers.

Figure 9-8: Viewing a NCRIC bulk email in a web browser

You can use the script from this exercise to make the bulk email from
any BlueLeaks folder more readable; just run the script on the appropriate
EmailBuilder.csv file.

The BlueLeaks folder names alone don’t immediately make clear which
folders belong to which organizations. Let’s fix that by creating a spread-
sheet that associates each BlueLeaks folder with its organization name, web-
site title, and URL.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://lt;info@ncric.net>

270 Chapter 9

Discovering the Names and URLs of BlueLeaks Sites
It’s obvious what organization some BlueLeaks folders belong to based
on the folder name. You can reasonably guess that the alabamafusioncenter
folder has data from the Alabama Fusion Center. But most aren’t so clear.
Can you guess what ciacco is? How about nvhidta or snorca?

 After manually looking through the CSV files in vari ous BlueLeaks
folders, I discovered that the file Com pany.csv contains, hidden among its
108 columns, the name and URL of each site. Some BlueLeaks folders, it
turns out, host more than one site. For example, in Table 9-3, which shows
 these columns from NCRIC’s Com pany.csv file, you can see that the ncric
folder hosts 18 dif fer ent sites at dif fer ent URLs.

 Table 9-3: Data from ncric/Company.csv

CompanyID CompanyName WebsiteTitle URL

1 NCRIC . net Northern California Regional
Intelligence Center - NCRIC

ncric . net

2 NCRIC New Northern California Regional
Intelligence Center - NCRIC

upinsmoke . ncric . net

3 NCRIC Northern California Regional
Intelligence Center - NCRIC

ncric . org

4 NCHIDTA Northern California Regional
Intelligence Center - NCRIC

nchidta . org

7 NCHIDTA . net Northern California Regional
Intelligence Center - NCRIC

nchidta . net

8 NCRTTAC . org Northern California Regional
Intelligence Center - NCRIC

ncrttac . org

10 NCRTTAC . org Northern California Regional
Intelligence Center - NCRIC

www . ncrttac . org

11 Northern California
Most Wanted

Northern California Most
Wanted - Serving The Bay
Area and Surrounding
Counties

northerncaliforniamostwanted . org

12 Northern California
Most Wanted

Northern California Most
Wanted

northerncaliforniamostwanted . com

14 Northern California
Most Wanted

Northern California Most
Wanted

ncmostwanted . org

15 NCRIC Private Sector
Mobile Registration

Northern California Regional
Intelligence Center - NCRIC

psp . ncric . net

16 NCHIDTA . com Northern California Regional
Intelligence Center - NCRIC

nchidta . com

17 NCRIC NCRIC Mobile

19 NCRIC Northern California Regional
Intelligence Center - NCRIC

passwordreset . ncric . ca . gov

20 NCHIDTA NCHIDTA Mobile

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://NCRIC.net
http://ncric.net
http://upinsmoke.ncric.net
http://ncric.org
http://nchidta.org
http://NCHIDTA.net
http://nchidta.net
http://NCRTTAC.org
http://ncrttac.org
http://NCRTTAC.org
http://www.ncrttac.org
http://northerncaliforniamostwanted.org
http://northerncaliforniamostwanted.com
http://ncmostwanted.org
http://psp.ncric.net
http://NCHIDTA.com
http://nchidta.com
http://passwordreset.ncric.ca.gov

Blueleaks, Black Lives Matter, and the CSV File Format 271

CompanyID CompanyName WebsiteTitle URL

21 NCHIDTA (New) Northern California Regional
Intelligence Center - NCRIC

new . nchidta . org

22 NCRIC Northern California Regional
Intelligence Center - NCRIC

ncric . ca . gov

23 NCRIC NEW Northern California Regional
Intelligence Center - NCRIC

new . ncric . ca . gov

As you can see here, the ncric folder hosts not only the NCRIC site but
also the sites for the Northern California High Intensity Drug Trafficking
Area (NCHIDTA); the Northern California Most Wanted, which lists
wanted fugitives; and others. However, all these websites share the same
code and databases.

Since almost every BlueLeaks folder contains a Com pany.csv file listing
all of the sites associated with that folder, we can write a script to automati-
cally extract this information and format it as a CSV file. This will open the
door for you to pick which fusion center you want to research— perhaps
 there’s one in a city near you.

Exercise 9-3: Make a CSV of BlueLeaks Sites
The script you write in this exercise will loop through each BlueLeaks
folder, open its Com pany.csv file, and save information about the
 organizations whose websites are hosted in that folder into a CSV file that
you create. For a challenge, you can try programming your own script to do
the following:

•	 Accept two CLI arguments: blueleaks_path, the path to your extracted
BlueLeaks data, and output_csv_path, the path to the new CSV file that
the script will create.

•	 Include these headers: BlueLeaksFolder (the BlueLeaks folder name),
CompanyID, CompanyName, WebsiteTitle, and URL (you’ll find these latter fields
in the vari ous Com pany.csv files).

•	 Open output_csv_path for writing and create a csv.DictWriter() object
(see “Working with CSV Files in Python” on page XX), passing in the
file object and the headers.

•	 Loop through each folder in BlueLeaks. You can get a list of all the file-
names with os.listdir(blueleaks_path).

•	 Inside each BlueLeaks folder, open the Com pany.csv file if it exists, and
loop through all of the rows in that CSV. For each row, select the infor-
mation you want to save and then write it to your CSV.

•	 Map out exactly what websites each BlueLeaks folder hosts in your out-
put CSV.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://new.nchidta.org
http://ncric.ca.gov
http://new.ncric.ca.gov

272 Chapter 9

Other wise, the rest of this exercise will walk you through the program-
ming process. Start with the usual Python script template in a file called
exercise-9-3.py:

def main():
 pass

if __name__ == "__main__":
 main()

Next, modify your script to accept the blueleaks_path and output_csv_path
command line arguments:

import click

@click . command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""

if __name__ == "__main__":
 main()

 You’ve done this enough times at this point that you can safely assume
the CLI arguments are working properly without testing the script.

Open a CSV for Writing
The simplest way to program this script is to first open a CSV file for writing
and then loop through each folder in BlueLeaks, adding rows to this CSV.
Start by just opening the CSV file for writing, using the following code:

import click
import csv

@click . command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""
 headers = ["BlueLeaksFolder", "CompanyID", "CompanyName", "WebsiteTitle", "URL"]
 with open(output_csv_path, "w") as output_f:
 writer = csv.DictWriter(output_f, fieldnames=headers)
 writer.writeheader()

if __name__ == "__main__":
 main()

First, the code imports the csv module. It then defines what the head-
ers of the output CSV will be in the variable headers. As noted in “Working

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command
http://click.command

Blueleaks, Black Lives Matter, and the CSV File Format 273

with CSV Files in Python,” in order to create a csv.DictWriter() object, you’ll
need to pass in this list of headers for your CSV file.

Next, the code opens the output CSV file for writing, this time calling it
output_f, and creates the csv.DictWriter() object, saving it in the writer vari-
able. Fi nally, the program writes the header row to the CSV. To write the
remaining rows, you’ll need to run writer.writerow(), passing in a dictionary
that represents the row.

Try running the script so far:

micah@trapdoor chapter-9 % python3 exercise-9-3.py /Volumes/datasets/BlueLeaks- extracted sites
.csv

The script itself shouldn’t display any output; it should just create an
output CSV file, sites.csv. Try displaying its contents using cat:

micah@trapdoor chapter-9 % cat sites.csv
BlueLeaksFolder,CompanyID,CompanyName,WebsiteTitle,URL

You should see that the file currently contains only header rows.

Find All the Com pany.csv Files
Now that you can write rows to your CSV, the next step is to loop through
the BlueLeaks sites, looking for Com pany.csv files, using the following code:

import click
import csv
import os

@click . command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""
 headers = ["BlueLeaksFolder", "CompanyID", "CompanyName", "WebsiteTitle", "URL"]
 with open(output_csv_path, "w") as output_f:
 writer = csv.DictWriter(output_f, fieldnames=headers)
 writer.writeheader()

 for folder_name in os.listdir(blueleaks_path):
 company_csv_path = os.path.join(blueleaks_path, folder_name, "Com pany.csv")
 if os.path.exists(company_csv_path):
 print(company_csv_path)

if __name__ == "__main__":
 main()

This code imports the os module. After creating the CSV writer, it loops
through the return value of the os.listdir() function, which returns a list
of all the files inside the BlueLeaks folder. It then defines a new company_csv
_path variable as the path to the Com pany.csv file inside that BlueLeaks

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

274 Chapter 9

folder. Fi nally, the os.path.exists() function makes sure that this specific
Com pany.csv file actually exists, and if so, the code displays its path.

Try running the code so far:

micah@trapdoor chapter-9 % python3 exercise-9-3.py /Volumes/datasets/BlueLeaks- extracted sites
.csv
/media/micah/datasets/BlueLeaks- extracted/vlnsn/Company.csv
/media/micah/datasets/BlueLeaks- extracted/njuasi/Company.csv
/media/micah/datasets/BlueLeaks- extracted/stopwesttexasgangs/Company.csv
- - snip- -

As you can see, the script displays paths for all of the Com pany.csv files
in BlueLeaks. (Yours might display them in a dif fer ent order than mine.)

Add BlueLeaks Sites to the CSV
The final step is to open all the Com pany.csv files whose paths you’ve just
listed, loop through their rows, and add new rows to your output CSV file
based on them:

import click
import csv
import os

@click . command()
@click.argument("blueleaks_path")
@click.argument("output_csv_path")
def main(blueleaks_path, output_csv_path):
 """Make a CSV that describes all the BlueLeaks folders"""
 headers = ["BlueLeaksFolder", "CompanyID", "CompanyName", "WebsiteTitle", "URL"]
 with open(output_csv_path, "w") as output_f:
 writer = csv.DictWriter(output_f, fieldnames=headers)
 writer.writeheader()

 for folder_name in os.listdir(blueleaks_path):
 company_csv_path = os.path.join(blueleaks_path, folder_name, "Com pany.csv")
 if os.path.exists(company_csv_path):
 with open(company_csv_path, "r") as input_f:
 reader = csv.DictReader(input_f)
 for row in reader:
 output_row = {
 "BlueLeaksFolder": folder_name,
 "CompanyID": row["CompanyID"],
 "CompanyName": row["CompanyName"],
 "WebsiteTitle": row["WebsiteTitle"],
 "URL": row["URL"],
 }
 writer.writerow(output_row)

 print(f"Finished: {folder_name}")

if __name__ == "__main__":
 main()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Blueleaks, Black Lives Matter, and the CSV File Format 275

The added code opens the company_csv_path, this time for reading instead
of writing, and now calling the file object input_f. It then creates a csv.
DictReader() object to read the data from this CSV and loops through its rows.

For each row, the code creates a new dictionary called output_row that
contains the name of the BlueLeaks folder you’re currently working in, as
well as CompanyID, CompanyName, WebsiteTitle, and URL from Com pany.csv. It then
uses the CSV writer you created in the previous section to save that row to
your output CSV file. When the code finishes looping through all of the rows
in a Com pany.csv file, it displays a message to show it’s done with that folder.

You can find the complete script at https:// github . com / micahflee / hacks - leaks
- and - revelations / blob / main / chapter - 9 / exercise - 9 - 3 . py. Run your final script like so:

micah@trapdoor chapter-9 % python3 exercise-9-3.py /Volumes/datasets/BlueLeaks- extracted sites
.csv
Finished: vlnsn
Finished: njuasi
Finished: stopwesttexasgangs
- - snip- -

When you run this script, the output displays a line for each BlueLeaks
folder showing that it has finished running. But more importantly, it creates
the file sites.csv. Figure 9-9 shows what that file looks like in LibreOffice Calc.

Figure 9-9: The CSV output created by the final Exercise 9-3 script

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/exercise-9-3.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-9/exercise-9-3.py

276 Chapter 9

Once you’ve created the CSV, you can use your graphical spreadsheet
software to freeze the header row at the top and sort the columns however
you’d like. If you live in the US, try finding the fusion center that covers
your region; that might be a good place to start digging. You can use the
skills you’ve learned in this chapter and the Python scripts you’ve written to
make the files for your chosen fusion center easier to work with.

Before you get too deep into your BlueLeaks investigations, though, I
recommend reading Chapter 10, where I’ll introduce you to software that
might save you time and allow you to uncover more in ter est ing revelations.

Summary
In this chapter, you started investigating CSV spreadsheets. You’ve learned
how to open and examine them using spreadsheet software, as well as how
to read and write them using Python code, sharpening your programming
skills along the way. You’ve also learned more about the BlueLeaks dataset
structure and how to find hidden details, such as who posted which SARs
and what documents were sent out as part of which bulk email messages, in
the spreadsheets.

 You’ve explored just a few CSVs in BlueLeaks so far, including SARs.
csv and EmailBuilder.csv in NCRIC, and Com pany.csv in all of the folders, but
 there’s still much more to investigate. In the next chapter, you’ll learn how
to research the BlueLeaks dataset in depth using my custom- built software,
BlueLeaks Explorer.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

In some ways, I spent the summer of 2020 like many
other Americans. I mostly stayed at home, avoiding
COVID-19 like the plague it is; I spent far too many
hours doom- scrolling through social media feeds;
and occasionally I put on an N95 mask, grabbed some
hand sanitizer, and hit the streets to protest the police
killings of George Floyd, Breonna Taylor, and count-
less other Black Americans. But I also spent much of
that summer writing code that would make it easier
for me and other journalists at The Intercept to make
sense of the sprawling BlueLeaks dataset.

My efforts culminated in a piece of open source software, which
I released as part of this book, called BlueLeaks Explorer. BlueLeaks
Explorer is a web application that allows you to examine the BlueLeaks data
almost as if you could log in as an admin on the actual websites that were

10
B L U E L E A K S E X P L O R E R

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

278 Chapter 10

hacked. BlueLeaks Explorer is a little like a large Python script that makes
all of the CSVs in BlueLeaks easier to work with, like the scripts you wrote
in Chapter 9.

In this chapter, you’ll continue to investigate the BlueLeaks dataset,
this time using BlueLeaks Explorer. I’ll give you a thorough overview of the
software, including how to set it up on your own computer and how to start
researching BlueLeaks with it. I’ll conclude the chapter by explaining the
technology behind the app and pointing you to its Python source code on
GitHub. If you ever need to develop an app to investigate a specific dataset,
you can use this chapter as inspiration.

Undiscovered Revelations in BlueLeaks
As discussed in the previous chapter, my BlueLeaks investigation focused
on the data from the ncric folder. Even within that folder, I concentrated
on the final two weeks of data, focusing on police surveillance of the Black
Lives Matter movement. Other journalists dug into dif fer ent parts of the
dataset, investigating fusion centers in places like Maine and Texas.

Notably, journalist Nathan Bernard broke several stories for the local
news- and- arts magazine Mainer based on BlueLeaks documents from the
Maine Information and Analy sis Center (MIAC), Maine’s fusion center.
 These included stories about MIAC disseminating unverified rumors, some-
times based on satirical social media posts, that were first spread by far- right
activists on social media and then included in FBI and DHS intelligence
reports, similar to the FBI warning discussed in Chapter 9 about a George
Soros−funded group hiring “professional anarchists.” “This bogus intel gives
cops a dangerously distorted sense of what to expect during demonstrations
by portraying peaceful protesters as highly trained, paid and organized
criminal actors intent on causing mayhem,” Bernard wrote in one article.

Additionally, John Anderson and Briant Bingamon wrote a series
of articles for the Austin Chronicle, a local paper in Austin, Texas, based
on BlueLeaks documents from the Austin Regional Intelligence Center
(ARIC), Austin’s fusion center. Anderson wrote about ARIC’s practice of
monitoring for and distributing lists of local Black Lives Matter protests
(just like NCRIC did during the summer of 2020), and about several SARs
posted to ARIC, including one where the “suspicious activity” was someone
mailing a package of toys to Lebanon. Bingamon wrote stories revealing
that ARIC had monitored local leftist groups in Austin, and that some
ARIC courses for law enforcement teach junk science— including a tech-
nique for detecting deception, called Scientific Content Analy sis (SCAN),
which a 2016 study concluded has “no empirical support” (https:// www . ncbi
. nlm . nih . gov / pmc / articles / PMC4766305 /).

MIAC, ARIC, and NCRIC are some of the BlueLeaks sites that have
received the most interest, but many more haven’t gotten any attention at
all. By the end of this chapter, you’ll have all the tools you need to do a
deep dive on any BlueLeaks folder you choose and search for newsworthy
revelations. To start, you’ll install BlueLeaks Explorer in Exercise 10-1.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766305/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766305/

Blueleaks Explorer 279

Exercise 10-1: Install BlueLeaks Explorer
You can find BlueLeaks Explorer’s source code at https:// github . com / micahflee
/ blueleaks - explorer. That GitHub page includes instructions on how to get it
up and running locally on your computer, but I’ll explain all the steps in
this exercise as well.

The BlueLeaks Explorer app is packaged as a Docker image and pub-
lished to Docker Hub at https:// hub . docker . com / r / micahflee / blueleaks - explorer. You’ll
run it locally on your computer using Docker and point it at your BlueLeaks
folder. Before you begin, make sure you’ve completed the exercises in
Chapter 5 so that you understand how to use Docker and Docker Compose.

Create the Docker Compose Configuration File
Start by creating a new folder called blueleaks- explorer. This folder will
require about 5GB of disk space. Create a new file in that folder called
docker- compose.yaml and open it in your text editor.

N O T E If you’re using Win dows, I recommend that you follow this chapter in Ubuntu with
WSL rather than PowerShell (see Appendix A for information about performance
issues you might encounter when using Docker in Win dows). You can open an
Ubuntu terminal, create the blueleaks- explorer folder in your Linux filesystem
using mkdir blueleaks- explorer, and edit the docker- compose.yaml file in VS
Code by running code docker- compose.yaml, all from Ubuntu.

 Here’s how I created the folder, and made the docker- compose.yaml file,
on my Mac. You can do the same in Linux or Win dows with WSL:

micah@trapdoor ~ % mkdir blueleaks- explorer
micah@trapdoor ~ % cd ~/blueleaks- explorer
micah@trapdoor blueleaks- explorer % code docker- compose.yaml

Add the following code to your docker- compose.yaml file, replacing
/Volumes/datasets/BlueLeaks- extracted with the path that maps to /data
/blueleaks in your own BlueLeaks- extracted folder:

version: "3.9"
 services:
 app:
 image: micahflee/blueleaks- explorer:latest
 ports:
 - "8000:80"
 volumes:
 - /Volumes/datasets/BlueLeaks- extracted:/data/blueleaks
 - ./databases:/data/databases
 - ./structures:/data/structures

This file describes the settings for the BlueLeaks Explorer Docker
container. The container is called app and is set to use the latest version
of the micahflee/blueleaks- explorer Docker container image, which you’ll

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/blueleaks-explorer
https://github.com/micahflee/blueleaks-explorer
https://hub.docker.com/r/micahflee/blueleaks-explorer

280 Chapter 10

download from Docker Hub. The ports section maps port 8000 on your
computer to port 80 inside the container. This means that once the
BlueLeaks Explorer app is running, you can load it on your browser at
http:// localhost:8000. The volumes section maps folders on your machine to
folders inside the container.

Save the docker- compose.yaml file.

Bring Up the Containers
In a terminal win dow, change to the blueleaks- explorer folder that you just
made, then run this command to download the BlueLeaks Explorer Docker
image and start the server:

docker- compose up

The first time you run the command, the output should end with some-
thing like this:

blueleaks- explorer- app-1 | * Serving Flask app 'app'
blueleaks- explorer- app-1 | * Debug mode: off
blueleaks- explorer- app-1 | WARNING: This is a development server. Do not use
 it in a production deployment. Use a production
 WSGI server instead.
blueleaks- explorer- app-1 | * Running on all addresses (0.0.0.0)
blueleaks- explorer- app-1 | * Running on http:// 127 . 0 . 0 . 1:80
blueleaks- explorer- app-1 | * Running on http:// 172 . 19 . 0 . 2:80
blueleaks- explorer- app-1 | Press CTRL+C to quit

At this point, BlueLeaks Explorer is running on your computer, but it
 hasn’t been initialized. If you load http:// localhost:8000 in your browser, you
should get an error telling you as much.

Initialize the Databases
The first time you use BlueLeaks Explorer, you must run a script to convert
the many CSV files in BlueLeaks into SQLite databases. SQLite is light-
weight SQL database software that can store a whole database in a single
file (you’ll learn more about SQL databases in Chapter 12). All of the CSVs
in BlueLeaks were originally formatted as SQL tables, which the hacker
exported into CSV format. Converting these CSV files back into database
 tables makes it easier for the Python code that runs BlueLeaks Explorer to
query for and access items within those tables, then display them in the web
app. For example, when searching for SARs that contain a specific string,
BlueLeaks Explorer might search all the BriefSummary fields in the SARs
 table, trying to find reports that mention that string.

To initialize BlueLeaks Explorer, open a separate terminal win dow,
change to your blueleaks- explorer folder, and run this command:

docker- compose exec app poetry run python ./initialize.py

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:8000
http://127.0.0.1:80
http://172.19.0.2:80
http://localhost:8000

Blueleaks Explorer 281

This will run poetry run python ./initialize.py in your already running
app container. The initialize.py Python script will take a while to finish
 running, since it’s transforming thousands of CSV files into hundreds of
SQLite database; it took my computer about 50 minutes.

N O T E If you’re curious about the details of what the initialization script is doing, take a look
at the source code. BlueLeaks Explorer is open source, meaning you can check out the
initialize.py file in the proj ect’s git repository at https:// github . com / micahflee
/ blueleaks - explorer / blob / main / src / initialize . py.

When initialize.py finishes running, refresh http:// localhost:8000 in your
web browser to pull up BlueLeaks Explorer, as shown in Figure 10-1.

Figure 10-1: The freshly installed BlueLeaks Explorer app

Each fusion center is unique: it’s run by dif fer ent people, has dif fer ent
priorities and goals, and keeps track of dif fer ent data. To make the best use
of BlueLeaks Explorer, you need to spend some time understanding how
the data in your target fusion center is laid out. I call this layout the structure
of a BlueLeaks site. This refers to which tables contain useful information
(some tables are empty or contain irrelevant data about the website layout),
which columns in those tables are useful, and how the vari ous tables are
related.

The top of every page in BlueLeaks Explorer includes three links, as
shown in Figure 10-1: Explore Data, Define Structure, and Browse Files. It
would be difficult to automatically figure out the structure of a BlueLeaks
site, in part because it’s subjective— individual users determine what infor-
mation is in ter est ing or useless for their purposes. Therefore, the Define
Structure page brings you to an editor where you can define your own
structures for BlueLeaks sites. Under Explore Data, you can find struc-
tures you’ve already created for individual BlueLeaks sites. Since you’re
 running BlueLeaks Explorer locally on your own computer, you’ll have
access only to structures you’ve made yourself or that are included in the
BlueLeaks Explorer Docker image. Fi nally, Browse Files lists all of the files
in BlueLeaks, enabling you to link to specific documents or embed images;
it’s simply a web interface to the raw BlueLeaks data, as if you were looking
at it in a file browser.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/blueleaks-explorer/blob/main/src/initialize.py
https://github.com/micahflee/blueleaks-explorer/blob/main/src/initialize.py
http://localhost:8000

282 Chapter 10

N O T E If you set up a VPN to hide your IP address from fusion center websites as described
in “Covering Your Tracks with a VPN Service” in Chapter 9, you may want to use
a VPN for this chapter as well. Though BlueLeaks Explorer is hosted on your own
computer, viewing content within it might load images from fusion center sites, and
clicking links could bring you to those sites.

In the following section, you’ll begin by exploring the data for the
NCRIC site using a structure that I’ve already created.

The Structure of NCRIC
BlueLeaks Explorer allows you to browse and search all of the tables in any
BlueLeaks site that you have a structure for. To demonstrate the features
of the app— including listing the tables in a BlueLeaks site, viewing and
searching the data in those tables, viewing data from related tables, and
viewing images and documents associated with rows of data— you’ll start by
exploring the NCRIC data. This will help you understand how structures
are constructed before you make your own.

Exploring Tables and Relationships
As directed in Exercise 10-1, make sure your BlueLeaks Explorer Docker
container is running and load http:// localhost:8000 in your browser. From
the Explore Data section, click Northern California Regional Intelligence
Center. Figure 10-2 shows this page.

Figure 10-2: Viewing the NCRIC tables in BlueLeaks Explorer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:8000

Blueleaks Explorer 283

 Here, you can see a list of tables in the ncric folder, as well as the num-
ber of rows of data in each table. The EmailBuilder table has 5,213 rows, for
example. I’ve hidden all of the tables that are empty or contain information
I considered irrelevant so that they don’t show up here.

When I first defined the NCRIC structure, I started by exploring the
data in each table, one at a time (I’ll explain how you can do this for other
parts of BlueLeaks later in the chapter). I found that the following tables
contained the most in ter est ing and potentially newsworthy data:

EmailBuilder Contains all of the bulk email NCRIC sends out to its
large list of local police and private industry partners

EventBuilder Describes events that NCRIC put on, complete with
their descriptions, PDF flyers, and lists of who attended

FormBuilder Contains a list of forms on NCRIC’s website for a variety
of purposes, like submitting SARs, requesting technical help, or even
registering for an account with the fusion center

Requests Includes requests from local police for the fusion center’s
assistance with tasks like monitoring social media and breaking into
locked phones

SARs Contains suspicious activity reports, which, as you learned in
the previous chapter, are files submitted to NCRIC in which people
report be hav ior that they believe could be criminal or other wise
suspicious

SurveyForm Includes surveys that NCRIC requests from attendees of
events it has hosted

Dif fer ent tables within BlueLeaks relate to each other in vari ous
ways. For example, as you know from the previous chapter, many of the
BlueLeaks sites include the tables Documents and DocumentCategory.
Both of these tables contain a field called DocumentCategoryID. One row
in the Documents table in the ncric folder, for instance, describes a docu-
ment titled FBI NSIR Tradecraft Alert Voter Suppression. The DocFilename
field contains the path of a PDF. The DocumentCategoryID is 167. Looking
at the row with that DocumentCategoryID in the DocumentCategory
 table, you can see that the CategoryName is Elections. Now you know that
NCRIC put this document in the Elections category. In database- speak,
two tables that are connected via a shared field have a relationship. The
SurveyForm table, which lists surveys for attendees of NCRIC- hosted events
to fill out, is also related to the Survey table, which includes the actual sur-
vey feedback.

BlueLeaks Explorer makes it easy to quickly find related information
within a BlueLeaks site. Click the Documents table from the list of tables
shown in Figure 10-2. You should see a list of documents, each on its own
row in the Documents table. In the Search field, enter Voter Suppression to
bring up the FBI NSIR Tradecraft Alert Voter Suppression document, shown in
Figure 10-3.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

284 Chapter 10

Figure 10-3: Viewing the FBI NSIR Tradecraft Alert Voter Suppression document in
BlueLeaks Explorer

When you view a document row using the NCRIC structure I defined,
BlueLeaks Explorer will show you a link to the file itself, in this case a PDF.
It also shows a preview of the file if it’s available (the path to the preview
image is listed in the PreviewImage field), along with the document cat-
egory, in this case Elections.

If you click the filename link, the PDF will open. Dated October 16,
2018, the document warns, “The FBI assesses threat actors may use social
media, namely Facebook and Twitter, to suppress voter turnout by posting
disinformation on when and how to vote in the 2018 midterm election.” It
points out examples of voter suppression tactics on social media from the
2016 election, such as a Spanish- language meme claiming that you can
vote for Hillary Clinton by text ing “Hillary” to a specific phone number—
tricking voters into falsely believing they voted for Clinton.

Next, click Permalink under the Elections category to get to the
category itself. Your URL should now be http:// localhost:8000 / ncric

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:8000/ncric/DocumentCategory/167

Blueleaks Explorer 285

/ DocumentCategory / 167, and from here you should see all 11 documents
categorized in Elections. You can click Permalink under any of those docu-
ments to view it. You can easily flip between documents and their catego-
ries in this way because I defined a relationship in the NCRIC structure
between the Document and DocumentCategory tables. The permalink
brings you to a unique URL just for that row. During an investigation, you
can keep track of any in ter est ing items in the dataset using their perma-
links so you can easily refer back to them later on. The Show All link will
show all of the hidden fields for this row. I’ve configured the Documents
 table to show only a handful of fields: DocTitle, DateEntered, DocFilename,
URL, PreviewImage, and the DocumentCategory relationship. Clicking
Show All will show you the remaining hidden fields as well.

Searching for Keywords
For a concrete example of how BlueLeaks Explorer makes it easier to
investigate the BlueLeaks documents, let’s revisit the SAR described in
“Investigating a SAR” in Chapter 9 in which a lawyer reported a student
protester. This time, instead of manually grepping CSV files and copying
and pasting big blocks of text from fields in spreadsheets for easier reading,
you’ll do it all in BlueLeaks Explorer.

Go back to the NCRIC list of tables, click SARs, and search for antifa
to find that specific row. Figure 10-4 shows the rec ord. The File1 row should
display a clickable link to the PDF originally attached to the SAR, allowing
you to quickly open the document. If you click it, you’ll immediately be able
to read the PDF in another browser tab.

Figure 10-4: Viewing a SAR in BlueLeaks Explorer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:8000/ncric/DocumentCategory/167

286 Chapter 10

Now that you have an idea of how to navigate BlueLeaks Explorer, it’s
your turn to explore other parts of the BlueLeaks dataset beyond NCRIC.

Building Your Own Structure
In this section, you’ll learn how to define your own structure for another
BlueLeaks site, the Los Angeles Joint Regional Intelligence Center (JRIC).
By the end of this section, you’ll have the tools you need to create structures
for all of the BlueLeaks sites.

Building out a BlueLeaks Explorer site structure takes work, but it also
helps you gain a much clearer understanding of the data. Once you’ve
started cleaning up a few of the tables, you can spend time reading them,
looking for newsworthy revelations. As you read, you’ll prob ably end up
tweaking the structure to help you in your research, and you’ll also likely
start cleaning up new tables as you discover relationships to them.

Defining the JRIC Structure
Some structures, like the one I constructed for NCRIC, are already included
with BlueLeaks Explorer. To either edit existing structures or define new
ones, load BlueLeaks Explorer in your browser and click Define Structure at
the top of the screen. Figure 10-5 shows the page that should pop up.

On the Define Structure page, every structure that is already defined
is listed under Edit Structures. In Figure 10-5, this is just a single structure,
NCRIC. To edit a structure, simply click its name. The BlueLeaks sites that
 don’t yet have a structure are listed by their folder name under Define a
New Structure, along with a button to create that new structure. Scroll
down until you see the listing for jric, and click Create.

Figure 10-5: Viewing the Define Structure page in BlueLeaks Explorer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks Explorer 287

In the page that opens, you can configure exactly how BlueLeaks
Explorer should work when you investigate the JRIC data, as shown in
Figure 10-6. The top of the page displays the name of the site, which
defaults to the BlueLeaks folder name, jric.

Figure 10-6: Editing the JRIC structure in BlueLeaks Explorer

Click Rename next to the site name and enter Los Angeles Joint
Regional Intelligence Center. Every time you make a change like this, you
should see the message “You have unsaved changes,” with a Save button, in
the bottom- right corner. Click Save.

Below the site name, the Edit Structure page lists all of the tables in this
BlueLeaks site. Next to each table name is the Rename button, as well as
buttons to show or hide the table. BlueLeaks Explorer automatically detects
 tables that don’t have any rows and hides them by default; this is why the
ASIOptions table starts out hidden. You can also manually hide tables that
you don’t care about to reduce clutter when you’re actually investigating
this site later on.

Now that you’ve created the JRIC structure, open the Explore Data link
at the top in a separate browser tab. You should see that the Los Angeles

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

288 Chapter 10

Joint Regional Intelligence Center site has been added to the list of sites to
explore. Figure 10-7 shows the new Explore Data page.

Figure 10-7: The Explore Data page after you’ve created
the JRIC structure

Any additional structures you create for other BlueLeaks sites will also
appear on this page.

Click the JRIC link to pull up all the tables in this site. As you
work through the rest of the section, and when building a structure in
BlueLeaks Explorer in general, keep two tabs open: the Explore Data
and Define Structure pages. This way, when you save changes in the
Define Structure tab, you can refresh the Explore Data tab to see them
implemented.

Showing Useful Fields
In Exercise 9-3, you wrote a Python script to automatically create a
spreadsheet mapping the names of BlueLeaks folders to their associated
 organizations. You found this information in Com pany.csv, a spreadsheet
with 108 dif fer ent columns. Only a few fields in this spreadsheet proved to
be relevant, which makes this a good table for practicing showing only use-
ful fields.

In your Explore Data tab, click the Com pany table. You should see the
page shown in Figure 10-8. There are 7 rows displayed, each containing all
108 dif fer ent fields, some of which include lots of HTML. Because each row
has so many fields, this figure shows only the fields at the beginning of the
first row of data.

The text in these fields isn’t very readable yet, but that’s easy to fix.
Back in your Define Structure tab, scroll down until you find the Com pany
 table. For each field, you can choose the type from a drop- down menu
and toggle a checkbox to set whether or not you want it to appear in the
Explore Data page. For example, you prob ably don’t care about the value of
BannerAdHeight, so you’d want to hide that field.

You can also click the checkbox next to Show at the top of the table to
toggle all the checkboxes at once. Click it now to uncheck— that is, hide—
all of the fields in the Com pany table. From here, you can scroll through
and select only the most useful fields to display.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks Explorer 289

By reading through the Explore Data page, I can guess that the most
useful fields include URL, InitialPage, SiteHeader, and CompanyName.
Back on the Define Structure page, check the boxes next to these fields to
show them and then click Save. Refresh the Explore Data page. It should
now look like Figure 10-9.

The Explore Data page still lists all seven rows in the Com pany table,
but this time it shows only the four specific fields you selected, which makes
it much easier to read through. As you can see from the second row of
data, the Explore Data page also hides empty fields— the leads . jric . org row
 doesn’t have anything in its SiteHeader field, so BlueLeaks Explorer skips
that field.

You can still see all of the hidden fields for any row by clicking the Show
All button below it. In the course of an investigation, you might discover
that a field you chose to hide is actually useful, in which case you can edit
the structure again to display it.

Figure 10-8: Exploring data in JRIC’s Com pany table before editing the structure

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://leads.jric.org

290 Chapter 10

Changing Field Types
The Explore Data page is much more readable now, but it’s still not perfect.
The SiteHeader field is hard to read because it’s a block of HTML. It would
also be nice if CompanyName appeared at the top of the list of fields. Let’s
make one more change to fix that.

 Every field in BlueLeaks Explorer starts out as text, and it’s up to you to
change the type if you think there’s a better way to display that field. Here
are all of the types that are available:

text Displays the value as text; this is the default for all fields

html Renders the value as an HTML web page

pre Displays the field’s value as text in a fixed- width font and pre-
serves all of the original spacing (see the BriefSummary field in
Figure 10-4 for an example)

image Loads an image from a path directly in your browser;
choose this type only if the field contains a path to an image (see the
PreviewImage field in Figure 10-3 for an example)

Figure 10-9: Viewing JRIC’s Com pany table with the irrelevant fields hidden

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Blueleaks Explorer 291

attachment Displays a filepath as a text link directly to the file; choose
this type only if the field contains a path to a non- image file (see the
DocFilename field in Figure 10-3 for an example)

survey Recognizes the format of SurveyData fields, which appear only
in Survey tables and contain feedback from attendees of events hosted
by fusion centers— and makes the results easier to read

Back in the Edit Structure tab, find the SiteHeader field. This field has
a Type drop- down menu that’s currently set to text; switch it to html. Now
scroll down until you find the CompanyName field. Click the grip icon to
the left of it and drag it to the top of the list of fields. Click Save again and
refresh the Explore Data tab. Your Com pany table should now look like
Figure 10-10.

Figure 10-10: Exploring JRIC’s Com pany table after editing its structure

 Because you changed the SiteHeader field type from text to html,
BlueLeaks Explorer renders it as HTML and loads the JRIC header

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

292 Chapter 10

image hosted from JRIC’s web server. Figure 10-10 also shows that the
CompanyName field is now listed first for each row.

Adding JRIC’s Leads Table
In your Explore Data tab, go back to the JRIC table listing. This time, click
the Leads table. If you read through its rows, you’ll see that this table is full
of SARs. It’s similar to NCRIC’s SARs table, except that its leads are submit-
ted by both the fusion center’s partners and members of the public, and
it appears to retain data forever, whereas the NCRIC SARs table includes
only one month’s worth of SARs. To get more practice using BlueLeaks
Explorer, including setting up a relationship between two tables, you’ll
define the structure for the Leads table next.

In your Define Structure tab, find the Leads table, hide all of its
columns, and repeat the steps you followed with the Com pany table to
show only the useful fields, selecting the most appropriate type for each.
 After reading through the first several rows of Leads data in the Explore
Data tab, I de cided to show FormTimeStamp, County, PhoneNum,
EmailAddress, ActivityDate, ActivityTime, ActivityDetails, fullname,
Information, NSFormName, FUpload, and FUploadName. Feel free to show
or hide dif fer ent fields yourself.

 After saving the structure and refreshing the Explore Data page, I get
 these fields from the first row in the Leads table:

FormTimeStamp 06/07/20 00:39:09

County Los Angeles

PhoneNum [redacted]

EmailAddress [redacted]@torrenceca . gov

ActivityDate 06/06/20 00:00:00

ActivityTime 1345

ActivityDetails On the above date and time officers were dispatched
to a call of a suspicious package. Upon, arrival [sic] officers noticed that
the package had bottles with a cloth items [sic] sticking out of the top
of the bottle resembling a Molotov Cocktail. This package was in the
general area of a BLM protest that was going on. (see attached report
and photos)

NSFormName PublicCountyLeadSheet

FUpload LFU00010\984.docx

FUploadName 200020437.docx

The FUpload and FUploadName fields both contain filenames. Notice
that FUpload seems to be the path to a file inside the BlueLeaks dataset.
Back in the Define Structure page, change the type of FUpload from text
to attachment, save your changes, and refresh the Explore Data page. The
FUpload field should now link to http:// localhost:8000 / blueleaks - data / jric / files
/ LFU00010 / 984 . docx, which loads the document from your local copy of
the data. You can click this link to read it if you’re curious. The filename is

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://redacted]@torrenceca.gov
http://localhost:8000/blueleaks-data/jric/files/LFU00010/984.docx
http://localhost:8000/blueleaks-data/jric/files/LFU00010/984.docx

Blueleaks Explorer 293

984.docx, but it appears that the person who submitted this lead originally
uploaded the file as 2000020437.docx.

Looking through other rows in this Leads table, I also notice that
values in the NSFormName field are dif fer ent for dif fer ent leads. My
guess is that this field describes which form was filled out to add this
lead to JRIC’s database. Most of the values for NSFormName appear to
be PublicCountyLeadSheet or LeadSheetPrivateSectorAndPublic. Is the
Leads table related to some other table that describes forms? Let’s find out.

Building a Relationship
Go back to the page listing all of the tables in JRIC and click the
FormBuilder table. This table doesn’t have a field called NSFormName,
but it does have one called FormName. If you search the FormBuilder
 table for PublicCountyLeadSheet and LeadSheetPrivateSectorAnd
Public, you’ll see that the row with ID 1 has a FormName value of
PublicCountyLeadSheet, and the row with ID 2 has a FormName value of
LeadSheetPrivateSectorAndPublic. (From the FormBuilder table page,
you could sort it by FormBuilderID ascending to see these first two rows
in that table as well.) Because the NSFormName field on the Leads table
maps to the FormName field on the FormBuilder table, there’s a relation-
ship between these two tables. Let’s create that relation in BlueLeaks
Explorer.

Back in the Define Structure page, scroll down to the bottom of
the Leads table. After the list of fields, there’s another section that says
Field Maps to Table. Both Field and Table are drop- down menus. Click
the Field drop- down menu to list all of the fields in this table and select
NSFormName. Click the Table drop- down menu, which lists all of the other
 tables in this BlueLeaks site, and choose FormBuilder. Once you select the
 table, you should see a third drop- down menu that lets you choose the field
in that table. Choose FormName and click Create Relationship. A prompt
should pop up, asking, “What is the name of this relationship?” Enter Form
and click OK, then save your changes.

Back in the Explore Data tab, navigate back to the Leads table.
For each lead, you should now see all of the fields from the form that was
used to submit the lead. However, as Figure 10-11 shows, it’s difficult to
read.

As you can see, the related form is displayed, but, like the Com pany
 table you worked with previously, far too many fields are shown, including
blocks of HTML that are difficult to make sense of. To fix this, you’ll edit
the structure of the FormBuilder table as you did with the Com pany and
Leads tables. As you build structures, I recommend finishing one table so
that it displays nicely, then moving on to related ones.

Go back to the Define Structure tab, find the FormBuilder table, and
hide all of its fields. Check the boxes to show FormName and FormContent,
and change FormContent’s type from text to html. You already added a
relationship to the Leads table that links it to the FormBuilder table, so
while you’re here, create a relationship in the other direction as well. Scroll

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

294 Chapter 10

down to the bottom of the FormBuilder table and add a new relationship:
map the FormName field to the Leads table’s NSFormName field. This
time, when you create the relationship, name it Submissions. Save your
changes in the Define Structure tab.

In your Explore Data tab, navigate to the Leads page again to see what
it looks like. Now as you scroll through each lead, you can see which form
was filled out to submit it. Figure 10-12 shows a dif fer ent example from the
Leads table.

In this case, a member of the public rather than a fusion center mem-
ber filled out this form, using a fake name and email address (John Doe
and idont@thinkso . org). They wrote a message, in all caps, about a fireworks
store in Pahrump, Nevada, just over the border from California:

ON SATURDAYS, ALL 3 STORES ARE PACKED AND OVER
90% OF THE TRAFFIC IS FROM CA. THEY ARE ALSO
ALMOST ALL BLACK OR MEXICAN. NO DISRESPECT
TO RACE, BUT DOESNT THAT SORT OF MEET YOUR
PROFILE OF PROB LEMS LATELY? I DONT REALLY CARE
ABOUT THE CAUSES EITHER WAY, BUT THE UNREST IS
HURTING TRUMP. I WOULD BET YOU HAVE A FEW ANTIFA
 PEOPLE BUYING FIREWORKS TO CAUSE TROU BLE. JUST
THOUGHT I WOULD MENTION IT.

BlueLeaks Explorer shows you the form, named LeadSheetPrivateSecto
rAndPublic, that was filled out to submit this lead. Scroll to the bot-
tom of the form and click Permalink to go to a page that shows just the
LeadSheetPrivateSectorAndPublic form in the FormBuilder table. Because
of the Submissions relationship you created, this page should show you
every thing that was submitted to JRIC using this form— all 1,949 leads sub-
mitted by the public.

Figure 10-11: An item in the JRIC Leads table, now with a relationship to the FormBuilder table

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://idont@thinkso.org

Blueleaks Explorer 295

Verifying BlueLeaks Data
Whenever you’re looking at leaked or hacked data, you should always do
additional research outside of the dataset itself to help verify that the data
is au then tic and put it into context. By looking at the Com pany table in the
previous section, you learned that the JRIC site is hosted at jric . org. Load
that link in Tor Browser (covered in Chapter 1) or while connected to a
VPN, and check out the JRIC website.

At the time of writing, I could tell from the website that this fusion
center focuses on the Los Angeles area. Some of the BlueLeaks sites went
offline after the hack in 2020, but many, like JRIC, remained online.
Figure 10-13 shows JRIC’s website, loaded anonymously in Tor Browser.

Figure 10-12: An item in the JRIC Leads table, with a cleaned-up relationship to the FormBuilder table

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://jric.org

296 Chapter 10

Figure 10-13: The home page of JRIC’s website, https:// www . jric . org, loaded in Tor
Browser

It wasn’t clear to me that JRIC was a fusion center focused on Los
Angeles, or what its mission was, until I viewed its website. If you click
around the JRIC site to get a better understanding of the types of informa-
tion it collects, you can then use BlueLeaks Explorer to view that informa-
tion. For example, if you click the Submit a SAR link at the top of the home
page, you can find the forms that add SARs to the Leads table.

 You’ve only explored a small amount of content in the JRIC data so for.
Now it’s time to finish building the structure so you can explore the rest.

Exercise 10-2: Finish Building the Structure for JRIC
In the previous sections, you started building the structure for the JRIC
data. You cleaned up the Com pany, Leads, and FormBuilder tables and
created a relationship between the latter two tables, allowing you to see
which form was submitted to create each lead and which leads were created
from each form. In this exercise, you’ll use your newfound knowledge to
finish defining the structure for the other tables in JRIC. This will give you
a clearer understanding of exactly what data was stored there, making it
much easier to continue your investigation. It will also give you practice cre-
ating structures for the rest of the BlueLeaks sites.

You can play with BlueLeaks Explorer however you wish to custom-
ize the JRIC structure to suit your preferences. However, if you’re not sure
where to start, I recommend beginning with the first table (AgencyNames),
then the second (Align), and so on, finishing with the last table
(VideoOptions). If you run into a table that has a relationship to another
 table, work on the related table first before you continue down the list.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.jric.org

Blueleaks Explorer 297

For example, here’s how I’d start the AgencyNames table. In the
Explore Data tab, in the list of JRIC tables, click AgencyNames. This table
has 1,396 rows, and each row has just two fields: AgencyNamesID and
AgencyName. The names appear to be vari ous military agencies, police
departments, school districts, and other organizations—my guess is these
are all of JRIC’s partners. This data is pretty easy to read and search by
itself, so I’d consider this table done already. Still in the Explore Data tab,
I’d move on to the Align table. This has just three rows, with the Align field
as Left, Right, or Center. This table is completely useless for the purposes
of an investigation. In the Define Structure tab, find the Align table, click
the Hide button, then click Save. Back in the Explore Data tab, refresh the
page, and you’ll see that the Align table has dis appeared.

I find that when building a BlueLeaks Explorer structure, it helps to
read some raw data to begin with, just to try to understand what it is and
how it should be formatted. If you see any fields that are obviously HTML,
for example, change their type from text to html. Once you have an under-
standing of what the impor tant fields are, you can hide the rest. And once
 you’re done deciding what fields to show and what their types should be,
you can add any relationships as appropriate.

Once you’ve structured the JRIC data to more easily explore it, do some
investigating. The JRIC data includes an entire series of training videos
for the Terrorism Liaison Office, split into dif fer ent modules. Check out
the Video and VideoCategory tables; at the time of writing, no one has
reported on this information.

Now that you know how to define structures in BlueLeaks Explorer, you
can do the same for any other sites in the BlueLeaks dataset to investigate
them in greater depth. BlueLeaks Explorer is most useful when paired with
a tool like Aleph, described in Chapter 5, that indexes the data so you can
search it for keywords. If you index all of the data in BlueLeaks, you can
search it all at once to find documents in vari ous BlueLeaks sites. Then,
once you discover the sites you’re interested in, you can do a deep dive on
them using BlueLeaks Explorer.

The Technology Behind BlueLeaks Explorer
Sometimes a dataset is so complicated, and so newsworthy, that it’s
worth writing a custom application just to help you make sense of it.
BlueLeaks Explorer is one such application. The information covered in
this book, especially in Chapters 7 and 8, provides a solid foundation for
the additional independent research required to build an app like this
yourself.

 There are many dif fer ent ways to go about writing custom apps for
investigating datasets. In this section, I describe the technologies and
libraries I used to develop BlueLeaks Explorer: first those I used to build
the backend (the web server), then those I used for the frontend (the user
interface that runs in a web browser). I personally like this tech stack, or

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

298 Chapter 10

combination of technologies an app uses, but this is by no means an
exhaustive list of possibilities. Most of the technologies described here are
outside the scope of this book; this section provides just a brief introduction
to inspire future research.

If you feel confident in your programming skills and are inclined to do
so, you can make improvements to my BlueLeaks Explorer code in the git
repo and submit them back into the proj ect, since it’s open source.

The Backend
I developed the backend of BlueLeaks Explorer in Python, relying on a
third- party Python package called Flask, a simple framework for building
web apps. You can learn more about using Flask at https:// flask . palletsprojects
. com. You can also check out the source code for BlueLeaks Explorer, specif-
ically app.py at https:// github . com / micahflee / blueleaks - explorer / blob / main / src / app
. py, to see exactly how I used Flask for this proj ect.

The backend also makes use of built-in Python modules, primarily json
(which you’ll learn about in the next chapter) and sqlite3, which lets you
run SQL queries on the SQLite databases that represent BlueLeaks sites.
When a web browser loads the web server powered by Flask, the web server
responds with HTML that loads some JavaScript code. This is the frontend,
described in the following section.

The backend also implements an API, which allows the frontend to
communicate with it. For example, when the frontend wants to know the
list of sites that already have structures, it can load /api/sites on the backend,
which returns this data in JSON format. If it wants to retrieve data in JSON
format from a specific table on a specific site, it can load /api/<site>/< table>.
In this case, the Python code uses the sqlite3 module to look up this data in
the SQlite3 database for that BlueLeaks site, and then returns what it finds
to the frontend.

The Frontend
To develop web applications, you’ll have to program not in Python but
in JavaScript, since this is the programming language that web brows-
ers understand. I developed the frontend of BlueLeaks Explorer using a
JavaScript framework called Vue.js (https:// vuejs . org). If you’re like me and
find that you really enjoy writing code, I recommend that you try learning
JavaScript so that you can make web applications. You can find the fron-
tend source code at https:// github . com / micahflee / blueleaks - explorer / tree / main / src
/ frontend / src.

Using Vue.js, the BlueLeaks Explorer frontend includes a series of
pages designed to display data it retrieves by making HTTP requests to the
backend. When you save a structure that you’re working on in BlueLeaks
Explorer, the frontend also sends data to the backend, which then saves the
structure to disk in a JSON file.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://github.com/micahflee/blueleaks-explorer/blob/main/src/app.py
https://github.com/micahflee/blueleaks-explorer/blob/main/src/app.py
https://vuejs.org
https://github.com/micahflee/blueleaks-explorer/tree/main/src/frontend/src
https://github.com/micahflee/blueleaks-explorer/tree/main/src/frontend/src

Blueleaks Explorer 299

Summary
In this chapter, you got BlueLeaks Explorer up and running locally on
your computer using Docker. You’ve learned how to define structures for
each BlueLeaks site, make the data in the tables easier to read, and create
relationships between tables. Now that you have the skills required to inves-
tigate anything in the sprawling BlueLeaks dataset, let me know if you find
any revelations!

In the next chapter, you’ll learn more about the JSON file format. You’ll
work with a dataset containing a million JSON files related to the January 6,
2021, attack on the US Capitol, and continue to hone your Python skills by
writing code to find the most impor tant files within it.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

On the morning of January 6, 2021, two months after
Donald Trump lost the 2020 election to Joe Biden by
about 6 million votes, thousands of Trump’s support-
ers prepared to storm the US Capitol in Washington,
DC, hoping to subvert democracy. “We will never give
up. We will never concede,” Trump told the crowd
from the National Mall, just south of the White House.
“We fight like hell, and if you don’t fight like hell,
 you’re not going to have a country anymore.”

Smartphones in hand, the pro- Trump, anti- democracy activists
recorded the entire event. They posted their photos and videos online,
many to the far- right social media site Parler. In this chapter, you’ll learn
to work with the massive trove of video evidence collected from that day’s
insurrection in a popular file format called JavaScript Object Notation
(JSON). You’ll learn how JSON data is structured and write Python code
to scour a million JSON files full of Parler video metadata to find specific

11
P A R L E R , T H E J A N U A R Y 6

I N S U R R E C T I O N , A N D T H E
J S O N F I L E F O R M A T

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

302 Chapter 11

videos. You’ll also learn about working with Global Positioning System
(GPS) coordinates, including how to plot points on a map, since many of
the videos include GPS coordinates in their metadata. All of these skills
could serve you well in your future investigations.

Let’s start with a brief history of how the Parler dataset became avail-
able to the public.

The Origins of the Parler Dataset
The protesters at the US Capitol insurrection filmed themselves march-
ing with Don’t Tread on Me, Fuck Biden, and Trump flags; tearing down
fences; fighting with riot cops; smoking weed; smashing win dows and then
storming the Capitol building through them; throwing chairs at police;
and threatening the lives of members of Congress and Vice President Mike
Pence. They uploaded these videos to Parler in real time as they filmed
them.

During the attack on the Capitol, pro- Trump rioters attacked police
officers with baseball bats, flag poles, and pipes, injuring at least 138 of
them. One officer, Brian Sicknick, was hospitalized and died the next
day. In the weeks and months following the attack, four more officers who
responded that day died by suicide. A Capitol Police officer shot and killed
Ashli Babbitt, a rioter who attempted to breach the doors to the US Senate
chamber where senators were sheltering. Three more Trump supporters
died during the riot: one from being crushed to death in the crowd, one
from a stroke, and one from a heart attack.

Days after the attack, citing Parler’s unwillingness to moderate content
that encourages and incites vio lence, Apple and Google banned the Parler
app from their app stores. Amazon Web Services (AWS), the major cloud
hosting service that Parler had relied on, kicked the com pany off its service.
It took Parler a month and a half to bring its site back up. Before it went
down, though, a quick- thinking archivist downloaded over a million videos
from the site. In this section, I’ll describe how she downloaded the videos
and how they were used in Trump’s second impeachment trial.

How the Parler Videos Were Archived
On the Saturday after the January 6 attack, John Paczkowski and Ryan Mac
published an email in BuzzFeed News from the Amazon AWS Trust &
Safety Team to Parler. Amazon informed Parler that it “cannot provide
 services to a customer that is unable to effectively identify and remove con-
tent that encourages or incites vio lence against others,” and that “we plan
to suspend Parler’s account effective Sunday, January 10th.” Less than
48 hours before Parler went dark, a hacker named @donk_enby, with the
help of other archivists, raced to download a copy of all of the videos and
images uploaded to the social network.

Parler, it turns out, lacked security measures that prevent automatic
scraping of the site’s data. Web scraping is a method of automated data col-
lection where you use code to load web pages, rather than manually loading

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 303

them in a browser, and extract their data. This chapter won’t cover how to
scrape the web like @donk_enby did, but if you’re curious, you can learn
how in Appendix B.

Parler’s website didn’t have any rate limiting, a security feature that
prevents users from accessing the site too frequently, so nothing stopped a
single computer from making millions of web requests. The URLs of Parler
posts appeared to have random IDs, but @donk_enby discovered that they
also had hidden incremental IDs (1, 2, 3, and so on), so a script could eas-
ily loop through every ID, make a web request to download every post, and
then find the URLs for every video and image to download. Unlike other
social media sites like Twitter and Instagram, Parler didn’t strip any meta-
data from videos uploaded by its users, meaning that the videos contained
a wealth of hidden information, including, in many cases, the GPS coordi-
nates of where the video was filmed.

When @donk_enby archived this data, she saved it to an AWS S3
bucket, an AWS service for hosting files that never runs out of disk space.
(It’s ironic that, in response to AWS kicking Parler off its service, she saved
copies of the videos to a dif fer ent part of AWS.)

 Because there’s no widely agreed- upon definition of hacking, whether or
not Parler was “hacked” is a matter of perspective. Technically, @donk_enby
scraped public content from a public website, which isn’t illegal and doesn’t
require bypassing security— had Parler even had any that would have pre-
vented this. The same thing is often true of illegal hacking, though; people
break into systems that are barely protected or accidentally left open to the
public.

By Sunday night, @donk_enby had managed to archive at least 32TB
of videos. “I hope that it can be used to hold people accountable and to
prevent more death,” she told Vice. She worked with DDoSecrets to make a
copy of the data available to the public— the copy you’ll work with in this
chapter.

The Dataset’s Impact on Trump’s Second Impeachment
On January 13, a week after the deadly riot at the Capitol and a week
before Joe Biden’s inauguration as the new president, the US House of
Representatives impeached Trump for “incitement of insurrection,” making
Trump the first president in US history to be impeached twice.

During the impeachment trial in the US Senate, which took place in
 February at the beginning of Biden’s administration, the impeachment
man ag ers showed many videos of violent Trump supporters that @donk_
enby had archived from Parler as evidence to support their case. “I had
an efficient way to download it all. I knew what was there, but it seemed
that nobody else could see the value,” she told CNN at the time. “I hope it
inspires more people with similar skills to mine to use those skills for good.”

Ultimately, 57 percent of the Senate, including seven members of the
Republican Party, found Trump guilty, while 43 percent— all of whom were
Republicans— found him not guilty. The US Constitution requires a two-
thirds majority of the Senate to convict, so Trump was acquitted. However,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

304 Chapter 11

over 1,000 people were charged in connection to the January 6 insurrec-
tion. Two members of the far- right Oath Keepers militia, including its
leader Stewart Rhodes, and four members of the Proud Boys hate group,
including its former leader Enrique Tarrio, were convicted of seditious con-
spiracy. Several other members of these groups were also convicted of lesser
crimes. Rhodes was sentenced to 18 years in prison in May 2023.

Further investigating this dataset is obviously in the public interest.
Let’s get started in Exercise 11-1.

Exercise 11-1: Download and Extract Parler Video Metadata
The Parler data is so large that it’s not practical, for the purposes of this
chapter, to download it all. Instead, you’ll start with just the video metadata
DDoSecrets has made available separately. The metadata contains useful
information about each video, like its file format, when it was filmed, what
type of phone or camera was used to film it, and in some cases the GPS
coordinates describing where it was filmed. In this exercise, you’ll learn
how to use the metadata to select and download individual videos to view.

N O T E If you’re using Win dows, I recommend that you follow along with this chapter using
your Ubuntu terminal instead of PowerShell, and that you save this data in your
WSL Linux filesystem (for example, in ~/datasets), instead of in your Windows-
formatted USB disk (/mnt/c or /mnt/d). Because of disk performance issues with
WSL, I found that working with this data in Linux rather than directly in Win dows
was significantly faster. If you’ve only used Python in Win dows so far, install Python
in Ubuntu with the command sudo apt install python3 python3- pip, then install
the click Python module by running python3 - m pip install click. You’ll need the
click module for the exercises in this chapter. Refer to Appendix A to learn more
about solving performance issues in WSL if you run into any prob lems.

Download the Metadata
 Because the Parler dataset takes up so much disk space, DDoSecrets
 couldn’t publish it using BitTorrent like it does with most of its other public
releases. To seed that torrent, you would need a single server with 32TB
of data, and no one would be able to connect to the swarm to download it
 because no one has 32TB of disk space lying around. Instead, DDoSecrets
hosts the Parler data on its public data web server. If you know the filename
of a Parler video, you can download it from https:// data . ddosecrets . com / Parler
/ Videos / <filename>.

You can also download a full list of filenames, ddosecrets- parler- listing.txt.
gz, and metadata for all of the video files, metadata.tar.gz. Files ending in .gz
are compressed using a format called GZIP, so you can tell from the filename
that ddosecrets- parler- listing.txt.gz is a compressed text file. Files ending in .tar,
called tarballs, also combine multiple files and folders together into a single
file. Tar files aren’t compressed, though— they take up as much disk space
as all of the files they contain—so it’s common to compress them with GZIP,
resulting in .tar.gz files. The metadata.tar.gz file is a GZIP- compressed tarball.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/<filename
https://data.ddosecrets.com/Parler/Videos/<filename

Parler, the January 6 Insurrection, and the JSON File Format 305

Start by downloading ddosecrets- parler- listing.txt.gz and metadata.tar.gz
using the wget command. This command is similar to curl, but it downloads
a file and saves it to disk by default instead of displaying it in your terminal.
Check if you already have wget installed by running which wget. If you don’t,
install it on macOS with brew install wget, or on Linux or Win dows with
WSL with sudo apt install wget.

Open a terminal. Create a new folder for the Parler data you’ll down-
load, and change to that folder. (If you’re using Win dows with WSL, make
sure you create it in your WSL Linux filesystem, such as at ~/datasets/Parler.)
For example, here’s how I did it on my Mac, creating the folder on my
datasets USB disk:

micah@trapdoor ~ % cd /Volumes/datasets
micah@trapdoor datasets % mkdir Parler
micah@trapdoor datasets % cd Parler
micah@trapdoor Parler %

Now use wget to download the list of filenames by running the following
command:

micah@trapdoor Parler % wget https:// data . ddosecrets . com / Parler / Videos / ddosecrets - parler
- listing.txt.gz
- - snip- -
Resolving data . ddosecrets . com (data . ddosecrets . com)... 172.67.75.15, 104.26.3.199,
104.26.2.199
Connecting to data . ddosecrets . com (data . ddosecrets . com)|172.67.75.15|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 17790173 (17M) [application/octet- stream]
Saving to: 'ddosecrets- parler- listing.txt.gz'

ddosecrets- parler- listin 100%[==================================>] 16.97M 29.1MB/s in 0.6s

... (29.1 MB/s) - 'ddosecrets- parler- listing.txt.gz' saved [17790173/17790173]

The output should show that you’ve downloaded the 17MB ddosecrets-
parler- listing.txt.gz file. The wget program shows you a pro gress bar of your
download in your terminal.

Next, download the video metadata by running the following
command:

micah@trapdoor Parler % wget https://data . ddosecrets . com/Parler/Videos/metadata.tar.gz

Check to make sure you’ve successfully downloaded the files by running
ls - lh. You should get the following output:

- rw- r- - r- - 1 micah staff 17M Mar 28 2021 ddosecrets- parler- listing.txt.gz
- rw- r- - r- - 1 micah staff 203M Mar 15 2021 metadata.tar.gz

The file containing the list of filenames should be 17MB, and the meta-
data file should be 203MB.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/ddosecrets-parler
http://data.ddosecrets.com
http://data.ddosecrets.com
http://data.ddosecrets.com
http://data.ddosecrets.com)|172.67.75.15|:443
https://data.ddosecrets.com/Parler/Videos/metadata.tar.gz

306 Chapter 11

Uncompress and Download Individual Parler Videos
To uncompress GZIP files, you’ll use the gunzip command with the follow-
ing syntax: gunzip filename.gz. Running gunzip on a gzipped file deletes the
original file and leaves you with the uncompressed version without the .gz
file extension.

Uncompress the ddosecrets- parler- listing.txt.gz file by running the follow-
ing command:

gunzip ddosecrets- parler- listing.txt.gz

Your original 17MB file, ddosecrets- parler- listing.txt.gz, should be replaced
with a 43MB text file called ddosecrets- parler- listing.txt, which contains over
one million lines, one for each video that @donk_enby archived.

To make sure it worked, run ls - lh again. Your output should look
something like this:

- rw- r- - r- - 1 user staff 43M Mar 28 2021 ddosecrets- parler- listing.txt
- rw- r- - r- - 1 user staff 203M Mar 15 2021 metadata.tar.gz

Count the number of files in ddosecrets- parler- listing.txt with the following
command:

cat ddosecrets- parler- listing.txt | wc - l

As you learned in Chapter 4, the cat command displays the content of
a file, and piping that command’s output into wc - l counts the number of
lines in that file. The output should be 1031509, meaning there are 1,031,509
lines in ddosecrets- parler- listing.txt.

If you load the file in a text editor, it should look like this:

2021-01-12 18:31:54 77632730 0002bz1GNsUP
2021-01-12 18:37:33 14586730 0003lx5cSwSB
2021-01-12 18:37:33 822706 0004D2lOBGpr
2021-01-12 18:37:33 17354739 000EyiYpWZqg
2021-01-12 18:37:33 2318606 000SbGUM7vD4
2021-01-12 18:37:33 5894269 000oDvV6Bcfd
2021-01-12 18:37:36 20806361 0012uTuxv9qQ
2021-01-12 18:37:34 45821231 0015NlY0yUB5
- - snip- -

The first and second columns of text show the date and time @donk_
enby first uploaded each file to the S3 bucket, just after scraping it. The
third column is the size of the file, in bytes, and the final column is the
filename. All of the video files in the Parler dataset have similar random-
looking names. These are the original IDs that Parler used for each video,
and they don’t have file extensions.

Now that you know the filenames of each Parler video, you can down-
load individual files from https://data . ddosecrets . com/Parler/Videos/<filename>.
Let’s try downloading one of the first videos listed in ddosecrets- parler- listing.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/<filename

Parler, the January 6 Insurrection, and the JSON File Format 307

txt. First, use the following commands to create a videos folder and switch to
that folder:

micah@trapdoor Parler % mkdir videos
micah@trapdoor Parler % cd videos

Next, run the following command to download the Parler file
0003lx5cSwSB:

wget https://data . ddosecrets . com/Parler/Videos/0003lx5cSwSB

You can normally tell the format of a file based on its file extension, but
since these Parler video filenames don’t have extensions, use the following
file command to determine the format of 0003lx5cSwSB:

file 0003lx5cSwSB

The output, 0003lx5cSwSB: ISO Media, MP4 v2 [ISO 14496-14], shows that
the file is an MP4 video. To make it easier to open in video- playing software,
you’ll need to add the .mp4 extension to the filename. You can rename
files using the command mv source_path dest_path, which moves a file from
a source path to a destination path. To rename 0003lx5cSwSB to 0003lx5c-
SwSB.mp4, run the following command:

mv 0003lx5cSwSB 0003lx5cSwSB.mp4

You can now watch 0003lx5cSwSB.mp4 in software like VLC Media Player.
Figure 11-1 shows a screenshot from this video, which features Trump bat-
tling the “fake news” media and calls him the “Savior of the Universe.”

Figure 11-1: A screenshot from a pro- Trump Parler video showing
an altered image of Trump riding a motorcycle

In your terminal, run cd .. to change out of the videos folder you just
created and back to the Parler dataset folder.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/0003lx5cSwSB

308 Chapter 11

 There are over a million videos in this dataset, and most likely, only
a small fraction contain anything newsworthy. If you randomly pick indi-
vidual videos to download and watch, chances are you’ll be wasting a lot of
time. To more efficiently find in ter est ing videos, let’s take a closer look at
the metadata.

Extract Parler Metadata
To view the Parler metadata, you’ll need to extract the metadata.tar.gz
tarball. In your terminal, uncompress and extract metadata.tar.gz using the
tar command:

tar - xvf metadata.tar.gz

 Because it’s so common to gzip tar archives, the tar command will
 automatically detect if it’s gzipped and uncompress it for you, so you
 don’t need to manually do the gunzip step yourself. In the - xvf argument,
x tells tar to extract the files from metadata.tar, v (meaning verbose) tells
tar to display each filename it extracts in the terminal, and f means that
the next argument is a filename for the tarball on which this command
 will run.

Your output should look like this:

x metadata/
x metadata/.aws/
x metadata/meta-00CnBY5xCdca.json
x metadata/meta-0003lx5cSwSB.json
x metadata/meta-0070HNolzi3z.json
x metadata/meta-00BIFOMnOyi1.json
x metadata/meta-0002bz1GNsUP.json
- - snip- -

The command might take 10 minutes or so to extract the over one
 million JSON files in metadata.tar.gz into a new folder called metadata,
depending on the speed of your hard disk. (If you’re using Win dows
with WSL and this step is going very slowly, consult Appendix A for
 performance tips.)

Feel free to run ls on the metadata folder or view it in a file browser, but
beware that there are so many files that those simple tasks will take a long
time (it took over five minutes for the ls command to finish running on my
computer). Figure 11-2 shows the files in the metadata folder in Finder on
macOS.

The files in this folder are all named meta- <ID>.json, where ID is the
original video ID from Parler. For example, you can find the metadata for
the file 0003lx5cSwSB, the video you downloaded in the previous section, at
metadata/meta-0003lx5cSwSB.json. All of these metadata files are in the JSON
file format, so let’s take a closer look at that now.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 309

Figure 11-2: Some of the extracted Parler metadata files

Introducing the JSON File Format
JSON is a format used to store information in text strings. One of its main
benefits is that it’s human- readable. Some file formats are designed for com-
puters rather than humans to understand. If you run cat on a PDF file, for
example, you’ll see random- looking output in your terminal. You need to
open the PDF in a program like Adobe Reader to understand the informa-
tion it contains. However, humans can easily read the JSON text format just
by viewing it in a text editor or by using the cat command.

JSON is one of the most widely used data formats, and the one most
APIs communicate with. Whenever you visit a website that does anything
interactive, chances are your web browser and the website’s server are pass-
ing JSON data back and forth. This is one reason why hacked data, as well
as data scraped from APIs, is often full of JSON files. Most of the data from
the Amer i ca’s Frontline Doctors dataset, covered in detail in Chapter 13,
is in JSON format, as is much of the data hacked from Gab, the right- wing
social network discussed in Appendix B.

In this section, you’ll learn more about JSON syntax and how to load
JSON data into Python scripts.

Understanding JSON Syntax
JSON has JavaScript in its name because it was first derived from that pro-
gramming language, but it’s a language- independent data format: you can
work with JSON data in JavaScript, Python, or any other programming
language. Using their own JSON libraries, programming languages can

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

310 Chapter 11

convert JSON text strings into structured data (such as Python’s diction-
aries and lists) and also convert that structured data back into JSON text
strings that can be loaded by code in any other programming language.

To get an idea of the structure of a JSON file, run the following com-
mand in your terminal to display the metadata for the Parler video with the
filename 0003lx5cSwSB:

cat metadata/meta-0003lx5cSwSB.json

The output should look like Listing 11-1.

[{
 "SourceFile": "- ",
 "ExifToolVersion": 12.00,
 "FileType": "MP4",
 "FileTypeExtension": "mp4",
 "MIMEType": "video/mp4",
 "MajorBrand": "MP4 v2 [ISO 14496-14]",
 "MinorVersion": "0.0.0",
 "CompatibleBrands": ["mp42","mp41","iso4"],
 "MovieHeaderVersion": 0,
 "CreateDate": "2020:10:15 09:35:29",
 "ModifyDate": "2020:10:15 09:35:29",
 "TimeScale": 48000,
 "Duration": "0:01:59",
- - snip- -

Listing 11-1: Video metadata for the file 0003lx5cSwSB

As you can see, FileType is MP4. The CreateDate is 2020:10:15 09:35:29,
meaning that this video was filmed on October 10, 2020, at 9:35 AM, and
the Duration is 0:01:59, or 1 minute and 59 seconds.

JSON syntax is extremely similar to Python syntax but uses dif fer ent
terminology to describe types of information:

Object

A set of key/value pairs. An object is essentially equivalent to a diction-
ary in Python and even uses the same syntax. In JSON, however, keys
must be strings. Objects are defined between braces ({ and }), and keys
and values are separated with colons— for example, {"first_name":
"Frederick", "last_name": "Douglass"}. The JSON output for Listing 11-1
also includes a JSON object.

Array

An ordered list of items. An array is essentially equivalent to a list in
Python and uses the same syntax. Arrays are defined between brackets
([and]), and items are separated by commas. The JSON output in
Listing 11-1 has a few arrays, such as ["mp42","mp41","iso4"].

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 311

Boolean

A value of either true or false. These work the same as True and False in
Python, but they’re lowercase in JSON.

Number

Any whole number or number with decimals in it, such as 2600 or 3.14.
 These are similar to numbers in Python, though while Python makes
a distinction between integers (whole numbers) and floating points
(numbers with decimals), JSON does not.

String

A sequence of text characters— for example, "videos have metadata?".
This is exactly the same as a string in Python, except that JSON strings
must be enclosed double quotes ("), whereas Python also allows you to
use single quotes (').

null

A keyword representing an empty value. This is very similar to Python’s
None keyword.

All JSON data is made up of combinations of these types, so it’s impor-
tant to understand their exact syntax. If you use any invalid syntax, such as
surrounding a string with single quotes instead of double quotes, or using
the Boolean True instead of true, the JSON data won’t load properly.

Unlike in Python code, whitespace isn’t impor tant in JSON data. For
example, consider this JSON string:

{"abolitionists":[{"first_name":"Frederick","last_name":"Douglass"},{"first_name":"John","last
_name":"Brown"},{"first_name":"Harriet","last_name":"Tubman"}]}

To write the same JSON string in a more human- readable format, you
can split it into multiple lines and add indentation:

{
 "abolitionists": [
 {
 "first_name": "Frederick",
 "last_name": "Douglass"
 },
 {
 "first_name": "John",
 "last_name": "Brown"
 },
 {
 "first_name": "Harriet",
 "last_name": "Tubman"
 }
]
}

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

312 Chapter 11

You might encounter JSON files in datasets that are formatted either
way.

I often open JSON files in VS Code and use the text editor’s built-in
 format feature to reformat the JSON for legibility. To format a document
in VS Code, click ViewCommand PaletteFormat Document and press
ENTER.

Parsing JSON with Python
You can turn JSON data into Python dictionaries and lists using Python’s
built-in json module. First, open a Python interpreter and import the
module:

>>> import json

The function in this module that I use the most is json.loads(). This
takes a string with JSON data as an argument, parses the string into a
Python object like a dictionary or a list, and returns that object. For exam-
ple, define a string called json_data and set its value to a JSON string with
the following command:

>>> json_data = '{"first_name": "Frederick", "last_name": "Douglass"}"

The value you set json_data to looks similar to a dictionary, but since
it’s surrounded by single quotes, it’s actually a string. In Python, the type()
function tells you the type of a variable. You can confirm that json_data is a
string with the following command:

>>> type(json_data)
<class 'str'>

This output shows that json_data is a class of type str (Chapter 14 will
touch on classes), meaning it’s a string. Now define a variable called obj and
set its value to the return value of the json.loads() function:

>>> obj = json.loads(json_data)

 Here, json.loads() takes a string as input and, if the string contains valid
JSON, converts it into structured data, in this case storing the resulting
object in obj. Use the type() function on obj now to see what type of variable
it is:

>>> type(obj)
<class 'dict'>

The output shows that you’ve parsed this JSON data into a Python
dictionary (a dict), which you can now use like any other dictionary. For

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 313

example, to put the value at the last_name key of this dictionary in an
f- string and then display it, use the following command:

>>> print(f"Hello, Mr. {obj['last_name']}.")
Hello, Mr. Douglass.

To practice accessing structured data, in your terminal, change to your
Parler dataset folder, and then open a Python interpreter. Run the follow-
ing commands to load the metadata from a Parler video as structured data.
I’ve chosen the file metadata/meta- HS34fpbzqg2b.json, but feel free to load
whichever file you’d like:

>>> import json
>>> with open("metadata/meta- HS34fpbzqg2b.json") as f:
... json_data = f.read()
...
>>> obj = json.loads(json_data)

You now have the video metadata in the variable obj. The simplest
way to start inspecting it is to display it to the screen with the print()
function:

>>> print(obj)
[{'SourceFile': '- ', 'ExifToolVersion': 12.0, 'FileType': 'MOV', 'FileTypeExtension': 'mov',
'MIMEType': 'video/quicktime', 'MajorBrand': 'Apple QuickTime (.MOV/QT)', 'MinorVersion':
'0.0.0', 'CompatibleBrands': ['qt '], 'MediaDataSize': 139501464, 'MediaDataOffset': 36,
- - snip- -

This output looks a little like JSON, but it’s a Python object, in this case
a list with a nested dictionary. Use the len() function you learned about in
Chapter 8 to count how many items are in this list:

>>> len(obj)
1

Since any given Parler video metadata file contains the metadata only
for one video, there’s only one item in this list. In order to access that
metadata, you need to select the first item in the list. To do that, use obj[0]
(remember, 0 is the first index for any list) as follows:

>>> print(obj[0])
{'SourceFile': '- ', 'ExifToolVersion': 12.0, 'FileType': 'MOV', 'FileTypeExtension': 'mov',
'MIMEType': 'video/quicktime', 'MajorBrand': 'Apple QuickTime (.MOV/QT)', 'MinorVersion':
'0.0.0', 'CompatibleBrands': ['qt '], 'MediaDataSize': 139501464, 'MediaDataOffset': 36,
- - snip- -

This time, the output starts with a brace, meaning the item is a diction-
ary. Now use a for loop to view all of the keys in this dictionary:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

314 Chapter 11

>>> for key in obj[0]:
... print(key)
...
SourceFile
ExifToolVersion
FileType
- - snip- -
GPSLatitude
GPSLongitude
Rotation
GPSPosition

Each key listed in this output represents a dif fer ent piece of video
metadata from the JSON file. You can also select values from this dictionary
using their keys. For example, try printing the values for the GPSLatitude and
GPSLongitude keys:

>>> print(obj[0]["GPSLatitude"])
38 deg 53' 26.52" N
>>> print(obj[0]["GPSLongitude"])
77 deg 0' 28.44" W

 These values represent the GPS coordinates for the location where this
video was filmed.

Since JSON makes it easy to convert structured data into strings and
back, when creating BlueLeaks Explorer I used JSON files to store the
structure of BlueLeaks sites, as described in the section “The Technology
 Behind BlueLeaks Explorer” in Chapter 10. When you create a structure for
a BlueLeaks site, BlueLeaks Explorer stores all of the configuration for that
site in a dictionary, then saves that information to a JSON file. If you quit
BlueLeaks Explorer and then run it again later, it loads that JSON file back
into a dictionary. Since the Parler metadata comes in JSON format, you can
also write Python code that loads these JSON files to easily access that meta-
data, as you’ll do later in this chapter.

To learn more about the json module, you can find the documentation,
which includes plenty of example code, at https:// docs . python . org / 3 / library / json
. html.

 Handling Exceptions with JSON
The json.loads() function will throw an exception if you pass an invalid
JSON string into it, like this:

>>> json.loads("this isn't valid json")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/json/__init__.py",
line 346, in loads
 return _default_decoder.decode(s)
 File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/json/decoder.py",

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

Parler, the January 6 Insurrection, and the JSON File Format 315

line 337, in decode
 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
 File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/json/decoder.py",
line 355, in raw_decode
 raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

A json.decoder.JSONDecodeError exception means that the string you
passed in doesn’t contain valid JSON data. In this case, it’s telling you the
error in the JSON string is at line 1, column 1, and character 0, meaning
the error is located at the first character of the string. If you have a longer
JSON string that’s mostly valid but just has a little syntax issue, this error
message can help you determine which piece of your syntax is wrong.

Validating JSON data is a common use for Python exception handling,
which you learned about in “Exception Handling” in Chapter 7. For exam-
ple, let’s say you have a string called json_data. The following code will catch
exceptions in case this string contains invalid JSON data:

try:
 obj = json.loads(json_data)
 print("The JSON is valid")
 print(obj)
except json.decoder.JSONDecodeError:
 print("Invalid JSON")

This code uses try and except statements to catch the json.decoder.
JSONDecodeError exception if it gets thrown. If json_data is a valid JSON string,
it will display The JSON is valid, followed by the information in obj. If the
JSON string is invalid, the script will display Invalid JSON and then continue
 running without crashing.

To load a JSON file in Python functions such as main(), you must first
load the content of the file into a string like so

with open("filename.json") as f:
 json_data = f.read()

replacing filename.json with whatever file you’re loading, such as metadata/
meta- HS34fpbzqg2b.json to load the metadata for the HS34fpbzqg2b video file.
As you learned in “Reading and Writing Files” in Chapter 8, this code opens
the file as a file object f and then stores its content into a string called
json_data.

Next, you’d run that string through json.loads() to convert it from a
string into structured data, like this:

try:
 obj = json.loads(json_data)
except json.decoder.JSONDecodeError:
 print("Invalid JSON")
 return

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

316 Chapter 11

When this code finishes running, if the JSON string was valid, obj will
contain the JSON data. Other wise, it will display Invalid JSON and then
return early from the function. The remaining code in the function can
access the data in obj.

To prepare for using this module to write Python scripts that parse the
Parler metadata files, next we’ll look at how to access values like GPS coor-
dinates from JSON files with several command line programs.

Tools for Searching and Extracting Items from JSON Data
While we’ve been focusing primarily on working with JSON files using
Python, sometimes writing a Python script is overkill if you just want to
quickly search a large block of JSON text. In this section, you’ll learn to
use our old friend grep, as well as a more power ful tool called jq, to search
JSON files.

Counting Videos with GPS Coordinates Using grep
As you know from Chapter 5, the command line programs grep and wc are
incredibly power ful tools to quickly assess datasets. In a single command,
and without needing to write a Python script, you can use grep to efficiently
search inside JSON files.

For example, let’s say you want to figure out how many Parler video
metadata files include GPS coordinates. Open a terminal, switch to your
Parler dataset folder, and run the following command to grep for the string
GPSCoordinates:

micah@trapdoor Parler % grep - r GPSCoordinates metadata

The first argument, - r (short for - - recursive), tells grep to look inside
 every file in the given folder. The next argument, GPSCoordinates, is the
string to search for. The final argument, metadata, is the name of the folder
to search.

When you run this command, your terminal should quickly fill with
GPS coordinates:

metadata/meta-31VC1ufihFpa.json: "GPSCoordinates": "22 deg 8' 0.60\" S, 51 deg 22' 4.80\" W",
metadata/meta- ImUNiSXcoGKh.json: "GPSCoordinates": "0 deg 0" 0.00\" N, 0 deg 0' 0.00\" E",
metadata/meta-70Tv9tAQUKyL.json: "GPSCoordinates": "36 deg 10' 49.08\" N, 115 deg 26' 45.60\"
W, 1922.566 m Above Sea Level",
metadata/meta- P2w4QOgv5n9U.json: "GPSCoordinates": "26 deg 14' 46.32\" N, 80 deg 5' 38.76\" W,
3.424 m Above Sea Level",
- - snip- -

However, you’re trying to find how many of these videos have GPS
 coordinates, not necessarily what those coordinates are. If coordinates
are still loading in your terminal, press CTRL- C to cancel the command,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 317

then pipe the output of grep into wc - l to count how many lines get
displayed:

micah@trapdoor Parler % grep - r GPSCoordinates metadata | wc - l
64088

Of the slightly more than one million videos, about 64,000 have GPS
coordinates.

Programs like grep and wc can only take you so far in your attempts to
efficiently search large quantities of data. For example, if the JSON files
 you’re searching are formatted on a single line, rather than split into mul-
tiple lines like the Parler files, grep will search the entire block of JSON data
for your string rather than a line at a time. You can’t use grep to extract spe-
cific fields of data from JSON, either. For that, the best tool for the job is a
program called jq.

Formatting and Searching Data with the jq Command
The jq program allows you to take JSON data as input and select key infor-
mation from it. In this section, you’ll learn how to use it to extract specific
information from the Parler files.

First, you’ll need to install jq. Mac users can do so by running the brew
install jq command. Linux or Win dows with WSL users, run the sudo apt
install jq command.

You can use the jq command to indent JSON data and show syntax
highlighting in your terminal, making the data easier to read. For example,
try running this command in your terminal:

cat metadata/meta- HS34fpbzqg2b.json | jq

The first part of the command, cat metadata/meta- HS34fpbzqg2b.json, out-
puts the content of that JSON file, which contains the metadata for a single
Parler video. The second part, | jq, pipes that output as input into jq.

The output should look like this:

[
 {
 "SourceFile": "- ",
 "ExifToolVersion": 12,
 "FileType": "MOV",
 "FileTypeExtension": "mov",
 "MIMEType": "video/quicktime",
 "MajorBrand": "Apple QuickTime (.MOV/QT)",
 "MinorVersion": "0.0.0",
 "CompatibleBrands": [
 "qt "
],
- - snip- -
 "GPSLatitude": "38 deg 53' 26.52\" N",
 "GPSLongitude": "77 deg 0' 28.44\" W",

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

318 Chapter 11

 "Rotation": 180,
 "GPSPosition": "38 deg 53' 26.52\" N, 77 deg 0' 28.44\" W"
 }
]

This version includes syntax highlighting (as in VS Code) and formats
the JSON data so that the items in every array and object are listed on sepa-
rate lines and indented.

You can also use jq to filter for details from inside the JSON data. For
example, suppose you just want to know the GPS coordinates from this
JSON file. In the preceding code, you can tell from the bracket character at
the beginning that this JSON data is an array. The first value of the array is
an object, since it starts with a brace character, and one of the keys of the
object is GPSPosition. To filter for GPSPosition, pass ".[0].GPSPosition" as an
argument into the jq command, as follows:

micah@trapdoor Parler % cat metadata/meta- HS34fpbzqg2b.json | jq ".[0].GPSPosition"
"38 deg 53' 26.52\" N, 77 deg 0' 28.44\" W"

In this command, .[0] selects the first item of the list in the meta-
HS34fpbzqg2b.json file and .GPSPosition selects the value with the key
GPSPosition from the object. The output shows the value of the GPSPosition
field, "38 deg 53' 26.52\" N, 77 deg 0' 28.44\" W".

If you’re interested in learning more about how to use jq, check out
its website at https:// stedolan . github . io / jq. You’ll also revisit it in Chapter 14,
where I explain how I used it to understand the structure of leaked neo-
Nazi chat logs.

Now that you have a foundational understanding of JSON, you’ll try
your hand at writing Python code that works with it in Exercise 11-2.

Exercise 11-2: Write a Script to Filter for Videos with GPS
From January 6, 2021

In this exercise, you’ll write a Python script that filters the Parler videos
down to just those filmed on January 6, 2021, whose metadata includes GPS
coordinates. You’ll do this by looping through all the JSON files in the data-
set, converting them into Python objects, and inspecting their metadata to
show you just the ones you’re looking for.

For a challenge, you can try programming your own script to meet the
following requirements:

•	 Make this script accept a CLI argument, parler_metadata_path, using
Click. This will be the path to the metadata folder full of JSON files.

•	 Define a new variable called count that keeps track of the number of
Parler videos that include GPS coordinates in their metadata, and set it
to 0.

•	 Loop through all of the JSON files in the metadata folder. For each
loop, your program should run the content of each JSON file through

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://stedolan.github.io/jq

Parler, the January 6 Insurrection, and the JSON File Format 319

the json.loads() function to turn it into a Python object. As described
in the “Parsing JSON with Python” section, each object is technically
a list containing one ele ment, a dictionary full of all of the video’s
metadata.

•	 • Check to see if that video’s metadata dictionary includes the key
GPSCoordinates, and if the date stored in the key CreateDate is January 6,
2021. If both of these are true, the script should display a message that
this file includes GPS coordinates and is from January 6, 2021, and
increment the count variable by 1.

•	 • Have the program display a message after looping through all the
metadata files that tells the user the total number of videos with GPS
coordinates from January 6, 2021 (which should be stored in the count
variable, now that you’re done counting).

Alternatively, follow along with the rest of this exercise and I’ll walk you
through the programming process.

Accept the Parler Metadata Path as a Command Line Argument
Start with the usual Python script template:

def main():
 pass

if __name__ == "__main__":
 main()

Next, make the following modifications to your script so that it accepts
the parler_metadata_path CLI argument. This way, when you run the script,
you can pass in the path to the metadata folder as an argument, which the
code will use to open all of the JSON files inside that folder. The modifica-
tions are shown in bold:

import click

@click . command()
@click.argument("parler_metadata_path")
def main(parler_metadata_path):
 " ""Filter Parler videos with GPS coordinates that were filmed Jan 6,
2021" ""
 print(f"Parler metadata path: {parler_metadata_path}")

if __name__ == "__main__":
 main()

This code first imports the click module, then uses it to make the
main() function accept the CLI argument parler_metadata_path. It also adds a
docstring to show what the script does when you run it with the - - help argu-
ment. Fi nally, the print() function will print the value of parler_metadata_path
to the screen.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

320 Chapter 11

Test your code to make sure it works so far, replacing the argument
with the path to your own metadata folder:

micah@trapdoor chapter-11 % python3 exercise-11-2.py /Volumes/datasets/Parler/metadata
Parler metadata path: /Volumes/datasets/Parler/metadata

Sure enough, the code should display the same string, stored in
parler_metadata_path, that you passed in as an argument.

Loop Through Parler Metadata Files
Next, add some code that will loop through all of the JSON files in the
metadata folder and run json.loads() on their contents to convert them into
structured data in Python. Modify your code as follows:

import click
import os
import json

@click . command()
@click.argument("parler_metadata_path")
def main(parler_metadata_path):
 " ""Filter Parler videos with GPS coordinates that were filmed Jan 6, 2021" ""
 for filename in os.listdir(parler_metadata_path):
 abs_filename = os.path.join(parler_metadata_path, filename)
 if os.path.isfile(abs_filename) and abs_filename.endswith(".json"):
 with open(abs_filename) as f:
 json_data = f.read()

 try:
 metadata = json.loads(json_data)
 print(f"Successfully loaded JSON: {filename}")
 except json.decoder.JSONDecodeError:
 print(f"Invalid JSON: {filename}")
 continue

if __name__ == "__main__":
 main()

The code imports the os and json modules at the top of the file so it can
use the functions they contain later on. The program then loops through
the return value of the os.listdir() function, which returns the list of files
in the metadata folder, storing each filename in the variable filename.

Inside the for loop, the code defines a new variable called abs_filename
to be the absolute path of the JSON file the code is working with each time
it loops. It creates the absolute path by concatenating parler_metadata_path
with filename using the os.path.join() function. Now that the code knows
the full filename, it checks to make sure that this is actually a file, not a
folder, and that it ends with .json.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Parler, the January 6 Insurrection, and the JSON File Format 321

If the code confirms the file is JSON, it loads all of the data from this
file into the variable json_data, and then converts that string into struc-
tured data, saved in the variable metadata, using try and except statements,
as described in the “Exception Handling with JSON” section. If there are
no syntax errors in an individual JSON file, the code displays a message to
the screen saying that the file loaded successfully. Other wise, it displays an
error and moves on to the next file using the continue statement. In a for
loop, continue statements immediately end the current loop and move on to
the next loop.

To summarize, at this point the code is looping through every file in
the metadata folder, and for each JSON file it comes across, opening it and
loading its content as a text string. It then converts this string into a Python
object using the json.loads() function, storing the object in the metadata
variable, and displays a message that it successfully loaded. If the file didn’t
successfully load, the message says that the JSON was invalid, and the code
continues on to the next JSON file.

Run the program again, replacing the argument with the path to your
own metadata folder:

micah@trapdoor chapter-11 % python3 exercise-11-2.py /Volumes/datasets/Parler/metadata
Successfully loaded JSON: meta- gzK2iNatgLLr.json
Successfully loaded JSON: meta-31VC1ufihFpa.json
Successfully loaded JSON: meta- ZsZRse5JGx8j.json
- - snip- -

If your output shows many messages saying dif fer ent JSON files loaded
successfully, your code is working. Once you’ve determined that your output
looks correct, you can press CTRL- C to cancel the script before it finishes
 running.

Filter for Videos with GPS Coordinates
Your code currently loops through all of the Parler metadata files, loads
each file, and converts it into a Python object so you can work with it. Next,
you need to filter out the videos that include GPS coordinates and to count
 those videos. To do so, make the following modifications:

import click
import os
import json

@click . command()
@click.argument("parler_metadata_path")
def main(parler_metadata_path):
 " ""Filter Parler videos with GPS coordinates that were filmed Jan 6, 2021" ""
 count = 0

 for filename in os.listdir(parler_metadata_path):
 abs_filename = os.path.join(parler_metadata_path, filename)
 if os.path.isfile(abs_filename) and abs_filename.endswith(".json"):

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

322 Chapter 11

 with open(abs_filename) as f:
 json_data = f.read()

 try:
 metadata = json.loads(json_data)
 except json.decoder.JSONDecodeError:
 print(f"Invalid JSON: {filename}")
 continue

 if "GPSCoordinates" in metadata[0]:
 print(f"Found GPS coordinates: {filename}")
 count += 1

 print(f"Total videos with GPS coordinates: {count:,}")

if __name__ == "__main__":
 main()

This code defines a new variable called count and starts its value out
as 0. This will keep track of the number of videos with GPS coordinates.
 After each JSON file is loaded into the metadata variable, an if statement
checks if the key GPSCoordinates exists inside this metadata dictionary.
Remember from the previous section that metadata is a list with one item,
making metadata[0] the actual dictionary your code is checking. If this
video metadata does have the GPSCoordinates field, the control flow moves
to the code block after the if statement. Other wise, it moves on to the
next loop.

When the Python script comes across metadata that includes GPS coor-
dinates, it displays the name of the file with print() and increments count
by 1. This way, by the time this for loop is finished, count will contain the
total number of videos that have GPS coordinates in their metadata.
Fi nally, after the for loop completes, the code displays that total count with
a second call to the print() function. As you learned in Chapter 8, the :, in
the f- string will display larger numbers with comma separators.

Run your program again:

micah@trapdoor chapter-11 % python3 exercise-11-2.py /Volumes/datasets/Parler/metadata
Found GPS coordinates: meta-31VC1ufihFpa.json
Found GPS coordinates: meta- ImUNiSXcoGKh.json
Found GPS coordinates: meta-70Tv9tAQUKyL.json
- - snip- -
Found GPS coordinates: meta-1FMyKoVq53TV.json
Found GPS coordinates: meta- Y0jO2wy1Z7RO.json
Found GPS coordinates: meta- aZlkDfPojhxW.json
Total videos with GPS coordinates: 63,983

 Because this script loads the JSON data from over a million files, it
might take a few minutes to finish running. In the end, your script should
find 63,983 videos with GPS coordinates. There should also be 63,984 lines
of output: one with the name of each metadata file that has GPS coordi-
nates, and one at the end that lists the total.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 323

Filter for Videos from January 6, 2021
Now you’ll whittle down that list of roughly 64,000 videos even further to
find out which were filmed on January 6, 2021.

You can tell the date on which a video was filmed from the CreateDate
field in its metadata, as shown earlier in Listing 11-1. The value of this field
looks something like this:

"CreateDate": "2020:12:28 17:25:47",

To use the CreateDate field to filter the results further, make the follow-
ing modifications to your code:

import click
import os
import json

@click . command()
@click.argument("parler_metadata_path")
def main(parler_metadata_path):
 " ""Filter Parler videos with GPS coordinates that were filmed Jan 6, 2021" ""
 count = 0

 for filename in os.listdir(parler_metadata_path):
 abs_filename = os.path.join(parler_metadata_path, filename)
 if os.path.isfile(abs_filename) and abs_filename.endswith(".json"):
 with open(abs_filename, "rb") as f:
 json_data = f.read()

 try:
 metadata = json.loads(json_data)
 except json.decoder.JSONDecodeError:
 print(f"Invalid JSON: {filename}")
 continue

 if (
 "GPSCoordinates" in metadata[0]
 and "CreateDate" in metadata[0]
 and metadata[0]["CreateDate"].startswith("2021:01:06")
):
 print(f"GPS + Jan 6: {filename}")
 count += 1

 print(f"Total videos with GPS coordinates, filmed Jan 6: {count:,}")

if __name__ == "__main__":
 main()

Rather than just checking for videos with GPS coordinates, now the
code also checks for those that have a CreateDate that starts with 2021:01:06.
Once the code determines that the metadata in the current loop has GPS
coordinates and was created on January 6, 2021, it displays the filename

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

324 Chapter 11

with print(f"GPS + Jan 6: {filename}"). When the for loop is finished, it dis-
plays the total count.

The expression in this code’s if statement is surrounded by parenthe-
ses, and the three conditions inside those parentheses are indented. This is
purely cosmetic; the code would work exactly the same if it were all on one
line, but this formatting makes it slightly easier to read.

You can find the final script in the book’s GitHub repo at https:// github
. com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 11 / exercise - 11 - 2 . py.
Run the completed script like so:

micah@trapdoor chapter-11 % python3 exercise-11-2.py /Volumes/datasets/Parler/metadata
GPS + Jan 6: meta- xHkUeMHMFx3F.json
GPS + Jan 6: meta- eGqmDWzz0oSh.json
GPS + Jan 6: meta- WhQeLMyPWIrG.json
- - snip- -
GPS + Jan 6: meta- fhqU4rQ4ZFzO.json
GPS + Jan 6: meta- pTbZXLmXGyyn.json
GPS + Jan 6: meta- hL60MjItBhOW.json
Total videos with GPS coordinates, filmed Jan 6: 1,958

The script might still take a few minutes to run, but this time, there
should be fewer results. Only 1,958 Parler videos have GPS coordinates and
 were filmed on January 6, 2021; this is about 3 percent of the videos with
GPS coordinates, and less than 0.2 percent of all of the videos.

Watching almost 2,000 videos, while perhaps unpleasant, is at least
feasible. We can still do better, though. In all likelihood, some of those
January 6 videos weren’t actually filmed at the insurrection itself, but just
happened to be uploaded the same day from other locations. To prepare
for filtering this list further in order to find videos filmed at the insurrec-
tion, you’ll need some background on working with GPS coordinates.

Working with GPS Coordinates
In this section, you’ll learn how latitude and longitude coordinates work
and how to look them up on online map services like Google Maps. You’ll
also learn how to convert between dif fer ent GPS formats and measure
the rough distance between two locations. I’ll introduce a few new Python
features, including the .split() and .replace() methods for modifying
strings and the float() function for converting a string into a decimal
number.

Searching by Latitude and Longitude
You can define any location on Earth using two coordinates: latitude and
longitude. These coordinates are measured in degrees, with each degree
split into 60 minutes, and each minute split into 60 seconds. Latitude goes
from 90 degrees North, which is the North Pole, to 0 degrees at the equa-
tor, to 90 degrees South, which is the South Pole. Longitude goes from
180 degrees West, which is in the middle of the Pacific Ocean, to 0 degrees,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-11/exercise-11-2.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-11/exercise-11-2.py

Parler, the January 6 Insurrection, and the JSON File Format 325

which cuts through England, to 180 degrees East, back to that same loca-
tion in the middle of the Pacific.

For example, if you look up the metadata for the Parler video with file-
name HS34fpbzqg2b (which shows Trump supporters removing barricades
around the Capitol building while police officers stand by and watch), you’d
find the following GPS coordinates:

Latitude: 38 deg 53′ 26.52″ N

Longitude: 77 deg 0′ 28.44″ W

That means this video was filmed at the latitude of 38 degrees, 53 minutes,
26.52 seconds North and the longitude of 77 degrees, 0 minutes, 28.44 sec-
onds West.

You can use vari ous online map services, like Google Maps, to search
by GPS coordinates and see exactly where on Earth they point to. To search
the coordinates contained in the Parler metadata, you’ll need to slightly
modify them so that Google Maps will recognize them, loading https:// www
. google . com / maps and entering these coordinates as the string 38°53′26.52″,
−77°0′28.44. Try searching for those coordinates in Google Maps now.
Figure 11-3 shows the exact location this video was filmed: just outside the
US Capitol building, where police had set up barricades.

Figure 11-3: Pinpointing a location near the US Capitol building in Google Maps

You can also use Google Maps to discover the GPS coordinates of any
given point. If you right- click anywhere on the map, a context menu should
pop up showing you the GPS coordinates of that point. However, when you
do this, the coordinates it shows you will look slightly dif fer ent because
 they’ll be in decimal format.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.google.com/maps
https://www.google.com/maps

326 Chapter 11

In the next section, you’ll learn to convert from decimals to degrees,
minutes, and seconds.

Converting Between GPS Coordinate Formats
GPS coordinates in decimal format show the number of degrees on the
left side of the decimal point, and converted minutes and seconds values
on the right side. For example, consider the GPS coordinates from the
HS34fpbzqg2b video:

•	 The latitude is 38 degrees, 53 minutes, 26.52 seconds North, which is
38.8907 in decimal.

•	 The longitude is 77 degrees, 0 minutes, 28.44 seconds West, which is
−77.0079 in decimal.

One degree is 60 minutes and one minute is 60 seconds, meaning there
are 3,600 seconds in a degree. The formula to convert from degrees, min-
utes, and seconds to decimal format is degrees + (minutes / 60) + (seconds /
3,600). Latitudes are negative in the Southern Hemisphere but positive in
the Northern Hemisphere, while longitudes are negative in the Western
 Hemisphere but positive in the Eastern Hemisphere. The latitude for the
HS34fpbzqg2b video is positive, while the longitude is negative.

Decimal numbers are simpler to work with in code. Since the GPS
coordinates in the Parler metadata are formatted as degrees, minutes,
and seconds, let’s use some Python code to convert them to decimal for-
mat. The gps_degrees_to_decimal() function in Listing 11-2 takes a GPS
coordinate from the Parler metadata as an argument and returns the
decimal version.

def gps_degrees_to_decimal(gps_coordinate):
 parts = gps_coordinate.split()
 degrees = float(parts[0])
 minutes = float(parts[2].replace(" ' ", " "))
 seconds = float(parts[3].replace(' " ', " "))
 hemisphere = parts[4]
 gps_decimal = degrees + (minutes / 60) + (seconds / 3600)
 if hemisphere == "W" or hemisphere == "S":
 gps_decimal *= -1
 return gps_decimal

Listing 11-2: The gps_degrees_to_decimal() function

This function introduces some new Python features. First, the .split()
string method splits a string into a list of parts based on whitespace. For
example, this method would convert the string '77 deg 0\' 28.44" W' into
the list of strings ['77', 'deg', "0' ", '28.44" ', 'W']. The line parts = gps
_coordinate.split() stores the return value of gps_coordinate.split() into the
parts variable. If you passed that string into this function as gps_coordinate,
this would mean that:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 327

•	 parts[0] is the string 77.

•	 parts[1] is the string deg.

•	 parts[2] is the string 0' (0 followed by a single quote).

•	 parts[3] is the string 28.44" (28.44 followed by a double quote).

•	 parts[4] is the string W.

Before you can do math with strings in Python, you must convert
them into floating- point numbers— which are just numbers that can contain
decimals— using the float() function. Listing 11-2 uses float() to set the
value of degrees to the floating- point version of parts[0]. In this case, it con-
verts the value of the string 77 in gps_coordinate to the floating- point
number 77.0.

The next line of code similarly uses the .replace() string method to con-
vert the minutes value to a floating- point number. This method searches the
string for the first argument and replaces it with the second argument. For
example, "GPS is fun".replace("fun", "hard") returns the string GPS is hard.
When you run parts[2].replace(" ' ", " "), you’re replacing the single quote
character (') with an empty string, in order to delete that character. This
would convert the string 0' from gps_coordinate to 0, and then convert 0 to
the floating- point number 0.0.

The next line uses .replace() to delete the double quote character ("),
converting the string 28.44" from gps_coordinates to 28.44, then converting
that into the floating- point number 28.44 and saving it as seconds.

The rest of the function is more straightforward. It defines the variable
gps_decimal as the decimal version of the GPS coordinates that are passed
in an argument, using the formula to convert the coordinates to decimal
format using the numbers in degrees, minutes, and seconds. If the coordinates
are in the Western or Southern Hemisphere, the code gps_decimal *= -1
makes gps_decimal a negative number. Fi nally, the function returns
gps_decimal, the decimal version of the GPS coordinates.

Since the GPS coordinates in the Parler data come in strings of
degrees, minutes, and seconds, you’ll use the gps_degrees_to_decimal()
function in the next exercise to convert them to decimal format. First,
though, you’ll need to know how to calculate distances between two GPS
coordinates.

Calculating GPS Distance in Python
To determine which Parler videos were filmed in Washington, DC, based
on their GPS coordinates, you can begin by finding the coordinates for
the center point of the city and then imagine a circle around that point.
You can consider a video to have been filmed in the city if its metadata has
both a longitude and latitude within that circle. This won’t tell you if the
video was exactly filmed within the Washington, DC, city limits, but it’s
close enough. In this section, I’ll review the simple math required to do this
calculation.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

328 Chapter 11

The Earth isn’t flat, but for the purposes of this chapter, pretend that
Washington, DC, is a flat plane. You can think of GPS coordinates as a 2D
point on a Cartesian coordinate system, where longitude represents the x
axis (East and West) and latitude represents the y axis (North and South).
Since you can look up the coordinates of the center of Washington, DC,
and you know the coordinates for where each video was filmed, you can use
the distance formula to determine if it’s inside the circle.

The distance formula, as you might recall from geometry class, is used
to calculate the distance between two points. It states that the distance
between two points equals the square root of ((x2 − x1)

2 + (y2 − y1)
2), where

(x1, y1) is one point and (x2, y2) is another point. As an example, Figure 11-4
shows the distance between the White House and the US Capitol, with the
White House at point (x1, y1) and the US Capitol at point (x2, y2).

Figure 11-4: Using the distance formula to calculate the distance between the White
 House and the US Capitol

To determine if a given Parler video was filmed in Washington, DC,
you’ll compare the city center with the GPS coordinates of a Parler video.
The center point of DC is constant, and when you loop through the JSON
files of Parler metadata, you can find all the relevant GPS coordinates.
If you plug these points into the distance formula, you can determine
 whether the distance is close enough to the center to be considered inside
the city.

N O T E Since the Earth isn’t actually flat, using the distance formula will only be relatively
accurate for short distances, like 20 kilo meters. It’s pos si ble to calculate much more
accurate distances between GPS coordinates using spherical geometry, but that
requires using trigonometry functions like sine, cosine, and arctangent. Using the
distance formula is much simpler and accurate enough for our purposes.

Listing 11-3 shows a Python distance() function that implements the dis-
tance formula.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 329

import math

def distance(x1, y1, x2, y2):
 return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)

Listing 11-3: The distance() function

The distance formula requires you to calculate a square root, which
you can do using Python’s math.sqrt() function. To access this function, first
you import the math module at the top of the file. The distance() function
takes the x1, x2, y1, and y2 arguments, then calculates the distance formula,
returning the distance between the two points. (In Python, ** is the power
operator, so we write x2 as x**2.) If you call distance() and pass any two
points into it as arguments, it will return the distance between them.

Finding the Center of Washington, DC
Now you’ll find the coordinates of the center of Washington, DC, so that
you can use the distance formula to compare them against those from a
Parler video. Load https:// www . google . com / maps in your browser and search
for Washington DC. Right- click the US Capitol building, which is approxi-
mately at the center of the city. Google Maps should show you the GPS coor-
dinates of that point (see Figure 11-5); click them to copy them. Your GPS
coordinates might be slightly dif fer ent, depending on where exactly you
clicked.

Figure 11-5: Using Google Maps to find the GPS coordinates of the center of
Washington, DC

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.google.com/maps

330 Chapter 11

If the radius of the imaginary circle around Washington, DC, is about
20 kilo meters, you can consider any videos filmed within 0.25 degrees to be
inside the city. I de cided on 0.25 degrees by checking the GPS coordinates
on the outskirts of DC and comparing them to the coordinates in the city
center.

Armed with the gps_degrees_to_decimal() and distance() Python func-
tions and the GPS coordinates for the center of Washington, DC, you’re
ready to finish filtering the Parler videos to find the insurrection videos in
Exercise 11-3.

Exercise 11-3: Update the Script to Filter for Insurrection Videos
In this exercise, you’ll filter the results of the Exercise 11-2 script even fur-
ther, searching just for videos filmed in Washington, DC. First, make a copy
of exercise-11-2.py and rename it exercise-11-3.py. Now modify exercise-11-3.py to
match the following code:

import click
import os
import json
import math

def gps_degrees_to_decimal(gps_coordinate):
 parts = gps_coordinate.split()
 degrees = float(parts[0])
 minutes = float(parts[2].replace(" ' ", " "))
 seconds = float(parts[3].replace(' " ', " "))
 hemisphere = parts[4]
 gps_decimal = degrees + (minutes / 60) + (seconds / 3600)
 if hemisphere == "W" or hemisphere == "S":
 gps_decimal *= -1
 return gps_decimal

def distance(x1, y1, x2, y2):
 return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)

def was_video_filmed_in_dc(metadata):
 dc_x = -77.0066
 dc_y = 38.8941
 x = gps_degrees_to_decimal(metadata[0]["GPSLongitude"])
 y = gps_degrees_to_decimal(metadata[0]["GPSLatitude"])
 return distance(dc_x, dc_y, x, y) <= 0.25

@click . command()
@click.argument("parler_metadata_path")
def main(parler_metadata_path):
 " ""Filter Parler videos that were filmed in Washington DC and on Jan 6, 2021" ""
 count = 0

 for filename in os.listdir(parler_metadata_path):
 abs_filename = os.path.join(parler_metadata_path, filename)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Parler, the January 6 Insurrection, and the JSON File Format 331

 if os.path.isfile(abs_filename) and abs_filename.endswith(".json"):
 with open(abs_filename, "rb") as f:
 json_data = f.read()

 try:
 metadata = json.loads(json_data)
 except json.decoder.JSONDecodeError:
 print(f"Invalid JSON: {filename}")
 continue

 if (
 "GPSLongitude" in metadata[0]
 and "GPSLatitude" in metadata[0]
 and "CreateDate" in metadata[0]
 and metadata[0]["CreateDate"].startswith("2021:01:06")
 and was_video_filmed_in_dc(metadata)
):
 print(f"Found an insurrection video: {filename}")
 count += 1

 print(f"Total videos filmed in Washington DC on January 6: {count:,}")

if __name__ == "__main__":
 main()

This code first defines the gps_degrees_to_decimal() function from
Listing 11-2 and the distance() function from Listing 11-3, importing the
required math module at the top of the file. It will later use gps_degrees_to
_decimal() to convert GPS coordinates from the Parler video metadata into
decimal format and distance() to calculate the distance between that GPS
coordinate and the center of Washington, DC.

Next, the code defines the was_video_filmed_in_dc() function. This
function takes a single argument, metadata, which contains the Parler
video metadata loaded from its JSON file. It returns True if the GPS coor-
dinates in that metadata are located inside Washington, DC, but other-
wise returns False.

The was_video_filmed_in_dc() function first defines the x and y coordi-
nates you found for the city center in the variables dc_x and dc_y. Next, it
defines the x and y coordinates of the Parler video, storing those values in
the variables x and y. Since the GPS coordinates in the GPSLongitude and
GPSLatitude metadata fields aren’t in decimal format, it first passes those
strings into the gps_degrees_to_decimal() function to convert them from
degrees, minutes, and seconds into decimals and then saves the return
values into x and y.

Fi nally, was_video_filmed_in_dc() calls the distance() function to deter-
mine the distance between these two points. The return value is this
expression:

distance(dc_x, dc_y, x, y) <= 0.25

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

332 Chapter 11

The distance() function returns a number representing the distance
between the center of Washington, DC, and the location where the video
was filmed. If that number is less than or equal to 0.25 (roughly 20 kilo-
meters), the expression evaluates to True; other wise, it evaluates to False.
Thus, the was_video_filmed_in_dc() function returns a Boolean.

With these functions defined at the top of the file, the remaining
changes to the script are minimal. The code updates the docstring, since
our script’s purpose has changed. It also updates the if statement that
checks whether or not an insurrection video was found. The version
of this script from Exercise 11-2 just checked if the metadata included
a GPSCoordinates field, but now it checks for the fields GPSLongitude and
GPSLatitude as well. The videos with GPS coordinates contain all three of
 these fields. GPSCoordinates is just a single field that contains both longitude
and latitude. However, since you need separate values for longitude and
latitude, it’s simpler to use the metadata fields that are already separated.
Fi nally, the if statement confirms that the video was filmed in Washington,
DC, by calling was_video_filmed_in_dc(metadata).

If all of these conditions are true— the metadata contains GPSLongitude
and GPSLatitude; the metadata contains CreateDate with a value matching
January 6, 2021; and the GPS coordinates in the metadata show that the
video was filmed in Washington, DC— then the code displays a message say-
ing it found an insurrection video and increments count. Fi nally, after the
script has finished looping through all of the Parler metadata files, it dis-
plays the total number of insurrection videos found.

You can find the final script in the book’s GitHub repo at https:// github
. com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 11 / exercise - 11 - 3 . py.
Run your complete script now, making sure to pass in the correct path to
your Parler metadata folder:

micah@trapdoor chapter-11 % python3 exercise-11-3.py /Volumes/datasets/Parler/metadata
Found an insurrection video: meta- QPsyYtwu4zJb.json
Found an insurrection video: meta- Hcv3lzEsnWaa.json
Found an insurrection video: meta-6dDTCsYzK3k3.json
- - snip- -
Found an insurrection video: meta- eLSgf3w5r4PI.json
Found an insurrection video: meta- goL0HLdYn3Pb.json
Found an insurrection video: meta- a7DW37R386K3.json
Total videos filmed in Washington DC on January 6: 1,202

The script should find 1,202 insurrection videos. This means that out of
the 1,958 videos uploaded to Parler on January 6 that included GPS coordi-
nates, at least 61 percent were videos of the insurrection itself. (It’s pos si ble
that more videos uploaded to Parler were also from the insurrection that
day, but just didn’t include GPS coordinates in their metadata.) Manually
watching 1,202 Parler videos is still unpleasant, but at least it’s not as bad as
watching 1,958.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-11/exercise-11-3.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-11/exercise-11-3.py

Parler, the January 6 Insurrection, and the JSON File Format 333

PROPUBL ICA’S PA R L ER DATA BA SE

Using the metadata as a starting point, as you’ve done so far in this chapter,
36 journalists at ProPublica did in fact watch thousands of insurrection videos
from this dataset in late January 2021. The nonprofit newsroom published an
interactive database of newsworthy Parler videos related to the January 6
attack. “ProPublica reviewed thousands of videos uploaded publicly to the
 service that were archived by a programmer before Parler was taken offline
by its web host,” states the proj ect’s website at https:// projects . propublica . org
/ parler - capitol - videos / . The proj ect included over 500 videos that “ProPublica
determined were taken during the events of Jan. 6 and were relevant and news-
worthy.” Readers could see what was happening during the insurrection at any
point in time that day, and ProPublica organized the videos into the categories
Around DC, Near Capitol, and Inside Capitol.

You now know which of the Parler videos were from the January 6 insur-
rection, but you can draw even more in ter est ing conclusions from this data-
set (and others that contain similar location data) when you visualize the
data on a map.

Plotting GPS Coordinates on a Map with simplekml
Rather than just displaying a list of insurrection video filenames, you could
plot the locations of those videos on a map, allowing you to easily choose
which videos you’d like to watch first. You could also map all Parler videos
that contain GPS coordinates around the world, in case there are other
newsworthy videos in this dataset that don’t relate to the January 6 insur-
rection. In this section, you’ll learn to write Python code to create a file of
Parler location data that you can then upload to an online map service to
visualize it.

Google Earth (https:// earth . google . com) allows you to upload a file in
Keyhole Markup Language (KML), a file format designed to describe geo-
graph i cal features such as points on a map. KML was created in 2004 spe-
cifically for use with Google Earth, and it became a standard file format for
describing geographic data in 2008.

Listing 11-4 shows an example KML file.

<?xml version="1.0" ?>
<kml xmlns = "http:// www . opengis . net / kml / 2 . 2"
xmlns:gx = "http:// www . google . com / kml / ext / 2 . 2">
 <Document id="1">
 <Placemark id="3">
 <name>New York City</name>
 <description>The Big Apple</description>
 <Point id="2">

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://projects.propublica.org/parler-capitol-videos/
https://projects.propublica.org/parler-capitol-videos/
https://earth.google.com
xmlns="http://www.opengis.net/kml/2.2
xmlns:gx="http://www.google.com/kml/ext/2.2

334 Chapter 11

 <coordinates>-74.006393,40.714172,0.0</coordinates>
 </Point>
 </Placemark>
 </Document>
</kml>

Listing 11-4: A file written in KML, example.kml

As you can see, the KML format is similar to HTML. Both formats are
extensions of XML, or Extensible Markup Language, so they share the
same rules. The first line, starting with <?xml, is called the XML prolog, and
it defines some metadata about this file. The entire contents of the KML
file are wrapped in a <kml> tag. Inside this is a <Document> tag, and inside this
are one or more <Placemark> tags. Each <Placemark> represents a point on a
map: its name, description, and GPS coordinates in decimal format. This
example file describes a single point for New York City.

To plot GPS coordinates on Google Earth, you must generate a KML
file that contains these coordinates and then upload it to the service. The
simplest way to create KML files is by using the simplekml Python module.
You can use this module to create a new KML object, create a new point
on it for each Parler video with GPS coordinates, and then save that KML
object to a .kml file.

Install the simplekml module by running the following command:

python3 - m pip install simplekml

Now use the module in the Python interpreter to generate the example.
kml file from Listing 11-4:

>>> import simplekml
>>> kml = simplekml.Kml()
>>> kml.newpoint(name="New York City", description="The Big Apple", coords=[(-74.006393,
40.714172)])
<simplekml.featgeom.Point object at 0x101241cc0>
>>> kml.save("example.kml")

 After importing the simplekml module, this code defines the value of
the kml variable as the output of simplekml.Kml(), which returns a KML
object. It then uses the kml.newpoint() method to add GPS points to the
KML file it’s creating. While this example just adds one point for New York
City, with the description “The Big Apple,” you can add as many points as
you want. Note that the value of the coords argument must be a list of tuples,
with each tuple containing longitude and latitude coordinates in decimal
format. Fi nally, after adding points, the code saves the KML file by running
kml.save() and passes an output filename.

You can find further documentation for the simplekml Python module at
https:// simplekml . readthedocs . io.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://simplekml.readthedocs.io

Parler, the January 6 Insurrection, and the JSON File Format 335

A LT ER N AT I V ES TO GOOGL E E A R T H

 There are many dif fer ent ways to plot GPS points, including alternative online
 services like MapBox (https:// www . mapbox . com), which allows you to upload
a CSV of GPS coordinates to generate points on a map and even embed that
map into articles on your website.

In future proj ects, you may need to visualize sensitive geographic data
without sharing it with a third- party service like Google or MapBox. The free
and open source desktop software QGIS (https:// qgis . org) allows you to cre-
ate maps locally on your computer, though it’s pretty complicated to use. You
can also write Python code that pulls data from OpenStreetMap (https:// www
. openstreetmap . org), a vast and completely free and open source mapping
resource that allows you to create geographic images with GPS points on them.
 These options aren’t as simple as using online tools, and explaining how they
work is beyond the scope of this book.

You don’t necessarily need GPS coordinates in your dataset to visualize
location data on a map. If you have addresses, or even just city names or zip
codes, you could convert that information to GPS coordinates and then plot
 those on a map. You could do the same with IP addresses, converting them to
their rough GPS locations.

You now know how to create KML files full of location data that can be
mapped in Google Earth. As your final exercise in this chapter, you’ll gen-
erate KML files based on GPS coordinates in the Parler dataset.

Exercise 11-4: Update the Script to Create KML Files
So far, we’ve focused on finding Parler videos filmed in Washington, DC,
during the January 6 insurrection. While this is undoubtedly the most news-
worthy part of this dataset, there could be other things we’re missing. Parler
is a global far- right social network. What other far- right videos did people
post to it? Does it contain any in ter est ing data from other countries, such as
Rus sia? In this exercise, you’ll write a script that creates two KML files full
of GPS coordinates from the Parler dataset to visualize in Google Earth:

•	 A parler- videos- all.kml file containing all videos with GPS coordinates

•	 A parler- videos- january6.kml file containing videos with GPS coordinates
filmed on January 6, 2021

This exercise will give you experience creating KML files and using Google
Earth to visualize location data, a skill that will likely come in handy for any
 future dataset you come across that includes location data.

You’ll base your script for this exercise off the script you wrote in
Exercise 11-3. For a challenge, you can try programming your own script to
meet the following requirements:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.mapbox.com
https://qgis.org
https://www.openstreetmap.org
https://www.openstreetmap.org

336 Chapter 11

•	 Make this script accept a CLI argument, parler_metadata_path, using
Click. This will be the path to the metadata folder full of JSON files.

•	 Import the simplekml module and create two KML objects (one for each
KML file you’ll be creating). Loop through the Parler video metadata
JSON files, and add dif fer ent points to the appropriate KML objects
depending on the metadata. Points for all videos should be added to
parler- videos- all.kml, and points only for videos with the CreateDate of
January 6, 2021, should be added to parler- videos- january6.kml.

•	 Give every point you add to a KML object a name, a description, and
GPS coordinates in decimal format. The name should be the Parler
video ID (for example, HS34fpbzqg2b), and the description should be a
string containing the video’s download link (for example, https://data
. ddosecrets . com/Parler/Videos/HS34fpbzqg2b) as well as impor tant meta-
data fields such as CreateDate, FileTypeExtension, or others you’re inter-
ested in.

•	 Make your script loop through all of the metadata JSON files and filter
them for videos that contain GPS coordinates.

Alternatively, follow along with the instructions in the rest of this
exercise.

Create a KML File for All Videos with GPS Coordinates
You’ll begin by writing a script to loop through all of the Parler metadata
JSON files and add any GPS coordinates it finds to a single KML file, parler-
videos- all.kml, including only the video URL in the description, not any
metadata. Make a copy of the exercise-11-3.py script and name it exercise-11-4.
py, then make the following modifications:

import click
import os
import json
import simplekml

def json_filename_to_parler_id(json_filename):
 return json_filename.split("- ")[1].split(".")[0]

def gps_degrees_to_decimal(gps_coordinate):
 parts = gps_coordinate.split()
 degrees = float(parts[0])
 minutes = float(parts[2].replace(" ' ", " "))
 seconds = float(parts[3].replace(' " ', " "))
 hemisphere = parts[4]
 gps_decimal = degrees + (minutes / 60) + (seconds / 3600)
 if hemisphere == "W" or hemisphere == "S":
 gps_decimal *= -1
 return gps_decimal

@click . command()
@click.argument("parler_metadata_path")

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/HS34fpbzqg2b
https://data.ddosecrets.com/Parler/Videos/HS34fpbzqg2b
http://click.command

Parler, the January 6 Insurrection, and the JSON File Format 337

def main(parler_metadata_path):
 " ""Create KML files of GPS coordinates from Parler metadata" ""
 kml_all = simplekml.Kml()

 for filename in os.listdir(parler_metadata_path):
 abs_filename = os.path.join(parler_metadata_path, filename)
 if os.path.isfile(abs_filename) and abs_filename.endswith(".json"):
 with open(abs_filename) as f:
 json_data = f.read()

 try:
 metadata = json.loads(json_data)
 except json.decoder.JSONDecodeError:
 print(f"Invalid JSON: {filename}")
 continue

 if (
 "GPSLongitude" in metadata[0]
 and "GPSLatitude" in metadata[0]
 and metadata[0]["GPSLongitude"] != " "
 and metadata[0]["GPSLatitude"] != " "
):
 name = json_filename_to_parler_id(filename)
 description = f"URL: https://data . ddosecrets . com/Parler/Videos/{name}"
 lon = gps_degrees_to_decimal(metadata[0]["GPSLongitude"])
 lat = gps_degrees_to_decimal(metadata[0]["GPSLatitude"])

 print(f"Found a video with GPS coordinates: {filename}")
 kml_all.newpoint(name=name, description=description, coords=[(lon, lat)])

 kml_all.save("parler- videos- all.kml")

if __name__ == "__main__":
 main()

Since you’re going to be mapping this data, you don’t need the code
that detects if a video is in Washington, DC— you’ll be able to tell by zoom-
ing into Washington, DC. Therefore, this code deletes the distance() and
was_video_filmed_in_dc() functions from the previous script, as well as the
math import. The new code imports the simplekml module at the top of the
file so that you can use it later in the script.

Next, the code defines the function json_filename_to_parler_id(). This
function is only a single, complex line of code that takes the filename
of a Parler metadata JSON file as an argument, then returns the Parler
ID associated with that file. For example, say the value of json_filename is
meta-31VC1ufihFpa.json. In this case, the expression json_filename.split("- ")
 will evaluate to the list ['meta', '31VC1ufihFpa.json']. Since Python starts
counting at zero, the code selects the second item in that list (the string
31VC1ufihFpa.json) by adding [1] to that expression, making it json_filename
.split("- ")[1]. Next, it splits that string on the period character with the
expression json_filename.split("- ")[1].split("."), which returns the list
['31VC1ufihFpa', 'json']. It then selects the first item in that list (the string

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/{name

338 Chapter 11

31VC1ufihFpa) by adding [0] to that expression, making it json_filename
.split("- ")[1].split(".")[0]. The json_filename_to_parler_id() function just
returns the result of that expression, which is the Parler ID.

In the main() function, the code defines a new KML object called
kml_all to contain all the GPS points found in the Parler metadata. The rest
of this code should be familiar to you from Exercises 11-2 and 11-3. It loops
through the Parler metadata folder looking for JSON files, loading the JSON
data for each file it finds into the metadata variable. This time, the if state-
ment ensures that the metadata dictionary contains the keys GPSLongitude
and GPSLatitude, and that those values aren’t blank.

When the code finds a Parler video that contains non- empty GPS fields,
it sets up variables with the data it needs to add the point to the KML
files: name, description, lon, and lat. It defines name as the return value of the
json_filename_to_parler_id() function, meaning the name of the point will
be the video’s Parler ID. It defines description as the video’s download URL.
Using the gps_degrees_to_decimal() function, it defines lon and lat as the lon-
gitude and latitude, in decimal format, of the GPS coordinates found in the
metadata.

 After defining these variables, the code runs kml_all.newpoint() to
add the GPS point to the KML object. It sets the point’s name to name, its
description to description, and its coordinates to a list of points—in this
case, the list has only one point, a tuple containing lon and lat. Fi nally,
when the for loop is complete, the code calls the kml_all.save() function to
save all of these GPS points into the file parler- videos- all.kml.

Run the final script, changing the path in the argument to the path to
your Parler metadata folder:

micah@trapdoor chapter-11 % python3 exercise-11-4.py /Volumes/datasets/Parler/metadata
Adding point 2XpiJFsho2do to kml_all: -117.6683, 33.490500000000004
Adding point bcHZhpDOFnXd to kml_all: -1.3391, 52.04648888888889
- - snip- -

Since the Parler dataset contains about 64,000 videos with GPS coor-
dinates, the script should return about 64,000 lines of output, each includ-
ing a video’s Parler ID, longitude, and latitude. When the script finishes
 running, it should also create a 20MB KML file called parler- videos- all.kml in
the same folder as the script.

Open parler- videos- all.kml in a text editor. Its contents should look like
this:

<?xml version="1.0" ?>
<kml xmlns = "http:// www . opengis . net / kml / 2 . 2" xmlns:gx = "http:// www . google . com / kml / ext / 2 . 2">
 <Document id="1">
 <Placemark id="3">
 <name>2XpiJFsho2do</name>
 <description>https://data . ddosecrets . com/Parler/Videos/2XpiJFsho2do</description>
 <Point id="2">
 <coordinates>-117.6683,33.490500000000004,0.0</coordinates>
 </Point>

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

xmlns="http://www.opengis.net/kml/2.2
xmlns:gx="http://www.google.com/kml/ext/2.2
description>https://data.ddosecrets.com/Parler/Videos/2XpiJFsho2do</description

Parler, the January 6 Insurrection, and the JSON File Format 339

 </Placemark>
 <Placemark id="5">
 <name>bcHZhpDOFnXd</name>
 <description>https://data . ddosecrets . com/Parler/Videos/bcHZhpDOFnXd</description>
 <Point id="4">
 <coordinates>-1.3391,52.04648888888889,0.0</coordinates>
 </Point>
 </Placemark>
- - snip- -

This file should contains 64,000 <Placemark> tags, each representing a
dif fer ent Parler video with GPS coordinates.

Now that you’ve created a KML file that contains all of the Parler loca-
tion data, you’ll modify your script further to create a KML file with just the
videos from January 6, 2021.

Create KML Files for Videos from January 6, 2021
Your script so far has a KML object called kml_all, and the code adds all of
the GPS points in the Parler metadata to it. Make the following changes
to your code to create another KML object, kml_january6, and just add GPS
points from videos filmed on January 6, 2021, to it. Since this script is get-
ting long, I’ll quote just the main() function, the only part that is modified:

@click . command()
@click.argument("parler_metadata_path")
def main(parler_metadata_path):
 " ""Create KML files of GPS coordinates from Parler metadata" ""
 kml_all = simplekml.Kml()
 kml_january6 = simplekml.Kml()

 for filename in os.listdir(parler_metadata_path):
 abs_filename = os.path.join(parler_metadata_path, filename)
 if os.path.isfile(abs_filename) and abs_filename.endswith(".json"):
 with open(abs_filename, "rb") as f:
 json_data = f.read()

 try:
 metadata = json.loads(json_data)
 except json.decoder.JSONDecodeError:
 print(f"Invalid JSON: {filename}")
 continue

 if (
 "GPSLongitude" in metadata[0]
 and "GPSLatitude" in metadata[0]
 and metadata[0]["GPSLongitude"] != " "
 and metadata[0]["GPSLatitude"] != " "
):
 name = json_filename_to_parler_id(filename)
 description = f"URL: https://data . ddosecrets . com/Parler/Videos/{name}
"
 for key in [

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

description>https://data.ddosecrets.com/Parler/Videos/bcHZhpDOFnXd</description
http://click.command
https://data.ddosecrets.com/Parler/Videos/{name}<br

340 Chapter 11

 "CreateDate",
 "FileTypeExtension",
 "Duration",
 "Make",
 "Model",
 "Software",
]:
 if key in metadata[0]:
 description += f"{key}: {metadata[0][key]}
"
 lon = gps_degrees_to_decimal(metadata[0]["GPSLongitude"])
 lat = gps_degrees_to_decimal(metadata[0]["GPSLatitude"])

 print(f"Adding point {name} to kml_all: {lon}, {lat}")
 kml_all.newpoint(name=name, description=url, coords=[(lon, lat)])

 if "CreateDate" in metadata[0] and metadata[0]["CreateDate"].startswith(
 "2021:01:06"
):
 print(f"Adding point {name} to kml_january6: {lon}, {lat}")
 kml_january6.newpoint(
 name=name, description=url, coords=[(lon, lat)]
)

 kml_all.save("parler- videos- all.kml")
 kml_january6.save("parler- videos- january6.kml")

At the top of the main() function, this script adds another KML object
called kml_january6. The code will add points to this file only from January 6,
2021. Next, the for loop will loop through the each Parler metadata file,
parse the JSON, and determine whether or not it has GPS coordinates.
If so, the code will prepare variables so it can add the point to the KML
objects. But this time, instead of the description variable containing just the
video’s download URL, it will also include metadata.

When defining description, the code adds
 at the end, which is the
HTML tag for a line break. This way, when you visualize this KML file, the
description will show the URL on the first line, and the metadata will start
on the next line. The code then loops through a list of metadata keys to
add to the description, including CreateDate, FileTypeExtension, Duration, Make,
Model, and Software. If there are any other pieces of metadata you’d like to
include, feel free to add them to your script.

In each loop, the code checks to see if the metadata for the current
video includes that key, and if so, adds its value to description, inserting a
line break after each piece of metadata. For example, if the code is looking
at the JSON file meta- g09yZZCplavI.json, description will appear as follows:

URL: https://data . ddosecrets . com/Parler/Videos/g09yZZCplavI
CreateDate: 2021:01:06 20:08:25
FileTypeExtension: mov
Duration: 25.24 s
Make: Apple
Model: iPhone XS Max
Software: 14.3

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/g09yZZCplavI

Parler, the January 6 Insurrection, and the JSON File Format 341

(The actual value of the description string will contain
 for the line
breaks, but this is how the description will look in Google Earth.)

Next, the code uses another if statement to see if that video was created
on January 6, 2021, and if so, adds that point to kml_january6. It does this by
checking that the file has a CreateDate metadata field, and that the date in
that field is from January 6, 2021, just as you did in Exercise 11-2. Fi nally,
when the script finishes looping through all of the Parler videos, after sav-
ing the points in kml_all to parler- videos- all.kml, it also saves the points in
kml_january6 to parler- videos- january6.kml.

You can find the final script in the book’s GitHub repo at https:// github
. com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 11 / exercise - 11 - 4 . py.
Run your complete script like so:

micah@trapdoor chapter-11 % python3 exercise-11-4.py /Volumes/datasets/Parler/metadata
Adding point 2XpiJFsho2do to kml_all: -117.6683, 33.490500000000004
Adding point bcHZhpDOFnXd to kml_all: -1.3391, 52.04648888888889
- - snip- -
Adding point VNYtKrEURiZs to kml_all: -97.0244, 33.1528
Adding point VNYtKrEURiZs to kml_january6: -97.0244, 33.1528
Adding point KptnQksS5Xr8 to kml_all: -77.0142, 38.8901
- - snip- -

When the script is finished running, it should have created two KML
files: a 31MB file called parler- videos- all.kml (the file is bigger this time
 because the descriptions are longer) and a 929KB file called parler- videos-
january6.kml.

Now that you’ve put in the hard work of generating KML files full of
GPS coordinates, you can move on to the fun part: visualizing this data
using Google Earth. This will allow you to scroll around the globe picking
which videos you’d like to watch.

Visualizing Location Data with Google Earth
In this section, you’ll learn how to visualize location data in the KML files
that you just created using Google Earth, marking each Parler video with a
pin on a map. Not only will this let you visualize exactly where all of the vid-
eos with GPS coordinates were filmed, but it will also make it considerably
simpler to download these videos to watch.

When you created those KML files, you set the description for each
Parler video to include its download URL. Once you load a KML file into
Google Earth and turn it into pins on a map, you can click on a video’s pin
to see its description, and then click the link in the description to download
the video. In a web browser, load Google Earth at https:// earth . google . com.
(You don’t have to log into a Google account, though doing so enables you
to save your work and revisit it later.) In the menu bar on the left, choose
Proj ectsOpenImport KML File from Computer. Browse for the parler-
videos- all.kml file you created in the previous exercise and open it. When it’s
done loading, click the pencil icon to edit the title of this proj ect, name it

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-11/exercise-11-4.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-11/exercise-11-4.py
https://earth.google.com

342 Chapter 11

All Parler Videos, and press ENTER. This should create a pin on the map
for each Parler video in the entire dataset, labeled by its ID.

Repeat this process for parler- videos- january6.kml, and name this one
Parler Videos from January 6, 2021. In the Proj ects panel on the left of the
screen, you should see your two proj ects.

By clicking the eye icon, you can show and hide Google Earth proj ects
to choose which KML files you want displayed. With the pins you want dis-
played, you can rotate the Earth and zoom into whatever you’d like. You can
double- click on the map, click the plus (++) button to zoom in, and click the
minus (−−) button to zoom out.

For example, to investigate just the insurrection videos, show that
proj ect and hide the others. Figure 11-6 shows Google Earth zoomed into
the US Capitol building in Washington, DC, with just the videos from the
January 6 insurrection showing. The pins in the figure are all videos of the
January 6 insurrection, and the pins located over the Capitol building itself
are videos filmed by Trump supporters who were actively trespassing inside
the US Capitol that day.

Figure 11-6: Google Earth, focused on the US Capitol building, with pins at the GPS points in
parler- videos- january5.kml

When you find a video you’re interested in, click its pin to view its
description. You should see the URL to download the video, and you can
watch it using software like VLC Media Player.

You can also use Google Earth to search for a location so you can see
the individual pins there. For example, you could hide the Parler Videos
from January 6, 2021, proj ect and instead show pins for the All Parler
Videos proj ect, then search for Moscow. Figure 11-7 shows Google Earth
zoomed into the city of Moscow, Rus sia. As the figure indicates, only a
handful of videos whose metadata included GPS coordinates were filmed
 there and uploaded to Parler.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 343

Figure 11-7: Parler videos filmed in Moscow

Click the pin for the video labeled ykAXApWbiZuM. You should see the
following description:

URL: https://data . ddosecrets . com/Parler/Videos/ykAXApWbiZuM
CreateDate: 2020:06:28 21:56:41
FileTypeExtension: mov
Duration: 0:06:51
Make: Apple
Model: iPhone 7 Plus
Software: 13.5.1

As you can see, this video was filmed on June 28, 2020 (during the
Black Lives Matter uprising), with an iPhone 7 Plus running iOS 13.5.1.
Right- click the link to see the option to download the video. This way, your
web browser won’t try opening it directly in a new tab, where it might not
display properly.

If you’re interested, you can open the video file using VLC Media Player
to watch it. In the recording, a tattooed American white supremacist who
runs a Confederate- themed barber shop in Moscow goes on a racist and
homophobic rant, in part explaining why he moved to Rus sia. “I voted
Trump in office in 2016,” he said. “But the fact is, nothing’s gonna change.
The fact is, all these Trump supporters in Amer i ca all the time can’t see the
real prob lem. Your real prob lem is fucking Jews in Amer i ca.” Figure 11-8
shows a screenshot from the video where he’s telling Parler users that he’s a
real white supremacist and not a liberal troll, as people were accusing him
of being.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/ykAXApWbiZuM

344 Chapter 11

Figure 11-8: A screenshot from a Parler video filmed by an American
white supremacist in Moscow

He goes on to fantasize about mass shooting Black Lives Matter protest-
ers. “I watch the news in Amer i ca. I see all these fucking [N- word]s, antifa
fucking scum. Ripping down the monuments. It angers me more than
anything. What I don’t understand is where’s the fucking police to stop any
of this?” he asks. “How come nobody’s shooting these motherfuckers? If I
was in Los Angeles still, seeing all this rioting and looting going on, I’d be
up on a motherfucking building with my AK-47 just spraying the fucking
crowd.”

If you’re curious about the complete metadata from this video, you
can check the original file at meta- ykAXApWbiZuM.json. If you wanted to
see more videos posted by this Parler user, you could modify your script to
filter videos that were filmed on the exact device by checking for the same
Make, Model, and Software fields. You might find some other users’ videos, but
chances are you’ll also find more videos from this poster as well.

The media spent the bulk of its time focusing on Parler videos they
knew were taken in Washington, DC, on the day of the insurrection. If
 you’re interested in further exploring this dataset, you might try to find vid-
eos from other far- right protests, or events with far- right counterprotesters.
For example, you could create a KML file that includes the date ranges of
the specific 2020 Black Lives Matters protests and explore those videos. You
might find video evidence of other crimes.

Viewing Metadata with Exiftool
When @donk_enby downloaded the Parler videos and extracted metadata
from them in JSON format, she used a command line program called
exiftool. This program is one of the investigation tools I use most fre-
quently, and this section explains how to use it.

If you run exiftool followed by a filepath, it will attempt to find meta-
data stored in that file and show it to you. It works on a variety of file

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Parler, the January 6 Insurrection, and the JSON File Format 345

formats, including Microsoft Office documents, PDFs, image, and videos.
You can use it to find hidden information in the metadata of those docu-
ments, such as the author of a Word document, which type of phone or
camera was used to take a photo, and much more.

You don’t need to run exiftool on the Parler videos since @donk_enby
did it for you, but most of the time, you won’t be so lucky. If you want to
search for hidden information in BlueLeaks documents, for example, you’d
need to run exiftool on them yourself. In this subsection, to learn how
exiftool works, you’ll use it to view the metadata on one of the Parler videos
in JSON format.

Mac users, install exiftool by running the brew install exiftool com-
mand; users of Linux or Win dows with WSL , install it with the sudo apt
install libimage- exiftool- perl command. In your terminal, change to the
videos folder in your Parler dataset folder and use wget to download the
Parler video with the ID HS34fpbzqg2b:

wget https://data . ddosecrets . com/Parler/Videos/HS34fpbzqg2b

You can use exiftool to look at the metadata of a file by running
exiftool filename. Run it on the HS34fpbzqg2b file that you just downloaded
with the following command:

exiftool HS34fpbzqg2b

The output should show all the metadata for this video file:

- - snip- -
File Type Extension : mov
- - snip- -
Model : iPhone XR
Software : 14.2
Creation Date : 2021:01:06 13:57:49-05:00
- - snip- -
GPS Position : 38 deg 53' 26.52" N, 77 deg 0' 28.44" W

Along with other information, the metadata shows that this video’s file
extension is .mov, it was recorded using an iPhone XR running iOS 14.2 on
January 6, 2021, at 1:57 PM, and it was filmed at the GPS coordinates 38 deg
53′ 26.52″ N, 77 deg 0′ 28.44″ W.

Since the file extension for this video is .mov, rename it by running mv
HS34fpbzqg2b HS34fpbzqg2b.mov. You can open HS34fpbzqg2b.mov in a program
like VLC Media Player just to see what it contains: police officers stepping
out of the way while Trump supporters remove barricades surrounding the
Capitol building.

When @donk_enby used exiftool to extract the metadata from the
Parler videos, she used the - json argument to extract it in JSON format.
 Here’s how you do that for HS34fpbzqg2b:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Parler/Videos/HS34fpbzqg2b

346 Chapter 11

micah@trapdoor videos % exiftool HS34fpbzqg2b - json
[{
 "SourceFile": "HS34fpbzqg2b",
 "ExifToolVersion": 12.42,
 "FileName": "HS34fpbzqg2b",
- - snip- -
 "GPSLatitude": "38 deg 53' 26.52\" N",
 "GPSLongitude": "77 deg 0' 28.44\" W",
 "Rotation": 180,
 "GPSPosition": "38 deg 53' 26.52\" N, 77 deg 0' 28.44\" W"
}]

The - json argument makes the output much easier to work with than
exiftool’s default output.

Summary
In this chapter, you’ve learned about the secrets hidden in the metadata of
over a million videos uploaded to Parler, many of them by insurrectionists
filming themselves during the January 6 riot in Washington, DC. You’ve
learned the syntax of the JSON file format and how to work with JSON data
in your own Python scripts. You’ve written a series of scripts that filtered
the list of a million videos down to just the ones that were, according to
their metadata, filmed on January 6, 2021, in Washington, DC during the
attack on the US Capitol by supporters of Donald Trump. You now have the
skills necessary to write code that analyzes JSON in your own investigations.
Fi nally, you’ve seen how you can convert GPS coordinates from degrees to
decimal and plot them on a map, an invaluable skill for future investiga-
tions that involve location data.

In the next chapter, you’ll explore one more technology that’s common
in hacked and leaked datasets: SQL databases. You’ll use the SQL skills you
learn to dig into the hacked databases of Epik, a hosting and domain name
com pany that provides service to much of the American fascist movement.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

On a Saturday morning in late October 2018 in
Pittsburgh, Pennsylvania, Robert Bowers posted a
message to the fascist- friendly social network Gab.
“[Hebrew Immigrant Aid Society] likes to bring invad-
ers in that kill our people,” he wrote. “I can’t sit by and
watch my people get slaughtered. Screw your optics,
I’m going in.” He was parroting the “ great replace-
ment” conspiracy theory, pop u lar ized in the US by
former Fox News host Tucker Carlson, which claims
that Jews are replacing white people with immigrants
of color.

Armed with an AR-15 assault rifle and three Glock semi- automatic
pistols, Bowers entered the Tree of Life Synagogue, where three dif fer ent
Jewish congregations were holding Shabbat services that morning, and

12
E P I K F A I L , E X T R E M I S M

R E S E A R C H , A N D S Q L D A T A B A S E S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

348 Chapter 12

committed the deadliest antisemitic terrorist attack in US history. He killed
11 people and wounded 6 others, including several Holocaust survivors.

That day, several companies kicked Gab off their platforms. GoDaddy,
the registrar that Gab used to buy the domain gab . com, sent Gab a letter say-
ing it had “discovered numerous instances of content on your site that both
promotes and encourages vio lence against people.” Gab was down only for a
few days, though, thanks in part to the domain name registrar and web host-
ing com pany Epik, which soon took over registration for gab . com.

In this chapter, you’ll learn about Epik, its extremist customers, and
the 2021 data breach that exposed hundreds of gigabytes of customer
data. You’ll download and learn to work with some of the leaked data,
most of which is in the format of structured query language, or SQL (often
pronounced “sequel”). SQL is a popular database technology that many
websites, online services, and local software use to store data. This chapter
focuses on MySQL databases, which use the SQL software that Epik uses.
You’ll also practice using database software called MariaDB, a community-
maintained version of MySQL. Fi nally, you’ll learn to run a SQL server
(software that allows you to host SQL databases), import the data, and write
your own code to search it, skills that will prepare you for investigating your
own SQL datasets in the future.

The Structure of SQL Databases
I’ve briefly discussed SQL databases in previous chapters, including
Chapter 10, where you converted CSVs into SQLite databases for BlueLeaks
Explorer. There are many types of SQL databases, including PostgreSQL,
Microsoft SQL Server, Oracle SQL, and the aforementioned MySQL and
SQLite. While they’re all based on SQL, they have minor differences that
mean they’re not entirely compatible with each other. SQL databases are
 popular; therefore, so are SQL data breaches.

Some SQL database software is proprietary. For example, Microsoft
SQL Server is the version of SQL that Microsoft products require, and it
runs only on Win dows. Oracle is another proprietary version of SQL; if
you get a leaked Oracle database, you’ll need to use Oracle software to
access it. PostgreSQL and MySQL are free and open source and run on
Linux servers, making them popular and widely used in web development.
SQLite is another free and open source version of SQL. It can’t handle
huge databases, but it’s very simple and convenient for small ones— iPhone
and Android apps frequently store their settings in a SQLite database, for
example.

N O T E Some datasets may require you to set up a SQL database server that you’re unfamiliar
with, or figure out how to convert them into a type of SQL you already know, in order
to analyze them. I once contributed to an investigation based on a leaked Chinese
police database that revealed the suffocating surveillance of China’s Uyghur minor-
ity group in the Xinjiang region. It was an Oracle database, but it’s unclear whether
the Chinese police paid for it or were pirating it. Because Oracle is proprietary and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://gab.com
http://gab.com

Epik Fail, Extremism Research, and SQL Databases 349

the investigating technologists didn’t have an Oracle license or experience with this
version of SQL, they de cided to convert it into a PostgreSQL database so they could
more easily work with the data. Read the full report by Yael Grauer at https://
theintercept . com / 2021 / 01 / 29 / china - uyghur - muslim - surveillance - police / .

Next we’ll look at what relational databases are, how SQL servers typi-
cally work, and the terminology used to describe SQL databases and the
data they contain.

Relational Databases
SQL databases are made up of tables, which you can think of as spread-
sheets comprising a list of rows, with each row containing the same
columns, or fields. SQL databases are useful because they’re relational,
meaning that data in dif fer ent tables can relate to each other. You saw this
firsthand when working with BlueLeaks Explorer: the BlueLeaks folders
had individual spreadsheets like Documents.csv and DocumentCategory.csv,
but once you converted them into SQLite databases, you could rely on the
relationship between the Documents and the DocumentCategory tables to
browse BlueLeaks documents by category.

Let’s look at a simple example: a database that contains two related
 tables for books and authors. Table 12-1 shows the information stored in the
authors table.

 Table 12-1: The authors Table

id name

1 Micah Lee

2 Carl Sagan

 Table 12-2 shows the information stored in the books table.

Table 12-2: The books Table

id title author_id

1 Hacks, Leaks, and Revelations 1

2 Pale Blue Dot 2

3 Contact: A Novel 2

Each SQL database can contain multiple tables, and each table has a
defined set of fields. For example, Table 12-2 has id, title, and author_id
fields.

 Every table in a SQL database normally has a unique id field that
auto- increments, meaning that when you add rows of data to the table, the
first row is automatically given an id of 1, the second is given an id of 2,
and so on, ensuring that no two rows ever have the same id. If Table 12-1
included two authors named Micah Lee, it would be clear in the database
that they’re not the same person, because the ID for each row would be
dif fer ent.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2021/01/29/china-uyghur-muslim-surveillance-police/
https://theintercept.com/2021/01/29/china-uyghur-muslim-surveillance-police/

350 Chapter 12

In general, tables relate to each other using these unique ID numbers.
Let’s say you’re browsing through the books table and come across Contact: A
Novel. Who wrote it? According the data in its row, the author_id is 2. To find
out who the author is, you’d look at the authors table for the row with the id
of 2 to find that it’s Carl Sagan.

This example deals with a small amount of data, but SQL databases can
become huge and complicated. For example, instead of two authors, you
might find a database with 10 million users and all sorts of tables that relate
to it using a field called user_id.

Clients and Servers
Most types of SQL databases are server software, meaning you install a SQL
server to hold all of the data. Other computers then use a SQL client to com-
municate with that server to search for, add, or update data. This communi-
cation is similar to how websites work: a web server has the software that runs
the website, while a web browser (the client) connects to the server remotely
to load web pages, submit forms, and so on. SQL clients communicate to
servers using SQL queries, also known as statements. Similarly to English, SQL
queries start with a verb that describes an action being taken and have clauses
that further describe that action. All SQL queries end with semicolons (;).

Each SQL server can host multiple databases. For example, you could
run 20 dif fer ent WordPress websites on the same MySQL server by having
each website use a dif fer ent database. The Epik dataset includes data from
nine dif fer ent MySQL databases. If you downloaded them all, you could
import all nine into the same MySQL server. Because much of the Epik data
is in MySQL format, in Exercise 12-1 you’ll run a MySQL server in Docker.
Once you have a server running, you’llconnect to it later using a client to
import all of the data and begin your analy sis.

In this chapter, you’ll try out two dif fer ent MySQL clients: the web-
based client Adminer, and the mysql command line client, which allows you
to interact with the database from the terminal. For MySQL, Adminer is
more user- friendly for manually browsing a SQL database, but mysql is espe-
cially useful for working on remote servers and creating or restoring data-
base backups. For a simpler introduction to working with clients, you’ll use
Adminer in the first half of this chapter, then move on to the command line
client. All clients interact with servers in the same way, sending SQL queries
to the SQL server, which runs them and returns a response. Therefore, the
skills you learn using Adminer will also apply to the CLI client.

SQL servers also normally have a system of users and permissions that
allow you to grant a given user access to some databases, but not others.
The root user on MySQL and other databases has total access to every data-
base on the server. When you’re researching a leaked database, it’s fine to
run all of your searches as the root user since you’re typically the only per-
son using that server. However, if you’re running a database that strangers
online might use, such as a website powered by a SQL database, you should
use non- root database users with restricted permissions. This way, if one of
 those strangers hacks your database, they’ll have access only to what that
specific database user has permissions for.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 351

 Tables, Columns, and Types
You can store only a single type of data in each column in a SQL table. For
example, you can store strings, but not numerals, in the title column of
 Table 12-2 (though you could get around this by storing a string repre sen ta-
tion of a number, like the string '1' instead of the number 1).

Data types differ slightly depending on the flavor of SQL you’re using.
However, you’ll generally see types representing numbers, times, or strings
of text. The following list includes some common SQL types that are all
valid in MySQL:

INT Integers or whole numbers

DECIMAL Numbers with decimal places

DATE A specific date

DATETIME A specific date, along with the time of day

VARCHAR A string of characters of a specified length

TEXT Also a string of text

If Table 12-2 were stored in a MySQL database, id would be type INT,
title would be type TEXT, and author_id would be type INT. If you tried stor-
ing the string "hola" in the author_id field, the SQL server would respond
with an error message, because the data isn’t an integer.

The History of MariaDB
MySQL was first released in 1995 as open source SQL database software
maintained by the Swedish com pany MySQL AB. For nearly two decades it
reigned as the most popular database for web apps, ushering in the early
internet’s Web 2.0 era. Wildly popular web app software like WordPress,
Drupal, Joomla, and MediaWiki (which powers Wikipedia) were all built on
MySQL databases and developed in the PHP programming language.

In 2008, Sun Microsystems acquired MySQL AB, and with it the
MySQL software. In 2009, Oracle announced that it was acquiring Sun
Microsystems. The MySQL community had many concerns about the
 future of the proj ect in Oracle’s hands, including that it would cease to be
open source. In response, the database’s original creator, Michael “Monty”
Widenius, forked MySQL into a new version, MariaDB, that would remain
open forever. (Forking an open source proj ect means starting a whole new
open source proj ect that’s based on the code of an existing proj ect.) Many
of the original MySQL developers stopped working on MySQL and moved
to the MariaDB proj ect.

MariaDB is completely compatible with MySQL, and you can seamlessly
switch between the two database servers and clients. The command line cli-
ent that comes with MySQL will connect to a MariaDB server, and the com-
mand line client that comes with MariaDB will connect to a MySQL server.
I’ve found that it’s easier to get MariaDB up and running than the original
MySQL software, so you’ll use a MariaDB server for the exercises in this

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

352 Chapter 12

chapter. However, since MariaDB is completely compatible with MySQL, it’s
common to use the terms interchangeably. I’ll refer to both as MySQL for
the remainder of the chapter, except when referring to specific MariaDB
software packages.

N O T E When Widenius originally created MySQL, he named it after his daughter, My.
When he forked MySQL into MariaDB in 2009, he named the new proj ect after his
youn gest daughter, Maria.

The simplest way to run a MariaDB server on your computer is by using
Docker containers, like you did in Exercise 5-3 when you set up a local
WordPress website as practice using Docker Compose. In the following
exercises, you’ll get a MySQL server up and running, connect to your new
server using MySQL clients, and practice using SQL.

Exercise 12-1: Create and Test a MySQL Server
Using Docker and Adminer

With Docker, you can quickly run dif fer ent types of SQL servers on your
computer, no matter what operating system you’re running. In this exercise,
you’ll run a MariaDB server on your computer using Docker Compose.
Once you have the server up and running, you’ll use the Adminer MySQL
client to add the contents of Tables 12-1 and 12-2 to it as a test. You’ll move
on to working with real leaked data later in the chapter, but you’ll start by
experimenting with some simple example databases.

Run the Server
Create a folder for this chapter’s exercises and a docker- compose.yaml file in
that folder. Type the following code into the file (or copy and paste it from
https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 12
/ docker - compose . yaml):

version: '3.9'
 services:
 db:
 image: mariadb:10.9
 environment:
 MARIADB_ROOT_PASSWORD: this- is- your- root- password
 MARIADB_ROOT_HOST: "%"
 ports:
 - 3306:3306
 volumes:
 - ./db_data:/var/lib/mysql

 adminer:
 image: adminer
 ports:
 - 8080:8080

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-12/docker-compose.yaml
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-12/docker-compose.yaml

Epik Fail, Extremism Research, and SQL Databases 353

The docker- compose.yaml file in Exercise 5-3 used a db service running
MariaDB, and a wordpress service running the WordPress container. In that
case, wordpress connected to db to run queries in order to save and load web-
site content. This code uses an adminer service to likewise connect to the db
 service.

The code provides the version number of the Compose specification
with which the file is written (3.9). It then defines the two services and
includes the version of the mariadb container image that the db service
runs. It sets the database root user’s password to this- is- your- root- password
(change this to a dif fer ent password if you like). As noted earlier, you’ll
work as the database’s root user throughout this chapter, since you’re the
only one accessing this database. It publishes port 3306, meaning that you
can connect to the server with a MySQL client on localhost at port 3306, and
configures a volume to store all of MariaDB’s database files in a db_data
folder. You’ll import several gigabytes of data into this database.

The adminer service runs the latest version of the adminer container
image. Adminer publishes port 8080, so you can load Adminer in a web
browser at http:// localhost:8080.

Open a terminal, change to the folder for this chapter’s exercises, and
start the containers with the following command:

docker- compose up

The first time you start the containers, your computer downloads the
container images from Docker Hub, if you don’t already have them. After
the containers start, you should see that a db_data folder containing all
of the data stored in the database so far has been added to your exercises
folder.

Connect to Database with Adminer
You just started two containers, one for your MySQL server and the other
for your MySQL client, Adminer. Now you’ll connect to Adminer and
use it to log into your MySQL server. To access Adminer, open a browser
and load http:// localhost:8080. You should see the Adminer login page
shown in Figure 12-1. Here you can choose the type of database to which
 you’re connecting, and what credentials you’ll use to log in. Keep System
as MySQL, keep Server as db, set Username to root, and set Password to
 this- is- your- root- password (or whatever you used in your docker- compose.yaml
file). Leave the Database field blank, since you haven’t imported any data-
bases yet.

Once you’ve logged in, you should see a list of default databases:
information_schema, mysql, per for mance_schema, and sys. MariaDB uses these
to store information it needs to run the database server, so in general, you
 shouldn’t touch them. Instead, you’ll create new databases and work with
them.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:8080
http://localhost:8080

354 Chapter 12

Figure 12-1: The Adminer login page

Create a Test Database
To test out your new MySQL server, you’ll create a brand- new database and
enter Tables 12-1 and 12-2. Click the Create Database link, enter books in
the field that pops up, and click Save. Once you’ve created the books data-
base, click the Create Table link. Under Table Name, enter authors.

To add a column in Adminer, you enter its name under the Column
Name header and choose a data type. To enter the first column from
 Table 12-1, create an id column and choose type int (short for “integer,” as
mentioned earlier). Select the AI radio button, which sets this column to
auto- increment. When you’ve finished, create the second column, name,
with type text.

Figure 12-2 shows what the form should look like when you’ve finished.

Figure 12-2: Creating the authors table in Adminer

Click Save to finish creating the table in the database. Adminer should
bring you to the structure page for your new table, showing you the two col-
umns you just created. Your table should start out empty, without any rows.

At the top of the win dow, you should see page navigation links (for
example, MySQLdbbooks in Figure 12-2). Click books to return to the
books database page, then click Create Table again to create Table 12-2,
giving it the name books. Add the following columns:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 355

•	 An id column with type int and AI checked

•	 A title column with type text

•	 An author_id column.

N O T E Adminer is smart enough to determine on its own that the author_id column uses the
int type and relates to the authors.id column, so it will automatically set the type to
authors.

Figure 12-3 shows what this form should look like once you’ve added
 these columns.

Figure 12-3: Creating the books table in Adminer

Click Save. You’ve now created a books database with two tables, authors
and books, but there isn’t any data in it yet.

Now that you have a MySQL database running on your computer and
access to the Adminer MySQL client, you’re ready to run your own SQL
queries. Your first queries will add the data from Tables 12-1 and 12-2 into
their corresponding MySQL tables.

Exercise 12-2: Query Your SQL Database
In this exercise, you’ll learn the syntax of SQL queries. You’ll be using
MySQL, but the syntax is nearly identical to that of all other types of SQL,
so this section should give you a solid foundation for writing SQL queries
in general. You’ll learn the dif fer ent verbs and practice running SQL que-
ries to add, update, delete, and most importantly, search the data in SQL
databases.

Make sure that your Docker containers from Exercise 12-1 are up, then
load Adminer in your web browser at http:// localhost:8080. Also make sure
 you’ve logged into your MySQL server as the root user, using the same pass-
word from the previous exercise. When you’re ready, click the books data-
base to begin.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:8080

356 Chapter 12

INSERT Statements
So far the books database you created in Exercise 12-1 includes the tables
authors and books, but those tables don’t have any rows.

To add new rows to your tables, you use the INSERT verb as follows:

INSERT INTO table_name (column1, column2,...) VALUES (value1, value2, . . .);

In Adminer, click the SQL Command link in the left sidebar. In the
empty field that pops up, enter the following INSERT queries:

INSERT INTO authors (name) VALUES ('Micah Lee');
INSERT INTO authors (name) VALUES ('Carl Sagan');
INSERT INTO books (title, author_id) VALUES ('Hacks, Leaks, and Revelations', 1);
INSERT INTO books (title, author_id) VALUES ('Pale Blue Dot', 2);
INSERT INTO books (title, author_id) VALUES ('Contact: A Novel', 2);

 These commands insert all of the rows into the two tables in the database,
one row at a time. The first two lines insert rows into the authors table, just
setting the name field, while the last three lines insert rows into the books table,
setting the title and author_id fields. These INSERT statements don’t specify id
values because the id field for both tables auto- increments, starting with 1.

While you don’t need to set the id field when inserting into the books
 table, you do need to set the author_id field manually, which is how you tell
the database who the author of each book is. Since the authors table started
out empty, the author row for Micah Lee should have an id of 1 (as it was the
first row added to the table), and the row for Carl Sagan should have an id of
2. When the code inserts the Hacks, Leaks, and Revelations title, it sets author_
id to 1, and when it inserts the two books by Carl Sagan, it sets author_id to 2.

N O T E In this chapter I write SQL keywords like INSERT and WHERE in all caps, but doing
so is just a popular convention. SQL keywords aren’t case sensitive, so you can use
insert, where, select, and so on if you prefer.

Figure 12-4 shows the process of inserting data into the authors and
books tables by running these five INSERT queries.

Figure 12-4: Running INSERT queries in Adminer

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 357

Once you’ve entered this series of SQL queries into Adminer, click
Execute to run them, which should insert all of these rows into your data-
base. Click select in the left sidebar to view the new data in the database.
Figure 12-5 shows all of the rows in the books tables in Adminer.

Figure 12-5: Viewing rows in the books table in Adminer

Right above the table of data in Figure 12-5, you can see the line SELECT
* from 'books' LIMIT 50 (0.0002 s), which is the SQL statement Adminer
executed to retrieve this data from the MySQL database, followed by the
amount of time it took for the query to run.

SELECT Statements
While INSERT statements add information to SQL databases, SELECT state-
ments ask a database for specific information. When investigating leaked
SQL databases, you’ll likely spend most of your time writing SELECT
statements.

You can use a SELECT statement to select all of the books by a certain
author or, in the case of Epik data, all of the domain names registered by a
specific person. Here’s the general syntax:

SELECT column1, column2, ... FROM table_name WHERE condition ORDER BY column1,
column2,... ;

When your SQL client runs a SELECT statement, the SQL server returns
a table of data. To select every thing in the books table, click the SQL
Command link in Adminer’s left sidebar and run the following query:

SELECT * FROM books;

This command uses an asterisk (*) as a wildcard character, which
means you’d like the response to include all columns. It also leaves out the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

358 Chapter 12

WHERE clause, so it will include all of the rows in the books table without filter-
ing them. Figure 12-6 shows these results in Adminer.

Figure 12-6: Running a SELECT query in Adminer

 After running a SELECT query, click Adminer’s Export link to export the
data returned as a CSV spreadsheet. The options in the first drop- down
menu are open, which allows you to open a CSV directly in your browser;
save, used to download the CSV; and gzip, which lets you download a com-
pressed version of the CSV. The three options in the second drop- down
menu allow you to save the file with data separated by commas, semicolons,
or tab characters.

You can open spreadsheets created this way in software like Microsoft
Excel or LibreOffice Calc and work with the data using that software. This
makes it easier to share the data with colleagues or use advanced features
like visualizing the data.

Selecting Individual Fields

You previously ran the SELECT * FROM table_name query to select all the col-
umns in a table, but you can also choose only specific columns. Say you
want to return only a list of titles in the table. Select the title field alone
with this query:

SELECT title FROM books;

Instead of including all columns, this table includes only the book titles.
The SQL server should return the results shown in Table 12-3. (For the
remainder of this section, for simplicity’s sake, I’ll represent the information
returned from SQL queries as tables in text rather than Adminer screenshots.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 359

Table 12-3: The title Column in the books Table

title

Hacks, Leaks, and Revelations

Pale Blue Dot

Contact: A Novel

When you’re working with larger databases, select only the columns you
need so your queries will finish faster.

Sorting Results

Use the ORDER BY clause to sort the results of your queries. For example, to
select all of the columns in the books table, with the results sorted by the
book title, run this query:

SELECT * FROM books ORDER BY title;

The results of this query will be ordered alphabetically by the title col-
umn, as shown in Table 12-4.

Table 12-4: All Columns in the books Table, Ordered by the title Column

id title author_id

3 Contact: A Novel 2

1 Hacks, Leaks, and Revelations 1

2 Pale Blue Dot 2

By default, results are sorted in ascending order: text fields are ordered
alphabetically; number fields are ordered from smallest to largest; and date
fields are ordered from earliest to latest. You can sort the results in descend-
ing order by using the DESC keyword. For example, use the following query
to select all of the books, ordered by title column in reverse alphabetical
order:

SELECT * from books ORDER BY title DESC;

You can also sort results by more than one column. For example, to first
order the books by author_id (so the results will include all books by author
1 first, then by author 2, and so on), and then by title (so that within each
author’s list of books, the books are sorted by title), run this query:

SELECT * from books ORDER BY author_id, title;

This should order the results first by author_id, then by title, as shown
in Table 12-5.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

360 Chapter 12

Table 12-5: All Columns in the books Table, Ordered by author_id and title

id title author_id

1 Hacks, Leaks, and Revelations 1

3 Contact: A Novel 2

2 Pale Blue Dot 2

In this case, all of the books by the author with author_id of 1 (Micah
Lee) are shown first, and the books by the author with author_id of 2 (Carl
Sagan) are shown next. The books for each author are then sorted alpha-
betically by title.

Counting Rows in a Table

SQL databases have built-in functions you can run as part of your queries.
For example, to find out how many rows are in the books table, use the
COUNT() function:

SELECT COUNT(*) FROM books;

 After you run this command, the SQL server should return the results
shown in Table 12-6.

 Table 12-6: Counting the Number
of Rows in the books Table

COUNT(*)

3

Selecting COUNT(*) from a table is considerably faster than selecting all
of the rows in that table and then counting them.

Filtering SELECT Results with WHERE Clauses

You can also filter the results you get back using the WHERE clause. For instance,
to find the titles of books written by Micah Lee, run the following query:

SELECT title FROM books WHERE author_id=1;

The SQL server should return the results shown in Table 12-7.

Table 12-7: The title of books
where author is Micah Lee

title

Hacks, Leaks, and Revelations

Similarly to Python if statements, the WHERE clause also supports paren-
theses and Boolean logic operators AND and OR, as well as the comparison

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 361

operators greater than (>), greater than or equal to (>=), less than (<), and
less than or equal to (<=). For example, say you want to search for books with
an id between 10 and 100, including the number 10 but not the number
100. Try that out with the following query:

SELECT * FROM books WHERE id >= 10 AND id < 100;

You can use the equals (=) operator to search for exact strings. For
example, run the following command to find all of the authors with the
name Carl Sagan:

SELECT * FROM authors WHERE name='Carl Sagan';

This search is case sensitive, so while it would find authors named Carl
Sagan, it wouldn’t find authors named CARL SAGAN or carl sagan. For a
case- insensitive search, use the LIKE operator. Try running the following
command:

SELECT * FROM authors WHERE name LIKE 'carl sagan';

This command finds authors named Carl Sagan, CARL SAGAN, carl
sagan, or any other capitalization.

The LIKE operator supports the wildcard character, the percent sign (%),
which will match any characters. Querying the authors table where name LIKE
'%lee%' will search for rows where name contains any number of characters
(%), followed by lee, followed by any number of characters again (%). For
example, to find all of the authors with Lee in their names, run:

SELECT * FROM authors WHERE name LIKE '%lee%';

This query returns the row with the name Micah Lee, but it would also
return Stan Lee, Lee Young- ae, and Andrea Leeds.

To search just for people with the last name Lee, run this query:

SELECT * FROM authors WHERE name LIKE '% lee';

In this case, there’s only one wildcard character at the beginning of the
string, followed by a space, followed by lee. This query will return Stan Lee,
since this name matches any number of characters, followed by a space, fol-
lowed by lee. However, it won’t return Lee Young- ae; this name matches any
number of characters but has no space followed by lee, and it contains extra
characters after lee.

Using logical operators, you can combine as many conditions as you
want. For example, to look for books written by Carl Sagan that have the
word blue in their titles, run this query:

SELECT * FROM books WHERE author_id=2 AND title LIKE '%blue%';

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

362 Chapter 12

You could expand on that query by running the following query to also
check for books with green or red in their titles:

SELECT *
FROM books
WHERE
 author_id=2 AND
 (
 title LIKE '%red%' OR
 title LIKE '%green%' OR
 title LIKE '%blue%'
);

This query uses both the logical operators AND and OR, as well as paren-
theses. When you run it, the SQL server will reject any rows where author_id
 isn’t 2, and where title doesn’t contain at least one of the strings red, green,
or blue.

This final query has multiple lines, with some of them indented. As
your queries get longer, using whitespace like this can make your SQL que-
ries easier to read. In general, I tend to write short queries on a single line
and split longer queries into multiple lines. You’ll continue indenting your
queries in the following sections.

You should now have a basic understanding of how to select data from a
 table in a SQL database. In the next section, you’ll learn to select data from
multiple tables at once.

JOIN Clauses
 Because SQL databases are relational, you can select data from and receive
results from columns from multiple tables si mul ta neously using JOIN
clauses. You can think of these clauses as the SQL server combining (join-
ing) multiple tables into a single table, then selecting rows from that com-
bined table.

For example, say you want to write a single query that will return a table
of book titles and their authors, relying on the title field in the books table
and the name field in the authors table. Run the query in Listing 12-1 to select
a table of results from columns in those two tables at once.

SELECT
 books.title,
 authors.name
FROM books
JOIN authors ON books.author_id = authors.id;

Listing 12-1: Selecting from both the books and the authors tables using the JOIN clause

Since this query involves more than one table, you must specify the
names of the columns you want to select in the format table _ name . column
_ name. The SQL query selects the book title with books.title and the author
name with authors.name. The FROM clause shows that this query is selecting

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 363

from the books table, and joining this table with the authors table. The JOIN
clause explains how the two tables are related: the SQL server knows that a
books row is related to an authors row if the value of books.author_id matches
the value of authors.id.

When you run this query, the SQL database uses the books.author
_id = authors.id relationship specified in the JOIN clause to build the com-
bined table shown in Table 12-8, from which it can then select rows.

Table 12-8: The books and authors Tables, Combined on books.author_id = authors.id

books.id books.author_id books.title authors.id authors.name

1 1 Hacks, Leaks,
and Revelations

1 Micah Lee

2 2 Pale Blue Dot 2 Carl Sagan

3 2 Contact: A Novel 2 Carl Sagan

Each row in this combined table includes all of the columns from both
the books and the authors tables. First, notice that the value in each row for
books.author_id is the same as the authors.id value. This is because of the
books.author_id = authors.id relationship specified in the JOIN clause. In each
row, the books fields contain full rows from the books table, and the authors
fields contain full rows from the authors table. Since Carl Sagan has two
books in this database, his books take up two rows in the combined table.

The SELECT query in Listing 12-1 selects the columns books.title and
authors.name from this combined table. This final result of the query should
contain the information in Table 12-9.

Table 12-9: Results from the Query in Listing 12-1

title name

Hacks, Leaks, and Revelations Micah Lee

Pale Blue Dot Carl Sagan

Contact: A Novel Carl Sagan

The SQL server responds with a single table of rows that contains fields
from both tables, based on the books.author_id = authors.id relationship spec-
ified in the JOIN clause.

The type of join described in this section is technically called an INNER
JOIN, which is the default type of join in MySQL. In addition to INNER joins,
however, you can also use LEFT and RIGHT joins.

Using LEFT and RIGHT Joins

 There are two additional ways to join tables together in SQL: LEFT JOIN and
RIGHT JOIN queries. Each time you join two tables, the table from which
 you’re selecting is the “left” table (books, in the previous example). The table
with which you’re joining is the “right” table (authors, in this case). LEFT JOIN
means that the combined table should contain all of the rows from the left

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

364 Chapter 12

 table, but not necessarily all of the rows from the right table. As you might
guess, RIGHT JOIN means that the combined table should contain all the rows
in the right table, but not necessarily those from the left. Fi nally, as you saw
in the previous section, INNER JOIN means that the results should contain only
rows where the relationship holds. That is, if there are any rows in the left
 table that don’t match any rows in the right table— and vice versa— based on
the join relationship, then those rows won’t be included in the results.

To demonstrate how this works, use the following query to add a row to
the authors table, replacing Your Name with your own name:

INSERT INTO authors (name) VALUES ('Your Name');

Now run the query in Listing 12-2.

SELECT
 books.title,
 authors.name
FROM authors
LEFT JOIN books ON books.author_id = authors.id;

Listing 12-2: Selecting from the authors table and doing a LEFT JOIN to the books table

This query is similar to the one in Listing 12-1, but this time it selects
from the authors table (making it the left table) and joins it with the books
 table (making that the right table), using a LEFT JOIN instead of an INNER
JOIN.

The results of that query contain the information in Table 12-10.

Table 12-10: Results from a LEFT JOIN Query,
with the Left Table Containing More Rows

title name

Hacks, Leaks, and Revelations Micah Lee

Pale Blue Dot Carl Sagan

Contact: A Novel Carl Sagan

NULL Your Name

 Table 12-10 has an extra row that the output of Listing 12-1 didn’t have.
In this row, the book title column is NULL, a SQL term meaning “empty,”
and the author name column is your own name. Because this is a LEFT JOIN,
the results include all rows from the left table (authors), even though
 there aren’t any rows from the right table (books) associated with it in the
relationship.

If you ran the same query as Listing 12-2 but instead used an INNER
JOIN (or just a JOIN, since inner joins are the default join type), the results
 wouldn’t include that last row. Your LEFT JOIN results included all rows from
the left table (authors), including the extra author you added (your own
name). But when you do an INNER JOIN, the results include only rows from
the left and right tables where a relationship holds. Since there aren’t any

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 365

books with the books.author_id set to your own author.id, the relationship
 doesn’t hold, so the results don’t include that row.

Which type of JOIN you need to use depends on the type of analy sis
 you’re trying to do. INNER JOIN is a reasonable default, but if the SQL results
 you’re getting are missing data that you want, then you’ll prob ably want to
use a LEFT JOIN instead.

Using WHERE Clauses with Joins

As with other SELECT statements, you can use the WHERE clause along with JOIN
clauses to filter your results. To find all titles written by Carl Sagan without
knowing what his id is in the authors table, run this query:

SELECT books.title
FROM books
LEFT JOIN authors ON books.author_id = authors.id
WHERE authors.name = 'Carl Sagan';

This query selects the column books.title from the books table and joins
it with the authors table using the books.author_id = authors.id relationship.
It then filters those results to only show the rows where authors.name is Carl
Sagan.

This query should return the results shown in Table 12-11.

Table 12-11: Selecting from the books Table Based on
a Column in the Related authors Table

title

Pale Blue Dot

Contact: A Novel

As with the other SELECT statement, you can also sort your results. If you
wanted to sort these by title, you’d add ORDER BY books.title to the query.

 You’ve now learned the trickiest parts of searching SQL databases for
information. Next, we’ll discuss two more simple SQL verbs: UPDATE and
DELETE.

UPDATE Statements
You can update rows in a table using the UPDATE verb, which uses this syntax:

UPDATE table_name SET column1=value1, column2=value2, . . . WHERE condition;

For example, try updating this book’s title to include its subtitle by
 running the follow query:

UPDATE books
SET title='Hacks, Leaks, and Revelations: The Art of Analyzing Hacked and Leaked Data'
WHERE id=1;

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

366 Chapter 12

This should have updated the title of the book with the id of 1 from
Hacks, Leaks, and Revelations to Hacks, Leaks, and Revelations: The Art of
Analyzing Hacked and Leaked Data.

DELETE Statements
To delete rows in a table, use the DELETE verb, which takes the following
syntax:

DELETE FROM table_name WHERE condition;

For example, you could delete the Hacks, Leaks, and Revelations book
from the database by running this query (but don’t do this now, as you’ll
want to keep this row for exercises later in the chapter):

DELETE FROM books WHERE id=1;

In this case, the condition is id=1, so this query finds any rows with an id
of 1 and deletes them. Alternatively, if you wanted to delete all of the books
with me as the author, the condition could be author_id=1. Or if you wanted
to delete all of the books with blue in their titles, the condition could be
title LIKE '%blue%'.

Introducing the MySQL Command Line Client
So far, you’ve run all of your SQL queries through Adminer for a simpler
user experience as you learned the basics of SQL. MySQL clients like
Adminer work well for everyday tasks like browsing data in databases,
 running individual queries, and quickly creating new tables. However, for
some tasks, you’ll need to use the mysql command line client.

For example, later in this chapter, you’ll use the mysql client to import
data from a SQL backup file from the Epik dataset into your MySQL server.
SQL backup files are simply text files, generally with filenames that end
in .sql, full of SQL queries— sometimes several gigabytes of SQL queries.
To import the backup, the client runs each query in the file, one after the
other. Adminer’s import feature allows you to upload a .sql file, but the
Adminer Docker service has an upload limit of 128MB by default. The SQL
backup from the Epik dataset you’ll work with later in this chapter is 1.2GB
compressed, so it would be impossible to import it using Adminer. (Once
you import it, however, you can use either client to run queries on the data.)

The MySQL command line client is also useful for working on remote
servers, which I’ll discuss later in the chapter. After you SSH into a server
on the cloud, you can use the mysql command to connect to the MySQL
 service and then run SQL queries there.

The command line client isn’t ideal for all tasks. For example, if your
query results include many columns, each line of output might be wider
than your terminal win dow, causing the output to wrap, which makes it very
difficult to read. Moreover, the command line client displays all the output

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 367

in your terminal. If you’re running many queries, it might be cumbersome
to scroll back through your terminal history to find specific results that you
ran previously. For everyday queries, it’s easier to use a graphical client like
Adminer.

PY T HON A ND M YSQL

You can also consider writing Python code that interacts with MySQL data-
bases, where your Python script acts as the SQL client. For example, you wrote
Python scripts in Chapter 9 that loop through every row in a CSV and then run
a block of code; you might want to similarly loop through every row returned
in response to a SELECT query. To write Python code that connects to a MySQL
database and runs queries, you can use a module called PyMySQL. For Python
code that runs SQL queries, the table of data often isn’t displayed— instead, it’s
stored in a variable, typically a list of dictionaries that you can loop through.
For more information, see the documentation for the PyMySQL module at https://
pymysql . readthedocs . io.

So far, you’ve seen SQL query results displayed in Adminer as HTML
 tables. If you run the same queries using the mysql client, the data will be
displayed as text in your terminal. You’ll test this in Exercise 12-3.

Exercise 12-3: Install and Test the Command Line MySQL Client
In this exercise, you’ll install and practice using the MariaDB command

line client mysql, which has the same name and works in the same way as the
official MySQL client.

Start by opening a terminal. If you’re using a Mac, install it in
Homebrew by running this command:

brew install mariadb

If you’re using Linux or Win dows with WSL, install it by running this
command:

sudo apt install mariadb- client

You can now use the mysql command to connect to your MySQL data-
base. To do so, run the following command:

mysql - h localhost - - protocol=tcp - u root - p

The - h argument (short for - - host) tells the client the IP address or
hostname of the MySQL server to which you want to connect. In this case,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://pymysql.readthedocs.io
https://pymysql.readthedocs.io

368 Chapter 12

the hostname is localhost, since the server is running locally on your com-
puter. The - - protocol=tcp argument tells the MySQL client to connect to the
server over the network, which is required when you’re running the server
in a Docker container. The - u argument (short for - - user) tells the client
that you’re logging in as the root user, in this case. Fi nally, - p (short for
- - password) tells the client that this user is protected with a password.

 After you run the mysql command, press enter. The MySQL client
should prompt you to type the root user’s password:

Enter password:

Once you enter the correct password, you should end up in the MySQL
shell:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 104
Server version: 10.9.4- MariaDB-1:10.9.4+maria~ubu2204 mariadb . org binary distribution

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

From here, you can run all the same SQL queries you did in Adminer.
However, to work in the command line client, you’ll need to know a few
additional queries.

MySQL- Specific Queries
Queries like INSERT and SELECT are typically nearly identical between dif fer-
ent versions of SQL, but each version has unique queries for actions like
returning a list of databases in the server or a list of tables in a database. To
navigate around a MySQL server from the command line client, you’ll need
to know the following MySQL- specific queries:

SHOW DATABASES; Shows a list of all of the databases on your MySQL
server

USE database_name; Switches you into a specific database, so you can
start running queries there

SHOW TABLES; Shows a list of all of the tables in the currently selected
database

DESCRIBE TABLE table_name; Shows you the columns in a table

 There are other MySQL- specific queries, but these are all you’ll need to
know for the purposes of this book.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://mariadb.org

Epik Fail, Extremism Research, and SQL Databases 369

N O T E Technically, Adminer uses these queries too, but it runs them for you in the back-
ground. When you use the command line client, you have to run them yourself. For
example, when Adminer showed you a list of databases, it ran SHOW DATABASES; for
you in order to find the list; when you selected the books database, technically it ran
USE books; for you.

Let’s test these queries. Run the following command to list all of the
available databases on your MySQL server:

MariaDB [(none)]> SHOW DATABASES;
+- +
| Database |
+- +
| books |
| information_schema |
| mysql |
| per for mance_schema |
| sys |
+- +
5 rows in set (0.068 sec)

The result of this query lists all of the databases in this MySQL server.
In this case it lists the books database you created in Exercise 12-1 and the
four databases that come with MySQL by default.

Switch to the books database:

MariaDB [(none)]> USE books;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with - A

Database changed
MariaDB [books]>

 After you run USE books;, the prompt should change from MariaDB
[(none)]> to MariaDB [books]>, letting you know which database is currently
selected. When you run normal SQL queries with verbs like SELECT or INSERT,
 they’ll run in the currently selected database.

Now that you’ve selected a database, list all of its tables with the follow-
ing command:

MariaDB [books]> SHOW TABLES;
+- - - - - - - - - - - - - - - - - +
| Tables_in_books |
+- - - - - - - - - - - - - - - - - +
| authors |
| books |
+- - - - - - - - - - - - - - - - - +
2 rows in set (0.025 sec)

This database has two tables, authors and books. List all of the columns
in the books table:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

370 Chapter 12

MariaDB [books]> DESCRIBE books;
+- - - - - - - - - - - +- - - - - - - - - +- - - - - - +- - - - - +- - - - - - - - - +- - - - - - - - - - - - - - - - +
| Field | Type | Null | Key | Default | Extra |
+- - - - - - - - - - - +- - - - - - - - - +- - - - - - +- - - - - +- - - - - - - - - +- - - - - - - - - - - - - - - - +
id	int(11)	NO	PRI	NULL	auto_increment
title	text	NO		NULL	
author_id	int(11)	NO	MUL	NULL	
+- - - - - - - - - - - +- - - - - - - - - +- - - - - - +- - - - - +- - - - - - - - - +- - - - - - - - - - - - - - - - +
3 rows in set (0.023 sec)

This displays a table of data with each row representing a dif fer ent col-
umn in the table that you’re describing, including all of the attributes of
each column. For example, you can see that the id column has the type of
int and is set to auto- increment.

The queries you just ran return information about the MySQL server
itself— what databases it contains, what tables those databases contain, and
what columns are in each table. You can also query for the data stored in
the database itself. For example, try running the following query to get a
list of all of the books stored in the books table:

MariaDB [books]> SELECT * FROM books;
+- - - - +- +- - - - - - - - - - - +
| id | title | author_id |
+- - - - +- +- - - - - - - - - - - +
1	Hacks, Leaks, and Revelations	1
2	Pale Blue Dot	2
3	Contact: A Novel	2
+- - - - +- +- - - - - - - - - - - +
3 rows in set (0.012 sec)

You can run any of the queries that you ran in Adminer using the CLI
client, and the rows will be displayed in your terminal.

At any point, you can run exit to quit:

MariaDB [(books)]> exit
Bye

This will drop you back into your terminal.
 You’ve made it through the crash course on SQL and are ready to start

tackling real data! In the rest of the chapter, you’ll learn more about Epik
and its massive data breach, then download and analyze a MySQL database
backup from the Epik dataset.

The History of Epik
Epik, a Seattle- area com pany founded by Rob Monster in 2009, has long
provided domain name and web hosting services to neo- Nazi and far-
right websites. Its customers have included the notorious neo- Nazi website
the Daily Stormer, the conspiracy website InfoWars, the Proud Boys hate

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 371

group, and the Oath Keepers right- wing militia, which you learned about in
Chapter 6. After Gab moved to Epik, Monster baselessly claimed that much
of the hate speech on Gab was posted by liberals who wanted to make the
 service look bad.

As I mentioned in this chapter’s introduction, in October 2018, Robert
Bowers posted a message to Gab shortly before committing the deadliest
antisemitic terrorist attack in US history. GoDaddy deplatformed Gab, so
it moved its domain hosting service to Epik. This wasn’t the only time that
Epik helped save a far- right platform that was getting deplatformed after a
mass shooting.

In addition to helping save Gab, Epik started hosting the domain name
for the far- right message board then known as 8chan (now rebranded
as 8kun) after a similar mass shooting in 2019. Patrick Crusius posted a
manifesto to 8chan shortly before killing 23 people and injuring 23 more
in a Walmart in El Paso, Texas, the deadliest anti- Latino terrorist attack in
recent US history. Crusius’s manifesto also spouted the “ great replacement”
conspiracy theory. After the attack, Cloudflare suspended 8chan’s service,
but Epik was there to quickly bring the site back online.

Epik also handled domain hosting for Parler, the social media site
discussed in the previous chapter, after vari ous platforms banned it in the
aftermath of the deadly January 6, 2021, attack on the US Capitol. Epik has
since become a popular domain name registrar for far- right and conser-
vative websites worried about getting deplatformed. Amer i ca’s Frontline
Doctors, the anti- vaccine disinformation group I discuss in the following
chapter, has also registered its domains with Epik, though it’s not at risk of
being deplatformed.

In this section, you’ll learn about the history and motivation behind the
Epik hack and the type of information this dataset contains.

The Epik Hack
On September 1, 2021, less than a year before the US Supreme Court’s
2022 decision to overturn the constitutional right to abortion, the State of
Texas passed the most restrictive abortion law in the US— more restrictive,
at the time, than any law passed since the 1973 Supreme Court decision
Roe v. Wade. The Texas Heartbeat Act banned abortions six weeks after
pregnancy, before many people even realize they’re pregnant. The law is
enforced by civil lawsuits: any member of the public who believes in forced
birth can sue anyone who performs or facilitates abortions, creating a chill-
ing effect for reproductive health care.

An anti- abortion lobbyist group quickly set up the website
ProLifeWhistleblower . com, inviting the public to anonymously submit pri-
vate details about people they believed were obtaining or facilitating abor-
tions. GoDaddy kicked the group off its platform, citing a violation of its
terms of service, so the site switched its domain hosting to Epik. Epik soon
caved to public pressure and likewise stopped providing service, but this
was enough to catch the attention of hackers.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://ProLifeWhistleblower.com

372 Chapter 12

In September and October of 2021, in a series of hacks dubbed
Operation Epik Fail, hackers identifying with Anonymous hacked
Epik incredibly thoroughly, releasing hundreds of gigabytes of data on
BitTorrent. DDoSecrets downloaded a copy of this data, added it to its leak
archive, and also made it accessible to download from its public data server,
rather than just using BitTorrent. Most data breaches expose a database,
a collection of email, or a cache of documents. This breach included all
of these, along with bootable disk images from Epik’s servers— essentially,
the entire hard disks that powered its servers. You could use bootable disk
images to run a snapshot of Epik’s complete servers in a virtual machine.
With some work, this would allow you to pilfer through every thing hosted on
 these servers.

The hackers published their leaks in three parts over the course of four
weeks. In a press release accompanying the first data leak (see Figure 12-7),
they announced that they had released “a decade’s worth of data” from
Epik. “This dataset is all that’s needed to trace the actual owner ship and
management of the fascist side of the Internet that has eluded researchers,
activists, and, well, just about every body,” the press release continued.

Figure 12-7: The top of the !README.TXT file included in the dataset, written by the
Epik hackers

It’s true: the Epik dataset includes 10 years of data from the com pany,
including all of the data from nine MySQL databases. These databases
include tables full of customers of vari ous Epik products, like their domain
name registrar; their service that protects websites against attacks, called
BitMitigate; and their VPN service, called Anonymize. The databases also
include information about domain name purchases, email forwarding for
 these domains, credit card transactions, customers’ passwords, and much
more.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 373

The most impor tant data in the Epik dataset, in my opinion, is the
WHOIS privacy data containing information on the owners behind the
domain names Epik hosts.

Epik’s WHOIS Data
WHOIS (pronounced “who is”) data is the public owner ship information
 you’re required to provide when buying a domain name. This generally
includes contact details like names, email addresses, phone numbers, and
physical addresses, along with the domain’s registrant contact, administra-
tive contact, and technical contact (in many cases, the same person plays all
three roles). Which organization keeps track of WHOIS rec ords depends
on the domain name in question, but the rec ords are all public. A quick
internet search should turn up plenty of online services that allow you to
look up WHOIS data for any given domain. The whois command line tool
also lets you look up WHOIS data from a terminal.

Public WHOIS data creates a major privacy issue, since it allows anyone
to easily discover not only the owner of a domain, but also their PII. To
combat this, many domain registrars offer WHOIS privacy services, where
 they’ll put their own information in the WHOIS rec ord or just replace the
 owner name with something like REDACTED FOR PRIVACY on their cus-
tomers’ behalf.

Epik runs a WHOIS privacy service, hiding the owner ship informa-
tion of many far- right domain names from the public. But the Epik dataset
includes that hidden information. As long as a domain name was registered
on Epik before September 2021, when the hack occurred, you can use this
dataset to look up its true owners.

You can find the WHOIS owner ship data associated with any domain
name simply by running whois domain_name in a terminal. This command will
look up the public information, meaning that if a domain uses a WHOIS
privacy service, you won’t get to see who actually owns it. For example, you
would run the following command to find the owner ship information about
the Oath Keepers domain name, oathkeepers . org:

whois oathkeepers . org

When I ran this command, I got the following output:

- - snip- -
Creation Date: 2009-03-01T21:07:55Z
Registry Expiry Date: 2032-03-01T21:07:55Z
Registrar: Epik Inc.
Registrar IANA ID: 617
Registrar Abuse Contact Email: abuse@epik . com
Registrar Abuse Contact Phone: +1.425366881
Domain Status: ok https:// icann . org / epp#ok
Registry Registrant ID: REDACTED FOR PRIVACY
Registrant Street: REDACTED FOR PRIVACY
Registrant City: REDACTED FOR PRIVACY
Registrant State/Province: WARegistrant Name: REDACTED FOR PRIVACY

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://oathkeepers.org
http://oathkeepers.org
http://abuse@epik.com
https://icann.org/epp#ok

374 Chapter 12

Registrant Organization: Anonymize, Inc.
Registrant Postal Code: REDACTED FOR PRIVACY
Registrant Country: US
Registrant Phone: REDACTED FOR PRIVACY
Registrant Phone Ext: REDACTED FOR PRIVACY
Registrant Fax: REDACTED FOR PRIVACY
Registrant Fax Ext: REDACTED FOR PRIVACY
Registrant Email: Please query the RDDS service of the Registrar of Rec ord
identified in this output for information on how to contact the Registrant,
Admin, or Tech contact of the queried domain name.
- - snip- -

Public WHOIS data told me that oathkeepers . org was first registered
on March 1, 2009; it expires in 2032; and its current registrar was Epik.
However, all the contact information for the person who registered it was
listed as REDACTED FOR PRIVACY, effectively hiding the domain owner ship infor-
mation from the public.

If you search the Epik dataset for this domain name, however, as you’ll
learn to do later in this chapter, you can find all the redacted site owner-
ship details. When I searched the dataset, I found that the oathkeepers . org
registrant organization is Oath Keepers, and the registrant name is Stewart
Rhodes. As noted in Chapter 6, Rhodes is the Oath Keepers founder who
was convicted of seditious conspiracy for his role in the January 6, 2021,
attack and subsequently sentenced to 18 years in prison. The dataset also
includes Rhodes’ phone number, email address, and a physical address in
Granbury, Texas.

Interestingly, the administrator and technical contacts for this domain
lists the com pany eJam Systems, LLC, along with the name Edward Durfee,
an email address at ejamsystems . com, a phone number, and a home address
in Northvale, New Jersey. eJam Systems, LLC appears to be a right- wing
com pany, run by Edward Durfee, that did tech work for the Oath Keepers.
None of this information was available in the WHOIS rec ords, but now it’s
all public, thanks to the Epik hack. If you check out the email in the sent-
mail648 folder you imported in Chapter 6, you’ll find messages from the
address oksupport@oathkeepers . org all signed by Edward Durfee, IT Support.

N O T E In Chapter 1, I discussed not revealing unnecessary PII. In this case, I believe that
publishing Durfee’s name, the city he lives in, and the name of his com pany is in the
public interest. Since he’s an organizer for the Oath Keepers, a group that attempted
to subvert democracy, this makes him a legitimate target of reporting. There’s no pub-
lic interest in publishing his home address, phone number, or email address, though.

 After the Epik hack, reporter Mikael Thalen wrote an article for the
Daily Dot based on the leaked WHOIS data and focusing on Ali Alexander,
one of the primary organizers on January 6 and a major activist in the Stop
the Steal movement. Thalen used the Epik data to show that in the days
following the riot, Alexander began turning on WHOIS privacy for over
100 domains he owned, nearly half of them connected to the election lie,
such as stopthestealmovement . com and stopthestealnews . com. You can read

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://oathkeepers.org
http://oathkeepers.org
http://ejamsystems.com
http://oksupport@oathkeepers.org
http://stopthestealmovement.com
http://stopthestealnews.com

Epik Fail, Extremism Research, and SQL Databases 375

Thalen’s reporting at https:// www . dailydot . com / debug / ali - alexander - epik - hack
- web - domains - capitol - riot / .

In Exercise 12-4, you’ll download part of the Epik dataset and get ready
to start exploring it yourself.

Exercise 12-4: Download and Extract Part of the Epik Dataset
The Epik dataset is split into three folders: EpikFail, EpikFailTheB:Sides, and
EpikFailYouLostTheGame, which you can download either using BitTorrent
or from DDoSecret’s public data server at https:// data . ddosecrets . com / Epik / .
Inside the first folder, EpikFail, are three subfolders: emails, filesystems, and
sql. The emails folder contains email messages from a single email account
related to Epik, while the filesystems folder contains all of the files taken
from one of Epik’s Linux servers. The sql folder, by far the largest folder in
the first part of the Epik dataset, contains backups of MySQL databases. For
this exercise, you’ll download a single MySQL backup file, api_system.sql.gz,
which takes only 1.2GB of disk space.

On your datasets USB disk, create a new folder called Epik for the Epik
dataset, and then download api_system.sql.gz from https:// data . ddosecrets . com
/ Epik / EpikFail / sql / api _ system . sql . gz and save it there. Now, open a terminal (if
 you’re in Win dows, use an Ubuntu terminal) and change to the Epik folder
on your datasets USB disk like so:

micah@trapdoor ~ % cd /Volumes/datasets/Epik
micah@trapdoor Epik % ls - lh
total 0
- rw- r- - r- - 1 user staff 1.2G Sep 17 2021 api_system.sql.gz

The file is a compressed backup of a MySQL database with the exten-
sion .sql.gz, meaning that it was compressed using the gzip program dis-
cussed in Chapter 11. To extract the api_system.sql.gz file, run the following
command:

gunzip api_system.sql.gz

SQL data compresses very well: the original api_system.sql.gz file is
1.2GB, but the extracted version, api_system.sql, is 20GB, taking up 16 times
as much disk space.

Now that you’ve extracted the file, the next step is to import it into your
MySQL database in Exercise 12-5.

Exercise 12-5: Import Epik Data into MySQL
The Epik dataset includes nine separate MySQL databases. To keep things
 simple, the exercises in this chapter require you to import and explore data
only in the api_system.sql database into your MySQL server. Each .sql file
in the Epik dataset represents a full database containing several tables. In

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.dailydot.com/debug/ali-alexander-epik-hack-web-domains-capitol-riot/
https://www.dailydot.com/debug/ali-alexander-epik-hack-web-domains-capitol-riot/
https://data.ddosecrets.com/Epik/
https://data.ddosecrets.com/Epik/EpikFail/sql/api_system.sql.gz
https://data.ddosecrets.com/Epik/EpikFail/sql/api_system.sql.gz

376 Chapter 12

order to import one of these files into MySQL, first you’ll need to create a
database for it.

Create a Database for api_system
You’ll use the mysql command line client to create a new database called
epikfail_api_system. Prefixing your database title with epikfail_ will help you
keep it separate from other databases you might import in the future.

Open a terminal and run the following command to connect to your
MySQL server as the root user:

micah@trapdoor ~ % mysql - h localhost - - protocol=tcp - u root - p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
- - snip- -

 After logging in with the root password, run this command to create
the epikfail_api_system database:

MariaDB [(none)]> CREATE DATABASE epikfail_api_system;
Query OK, 1 row affected (0.015 sec)
MariaDB [(none)]> exit
Bye

Congrats, you’ve just created a new database!

Import api_system Data
The simplest way to import a MySQL backup into a MySQL client is to pipe
the data into the mysql program, by running:

cat filename.sql | mysql - h localhost - - protocol=tcp - u root - p database_name

The prob lem is that you’d see no output—no pro gress bars or any other
indication that it’s actually working. This is fine for small SQL backups that
take a few seconds to import, but it might take hours or days to import large
backups. To solve this prob lem, I use a simple program called pv, which
stands for “Pipe Viewer,” to display a pro gress bar. The pv command is simi-
lar to the cat command, but it also displays useful output so you can be sure
your command is running.

If you’re using a Mac, install pv in Homebrew by running:

brew install pv

If you’re using Linux or Win dows with WSL, install pv by running:

sudo apt install pv

Once you’ve installed pv, make sure you’re in the Epik folder and run
this command:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 377

pv api_system.sql | mysql - h localhost - - protocol=tcp - u root - p epikfail_api_system

Just like cat, pv should load data from api_system.sql and pipe it into
mysql, but this time it should show you a pro gress bar like this one, complete
with the import speed and the estimated time that it will finish:

micah@trapdoor Epik % pv api_system.sql | mysql - h localhost - - protocol=tcp - u root - p
epikfail_api_system
Enter password:
2.89GiB 0:33:47 [587KiB/s] [=====>] 14% ETA 3:14:56

In this example, I had been running the import for 33 minutes and
47 seconds. It had progressed through 2.89GB of the data (14 percent) and
estimated it would finish in 3 hours and 15 minutes, at a current speed of
587KB per second (though import speed varies greatly depending on which
query is currently running). It took me a total of four hours to import
api_system.sql.

T ROUBL ESHOOT ING DUR ING DATA BA SE IMPOR T S

Something can always go wrong while you’re in the middle of importing a
database. You could accidentally close your terminal win dow, stopping the
import partway through. Your laptop could run out of battery, or you could
accidentally unplug your USB disk. You might need to cancel the import mid-
way through (by pressing CTRL- C). If anything like this happens, don’t worry. It’s
fairly simple to delete your database, create a new one, and start the import
over again. Unfortunately, though, you can’t continue where you left off.

To restart an interrupted import, you can drop the database using the DROP
DATABASE database_name; statement. This deletes the whole database and all
of its tables. Create a new database and import the data again. For example,
if your epikfail_api_system import was interrupted, you start over by running
 these MySQL queries as the root user with the following commands:

DROP DATABASE epikfail_api_system;
CREATE DATABASE epikfail_api_system;

Then start the import again.

Wait for the data from api_system.sql to finish importing before you
move on to the next section. (It’s pos si ble to run queries on the database
before it’s fully imported, but you’ll just get results from the data that’s
been imported so far.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

378 Chapter 12

Exploring Epik’s SQL Database
Once api_system.sql has finished importing, it’s time to dive in and take a
look at the epikfail_api_system database. With databases like this, a good
tactic is to manually view each table and try to determine if it contains data
worth exploring further. To begin my investigation, I looked at the first
rows in each of the 49 tables in epikfail_api_system, starting with the
backorder table and ending with the whoisxmlapi_cache table. I tried to get a
sense of what information that table held, if it was related to other tables in
the database, and how many rows of data there were.

In this section, I’ll guide you through the tables that stood out to me in
the epikfail_api_system database. You can use either Adminer or the mysql
command line client: they both query the same SQL server and will receive
the same tables of data in response. When your interest is piqued, you can
try running your own queries as well. It’s good practice to refrain from
 running INSERT, UPDATE, or DELETE queries in leaked databases that you’re
investigating. However, SELECT queries don’t modify anything in the data-
base, so you can run as many as you want at any point, then continue follow-
ing along when you’re done.

The domain Table
The domain table in the epikfail_api_system database has over 1.6 million
rows in it, and is clearly a list of domain names in Epik’s system. Count the
number of rows in this table using the following query:

SELECT COUNT(*) FROM domain;

 Table 12-12 shows the results from that query.

Table 12-12: Counting the Rows in the Domain Table

COUNT(*)

1688005

Columns in the domain table include id, name (the domain name, in all
caps), cr_date (presumably the domain name’s creation date), and exp_date
(presumably the domain name’s expiration date).

To look at the 10 most recently created domains in this table, run the
following query:

SELECT id, name, cr_date, exp_date
FROM domain
ORDER BY cr_date DESC
LIMIT 10;

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 379

This command uses the ORDER BY cr_date DESC clause to sort data
returned by the cr_date column, in descending order (from most recent
to oldest, in this case). The LIMIT 10 clause in the following line limits the
results to only 10 rows; if you left that clause out, the command would
return all 16 million rows.

 Table 12-13 shows the results from this query.

Table 12-13: Selecting the Most Recently Created Domains

id name cr_date exp_date

17803243 MAKEAPPLIANCESWORKAGAIN . COM 2021 - 03 - 01 01:41:52 2022-03-01 01:41:52

17803233 BEREANBAPTISTPORTCHARLOTTE . ORG 2021 - 03 - 01 01:33:26 2022-03-01 01:33:26

17803213 WECONSIGNGUNS . NET 2021 - 03 - 01 01:32:04 2022-03-01 01:32:04

17803223 WECONSIGNGUNS . COM 2021 - 03 - 01 01:32:04 2022-03-01 01:32:04

17803183 MAINEANTIQUEMALL . COM 2021 - 03 - 01 01:29:42 2022-03-01 01:29:42

17803203 MAINEANTIQUESTORE . COM 2021 - 03 - 01 01:29:42 2022-03-01 01:29:42

17803193 MAINEANTIQUESHOP . COM 2021 - 03 - 01 01:29:42 2022-03-01 01:29:42

17803173 WOOGITYBOOGITY . COM 2021 - 03 - 01 01:20:35 2022-03-01 01:20:35

17803163 NAMECAESAR . COM 2021 - 03 - 01 01:17:52 2022-03-01 01:17:52

17803153 SCENICBOATTOUR . COM 2021 - 03 - 01 01:17:11 2022-03-01 01:17:11

To search the list of Epik domains for ones containing specific key-
words, use the LIKE operator in the WHERE clause. For example, try using
the following queries to search for domains that mention the word Trump,
ordered by the most recently created domains:

SELECT id, name, cr_date, exp_date
FROM domain
WHERE name LIKE '%trump%'
ORDER BY cr_date DESC;

As you learned earlier, using LIKE makes the search case insensitive, and
% characters are wildcards. Filtering the results by name LIKE '%trump%' will
display only results that include trump (regardless of capitalization) some-
where in their name.

The query returns 413 results total. Table 12-14 shows the first
10 results.

Clearly, many people used Epik to register Trump- related domain
names. These results don’t include any owner ship information for these
domains, though. To find that missing information, let’s take a look at the
privacy table.

The privacy Table
The privacy table has 721,731 rows of data. Like the domain table, it has a
domain column that lists domain names, but it also includes columns with
all of the private WHOIS details. Relevant columns include admin_org,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

380 Chapter 12

admin_name, admin_email, admin_address, admin_phone, and other similar informa-
tion. There are also numerous similar columns with tech_, bill_, and
reg_ prefixes. The data in this table includes WHOIS data for the adminis-
trator contact, the technical contact, the billing contact, and the registrant
contact. There’s also a date_add column with a timestamp, presumably not-
ing when this domain was added to Epik’s system.

I mentioned earlier that, in 2019, Patrick Crusius posted a manifesto to
8chan before killing 23 people and injuring 23 more in El Paso, Texas. In
the aftermath of the terrorist attack, 8chan moved its domain name hosting
to Epik. With that in mind, search the data for 8chan . co, 8chan’s domain
name, to see who is behind the site:

SELECT * FROM privacy WHERE domain = '8CHAN . CO';

 Table 12-15 shows partial results from this query. The query selects
all columns (*), but I included only the admin_ columns here because the
tech_, bill_, and reg_ columns all have the exact same data that appears in
the admin_ column.

This domain was added to Epik’s system the night of August 4, 2019.
This was the day after Crusius posted his manifesto to 8chan and then went
on his anti- Latino murder spree.

It’s public knowledge that Jim Watkins and his son Ron Watkins ran
8chan at the time (they are also behind today’s rebrand, 8kun). According
the HBO documentary miniseries Q: Into the Storm, directed and produced
by Cullen Hoback, the pair are also by far the most likely people behind the
QAnon conspiracy cult. Jim Watkins, an American, lived in the Philippines
at the time of Crusius’s rampage. As you can see from the hidden WHOIS
data, the admin address is for a property in the Philippines. This increases
confidence that the data is au then tic, and also gives key data points about
Jim Watkins in case we wanted to research him further: an address and
phone number.

Table 12-14: Domains that Include the Word Trump

id name cr_date exp_date

17802593 TRUMPISM.IO 2021-02-28 23:45:44 2022-02-28 23:45:44

17750903 TRUMPWONINALANDSLIDE . COM 2021 - 02 - 23 08:52:33 2022-02-23 08:52:33

17750913 DONALDTRUMPWONINALANDSLIDE . COM 2021 - 02 - 23 08:52:33 2022-02-23 08:52:33

17676023 DUMP - TRUMP . NET 2021 - 02 - 22 21:38:40 2022-02-22 21:38:40

17694803 TRUMPBEEGIRLS . COM 2021 - 02 - 19 00:14:23 2026-02-19 00:14:23

17672243 TRUMP2020 . NET 2021 - 02 - 17 17:43:32 2022-02-17 17:43:32

17661353 FANTRUMP . COM 2021 - 02 - 16 19:04:43 2022-02-16 19:04:43

17662513 DONALDTRUMP.TRUTH 2021-02-16 13:22:16 2022-02-16 13:22:16

17662433 TRUMP.TRUTH 2021-02-16 13:22:13 2022-02-16 13:22:13

17615793 VOTELARATRUMP . COM 2021 - 02 - 14 17:38:12 2023-02-14 17:38:12

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 381

Since Watkins runs a website popular among American terrorists, and
is likely one of the people behind QAnon, the next logical step is to check
if he or his com pany, Loki Technology, owned any other domain names on
Epik. To find out, try running this query in the epikfail_api_system database:

SELECT * FROM privacy WHERE admin _ email = 'domains@nttec . com';

This query searches for domains that list admin_email as domains@nttec
. com, which is the administrator email address on 8chan . co. However, it
returns just a single row for that domain. Run the following query, modi-
fied with the expression admin_email LIKE '%@nttec . com' to check for domains
where admin_email is any email address at the nttec . com domain:

SELECT * FROM privacy WHERE admin_email LIKE '%@nttec . com';

However, this query has the same results. For your next query, switch
tactics and search for domains that list admin_org as anything mentioning
Loki Technology, using the admin_org LIKE '%Loki Technology%' expression.
The expression includes wildcard characters, just in case Watkins listed his
com pany slightly differently on dif fer ent domains, like “Loki Technology,
Inc” instead of “Loki Technology, Incorporated”:

SELECT * FROM privacy WHERE admin_org LIKE '%Loki Technology%';

This query returns the same result. For a final query, search the
domains that list admin_name as Jim Watkins, using LIKE to make the search
case insensitive:

SELECT * FROM privacy WHERE admin_name LIKE 'Jim Watkins';

 Table 12-15: Owner ship Data for the Domain 8chan . co

id 2429814

domain 8CHAN . CO

date_add 2019-08-04 23:01:11

admin_org Loki Technology, Incorporated

admin_name Jim Watkins

admin _ email domains@nttec . com

admin_address redacted
admin_city Pasig

admin_state NCR

admin_zip 1600

admin_country PH

admin_cc PH

admin_phone +63.redacted

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://admin_email='domains@nttec.com
http://domains@nttec.com
http://domains@nttec.com
http://nttec.com
http://nttec.com
http://nttec.com
http://domains@nttec.com

382 Chapter 12

Unfortunately, all these queries return just one result: the 8chan . co
row.

In the next section, you’ll learn about how I eventually found more
information about domains owned by Jim Watkins in the Epik dataset, just
not in the epikfail_api_system database. For now, let’s look at some final
in ter est ing tables in this database.

The hosting and hosting_server Tables
The hosting table has 3,934 rows and appears to show websites that Epik
actually runs the servers for, not just the domain name registration.
Columns include domain, cr_date, username, password (in plaintext, though
it’s not clear what these usernames and passwords are for), plan (like silver,
gold, or platinum), server_id, and others. Run the following query to view
the most recent rows:

SELECT id, domain, cr_date, plan, server_id
FROM hosting
ORDER BY cr_date DESC
LIMIT 5;

Since the query uses the ORDER BY cr_date DESC clause, the results will be
sorted from most recent to oldest. The LIMIT 5 clause means the results will
include at most five rows. Table 12-16 shows the results from this query.

Table 12-16: Recent Rows in the hosting Table
id domain cr_date plan server_id

33613 THELIBERATEDPRESS . COM 2021 - 02 - 28
18:08:06

bronze 23

39573 REICKERTSPLUMBING . COM 2021 - 02 - 28
17:30:18

email 23

39563 IANLAZAR . COM 2021 - 02 - 28
16:50:10

bronze 23

39553 APAYWEEKLY . COM 2021 - 02 - 28
16:16:08

sitebuilder- basic 23

39543 BOUNCETHEBOX . COM 2021 - 02 - 28
15:24:08

silver 23

I tried loading several of the domain names in this table in a browser.
Some of them are down, while others appear to be websites for random
businesses. I quickly noticed that the server_id column implies a relation-
ship with another table. I guessed the related table was most likely the
hosting_server table and began to run queries on that.

The hosting_server table has only six rows, each a dif fer ent server that
Epik uses to host websites. Run this query to see the data in this table:

SELECT id, api_host, login_host, login_port, username, password
FROM hosting_server;

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Epik Fail, Extremism Research, and SQL Databases 383

 Table 12-17 shows the query results.

 Table 12-17: The hosting_server Table

id api_host login_host login_port username password

1 192 . 187 . 99 . 50 hosting . epik . com 2082 epikhost redacted

2 204 . 12 . 206 . 186 hosting5 . epik . com 2083 hostinge redacted

3 88 . 214 . 193 . 70 hosting6 . epik . com 2083 hostinge redacted

13 88 . 214 . 193 . 195 hosting7 . epik . com 2083 hostinge redacted

14 88 . 214 . 193 . 163 hosting8 . epik . com 2083 hostinge redacted

23 88 . 214 . 194 . 85 hosting9 . epik . com 2083 hostinge redacted

The passwords in this table are all in plaintext. In fact, if you load
https:// hosting9 . epik . com:2083 in Tor Browser, you’ll see the login page for
cPanel, software that’s used to manage shared web hosting systems like
this. The username and password in the hosting_server table are likely
the credentials to log into this cPanel server— but don’t actually try this
out. As noted earlier, it’s fine for you to see the passwords scattered across
datasets, but actually attempting to log into an account with them is ille-
gal. In any case, Epik has prob ably changed its passwords since the data
breach.

All of the recent websites in the hosting table have a server_id of 23.
Check how many websites are hosted on that server by running a query to
join it with the hosting_server table:

SELECT COUNT(*)
FROM hosting
LEFT JOIN hosting_server ON hosting_server.id=hosting.server_id
WHERE hosting.server_id=23;

The result is 1,155, so that’s the number of websites the server with ID
23 hosts.

What about the rest of the servers? The quickest way to figure out how
many websites each server hosts is to use a GROUP BY clause, like this:

SELECT
 server_id,
 COUNT(*) AS server_count
FROM hosting
LEFT JOIN hosting_server ON hosting_server.id=hosting.server_id
GROUP BY hosting.server_id;

This query groups by hosting.server_id, which means each row of the
results will show the number of rows in the hosting table with that server_id.
 Table 12-18 shows the results of this query.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://hosting.epik.com
http://hosting5.epik.com
http://hosting6.epik.com
http://hosting7.epik.com
http://hosting8.epik.com
http://hosting9.epik.com
https://hosting9.epik.com:2083

384 Chapter 12

 Table 12-18: The Number of Websites
Hosted on Each Server

server_id server_count

3 762

13 1474

14 543

23 1155

While there’s always more to learn, you should now have the SQL skills
to write power ful queries that can help you quickly find what you’re looking
for, even in tables with millions of rows.

So far you’ve explored just one of the nine MySQL databases in the
Epik Fail dataset, but there’s a lot more in ter est ing data there, particularly
related to WHOIS information. However, some of these other databases
are so large that it’s not especially practical to work with them all locally on
your computer. Instead, if you’d like to try working with these additional
databases, you’ll need to use a server in the cloud.

Working with Epik Data in the Cloud
The MySQL databases from Epik contain an overwhelming amount of data
that’s useful for extremism research, and only a fraction of that data is in the
api_system.sql.gz backup that you’ve imported for this chapter. Some of the
other databases, such as intrust.sql.gz, contain even more in ter est ing infor-
mation. If you’re curious, I suggest downloading, importing, and investigat-
ing all nine MySQL databases from the Epik dataset.

Some of these databases would likely take your computer days to fin-
ish importing and would require a large amount of disk space. It’s more
 convenient to download and work with databases like these on a server in
the cloud rather than on your local computer. To do so, follow these steps:

 1. Create a new VPS on a cloud service provider (making sure it has plenty
of disk space) and SSH into it, like you did in Exercise 4-4.

 2. Use wget to download just the compressed database backups, a total of
14GB, from https:// data . ddosecrets . com / Epik / EpikFail / sql / . Alternatively,
using a CLI BitTorrent client, you could download the entire first part
of the Epik dataset, which is 35GB of data, similar to what you did in
Exercise 4-5.

 3. Extract the compressed MySQL database backups as you did in
Exercise 12-4. By the time you’re done extracting these file, you’ll have
145GB of MySQL backup files.

 4. Install a MySQL server on your VPS. There are vari ous ways of doing
this, but one option is to install Docker on your VPS and run a MySQL
server as you did in Exercise 12-3. Since your VPS will be running
Linux, just make sure to follow the Linux instructions there.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://data.ddosecrets.com/Epik/EpikFail/sql/

Epik Fail, Extremism Research, and SQL Databases 385

 5. Using the command line MySQL client, create nine databases, one for
each backup file. Next, using pv and mysql, import all nine database
backups as you did in Exercise 12-5. This step will likely take your
VPS several days to finish, but since the remote server is handling the
import, this won’t disrupt other work on your computer.

 These are essentially the steps I followed when I investigated the Epik
dataset at The Intercept. The downside to doing this all in the cloud is
that you’ll need to pay a monthly bill to your hosting provider for the
server that you’re using. However, once you have a remote MySQL server
full of Epik databases, you can use a MySQL client to connect to it and
run queries, which will allow you to analyze hundreds of gigabytes of
leaked databases.

The most useful part of the Epik dataset, in my opinion, is the fact
that you can use it to peel back the curtain behind Epik’s WHOIS privacy
 service. You did this some in the “Exploring Epik’s SQL Database” section,
but you looked only in the privacy table of the epikfail_api_system database.
But that isn’t the only place where you can find WHOIS privacy data.

The nine dif fer ent MySQL databases in the Epik leak appear to have
lots of duplicate data. For example, the epikfail_intrust database has a table
called domains_whois with all of the same columns as the privacy table. The
domains_whois table has 1.4 million rows of data, roughly twice as many as the
privacy table, though many of the rows appear to contain similar data. In
the epikfail_whois database, there’s a table called data with similar columns
and 1.3 million rows of data. All three tables have vari ous duplicates of the
same WHOIS data, so you may want to search them all before concluding
that a domain name owner ship isn’t in this dataset.

In the “Exploring Epik’s SQL Database” section, you ran some que-
ries in epiktrust_api_system to find domains that Jim Watkins owns other
than 8chan . co, but they fell short. If you import additional databases, can
you find other domains he owns? When I ran similar queries in the epik-
fail_intrust database on the domains_whois table, which has more data than
the privacy table in the epiktrust_api_system database, I got some hits. If you
want to run this query yourself, you’ll need to first download and import
the intrust.sql database into your MySQL server.

 Here’s the query I ran to search the domains_whois table in the epikfail_
intrust database for domains owned by Jim Watkins’s com pany:

SELECT * FROM domains_whois WHERE admin_email LIKE '%@nttec . com';

 Table 12-19 lists the truncated results of this query, showing only some
of the columns. As you can see, Jim Watkins owns all of the domains listed
in the results.

At the time of writing, the domain 5ch . net loaded a Japanese- language
site called 5channel. When I loaded 2ch . net, it failed with a “connection
timed out” error from Cloudflare, and when I loaded bbspink . com, I got
an “access denied” error from Cloudflare saying that the site blocks con-
nections from the US. I connected to a VPN in Europe and tried again;

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://nttec.com
http://5ch.net
http://2ch.net
http://bbspink.com

386 Chapter 12

this time, it redirected to 5ch . net. If you’d like, you can try the same steps
yourself.

As you explore more databases, you’ll find that writing SQL queries
to find what you’re looking for takes some trial and error. Sometimes the
results from one query will inform what you should search for next—as
 you’ve seen, I used the email that Watkins registered 8chan . co with to find
his other domains, for example. When you don’t find what you’re looking
for, tweak your queries to make them more broad, or search a dif fer ent field
that might give you similar information.

Summary
In this chapter, you’ve learned how to run your own MySQL server on your
computer using Docker containers. You took a crash course in SQL, the lan-
guage used to communicate with SQL servers, and were introduced to Epik,
the online service provider for right- wing extremists and American terror-
ists who have committed mass murder. Fi nally, you downloaded a MySQL
database backup from the 2021 Epik Fail dataset, imported it into your own
local MySQL server, and ran SQL queries to begin investigating it yourself.

This marks the conclusion of Part 4, which has given you the foun-
dational tools and techniques to explore almost any dataset you get your
hands on. Part 5, the final two chapters of the book, doesn’t include any
exercises. Instead, it describes real data- driven investigations I’ve worked on
in the past, show you what code I wrote and why, and explain exactly how
I used the skills I’ve taught you throughout this book to find revelations. I
hope you’ll use these case studies as inspiration for your own future data-
driven investigations.

Table 12-19: Other Domains Owned by Jim Watkins from the epikfail_intrust Database

id domain date_update admin_org admin_name admin_email

8615894 8CH . NET 2019 - 10 - 13
01:27:05

Loki Technology,
Incorporated

Jim Watkins domains@nttec . com

8615904 8CHAN . CO 2019 - 10 - 13
01:27:06

Loki Technology,
Incorporated

Jim Watkins domains@nttec . com

8615944 5CH . NET 2019 - 10 - 13
01:27:07

Loki Technology,
Incorporated

Jim Watkins domains@nttec . com

8615984 2CH . NET 2019 - 10 - 13
01:27:08

Loki Technology,
Incorporated

Jim Watkins domains@nttec . com

8616004 BBSPINK . COM 2019 - 10 - 13
01:27:09

Loki Technology,
Incorporated

Jim Watkins domains@nttec . com

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://5ch.net
http://domains@nttec.com
http://domains@nttec.com
http://domains@nttec.com
http://domains@nttec.com
http://domains@nttec.com

PART V
C A S E S T U D I E S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

On September 11, 2021, an anonymous hacker sent me
about 100MB of compressed data from, in the words of
my source, “the horse paste peddlers.” My source was
looking into Amer i ca’s Frontline Doctors (AFLDS),
an anti- science propaganda group founded in 2020 to
support President Trump in his opposition to public
health policies during the coronavirus pandemic.

13
P A N D E M I C P R O F I T E E R S A N D
C O V I D - 1 9 D I S I N F O R M A T I O N

About a month ago, there was an article printed in a newspaper I had never heard of
called The Intercept. I discovered that The Intercept is a rag far left of the New York Times.

They printed an article alleging that the telemedicine com pany to which Amer i ca’s
Frontline Doctors referred people— a third- party telemedicine com pany— had had patient

data breaches, that it had been hacked. This got the telemedicine com pany, of course,
very nervous. They thought they had good firewalls up. They spent about $200,000 to prove

that there was no actual hack, that it was all made up. It was all a lie. But it was the
basis for Congressman Clyburn’s investigation into me! And I thought to myself,

That sounds very familiar. A fake story in a rag paper.
— Dr. Simone Gold, founder of Amer i ca’s Frontline Doctors,

speaking at a November 2021 event hosted by the Islamophobic hate group the
David Horo witz Freedom Center in Palm Beach, Florida

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

390 Chapter 13

AFLDS, along with a small network of telehealth companies that my
source told me were “hilariously easy” to hack, falsely claims to its sizable
online audience that COVID-19 vaccines are dangerous and in effec tive.
It also promotes the drugs hydroxychloroquine (commonly used to treat
malaria and lupus) and ivermectin (commonly used as a dewormer in
livestock) as miracle cures for the virus. AFLDS creates high- quality anti-
vaccine propaganda videos and distributes them to hundreds of thousands
of followers across social media platforms.

The hacker sent me two datasets from two separate companies:
Cadence Health, which ran the platform AFLDS used to give telehealth
consultations to patients, and Ravkoo Pharmacy, which filled prescriptions
for these drugs. After investigating over 1GB of JSON and CSV files cumu-
latively contained in the decompressed datasets, I discovered that AFLDS
and its partners duped tens of thousands of people into seeking in effec tive
treatments and charged them at least $15 million— likely much more— for
consultations and prescriptions for these drugs.

The revelations from my investigation led the US House Select
Subcommittee on the Coronavirus Crisis, headed by Rep. James Clyburn
(D- SC), to open an investigation into AFLDS and SpeakWithAnMD;
technically, AFLDS worked directly with SpeakWithAnMD for providing
telehealth consultations, and Cadence Health was SpeakWithAnMD’s ven-
dor for managing the technology. Clyburn called these groups “predatory
actors” that have been “touting misinformation and using it to market dis-
proven and potentially hazardous coronavirus treatments.” The committee
recommended that the Federal Trade Commission open its own investi-
gation into these companies, and later expanded its investigation to also
cover Cadence Health.

Also in response to my reporting, other reporting on AFLDS, and
pro- science activism in the medical community, the Medical Board of
California (MBC) opened an investigation into Dr. Simone Gold, the
 founder of AFLDS, to determine if she should be stripped of her medical
license. (At the time of writing, she is still licensed in California, as well as
in Florida, where she has since moved.) AFLDS later accosted MBC presi-
dent Kristina Lawson in a parking garage with cameras as part of an anti-
science propaganda video it was producing.

 Because the AFLDS dataset is full of medical rec ords and PII, none of it
is public, so you won’t be able to work with it yourself. Instead, I’ll describe
the data, show redacted pieces of it, and show snippets of the Python code
I wrote to make sense of it. If a similar dataset ever drops in your lap, the
skills you’ve learned in this book so far and the strategies described in this
chapter, along with perhaps some additional independent study, should
enable you to investigate it just like I did.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 391

The Origins of AFLDS
Before we get into the dataset, let’s take a look at how AFLDS was founded,
including its ties to Trump’s 2020 reelection campaign and the conserva-
tive advocacy group the Tea Party Patriots, as well as exactly how AFLDS’s
extremely profitable scheme succeeded in swindling vaccine skeptics into
spending millions of dollars on phone consultations and bogus medicine
for COVID-19.

On May 11, 2020, a senior staffer in Donald Trump’s reelection cam-
paign and the Republican activist group CNP Action held a conference
call. An audio recording of this call was leaked to Center for Media and
Democracy, a progressive watchdog group, which gave a copy of the record-
ing to the Associated Press (AP), which in turn reported on it. A key topic
of discussion was reportedly finding “extremely pro- Trump doctors” to go
on TV and defend Trump’s plan to rapidly reopen the economy, despite
the more cautious safety guidance coming from the Centers for Disease
Control and Prevention (CDC). Nancy Schulze, a Republican Party activist
married to a former Republican member of Congress, said on the call that
she had a list of doctors willing to defend Trump’s policies and that “ those
are the types of guys that we should want to get out on TV and radio to help
push out the message.”

Dr. Gold was the “extremely pro- Trump doctor” they were looking for.
During AP’s reporting of this conference call, a public relations firm dis-
tributed an open letter to Trump signed by over 400 doctors, calling the
pandemic lockdown policies a “mass casualty event.” Dr. Gold’s signature
was at the top of the letter, though she denied coordinating her efforts
with the Trump campaign. This open letter was released after AP had sent
requests for comment to individuals on the call and to Trump’s reelection
campaign, but before it had published its article. This letter appears to
be, at least in part, an attempt to preempt the article with a positive spin,
something that might happen when you reach out for comment while doing
adversarial journalism, as discussed in Chapter 1.

In June 2020, weeks after the conference call and the open letter,
Gold founded an Arizona nonprofit called the Free Speech Foundation.
The enterprise started with a million- dollar annual budget and fis-
cal sponsorship from the Tea Party Patriots Foundation, the major US
 conservative organization introduced in Chapter 2. AFLDS launched
on July 27, 2020, as a Free Speech Foundation proj ect. Gold, along with
other doctors in white lab coats, held a press conference on the steps of
the Supreme Court building where they falsely claimed that a cocktail of
hydroxychloroquine, azithromycin, and zinc could cure COVID-19. The
event was livestreamed on Breitbart. Then– President Trump shared vid-
eos of the press conference on Twitter, garnering millions of views before
tech companies took them down for violating rules against pandemic
misinformation.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

392 Chapter 13

In early 2021, well into the pandemic, AFLDS set up a system on
its website to sell $90 telemedicine consultations so people could get
prescriptions for hydroxychloroquine— a drug that, at that point in the
pandemic, had already been debunked as a treatment for COVID-19.
On January 3, Gold told a packed, maskless church audience in Tampa,
Florida, that AFLDS made “hydroxychloroquine available for the entire
nation by going to our website. Then you can consult with a telemedi-
cine doctor. And whether you have COVID, or you don’t have COVID, or
 you’re just worried about getting COVID, you can get yourself a prescrip-
tion and they mail it to you.” She insisted, “The big fight wasn’t the virus,
it was the fear.”

Figure 13-1 shows the AFLDS website advertising prescriptions for
COVID-19 “medi cation.”

If one of AFLDS’s hundreds of thousands of followers watched one of
the group’s anti- vaccine propaganda videos and de cided that they needed
ivermectin or hydroxychloroquine, first they would click the prominent
Contact a Physician button on the AFLDS home page. This brought them

SIMONE GOL D, INSUR R EC T IONIS T

Simone Gold isn’t just an anti- vaxxer quack doctor getting rich off of fake cures
for COVID-19; she’s also one of the insurrectionists who stormed the US Capitol
on January 6, 2021. After Gold pleaded guilty to misdemeanor trespassing,
she was sentenced to two months in prison, a year of supervised release, and a
$9,500 fine.

In response to Gold’s arrest, AFLDS went on a fund rais ing spree, claim-
ing that the charge against her was a po liti cally motivated trampling of her
 free speech rights. The group raised more than $430,000 by the date of her
sentencing, which the judge called “unseemly.” He also accused AFLDS of “mis-
characterizing” her trial, “telling your supporters that this is a political prosecu-
tion of a law- abiding physician that’s designed to threaten and intimidate any
American who dares to exercise their First Amendment rights.”

 After Gold reported to prison in July 2022, her California medical license
was automatically placed on “inactive” status, meaning she was barred from
practicing medicine (though it was reactivated after she was released). While
she served her sentence, AFLDS continued to fundraise off of her plight, includ-
ing sending a newsletter that unironically cited an article from The Intercept
about privacy issues in her prison.

John Strand, a former underwear model who hosted some of AFLDS’s short
medical disinformation videos, and who had became romantically involved
with Gold as her employee, was also arrested during the Capitol riot. Unlike
Gold, he did not plead guilty to misdemeanor trespassing, opting instead to
try his luck at trial. He was found guilty of four misdemeanors and one felony
(obstructing an official proceeding), and in June 2023 was sentenced to
32 months in prison and fined $10,000.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 393

to SpeakWithAnMD, the telehealth partner’s website. Clicking the button
on that site to book a consultation sent the patient to a page to create an
account at Cadence Health, a vendor of SpeakWithAnMD. Cadence Health
provided the actual telehealth platform that SpeakWithAnMD used.

Figure 13.1: The home page on AFLDS’s website from March 4, 2022

The patient would then fill out a form answering medical questions;
click through the disclaimer “As a potential patient, I acknowledge and
understand that the Hydroxychloroquine (HCQ) and Ivermectin have been
deemed ‘Highly Not Recommended’ by the WHO, FDA, CDC, and NIH”;
and enter their credit card information to pay $90 for a consultation. In
the next few days, the patient would receive a phone call from someone in
AFLDS’s network of physicians, who would write them a prescription for
the unproven drugs. ABC News paid the $90, got a call from someone who
wrote them a prescription for ivermectin, and recorded the prescriber say-
ing, “I don’t have any medical knowledge as far as the medicine, or even
about COVID.”

At the time, the prescriptions were almost always pro cessed through
the online pharmacy Ravkoo. The patient would call Ravkoo, read their
credit card number on the phone, and get the drugs mailed to their door.
Sometimes they would be charged as much as $700 for ivermectin; Ravkoo
 didn’t accept health insurance for these sales.

When I started this investigation, I wasn’t familiar with any of these com-
panies. It was obvious that AFLDS was in the business of misleading its follow-
ers about public health so it could sell in effec tive alternatives for preventing
and treating COVID-19. But I didn’t know how SpeakWithAnMD, Cadence
Health, or Ravkoo fit into the scheme. Were they in on the AFLDS scam, or
 were they legitimate businesses that just happened to work with AFLDS?

Next, I’ll show you step- by- step how I unraveled this entire COVID-19
pandemic profiteering scheme, starting with a description of the datasets
that my hacker source sent me.

The Cadence Health and Ravkoo Datasets
The 100MB of compressed data from my source included rec ords for hun-
dreds of thousands of patients, in two separate files. This section describes

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

394 Chapter 13

how I stored and extracted these sensitive documents, revisits some basic
command line data analy sis (as you learned about in Chapter 4), and
describes some of the key types of data I discovered in the dataset.

Extracting the Data into an Encrypted File Container
 Because patient rec ords are more sensitive than other medium- sensitivity
data, I took additional precautions to secure this dataset and my work with
it. I created an encrypted file container, a 5GB encrypted file that I could
unlock with a strong passphrase stored in my password man ag er. This is
where I saved the original dataset, as well as all of my notes, code, and other
files related to this investigation, giving me an extra layer of protection
in case my computer is ever compromised. Even then, whoever accesses
my data won’t be able to access the patient rec ords without knowing the
passphrase.

I used Linux software called zuluCrypt to manage my encrypted file
container, but VeraCrypt, which you learned about in Chapter 1, would
also have been a good option and is available in any operating system.
ZuluCrypt is similar to VeraCrypt, but it’s slightly nicer to use and works
only in Linux. I could also have used Disk Utility in macOS to create
encrypted DMG files.

My source sent me two tarball files: hipaa_special.tar.zst (33MB) and
horse_around_find_out.tar.zst (74MB). Here’s a listing of them:

micah@trapdoor data % ls -lh
total 215904
- rwx- - - - - - 1 micah staff 32M Sep 14 2021 hipaa_special.tar.zst
- rwx- - - - - - 1 micah staff 73M Sep 13 2021 horse_around_find_out.tar.zst

In Chapter 11, you worked with a similar file format, .tar.gz, where files
are compressed using the GZIP algorithm. These .tar.zst files were com-
pressed using a dif fer ent algorithm, Zstandard. Installing the Zstandard
package allowed me to uncompress this type of file using the command
tar - xf filename. The - xf argument combines - x, which tells tar to extract
the file, and - f, which indicates that the following argument is the filename
that you’re extracting. The tar program detects that this is a Zstandard file
and uses zstd to uncompress it. Fi nally, because tar extracts a file into the
current working folder, I created new folders, changed to them, and then
extracted the data into that folder. For example, here’s how I extracted
hipaa_special.tar.zst:

micah@trapdoor data % mkdir hipaa_special
micah@trapdoor data % cd hipaa_special
micah@trapdoor hipaa_special % tar -xf ../hipaa_special.tar.zst

As you learned in Chapter 3, these commands make a new folder called
hipaa_special, change to that folder, and then extract the hipaa_special.tar.zst
file from the parent folder.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 395

Likewise, the following commands change to the parent folder, make
a new folder called horse_around_and_find out, change to that folder, and
then extract horse_around_find_out.tar.zst into that folder:

micah@trapdoor hipaa_special % cd ..
micah@trapdoor data % mkdir horse_around_find_out
micah@trapdoor data % cd horse_around_find_out
micah@trapdoor horse_around_find_out % tar -xf ../horse_around_find_out.tar.zst

 After extracting these folders, I did what I always do the first time I
encounter any new dataset: start measuring it with command line tools.

Analyzing the Data with Command Line Tools
First, I wanted to know how much disk space these files took up,

and how many files were in each folder. I used the command line tricks
described in Chapter 4 to figure this out:

micah@trapdoor data % gdu - - apparent- size -sh hipaa_special
493M hipaa_special
micah@trapdoor data % find hipaa_special - type f | wc - l
 281546
micah@trapdoor data % gdu - - apparent- size -sh horse_around_find_out
691M horse_around_find_out
micah@trapdoor data % find horse_around_find_out - type f | wc - l
 215

 Because I ran these commands on my Mac, I used the gdu command
from the coreutils Homebrew package to estimate disk space (rather than
the du command for Linux). The find command created a list of files in the
given folder, and that list was piped into the wc - l command, which counted
the number of files listed. My output showed that the hipaa_special folder
took 493MB of space and contained 281,546 files, and the horse_around_
find_out folder took 691MB of space and contained 251 files. Let’s look at
one at a time.

Viewing the hipaa_special Folder
It was clear at this point that hipaa_special contained far more files than
I could manually read. I ran the following command to view the first few
lines of filenames in the hipaa_special folder listing, so I could get a feel for
what was in there and start opening some of those files next:

micah@trapdoor data % ls -lh hipaa_special | head

My code piped the output of the ls command into the head command,
which by default displays the first 10 lines of input. This way, I didn’t need
to watch hundreds of thousands of filenames scroll by just to get a sense of
the folder’s contents.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

396 Chapter 13

My output showed that the folder contains small files with numeric file-
names and no file extensions:

- - snip- -
- rw- r- - r- - 1 micah staff 8.1K Sep 13 2021 100000
- rw- r- - r- - 1 micah staff 1.3K Sep 13 2021 100001
- rw- r- - r- - 1 micah staff 1.3K Sep 12 2021 100002
- rw- r- - r- - 1 micah staff 1.4K Sep 13 2021 100003
- rw- r- - r- - 1 micah staff 1.5K Sep 13 2021 100004
- rw- r- - r- - 1 micah staff 1.5K Sep 13 2021 100005
- rw- r- - r- - 1 micah staff 1.5K Sep 13 2021 100006
- rw- r- - r- - 1 micah staff 1.3K Sep 13 2021 100007
- rw- r- - r- - 1 micah staff 1.3K Sep 13 2021 100008

When I opened one of these files in VS Code, I could quickly see that
it was a JSON file. Each of these files, I discovered, was a rec ord for a dif-
fer ent user in Cadence Health’s system. For example, Listing 13-1 shows a
redacted version of the file 244273.

{
 "result": true,
 "provider": {
 "provider_id": null,
 "npi": null,
 "spi": null,
 "partner_id": null,
 "user_id": 244273, 1
 - - snip- -
 "fname": "redacted",
 "lname": "redacted",
 "phone": "redacted",
 "work_phone": " ",
 "work_phone_ext": " ",
 "email": "redacted@hotmail . com",
 "state": "CA",
 "certified_states": [],
 "gender": "F",
 "fax": null,
 "ssn": 999999999,
 "birthdate": "redacted",
 "addressLine1": "redacted",
 "zipcode": "redacted",
 "city": "redacted",
 "avatar": "avatar\/default_avatar.png",
 "id": 78410,
 "partner": ",3,", 2
 "timezone": "America\/Los_Angeles",
 "role_id": 3,
 - - snip- -
 "alcohol_type": null,
 "alcohol_amount": null,
 "current_physician": null,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://redacted@hotmail.com

Pandemic Profiteers and COVID-19 Disinformation 397

 "consultationNotes": [3
 {
 "value": 179820,
 "text": "09\/04\/2021 13:47:28", 4
 "note": "This visit was performed via telemedicine.\nThe patient confirmed
knowledge of the limitations of the use of telemedicine were verbally confirmed by the
provider.\nVerification of patient identity was established.\nVerbal consent was obtained for
medical treatment obtained\n\nThe patient is being interviewed via phone Platform\n\nPatient
has need for covid meds in regards to: ivermectin\nSymptoms onset date: 7 days\n\nOccupation:\
nChronic Medical illnesses: denies heart lung or liver problems\
- - snip- -
be required.",
 "practice": "covid19_treatment"
 }
],
 "internalNotes": []
 }
}

Listing 13-1: An example JSON file from hipaa_special

I could see that the filename (244273) matched the patient’s user ID 1.
The rec ord also includes a reference to a partner 2. This value is in an odd
format, but I quickly discovered that it’s a comma- separated list of partner
IDs, with, for some reason, blank values at the beginning and end of the
list. I don’t know why Cadence Health chose to represent which partners
each patient belonged to as a string rather than a JSON array, which would
have been cleaner. Once I figured out that they had made this choice,
though, it was simple enough to work around. I discovered that the vast
majority of the patients have a value of ,3,for partner, which, as you’ll see
 later in this chapter, means they’re AFLDS patients.

The rec ord also includes the patient’s name, email, address, date of
birth, other personal information, and detailed consultation notes. In some
of the patient rec ords, the consultationNotes array 3 is empty, but in this
case it lists details. I assume that patients with empty consultation notes cre-
ated an account in the Cadence Health system but never paid the $90 and
therefore didn’t have any telehealth consultations. The patient from this file
had their $90 phone consultation on September 4, 2021, at 1:47 pm 4.

This dataset includes patient rec ords similar to that shown in Listing 13-1
for 281,000 patients.

My source told me that they had created their own account in the
Cadence Health system while they were hacking it. As they used the web-
site, they watched exactly which URLs their web browser loaded. When
they noticed that the URL that returned their own patient rec ord included
their patient ID, they tried loading similar URLs with other user IDs. Those
URLs returned other users’ patient rec ords. Therefore, my source simply
wrote a script to download all 281,000 patient rec ords and stored them in
individual JSON files. The hipaa_special.tar.zst file contains the output of
that script.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

398 Chapter 13

Viewing the horse_around_find_out Folder
The horse_around_find_out folder is much smaller and easier to deal with. I
ran the following command to find out what files it contained (this folder
contains a small enough number of files that there was no reason to pipe it
into head):

micah@trapdoor data % ls -lh horse_around_find_out

My output showed that the files in this folder are mostly JSON files from
Cadence Health and CSVs from the Ravkoo pharmacy site, as well as a few
other files:

- - snip- -
- rw- r- - r- - 1 micah staff 387M Sep 12 2021 cadence_allpatients_all.json
- rw- r- - r- - 1 micah staff 13K Sep 12 2021 cadence_allpharmacies_all.json
- rw- r- - r- - 1 micah staff 317K Sep 12 2021 cadence_allproviders_all.json
- rw- r- - r- - 1 micah staff 3.9K Sep 12 2021 cadence_allteams_all.json
- rw- r- - r- - 1 micah staff 15K Sep 13 2021 cadence_api.txt
- rw- r- - r- - 1 micah staff 103M Sep 12 2021 cadence_contacts_all.json
- rw- r- - r- - 1 micah staff 1.0M Sep 12 2021 cadence_getPrescriptionPad_all.json
- rw- r- - r- - 1 micah staff 983K Sep 11 2021 cadence_health_partners.json
drwxr- xr- x 202 micah staff 6.3K Sep 12 2021 cadence_js
- rw- r- - r- - 1 micah staff 238K Sep 12 2021 cadence_providers_2.json
- rw- r- - r- - 1 micah staff 321K Sep 12 2021 ravkoo_contact.csv
- rw- r- - r- - 1 micah staff 1.8M Sep 12 2021 ravkoo_drugs.csv
- rw- r- - r- - 1 micah staff 51K Sep 12 2021 ravkoo_insurance.csv
- rw- r- - r- - 1 micah staff 149M Sep 13 2021 ravkoo_rxdata.csv
- rw- r- - r- - 1 micah staff 60K Sep 12 2021 ravkoo_screenshot.png
- rw- r- - r- - 1 micah staff 361B Sep 12 2021 ravkoo_third_parties.csv

I started manually opening these files to see what they contain. The
cadence_api.txt file appears to contain a few hundred lines of JavaScript code
that lists URLs within the Cadence Health API, possibly used by the hacker
to download the data. The cadence_js folder contains several inscrutable
JavaScript files, prob ably the code that powered the Cadence Health website
itself.

The folder also contains the file ravkoo_screenshot.png, a screenshot from
Ravkoo’s Super Admin interface, shown in in Figure 13-2. I never had access
to the interface itself, just this screenshot. It appears that the links on the
left represent tables of data from Ravkoo’s database, and the information
on the right displays all of the data from a selected table.

My source told me that they had discovered a secret URL for this admin
interface, though they didn’t explain exactly how they found it. Anyone
could create an account on Ravkoo’s system, and as long as they were logged
in, they could go to the URL for this interface. From there, they could click
the table names in the list on the left to access all of Ravkoo’s data from
their web browser. My source built the CSV files they sent me (ravkoo_con-
tact.csv, ravkoo_drugs.csv, and so on) by scraping the data from the Ravkoo
Super Admin interface, just as @donk_enby did to create the Parler dataset.
(See Appendix B for more information on web scraping.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 399

Figure 13.2: A screenshot from the secret Ravkoo Super Admin interface

I could see that the horse_around_and_find_out folder contained mostly
JSON and CSV files, but I needed to do more research to determine their
significance.

The cadence_allpatients_all.json File

I started by looking at the largest file in horse_around_and_find_out, the
387MB cadence_allpatients_all.json file. This enormous JSON object lists
information about every Cadence Health patient, including much of the
same data listed in the hipaa_special patient rec ords. Listing 13-2 shows a
redacted section of the data from this file for a single patient.

{
 "name": "redacted",
 "id": 168692,
 "fname": "redacted",
 "mname": null,
 "lname": "redacted",
 "email": "redacted@gmail . com",
 "password": "redacted_password_hash",
 "ssn": 999999999,
 "phone": "redacted",
 "fax": null,
 "birthdate": "redacted",
 "gender": "F",
 "maritalStatus": null,
 "addressLine1": "redacted",
 "addressLine2": null,
 "zipcode": "redacted",

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://redacted@gmail.com

400 Chapter 13

 "city": "redacted",
 "state": "NJ",
 "language": null,
- - snip- -
 "created_at": "2021-08-18 14:04:58",
 "updated_at": "2021-08-18 14:04:58",
- - snip- -

Listing 13-2: An example JSON object describing a patient in cadence_allpatients_all.json

Many of these fields have a value of null, meaning they’re empty. The
Cadence Health software likely made it optional to collect this informa-
tion, and AFLDS chose not to do so for its patients. The value of the ssn
field (presumably for Social Security number) is 999999999 in this example.
All patients in this JSON file have their ssn set to either this number or to
null, so it appears that this dataset doesn’t include real SSNs. The cadence
_ allpatients_all.json file also included each user’s password hash. Someone
with all these password hashes could potentially recover the original pass-
words for users without strong passwords. The value of created_at appears to
be the timestamp for when this patient rec ord was created—in other words,
when this person created their account.

 After reading through several patient rec ords in my text editor, I had
a decent understanding of the type of data in this file, so I moved on to
examining the smaller files.

The cadence_health_partners.json File

The cadence_health_partners.json file contains a JSON object with a
list of 17 of Cadence’s partners, such as Amer i ca’s Frontline Doctors,
SpeakWithAnMD, and Dr. Zelenko. Listing 13-3 shows a redacted example
of the AFLDS partner from that file.

{
 "id": 3,
 "name": "Amer i ca's Frontline Doctors",
 - - snip- -
 "practices": "covid19,followupvisit",
 - - snip- -
 "one_merchant_security_key": "redacted",
 "stripe_publishable_key": "dev+admin@cadencehealth . us",
 "stripe_secret_key": "redacted",
 "virtual_visit_price": {
 "covid19": "90.00",
 "followupvisit": "59.99"
 },
- - snip- -

Listing 13-3: An example JSON object describing a partner in cadence_health_partners
.json

Each partner has unique id and name fields, along with many others
that describe the partner’s settings. The first lines of this JSON object show

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://dev+admin@cadencehealth.us

Pandemic Profiteers and COVID-19 Disinformation 401

that AFLDS’s id is 3. The practices field is a string containing a comma-
separated list of telehealth consultation types that this partner offers
(covid19 and followupvisit, in this case). This JSON object includes secret
tokens for payment pro cessors in the lines with fields for one_merchant_
security_key and stripe_secret_key, which I’ve redacted. The virtual_visit_
price field is a JSON object containing other fields for each type of practice
this partner offers, and in this case, shows that AFLDS charges $90 for
COVID-19 visits and $59.99 for follow-up visits.

 After reviewing cadence_health_partners.json and the patient data in the
hipaa_special folder, I noticed a relationship between the two. Each part-
ner’s JSON object has an id and each patient has a partner field. Listing 13-3
shows that AFLDS’s partner id is 3, indicating that the patient in Listing 13-1
with a partner value of ,3, was an AFLDS patient.

The ravkoo_rxdata.csv File

Of the six Ravkoo files, I found that ravkoo_rxdata.csv was by far the biggest.
Figure 13-3 shows a portion of the data in this spreadsheet.

Figure 13.3: Viewing ravkoo_rxdata.csv in LibreOffice Calc format

This 149MB CSV spreadsheet contained 340,000 rows of data, each
representing a prescription filled. Each prescription included the name and
dosage of the drug, usage instructions, information about refills, the date
it was filled, a Remarks column (where many of the rows list AMER I CAS FRONT
LINE DOCTORS— ENCORE), and other information.

 After a cursory review of ravkoo_rxdata.csv, it was clear that it might
contain revelations about how much money AFLDS and the companies it
worked with charged for bogus COVID-19 health care. However, its current
format would make it difficult to work with. I needed to transform the data
in order to more easily make sense of it.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

402 Chapter 13

Creating a Single Spreadsheet of Patients
I wanted to separate the AFLDS patients who had paid $90 for phone con-
sultations from the total list of patients, many of whom had never paid, so
I could get a clearer idea of the scale of AFLDS’s scam. For each of these
paying patients, I wanted to find their name, gender, birth date, the date
they created their Cadence Health account, and the number of telehealth
consultations they had.

The cadence_allpatients_all.json file contained information about all of the
patients, including the previously discussed created_at timestamp. However, it
 didn’t include the consultation notes, and I needed those to determine how
many consultations the patient actually had. Meanwhile, the 281,000 JSON
files in the hipaa_special folder had information about all of the patients,
including consultation notes, but it didn’t have the created_at timestamp.

I de cided to write a Python script to comb through the cadence
_allpatients_all.json file and all the files in the hipaa_special folder, pull out
the information I was looking for, and save it all in a single CSV. Here’s the
Python code for my script (you can also find a copy in the book’s GitHub
repo at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter
- 13 / create - aflds - patients - csv . py):

import json
import csv
import os

Turn a JSON file into a Python dict or list
def data_from_json(filename):
 with open(filename) as f:
 return json.loads(f.read())

Export a CSV full of AFLDS patients
def main():
 # Load patient data from cadence_allpatients_all.json
 patients_data = data_from_json(
 "data/horse_around_find_out/cadence_allpatients_all.json"
)
 # Keep track of the created_at timestamps for each patient's id
 patient_ids_to_created_at = {}
 for patient in patients_data["patients"]:
 patient_ids_to_created_at[patient["id"]] = patient["created_at"]

 # Start the list of AFLDS patients that have had at least one consultation
 patient_rows = []

 # Loop through every file in the hipaa_special folder
 for patient_id in os.listdir("data/hipaa_special"):
 # Load the patient data
 data = data_from_json(os.path.join("data/hipaa_special", patient_id))

 # Some of the patient rec ords are empty. This skips them
 if not data["result"]:
 continue

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-aflds-patients-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-aflds-patients-csv.py

Pandemic Profiteers and COVID-19 Disinformation 403

 # Make sure AFLDS (id 3) is in the list of partners
 partner_ids = data["provider"]["partner"].split(",")
 if "3" in partner_ids:
 # Count how many consultations this patient has
 num_consultations = len(data["provider"]["consultationNotes"])

 # If they have had more than one, add them to the list
 if num_consultations > 0:
 patient_rows.append(
 {
 "user_id": data["provider"]["user_id"],
 "created_at": patient_ids_to_created_at[
 data["provider"]["user_id"]
],
 "fname": data["provider"]["fname"],
 "lname": data["provider"]["lname"],
 "email": data["provider"]["email"],
 "city": data["provider"]["city"],
 "state": data["provider"]["state"],
 "gender": data["provider"]["gender"],
 "birthdate": data["provider"]["birthdate"],
 "num_consultations": num_consultations,
 }
)

 # Write the CSV file
 csv_filename = "aflds- patients.csv"
 headers = [
 "user_id",
 "created_at",
 "fname",
 "lname",
 "email",
 "city",
 "state",
 "gender",
 "birthdate",
 "num_consultations",
]
 with open(csv_filename, "w") as f:
 writer = csv.DictWriter(f, headers)
 writer.writeheader()
 writer.writerows(patient_rows)

if __name__ == "__main__":
 main()

You won’t be able to run this or any other script in this chapter without
a copy of the private dataset, so I’ll summarize how it worked.

First, the script loaded cadence_allpatients_all.json as a Python object.
It then looped through each patient in that object, keeping track of which
user_id mapped to which created_at timestamp in a dictionary.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

404 Chapter 13

It created an empty list called aflds_patients and then looped through
 every filename in the hipaa_special folder, where each file represents a dif-
fer ent patient. For each filename, it loaded the corresponding JSON file as
a Python object representing a patient. If the partner field included the ID
3 (meaning that the rec ord was associated with AFLDS), and if the length
of the consultationNotes field was greater than 0 (meaning there was at least
one consultation), then it added this patient to the aflds_patients list, mak-
ing sure to include the patient’s created_at timestamp, too.

It opened a new CSV file, aflds- patients.csv, for writing, and then wrote
the aflds_patients list as rows in the CSV file.

 After working through the exercises in this book, you should have all
the skills you need to write your own similar scripts. This is true for all
of the scripts I wrote for this investigation, which you’ll see throughout
this chapter. For example, in Chapter 8, you learned about dictionaries
and lists; in Chapter 9, you learned how to use the csv module to create
your own CSV spreadsheets; and in Chapter 11, you learned how to load
and work with data in JSON format. This script incorporates all these
techniques.

 Running this script created a 6.4MB CSV file called aflds- patients.csv
with 72,000 rows. Figure 13-4 shows a redacted view of this spreadsheet. As
you can see, this data is significantly easier to make sense of compared to
hundreds of thousands of small JSON files, and one enormous one.

Figure 13.4: A redacted view of aflds- patients.csv

This spreadsheet lists the 72,000 AFLDS patients referred to
SpeakWithAnMD who actually bought a $90 consultation. If each patient

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 405

paid $90, these consultations alone would have cost them, collectively,
$6.4 million. Many of the patients had multiple consultations, so I estimate
patients were charged $6.7 million from consultations alone. There’s no
way of knowing just from this data how the money was distributed, but it
was likely split between AFLDS, individual physicians in its network, and
SpeakWithAnMD.

My source’s dataset included all of the patient data in Cadence Health’s
database. When I sorted the spreadsheet on the created_at column, which
includes the dates each patient created their Cadence account, I could see
that the earliest patients made their accounts on July 16, 2021, and the lat-
est patients created theirs on September 12, 2021, when my source hacked
Cadence Health. While only 72,000 patients paid for $90 consultations, I
had data for an additional 180,000 AFLDS patients who created Cadence
accounts but never had a consultation, meaning that 90 percent of the
281,000 patients in the Cadence Health database during this time span
 were referred by AFLDS.

While AFLDS had been selling $90 consultations since January 2021,
Roque Espinal, Cadence Health’s CEO, confirmed to me that his service
for SpeakWithAnMD launched on July 16. Since this is the date of the
earliest patient data I have, this means that my source collected rec ords
for all of Cadence’s patients. My source’s data shows that in the two-
month period between July and September, AFLDS charged its patients
an average of $100,000 a day from $90 consultations alone. If AFLDS
brought in that much each day during the first half of the year as well, it
would have brought in an additional $18 million in revenue. Again, this is
just from selling consultations; it doesn’t include the cost of the prescrip-
tion drugs.

At this point in my investigation, it was clear that AFLDS was spread-
ing medical disinformation, and it seemed evident that SpeakWithAnMD
and Ravkoo were at least aware of this, and were profiting from it as well.
However, I wasn’t sure if Cadence Health, which provided a service to
SpeakWithAnMD, had realized what its service was being used for. But
before exploring that further, I de cided to switch gears and start looking at
Ravkoo’s drug prescription data.

Calculating Revenue from Prescriptions Filled by Ravkoo
The ravkoo_rxdata.csv spreadsheet introduced earlier has 340,000 rows, each
representing a prescription that was filled. It includes a DrugName column
with values like IVERMECTIN 3 MG TABLET, a cost column with the price of that
prescription, and a Fill_Date column with the date that the prescription was
filled.

By sorting the spreadsheet by Fill_Date, I could see that the Ravkoo
pharmacy filled the first prescription on November 27, 2020, and the last
ones were filled on August 24, 2021. The SpeakWithAnMD data covers a
two- month period, but the Ravkoo data covers a nine- month period. That

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

406 Chapter 13

is, my dataset contained two months’ worth of patient rec ords, but nine
months’ worth of prescription rec ords. In this section I describe the Python
code I wrote to gain a better understanding of what drugs Ravkoo sold, and
how much of them related to quack cures for COVID-19.

Finding the Price and Quantity of Drugs Sold
To find out how much money Ravkoo charged patients for each specific
drug, I wrote another script, shown in Listing 13-4 (you can also find a copy
of it at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter
- 13 / create - ravkoo - csv . py).

import csv

Export a CSV that adds up prescriptions and their costs for each drug
def main():
 # A dictionary that maps drug names to another dictionary containing the
 # prescription count and total cost for that drug
 drugs = {}

 # Add up the number of prescriptions and total cost for all drugs, to display
 # at the end
 prescription_count = 0
 total_cost = 0

 # Loop through ravkoo_rxdata.csv, and count prescriptions and costs
 with open("data/horse_around_find_out/ravkoo_rxdata.csv") as f:
 reader = csv.DictReader(f)
 for row in reader:
 if row["DrugName"] not in drugs:
 drugs[row["DrugName"]] = {"prescription_count": 0, "total_cost": 0}

 # Count prescriptions and cost for this drug
 drugs[row["DrugName"]]["prescription_count"] += 1
 drugs[row["DrugName"]]["total_cost"] += float(row["Cost"])

 # Count prescriptions and cost for _all_ drugs
 prescription_count += 1
 total_cost += float(row["Cost"])

 # Write the CSV file
 headers = [
 "drug_name",
 "prescription_count",
 "total_cost",
]
 csv_filename = "ravkoo.csv"
 with open(csv_filename, "w") as f:
 writer = csv.DictWriter(f, headers)
 writer.writeheader()
 for drug_name in drugs:
 writer.writerow(
 {

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ravkoo-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ravkoo-csv.py

Pandemic Profiteers and COVID-19 Disinformation 407

 "drug_name": drug_name,
 "prescription_count": drugs[drug_name]["prescription_count"],
 "total_cost": int(drugs[drug_name]["total_cost"]),
 }
)

 print(f"Number of prescriptions: {prescription_count:,}")
 print(f"Total cost: ${int(total_cost):,}")

if __name__ == "__main__":
 main()

Listing 13-4: The Python script create- ravkoo- csv.py, which adds up Ravkoo prescriptions
and drug costs and exports a CSV of the results

First this script created an empty dictionary called drugs, which mapped
drug names to another dictionary containing prescription_count and
total_cost values. It then loaded ravkoo_rxdata.csv and looped through its
rows. For each row, if the DrugName wasn’t in the drugs dictionary yet, the
script added it, then incremented the drug’s prescription count by 1 and
added the Cost value to that drug’s total cost. It saved all of the data in drugs
into a CSV called ravkoo.csv. Fi nally, the script counted up the total number
of prescriptions and the total cost for all drugs sold to all patients, and dis-
played it in the terminal.

 Here’s the output I got when I ran the script:

micah@trapdoor AFLDS % python3 create- ravkoo- csv.py
Number of prescriptions: 340,000
Total cost: $15,119,473

My output showed that patients paid over $15 million to Ravkoo for all
the prescriptions in the hacked data. However, many of these prescriptions
might not have anything to do with AFLDS or bogus COVID-19 cures.

The resulting CSV file, ravkoo.csv, contained 1,552 rows, the number of
unique DrugName values in the original ravkoo_rxdata.csv. Figure 13-5 shows
this spreadsheet, sorted descending by total_cost, to show which drugs cost
patients the most money.

How much of this revenue was from drugs that AFLDS pushed on its
followers? The drug that cumulatively cost patients the most was IVERMECTIN
3 MG TABLET, which was prescribed 63,409 times, at a total cost of $4.6 mil-
lion. Ivermectin is used primarily to treat parasites in livestock, but it’s also
occasionally used to treat scabies and lice in humans. I didn’t know for sure
that all of these ivermectin sales were directly from AFLDS, but it was suspi-
cious that ivermectin was bringing in so much money during the COVID-19
pandemic, when disinformation about its efficacy was rampant.

Another row had the drug_name of IVERMECTIN 3MG PO TAB (the same
dose of ivermectin, just with a slightly dif fer ent name DrugName value from
ravkoo_rxdata.csv) that cost 883 patients another $98,900. Other drugs
like hydroxychloroquine and azithromycin had the same prob lem: there
 were dif fer ent DrugName values that actually represented the same drug. If I

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

408 Chapter 13

wanted to know the total revenue from each individual drug, I would have
to combine all of the ivermectin prescriptions into one row and do the
same with the other drugs.

Figure 13.5: Viewing ravkoo.csv in LibreOffice Calc

Categorizing Prescription Data by Drug
 Because I was investigating AFLDS, I was most interested in the drugs that
the group promotes: ivermectin, hydroxychloroquine, and a few others. In
addition to ivermectin, AFLDS promotes the Zelenko protocol, named after
Dr. Vladimir Zelenko, the American doctor who, at the start of the pan-
demic in March 2020, claimed (without evidence) that he had successfully
treated hundreds of COVID-19 patients using a combination of hydroxy-
chloroquine, azithromycin, and zinc sulfate. (The AFLDS website on treat-
ment options also lists vitamin C as part of the Zelenko protocol.) Zelenko
also spread other medical disinformation, claiming, for example, that more
 children die from COVID-19 vaccines than from the virus itself. Then–
President Trump publicly lauded Zelenko’s work, saying that he himself
took hydroxychloroquine to treat COVID-19.

I wanted to see how much of Ravkoo’s business consisted of selling
 these drugs. To do this, I’d have to reor ga nize the data. I needed to create
a similar spreadsheet, but instead of having a column for the DrugName lifted
directly from the hacked data, I wanted that column to be a category of
prescriptions. Once I had a straightforward spreadsheet that mapped indi-
vidual drugs to their revenue, I could visualize that data— for example, in a
pie chart.

The ravkoo.csv spreadsheet showed me the most commonly prescribed
drugs. Based on the names of these drugs, I came up with a list of catego-
ries: Ivermectin, Hydroxychloroquine, Azithromycin, Zinc, Vitamin C, and

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 409

Other. In other words, the most commonly prescribed drugs were exactly
what AFLDS was promoting.

I then wrote another script very similar to the one in Listing 13-4, but
with one additional step. For every row in the ravkoo_rxdata.csv spreadsheet,
the script determined which of those categories the drug fit into and added
up the number of prescriptions and cost for each category. It then saved all
of this data as a CSV called ravkoo- categories.csv.

 Here’s my Python script (you can also find it at https:// github . com
/ micahflee / hacks - leaks - and - revelations / blob / main / chapter - 13 / create - ravkoo
- categories - csv . py):

import csv

Export a CSV that adds up prescriptions and their costs for each category of drug
def main():
 # A dictionary that maps drug categories to another dictionary containing the
 # prescription count and total cost for that drug category
 drug_categories = {}

 # Loop through ravkoo_rxdata.csv, and count prescriptions and costs
 with open("data/horse_around_find_out/ravkoo_rxdata.csv") as f:
 reader = csv.DictReader(f)
 for row in reader:
 if "ivermectin" in row["DrugName"].lower():
 category = "Ivermectin"
 elif "hydroxychloroquine" in row["DrugName"].lower():
 category = "Hydroxychloroquine"
 elif "azithromycin" in row["DrugName"].lower():
 category = "Azithromycin"
 elif "zinc" in row["DrugName"].lower():
 category = "Zinc"
 elif "vitamin c" in row["DrugName"].lower():
 category = "Vitamin C"
 else:
 category = "Other"

 if category not in drug_categories:
 drug_categories[category] = {"prescription_count": 0, "total_cost": 0}

 # Count prescriptions and cost for this drug category
 drug_categories[category]["prescription_count"] += 1
 drug_categories[category]["total_cost"] += float(row["Cost"])

 # Write the CSV file
 headers = [
 "drug_category",
 "prescription_count",
 "total_cost",
]
 csv_filename = "ravkoo- categories.csv"
 with open(csv_filename, "w") as f:
 writer = csv.DictWriter(f, headers)
 writer.writeheader()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ravkoo-categories-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ravkoo-categories-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ravkoo-categories-csv.py

410 Chapter 13

 for category in drug_categories:
 writer.writerow(
 {
 "drug_category": category,
 "prescription_count": drug_categories[category][
 "prescription_count"
],
 "total_cost": int(drug_categories[category]["total_cost"]),
 }
)

if __name__ == "__main__":
 main()

 After running this script, I ended up with a file called ravkoo- categories.
csv. Table 13-1 shows the data from this spreadsheet, detailing Ravkoo’s pre-
scription sales.

Table 13-1: Categories of Drugs Sold by Ravkoo

Drug category Prescription count Total cost

Hydroxychloroquine 92,646 $1,234,727

Zinc 82,608 $177,336

Ivermectin 64,300 $4,734,163

Other 42,193 $6,476,213

Vitamin C 31,281 $52,712

Azithromycin 26,972 $2,444,319

This data clearly revealed Ravkoo’s role in AFLDS’s scam: 87 percent of
all prescriptions sold by Ravkoo are for fake COVID-19 treatments. Over
a nine- month period, patients collectively paid $8.6 million to Ravkoo for
snake oil that they were told would prevent or cure COVID-19. This is in
addition to the roughly $6.7 million (and potentially many millions more)
that patients paid SpeakWithAnMD for phone consultations. As far as I
can tell, Ravkoo’s only role in the scheme was as a pharmacy, and it didn’t
receive any money from the phone consultations. AFLDS also, at vari ous
times, worked with dif fer ent pharmacies.

By the time The Intercept published this investigation into AFLDS,
Ravkoo CEO Alpesh Patel told me that his com pany had already stopped
 doing business with SpeakWithAnMD. “The volume over there went up
crazy, and we didn’t feel comfortable,” he said. “And we don’t have that
much capacity to fill that many prescriptions.” Using OSINT, which you
learned about in Chapter 2, I confirmed that Patel was telling the truth:
 after scouring the internet about AFLDS, including reading reporting
from other journalists and pro- science activists on Twitter who were keep-
ing track of the group, I discovered that AFLDS ran some Telegram chan-
nels, including one specifically for its patients. In this Telegram channel,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 411

I discovered that patients had posted messages about Ravkoo no longer
working with SpeakWithAnMD or AFLDS.

Taking a Deeper Look at the Cadence Health Patient Data
At this point, I knew that 72,000 AFLDS patients paid for $90 telehealth
consultations, and that 87 percent of Ravkoo’s prescriptions were for fake
COVID-19 cures. I wanted to further understand the patient data, and
 there was still a lot more to dig into. Who were SpeakWithAnMD’s other
partners besides AFLDS, and how much of the com pany’s business did they
make up? And what could I learn about the AFLDS patients themselves? To
answer these questions, I wrote more Python code.

Finding Cadence’s Partners
I wanted to know how much of SpeakWithAnMD’s business, and by exten-
sion Cadence Health’s business, came from AFLDS. The file cadence_health_
partners.json includes a list of all the partners, so I wrote a Python script that
counted the number of patients associated with each one, shown in Listing
13-5 (you can also find a copy at https:// github . com / micahflee / hacks - leaks - and
- revelations / blob / main / chapter - 13 / create - cadence - partners - csv . py).

import json
import csv

Turn a JSON file into a Python dict or list
def data_from_json(filename):
 with open(filename) as f:
 return json.loads(f.read())

Convert the comma- separated list of partners, like ",3,", into a Python list
of partners, like ["Amer i ca's Frontline Doctors"]
def get_partners(partner_lookup, patient):
 partners = []
 partner_ids = patient["partner"].split(",")
 for partner_id in partner_ids:
 if partner_id != "":
 partners.append(partner_lookup[int(partner_id)])

 return partners

Export a CSV that lists Cadence partners
def main():
 """
 List Cadence partners
 """
 partner_rows = []

 # Load the Cadence patient data
 patients_data = data_from_json(
 "data/horse_around_find_out/cadence_allpatients_all.json"
)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-cadence-partners-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-cadence-partners-csv.py

412 Chapter 13

 # Load the Cadence partners data
 partners_data = data_from_json(
 "data/horse_around_find_out/cadence_health_partners.json"
)

 # Create a dictionary that maps a partner ID with its name
 partner_lookup = {}
 for partner in partners_data:
 partner_lookup[partner["id"]] = partner["name"]

 # Loop through all of the partners
 for partner in partners_data:
 # Count how many patients use this partner
 patients = 0
 for patient in patients_data["patients"]:
 patient_partners = get_partners(partner_lookup, patient)
 for patient_partner in patient_partners:
 if patient_partner == partner["name"]:
 patients += 1

 # Add the partner's row
 partner_rows.append(
 {
 "ID": partner["id"],
 "Name": partner["name"],
 "Domain": partner["domain"],
 "Patients": patients,
 }
)

 # Write the CSV file
 headers = ["ID", "Name", "Domain", "Patients"]
 csv_filename = "cadence- partners.csv"
 with open(csv_filename, "w") as f:
 writer = csv.DictWriter(f, headers)
 writer.writeheader()
 writer.writerows(partner_rows)

if __name__ == "__main__":
 main()

Listing 13-5: My Python script, create- cadence- partners- csv.py, which returns the number of patients
associated with each Cadence Health partner

First, my script loaded cadence_allpatients_all.json and cadence_health_
partners.json as Python objects. It created an empty list called partner_rows,
then looped through each partner. Inside this for loop was a nested for
loop which, for each partner, looped through each patient checking to see
if that patient used that partner. The script then added this information
(the partner’s ID, name, and domain, along with the tally of its associated
patients) to the partner_rows list. Fi nally, it saved its findings in a CSV called
cadence- partners.csv.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 413

 Table 13-2 shows the data from this spreadsheet, describing all of
Cadence Health’s partners and how many patients they have.

 Table 13-2: Cadence Health Partners

ID Name Domain Patients

1 Encore Telemedicine encore . cadencehealth . us 7

2 SpeakwithanMD speakwithanmd . cadencehealth . us 21,193

3 Amer i ca’s Frontline
Doctors

aflds . cadencehealth . us 255,266

4 Corstet corstet . cadencehealth . us 1,604

5 Dr . Zelenko drzelenko . cadencehealth . us 55

5 Encore Demo encoredemo . cadencehealth . us 5

6 Kim’s Pharmacy kims . cadencehealth . us 6

7 TelMDFirst telmdfirst . cadencehealth . us 2,410

8 Dr . Tsifutis drtsifutis . cadencehealth . us 301

10 Dr . Immanuel drimmanuel . cadencehealth . us 3

11 Dr . Palumbo drpalumbo . cadencehealth . us 29

12 Dr . Boz drboz . cadencehealth . us 311

13 Dr . Parker drparker . cadencehealth . us 409

14 Dr . Johnson drajohnson . cadencehealth . us 3

15 DEV localhost:8080 1

16 HablaConUnMD . com hablaconunmd . cadencehealth . us 0

17 VirtuaFirst, PLLC vf . cadencehealth . us 0

Out of 281,603 patients, AFLDS referred 255,266 to SpeakWithAnMD,
and by extension Cadence Health. That means that 90 percent of the
patients in Cadence’s database came from AFLDS.

I learned some additional in ter est ing information from the partners
list. The first partner listed, Encore Telemedicine, is SpeakForAnMD’s
parent com pany. The fourth, Corstet, is owned by Jerome Corsi, who also
owns Encore Telemedicine. Corsi is a former host of the conspiracy show
InfoWars, a proponent of the racist “birtherism” conspiracy theory about
former US president Barack Obama’s citizenship. He was also caught up
in special counsel Robert Mueller’s investigation into Russian interfer-
ence in the 2016 election. The list of partners also includes individual
doctors, including Dr. Zelenko of “Zelenko protocol” fame, and Dr. Stella
Immanuel, one of the AFLDS doctors from the previously mentioned
press conference in front of the Supreme Court building. After that
event, she quickly earned viral fame for having claimed that the uterine
disorder endometriosis is caused by women dreaming of sex with demons
and witches.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://encore.cadencehealth.us
http://speakwithanmd.cadencehealth.us
http://aflds.cadencehealth.us
http://corstet.cadencehealth.us
http://drzelenko.cadencehealth.us
http://encoredemo.cadencehealth.us
http://kims.cadencehealth.us
http://telmdfirst.cadencehealth.us
http://drtsifutis.cadencehealth.us
http://drimmanuel.cadencehealth.us
http://drpalumbo.cadencehealth.us
http://drboz.cadencehealth.us
http://drparker.cadencehealth.us
http://drajohnson.cadencehealth.us
http://HablaConUnMD.com
http://hablaconunmd.cadencehealth.us
http://vf.cadencehealth.us

414 Chapter 13

This spreadsheet confirmed that the bulk of the Cadence data was
related to AFLDS patients. I de cided to dig even deeper into AFLDS patient
data to see what revelations could be hiding there.

Searching for Patients by City
The aflds- patients.csv spreadsheet I created from the original dataset, con-
taining 72,000 rows of patients who were referred by AFLDS and who had
at least one consultation, includes columns for city and state. This location
data allowed me to write another Python script to count how many patients
 were from each city and look up GPS coordinates for that city so I could
plot them on a map.

In Chapter 11, you worked with GPS coordinates you found directly in
Parler video metadata and plotted them on a map using Google Earth. In
this case, however, I had only cities and states, so I needed to look up their
GPS coordinates myself. I wrote a script to convert the names of the cities in
the spreadsheet into GPS coordinates, a process called geocoding.

Listing 3-6 shows my Python script (you can also find a copy at https://
github . com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 13 / create - cities
- csv . py).

import csv
import json
import time
import httpx

geocode_api_key = "PUT_GEOCODE_API_KEY_HERE"

Export a CSV that for each city lists its GPS coordinates and the number of patients there
def main():
 # This dictionary maps names of cities (in format "City, State", like "New York, NY")
 # to a dictionary with info about that city (number of patients, GPS coordinates)
 cities = {}

 # Count how many patients are in each city
 with open("aflds- patients.csv") as f:
 reader = csv.DictReader(f)

 for row in reader:
 city = f"{row['city']}, {row['state']}"

 if city not in cities:
 cities[city] = {"count": 0}

 cities[city]["count"] += 1

 print(f"Found patients in {len(cities):,} cities")

 # Look up GPS coordinates for each city
 for city in cities:

 # Give each API request 3 tries, in case a connection fails
 tries = 0

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-cities-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-cities-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-cities-csv.py

Pandemic Profiteers and COVID-19 Disinformation 415

 success = False
 while not success:
 try:
 print(
 f"Loading GPS coordinates for: {city} ({cities[city]['count']} patients)"
)
 r = httpx . get(
 "https:// app . geocodeapi . io / api / v1 / search",
 params={
 "apikey": geocode_api_key,
 "text": city,
 "size": 1,
 "boundary . country": "US",
 },
)
 success = True

 # The connection failed
 except:
 tries += 1
 if tries == 3:
 print("Failed, skipping")

 print("Sleeping 2s and trying again")
 time.sleep(2)

 try:
 data = json.loads(r.text)
 if "features" in data and len(data["features"]) > 0:
 cities[city]["lon"] = data["features"][0]["geometry"]["coordinates"][0]
 cities[city]["lat"] = data["features"][0]["geometry"]["coordinates"][1]
 except:
 cities[city]["lon"] = None
 cities[city]["lat"] = None

 # Write the CSV file
 headers = [
 "count",
 "city",
 "lon",
 "lat",
 "label",
]
 csv_filename = "cities.csv"
 with open(csv_filename, "w") as f:
 writer = csv.DictWriter(f, fieldnames=headers)
 writer.writeheader()
 for city in cities:
 writer.writerow(
 {
 "count": cities[city]["count"],
 "city": city,
 "lon": cities[city]["lat"],

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://app.geocodeapi.io/api/v1/search

416 Chapter 13

 "lat": cities[city]["lon"],
 "label": f"{city} ({cities[city]['count']})",
 }
)

if __name__ == "__main__":
 main()

Listing 13-6: The Python script, create- cities- csv.py, which geocodes city and state names

To perform the geocoding, the script used an API. Of the vari ous
options, I chose one called Geocodeapi, simply because it seemed easy to
use and was free for the number of requests I planned on making. I made
an account at https:// geocodeapi . io, created an API key, and stored it my script
in the variable geocode_api_key. In order to make the API calls, the script
used the third- party Python module httpx. (For more details on this mod-
ule, check out Appendix B.)

 After defining the API key, my script created an empty dictionary called
cities to map city names to information about it— specifically, the number
of patients and its GPS coordinates.

The script then loaded aflds- patients.csv and looped through each
patient. For each, it created a new string called city in the format City, State
(for example, Atlanta, Georgia). If city didn’t exist in the cities dictionary
yet, the script set cities[city] = {"count": 0}. Then it added 1 to cities[city]
["count"]. By the time this loop finished running, cities contained a list of
 every city where there are patients, as well as the number of patients in that
city.

The next step was geocoding for each city. Another for loop looped
through cities and, using the httpx . get() function, made an HTTP request
for each city to the Geocodeapi API, passing along the city name and my
API key. When the script got a response with GPS coordinates, it stored the
latitude and longitude in cities[city]["lat"] and cities[city]["lon"]. This
step takes a few hours since it’s making thousands of API requests, so it dis-
played text in the terminal before each one, allowing me to get a sense of
the pro gress while it was running.

Fi nally, the script wrote all of the data in the cities dictionary into a
CSV called cities.csv.

When I ran the script, I got the following output:

micah@trapdoor AFLDS % python3 create- cities- csv.py
Found patients in 15,196 cities
Loading GPS coordinates for: roan mountain, TN (1 patients)
Loading GPS coordinates for: El Paso, TX (22 patients)
Loading GPS coordinates for: Paulden, AZ (7 patients)
Loading GPS coordinates for: Athens, NY (5 patients)
Loading GPS coordinates for: Estero, FL (31 patients)
Loading GPS coordinates for: Columbia, MD (16 patients)
Loading GPS coordinates for: Houston, TX (371 patients)
Loading GPS coordinates for: Newtown Square, PA (14 patients)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://geocodeapi.io

Pandemic Profiteers and COVID-19 Disinformation 417

Loading GPS coordinates for: Plymouth, MN (32 patients)
Loading GPS coordinates for: Blairsville, GA (20 patients)
Loading GPS coordinates for: shelby twownhsip, MI (1 patients)
Loading GPS coordinates for: Waukesha, WI (13 patients)
- - snip- -

Figure 13-6 shows cities.csv, sorted by number of patients per city.

Figure 13.6: Results from cities.csv

Armed with GPS coordinates, I could now plot the patient data on
a map. I used an online service called MapBox (https:// www . mapbox . com),
mentioned in Chapter 11, to display circles on a map for each of the 15,196
cities— the more patients from that city, the bigger the circle. MapBox
has a user interface that makes it simple to upload a CSV file with GPS
coordinates and indicate how you want the data to be visualized on a map.
MapBox also allows you to embed maps directly into web pages. When I
published my article, I embedded this map into it so readers could interact
with it themselves. Figure 13-7 shows that map, zoomed in on the United
States.

 People in every state in the country, as well as Washington, DC, paid
$90 for telehealth consultations, including 8,600 people in California,
8,000 in Florida, and 7,400 in Texas. The dots on the map show only cities
with at least 10 AFLDS patients.

In addition to the cities patients lived in, the data also included their
birth dates, making it simple to calculate their ages. Since age is a major
risk factor for COVID-19, I explored this data next.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.mapbox.com

418 Chapter 13

Figure 13.7: A map of cities in the US with AFLDS patients as of September 11, 2021

Searching for Patients by Age
Your age plays a major role in how likely you are to get seriously sick or die
from COVID-19. At the time of writing, the CDC publishes statistics that
describe individual risk for COVID-19 infection, hospitalization, and death
based on your age at https:// www . cdc . gov / coronavirus / 2019 - ncov / covid - data
/ investigations - discovery / hospitalization - death - by - age . html. The CDC continually
updates these statistics as new data comes in and the pandemic changes.
When I published my findings in September 2021, people who were 50 to
64 years old were 4 times more likely to be hospitalized and 30 times more
likely to die from COVID-19 than 18- to 29- year- olds. People who were 65 to
74 were 5 times more likely to be hospitalized and 90 times more likely to die.

While I was writing my report, there were no COVID-19 treatments
that worked well (except for monoclonal antibodies, which were difficult
to administer and not widely available). The only way for older people to
greatly reduce their risk of death or serious illness was to get vaccinated.
AFLDS spent a lot of resources convincing people that COVID-19 vaccines
are dangerous and that wearing masks to prevent the spread of COVID-19
is a violation of personal freedom.

When patients created an account on the Cadence Health website, they
 were asked to enter their date of birth. I wrote a script to calculate their
age and organize them into the same age groups that the CDC used so that
I could see their likelihood of getting hospitalized or dying. Listing 13-7
shows the Python code for that script (you can also find it at https:// github . com
/ micahflee / hacks - leaks - and - revelations / blob / main / chapter - 13 / create - ages - csv . py).

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/hospitalization-death-by-age.html
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ages-csv.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-13/create-ages-csv.py

Pandemic Profiteers and COVID-19 Disinformation 419

import csv
from datetime import datetime, timedelta

Export a CSV that shows how many patients are part of each age group
def main():
 # Age groups, the same ones used in CDC data
 age_groups = {
 "<0": 0,
 "0-4": 0,
 "5-17": 0,
 "18-29": 0,
 "30-39": 0,
 "40-49": 0,
 "50-64": 0,
 "65-74": 0,
 "75-84": 0,
 "85+": 0,
 ">100": 0,
 }

 sept2021 = datetime(2021, 9, 11)

 with open("aflds- patients.csv") as f:
 reader = csv.DictReader(f)

 for row in reader:
 birthdate = datetime.strptime(row["birthdate"], "%m/%d/%Y")
 age = sept2021 - birthdate

 if age < timedelta(0):
 age_groups["<0"] += 1
 elif age < timedelta(365 * 5):
 age_groups["0-4"] += 1
 elif age < timedelta(365 * 18):
 age_groups["5-17"] += 1
 elif age < timedelta(365 * 30):
 age_groups["18-29"] += 1
 elif age < timedelta(365 * 40):
 age_groups["30-39"] += 1
 elif age < timedelta(365 * 50):
 age_groups["40-49"] += 1
 elif age < timedelta(365 * 65):
 age_groups["50-64"] += 1
 elif age < timedelta(365 * 75):
 age_groups["65-74"] += 1
 elif age < timedelta(365 * 85):
 age_groups["75-84"] += 1
 elif age < timedelta(365 * 100):
 age_groups["85+"] += 1
 else:
 age_groups[">100"] += 1

 # Write the CSV file
 headers = [
 "age_group",

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

420 Chapter 13

 "patients",
]
 csv_filename = "ages.csv"
 with open(csv_filename, "w") as f:
 writer = csv.DictWriter(f, headers)
 writer.writeheader()
 for age_group in age_groups:
 writer.writerow(
 {
 "age_group": age_group,
 "patients": age_groups[age_group],
 }
)

if __name__ == "__main__":
 main()

Listing 13-7: The Python script create- ages- csv.py, which calculates patients’ ages from
their birth date and groups them by age

My script first defined a dictionary called age_groups, with keys for each
of the CDC’s age groups and values set to 0. I also added two other age
groups: people less than 0 years old and people older than 100, because (as
I discovered while writing the script) some patients had put birth dates in
the future or in the far past.

The script then loaded aflds- patients.csv and looped through each
patient, calculating the patient’s age as of September 2021 (when I was
 doing this investigation). Based on their age, the script determined which
age group the patient belonged to and incremented age_groups by 1. By the
time the loop finished, the age_groups dictionary contained a count of the
number of patients in each group.

Fi nally, the script saved the information from age_groups into a CSV
spreadsheet called ages.csv. Table 13-3 shows the results.

Table 13-3: AFLDS Patients by Age Group

Age group Patients

Less than 0 702

0 to 4 48

5 to 17 159

18 to 29 3,047

30 to 39 8,190

40 to 49 14,698

50 to 64 31,007

65 to 74 11,441

75 to 84 2,079

85+ 317

Greater than 100 338

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 421

 After running the script and reviewing the data it created, I could see
that some people clearly lied about their birth date: 702 people entered
birth dates in the future, which would make them youn ger than 0 years old,
and another 338 people entered dates that would make them older than
100 or even 1,000. The other 71,000 people entered birth dates that are
likely correct.

I then combined this data with the CDC’s statistics about COVID-19
risks based on age, ignoring the obviously fake birth dates. Table 13-4
shows how many AFLDS patients belong to each age group, along with how
likely people in that age group were to get infected with COVID-19 and, if
infected, how likely they were to be hospitalized or die. (All rates are rela-
tive to people in the 18 to 29 age group, because this group has had the
most infections.)

Table 13-4: AFLDS Patients by Age Group and Risk

Age group
AFLDS
patients Risk of infection

Risk of
hospitalization Risk of death

0 to 4 48 <1x <1x <1x

5 to 17 159 1x <1x <1x

18 to 29 3,047 Reference group Reference group Reference group

30 to 39 8,190 1x 2x 4x

40 to 49 14,698 1x 2x 10x

50 to 64 31,007 1x 4x 30x

65 to 74 11,441 1x 5x 90x

75 to 84 2,079 1x 9x 220x

85+ 317 1x 15x 570x

My script showed that 44 percent of AFLDS patients are between 50 and
64, making them 30 times more likely to die from COVID-19 than youn ger
 people. Another 16 percent of AFLDS patients are between 65 and 74, mak-
ing them 90 times more likely to die. In just the two- month period covered
by the Cadence patient data, nearly 45,000 people older than 50 rejected sci-
ence and instead put their trust in AFLDS during the COVID-19 pandemic.
I won der how many deaths AFLDS is responsible for.

Authenticating the Data
While in the midst of analyzing the data, I knew I also needed to verify that
this data was au then tic before I could publish my findings. The data my
source gave to me certainly appeared to be au then tic, but I wanted to be
more confident.

I started by creating an account on Cadence Health’s website. Sure
enough, the fields I was asked to fill out with account information were

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

422 Chapter 13

the same fields pre sent in the Cadence patient data. I also looked at the
web requests my browser was making using Firefox’s developer tools and
saw that it matched the data I had; for example, the partner ID associated
with my account was 3, the partner ID for AFLDS. (I discuss the developer
tools built into web browsers like Firefox and Chrome in more detail in
Appendix B.)

The data looked legitimate, but I wanted to check that these patients
 were real people. To do that, I de cided to cross- reference this data with
another dataset. Gab, the social network popular among fascists, anti-
democracy activists, and anti- vaxxers that I first discussed in Chapter 1, was
hacked in early 2021, with 65GB of data leaked to DDoSecrets. This data
included about 38,000 email addresses for Gab users.

N O T E Due to PII, DDoSecrets distributes its Gab data only to journalists and researchers. You
can learn more about this dataset at https:// ddosecrets . com / wiki / GabLeaks.

I made a list of 72,000 AFLDS patient email addresses, along with a sep-
arate list of 38,000 Gab user email addresses. I then wrote a Python script
to load both lists and see if there were any email addresses in common. The
script found several matches. I started looking through the Gab timeline of
each match to see if I could find references to AFLDS, specifically to receiv-
ing medi cation, and found the verification I was looking for.

One 56- year- old patient created their Cadence Health account on
July 26, 2021. Their patient rec ord included consultation notes from July 30,
the date of their phone consultation. On September 4, they posted a link
to Gab for a tractor supply store that sells ivermectin paste for livestock,
asking, “Should I pick some up?” Two days later they posted an update: “All
sold out!” The day after that, they posted a comment saying, “Front line
doctors fi nally came through with HCQ/Zinc delivery.” HCQ is short for
hydroxychloroquine.

Figure 13-8 shows a screenshot from this Gab thread. (Every post
includes eight usernames; I’ve redacted all of them.)

The Ravkoo data didn’t include patient email addresses, so I couldn’t
think of an obvious way to authenticate it with OSINT like I did for the
Cadence Health data. Instead, I found the phone number for Ravkoo
CEO Alpesh Patel and gave him a call. After I informed him that I was
a journalist, that Ravkoo had been breached, and that I had all its pre-
scription rec ords, his immediate response was, “That can’t be right. Our
platform is secure.” After I emailed him the screenshot of Ravkoo’s Super
Admin interface, though, I could hear the panic in his voice. “That’s a
breach in HIPAA, so I have to report that first,” he said, referring to the
US healthcare privacy law. “That’s an even more serious issue than your
journalism.”

He wanted me to tell him the name of the hacker and said he would
report all of this to the FBI. I didn’t tell him my source’s name, of course.
 Unless you’re actively being compelled by a judge, you’re never obligated
to tell anyone anything about your sources. In any case, I never learned my
source’s name, which helps keep it secret.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ddosecrets.com/wiki/GabLeaks

Pandemic Profiteers and COVID-19 Disinformation 423

Patel then said, “I have to call my CTO,” and hung up. Ravkoo had in
fact been breached. We gave Patel ample opportunity to refute any of the
information we planned on publishing, but it was all accurate.

You can read my full investigative report at https:// theintercept . com / 2021
/ 09 / 28 / covid - telehealth - hydroxychloroquine - ivermectin - hacked.

The Aftermath
 After completing this in- depth data- driven investigation, the day before
The Intercept was ready to publish our findings, I reached out to every one
involved to explain the revelations that we had discovered and give them a
chance to comment.

Roque Espinal, Cadence Health’s CEO, said that he had no idea that
his platform was being used by AFLDS. “I’m totally flabbergasted. I had
to look up exactly who these people were,” he said. “I’m fully vaccinated.
My children are fully vaccinated. I’m trying to make heads and tails of this
right now.” After I spoke with him, Espinal told me he immediately cut off
 service from SpeakWithAnMD. “I don’t want to be associated with any crap
like that. None of that quackery that’s going on.”

Espinal said that he was invited to a Zoom meeting with representa-
tives from AFLDS, SpeakWithAnMD, and “16 dif fer ent attorneys.” He told

Figure 13.8: A Gab screenshot that I used to verify the data

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2021/09/28/covid-telehealth-hydroxychloroquine-ivermectin-hacked
https://theintercept.com/2021/09/28/covid-telehealth-hydroxychloroquine-ivermectin-hacked

424 Chapter 13

me that he said, “I’m ending my contract with you guys immediately,” and
disconnected from the meeting. SpeakWithAnMD’s telehealth system went
down that day, and AFLDS patients couldn’t pay for $90 consultations for a
full week (saving them an estimated $700,000 on bogus consultations dur-
ing that time).

Espinal also claimed that Cadence Health didn’t collect credit card
payments from patients at all— that this was all SpeakWithAnMD’s work.
He said that Cadence was paid a total of $17,500 for providing service to
SpeakWithAnMD (he showed me the invoices he’d sent). The latter com-
pany went on to rake in millions of dollars with the help of the services
Cadence provided.

HIPAA’s Breach Notification Rule
Espinal told me that Cadence Health didn’t directly host AFLDS’s patient
database; instead, he said, SpeakWithAnMD hosted it in an AWS account.
But Jim Flinn, a public relations agent working for SpeakWithAnMD,
insisted the opposite: that the hacked database was hosted in Cadence
Health’s AWS account, not in SpeakWithAnMD’s.

Both sides refuse to admit that health care data was breached from
their servers. And while Ravkoo Pharmacy began notifying patients of their
data breach— something that HIPAA required it to do within two months
of discovering it— neither SpeakWithAnMD nor Cadence Health has fol-
lowed this rule, and at the time of writing, patients haven’t been notified of
the breach. One of these companies is in violation of HIPAA’s breach notifi-
cation rule.

Congressional Investigation
In October 2021, the US House of Representative’s Select Subcommittee
on the Coronavirus Crisis launched an investigation into AFLDS and
SpeakWithAnMD based on my reporting, as well as reporting on AFLDS by
Vera Bergengruen for Time magazine. The committee’s chair, Rep. James
Clyburn, wrote letters to AFLDS founder Simone Gold and to Jerome Corsi,
 owner of SpeakWithAnMD’s parent com pany, demanding detailed rec ords
from both companies. These included documents related to owner ship,
 organizational structure, and staffing; details about the doctors’ training
and qualifications; numbers of patients and what they were prescribed;
and descriptions of the companies’ total revenue and net income for each
quarter.

“Attempts to monetize coronavirus misinformation have eroded public
confidence in proven treatments and prevention measures and hindered
efforts to control the pandemic,” Clyburn wrote in his letter to AFLDS.
“Some Americans who have been influenced by misinformation have cho-
sen not to get vaccinated, delayed receiving evidence- based treatment, and
ingested unapproved substances in harmful quantities.” Clyburn also wrote
a letter to the Federal Trade Commission requesting that the agency investi-
gate whether these companies are in violation of federal laws.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Pandemic Profiteers and COVID-19 Disinformation 425

In January 2022, the House committee announced that “despite
repeated assurances of compliance, SpeakWithAnMD has failed to pro-
duce any documents responsive to the Select Subcommittee’s requests.”
Then in February, after being stonewalled by SpeakWithAnMD, Clyburn
expanded the committee’s investigation to include Cadence Health as well.
Unfortunately, nothing more resulted from Congress’s investigation into
AFLDS, SpeakWithAnMD, and Cadence Health.

Simone Gold’s New Business Venture
With a federal investigation into AFLDS underway, the group apparently
de cided it was time to leave the snake oil business and stick to disinforma-
tion and anti- vax litigation. At the time of writing, SpeakWithAnMD’s
website is still online, but patients are no longer able to book a telehealth
consultation. Cadence Health’s website is still online as well, but Espinal
told me he fired his com pany’s only customer, SpeakWithAnMD.

Simone Gold herself wasn’t done pushing evidence- free health care. In
June 2022, AFLDS sent a newsletter to its supporters announcing her new
venture, GoldCare: a telemedicine “health care” service that early adopters
could subscribe to for $83 a month, designed to entirely replace evidence-
based health care. “If you are reading this email, you are aware that there is
overwhelming evidence that the government did its best to kill people dur-
ing Covid,” Gold wrote. “If you prefer not to pay money every month just to
play Russian Roulette, you will stop feeding the beast and join us. [. . .] Our
system is ethical, of the highest quality, and will ultimately cost less than
conventional insurance.”

Scandal and Infighting at AFLDS
 Under pressure from California investigators, Gold moved to Naples,
Florida. As she prepared to serve two months in prison for storming the
Capitol on January 6, 2021, she resigned her position on the AFLDS board,
staying on as a well- paid consultant. While she was behind bars, leaders at
AFLDS conducted an audit of her use of the group’s charity funds. AFLDS
had received at least $10 million in donations, in addition to all of the money
it had scammed out of patients. While more than a million Americans were
 dying from COVID-19 during the pandemic, what was Gold doing with all
that money?

Joey Gilbert, a Nevada lawyer and former professional boxer, took
over from Gold as chair of the AFLDS board while she was in prison.
According to a lawsuit filed in November 2022 against Gold by Gilbert and
other AFLDS board members, Gold lived rent- free with John Strand, her
boyfriend who had stormed the Capitol with her, in a $3.6 million man-
sion purchased using AFLDS charity funds. The lawsuit also alleged that
she was spending $12,000 a month on a bodyguard, $5,600 a month for a
 house keeper, and $50,000 a month on credit card expenses— all AFLDS’s
money. Furthermore, it accused her of purchasing three cars, including

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

426 Chapter 13

a Mercedes- Benz, and taking unauthorized private jet flights, including a
single trip that cost $100,000, with AFLDS money.

Fi nally, the lawsuit accused Gold of hijacking AFLDS resources for her
own business. Gilbert claimed that Gold used the Naples mansion to house
GoldCare employees, and that she enlisted AFLDS employees to work for
GoldCare while on the AFLDS payroll. For her part, Gold accused the
AFLDS leaders of destroying her nonprofit, demanding that they resign.
“Just as the mother lioness will not let her baby lion be murdered, neither
 will I,” Gold wrote in an email to them, according to an affidavit in the
lawsuit.

 After Gold was released from prison, she regained control of AFLDS.
She locked the employees out of their email, pressured an employee to
hand over the password to the group’s Telegram account with hundreds of
thousands of followers, and took control over the AFLDS website. There,
she posted press releases claiming that while she discussed resigning from
her position, those discussions “ were never legally actualized” and assert-
ing that she’s the legitimate leader of AFLDS. Gold wrote in an email to
AFLDS supporters that “the allegations are cetegorically [sic] false,” and
that “ under my leadership, AFLDS will never tolerate corruption, no matter
the personal price.” At the time of publication, the ultimate fate of AFLDS
is still unknown, but Gold appears to control the reins.

Summary
In this chapter, you’ve seen how I turned 100MB of compressed files from
an anonymous hacker into a groundbreaking report on AFLDS. That
report resulted in a congressional investigation and contributed to the
demise of the corrupt network of telehealth companies that profited off the
COVID-19 pandemic. I explained exactly how I went about investigating the
Cadence Health and Ravkoo datasets, all in JSON and CSV format. You also
read through the Python code I wrote to answer specific questions about
the data, and to convert it into formats that I could visualize— all skills that
you can use in your own data- heavy investigations. I explained how I used
OSINT to authenticate the data, as well as the story of AFLDS fracturing
and descending into chaos in the aftermath.

The next and final chapter of this book describes another case
study in which I developed a custom tool to research chat logs from neo-
Nazi Discord servers, contributing to the victory of a lawsuit against the
 organizers of the deadly 2017 Unite the Right rally.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

In early August 2017, hundreds of white supremacists
assembled in the city of Charlottesville, Virginia, for
the Unite the Right rally. The protesters— hailing
from groups like Vanguard Amer i ca, Identity Evropa,
League of the South, and the Ku Klux Klan— flew
Nazi and Confederate battle flags, wore red Make
Amer i ca Great Again hats, and chanted slogans like
“Jews will not replace us!”

On August 12, James Alex Fields Jr., described by his high school his-
tory teacher as “deeply into Adolf Hitler and white supremacy,” drove a car
into a group of counterprotesters, murdering 32- year- old Heather Heyer
and injuring 19 other people. Earlier in the event, Fields was seen march-
ing with a Vanguard Amer i ca shield. That same day, a group of six white
men followed 20- year- old Black special ed assistant teacher DeAndre Harris
into a parking garage and beat him with poles and metal pipes, an attack
that was caught on film and posted to the internet. In response to the racist

14
N E O - N A Z I S A N D T H E I R

C H A T R O O M S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

428 Chapter 14

vio lence, Trump famously said that there were “very fine people on both
sides.”

The Unite the Right rally, like much of the American fascist move-
ment’s activism during the 2017–2021 Trump presidency, was largely
 organized online using Discord, a group chat platform designed for gam-
ers. In Discord, users join servers, a group of chatrooms, or a channel, a sin-
gle chatroom. Each channel covers dif fer ent topics. Fascists created Discord
servers for their regional hate groups, as well as for proj ects like organizing
Unite the Right.

An antifascist infiltrator gained access to the server used to organize
Unite the Right, called Charlottesville 2.0, as well as many other servers
used by fascists at the time. They then leaked the chat logs to Chris Schiano
and Dan Feidt, journalists working with the independent nonprofit news
collective Unicorn Riot. The leak took the form of screenshots from the
Discord app, large JSON files containing thousands of messages, and audio
recordings from voice meetings.

In this chapter, I describe how the JSON chat log files were struc-
tured and how I went about analyzing them, using techniques covered in
Chapter 11. I’ll describe the custom app that I wrote to investigate this
dataset and explain how I used it to investigate a Discord server called Pony
Power, whose members doxed their political enemies. You’ll also learn
the inside story of DiscordLeaks, Unicorn Riot’s public searchable archive
based on my app, which contains millions of chat messages from far- right
Discord servers. Fi nally, I discuss a major hack of the American neo- Nazi
 organization Patriot Front that took place four and a half years after the
Charlottesville rally. This hack included chat logs from RocketChat, a self-
hosted system that Unicorn Riot also hosts in DiscordLeaks.

Like my reporting on the AFLDS dataset, this case study is an example
of journalism with real- world impact. My work, along with that of Unicorn
Riot, antifascist infiltrators, and other anonymous developers, helped lead
to a court settlement against the most notorious American white suprema-
cist leaders and organizations, resulting in over $25 million worth of dam-
ages. I hope that this case study will inspire your own work on datasets of
structured chat logs, should you obtain them in the future. With the rise of
remote work and the increasing popularity of chat platforms like Discord,
Slack, and RocketChat, this type of leak is only getting more common.

I’ll start with a brief description of how these chat logs were leaked.

How Antifascists Infiltrated Neo- Nazi Discord Servers
Unicorn Riot reporters covered the Unite the Right gathering on the
ground in Charlottesville. In the following days, the collective announced
that it had received anonymously leaked chat logs from the far- right groups
that took part in the rally, and particularly from the Charlottesville 2.0
Discord server. It began publishing articles based on these leaks, showing
evidence of premeditated plans for vio lence, memes about hitting protest-
ers with cars, and posts made after the event celebrating Heather Heyer’s

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 429

murder. It also published ZIP files containing thousands of screenshots
from the infiltrated Discord servers. Researchers, both amateur and profes-
sional, immediately began correlating breadcrumbs from these chat logs
with photos and videos of the event that were posted to social media to
identify specific fascist activists.

Alongside Charlottesville 2.0, other leaked fascist Discord servers had
names like Vibrant Diversity, Ethnoserver, Safe Space 3, and 4th Reich.
Some servers only had a few dozen users, while others had over a thousand.
The most active server at the time, Vibrant Diversity, included a channel
called #problematic_oven, where users shared racist memes. The 4th Reich
server included a #rare_hitlers channel, where users shared vintage propa-
ganda from Nazi Germany.

Once the reporting of Unicorn Riot and others had made it clear to
Discord that Nazis were relying on its service, the chat platform shut down
many far- right chat servers and accounts. “Discord’s mission is to bring
 people together around gaming. We’re about positivity and inclusivity. Not
hate. Not vio lence,” the com pany said in a statement. “We will continue to
take action against white supremacy, nazi ideology, and all forms of hate.”
Shutting down individual servers and accounts didn’t work, though; fascists
simply created new accounts and set up new chat servers. Just as quickly,
antifascists infiltrated those new servers and continued to leak chat logs to
Unicorn Riot.

Fascists started spreading conspiracy theories that there were no
infiltrators but that Discord itself was selling their chat logs to the
Southern Poverty Law Center, a nonprofit that monitors hate groups. “The
Charlottesville planning server was leaked, even though it was highly secure
and no one could figure out who could have leaked it,” Andrew Anglin,
 founder of the notorious neo- Nazi website the Daily Stormer, wrote in an
April 2018 blog post. “Since then, servers have been repeatedly leaked.
 People have been doxed without being able to figure out how they were
doxed. Repeatedly and consistently, I have been given reason to believe that
 these are not Discord ‘leaks,’ but data being bought by our enemies.” This
 wasn’t true, of course. Anglin provided no evidence for the claim, Discord’s
privacy policy promises that it doesn’t sell user data, and we know exactly
how the data was leaked: antifascists were invited into the group by pretend-
ing to be racists.

A few weeks after Unite the Right, I got a hold of some of these chat
logs myself and began to analyze them.

Analyzing Leaked Chat Logs
In late August of 2017, after Unicorn Riot had started publishing articles
based on leaked chats, someone from the collective asked me if I’d like to
cover the fascist chat logs for The Intercept. While journalism can be com-
petitive, with each newsroom racing to publish breaking news first without
getting scooped, the opposite is often true when it comes to complicated
datasets. When it’s clear that there’s no way that a single newsroom has the

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

430 Chapter 14

resources to discover all of the revelations in a dataset, it only makes sense
to bring in other newsrooms and share access to the data. This sort of col-
laboration helps every one because dif fer ent newsrooms have dif fer ent audi-
ences, and it makes real- world impact from the reporting more likely.

My Unicorn Riot contact sent me a ZIP file full of JSON files and
screenshots of Discord chats that covered several Discord servers. The
JSON files contained more complete logs of every thing posted to these chat
rooms, while the screenshots captured only specific conversations. While
screenshots are initially simpler to use because you don’t need to write any
code or use special tools to read them, having the chat logs in a structured
data format like JSON is much more useful in the long run. The best way to
peruse screenshots of chats is to open individual images, read them one at a
time, take note of the filenames that contain in ter est ing content, and refer
back to them as needed. This quickly becomes unwieldy when you’re deal-
ing with thousands of screenshots.

I started digging into the JSON files to see what I was dealing with.
Specifically, I used the handy command line tool jq to figure out exactly
how this data was structured in order to find the lists of users and channels
and read the messages in each channel.

N O T E Besides manually reading screenshots and taking notes, another option would have
been to index the screenshots in software like Aleph, which you used in Chapter 5.
Aleph would then perform OCR on the images, extracting their text and enabling me
to search them for keywords. This might be helpful in locating specific messages, but
in the end, it’s still not as useful as structured data. If I were dealing with this data
 today and only had screenshots without access to JSON data, I would definitely rely
on Aleph.

Making JSON Files Readable
Each JSON file within the ZIP file sent by my source contained the entire
archive of chat logs from a given Discord server. For example, one 29MB
JSON file was called VibrantDiversityComplete- Sept5at327PM. For the purposes
of this book, I’ve renamed it VibrantDiversity.json to make the following
examples easier to read.

When I opened this file in a text editor, its contents looked like this:

{"meta":{"users":{"231148326249037824":{"name":"D'Marcus Liebowitz"},"232213403974893569":{"nam
e":"northern_confederate"},"279620004641767424":{"name":"☇Unlimited Power☇"},"23338059623405977
6":{"name":"OrwellHuxley"},"289851780521787392":{"name":"badtanman"},"337421867700715524":{"nam
e":"spadegunner"},"315936522656546818":{"name":"erz1871"},"122932975724789761":{"name":"Archer"
},"201547638129164290":{"name":"SLUG2_"},"288899711929286667":{"name":"million plus"},"25019824
- - snip- -

This block of data is not very human- readable. As you learned in
Chapter 11, it’s much easier to read JSON data that’s been reformatted
using line breaks, indentation, and syntax highlighting. Using the jq com-
mand, I formatted it and added syntax highlighting in my terminal like so:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 431

micah@trapdoor Discord- JSON- Scrapes % cat VibrantDiversity.json | jq
{
 "meta": {
 "users": {
 "231148326249037824": {
 "name": "D'Marcus Liebowitz"
 },
 "232213403974893569": {
 "name": "northern_confederate"
 },
 "279620004641767424": {
 "name": "☇Unlimited Power☇"
 },
- - snip- -

 Running this command added formatting and syntax highlighting to
the file’s contents, but still resulted in 29MB of text madly scrolling through
my terminal. To understand the data better, I needed to run more specific
commands that would reveal its overall structure.

Exploring Objects, Keys, and Values with jq
I could tell by looking at the beginning of the JSON data that the whole file
was one large JSON object, and one of that object’s keys was meta. I ran the
following jq command to see what other keys there were:

cat VibrantDiversity.json | jq 'keys'

The output told me that the data for each Discord server includes two
parts, data and meta:

[
 "data",
 "meta"
]

Guessing that meta included the metadata for the server, I ran the fol-
lowing command to determine the keys of the meta object:

cat VibrantDiversity.json | jq '.meta | keys'

This command piped the output of cat VibrantDiversity.json as input
into the jq '.meta | keys' command. It looks like there’s a second pipe
 there, but there’s not. The string '.meta | keys' is actually just a single
argument into jq. The pipe character is how you chain multiple jq filters
together so that the the output of one gets piped into the output of the
next; in this case, .meta outputs the value of the meta key and pipes it into
keys, which outputs the keys from that value.

The output showed me that the metadata included information about
channels, servers, and users:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

432 Chapter 14

[
 "channels",
 "servers",
 "userindex",
 "users"
]

So far, I had only looked at the keys of JSON objects. It was time to
look at some of the content, starting with the servers. By running jq '.meta.
servers', I could look at the value of the servers key inside the meta object:

cat VibrantDiversity.json | jq '.meta.servers'

The output in Listing 14-1 showed that VibrantDiversity.json lists a single
server in the metadata sections, Vibrant Diversity, just as I expected.

[
 {
 "name": "Vibrant Diversity",
 "type": "SERVER"
 }
]

Listing 14-1: The list of servers in VibrantDiversity.json

I could tell that this output was an array, since it was a list of items sur-
rounded by brackets ([and]).

Next, I wanted to see what channels this server had, so I ran the follow-
ing command to view the value of the channels key in the meta object:

cat VibrantDiversity.json | jq '.meta.channels'

Listing 14-2 shows the output of this command.

{
 "274024266435919872": {
 "server": 0,
 "name": "rules"
 },
 "274262571367006208": {
 "server": 0,
 "name": "general"
 },
 "292812979555139589": {
 "server": 0,
 "name": "effortposting"
 },
 "288508006990348299": {
 "server": 0,
 "name": "problematic_oven"
 },

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 433

 "274055625988898816": {
 "server": 0,
 "name": " music"
 },
 "343979974241550337": {
 "server": 0,
 "name": "gun- posting- goes- here"
 },
 "328841016352440320": {
 "server": 0,
 "name": "food- posting"
 },
 "274025126641795074": {
 "server": 0,
 "name": "share_contact_info"
 },
 "288901961313550336": {
 "server": 0,
 "name": "recruiting"
 }
}

Listing 14-2: The list of channels in the Vibrant Diversity server

Whereas the output in Listing 14-1 was an array, the output for .meta
.channels was a JSON object, as indicated by the braces ({ and }) surround-
ing it.

The keys for this object are long numbers, presumably the ID of the
channel, and their values are objects that contain the server and name
keys. For example, the channel with key 288508006990348299 has the value
{"server": 0, "name": "problematic_oven"}. The server value for all of these
channels is 0. I guessed that this was the index of the servers array from
Listing 14-1. Since there was only one server in this JSON file, the index
for all of the channels is the first item in the list, 0. The name value was
problematic_oven. When I later read the chats in this channel, it was full of
antisemitic posts and Nazi memes, and the word oven was clearly a reference
to the Holocaust. This was definitely a neo- Nazi chat server.

I wanted to see a list of this server’s users, so I ran the following com-
mand to view the value of the users key in the meta object:

cat VibrantDiversity.json | jq ' . meta . users'

Listing 14-3 shows my output.

{
 "231148326249037824": {
 "name": "D'Marcus Liebowitz"
 },
 "232213403974893569": {
 "name": "northern_confederate"
 },
 "279620004641767424": {

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://meta.users

434 Chapter 14

 "name": "☇Unlimited Power☇"
 },
- - snip- -

Listing 14-3: The list of users in the Vibrant Diversity server

Just like the list of channels in Listing 14-2, the output for . meta . users
in Listing 14-3 is a JSON object. The keys are are long numbers, presum-
ably the ID of the user, and the values are objects with just a single key, the
user’s name.

So far, I had explored the metadata keys channels, servers, and users, but
 there was one left: the userindex key. I ran the following command to view
the userindex key’s value:

cat VibrantDiversity.json | jq ' . meta . userindex'

Listing 14-4 shows my output.

[
 "231148326249037824",
 "232213403974893569",
 "279620004641767424",
- - snip- -

Listing 14-4: The list of user IDs for each user in the Vibrant Diversity server

The output for the . meta . userlist command was a JSON array rather
than an object, and each item in the array was a string that looks like a
Discord ID. Sure enough, the first item, 231148326249037824, turned out to be
the ID of the first user from Listing 14-3, D’Marcus Liebowitz. At this point
I didn’t fully understand the purpose of userlist, but it soon became clear,
as you’ll see later in this section.

Armed with a basic understanding of the server’s metadata, I ran the
following command to find the keys for the data object:

cat VibrantDiversity.json | jq '.data | keys'

Listing 14-5 shows my output.

[
 "274024266435919872",
 "274025126641795074",
 "274055625988898816",
 "274262571367006208",
 "288508006990348299",
 "288901961313550336",
 "292812979555139589",
 "328841016352440320",
 "343979974241550337"
]

Listing 14-5: The keys to the data object in the Vibrant Diversity server

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://meta.users
http://meta.userindex
http://meta.userlist

Neo- Nazis and Their Chat Rooms 435

 These keys are the same channel IDs from Listing 14-2, so I guessed
that the values of each key contained the actual messages in those chat
channels. Because I needed to start somewhere, I de cided to view the chat
messages from the #problematic_oven channel, so I ran the following
command:

cat VibrantDiversity.json | jq '.data."288508006990348299"'

The full argument for this jq command is surrounded by single
quotes. The .data part of the filter looks in the key data, and the
."288508006990348299" part of the filter looks in the key 288508006990348299,
which is the ID of the #problematic_oven channel. I put the ID in quotes so
that jq would know that this key was a string and not a number.

As with the first time I used jq to read this JSON file, the output of this
command scrolled through a large block of text, though considerably less
than before. In this case, the output showed chat messages from only a single
channel, rather than showing all of the data in the JSON file. Listing 14-6
shows just a few chat messages from the middle of the output.

micah@trapdoor Discord- JSON- Scrapes % cat VibrantDiversity.json | jq '.data
."288508006990348299"'
{
- - snip- -
 "352992491282366485": {
 "u": 4,
 "t": 1504230368205,
 "m": "we need more white girls with nice asses"
 },
 "352992512752746496": {
 "u": 4,
 "t": 1504230373324,
 "m": "no more gay jew shit"
 },
 "352992579949690890": {
 "u": 1,
 "t": 1504230389345,
 "m": "you're not allowed to oogle anyone whiter than med"
 },
 "352992652687441920": {
 "u": 1,
 "t": 1504230406687,
 "m": "if i catch you looking at anglo/celtic/nordic girls you're banned"
 },
- - snip- -

Listing 14-6: Chat messages from the #problematic_oven channel in the Vibrant Diversity
server

Just like the channels in Listing 14-2, this output is a JSON object with
keys that contain long numbers. In this case, these keys appeared to be
message IDs, and the values appeared to be details about that specific chat
message. In each message, the u field represented the user and the m field

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

436 Chapter 14

contained the message content. The t field was a Unix timestamp, the num-
ber of seconds or sometimes milliseconds since January 1, 1970, a common
way to represent specific dates and times in computer science. These par tic-
u lar timestamps were in milliseconds.

At this point, I knew that I was looking at a conversation between two
neo- Nazis. The top two messages in Listing 14-6 are from a user with the ID
of 4, and the bottom two messages are from a user with the ID of 1. Because
the value of t gets bigger with each message, these appear to be displayed
in chronological order. I de cided to take a closer look at the message
352992512752746496, from user 4, with the timestamp 1504230373324.

Converting Timestamps
Unix timestamps are a useful way for computers to store an entire date—
the year, month, day of month, and time of day—in a single number. I
needed to convert the timestamp associated with that message into human-
readable format to find out the date and time when the message was
posted.

I used the following lines of code in the Python interpreter to convert
the 1504230373324 timestamp into a more human- readable Python datetime
object:

>>> from datetime import datetime
>>> timestamp = datetime.fromtimestamp(1504230373324 / 1000)
>>> print(timestamp)

The syntax in this code is similar to the code you used to import mod-
ules in Chapter 8. Rather than import module, this code takes the syntax
from module import resource_name, loading a single datetime resource from the
datetime module. Next, the code defines a variable called timestamp and sets
its value to the return value of the datetime.fromtimestamp() function. This
function takes the number of seconds since January 1, 1970, as an argument.
 Because the Discord logs are in milliseconds rather than seconds, this code
first divides the Discord timestamp by 1,000 to convert it to seconds before
passing it into the function. The function returns a Python datetime object.

When I displayed the datetime object with print(timestamp), I could see
that this chat message was posted on August 31, 2017, at 6:46 pm:

2017-08-31 18:46:13.324000

I now had an idea of the timeframe in which this chat exchange took
place. Next, I wanted to see which users were involved.

Finding Usernames
I wanted to find the username for person who’d posted the
352992512752746496 message in Listing 14-6. The u value for this message was
4, so I checked to see if 4 was a valid user ID from the output in Listing 14-3
but found that it wasn’t there; all of the user IDs in that JSON object are

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 437

18 digits long. I turned to the output in Listing 14-4 that shows the value
of userindex in the meta object. The value of userindex is an array of strings,
each an 18- digit user ID.

As described in Chapter 11, JSON arrays are lists of items in a specific
order. Objects, on the other hand, don’t have any order. You select values
from arrays using their numerical indices, starting from index 0 for the
first item. Because objects don’t have numerical indices, there’s no concept
of the first, second, or third item in the object; you could edit a JSON file
to rearrange the object’s items, and it would still be the same object. For
this reason, I guessed that the u value was actually an index of the userindex
array.

To determine which user ID corresponded to the user whose u value
was 4, I looked for the value of userindex at index 4 by running the following
command:

cat VibrantDiversity.json | jq ' . meta . userindex[4]'

This command is similar to the one in Listing 14-4, but because it uses
. meta . userindex[4], it selects the value at index 4 of the . meta . userindex array
and just displays that result. My output showed that this value was the string
289851780521787392, an 18- digit user ID:

"289851780521787392"

Now that I had a user ID, I used it in the following command to find
the matching username:

cat VibrantDiversity.json | jq ' . meta . users . "289851780521787392"'

Like the previous command, this command selects just one value to
output. In this case, it selects the meta key, then the users key, then the
289851780521787392 key. The result is an object that includes a name key:

{
 "name": "badtanman"
}

The name badtanman was the username I was looking for.
In the snippet of the chat logs quoted in Listing 14-6, the user badtan-

man is talking to someone with the u value of 1. To find that person’s user-
name, I ran the same commands, substituting the appropriate ID numbers:

micah@trapdoor Discord- JSON- Scrapes % cat VibrantDiversity.json | jq ' . meta . userindex[1]'
"232213403974893569"
micah@trapdoor Discord- JSON- Scrapes % cat VibrantDiversity.json | jq ' . meta . users . "232213403974
893569"'
{
 "name": "northern_confederate"
}

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://meta.userindex[4
http://meta.userindex[4
http://meta.userindex
http://meta.users."289851780521787392
http://meta.userindex[1
http://meta.users."232213403974

438 Chapter 14

I’d found that the snippet of chat messages Listing 14-6 was a conversa-
tion between badtanman and northern_confederate on the night of August 31,
2017.

 Running all of these jq commands, along with running code in the
Python interpreter to convert timestamps, is tedious. If confronted with a
large volume of chat logs, you don’t want to research every group of mes-
sages this way. But when you’re exploring an unfamiliar dataset for the first
time, you need to manually explore it like this until you better understand
how the data is structured. After doing this preliminary analy sis, I could use
my new understanding of the chat logs to write Python scripts or even a full
custom app (like I ended up developing for this dataset) to aid my research.

Before I actually started writing Python code to more easily parse these
chat logs, though, I noticed a file that I’d missed before in the Unicorn Riot
ZIP file that might make researching this dataset a lot easier.

The Discord History Tracker
The ZIP file from my Unicorn Riot contact had dozens of files in it, most of
them JSON files and PNG screenshots, along with a few folders containing
other JSON files. I’d immediately zeroed in on the JSON files to analyze
their data structure, but until now I hadn’t noticed the file logviewer . html.
This was an HTML and JavaScript file, that, when opened in a web browser,
would allow me to load JSON chat log files and read through them.

 After talking with my Unicorn Riot contact, I learned that this local
HTML file is part of a piece of open source software called Discord
History Tracker. This software, not affiliated with Discord, lets users save
an offline copy of every thing they have access to in a given Discord server
in JSON format. Antifascist activists used this software to exfiltrate chat
logs from Vibrant Diversity, Charlottesville 2.0, and other fascist- run
Discord servers.

Discord History Tracker included two components. The main compo-
nent was in charge of actually creating a backup of a Discord server. The
user would load the Discord server in their web browser, open their devel-
oper tools, and copy and paste the Discord History Tracker JavaScript code
into their browser’s console. This would then scrape all of the data in the
Discord server and save a backup file in JSON format. The second compo-
nent of Discord History Tracker was the logviewer . html file, which contained
offline HTML software for viewing those backup files.

Figure 14-1 shows logviewer . html loaded in a web browser. In the screen-
shot, I’ve scrolled to the aforementioned messages between badtanman and
northern_confederate from the #problematic_oven channel.

N O T E The screenshot in Figure 14-1 shows software from 2017, and the Discord History
Tracker interface has changed considerably since then. Among other changes, it now
saves the data in SQLite databases, rather than as JSON files, and you can view the
logs in a desktop app instead of using the logviewer . html file. You can learn more
about the software at https:// dht . chylex . com.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://logviewer.html
http://logviewer.html
http://logviewer.html
http://logviewer.html
https://dht.chylex.com

Neo- Nazis and Their Chat Rooms 439

This offline HTML viewer software made it considerably easier to
navigate and read the contents of the JSON files. I could click through
the channels on the left, and then read through a page of chats at a time.
However, it also lacked some features that would be impor tant for my ongo-
ing investigation:

•	 There was no simple way to search for individual messages. For exam-
ple, suppose I wanted to search for mentions of Berkeley, the city I lived
in at the time. I would have to click a channel like #general, use my web
browser’s search feature to search for Berkeley, and then find which mes-
sages appeared in the #general channel. I would also need to change
the settings to display all messages per page so I could search them all
at once, rather than displaying just 1,000 messages at a time, as shown
in Figure 14-1. I would then have to replicate this search for every other
channel in the server, and if I wanted to search other Discord servers as
well, I’d have to replicate it for each channel in each server.

•	 The offline viewer only supported looking at one server at a time, but
I wanted to be able to search multiple servers at once and also track a
single user’s messages across dif fer ent servers.

Figure 14-1: The August 31, 2017, chat between badtanman and northern_confederate,
viewed in the Discord Offline History web app

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

440 Chapter 14

•	 There was no way to generate hyperlinks leading to individual mes-
sages. When you’re taking notes for a story based on chat logs like this,
it’s helpful to track the messages of interest. Without links, you’ll regu-
larly have to go back and search for specific messages all over again.

I de cided to build my own web application to add these missing fea-
tures. I already had all of the chat logs in a structured format, which is
by far the biggest requirement to build a custom app, as you learned in
Chapter 10’s discussion of BlueLeaks Explorer. If I’d had only screen-
shots of the Discord servers, a custom app with these features wouldn’t
have been pos si ble. Screenshots aren’t structured data, and there’s no
easy way to write software that allows you to browse the chat messages
they contain.

Building a Script to Search the JSON Files
As you’ve learned throughout this book, understanding how the data is
structured is a prerequisite to writing code that works with it. Therefore, I
de cided to use the knowledge I’d gained from manually investigating the
JSON files with jq to build a simple Python script that let me search one of
the JSON files for keywords. Initially I thought I might be able to use this
script to do all of the analy sis I needed, but that turned out to be wrong; I
ended up writing a complete custom app to investigate this dataset as well.
Even so, this first (considerably simpler) script allowed me to use Python
code to express the structure of the dataset that I’d already gleaned, which
simplified the process of programming the full web app. In this section I go
over exactly how my initial Discord JSON search script worked.

For example, I knew my script needed to be able to display chat mes-
sages based on what I searched for. Let’s say I wanted my code to display the
following chat message from Listing 14-6:

"352992491282366485": {
 "u": 4,
 "t": 1504230368205,
 "m": "we need more white girls with nice asses"
 }

The value of the u key is 4, but now I knew how to find the actual user-
name of the person who posted this message. First, my code needed to look
in the JSON’s meta object and select the fourth item in the userindex array,
which is the user ID 289851780521787392. My code then would look again in
the JSON’s meta object, this time for the users key, and use that user ID as
the key to get this user object:

{
 "name": "badtanman"
}

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 441

My code would select the name string from that object to get the user-
name of the message poster, badtanman, and then replicate the whole process
to display the correct username for every message.

I opened my text editor and started writing a Python script, discord- json-
search.py, to search one of the JSON files for keywords. Here’s my completed
source code (you can also find it at https:// github . com / micahflee / hacks - leaks - and
- revelations / blob / main / chapter - 14 / discord - analysis / discord - json - search . py):

#!/usr/bin/python3
import sys
import json
import click
from datetime import datetime

def highlight(message, query): 1
 new_message = ""
 index = 0
 while True:
 new_index = message.lower().find(query.lower(), index)
 if new_index > 0:
 # Found
 new_message += message[index:new_index]
 new_message += click.style(
 message[new_index : new_index + len(query)], underline=True
)
 index = new_index + len(query)
 else:
 # Not found
 new_message += message[index:]
 break

 return new_message

def display(channel_name, server_name, user_name, timestamp, message, query): 2
 click.echo(
 "{} {}".format(
 click.style("#{}".format(channel_name), fg="bright_magenta"),
 click.style("[server: {}]".format(server_name), fg="bright_black"),
)
)
 click.echo(
 "{} {}".format(
 click.style(user_name, bold=True),
 click.style(timestamp.strftime("%c"), fg="bright_black"),
)
)
 click.echo(highlight(message, query))
 click.echo("")

def search(data, query): 3
 # Loop through each channel
 for channel_id in data["data"]: 4
 # Get the channel name and server name
 channel_name = data["meta"]["channels"][channel_id]["name"] 5

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/discord-json-search.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/discord-json-search.py

442 Chapter 14

 server_name = data["meta"]["servers"][
 data["meta"]["channels"][channel_id]["server"]
]["name"]

 for message_id in data["data"][channel_id]: 6
 # Pull the user data, timestamp, and message body from the message
 user_index = data["data"][channel_id][message_id]["u"]
 user_id = data["meta"]["userindex"][user_index]
 user_name = data["meta"]["users"][user_id]["name"]
 timestamp = datetime.fromtimestamp(
 data["data"][channel_id][message_id]["t"] / 1000
)
 message = data["data"][channel_id][message_id]["m"]

 # Is the query in the message?
 if query.lower() in message.lower(): 7
 display(channel_name, server_name, user_name, timestamp, message, query) 8

@click . command()
@click.argument("filename", type=click.Path(exists=True))
@click.argument("query")
def main(filename, query): 9
 # Load the JSON file
 try:
 with open(filename) as f:
 data = json.loads(f.read())
 except:
 print("Failed to load JSON file")
 sys.exit()

 # Search
 search(data, query)

if __name__ == "__main__":
 main()

It’s simplest to explain how this script worked from bottom to top,
since that’s how it executed and also how I programmed it. The main()
function 9 is a Click command that takes two CLI arguments: the file-
name for a JSON file with Discord chat logs called filename, and a search
term called query. The code opened the filename that was passed in and
parsed it using json.loads() to turn it into a JSON object. Then it called
the search() function, passing in the data from the JSON file and the
search query.

The search() function 3 is where all the magic happened. I knew from
my previous analy sis that these Discord JSON objects had two keys: the data
key, which contained the messages in each channel, and the meta key, which
contained metadata about these messages. My script started by looping
through every channel in data['data'] 4, then using its channel_id to look up
that channel’s name and server in the metadata 5. It then looped through

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://click.command

Neo- Nazis and Their Chat Rooms 443

 every message in that channel 6 and stored the message’s username, time-
stamp, and the message itself in variables.

The code then checked to see if the search query that was passed
into the script as a CLI argument (stored in query) existed in the message
(stored in message) 7. As described in Chapter 7, it converted both strings
to lowercase using .lower() to make the search case insensitive. If the lower-
case version of the message contained the lowercase version of the search
term, the script then passed all of the relevant variables into the display()
function to display the message in the terminal.

The display() function 2 took arguments for metadata about a mes-
sage, the message text itself, and the search term and used those to display
the message. This code used click.echo() instead of print() to display text to
the terminal, and it used click.style() to apply dif fer ent colors and format-
ting. (You could do all of this just with the print() function, but the click
module makes it simpler to style terminal output.) After displaying two
lines of metadata for the message, the script then displayed the output of
the highlight() function, which returned the message itself in color with the
search term underlined.

The highlight() function 1 created an empty string called new_message
and then made it a copy of message, the original message it displayed, except
with all instances of the search term underlined using click.style(). It
then returned new_message and displayed it to the terminal in the display()
function.

For example, if I wanted to search VibrantDiversity.json for the term berke-
ley, I could run:

python3 discord- json- search.py ~/datasets/Discord- JSON- Scrapes/VibrantDiversity.json "berkeley"

The output listed over a hundred chat messages that mentioned
Berkeley. Each message showed the name of the channel, the name of the
Discord server, the user who posted it and when, and the content of the
message. Here’s the first snippet of output, which highlighted the search
term in the message with an underline:

#general [server: Vibrant Diversity]
Hector Sun Sep 3 20:19:11 2017
Look at how many antifa were at Boston and Berkeley. We need numbers. We can't
have rallies
with less than a thousand people now. Even that's a low number.
- - snip- -

The first message that mentioned Berkeley was a post from the user
Hector in the #general channel on September 3, 2017. This user was
complaining about the relatively small number of fascists that showed
up to their rallies in Boston and Berkeley, compared to the “antifa”
counterprotesters.

This script allowed me to search a full Discord server for keywords, but
it still lacked several of the features that I wanted: it could work with only

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

444 Chapter 14

one Discord leak at a time, and there was no easy way to browse through
and read the data sequentially or to save links to specific in ter est ing mes-
sages. I started building out a web application to help me perform these
missing tasks.

My Discord Analy sis Code
I’ve found that after obtaining a large dataset full of structured data, build-
ing a custom web application to explore it, as I did with BlueLeaks Explorer,
makes it much easier to find its hidden revelations. After writing discord- json-
search.py, I spent about a week creating Discord Analy sis, a custom web app
to analyze leaked Discord chat logs.

Since I wanted to be able to search multiple Discord servers at once,
I de cided that the best solution would be to convert all of the data from
JSON files into a SQL database. I used a Python tech stack that I was
already familiar with, Flask (discussed briefly in Chapter 10), for the web
app, and SQLAlchemy for communicating with the SQL database.

SQLAlchemy is an Object Relational Mapping (ORM) Python module
that’s useful for making code that works with SQL databases simpler to
write and more secure. ORMs allow you to work with SQL databases in such
a way that you don’t have to directly write any SQL code yourself, which
means your proj ects won’t be vulnerable to SQL injection. This web app
used Flask- SQLAlchemy, a Flask extension that adds SQLAlchemy support
to Flask apps.

While developing my Discord Analy sis web app, I was actively using it
to research the leaked neo- Nazi chat logs. If I had new questions about the
data (like what other messages a user posted) or found that I needed new
features (like limiting my search to a single server), I would program them
in as I went along. This is typically how I build research tools: I start using
them long before they’re complete, and I let the direction of my research
guide which features I add next.

In this section I explain how I went about developing the dif fer ent com-
ponents of the app: designing a SQL database, importing chat logs from
the Discord JSON files into that database, and building the web interface to
research the chat logs. You’ll learn how I used SQLAlchemy to define data-
base tables, insert rows into them, and select rows from them. You’ll also
learn how I used Flask to build this web app, including how to make Jinja
templates and how to define routes— skills you’ll need if you build your own
Flask web apps in the future.

N O T E Fully explaining how to build a Flask and SQLAlchemy web app is outside the scope
of this book. Instead, I go over how I went about building this app in broad strokes,
which should still be useful if you ever decide to build a similar one yourself. The best
way to learn how to make your own Flask app is by exploring Flask’s excellent docu-
mentation at https:// flask . palletsprojects . com; that’s how I learned. The Flask
documentation includes a tutorial that walks you through every step of developing

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://flask.palletsprojects.com

Neo- Nazis and Their Chat Rooms 445

a simple web app. The Python skills you’ve learned from Chapters 7 and 8 are more
than enough for you to follow along with the tutorial. You can also find docs for
SQLAlchemy at https:// www . sqlalchemy . org and for Flask’s SQLAlchemy exten-
sion at https:// flask - sqlalchemy . palletsprojects . com.

The code for Discord Analy sis, which has quietly been public on my
GitHub account for years, hasn’t been updated much since 2017, with the
exception of some small changes I made when preparing it for this book.
I don’t plan on maintaining it. Still, you should be able to get it running
locally if you’d like to explore it further, and you can use it as inspiration
for your own future proj ects that use a similar tech stack. Read through this
section to see how it works, and then if you’re curious, try getting it running
locally yourself.

As I explain the app, I’ll quote sections of the source code. It’s too long
to include all of it here, but you can find the full code online in the book’s
GitHub repository at https:// github . com / micahflee / hacks - leaks - and - revelations
/ tree / main / chapter - 14 / discord - analysis. I recommend that you pull up the full
source code for each file as I describe how it works.

Designing the SQL Database
I started my web app with a Python script called app.py. You can find
the full source code for this file at https:// github . com / micahflee / hacks - leaks
- and - revelations / blob / main / chapter - 14 / discord - analysis / app . py. First, my code
imported the appropriate Flask and SQLAlchemy modules, created a new
Flask app object called app, and created a new Flask- SQLAlchemy object
called db:

from flask import Flask, render_template, request, escape, flash, redirect
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app . config["SQLALCHEMY _ DATABASE _ URI"] = "sqlite:///database.sqlite3"
app . config["DEBUG"] = True

db = SQLAlchemy(app)

I started by importing several items from the flask module, like Flask
and render_template, that I knew I’d need later in the program. In the next
line, I also imported SQLAlchemy from the flask_sqlalchemy module.

Using the newly imported Flask, I then created a Flask object called app.
 Every Flask web app includes such an object (and usually by that name) to
define exactly how the app will work. I modified the app . config dict to set
some configuration settings, telling it that I wanted to use a SQLite3 data-
base stored in the file database.sqlite3, and I wanted to turn debug mode on,
which is useful while you’re actively developing a web app. Fi nally, I created
the SQLAlchemy object called db, passing in app.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.sqlalchemy.org
https://flask-sqlalchemy.palletsprojects.com
https://github.com/micahflee/hacks-leaks-and-revelations/tree/main/chapter-14/discord-analysis
https://github.com/micahflee/hacks-leaks-and-revelations/tree/main/chapter-14/discord-analysis
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py

446 Chapter 14

For the next bit of code, I’ll introduce you to a new Python concept that
I didn’t explic itly cover in Part III but that you’ve technically been using all
along: classes. In Python, a class is a template for creating new objects that
can store data (using variables called attributes) and perform actions (using
functions called methods). For example, strings are technically classes. When
you run the code s = "example", the variable s is an instance of the string
class, the data it stores is the string example, and it has a bunch of methods
you can call on it, such as s.upper(), which returns an uppercase version of
the string. When you write SQLAlchemy code, you define a class for each
database table. This way, you can write code that works with Python objects
without needing to write the SQL queries yourself.

I started writing code to define the SQL tables that would store Discord
data for servers, users, channels, and messages. For example, the following
code defines the Server class, which represents the SQL table to store data
about servers:

class Server(db.Model):
 id = db . Column(db . Integer, autoincrement=True, primary_key=True)
 name = db . Column(db . String(128), unique=True, nullable=False)

 channels = db.relationship("Channel", back_populates="server")
 messages = db.relationship("Message", back_populates="server")

 def __init__(self, name):
 self.name = name

Using SQLAlchemy requires that you define your own classes. You can
think of this Server class as a description of a new type of Python object that
represents a row in the server SQL table. Because I defined it as Server(db.
Model), this class inherited all of the functionality of the db.Model class, which
is part of SQLAlchemy. Inside the class definition, I defined the table’s
columns: id (an auto- incrementing number) and name (a string). Next, I
defined this table’s relationships to other tables, in this case relating servers
to channels and messages— both the Channel table and the Message table have a
server_id column.

Fi nally, I defined the __init__() method. When you define a class, you
must call the first argument of every method self to represent this Python
object itself. You can optionally include other arguments too. The __init__()
method is a type of method called a constructor, which runs as soon as you
create the object. This constructor sets the value of the object’s name attri-
bute (which you access within the class as self.name) to the value of name,
which is a variable passed into the __init__() method as an argument.

For example, to add a row to the Server table in the SQL database for
the Vibrant Diversity Discord server, I could run the code in Listing 14-7.
(My Discord Analy sis app doesn’t actually use this code—it loads the servers
from the JSON data— but I’m including this example to help you under-
stand how to use SQLAlchemy classes to interact with databases without
needing to write SQL queries.)

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 447

server = Server("Vibrant Diversity")
db.session.add(server)
db . session . commit()

Listing 14-7: Using SQLAlchemy to insert data into a SQL database

The first line of code creates a Server object by running Server("Vibrant
Diversity"). This would run the constructor method, passing in the string
Vibrant Diversity as name. The constructor would then set the value of its name
attribute to the name that was passed in. When the constructor finishes
 running, the code would save this newly created Python object in the server
variable. The next two lines of code use the SQLAlchemy object db to run
the INSERT query in the SQL database and insert this row. The db.session
.add() method collects a list of SQL queries, and the db . session . commit()
method runs those SQL queries on the database. In SQL, sometimes it’s
more efficient to run several queries and then commit them all at once
rather than one at a time.

In other words, the code in Listing 14-7 is basically the same as
 running the SQL query INSERT INTO server SET name='Vibrant Diversity';,
except this way all you need to do is interact with Python objects, not
write any SQL yourself. After creating the server object, I could then
access that object’s ID attribute with server.id or the object’s name attri-
bute with server.name.

In addition to the Server table I just described, I also created the fol-
lowing tables, which you can view in detail in the app.py file at https:// github
. com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 14 / discord - analysis
/ app . py:

User A Discord user. I included the columns id, discord_id, and name.
The id column is an auto- incrementing number, and discord_id is the
original ID that Discord itself used. This is useful for identifying the
same user across servers.

Channel A channel in a Discord server. The columns are id, discord_id,
name, and server_id. The server_id column forms a relationship with
the Server table, since each server has a set of channels. Every Discord
server JSON file contains a list of channels. Adding this relationship
means that the SQL database I was designing would match the data
structure in the JSON files.

Message A Discord message. The columns are id, discord_id, timestamp,
message, attachments_json, user_id, channel_id, and server_id. The attach-
ments_json column contains extra data from messages with attachments,
like when someone posts an image to Discord. The user_id, channel_id,
and server_id columns form relationships with the User, Channel, and
Server tables. These also would match the structure found in the JSON
files.

Figure 14-2 shows the relationship between these four tables. The
Channel table includes a server_id column, so it’s related to the Server table.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://db.session.commit
http://db.session.commit
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py

448 Chapter 14

The Message table includes columns for channel_id, server_id, and user_id, so
it’s related to the Channel, Server, and User tables.

Figure 14-2: Relationships between the SQL
 tables in the Discord Analy sis app

My goal for this web app would be to build an interface that allows
me to explore the data stored in these SQL tables. I wanted to be able to
search all of the messages at once, including from multiple servers, to see
which users posted in multiple servers, and to be able to generate links to
individual messages that I could store in my notes. Before building the
web interface, though, I needed to load the database with data from the
JSON files.

Importing Chat Logs into the SQL Database
I wrote a separate script, admin.py, that I used to import data into the SQL
database. This script took a command as its first argument. If I passed in
create- db, it would use SQLAlchemy to create the SQL tables that I had
defined in app.py. When I passed in import- json, followed by the filename of
a JSON file, the code would import Discord data from that JSON file into
the SQL database. I also eventually added the user- stats command, which
displayed how many messages each user in the whole database posted, and
on which servers.

This admin,py file is too long to include in this chapter in its entirety,
but as with app.py, you can find a copy of the complete code in the book’s
GitHub repo at https:// github . com / micahflee / hacks - leaks - and - revelations / blob
/ main / chapter - 14 / discord - analysis / admin . py.

In this section, I’ll explain how I built the import- json command (spe-
cifically, the import_json() function, which is what gets called when you run
import- json), the most in ter est ing part of the script. This is the code that
opens up the JSON files containing Discord server leaks, loops through all
the data, and then inserts it into the SQL database. As with the discord- json-
search.py script, I relied on my previous manual analy sis of the Discord JSON
files to write this code. Basically, this is the part that requires an under-
standing of the structure of the original data.

The import_json() function is too long to display it all here, so instead
I’ll display snippets that explain the general idea of how it works. The func-
tion took the filename for a JSON file containing Discord leaks as an argu-
ment. It opened this file, loaded it into a variable called data, and then used
the information in data to add servers, users, channels, and messages to the
SQL database. I’ll show the code that adds users, channels, and messages
soon, but first, Listing 14-8 shows the code that added servers.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/admin.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/admin.py

Neo- Nazis and Their Chat Rooms 449

print("Adding servers: ", end="", flush=True)
for item in data["meta"]["servers"]:
 name = item["name"]

 try:
 server = Server(name)
 db.session.add(server)
 db . session . commit()
 print("+", end="", flush=True)
 except sqlalchemy . exc . IntegrityError:
 db.session.rollback()
 print(".", end="", flush=True)
print("")

Listing 14-8: Code from admin.py to add servers to the database

This code looped through all of the servers it found in data["meta"]
["servers"], adding a row to the database for each server that it found.
For example, in Listing 14-1, I used jq to view this list of servers for
VibrantDiversity.json and found that it contained only a single server.
Listing 14-8 uses Python code to find that same list of servers from the
same part of the target leaked JSON file.

For each server it found, the code stored the server’s name in the name
variable, then tried to add that server to the database. This code used
Python exception handling, which you learned about in Chapter 7. In the
try block, the code created a new Server object (this represents a row in
the Server table in SQLAlchemy), added that row to the database using
db.session.add(server), and fi nally committed the database changes with
db . session . commit(), just like in the SQLAlchemy code in Listing 14-7. After
the server was successfully inserted into the database, the program dis-
played a plus sign (+) and moved on to the next loop.

When I defined the Server table in app.py, I specified that the name col-
umn should be unique, meaning that there could be no two rows with the
same name column. If SQLAlchemy threw the sqlalchemy . exc . IntegrityError
exception while the script was trying to add the row to the database, that
meant a server with that name already existed in the database, and the
except block should run instead. If this happened, then the code rolled back
the change that it was about to make and displayed a dot (.) instead of a
plus sign.

Why did I worry about catching these exceptions to begin with instead
of just adding rows to the database? As with the programming exercises
that you completed in previous chapters, I didn’t write the whole script
perfectly the first time and then run it. Instead, I wrote small bits of code at
a time and ran them to make sure my script was working so far. This excep-
tion handling allowed me to rerun an import on the same JSON file over
and over, while starting where I left off. If my script showed a plus sign, I
knew it had added a new row to the database. If it showed a dot, that meant
the row already existed and the script moved on.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://db.session.commit
http://db.session.commit

450 Chapter 14

You might also notice that the familiar print() function calls look odd
in Listing 14-8: my code passed in the end="" and flush=True keyword argu-
ments. By default, print() displays the string the user passes in as an argu-
ment, then adds a newline character (\n) to the end. The end argument
replaces that newline with something else, in this case an empty string. In
other words, this is how I could print a string without moving on to the next
line. The flush=True argument makes sure that the output gets displayed to
the screen immediately; without it, the output would still get displayed, but
not right after the function call. This allowed me to watch the pro gress of
an import.

 After adding servers, the script added users, as shown in Listing 14-9.

print("Adding users: ", end="", flush=True)
for user_discord_id in data["meta"]["users"]:
 name = data["meta"]["users"][user_discord_id]["name"]

 try:
 user = User(user_discord_id, name)
 db.session.add(user)
 db . session . commit()
 print("+", end="", flush=True)
 except sqlalchemy . exc . IntegrityError:
 db.session.rollback()
 print(".", end="", flush=True)
print("")

Listing 14-9: Code from admin.py to add users to the database

This code is very similar to Listing 14-8, but instead of looping through
the list data["meta"]["servers"], it looped through the dictionary data["meta"]
["users"]. Listing 14-3 shows this JSON object of users from VibrantDiversity.
json. As described in Chapter 8, when you loop through a dictionary, you’re
actually looping through the dictionary’s keys. In this case, the script stored
each key in the user_discord_id variable. Armed with the user’s Discord ID, it
then looked up that user’s name in the metadata.

In the try block, the script then created a new User object, this time
with both the user’s Discord ID and name, and tried adding it to the data-
base. When I defined the User table in app.py, I specified that user_discord_id
should be unique in order to prevent duplicate users. Like Listing 14-8, the
code displayed a plus when adding the user to the database and a dot if it
hit an error. This error- handling code would be impor tant when I started
importing multiple servers: if a Discord user was already in the database
 because they were a member of the previous server, the code wouldn’t cre-
ate a duplicate user for them.

 After adding servers and users, the script then added channels, using
the code in Listing 14-10.

print("Adding channels: ", end="", flush=True)
for channel_discord_id in data["meta"]["channels"]:
 name = data["meta"]["channels"][channel_discord_id]["name"]

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://db.session.commit

Neo- Nazis and Their Chat Rooms 451

 server_id = data["meta"]["channels"][channel_discord_id]["server"]
 1 server = Server.query.filter_by(
 name=data["meta"]["servers"][server_id]["name"]
).first()

 try:
 channel = Channel(server, channel_discord_id, name)
 db.session.add(channel)
 db . session . commit()
 print("+", end="", flush=True)
 except sqlalchemy . exc . IntegrityError:
 db.session.rollback()
 print(".", end="", flush=True)
print("")

Listing 14-10: Code from admin.py to add channels to the database

This code is also similar to Listings 14-8 and 14-9. This time however, it
looped through the keys of the data["meta"]["channels"] dictionary, storing
each key as channel_discord_id.

Listing 14-2 showed this JSON object of channels from VibrantDiversity.
json, which you can revisit to remind yourself what this dictionary looks like.
For each channel, the code in Listing 14-8 stored the name of the chan-
nel in name and that channel’s server index in server_id. It then queried the
SQL database itself to get the server row in Listing 14-10 1, which should
have been added earlier by the code in Listing 14-9, and stored this value
in server. The SQL query that the Server.query.filter_by() function call
ran was similar to SELECT * FROM servers WHERE name='name';, where name is the
server name.

In the try block, the code then created a new Channel object, this time
telling it the server, the channel’s Discord ID, and the channel name. As
with the previous listings, it tried adding this channel to the database, dis-
playing a plus on success and a dot if the channel already existed.

Fi nally, after adding servers, users, and channels, the code added all of
the messages, as shown in Listing 14-11.

for channel_discord_id in data["data"]:
 # Get the channel
 channel = Channel.query.filter_by(discord_id=channel_discord_id).one() 1

 # Loop through each message in this channel
 print(f"Adding messages from {channel.server.name}, #{channel.name}: ", end="", flush=True)
 for message_discord_id in data["data"][channel_discord_id]:
 try:
 timestamp = data["data"][channel_discord_id][message_discord_id]["t"]
 message = data["data"][channel_discord_id][message_discord_id]["m"]

 user_index = data["data"][channel_discord_id][message_discord_id]["u"]
 user_discord_id = data["meta"]["userindex"][user_index]
 user = User.query.filter_by(discord_id=user_discord_id).first() 2

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://db.session.commit

452 Chapter 14

 if "a" in data["data"][channel_discord_id][message_discord_id]:
 attachments_json = json.dumps(
 data["data"][channel_discord_id][message_discord_id]["a"]
)
 else:
 attachments_json = None

 message = Message(
 channel.server,
 message_discord_id,
 timestamp,
 message,
 user,
 channel,
 attachments_json,
)
 db.session.add(message)
 db . session . commit()
 print("+", end="", flush=True)
 except sqlalchemy . exc . IntegrityError:
 db.session.rollback()
 print(".", end="", flush=True)
 print("")

Listing 14-11: Code from admin.py to add messages to the database

This time, this code looped through all of the keys of the data["data"]
dictionary. As you learned in Listing 14-5, this dictionary’s keys are the
Discord IDs of channels. My code stored each ID in the variable channel
_discord_id. I then used SQLAlchemy to query the database to load this
 actual channel row 1 (the SQL query that this command ran was similar
to SELECT * FROM channel WHERE channel_discord_id=channel_discord_id, where
channel_discord_id is the channel ID). After learning what channel it was
dealing with, the code then looped through all of that channel’s mes-
sages to add them to the database, storing each message’s Discord ID as
message_discord_id.

The rest of the code in Listing 14-11 is also similar to Listings 14-8
through 14-10. In the try block, for each message, the code stored the time-
stamp and message in the timestamp and message variables. It then looked
up the user Discord ID from the metadata and queried the SQL database
for the User object 2, and, if the message included an attachment, it also
created a string called attachments_json. Fi nally, it created a Message object
and inserted this message into the database. As before, the code displayed
a plus sign if it successfully inserted a message, or a dot if that message was
already in the database.

Since exception handling ensured admin.py wouldn’t import duplicate
rows, I could use this script to import newer versions of JSON files from the
same Discord server. For example, if Unicorn Riot’s infiltrator used Discord
History Tracker to save another offline copy of every thing in Vibrant
Diversity a month later, and I imported that new JSON file, it would import
only the new messages.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://db.session.commit

Neo- Nazis and Their Chat Rooms 453

Once this code was written, I used it to import all of the JSON Discord
files that I had received from Unicorn Riot. To import data from the
Vibrant Diversity channel, I would run this command:

python3 admin.py import- json ~/datasets/Discord- JSON- Scrapes/VibrantDiversity.json

And here is the output:

Adding servers: +
Adding users: +++
+++
- - snip- -
Adding channels: +++++++++
Adding messages from Vibrant Diversity, #rules: +++++++++++++++
Adding messages from Vibrant Diversity, #general: +++
+++
- - snip- -
Adding messages from Vibrant Diversity, #recruiting: ++
+++++++++
Import complete

Each plus sign in this output represents a dif fer ent row of data inserted
into the database. The VibrantDiversity.json file added 1 server, 530 users,
9 channels, and a total of 255,349 messages, imported a channel of mes-
sages at a time.

I then used admin.py to import the rest of the Discord JSON files I had,
including chat logs from Anticom, 4th Reich, Ethnoserver, and other leaked
servers. For example, next I imported one of the smaller servers called Pony
Power, which I’ll discuss further later in this chapter, like so:

python3 admin.py import- json ~/datasets/Discord- JSON- Scrapes/PonyPowerComplete- Sept5at155PM.txt

And here is the output from that command (in this case, I’d already
imported the Vibrant Diversity data and these two Discord channels had
some overlapping users, so my script skipped importing some of the users):

Importing: /Users/micah/datasets/Discord- JSON- Scrapes/PonyPowerComplete- Sept5at155PM.txt
Adding servers: +
Adding users: .++++..+++++.+++++..++++.++.+++++++++++..+.+......
Adding channels: ++++
Adding messages from Pony Power, #general- chat: +++
+++
+++
+++
- - snip- -

This JSON file included 50 users. The code skipped 17 of them (display-
ing dots instead of plus signs) because they were already in the database
from Vibrant Diversity, and added 33 new users.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

454 Chapter 14

My database was now full of neo- Nazi chat logs, preparing me to build
a web interface to explore them. When you’re building a web app to investi-
gate data, you need some data to explore to make sure your app is actually
working as intended. If I hadn’t imported the actual data first, I would have
had to make up and import some test data so I’d have something to trouble-
shoot with while building the web app. Another option would have been to
make up some test data to allow me to build the web app, but I de cided to
import the real data first because I knew I’d need to write that code eventu-
ally anyway.

Building the Web Interface
When you build web apps, it’s often useful to split your web pages into reus-
able components, like headers, footers, and sidebars. Individual pages may
have their own reusable components, too. For example, the page that lists
chat messages might repeat the same message component for each mes-
sage on the page. You define these components in templates, HTML files
that can contain variables and logic, like if statements or for loops. You can
render a template (convert it into HTML) by passing the template file along
with variables into a templating engine, or code that converts a template into
HTML.

Flask comes with a popular templating engine called Jinja. To build
the web interface to explore the chat logs I’d just imported, I started by
creating the layout template in Jinja. In short, I wrote the HTML code
that would make up the layout of all of the pages in my web app, but also
included Python variables and loops. Listing 14-12 shows the code for layout
. html, my layout template.

<!doctype html>
<html>

<head>
 <title>Discord Analy sis</title>
 <link rel=stylesheet type=text/css href="{{ url_for('static', filename='style.css') }}"> 1
</head>

<body>
 <div class="wrapper">
 <div class="sidebar">
 {% for server in servers %} 2
 <div class="server">
 <p>{{ server.name }}</p>

 {% for c in server.channels %} 3
 <li{% if channel %}{% if c.id==channel.id %} class="active" {% endif %}{% endif %}>#{{ c.name }} [{{
 "{0:,}".format(c.message_count() | int) }}]
 {% endfor %}

 </div>
 {% endfor %}

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://layout.html
http://layout.html

Neo- Nazis and Their Chat Rooms 455

 <p>Users</p>
 </div>

 <div class="content">
 <div class="search">
 <form method="get" action="/search">
 <input type="text" name="q" class="q" placeholder="Search query" {% if q %}
 value="{{q}}" {% endif %} /> 4
 <select name="s">
 <option value="">[all servers]</option>
 {% for server in servers %} 5
 <option value="{{ server.id }}" {% if server.id==s %} selected="selected" {% endif
 %}>
 {{ server.name }}
 </option>
 {% endfor %}
 </select>
 <input type="submit" value="Search" />
 </form>
 </div>

 <div class="messages">
 {% for message in get_flashed_messages() %} 6
 <div class=flash>{{ message }}</div>
 {% endfor %}
 </div>

 {% block content %}{% endblock %} 7
 </div>
 </div>
</body>

</html>

Listing 14-12: The layout . html layout template

The code in Listing 14-12 looks like HTML at a glance, but if you look
closely you’ll see that it’s actually a Jinja template. For example, look at the
code that adds the CSS (Cascading Style Sheets) file— which defines the page’s
style—to the page 1. The HTML syntax for adding a stylesheet is

<link rel=stylesheet type=text/css href="style.css">

where style.css is the path or URL of a CSS file. Instead of an actual file-
name, the code in Listing 14-12 uses

{{ url_for('static', filename='style.css') }}

In a Jinja template, putting a Python expression between {{ and }} means
Python will evaluate this expression when the template is rendered. In this
case, Listing 14-12 rendered that line as <link rel=stylesheet type=text/css
href="/static/style.css"> because the url_for() function, which is part of
Flask, returned the /static/style.css string.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://layout.html

456 Chapter 14

The template in Listing 14-12 also included some for loops. In Jinja, you
start a for loop with the code {% for item in list %} and end it with {% endfor %}.
In the left sidebar of the layout, the template listed all of the Discord serv-
ers in the databases 2, looping through the items in the servers list one at
a time. (For this template to render properly, I’d need to make sure to pass
servers into the template as a variable when I render it in the Flask code.)
For each server, after displaying the server name, it looped through all of
the channels in that server 3, getting the list of channels from server.chan-
nels. For each channel, the code displayed a link to view messages in that
channel followed by the number of messages it contains.

The template also included a search bar at the top of the page 4, as
well as a drop- down menu with options to search a specific server or to
search them all 5. It also included a list of notification messages 6 I could
use if I wanted to display an error message— for example, if I tried loading a
link to view messages in a channel that didn’t exist in the database. Fi nally,
the template displayed the content block for that par tic u lar page 7. While
all pages shared this template, the content block differed for each page.

 After starting on my templates, I wrote code for a handful of routes,
which let the web app know which page the user’s web browser was trying to
view. In web development, you can think of a route as a path for a web page,
except it can include placeholders. For example, if the web app is hosted at
http:// localhost:5000, and the Python code defines the route /search for the
search page, users can view that route with the URL http:// localhost:5000
/ search.

The home page route (/), shown in Listing 14-13, was by far the sim-
plest one in my web app. This page displayed the message “This is a web
app that will let you research the alt- right chatroom leak, published by
Unicorn Riot.”

@app.route("/")
def index():
 servers = Server.query.all()
 return render _ template("index . html", servers=servers)

Listing 14-13: The home page route (/)

In Flask, each route is a function that returns the HTML for that web
page. The index() function starts with the @app.route("/") decorator, which
is how Flask knows that the / route should call this function. This function
first runs a SQL query to get all of the servers in the database, stored in
the variable servers. It then calls the render_template() function, rendering
the index . html template, passing the servers variable into the template, and
returning the HTML it receives.

Listing 14-14 shows the code for the index . html Jinja template that was
rendered.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://localhost:5000
http://localhost:5000/search
http://localhost:5000/search
http://render_template("index.html
http://index.html
http://index.html

Neo- Nazis and Their Chat Rooms 457

{% extends "layout . html" %}
{% block content %}
<h2>Alt- right chatroom research</h2>
<p>This is a web app that will let you research the alt- right chatroom leak,
 published by Unicorn Riot.</p>
<p>Click on channel names to browse them. Search for keywords. Viewing
 individual messages will show you the whole conversation from an hour
 before and after that message.</p>
{% endblock %}

Listing 14-14: The index . html template

The first line of code in this template means that Jinja should render
the layout . html template but replace its {% block content %}{% endblock %}
with the content block defined here— some text that says, “Alt- right chat-
room research” and a brief description of the web app. Also notice that in
Listing 14-13, I passed the servers variable into the template; the layout . html
template in Listing 14-11 used this variable to make the list of servers in
the sidebar.

Figure 14-3 shows what the app’s home page looked like at this point,
with the home page text as defined in index . html and with the servers on the
left and the search bar at the top as defined in layout . html.

Figure 14-3: The home page of my Discord Analy sis web app

Let’s look at one more route that does a bit more than the / route,
the /search route, which will help explain how one of the web app’s core
features— searching the chat logs— works. Here’s the Python code:

@app.route("/search")
def search():
 q = request.args.get("q")
 s = request.args.get("s", 0)
 if s == "":
 s = 0
 page, per_page = get_pagination_args()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://layout.html
http://index.html
http://layout.html
http://layout.html
http://index.html
http://layout.html

458 Chapter 14

 server = Server.query.filter_by(id=s).first()

 messages = Message.query
 if server:
 messages = messages.filter_by(server=server)
 pagination = (
 messages.filter(Message.message.like(f"%{q}%"))
 .order_by(Message.timestamp)
 .paginate(page=page, per_page=per_page)
)

 if server:
 description = f"Search {server.name}: {q}"
 else:
 description = f"Search: {q}"

 servers = Server.query.all()
 pagination_link = f"/search?q={q}&s={s}"
 return render_template(
 "results . html",
 q=q,
 s=int(s),
 servers=servers,
 pagination=pagination,
 pagination_link=pagination_link,
 description=description,
)

The search() function starts with the decorator @app.route("/search"), so
Flask knows that the /search route should call this function. At the begin-
ning of the function, I defined the q, s, page, and per_page variables as the
values from the URL’s query string. For example, if the URL ends in
/search?q=berkeley, then this code would set the value of q to the berkeley.

I got this query string information from the Flask variable request.args,
which is a dictionary containing all of the values after the ? in the URL.
The code got the value of the q key in this dictionary by evaluating request.
args.get("q"), but request.args["q"] would work just the same. When using
the .get() method on dictionaries, you can choose default values, as I did
in the following line. The expression request.args.get("s", 0) looks through
request.args for the key s, and returns it if it finds it. If the expression
 doesn’t find s, it returns 0.

On the search page, q is the search query and s is the ID of the server
to search (if s is 0, this means I want to search all servers). The page and
per_page variables are used for pagination, which determines how an app
displays a limited number of results per page. The page variable is the page
number, and per_page is the number of results per page.

Since three of the routes in my app used pagination (/search, /channel,
and /user), I wrote the code to find the page and per_page query strings in
the function get_pagination_args(), which allowed me to just call that func-
tion instead of repeating the same code in multiple places.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://results.html

Neo- Nazis and Their Chat Rooms 459

I then queried the SQL database for the server with the ID stored in s,
saving the result as server. The server variable is used to optionally search a
single Discord server, rather than all of them. If the SQL database doesn’t
have any servers with that ID, then server is set to None, which means the app
should search all servers. I then started building the SQL query to search
for all of the messages, storing the results in the variable messages. If this
search was limited to a specific server (that is, if there’s a value for s), the
code modified messages to filter just by messages from that folder. Fi nally, I
used the SQLAlchemy pagination feature to run the SQL query, making
sure to select the correct page of results, storing the search results in the
variable pagination. Part of the SQLAlchemy query included Message.message.
like(f"%{q}%") to ultimately run a SQL query that used SQL’s LIKE operator,
which did a case- insensitive search for any messages containing the string q,
as described in Chapter 12.

In the following if statement, my code defined the description variable
as a description of the search, showing either just the search query or both
it and the name of the server being searched. It then loaded all of the serv-
ers with servers = Server.query.all(), which the layout . html layout template
needs to render the sidebar. Fi nally, the code rendered the results . html Jinja
template, passing in all of the appropriate variables, resulting in the search
results page.

In addition to the home page route (/) and the search route (/search), I
created these other routes for my web app:

/view/message_id The hyperlink to a specific Discord message

/channel/channel_id The hyperlink to a specific channel in a Discord
server

/users A page that listed all Discord users in the database, along with
how many messages each has posted

/users/user_id A page that listed the messages that each Discord user
has posted, spanned across all servers and channels that they posted in

As you can see in Figure 14-3, the Discord servers that I imported while
developing the app are all listed in the left sidebar, along with each server’s
channels. To start my research, I could search for keywords (using the
/search route), or I could click a channel name on the left and read its chat
logs (using the /channel/channel_id route).

You can view the code for all of these routes in app.py at https:// github
. com / micahflee / hacks - leaks - and - revelations / blob / main / chapter - 14 / discord - analysis
/ app . py.

Now that you know how the Discord Analy sis web app works, let’s look
at how I went about using it to analyze the Discord leaks.

Using Discord Analy sis to Find Revelations
 After I had built enough of the Discord Analy sis web app that I could start
using it for actual research, I started by reading a cross section of all of
the Discord leaks I had imported and taking notes on what might make

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://layout.html
http://results.html
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/chapter-14/discord-analysis/app.py

460 Chapter 14

good articles— all the while fixing bugs as I discovered them, and adding
features as I felt I needed them. I went one Discord server at a time, trying
to understand the gist of what was discussed in each channel. I searched
for terms like WikiLeaks to see what the fascists were saying about it, since it
had recently played a role in Trump’s 2016 election victory. I stumbled upon
vari ous conversations about digital security advice and which encrypted
messaging apps to trust, all of it mixed up with numerous conspiracy theo-
ries, racist diatribes, and selfies of people holding guns.

 Here’s how the process of using Discord Analy sis on my computer
actually worked. When I wanted to run my web app to test it during devel-
opment or to start researching neo- Nazi chats, I’d run python3 app.py. It
showed this output, which is the typical output you see every time you start
a Flask web app:

 * Serving Flask app 'app'
 * Debug mode: on
WARNING: This is a development server. Do not use it in a production
deployment. Use a production WSGI server instead.
 * Running on http:// 127 . 0 . 0 . 1:5000
Press CTRL+C to quit
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 654-228-939

The output said that the Flask web server started and was running at
the URL http:// 127 . 0 . 0 . 1:5000. The web server continued to run until I was
ready to quit it by pressing ctrl- C. I loaded that URL in my web browser
to view the web app. As I made web requests, my terminal output showed
me web service logs. When I loaded the home page, my app produced these
logs:

127.0.0.1 - - [14/Jan/2023 11:58:30] "GET / HTTP / 1 . 1" 200 -
127.0.0.1 - - [14/Jan/2023 11:58:30] "GET /static/style.css HTTP / 1 . 1" 200 -
127.0.0.1 - - [14/Jan/2023 11:58:30] "GET /favicon.ico HTTP / 1 . 1" 404 -

The left column is the IP address (127.0.0.1) of the web browser that
loaded each route—in this case, I loaded routes from my own computer.
It also shows the timestamp the route was loaded, which route was loaded,
and other information. The first route that I loaded was the home page
(you can tell because the first log line says GET /), and it responded with the
HTTP code 200, which means it loaded successfully. Immediately after that,
my browser loaded the CSS stylesheet at /static/style.css, which success-
fully loaded too, and tried to load the favicon (the icon in the corner of a
web browser tab) at /favicon.ico. However, the server replied with the HTTP
code 404, “File not found,” because I hadn’t both ered creating a favicon for
my app.

At the top of each page in the web app was a search bar, next to which
was the drop- down menu that let me choose to search all servers or just
one. For example, I tried searching all Discord servers from which I had

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://127.0.0.1:5000
http://127.0.0.1:5000

Neo- Nazis and Their Chat Rooms 461

imported data for the string berkeley. Back in my terminal, I could see that
my browser had loaded the /search?q=berkeley&s= route:

127.0.0.1 - - [14/Jan/2023 11:58:57] "GET /search?q=berkeley&s= HTTP / 1 . 1" 200 -
127.0.0.1 - - [14/Jan/2023 11:58:57] "GET /static/style.css HTTP / 1 . 1" 304 -

The search page loaded the CSS stylesheet at /static/style.css as well, but
this time it returned with the HTTP code 304, which means that the stylesheet
 hadn’t been modified since the last time my browser made that request.

Figure 14-4 shows the Discord Analy sis web app showing these search
results. You can see that the page has the URL http://127.0.0.1:5000/
search?q=berkeley&s= and lists search results from all servers for the string
berkeley.

Figure 14-4: Searching for the string berkeley in my Discord Analy sis web app

My search found 417 messages that contained the string berkeley, along
with information on who posted each message, in what channel, in what
server, at what time, and the content of the message, with the search term
itself highlighted. If I clicked on the user’s name, which linked to the
/users/user_id route, I’d see all of the posts from that user, including those
on multiple Discord servers.

Each message also had a view link, which led to the /view/message_id
route and pulled up a page displaying that individual message. This allowed
me to store links to individual messages in my notes. When I clicked on a
view link I’d saved, the web app would show me not only that message but
also the 20 messages before and after it, so I could easily see the rest of the
conversation.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://127.0.0.1:5000/search?q=berkeley&s=
http://127.0.0.1:5000/search?q=berkeley&s=

462 Chapter 14

The app also allowed me to explore the leaked chats by manually read-
ing through each channel, then selecting individual channels by clicking
the links in the left sidebar. For example, Figure 14-5 shows the #general
channel in the Pony Power server. In this case, the URL was http:// 127 . 0 . 0
. 1:5000/channel/10, meaning the channel_id in the /channel/channel_id route
was 10. The ID field in the Channel table auto- increments, so the first row
starts at 1, then 2, then 3, and so on. I imported the Vibrant Diversity JSON
file first, which created channels with IDs 1 through 9, then imported the
Pony Power JSON file, which created channels with IDs 10 through 13.

Figure 14-5: Viewing chat logs for the #general- chat channel in the Pony Power server in
my Discord Analy sis web app

With this case study as inspiration, I hope that you’ll feel confident
building similar custom apps for your future investigations when you get
your hands on large structured datasets like these.

 After spending a few days splitting my time between writing code and
reading some of the worst stuff on the internet, I ultimately de cided to
write about Pony Power, a server set up for the sole purpose of harassing
and doxing people.

The Pony Power Discord Server
Pony Power was one of the smaller servers, with only 50 users and just over
1,000 messages posted over the course of just 10 days. More than any other
server, it was full of PII for perceived members of antifa. I de cided to focus
my reporting on this server because this harassment campaign was clearly
newsworthy, and because the server was small enough that I could read
through all of the messages and write about the highlights. As a single
reporter, it would have taken me considerably longer to do the same for
larger servers, like Vibrant Diversity.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://127.0.0.1:5000/channel/10
http://127.0.0.1:5000/channel/10

Neo- Nazis and Their Chat Rooms 463

In the Pony Power chat logs, I found private data from over 50 people
from 14 states across the country, from California to Florida. The infor-
mation often included users’ photo graphs, social media profiles, home
addresses, phone numbers, email addresses, dates of birth, driver’s license
numbers, vehicle information, places of employment, and in one instance,
a Social Security number. As I read through the Pony Power chat logs,
from the beginning to the end, I built up a spreadsheet listing each person
who was doxed to help me keep track of them, as well as Discord Analy sis
links to the messages where the doxing happened. The server’s #faces- of-
rainbow- ponies channel contained nearly all of the PII.

The Pony Power fascists weren’t very selective about their targets.
Anyone they considered to be a member of antifa or an antifa sympathizer
was fair game, as were journalists they disagreed with, professors from lib-
eral universities, or anyone who spoke out against racism.

Eight times in 2017, fascists traveled to Berkeley to hold protests. They
came prepared with racist and antisemitic signs and armed with weapons
for street fighting. One of these protests, a Say No to Marxism rally, was
scheduled for late August. In response, antifascists began preparing a coun-
terprotest. “So who is going to be there to stand up against Antifa? This
is a good chance to dox them so we can have an idea who they are,” one
of the Pony Power members posted in the chat. “We should go onto their
[Facebook] page if they have an active one and dox all the ones who plan
on being there and who liked the post.”

Another Pony Power user posted a link to a website for “white people
striving to be allies in the fight for Black Liberation,” and said, “ These white
allies need doxing.” Another wanted to dox members of the Demo cratic
Socialists of Amer i ca and the Southern Poverty Law Center. Some members
of the group disagreed about the strategy of doxing every one they didn’t
like, though. “Fuck these random ass people to be honest,” another user
posted. “We need to dox journalists and leadership of activist groups.” A
person going by the name Klaus Albricht suggested, “It’s time we start map-
ping out the liberal teachers of universities.”

Albricht de cided to dox a 22- year- old college student because her
Facebook cover photo showed her wearing a shirt reading “Punch more
Nazis,” a reference to Richard Spencer, a white supremacist best known for
the viral video in which he is punched in the face while being interviewed.
Albricht outlined a plan to trick her into clicking a malicious link so he
could learn her IP address. He also said that he would dox people who liked
her shirt. Less than 20 minutes later, he posted her home address, what she
was studying at college, and links to all her social media accounts.

While writing my story, I reached out to the woman who was doxed. She
told me, “I never clicked the link because it seemed hella sketch.” She also
said that she hadn’t gone out to protest fascists, and that she was annoyed
that they had doxed her just because she hurt their feelings. She was “terri-
fied” that they had her address because “it’s not just myself who’s at risk, but
now also my parents who live here as well.”

In the 10 days’ worth of Pony Power chat logs I had at my disposal, I
also found the fascists doxing Emily Gorcenski, an antifascist data scientist

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

464 Chapter 14

from Charlottesville who had witnessed Field’s car plow into protesters.
She’s a trans woman, and the fascists posted her deadname (the name
she went by before she transitioned) and her home address. She has since
moved to Germany.

Fascists also doxed 10 alleged members of an antifa group from
Gainesville, Florida. A user who went by the name adolphus (not hitler)
posted, “I lost my job because of these [homophobic slur]s,” later posting
again that he lost his job because he attended the Unite the Right rally
in Charlottesville, so “I’ve got some scores to settle with my local antifa.”
I searched the internet for terms like Gainesville Charlottesville fired and
quickly found news articles about a Gainesville man who was fired from his
job after marching in Charlottesville with neo- Nazis. He was a member of
the pro- slavery hate group League of the South, and he had gotten arrested
in Charlottesville for carry ing a concealed handgun. I tracked down a court
document related to his arrest and found one that included his phone
number. Because I de cided to name him in the article, I called him to give
him a chance to provide his side of the story, per the journalistic practices
described in Chapter 2. To keep my actual phone number private from
him and the League of the South, I used a new virtual phone number I had
created just for this purpose (today, I have a public phone number that I
use solely for communicating with sources like this). I left messages, but he
never responded.

 MEN TA L HE A LT H A ND E X T R EMISM R ESE A RCH

While building Discord Analy sis and developing a story based on the chat logs
from my Unicorn Riot contact, I spent several hours a day for two weeks read-
ing racist, antisemitic, misogynistic, and outright genocidal rants by neo- Nazis
speaking to one another online. Among these, one message in par tic u lar stuck
out to me. It was written by a man, prob ably in his 50s, well past midnight, and
it was a rant about the Jews whom he believed were secretly controlling the
media and the banks. It was clear to me that he was expressing deeply held
beliefs rather than just trying to post something edgy, like a lot of the youn ger
fascists seemed to be doing. While writing this chapter, I searched my Discord
Analy sis app for the term jew to see if I could find that specific message, but it
came back with over 11,000 results, all of them full of hate. I de cided it wasn’t
worth tracking it down after all.

I knew about antisemitism, of course. I’d experienced antisemitic microag-
gressions myself. But reading through these neo- Nazi chat logs was the first
time that I realized how many people— including thousands of Americans, many
of whom lived in my city— really wished that we were all dead.

 After reading through a massive amount of this content, I had many ideas
for articles I wanted to write, but I ended up writing only a single one, about
the Pony Power server. After publishing the first article, I didn’t want to spend

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Neo- Nazis and Their Chat Rooms 465

more time reading these chats. I found it much better for my mental health to
instead focus on writing code to improve my Discord search tool so that others
could do the research. As I describe in the following section, this code eventu-
ally became a collaboration with Unicorn Riot called DiscordLeaks.

Reading through chat logs like this is an experience that no one should
have to go through. But unfortunately, it’s necessary for extremism research-
ers. If you’re doing this sort of work, make sure to prioritize your own mental
health. Take breaks and find people to talk to about the terrible things you’re
seeing so you don’t keep it all inside. However you go about it, it’s impor tant
to have a plan for making this work sustainable, because it will definitely
affect you.

Pony Power members also went after Michael Novick, at the time a
70- year- old retired teacher from Los Angeles who had been an antifascist
activist for over 50 years. In the late 1980s, Novick helped found a group
called Anti- Racist Action, and he’s been dealing with threats from neo-
Nazis ever since. Because Novick’s name appeared on antiracist websites,
Pony Power users de cided that he must be an antifa leader. “Michael is
 behind what we know as the power structure,” Albricht posted. The Pony
Power users then hit what they believed to be a gold mine: they discovered
a video of Novick speaking at the 2011 Los Angeles Housing & Hunger
Crisis Conference in which he said, “I’m of Jewish descent.” “HE ADMITS
HE IS JEWISH! I KNEW IT!” Albricht exclaimed. “We have our link. Antifa
is a Jewish organization!” He added, “Now let’s tear these [antisemitic slur]
s apart!” and began inventing an antifa organization chart that placed
Novick on top. “This man we know for a fact is the leader of Antifa. [. . .] All
other branches report to him.”

Novick told me it’s no secret that he’s Jewish. “My father came to the US
in the early ’30s as a teenager from Poland, and most of his family (many
aunts, uncles, and cousins) were wiped out by the Nazis either in Bialystok
during a ghetto rebellion or in the camps,” he said. He also told me that
 there’s no antifa “command structure” or “ organization chart.” He added,
“Some antifa are Jewish. Hardly surprising, given the level of antisemitism
displayed by the fascists and neo- Nazis.”

According to a story by Unicorn Riot reporter Chris Schiano, the Pony
Power server was started by Dan Kleve. At the time, Kleve was a biochem-
istry major at the University of Nebraska– Lincoln and a member of the
neo- Nazi group Vanguard Amer i ca. After Klein was outed as one of the fas-
cists who marched in Charlottesville, people began calling the head of his
department to demand that he be expelled. Schiano wrote that Kleve cre-
ated the Pony Power server, in apparent retaliation against those demand-
ing his expulsion, “to seek revenge by maliciously publishing the personal
information of alleged antifascists and encouraging others to harass them
and bring them harm.”

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

466 Chapter 14

You can read my full reporting on the Pony Power Discord chat logs at
https:// theintercept . com / 2017 / 09 / 06 / how - right - wing - extremists - stalk - dox - and - harass
- their - enemies.

The Launch of DiscordLeaks
 After publishing my Pony Power article, I was sure that there were many
more revelations spread throughout the hundreds of thousands of messages
in the leaked chat logs, but I de cided I needed a break from Nazis. I wanted
to make it pos si ble for others to analyze the rest of the Discord servers,
though, and I knew from my own experience with these datasets that there
 were technical challenges to analyzing these large JSON files, which is why I
developed Discord Analy sis to begin with. I spoke with the journalists from
Unicorn Riot and showed them the Discord Analy sis web app I had used to
write my article. We de cided that Unicorn Riot would run a public version
of this app for researchers, journalists, and members of the public to use.
This is how DiscordLeaks was born.

DiscordLeaks (https:// discordleaks . unicornriot . ninja) is a searchable public
database designed to make it easy for anyone to access the massive corpus
of fascist chat logs from hundreds of Discord servers infiltrated by anti-
fascists. I and a small team of anonymous developers worked in our spare
time to add new features to the app and handle the scaling issues that come
with hosting a public website that gets lots of traffic. We kept the modified
source code for DiscordLeaks private, but it’s based on the Discord Analy sis
source code that I just described. By late 2017, DiscordLeaks was live, and
by early 2018 it was full of chat logs from several Discord servers uploaded
by Unicorn Riot journalists, including the one used to organize Unite the
Right. The only redactions to the chat logs on DiscordLeaks are the PII for
victims of doxing and harassment by far- right extremists; the rest of the
data is fully public.

Over the years, Unicorn Riot has obtained a steady stream of leaked
Discord chat logs from fascist groups and continued to index them into
DiscordLeaks. I eventually stopped contributing to the proj ect myself. In
the time I’ve been away, it’s matured: the infrastructure is now running in
Docker containers, and the speed of search has greatly improved thanks
to the addition of an Elasticsearch database (both technologies were dis-
cussed in Chapter 5). Today, DiscordLeaks contains millions of messages
from nearly 300 Discord servers used by the far right, available for the pub-
lic to research. It also contains chat logs from RocketChat servers, which I
discuss in the next section.

The Aftermath
By 2019, I had stopped writing code for DiscordLeaks myself, but I still kept
in touch with the developers and promoted the website. I was proud of my
role in developing this impor tant tool for extremism research, but at the
time I still had no idea how much positive impact it would ultimately have.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://theintercept.com/2017/09/06/how-right-wing-extremists-stalk-dox-and-harass-their-enemies
https://theintercept.com/2017/09/06/how-right-wing-extremists-stalk-dox-and-harass-their-enemies
https://discordleaks.unicornriot.ninja

Neo- Nazis and Their Chat Rooms 467

In this section I’ll discuss two major developments in the DiscordLeaks
proj ect since I wrote the initial code back in 2017. In 2021, survivors of the
Charlottesville terrorist attack won a $25 million settlement against the
 organizers of Unite the Right in a lawsuit made pos si ble, in part, by evi-
dence published on DiscordLeaks. DiscordLeaks continues to be a vital tool
for extremism researchers: in 2022, DiscordLeaks’ anonymous developers
updated it to include another major leak of neo- Nazi chat logs, this time
from the group Patriot Front.

The Lawsuit Against Unite the Right
In 1871, in response to the wave of racist terrorism against Black people
that swept the South after the end of the Civil War, the US Congress passed
the Ku Klux Klan Act. This law allows victims of racist vio lence to sue the
perpetrators in civil court. If the victims can prove there was a conspiracy
to deprive them of their civil rights, they can force the racists to pay mon-
etary damages. This is exactly what nine survivors from Charlottesville did.

The plaintiffs in these cases were all Charlottesville residents, some
of whom were severely injured that day— one suffered a fractured skull,
another a broken leg and ankle. They filed the Sines v. Kessler lawsuit in
October 2017 against 14 individuals and 10 organizations, with the goal
of bankrupting the American fascist movement. The individual defen-
dants included Jason Kessler, the primary organizer of Unite the Right;
James Alex Fields Jr., the neo- Nazi terrorist serving a prison sentence for
Heather Heyer’s murder; Richard Spencer; and leaders of the fascist groups
that organized Unite the Right. Defendants also included fascist groups
themselves like Vanguard Amer i ca, Traditionalist Workers Party, vari ous
branches of the Ku Klux Klan, and the National Socialist Movement.

The Charlottesville survivors’ lawsuit was organized and funded by
a legal nonprofit called Integrity First for Amer i ca (IFA). This mission of
the organization, founded in response to the vio lence of Unite the Right,
was “defending demo cratic norms and ensuring equal rights for every
American.” Using over 5TB of evidence in the form of phone rec ords, text
messages, videos from Unite the Right, emails, social media posts, and pri-
vate messages and chat logs, the plaintiffs successfully made their case. IFA
made all of the evidence used in the lawsuit available to the public at https://
www . integrityfirstforamerica . org / exhibits.

On its blog, IFA explained that while its lawyers did eventually get cop-
ies of the neo- Nazi chat logs directly from Discord as part of the lawsuit’s
discovery process, DiscordLeaks provided “an immense amount” of detail
before the lawsuit was filed. In the chat logs published by Unicorn Riot,
Unite the Right attendees discussed whether they could hit protesters with
cars and then claim self- defense, which is what happened. This evidence
“provided crucial early information that made the speed and breadth of the
initial complaint pos si ble.”

In November 2021, the court found the fascist organizers guilty and
ordered them to pay over $25 million in damages. In late 2022, IFA wound
down its operations.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.integrityfirstforamerica.org/exhibits
https://www.integrityfirstforamerica.org/exhibits

468 Chapter 14

The Patriot Front Chat Logs
In the aftermath of the violent Unite the Right protests in Charlottesville,
one of the neo- Nazi groups in attendance, Vanguard Amer i ca, broke apart
due to infighting. Out of the ashes of Vanguard Amer i ca, a new fascist
group called Patriot Front was born. Patriot Front, based out of Texas, is
known for requiring members to do weekly “activism” involving vandal-
izing property with racist messages and posting Patriot Front propaganda,
like stickers, all over the place. According to the Anti- Defamation League,
Patriot Front was responsible for 82 percent of all reported incidents in
2021 involving the distribution of racist, antisemitic, and other hateful pro-
paganda in the US.

In January 2022, someone hacked Patriot Front and leaked 400GB
of data to Unicorn Riot, including thousands of messages posted to the
group’s internal RocketChat server, an open source chat platform that
anyone can host themselves. Unicorn Riot collaborated with DDoSecrets
to publish the 400GB Patriot Front dataset, which you can find at https://
ddosecrets . com / wiki / Patriot _ Front. In response to this leak, the DiscordLeaks
developers also updated the app to include support for RocketChat, and
they imported over 12,000 new messages into it from two Patriot Front chat
servers. You can find Patriot Front’s chat logs at https:// discordleaks . unicornriot
. ninja / rocket - chat.

Figure 14-6 shows a still from a video in the Patriot Front dataset of
members reading their manifesto and chanting “Life, liberty, victory!” The
video includes a few seconds at the end where one of the neo- Nazis, appar-
ently thinking the recording was over, yells, “Seig fucking Heil!”

Figure 14-6: Patriot Front members, from a video in the hacked dataset

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://ddosecrets.com/wiki/Patriot_Front
https://ddosecrets.com/wiki/Patriot_Front
https://discordleaks.unicornriot.ninja/rocket-chat
https://discordleaks.unicornriot.ninja/rocket-chat

Neo- Nazis and Their Chat Rooms 469

Unfortunately, the American fascist movement has steadily grown since
the election of Donald Trump in 2016. But there’s a wealth of public datas-
ets about this movement, just waiting for researchers like you to dig in and
expose it.

Summary
In this chapter, you’ve learned how antifascists infiltrated the Discord
servers used by the American fascist movement, including organizers of
the deadly Unite the Right rally in 2017, and leaked millions of chat logs
to Unicorn Riot in JSON format. You saw how I went about analyzing
 these JSON files to understand their structure, how the custom Flask and
SQLAlchemy web app I built worked under the hood, and how the app
ultimately became DiscordLeaks. I also described my own investigation into
the Pony Power server that fascists used to dox their enemies. Fi nally, you
read about the amazing results from the Sines v. Kessler lawsuit and the con-
tinued success of DiscordLeaks tools.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Since I started writing this book a year and a half ago,
the feeling that I’m drowning in datasets has only
increased. In a single recent week, I received 18GB of
data from a police intelligence firm, another 100GB of
data from a mass transit agency’s police department,
and a copy of the Transportation Security Agency’s No
Fly List. This is a fairly typical week, and, as usual, I
 haven’t had a chance to look at any of them yet.

I’m so happy that you’ve finished reading this book, because now you
can use your newfound skills to help investigate this never- ending flood of
datasets. There aren’t nearly enough of us with these skills, so I’m excited
that you’ve joined the ranks. I hope you’ll use your skills to discover and
publish secret revelations, and to make a positive impact on the world while
 you’re at it.

This book is crammed with technical information, but it’s far from a
comprehensive guide to investigating leaked and hacked datasets. I merely

A F T E R W O R D

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

472 Afterword

scratched the surface on a wide swath of technologies that come into play,
like using the command line, programming in Python, using Docker con-
tainers, working with SQL databases, and analyzing structured data. There
are countless books dedicated to each of these topics. But while there’s a lot
left to learn, you should now have a solid foundation to build on.

The best way to gain confidence in these skills, and to learn more, is to
jump in head first and just start using them. Go to the DDoSecrets website,
see what the collective has published recently, and subscribe to its newslet-
ter so you’ll get email alerts when new datasets are released. If you find
a dataset that looks in ter est ing and is available for anyone to download,
launch your BitTorrent client, download it, and see if you can make sense
of it. If you find a dataset released under limited distribution, meaning
that DDoSecrets will give it only to journalists and researchers (like you!),
request access. As long as you plan on publishing any revelations you find,
you shouldn’t have a prob lem gaining access.

Depending on the dataset you’re looking at, you might hit technical
hurdles that aren’t covered in this book and that you don’t know how to
solve. I often come across data that I don’t recognize and don’t know how
to proceed with. Most of the time, I end up searching the internet to figure
out my next steps. Sometimes I even learn how to use new technologies that
I have no prior experience with, like new types of databases or software,
so I can import and explore the data. As your skills grow, you’ll be able to
do the same using online documentation and, most importantly, trial and
error. Don’t be afraid to experiment.

As you’re exploring new datasets, automate as much of your work as
pos si ble by writing simple Python scripts like the ones sprinkled through-
out this book. Regularly writing code is, by far, the best way to get better at
programming. Also publish your in ter est ing findings, even if they’re minor.
If you don’t work for a newsroom, start a blog and publish your work there.
The more investigations you publish, the more likely it is that potential
sources will notice you, start up secure communications with you, and send
you datasets to analyze. Be precise in your reporting, and as much as pos si-
ble, show your work. Investigating leaked and hacked datasets is cool, and
 people will love to read about the details that you’ve discovered, how you
discovered them, and how you verified that they’re true.

Good luck! Get in touch at micah@micahflee . com to let me know if you
find any revelations.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://micah@micahflee.com

It’s hard for me to imagine doing the kind of data
analy sis work I do without Linux. However, many Linux
tools that I rely on every day simply don’t exist in the
Win dows ecosystem. Using just Win dows, you can’t
make your datasets searchable using Aleph, for exam-
ple, or quickly spin up popular SQL servers to import
leaked databases. Win dows Subsystem for Linux (WSL)
allows you to do these tasks and considerably more,
including running command line tools, in Win dows
without needing to set up your own Linux VM.

WSL generally works well, but you may encounter a few issues, par-
ticularly related to disk performance, when you attempt to crunch data
stored on Windows- formatted disks from your Linux terminal. Some tasks
may take your computer hours or days to finish when they should take just
minutes. This appendix teaches Win dows users more about the quirks

A
S O L U T I O N S T O C O M M O N

W S L P R O B L E M S

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

474 Appendix A

of the Linux filesystem, as well as vari ous pos si ble solutions to the disk
 performance prob lem. It’s optional for Win dows users, but if you do run
into a situation where programs are taking considerably longer to run than
I describe, this appendix should help you diagnose the prob lem and come
up with a solution.

I recommend waiting to read this appendix until after you finish
Chapter 3, where you’ll install WSL, and Chapter 4, where you’ll learn the
command line code required to implement the performance solutions
described here. You might need to reference this appendix in Chapter 5,
while you’re bind- mounting in Docker or indexing datasets in Aleph; in
Chapter 11, while you’re using Linux tools to extract over a million files;
and in Chapter 12, while you’re importing 20GB of data into a SQL data-
base running in Docker.

Understanding WSL’s Linux Filesystem
Before solving any prob lems that you might encounter with WSL, you’ll
need to understand how and where WSL stores your Linux files. In this sec-
tion, you’ll learn how the WSL Linux filesystem works in Win dows, how to
access Linux files in Win dows, and, conversely, how to access Win dows files
in Linux. I also outline some of the simpler prob lems you might encounter
and how to solve them.

Your WSL Linux filesystem contains much more than just the data you
store there. It includes a complete copy of the Ubuntu operating system,
and when you install new programs using apt, it installs those into the
Linux filesystem, too. Just as in a real Ubuntu system, / is the root folder,
and it contains all of the usual default folders for Ubuntu systems. In your
Ubuntu terminal, list the folder names in the root filesystem by running
the ls / command.

This should give you the following output:

bin dev home lib lib64 lost+found mnt proc run snap sys usr
boot etc init lib32 libx32 media opt root sbin srv tmp var

This output lists all of the folders inside the root folder in your Ubuntu
system. Your home folder is in /home. For example, since my Ubuntu user-
name is micah, my Ubuntu home folder is /home/micah. If you’re using Win-
dows 11 or newer, you should be able to browse your Linux files directly
from File Explorer. When you’re browsing your Linux files, you see all of
the Linux files, not just the data in your home folder. If you’re running a
new enough version of Win dows, change to your home folder (cd ~) and
then run the command explorer.exe . to open your current working folder
in Linux in Win dows File Explorer.

N O T E If you ever need to run a Win dows program in Linux (such as explorer.exe), run
Linux programs in Win dows, or other wise do more advanced tasks in WSL, check
out Microsoft’s detailed documentation at https:// learn . microsoft . com / en - us
/ windows / wsl / filesystems.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://learn.microsoft.com/en-us/windows/wsl/filesystems
https://learn.microsoft.com/en-us/windows/wsl/filesystems

Solutions to Common WSL Prob lems 475

For example, Figure A-1 shows a list of Linux files viewed in the Win-
dows File Explorer app.

Figure A-1: Browsing Linux files in File Explorer in Win dows

It’s also helpful to understand the dif fer ent be hav iors of Win dows and
Linux filesystems. The Win dows filesystem format is NTFS, and the most
 popular Linux filesystem format is ext4. Each Linux file has separate per-
missions for reading, writing, and executing, but files on NTFS systems
 don’t have this metadata.

If you’re accessing a Win dows filesystem within Linux (when you
access /mnt/c in WSL, for example), Linux treats every file as having read,
write, and execute permissions, and you can’t change these permissions by
default. This often isn’t a prob lem, but it does mean that if you copy files
from Linux to Win dows, you’ll lose their original permissions. If you want
to be able to use file permissions, you’ll need to work with files on a proper
Linux filesystem instead.

 Under the hood, the WSL Linux filesystem is stored in a single file in
the C: drive in your user’s home folder. On my Win dows 11 computer, the
filename is C:\Users\micah\AppData\Local\Packages\CanonicalGroupLimited.
UbuntuonWindows_79rhkp1fndgsc\LocalState\ext4.vhdx. The path on your com-
puter will be slightly dif fer ent, but the file containing your Linux filesystem
 will still be called ext4.vhdx. The more data you store in your Linux filesys-
tem, the bigger the ext4.vhdx file gets.

For example, suppose you want to save your datasets directly to
your Linux filesystem in the folder ~/datasets, rather than to a USB disk.
Downloading the BlueLeaks dataset to that folder will cause your ext4.vhdx
file to grow hundreds of gigabytes larger. Because your whole WSL Linux
filesystem is stored on your C: drive, this means you only have as much disk
space available in Linux as you have free space on that drive. In addition to

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

the limits of free space on your C: drive, by default, your WSL Linux filesys-
tem can only take up a maximum of 256GB.

If you want to store more data than this, you’ll need to take additional
steps to expand the size of your Linux filesystem. You can find detailed
instructions for doing this at https:// learn . microsoft . com / en - us / windows / wsl / vhd
- size.

Fi nally, you might come across a situation where you open an Ubuntu
terminal, try to access a Windows- formatted USB disk in /mnt, and find that
it’s just not there. This is because you need to have mounted your Win dows
USB disk (plugged it in and, if it’s encrypted, entered your BitLocker pass-
word) before opening the Ubuntu shell. If you can’t access a USB disk from
Ubuntu at a path like /mnt/d (assuming your USB disk is mounted to the D:
drive), you’ll need to restart WSL.

To do so, open PowerShell and run wsl - - shutdown. This will close
all open Ubuntu terminals and stop any running Docker containers.
Afterward, open an Ubuntu terminal again, and you should be able to
access that USB disk.

With the basics of WSL out of the way, let’s discuss the primary prob lem
you might encounter: disk performance.

The Disk Performance Prob lem
Using Win dows files in WSL, like the disks mounted in /mnt, has major
 performance issues. Reading from and writing to disks takes considerably
longer when you’re working with files on a Win dows disk than when you’re
working with them on WSL’s Linux filesystem, like those in /home. Some
disk- intensive tasks, like extracting a compressed file that contains a million
small files, might take several hours on a Win dows disk, when the same task
could be completed in seconds on a Linux disk. These performance issues
can severely cut into your ability to get anything done.

For this reason, Microsoft recommends that you store data in the same
operating system filesystem as the tools you plan to use. Using Linux tools
like find, grep, and unzip (see Chapter 4) or making your data searchable
using Aleph (see Chapter 5) will work best if you store your datasets in the
Linux filesystem. Meanwhile, analyzing datasets with Win dows software,
such as 7- Zip, will work best if those datasets are stored in the Win dows
filesystem.

By far the simplest solution to the performance issue is to store all
of your datasets in your Linux filesystem and use Linux tools to work
with them. However, datasets are often too large to fit in the C: drive. For
example, BlueLeaks alone takes up over half the disk space I have avail-
able on the laptop I’m using right now. This gives you no choice but to
store the datasets on a USB disk like the datasets disk that you encrypted in
Chapter 2. If you don’t have enough space on your C: drive to work with all
of the data that you’d like to, you’ll need to implement one of the solutions
I discuss in the following section.

476 Appendix A

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://learn.microsoft.com/en-us/windows/wsl/vhd-size
https://learn.microsoft.com/en-us/windows/wsl/vhd-size

Solutions to Common WSL Prob lems 477

You can sometimes work around disk performance prob lems by simply
using native Win dows programs rather than Linux programs to do your
most disk- intensive tasks. Throughout this book, I suggest using native Win-
dows tools when appropriate. For example, the Linux programs unzip and
tar are used to extract compressed files. Extracting files saved on a Win-
dows disk using these tools can be extremely slow if you’re working from
WSL. Instead, you can just use a Win dows archive program like 7- Zip, as
you did in Chapter 4 to unzip BlueLeaks. Since extracting compressed files
with 7- Zip doesn’t involve WSL at all, there’s no disk performance prob lem.

Likewise, when you’re running Python scripts, you can use the Win dows
version of Python (downloadable from https:// www . python . org) rather than
the Ubuntu version. This allows your Python scripts to crunch data from
your Windows- formatted USB disk, bypassing the WSL performance prob-
lem, which is why Chapter 7 advises you to use PowerShell instead of WSL.

This technique can only take you so far, though. There aren’t always
native Win dows alternatives. For instance, you can’t run Docker containers,
which are required for running software like Aleph, with WSL. For those
cases, you’re better off storing your data in a Linux filesystem using one of
the following solutions.

Solving the Disk Performance Prob lem
This section covers two potential solutions to the WSL disk performance
prob lem: storing only datasets you’re actively working with in your WSL
Linux partition, or storing your entire WSL Linux partition on a USB disk
with more disk space than your C: drive has available. I recommend the
first, simpler option if you just want to be able to easily work through this
book. The second option is a better long- term solution if you plan to rou-
tinely work with large datasets using Linux tools in Win dows in the future.

Storing Only Active Datasets in Linux
If you don’t have enough free space for all your datasets on your C: drive,
you can store just those you need for your current work in your Linux file-
system, keeping the rest on your USB disk. For example, you could copy the
folders that you’re actively working with into your Ubuntu home folder (that
is, in ~/datasets) and keep them there while you’re conducting a specific
investigation. When you no longer need to work with these files, copy them
back to your external Win dows disk and delete them from your home folder
to clear up space.

Storing Your Linux Filesystem on a USB Disk
Another option is to move your whole Ubuntu installation— that is, the ext4.
vhdx file that contains your Linux filesystem—to a USB disk with lots of free
space. This way, if you store all your datasets in your Ubuntu home folder
(in ~/datasets), the data will physically be stored on your USB disk instead of
on your internal C: drive.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.python.org

With this solution, you won’t be able to open an Ubuntu terminal
 unless your USB disk is plugged in and mounted, which is less convenient.
If you try opening an Ubuntu terminal while your USB disk isn’t mounted,
you’ll get the error message The system cannot find the path specified.
However, I recommend using this method if you plan to investigate your
own datasets in the future. Here’s how to implement it.

Open a PowerShell terminal and create a new folder on your external
USB disk to store your Linux filesystem by running the following command:

New- Item - Path D:\WSL - ItemType 'directory'

In PowerShell, the New- Item command creates a new file or folder. In this
case, it’s creating a new folder at D:\WSL. If you’d like to store your ext4.vhdx
file somewhere else, you can change the path when you run this command.

WSL lets you install multiple Linux distributions (that is, versions of
Linux) at the same time. In order to move one of them to your USB disk,
you’ll need to know its name. It’s prob ably called Ubuntu, but you can
check by running the wsl - - list command:

PS C:\Users\micah> wsl - - list
Win dows Subsystem for Linux Distributions:
Ubuntu (Default)
docker- desktop- data
docker- desktop

This output lists each WSL distribution that you have installed. In my
case, I have Ubuntu (my default distribution), as well as docker- desktop-
data and docker- desktop, which are both used by Docker Desktop. If you’ve
worked through Chapter 5 and installed Docker Desktop yourself, you
should have these WSL distributions too.

The following steps show you how to move a WSL distribution from the
C: drive to a USB disk. These instructions focus on the Ubuntu distribution,
but if any other WSL distributions are taking up too much space on C: as
well, you could follow the same steps to move them to a USB disk, making
sure to change the distribution name when you run the commands. I don’t
recommend moving the Docker distributions, though, as this might cause
issues with Docker Desktop working correctly.

Once you’ve confirmed the name of the distribution you’d like to move
to your disk, export a copy of it with the following command, replacing
Ubuntu with the appropriate name:

wsl - - export Ubuntu D:\WSL\backup.tar

This should save a copy of all of the data from your chosen distribution
into the file D:\WSL\backup.tar. Once this finishes, unregister the Ubuntu
distribution on your C: drive from WSL by running this command:

wsl - - unregister Ubuntu

478 Appendix A

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Solutions to Common WSL Prob lems 479

This will remove the distribution from your computer and delete the
Linux filesystem file ext4.vhdx. That’s okay, because you just made a backup.

Next, import your backup, this time telling WSL that you want your
data for this distribution to be in D:\WSL:

wsl - - import Ubuntu D:\WSL D:\WSL\backup.tar

This command creates a new WSL distribution, in this case called
Ubuntu. Now make that distribution into your default WSL distribution by
 running the following command:

wsl - - set- default Ubuntu

When you later open a WSL terminal, it should now open a shell in the
default distribution you just chose.

At this point, you’ve moved your Ubuntu filesystem from the C: drive
to the D: drive (or whatever path you changed it to when you ran your own
commands). The original ext4.vhdx file stored on C: should no longer exist,
and you should have a new one in D:\WSL\ext4.vhdx.

Now that you’ve restored the temporary backup file, D:\WSL\backup.tar,
you can delete it by running the following command in your PowerShell
terminal:

Remove- Item - Path D:\WSL\backup.tar

Open a new Ubuntu terminal. It should work, with one prob lem: you’ll
automatically be logged in as the root user, while before you would auto-
matically log in as an unprivileged user. To fix this, you’ll create a file called
/ etc / wsl . conf, using the nano text editor described in Chapter 4.

Run the following command to open nano:

nano /etc / wsl . conf

Enter the following two lines into the text editor file to set your default
user, changing micah to whatever your username was before you moved ext4.
vhdx to a USB disk:

[user]
default=micah

Press ctrl- O, followed by enter, to save the file, and then press
ctrl- X to exit. Back in your PowerShell terminal, shut down WSL by
 running this command:

wsl - - shutdown

When you open a new Ubuntu terminal, you should now be logged in
as your normal unprivileged user, rather than the root user.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

 Running your Linux filesystem off of a USB disk should now work, but
your Linux filesystem is still limited to the default 256GB of data, even if
your USB disk is bigger. The final step is to expand the size of your Linux
filesystem so that it can take up as much space as you have available on your
USB disk.

In PowerShell, shut down WSL by running:

wsl - - shutdown

Next, open a Command Prompt shell as an administrator. (Since you
need to open it as an administrator, it’s simplest to just open Command
Prompt directly instead of opening a Command Prompt tab in Win dows
Terminal.) Click Start, search for command prompt, right- click Command
Prompt, and click Run as Administrator. In your administrator Command
Prompt, open the Win dows CLI program DiskPart by running the following:

diskpart

This program helps you manage your computer’s drives and partitions.
When you open it, it should drop you into an interactive shell similar to
the Python shell. In DiskPart, you must first select the disk that you’d like
to resize, in this case the ext4.vhdx file. Run this command, substituting the
correct path to ext4.vhdx on your machine:

DISKPART> select vdisk file="D:\WSL\ext4.vhdx"

DiskPart successfully selected the virtual disk file.

You can then check the current size of your Linux filesystem by
 running this command:

DISKPART> detail vdisk

Device type ID: 0 (Unknown)
Vendor ID: {00000000-0000-0000-0000-000000000000} (Unknown)
State: Added
Virtual size: 256 GB
Physical size: 7664 MB
Filename: D:\WSL\ext4.vhdx
Is Child: No
Parent Filename:
Associated disk#: Not found.

The output of detail vdisk shows you information about the virtual disk
that you’re inspecting, including the total maximum size of your Linux file-
system in the Virtual size field, along with the actual disk space the Linux
filesystem is currently using in the Physical size field.

Next, you’ll resize your virtual disk to be larger than 256GB. First you
need to determine how big you want it to be. If your USB disk is empty
except for this ext4.vhdx file, then it’s reasonable to select the size of the

480 Appendix A

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Solutions to Common WSL Prob lems 481

entire USB disk. You can find the total size of your USB disk by right- clicking
your disk in File Explorer and clicking Properties. In the General tab, you’ll
see information about disk space usage, including the total capacity of the
disk. You should avoid making your virtual disk larger than the total size of
your USB disk; if you do, you might run out of disk space in your USB disk
without WSL realizing it, leading to unpredictable Linux prob lems.

Once you determine how big you want your Linux partition to be, make
sure you know that number in megabytes. For example, if you want its maxi-
mum size to be 1TB, then that would be 1,048,576MB. Check the “File Size
Units and Conversions” box in Chapter 4 for information on how to cal-
culate this. Now run the following command to resize it, replacing 1048576
with your chosen maximum size in megabytes:

DISKPART> expand vdisk maximum=1048576

 100 percent completed

DiskPart successfully expanded the virtual disk file.

Run detail vdisk again to confirm that the Virtual size field now shows
the new maximum size you just set, then exit DiskPart by running the exit
command:

DISKPART> exit

Leaving DiskPart...

Close the administrator Command Prompt.
 You’ve now expanded the virtual disk size in ext4.vhdx, but you still need

to expand the actual Linux partition on this disk. To do that, you need to
determine the path to the virtual disk itself.

First, open an Ubuntu terminal and run the following command:

sudo mount - t devtmpfs none /dev

This command checks to be sure that /dev is mounted in WSL. This is
a special Linux folder containing files that each represent a piece of hard-
ware attached to your computer, including hard drives. When I run this
command, I get the following output:

[sudo] password for micah:
mount: /dev: none already mounted on /dev.

Since that command uses sudo, you’ll first need to type your password to
proceed. If you see the warning message mount: /dev: none already mounted on
/dev you can safely ignore it; this means that /dev was already mounted.

Run the following command:

mount | grep ext4

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

This command runs mount, which outputs all of the filesystems that are
mounted in Linux, then pipes that output to grep to filter that down to just
the ext4 filesystems. The output should show you the path to the virtual
hard drive. For example, my output tells me the path to my hard drive is /
dev/sdc:

/dev/sdc on / type ext4 (rw,relatime,discard,errors=remount- ro,data=ordered)

Fi nally, resize your Linux partition to take up as much space as it can
by running the following command, making sure to use the correct path to
your virtual hard drive from the previous command:

sudo resize2fs /dev/sdc

When I run this, I get the following output:

resize2fs 1.45.5 (07- Jan-2020)
Filesystem at /dev/sdc is mounted on /; on- line resizing required
old_desc_blocks = 32, new_desc_blocks = 128
The filesystem on /dev/sdc is now 268435456 (4k) blocks long.

If all went will, you should see a message confirming that the partition
has been resized and is now as large as the full virtual disk. You’re done!
 You’ve expanded your Linux filesystem so that you can fit many more data-
sets on it.

Next Steps
In my opinion, Microsoft made Win dows a considerably more useful operat-
ing system by building WSL into it, particularly when you need to analyze
hacked and leaked datasets. If you’re going to use WSL on a regular basis,
I recommend that you read through the official documentation at https://
learn . microsoft . com / en - us / windows / wsl / . Those docs cover topics beyond the
scope of this appendix, such as using WSL with VS Code, installing SQL
database software directly in WSL instead of using it in Docker, running
graphical Linux apps directly in Win dows, and more.

In addition to using WSL, you may want to familiarize yourself with
Linux in general by working through this book, trying out vari ous Linux
distributions by running them in VMs on your computer (see Chapter 1),
and playing with Linux servers in the cloud (see Chapter 4).

482 Appendix A

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/

Sometimes, in order to research impor tant data pub-
licly available online, you’ll need to download a local
copy. When websites don’t provide this data in struc-
tured downloadable formats like spreadsheets, JSON
files, or databases, you can make your own copy using
web scraping (or screen scraping): writing code that loads
web pages for you and extracts their contents. These
might include social media posts, court documents,
or any other online data. You can use web scraping to
download either full datasets or the same web page
again and again on a regular basis to see if its content
changes over time.

B
S C R A P I N G T H E W E B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

For example, consider the Parler dataset discussed in Chapter 11.
Before Parler was kicked offline by its hosting provider for refusing to mod-
erate content that encourages and incites vio lence, the archivist @donk_
enby wrote code to scrape all 32TB of videos— over a million of them—to
distribute to researchers and journalists. This appendix teaches you how to
do something similar, if the occasion arises.

I’ll discuss legal considerations around web scraping and give a brief
overview of HTTP, the protocol that web browsers use to communicate with
websites. Fi nally, I describe three dif fer ent techniques that allow you to
scrape dif fer ent types of websites. Complete Chapters 7, 8, 9, and 11 before
following along, since you’ll need the basic knowledge of Python program-
ming, CSVs, HTML, and JSON covered there.

 Legal Considerations
Web scraping isn’t a crime, but its legality is still murky. In general, using
computer systems with permission (like visiting a public website) is perfectly
fine, but accessing them without authorization (like logging into someone
 else’s account) is illegal hacking.

In the US, unauthorized access is a violation of the extremely out-
dated hacking law known as the Computer Fraud and Abuse Act of 1986,
or CFAA. Web scraping shouldn’t fall under unauthorized access because
it entails writing code simply to load public web pages that every one can
already access, rather than loading those pages the normal way (using a
web browser). The prob lem is that scraping may violate a website’s terms of
 service, and there’s no legal consensus on whether this could constitute a
violation of the CFAA— courts have ruled both ways.

Despite this, web scraping is an extremely common practice. Search
engines like Google are essentially massive web scraping operations, as
are archive sites like the Internet Archive’s Wayback Machine at https:// web
. archive . org. Companies often use web scraping to keep track of airline ticket
prices, job listings, and other public data. It’s also a critical tool for investi-
gative reporting.

N O T E The CFAA was originally passed, at least in part, in response to the 1983 film
WarGames. In the film, a teenage hacker, played by Matthew Broderick, breaks into
a military supercomputer and almost starts World War III by mistake. At the time,
 there weren’t any laws against hacking computers. The wildly popular film scared
Congress into passing such laws.

The Markup, a nonprofit newsroom that investigates the tech industry,
summed up the case for web scraping in an article that includes several
examples of investigative journalism that relied on it. For example, the
newsroom Reveal scraped content from extremist groups on Facebook, as
well as law enforcement groups, and found significant overlap in member-
ship. Reuters also scraped social media and message boards and uncovered

484 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://web.archive.org
https://web.archive.org

Scraping the Web 485

an under ground market for adopted kids; that investigation led to a kidnap-
ping conviction. You can read full article at https:// themarkup . org / news / 2020
/ 12 / 03 / why - web - scraping - is - vital - to - democracy.

Before you can start writing code to scrape the web yourself, you’ll need
to understand what HTTP requests are.

HTTP Requests
When you load a web page, your web browser makes an HTTP request. You
can think of this as the browser sending a message to the website’s server
saying, “I’d like to download the content for the page at this URL so I
can look at it on my computer,” to which the server replies with an HTTP
response that contains the content, typically HTML code. Your browser
parses this HTML to figure out what else it needs to download to show you
the full web page: images, fonts, Cascading Style Sheets (CSS) files that
define how the web page looks, and JavaScript files that tell the website
how to act. The browser makes another HTTP request for each of these
resources, getting the content for them all. Websites also tend to make lots
of HTTP requests while you’re using them, such as to check for updates and
display them on the page in real time.

HTTP requests and responses have headers, or metadata about the
request or response. You might need to send specific headers for your scrap-
ing to work properly, depending on the website you’re trying to scrape.
You might also need your code to keep track of cookies, which are required
for any site with a login option. There are many types of requests you can
incorporate into your web scraping code, such as POST requests, which are
used to submit forms. However, the code in this appendix will make only
GET requests, the simplest and most common type of request, which down-
load the content from a URL.

Many sites don’t like web scrapers for a variety of reasons, including the
fact that if a script is hammering a site with HTTP requests, this increases
the site’s bandwidth costs and could even cause it to crash. Sometimes
sites will add roadblocks, such as limiting the number of requests you can
make in a short amount of time or requiring that the user (or bot) fill out a
CAPTCHA, in an effort to hinder or prevent scraping.

N O T E Some time around 2002, when I was in high school, my friends and I de cided to
make a song lyr ics website. Similar sites existed, but they were incomplete. I thought it
would be simple to scrape the lyr ics from those other sites and make a single site that
had all of the lyr ics. I wrote a script to scrape thousands of lyr ics from one par tic u lar
site, but my script crashed while it was running. I realized it was because the source
website had gone down. A few days later, the site came back online with a message:
the owner was overjoyed to learn how much traffic the site was getting, but to keep
up with it they had to raise money to keep the site online. I felt bad about it, and we
never ended up launching that lyr ics site.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://themarkup.org/news/2020/12/03/why-web-scraping-is-vital-to-democracy
https://themarkup.org/news/2020/12/03/why-web-scraping-is-vital-to-democracy

Scraping Techniques
This section describes three dif fer ent techniques for web scraping, each
introducing a dif fer ent Python module. You’ll use a Python package called
HTTPX to make HTTP requests, then use another called Beautiful Soup
to help you select the data that you care about from a soup of messy HTML
code. Fi nally, you’ll use a package called Selenium to write code that
launches a web browser and controls what it does.

Web scraping requires a lot of trial and error as well as a thorough
understanding of the layout of the website that you’re scraping data from.
This appendix gives you just a few examples, not a comprehensive overview,
but they should give you a head start on writing your own web scraping
scripts in the future.

Loading Pages with HTTPX
HTTPX is a third- party Python package that lets you make your own HTTP
requests with Python. In this section, you’ll learn how to use it to scrape the
most recent posts from any given user on the far- right social media site Gab,
which you read about in Chapters 1, 12, and 13.

Install the httpx module with pip by running python3 - m pip install
httpx. After importing httpx into your code, you should be able to load a
web page by running the httpx.get() function and passing in a URL. This
function returns a request object, and you can access the request’s content
with . content for binary data or .text for text data. For example, Listing B-1
shows Python code to make an HTTP request to https:// example . com and view
its content.

>>> import httpx
>>> r = httpx . get("https:// example . com")
>>> print(r.text)
<!doctype html>
<html>
<head>
 <title>Example Domain</title>
- - snip- -
</head>

<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is for use in illustrative examples in documents. You may use this
 domain in lit er a ture without prior coordination or asking for permission.</p>
 <p>More information...</p>
</div>
</body>
</html>

Listing B-1: Scraping the HTML from https:// example . com

486 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://example.com
httpx.get("https://example.com
href="https://www.iana.org/domains/example">More
https://example.com

Scraping the Web 487

First, this code imports the httpx module. It then calls the httpx.get()
function, passing in a URL as an argument, and saves the response in the
variable r. Fi nally, it displays the r.text variable, which is all of the HTML
code that makes up https:// example . com. (If you’re loading a binary file, like
an image, then you can get the binary data in the r . content variable.) This
 simple httpx.get() function is often all you need to scrape entire databases
of information from the web. The script I’ll show you in this section that
scrapes posts from Gab relies on this function.

Since web scraping means writing code that loads URLs, your first
step should be to determine which URLs you need to load. The easiest way
to do this is to use the built-in developer tools in your web browser. You
can open them in most browsers by pressing the F12 key. In both Firefox
and Chrome, you can see the HTTP requests your browser is making, and
what the responses look like, in the Network tab of the developer tools. For
example, if you open your browser’s developer tools and load the profile
page of a Gab user, you can see what HTTP requests it makes to gather that
user’s most recent posts. Once you have that information, you can write a
script that makes the same HTTP requests for you.

N O T E The developer tools built in to Firefox, Chrome, and other browsers are a great way
to learn what data your web browser is sending back and forth on the websites you’re
visiting, to see exactly how web pages are laid out, and more. For more about Firefox’s
developer tools, see https:// firefox - source - docs . mozilla . org / devtools - user
/ index . html; for Chrome, see https:// developer . chrome . com / docs / devtools.

For example, the Gab page for Marjorie Taylor Greene, the US con-
gressperson who’s also a Christian nationalist and QAnon conspiracy theo-
rist, is located at https:// gab . com / RealMarjorieGreene. In a web browser, load
that URL and then the open developer tools. Refresh the page to get all of
the HTTP requests to show up in the Network tab.

In the Network tab, you should see several HTTP requests listed on the
left half of the developer tools panel. When you click a request, the right
half of the panel displays information about it. The right half has its own
tabs that you can switch through to see details like the request’s headers,
cookies, and the body of the request and its response.

When I loaded this page and looked through my browser’s HTTP requests
and their responses, I de cided I was most interested in the following URLs:

https:// gab . com / api / v1 / account _ by _ username / RealMarjorieGreene The
response to this request includes a JSON object containing information
about Greene’s Gab profile, including her Gab account ID, 3155503.

https:// gab . com / api / v1 / accounts / 3155503 / statuses ? sort _ by	=	newest The
response to this request includes a JSON array of Greene’s most recent
Gab posts. Her account ID is in the URL itself.

The first URL let me look up the Gab ID of any account, and the second
URL let me look up the recent posts from an account, based on its Gab ID.
Figure B-1 shows Firefox’s developer tools in action while loading this page.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://example.com
https://firefox-source-docs.mozilla.org/devtools-user/index.html
https://firefox-source-docs.mozilla.org/devtools-user/index.html
https://developer.chrome.com/docs/devtools
https://gab.com/RealMarjorieGreene
https://gab.com/api/v1/account_by_username/RealMarjorieGreene
https://gab.com/api/v1/accounts/3155503/statuses?sort_by=newest

Figure B-1: Viewing the JSON response to a specific request in the Firefox developer tools
Network tab

As you can see, this response is in JSON format. I wanted to write a
script that, given a Gab username, would download the latest tweets from
that user. In order to write it, I had to spend some time looking at the JSON
in these responses to understand how it was structured and what informa-
tion I was interested in. For example, since I wanted to start with a Gab
username, my script would first need to load the URL https:// gab . com / api / v1
/ account _ by _ username / username, replacing username with my target username.
It would then need to parse the JSON it receives to extract this Gab user’s
ID. Then, using that ID, it would need to load the URL https:// gab . com / api
/ v1 / accounts / id / statuses ? sort _ by = newest, replacing id with the Gab ID of the
target account. Fi nally, it would need to parse that JSON response to display
the latest Gab posts.

Based on this research, I wrote the following script to scrape the latest
posts from any target Gab account. Here’s the code for this web scraping
script, httpx - example . py:

import httpx
import click

@click . command()
@click.argument("gab_username") 1
def main(gab_username):
 """Download a user's posts from Gab"""

 # Get information about the user
 r = httpx . get(f"https:// gab . com / api / v1 / account _ by _ username / {gab _ username}") 2
 user_info = r.json()

488 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://gab.com/api/v1/account_by_username/username
https://gab.com/api/v1/account_by_username/username
https://gab.com/api/v1/accounts/id/statuses?sort_by=newest
https://gab.com/api/v1/accounts/id/statuses?sort_by=newest
http://httpx-example.py
http://click.command
httpx.get(f"https://gab.com/api/v1/account_by_username/{gab_username

Scraping the Web 489

 if "error" in user_info:
 print(user_info["error"])
 return

 # Display some user info
 click.echo(f"Display name: {user_info['display_name']}") 3
 click.echo(f"{user_info['followers_count']:,} followers, {user_info['following_count']:,}
following, {user_info['statuses_count']:,} posts")
 print()

 # Get this user's posts
 r = httpx . get(f"https:// gab . com / api / v1 / accounts / {user _ info['id']} / statuses") 4
 posts = r.json()
 for post in posts:
 if post["reblog"]:
 print(f"repost @{post['reblog']['account']['username']}:
{post['reblog']['created_at']}: {post['reblog']['content']}")
 else:
 print(f"{post['created_at']}: {post['content']}")

if __name__ == "__main__":
 main()

This script first imports the httpx module, since it will need that module
to make HTTP requests. Like many Python scripts throughout this book, it
uses the click module to accept CLI arguments. In this case, it accepts an
argument called gab_username, the username of the target Gab user 2.

When the main() function runs, it downloads information about the tar-
get user by calling the httpx.get() function and passing in the URL https://
gab . com / api / v1 / account _ by _ username / gab _ username, replacing gab_username with
the value of the CLI argument and storing the result in the variable r 2.
As my browser’s developer tools made clear, the response should be a JSON
object, so the script next calls r.json() on it to make HTTPX convert it into
a dictionary called user_info. It then checks to see if user_info has an error
key; if so, it displays the error message and quits early. If you try loading
that URL with an invalid username, you’ll see the error message in the
error key: the string Rec ord not found.

Once the script has successfully retrieved information about a Gab user,
it displays some of that information— the display name, number of follow-
ers, number of follows, and number of posts—in the terminal 3. The script
then uses HTTPX to make another HTTP request, this time to load the
user’s posts. Note that this URL includes user_info['id'], which is the ID of
the user discovered from the previous HTTP request 4. As before, it calls
r.json() to convert the JSON into a Python object, this time a list called
posts. In the following for loop, the script loops through the list of posts,
displaying them one at a time.

You can find a complete copy of this code in the book’s GitHub repo
at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / appendix - b
/ httpx - example . py.

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

httpx.get(f"https://gab.com/api/v1/accounts/{user_info['id']}/statuses
https://gab.com/api/v1/account_by_username/gab_username
https://gab.com/api/v1/account_by_username/gab_username
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/httpx-example.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/httpx-example.py

At the time of writing, I could use this script to download the recent
posts of any Gab user by including their username as an argument. For
example, here’s what it looked like when I ran this script on the account
of Andrew Torba, Gab’s founder and owner and the author of the book
Christian Nationalism, whose Gab username is a:

micah@trapdoor appendix- b % python3 httpx - example . py a
Display name: Andrew Torba
3,803,381 followers, 2,662 following, 67,317 posts

2022-12-07T04:56:56.989Z: Is it really so crazy to think that I care nothing
at all about a par tic u lar historical atrocity that happened on another
continent 80 years ago when there is a genocide of babies happening right
 here, right now, today?
repost @ScipioAmericanus: 2022-12-07T04:50:37.560Z: Jews literally believe
that they can reject God because they're justified according to the flesh and
their own laws. Wicked stuff.
- - snip- -

The output shows Torba’s display name, statistics about his account, and
several of his latest posts to Gab. As you can see, they’re on the fascist side.
Torba has 3.8 million followers, because every Gab user automatically fol-
lows him when they create an account.

N O T E While 3.8 million followers sounds like a lot, most of those accounts aren’t active.
In 2021, I analyzed hacked Gab data and discovered that of the roughly 4 million
accounts, only 1.5 million of them had posted any content at all, only 400,000 had
posted more than 10 times, and only 100,000 of those had posted anything recently.
You can read my analy sis at https:// theintercept . com / 2021 / 03 / 15 / gab - hack
- donald - trump - parler - extremists / .

Try running httpx - example . py on any Gab account you’d like. Unless Gab’s
website has changed, this should download the recent posts from that user.
However, it’s pos si ble that by the time you run this script, the site may have
changed so that the script doesn’t work anymore. This is the unfortunate
nature of web scraping. Every script you write that scrapes the web relies on
websites acting one specific way; if they don’t, your script might break. It’s
often a simple matter to update a script so it works again, though. To do so,
you’d need to use your browser’s developer tools to figure out how the website
changed, and then update your script to match its new URLs and be hav ior—
basically, repeat what you just did. In the worst case, if the website has changed
a lot, you may need to rewrite your scraping script from scratch.

Using Python logic and HTTPX, you can also modify the script to get
all of the posts for a given account, rather than just the recent ones. You
could write a script that finds a target Gab user and downloads the list of
accounts they follow. Or you can take a target Gab post and download a
list of accounts that liked it. You’d just need to learn exactly which HTTP
requests to make to get the information you’re interested in, and then have
Python make those requests for you. Some of these tasks would be more

490 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://httpx-example.py
https://theintercept.com/2021/03/15/gab-hack-donald-trump-parler-extremists/
https://theintercept.com/2021/03/15/gab-hack-donald-trump-parler-extremists/
http://httpx-example.py

Scraping the Web 491

complicated than others— for example, to get the data you’re looking for,
you may need to create a Gab account and have your scraper make requests
while you’re logged in. The more web scraping scripts like these you write,
the better at it you’ll get.

To learn more about using the HTTPX package, check out its docu-
mentation at https:// www . python - httpx . org.

Parsing HTML with Beautiful Soup
Scraping Gab was simple because the responses to the HTTP requests were
in JSON format, but pulling specific information out of the HTML in a web
page is more challenging. The easiest way to parse HTML in Python is to
use a package aptly called Beautiful Soup (BS4 for short). Install the bs4
module by running python3 - m pip install bs4.

For example, here’s some code that uses the httpx module to download
the HTML from https:// example . com, like you did in the last section:

>>> import httpx
>>> from bs4 import BeautifulSoup
>>> r = httpx . get("https:// example . com")

This code imports the httpx module, then imports Beautiful Soup from
the bs4 module. Next, it uses httpx.get() to make an HTTP request to https://
example . com and stores the result in r, allowing you to access the HTML string
itself using the r.text variable. As you saw in Listing B-1, this HTTP response
is in HTML format and includes the page’s title inside the <title> tag, as well
as two paragraphs of text within <p> tags inside the <body> tag.

Using BS4, you can parse this HTML to select specific pieces of content—
in this case, the page title and the content of the first paragraph:

>>> soup = BeautifulSoup(r.text, "html.parser")
>>> print(soup.title.text)
Example Domain
>>> paragraph = soup.find("p")
>>> print(paragraph.text)
This domain is for use in illustrative examples in documents. You may use this
 domain in lit er a ture without prior coordination or asking for permission.
>>> for link in soup.find_all("a"):
... print(link.get("href"))
...
https:// www . iana . org / domains / example

This code parses the HTML string (r.text) using BS4, storing the
resulting BeautifulSoup object in the soup variable defined in the first line
of code. This allows you to use soup to extract whatever information you’re
interested in from the HTML. The code then displays the page title by
printing the value of soup.title.text.

Next, the script searches for the first paragraph on the HTML page
and displays its text by printing the value of paragraph.text. Fi nally, it finds
all of the links on the page (which are <a> tags), loops through them in a for

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.python-httpx.org
https://example.com
httpx.get("https://example.com
https://example.com
https://example.com
https://www.iana.org/domains/example

loop, and prints the URL for each link (the URL is defined in the href attri-
bute of <a> tags). The https:// example . com web page has only one link, so the
code displays just that.

For practice, next we’ll explore a script that scrapes content from Hacker
News (https:// news . ycombinator . com), a news aggregator site about tech startups
and computer science. Hacker News is similar to Reddit in that anyone can
post links, and users then upvote and downvote those links, with the most
 popular ones rising to the top. Its web design is simple and has remained the
same for many years, making it a good choice for web scraping practice.

Your practice script will download the title and URL from the first five
pages of popular links. The front page of Hacker News displays the 30 most
 popular recent posts. If you scroll to the bottom and click More, you’ll see
the second page of results, showing the next 30 most popular recent posts,
at the https:// news . ycombinator . com / ? p = 2 URL. Likewise, the third page of
results has the URL https:// news . ycombinator . com / ? p = 3, and so on.

Figure B-2 shows a Firefox win dow with Hacker News loaded and the
developer tools open. This time, I’ve switched to the Inspector tab, which
allows you to inspect how the HTML of the page is laid out. The Inspector
tab shows all of the HTML tags that make up the page, and when you
mouse over an individual tag, your browser highlights the corresponding
design ele ment on the web page. In this example, I moused over an <a> tag,
and the browser highlighted that ele ment.

Figure B-2: Using Firefox’s developer tools to inspect the HTML that makes
up a Hacker News post

492 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://example.com
https://news.ycombinator.com
https://news.ycombinator.com/?p=2
https://news.ycombinator.com/?p=3

Scraping the Web 493

The developer tools show that all posts in the Hacker News site are
laid out in an HTML table. In HTML, tables are defined within < table>
tags. Each row is a <tr> tag, and each cell within it has a <td> tag. Here’s the
HTML code from the row that’s selected in the figure:

<tr class="athing" id="34466985">
 <td class="title" valign="top" align="right">4.</td>
 <td class="votelinks" valign="top">
 <center>

 <div class="votearrow" title="upvote"></div>
 </center>
 </td>
 <td class="title">

 <a href = "https:// people . ece . cornell . edu / land / courses / ece4760 / RP2040 / C _ SDK _ DMA _ machine / DMA
_ machine _ rp2040 . html">
 Direct Memory Access computing machine RP2040

 (
 cornell . edu< / span>< / a>)

 </td>
</tr>

The rows with class="athing", or the value of the attribute class set to
athing, contain links that users have posted. Inside each athing row, there
are three cells (that is, three <td> tags) . The last of these cells contains the
 actual link, the <a> tag.

The following script, bs4- example.py, scrapes the titles and URLs of the
first five pages of the most popular posts recently posted on Hacker News,
saving them in a CSV spreadsheet and also displaying them to the terminal:

import csv
import time
import httpx
from bs4 import BeautifulSoup

def main():
 with open("output.csv", "w") as f:
 writer = csv.DictWriter(f, fieldnames=["Title", "URL"])
 writer.writeheader()

 for page_number in range(1, 6):
 print(f"LOADING PAGE {page_number}")
 r = httpx . get(f"https:// news . ycombinator . com / ? p = {page _ number}")
 print("")

 soup = BeautifulSoup(r.text, "html.parser")
 for table_row in soup.find_all("tr", class_="athing"):
 table_cells = table_row.find_all("td")
 last_cell = table_cells[-1]

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

href="https://people.ece.cornell.edu/land/courses/ece4760/RP2040/C_SDK_DMA_machine/DMA_machine_rp2040.html
href="https://people.ece.cornell.edu/land/courses/ece4760/RP2040/C_SDK_DMA_machine/DMA_machine_rp2040.html
http://href="from?site=cornell.edu
http://class="sitestr">cornell.edu</a
httpx.get(f"https://news.ycombinator.com/?p={page_number

 link = last_cell.find("a")
 link_url = link.get("href")

 print(link.text)
 print(link_url)
 print("")

 writer.writerow({"Title": link.text, "URL": link_url})

 time.sleep(1)
if __name__ == "__main__":
 main()

First, the script imports the csv, time, httpx, and bs4 modules. In the
main() function, it opens a new CSV for writing called output.csv, creates a
csv.DictWriter() object, and uses that object to write the CSV headers (Title
and URL, in this case), as you learned in Chapter 9.

The following for loop loops through the results of range(1, 6), saving
each item as page. The range() function is useful for looping through a list of
numbers—in this case, it starts with 1, then 2, and so on until it hits 6 and
then stops, meaning it returns the numbers 1 through 5. The code displays
the page number that it’s about to load, then makes the HTTP request to
load that page using httpx.get(), creating a dif fer ent URL for the current
page on each loop. After making each HTTP request that gets a page of
results, the code parses all of the HTML from that page using BS4, storing
it as soup.

Now things get slightly trickier. As noted earlier, all of the HTML table
rows that have the class athing contain links that users posted. The script
gets a list of all of these rows by calling soup.find_all("tr", class_="athing").
The find_all() method searches the BS4 object soup for all instances of the
HTML tag <tr> and returns a list of matches. In this case, the code also
includes class_="athing", which tells BS4 to include only tags that have the
class attribute set to athing. The for loop loops through them, saving each
item in the table_row variable.

Now that the code is looping through each table row that contains a
link posted by a user, it goes on to find that link tag. There are several links
in each table row, so it figures out which one is the link a user posted. First,
it calls table_row.find_all("td") to get a list of all of the table cells inside
table_row, storing that list in table_cells. As noted earlier, the last cell con-
tains the link that we care about. Therefore, the code pulls out just the last
cell in this list, storing it in the variable last_cell (the −1 index is the last
item in a list). The code searches just last_cell for the link it contains (the
<a> tag), and uses print() to display the link’s title and URL. Fi nally, it calls
writer.writerow() to also save this row into the CSV.

The code does this once for each of the page’s 30 rows. It then waits
one second, using time.sleep(1), and moves on to the next page, until it has
extracted all the links from the first five pages. When the script is finished
 running, it creates a file called output.csv that should contain the 150 most
recent popular links posted to Hacker News. Most of the time when you’re

494 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

Scraping the Web 495

scraping real data for an investigation you’ll save it to a CSV spreadsheet,
like this script did, or to a SQL database (as discussed in Chapter 12) so
that you can work with it later.

N O T E The find_all() method in this code passes an argument called class_ instead of
class. This is because class is a Python keyword and can’t be used as a variable
name. If you want to use find_all() to select tags using any other attribute, then
the argument name will be the same as the attribute name. For example, soup.find
_all("a", href = "https:// example . com") will find all link tags in soup that have an
href attribute set to https:// example . com.

You can also find a copy of this code in the book’s GitHub repo at https://
github . com / micahflee / hacks - leaks - and - revelations / blob / main / appendix - b / bs4
- example . py.

 Here’s what it looked like when I ran this script:

micah@trapdoor appendix- b % python3 bs4- example.py
LOADING PAGE 1

Buy Hi- Resolution Satellite Images of Any Place on Earth
https:// www . skyfi . com / pricing

The McMurdo Webcams
https:// www . usap . gov / videoclipsandmaps / mcmwebcam . cfm

- - snip- -
LOADING PAGE 2

Thoughts on the Python Packaging Ecosystem
https:// pradyunsg . me / blog / 2023 / 01 / 21 / thoughts - on - python - packaging/
- - snip- -

Try running it yourself now. Assuming Hacker News hasn’t updated its
web design, it should work fine; however, the URLs will differ because the
most popular recent links on Hacker News are constantly changing.

This script scrapes only the first five pages of content on Hacker News.
In theory, you could scrape all the content on the site since its founding
in 2007. To do so, you’d have to modify the script to stop not after page 5
but when it gets to the very last page, presumably one that doesn’t have any
links on it. This assumes that the site will actually show you content that old,
and that you could make those millions of HTTP requests without it block-
ing your IP address. I don’t know if this is true or not with Hacker News— I
 haven’t attempted to scrape every thing from this site myself.

I mentioned in the “HTTP Requests” section that some websites add
roadblocks to make scraping more difficult, and this turned out to be true
with Hacker News. When I first wrote this script, it didn’t include the time.
sleep(1) code, which waits one second between each HTTP request. I found
that Hacker News limits how quickly you can make HTTP requests, and the
fifth request in quick succession responded with an HTML page with the
error message Sorry, we're not able to serve your requests this quickly. I

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

href="https://example.com
https://example.com
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/bs4-example.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/bs4-example.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/bs4-example.py
https://www.skyfi.com/pricing
https://www.usap.gov/videoclipsandmaps/mcmwebcam.cfm
https://pradyunsg.me/blog/2023/01/21/thoughts-on-python-packaging/

solved this prob lem by waiting 1 second between HTTP requests. It’s com-
mon to run into hurdles like this while you’re writing scrapers, but it’s also
often a simple matter of modifying your script like this to get around these
roadblocks.

BS 4 W EB SCR A PING FOR T R AV EL

In 2014, shortly after Edward Snowden leaked his massive dataset of top- secret
NSA documents to Laura Poitras and Glenn Greenwald, I scheduled a trip to
Rio de Janeiro, where Greenwald lived, to help him with computer security
and to look through the Snowden docs myself. (This was several years before
Greenwald unfortunately became a far- right pundit who openly supports the
American fascist movement.) At the time, Americans could travel to Brazil only
if they had a visa, and they needed to visit a consulate in person to get one.
However, the San Francisco consulate’s website told me that all appointments
 were booked for the next two months.

To solve this prob lem, I wrote a simple Python script that scraped the con-
sulate’s availability calendar web page, using BS4 to loop through each cell in
the calendar and see if any appointment slots were open. If it found an open-
ing, my script would send me a text message. I then configured a VPS to run
this script every 10 minutes so I’d be the first to know if someone canceled their
appointment. In less than two days, I got a text, snagged an appointment, and
got my visa. I flew to Rio a few days later.

To learn more about using the BS4 package, check out its documenta-
tion at https:// www . crummy . com / software / BeautifulSoup / bs4 / doc / .

Automating Web Browsers with Selenium
Sometimes scraping websites is too challenging for Beautiful Soup alone.
This is often the case with sites that are JavaScript- heavy, where viewing the
HTML source doesn’t result in much information you’re interested in. This
is true for sites like Facebook, Twitter, and Google Maps. It’s much simpler
to get information from this sort of site by using a web browser than by
untangling the complicated web of HTTP requests that you’d need to make
to get the same information. Some websites also put up barriers to scrap-
ing. They might add JavaScript code that ensures visitors are using real web
browsers before showing them content, preventing users from just making
HTTP requests using cURL (discussed in Chapter 4) or a Python package
like HTTPX.

You can control a real web browser for scraping purposes by using
software called Selenium. Scripts that just make HTTP requests are more
efficient and run much quicker than using Selenium because they don’t
require running a whole web browser and downloading all of the resources

496 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Scraping the Web 497

of the target website. When I’m writing a scraper, I generally start by
attempting to scrape the site using HTTPX, but if this technique turns out
to be too complicated, I switch to Selenium.

To use the Selenium Python package, you must also install a web driver,
software that Selenium uses to control a web browser. Selenium supports
Chrome, Firefox, Safari, and Edge. The example in this section uses the
Firefox driver, which is called geckodriver.

To continue, follow the instructions for your operating system, then
skip to the “Testing Selenium in the Python Interpreter” section.

Installing Selenium and geckodriver on Win dows

For this task, Win dows users should work with native Win dows tools rather
than WSL. Install the selenium Python module by opening PowerShell and
 running the following command:

python - m pip install selenium

Also make sure you have Firefox installed (see https:// www . mozilla . org / en
- US / firefox / new /).

To install geckodriver, go to https:// github . com / mozilla / geckodriver / releases
. You’ll see several ZIP files for the latest version of geckodriver that you can
download. Download the appropriate Win dows version and unzip it. You
should end up with a single file called geckodriver.exe. In File Explorer, copy
this file and paste it into C:\Windows\System32. This will allow you to run
geckodriver from PowerShell no matter what your working directory is.

Installing Selenium and geckodriver on macOS

If you’re using macOS, open a terminal. Install the selenium Python module
by running the following:

python3 - m pip install selenium

Then install geckodriver by running the following:

brew install geckodriver

This should give you every thing you need to use Selenium in Python.

Installing Selenium and geckodriver on Linux

If you’re using Linux, open a terminal. Install the selenium Python module
by running the following:

python3 - m pip install selenium

Install geckodriver by running the following:

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://www.mozilla.org/en-US/firefox/new/
https://www.mozilla.org/en-US/firefox/new/
https://github.com/mozilla/geckodriver/releases

sudo apt update
sudo apt install firefox- geckodriver

This should give you every thing you need to use Selenium in Python.

Testing Selenium in the Python Interpreter

Now that you have Selenium and geckodriver installed, test them out in the
Python interpreter by loading this book’s git repo website on GitHub to get
a feel for how Selenium allows you to control a web browser:

>>> from selenium import webdriver
>>> driver = webdriver.Firefox()
>>> driver . get("https:// github . com / micahflee / hacks - leaks - and - revelations")
>>> print(driver.title)
GitHub - micahflee/hacks- leaks- and- revelations: Code that goes along with the Hacks, Leaks, and
Revelations book
>>> driver.quit()

This code first imports webdriver from the selenium module. It then cre-
ates a new Firefox driver by called webdriver.Firefox() and saves it in the
variable driver. When you create the Selenium driver, a new Firefox win-
dow should open on your computer, and a robot icon should appear in the
address bar— this is how you know that this browser is being controlled by
Selenium.

The code then instructs the browser to load the URL https:// github
. com / micahflee / hacks - leaks - and - revelations. After running the command, you
should see Firefox load that GitHub page. Once the page is loaded, includ-
ing all of its JavaScript or other complicated components, you can write
code to control it. In this case, those code just displays the title of the page
in the terminal with print(driver.title). Fi nally, it quits Firefox.

Automating Screenshots with Selenium

Now let’s try something slightly more complicated. In this section, we’ll go
over a script that will take two arguments: a location name and the filename
of a screenshot to save. Using Selenium, the script will load Google Maps
at https:// maps . google . com, search for the location, zoom in a little, turn on
the satellite images layer, and take a screenshot of the satellite image of the
location, saving it to disk.

While I’m programming web scrapers, I find it helpful to have an interac-
tive Python interpreter open in a terminal where I can test out Selenium or
BS4 commands, allowing me to see if they work in real time without having
to start my script over. When I’m writing a Selenium script, I open developer
tools inside the browser I’m driving to inspect all of the HTML tags, which
helps me figure out which commands to run. Once I get something working,
I copy the working code into the script that I’m writing in my text editor.

For example, to search for the location in Google Maps, I needed to
make the Selenium browser select the search box, type the location, and

498 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

driver.get("https://github.com/micahflee/hacks-leaks-and-revelations
https://github.com/micahflee/hacks-leaks-and-revelations
https://github.com/micahflee/hacks-leaks-and-revelations
https://maps.google.com

Scraping the Web 499

press enter. In HTML, tags often have id attributes. By using the Firefox
developer tools, I discovered that the search box in Google Maps, which
is an <input> tag, includes the id="searchboxinput" attribute, meaning the
search box has an id of searchboxinput. That allowed me to enter code into
the Python interpreter that would select the search box, type a search query
into it, and press enter in the browser it was controlling. I didn’t always get
it right on the first try, but after some trial and error I wrote some working
code. At this point, I added that code to my script.

I also used developer tools to figure out how to turn on the satellite
image layer. In the bottom- left corner of Google Maps there’s an icon,
called the minimap, that lets you toggle on and off dif fer ent layers. The
developer tools showed me that this icon had an id of minimap and that I
could click one of the buttons in the minimap ele ment to turn on the satel-
lite layer— just like with the search box, I tested clicking this icon in the
Python interpreter until I got it working.

The following script, selenium- example.py, uses Selenium to take satellite
image screenshots from Google Maps for you:

import click
import time
from selenium import webdriver
from selenium . webdriver . common . keys import Keys
from selenium . webdriver . common . by import By

@click . command()
@click.argument("location")
@click.argument("screenshot_filename", type=click.Path(exists=False))
def main(location, screenshot_filename):
 driver = webdriver.Firefox()
 driver.implicitly_wait(10)

 driver . get("https:// maps . google . com")
 search_box = driver.find_element(By.ID, "searchboxinput")
 search_box.clear()
 search_box.send_keys(location)
 search_box.send_keys(Keys.RETURN)

 body = driver.find_element(By.TAG_NAME, "body")
 body.send_keys(Keys.ADD)
 body.send_keys(Keys.ADD)

 minimap = driver.find_element(By.ID, "minimap")
 buttons = minimap.find_elements(By.TAG_NAME, "button")
 buttons[2].click()

 time.sleep(2)
 driver.save_screenshot(screenshot_filename)
 driver.quit()

if __name__ == "__main__":
 main()

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

http://selenium.webdriver.common.keys
http://selenium.webdriver.common.by
http://click.command
driver.get("https://maps.google.com

First, the script imports the click and time modules, and then several
components from the selenium module. Specifically, it imports webdriver,
the component required to actually launch and control a web browser. It
also imports Keys and By to automate pressing enter after searching, and to
search for HTML ele ments by their id attribute.

N O T E Exactly what you need to import from selenium depends on what you’re trying to do.
Consult the Selenium for Python documentation to learn exactly what you need and
when— that’s how I figured it out.

The code includes Click decorators before the main() function, mak-
ing this a command line program that takes two arguments, location and
screenshot_filename. The location variable is a Google Maps search query,
like Manhattan, NY or The Great Pyramid of Giza, and screenshot_filename is
the path to save the final screenshot.

When the main() function runs, the code starts by creating a Selenium
web driver, which should open a Firefox win dow that the script will then
control. The driver.implicitly_wait(10) function tells Selenium to wait up to
10 seconds for page ele ments to load. The code loads https:// maps . google . com
in Firefox with the driver.get() function, then finds the search box ele ment
on the page, storing it in the variable search_box. It finds the search box by
 running driver.find_element(By.ID, "searchboxinput"). Once the code has this
search box object stored in search_box, it clears any text in the text box by
calling the clear() method on it, and then it types the text in the location
string by calling send_keys(location). Fi nally, it presses enter to search for
this location by calling send_keys(Keys.RETURN). At this point, Google Maps
should search for the location.

The code then zooms in by selecting the <body> tag, the main HTML
tag that contains all other tags, then telling Firefox to press the + key twice,
which is Google Map’s keyboard shortcut to zoom in.

At this point, Firefox has loaded Google Maps, searched for a location,
and zoomed in on that location. The code then turns on the satellite image
layer by locating the minimap in the corner of the screen. Once it finds
this, it locates all of the <button> tags inside the minimap by calling the
find_elements(By.TAG_NAME, "button") method, and then it clicks the third but-
ton, calling the click() method on the third ele ment (which has an index of
2) on the list of buttons. This turns on the satellite images layer.

Fi nally, the script waits two seconds, just to make sure the satellite
images have finished loading, and then saves a screenshot of the web page
to screenshot_filename. When it’s done, it quits Firefox.

You can find a complete copy of this code in the book’s GitHub repo
at https:// github . com / micahflee / hacks - leaks - and - revelations / blob / main / appendix - b
/ selenium - example . py.

You can use selenium- example.py to generate Google Maps screenshots of
any location you like. For example, I ran the following command:

python3 selenium- example.py " great pyramid of giza" giza.png

500 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://maps.google.com
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/selenium-example.py
https://github.com/micahflee/hacks-leaks-and-revelations/blob/main/appendix-b/selenium-example.py

Scraping the Web 501

This opened a Firefox win dow that was controlled by Selenium. It
loaded Google Maps, searched for great pyramid of giza, zoomed in, turned
on the satellite images layer, and saved a screenshot of the win dow in the
file giza.png. Figure B-3 shows giza.png, scraped from Google Maps.

Figure B-3: A satellite image of the Great Pyramid of Giza from Selenium

On your own, it might also be fun to try searching for US Capitol;
Washington, DC; Kremlin, Moscow; or Tokyo, Japan.

This example script used Selenium to take screenshots. You could mod-
ify it so that Selenium automatically takes a screenshot each time a public
figure posts a tweet, so you’ll have a rec ord of it in case they delete it. You’re
not limited to cata loguing information in this way, though; you can also use
Selenium to extract information from web pages and store them in CSV
spreadsheets or any other format you’d like, just like you can with BS4.

To learn more about Selenium for Python, check out its documentation
at https:// selenium - python . readthedocs . io.

Next Steps
In this appendix, I’ve gone over a few techniques for web scraping and
provided some simple example scripts to show off the basics of how they
work. However, in order to write code for your future web scraping proj ects,
you’ll prob ably need to learn more about web development than is covered
in this book, depending on what site you’re trying to scrape. For example,

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

https://selenium-python.readthedocs.io

your HTTPX and BS4 scraper might need to first log into a website and
then make all of its future requests as that logged-in user in order to access
the content you’re after. This would require making HTTP POST requests
instead of just GET requests, and keeping track of cookies, neither of which
I’ve covered here.

As a next step, I recommend getting more comfortable with the devel-
oper tools built into browsers. This will help familiarize you with the HTTP
requests your browser makes and what their responses include. Spend more
time browsing the layout of HTML ele ments, as you did in this appendix.
The more you learn about web development, including more complex top-
ics like HTTP headers and cookies, the easier it will be for you to scrape the
web. If you can access information in a web browser, you can write a script
that automates accessing that information.

502 Appendix B

Hacks, Leaks, and Revelations (Early Access) © 2023 by Micah Lee

	Front Cover
	No Starch Press Early Access Program
	Copyright
	Contents
	Acknowledgments����������������������
	Introduction�������������������
	Part I: Sources and Datasets�����������������������������������
	Chapter 1: Protecting Sources and Yourself���
	Chapter 2: Acquiring Datasets������������������������������������

	Part II: Tools of the Trade����������������������������������
	Chapter 3: The Command Line Interface��
	Chapter 4: Exploring Datasets in the Terminal��
	Chapter 5: Docker, Aleph, and Making Datasets Searchable���
	Chapter 6: Reading Other People’s Email

	Part III: Python Programming�����������������������������������
	Chapter 7: An Introduction to Python���
	Chapter 8: Working with Data in Python���

	Part IV: Structured Data�������������������������������
	Chapter 9: BlueLeaks, Black Lives Matter, and the CSV File Format
	Chapter 10: BlueLeaks Explorer�������������������������������������
	Chapter 11: Parler, the January 6 Insurrection, and the JSON File Format
	Chapter 12: Epik Fail, Extremism Research, and SQL Databases

	Part V: Case Studies���������������������������
	Chapter 13: Pandemic Profiteers and COVID-19 Disinformation
	Chapter 14: Neo-Nazis and Their Chat Rooms���

	Afterword����������������
	Appendix A: Solutions to Common WSL Problems���
	Appendix B: Scraping the Web�����������������������������������

